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To Alan Turing



Preface

Alan Turing pioneered many research areas from artificial intelligence to com-
putability, from cryptography to heuristics and from Fabonacci phyllotaxis to
pattern formation. He had worked in many prestigious institutions, including Cam-
bridge University, Princeton University, National Physical Laboratory, and Manch-
ester University. 2012 is the Alan Turing year – a centenary celebration of the life
and work of Alan Turing.

In 1945, Turing was recruited to the National Physical Laboratory (NPL), UK
where he set out his design for the Automatic Computing Engine (ACE). During
this time, he lived at High Street, Hampton, Richmond upon Thames where a blue
plaque is still visible on that street. In an NPL report on Intelligent machinery in
1948, he outlined his innovative ideas of machine intelligence and learning, neural
networks and evolutionary algorithms. This little known report had in fact inspired
a wide range of research areas.

Nowadays at the information age, it is hard to imagine how the world would
be without computers and the Internet, in addition to many other crucial things.
Without Turing’s work, especially the “Turing Machine” concept at the heart of
every computer and microchip today, so many things on which we are so dependent
would not be possible. No wonder there are a series of important events worldwide
this year to celebrate the life and work, the far-reaching legacy of Alan Turing.
For example, one of the most prestigious journal Nature edited a special collection
Turing at 100: Legacy of a Universal Mind in February this year. Meanwhile, the
Turing Centenary Conference: How the World Computes will be held at Cambridge
University coincides with the 100th Birthday of Alan Turing.

To celebrate Turing’s legacy and to follow the footsteps of this brilliant mind,
we take this golden opportunity in the 2012 Turing year to review the latest de-
velopments in areas of artificial intelligence, evolutionary computation and meta-
heuristics, and all these areas can be traced back to Turing’s pioneer work. The
responses to our call of celebration were overwhelming, we have received a huge
number of high quality contributions. As the limitation of the space of this book,
we have to choose over two dozen papers whiling leaving many high-quality papers
not included in this book. We tried to main a balance in topics coverage, relevance
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to Turing’s work, and state of the art. Among our contributors to this book, many
are world-leading experts in their areas. Their reviews and contributions not only
provide a timely snapshot of the state-of-art developments, but also provide inspira-
tion for young researchers to carry out potentially ground-breaking research in these
active, diverse research areas.

Unintentionally following the footsteps of Alan Turing, I was fortunate enough,
a few years ago, to move from Cambridge University to join National Physical Lab-
oratory to work as a Senior Research Scientist at Mathematics and Scientific Com-
puting where Alan Turing had worked. Turing has been one of major influences
on my research concerning metaheuristics and pattern formation. When I watched
many BBC natural world programmes, I have always been trying to look for in-
spiration from nature to design new metaheuristic algorithms. Over the last few
years, I had managed to realize such dreams by developing bat algorithm, cuckoo
search, and firefly algorithms, which start to attract attention in the communities of
optimization, computational intelligence and engineering. Without Turing’s work
on heuristics, it would almost be impossible to develop these new metaheuristics.
Furthermore, loosely speaking, artificial intelligence also largely concerns the core
algorithms to mimic intelligent behaviour, unless a true Turing test can be passed in
the future, truly intelligent algorithms may still be a long way to go. However, on
the other hand, evolutionary algorithms and metaheuristics have become an impor-
tant part of so-called ‘smart algorithms’ and computational intelligence. They have
started to permeate into many areas including artificial intelligence. Therefore, it
is appropriate that we combine artificial intelligence, evolutionary computation and
metaheuristics in one book and dedicate this book to Alan Turing.

During the peer-review process, many experts have carried out independent re-
view of contributions. I would like to thank their help: Alma Garcia-Almanza,
Ravindra Babu Tallamraju, Tamiru Alemu, Elena Benderskaya, Dalila Boughaci,
Meftah Boudjelal, Larry Bull, Susmita Bandyopadhyay, Erik Cuevas, Amy Ding,
Yue Deng, Janice Glasgow, Loreto Gonzalez-Hernandez, Yacine Laalaoui, Keyur
Rana, Felipe Trujillo-Romero, Ricardo Sousa, Flvio Vieira, Abderrahmane Nitaj,
Shahid Qamar, Vasyl Ustimenko, and Roman Yampolskiy. Special thanks to Ri-
cardo Sousa and Vasyl Ustimenko who helped most in the review process.

I would like to thank our editors, Drs Thomas Ditzinger and Holger Schaepe, and
staff at Springer for their help and professionalism. Last but not least, I thank my
family for the help and support.

Xin-She Yang, 2012
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Universidad Politécnica de Victoria, Km. 5.5 Carretera Cd. Victoria-Soto la Marina,
87138, Cd. Victoria Tamps., Mexico
E-mail: nrangelv@upv.edu.mx

Ricardo Jorge Gamelas de Sousa
INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378 4200 - 465 Porto
Portugal
E-mail: rjgsousa@gmail.com

A.L. Tamiru
Department of Mechanical Engineering, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Malaysia

Jose Torres-Jimenez
CINVESTAV-Tamaulipas, Km. 5.5 Carretera Cd. Victoria-Soto la Marina, 87130,
Cd. Victoria Tamps., Mexico
E-mail: jtj@cinvestav.mx

Vasyl Ustimenko
Maria Curie-Skłodowska University in Lublin, Pl. Marii Curie-Skłodowskiej 5,
Lublin, Poland
E-mail: vasyl@hektor.umcs.lublin.pl

Flávio Henrique Teles Vieira
School of Electrical and Computer Engineering (EEEC) of the Federal University
of Goiás (UFG), Av. Universitria, 1488, Quadra 86, Bloco A, 3opiso.
CEP: 74.605-010. Setor Leste Universitário. Goiânia, Goiás, Brazil
E-mail: flavio@eee.ufg.br

Tao Wan
37 Xueyuan Road, Beihang University Haidian District, Beijing, 100191, China

Fernando Wario
Universidad de Guadalajara, Av. Revolución 1500, Col. Olı́mpica, Mexico



List of Contributors XIX

Roman V. Yampolskiy
Computer Engineering and Computer Science, DC 215, University of Louisville,
KY 40292, USA
E-mail: roman.yampolskiy@louisville.edu

Xin-She Yang
Mathematics and Scientific Computing, National Physical Laboratory,
Teddington TW11 0LW, UK
E-mail: xin-she.yang@npl.co.uk

Iryna Yevseyeva
Computer Science and Communication Research Center, Polytechnic Institute of
Leiria, Edifı́cio Sede, Rua General Norton de Matos, Apartado 4133, 2411-901
Leiria, Portugal
E-mail: iryna.yevseyeva@gmail.com

Daniel Zaldivar
Universidad de Guadalajara, Av. Revolución 1500, Col. Olı́mpica, Mexico

Zengke Zhang
Department of Automation, Tsinghua Nationality Lab for information science and
technology (TNList), Tsinghua University, Beijing 100084, China
E-mail: zzk@tsinghua.edu.cn

Sofya V. Zhukova
St. Petersburg State University, Graduate School of Management, St. Petersburg
Volkhovsky Per. 3, Russia 199004
E-mail: sophya.zhukova@gmail.com



Part I
Artificial Intelligence

and Cryptography



X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 3–17. 
springerlink.com                                          © Springer-Verlag Berlin Heidelberg 201  

Turing Test as a Defining Feature  
of AI-Completeness 

Roman V. Yampolskiy* 

Abstract. The paper contributes to the development of the theory of AI-
Completeness by formalizing the notion of AI-Complete, C-Complete and  
AI-Hard problems. The intended goal is to provide a classification of problems in 
the field of Artificial General Intelligence. We prove Turing Test to be an instance 
of an AI-Complete problem and further show certain AI problems to be  
AI-Complete or AI-Hard via polynomial time reductions. Finally, the paper sug-
gests some directions for future work on the theory of AI-Completeness.  

Keywords: AI-Complete, AI-Easy, AI-Hard, Human Oracle. 

1   Introduction 

Since its inception in the 1950s the field of Artificial Intelligence has produced 
some unparalleled accomplishments while at the same time failing to formalize 
the problem space it is concerned with. This paper proposes to address this short-
coming by extends on the work in [56] and contributing to the theory of AI-
Completeness, a formalism designed to do for the field of AI what notion of  
NP-Completeness did for computer science in general. It is our belief that such 
formalization will allow for even faster progress in solving remaining problems in 
humankind’s conquest to build an intelligent machine.  

According to the encyclopedia Wikipedia the term “AI-Complete” was pro-
posed by Fanya Montalvo in the 1980s [54]. A somewhat general definition of the 
term included in the 1991 Jargon File [37] states:  

“AI-Complete: [MIT, Stanford, by analogy with `NP-complete'] adj.  Used to de-
scribe problems or subproblems in AI, to indicate that the solution presupposes a 
solution to the `strong AI problem' (that is, the synthesis of a human-level intelli-
gence).  A problem that is AI-complete is, in other words, just too hard. Examples 
                                                           
Roman V. Yampolskiy 
Computer Engineering and Computer Science, DC 215,  
University of Louisville, KY 40292 
e-mail: roman.yampolskiy@louisville.edu 
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of AI-complete problems are `The Vision Problem', building a system that can see 
as well as a human, and `The Natural Language Problem', building a system that 
can understand and speak a natural language as well as a human.  These may ap-
pear to be modular, but all attempts so far (1991) to solve them have foundered on 
the amount of context information and `intelligence' they seem to require.” 

As such, the term “AI-Complete” (or sometimes AI-Hard) has been a part of 
the field for many years and has been frequently brought up to express difficulty 
of a specific problem investigated by researchers (see [31, 26, 15, 36, 6, 20, 32, 
33, 10, 27, 28, 29, 16, 23, 55]). This informal use further encouraged similar con-
cepts to be developed in other areas of science: Biometric-Completeness [36], 
ASR-Complete [30]. While recently numerous attempts to formalize what it 
means to say that a problem is “AI-Complete” have been published [2, 41, 11] 
even before such formalization attempts systems which relied on humans to solve 
problems which were perceived to be AI-Complete were utilized: 

 
• AntiCaptcha systems use humans to break CAPTCHA security protocol [2, 

58, 59, 63] either by directly hiring cheap workers in developing countries [5] 
or by rewarding correctly solved CAPTCHAs with presentation of porno-
graphic images [52].   

• Chinese Room philosophical argument by John Searle shows that including a 
human as a part of a computational system may actually reduce its perceived 
capabilities such as understanding and consciousness [40].  

• Content Development online projects such as Encyclopedias (Wikipedia, 
Conservapedia), Libraries (Project Gutenberg, Video collections (YouTube) 
and Open Source Software (SourceForge) all rely on contributions from 
people for content production and quality assurance. 

• Cyphermint a check cashing system relies on human workers to compare a 
snapshot of a person trying to perform a financial transaction to a picture of a 
person who initially enrolled with the system. Resulting accuracy outperforms 
any biometric system and is almost completely spoof proof (see cypher-
mint.com for more info).   

• Data Tagging systems entice user into providing meta-data for images, sound 
or video files. A popular approach involves developing an online game which 
as a byproduct of participation produces a large amount of accurately labeled 
data [1].  

• Distributed Proofreaders employs a number of human volunteers to elimi-
nate errors in books created by relying on Optical Character Recognition 
process. (see pgdp.net for more info).  

• Interactive Evolutionary Computation algorithms use humans in place of a 
fitness function to make judgments regarding difficult to formalize concept 
such as esthetic beauty or taste [47].  

• Mechanical Turk is an Amazon.com’s attempt at creating Artificial Intelli-
gence. Humans are paid varying amounts for solving problems which are be-
lieved to be beyond current abilities of AI programs (see mturk.com for more  
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info). The general idea behind the Turk has a broad appeal and the researchers 
are currently attempting to bring it to the masses via the Generalized Task 
Markets (GTM) [42, 19, 18, 21].   

• Spam Prevention is easy to accomplish by having humans vote on emails 
they receive as spam or not. If a certain threshold is reached a particular piece 
of email could be said to be spam with a high degree of accuracy [13].  

Recent work has attempted to formalize the intuitive notion of AI-Completeness. 
In particular three such endowers are worth reviewing [56]: 

In 2003 Ahn et al. [2] attempted to formalize the notion of an AI-Problem and 
the concept of AI-Hardness in the context of computer security. An AI-Problem 
was defined as a triple: “ , , , where S is a set of problem instances, D 
is a probability distribution over the problem set S, and f : S  {0; 1}* answers 
the instances. Let δ ∈  (0; 1]. We require that for an  > 0 fraction of the humans 
H, PrxD [H(x) = f(x)] > δ… An AI problem  is said to be (δ, )-solved if there 
exists a program A, running in time at most  on any input from S, such that 
PrxD,r [Ar(x)=f(x)] δ. (A is said to be a (δ, ) solution to .)  is said to be a 
(δ, )-hard AI problem if no current program is a (δ, ) solution to , and the AI 
community agrees it is hard to find such a solution.” It is interesting to observe 
that the proposed definition is in terms of democratic consensus by the AI com-
munity. If researchers say the problem is hard, it must be so. Also, time to solve 
the problem is not taken into account. The definition simply requires that some 
humans be able to solve the problem [2].  

In 2007 Shahaf and Amir [41] have published their work on the Theory of AI-
Completeness. Their paper presents the concept of the Human-Assisted Turing 
Machine and formalizes the notion of different Human Oracles (see Section on 
Human Oracles for technical details). Main contribution of the paper comes in the 
form of a method for classifying problems in terms of human-versus-machine ef-
fort required to find a solution. For some common problems such as Natural Lan-
guage Understanding (NLU) the paper proposes a method of reductions allowing 
conversion from NLU to the problem of Speech Understanding via Text-To-
Speech software.  

In 2010 Demasi et al. [11] presented their work on problem classification for 
Artificial General Intelligence (AGI). The proposed framework groups the prob-
lem space into three sectors:  

• Non AGI-Bound: Problems that are of no interest to AGI researchers.  
• AGI-Bound: Problems that require human level intelligence to be 

solved.  
• AGI-Hard: Problems that are at least as hard as any AGI Bound  

problem. 

The paper also formalizes the notion of Human Oracles and provides a number of 
definitions regarding their properties and valid operations.  
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2   The Theory of AI-Completeness 

From people with mental disabilities to geniuses human minds are cognitively diverse 
and it is well known that different people exhibit different mental abilities. We define a 
notion of a Human Oracle (HO) function capable of computing any function computa-
ble by the union of all human minds. In other words any cognitive ability of any hu-
man being is repeatable by our HO. To make our Human Oracle easier to understand 
we provide the following illustration of the Human function: 

 
String Human (String input) { 

 \/ \/ \/ •••  \/  
return output; } 

Fig. 1 Human oracle: HumanBest – a union of minds 

Such a function would be easy to integrate with any modern programming lan-
guage and would require that the input to the function be provided as a single 
string of length N and the function would return a string of length M. No specific 
encoding is specified for the content of strings N or M and so they could be either 
binary representations of data or English language phrases both being computa-
tionally equivalent. As necessary the human function could call regular TM func-
tions to help in processing of data. For example, a simple computer program 
which would display the input string as a picture to make human comprehension 
easier could be executed. Humans could be assumed to be cooperating perhaps 
because of a reward. Alternatively, one can construct a Human function which in-
stead of the union of all minds computes the average decision of all human minds 
on a problem encoded by the input string as the number of such minds goes to in-
finity. To avoid any confusion we propose naming the first HO HumanBest and the 
second HO HumanAverage. Problems in the AI domain tend to have a large degree 
of ambiguity in terms of acceptable correct answers. Depending on the problem at 
hand the simplistic notion of an average answer could be replaced with an aggre-
gate answer as defined in the Wisdom of Crowds approach [46]. Both functions 
could be formalized as Human-Assisted Turing Machines [41]. 

Human function is an easy to understand and use generalization of the Human 
Oracle. One can perceive it as a way to connect and exchange information with a 
real human sitting at a computer terminal. While easy to intuitively understand, 
such description is not sufficiently formal. Shahaf et al. have formalized the notion 
of Human Oracle as an HTM [41]. In their model a human is an oracle machine 
that can decide a set of languages Li in constant time: H ⊆{Li | Li ⊆ ∑*}. If time 
complexity is taken into account answering a question might take a non-constant 
time: H ⊆{<Li , fi> | Li ⊆ ∑*, fi  :  } there fi is the time-complexity function 
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for language Li, meaning the human can decide if x ∈ Li  in fi (|x|) time. In order to 
realistically address capabilities of individual humans a probabilistic oracle was 
also presented which provided correct answers with probability p: H ⊆{<Li , pi> | 
Li ⊆ ∑*, 0 ≤ pi ≤ 1}. Finally the notion of reward is introduced into the model to 
capture humans improved performance on “paid” tasks: H ⊆{<Li , ui> | Li ⊆ ∑*, ui  
:  } where ui is the utility function [41]. 

2.1   Definitions  

Definition 1: A problem C is AI-Complete if it has two properties: 

1. It is in the set of AI problems (Human Oracle solvable). 
2. Any AI problem can be converted into C by some polynomial time  

algorithm. 

Definition 2: AI-Hard: A problem H is AI-Hard if and only if there is an AI-
Complete problem C that is polynomial time Turing-reducible to H. 

Definition 3: AI-Easy: The complexity class AI-easy is the set of problems that 
are solvable in polynomial time by a deterministic Turing machine with an oracle 
for some AI problem. In other words, a problem X is AI-easy if and only if there 
exists some AI problem Y such that X is polynomial-time Turing reducible to Y. 
This means that given an oracle for Y, there exists an algorithm that solves X in 
polynomial time.  

Figure 2 illustrates relationship between different AI complexity classes. Right 
side illustrates the situation if it is ever proven that AI-problems = AI-Complete 
problems. Left side shows the converse.  

 
Fig. 2 Relationship between AI complexity classes 
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2.2   Turing Test as the First AI-Complete Problem 

In this section we will show that a Turing Test [50] problem is AI-Complete. First 
we need to establish that Turing Test is indeed an AI problem (HO solvable). This 
trivially follows from the definition of the test itself. The test measures if a hu-
man-like performance is demonstrated by the test taker and Human Oracles are de-
fined to produce human level performance. While both “human” and “intelligence 
test” are intuitively understood terms we have already shown that Human Oracles 
could be expressed in strictly formal terms. The Turing Test itself also could be 
formalized as an interactive proof [45, 8, 44].    

Second requirement for a problem to be proven to be AI-Complete is that any other 
AI problem should be convertible into an instance of the problem under consideration 
in polynomial time via Turing reduction. Therefore we need to show how any problem 
solvable by the Human function could be encoded as an instance of a Turing Test. For 
any HO-solvable problem h we have a String input which encodes the problem and a 
String output which encodes the solution. By taking the input as a question to be used 
in the TT and output as an answer to be expected while administering a TT we can see 
how any HO-solvable problem could be reduced in polynomial time to an instance of a 
Turing Test. Clearly the described process is in polynomial time and by similar algo-
rithm any AI problem could be reduced to TT. It is even theoretically possible to con-
struct a complete TT which utilizes all other problems solvable by HO by generating 
one question from each such problem. 

2.3   Reducing Other Problems to TT 

Having shown a first problem (Turing Test) to be AI-Complete the next step is to 
see if any other well-known AI-problems are also AI-complete. This is an effort 
similar to the work of Richard Carp who has shown some 21 problems to be NP-
Complete in his 1972 paper and by doing so started a new field of Computational 
Complexity [22]. According to the Encyclopedia of Artificial Intelligence [43] 
published in 1992 the following problems are all believed to be AI-Complete and 
so will constitute primary targets for our effort of proving formal AI-
Completeness on them [43]: 

• Natural Language Understanding – “Encyclopedic knowledge is required 
to understand natural language. Therefore, a complete Natural Language sys-
tem will also be a complete Intelligent system.”  

• Problem Solving – “Since any area investigated by AI researchers may be 
seen as consisting of problems to be solved, all of AI may be seen as involv-
ing Problem Solving and Search”.  

• Knowledge Representation and Reasoning – “…the intended use is to use 
explicitly stored knowledge to produce additional explicit knowledge. This is 
what reasoning is. Together Knowledge representation and Reasoning can be 
seen to be both necessary and sufficient for producing general intelligence – it 
is another AI-complete area.”  
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• Vision or Image Understanding – “If we take “interpreting” broadly 
enough, it is clear that general intelligence may be needed to do this interpre-
tation, and that correct interpretation implies general intelligence, so this is 
another AI-complete area.”   

Now that Turing Test has been proven to be AI-Complete we have an additional 
way of showing other problems to be AI-Complete. We can either show that a 
problem is both in the set of AI problems and all other AI problem can be con-
verted into it by some polynomial time algorithm or we can reduce any instance of 
Turing Test problem (or any other already proven to be AI-Complete problem) to 
an instance of a problem we are trying to show to be AI-Complete. This second 
approach seems to be particularly powerful. The general heuristic of our approach 
is to see if all information which encodes the question which could be asked  dur-
ing administering of a Turing Test could be encoded as an instance of a problem 
in question and likewise if any potential solution to that problem would constitute 
an answer to the relevant Turing Test question. Under this heuristic it is easy to 
see that for example Chess is not AI-Complete as only limited information can be 
encoded as a starting position on a standard size chess board. Not surprisingly 
Chess has been one of the greatest successes of AI and currently Chess playing 
programs dominate all human players including world champions.  

Question Answering (QA) [17, 38] is a sub-problem in Natural Language 
Processing.  Answering question at a level of a human is something HOs are par-
ticularly good at based on their definition. Consequently QA is an AI-Problem 
which is one of the two requirements for showing it to be AI-Complete. Having 
access to an Oracle capable of solving QA allows us to solve TT via a simple re-
duction. For any statement S presented during administration of TT transform said 
statement into a question for the QA Oracle. The answers produced by the Oracle 
can be used as replies in the TT allowing the program to pass the Turing Test. It is 
important to note that access to the QA oracle is sufficient to pass the Turing Test 
only if questions are not restricted to stand alone queries, but could contain infor-
mation from previous questions. Otherwise the problem is readily solvable even 
by today’s machines such as IBM’s Watson which showed a remarkable perfor-
mance against human Jeopardy champions [35]. 

Speech Understanding (SU) [4] is another sub-problem in Natural Language 
Processing.  Understanding Speech at a level of a human is something HOs are 
particularly good at based on their definition. Consequently SU is an AI-Problem 
which is one of the two requirements for showing it to be AI-Complete. Having 
access to an Oracle capable of solving SU allows us to solve QA via a simple re-
duction. We can reduce QA to SU by utilizing any Text-to-Speech software [49, 
9] which is both fast and accurate. This reduction effectively transforms written 
questions into the spoken ones making it possible to solve every instance of QA 
by referring to the SU oracle.  

2.4   Other Probably AI-Complete Problems 

Figure 3 shows the relationship via reductions between problems shown to be AI-
Complete in this paper. We hope that our work will challenge the AI community 
to prove other important problems as either belonging or not belonging to that 
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class. While the following problems have not been explicitly shown to be AI-
Complete, they are strong candidates for such classification and are also problems 
of great practical importance making their classification a worthy endower. If a 
problem has been explicitly conjectured to be AI-Complete in a published paper 
we include a source of such speculation: Dreaming [38], Commonsense Planning 
[41], Foreign Policy [26], Problem Solving [43], Judging a Turing Test [41], 
Common Sense Knowledge [3], Speech Understanding [41], Knowledge Repre-
sentation and Reasoning [43], Word Sense Disambiguation [10, 32], Machine 
Translation [54], Ubiquitous Computing [23], Change Management for Biomedi-
cal Ontologies [33], Natural Language Understanding [43], Software Brittleness 
[54], Vision or Image Understanding [43]. 

 
Fig. 3 Reductions from the first NP-Complete problem 

2.5   1st AI-Hard Problem: Programming 

We define the problem of Programming as taking a natural language description 
of a program and producing a source code which then compiled on some readily 
available hardware/software produces a computer program which satisfies all im-
plicit and explicit requirements provided in the natural language description of the 
programming problem assignment. Simple examples of Programming are typical 
assignments given to students in computer science classes. Ex. “Write a program 
to play Tic-Tac-Toe.” with successful students writing source code which if cor-
rectly compiled allows the grader to engage the computer in an instance of that 
game. Many requirements of such assignment remain implicit such as that re-
sponse time of the computer should be less than a minute. Such implicit require-
ments are usually easily inferred by students who have access to culture instilled 
common sense. As of this writing no program is capable of solving Programming 
outside of strictly restricted domains.  

Having access to an Oracle capable of solving Programming allows us to solve 
TT via a simple reduction. For any statement S presented during TT transform said 
statement into a programming assignment of the form: “Write a program which 
would respond to S with a statement indistinguishable from a statement provided 
by an average human” (A full transcript of the TT may also be provided for  
disambiguation purposes). Applied to the set of all possible TT statements this 
procedure clearly allows us to pass TT, however Programming itself is not in  
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AI-Problems as there are many instances of Programming which are not solvable 
by Human Oracles. For example “Write a program to pass Turing Test” is not 
known to be an AI-Problem under the proposed definition. Consequently, Pro-
gramming is an AI-Hard problem.  

3   Beyond AI-Completeness 

The human oracle function presented in this paper assumes that the human being 
behind it has some assistance from the computer in order to process certain human 
unfriendly data formats. For example a binary string representing a video is com-
pletely impossible for a human being to interpret but could easily be played by a 
computer program in the intended format making it possible for a human to solve 
a video understanding related AI-Complete problem. It is obvious that a human 
being provided with access to a computer (perhaps with Internet connection) is a 
more powerful intelligence compared to an unenhanced in such a way human. 
Consequently it is important to limit help from a computer to a human worker in-
side a human Oracle function to assistance in the domain of input/output conver-
sion but not beyond as the resulting function would be both AI-Complete and 
“Computer Complete”.  

 

Fig. 4 Venn diagram for four different types of intelligence 

Figure 4 utilizes a Venn diagram to illustrate subdivisions of problem space pro-
duced by different types of intelligent computational devices. Region 1 represents 
what is known as a Universal Intelligence [25] or a Super Intelligence [24, 61, 57, 60] 
a computational agent which outperforms all other intelligent agents over all possible 
environments. Region 2 is the standard unenhanced Human level intelligence of the 
type capable of passing a Turing Test, but at the same time incapable of computation 
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involving large numbers or significant amount of memorization. Region 3 is what is 
currently possible to accomplish via the state-of-the-art AI programs. Finally Region 4 
represents an abstract view of animal intelligence. AI intelligence researchers strive to 
produce Universal Intelligence and it is certainly likely to happen given recent trends 
in both hardware and software developments and theoretical underpinning of the 
Church/Turing Thesis [51]. It is also likely that if we are able to enhance human minds 
with additional memory and port those to a higher speed hardware we will essentially 
obtain a Universal Intelligence [39].  

While the Universal Intelligence incorporates abilities of all the lower intelligences 
it is interesting to observe that Human, AI and Animal intelligences have many inter-
esting regions of intersection [62]. For example animal minds are as good as human 
minds at visual understanding of natural scenes. Regions 5, 6, and 7 illustrate common 
problem spaces between two different types of intelligent agents. Region 8 represents 
common problem solving abilities of humans, computers and animals. Understanding 
such regions of commonality may help us to better separate involved computational 
classes which are represented by abilities of a specific computational agent minus the 
commonalities with a computational agent with which we are trying to draw a distinc-
tion. For example CAPTCHA [2] type tests rely on inability of computers to perform 
certain pattern recognition tasks with the same level of accuracy as humans to separate 
AI agents from Human agents. Alternatively a test could be devised to tell humans not 
armed with calculators from AIs by looking at the upper level of ability. Such a test 
should be easy to defeat once an effort is made to compile and formalize limitations 
and biases of the human mind.  

It is also interesting to consider the problem solving abilities of hybrid agents. We 
have already noted that a human being equipped with a computer is a lot more capable 
compared to an unaided person. Some recent research in Brain Computer Interfaces 
[53] provides a potential path for future developments in the area. Just as interestingly 
combining pattern recognition abilities of animals with symbol processing abilities of 
AI could produce a computational agent with a large domain of human like abilities 
(see work on RoboRats [48] on monkey controlled robots [34]). It is very likely that in 
the near future the different types of intelligent agents will combine to even greater ex-
tent. While such work is under way we believe that it may be useful to introduce some 
additional terminology into the field of problem classification. For the complete space 
of problems we propose that the computational agents which are capable of solving a 
specific subset of such problems get to represent the set in question. Therefore we pro-
pose additional terms: “Computer-Complete” and “Animal-Complete” to represent 
computational classes solvable by such agents. It is understood that just like humans 
differ in their abilities so do animal and computers. Aggregation and averaging utilized 
in our human function could be similarly applied to definition of respective oracles. As 
research progresses common names may be needed for different combinations of re-
gions from Figure 4 illustrating such concepts as Human-AI hybrid or Animal-Robot 
hybrid.    

Certain aspects of human cognition do not map well onto the space of problems 
which have seen a lot of success in the AI research field. Internal states of human 
mind such as consciousness (stream of), self-awareness, understanding, emotions 
(love, hate), feelings (pain, pleasure), etc. are not currently addressable by our me-
thods. Our current state-of-the-art technologies are not sufficient to unambiguously 
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measure or detect such internal states and consequently even their existence is not un-
iversally accepted. Many scientists propose ignoring such internal states or claim they 
are nothing but a byproduct of flawed self-analysis. Such scientists want us to restrict 
science only to measurable behavioral actions, however since all persons have access 
to internal states of at least one thinking machine interest in trying to investigate in-
ternal states of human mind is unlikely to vanish.  

While we were able to present a formal theory of AI-Completeness based on 
the concept of Human Oracles the theory is not strong enough to address problems 
involving internal states of mind. In fact one of the fundamental arguments against 
our ability to implement understanding in a system which is based on symbol  
manipulation, Searle’s Chinese Room thought experiment, itself relies on a gene-
ralized concept of a human as a part of a computational cycle. It seems that the 
current Turing/Von Neumann architecture is incapable of dealing with the set of 
problems which are related to internal states of human mind. Perhaps a new type 
of computational architecture will be developed in the future capable of mimick-
ing such internal states. It is likely that it will be inspired by a better understanding 
of human biology and cognitive science. Research on creating Artificial Con-
sciousness (AC) is attracting a lot of attention at least in terms of number of AC 
papers published.  

As a part of our ongoing effort to classify AI related problems we propose a 
new category specifically devoted to problems of reproducing internal states of a 
human mind in artificial ways. We call this group of problems Consciousness-
Complete or C-Complete for short. An oracle capable of solving C-Complete 
problems would be fundamentally different from the Oracle Machines proposed 
by Turing. C-Oracles would take input in the same way as their standard counter-
parts but would not produce any symbolic output. The result of their work would 
be a novel internal state of the oracle, which may become accessible to us if the 
new type of hardware discussed above is developed. 

Just like SAT was shown to be the first NP-Complete problem and Turing Test 
to be the first AI-Complete problem we suspect that Consciousness will be shown 
to be the first C-Complete problem with all other internal-state related problems 
being reducible to it. Which of the other internal state problems are also  
C-Complete is beyond the scope of this preliminary work. Even with no con-
sciousness-capable hardware available at the moment of this writing the theory of 
C-Completeness is still a useful tool as it allows for formal classification of clas-
sical problems in the field of Artificial Intelligence into two very important cate-
gories: potentially solvable (with current technology) and unsolvable (with current 
technology). Since the only information available about Human Oracles is their 
output and not internal states they are fundamentally different from C-Oracles 
creating two disjoint sets of problems.  

History of AI research is full of unwarranted claims of anticipated break-
throughs and conversely overestimations regarding difficulty of some problems. 
Viewed through the prism of our AI-Complete/C-Complete theories history of AI 
starts to make sense. Solutions for problems which we classify as AI-Complete 
have been subject to continues steady improvement while those falling in the 
realm of C-Completeness have effectively seen zero progress (Computer Pain [7, 
12], Artificial Consciousness [40, 14], etc.). To proceed science needs to better 
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understand what is the difference between a feeling and a though is.  Feeling pain 
and knowing about pain are certainly not the same internal states. We are hopeful 
that the future research in this area will bring some long awaited answers.  

4   Conclusions 

Progress in the field of artificial intelligence requires access to well defined prob-
lems of measurable complexity. The theory of AI-Completeness aims to provide a 
base for such formalization. Showing certain problems to be AI-Complete/-Hard 
is useful for developing novel ways of telling computers from humans. Also, any 
problem shown to be AI-Complete would be a great alternative way of testing an 
artificial intelligent agent to see if it attained human level intelligence [41]. 
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Artificial Intelligence Evolved from Random
Behaviour: Departure from the State of the Art

Wiesław Pietruszkiewicz and Akira Imada

Abstract. Since John McCarthy at MIT coined the term artificial intelligence in
1956 aiming to make a machine have a human-like intelligence in a visible future,
we have had lots of discussions whether it is possible in a true sense, and lots of
intelligent machines have been reported. Nowadays, the term is ubiquitous in our
community. In this chapter we discuss how those proposed machine intelligences are
actually intelligent. Starting with how we define intelligence, how can we measure
it, how those measurements really represent intelligence and so on, by surveying
the Legg and Hutter’s seminal paper on formal definition of machine intelligence,
we name a few others, taking a brief look at our own too. We also consider a mod-
ern interpretation of the Turing test originally proposed in 1950. Then we argue a
benchmark to test how an application is intelligent by means of an algorithm for
stock market investment as an example. Finally we take a consideration of how we
can achieve a human intelligence in a real sense in a real visible future, including an
analysis of IT changes stimulating artificial intelligence development.

1 Introduction

The main mission of this chapter is to evaluate artificial intelligence (AI) by explor-
ing definitions of intelligence and different approaches so far proposed, as well as
its resemblance to natural intelligence. In our opinion, the term of intelligence is too
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often incorrectly assigned to the simple methods of data processing, thus devaluing
the notion of AI.

AI is a Holy Grail for many researchers and for the past half of century it was
assumed that humans will be able to create a machine–based resemblance of in-
telligence. For many years it has been tried by creating sophisticated algorithms,
which were supposed to imitate natural processes of intelligence, being formed into
arbitrary equations. Unfortunately, none of these research succeeded in something
we could consider to be a form of real human–like machine intelligence. However,
in the latest years yet another idea to realize AI emerged. It aims at the creation of
biologically inspired evolving processes, where simple random–driven algorithms,
very often using multiple instances, might be thought to bring us closer to the real
artificial intelligence. Hence, we would like to compare these two different ideas of
AI and explain their assumptions, applications, advantages and disadvantages.

Finally, we would like to highlight the directions of future development of AI by
explaining how new findings in science, improvement of algorithms, and stimula-
tion’s in software and hardware industries will lead us to further AI development.

2 Artificial Intelligence vs. Natural Intelligence

An excellent survey of this topic by Legg and Hutter[38] gives us a comprehensive
bird’s-eye view on what is intelligence, how can it be measured, and so on. We now
take a brief look at it in the following three subsections.

2.1 Definition of Human Intelligence

What usually reminds us of, when we say human intelligence, might be IQ test.
Standard IQ tests measure levels in various cognitive abilities such as reasoning,
association, spatial recognition, pattern identification etc. Statistical correlation of
these abilities is called g-factor, meaning a factor of general intelligence, coined
by Charles Spearman[68]. In a situation in schools indeed, this g-factor is quite a
good estimation. ”She is more intelligent than he is,” implies ”she has higher g value
than he has.” However, we also say ”He is very intelligent,” for a football player, a
conductor of a symphony orchestra, a chef in a restaurant, etc. Hence a standard IQ
test does not represent a general intelligence.

Legg and Hutter [38] collected tens of definitions of human intelligence. Let us
quote just one, among others, by Nicer et al. [47].

Individuals differ from one another in their ability to understand complex ideas, to
adapt effectively to the environment, to learn from experience, to engage in various
forms of reasoning, to overcome obstacles by taking thought.

2.2 Informal Definitions of Machine Intelligence

As informal definitions of machine intelligence, Legg and Hutter quote from
Albus[3]:
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Ability of a system to act appropriately in an uncertain environment, where appropriate
action is that which increases the probability of success, and success is the achievement
of behavioural subgoals that support the system’s ultimate goal.

to which Legg and Hutter added, ”This is especially similar to ours.” (In the next
subsection, we can see how similar it is.) Or, from Gudwin[25]:

Intelligent systems are expected to work, and work well, in many different environ-
ments. Their property of intelligence allows them to maximize the probability of suc-
cess even if full knowledge of the situation is not available. Functioning of intelligent
systems cannot be considered separately from the environment and the concrete situa-
tion including the goal.

Further, from Poole [56]:

An intelligent agent does what is appropriate for its circumstances and its goal, it is
flexible to changing environments and changing goals, it learns from experience, and
it makes appropriate choices given perceptual limitations and finite computation.

2.3 Formal Definitions of Machine Intelligence

Legg and Hutter [38] wrote, ”One perspective among psychologists is ... that in-
telligence is the ability to deal with complexity. ... if we could formally define and
measure the complexity of test problems using complexity theory we could construct
a formal test of intelligence. The possibility of doing this was perhaps first suggested
by Chaitin. ... Essentially this is the approach that we have taken.” In fact, Chaitin
[10] suggested a possibility of defining a machine intelligence exploiting Gödel’s
complexity theory, writing ”Develop formal definitions of intelligence and mea-
sures of its various components; apply information theory and complexity theory to
AI,” as one of his directions for future research.

2.3.1 Legg and Hutter’s Universal Intelligence of an Agent

Now let us see Legg and Hutter’s formal definition a little more in detail, since all
other formal definitions mentioned in this section are based on this definition by
Legg and Hutter more or less.

We now summarize it by paraphrasing their paper. Legg and Hutter start with an
informal definition of intelligence:

An ability to achieve goals in a wide range of environments.

An agent behaves in an environment with a goal. A behaviour starts with an ob-
servation o1, then receives an information of how-good-or-bad-is-current-situation,
which is called a reward, r1, and make an action a1. Repeating this procedure creates
a sequence,

o1r1a1o2r2a2o3r3a3 · · · , (1)



22 W. Pietruszkiewicz and A. Imada

called a history. Now let’s define an agent π . The agent takes the current history as
input and decides the next action as output. Thus agent π is formally represented as
a probability measure of next action given a history before the action. For example,

π(a2|o1r1a1o2r2) (2)

is a probability measure of the 2nd action of the agent. Further, environment μ is
defined as the probability of okrk given the current history

o1r1a1o2r2a2 · · ·ok−1rk−1ak−1, (3)

that is,
μ(okrk|o1r1a1o2r2a2 · · ·ok−1rk−1ak−1). (4)

If we have a multiple paths to the goal, the simplest one should be preferred, which
is sometimes called the principle of Occam’s razor. Then, the formal measure of
success of an agent π under the environment μ denoted as V π

μ is defined as the
expected value of the sum of rewards that is:

V π
μ = E(

∞

∑
i=1

ri). (5)

Then the measure of the complexity of environments should be expressed. For the
purpose, let’s recall that the Kolmogorov complexity of a binary string x is defined
as the length of the shortest program that computes x. That is,

K(x) = min
p
{l(p)|U(p) = x}, (6)

where p is a binary string which we call a program, l(p) is the length of this string
in bits, and U is a prefix universal Turing machine.

We express μi as a binary string by a simple encoding algorithm. Then, the com-
plexity of μi is K(μi). To formalize above mentioned Occam’s razor we use this in
the form of probability distribution 2−K(μ). Let E be the space of all environments
under consideration. Thus, the expected performance of agent π with respect to the
universal distribution 2−K(μ) over the space of all environments E is:

γ(π) = ∑
μ∈E

2−K(μ) ·V π
μ . (7)

In other words, weighted sum of the formal measure of success in all environ-
ments where the weight is determined by the Kolmogorov complexity of each
environment.

We now recall the starting informal definition: ’an ability to achieve goals in a
wide range of environments.’ In the above equation, ’the agent’s ability to achieve’
is represented by V π

μ , and ’a wide range of environments,’ by E – all well defined
environment in which reward can be summed. Occam’s razor is given by the factor
2−K(μ). Thus the authors called this the universal intelligence of agent π .
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It is concluded that ”Essentially, an agent’s universal intelligence is a weighted
sum of its performance over the space of all environments. Thus, we could randomly
generate programs that describe environmental probability measures and then test
the agent’s performance against each of these environments. After sampling suffi-
ciently many environments the agent’s approximate universal intelligence would be
computed by weighting its score in each environment according to the complexity of
the environment as given by the length of its program. Finally, the formal definition
places no limits on the internal workings of the agent. Thus, we can apply the def-
inition to any system that is able to receive and generate information with view to
achieving goals.”

2.3.2 Other Formal Definitions of Machine Intelligence

Legg and Hutter survey Smith’s proposal [66] as ”another complexity based formal
definition of intelligence that appeared recently in an unpublished report.” It uses
polynomial time reentrant algorithm called problem generator which uses random
bits and spits out an infinite sequence of output bitstrings called problem and also
spits out a second bitstring called the secret answer. It also uses algorithm called
solution checker which reads the problem and secret answer spit out by the problem
generator. Thus the entity under test which allowed to see problem and solve it, is
tested by the solution checker. Author wrote, ”Both Hutter’s and this development
exhibit some striking similarities, but we had both different attitudes and different
terminology and in some cases investigated different topics or reached differing
conclusions.”

Recently, Hernandez-Orallo and Dowe also proposed a modified version of Legg
and Hutter’s measure [31]. Much more recently, Hibbard proposed yet another ap-
proach to define and measure machine intelligence [32, 33] in which intelligence
measure is defined in both Turing machine and finite state machine models. This is
also principally based on Legg and Hutter’s definition. We will return to this model
by Hibbard more in detail in later section.

3 A Thought on Artificial Intelligence So-Far-Proposed

We have had a plenty of propositions each of which claims a realization of machine
intelligence more or less. Hence, despite Legg and Hutter [38] wrote ”Intelligence is
not simply the ability to perform well at a narrowly defined task,” we are sometimes
curious to know whether those machine intelligences reported so far, which are not
universal at all but very domain-specific though, are really intelligent or not, or if
so, how intelligent. From this perspective, we want to try to remove summation
over different environment form their formal definition of intelligence. That is, we
measure the intelligence of agent π for the specific task μ simply by V π

μ .
In addition, some of what they call an intelligent machine may indeed per-

form the given task much more efficiently, effectively, or precisely than human,
while we human are not usually very efficient, effective nor precise, but rather
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spontaneous, flexible, unpredictable, or even erroneous sometime. When we ad-
dress a human-like intelligence, we expect somewhat of a different behaviour even
when we come across a same situation again than the one as we behaved before, not
exactly the same one as before. We don’t necessarily expect artificial intelligence to
be as efficient, but sometimes expect its flexibility, spontaneity, or unpredictability.
Frosini [18] wrote ”... contradiction can be seen as a virtue rather than as a de-
fect. Furthermore, the constant presence of inconsistencies in our thoughts leads us
to the following natural question: is contradiction accidental or is it the necessary
companion of intelligence?” Or, as we will mention in a later section ”Intelligence
might be well demonstrated by concealing it,” which Michie described in [44] about
Turing’s suggestion of machine’s deliberate mistakes encouraged in order for the
machine to pass the Turing test [72]. From this view point, we want to add:

Performance should be different more or less than previous one even when the agent
comes across the same situation as before,

to the Legg and Hutter’s informal definition. Note that the above mentioned measure
of intelligence V π

μ does not reflect such a flexibility of human intelligence, but only
an efficiency. Therefore, a reformalization of Legg and Hutter’s formal definition
will be quite a new challenging task, which we have not yet succeeded. The other
question is, can we evolve a huge population of random binary string, assuming
they can represent π , eventually into an intelligent one with fitness being such an
intelligence measure?

4 Artificial Intelligence Evolved from Randomness

Our natural intelligence is a result of a tremendously long time of evolution starting
with just a tiny simple mechanism which gave just random movements. Then why
not trying a creation of artificial intelligence by an evolution from randomness?

4.1 Machiavellian Intelligence

Machiavellian intelligence (see, e.g., [8]), named after Niccolo Machiavelli - me-
dieval Italian politician, is an intelligence which enables individuals to pursue par-
ticular goals by means of social manipulation. Miller [45] wrote, ”Machiavellian
intelligence evolves because it lets primates predict and manipulate each other’s
behaviour,” and went on ”predictive capacities tend to select for unpredictability in
counter-strategies, ... For example, prey animals often evolve ’protean’ (adaptively
unpredictable) evasion behaviour to foil the predictive pursuit tactics used by their
predators,” and concluded ”sexual selection through mate choice results in adapta-
tions like bird song, whale song, and courtship dances, which could have elaborated
primate social proteanism into human creative intelligence.”

This model in which protean behaviour - being unpredictable to evade predator -
assumed to be the origin of human intelligence might give us a good motivation to
simulate predator-prey games as a meaningful step, not just a toy example.
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4.2 Hibbard’s Formal Definition Revisited

In this subsection we want to revisit the formal definition of machine intelligence
by Hibbard [33]. One reason is, he employed a predator and prey model. The other
is, both the agent and environment are represented by finite state machine, which
will give us a very appropriate method to simulate the pursuit and evasion game.
We now take a brief look at how Hibbard defined a machine intelligence.

In the process of defining a formal definition of machine intelligence, Hibbard
modelled predictors and evaders as finite state machines as a more realistic models
than Turing machine.

An evader e has a state set Se, an initial state Ie, and a mapping

Me = B× Se → Se ×B, (8)

where B is a binary alphabet.
Similarly for predictor p, state set Sp, initial state Ip, and mapping

Mp = B× Sp → Sp ×B (9)

are specified. Evader e creates a finite binary sequence x1x2x3 · · ·, and predictor p
creates also a finite binary sequence y1y2y3 · · ·. A pair of evader e and predictor p
interacts where e produces the sequence according to

xn+1 = e(y1y2y3 · · ·yn), (10)

and p produces the sequence according to

yn+1 = p(x1x2x3 · · ·xn). (11)

Then predictor p wins round n+1 if yn+1 = xn+1 and evader e wins if yn+1 �= xn+1.

4.3 Avidian

Recently, a self-replicating synthetic life was artificially created as a world’s first
synthetic form of life. They inserted synthetic DNA into Mycoplasma capricolum
cells and found those cells had grown into colonies [20].

Much earlier, in 1990’s, we had a digital version of this experiment in computer,
called Avidian. Inspired by Ray’s Tierra [58], a population of self-replicating com-
puter programs, called digital organisms, in a computational environment in which
the population evolves as the organisms replicate, mutate and compete for resources
in the environment [1, 2, 39, 49, 52]. Instructions that made up digital organisms are
designed to be robust to mutations so that any program will be syntactically legal
when mutated [48]. The world is a discrete two-dimensional grid of cells in which
at most one organism may occupy. The genome is a circular list of program instruc-
tions that resemble assembly language, that runs in a virtual central processing unit.
When an organism replicates, its offspring is placed into a random grid cell, and
either the offspring and previously occupied organism survives in the cell. Thus, the
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organisms compete for the limited set of grid cells, and organisms that are able to
replicate more quickly will more likely to have a greater proportion of descendants
within the population.

Under this circumstance, Grabowski tried to model gradient following behaviour
of E. coli [24]. Grabowski made the other experiments expecting an evolution of
simple intelligence and found digital organisms evolved to exploit memory [23, 22].

5 A Modern Interpretation of Turing Test

In 1950, Turing [72] posed a question ”Can machines think?” and proposed a test
which is now called Turing Test. Turing test is a test if a computer can pass then we
should grant it is intelligent thereby, or equivalently, a test to see if a computer can
cheat a human via a chat with teletype that it is a human. It was originally proposed
as the Imitation game, in which a man and a woman are in two separate rooms and
communicate with an interviewer1 outside only via a teletype, and the interviewer
should identify which is the man by asking a series of questions. The man tries to
make the interviewer believe he is the woman while the woman tries to make the
interviewer believe she is woman. Later the man is replaced by a machine. If the
interviewer cannot tell the machine from the person, then it passes the test and we
can say machine is intelligent. Note that the test only gives us a sufficient condition
for intelligence. We now briefly see a chronicle of reflections on the Turing Test.

5.1 During 50 Years Since the Proposal

Not a few discussions - some positive, some negative - have taken place since Turing
proposed the test [72]. Let’s name a few.

Gunderson [26] asked ”Can rocks imitate?” by showing a modified Turing’s imi-
tation game as follows. A man and a woman are in a room. There is a small opening
at the bottom of the wall through which the interviewer can place his toe. The inter-
viewer must determine which of the two in the room is the woman just by observing
the way in which his toe is stepped on. Then a rock given an electric eye is replaced
with the man in the room, and the rock can put itself softly on the interviewer’s toe
placed in the opening of the wall. Even if the rock plays this toe-stepping game very
well it would not be acceptable that the rock imitates.

Gunderson pose another scenario also in [26]. A vacuum cleaner salesman visited
a house and recommended a housewife to buy his vacuum cleaner claiming this is
’all purpose’ by demonstrating how it can suck up bits of dust. The housewife asked,
”What else? Isn’t it all-purpose? What about bits of paper or straw or mud? I thought
sucking up bits of dust was an example of what it does.” The salesman failed to show
more than one example of what it does.” Gunderson thought that the term ”thinking”
in the Turing test is used to represent more than one capability.

1 In Turing’s original paper the term ”interrogator” was used instead of ”interviewer.”
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Yet another argument to pose a doubt for Turing Test is the Seagull Test by French
[16]. One day in an isolate island, where the only flying animals known to the in-
habitants are seagulls, two resident philosophers discuss what flying is all about.
After arguing about a pebble tossed from the beach into the ocean, clouds in the
sky, balloons, kite, and penguins, one asked the other to assume someone invented
a machine that can fly. And they hit upon a test with two 3-D radars one of which
tracks a seagull the other tracks the putative flying machine. They concluded the
machine will be said to have passed the seagull test for flight if both philosophers
are indefinitely unable to distinguish the seagull from the machine.

Purtill [57] denied the Turing’s imitation game as a piece of science fiction. Hayes
and Ford [30] criticized the Turing Test even as harmful for artificial intelligence to
be developed.

Probably one of the most famous criticism is the Chinese Room argument [65]
posed by John Searl, philosopher, which conclusively asserts that it is impossible for
computers to understand language or think. Suppose now a person who knows only
English has a computer program that enables an intelligent conversation in written
Chinese by manipulating symbol strings with syntactic rules without understand-
ing semantics, or like a perfect version of Weizenbaum’s ELIZA [74], if any. Searl
called it Chinese subsystem. Then the interviewer outside the room sends a ques-
tion in Chinese. The people in the room can pass the Turing Test for understanding
Chinese while he does not understand any word of Chinese. Similarly the program
would not understand the conversation either. Searl wrote, ”Whereas the English
subsystem knows that ”hamburgers” refers to hamburgers, the Chinese subsystem
knows only that ”squiggle squiggle” is followed by ”squoggle squoggle.”

Harnad also doubted the Turing Test as Simulating Simulation and claimed that
what is important is not a simulation but an implementation [27]. He denied Searl’s
claim too. He insisted on removing the wall between the both ends of the teletype
link from the interviewer to the machine to be tested. He wrote, ”... mental seman-
tics must be grounded” [27], which implies the meanings in mind should be de-
rived from interactions with environment. He went on, ”It is like a learning Chinese
only with a Chinese-Chinese dictionary, and the trip through the dictionary would
amount to a merry-go-round, passing endlessly from one meaningless symbol to an-
other, never coming to a halt on what anything meant.” Thus he extended the Turing
test to what he called Total Turing Test in which target machine is a robot with sen-
sorimotors. In this robotic upgrade of the Turing Test the interviewer can visually
assessed the machine to be tested, instead of with just a verbal communication via
teletype.

In addition to the above mentioned Harnad’s Total Turing Test, some researchers
also proposed new tests by modifying the original Turing Test such as Harnad’s yet
another Total Total Turing Test [29], Schweizer’s Truly Total Turing Test [64] or
Watt’s Inverted Turing Test [73]. These are sometimes abbreviated to TTT, TTTT,
TRTTT, and ITT, respectively, besides TT to the Turing Test. It might be interest-
ing to see a series of severe discussions after Harnad’s refute. For example, Searl’s
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rebuff and the response by Harnad [28], or other arguments such as Bringsjord2 vs.
Harnad3. As for a story from TT to TTT and TTTT, see a review by Fetzer [14].
For a more exhaustive survey on Turing Test, see, e.g., Saygin et al. [62], or French
[17]. As a survey positive for the original Turing Test proposed by Turing himself,
it might be interesting to read a witty essay recently written by LaCurts [36].

5.1.1 Loebner Prize

We have a contest organized by Hugh Loebner who will pledge $100,000 to the
program that succeeds in passing the Turing Test if appeared4. The contest started
in 1990. Four human judges sit at computer terminals with which the judges can
talk both to the program and to the human who tries to mimic computer. Both are in
another room and after, say, 5 minutes the judge must decide which is the person and
which is the computer. The first computer program that judges cannot tell which is
which will be given the award, and then this competition will end. Although a minor
award is given every year to the program which responds in most human-like way,
as of 2011 the contest has not ended yet, and the contest in 2012 will be held at
Bletchley Park, UK.

5.2 An Easy Way to Cheat Human?

One of the easiest ways to make the interviewer believe that the machine is a human,
might be a deliberate mistake from time to time pretending not to be too precise to
be a human. Turing wrote in [72]:

It is claimed that the interrogator could distinguish the machine from the man simply
by setting them a number of problems in arithmetic. The machine would be unmasked
because of its deadly accuracy. The reply to this is simple. The machine (programmed
for playing the game) would not attempt to give the right answers to the arithmetic
problems. It would deliberately introduce mistakes in a manner calculated to confuse
the interrogator.

5.3 Turing Test These Days

It had been a long time dream to create a machine which can play chess like human.
See, e.g., the book about an eighteen-century chess-playing machine by Standage
[69]. The real chess match between a human world champion and a computer - the
then world champion Garry Kasparov vs. IBM’s Deep Blue - was held in 1996. In a
six-game match Deep Blue won one game, tied two, and lost three. Deep Blue was
defeated. The next year, Deep Blue again challenged Kasparov also in a six-game
match. Kasparov had won the 1st game, lost the 2nd, tied 3rd, 4th and 5th, then lost

2 http://philpapers.org/rec/BRIPAI
3 http://www.archipel.uqam.ca/144/2/r-brings.htm
4 http://www.loebner.net/Prizef/loebner-prize.html

http://philpapers.org/rec/BRIPAI
http://www.archipel.uqam.ca/144/2/r-brings.htm
http://www.loebner.net/Prizef/loebner-prize.html
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the 6th5. Thus, finally Deep Blue beat the world champion. Now we know, however,
that the Deep Blue won by a brute force rather than with an intelligent strategy.

Turing wrote the first chess computer program, which was called the paper ma-
chine because it was before computers even existed. Precedent of his 1950 version,
the game was with a mathematician A who operates the paper machine, and two
chess player B and C. C plays chess with either A or B both of whom are in the
separate room, and C should guess whether he is playing with human or the paper
machine [71].

Now it might be easy to imagine a scenario in which A is IBM.’s Deep Blue, B
is Kasparov, and C is the current world chess champion. The Deep Blue would be
sure to pass the test. See also comments by Crol [35] on Deep Blue vs. Kasparov.

In mid February in 2011, IBM’s room size supercomputer called Watson chal-
lenged ’Jeopardy’ - America’s favourite quiz show on TV. In Jeopardy, normally three
human contestants fight to answer questions over various topics, with penalties for the
wrong answer. The questions are like “Who is the 19th-century painter whose name
means police officer?” or “What is the city in US whose largest airport is named for
a World War II hero; and its second largest for a World War II battle.” 6.

The contest was held over three days with Watson being one of the three contes-
tant and the other two being the ex-champions of Jeopardy - Ken Jennings and Brad
Rutter. As Watson cannot see or hear, questions were shown as a text file at the same
moment when they were revealed to the two human contestants. By the end of the
third day, Watson got $77,147 while Jennings got $24,000 and Rutter $21,600. Wat-
son beat the two human ex-champions. If we set up an appropriate scenario, Watson
could pass the Turing Test.

Turing Test is, to simply put, a test to know whether computer can fool human
that ’I am a human not a computer!’ Nowadays we have a very practical program
called CAPTCHA in order to prove ’I’m not a computer but a human.’ Actually it
stands for ’Completely Automated Public Turing Test to tell Computers and Hu-
mans Apart.’ This is an acronym based on the English word ’capture.’ This is some-
times called a reverse Turing Test. CAPTCHA is exploited by computer with a target
being human while Turing test is supposed to be exploited by human with a target
being a computer. Nowadays, the original Turing Test is not only of theoretical in-
terest but also as practical as CAPTCHA7. For example, a poker playing robot must
cheat a web casino site to play there as human. Actually Hingston [34] proposed a
new test as follows:

Suppose you are playing an interactive video game with some entity. Could you tell,
solely from the conduct of the game, whether the other entity was a human player or a
bot? If not, then the bot is deemed to have passed the test.

5 See, e.g., ”Human-computer chess matches” From Wikipedia.
http://en.wikipedia.org/wiki/Human-computer_chess_matches

6 This is from the article in New York Times by John Markoff entitled ”Creating Artificial
Intelligence Based on the Real Thing” on 17 February 2011.

7 Weak CAPTCHAs are possible to be broken by machines using OCR mechanisms. There-
fore, creators of CAPTCHAs introduce noise and blurred or distorted text to make this
task harder.

http://en.wikipedia.org/wiki/Human-computer_chess_matches
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6 Biologically Inspired Artificial Intelligence

The creation of man–made intelligent systems or units has two distinctive parts. The
first one is a traditional approach, assuming that the secrets of intelligence could be
revealed, converted to sets of equations and later programmed. While the second ap-
proach, inspired by biology, assumes that the self–adaptive capabilities of flexible
structures will allow to adapt themselves to selected problems and to find expected
solutions. In this way we don’t have to find exact formulas defining behaviour of in-
telligent system in particular situation, instead giving them a chance to find solution
by a partially random behaviour. The term biologically inspired artificial intelli-
gence relate to a wide range of AI algorithms introduced as resemblances of natural
processes observed in biological environment. The main groups of Bio–AI include
algorithms and systems such as [15]:

• neural – being networks or circuits of information processing units being resem-
blances of biological neurons, interconnected in organised structures, cooperat-
ing in complex information processing tasks. Information flows from one node
(or a layer) to another one, being transformed by operations done by previously
passed neurons.

• cellular – assuming that multicellular structure will have capabilities unexpected
from the isolated units, and this is not a simple effect of scaling–up,

• collective – synergistic interaction of individuals, is done for a common good,
e.g. to find food or a better route. In this variant, collective systems (artificial as
well as natural ones) perform as one superorganism, more qualified than the sum
of its parts’ qualifications.

• immune – as living creatures are threatened by pathogens, being external ex-
ploiters, they developed protecting immune systems. In their artificial version
they protect against external attacks, internal faults and to be used in various in-
formation processing tasks perceived from the perspective of system protection.

• evolutionary – where the best (fitted to environment) individuals have a chance
to survive and have more offspring. The genes of next generations contain infor-
mation from their parent, partially modified by a random process of mutation.
However, there exists a difference between natural and artificial evolution. In na-
ture, evolution create a vast diversity of creatures (at a certain moment becoming
different species), while artificial evolution helps us to produce population satis-
fying our predefined problems. Therefore, the overall aim of artificial evolution is
more similar to e.g. dog breeding, than a random natural process with unexpected
outcomes, giving species special abilities helping them to survive.

This chapter focuses on the evolutionary systems, providing a simple benchmark
to evaluate their performance in comparison to human intelligence and fully ran-
dom process. More information about these kinds of algorithm and their usage can
be found in [15], [43], [12], [5] or [6]. It must be noted that important difference
between the traditional and bio–inspired AI, is the number of elements involved in
these processes. The traditional AI usually involves small number of elements (often
even one), where each element is expected to perform as good as it could be done.
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The bio–inspired AI is built over a large number of elements, where only a subset
of them will provide meaningful results. This is an exact situation found in nature,
where redundancy and large populations are typical, and the progress of populations
development is being driven by small subsets of best individuals.

7 A Benchmark to Evaluate Artificial Intelligence

In his book ”A Random Walk Down Wall Street,” Malkiel wrote ”a blindfolded
monkey throwing darts at a newspaper’s financial pages could select a portfolio
that would do just as well as one carefully selected by experts” [41]. Can we evolve
this random strategy to an intelligent strategy? For example, Lipinski proposed a
decision support system for stock market trading, which is based on an evolution
strategy algorithm applied to construct an efficient stock market trading expert [40].
This is just one among many such proposals. Then those strategies can be called
intelligent? Or they pass the Turing Test?

In this section we would like to investigate the evolutionary algorithms applied
for a problem of financial investments – done in form of stock portfolio, creating an
optimal structure of financial assets. This is a very well–known task with detailed
description presented in many books and papers (to find more about its financial
meaning see, e.g. [59] or [13]). These factors caused that portfolio selection was
a subject of many research, including experiments performed different evolution-
ary algorithms, including genetic ones. Among many papers about this area we can
mention [50], [67], [7], [21] or [4]. Another important factor that caused we de-
cided to use this task as a benchmark for natural and artificial intelligence compar-
ison is the algorithmic characteristics of portfolio selection. Finally, in the financial
practice, an optimal selection of portfolio is a very significant task of financial in-
vestment. Therefore, we will examine the relation for natural intelligence of stock
investors and evolutionary intelligence.

The most fundamental and widely used approach to optimal selection of finan-
cial assets constituting portfolio is the MPT (Modern Portfolio Theory) introduced
by Harry Markowitz [42]. In language of mathematics selection of best (optimal)
portfolio is a task involving an analysis of expected portfolio efficiency and risk.
The most common measure of efficiency is expected return:

E (Rp) =∑
i

wiE (Ri) , (12)

where: Rp is the return of portfolio, Ri is the return on asset i and wi is the weight of
assets.

The standard measure of risk is portfolio volatility calculated as the standard
deviation of return:

δ 2
p =

√
∑

i
∑

j
wiwjδiδ jρi j, (13)

where: δi is the standard deviation of returns for i assets and ρi j is correlation coef-
ficient of returns for i and j assets.



32 W. Pietruszkiewicz and A. Imada

Fig. 1 The schema of risk–efficiency map for portfolio selection

To briefly explain the meaning of this task, let’s analyse Figure 1. As we can no-
tice it contains a plane, where X-axis denotes risk and Y -efficiency (both measured
according to the rules introduced above). This chart is called a risk–efficiency map,
as it provides comparable information about these two parameters. Contrary to the
incorrect common opinion, we cannot find an optimal portfolio by searching for one
with greatest efficiency or minimal risk, as looking for global extrema will cause ir-
rational selection. This problem requires us to analyse both of these parameters.
Indeed, in the two most common scenarios, portfolio optimality is understood as an
extreme value of risk or efficiency for portfolios having particular efficiency or risk
(accordingly). There exists an efficient frontier for this selection, being a subset of
portfolios, each with the highest efficiency for fixed risk or the lowest risk for fixed
efficiency.

To examine evolutionary (genetic algorithms) approach to portfolio selection, we
have decided to compare three types of portfolios:

• Portfolios of two financial investment funds – we consider them to be the out-
comes of natural intelligence, as they are created by financial experts managing
these funds.

• Randomly generated portfolios – randomly distributed are the worst–case sce-
nario, as if portfolio construction is a knowledge requiring task, random selection
should give significantly worse results.

• Portfolios generated using genetic algorithms – an evolutionary simple approach,
where randomness is driven by algorithm of selection allowing the best portfolios
in one generation to be potentially improved in following generations.



Artificial Intelligence Evolved from Random Behaviour 33

The analysis was done for Warsaw Stock Exchange during year 2010, being a quite
stable year for WSE (and other markets), as a few previous years were very nervous
for stock markets around the world. Thus, they cannot be expected to provide simple
and easily understandable evaluation for computational methods of intelligence, as
well as for human knowledge.

We investigated three scenarios:

1. minimal risk portfolio – where we minimise risk value for portfolios with effi-
ciency equal to a certain value,

2. maximal efficiency portfolio – where we maximize efficiency value for portfolios
with a certain risk,

3. minimal risk–to–efficiency ratio portfolio – where the average risk per unit of
efficiency should be minimal.

In all cases, we have assumed that the all weights of assets in portfolio sum to one
i.e., ∑i wi = 1 and the short–selling is not allowed i.e., wi ≥ 0. The genetic algorithms
were used in a variant with roulette-wheel selection (for explanation see [12]), and
real–valued N chromosomes used in fitness function (N was a number of stocks)
representing weights of particular stocks in portfolio. The fitness function was

(a) Fund A – 5 stocks (b) Fund A – 10 stocks

(c) Fund A – 20 stocks (d) Fund A – all stocks

Fig. 2 (a), (b), (c) and (d)
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selected to match expected optimality of portfolio (minimal risk, maximal efficiency
or minimal risk–to–efficiency).

We have performed two stages of experiments for two investment funds (denoted
as Fund A and Fund B) oriented on investing in WSE–noted stocks, by examining
their portfolios, more precisely subsets WSE stocks (small parts of portfolios was
invested on other markets or in bonds). The results of these experiments can be
found in Figures 2 and 3. Both Figures contain four subfigures presenting analysis
done for 5, 10, 20 and all stocks. They contain frontiers, random portfolios (grey
areas) and genetic portfolios.

Analysing these Figures, we have made observations for:

• Funds – being not so optimal as it was expected in terms of MPT. However, we
do not want to criticise human experts as their selection might have been a result
of analysis beyond MPT theory.

• Random portfolios – random selection of portfolios, as it was expected, resulted
in mean results. Interesting observation is that with increasing number of stocks,
random areas were more distant from efficient frontier and it could mean that
optimal selection is harder to perform (small changes in the weights of portfolio
result in its suboptimality).

(a) Fund B – 5 stocks (b) Fund B – 10 stocks

(c) Fund B – 20 stocks (d) Fund B – all stocks

Fig. 3 (a), (b), (c) and (d)
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• Genetic portfolios – achieved better (according to the MPT theory) results for
all three scenarios in both cases (Fund A and B). However, we have observed
their weak spots too, i.e. a number of adjustable parameters and core algorithm –
both to be selected and tuned by human operator, and larger demand on computer
resources. This last problem, in the context of processing limits, will be discussed
in the following section and we must remember about significant risk of sub–
optimality for classic optimisation algorithms. The partially positive influence of
random component in the optimisation of complex functions was discussed in
[55].

8 To Aim a Real Human-Like Machine Intelligence

In this section we will discuss ideas, research and technological changes influencing
further development of artificial intelligence. Together with reorientation of AI on
bio-inspired algorithms they might cause that the term of machine intelligence will
become more realistic.

8.1 Huge Number of Neurons–From Emulation to Simulation

Recently, IBM’s researchers unveiled a project called SyNAPSE (Systems of Neu-
romorphic Adaptive Plastic Scalable Electronics) in which experimental computer
chips which emulate the brain was awarded 21 million US dollars from the Defense
Advanced Research Projects Agency (DARPA). Currently prototype contains 256
neurons and 262,144 programmable synapses and 65,536 synapses for learning8.

On the other hand, simulating brain by a program, instead of emulating brain by
hardware, also has attracted, and still attracts, researchers. One such idea is evolving
artificial neural networks. Direct encoding of artificial neural networks, where struc-
ture and/or all the synaptic strengths are directly encoded to genes, is not practical
because it is computationally very expensive, and as such, lots of indirect encod-
ing methods have been proposed. Hypercube-based Neuroevolution of Augmenting
Topologies (HyperNEAT) [70] is one of them. Infact Gauci [19] wrote, ”Although
HyperNEAT generates ANNs with millions of connections, such ANNs can run in
real time on most modern hardware. Using a 2.0GHz processor, an eight million
connection networks takes on average 3.2 minutes to create, but only 0.09 seconds
to process a single trial.” Clune [11] applied it to design a neural network that con-
trols a quadruple leg robot.

Although once Frederic Jelinek, a pioneer in speech recognition, put it in the
debates with the linguists, ”airplanes don’t flap their wings to fly like birds”9,
the most likely candidate of artificial intelligence might employ real biologically

8 This is from the article in New York Times by Steve Lohr entitled ”Creating Artificial
Intelligence Based on the Real Thing” on 6 December 2011.

9 This is from the article ”Computer scientist of Czech-Jewish origin Jelinek dies in USA,”
in The Prague Daily Monitor on 27 September 2010,
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plausible artificial neurons to think like human brain. An example would be, evolv-
ing trillions of spiking neurons with a fitness of how intelligent, assuming we have
a good measure of machine intelligence mentioned in the previous section. Let us
quote Sandberg and Bostrom’s paper ”Whole Brain Emulation: A Roadmap” [60].
”The so far (2006) largest simulation of a full Hodgkin Huxley neuron network
was performed on the IBM Watson Research Blue Gene supercomputer using the
simulator SPLIT. It was a model of cortical minicolumns, consisting of 22 million
6-compartment neurons with 11 billion synapses, with spatial delays corresponding
to a 16 cm2 cortex surface and a simulation length of one second real time. Most
of the computational load was due to the synapses, each holding 3 state variables.
The overall nominal computational capacity used was 11.5 TFLOPS, giving 0.5
MFLOPS per neuron or 1045 FLOPS per synapse. Simulating one second of neural
activity took 5,942 sec. The simulation showed linear scaling in performance with
the number of processors up to 4,096 but began to show some (23%) overhead for
8,192 processors.” See also Cattell and Parkers paper [9] on this topic.

8.2 Toward Real AI by Parallelism

From computational point of view, when we compare the processing power of hu-
man brain with the power of machines the main differences relate to:

• power – computers are more powerful in specific tasks, allowing them to perform
faster calculation or analysis of structured data, while the power of total human
brain is still exceeding its machine counterpart (see [46]) and cause that we are
able to see, hear or speak (not to mention about thinking).

• parallelism – in this case human brain is parallel biological computer, while ma-
chines are much more sequential.

Therefore, it is expected that increased parallelism will be a significant factor in-
fluencing further development of AI. As we can notice, the most of currently intro-
duced or investigated AI algorithms is based on multiple instances of simple mech-
anisms (including neural systems or swarm intelligence) comparing to sophisticated
algorithms typical for the traditional approach to AI. As we – researchers – haven’t
succeeded in reimplementing the nature using machine–based tools (algorithms and
programming languages) we should aim at creation of self–adaptive resemblance of
nature (brain) in large scale and expect that process of evolution will also work in
this case.

However, considering further increase of computational power of machine–based
intelligence, we think that the next obstacle we should overcome is the processing
limits related to all computer system. As it was stated by Pietruszkiewicz (see [53]
- for other factors important in AI applications see [54]) they relate to: algorithms,
software, hardware and even human operators. These limits can be eased by many
means, especially by increased parallelism, available in different forms including:
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• Multi-core processors – is possible to implement fully parallel data processing
on a single–chip machines and deploy task parallelism in systems. Furthermore,
the current versions of processors available on market compete with number of
cores, as increase of power of a single-cores is limited by quantum effects10;

• GPU-enabled processing – allows us to deploy cost and energy effective GPU
(Graphical Processing Unit) cards to problems where parallel data processing
significantly reduced time of processing – described as GPGPUs applications
(General Purpose Graphical Processing Unit). The power of even mid–range
GPU cards, being multi–core RISC processors, is at a few rank over power of
CPUs. The processing based on GPU fits very well to algorithms of AI, where
tasks could be divided into interdependent parts, e.g. neural networks, evolu-
tionary algorithms or swarm intelligence. The success of these systems could
not have been achieved without supporting software technologies, like CUDA
or OpenCL (see [61] or [63]), allowing one to easily build and deploy GPGPU
applications;

• Distributed processing – transforming computers in network into metacomput-
ers, where the clusters of distributed or co–located machines could be used in
various tasks offering their resources. This solution also could not succeed with-
out appropriate software technologies allowing developers to build distributed
systems over software layers responsible for management of distributed systems
(e.g. controlling them and performing tasks management). One of the most pop-
ular distributed data processing technologies is Apache Hadoop (see [37]) and
its application to intelligent problems led to the development of Apache Mahout,
build over Hadoop to perform data mining tasks (for more information about
Mahout see [51]).

Therefore, as we can see all people involved in IT industry – researchers, developers,
IT companies – are oriented onto increased availability of parallelism in computer
systems at level of processor, machine or networks. Due to this observation and pre-
liminary research done for AI using these technologies, we claim that this approach
has a great potential to bring us closer to . To conclude – an urban expression dumb
as a bag of hammers has a special meaning for AI. Human brain being also “a bag
of neurons”, where a single neuron is not as bright as we could expect, is still the
greatest intelligent system we could observe. Maybe a large number of parallel neu-
rons will bring the man–made machines to this biological excellence. Additionally,
this approach suits very well to the idea of bio–inspired AI, including evolutionary
intelligence.

9 Conclusions

In this chapter we have analysed the most popular or influencing definitions of in-
telligence for natural and man–made systems. We have investigated two different

10 The quantum computers for many years are considered to have a great potential and are
expected to cause a technological revolution. However, they are still in a research stage,
far from maturity and being market–ready.
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approaches to artificial intelligence, the traditional and evolutionary one. Both of
these approaches have many theories, methods and implementations and they were
introduced and discussed herein.

To examine behaviour of evolutionary intelligence and compare it with natural
intelligence we have performed an evaluating experiment. The introduced bench-
mark, being an AI–based solution to one of the most popular financial problems
– resulted in evolutionary intelligence outperformed results of human experts. Ad-
ditionally, it revealed the difference between the popular theory (which should be
taken into account by investors) and business practice.

The last part of this chapter contained an analysis of technological changes that
could support further development of intelligent systems. In our opinion one of
significant technological changes taking place, with a great potential for AI, is a
move towards parallelism in both – hardware and software.

In our final words, we would like to point that we are aware, that in the near future
researchers community will still be discussing the definition of AI and what should
be considered as a man–made fully intelligent system. However, we shouldn’t forget
that people behaviour involving knowledge and intelligence is not always as bright
and clever as we expect. In situation where the genetic algorithms performed better
than financial experts, which group should be consider to be intelligent? Or maybe
we should start to think about AI in the same way we think about some people
with great minds, allowing them to deal with complex tasks much better than with
daily routines. Who will perform better at the Turing test – the Rain Man or a well
designed chat–bot?
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Turing: Then, Now and Still Key 

Kieran Greer* 

Abstract. This paper looks at Turing’s postulations about Artificial Intelligence in 
his paper ‘Computing Machinery and Intelligence’, published in 1950. It notes 
how accurate they were and how relevant they still are today. This paper notes the 
arguments and mechanisms that he suggested and tries to expand on them further. 
The paper however is mostly about describing the essential ingredients for 
building an intelligent model and the problems related with that. The discussion 
includes recent work by the author himself, who adds his own thoughts on the 
matter that come from a purely technical investigation into the problem. These are 
personal and quite speculative, but provide an interesting insight into the 
mechanisms that might be used for building an intelligent system.  

Keywords: Artificial Intelligence, Intelligence Modelling, Alan Turing. 

1   Introduction 

The idea of artificial intelligence has been around since the 1950’s at least. Alan 
Turing and others have been attributed as the founders of the science and Turing 
as the father of AI, but a definition of what it represents is still not clear. Turing 
defined it through the imitation game, where a human and a machine are asked the 
same set of questions. If the interrogator cannot tell which is the human and which 
is the machine, then the machine is considered to be intelligent. This is really the 
ultimate test for an intelligent system, where it acts almost exactly as a human 
would. Most people would recognise that if a machine can perform more 
simplistic, but still intelligent acts, then it is considered to have intelligence. There 
are now many different variations and definitions of what a single intelligent act 
might be, which is probably why a concise definition is so difficult. It probably 
requires however that the machine can do something by itself, without being told 
exactly how to do it first. This paper considers Turing’s ‘Computing Machinery 
and Intelligence’ paper [22], which is one of the first to write about artificial 
intelligence. It looks at the postulations made in that and describes how relevant 
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they still are today. While the problem of what artificial intelligence is and what it 
requires has now been defined much more formally, we are still not much further 
on at achieving it in a real sense. Many smaller advances have been made however 
and are covered in many texts about the topic. 

Turing stated that a computer using a ticker tape as the information source, if 
programmed properly, would be able to solve any problem. This was described as 
the Turing machine, which is able simply to manipulate symbols on a strip of tape 
according to a set of rules. This can be used to simulate the logic of any computer 
algorithm, because a computer process is eventually broken down into simplistic 
on/off commands. This could be represented by a hole or not in the tape, for 
example. Turing meant that if a problem can be described in terms of a computer 
algorithm, then the computer can perform that task. The computer does not have 
any difficulty performing the most complex of calculations, but it does not know 
how to write the algorithm telling it how to do them in the first place. That 
requires intelligence. Neurons in an animal brain are also by nature very simple 
components. They switch on, or fire, when the input that they receive exceeds a 
certain threshold. This does not appear to require any inherent intelligence either 
and looks more like a purely mechanical process. The problem is that it is still not 
known how to use this sort of entity to realise a truly intelligent system. 

The brain is made up of billions of these neurons [24]. If a single neuron has 
zero intelligence, then some thousands of them together also have zero 
intelligence; but we know that intelligence is made up of the collective activity of 
a large number of neurons, all firing together. One key factor is the granularity of 
the patterns that they form. The patterns are made up of so many neurons that a 
slight change in an input stimulus could lead to noticeable changes in the patterns 
that are produced and therefore in the output signals that they create. Different 
patterns can then be interpreted by the brain as something different. The brain 
creates electrical signals, causing changes in some internal state that might be felt. 
If the brain can recognise these different feelings or reactions, to small pattern 
changes, they could also be remembered and linked, to form different memories. 
Is this the essence of what intelligence is? Is it the ability to recognise these 
differences in a coherent and consistent way? The fact that a stimulus is involved 
is probably not a surprise. The electrical signals would excite and the brain would 
probably register this in some way. What might be surprising is how important a 
role it plays, but this theory appears to be a part of the mainstream research 
interest. The paper [23] discusses it and describes the difficulties with measuring 
stimulus-driven responses, or modelling the neural circuits produced by them. If 
we assume that individual neurons are not intelligent by themselves, then we have 
the following problems and requirements for realising an intelligent machine: 

 
1. The formation of the brain structure could be driven mainly by stimuli – sight, 

sound, taste, touch, smell, for example. The brain tries to remember and 
repeat the ones that it finds favourable, or unfavourable. 

2. If the neurons have no intelligence, then at least one other layer that can 
interpret what the firing neurons signal is required. A layer called the 
neocortex [8] is already known to perform more intelligent processing. The 
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neocortex is a thin layer above the main brain body. It contains most of the 
intelligent components, including memory and is the driving force behind 
intelligent activity.  

3. If external stimuli control everything about how the brain forms then 
environmental factors are too critical and so this more intelligent and 
independent layer is very important. 

4. With a largely unintelligent main brain body, notions about the sub-conscious 
are also possible. 

The following questions also arise: 

1. Is the brain formation driven by the stimulus or by the more intelligent layer? 
2. Does the more intelligent layer simply interpret different signals, or can it 

have an influence over their creation and activation? 
3. Is there a process of reading and re-organising existing patterns, which would 

indicate a controlling and therefore intelligent process? Does the main brain 
body form certain patterns that are read by other layer(s) that then form other 
patterns, etc., until the refinement forms into comprehensible intelligence?  

4. The problem is then the act of thinking itself. Without any particular external 
stimulus, we still think about things. So the stimulus can also be generated 
internally. Can a stimulus result be learnt and remembered? What sort of 
stimulus would allow a person to learn mathematics, for example?  

5. Memory plays a key part in retrieving already stored patterns, but how do we 
think over them and change them in an intelligent way? Memory must also 
accommodate the processes to do that. 

 
The rest of this paper is organised as follows: Section 2 gives an introductory 
overview of the human brain neuron and its artificial equivalent. Section 3 lists 
certain requirements for an intelligent system. Section 4 then lists general 
mechanisms or processes for finding a solution to these. Section 5 describes some 
work by the author that is related to an intelligent system, while section 6 gives 
some conclusions on what has been written about. Turing’s postulations are noted 
in places throughout the paper, but the paper is more of a summary on general 
conditions for artificial intelligence. The conclusions section however lists the 
postulations in detail and notes how important they still are. 

2   Simplified Model of the Human Brain 

This section does not try to describe the brain structure completely, or in detail, 
but instead will attempt to show the similarities between the biological and the 
simulated neuronal processing unit. The Introduction has already described how 
intelligence is realised through the collective activities of these neurons, firing in 
response to sensory input. The paper [23] notes that while responses to sensory 
input can account for something such as vision, the majority of brain activity is 
generated internally and is silent. The brain therefore also needs to be able to 
produce its own activity, in the absence of external input. We therefore need to be 
able to think constructively. 
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important, because after a cell fires, it cannot then fire again, through feedback for 
example, before a period of time has elapsed. This could help to prevent cycling, 
for example. As written about in [21]: 

‘Although the models which have been proposed to explain the structure of the 
brain and the nervous system of some animals are different in many respects, there 
is a general consensus that the essence of the operation of neural ensembles is 
"control through communication". Animal nervous systems are composed of 
thousands or millions of interconnected cells. Each one of them is a very complex 
arrangement which deals with incoming signals in many different ways. However, 
neurons are rather slow when compared to electronic logic gates. These can 
achieve switching times of a few nanoseconds, whereas neurons need several 
milliseconds to react to a stimulus. Nevertheless, the brain is capable of solving 
problems that no digital computer can yet efficiently deal with. Massive and 
herarchical networking of the brain seems to be the fundamental precondition for 
the emergence of consciousness and complex behaviour.’ 

Neural networks are the technology that most closely map to the human brain. 
They are the original attempt to build a machine that behaves in the same way. 
The inspiration for neural networks comes from the fact that although current 
computers are capable of vast calculations at speeds far in excess of the human 
brain, there are still some operations (such as speech, vision and common-sense 
reasoning) that current AI systems have trouble with. It is thought that the 
structure of the human brain may be better suited to these tasks than a traditional 
computing system and a neural network is an attempt to take advantage of this 
structure. There are many texts on neural networks, for example, [7] or [21]. In [7] 
the definition of a neural network is given as: 

 ‘A neural network is an interconnected assembly of simple processing 
elements, units or nodes, whose functionality is loosely based on the animal 
neuron. The processing ability of the network is stored in the interunit connection 
strengths, or weights, obtained by a process of adaption to, or learning from, a set 
of training patterns.’ 

Figure 2 shows a model that has been used with artificial neural networks, with 
the areas related to a real neuron in brackets. This shows a number of inputs (X1 to 
Xn) that are weighted (w1 to wn) and summed, before being passed through a 
threshold function. If the total sum is larger than the threshold, the neuron will 
‘fire’, or send an output signal. If it is less, then the neuron will not fire. This is an 
example of a perceptron, which is one of the earliest artificial neuronal models, 
based on McCulloch and Pitts [16]. It is described here to show how similar in 
nature it is to the real neuron. Neural network models, also known as connectionist 
models, consist of a large number of these simple processing elements, all 
operating in parallel. A large number of weighted connections between the 
elements then encode the knowledge of the network. The problem to be solved is 
also distributed across all of the processing elements, where it is broken down into 
much simpler functions. A learning algorithm is then used to adjust the weight 
values until the neural network has correctly learned the global function. 
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A neural network must be trained before it can be used. This is done by 
presenting it with data that it then tries to repeat, but in a general way. The 
learning process can also be supervised or unsupervised. In a supervised training 
methodology, input values are fed into the network and the resulting output values 
are measured. These actual output values should match a desired set of output 
values that are also specified as part of the training dataset. The errors, or 
differences, between the desired and the actual output values are then fed back 
through the network, to adjust the weight values at each node. Adjusting the 
weight values for each node will then change the output value that the node 
produces. This will then change the actual output values of the neural network, 
until they are found to be correct. After the network has been trained to recognise 
a training set of patterns, it is tested with a different set of test patterns. If it can 
also successfully classify the test set, then the network is considered to have been 
properly trained. The test set would be different to the training set and so they can 
only be correctly classified if the network has learned to generalise over the 
different patterns, rather than rote learning the training dataset. This generalisation 
has in effect allowed the network to learn the function that maps the data input 
values to the data output values for the type of problem being specified.  

Unsupervised learning means that there is not a definite set of output values 
that must be matched, when in that case, the output error can be measured. 
Instead, the network continues to learn and adjust its values until it settles on a 
stable state. The network starts with some sort of hypothesis, or set of values, 
when neighbouring nodes then compete in their activities through mutual 
interactions, to best match the input data. Errors in the matching process update 
weight values, until a more stable state is reached. This causes the individual 
nodes to adapt into specific detectors of different signal patterns. Supervised 
learning therefore allows a neural network to recognise known patterns, while 
unsupervised allows it to find unknown patterns in the data. The process could be 
looked at as trying to minimise the error in the whole system (the neural network), 
or trying to realise a more stable state. When the output becomes accurate enough, 
the error is minimised and further corrections are not required.  

While neural networks are not particularly intelligent; their highly distributed 
design with relatively simple individual components, makes them an enduringly 
attractive model for trying to mimic intelligence and several variations of the 
original model have since been developed. Feedforward neural networks [25] are 
more often associated with supervised learning, while self-organising ones [14] 
are more often associated with unsupervised learning. The distributed model has 
also been extended with other types of component, into systems such as agent-
based [13] or autonomous [12] ones. With these, each individual component can 
be more complex. It can have its own internal reasoning engine and make 
decisions for itself. The overall nature of the system however is still to realise 
more complex behaviours or activities through distributed communication and 
cooperation. The reason being that the problem itself is too complex to be 
modelled in its entirety and so lots of simpler components are required to try to 
work the problem out through adaption and cooperation. So these systems already 
model more complex components as the individual entities and the idea of seeing 
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the ‘big’ in the ‘small’ is also a part of nature. If a single neuron can be considered 
as an individual entity that produces an output, why not see a collection of neurons 
firing together also as an individual entity that produces an output? Then the 
model becomes much more complex, but still based on the same set of 
components. 

3   A List of Requirements for Intelligence 

This section lists a set of functionality that an intelligent system is thought to 
require. If you were going to build an intelligent system, it would need to include 
probably most of the following items. Although we know what the brain is made 
of physically, there are also a number of general functional requirements for what 
we understand intelligence to be. These are really what have been worked on over 
the years in AI and so the key functionality of intelligence is now well defined. 
Computer systems that are built can range from single complex components to a 
number of highly distributed and more simplistic ones. These can simply react to 
an input and perform some sort of statistical update, or have internal knowledge 
and be able to make decisions. The centralised approaches are more closely 
associated with knowledge-based methods, that is, methods that use existing 
knowledge. Distributed approaches are more closely associated with experience-
based methods, that is, methods that require feedback or experience from use, to 
update related values. A centralised approach would include a knowledge-base or 
rule-based expert system [19], for example. A distributed approach would include 
a neural network ([7], [16], [21] or [25]) or agent-based system [13], for example. 
This paper deals more with the distributed options as they model the real brain 
more closely; however the different approaches are used to build different types of 
system and so cannot be compared directly in that respect. Either type has 
advantages and disadvantages. If you are asking a system to model a well 
understood problem based on certain criteria, you require a single knowledgeable 
system that can apply its knowledge to your problem. If you are asking a system to 
model a less well understood problem, you might require several distributed 
entities that can interact in different ways, to play out as yet unforeseen scenarios.  

Relatively simple entities can be shown to exhibit more intelligent behaviour 
collectively, where they can use cooperation to compete with a more 
knowledgeable and centralised system. A centralised system can store a large 
amount of knowledge and apply that to any particular problem. The whole system 
and its’ functionality is in one place, and probably well-defined and understood. 
With a distributed system, each individual component can be much simpler, where 
the nature of this allows for easier cooperation between those entities. 
Unfortunately however, communications between large numbers of simpler 
entities can become just as complicated as a single system performing more 
complex operations on its own. Because a complex problem is naturally broken 
down into simpler ones as part of the problem-solving process, a distributed 
system is not that different to a centralised one when solving the same problem. 
The distributed system is possibly modelled in a more modular way, which allows 
each component to behave in a more independent way. This is particularly useful 
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if the operation of the system is not fully understood. In that case, the basic 
elements or entities of the problem can be modelled individually and then allowed 
to interact with each other, in the hope that they can find a suitable solution. The 
distributed system is also by nature more stochastic and will therefore be able to 
perform actions that are not predictable but are based on the current dynamic state 
of the system. It is more flexible in that respect.  

Systems can also use search processes that evaluate incomplete or partial 
information. The expectation is to find a better solution, by obtaining a more 
complete picture through many smaller but related evaluations. Computer chess, 
for example, uses search processes to evaluate single positions based on imperfect 
evaluations. Because so many positions are evaluated however, it is able to build 
up a relatively reliable picture of the whole situation through these incomplete 
evaluations. The computer programmer would not be able to tell the system 
exactly what positions to evaluate, which is down to the search process itself. So 
this lack of knowledge is compensated for by many more evaluations and 
interactions that simply reveal more information from what was present in the 
original problem specification. The human would be expected to ‘know’ what the 
computer ‘finds’ through its search, although, even this is an abstract idea. The 
human knows more because he/she can access other information, through a 
different search process. Therefore, if looking at the whole search process as a 
single entity, they might not be so different after all. Search methods are ideal for 
a computer that can perform many calculations per second, but the whole process 
appears to lack something for modelling the human brain exactly. For these 
individual entities, the level of any real intelligence is still only at the entity level 
itself. The system probably needs some sense of itself as a whole to have 
intelligence at that level as well. This is the point of any stimulus feedback, to 
create the sense of whole from the collection of firing neurons.  

Learning is also essential for intelligence. If a system cannot learn, then it is 
probably not intelligent. As described in the context of neural networks in section 2, it 
needs to be able to change internal settings through feedback. Through the 
manipulation and use of knowledge and rules, different types of learning process have 
been identified. They are also recognised as being intelligent because they perform an 
act that has not been directly specified beforehand. For example, a system can be 
asked to retrieve a certain value from a database. It can access the database and 
retrieve the value, but this is not intelligent. With the addition of rules, the system can 
then derive information or knowledge that has not been specified directly. For 
example, if one assertion is the fact that John bought a shirt and another assertion is the 
fact that all shirts are red, then by deduction it is known that John bought a red shirt. 
This involves the easiest method of directly traversing rules or facts that are linked, to 
find an answer that is not stated explicitly. Slightly more complicated would then be; if 
one assertion is the fact that John only buys red things and another assertion is the fact 
that John bought a shirt, also by deduction, it is known that the shirt is red. This is 
slightly more complicated, because there is no rule directly stating that the shirt is red 
and so a reasoning process that knows how to combine knowledge is required to come 
to this conclusion. The conclusion is still known to be 100% true, however. The most 
complicated then is induction, which actually creates something new out of what is 
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already known. For example, if we know that John has only bought red things so far 
and the system is asked to buy John a coloured shirt; induction would suggest that the 
system should buy a red shirt. Note that that these learning processes have evolved out 
of knowledge-based approaches. Distributed systems also have learning capabilities 
but these are less transparent and often involve statistical processes updating numerical 
values. A neural network, for example, is sometimes described as a black box, because 
the weight values that it creates and uses would not be useful in any other context and 
would not be understood by a human. 

For a distributed system to be able to properly describe itself, any patterns that 
are saved will eventually need to be mapped to a symbolic system at some level 
and then into a language or something similar, for communication. This is the 
‘physical symbol system hypothesis’ attributed to Newell and Simon [18]. They 
noted that symbols lie at the root of intelligent action. A symbol recognises one 
particular entity as being different from another one and also assigns a ‘tag’ to that 
entity for identification purposes. The conscious reasoning process that we know 
about is at this symbolic level. Another important feature that the brain might have 
could be very fine comparison and/or measuring capabilities. It can possibly 
compare these entities or symbols very accurately and measure the level of 
difference; especially if they are aggregations of patterns. In a general sense, 
intelligence can require the following: 

 
• There is a clear distinction between a system that is ‘intelligent’ and one that 

is able simply to repeat what it has been told.  
• It is relatively easy for a computer to learn and memorise information, if it is 

presented in a formal way. The program can also traverse the information 
again relatively easily, to execute any rules or actions as required. So the 
problem is in inferring new information from what is known, or generalising 
what is known to create something new. 

• This probably requires the system to be able to deal with uncertainty or 
unpredictability at some level. Or to look at this in a different way, it requires 
the system to be able to predict [8]. Hawkins argues that prediction, along 
with memory, are the core components of intelligence, where his conclusions 
were based on studying the biological brain.  

• Prediction includes comparisons and measuring differences. This requires 
using deduction, inference, induction, learning and reasoning to derive new 
information, or come to new conclusions from what was previously known. 

• Factors such as being flexible, dynamic and able to adapt are also essential, 
where a learning process is required to enable these.  

• Memory is also very important, when we can then start to think in terms of 
knowledge. 

• While the stimulus with feedback (statistical or experience-based) approaches can 
be used to build up the ‘structure’ to store intelligence, knowledge (knowledge-
based) is still required to properly ‘understand’ it. It might then be correct to state 
that intelligence is required to properly manipulate the knowledge. 

• Rules are possibly linked pieces of related knowledge that have been worked 
out and found to be consistent or useful. 
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4   General Mechanisms and Processes for Building a Solution 

The previous section has given one description of two general approaches that can 
be used to define intelligence. Experience-based approaches are required for 
learning and are often associated with distributed and statistical processes. They 
would also be associated with the lower levels of intelligence here – more at the 
pattern level. Knowledge-based approaches are then required for understanding 
and are associated more with centralised and formal methods. They would also be 
associated with the higher levels of intelligence here – more at the symbolic level. 
These two approaches also help to define how we go about building an intelligent 
system. One approach is to give the machine known intelligence and study how it 
uses that. The other is to ask the machine to form any sort of intelligence by itself. 
The first approach is more knowledge-based and relies on existing information, 
rules and scripts, which define situations or scenarios that the machine must then 
use in an intelligent way. These control in a pre-determined way, how the system 
works. Because of that, the machine can be given a more complex algorithm to 
process the information with. The task is to measure how it can generalise that 
knowledge, or create new knowledge, from what is presented to it. This approach 
is useful and can be used today to build practical systems. Information is 
represented at the symbolic level and can therefore be understood by a human, but 
the process can only get so far. The underlying intelligent mechanisms are not 
fully understood as they are pre-defined and so the system can only operate at the 
level of the information that it has been presented with. There are however 
learning processes, such as already described, to either create new knowledge or 
infer something that is not specified directly. So new knowledge can be created, 
but its domain is restricted, as is the level of real understanding. 

The second approach is the modelling of the brain more closely, in a highly 
distributed way, with more simplistic components. The system is not allowed any 
(or only minimal) existing knowledge and the task is to measure what sort of 
knowledge it can form by itself – simple or complex. The system starts with no 
real structure or rule-set and creates these out of the experience and learning. A 
neural network, for example, is closer to this approach. The result is something 
that creates its own intelligence, or is able to develop consistent patterns from 
apparently more chaotic looking information. This approach, by itself, is not quite 
as useful for building practical systems, but it is just as important for modelling 
real intelligence. If the mechanisms for enabling a system to create its own 
patterns can be understood, then this will help with processing at the higher 
symbolic levels as well. The system must have intelligence to be able to create 
these patterns and if it starts with close to zero existing knowledge, then it has 
created this intelligence for itself. If the underlying knowledge has been created 
internally, then the hope would be that there is a better understanding of what it is 
and therefore the knowledge can be used in a more flexible way.  

The ideas of tacit or explicit knowledge also address this [10]. Explicit 
knowledge is knowledge that can be codified, or represented in a format that can 
be understood by a machine. This would include a formal definition or 
representation of the knowledge. Tacit knowledge is knowledge held in the minds 
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of humans that cannot be easily codified and stored on a computer. This 
knowledge has a personal quality created more from experience and often, this 
sort of knowledge is key. If a computer is allowed to generate its own knowledge, 
then the exact nature of it might not be completely transparent, when it can be 
compared more closely to tacit knowledge. For example, a chair can be described 
to a computer as having 4 legs, a seat and a back. We can generalise this to 
recognise chairs with many different shapes and forms, but we would not be able 
to codify those differences completely for a computer. We use our tacit knowledge 
to recognise the different chair shapes, sometimes based on context and this is 
what is missing from the programmed computer. 

So to summarise, before you can reason about a concept, you have to 
understand what the concept is and before you can understand what it is you have 
to be able to distinguish it from a different one. There are still problems with this 
first step - for a system to autonomously learn unknown patterns or concepts for 
itself. Knowledge-based approaches pass over this problem, by defining these 
already. This point was also written about by Turing, where the following example 
might explain the problem: 

 
Scenario 1: 
Person (shows a tree picture): this is a tree. 
Computer: OK. 
Person: can you describe the object that I just showed to you? 
Computer (accesses its database): a tree is a large woody perennial plant with a 
distinct trunk giving rise to branches or leaves at some distance from the 
ground. 
Person: (shows a different tree picture): what is this? 
Computer: I don’t know. 
 
Scenario 2: 
Computer (after looking at lots of pictures): that looks like Object A. 
Person: can you describe the object? 
Computer (using own knowledge): it has a long rectangular part, smaller ones  

extending from that and then pointy circular objects at the end of those. 
Person (shows a different tree picture): what is this? 
Computer: that also looks like Object A. 

If building an intelligent system, some or all of the following probably need to be 
part of a final model: 

 
 

• To derive or induce new information, the system must be autonomous. At the 
lowest level, it must be able to form new knowledge or concepts by itself. 

• To generate understanding, it must also be able to properly link the correct 
knowledge or concept parts together, so that a thinking process can follow the 
correct path of information. 

• Pattern recognition/comparisons and the accurate measuring of differences is 
also critical, to allow the system to tell different entities apart. 
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• Symbolic reasoning is also necessary, requiring different layers of abstraction.  
• The role of a stimulus by itself should not be underestimated, as our emotions, 

feelings and therefore preferences are controlled by that. Turing’s paper notes 
that intelligence is not just a logical calculation, but also something such as 
the question ‘what do you think of Picasso?’ 

• Rules are required. This is higher-level knowledge that links individual pieces 
in a constructive way. A reasoning process can create rules, where 
favourable/unfavourable feedback can determine the links.  

• Intelligent conclusions can be at an individual level or at a societal level and 
influenced by knowledge of other rules or responses, etc. For example, I feel 
good if I eat all of the ice cream, but then everybody else is angry and so I get 
a bad response overall. The rule – do not eat all of the ice cream. To 
emphasise the point that rules are not rigid entities that everybody obeys in 
the same way, Turing wrote about ‘laws of behaviour’ as well as rules that 
should always be obeyed. 

• Therefore, feedback is also required, as part of a learning process. Turing also 
emphasised this, in particular, through the example of teaching a computer 
more like educating a child. In that example, through evolutionary learning 
processes, the system is eventually able to realise some level of intelligence 
for itself.  

• Existing knowledge is also allowed, through logical propositions (Turing), for 
example. 

 
At the moment, it is not practical to try to model the brain exactly, with thousands 
or more neurons, all firing together. It is therefore difficult to reproduce the exact 
conditions under which the brain works. Because of this, adding some existing 
knowledge or intelligence to help the system to understand is probably required, 
with results then measured against what the system can do with that. Scripts can 
be used to help. Alternatively, much more simple processes could possibly be 
learned at a neuronal level, simply to see how they work. The brain eventually 
needs to be able to reason in a symbolic way, creating more complex concepts 
from linking simpler ones. Memory is the place where the learned concepts are 
stored and time is probably also a key element, as it allows us to form the logical 
associations between entities more easily. Turing described this in terms of 
discrete-state machines. A problem he notes with the machine is the fact that it ‘is’ 
discrete. A more fuzzy system might do better. The machine is made of exactly 
defined states and concepts, but the brain would require overlapping and 
generalisations of these. Certain entities belong to more than one thing and as  
a result also represent more than one thing (context). Turing argued that where  
one machine fails, another might succeed, so combining these into a single 
machine should do both equally well. He also writes about a continuous rather 
than a discrete machine. Note however that state machines work at the symbolic 
level. 
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5   Related Work 

As this paper is about Turing’s work specifically, a more detailed summary of the 
history of Artificial Intelligence does not seem appropriate. The author however 
will take the opportunity to note his own cognitive model. There are many texts on 
artificial intelligence systems and technologies. The first place to look would be a 
general textbook on artificial intelligence itself, for example [20]. This section 
describes a cognitive, or intelligent, model that the author is currently working on 
[3][4][5]. It was developed from trying to optimise a network for information 
retrieval, when it became clear that more cognitive processes were also possible. 
The model structure is based mostly on feedback, or ‘stigmergy’ [2][15] and is 
also highly distributed. It is therefore in the spirit of modelling a real brain, where 
a diagram of the model is shown in Figure 4. One key difference with this model 
is the fact that it can process information as patterns, but at a symbolic level. 
Instead of the neural network, or cognitive model, being described as a black box 
or in terms of statistics; the internal workings of the model can be understood by a 
human user through its symbolic representations. This allows for more human-like 
reasoning processes to be performed. Since the paper [18], this has been noted as 
one of the goals of AI. 

 

Fig. 4 Cognitive Model with three levels of complexity [5] 

This model contains three different levels of intelligence. The first or lowest 
level allows for basic information retrieval that is optimised through dynamic 
links. The linking mechanism works by linking nodes that are associated with 
each other through the use of the system. While it is based on the stigmergic 
process of linking through experience, this could also be called Hebbian [9]. 
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Stigmergy is a very simple way of allowing components to organise themselves 
based on reactions to their environment. As it works through feedback, the 
individual components require very little intelligence or knowledge themselves. 
They are only required, for example, to increase the strength of a link when 
stimulated. A major advantage of stigmergy, or related methods, is its flexibility – 
the link will be reinforced in the same way, regardless of what the stimulus source 
is, making it generic. The knowledge or information being added to a network 
may not be known beforehand and so the organisation needs to be as flexible as 
possible. Hebb was able to study this type of behaviour in the human brain. He 
noticed that when an axon of cell A is near enough to excite cell B and repeatedly 
or persistently takes part in firing it, some growth process or metabolic change 
takes place in one or both cells such that A's efficiency, as one of the cells firing 
B, is increased. This is often paraphrased as ‘Neurons that fire together wire 
together.’ and is commonly referred to as Hebb’s Law, with the linking 
mechanism called Hebbian. The main difference between these is the fact that 
stigmergy results from inputs between external and possibly independent sources, 
while Hebbs law results from inputs between internal and probably dependent 
sources. Ants for example, behaving independently of each other, can collectively 
perform complex tasks through stigmergic processes. The linking of the neurons 
in the human brain is more of an internal and related process.  

The second level in the model performs simplistic aggregation or averaging 
operations over linked nodes. The idea being that nodes have been linked through 
intelligent feedback and therefore averaging over those links should be better than 
averaging over every random answer. The third level is more cognitive. It tries to 
realise more complex concepts autonomously, or independently, by linking 
together associated individual concepts. These links form new and distinct entities, 
and are not just for optimisation purposes. It also attempts to then link the more 
complex entities, so that a form of thinking can occur. One cluster of linked nodes, 
when realised, might trigger another cluster and so on. As this flows through 
different concepts, the network begins to realise things for itself and performs a 
certain level of thinking.  

The first level has been tested extensively and shown to perform a good 
optimisation of the network. Test results ranged from a 30% reduction in search 
with almost no loss in the quality of answer, to possibly 80-90% reduction in the 
search, with maybe 5-10% loss in the quality of answer. The second level has been 
tested less but also shown to work. As would be expected, averaging over the 
linked sources only should produce a better total than averaging over all possible 
answers; because the nodes are linked through a process that tries to maximize the 
link value. The third level is the current area of research interest and some 
promising results have been achieved [3]. The problem is that a certain amount of 
randomness must be accommodated for, where the system would not be given the 
information exactly, but needs to perform some level of guess work. Statistical 
processes allow it to filter out the less likely connections and to keep the more 
likely ones. Two new-looking clustering algorithms [3] have been developed. 
These are important because they can be used as part of an autonomous system 
and they can also allow for a certain amount of noisy input - 10-20% already. 



58 K. Greer
 

They are also very lightweight and so are suitable for unsupervised online 
processing. It is these clustering processes that have led to the conclusion that a 
neural network architecture should be the direction for further research. 

While not the original intention, this model does map loosely onto the 
structures that have been described. The middle layer can produce aggregated 
values that might be compared to the stimuli produced from aggregated patterns. 
The top layer can then receive or recognise different configurations of these and 
process them accordingly, similar to what the neocortex would do. So while only 
individual concepts and clusters of individual concepts have been considered so 
far, groups of aggregations might also be considered. The arrows between the 
levels represent a direction of increasing intelligence. It is likely that 
communication between these levels would flow in both directions. The idea of a 
trigger has not been worked out fully yet. It is probably related to a memory 
component and also a set of values or conditions under which one concept group 
would trigger or activate another one. In this sense, the path description associated 
with the linking process could be relevant. A path of concept types with related 
values can be associated with any link between two nodes.  

The option of presenting scripts to the system has also been looked at. This is 
relatively easy to do and the system can learn the script and therefore know what a 
rule or a trigger should be. It is then only a matter of traversing this knowledge 
again to activate a trigger. So the problem would be to try and determine if the 
system can create its own rules or triggers that are not part of the original script, or 
if it can create the script triggers when some of the information is missing. The 
figure also shows an ontology or rule-base that can be used to present existing 
knowledge to the system. This is valid, because we also receive certain 
information in that form and are not expected to realise everything empirically. So 
research into the top, more intelligent, level has only started, but the results appear 
promising. One or two new-looking discoveries have been made that should help 
to overcome certain stumbling blocks of the past. Other work related to these ideas 
could include [1], [6] or [17], for example. 

6   Conclusions 

These conclusions include some of the author’s own opinions, based on his 
limited knowledge of the real brain, but consistent with what has already been 
written. An attractive feature of assigning such importance to state changes, or 
stimulus changes, is that the individual neurons do not then require real 
intelligence themselves, or at least, the intelligence mechanism is now understood 
to be the state change that we can better understand. So the intelligence is linked 
to the collective chemical reactions that occur and also possibly to the very nature 
of a human. State changes would excite cells, which could drive our quest for new 
knowledge. If our state is changed in a favourable way, it makes us feel better. 
The brain might feel this sort of thing, even on its own. Fortunately, these 
reactions can also be made autonomously and so we do not have to rely 
completely on our environment. Then internally, the memory or some other brain 
area, knows the favourable/unfavourable reactions and tries to re-create them 
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again, probably resulting in further feedback to itself. If different patterns then get 
linked through these reactions, even if this has not been a part of reality, the 
memory can still store the result to be used again. I like to think about ‘A’, but you 
like to think about ‘B’, for example. 

The ability of the brain to make accurate comparisons is also critical, as has 
been written about before ([8], for example). It might be important for realising 
mathematical or complex operations through the feedback of results. This is 
probably how maths started, with somebody noticing that two piles of stones were 
twice as large as one pile of stones. For example, a human has worked out that two 
times one (stone) is twice the size of a single one (stone). The brain understands 
what ‘one’ is, at some symbolic level, and can easily associate and compare two of 
these symbols. This would then need to be abstracted for larger calculations, once 
the general understanding had been learnt.  The author has also wondered why 
something such a driving a car is a skill that almost anybody can do, when you 
consider the accuracy level that is required. Almost without thinking, we do not 
crash into the car in-front, but measure and control our distances very easily. 

So a very general rule is learned and then applied in many different scenarios. 
Possibly, objects from memory can be retrieved and applied to a learned rule, with 
feedback determining the result (see also [6], for example). Compare this to nouns 
and verbs in our language. Positive or recognised feedback would reinforce some 
association, while negative or no feedback would not register a result. An 
explanation of how a brain-like system can learn mathematics mainly through a 
stimulus process would go a long way to allowing us to model the real brain. The 
question might be – how much does a ‘eureka’ moment play in our ability to work 
things out. The following is also interesting for suggesting a largely mechanical 
process for the main brain engine: If the main brain body is purely mechanical, 
then it might even fire when damaged, without any consideration for the person, 
resulting in a painful stimulus when the damaged part is entered or interpreted. If 
damaged areas do fire and are not shut down or avoided, then does this suggest an 
unintelligent process? Why would the brain intentionally hurt itself, unless it did 
not know that it was doing so? Some sort of controlled process must be involved 
in the brain construction however, which suggests some level of controlling 
intelligence. The problem is really how the brain structure is created from this 
mysterious and controlling process. For a mechanical answer, the stimulus again 
offers a solution. The brain links are mechanically stimulated to grow or link in a 
certain manner, through the feedback that is most strongly felt. 

Turing noted a lot of the problems that are still relevant today. Modelling as a 
state machine looks appropriate as it may be internal state changes that allow us to 
tell differences, resulting in intelligence. A time element is also associated with 
state machines. The author would suggest however that starting with a state 
machine is not best, but rather, the final product would be more like one. The 
declaration that if the problem can be described in terms of an algorithm, then it 
can be run on a computer, is also true. This means that if we ever figure out in a  
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technical sense how intelligence works, it is likely that it will be transferred to a 
machine at a later date. Turing noted the skin-of-an-onion scenario, with layers of 
intelligence. The formation of patterns and then the refactoring of these into new 
and probably more singular ones, is essential for the formation of a symbolic level 
and reasoning. He also notes the importance of the other senses. While this is 
obvious, they are the key sources of our initial stimuli and therefore essential in 
the creation of our intelligence. The idea of trying to make people more intelligent 
through external false stimuli however, will hopefully be consigned to the waste 
bin.  

Turing also noted that it is not practical to teach a machine in a way that the 
human knows and understands every step of the internal learning process. If 
considering state changes, the machine will make changes that the human would 
not know about or be able to predict. This is consistent with a learning, and 
therefore evolutionary process, but it means that the process must give a certain 
level of autonomy to the machine itself and cannot be controlled completely. The 
statement that a machine can only do what we tell it to is still largely true. 
Processes can be changed through evolution and learning, but the overall domain 
of their influence remains what the machine has been told. Turing argued to inject 
an idea into what is already known, to disturb it and allow it to ripple through the 
existing knowledge, in the hope of influencing or changing something. He also 
argued for a random element. Instead of a computer always following its 
instructions exactly; as part of the learning process, why not allow it to perform 
non-standard random acts from time to time, just so that it can receive different 
feedback to learn from? The problem then moves into the area of complex 
adaptive systems [11], with stochastic or random elements and the human teacher 
will definitely not be able to control that process completely. 

So Turing’s ‘Computing Machinery and Intelligence’ paper is still relevant and 
important today. While he wrote in a general sense, research since has been able to 
define the problem much more formally, but the basic premises are still the same. 
There have been successes in one area or another, but a comprehensive solution 
for intelligence has not yet been realised. It might be incorrect however to think 
that just because a machine is mechanical, it can never realise true intelligence. 
One other question would be - just how mechanical are our own brains? Turing 
also wrote about the theological argument against machines ever realising true 
intelligence, but was strongly against it. The idea that our intelligence could be 
based largely on stimuli is probably not an attractive one in that respect. Religious 
beliefs, for example, suggest that we should stay away from certain stimuli, but 
internal ones would possibly be OK. It is also the case that a machine cannot feel 
in the same way as a human and therefore, it would be difficult to model this sort 
of process properly in a machine. Only a ‘living’ organism could then have 
intelligence. This would be a key stumbling block to modelling intelligence 
properly - the feedback and evaluation mechanisms are still not real enough, but 
the correct algorithm simply needs to be found.  
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Imitation Programming Unorganised Machines 

Larry Bull* 

Abstract. In 1948 Alan Turing presented a general representation scheme by 
which to achieve artificial intelligence – his unorganised machines. Further, at the 
same time as also suggesting that natural evolution may provide inspiration for 
search, he noted that mechanisms inspired by the cultural aspects of learning may 
prove useful. This chapter presents results from an investigation into using 
Turing’s dynamical network representation designed by a new imitation-based, 
i.e., cultural, approach. Moreover, the original synchronous and an asynchronous 
form of unorganised machines are considered, along with their implementation in 
memristive hardware.  

1   Introduction 

Cultural learning is learning either directly or indirectly from others and imitation 
is a fundamental form of such adaptation. Dawkins [13] has highlighted the 
similarity between the copying of behaviours through imitation and the 
propagation of innate behaviours through genetics within populations. That is, he 
suggests information passed between individuals through imitation is both 
selected for by the copier and subject to copy errors, and hence an evolutionary 
process is at work - consequently presenting the cultural equivalent to the gene, 
the so-called meme. The term “memetic” has already been somewhat inaccurately 
adopted by a class of search algorithms which combine evolution with individual 
learning, although a few exceptions include imitation (e.g., [50]). Some previous 
work has explored the use of imitation (or imitation-like) processes as a general 
approach to computational intelligence however, including within reinforcement 
learning (e.g., [34]) and supervised learning (e.g., [6]). The imitation of humans 
by machines has been used to design robot controllers (e.g., [7]) and computer 
game agents (e.g., [17]). Other culture-inspired schemes include the use of 
artifacts (e.g., [22]) or the use of stored information to guide the production of 
new evolutionary generations, as in Cultural Algorithms [35]. This chapter 
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University of the West of England, Bristol BS16 1QY, U.K 
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explores a new form of imitation computation and applies it to the design of 
(simple) dynamical networks consisting of uniform components, both of which are 
drawn from an internal report by Alan Turing. 

In 1948 Alan Turing produced a paper entitled “Intelligent Machinery” in which he 
highlighted cultural learning as a possible inspiration for techniques by which to 
program machines (finally published as [43]). In the same paper, Turing also presented 
a formalism he termed “unorganised machines” by which to represent intelligence 
within computers. These consisted of two types: A-type unorganised machines, which 
were composed of two-input NAND gates connected into disorganised networks 
(Figure 1, left); and, B-type unorganised machines which included an extra triplet of 
NAND gates on the arcs between the NAND gates of A-type machines by which to 
affect their behaviour in a supervised learning-like scheme through the constant 
application of appropriate extra inputs to the network (Figure 1, right). In both cases, 
each NAND gate node updates in parallel on a discrete time step with the output from 
each node arriving at the input of the node(s) on each connection for the next time 
step. The structure of unorganised machines is therefore very much like a simple 
artificial neural network with recurrent connections and hence it is perhaps surprising 
that Turing made no reference to McCulloch and Pitts’ [27] prior seminal paper on 
networks of binary-thresholded nodes. However, Turing’s scheme extended 
McCulloch and Pitts’ work in that he also considered the training of such networks 
with his B-type architecture. This has led to their also being known as “Turing’s 
connectionism” (e.g., [12]). Moreover, as Teuscher [41] has highlighted, Turing’s 
unorganised machines are (discrete) nonlinear dynamical systems and therefore have 
the potential to exhibit complex behaviour despite their construction from simple 
elements. 

 

  

Fig. 1 A-type unorganised machine consisting of four two-input NAND gates (left). B-type 
unorganised machine (right) consisting of four two-input NAND gates. Each connecting arc 
contains a three NAND gate “interference” mechanism so that external inputs such as S1 
and S2 can be applied to affect overall behaviour, i.e., a form of supervised learning. 
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The memory-resistor or “memristor” identified experimentally by Widrow [48] 
and theoretically by Chua [11] has become the focus of significant attention after 
the fabrication of nanoscale devices by Stanley et al. through sandwiching 
Titanium Dioxide between two platinum wires (e.g., see [51] for details). Two of 
the anticipated applications of this fourth fundamental circuit element are non-
volatile memory and neuromorphic architectures, the latter almost exclusively as 
synapse analogues in conjunction with standard Complementary Metal Oxide 
Semiconductor (CMOS) neurons. Borghetti et al. [8] have recently described how 
their aforementioned memristors can be used for Boolean logic operations. In 
particular, they demonstrate how two-input material implication (IMP) can be 
implemented using two memristors and a load resistor, further showing how this 
enables the implementation of two-input NAND. Given the simple structure of A-
type unorganised machines from these universal gates, the current work aims to 
explore the potential of imitation computation to design them for direct 
implementation in memristive hardware, e.g., to produce low-energy, embedded 
intelligence. 

2   Background 

2.1   Discrete Dynamical Systems 

Around the same time as Turing was working on artificial intelligence in the 
1940’s, John von Neumann, together with Stanislaw Ulam, developed the regular 
lattice-based discrete dynamical systems known as Cellular Automata (CA) [45]. 
CAs are discrete dynamical systems which exist on a graph of restricted 
connectivity but with potentially any logical function at each node, whereas 
unorganised machines exist on a graph of potentially any connectivity topology 
but with a restricted logical function at each node. Traditionally, each cell 
calculates its next state depending upon its current state and the states of its closest 
neighbours. Packard [31] was the first to use a computational intelligence 
technique to design CAs such that they exhibit a given emergent global behaviour, 
using evolutionary computation. Following Packard, Mitchell et al. (e.g., [29]) 
have investigated the use of a Genetic Algorithm (GA) [20] to learn the rules of 
uniform one-dimensional, binary CAs. As in Packard’s work, the GA produces the 
entries in the update table used by each cell, candidate solutions being evaluated 
with regard to their degree of success for the given task — density and 
synchronization. Andre et al. [3] repeated Mitchell et al.’s work evolving the tree-
based LISP S-expressions of Genetic Programming (GP) [25] to identify the 
update rules. They report similar results. Sipper [37] presented a non-uniform, or 
heterogeneous, approach to evolving CAs. Each cell of a one- or two-dimensional 
CA is also viewed as a GA population member, mating only with its lattice 
neighbours and receiving an individual fitness. He showed an increase in 
performance over Mitchell et al.’s work by exploiting the potential for spatial 
heterogeneity in the tasks. The approach was also implemented on a  
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Field-Programmable Gate Array (FPGA) and, perhaps most significantly, the 
inherent fault-tolerance of such discrete dynamical systems was explored. That is, 
it appears the behaviour of such systems gives them robustness to certain types of 
fault without extra mechanisms. This finding partially motivates the current study. 

Another early investigation into discrete dynamical networks was that by 
Kauffman (e.g., see [23] for an overview) with his “Random Boolean Networks” 
(RBN). An RBN typically consists of a network of N nodes, each performing one 
of the possible Boolean functions with K inputs from other nodes in the network, 
all updating synchronously. As such, RBN may be viewed as a generalization of 
A-type unorganised machines (since they only contain NAND gates, with K=2). 
Again, such discrete dynamical systems are known to display an inherent 
robustness to faults - with low K (see [2] for related results with such regulatory 
network models in general). RBN have recently been evolved for (ensemble) 
computation [33]. 

2.2   Graph-Based Representations 

A number of representations have been presented by which to enable the design of 
computer programs and circuits. Most relevant to the representation to be explored 
in this chapter is the relatively small amount of prior work on arbitrary graph-
based representations. Significantly, Fogel et al. (e.g., [15]) were the first to 
evolve graph-based (sequential) programs with their use of finite state machines – 
Evolutionary Programming (EP). Angeline et al. [5] used a version of Fogel et 
al.’s approach to design highly recurrent artificial neural networks. Teller and 
Veloso’s [40] “neural programming” (NP) uses a directed graph of connected 
nodes, each with functionality defined in the standard GP way, with recursive 
connections included. Here each node executes in synchronous parallelism for 
some number of cycles before an output node’s value is taken. Luke and Spector 
[26] presented an indirect, or cellular, encoding scheme by which to produce 
graphs, as had been used to design artificial neural networks (e.g., [18]), an 
approach used to design both unorganised machines [41] and automata networks 
[9]. Poli has presented a scheme wherein nodes are connected in a graph which is 
placed over a two-dimensional grid. Later, recurrent artificial neural networks 
were designed such that the nodes were synchronously parallel and variants exist 
in which some nodes can update more frequently than others (see [32] for an 
overview). Miller (e.g., [28]) has presented a restricted graph-based representation 
scheme originally designed to consider the hardware implementation of the 
evolved program wherein a two-dimensional grid of sequentially (feed forward) 
updating, connected logic blocks is produced. The implementation of arbitrary 
graphs onto FPGAs has also been considered [44]. It can be noted that Schmidt 
and Lipson [36] have demonstrated a number of benefits from graph encodings in 
general over traditional trees, such as reduced bloat and increased computational 
efficiency. 
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2.3   Unorganised Machines 

“The machine is made up from a rather large number N of similar units. Each unit 
has two input terminals, and has an output terminal which can be connected to 
input terminals of (0 or more) other units. We may imagine that for each integer r, 
1 ≤ r ≤ N, two numbers i(r) and j(r) are chosen at random from 1..N and that we 
connect the inputs of unit r to the outputs of units i(r) and j(r). All of the units are 
connected to a central synchronising unit from which synchronising pulses are 
emitted at more or less equal intervals of time. The times when these pulses arrive 
will be called ‘moments’. Each unit is capable of having two states at each 
moment. These states may be called 0 and 1. The state is determined by the rule 
that the states of the units from the input leads come are to be taken at the 
previous moment, multiplied together and then subtracted from 1. ”  

 

Turing, Intelligent Machinery 1948 
 

A-type unorganised machines have a finite number of possible states and they are 
deterministic, hence such networks eventually fall into a basin of attraction. 
Turing was aware that his A-type unorganised machines would have periodic 
behaviour and he stated that since they represent “about the simplest model of a 
nervous system with a random arrangement of neurons” it would be “of very great 
interest to find out something about their behaviour” [43]. Figure 2 shows the 
fraction of nodes which change state per update cycle for 100 randomly created 
networks, each started from a random initial configuration, for various numbers of 
nodes N. As can be seen, the time taken to equilibrium is typically around 15 
cycles, with all nodes in the larger case changing state on each cycle thereafter, 
i.e., oscillating. For the smaller networks, some nodes remain unchanging at 
equilibrium on average; with smaller networks, the probability of nodes being 
isolated is sufficient that the basin of attraction contains a degree of node stasis. 

Previously, Teuscher [41] has explored the use of evolutionary computing to 
design both A-type and B-type unorganised machines together with new variants 
of the latter. In his simplest encoding, an A-type machine is represented by a 
string of N pairs of integers, each integer representing the node number within the 
network from which that NAND gate node receives an input. Turing [43] did not 
explicitly demonstrate how inputs and outputs were to be determined for A-type 
unorganised machines. Teuscher [41] used I input nodes for I possible inputs, each 
of which receive the external input only and are then connected to any of the 
nodes within the network as usual connections. That is, they are not NAND nodes. 
He then allows for O outputs from a pre-defined position within the network. Thus 
his scheme departs slightly from Turing’s for B-type unorganised machines since 
Turing there showed input NAND nodes receiving the external input (Figure 1). 
Teuscher uses his own scheme for all of his work on unorganised machines, which 
may be viewed as directly analogous to specifying the source of inputs via a 
terminal set in traditional tree-based GP. The significance of this difference has 
briefly been explored, with Turing’s input scheme shown to be robust [10] – it is 
used here. 
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Teuscher [41] used a GA to design A-type unorganised machines for bitstream 
regeneration tasks and simple pattern classification. In the former case, the size of 
the networks, i.e., the number of nodes, was increased by one after every 30,000 
generations until a solution was found. That is, an epochal approach was exploited 
to tackle the issue of not knowing how complex an A-type unorganised machine 
will need to be for a given task. Or a fixed, predefined size was used. A culture-
based approach is used to design A-type here, in a way which allows their 
complexity to emerge during learning. 

 

Fig. 2 Showing the average fraction of two-input NAND gate nodes which change state per 
update cycle of random A-type unorganised machines with various numbers of nodes N. 

3   Imitation Programming: Cultural Search 

“Further research into intelligence of machinery will probably be very greatly 
concerned with ‘searches’ …. We may perhaps call such searches ‘intellectual 
searches’. They might very briefly be defined as ‘searches carried out by brains 
for combinations with particular properties’ … It may be of interest to mention 
two other kinds of search in this connection. There is the genetical or evolutionary 
search by which a combination of genes is looked for, the criterion being survival 
value. …. The remaining form of search is what I should like to call the ‘cultural 
search’ … the search for new techniques must be regarded as carried out by the 
human community as a whole.” 

   Turing, Intelligent Machinery 1948 

The basic principle of imitation computation is that individuals alter themselves 
based upon another individual(s), typically with some error in the process. 
Individuals are not replaced with the descendants of other individuals as in 
evolutionary search; individuals persist through time, altering their solutions via  
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imitation. Thus imitation may be cast as a directed stochastic search process, 
thereby combining aspects of both recombination and mutation used in 
evolutionary computation. 

Imitation Programming (IP) [10] is such a population-based stochastic search 
process which, as will be shown, can be competitive with related evolutionary 
search: 

 
BEGIN 
INITIALISE population with random candidate solutions 
EVALUATE each candidate 
REPEAT UNTIL (TERMINATION CONDITION) DO 

FOR each candidate solution DO 
SELECT candidate(s) to imitate 
CHOOSE component(s) to imitate 
COPY the chosen component(s) with ERROR 
EVALUATE new solution 
REPLACE IF (UPDATE CONDITION) candidate with new solution 

OD 
OD 
END 

 
For A-type design, IP utilizes a variable-length representation of pairs of 

integers defining node inputs, each with an accompanying single bit defining the 
node’s start state, together with three imitation operators: copy a node connection, 
copy a node start state, and change size through copying. In this chapter, each 
operator can occur with or without error, with equal probability, such that an 
individual performs one of the six during the imitation process as follows: 

To copy a node connection, a randomly chosen node has one of its randomly 
chosen connections set to the same value as the corresponding node and its same 
connection in the individual it is imitating. When an error occurs, the connection 
is set to the next or previous node (equal probability, bounded by solution size). 
Imitation can also copy the start state for a randomly chosen node from the 
corresponding node, or do it with error (bit flip here). Size is altered by adding or 
deleting nodes and depends upon whether the two individuals are the same size. If 
the individual being imitated is larger than the copier, the connections and node 
start state of the first extra node are copied to the imitator, a randomly chosen 
node being connected to it. If the individual being imitated is smaller than the 
copied, the last added node is cut from the imitator and all connections to it re-
assigned. If the two individuals are the same size, either event can occur (with 
equal probability). Node addition adds a randomly chosen node from the 
individual being imitated onto the end of the copier and it is randomly connected 
into the network. The operation can also occur with errors such that copied 
connections are either incremented or decremented. For a problem with a given  
 



70 L. Bull
 

number of binary inputs I and a given number of binary outputs O, the node 
deletion operator has no effect if the parent consists of only O + I nodes. The extra 
two inputs are constant True and False lines. Similarly, there is a maximum size 
(100) defined beyond which the growth operator has no effect.  

In this chapter, similar to Differential Evolution [39], each individual in the 
population P creates one variant of itself and it is adopted if better per iteration. 
Other schemes are, of course, possible, e.g., Particle Swarm Optimization (PSO) 
[24] always accepts new solutions but then also “imitates” from the given 
individual’s best ever solution per learning cycle. This aspect of the approach, like  
many others, is open to future investigation. In the case of ties, the solution with 
the fewest number of nodes is kept to reduce size, otherwise the decision is 
random. The individual to imitate is chosen using a roulette-wheel scheme based 
on proportional solution utility, i.e., the traditional reproduction selection scheme 
used in GAs. Again, other schemes, such as the spatial networks of PSO, could be 
used. In this form IP may perhaps be seen as combining ideas from memetics with 
Evolutionary Programming. 

4   Experimentation 

A simple version of the multiplexer task is used initially in this paper since they 
can be used to build many other logic circuits, including larger multiplexers. 
These Boolean functions are defined for binary strings of length l = x + 2x under 
which the x bits index into the remaining 2x bits, returning the value of the indexed 
bit. The correct response to an input results in a quality increment of 1, with all 
possible 2l binary inputs being presented per evaluation. 

Upon each presentation of an input, each node in an unorganised machine has 
its state set to its specified start state. The input is applied to the first connection of 
each corresponding I input node. The unorganised machine is then executed for T 
cycles, where T is typically chosen to enable the machine to reach an attractor. 
The value on the output node(s) is then taken as the response. It can be noted that 
Teuscher [41] used the average output node(s) state value over the T cycles to 
determine the response, again the significance (or not) of this difference is not 
explored here. 

All results presented are the average of 20 runs, with a population/society of 
μ=20 and T=15. Experience found giving initial random solutions N = O+I+30 
nodes was useful across all the problems explored here, i.e., with the other 
parameter/algorithmic settings described.  

Figure 3 (left) shows the performance of the approach on the 6-bit (x=2) 
multiplexer problem. Optimal performance (64) is obtained around 5,000 
iterations and solutions are eventually two or three nodes smaller than at 
initialization.  
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A multiplexer has multiple inputs and a single output. The demultiplexer has 
multiple inputs and multiple outputs. Figure 3 (right) shows performance of the 
same algorithm for an x=2 demultiplexer, i.e., one with three inputs and four 
outputs.  Again, quality was determined by feeding each of the possible inputs into 
the A-type machine. It can be seen that optimal performance (8) is reached around 
7,000 iterations and solutions are typically around ten nodes smaller than at 
initialization. Figure 4 shows performance on x=3 variants of the two tasks with 
the same parameters, again optimality is found and solutions alter their size during 
learning. Similar results have been found with other well-known logic tasks, such 
as parity functions and adders (not shown). 

 
Fig. 3 Performance on multiplexer (left) and demultiplexer (right). 

5   Asynchrony 

Turing’s unorganized machines were originally described as updating 
synchronously in discrete time steps. However, there is no reason why this should 
be the case and there may be significant benefits from relaxing such a constraint. 
Asynchronous forms of CA (e.g., [30]) and RBN (e.g., [16]) have been explored 
wherein it is often suggested that asynchrony is a more realistic underlying 
assumption for many natural and artificial systems. Asynchronous logic devices 
are also known to have the potential to consume less power and dissipate less heat 
[46], which may be exploitable during efforts towards hardware implementations 
of such systems. Asynchronous logic is also known to have the potential for 
improved fault tolerance, particularly through delay insensitive schemes (e.g., 
[14]). This may also prove beneficial for direct hardware implementations. See 
Thomson et al. [42] for evolving asynchronous hardware. 
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Asynchronous CAs have also been evolved (e.g., [38]). Asynchrony is here 
implemented as a randomly chosen node (with replacement) being updated on a 
given cycle, with as many updates per overall network update cycle as there are 
nodes in the network before an equivalent cycle to one in the synchronous case is 
said to have occurred. Figure 5 shows the fraction of nodes which change state per 
update cycle for 100 randomly created networks, each started from a random 
initial configuration, for various numbers of nodes N. As can be seen, the time 
taken to equilibrium is again typically around 15 cycles, with around 10% of 
nodes changing state on each cycle thereafter, i.e., significantly different behavior 
to that seen for the synchronous case shown in Figure 2. For the smaller networks 
(N=5, N=50), there is some slight variance in this behaviour. 

 

 
Fig. 4 Performance on larger multiplexer (left) and demultiplexer (right). 

Figure 6 shows the performance of the imitation algorithm with the asynchronous 
unorganized machines for the x=2 multiplexer and demultiplexer tasks. The same 
parameters as before were used in each case. As can be seen, the multiplexer task 
appears significantly harder, on average IP fails to solve the task on every run with 
the parameters used, compared to consistent optimality after 5,000 iterations in the 
synchronous node case (Figure 3). Performance was not significantly improved in the 
time allowed through a variety of minor parameter alterations tried (not shown). It 
takes around 150,000 iterations to solve the demultiplexer, again a statistically 
significant decrease in performance over the synchronous case (T-test, p≤0.05). 
Moreover, the use of asynchronous node updating has altered the topology of the 
graphs evolved with more nodes (T-test, p≤0.05) being exploited. This is perhaps to 
be expected since redundancy, e.g., through sub-circuit duplication, presumably 
provides robustness to exact updating order during computation. Similar relative 
performance was found on the x=3 versions (not shown). 
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Fig. 5 Showing the average fraction of two-input NAND gate nodes which change state per 
update cycle of random asynchronous A-type unorganised machines with various N. 

 

Fig. 6 Performance on multiplexer (left) and demultiplexer (right) of asynchronous system. 

6   A Comparison with Evolution  

These initial results therefore indicate that unorganized machines are amenable to 
(open-ended) design using the imitation algorithm presented. As noted above, one 
of the earliest forms of evolutionary computation used a graph-based 
representation – Fogel et al.’s [15] Evolutionary Programming. EP traditionally 
utilizes five mutation operators to design finite state machines. In this chapter EP 
has been used with the same representation of pairs of integers, defining node 
inputs, each with an accompanying single bit defining the node’s start state, as 
above. Similarly, with equal probability, an individual either has: a new NAND 
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node added, with random connectivity; the last added node removed, and those 
connections to it randomly re-assigned; a randomly chosen connection to a 
randomly chosen node is randomly re-assigned; or, a randomly chosen node has 
its start state flipped. The same minimum and maximum solution size limits are 
maintained as before. The (μ + μ’) selection scheme of EP is also used: each 
individual in the parent population (μ) creates one randomly mutated offspring 
(μ’) and the fittest μ individuals form the next generation of parents. In the case of 
ties, the individual with the fewest number of nodes is kept to reduce bloat, 
otherwise the decision is random. Fogel et al. used a penalty function to curtail 
solution complexity, reducing fitness by 1% of size. All other parameters were the 
same as used above. 

 

 

Fig. 7 Performance on multiplexer (left) and demultiplexer (right) by EP (synchronous). 

Figure 7 (left) shows the performance of the EP-Atype system on the 6-bit 
(x=2) multiplexer problem. Optimal performance (64) is obtained around 200,000 
generations and after an initial period of very slight growth, solutions are 
eventually no bigger than at initialization. Figure 7 (right) shows that optimal 
performance (8) in the equivalent demultiplexer is reached around 400,000 
generations and solutions are typically five or six nodes smaller than at 
initialization. Hence these results are statistically significantly (T-test, p≤0.05) 
slower and bigger than those seen above with the imitation algorithm. The same 
was found to be true for the asynchronous update scheme, where the multiplexer 
was again unsolved (not shown). The larger variants were not explored. 

The imitation algorithm described can be viewed as a parallel hill-climber, 
simultaneously updating a number of solutions, in contrast to the traditional global 
replacement scheme used in evolutionary computation (hybrids are also possible, 
e.g., [4]). It is therefore of interest whether the imitation process aids performance 



Imitation Programming Unorganised Machines 75
 

in comparison to using random alterations to individuals, under the same selection 
process. Results (not shown) indicate that no statistically significant difference is 
seen from using imitation over purely random alterations on the demultiplexer 
task (T-test, p>0.05), but an improvement is seen on the multiplexer task through 
imitation (T-test, p≤0.05). With asynchronous updating imitation is better on the 
demultiplexer (T-test, p≤0.05) but not the multiplexer (T-test, p>0.05). Of course, 
all algorithms are parameter sensitive to some degree: the parameters used here 
were simply chosen since they typically enabled optimal performance with the 
basic schemes, both evolution and imitation, on all tasks used, over the allotted 
time. Future work is needed to explore parameter sensitivity, along with the 
aforementioned role of selecting who to imitate, multiple imitations per iteration, 
etc. 

7   Towards Memristive Hardware 

7.1   Implication A-Types 

Memristors are the fourth fundamental circuit element, joining the capacitor, 
inductor and resistor [11]. A memristor can be formally defined as a passive two-
terminal electronic device that is described by the non-linear relation between the 
device terminal voltage, v, terminal current, i (which is related to the charge q 
transferred onto the device), and magnetic flux, ϕ: v = M(q)i or i = W(ϕ) v. The 
memristance (M) and memductance (W) properties are both nonlinear functions: 
M(q) = dϕ(q) / dq and W(ϕ) = dq(ϕ)/dϕ.  

As noted above, Borghetti et al. [8] have presented a scheme by which 
memristors can be used as switches to implement Boolean logic. They use two 
memristors to realise material implication (IMP), a much-forgotten function 
originally highlighted in [47]. Borghetti et al. [8] then construct two-input NAND, 
using two IMP gates in serial from three memristors and a constant False signal as 
follows: 

 

The reader is referred to their paper for full circuit and voltage details. Hence 
anything computable can therefore be implemented using memristors this way, in 
principle. However, Turing’s A-types can be seen as a low-level representation 
scheme which can be mapped directly onto memristive hardware due to its use of  
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two-input NAND gates. For example, the two dynamical logic circuits designed in 
Figure 3 would require, typically, ~35x3 and ~25x3 memristors for a multiplexer 
or demultiplexer respectively.  

As well as the stated potential advantages gained by use of asynchronous logic 
in CMOS highlighted in Section 5, asynchrony may also prove useful with 
memristors as new forms of the device emerge, e.g., providing a global clock may 
prove non-trivial – only local synchrony would be needed at each node for NAND 
gates. Moreover, given their non-volatile nature, energy savings may be achieved 
by forms of power “pulsing” across the device: the results in Section 5 indicate IP 
can be used to design networks able to work with random order updating.   

As noted, Borghetti et al. [8] have implemented material implication as the 
basic logic function within memristive hardware, using two per IMP gate. The 
same experiments were repeated using IMP at each node, as opposed to NAND as 
Turing specified. Figure 8 shows the comparative performance on the 
synchronous updating version (Figure 3), with constant True and False lines added 
to the problem inputs since the latter proved important to Borghetti et al.’s design. 
As can be seen, use of IMP means it takes longer to discover an optimal solution 
in both cases (T-test, P≤0.05). However, when optimality is reached, the size of 
the A-type is smaller in terms of the nodes used with IMP (T-test, p≤0.05). This 
implies IP does not simply construct NAND gates from two IMP gates. Moreover, 
given only two memristors are needed per gate, the equivalent networks are more 
efficient when direct hardware implementation is considered (T-test, p≤0.05). The 
same general result has been found for k=3 versions (not shown). Figure 9 shows 
the same results from using asynchronous updating. 

 

 

Fig. 8 Performance on multiplexer (left) and demultiplexer (right) using IMP nodes. 
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Fig. 9 Performance on multiplexer (left) and demultiplexer (right) using IMP nodes with 
asynchronous updating. 

7.2   Synapse 

As noted above, one of the largest areas of current interest in memristors is their 
use as hardware implementations of synapse within neuromorphic hardware (e.g., 
[1]). The first known example of such work was undertaken by Widrow [48] with 
his “memistor” within a hardware implementation of his seminal Adaline neural 
network [49]. A memistor was used to store the current weight setting of each 
neuron input and created by the electro-plating of a pencil lead with copper; the 
conductance of the memistor is varied by varying the amount of copper plating on 
the lead at any time.  

Given their temporally dynamic nature, a very simple approximation of a single 
memristive element has been included within A-types along with the logic gate 
nodes. These may be seen as synapse-like but, in keeping with A-types, less 
prescriptive in placement. This is done using the Widrow-Hoff delta rule in the 
form of single-input nodes. Of course, the actual non-linear behaviour of a given 
memristive device depends upon the substrate in which it is fabricated (e.g., see 
[21] for related discussion). Here the resistive state (M) of a node is maintained 
using the running average of previous inputs to the node: M ← M + β ( current 
input – M ). If M ≤ 0.5, the state of the node is equal to the current input, and it is 
logical ‘0’ otherwise. Hence the resistive behaviour of the node varies based upon 
the temporal sequence of inputs it receives. A learning rate (β) of 0.2 is used here 
and the imitation process is altered to include the potential copying of node type, 
with and without error. Nodes have a 50% chance of being either logic gates or 
single memristors at initialization. 
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Figure 10 shows example results on one of the logic tasks, using synchronous 
updating. As can be seen, compared to the results shown above, the additional 
single memristive nodes appear to make the design problem harder as it takes 
longer to find optimality. This was true in all cases (T-test, p≤0.05). However, the 
resulting A-types contain fewer nodes in all versions tried (T-test, p≤0.05). Again, 
given only one memristor is needed in the new type of nodes, the equivalent 
circuits are more efficient when hardware implementation is considered (T-test, 
p≤0.05). For example, for the x=2 demultiplexer shown, the average percentage of 
single memristor nodes is ~40% at optimality for NAND nodes. Similar relative 
performance was found on the x=3 and asynchronous versions (not shown). 

 

 
Fig. 10 Performance on demultiplexer using NAND (left) and IMP nodes (right) augmented 
with single memristor nodes. 

8   Conclusions 

This paper has examined a form of imitation computation inspired by a report 
written by Turing in 1948 and used it to design a simple dynamical network 
representation introduced in the same report. It has also considered an 
asynchronous form of the representation. Current work is exploring ways by 
which to improve the performance of the imitation algorithm for the design of 
these and other systems. The degree of inherent fault-tolerance of the simple 
networks due to their dynamical nature is also being explored (e.g., following 
[23][37]), as is their implementation within memristive hardware.  
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Towards Machine Equivalent Consciousness 

Amy Wenxuan Ding* 

Abstract. Alan Turing’s fundamental inquiry asking “Can Machines think?” has 
given rise to a wide variety of contrasting approaches to building intelligent ma-
chines. Thinking requires that a computer must know what it processes and form 
conscious about meaningful concepts based on which subjective mental activities 
(e.g. seeing, knowing, learning, judging, evaluating, deciding, reasoning, etc.) can 
be carried on.  However, a modern computer runs trillions of operations per 
second and is capable of performing complex computation, but still lack self-
awareness—a basic element for thinking. So, how can a machine gain conscious 
awareness from bits of electronic signals it processes?  This article explores 
whether generating self-awareness is possible through a mechanical procedure. 
Specifically, we examine patterns of human perception to identify a) what happens 
in the course of receiving external information and what the outputs that each 
sense produces are; b) how such outputs are bound into a meaningful concept; and 
c) the nature of self-awareness. Our research suggests that conscious awareness is 
a perceived pattern of physical energy. We show that the process of gaining 
awareness can be simulated and mechanized.  

Keywords: Foundation of Artificial Intelligence, Machine Thinking, Computa-
tional Intelligence, Machine Awareness. 

1  Introduction 

Alan Turing's seminal influence on artificial intelligence, including his fundamen-
tal inquiry asking “Can Machines Think?” and his formulation of the Turing Test, 
has given rise to a wide variety of contrasting approaches to building intelligent 
machines. The question of the embodiment of intelligent computation is critically 
related to the problems that surround the very character of mental activities. In his 
essay, “Computing Machinery and Intelligence,” Turing [1] laid out several ideas 
for constructing a thinking machine. Decades later, it is striking how applicable 
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his advice remains for the development of an intelligent computer. At the heart of 
Turing’s guidelines is the assertion that certain functions of the mind or brain can 
be explained in purely mechanical terms, which implies that a machine can mimic 
the behavior of a human or behave in ways that would be called intelligent if a 
human were engaging in them. 

The term “intelligence” in mind study is defined as (1) the act of understanding, 
(2) the ability to understand or learn or deal with new or trying situations, and (3) 
the ability to apply knowledge to manipulate one’s environment to think abstractly 
as measured by objective criteria [2].  According to Turing Award winner Fei-
genbaum [3], intelligence means human thinking. In Merriam-Webster dictionary, 
the term “thinking” refers to the action of using one’s mind to produce thoughts. 
Asking a person to think implies that the person must be conscious first and then 
control his/her mind to produce thoughts. Thus, having conscious awareness is a 
necessary condition before one can have his/her mind engaged in the process of 
thought.  Similarly, in his list of challenges for achieving human-level intelli-
gence, Turing Award winner Raj Reddy says “When a computer can read a chap-
ter in a book and answer the questions at the end of the chapter, we will have  
arrived at a significant milestone --- reaching Human Level Intelligence” [4]. If a 
computer can read a text, it implies that the computer must know what it is doing 
(i.e., it is reading) first, and then understand what it read. This indicates gaining 
conscious awareness is a critical and necessary condition before a machine can 
reach human level intelligence.   

Equipped with fast processing chips and complex algorithms, modern comput-
ers can run trillions of operations per second and are capable of performing many 
complex mathematical computations ranging from playing chase against human 
players to decoding DNA sequence for gene expression analysis. However, the 
computer does not know what it processes, nor can it recognize the meaning of its 
programs. For a very simple calculation such as 1 + 1, a computer can provide a 
correct answer immediately, but unfortunately it is unaware of what 1 + 1 is.   

Human brain has evolved a mechanism to sense and recognize sensory information 
in the environment and transmit this information to the brain where it is processed to 
form a quale and generate awareness, a conscious state reflecting the perceived exter-
nal world and providing raw materials for thoughtful judgment. Analogously, a com-
puter is designed to receive sensory information from input devices and process the 
information with various algorithms to form a model of its environment. An appropri-
ate reaction is then calculated. Fig. 1 sketches the similarity of information processing 
between humans and a machine. They both have input devices that receive external 
information and transform it into a sequence of electronic signals. Through analyzing 
these electronic signals, they both can make decisions about what is out there and 
acting in response. So both humans and intelligent computer systems (i.e., equipped 
with knowledge base and various learning algorithms) display a capacity to interact 
with and respond to events in the surrounding world.   

The most remarkable differences, however, are in the behaviors that brains  
and computers produce. In processing those electronic signals, humans can gain 
awareness and obtain consciousness of what they are doing. These electronic  
signals move to the central nervous system and brain cortex, where a quale rises 



Towards Machine Equivalent Consciousness 85
 

out of firing, electrical activity, synaptic activity in the brain, specifically, (1) a 
concept of “knowing” about the occurrence of a stimulus forms, (2) a difference in 
excitation occurs, and (3) a difference emerges on which discriminatory behavior 
can be established.  However, facing the same sensory inputs, a computer is una-
ble to self-generate a quale. Because of this, a computer is not conscious and una-
ware of what it processes.  Furthermore, when the input information is new to the 
machine and if the machine’s knowledge base does not have the same or related 
knowledge about the input information, the machine does not know how to 
process it. At best the machine saves it as a new record in its database. In contrast, 
humans can conduct creative thinking to establish a new concept, design a name 
for such a new thing, and generate a subjective understanding.  Why can’t a ma-
chine obtain a quale and gain self-awareness, like human brain, from bits of elec-
tronic signals it processed? A machine is not a live creature, but this article  
explores whether generating self-awareness is possible through a mechanical pro-
cedure. Specifically, we explore this question by examining patterns of human 
perception to identify the nature of awareness and consciousness. These conspi-
cuous differences reflect fundamental differences in the internal form of informa-
tion and operations on it, which is what we need to understand. We then show 
how such awareness can be captured and mechanized. Because humans have 
physical (computational) and mental (cognitive) limitations, mechanization of 
human mental work would overcome such drawbacks.  

2  Patterns of Human Perceptions 

Our brains help individuals and species to survive and prosper in the world, mean-
ing that they produce beneficial action.  They do it by predicting events in the 
world, including consequences of their own actions. The brain's computing is 
designed for interaction.  

Sight, hearing, taste, smell, and touch are the five basic human senses through 
which we obtain perceptual knowledge of the external world. Each of the senses 
has a specialized function which receives and responds to specific external or 
internal stimuli.  Such an operation is termed as Sensation stage, representing a 
process of receiving and responding to stimuli. In their own way brains learn to 
model their interaction with the world.  They convert and integrate sensory signals 
and motor commands into common internal form, a kind of “code,” and employ 
learning mechanisms that are shared by different sensory modalities. Now we 
would like to know what happens to each sense during the process of receiving 
stimuli, what type of information each sense produces to the next stage Perception 
for further processing, and how brains find meaning of what they sense.  

Stage Perception constitutes acts of recognition and interpretation of sensory 
stimuli from Sensation, and its output produces a result that causes the central 
nerve system in the brain to become aware of what has happened and what is  
presented.  Hence, Sensation and Perception are the first two parts of one conti-
nuous process (see Fig. 1).  
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Fig. 1 Human vs. Machine: Process of cognition from sensation to rational acts 

2.1  Sensation of Sight 

The human eye is designed such that light waves fall on the retina, where two basic 
types of light-sensitive receptor cells rods and cones are activated (see Fig. 2). The 
interaction between a photon of light and the retina causes photochemical substances 
in the rods and cones to go through isomerization, thus energy carried then becomes 
electronic impulses, appearing in electroretinograms. The rods or cones excite the 
bipolar cells, which in turn excite the ganglion cells. After the ganglion cells are ex-
cited, the electrical signals travel over the optic nerve to the optic chiasm. Through a 
series of transmissions, as the signal is transmitted to the upper layer of cortex, the 
information from both eyes mixes to create a binocular vision. 

Therefore, any object in the environment or an outside signal perceived by a vi-
sion system can be considered light waves with energy. Energy carried by these 
light waves are then extracted and converted into electronic signals through  
Sensation stage.  
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Fig. 2 Sensation of sight: Extracting energy carried in light waves into electronic signals  

2.2  Sensation of Hearing  

Sounds wave pass down the auditory canal of the outer ear and strike the eardrum 
causing it to vibrate [5]. These vibrations are transmitted across the middle ear by 
three tiny, linked bones, the ossicles which magnify the amplitude of the vibra-
tions. Vibrations of the innermost ossicle, the stirrup, are transmitted through a 
flexible membrane, the oval window, to the cochlea of the inner ear. The cochlea 
is filled with a special fluid called endolymph which contains high concentration 
of potassium (K+) ions. Vibrations of endolumph cause vibration of the basilar 
membrane, this moves an array of stereocilia at the tips of the hair cells against the 
tectorical membrane and opens potassium channels in them. The influx of K+ from 
the endolymph depolarizes the hair cells, which are the actual vibration receptors, 
as shown in Fig. 3.   

Depolarization of the hair cell causes the release of a neurotransmitter at its 
basal surface and the initiation of nerve impulses in a sensory neuron that syn-
apses with it. Therefore, an auditory message as energy comes down to patterns of 
impulses in the auditory cortex and the function in the Sensation stage is to sense 
the frequency of these energy changes and convert them into electronic signals.  

2.3  Sensation of Smell 

Three percent of our genes are used to code for the different odorant receptors on 
the membrane of the olfactory receptor cells. So we can recognize and remember 
about 10,000 different odors. Research has shown that each olfactory receptor cell 
possesses only one type of odorant receptor and each odorant receptor can detect 
several different odorants [6].   
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Fig. 3 Sensation of Hearing: Converting sound energy into electronic signals 

Each odorant receptor consists of a chain of amino acids that is anchored into 
the cell membrane. The chain creates a binding pocket where the odorant can at-
tach. When an odor in the air passes through the olfactory bulb, the carried odo-
rant molecules dissolve in the olfactory mucus and attach to one or several odorant 
receptors from a whole array of odorant receptors. When that happens, each odo-
rant receptor first activates a G protein to which it is coupled. The G protein then 
activates an enzyme which catalyzes the conversion of ATP (adenosine triphos-
phate – a major energy currency of the cell, providing the energy for most of the 
energy-consuming activities of the cell) to the cAMP (cyclic AMP). This messen-
ger molecule activates ion channels leading to the creation of nerve impulses.  
These impulses are then transmitted directly to distinct micro domains, glomeruli, 
in the olfactory bulb. Receptor cells carrying the same type of receptor send their 
nerve processes to the same glomerulus. From these micro domains in the olfacto-
ry bulb the information is relayed further along the olfactory nerve to the brain, 
where the information from several olfactory receptors is combined, forming a 
pattern. Accordingly, a particular odor is determined.  

Therefore, smell depends on odorant receptors that respond to airborne chemi-
cals. In the Sensation stage, through chemical reaction with the odorant molecule, 
the odor message is transformed into nerve impulses, electronic signals as shown 
in Fig. 4.  

2.4  Sensation of Taste 

We detect taste with taste receptor cells which are clustered in taste buds. Each 
taste bud has a pore that opens out to the surface of the tongue enabling specific 
chemical components in the food taken into the mouth to reach the taste receptors 
inside. Taste occurs when specific proteins in the food bind to receptors on the 
taste buds. These taste cells specialize primarily in processing one of the five ma-
jor taste groups: sweet, sour, salty, bitter, and umami.  
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Fig. 4 Sensation of Smell: Binding of the ordorant leads to the generation of nerve impulses  

As shown in Fig. 5, a taste receptor allows specific ions to enter directly into 
the cell when chemical components of food have salty or sour flavor (i.e., sodium 
ions for salty substances, and protons for sour substances). This depolarization 
allows calcium ions (Ca2+) to enter, the influx of Ca2+  triggers the release of the 
neurotransmitter, nerve impulse is thus generated.  With bitter, sweet, or umami 
flavor, the substance in the food binds to the receptor which activates the coupled 
G proteins. Such activation triggers activation of ATP and formation of cAMP, 
leading to the creation of nerve impulses. This mechanism is similar to that used 
by our odor receptors. Thus, in the Sensation stage, taste buds respond to dis-
solved chemical molecules and ions in the food and transform them into biochem-
ical energy, appeared in electronic signals. 
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Fig. 5 Sensation of Taste: Releasing never impulses through dissolving chemical molecules  

2.5  Sensation of Touch 

We have ability to sense objects and feel temperature through touch.  The skin is 
the main organ of the sense of touch. As shown in Fig. 6, our skin consists of two 
complex layers, each with its own function. Uppermost is the epidermis which 
contains the cells responsible for skin color. Below the epidermis is the dermis 
where thermoreceptors and mechanoreceptors reside. Four kinds of touch sensa-
tions can be detected: cold, heat, contact, and pain. Of which, cold and heat are 
detected by thermoreceptors, and contact and pain are sensed by mechanorecep-
tors. Each of these receptors is connected to a sensory neuron. When changes in 
temperature occur, it activates thermoreceptors to open to let in both calcium and 
sodium ions. The influx of calcium ion or sodium ion reduces the resting potential 
at that spot on the cell. If the potential is reduced to the threshold voltage, nerve 
impulses are generated in the cell.  In addition, when a mechanical pressure is 
applied to the skin, it triggers a generator potential in mechanically-gated sodium 
channels in the sensory neuron attached to each receptor. If the generator potential 
reaches threshold (degree of pressure), a volley of nerve impulses are triggered.  
Thus, touch receptors respond to external stimuli by opening either mechanically-
gated or voltage-gated sodium channels. Such an opening leads to the creation of 
nerve impulses. 
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Fig. 6 Sensation of Touch: Generating waves of the nerve impulse 

As we can see, when external information is presented, each of five senses 
transforms what it receives into electronic signals through different ways.  
Among these, taste and smell complete such transformation through certain chem-
ical reactions. The senses of sight, hearing and touch belong to the physical senses 
because their sensory cells are not initiated by chemical reaction, instead, they 
detect physical entities such as  photons, mechanical vibrations and pressure, air 
pressure waves and temperature to generate nerve impulses. As illustrated in Fig. 
7, the array of mechanical, optical, and chemical properties that define touch, 
hearing, vision, smell, or taste can be represented by bits of electronic activity that 
only vary in two parameters, time and space.   
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Fig. 7 A Physical–Chemical Sense: Abstract form 

3  A Comparison between Human and Machine Perceptions 

Having understood that external information has been transformed into a sequence 
of electronic signals at the stage of Sensation, we now return to the machine side 
of Fig. 1. The input devices of the machine also transform an external message 
into electronic signals. These electronic signals are the recording representation of 
the received message, and they do not carry any information on machine’s reac-
tion. In contrast, electronic signals from human Sensation stage carry the changing 
pattern of energies resulting from activities of corresponding sense cells. Different 
cells react differently when activated. The produced nerve impulse exhibits certain 
characteristics representing physiological properties and metabolic state of cells 
involved. These characteristics are incorporated along with the message signal and 
together they are transmitted to the central nerve system, where they are coupled 
with corresponding specific nerve cells and coded by specific genes. The specifici-
ty in the information flow from each stage process is thereby maintained, thus the 
brain is aware of what it processes and can identify what the signal represents as 
well as where it is from. For example, a person feels pain in a finger and can 
quickly discriminate the pain as shape and location of the pain area.  

As shown in Fig. 1, the next stage is the Perception stage, in which electronic 
signals from the Sensation stage are further processed. If the Sensation stage refers 
to the immediate result of stimulation of sensory receptors in the eyes, ears, nose, 
tongue, or skin, Perception is the process or act of recognition and interpretation 
of sensory stimuli. Its output produces a result that causes the central nerve system 
in the brain to become aware of what is presented. For the machine, the Percep-
tion stage is achieved by computing models. These models are designed with  
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specific goals on how to handle sensory stimuli, and the outputs of the models 
appear as a sequence of 0s and 1s.  

When output from the Perception stage arrives, it provides information that the 
brain is able to determine what the sense organ receives. This is a stage of aware-
ness, indicating a state of being aware of something due to external stimuli. At this 
stage, perceptual knowledge of what is presented is established, and consciousness 
is formed. Therefore, awareness is a foundation upon which consciousness can be 
generated. Without awareness, one cannot gain consciousness about the target 
object. Awareness varies in its sensory quality and intensity. The former measures 
the extent to which a person can discriminate an outside stimulus and the latter 
indicates the strength of a stimulus signal. For instance, a person sees a red box 
and can determine whether the red is bright; another person feels pain in a finger 
and can discriminate that pain as sharp.  

The Awareness stage provides raw materials for the brain to produce rational 
knowledge. This procedure involves various subjective activities such as thinking, 
learning, reason, judgement, etc.  

However, for the machine, the Awareness stage is performed by programmed 
rules (Fig. 1). The machine executes programs and produces results indicating 
what the sensory stimuli are. As we have mentioned earlier, electronic signals 
produced in each stage of machine cognition do not carry information about pro-
cessors’ own physical state in dealing with external messages. The specificity in 
the information flow from each stage is thereby not maintained. Thus the machine 
is unable to be aware of which processor has processed those signals and what it 
processes. Therefore, machine’s self-awareness is not established at this stage.  

On the other hand, in human cognition, signals recording the activity of in-
volved nerve fibers at a specific locus are transmitted together with the message 
signal to the brain. The specificity in the information flow is thereby maintained 
and self-awareness is formed. So far, biological models of the brain have inspired 
many research efforts in building intelligent machines. An interesting question is 
whether self-awareness can be described in mechanical processes.  

4  Awareness as Perceived Pattern of Physical Energy Changes 

In fact, outside world itself represents a pattern of physical energies that directly 
affect our body receptors. For instance, the visual environment provides a chang-
ing pattern of radiant energies that act on the retina. A sound is a changing pattern 
of vibrations transmitted to auditory receptors.   An odor in the environment acti-
vates an odorant receptor in the nose where the energy of binding of odor to this 
receptor is transduced into electronic activity, which then travels down to brain 
cortex to active a subset of points in brain space such that the quality of an odor is 
defined. Empirical observations and existing evidence from neurophysiology sug-
gest that any momentary quality of awareness involves the activity of nerve fibers 
at a specific locus in the material brain [7- 9]. That is, human brains can get qua-
litative differences in structure or function when they receive nerve impulses  
and can feel the corresponding energy changes, which enables them to react  
appropriately.  
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Awareness thus reflects a reaction of human bodies. Specifically, the receptors 
under the body’s surface react to various forms of energies in its external and in-
ternal environments. The next question is whether one’s awareness can be cap-
tured. We now use human olfactory and visual perception as two examples (i.e., 
one represents a chemical sense, the other a physical sense) to illustrate how Sen-
sation (stage 1) and Perception (stage 2) of Fig. 1 are captured and mechanized 
such that bits of electronic activity are bound into a meaningful concept, where 
awareness is achieved. 

 
Example 1 – A Simple Visual Perception. Suppose we draw two rectangles ver-
tically on a big sheet of gray paper. Each rectangle uses a different color, as shown 
in Fig. 8 (left panel): gray and red. We can show this graph to one reader. Suppose 
that the visual optical flow moves from left to right when this reader views the 
graph in Fig. 8. A person with normal color vision (i.e., without color blindness) 
perceives one rectangles in red, and can discriminate this color but cannot discern 
the gray box on the gray background. This example indicates that a person with 
normal (color) vision is able to perceive color changes. That is, people have diffe-
rential sensitivities to color changes. For simplicity, if we assume there is no other 
noisy signal to interfere with our observation in viewing these rectangles, the per-
ception processes in viewing the gray and red rectangles can be illustrated in (a) 
and (b) – the right panel of Fig. 8, respectively. The horizontal axis in both (a) and 
(b) represents the duration of receiving visual signals (i.e., moving to view each 
rectangle from left to right), whereas the vertical axis indicates the intensity of a 
perceived visual signal. The unit for the vertical axis is Lux, commonly used in 
photometry as a measure of the intensity of light, such that wavelengths are 
weighted according to the luminosity function, a standardized model of human 
brightness perceptions. The unit for the horizontal (V) axis can be any 
conventional time unit, such as a second, minute, hour, or day.  

Fig. 8a indicates that a gray spectrum signal is observed, denoted as L = f (G) 
(where f is some function, and G represents the energy of a gray wave). However, 
the reader cannot distinguish whether this gray spectrum signal comes from the 
gray background of the paper or a gray rectangle. If the reader is unaware of the 
existence of the gray rectangle in advance, the gray rectangle is actually invisible. 
If we replace the gray rectangle with a red one, the visual system perceives two 
different color spectrum signals: gray and red (one from gray paper, and one from 
the red rectangle), with different wavelengths, denoted L = f (G) and L = f (R), 
respectively. Through a series of physical and chemical reactions with energy 
transformation, the nerve system perceives energy changes in the difference be-
tween the two stimuli, gray and red.   

How can such Sensation, Perception and Awareness be rendered observable? 
An analogous operation using calculus can provide a good answer. The basic prin-
ciple is simple: to see a change in the energy of each color, we take the first deriv-
ative of the signal curves obtained in both (a) and (b) of Fig. 8 with respect to the 
corresponding gray and red energy signals. The results (indicating Sensation) 
displayed in Fig. 9 a and b. Note that when a gray rectangle appears on gray paper, 
all information received is the wavelength of gray (i.e., gray signal from both the  
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Fig. 8 Mechanism of Object Detection 

background and the rectangle). Thus, the receptors cannot sense any change in 
neural energy, as shown in Fig. 9a. When a red rectangle is placed on a gray pa-
per, the two different wavelengths representing gray and red are perceived. Be-
cause of the background gray paper, nerve receptors would not sense any energy 
change when receiving a gray signal again but would have a noticeable neural 
activity when receiving a red stimulus. Fig. 9b reflects such effects. 

To see and capture this noticeable difference—a term we use to represent an 
average point at which the viewer just perceives a difference between two stimuli, 
such as gray and red—we take the derivative from the results obtained in Fig. 9. 
This calculation produces Fig. 10, which shows how to capture different portions 
of the visible spectrum. The magnitude of the noticeable difference also is meas-
ured by Lux (i.e., the intensity of light which represents the density/strength of its 
energy). Fig. 10a reflects that the gray rectangle displayed on gray paper is invisi-
ble, whereas Fig.10b shows that the left and right edges of the red rectangle on the 
gray paper can be extracted, given our assumption that the visual optical flow 
moves from left to right when viewing Fig. 8 on the gray paper.  

This example suggests that (1) a noticeable difference cannot be perceived and 
captured when the stimuli received are the same, (2) a noticeable difference occurs 
at the point that energy changes exist, and (3) the noticeable difference garners 
attention and awareness.  Before we discuss example 2, we re-examine Turing’s 
idea for building a machine with self-awareness.  
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Fig. 9 Sensing energy changes (the Sensation stage) 

5  Turing’s Ideas for Building a Machine with Self-awareness 

In his 1936 paper, Turing proposed an abstract machine that could perform com-
puting procedures on the basis of its state transitions [10]. The machine would 

possess a finite set of internal states 0 1{ , , , }nq q q , so at any given moment, it 

must be in exactly one of these states. Then a two-way, potentially infinite tape is 

divided into squares. The finite set of tape symbols, 0 1, , , nS S S , represents the 

alphabet of the machine, and at every moment, each square of the tape is occupied 
by at most one symbol. The reading head, at any given time, stands over some 
square of the tape. If at time t, the reading head scans a square containing a sym-

bol iS  and the machine is in the internal state jq , the determined action of the 

machine leads it to do one of four things: (1) erase the symbol iS  and print a new 

symbol kS ; (2) move left one square; (3) move right one square; or (4) stop. In 

cases (1)–(3), the machine enters a new internal state rq  and is ready to act again 

at time t + 1. These first three actions also can be represented by quadruples—(1) 



Towards Machine Equivalent Consciousness 97
 

j i k rq S S q , (2) j i rq S Lq , or (3) j i rq S Rq —in which the first two symbols indi-

cate the present internal state and scanned symbol; the third symbol is the action 

of the machine (print kS , move left, or move right); and the fourth symbol re-

veals the internal state of the machine after the action has been performed. In such 
a Turing machine, no two quadruples have the same first two symbols.  

 
Fig. 10 Energy changes causing awareness (the Perception stage) 

An analysis of the structure of the three kinds of quadruples reveals that they 
share the same format: the machine’s current internal state, instruction, action, and 
the machine’s updated state. The second symbol, “instruction,” reflects what the 
reading head scans in a square of type. If we reconceive of the reading head as a 
sensor, and the type symbols as external signals, the second symbol of each 
quadruple indicates the procedure the machine uses to perceive external signals. 
The third symbol then would be the reaction of the machine to a perception of an 
external signal, and the fourth quadruple is the machine’s internal state change 
after its reaction. With this new format for each quadruple, we can describe the 
machine’s current internal state, the function of sensing external signals, the  
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reaction generated after the perception of signals, and the internal state after the 
reaction. At any moment, a Turing machine is aware of changes to its internal 
states and can generate corresponding reactions using perceived information. 
Thus, a computer system can be designed to exhibit this property such that, by 
considering the configuration of the entities that constitute the system, it could 
generate self-awareness by computing the transitions that change the state of the 
system.  

We now look at example 2– simulating olfactory mechanism.  As shown in 
Fig. 4, the sense of smell goes through the following four steps before an odor is 
recognized in the brain cortex [6].   

Step 1: binding and generating nerve impulse. Because each olfactory receptor 
cell possesses only one type of odorant receptor, binding (or coupling) 
occurs when an odorant molecule dissolves and the released energy ac-
tives a specific type of odorant receptor to open an ion channel. 

Step 2: signal transmission from the activated odorant receptor to the microre-
gions (glomeruli) in the olfactory bulb. There are some 2,000  
well-defined glomeruli, which is about twice as the types of olfactory 
receptor cells.  

Step 3: signal transmission from a specific glomeruli to its contact in the next 
level of never cells, the mitral cells. Each mitral cell is activated only 
by one glomerulus, and the specificity in the information flow from 
each step is thereby maintained.  

Step 4: the mitral cells send the information to several defined micro regions in 
the brain cortex via long nerve path. 

 
In the brain cortex, the information from one or several types of odorant receptors 
is formed (or combined into) a pattern characteristic for each odor. This is inter-
preted and leads to the conscious experience of a recognizable odor.  

Mechanization of olfactory mechanism can be realized using some electronic 
circuits consisting of inductors (L) and capacitors (C).  In electrical engineering 
field, LC circuits are used either for generating signals at a particular frequency, or 
picking out a signal at a particular frequency from many more complex ones.  As 
we have shown in previous sections, outside world itself represents a pattern of 
physical energies that directly interact with our body receptors. Human sensation 
and perception procedures are actually the process of energy exchanges between 
environment (inside and outside) and various receptors. Awareness is thereby a 
perceived pattern of physical energy. Thus we see, hear, smell, feel, and taste the 
world. 
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When an odorant dissolves, the released energy can be expressed as a specific 
signal with a particular frequency. One type of odor corresponds to one particular 
frequency and we can use a LC circuit to simulate the binding procedure of a spe-
cific odorant (see Fig. 11). We use capacitors as odorant receptors which pick out 
a specific odorant at a particular frequency.  

We know that the inductive impedance LX = 00 )2( LfjLj πω =  and the 

capacitive impedance cX  = 
0

1

Cjω
 = 

fC
j

Cfj

j

)2(

1

)2( 00
2 ππ

−= , 

where  j = 1− , and f represents signal frequency. Therefore, LX increases as 

frequency increases while cX  decreases with increase in frequency.   

 

Fig. 11 The Simulation of binding odorant 

Similarly, Steps 2 – 4 can be simulated using several mutual inductance circuits as 
shown in Fig. 12.   
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Fig. 12 Passing signals and determining the type of an odorant 

6  Differences in Drawing Inference between Humans and 
Machines 

Stage 4 in Fig. 1 represents activities related to generating rational knowledge. 
These activities include learning, thinking, judgment, reason, etc. On machine 
side, tons of research has been conducted on issues related to Stage 4. For exam-
ple, some focus on the development of different types of machine learning me-
thods, others explore the construction of different types of knowledge bases as 
well as knowledge mining rules, and some others investigate different logic rea-
soning theories. The common goal of these researches is to have the machine  
establish intelligence.  Indeed, we expect the output from Stage 4 exhibit an intel-
ligent behavior, like a human.  

When a machine is trained to have domain specific knowledge X, a key crite-
rion used in evaluating the machine’s performance is to check if it can correctly 
solve a problem that is in X domain or classify a new problem Z to X correctly. It 
is expected that the correct rate of such performance can reach 100%, or the high-
er the better. 

Note that the machine follows program which are rules. Suppose that we have a 
rule for a machine: “If you see an X then do Y”. Then whenever the machine 
reads an X, it certainly works on Y.  If every time the machine follows this rule 
correctly, we would say that the machine has a 100% correct rate in performing 
this rule.  However, such a situation, if used in human setting, may not always be 
true.  The following example shows behavioral difference in drawing inference 
between humans and machines.   
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6.1  An Unfixable Difference in Drawing Inference 

To protect students in a school zone from being hit by cars, the city of West Van-
couver in British Columbia has adopted a novel approach to encourage drivers to 
slow down: an image with an optical illusion effect painted on the street (See im-
age at http://www.theworld.org/2010/09/canada-speed-bump-optical-illusion/). The 42-
inch image first appears as a blurred mark on the road. As drivers approach, the 
elongated image appears three-dimensional, turning into a little girl chasing a ball 
into the street. This shift should alarm drivers sufficiently that they pay more at-
tention and slow down when passing through the school zone. However, critics 
suggest the optical illusion itself could contribute to accident probabilities if driv-
ers come suddenly to a halt or swerve to avoid what their brains perceive as an 
actual person.   

For our purposes, the key question is whether a robot, equipped with a camera 
and visual image processing functions, can perceive that the image is a three-
dimensional effect. The image itself is two-dimension, the robot would follow 
predefined rules to process, and therefore the robot would likely consider it such. 
So why do humans believe it is three-dimensional?    

Human perception processes enable people to distinguish “figure” from “back-
ground” by capturing depth information. To draw a three-dimensional object or 
create spatial information in a two-dimensional plane or map, artists tend to draw 
surfaces of the object in an inclined position, such that lines perpendicular to the 
plane become points, lines parallel to the plane have true length, and lines inclined 
to the plane are foreshortened [11]. This method produces a third dimension, per-
pendicular to the plane, in an effect referred to as 2.5D (two-and-a-half dimen-
sional). A two-dimensional object drawn on a 2.5D plane at an angle to the  
observer generates pseudo-depth information (distance to the observer) and the 
illusion of depth along the forward (Z) axis. For example, if a cube is drawn on  

3-dimensional coordinates as shown in Fig. 13b, it must have ' 'ad bc b c= = . 
However, if the same size of the cube is drawn on 2.5-dimensional coordinates 

(see Fig. 13a), from an observer‘s view, one would conclude ' 'ad bc b c= ≠ . 

Here, to present the depth information, line ' 'b c is shorter than line bc . There-
fore, though the 2.5D representation remains effectively two-dimensional, it al-
lows for depth perception; 2.5D also can produce stereoscopic effects in human 
visual perception. Hence, the example of “a little girl chasing a ball into the street” 
can produce an optical illusion effect that helps human drivers capture pseudo-
depth information as they approach the image. However, as drivers come even 
closer to the image, their depth perception disappears, and they recognize the  
2-dimensional image on the ground. The limits of a 2.5D image result from the 
discontinuities in the parts of its image along the forward axis [12]. Thus the pro-
duced pseudo-distance to the observer gradually reduces to a point as drivers close 
in on the image.  
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Fig. 13 A graph in 2.5D and 3D representation 

However, if a 2.5D image were processed by a robot, its image processing 
technology would examine the characteristics of the image pixels and correctly 
classify it as a two-dimensional plane image. Thus, is there a way for a machine to 
generate depth perception, as human beings do?   

6.2  A Fixable Difference 

A 2.5D image cannot cause a machine to generate depth perception, however, when 
confronted with a solid three-dimensional object on the street, the robot is capable of 
capturing depth information, as human beings do. Considering a situation in which 
both a human and a robot must perform the action of walking down stairs. When a 
person walks down the stairs, he or she generally looks down along the stairways, 
recognizes the depth that exists between two steps, and moves this distance vertically 
for each step he or she takes. Similarly, to make correct judgment, a robot must deter-
mine that (1) stairs are connected, and (2) there is a particular depth between two con-
nected steps.  To do so, a robot needs to recognize the surface orientation of the stairs 
and then generate depth perception, regardless of whether the surface is sooth or 
rough. Here we present a very simple approach for machines to perform these tasks. 

We know that the visual ability of humans and other animals is the result of the 
complex interaction of light, eyes, and brain. We can see because light from an 
object moves through space and reaches our eyes. Once light reaches our eyes, 
signals are sent to our brain, and our brain deciphers the information to detect the 
appearance, location, and movement of the objects we see. Without light, there 
would be no sight.  
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Following this principle, we present a novel depth-sensing imaging system, 
composed of a single camera and a laser beam generator, along with a planar mir-
ror that rotates about the light beam, as illustrated in Fig. 14. Equipped with this 
system, a robot can scan an object with a revolving light beam to identify the 
orientation of every visible surface and obtain depth perception. This action mim-
ics human eyeball rotation as a means to see an object. Rotating the mirror can 
change the straight light beam into a cylinder, divergent conical, or convergent 
taper light beam. If the generated light meets an object, it produces a bright ring 
on the object’s surface, and the bright ring is observed by a camera.  Analyzing 
the captured light ring, the robot can calculate the surface orientation of the ob-
served object and the distance between its current location and the object, then 
determine spatial stereo information.  

 
Fig. 14 A single-camera object orientation and depth estimation system 

As in Fig.14, suppose that H is a mirror and point A is the camera, which also 
indicates the location of the light beam projector. The light beam projects on the 
target object to form an ellipse. Line SAO represents the camera’s focal axis, 
which coincides with the axis of the light beam. We employ the following nota-
tions: 

 
 Line BC is the major axis of the elliptical light ring,  
 Point D is the middle point of BC, 

 1 2and ψ ψ  are angles between the axis SAO and line AC and line AB, 

respectively,  
 f is the focal length of the camera and is known, 
 R is a given parameter representing the distance between the mirror H 

and the camera, and  
 Point K represents an arbitrary point on the edge of the ellipse. 
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Depending on the types of light beam produced (i.e., cylinder, divergent conical or 
convergent taper), the robot would perform the following calculations to deter-
mine the surface orientation of the observed object 

1. Compute α , the angle between the surface of the object and the 
axis of light beam.  

2. Compute 1L , the distance between the camera and point D. 

3. Evaluate distance between the camera and any point K on the surface 

of the object, kL . 

If the type of beam is a cylinder (where θ  = 45 , 45φ = ), then 

α = 1ctg −  [
2 1

1 1 1
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ac, ab, and ak can be measured from the camera image, representing projections 
on the same camera image of the segments DB, DC, and DK.  

If the type of beam produced is a divergent conical beam (where 45 <θ  < 

90 , 2 90φ θ= − ), then 
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If the object has a small visible surface, using these two types of light beams 
would mean that the ring of light formed on the surface is beyond the boundary of 
the object surface. Therefore, the robot adjusts the angle θ  of the rotated mirror, 
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such that 45θ < . When the mirror revolves around the center axis, it can create 
a convergent taper light beam. Thus Equations (1)–(3) become Equations (7)–(9), 
respectively: 

α = 1ctg − [ 1 2
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Now we examine how the models above can help a robot perceive depth informa-
tion.   By projecting the light beam onto an object, a surface of sufficient size 
allows an elliptical or circular bright line to form. If the object is not large enough, 
the light ring formed on the surface goes beyond the boundary of the surface, so 
part of the projected figure falls on the first surface, and the other part is located 
on the second surface, as in Fig. 15.  

Comparing the shape formed on one surface with that on two connected surfac-
es, if an edge appears between two connected surfaces, the bright ring formed on 
the edge differs from that formed on one plane (Fig. 15a). Examining the camera 
image, if the shape appears as in Fig. 15b, then one edge must exist at the intersec-
tion of the two semi-circles. That is, if the camera picture reveals a circular arc 
that connects with an elliptical arc to become a closed curve, then the robot can 
conclude that one edge of the target object is located where the two arcs meet. If 
the closed curve opens or the endpoints of the two arcs do not meet, then one ver-
tical step exists. 

So, projecting a light beam onto stairways for example leads to a large circular 
ring that forms on the edge of the top of surface; a smaller circular ring appears on 
the bottom surface (Fig. 15c). If, in the camera image, a larger semi-circle instead 
connects with a smaller semi-circle, then there is a vertical step at the intersection 
in the object (Fig. 15d).  

If the camera image shows that two straight lines link from the ends of a small 
arc to the ends of a larger arc, it implies there is a dip in the target object (see Figs 
15e and 15f).  

The method discussed here offers several advantages. First, the approach is 
simple and can produce results immediately. Second, the evaluation equations 
only use common mathematics and basic light principles, such that they minimize 
the complex computing procedure used by most current digital image processing 
technology [13]. Third, compared with conventional stereo systems that rely on 
two cameras, this method needs only one camera to obtain the depth estimate, 
which can improve accuracy and avoid the matching ambiguity problems that are 
common with the use of two cameras to simulate binocular vision.  
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Fig. 15 Finding edges from the shapes of light rings  

Though a machine cannot perceive a 3-dimensional effect when observing the 
image of a girl chasing a ball on the street (i.e. the example in Section 6.1), the 
machine’s computational intelligence is capable of making a correct judgment: the 
image is 2-dimensional. If cars were equipped with such computational systems, 
they would help drivers avoid a sudden halt due to human perceived optical illu-
sion effect. If this is the case, the original purpose of using optical illusion effect 
as speed bump would not be achieved.  Therefore, a machine with computational 
intelligence should be seen as a cognitive prosthesis to amplify, rather than re-
place, human abilities.  

New developments in neuroscience and cognitive science have provided in-
sights on how to design human-level intelligent machines. For example, theory of 
human attention can inspire our new thoughts on designing computation visual 
system, and models of human speech pattern recognition help build auditory 
sense. Following the similar principles on how human brain works, MIT’s  
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artificial intelligent Lab has built several humanoid robots [14, 15, 16]. Though 
those systems may not be closely tied to any of the five senses that we have dis-
cussed earlier, they are some initial steps towards artificial cognition.  

7  Conclusion 

Alan Turing [1] stated that “… I believe that at the end of the century … one will 
be able to speak of machines thinking without expecting to be contradicted.” A 
computational system with thinking capability requires the system be aware of and 
understand what it processes. How can a machine achieve self-awareness and 
form consciousness from bits of electronic signals it processes? If we know how 
the brain produces consciousness, we may be able to design an artificial conscious 
machine. In this paper, we examine working procedure of human senses to figure 
out 1) what happens in the course of receiving external information and what the 
outputs that each sense produces are, 2) how such outputs are bound into a mea-
ningful concept in the brain. We present a four-stage model to illustrate process of 
cognition from Sensation to Rational Acts. Using this model, we compare similari-
ty and difference between human being and machines in each cognition stage. Our 
goal is to understand how conscious awareness is formed and whether human 
awareness can be captured and mechanized. Our research suggests that awareness 
is a perceived pattern of physical energy. Mechanization of molecular logic of 
sensation and perception may be a possible way to realize artificial conscious 
machine with equivalent human level awareness.      
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Abstract. Operations Research (OR) and Artificial Intelligence (AI) disciplines have
been playing major roles on the design of new intelligent systems. Recently, different
contributions from both fields have been made on the models design for problems
with multi-criteria. The credit scoring problem is an example of that. In this problem,
one evaluates how unlikely a client will default with his payments. Client profiles are
evaluated, being their results expressed in terms of an ordinal score scale (Excelent �
Good �Fair �Poor). Intelligent systems have then to take in consideration different
criteria such as payment history, mortgages, wages among others in order to commit
their outcome. To achieve this goal, researchers have been delving models capable
to render these multiple criteria encompassed on ordinal data.

The literature presents a myriad of different methods either on OR or AI fields for
the multi-criteria models. However, a description of ordinal data methods on these
two major disciplines and their relations has not been thoroughly conducted yet. It is
key for further research to identify the developments made and the present state of the
existing methods. It is also important to ascertain current achievements and what the
requirements are to attain intelligent systems capable to capture relationships from
data. In this chapter one will describe techniques presented for over more than five
decades on OR and AI disciplines applied to multi-criteria ordinal problems.
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1 Introduction

Learning multicriteria (MC) models from data has recently gathered a substantial
attention. Such trend has its reasons in the diverse set of applications which can be
found in management [76, 105], financial [31, 33] and medical [6, 125] fields, to
name a few. Consequently, the very diversity of the multicriteria learning research
topics led to a discussion and proposals in several different fields. Decision analysis,
machine learning and statistics/econometrics are some of them. Hence, a rich termi-
nology can be found due to this diverse fields of study. Sorting, ranking, dominance,
among others, are some of the many names referring to multicriteria methods. Even
though mostly all share the same fundamental principles, it is on the methods as-
sumptions that most differences occur. Nevertheless, methods for learning ordinal
data have been recently seen as a generalisation of some multicriteria techniques [2].

The importance of ordinal data is clear. Nowadays, industry tries to cope with
current technological advancements and towards profit maximisation. Hence, more
and more personalised products and services are being commercialised to a wider
audience. Problems like credit scoring where the system evaluates the capability
of one default his debts [31, 33, 141] by grading a customer credit profile in the
scale Excelent � Good � Fair � Poor, movies suggestion [28], breast cancer di-
agnosis [17], or gene analysis through the analysis of hyperactivity on certain pro-
teins [102, 103], are some examples of ordinal problems where data is structured
by a “natural” order. As a result, new and robust computational methods capable
to unravel reasoning’s behind ones decisions also led to new theoretical develop-
ments. Regarding to these developments two major disciplines lead the research:
Operations Research (OR) and Artificial Intelligence (AI).

In this chapter it is presented a literature review over different areas that deal with
ordinal data, in general, to the extent of what it is known nowadays. Section 2 starts
by providing the terminology that will be used. Section 3 will focus on methods
on the operations research side whereas techniques in the artificial intelligence field
will be described in Section 4. Section 3 will be concerned mainly about aggregation
models, fuzzy and rough set theory, and evolutionary algorithms approaches. Sec-
tion 4 will be dedicated to inductive learning, a very large and important topic within
AI. In this section different existing works in the literature will be identified as well
as feature selection approaches (Section 4.1) and performance assessment metrics
(Section 4.2). As remainder of this chapter, in Section 5, one will draw a summary
of what has been achieved until now and what still poses as open problems.

2 Terminology and Concepts

Learning multicriteria (MC) on ordinal data has a strong connection with OR and
AI [146]. Albeit being conceptually different topics, there is an intrinsic connection
among them. OR comprises several different areas of study such as decision anal-
ysis, mathematical programming among others. Whereas, AI can be described as
being composed by machine learning, pattern recognition, data mining [119] etc.
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Fig. 1 Illustration of the different fields that overlap with operations research and artificial
intelligence.

Within each area there are concepts borrowed from one another. For instance, ma-
chine learning vastly uses techniques from mathematical programming and statistics
since its early days [45, 132] (Fig. 1 depicts some of these relations). How these top-
ics interact with each other is not within the scope of this chapter. It is the purpose
of Fig. 1 to illustrate the broad aspects of the area in study. Its usage is so broad that
a full coverage is not possible. However, it is interesting to know how MC meth-
ods have been used in data analysis to represent knowledge. Such is done in order
to understand reasoning’s behind decisions [94], outcome prediction [26, 36], in
mimicking behaviours [90] and planning [68, 105].

Even though MC methods have been thoroughly studied, not much effort has
been employed on the particular case where data is presented in a “natural” order.
Let us consider the credit score problem. A bank assigns a score of Excellent to a
client given his wage, good payment history in previous mortgages and the number
of credits at the time of the evaluation. The score assessment is clearly rendered
over the different criteria: Wage, payment history, among others. Ideally, one wants
to find the best function that can capture all this information in order to output the
expected outcome.

Definition 1 (Classification on Ordinal Data Problems[16, 18, 91, 93, 146]).
Classifying on ordinal data problems consists on finding the best mapping
f : Rd → {C1, . . . ,CK} of a given pattern, xxx ∈ Rd ⊂ X, to a finite set of classes,
where CK � . . .� C1.

Pattern xxx is also referred as instance, example or alternative. Moreover, xxx can be
represented in a vector fashion where each entry is identified as a feature, attribute
or criterion, i.e., xxx = {x1, . . . ,xd}. A dataset is a tuple consisted of N patterns and its
target classes (or outcomes), D= {xxx(i),y(i)}N

i=1 and �, the order relation on the set
of classes.

Literature usually differentiates attribute and criterion [51]. Consequently, the
problem in analysis can be substantially different. In an ordinal data problem as the
credit scoring, an alternative (to which client a loan should be granted) is charac-
terised by several criteria, each one representing a level of importance to the de-
cision maker (DM) (the bank). Here, criteria is used instead of attribute being the
former more adequate for the ordinal problem [51, 135].
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The usage of the term ranking is also common in the MC field. However, such
term is usually mentioned to other subjects aside classification.

Definition 2 (Ranking [16, 25]). A ranking problem consists on finding the best
mapping f : Rd → {R1, . . . ,RL} of a given pattern, xxx ∈ Rd ⊂ X, to a finite set of
ranks, where RL � . . .� R1 is not pre-defined.

There are subtle differences between the two problems. Whereas in classification the
order between classes is already defined and all patterns have to be assigned into at
most one class, in ranking such does not hold. Think for instance on the GoogleTM

or YahooTM search engines. When entering a search query, the result can vary from
user to user for the same query. The search engine will look on its database and
rank the results according to, for instance, user search history. Ranking approaches
however go beyond the subject of this chapter.

Depending on the problem, criteria can also represent a magnitude of importance
or unimportance, a ratio, among others. This can generate datasets where order may
not be explicitly represented. Different works tackled the ordinal problem assuming
that data were monotone, i.e., where both criteria and classes were assumed to be
ordered [10, 39, 101]. Nevertheless, recent works argue that monotonicity constraint
cannot be verified despite being however perfect representatives of an ordinal prob-
lem [18, 56]. The following synthetic datasets depict some of those claims. To each
point in Fig. 2a was assigned a class y from the set {1,2,3,4,5}, according to

y = min
r∈{1,2,3,4,5}

{r : br−1 < 10(x1 − 0.5)(x2 − 0.5)+ ε < br}

(b0,b1,b2,b3,b4,b5) = (−∞,−1,−0.1,0.25,1,+∞)
(1)

where ε ∼ N(0;0.1252) simulates the possible existence of error in the assignment
of the true class to xxx. Data in Fig. 2b is uniformly distributed in the unit-circle, with

(a) (b)

Fig. 2 Two synthetic ordinal dataset where the monotonicity property at input data does not
hold.
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the class y being assigned according to the radius of the point: y =
⌈√

x2
1 + x2

2

⌉
.

These synthetic datasets are examples where order cannot be captured directly in
the input space, but in an implicit feature space.

Hence, the following question can be posed: How to capture order? Many models
have been proposed towards this goal. But before answering that question, first a
brief description of the most commonly used models is required. The following
concepts will allow a better understanding of the most recent techniques discussed
along this chapter.

Starting by the OR domain, a classic multicriteria decision analysis (MCDA)
approach is done by the representation of a specific aggregation model. Aggregation
models are performed by aggregating different value or utility functions in order to
be expressed by a single criterion. One aggregation model that we can think of a, for
instance, the mean: 1

d ∑d
j=1 x j. The use of utility vs. value depends upon the problem.

Whereas, utility functions are used in stochastic problems, value function are used
in deterministic ones [92]. In brief, an aggregation model is a function U : Rd →R,
that maps criteria of the DM onto outcomes [92]. Utility functions are widely used,
where the one presented in Equation (2) is an example of several other aggregation
models. It has the advantage of considering both qualitative and quantitative criteria.
The simplest additive case of an utility function is defined as follows:

U(xxx) =
d

∑
j=1

u j(x j) (2)

where U ∈ [0,1]. For the interested reader Siskos [115] presents a good description
of these methods.

Fuzzy set theory is another topic with increasing interest on the scientific commu-
nity. Its usage is not restricted only to the MCDA problem being however strongly
defended thanks to its capability to handle uncertainty [50, 65]. In general, fuzzy
set theory presents a fundamental principle which describes a special type of sets
which have degrees of membership through simple logical operators. Such can be
described by any mapping function μ(xxx) : Rd → [0,1]. Fig. 3a) consists of a valid
representation for a given membership function. Moreover, it can represent knowl-
edge in a if . . . then way in a similar way to decision trees (DTs) [69] which will be
described shortly.

In much of the works currently present in the literature, fuzzy set theory usually
appears along with rough sets. The latter field is however slightly different from the
former. Rough Set theory not just handle uncertainty, but also incomplete informa-
tion which can be present on data [65]. Even though new approaches on utility ad-
ditive functions (UTA—UTilitès Additives [115]) already tackle this problem, it has
also been stated that rough and fuzzy set theory are complementary because of deal-
ing with different kinds of uncertainty [50]. It was initially proposed by Pawlak [97]
with the objective to provide a mathematical formulation of the concept of approxi-
mated (rough) equality of sets in a given space. In the rough set theory it is assumed
that to every object there is an associated amount of information that describes it.
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Fig. 3 Fuzzy and Rough Set concept illustrations: (a) An example of a membership function
that defines a possible economic class problem in a fuzzy set approach; (b) Lower and Upper
approximations of a given set which represent the domain knowledge;

This refers to the view that knowledge has a granular structure [1, 50, 51, 98].
Therefore, an important characteristic of rough sets theory is the identification of
consistent data and assigning them into lower and upper approximations of sets—
see Fig. 3b).

More on the AI domain, in general, one tries to obtain valid generalisation rules,
classifier, from data. Once a classifier has been designed, one has to assess its
performance by estimating the error of the classifier for unseen examples. Clas-
sification error is expressed as a misclassification error defined by a “true misclas-
sification rate” (here denoted as R∗(d)). d(xxx) is the learner model with input data xxx.
Breiman [15] defines this function as:

Definition 3 (Accuracy Estimation [15]). Take (xxx,y), xxx ∈ X, y ∈ Y, to be a new
sample from the probability distribution P(A, j); i.e.,

• P(xxx ∈ A,y = j) = P(A, j).
• (xxx,y) is independent of D.

Then define
R∗(d) = P(d(xxx) �= y) (3)

But how can R∗(d) be estimated? There are many approaches. One that this work
will use is the cross-validation approach. Dataset D is randomly divided in subsets,
with the same size as possible, e.g., D1, . . . ,DV . For each v, v = 1, . . . ,V , a learning
method is applied to the sample D−Dv, resulting in the dv(xxx) model.

Rcv(d) =
1
V

V

∑
v=1

Rts(dv) (4)

where Rts is defined as

Rts(dv) =
1

Nv
∑

(xxxi,yi)∈Dv

F(dv(xxxi),yi) (5)
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Fig. 4 k-NN and DT methods. (a) A test pattern (illustrated as a star) composed by two
features checks for, in this example, two closest labelled patterns in order to determine its
own class; (b) Prediction over the whole feature domain for an 2-NN on the training data
shown in (a); (c) A DT discriminates the feature space by rectangles; (d) A sample of the
decision tree for (c).

where Nv 
 N/V and F any function which penalises each error1. One can now
analyse the different learning methods for ordinal data.

k-Nearest Neighbour (k-NN) is a simple method that interestingly has not been
explored enough in the MCDA setting until very recently. It consists of a non-
parametric method with the main objective to estimate the density function from
sample patterns [38]. It extends the local region around a data point xxx until the
kth nearest neighbour is found. The most represented class in the k-closest cases
defines the predicted class. Fig. 4a-b) illustrates such procedure. DTs are another
method that captured some interest for tackling MCDA problems, specially on the
OR domain. DTs classify a pattern through a sequence of questions where the next
question depends on the answer to the previous one. These trees are constructed as
logical expressions as is illustrated in Fig. 4c-d). This ability generates a powerful
data analysis tool capable to obtain interpretable results [38]. Nodes are consecu-
tively split where a stop-splitting rule is required that controls the growth of the
tree.

Neuron Networks are another kind of learning models. Multi-Layer Perceptron
(MLP) is the most commonly used. A MLP is a layered structure consisting of
nodes or units (called neurons) and one-way connections or links between the nodes
of successive layers, such as the structure of Fig. 5a). The first layer is called the
input layer, the last layer is the output layer, while the ones in the middle are called
the hidden layers. Input layer of neurons is only a vector where all data are in-
troduced triggering the learning process. Data propagates through the network in
a forward direction, on a layer-by-layer basis. Layers are constituted by several
neurons which commonly have non-linear and differentiable activation functions.
Support Vector Machines (SVM) are another popular learning mechanism. In its
simple form, SVMs uses a linear separating hyperplane to create a binary classifier

1 The l0−1 loss function is the most commonly used one, i. e., F(a,b) = I(a �= b) being I
the identity function.
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Fig. 5 MLP and SVM methods: (a) Example of a MLP. This MLP is composed by 2 hidden
layers, one input and output layer; (b) A two dimensional dataset is augmented to a higher
feature space.

with a maximal margin. In cases where data cannot be linearly separable, data are
transformed to a higher dimension than the original feature space—see Fig. 5b).
Such is done by choosing a given kernel function, representing the inner product
in some implicit higher dimension space. Formally, a kernel function is defined
by k(xxx,xxx′) = φ(xxx)T φ(xxx′). This transformation (φ ) can be achieved by several non-
linear mappings: e.g., polynomial, sigmoidal and radial basis functions. However,
in a multiclass problem the usage of a binary SVM classifier can be limited. In order
to improve this some heuristics and new formulations were proposed as an exten-
sion to the binary classification problem. Some of them encompass the OVO (One-
Versus-One), OVA (One-Versus-All), DDAG (Decision Directed Acyclic Graph),
single optimisation formulation, among others. Basically, OVO consists on the de-
sign of K(K-1)/2 binary classifiers where one class is discriminated against another.
Similarly, and as the name suggests, OVA consists on the design of K binary classi-
fiers where one class is compared against the others. Likewise the former heuristic,
DAG, follow a similar procedure. The major difference is that prediction is made
in a graph path manner where each node corresponds to a given binary classifier. In
a completely different scenario, there are also techniques that try to define a single
optimisation problem to solve the multiclass problem on SVMs.

This Section provided some key concepts regarding techniques for learning from
data. Knowing that still much more has to be covered, the interested reader is ad-
vised to OR and AI textbooks [9, 38, 55, 65, 82, 108] for more information. Next
Sections will describe different methods using some of the aforementioned method-
ologies for learning multicriteria models on ordinal data problems.

3 Multicriteria Decision Analysis

Multicriteria decision analysis (MCDA) is an important field within OR. It helped
researchers to devise new approaches in order to analyse and interpret human’s rea-
soning. Specifically, when handling several usually conflicting criteria towards an
outcome. Such methods are generally composed by five phases depicted in Fig. 6.



Multicriteria Models for Learning Ordinal Data: A Literature Review 117

��������	
��
�������	�

��	���	��
������	�

��	���	��
��	���	��

��	���	��
������	�

��������	�

Fig. 6 Common Diagram of MCDA Methods [130, 137].

This Section will review multicriteria decision methods for ordinal data prob-
lems. Alternative formulation and criteria selection is usually defined by a set of
experts or DMs [130, 137] and can depend on the problem in analysis. On the other
hand, a given importance (weight) can be defined to each criterion whether through
subjective or objective methods. After every criteria being considered, the analysis
takes place. In general, MCDA tries to learn about users preferences encompassed
in the different criteria considered. One key aspect of such methods is that they do
not rely on any statistical assumptions [145]. Such highly contrasts with the topic
which will be reviewed in Section 4. These two views can mark great differences
on both topics, but as one shall see, there are points of connection between these
two fields. In doing so, one can identify a trend towards filling the gap between OR
and AI on MCDA. Finally, all criteria which were considered are then aggregated
in order to define a plausible outcome.

It is important to stress that this work is mostly concerned with ordinal data.
Hence, not all topics within MCDA can be covered in this Section. The interested
reader is referred to [44, 58, 126, 147] for more information.

3.1 MCDA Methods

From Fig. 6, one can define methodologies which follow the whole process. An-
alytic Hierarchy Process (AHP) is one of such kind of frameworks [109]. After
having the problem analysed and criteria selected, usually performed by an expert
(or DM), it considers through an hierarchical approach each criteria [109]. However,
recent reviews have argued that AHP results may not be the most desirable ones [62–
64]. Mentioning that there is no clear evidence that AHP provides its users with their
“best” decision [62], or in more detail, identifying the limitations in each step on the
process [63]. Even though the Analytic Network Process (ANP) was introduced as a
generalisation over AHP (a feedback network capable to adjust weights) [64, 110],
few work has been done for the ordinal case.

ELECTRE [35, 107] and PROMETHEE [35, 37, 43] are two well known meth-
ods that, like AHP, can consist at most by the five steps illustrated in Fig. 6 [63]. Both
techniques arose from the foundations of the outranking relation theory (ORT) [35].
In simple words, it consists of checking the outranking relation among instances
which permits to conclude whether an instance xxx(p) outranks instance xxx(q). Mean-
ing, that instance xxx(p) will be better for the DM than xxx(q). This is achieved if there
are enough statements to confirm (concordance) or to refute that (discordance). The
two aforementioned methods require some preferential information which has to
be defined by the DM. However, it may be difficult for the DM to understand the
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meaning of the preferences [61]. To overcome this, different improvements over the
methods have been conducted. One of them was through the usage of evolutionary
algorithms.

Evolutionary algorithms (EAs) came in a way to reproduce Darwin’s theory of
the survival of the fittest. EAs are also referred as populational meta-heuristics
meaning that they work on the population space of solutions [13]. EAs generally
encompasses on three major steps: 1) Gather a set of solutions; 2) Select a possible
subset of candidates on that set of solutions and allow them to reproduce. Reproduc-
tion consists mainly on creating new solutions from the selected ones by crossover
and mutation operators; 3) Finally, the process is repeated for the set of new solu-
tions until a stopping criteria is achieved. Swiki in [116, 117] introduced an elitist
evolutionary agent2 system to solve multicriteria optimisation problems. By trying
to reproduce biological mechanisms, an elitist group is introduced in the evolution-
ary architecture proposal. The final solution identified by the elitist group would
indicate the desirable one which will dominate other possible solutions identified
by other groups. Some hybrid approaches are also present in the literature [32, 42].
In [42] an outranking combined with an EA was proposed thanks to an indiffer-
ence measure. Since preference modelling is cumbersome, authors used a popula-
tion based meta-heuristic to generate the best solutions. An agent would then decide
the best one. An approach proposed by Doumpos [32] comprehends the usage of
concordance and discordance measures into a credibility index of an outranking
method. This will assess the outranking relation among several alternatives. Since
incomparable relations can occur, an EA is used to infer the parameters of the out-
ranking method.

In a complete different setting, constraint programming tries to explore all pos-
sible combination of solutions thoroughly. Despite this being highly computational
expensive, Junker in [66, 67] argues that an interactive approach has its advantages
over state of the art techniques. It is also claimed that current existing methods do
not express a clear explanation of the reason for one alternative being more prefer-
able than another. In other words, a performance of 98% does not express which
option is the best based on the original preferences. Using a special utility function
to define preferences order in [67] a lexicographic optimal scheme is applied. Since
lexicographic approach establish some ranking over the preferences order [41, 67],
authors also permute the order of alternatives search. Bouveret [11] explores the
idea in which characterises good solutions where multiple criteria have to be han-
dled through the use of lexicographic algorithms.

Other methods incorporate cooperative algorithms which take part in the learn-
ing process from diverse sources of information and by different decision criteria
[29, 71]. Methods with such properties are named Dominance-based Set
Approach (DRSA) [29] which deal with the problem of multicriteria classification
using maximum likelihood estimation. The problem is then solved by an optimal ob-
ject reassignment algorithm. In [71] a stochastic DRSA approach is introduced. The

2 In a simple way, an agent is a solution vector generated by some sub-optimal learning
method.
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rationale behind this method is to assess object class probability from an interval of
classes.

Rough set theory is another field that one can count with when tackling MCDA.
One interesting aspect is that rough set have the ability to produce a model of rule
induction similar to data mining, knowledge discovery and machine learning [50].
In [50] authors extend the fuzzy set theory to rough sets theory in order to avoid
as much as possible meaningless transformation of information. Rule induction is
made through decision rules induced from dominance-based rough approximations
of preference-ordered decision classes [51].

Let us now analyse in more depth contributions made to each node in the multi-
criteria methods process.

Criteria Weighting

Criteria weighting can be considered one of the most important steps for the deci-
sion maker. Once it weights the importance of each criterion, acting as a trade-off
between criteria [61] that will be considered in the decision process, subtle changes
can produce different outcome [136].

Methods for weighting criteria encompass equal weights, rank-order and hybrid
approaches where after some considerations from the DM, weighting can be per-
formed by a subjective or objective method [136, 137]. Equal weights (wj = 1/d)
is not valuable once relative importance among the criteria is ignored. Remains
rank-order weighting approaches and their derivations to overcome these limita-
tions. Another issue is that when dealing with uncertainty or incomplete infor-
mation in any decision problem, the DM may not be reliable to define her/his
preferences accurately. One way to handle this type of information is to repre-
sent preferences by a suitable distribution using stochastic multicriteria acceptability
analysis (SMAA) methods. Several methods have been proposed in the literature—
e.g. [40, 74, 75, 128] to name a few. SMAA-O proposed in [74] was an extension
of SMAA works [127, 128] applied to ordinal (and cardinal) criteria. The problem
is that, in the authors approach, an ordered criteria cannot be used directly in MC
model. Therefore, it is assumed that exists a cardinal measure that corresponds to
the known ordinal criteria and by considering consistent mappings between ordinal
and cardinal scales, they randomly simulate such mapping through Monte Carlo it-
erations. Or in other words, ordinal data is converted into stochastic cardinal data by
simulating consistent mappings between ordinal and cardinal scales that preserve
the given labels. In SMAA literature review work of Tervonen [127] they claim that
such simulations are not necessary since cardinal values can be interpreted directly.

Criteria Analysis

To the best of our knowledge, one of the first works in criteria analysis was proposed
by Herstein [57] where an axiomatic approach was carried. A set of mathematical
axioms was presented in this work to measure preferences order. Maccheroni in
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his work [85] explores the possibility where DM does not know for certain her/his
preferences being therefore unable to rationalise her/his choices.

As previously mentioned, in the outranking approaches inconsistencies may arise
when the preferences which are learned by given instances cannot be expressed
through a model. Belacel in [6] proposes a construction of partial indifference in-
dexes comparing pairs of preferences according to some criteria, aggregating them
according to a concordance and non-discordance concept. Mousseau in [93] sug-
gest to discard contradictory information from the preferences through an iterative
aggregation-disaggregation scheme.

A number of variants of UTA [115] have been proposed in the literature over the
last two decades and many works have been published concerned to this subject [8,
52, 54, 73, 146]. One related to ordinal problem was proposed in [145]. In this
work, additive functions are used discriminating the preferences being evaluated
from those that are not. Trying to go through a more natural way to human thinking
over their outcomes or goals, some methods also based on utility functions have
recently been proposed [88–90]. In this method, the authors developed a model
to express logic of preferences in order to determine which of two outcomes is
preferable.

Aggregation

As mentioned, aggregation models are one of the most studied methods within mul-
ticriteria decision analysis. For instance, in our credit scoring problem a model has
to be designed to aggregate wage, payments history, age among others so that it can
express the credit score profile of a given client. However, this approach implies that
those functions have to be, among others, monotone [86]. Most important of all, the
aggregation model has to be able to evince the importance of a criterion (done in
the criteria analysis step), but also the interaction and compensation effects between
criteria (done in the weighting step) [60]. Meaning that one has to design a model
such that it can assign weights to a subset of possible criteria in order to capture
these relations [60, 123].

As one saw until now, multicriteria methods encompass a variety of different
approaches. Many of them address this problem through classification techniques
using some sort of aggregation model [36, 44]. Afterwards, restrictions are then de-
fined to the problem in question. However, despite the existence of the myriad of
techniques, many pass through the definition of some objective function which can
be delved through mathematical programming approaches. In [145] a multi-group
hierarchical discrimination (M.H.DIS) method is defined. An error minimisation
and clear group discrimination utility function is presented. Then, a two optimisa-
tion stages are conducted to avoid high computational complexity of MIP problems
with many binary variables. An extension of this work is presented in [31] where the
estimation of the additive utility functions in aforementioned work is accomplished
through mathematical programming techniques. Two linear and one mixed-integer
programs are used in M.H.DIS to estimate optimally the utility functions.
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Unsupervised approaches such as the k-means algorithm or agglomerative hi-
erarchical clustering (AHC) can also be used. The latter performs a hierarchical
clustering where given individual clusters it can merge or split clusters until a stop-
ping criteria is achieved. Given the utility matrix, authors employ clustering algo-
rithms to form groups of alternatives (e.g., customers) with closely related prefer-
ences [77, 78]. However, in this phase little or no usage of the ordered criteria is
explored.

4 Inductive Learning Algorithms

Inductive learning describes a very powerful field of research where machine learn-
ing (ML) lies. In ML one tries to obtain valid generalisation rules from data instead
of the deductive learning approaches where one is already presented with a formal-
isation of the world and constructs (deducts) reasonable conclusions that cover our
initial assumptions. Being also referred as a technique that learns by example (in-
stances), it has been another thoroughly studied field which is composed by two
main research topics: Regression and classification. A schematic of such problems
and some real world scenarios are depicted in Fig. 7.
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Fig. 7 Inductive Learning encompasses on two major research topics: Regression and
classi f ication. Both thrives on finding the best function that explains our data. The former
renders the reasoning’s on a continuous domain whereas the latter on a discrete (finite) do-
main. Each one is divided in other subtopics being their thoroughly analysis more appropriate
for other textbooks [9, 38, 55] and here depicted just for context.

Learning mechanisms that solve ordinal problems have been tackled with both
regression and classification strategies. Albeit being fundamentally different, both
ordinal regression and ordinal classification methods have thrived among the scien-
tific community, e.g., [18, 26, 46, 56, 72, 87, 113, 120], to name a few. The first
works that tried to solve the classification of ordinal data were based on gener-
alised linear models, as the cumulative model [87]. Tutz [129] presents a generic
formulation for semi-parametric models extending the additive models [54]. In the
machine learning community, Frank&Hall [46] have introduced a simple process



122 R. Sousa et al.

which permits to explore information order in classification problems, using con-
ventional binary classifiers as can be depicted in Fig. 8. In [56] it is applied the
minimal structural risk principle [132] to derive a learning algorithm based in pairs
of points.

Another way to learn ordering relation is by using classical algorithms of classifi-
cation or regression and mapping the results into an ordinal scale. Kramer et al. [72]
investigate the use of a learning algorithm for regression tasks—more specifically,
a regression tree learner—to solve ordinal classification problems. In this case each
class needs to be mapped to a numeric value. Kramer et al. [72] compare several
different methods for doing this. However, if the class attribute represents a truly or-
dinal quantity—which, by definition, cannot be represented as a number in a mean-
ingful way—there is no principled way of devising an appropriate mapping and
this procedure is necessarily ad hoc. Harrington [53] argues that these type of ap-
proaches have many drawbacks as 1) makes regression learners sensitive to rank
representation than their ordering and 2) since classification algorithms ignore rank
order treating them as classes, it will be required more training data. Consequently,
Harrington [53] presents a perceptron algorithm where its goal it to find a percep-
tron weight vector www which successfully projects all the instances into the k classes
subintervals defined by some thresholds.

Moreover, existing methods incurring ordinal regression approaches fit data in
general by a single rule defined by parts through K-1 thresholds [133]. This has a
drawback since a mapping is required to convert ranks into real values or vice-versa.
Hence, determining this mapping function is in general very difficult and makes re-
gression learners more sensitive to rank value than their pairwise ordering. Some
of the aforementioned drawbacks were avoided in Shashua and Levin [113] work
where a generalised formulation of Support Vector Machines (SVMs) applied to or-
dinal data was proposed. However, such models can be too complex. Cardoso in [18]
proposed a reduction technique to solve data ordinal problem classification using
only one binary classifier. Following this idea, Lin et al. [83] explored the potential
of solving ordinal problems through binary classification methods whereas Cheng
et al. in [21] presented an adaptation of the Neural Networks (NN) towards ordinal
problems. In [27] an order relation is incorporated among classes by imposing an
unimodal distribution. This fundamental principle allowed to delve simpler Neural

���

Fig. 8 Schematic of the proposal presented by Frank&Hall in [46]. Firstly it is performed a
transformation of a K-class problem to a K −1 binary class problem. The training of the ith

classifier involves the transformation of the K ordinal class into a binary one where the ith

discriminator is obtained by separating the classes C1, . . . ,Ci and Ci+1, . . . ,Ck. The ith class
represents the test Cx > Ci.
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Networks (NNs) classifiers. The same rationale was instantiated to SVMs in [26]
through the all-at-once strategy by solving a multiclass ordinal problem through
a single optimisation process. Sun et al. in [124] proposed a Kernel Discriminant
Analysis (KDA) for ordinal data. Even though authors argued that finding an opti-
mal projection would result in better reasonable results, in doing so one would loose
its relation to the original features. Hence, in the case of need for interpretable re-
sults, through the usage of such methods, one would be unable to understand the
reason of the outcome given specific features.

Metric learning is research subject that recently has been gaining increasingly
attention, specially in the machine learning community [138, 142, 144]. The per-
formance of all machine learning algorithms depends critically on the metric that is
used over the input space. Some learning algorithms, such as K-means and k-nearest
neighbours, require a metric that will reflect important relationships between each
classes in data and will allow to discriminate instances belonging to one class from
others [104]. Ouyang [96, 111] explored this subject in the ordinal problem. In [96]
by assuming that closer instances in the input space should translate an order of rela-
tion, a metric distance is learn so that pairs of instances are closer than the remainder
pairs. However, class label is discarded in this approach.

Other approaches [22–24, 143] consisted on probabilistic approaches based in
Gaussian processes to learn models for the ordinal problem. In [143] a collaborative
approach is delved towards better, not only in accuracy, but also in a context of
collaborative preference learning.

Regarding decision trees (DTs) for ordinal data, some works consider problems
that are monotone, i.e., all attributes have ordered domains. Meaning, if xxx,zzz are data
points such that xxx ≤ zzz (xi ≤ zi for each criteria i) then their classes should satisfy
the condition f̂ (xxx) ≤ f̂ (zzz), where f̂ (.) is the labeling function. Potharst [99–101]
proposes a method that induces a binary decision tree from a monotone dataset.
Other methods were also proposed for non-monotone datasets (the most likely sce-
nario in the presence of noise) where the resulting tree may be non-monotone. In
this scenario, a fuzzy operator was used instead of a entropy function for perfor-
mance measurement [30]. Works on k-nearest neighbour for ordinal data seems
even scarcer. Besides the well-known adaptation of using the median as labelling
rule instead of mode for the k labels, literature only presents a modified version
of the standard k-NN for the construction of monotone classifiers from data [39].
Again, this work continues to be limited by the assumption of monotonocity in the
input data. In general, the monotone constraint was overcame in [19, 120]. Argu-
ing that ordinality could not be captured directly from the input space, but from the
feature space, authors explored a re-labelling approach on the output decision space
through a postprocessing optimisation procedure.

From the works until now revised, one has encountered several methods that
make use of different procedures from operations research field, and other
proposals design their learning models so that multicriteria can be rendered in the
learning phase. In this setting, multicriteria assessment is simply performed over a
set of diverse unattached reasoning’s which renders the desirable outcomes with-
out a clear understanding of which criteria contributed most. To overcome this,
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De Smet et al. [118] developed a k-means clustering algorithm in a multicriteria
decision analysis perspective.

In this section we have reviewed several learning approaches for the resolution
of the ordinal problem. In the end, it is obvious how increasingly this subject has
been studied. The reasons can be due to the awareness of its transversal usability in
a set of diverse applications. However, due to the background of many researchers,
many have tried to solve this problem through regression, classification and ranking
methodologies. The work of Furnkranz et al. [48, 49] despite using a pairwise ap-
proach, compared ranking and classification principles in their proposals. As final
remark, one must note how vastly such methods can be employed such it has been
explored by Van Belle et al. [114, 131]. In these works, different approaches have
been delved towards ranking, ordinal and survival analysis problems. Even though
authors performed strict assumptions on data to develop their models, such as mono-
tone data, it still is a good example of the importance of this topic in the inductive
learning field.

4.1 Feature Selection Algorithms on Ordinal Data

Nowadays, it is relatively easy to solve problems with millions of instances, each of
them with a reasonable number of features. However, it is common to have access
to datasets with significantly higher number of features than instances leading to
the well known problem of the curse of dimensionality. Feature selection (FS) tech-
niques provide the means to overcome this issue by identifying the most valuable
features so that good and simple class discrimination models can be obtained. Fur-
thermore, a noise reduced dataset can be achieved since these methods can “clean”
data from features with noise [34].

There are three types of feature selection algorithms: Filter, wrapper and em-
bedded. The former is independent of the classifier being usually done before the
learning phase. Wrapper algorithms iteratively select subset of features and assess
the learning models performance to determine how useful that set of features are
whereas embedded algorithms select automatically features during the model con-
struction [34, 106]. Fig. 9 succinctly depicts the three approaches.

�� �� �� �� ������������� ��

Fig. 9 Three different standard approaches for feature selection: (left) depicts the f ilter fea-
ture selection (FS) approach done before the model design (MD); (centre) the wrapper is
consisted on an iterative approach where features are removed step by step until a desirable
performance of the model is achieved; and (right) embedded method is designed jointly with
the learning model algorithm.
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Feature selection on ordinal data is a relatively young topic. In [84] a χ2 statis-
tic method is used to discretize numeric features as a way to select features. Even
though the method proposed by Liu [84] was identified as being limited to a first-
order feature-class correlation (i.e., are linearly correlated), such should not be seen
as a drawback. Once highly complex learning machines could easily cope with the
data complexity and infer a linear relation with the features and classes, or more
precisely, perform overfitting on data [112, 121]. Nevertheless, Last et al in [79]
proposed an information-theoretic method for feature selection by performing a dis-
cretization over the features in order to minimise classes entropy. Even though or-
dinal data can contain only discrete features fitting well to this technique, there are
datasets with continuous features (see for instance [17]). In such scenarios, applying
a discretization technique can lead to loss of accuracy in the model design. Despite
being mentioned the capability to handle ordinal data, no experiment has been con-
ducted, neither their methods were designed for this type of problems. Through a
completely different approach, Xia et al. [140] presents a recursive approach to ex-
tract features where it learns consecutively new rules from instances represented by
the new features.

Other techniques in the ordinal context have been referred to Baccianella et al
in [4, 5]. Using only the filter approach for feature selection, authors used several
measures to identify feature relevance through the minimisation of the instances
variance over all classes, similarity, information gain and negative correlation ac-
cording to the class label, specifically developed for ordinal problems. Finally, Sousa
et al.[121] explored a concept introduced by Rodriguez et al. [106] where they tackle
the FS problem in one-step process through quadratic programming as represented
in Equation (6). The quadratic term (Q in Equation (6)) would capture the redun-
dancy whereas the linear term (F in Equation (6)) would capture the relevance.

min
xxx

{
1
2
(1−α)xxxtQxxx−αFtxxx

}
(6)

Here α is the trade-off between relevance and redundancy which can be empirically
defined. In order to capture the ordinal relation on data in this setting, authors chosen
the Minimum Spanning Trees (MST) as the linear term (F) to assess the increase
of complexity when a subset of features is removed. However, one of the issues
identified in this approach concerns to the fact that authors did not take advantage
of the ordinal information that could be explicitly included on data (quadratic term).

4.2 Performance Measures

After considering the advantages and disadvantages, goals achieved and open issues
of the techniques presented in previous sections, the discussion of how to measure
the performance of such techniques has not been debated much.

Usually, a learning process consists in two main phases: A cross-validation phase
and an estimation of the model performance (F represented in Equation (5)) on a
real-world scenario (also known as the testing phase). In both situations, one has to
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analyse the performance of a model given certain parametrization and its behaviour
in a non controllable environment, respectively. Herein, the question that one obvi-
ously poses is: How much did the model err? Or, how much the prediction differs
from the real outcome? Given certain assumptions of models design, it is clear, as
we will shortly show, that the metric chosen for this task is crucial.

It is interesting to see that in contrast to the plethora of existing methods con-
cerning multicriteria learning, only recently we witnessed some concerns to this
issue [20, 47, 81], disregarding advances performance made on the broader field
of machine learning [80]. Knowing that “no free lunch” theorems state that there
is not an algorithm that can be superior on all problems in regard to classification
accuracy [139], the assessment of an appropriate learning method given a specific
problem is desirable [80].

For classification problems, MER (Misclassification Error Rate) is currently one
of the most used measures. Its widely use make it a de facto standard when compar-
ing different learning algorithms by just counting the misclassifications occurred. In
other problems domains, it is usual to penalise the misclassifications by weighting
them by the magnitude of the error to avoid uneven results. When such happens,
MAE (Mean Absolute Error) and MSE (Mean Squared Error) measures are usu-
ally the most appropriate choices. Summing, the performance of a classifier can be
assessed in a dataset D through

1
N ∑

xxx∈D
|g(Cxxx)− g(Ĉxxx)| 1

N ∑
xxx∈D

(
g(Cxxx)− g(Ĉxxx)

)2
,

respectively, where g(.) corresponds to the number assigned to a class, N = card(D),
and Cxxx and Ĉxxx are the true and estimated classes. However, this assignment is arbi-
trary and the numbers chosen to represent the existing classes will evidently influ-
ence the performance measurement given by MAE or MSE. A clear improvement
on these measures would be to define them directly from the confusion matrix CM
(a table with the true class in rows and the predicted class in columns, with each en-
try nr,c representing the number of instances from the r−th class predicted as being
from c−th class):

MAE =
1
N

K

∑
r=1

K

∑
c=1

nr,c|r− c| MSE =
1
N

K

∑
r=1

K

∑
c=1

nr,c(r− c)2

where K is the number of classes. We will always assume that the ordering of the
columns and rows of the CM is the same as the ordering of the classes. This pro-
cedure makes MAE and MSE independent of the numbers or labels chosen to rep-
resent the classes. To a certain degree, these two measures are better than MER
because they take values which increase with the absolute differences between ‘true’
and ‘predicted’ class numbers and so the misclassifications are not taken as equally
costly.

In order to avoid the influence of the numbers chosen to represent the classes
on the performance assessment, it has been argued that one should only look at
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the order relation between ‘true’ and ‘predicted’ class numbers. The use of Spear-
man’s rank correlation coefficient, Rs, and specially Kendall’s tau-b, τb, is a step
in that direction [70, 122]. For instance, in order to compute Rs, we start by defin-
ing two rank vectors of length N which are associated with the variables g(C) and
g(Ĉ). There will be many examples in the dataset with common values for those
variables; for these cases average ranks are used. If ppp and qqq represent the two rank
vectors, then Rs =

∑(pi− p̄)(qi−q̄)√
∑(pi− p̄)2 ∑(qi−q̄)2

. As we can see, Spearman’s coefficient is still

dependent on the values chosen for the ranks representing the classes and so it is
not completely appropriate to measure the performance of ordinal data classifiers.
More importantly, Rs looses information about the absolute value of the classes.
Kendall’s coefficient τb has been advocated as a better measure for ordinal variables
because it is independent of the values used to represent classes [70]. Its robustness
is achieved by working directly on the set of pairs corresponding to different obser-
vations. However, there are limitations: By working only with the relative order of
elements, it loses information about the absolute prediction for a given observation.

Other attempts have considered the analysis of the learner behaviour on a ROC
(Receiver Operating Characteristic) curve or its equivalent, AUC (Area Under
Curve). Despite empirical evidences of AUC providing more desirable properties
when compared to accuracy [12] only recently this topic was not only re-proposed
but also new evidences of its advantages were shown [59]. In this work, AUC is
demonstrated as an objective measure for selecting the best learning model, but, and
most important, refers to the need of developing better measures for learner design
and performance assessment [59]. In this line of research, in [134] it is compared
different ROC measurements. However, and despite the assumptions made, ROC
derived measures that assess a ranking for different performance do not quantify
the performance achieved by a learner [133]. Such analysis, although with different
purposes, has been conducted by [7] using Cohen’s kappa statistic.

On the other way, the discussion was revamped by Baccianella et al [3] through
an analysis of different derivations of MSE and MAE metrics for ordinal problems.
This work is key since it debates two main issues incurred on the performance mea-
surement of learners for this type of classification problems: Imbalanced classes
and classes with equal penalisation costs. In order to avoid the former problematic,
a derivation from MAE is presented by averaging the deviations per class.

MAEM =
1
K

K

∑
i=1

1

g(Ĉi)
|g(Ci)− g(Ĉi)|

In the same line, the coefficient rint was recently introduced, taking into account the
expected high number of ties in the values to be compared [27]. In fact, the variables
C and Ĉ are two special ordinal variables. Because there are usually very few classes
compared to the number of observations, these variables will take many tied values
(most of them, in fact). Nevertheless, rint is sufficiently general and, if there are no
tied values, it can still be applied as it is. Like τb, rint assumes that the only thing
that matters is the order relation between such values, which is the same as the order
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relation between the classes. This coefficient takes values in [−1,1], in contrary
to MAE (and MSE) which are upper-unbounded. The latter can be identified as
a limitation. Another observation is that it is fair to compare MAE results in two
different applications with a different number of observations, N, since MAE is
properly normalised by N. However, if the applications involve a different number
of classes, K, it is not clear how to compare the performance obtained in the two
settings.

In [20] a different approach was taken. Even though the adaptation of the MAE
and MER to a confusion matrix form surpasses standard forms, there are still is-
sues regarding these metrics. Some of the vicissitudes as mentioned in [20] encom-
pass: Equally misclassification costs, metrics unable to evaluate example dependent
costs [14] or metrics more proper to ranking problems. Having Cardoso and Sousa
identified some key advantages of using the CM form, and given the merit of both
MAE and MER fundamental principles, they proposed a new one that takes advan-
tage of all as a single optimisation problem. This new metric chooses pairs of obser-
vations from the CM that do not contradict the relative order given by the classifier
and the true relative class order which minimise the cost of a global optimisation
procedure. The choice is done in a way that minimises the deviation of the pairs to
the main diagonal while maximising the entries values in the path that cross the CM.
This was formalised as

OCγ
β = min

{
1− ∑(r,c)∈path nr,c

N +
(
∑∀(r,c) nr,c|r− c|γ)1/γ + β ∑

(r,c)∈path

nr,c|r− c|γ
}
, (7)

where the minimisation is performed over all possible paths from (1,1) to (K,K). γ
and β were defined based upon empirical experiments.

Other techniques can also go through data generators methodologies where one
can control the statistical properties herein aiding in the learners benchmark [47].
More importantly, techniques capable to manipulate Bayes error rate can foster new
lines of research where fair learners comparison [7] and the development of new
ones can take place.

In [20] it is raised a question that interesting enough has not been debated
since [81] in the ordinal context. As one knows, the usage of such metrics in the
design of classifiers can be done on two distinct situations. A first use is ‘externally’
to the classifier, using the metric to select the best parametrization of the classifier
(usually when performing a cross-validation procedure). A second possibility is to
embed the new metric in the classifier design, adapting the internal objective func-
tion of the classifier, replacing loss functions based on standard measures by a loss
function based on the proposed measure. For instance, the standard loss function
of a neural network based on the square of the error or on cross-entropy could be
replaced by an error evaluated by an appropriate metric [59]. Lee [81] accomplished
such for the design of ordinal trees, but since then few works have addressed this
subject in the ordinal context.
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It is interesting that only recently we saw a significant growth of the awareness
of this topic importance. Even though some works have already tackled this issue,
all lack on concretely assessing the performance of a given ordinal learning model.
Until now, new metrics have been designed and compared against MAE followed by
some reasoning. The problem resides how close a metric is in expressing accuracy.
Different prosaically strategies can pass through the definition of prior costs for each
class [95] or, when using a given set of different metrics, a meta-metric to assess the
performance of metrics should be in place as suggested by Cardoso [20].

5 Conclusion

Multicriteria (MC) has been studied for over more than five decades where recent
years presented interesting developments. Aside novel methodologies, a trend to-
wards the generalisation of this problem was identified where at the same time a
new light was shed over this topic thanks to a niche of applications. In this chapter
a thoroughly review was conducted on two major disciplines: Operations research
(OR) and artificial intelligence (AI).

MCDA has a strong connection with OR community. Fuzzy Set theory research
community was one that rapidly proposed new models towards these problems.
Their capability to handle uncertainty can be identified as an asset in these mod-
els. Even though in other research fields MC is giving its first steps, a new trend
is appearing as a number of different studies are taking place. On the other hand,
evolutionary approaches are still on the very beginning regarding ordinal problems.
It also has been claimed that some approaches do not cope well with many criteria
or do not capture correctly every rationale taken by the decision maker.

In the AI domain, it was described that albeit the myriad of techniques, some do
not totally incorporate or effectively use the additional information of order in the
classifier construction. Others have a higher complexity to be useful in real prob-
lems or require specific optimisation algorithms during the classifier construction.
Also, it was identified that is still common the usage of regression approaches to
solve the ordinal data problem. Notwithstanding, some improvements have been
achieved. Simplifications have been introduced through the usage of a standard bi-
nary classification techniques and fundamental principles towards the ordinal data
problem. Such theories have proved to be valuable in the design of simpler classi-
fiers and when not possible, in the design of posterior rules to impose ordinality.
Another question that has recently been tackled concerns about finding good met-
rics for measuring learners performance. We reviewed many adaptations of standard
metrics and new ones that optimise different criteria of the learner behaviour.

In the end, and in spite of much of what has been achieved, a fair comparison
between methods of both fields is still lacking. It was also clear that MC is very rich
in terms of nomenclature. Having identified what has been achieved and current
open issues, it is expected that this study leads to future technical developments and
topic convergence.
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Diophantine and Lattice Cryptanalysis
of the RSA Cryptosystem

Abderrahmane Nitaj

Abstract. The RSA cryptosystem, invented in 1977 is the most popular public cryp-
tosystem for electronic commerce. Its three inventors Rivest, Shamir and Adleman
received the Year 2002 Turing Award, the equivalent Nobel Prize in Computer Sci-
ence. RSA offers both encryption and digital signatures and is deployed in many
commercial systems. The security of RSA is based on the assumption that factoring
large integers is difficult. However, most successful attacks on RSA are not based
on factoring. Rather, they exploit additional information that may be encoded in the
parameters of RSA and in the particular way in which RSA is used. In this chap-
ter, we give a survey of the mathematics of the RSA cryptosystem focussing on the
cryptanalysis of RSA using a variety of diophantine methods and lattice-reduction
based techniques.

Keywords: RSA, Lattice reduction, Continued fractions, Factorization, Copper-
smith’s method.

1 Introduction

The work done by Alan Turing brought computer science and cryptography into the
modern world. Then, within a few decades, cryptography has evolved from a branch
of mathematics into a self-contained field of science. Basically, there are two types
of cryptography: symmetric-key cryptography and public-key cryptography. The
concept of the public-key cryptography was proposed by Diffie and Hellman [9]
in 1976. Since then, a number of public-key cryptosystems have been proposed to
realize the notion of public-key cryptosystems. The RSA public-key cryptosystem
was invented by Rivest, Shamir, and Adleman [21] in 1977. These days the RSA
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system is the best known and most widely accepted public key cryptosystem. RSA
is most commonly used for providing privacy and ensuring authenticity of digital
data. It is used in several operating systems, like Microsoft, Apple and Sun. It is also
used for securing web traffic, e-mail and smart cards. Hence, many practical issues
have been considered when implementing RSA in order to reduce the encryption or
the execution decryption time. Despite more than three decades of intensive research
on the RSA cryptosystem, no devastating attacks on it have been found so far. The
main attacks on RSA include elementary attacks on the modulus, low private and
public exponent attacks, timing attacks, partial key exposure attacks and are based
mostly on lattice reduction methods. There are many papers describing all major
known cryptanalytic attacks and defenses of the RSA cryptosystem and its variants
(see for instance [4], [13], [24]).

The mathematical operations in RSA depend on three parameters, the modulus
N = pq which is the product of two large primes p and q, the public exponent e and
the private exponent d, related by the congruence ed ≡ 1 (mod (p−1)(q−1)). The
encryption and decryption in RSA require taking heavy exponential multiplications
modulus the large integer N = pq. To reduce the encryption time, one may wish to
use a small public exponent e. On the other hand, to reduce the decryption time,
one may also be tempted to use a short secret exponent d. The choice of a small
d is especially interesting when the device performing secret operations has limited
power. In 1990, Wiener [23] presented an attack on RSA with short secret exponent,
called continued fraction attack. He used Diophantine approximations to show that
if d < N0.25, then it easy to recover d, p and q making RSA totally insecure.

In 1996, Coppersmith [8] introduced two methods for finding small roots of poly-
nomial equations using lattice reduction, one for the univariate modular case and
another one for the bivariate case over the integers. His method is based on lattice-
reduction techniques. Since then, many cryptanalytic applications have been based
on these methods, for example the factorization of N = pq knowing a fraction of
the most significant bits on each factor. Another well-known example is the crypt-
analysis of RSA with small private key. In 1999, based on the seminal work of
Coppersmith, Boneh and Durfee [5] presented an attack on RSA which recovers p
and q if d < N0.292.

In this chapter, we present the diophantine and the lattice techniques used in
the cryptanalysis of RSA as well as the most powerful attacks on RSA using these
techniques. The first part is devoted to the diophantine approximations and their
applications to RSA, namely some generalizations of Wiener’s method. The sec-
ond part presents the lattice-reduction methods and related attacks on RSA. The
third part presents some attacks combining the diophantine approximations and the
lattice-reduction techniques.

2 The RSA Cryptosystem

We review the basic RSA public key system. We describe five constituent algo-
rithms: key generation, encryption, decryption, signature and signature verification.
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The key generation algorithm takes a security parameter k as input. The algorithm
generates two (k/2)-bit primes, p and q, and sets N = pq. Popular parameters are
k = 1024 and k = 2048. The large number N is called the RSA modulus and the
number φ(N) = (p − 1)(q− 1) is the Euler totient function. Next, the algorithm
picks some value e satisfying gcd(e,φ(N)) = 1 and computes d such that ed ≡ 1
(mod φ(N)) and d < φ(N). The pair (N,e) is called the public key and (N,d) is
the private key. The value e is called the public exponent while d is the private ex-
ponent. To encrypt a message using an RSA public key (N,e), one first transforms
the message to obtain a positive integer M with M < N. The encrypted text is then
computed as C ≡ Me (mod N). To decrypt an encrypted message C using the pri-
vate key (N,d), one simply computes M ≡Cd (mod N). An encrypted message C
can be digitally signed by applying the decryption operation S ≡Cd (mod N). The
digital signature can then be verified by applying the encryption operation C ≡ Se

(mod N). To show that the decrypting function inverts the encryption function,
rewrite ed ≡ 1 (mod φ(N)) as an equation ed = 1+ kφ(N) for some positive in-
teger k. A well known of Euler (see e.g. [10], Theorem 72) says that Mφ(N) ≡ 1
(mod N) if gcd(M,N) = 1. Hence

Ce ≡ Med ≡ M1+kφ(N) ≡ M ·Mkφ(N) ≡ M ·
(

Mφ(N)
)k ≡ M (mod N).

Below we describe in detail the initial schemes of the RSA Cryptosystem.

• RSA Key Generation
INPUT: The bitsize k of the modulus.
OUTPUT: A public key (N,e) and a private key (N,d).

1. Generate two large random and distinct (k/2)-bit primes p and q.
2. Compute N = pq and φ(N) = (p− 1)(q− 1).
3. Choose a random integer e such that 3 ≤ e < φ(N) and gcd(e,φ(N)) = 1.
4. Compute the unique integer d such that 1≤ e< φ(N) and ed ≡ 1 (mod φ(N)).
5. Return the public key (N,e) and the private key (N,d).

• RSA Encryption
INPUT: The public key (N,e) and the plaintext m.
OUTPUT: The ciphertext C.

1. Represent the message m as an integer M with 1 ≤ M ≤ N − 1.
2. Compute C ≡ Me (mod N).
3. Return the ciphertext C.

• RSA Decryption
INPUT: The private key (N,d) and the the ciphertext C.
OUTPUT: The message m.

1. Compute M ≡Cd (mod N).
2. Transform the number M to the message m.
3. Return the message m.
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3 Diophantine Approximations

The theory of Diophantine approximations, named after Diophantus of Alexandria,
deals with the approximation of real numbers by rational numbers. This can be
achieved by continued fractions. Continued fractions have many properties and ap-
plications in Number Theory and cryptographic problems. They are used to find
good Diophantine approximations to rational and irrational numbers, to solve dio-
phantine equations and to build attacks on some instances of RSA. In this section,
we examine the basic properties of continued fractions.

Definition 1 (Continued Fraction Expansion). A continued fraction is an expres-
sion of the form

a0 +
1

a1 +
1

. . . +
1

am +
. . .

= [a0,a1, . . . ,am, . . .],

where a0 is an integer and an are positive integers for n ≥ 1. The an are called the
partial quotients of the continued fraction.

It is clear that every finite continued fraction defines a rational number. Conversely,
every real number x �= 0 can be expanded as a finite or infinite continued fraction by
the continued fraction algorithm as follows. Let �x� denote the greatest integer less
than or equal to x. Let x0 = x and a0 = �x0�. Then, for i ≥ 0, define

xi+1 =
1

xi − ai
, ai+1 = �xi+1�.

The procedure terminates only if ai = xi for some i ≥ 0, that is if x is a rational
number.

The continued fraction of a rational number x = a
b with gcd(a,b) = 1 can be

computed by the Euclidean Algorithm in time O(logb). Set r0 = a and r1 = b. For
i ≥ 0, divide ri by ri+1:

ri = airi+1 + ri+2, 0 ≤ ri+2 < ri+1.

This process stops when rm+2 = 0 for some m ≥ 0.
In 1990, Wiener [23] proposed an attack on RSA with modulus N and small

private exponent d. The attack is based on the convergents of the continued fraction
expansion of e

N .

Definition 2 (Convergent). For 0 ≤ n ≤ m, the nth convergent of the continued
fraction [a0,a1, · · · ,am] is [a0,a1, · · · ,an].

For each n ≥ 0, we define

p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2.
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It is well known that the nth convergent of the continued fraction expansion satisfies
[a0,a1, · · · ,an] =

pn
qn

. More generally, there are various results satisfied by the con-
vergents of a continued fraction. We need only the following result on Diophantine
approximations (for more general information see [10] and [7]).

Theorem 1. Let x be a real positive number. If a and b are positive integers such
that gcd(a,b) = 1 and ∣∣∣x− a

b

∣∣∣< 1
2b2 ,

then a
b is one of the convergents of the continued fraction expansion of x.

4 Diophantine Approximations Cryptanalysis of RSA

In this section, we describe four attacks on RSA using Diophantine approximations.

4.1 Wiener’s Attack on RSA

A well-known attack on RSA with low secret-exponent d was given by Wiener [23]
in 1990. Wiener showed that using continued fractions, one can efficiently recover
the secret exponent d from the public key (N,e) as long as d < 1

3 N
1
4 . For N = pq

with q < p < 2q, we present below Wiener’s attack on RSA which works for the

bound d <

√
6
√

2
6 N

1
4 which is slightly better than Wiener’s bound since

√
6
√

2
6 ≥

1
3 + 0.15.

We will use the following useful simple lemma.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then

√
2

2

√
N < q <

√
N < p <

√
2
√

N and 2
√

N < p+ q <
3
√

2
2

√
N.

Proof. Suppose q < p < 2q. Multiplying by q, we get q2 < N < 2q2. Hence√
2

2

√
N < q <

√
N. Using p = N

q , we get
√

N < p <
√

2
√

N. This proves the first

assertion. To prove the second one, observe that (p+ q)2 = (p− q)2 + 4N > 4N,
which gives p+ q > 2

√
N. On the other hand, we have

(p+ q)2 = (p− q)2 + 4N <

(√
2
√

N −
√

2
2

√
N

)2

+ 4N =
9
2

N.

Hence p+ q < 3
√

2
2

√
N. This terminates the proof. ��

Theorem 2 (Wiener). Let N = pq be an RSA modulus with q < p < 2q. Let e <

φ(N) be a public exponent and d be the corresponding private key. If d <

√
6
√

2
6 N

1
4 ,

then, we can find the factorization of N in time polynomial in logN.
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Proof. We rewrite the equation ed − k(N + 1 − p − q) = 1 as ed − kN = 1 −
k (p+ q− 1). Dividing by Nd, we get∣∣∣∣ e

N
− k

d

∣∣∣∣= |1− k (p+ q− 1)|
Nd

<
k (p+ q− 1)

Nd
. (1)

Since e < φ(N), then k = ed−1
φ(N) <

ed
φ(N) < d. Hence (1) gives∣∣∣∣ e

N
− k

d

∣∣∣∣ < p+ q− 1
N

<
p+ q

N
.

Using Lemma 1, this implies∣∣∣∣ e
N
− k

d

∣∣∣∣< 3
√

2
2 N

1
2

N
=

3
√

2
2

N− 1
2 .

Suppose that d <

√
6
√

2
6 N

1
4 , then

3
√

2
2

N− 1
2 <

1
2d2 ,

and consequently ∣∣∣∣ e
N
− k

d

∣∣∣∣< 1
2d2 .

Hence Theorem 1 gives k
d as a convergent of the continued fraction expansion of e

N .
Since the continued fraction algorithm is polynomial time in logN, this terminates
the proof. ��

4.2 de Weger’s Generalization of Wiener’s Attack

In 2002, de Weger [22] proposed a generalization of Wiener’s attack on RSA. de

Weger extended Wiener’s bound
√

6
√

2
6 N

1
4 to d < N

3
4

|p−q| which is equivalent with

Wiener’s bound for the standard RSA, that is for |p− q| = O
(

N
1
2

)
. We describe

below the attack of de Weger.

Theorem 3 (de Weger). Let N = pq be an RSA modulus with q < p < 2q and p−
q=Nβ . Let e< φ(N) be a public exponent and d <Nδ be the corresponding private
key. If δ < 3

4 −β , then, we can find the factorization of N in time polynomial in logN.

Proof. We transform the equation ed− k(N + 1− p− q)= 1 to

ed− k
(

N + 1− 2
√

N
)
= 1− k

(
p+ q− 2

√
N
)
.
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Dividing by
(
N + 1− 2

√
N
)

d and using p+ q > 2
√

N as proved in Lemma 1, we
get ∣∣∣∣ e

N + 1− 2
√

N
− k

d

∣∣∣∣=
∣∣1− k

(
p+ q− 2

√
N
)∣∣(

N + 1− 2
√

N
)

d
<

k
(

p+ q− 2
√

N
)(

N + 1− 2
√

N
)

d
. (2)

Consider the terms of the right side of (2). We have N +1−2
√

N > 1
2 N for N ≥ 12.

Using Lemma 1, we get

p+ q− 2
√

N =
(p+ q)2 − 4N

p+ q+ 2
√

N
<

(p− q)2

4
√

N
.

Since e < φ(N), then k = ed−1
φ(N) <

ed
φ(N) < d. Consequently, the inequality (2) gives

∣∣∣∣ e

N + 1− 2
√

N
− k

d

∣∣∣∣< k
d
·
(p−q)2

4
√

N
1
2 N

<
(p− q)2

2N
√

N
.

In order to apply Theorem 1, a sufficient condition is

(p− q)2

2N
√

N
<

1
2d2 ,

or equivalently d < N
3
4

|p−q| . Using d < Nδ and |p−q|= Nβ , the condition is fulfilled

if δ < 3
4 − β . Hence we can use the continued fraction expansion of e

N+1−2
√

N
to

find k
d among the convergents. This proves the theorem. ��

4.3 Another Generalization of Wiener’s Attack

Let N = pq be an RSA modulus with q< p< 2q. We present in this section an attack
on RSA with a public exponent e satisfying an equation ex−(N+1−ap−bq)y= 1
where a

b is an unknown approximation of q
p (see [20] for more details). Notice that

when a = b = 1, the equation reduces to ed − k(N + 1− p− q) = 1 which is the
main RSA key equation. We first define the notion of approximation.

Definition 3. Let N = pq be an RSA modulus with q < p < 2q and a and b be

positive integers. We say that a
b is an approximation of q

p if a =
[

bq
p

]
where [x] is

the closest integer to the real number x.

A key role in the attack is played by the following lemma.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Let a
b be an unknown

approximation of q
p where a is not a multiple of q. Suppose we know the integer

ap+ bq. Then we can find the factorization of N.
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Proof. Suppose we know S = ap+ bq where a
b is an unknown approximation of q

p .
We have

S2 = (ap+ bq)2 = (ap− bq)2+ 4abN. (3)

Since, by definition, a =
[

bq
p

]
, then

∣∣∣a− bq
p

∣∣∣≤ 1
2 . Combining with Lemma 1, we get

|ap− bq| ≤ 1
2

p <

√
2

2

√
N.

It follows that (ap− bq)2 < 1
2 N. Hence, from (3) we derive

0 <
S2

4N
− ab =

(ap− bq)2

4N
<

1
8
.

This implies that ab is the integer part of S2

4N , that is ab =
⌊

S2

4N

⌋
. Then (3) gives

|ap− bq|=
√

S2 − 4

⌊
S2

4N

⌋
N.

Combining with ap+ bq= S, we get

ap =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

(
S+

√
S2 − 4

⌊
S2

4N

⌋
N

)
if ap− bq> 0,

1
2

(
S−

√
S2 − 4

⌊
S2

4N

⌋
N

)
if ap− bq< 0.

Since a is not a multiple of q, we then obtain p by computing gcd(ap,N). ��
Theorem 4. Let N = pq be an RSA modulus with q < p < 2q. Let a

b be an unknown
approximation of q

p and e be a public exponent satisfying an equation ex− (N+1−
ap− bq)y= 1 with

xy <
N

2(ap+ bq)
.

Then N can be factored in time polynomial in logN.

Proof. Rewrite the equation ex− (N + 1− ap− bq)y = 1 as ex−Ny = 1− (ap+
bq− 1)y and divide by Nx. We get∣∣∣ e

N
− y

x

∣∣∣= |1− (ap+ bq−1)y|
Nx

<
(ap+ bq− 1)y

Nx
<

(ap+ bq)y
Nx

.

Suppose xy < N
2(ap+bq) , then (ap+bq)y

Nx < 1
2x2 . Hence, by Theorem 1, y

x is a convergent

of the continued fraction expansion of e
N . Since gcd(x,y) = 1, this gives x and y.

Next, we use x and y to transform the equation ex − (N + 1 − ap− bq)y = 1 to
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ap+ bq = N + 1− ex−1
y , where the right hand side is completely known. Hence,

using Lemma 2, we find the factorization of N in polynomial time. ��
In Section 7.4, we will present an attack on RSA when the public exponent e satisfies
the same equation ex− (N + 1− ap− bq)y= 1 using lattice reduction methods.

4.4 Nassr et al. Generalization of Wiener’s Attack

Let N = pq be an RSA modulus with q < p < 2q. Suppose we know an approxima-
tion p0 of p with |p− p0| < 1

8 Nα . In 2008, Nassr et al. [19] presented a continued

fraction attack on RSA with a private exponent satisfying d < N
1−α

2 .

Theorem 5. Let N = pq be an RSA modulus with q < p < 2q. Suppose we know
an approximation p0 of p with |p− p0| < 1

8 Nα . Let e be a public exponent. If the

corresponding private exponent d satisfies d <N
1−α

2 , then N can be factored in time
polynomial in logN.

Proof. Set c= 1
8 . Suppose we know p0 >

√
N and α such that |p− p0|< cNα . Then

p0 − cNα < p < p0 + cNα . By lemma 1, we should also suppose
√

N < p0 − cNα

and p0 + cNα <
√

2
√

N. Using q = N
p , we get

N
p0 + cNα < q <

N
p0 − cNα .

It follows that

p0 +
N

p0 + cNα − cNα < p+ q < p0 +
N

p0 − cNα + cNα .

Define P as the mean value

P =
1
2

(
2p0 +

N
p0 + cNα +

N
p0 − cNα

)
= p0 +

N p0

p2
0 − c2N2α .

Then

|p+ q−P|< 1
2

(
N

p0 − cNα − N
p0 + cNα + 2cNα

)
=

cN1+α

p2
0 − c2N2α + cNα .

Since p0 − cNα >
√

N, then p0 + cNα >
√

N and p2
0 − c2N2α > N. Hence

|p+ q−P|< cN1+α

p2
0 − cN2α + cNα <

cN1+α

N
+ cNα = 2cNα .

Rewrite the key equation ed− kφ(N) = 1 as ed− k(N + 1−P) = 1+ k(P− p− q).
We divide by (N + 1−P)d and get



148 A. Nitaj∣∣∣∣ e
N + 1−P

− k
d

∣∣∣∣ = |1+ k(P− p− q)|
(N + 1−P)d

<
1+ k|P− p− q|
(N + 1−P)d

≤ (1+ k)|P− p− q|
(N + 1−P)d

.

Since k = ed−1
φ(N)

< d, then 1+ k ≤ d. Combining this with |p+ q−P|< 2cNα , we
get ∣∣∣∣ e

N + 1−P
− k

d

∣∣∣∣< 2cNα

N + 1−P
.

By Lemma 1, we have P < 3
√

2
2

√
N. Then, for N ≥ 14, we get

N + 1−P> N + 1− 3
√

2
2

√
N >

1
2

N.

This implies that
∣∣ e

N+1−P − k
d

∣∣ < 4cNα−1. In order to apply Theorem 1, we must

have 4cNα−1 < 1
2d2 . This is fulfilled if

d <
1√
8c

N
1−α

2 = N
1−α

2 ,

where we used c = 1
8 . Using d = Nδ , a sufficient condition is δ < 1−α

2 . Then k
d is

a convergent of e
N+1−P . Using k and d, we get the factorization of N in polynomial

time. ��
Notice that when α = 1

2 , the bound is d < N
1
4 as expected in Wiener’s attack (The-

orem 2).

5 Lattices

The most powerful attacks on RSA are based on techniques that use lattice basis
reduction algorithms, such as the LLL algorithm. Invented by Lenstra, Lenstra and
Lovász [17] in 1982, LLL is a polynomial time algorithm for lattice basis reduction
with many applications in cryptography. A typical example of the powers of the
LLL algorithm is the following problem.

Small Roots of a Modular Polynomial Problem: Given a composite N with un-
known factorization and a polynomial f (x) of degree d, find all small solutions x0

to the polynomial equation f (x) ≡ 0 (mod N).

In his seminal work, Coppersmith [8] solved this problem in 1996 for solutions x0

satisfying |x0|< N
1
d using the LLL algorithm.

In this section, we give the mathematical background on lattices and the LLL
algorithm for basis reduction. We start by giving a formal definition of a lattice.
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Definition 4 (Lattice). Let n ≤ m be two positive integers and b1, · · · ,bn ∈ IRm be
n linearly independent vectors. A lattice L spanned by {b1, · · · ,bn} is the set of all
integer linear combinations of b1, · · · ,bn, that is

L =

{
n

∑
i=1

xibi | xi ∈ ZZ

}
.

The set 〈b1 . . . ,bn〉 is called a lattice basis for L . The lattice dimension is
dim(L ) = n.

In general, a basis for L is any set of independent vectors that generates L . Any
two bases for a lattice L are related by a matrix having integer coefficients and
determinant equal to ±1. Hence, all the bases have the same Gramian determinant
det1≤i, j≤n

〈
bi,b j

〉
where

〈
bi,b j

〉
denotes the scalar product of vectors bi, b j. The

determinant of the lattice is then

det(L ) =

(
det

1≤i, j≤n

〈
bi,b j

〉) 1
2

.

Let v = ∑n
i=1 xibi be a vector of L . We define the Euclidean norm of v as

‖v‖=
(

n

∑
i=1

x2
i

) 1
2

.

Given a basis 〈b1 . . . ,bn〉 of the lattice L , the Gram-Schmidt process gives an or-
thogonal set 〈b∗1 . . . ,b∗n〉. The determinant of the lattice is then det(L ) = ∏n

i=1 ‖b∗i ‖.
The Gram-Schmidt procedure starts with b∗1 = b1, and then for i ≥ 2,

i ≥ 2, b∗i = bi −
i−1

∑
j=1

μi, jb
∗
j , where μi, j =

〈bi,b∗j〉
〈b∗j ,b∗j〉

for 1 ≤ j < i.

Note that 〈b∗1 . . . ,b∗n〉 is not a basis of the lattice L . Since every nontrivial lattice has
infinitely many bases, some bases are better than others. The most important quality
measure is the length of the basis vectors. For arbitrary lattices, the problem of com-
puting a shortest vector is known to be NP-hard under randomized reductions [1].
However, in many applications, the LLL algorithm computes in polynomial time a
reduced basis with nice properties.

Definition 5 (LLL Reduction). Let B = 〈b1, . . . ,bn〉 be a basis for a lattice L and
let B∗ = 〈b∗1, . . . ,b∗n〉 be the associated Gram-Schmidt orthogonal basis. Let

μi, j =
〈bi,b∗j〉
〈b∗j ,b∗j〉

for 1 ≤ j < i.

The basis B is said to be LLL reduced if it satisfies the following two conditions:
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|μi, j| ≤ 1
2
, for 1 ≤ j < i ≤ n,

3
4
‖b∗i−1‖2 ≤ ‖b∗i + μi,i−1b∗i−1‖2 for 1 < i ≤ n.

Below we give useful inequalities satisfied by an LLL reduced basis derived from
the LLL reduction definition (for a proof see e.g. [17], [7], [18]).

Theorem 6. Let L be a lattice of dimension n. Let B = 〈b1, . . . ,bn〉 be an LLL
reduced basis and let B∗ = {b∗1, . . . ,b

∗
n} be the associated Gram-Schmidt orthogonal

basis. Then

‖b1‖ ≤ ‖b2‖ ≤ . . .≤ ‖bi‖ ≤ 2
n(n−i)

4(n+1−i) (det(L ))
1

n+i−1 for 1 ≤ i ≤ n.

6 Small Solution of Polynomial Equations

In this section, we present some applications of lattices in finding small roots to
polynomial equations. We provide some very useful theorems that will make the
analysis of RSA much easier to follow. This includes the seminal work of Cop-
persmith [8] for finding small roots of univariate modular polynomial equations, the
recently proposed method of Herrmann and May [12] for solving the bivariate linear
modular equation, and the small inverse problem introduced by Boneh and Durfee
in [5]. The main idea behind these methods is to transform a modular polynomial
equation to an equation over the integers. We need the following definition.

Definition 6. Given a polynomial f (x1, . . . ,xn) = ∑i1,...,in ai1,...,inxi1 · · ·xin and real
positive numbers X1, . . . ,Xn, we define the Euclidean norm of the polynomial
f (X1x1, . . . ,Xnxn) by

‖ f (X1x1, . . . ,Xnxn)‖=
(

∑
i1,...,in

(
ai1,...,inX i1

1 · · ·Xin
n

)2
) 1

2

.

6.1 Howgrave-Graham’s Theorem

To transform a modular polynomial equation h(x1, . . . ,xn)≡ 0 (mod B) into a poly-
nomial equation h(x1, . . . ,xn) = 0 over the integers, a sufficient condition is given by
the following theorem by Howgrave-Graham [14] who reformulated Coppersmith’s
ideas of finding modular roots.

Theorem 7 (Howgrave-Graham). Let h(x1, . . . ,xn) ∈ ZZ[x1, . . . ,xn] be a polyno-

mial with at most ω monomials. Suppose that h(x(0)1 , . . . ,x(0)n ) ≡ 0 (mod B) where

|x(0)0 |< X1, . . . , |x(0)n |< Xn and ‖h(X1x1, . . . ,Xnxn)‖< B√
ω . Then h(x(0)1 , . . . ,x(0)n ) = 0

holds over the integers.

Proof. Let h(x1, . . . ,xn) = ∑ai1,...,inxi1
1 . . .xin

n with ω monomials. We have
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∣∣∣h(x(0)1 , . . . ,x(0)n )
∣∣∣ = ∣∣∣∣∑ai1,...,in

(
x(0)1

)i1
. . .

(
x(0)n

)in
∣∣∣∣

≤ ∑
∣∣∣∣ai1,...,in

(
x(0)1

)i1
. . .

(
x(0)n

)in
∣∣∣∣ .

Suppose |x(0)0 |< X1, . . . , |x(0)n |< Xn. Then∣∣∣h(x(0)1 , . . . ,x(0)n )
∣∣∣< ∑

∣∣∣ai1,...,inX i1
1 . . .Xin

n

∣∣∣ . (4)

For (a,b) ∈ IR2, the Cauchy-Schwarz inequality states that(
∑
k

akbk

)2

≤ ∑
k

a2
k ∑

k

b2
k .

Using this with ak = 1 and bk = ai1,...,inX i1
1 . . .Xin

n , we get(
∑

∣∣∣ai1,...,inX i1
1 . . .Xin

n

∣∣∣)2 ≤ ∑12 ∑
(

ai1,...,inX i1
1 . . .Xin

n

)2

= ω‖h(X1x1, . . . ,Xnxn)‖2,

which gives

∑
∣∣∣ai1,...,in X i1

1 . . .Xin
n

∣∣∣≤√
ω‖h(X1x1, . . . ,Xnxn)‖. (5)

Now, suppose that ‖h(X1x1, . . . ,Xnxn)‖< B√
ω . Then combining (4) and (5), we get∣∣∣h(x(0)1 , . . . ,x(0)n )

∣∣∣< ∑
∣∣∣ai1,...,inX i1

1 . . .Xin
n

∣∣∣<√
ω‖h(X1x1, . . . ,Xnxn)‖< B.

Hence if h(x(0)1 , . . . ,x(0)n ) ≡ 0 (mod B), then h(x(0)1 , . . . ,x(0)n ) = 0 holds over the
integers. ��

6.2 Coppersmith’s Theorem

In 1996, Coppersmith [8] described very clever techniques to find small modular
roots of univariate polynomials and small integer roots of bivariate polynomials.
The idea behind Coppersmith’s method for finding a small root of a polynomial f
is to reduce this problem to finding the same small root of a polynomial h over the
integers. We present a generalization of Coppersmith’s result for univariate modular
polynomial equations as given by May [18] in 2003.

Theorem 8. Let N be an integer of unknown factorization, which has a divisor b >
Nβ . Let fb(x) be a monic univariate polynomial of degree d and ε > 0. Then we can
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find all solutions x0 for the equation fb(x)≡ 0 (mod b) such that |x0|< 1
2 N

β2

d −ε in
polynomial time.

Proof. We fix two integers m, t and define a set of univariate polynomials gi, j(x) by

gi, j(x) = xi( fb(x))
jNm− j , j = 0, . . . ,m, 0 ≤ i ≤ t − 1.

Since fb(x0) ≡ 0 (mod b), then ( fb(x0))
jNm− j ≡ 0 (mod bm). This means that all

polynomials gi, j(x) share the root x0 modulo Nm. Hence, any integer linear combi-
nation h(x) of the polynomials gi, j(x) also has the root x0 modulo Nm. The goal is to
find a polynomial h(x) satisfying the conditions of Howgrave-Graham’s Theorem 7
and then solve h(x) over the integers. Notice that the degrees of the polynomials
gi, j(Xx) satisfy

0 ≤ degi, j gi, j(Xx)≤ dm+ t− 1.

Let n ≥ (m + 1)d − 1. We consider the lattice L generated by a basis matrix
whose rows are the coefficient vectors of gi, j(Xx) for j = 0, . . . ,m and 0 ≤ i ≤
d − 1, completed with the polynomials rk = xk for (m + 1)d ≤ k ≤ n − 1. We
get a triangular matrix as illustrated in Fig. 1 where Ik is the unit matrix of size
(n− (m+ 1)d+ 1)× (n− (m+ 1)d+ 1).

1 x . . . xd−1 . . . xd j . . . x( j+1)d−1 . . . xdm . . . x(m+1)d−1 . . .xn−1

g0,0 Nm

g1,0 NmX

.

.

.

.
.
.

gd−1,0 NmXd−1

.

.

. ∗ ∗ . . . ∗
.
.
.

g0, j ∗ ∗ . . . ∗ . . . Nm− jXd j

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

. . . .

.
.
.

gd−1, j ∗ ∗ . . . ∗ . . . ∗ . . . Nm− jX(d+1) j−1

.

.

. ∗ ∗ . . . ∗ . . . ∗ . . . ∗
.
.
.

g0,m ∗ ∗ . . . ∗ . . . ∗ . . . ∗ . . . Xdm

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

. . . .

.

.

.

.

.

. . . .

.
.
.

gd−1,m ∗ ∗ · · · ∗ . . . ∗ . . . ∗
.
.
. ∗ . . . X(m+1)d−1

(rk ) Ik

Fig. 1 Coppersmith’s matrix of the polynomials gi, j(Xx) and rk(x) in the basis
(
1, . . . ,xn−1

)
The determinant of the lattice L is det(L ) = N

1
2 m(m+1)dX

1
2 n(n−1) where n ≥

(m+ 1)d − 1 is the dimension of L . Applying Theorem 6 with i = 1, we get an
LLL-reduced basis with a small vector h(x) satisfying

‖h(Xx)‖ ≤ 2
1
4 (n−1)(det(L ))

1
n = 2

1
4 (n−1)N

1
2n m(m+1)dX

1
2 (n−1).
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Moreover, we have h(x0) ≡ 0 (mod b)m. If ‖h(Xx)‖ ≤ bm√
n , then Howgrave-

Graham’s result 7 applies and we can find x0 by solving h(x) = 0 over the integers.
A sufficient condition is then

2
1
4 (n−1) ·N 1

2n m(m+1)d ·X 1
2 (n−1) <

bm
√

n
,

which implies

X < 2−
1
2 ·N−m(m+1)d

n(n−1) ·b 2m
n−1 n−

1
n−1 .

Since b ≥ Nβ , this holds if

X < 2−
1
2 ·n− 1

n−1 ·N
(2nβ−(m+1)d)m

n(n−1) .

Consider the term (2nβ−(m+1)d)m
n(n−1) as a function of m. We obtain a lower bound by

substituting m = 2nβ−d
2d , namely

(2nβ − (m+ 1)d)m
n(n− 1)

≥ β 2

d
− d

4n
+

(d − 2β )2

(n− 1)d
≥ β 2

d
− ε,

where ε =
∣∣∣ d

4n − (d−2β )2

(n−1)d

∣∣∣. It follows that a sufficient condition for X is that

X ≤ 2−
1
2 ·n− 1

n−1 ·N β2

d −ε .

Since 2−
1
2 n−

1
n−1 > 1

2 for n ≥ 7, the condition reduces to X < 1
2 N

β2

d −ε , which con-
cludes the proof. ��
From the previous theorem, we deduce the following result where the term ε is
canceled.

Theorem 9 (Coppersmith). Let N be an integer of unknown factorization. Let b ≥
Nβ be a divisor of N and fb(x) be a univariate, monic polynomial of degree d. Let
cN be a function that is upper-bounded by a polynomial in logN. Then we can find

all solutions x0 for the equation fb(x) ≡ 0 (mod b) such that |x0|< cNN
β2

d in time
polynomial in (logN,d).

Proof. With the parameter choice ε = 1
logN , we get

1
2

N
β2

d −ε =
1
2

N
β2

d N−ε =
1
2

N
β2

d N− 1
logN =

1
4

N
β2

d

where we used N− 1
logN = 1

2 . Hence, Theorem 8 implies that one can find all solutions

x0 of the equation fb(x) ≡ 0 (mod b) such that |x0| < 1
4 N

β2

d in time polynomial
in (logN,d). To find all solutions x0 of the equation fb(x) ≡ 0 (mod b) such that

|x0| < cNN
β2

d , we consider the 4cN different intervals in

[
−cNN

β2

d ,cNN
β2

d

]
, each
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of size 1
4 N

β2

d and centered at xi = −cN + 2i+1
8 for i ≥ 0. In each interval, we can

apply Theorem 8 with the polynomial fb(x− xi) and get all solutions. ��

6.3 Herrmann and May’s Theorem for Bivariate Modular Linear
Equations

In 2008, Herrmann and May [12] proposed a method for solving the bivariate modu-
lar linear equation f (x,y) = ax+by+c≡ 0 (mod p) where p is an unknown divisor
of N. We review below the method. The method relies on the following standard as-
sumption in order to extract the solution (x0,y0) efficiently.

Assumption 1. Let h1(x1, . . . ,xn), . . . ,hn(x1, . . . ,xn) ∈ ZZ[x1, . . . ,xn] be the polyno-
mials that are found by Coppersmith’s algorithm. Then the ideal generated by the
polynomial equations h1(x1, . . . ,xn) = 0, · · · ,hn(x1, . . . ,xn) = 0 has dimension zero.
Equivalently, the resultant computations of the hi yield nonzero polynomials.

Theorem 10 (Herrmann-May). Let ε > 0 and let N be a sufficiently large com-
posite integer of unknown factorization with a divisor p > Nβ . Furthermore, let
f (x,y) ∈ ZZ[x,y] be a linear polynomial in two variables. Then, one can find all so-
lutions (x0,y0) of the equation f (x,y) ≡ 0 (mod p) with |x0| < Nγ and |y0| < Nδ

if

γ + δ ≤ 3β − 2+ 2(1−β )
3
2 − ε.

The time complexity of the algorithm is polynomial in logN and 1
ε .

Proof. Suppose f (x,y) = ax+ by+ c ≡ 0 (mod p). Multiplying by a−1 (mod N),
we get f (x,y) = x+ b′y+ c′ ≡ 0 (mod p). Thus, we can assume that f (x,y) = x+
by+c. To find a solution (x0,y0), the basic idea consists in finding two polynomials
h1(x,y) and h2(x,y) such that h1(x0,y0) = h1(x0,y0) = 0 holds over the integers.
Then the resultant of h1(x,y) and h2(x,y) will reveal the root (x0,y0). To do so, we
generate a collection of polynomials gk,i(x,y) as

gk,i(x,y) = yi · f (x,y)k ·Nmax{t−k,0}

for 0 ≤ k ≤ m, 0 ≤ i ≤ m− k and integer parameters t < m that will be specified
later. Observe that the polynomials gk,i(x,y) share the common root (x0,y0) modulo
pk+max{t−k,0} ≥ pt . The ordering for the polynomials is as follows. If k < l, then
gk,i < gl, j. If k = l and i < j, then gk,i < gk, j. On the other hand, each polynomial
gk,i(x,y) is ordered in the monomials xiyk. The ordering for the monomials xiyk is
as follows. If i < j, then xiyk < x jyl . If i = j and k < l, then xiyk < xiyl . Let X and Y
be positive integers. Gathering the coefficients of the polynomials gk,i(Xx,Y y), we
obtain a matrix as illustrated in Fig. 2.

Let L be the lattice of row vectors from the coefficients of the polynomials
gk,i(Xx,Y y) in the basis 〈xkyi〉0≤k≤m,0≤i≤m−k. The dimension of L is
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1 · · · ym x · · · xym−1 . . . xt · · · xtym−t · · · xm

g0,0 Nt

...
. . .

g0,m NtY m

g1,0 ∗ . . . ∗ Nt−1X
... ∗ · · · ∗ . . .

g1,m−1 ∗ · · · ∗ ∗ . . . Nt−1XY m−1

... ∗
... ∗ ∗

... ∗ . . .
gt,0 ∗ . . . ∗ ∗ . . . ∗ . . . Xt

...
...

...
...

. . .
gt,m−t ∗ · · · ∗ ∗ . . . ∗ . . . ∗ . . . XtY m−t

... ∗
... ∗ ∗

... ∗
... ∗

... ∗ . . .
gm,0 ∗ · · · ∗ ∗ . . . ∗ . . . ∗ . . . ∗ . . . Xm

Fig. 2 Herrmann-May’s matrix of the polynomials gk,i(Xx,Y y) in the basis
〈xrys〉0≤r≤m,0≤s≤m−r

n =
m

∑
i=0

(m+ 1− i) =
(m+ 2)(m+ 1)

2
.

From the triangular matrix of the lattice, we can easily compute the determinant
det(L ) = XsxY syNsN where

sx =
m

∑
i=0

i(m+ 1− i) =
m(m+ 1)(m+ 2)

6
,

sy =
m

∑
i=0

m−i

∑
j=0

j =
m(m+ 1)(m+ 2)

6
,

sN =
t

∑
i=0

(t − i)(m+ 1− i) =
t(t + 1)(3m+ 4− t)

6
.

We want to find two polynomials with short coefficients that contain all small roots
over the integer. Applying Theorem 6 with i = 2, we find two polynomials h1(x,y)
and h2(x,y) such that

‖h1(Xx,Y y)‖ ≤ ‖h2(Xx,Yy)‖ ≤ 2n/4(det(L ))1/(n−1).

To apply Howgrave-Graham’s Theorem 7 for h1(Xx,Yy) and h2(Xx,Yy) with B =
pt , a sufficient condition is that

2n/4(det(L ))1/(n−1) ≤ pt
√

n
.
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Put X = Nγ and Y = Nδ . We have n = (m+2)(m+1)
2 and det(L ) = XsxY syNsN =

Nsx(γ+δ )+sN . Then the condition transforms to

2
(m+2)(m+1)

8 N
2(γ+δ )sx+2sN

m(m+3) ≤ Nβ t√
(m+2)(m+1)

2

.

Define ε1 > 0 such that

2−
(m+2)(m+1)

8√
(m+2)(m+1)

2

= N−ε1 .

Then, the condition simplifies to

2(γ + δ )sx + 2sN

m(m+ 3)
≤ β t − ε1.

Neglecting the ε1 term and using sx =
m(m+1)(m+2)

6 and sN = t(t+1)(3m+4−t)
6 , we get

m(m+ 1)(m+ 2)
3

(γ + δ )+
t(t + 1)(3m+ 4− t)

3
< m(m+ 3)β t.

Define 0 < τ < 1 by t = τm. Then, the condition becomes

(m+ 1)(m+ 2)(γ + δ )+ τ(mτ + 1)(3m+ 4−mτ)< 3m(m+ 3)β τ,

which leads to

γ + δ <
3m(m+ 3)β τ− τ(mτ + 1)(3m+ 4−mτ)

(m+ 1)(m+ 2)

=
(
τ2 − 3τ + 3β

)
τ +

(
τ2 − 1− 6β

)
τ

m+ 1
− 2

(
2τ2 − 3τ − 3β + 1

)
τ

m+ 2
.

The term
(
3β + τ2 − 3τ

)
τ is optimal for the value τ = 1 −√

1−β . Hence, the
bound reduces to

γ + δ < 3β − 2+ 2(1−β )
3
2 +

3− 9β +(7β − 3)
√

1−β
m+ 1

+
12β − 6+(6− 10β )

√
1−β

m+ 2
.

Now, consider the last two fractions. We have

3− 9β +(7β − 3)
√

1−β
m+ 1

+
12β − 6+(6− 10β )

√
1−β

m+ 2

≈−
3(1−β )

(
1−√

1−β
)

m+ 1
.
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Hence γ + δ < 3β − 2+ 2(1−β )
3
2 − ε, where ε ≥ 3(1−β )

(
1−
√

1−β
)

m+1 > 0. Observe

that this leads to m ≥ 3(1−β )
(

1−
√

1−β
)

ε − 1. The algorithm’s complexity depends
mainly on the complexity of the LLL algorithm which is polynomial in the lattice
dimension and the lattice coefficients. Recall that the dimension of our lattice is
n = (m+2)(m+1)

2 = O
(
m2

)
and that the lattice coefficients are bounded by Y mNt ≤

Nm+τm and have bitsize O(m log(N)). Consequently, the running time of the method
is polynomial in log(N) and 1/ε . ��

6.4 The Small Inverse Problem

In 1999, Boneh and Durfee introduced the so called small inverse problem. Let A,
B, X and Y be fixed positive integers. The problem is to find all solutions (x0,y0) for
the equation x(A+ y)≡ 1 (mod B), with |x0|< X and |y0|<Y . The method makes
use of Coppersmith’s technique and is generalized in the following theorem.

Theorem 11. Let B be a positive integer. Consider the polynomial f (x,y) = a0 +
a1x+ xy. Let X = Bδ , Y = Bβ . If f (x,y) ≡ 0 (mod B) with |x0| < X and |y0| < Y
and

δ < 1+
1
3

β − 2
3

√
β 2 + 3β ,

then we can we find two polynomials h1, h2 such that h1(x0,y0) = h2(x0,y0) = 0
and, under Assumption1, we can extract x0, y0 in time polynomial in logN.

Proof. We use the extended strategy of Jochemsz and May [16] for finding small
modular roots. Let m and t be given positive integers. For 0 ≤ k ≤ m, define the set

Mk =
⋃

0≤ j≤t

{
xi1yi2+ j

∣∣∣ xi1 yi2 ⊂ f m and
xi1 yi2

(xy)k ⊂ f m−k
}
,

where α ⊂ f means that α is a monomial of f . For 0 ≤ k ≤ m, we obtain

xi1 yi2 ∈ Mk for i1 = k, . . . ,m and i2 = k, . . . , i1 + t.

For 0 ≤ k ≤ m, define the polynomials

gi1,i2,k(x,y) =
xi1 yi2

(xy)k f (x,y)kBm−k with xi1yi2 ∈ Mk
∖

Mk+1.

For 0 ≤ k ≤ m, these polynomials reduce to

gi1,k,k(x,y) = xi1−k f (x,y)kBm−k, k ≤ i1 ≤ m,

gk,i2,k(x,y) = yi2−k f (x,y)kBm−k, k+ 1 ≤ i2 ≤ k+ t, .

For each tuple (i1, i2,k), we have gi1,i2,k(x0,y0) ≡ 0 (mod Bm). Hence, we can
search for a small norm integer linear combination of the polynomials gii,i2,k(Xx,Y y)
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and apply Howgrave’s Theorem 7. These polynomials are found using lattice basis
reduction. Consider the lattice L generated by the basis matrix whose rows are
the coefficient vectors of gi1,i2,k(Xx,Y y) in the basis

(
xi1 yi2

)
. The ordering of the

monomials is as follows. If i2 < i′2, then xi1yi2 < xi′1 yi′2 . If i2 = i′2 and i1 < i′1, then
xi1yi2 < xi′1yi′2 . We obtain a triangular matrix M of the form

M(L ) =

⎡⎢⎢⎢⎢⎢⎢⎣

M0

∗ . . .
∗ ∗ Mk
...

...
...

. . .
∗ ∗ ∗ ∗ Mm

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Mk is a triangular square matrix corresponding to the polynomials gi1,k,k

(Xx,Y y) and gk,i2,k(Xx,Yy) as given in Fig. 3.

xkyk xk+1yk . . . xmyk xkyk+1 . . . xkyk+t

gk,k,k Bm−kXkY k

gk+1,k,k Bm−kXk+1Y k

...
. . .

gm,k,k Bm−kXmY k

gk,k+1,k Bm−kXkY k+1

...
. . .

gk,k+t,k Bm−kXkY k+t

Fig. 3 Diagonal part of the matrix of the polynomials gi1,k,k(Xx,Y y), k ≤ i1 ≤ m and
gk,i2,k(Xx,Y y), k+1 ≤ i2 ≤ k+ t.

For 0 ≤ m, we have rank(Mk) = m− k+ 1+ t and det(Mk) = Bs
B,kXs

x,kY
s
y,k where

sB,k = (m− k)rank(Mk) = (m− k)(m− k+ 1+ t).

sx,k = tk+
m

∑
i=k

i = tk+
(m+ k)(m+ 1− k)

2
.

sy,k = (m− k+ 1)k+
k+t

∑
i=k+1

i = (m− k+ 1)k+
(t + 2k+ 1)t

2
.

Hence, the dimension of the lattice L is

n = dim(L ) =
m

∑
k=0

rank(Mk) =
m

∑
k=0

(m− k+ 1+ t)

=
(m+ 1)(m+ 2t+ 2)

2
,
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and its determinant is det(L ) = BsXsxY sy = ∏m
k=0 det(Mk). We get easily

s =
m

∑
k=0

sB,k =
m(m+ 1)(2m+ 3t+ 4)

6
=

1
3

m3 +
1
2

m2t + o(m3),

sx =
m

∑
k=0

sx,k =
m(m+ 1)(2m+ 3t+ 4)

6
=

1
3

m3 +
1
2

m2t + o(m3),

sy =
m

∑
k=0

sy,k =
(m+ 1)(m2 + 3tm+ 2m+ 3t2+ 3t)

6

=
1
6

m3 +
1
2

m2t +
1
2

mt2 + o(m3).

Applying Theorem 6 with i = 2, the LLL algorithm outputs two short polynomials
h1(x,y) and h2(x,y) satisfying

‖h1(x,y)‖,‖h2(x,y)‖ ≤ 2
n
4 det(L )

1
n−1

Since h1(x,y)≡ h2(x,y)≡ 0 (mod Bm), then, in order to apply Howgrave-Graham’s

theorem 7, a sufficient condition is 2
n
4 det(L )

1
n−1 ≤ Bm√

n , which transforms to

det(L )≤ 2−
n(n−1)

2

n
n−1

4

·Bm(n−1).

Since det(L ) = BsXsxY sy with X = Bδ , Y = Bβ , we get

Bs+δ sx+β sy ≤ 2−
n(n−1)

2

n n−1
2

·Bm(n−1). (6)

Notice that 2−
n(n−1)

2

n n−1
2

= B−ε1 for some small constant ε1 > 0 which can be ignored.

On the other hand, ignoring the low terms in s, sx and sy and using m(n− 1) =
1
2 m3 +m2t + o(m3), we get

s+ δ sx +β sy =
2+ 2δ +β

6
m3 +

1+ δ +β
2

m2t +
β
2

mt2,

and the condition (6) can be rewritten as

2+ 2δ +β
6

m3 +
1+ δ +β

2
m2t +

β
2

mt2 <
1
2

m3 +m2t,

or equivalently

−1+ 2δ +β
6

m2 +
−1+ δ +β

2
mt +

β
2

t2 < 0.



160 A. Nitaj

Optimizing with respect to t, we get for t = 1−δ−β
2β m

m2

24β
(−3δ 2 +(6+ 2β )δ +β 2 + 2β − 3

)
< 0.

Hence, we must have −3δ 2 +(6+ 2β )δ +β 2 + 2β − 3 < 0, that is δ < 1+ 1
3 β −

2
3

√
β 2 + 3β . Under this condition, the polynomials h1(x,y) and h2(x,y) share the

solution (x0,y0) which can be obtained by extracting the roots of the resultant poly-
nomial over the integers. This terminates the proof. ��

7 Lattice-Reduction Cryptanalysis of RSA

A number of lattice attacks on RSA Cryptosystem are motivated by the LLL al-
gorithm and Coppersmith’s techniques for solving polynomial equations. In this
section we consider some attacks on RSA that are related to lattice methods
(see [4], [13] and the references therein for detailed information).

7.1 Factoring the RSA Modulus with Partial Knowledge of p

In [8], Coppersmith presented a method which enables us to factor the modulus
N = pq in time polynomial in its bitsize provided that we know half of the bits of
p. The original method is based in small roots of bivariate polynomial equations.
We present a variant which is based on univariate modular polynomial equations
(see [15] and [18]). We begin by the most significant bits of p case.

Theorem 12. Let N = pq be an RSA modulus with p > q. Furthermore, let k be an
(unknown) integer that is not a multiple of q. Suppose we know an approximation
p̃ of kp such that |kp− p̃| < N

1
4 . Then we can find the factorization of N in time

polynomial in logN.

Proof. Write x0 = kp− p̃ and fp(x) = p̃+ x. Then fp(x0) = kp ≡ 0 (mod p) with

p > N
1
2 . We can then apply Coppersmith’s theorem 9 with d = 1, β = 1

2 and cN = 1

and get the root x0 since |x0| < N
1
4 . Hence kp = x0 + p̃ and gcd(kp,N) = p since

k �≡ 0 (mod q). ��
We can obtain a similar result for the case where we know the less significant bits
of p.

Theorem 13. Let N = pq be an RSA modulus with p > q. Let k be an (unknown)
integer that is not a multiple of q. Suppose we know M and p0 such that kp ≡
p0 (mod M) with M > kpN− 1

4 . Then we can find the factorization of N in time
polynomial in logN.

Proof. Write x0 = kp−p0
M and fp(x) = Mx+ p0. Then fp(x0) = kp ≡ 0 (mod p).

Suppose M > kpN− 1
4 . Then
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x0 =
kp− p0

M
<

kp
M

< N
1
4 .

We can then apply Coppersmith’s theorem 9 with d = 1, β = 1
2 and cN = 1 and get

the root x0. Hence p can be found by gcd(kp,N) = p where kp = Mx0+ p0. ��

7.2 Factoring the RSA Modulus with Small Prime Difference

Let N = pq be an RSA modulus with q< p < 2q and small prime difference p−q<

N
1
4 . In [22], de Weger showed how to factor N using Fermat’s method of factoring.

We present below an alternate method based on Coppersmith’s technique.

Theorem 14. Let N = pq be an RSA modulus with q < p < 2q. If p− q < N
1
4 , then

we can find the factorization of N in time polynomial in logN.

Proof. Suppose q < p < 2q and p− q < N
1
4 . Then, using Lemma 1, we get

√
N < p < q+N

1
4 <

√
N +N

1
4 .

Hence 0 < p −√
N < N

1
4 and by Theorem 12, this leads to the factorization

of N. ��

7.3 Boneh and Durfee’s Class of Weak Keys

In 1999, Boneh and Durfee[5] introduced the small inverse problem and presented a
substantial improvement over Wiener’s bound. Their attack can recover the primes
p, q in polynomial time provided that d < N0.292. Their result is based on Copper-
smith’s technique for finding small solutions to modular polynomial equations. We
present a weaker result which is valid for d < N0.284.

Theorem 15. Let N = pq be an RSA modulus with q < p < 2q. Let e < φ(N) be a
public exponent and d be the corresponding private exponent. If d < N0.284, then,
under Assumption 1, we can find the factorization of N in time polynomial in logN.

Proof. Starting with the equation ed−kφ(N) = 1, we get k(N +1− p−q)+1= ed
which leads to the modular equation x(A+ y)+ 1 ≡ 0 (mod e), where A = N + 1.
This is an inverse problem with the solution (k,−p− q). Suppose e < φ(N) is of
the same order of magnitude as N, that is e ≈ N. If d < Nδ , we get k = ed−1

φ(N)
<

ed
φ(N) < d < Nδ . On the other hand, since q < p < 2q, then p+ q = O

(
N

1
2

)
. Using

Theorem 11 with B = e and β = 1
2 , we can solve the equation x(A+ y) + 1 ≡ 0

(mod e), with |x|< X = Nδ and |y|< Y = Nβ provided that

δ < 1+
1
3

β − 2
3

√
β 2 + 3β =

7
6
− 1

3

√
7 ≈ 0.284.

Using p+ q = y, we can get p and q easily. This terminates the proof. ��
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7.4 Another Generalization of Wiener’s Attack on RSA

Suppose e satisfies an equation ex− (N + 1− ap− bq)= 1 where a
b is an unknown

approximation of q
p . We recall that this means that a =

[
bq
p

]
(where [x] denotes the

closest integer to the real number x). In Section 4.3, we presented an attack, based
on continued fractions that enables us to find the factorization of N if xy < N

2(ap+bq) .
We present below an alternate attack based on the small inverse problem.

Theorem 16. Let N = pq be an RSA modulus with q< p< 2q. Let a
b be an unknown

approximation of q
p and e be a public exponent satisfying an equation ex− (N+1−

ap− bq)y= 1 with |y|< eδ and |ap+ bq|< e
1
2+α . If

δ <
7
6
+

1
3

α − 1
3

√
4α2 + 16α + 7,

then N can be factored in time polynomial in logN.

Proof. We rewrite the equation ex− (N + 1− ap− bq)y= 1 as an inverse equation
(N + 1+ z)y+ 1 ≡ 0 (mod e), where z = −ap− bq. Let Y = eδ and Z = eβ . We
have to find y and z such that (N+1+ z)y+1≡ 0 (mod e) with |y|<Y and |z|< Z.
Using Theorem 11 with B = e and β = 1

2 +α , we can solve the equation y(N +

1+ z) + 1 ≡ 0 (mod e), with |y| < Y = eδ and |z| < Z = eβ provided that δ <

1+ 1
3 β − 2

3

√
β 2 +β . Using β = 1

2 +α , we get

δ <
7
6
+

1
3

α − 1
3

√
4α2 + 16α + 7.

With z =−ap− bq, we find p using the same technique as in Theorem 4. ��

7.5 Least Significant Bits of d Known

In [3], Blömer and May presented an attack on RSA with a private exponent d for
which the least significant bits are known.

Theorem 17 (Blömer-May). Let N = pq be an RSA modulus with q < p < 2q. Let e
be a public exponent with e =Nα and α < 1

2 . Let d be the secret exponent satisfying

ed−kφ(N) = 1. If we know d0 and M such that d ≡ d0 (mod M) and M = N
1
2+α+ε

for ε > 0, then the factorization of N can be found in polynomial time.

Proof. Suppose we know d0 and M such that d ≡ d0 (mod M). Then d = Mx0 +d0

where x0 is the unknown part of d. Since ed− kφ(N) = 1, then eMx0 + ed0− k(N+
1− p− q) = 1 and eMx0 + k(p+ q− 1) + ed0 − 1 = kN. This gives us a bivari-
ate linear polynomial equation eMx+ y+ ed0 − 1 ≡ 0 (mod N), with the solution

x= x0 and y= y0 = k(p+q−1). Let M =N
1
2+α+ε . We have d =Mx0+d0 <N, then
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x0 <
N
M =N

1
2−α−ε . We then set X = N

1
2−α−ε for α < 1

2 . On the other hand, we have

k = ed−1
φ(N) <

ed
φ(N) < e = Nα . Hence y0 = k(p+ q− 1) < N

1
2+α . We set Y = N

1
2+α

and apply Theorem 10 with β = 1, |x0|< X and |y0|<Y . We find a solution (x0,y0)
if

1
2
−α − ε +

1
2
+α < 3β − 2+ 2(1−β )

3
2 = 1,

which is satisfied for ε > 0. Using x0 and y0, we compute d = Mx0 + d0 and, since
eMx0 + y0 + ed0 − 1 = kN, we get

k =
eMx0 + y0 + ed0 − 1

N
.

Plugging in the key equation ed − kφ(N) = 1, we obtain φ(N) = ed−1
k which leads

to the factorization of N. ��

7.6 The Φ-Hiding Assumption

The Φ-Hiding Assumption states that it is computationally untractable to decide
whether a given small prime e divides φ(N) where N is a composite integer with
unknown factorization. The Φ-Hiding Assumption has been introduced by Cachin,
Micali and Stadler [6] and has found various applications in cryptography. We
present a solution of the Φ-Hiding Assumption when the composite integer is an
RSA modulus N = pq or an RSA multi-prime N = p1 p2 p3.

Theorem 18. Let N = pq be an RSA modulus with q < p and e be a prime integer.
If e > N

1
4+ε , then the Φ-Hiding Assumption is solvable in polynomial time.

Proof. If e is prime and divides φ(N) = (p− 1)(q− 1), then e divides (p− 1) or
(q− 1). Suppose e divides p− 1. Then there exist a positive integer x0 such that

ex0 = p−1 which implies ex0 +1 ≡ 0 (mod p). If e > N
1
4+ε , then using Lemma 1,

we get

x0 =
p− 1

e
<

p
e
<

√
2N

1
2

N
1
4+ε

= N
1
4−ε ′ ,

for some small ε ′. Hence, using Coppersmith’s Theorem 8 with β = 1
2 and δ = 1,

we can find x0 and then solve the Φ-Hiding Assumption. ��
For a multi-prime RSA modulus of the form N = pqr, the Φ-Hiding Assumption
assumes that deciding whether a prime e is a divisor of p−1 and q−1 or not is hard.
For a general multi-prime RSA modulus N = p1 . . . pn, see Herrmann’s work [11].

Theorem 19. Let N = pqr be a multi-prime RSA modulus with r < q < p and e

be a prime integer. If e > N
1
2− 2

√
3

27 , then the Φ-Hiding Assumption is solvable in
polynomial time.

Proof. Let e=Nα . Suppose e divides p−1 and q−1. Then ex+1= p and ey+1= q

for some positive integers x and y satisfying x,y < p
e < N

1
2−α . Multiplying and
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expanding the equations, we get e2xy+ e(x+ y)+ 1 = pq, with pq > N
2
3 . To apply

Theorem 10 with the equation e2u+ ev+ 1 ≡ 0 (mod pq), where u = xy < N1−2α ,

v = x+ y = 2N
1
2−α = N

1
2−α+ε , a sufficient condition is that

1− 2α +
1
2
−α < 3β − 2+ 2(1−β )

3
2

where β = 2
3 . This gives the condition α > 1

2 − 2
√

3
27 , and consequently

e > N
1
2− 2

√
3

27 . ��

8 Diophantine and Lattice Cryptanalysis of RSA

In this section we present two attacks on RSA that combine continued fractions and
Coppersmith’s lattice based technique.

8.1 Blömer and May’s Class of Weak Keys

We consider the class of public keys (N,e) satisfying an equation ex−yφ(N) = z. In
2004, Blömer and May [2] showed that using such exponents makes RSA insecure
if N = pq with p− q = cN

1
2 for some constant 0 < c ≤ 1 and

0 ≤ x ≤ 1
3

√
φ(N)

e
N

3
4

p− q
and |z| ≤ p− q

φ(N)N
1
4

· ex.

We reformulate this attack in the following result where the primes p and q can be
unbalanced.

Theorem 20. Let (N,e) be an RSA public key tuple with N = pq and q< p. Suppose
that e satisfies an equation ex− yφ(N) = z with gcd(x,y) = 1 and

xy <
N

4(p+ q)
and |z|< (p− q)N

1
4 y

3(p+ q)
.

Then N can be factored in polynomial time.

Proof. Rewrite ex− yφ(N) = z as ex− yN = z− y(p+ q− 1). Then∣∣∣ e
N
− y

x

∣∣∣= |z− y(p+ q− 1)|
Nx

≤ |z|+ y(p+ q− 1)
Nx

. (7)

Suppose gcd(x,y) = 1 and |z|< (p−q)N
1
4 y

3(p+q) then |z|< N
1
4 y. Hence

|z|+(p+ q+ 1)y| ≤ N
1
4 y+(p+ q+ 1)y= (N

1
4 + p+ q+ 1)y< 2(p+ q)y.
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Plugging in (7), we get
∣∣ e

N − y
x

∣∣ < 2(p+q)y
Nx . Now, assume that xy < N

4(p+q) . Then
2(p+q)y

Nx < 1
2x2 which implies

∣∣ e
N − y

x

∣∣ < 1
2x2 . Then, by Theorem 1, y

x is a convergent
of the continued fraction of e

N . Using x and y, define

U = N + 1− ex
y
, V =

√
|U2 − 4N|.

Transforming the equation ex− (p− 1)(q− 1)y= z into p+ q−
(

N + 1− ex
y

)
= z

y ,
we get

|p+ q−U |=
∣∣∣∣p+ q−

(
N + 1− ex

y

)∣∣∣∣= |z|
y

<
(p− q)N

1
4

3(p+ q)
< N

1
4 . (8)

Now, we have ∣∣(p− q)2 −V 2
∣∣ = ∣∣(p− q)2 − ∣∣U2 − 4N

∣∣∣∣
≤ ∣∣(p− q)2 −U2 + 4N

∣∣
=

∣∣(p+ q)2 −U2
∣∣

Dividing by p− q+V , we get

|p− q−V| ≤
∣∣(p+ q)2 −U2

∣∣
p− q+V

=
|p+ q−U |(p+ q+U)

p− q+V
. (9)

Observe that (8) implies p+q+U < 2(p+q)+N
1
4 < 3(p+q). On the other hand,

we have p− q+V > p− q. Plugging in (9), we get

|p− q−V |< 3(p+ q)(p− q)N
1
4

3(p+ q)(p− q)
= N

1
4 .

Combining this with (8), we deduce∣∣∣∣p− U +V
2

∣∣∣∣= ∣∣∣∣ p+ q
2

− U
2
+

p− q
2

− V
2

∣∣∣∣≤ ∣∣∣∣ p+ q
2

− U
2

∣∣∣∣+ ∣∣∣∣ p− q
2

− V
2

∣∣∣∣< N
1
4 .

Hence U+V
2 is an approximation of p up to an error term of at most N

1
4 . Then

Coppersmith’s Theorem 12 will find p in polynomial time and the factorization of
N follows. ��

8.2 Another Class of Weak Keys

Let N = pq be an RSA modulus with q < p < 2q and e be a public exponent.
Suppose e satisfies an equation ex− (N − up− v)y = z. We present below an attack
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on RSA with such exponents when the unknown parameters x, u, v, y and z are
suitably small.

Theorem 21. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public
exponent satisfying an equation ex− (N − up− v)y= z with gcd(x,y) = 1 and

xy <
N

4|up+ v| and |z| ≤ |up+ v|y and

∣∣∣∣v− z
y

∣∣∣∣< N
1
4 .

Then N can be factored in polynomial time.

Proof. We rewrite the equation ex− (N − up− v)y = z as ex−Ny = z− (up+ v)y
and divide by Nx. We get∣∣∣ e

N
− y

x

∣∣∣= |z− (up+ v)y|
Nx

≤ |z|+ |up+ v|y
Nx

.

If we suppose |z| ≤ |up+ v|y, we get
∣∣ e

N − y
x

∣∣≤ 2|up+v|y
Nx . Next, if xy < N

4|up+v| , then
2|up+v|y

Nx < 1
2x2 . Hence

∣∣ e
N − y

x

∣∣ ≤ 1
2x2 , which implies, by Theorem 1, that y

x is a
convergent of the continued fraction expansion of e

N . Using x and y in the equa-

tion ex − (N − up− v)y = z, we get up = N − ex
y + z

y − v. If
∣∣∣v− z

y

∣∣∣ < N
1
4 , then∣∣∣up−N+ ex

y

∣∣∣< N
1
4 . Hence N− ex

y is an approximation of up up to an additive term

at most N
1
4 . Using Coppersmith’s technique of Theorem 12, this leads to the factor-

ization of N. ��

9 Conclusion

In this study, we have examined the RSA cryptosystem, the most widely deployed
public-key cryptosystem. We have also studied various cryptanalytic attacks on RSA
and presented the main algebraic tools to follow the attacks. Specifically, we con-
tributed the following to the field of the RSA cryptosystem study:

• We described the main schemes of RSA, namely key generation, encryption and
decryption.

• We provided a detailed survey of the mathematical algebraic tools that are used
in the principal attacks on RSA. This includes continued fractions and Diophan-
tine approximations, the basic theory of lattices and the LLL algorithm for basis
reduction as well as the theory of finding small solutions of modular polynomial
equations.

• We presented new attacks on RSA and revisited various old ones that are based
on Diophantine approximations, lattice reduction and Coppersmith’s techniques
for solving modular polynomial equations.
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The effectiveness of the proposed attacks is optimized for instances of RSA with
small private exponents or public exponents satisfying some specific equations.
These results illustrate once again the fact that the crypto-designer should be very
cautious when using RSA with such secret exponents.
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Artificial Intelligence Methods in Early 
Childhood Education 

Jim Prentzas* 

Abstract. Educational technology constitutes an important aspect in modern edu-
cation providing unique learning experiences to students and improving their 
learning. Technological resources (especially computers) have been integrated in 
education for decades. However, integration of educational technology in early 
childhood education is a more recent trend compared to the other levels of educa-
tion. This fact creates the need to develop, apply and study application of re-
sources and methodologies specifically addressed to young children. Artificial  
Intelligence approaches have been incorporated to educational technology re-
sources providing improved interaction to learners. In this paper, Artificial Intelli-
gence methods exploited in the context of early childhood educational technology 
are surveyed. The discussion mainly concerns computer-based learning systems 
incorporating intelligent methods (e.g., Intelligent Tutoring and Adaptive Educa-
tional Hypermedia Systems) and educational robots addressed to early childhood. 
To the best of the author’s knowledge, such issues have not been thoroughly  
discussed till now in literature. 

1   Introduction 

Alan Turing is considered among the researchers that laid the foundations of Arti-
ficial Intelligence (AI). He was the one who proposed the Turing test as the means 
of defining the intelligence of a machine [56]. According to Turing, a machine  
is considered intelligent if it is able to interact with a human without the human 
realizing that he/she is interacting with a machine. 

Artificial Intelligence methods have been applied in various domains. An inter-
esting field for Artificial Intelligence is educational technology. In fact, Artificial 
Intelligence methods have been applied in educational technology for some dec-
ades. Educational technology is a broad term. It involves technological resources 
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and methodologies employed in an educational context in order to satisfy specific 
educational needs [48]. Educational technology usually places emphasis on the 
most modern resources without overlooking useful resources that are not quite re-
cent. The main purpose is to provide students and teachers benefits compared to 
methods not employing technology. Integrating educational technology into an 
educational environment can be a challenge. The integration process should take 
into consideration issues that need to be dealt with in a specific class of students. 
Technology may assist in handling specific educational problems or may provide 
the infrastructure for activities that could not have been carried out with  
non-technological means [48]. 

There are several reasons for employing educational technology [48]. Educa-
tional technology may provide students the motives to learn as their attention is at-
tracted and they are encouraged to take part in creative activities. With the use of 
technology, unique features are incorporated into the educational environment 
such as multimedia-based interaction and visualization of problem solving 
process. Technology also supports pedagogical approaches such as collaborative 
learning and constructivism. Educational technology acquaints students with re-
sources and principles necessary to all members of the Information Society. Last 
but not least, technology may provide the means to connect schools with their 
communities [36]. 

Computer-based learning is a significant aspect in educational technology. 
Computers have been used in education since the 1950s as they may be exploited 
in several ways by students and teachers working individually and in groups. 
However, educational technology usually involves a combination of resources be-
sides computers in order to exploit the corresponding characteristics and the ad-
vantages offered by each type of resource. This is especially the case in early 
childhood education. Popular types of technological resources used in early child-
hood education besides computers are interactive whiteboards and programmable 
toys. Game consoles and robots may also become popular in early childhood  
education. 

Artificial Intelligence methods have been applied in computer-based learning in 
order to provide enhanced learning experiences. Traditional Computer-Assisted 
Instruction (CAI) systems are based on shallow representation of teaching domain, 
learner data and pedagogical methods [59]. It is difficult for them to adjust effec-
tively the learning process as they provide limited ways of adaptation and learner 
evaluation. Intelligent Educational Systems (IESs) [6], [10], [43] are computer-
based systems incorporating intelligence.  Intelligent Educational Systems incor-
porate Artificial Intelligence techniques and mechanisms. The goal is to model 
learners as well as knowledge regarding the teaching subject and tailor learning 
experience to learner needs [43]. Main types of Intelligent Educational Systems 
are Intelligent Tutoring Systems (ITSs) and Adaptive Educational Hypermedia 
Systems (AEHSs) using intelligent methods. 

Intelligent robots constitute a popular paradigm of Artificial Intelligence me-
thods in education besides (computer-based) Intelligent Educational Systems. The 
characteristics of educational robots provide advantages compared to computer-
based learning systems. Educational robots are autonomous, mobile and come in 
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different forms. They may express emotions and respond dynamically to human 
interactions. Robots offer unique interaction experiences resulting in the creation 
of bonds with young children. As results of certain studies have shown, young 
children may treat robots more like peers rather than machines or toys.  

In this paper, Artificial Intelligence methods exploited in the context of early 
childhood educational technology are surveyed. The discussion involves on the 
one hand, Intelligent Tutoring and Adaptive Educational Hypermedia Systems and 
on the other hand, robots addressed to early childhood. To the best of the author’s 
knowledge, such a survey has not been presented till now in literature. 

This paper is organized as follows. Section 2 covers general issues concerning 
educational technology in early childhood, Intelligent Tutoring and Adaptive Edu-
cational Hypermedia Systems as well as robots. This discussion serves as back-
ground knowledge for the following sections. Section 3 summarizes approaches 
using Intelligent Tutoring and Adaptive Educational Hypermedia Systems in early 
childhood education. Section 4 presents representative approaches integrating  
robots in early childhood education. Finally, Section 5 concludes. 

2   Background 

This section discusses general issues concerning early childhood educational tech-
nology, Intelligent Educational Systems and intelligent educational robots for 
young children. Each issue is discussed in a corresponding section. 

2.1   Educational Technology in Early Childhood: General Issues 

Early childhood education curriculum covers several aspects such as language, 
science, mathematics, arts and special education [53], [25], [47]. Early childhood 
education involves both teacher-directed and student-centered activities putting 
emphasis on collaboration, constructivism and interdisciplinary tasks. Students in-
teract with resources available in classroom during structured and non-structured 
activities [46]. Game-based learning possesses an important role as it promotes 
collaboration and creativity in an appealing way for young children. 

Various educational technology resources can be used in early childhood. The 
term ‘educational technology’ in early childhood education is used in a broad 
sense covering a combination of several types of resources such as computers, in-
teractive whiteboards, digital photo cameras, digital video cameras, scanners, pro-
grammable toys, game consoles, robots and various types of software [53], [25], 
[47]. Several of these resources are available (or can be accessed) at home as well 
(e.g., computers, cameras, free software, open source software and Web-based ac-
tivities). This gives parents the opportunity to acquaint themselves with their 
children’s educational tools and take part in their children’s learning [46]. 

A significant aspect is the recording of data concerning classroom and home 
activities. Devices such as digital photo cameras, video cameras, webcameras, mi-
crophones and scanners may be employed by teachers, students and student par-
ents for such purposes [47]. The recorded data provides valuable information as it 
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incorporates the views of teachers, students and student parents. Robots may also 
record data concerning classroom and home activities. Data concerning children’s 
work on an interactive whiteboard may be also saved. Interactive whiteboards are 
popular in early childhood as they constitute large interactive screens facilitating 
collaborative work. Whiteboard functionality is available using fingers and mark-
ers and this gives pleasure to young children [47]. Through the whiteboard, child-
ren interact with software installed on a connected computer without having to 
work in front of a computer screen. Programmable toys are also popular in early 
childhood as they introduce young children to control technology. Children  
become accustomed to inputting, storing and executing instruction sequences. 
Programmable toys assist children in developing mathematical language, compre-
hending concepts involving numbers, direction and measurement of movements in 
space [53], [25], [47].  Results have shown that young children may independently 
use aforementioned devices in individual and collaborative activities [47]. 

There is a variety of available software tools addressed to early childhood stu-
dents. Such software tools are based on multimedia as multimedia items are  
appealing to young children and often incorporate game-based learning. Time-
efficiency is a feature required by software addressed to young children. Available 
tools involve aspects such as computer literacy, digital painting, math, science  
and language. Certain tools (e.g., GCompris, Tux Paint, Drawing for Children, 
Kid Pix, Tux Typing, TuxMath and Kidspiration) have gained popularity through-
out the world. Table 1 outlines some of the most popular tools as well as their 
functionality. 

Table 1 Certain popular software tools addressed to young children 

GCompris Free educational software suite with more than a hundred  
activities regarding every curriculum aspect. 

Kidspiration Problem solving and conceptual understanding in every  
curriculum aspect through visual learning 

TuxMath Game-based math activities 

Tux Typing Enhances typing and spelling 

Tux Paint, Drawing for  
Children and Kid Pix 

Digital painting tools 

The aforementioned tools require installation on a computer. An important por-
tion of these tools are freely available enabling installation on any computer. 
There are also several Web-based activities (e.g., Java applets and Flash anima-
tions) addressed to young children and most of them can be accessed without re-
striction. Virtual Learning Environments may be also used [47], [46]. 

Early childhood teachers are required to employ various multimedia-based 
tools. With such tools, teachers may perform tasks such as the following: (a) re-
cording of data involving classroom activities, celebrations and outings, (b) 
processing of recorded data, (c) creation of educational content and (d) authoring 
of educational applications. Image, audio, video processing and animation tools 
are used to create and process multimedia items whereas multimedia authoring 
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tools may be used to create multimedia applications for young children. E-
portfolio tools are also used to collect and manage students’ achievements through 
time. Assessment in early childhood is frequently based on e-portfolios. Asyn-
chronous and synchronous forms of communication may be exploited by teachers 
to establish a link between home and school [47], [46], [36]. 

Digital games constitute amusing means of learning in early childhood. As 
game-based learning is an integral part of the curriculum, digital games in early 
childhood may yield significant results. In [42] it is argued that most aspects can 
be taught more effectively through digital game-based learning. Turing realized 
the value of digital games. He worked with a colleague to program a chess game 
for a computer. Programming of the game was completed but there were no time-
efficient computers during that period for executing the game. In Wikipedia’s ar-
ticle concerning Turing, it is reported that he simulated the computer in order to 
play the programmed chess game against two human adversaries. 

2.2   Intelligent Educational Systems 

An Intelligent Educational System (IES) is an e-learning system personalizing in-
struction to learner’s needs [6], [10], [43], [23]. The main purpose is to provide (or 
guide the learner in accessing) the most suitable learning activities to meet learner 
goals. This is achieved with the incorporation of Artificial Intelligence methods 
used to model learner characteristics and knowledge regarding the teaching sub-
ject. An IES mainly consists of the following components: user (or student) mod-
el, domain knowledge, pedagogical module and user interface. The user model 
records learner data. Domain knowledge contains learning content and relevant in-
formation facilitating content retrieval. The pedagogical module provides know-
ledge used to tailor instruction based on user model data. In certain cases, the IES 
may also include the expert model used to represent expert knowledge in the do-
main. Intelligent Tutoring Systems (ITSs) and Adaptive Educational Hypermedia 
Systems (AEHSs) using intelligent methods are the most representative types of 
IESs. 

Intelligent Tutoring Systems take into consideration learner characteristics 
(e.g., knowledge level) and customize accordingly presentation of learning activi-
ties [41], [59], [58]. ITSs traditionally lay emphasis on Artificial Intelligence tech-
niques to achieve their tasks. An ITS should be able to perform tutoring tasks such 
as selecting and sequencing of presented learning items, analysis of learner res-
ponses to presented items and determining when assistance is needed and how to 
provide it [41], [43]. 

Adaptive Educational Hypermedia Systems are specifically developed for 
hypertext environments, such as the Web. They use techniques from Adaptive 
Hypermedia to enable a guided navigation to user-adapted educational pages. 
Main services offered are adaptive presentation of learning content and adaptive 
navigation by adapting page hyperlinks [8], [9], [40]. Compared to ITSs, they of-
fer greater sense of freedom to learners as they provide them guidance to identify 
the most suitable learning activities matching their needs. In ITSs, selection and 
sequencing of learning items is performed by system mechanisms. AEHSs also 
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dynamically construct or adapt educational pages whereas in ITSs educational 
page contents are typically static [40]. However, it should be mentioned that sev-
eral Web-Based Intelligent Educational Systems combine ITS and AEHS technol-
ogies to provide more effective learning activities [10]. 

Knowledge representation and reasoning is an important issue in IESs. Usually 
a combination of Artificial Intelligence methods is required to achieve all online 
and offline tasks [23]. Artificial Intelligence methods typically used are structured 
and relational schemes, rule-based reasoning, case-based reasoning, neural net-
works, Bayesian networks, fuzzy methods, genetic algorithms [43]. Structured and 
relational schemes are used to represent structural and relational knowledge useful 
in domain knowledge representation [8]. Rules are used in several pedagogical 
tasks [24]. Neural networks are used to perform classification and clustering tasks 
involving online learning process and offline analysis of accumulated data [11]. 
Fuzzy methods enable representation of vagueness and uncertainty useful in user 
modeling [14]. Case-based reasoning provides empirical experience useful in in-
structional tasks [12]. Genetic algorithms may be used in offline tasks concerning 
optimization of system modules and in online tasks such as sequencing of learning 
content items [35]. Hybrid knowledge representation formalisms integrating two 
or more formalisms may also be employed such as neuro-symbolic rules [45], 
[22], [44] and neuro-fuzzy approaches [40]. 

Prior the advent of the Web, IESs were implemented as standalone systems. 
Nowadays for the implementation of IESs Web-based technologies are frequently 
employed since learning contents are usually presented to learners through a Web 
browser. In fact, various programming languages and tools may be used. For in-
stance, Java and XML were used to implement the system presented in [11] and 
Active Server Pages (ASP) were used to implement the system in [40]. A useful 
tool for implementing Web-based IESs is Jess, a Java based expert systems shell 
which is free for educational use [17]. Jess was used for instance to implement the 
runtime parts of the expert systems in [24] and [35]. Agent-based approaches have 
also proven useful in the implementation of IESs. 

Tools may be also used for the offline construction of the IES knowledge bases. 
Quite frequently, the contents of the knowledge bases (e.g., rules, neural net-
works) are produced from available datasets. In such cases, tools such as the free 
software Weka [20] which includes a collection of machine learning algorithms 
are useful. Matlab also includes a tool for the construction of neural networks. For 
the construction of hybrid knowledge bases, specialized tools may be required 
(e.g., [21]). 

Databases are also required to store data concerning the user model, domain 
knowledge, pedagogical module and expert knowledge. In educational applica-
tions and especially those involving young children, time-efficiency in data sto-
rage and retrieval is a requirement. Obviously various RDBMSs can be used for 
this purpose. For instance, in SHAIEx [3], [4], [16] MySQL was used whereas in 
INSPIRE [40] SQL Server. 

In contrast to other types of learners, IES learning content addressed to young 
children should be based on multimedia rather than on text. This involves all types 
of IES activities (e.g., presentation of content, interactive activities such as exer-
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cises). For instance, in a multiple choice exercise the alternative choices presented 
to learners should be multimedia items such as images, sounds, animations or vid-
eo instead of mere text. Virtual agents as in [14] and [57] could prove useful in 
IESs. Obviously, an IES addressed to young learners requires more time and effort 
for its implementation compared to an IES addressed to older learners. In fact, 
several phases may be required for the design and implementation of an IES to ca-
ter for young children’s needs and preferences [16]. 

2.3   Intelligent Educational Robots for Young Children 

A number of research efforts have been presented that involve integration of intel-
ligent robots in early childhood contexts. The presented research approaches most-
ly involve robots integrated in a classroom or clinical setting. Robots may be ex-
ploited at homes as well. There are also general research efforts concerning robot-
child interaction in any type of setting such as approaches regarding methods for 
recording and analyzing interaction data. Interesting approaches addressed to 
children with special needs have also been presented. 

In classroom settings, robots are mainly used for edutainment purposes. Child-
ren may learn about, from and with robots [54]. Children learn about robots as 
they constitute a technology that according to certain predictions will be available 
in most homes in the near future. Robots may act as teaching assistants providing 
learning and social activities. Children may also learn with robots since after long 
term child-robot interaction, children may regard robots as peers [54], [55]. Long 
term child-robot interaction raises an important issue. The issue is whether the 
child will retain interest in interacting with the robot or not. In the initial period 
that robots are introduced to childhood settings, it is very likely that children will 
be very interested in the newly introduced technological resource. Afterwards, as 
children become accustomed with the introduced robots, their interest may de-
cline. Therefore, robot designers as well as robot content and service providers 
should incorporate characteristics ensuring a dynamic and rich child-robot interac-
tion. 

Robots may record data (e.g., images, videos) concerning children they interact 
with. Such data may be incorporated in children’s e-portfolios maintained by 
teachers. They could be exploited by teachers for assessment purposes, to record 
children’s development, to show them to student parents during their face-to-face 
meetings or to make them available to parents through Internet-based technolo-
gies. Specialized intelligent technologies may assist the robot in acquiring quality 
data [60] and in recognizing/classifying children faces. Children in cooperation 
with their teachers and parents could maintain recorded data (e.g., data concerning 
free playtime activities) using a customized Web-based environment [46], [47]. 
Robots may send data recorded in classrooms to parents through the Internet as in 
[28] so that they may obtain information concerning their children’s activities in 
classroom. Obviously robots at home could also be used to record data involving 
children’s activities and to make it available to teachers and classmates. Therefore, 
robots could be exploited to connect homes with schools. 
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Robotic technology can be useful in special education. Young children with 
special needs require modified teaching methods and environments and the tech-
nological assistance of robots could prove to be beneficial. Promising results have 
been published concerning young children who are blind [7], with mobility im-
pairments [2] and with autism [19], [51].  

In a clinical setting, robots could be useful in several roles. They could provide 
therapy assistance and enable disability detection. Robots may generally record 
data concerning children that would have been otherwise difficult, impossible or 
time-consuming for clinicians or therapists to record with alternative means [51]. 

In the following, the functionality of certain robots addressed to early child-
hood is summarized. In Section 4, research results concerning the specific robots 
are presented. 

The robot iRobiQ is a small robot weighing 7 kg [52]. It was designed and de-
veloped by Yujin Robot Co. Ltd. in Korea. It is useful for human-robot interaction 
involving gestures and expression of emotions. It has two arms and LCD based 
eye units which can be coupled together with the LED in the mouth region to ex-
press facial emotions. Its head contains a camera for visual interaction. Its soft-
ware runs on an internal computer providing voice and vision capabilities. Voice 
capabilities include voice recognition, name call recognition, sound source recog-
nition, detection and response to clapping sounds and voice synthesis [52]. Its vi-
sion capabilities include face detection, face, object and gesture recognition. 
Touch sensors in different parts of the robot’s body facilitate interaction with hu-
mans. In iRobiQ’s body there is also a touch screen LCD display providing a mul-
timedia-based interface to various functionalities. It moves using wheels under its 
feet and is capable of self-navigation avoiding obstacles. It may connect to servers 
through networks in order to deliver available contents and services. 

Sponge Robot [13] is a small humanoid robot developed for playful interaction. 
It is based on the Robovie-X platform developed at ATR Robotics and Vstone 
Co., Japan. Its height is 37cm and its weight is 1.4 kg. The robot’s shape is thus 
similar to that of a human baby. Humans may easily lift it up and play with it. 
Among its features are thirteen (13) degrees of freedom that is, two degrees of 
freedom in each arm, four in each leg and one in its head. 

Porongbot is a small-sized robot designed for young children by KT robotics in 
Korea. It is intended to provide affectionate and emotional edutainment to young 
children [32]. It can wag its two ears, turn its head and move using wheels under 
its feet. To receive input from children, the robot has an LCD touch screen, touch 
sensors, microphones and buttons. The colors of Porongbot’s head, ears and feet 
may change. It can also make sounds and display output on the LCD screen. Po-
rongbot connects to a server to download edutainment content. 

PaPeRo is a robot developed by NEC Corporation. It is a small-sized robot and 
its height is similar to that of young children. PaPeRo has been designed for inte-
raction with children and teachers in classrooms. PaPeRo has eye cameras used to 
obtain image and movie data involving children and the classroom. Such data in-
clude children’s facial expressions since the robot’s height enables the eye camera 
to be in the same level with children’s faces. It obtains instructions via touch con-
trol and text messages sent by remote users through the Internet. It may also send 
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data to remote users in a proper form. In [28], parents use cellular phones to send 
PaPeRo instructions and receive data regarding children. 

Kibo is a humanoid robot introduced in [31]. It weighs 7 kg and its height is 
approximately 0.5 m. Kibo has been designed for entertainment purposes. It may 
walk and dance with twenty-two (22) joints. It may recognize human gestures and 
voice and respond accordingly. It may also recognize human facial expressions 
and generate its own face expression with moving eyebrows and lips. To respond 
to events in real time, the robot incorporates distributed processing units. There 
are also computers outside the robot communicating with the robot’s internal units 
via wireless LAN. 

In [19], two humanoid robots (i.e. Troy and Trevor) are developed to assist in 
autism therapy in therapy settings. Both of them satisfy defined requirements for 
autism therapy. They are semi-autonomous and the therapist uses a specially de-
signed interface to control them. Sequences of actions may be programmed and 
made available to therapists. They may move objects with their arms. Troy is an 
upper-body robot roughly the size of a four year-old child. It has two arms with 
some degrees of freedom, a large base to hold it still and a computer screen for its 
face. The computer screen enables the therapist to change the robot’s face. Trevor 
is created using LEGO Mindstorms. It has a face and hands and is about the size 
of a human toddler. 

Tito is a socially interactive robot emulating a humanoid shape and approx-
imately 60 cm tall [37]. It is teleoperated using wireless remote control and is de-
signed to help children with autism. It moves using wheels. Its head and arms may 
also move. It may generate vocal requests and incorporate pre-programmed beha-
vior sequences.  

Roball is a mobile robotic toy in which the robot is encapsulated inside a sphere 
[37], [49]. It is addressed to toddlers. Roball is therefore capable to move in an 
environment filled with various obstacles such as toys and other objects. Roball 
satisfies requirements concerning child-robot interaction since it is small, light, in-
expensive, its fragile parts are protected inside the shell, interaction is simple and 
safe and most children previously know how to interact with spherical objects 
such as balls. Roball is also useful for children with autism due to its simplicity, 
inexistence of distracting features and ability to perform child-robot communica-
tion by touch.  

QRIO is a humanoid robot with a size smaller than toddlers and has been de-
veloped by Sony after years of research. It is autonomous and able to perform a 
range of tasks such as real-time human imitation, audio and visual recognition of 
humans, dialogues in many ways, walking, running, jumping, dancing, singing, 
playing soccer and learning [54]. It incorporates three CPUs. Moreover, remote 
computers may be exploited as remote brains using its embedded wireless LAN 
system. Research results have been presented showing that young children inte-
racting with it regard it as a peer [54], [55].  

Table 2 summarizes the characteristics of the specific robots. 
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Table 2 Characteristics of robots used in early childhood settings 

Robot Name Developer Use 

iRobiQ Yujin Robot Co. 
Ltd. 

Interaction involving gestures and expression of  
emotions, content downloading 

Sponge Robot [13] Humans may lift it up and play with it 

Porongbot KT robotics Affectionate and emotional edutainment, content  
downloading 

PaPeRo NEC Corporation Interacts with children, teachers, parents, receives  
instructions and submits data through networks 

Kibo [31] Entertainment 

Troy and Trevor [19] Autism therapy 

Tito [37] Designed to help children with autism 

Roball [49], [37] Addressed to toddlers, moves in environments filled with 
obstacles 

QRIO Sony Designed to interact as children’s peer 

3   Case Studies of Integrating IESs in Early Childhood Settings 

In this section, specific case studies concerning integration of IESs in early child-
hood settings are outlined. Some of them concern children with special needs [57], 
[18], [15]. Section 3.1 presents an outline of the relevant approaches whereas Sec-
tion 3.2 discusses the derived conclusions. 

3.1   Outline of IES Approaches in Early Childhood 

In [29] an adaptive mobile learning approach for kindergarten mathematics is pre-
sented. Learners were six-year-old children. Mobile learning (m-learning) has  
become important the last decade due to the popularity of mobile devices and ad-
vances in wireless infrastructure that enable ubiquitous access to learning services. 
The specific approach presents a geometry learning game for handheld devices 
(e.g., PDAs) with a touch screen. The PDAs were Compaq iPaq PocketPCs. It is 
easier for young children to use devices with a touch screen than computers with a 
mouse. The PDAs were wirelessly connected to a Web server. The game provides 
simple adaptation to user behavior and the positive results demonstrate that a more 
complex behavior could provide additional benefits. 

SHAIEx is an adaptive hypermedia system for foreign language learning in ear-
ly childhood. The system is addressed to three- to six-year-old children. Design 
and implementation aspects have been presented in a series of publications [3], 
[4], [16]. The overall development of SHAIEx was carefully designed to include 
six phases so that specific early age language learning needs and preferences are 
catered for [16]. The phases involved a preliminary study of the adaptive system, 
development of hypermedia learning content, study of language learners’ profiles, 
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definition of an adapted interface, integration of the system in an education envi-
ronment and system evaluation. The content and context adapt to the levels of the 
European Portfolio of Languages. The study of language learners’ profiles demon-
strated the crucial importance of color, images and sound. Tests also showed that 
learner comprehension improved in case a suitable pet friend or interactive mascot 
was employed in the presented topics. Children were asked to choose and color 
their favorite characters. SHAIEx supports adaptive presentation and adaptive na-
vigation. Adaptation is based on aspects such as language, activity difficulty, age, 
learning style and knowledge level. In contrast to usual AEHSs, the content pre-
sented by SHAIEx is multimedia-based to accommodate the needs of young child-
ren. The pedagogic domain consists of didactic units such as ‘hello’, ‘the body’, 
‘home’, ‘the family’, ‘toys’, ‘food’ and ‘school’. The activities for each unit con-
cern presentation, interaction, evaluation and review. Games were also incorpo-
rated in the system involving aspects such as object selection, counting, matching, 
coloring and body identification. Rules are employed to decide the next task to 
perform. The system architecture is Web-based. The learner accesses the activities 
with a Web browser. The user interface is implemented with Adobe Flash. The 
system functionality is executed on an Apache Tomcat Server. Java Servlets are 
executed to provide adaptation. The server side also includes a MySQL database 
storing the user model, the pedagogic domain, tasks and rules. 

SHAIEx has also been used to teach English vocabulary to young Iranian child-
ren [1]. Forty (40) six- to seven-year-old children that had no prior knowledge of 
English participated in the study. Twenty of them were taught using SHAIEx and 
the rest of them with traditional teaching methods. The study lasted forty-five (45) 
days and consisted of three 90 minute sessions per week. Results on subsequent 
vocabulary tests showed that children using SHAIEx had a higher mean score in 
tests compared to the other children. This indicates the success of SHAIEx. The 
study also showed that children using SHAIEx learned in a much more entertain-
ing and amusing way than the rest of the children. 

In [57] IESs using animated and conversational pedagogical agents for indivi-
dualized tutoring or therapy are presented. The agents are used to teach reading 
and to conduct speech therapy. They are able to talk and listen to users providing 
real-time feedback. They are intended to behave more or less like sensitive and ef-
fective teachers or therapists. The systems were developed with the assistance of 
experts and were deemed as very believable and helpful by users. The user inte-
racts with the systems via mouse clicks, keystrokes or speech. The systems adapt 
to the user skill level and behavior. Virtual speech therapy systems for four inde-
pendent treatments concerning Parkinson’s Disease and aphasia were developed. 
Furthermore, virtual tutors for reading instruction, reading assessment and assis-
tive services were developed. By integrating such virtual tutors in kindergartens, 
improvements in letter and word recognition were reported. The systems are de-
signed to be deployed on the Web. Rules were used to represent the learning 
process and expert knowledge. The architecture consists of application, communi-
cation and common components. Application components were designed in  
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collaboration with experts and include application interface and data (e.g., rules, 
user data and media objects). The communication components involve perceptive 
and generative system capabilities (e.g., character animation, automatic speech 
recognition and reading tracking). The common components are written in Java 
and connect application and communication components. 

In [18], LODE, a logic-based web tool for deaf children is presented. LODE 
was the first e-learning system in the context of deaf children literacy intervention 
to address global reasoning on whole e-stories. It is difficult for deaf children to 
read and write due to the fact that they are not stimulated by continuous oral 
communication. A specific aspect requiring intervention in young age is the diffi-
culty in comprehending global reasoning such as temporal reasoning between ver-
bal language episodes. LODE employs constraint programming [5] to perform  
automated temporal reasoning and assist children in inferring correct temporal re-
lations in stories. The system provides famous children e-stories. A child chooses 
an available story and also responds to relevant reasoning exercises regarding 
comprehension and production. The difficulty and challenge inherent in presented 
exercises varies according to the corresponding portion of the story and the child’s 
previous interaction results with the system. In comprehension exercises, 
(in)consistent temporal relations connecting story events are constructed with the 
assistance of the automated reasoner and the child has to select the consistent ones 
with the story. In production exercises, children are asked to compose sentences 
from scattered sentence units involving the story. The composed sentences de-
scribe a temporal relation consistent with the story and LODE provides sugges-
tions to correct sentences with grammatical errors or temporal inconsistencies. 
LODE employs visual learning strategies using cartoons and images to assist 
children in story narration and exercises. Textual and spatial visualization tech-
niques in which images represent events are used. In textual visualization, images 
are connected with an arc labeled with a temporal relation. In spatial visualization, 
the spatial position of images along the timeline signifies their temporal relation. 

In [15] an Adaptive Braille writing Tutor (ABT) is enhanced by incorporating 
ITS methodologies. The Braille language enables literacy for the visually im-
paired. Learning to write Braille is difficult as it requires many hours of tedious 
work. Difficulties in the case of young children increase due to required physical 
and mental exertion as well as delayed feedback on written text compared to 
sighted students. ABT was developed at Carnegie Mellon University 
(http://www.techbridgeworld.org) and uses audio feedback to provide guided 
practice for young children learning to write Braille. In ABT, an electronic slate 
and stylus monitor student’s writing and transmit data in real-time to a computer 
linked via a USB cable. Each letter is represented as a combination of six dots of 
the Braille cell. Software based on received data produces immediate audio feed-
back to the student. ABT is implemented in C++. The proposed ITS for incorpora-
tion in ABT consists of the five usual components of ITSs. Domain knowledge 
contains the right combination cell dots for each letter. The pedagogical module 
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includes two types of individualized instructions: meta-strategies involving the 
overall teaching process and instructional strategies involving teaching methods 
for a particular concept. The expert model represents expert knowledge in writing 
a specific alphabet. The user interface is primarily based on audio feedback de-
pending on student characteristics such as age, culture and level of progress. Rec-
orded teacher voice and synthetic voice is used as feedback for very young and 
older children respectively. Sounds encouraging student are used when progress is 
recorded. The student model is based on the stereotype approach which performs 
classification to a small number of classes based on student input. It is reported 
that the plans were to implement the designed ITS.  

In [30] the notion of sharing behaviors generated by game users is described. 
Designers of games may provide mechanisms to users for the construction of be-
haviors without programming. Game users could share behaviors constructed by 
them, play with them or against them. The research considers educational games 
for preschoolers and sports games. The research is based on the author’s previous 
research on MindFarm AI technology that enables behavior construction by teach-
ing. Behaviors are easy to construct, transferrable and reusable. The study on edu-
cational games involves Animal Class, a pre-school game in which users play the 
role of teachers by teaching virtual pets (e.g., octopuses) conceptual structures 
concerning their curriculum (e.g., geometric shapes). Virtual pets may be used in 
different competitions. Even six-year-old children found it easy to teach virtual 
characters. Competition of their characters against their friends’ characters was an 
interesting aspect of the approach. Children were interested in watching their  
constructed characters in other games. 

Table 3 outlines key points of the aforementioned approaches. 

3.2   Discussion of Derived Results 

The specific approaches cover different aspects in early childhood education and 
thus it is difficult to compare them. However it is interesting to point out certain 
useful conclusions.  

The approach presented in [29] demonstrates that portable handheld devices 
with touch screens can be convenient for children to use in order to access e-
learning content and services wirelessly. Such an approach could become more in-
teresting with the advent of new generations of portable devices such as tablet 
PCs. Robots with a touch screen (e.g., iRobiQ) could also be used for this purpose. 

An important aspect in IESs integrated in early childhood involves digital 
game-based learning. The importance of digital game-based learning was briefly 
discussed in Section 2.1. Most of the presented approaches incorporate (to a cer-
tain degree) the aspect of learning games. The approach discussed in [29] involves 
geometry learning games to present mathematical concepts to young children in 
an amusing way. SHAIEx incorporates various games that in practice were found 
effective in teaching young children [1]. The approach presented in [30] focuses 
specifically in games and goes a step forward compared to the other approaches as 
it involves children teaching virtual characters and sharing them. 
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Table 3 Key points of case studies integrating IESs in early childhood 

Case Study Key Points 

Adaptive mlearning for 
kindergarten mathematics, 
6-year-old learners [29] 

Easier for young children to use devices with a touch screen than 
computers with a mouse. The positive results demonstrate that a 
more complex behavior could provide additional benefits. 

SHAIEx, a multimedia-
based AEHS, for foreign 
language learning [3], [4], 
[16] 

Several design and implementation phases. Supports adaptive pres-
entation and adaptive navigation. It is multimedia-based and  
incorporates games. 

SHAIEx teaches English 
vocabulary to Iranian 
children [1] 

SHAIEx games contributed in improved results of children in  
vocabulary tests. SHAIEx digital games are more entertaining and 
educative compared to other teaching methods. 

IESs using conversational 
pedagogical agents [57] 

Agents teach reading and conduct speech therapy providing real-
time feedback. Improvements in letter and word recognition  
reported. 

A logic-based web tool 
for deaf children [18] 

Assists deaf children’s temporal reasoning in e-stories concerning 
verbal language episodes 

ITS in an Adaptive Braille 
writing Tutor [15] 

Enhancement of ABT with individualized instructions, quite helpful 
in developing countries 

Sharing of user-generated 
behaviors in games [30] 

Children easily teach virtual pets. Virtual pets may take part in dif-
ferent competitions, compete friends’ pets, take part in other games. 

Collaborative learning is considered important in early childhood education. 
Most IESs usually do not focus on collaborative learning. It could be mentioned 
that the approach presented in [30] incorporates collaborative learning. Collabora-
tive games could thus be one way of incorporating collaborative learning activities 
in IESs addressed to young children. 

Children with special needs usually require early intervention to enhance their 
skills. IESs such as the ones presented in [57], [18] and [15] could play an impor-
tant role in this context. More IESs covering additional needs could be imple-
mented as well. For instance, no results concerning the use of IESs in the learning 
of children with autism have been presented till now. On the contrary, robots have 
proven useful to children with autism. 

Animated and conversational pedagogical agents could prove fruitful in early 
childhood education as shown in [57]. Virtual agents could constitute the counter-
part of robots. More approaches concerning virtual agents could be tested in the 
future.   

Long term evaluation of the presented approaches and comparison with con-
ventional teaching methods are also required. It would be also interesting to obtain 
evaluation results from young children in different countries as in the case of 
SHAIEx. 

Young children and teachers could also use interactive whiteboards to access 
IES services. Such an approach has not been presented till now. Touch screens of 
robots connected to networks could provide an alternative means of accessing IES 
services. 
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It should be mentioned that none of the presented approaches involves student 
parents that is, the presented approaches were not employed to link classroom and 
home activities. Parents would probably be interested to try out certain of the IES 
services (such as games). 

E-learning systems addressed to young children usually consist of interdiscipli-
nary activities. The presented IESs mostly involve language (e.g., SHAIEx, [15], 
[18] and [57]) and mathematics (e.g., [29]). Mathematic activities (e.g., counting) 
are also incorporated in certain SHAIEx games. Science is a domain for which in-
teresting e-learning systems have been developed. In the presented IESs, science 
aspects are covered in interdisciplinary activities such as in games incorporated in 
SHAIEx and in [30]. Obviously, more IES activities concerning science and 
mathematics could be developed. 

For obvious reasons, the IESs addressed to young children are based on multi-
media technologies. Web-based technologies were also employed in certain of the 
approaches such as SHAIEx and the approaches presented in [29], [18] and [57]. 
Web-based IESs may be also accessed by children and parents at home. 

Finally, an interesting aspect is that not many IESs addressed to early childhood 
have been developed till now. This means that early childhood education could 
become a domain in which fruitful results could be produced by IES researchers 
and developers. 

4   Case Studies of Robot Integration in Early Childhood  
Settings 

In this section, specific case studies concerning integration of robots in early 
childhood settings are outlined. The case studies are presented in the following 
four sections. Section 4.1 presents approaches integrating robots in typical early 
childhood classrooms. Section 4.2 discusses approaches involving young children 
with special needs. Section 4.3 outlines general approaches concerning robots and 
young children. Section 4.4 discusses derived conclusions. 

4.1   Approaches Integrating Robots in Typical Early Childhood 
Classrooms 

In [27] results of using intelligent robot iRobiQ in early childhood education are 
presented. The robot was used as teaching assistant for 111 five-year-old children 
attending two kindergartens and two childcare centers. Children interacted with 
the robot for about one hour everyday over a period of about two weeks during 
spring 2009. Children and teachers were interviewed to record their experiences 
with the robot. The results showed that educational robots may possess contents 
and functions that promote socio-emotional interactions among children and ro-
bots. The indications show that such content and functions should be developed 
for educational purposes. Robots seem to be more effective when they are in class-
rooms, close to children and used by individuals rather than by groups. 
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In [52] iRobiQ provided educational services mainly in the domain of language 
teaching for kindergarten children. The approach puts emphasis on the concept of 
ubiquitous network robot that is, a robot combining the advantages of ubiquitous 
network technologies and mobile characteristics of robots. Through network tech-
nologies contents and services developed for the robot may be downloaded from 
servers and exploited in various contexts. Different types of services that may be 
developed for the robot include basic services (e.g., photo, video database infor-
mation), information services (e.g., news, weather and cooking information), edu-
cation services and entertainment services (e.g., karaoke, games, media player). 
Education services addressed to early childhood education involve storytelling, 
sing alone, phrase and word train. The results of exploiting the robot in classroom 
were very positive. They showed that a robot with bi-directional interaction such 
as iRobiQ improves young children’s linguistic abilities especially in aspects such 
as story making, story understanding and word recognition. Children’s degree of 
active and adaptive behavior increased. Children also interacted with the robot 
with increasing familiarity (e.g., they spoke to and touched the robot). 

In [28] the robot PaPeRo is exploited to provide asynchronous network-based 
communication among parents, nursery teachers and children. In this approach, 
the notion of remote control of a robot for remote collaboration is explored to ena-
ble collaboration of parents, teachers and children at times suitable for each other. 
Synchronous communication may not be always a suitable medium to link parents 
with teachers and children as they may have different daily schedules [28]. In the 
specific approach, parents use cellular phone text messaging as a communication 
tool since this form of communication is convenient. The overall architecture in-
cludes a platform to link the robot to parents’ cellular phones through conversion 
of text messages to action commands or conversion of data acquired by the robot 
to text messages. Parents may send a message indicating a request or even a de-
sired action their child should perform with the robot. The message is received by 
the robot. The teacher at a suitable time triggers the robot to follow the parent’s 
instructions (e.g., play with the children). The robot’s cameras acquire image and 
movie data concerning the children (e.g., facial expressions during activities). The 
teacher at an appropriate time triggers the robot to send the requested data to par-
ents’ cellular phones in a proper form (e.g., movie file links). Therefore, a two-
way communication is established through the robot. On the one hand, parents 
send messages and requests concerning teachers and children. On the other hand, 
teachers send data concerning children’s activities in classroom. The approach 
was evaluated in two nursery facilities each involving six young children and their 
parents. In each facility, trials were executed for about two hours on selected days. 
Questionnaire results from parents indicated their positive responses to the trials. 

The approach presented in [28] could be integrated with an active recognition 
photography system (ARPS) for child-care robots such as the one presented in 
[60]. ARPS was implemented based on intelligent technologies for network-based 
robots connected to servers. It can be used to provide quality photographs of child-
ren at classrooms to their parents. ARPS consists of photo evaluation and photo 
classification modules. The photo evaluation module evaluates picture quality 
based on detected face features. The photo evaluation module may be also used to 
control a robot to adjust its posture so that only quality pictures of children faces 
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are taken. The photo classification module recognizes and classifies faces in pic-
tures using stored face pictures. Taken pictures are stored in databases and for fac-
es not recognized the teacher supplies the students’ info. The approach was  
evaluated for two months in a nursery with thirty-two (32) children from three to 
four years old. The network-based robots acting as teacher assistants employed 
were AnyRobot I and II developed in Samsung Electronics. These robots were 
remotely controlled with devices such as remote computers and PDAs.  

In [26] a study concerning the daily use of iRobiQ from kindergarten students 
during their free playtime is presented. Observation sessions were conducted for 
twenty-three (23) children from the three-year old class and for twenty (20) child-
ren from the four-year old class. The involved time period lasted three months i.e. 
from December 2008 till February 2009. Preparatory activities were carried out 
before the robots were introduced. Furthermore, robot zones and utilization rules 
were established. Therefore, when robots were introduced, children and teachers 
were adequately prepared for effective and safe interaction as well as creation of 
close relationship. Teachers may be stressed when young children are given free 
access to classroom resources such as cameras, interactive whiteboards, computers 
and robots. They are concerned about accidents, damages or malfunctions. Also 
the price of certain resources may be expensive. Experiences of children’s use of 
robots and other resources have shown that with appropriate preparation and in-
structions, children are able to independently and safely exploit robots and various 
other types of resources. Robot activities were accepted by children as readily as 
any other new activity. Throughout the three months, no changes were recorded in 
the utilization time and frequency of robots meaning that children remained inter-
ested in robots during a long period. Children interacted with the robots in small 
groups but usually in pairs due to the small size of the robot and its LCD screen. 
The roles that children assumed while interacting with the robots were similar to 
roles assumed in other play activities (e.g., principal user, assistant user and ob-
server). Age and gender did not influence the children’s interaction with robots. A 
general conclusion is that in order to effectively exploit characteristics of robots 
such as mobility and automaticity during their interaction with children, appropri-
ate robot stimuli and contents need to be developed. 

In [31] preliminary results concerning introduction of the humanoid robot Kibo 
to a kindergarten during a robot show are presented. The experiments were based 
on Kibo’s characteristics such as choreography, gesture recognition, facial recog-
nition and expression as well as voice recognition. Four robots were used demon-
strating synchronized motion. The teacher started to communicate with the robots 
using a microphone. During the conversation, the teacher asked the robots to begin 
choreography along music. The robots followed voice instructions in a synchro-
nized manner. They also reacted to teacher postures and facial expressions and al-
so synchronized their lips and facial expressions. 

In [34] an approach to a robot personalized to student traits is presented. The 
approach combines robot and ITS technologies. It uses visual and vocal data con-
cerning a student to adapt contents provided by a robot according to the student’s 
needs. Robot sensors enabling to a certain degree tasks such as voice recognition, 
face recognition, recording of facial expressions and body motions can be ex-
ploited to evaluate learning process. According to the evaluation based on human-
robot interaction, the proper contents are selected. The overall architecture is  
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network-based. Besides the robot, it consists of a main server containing robot 
learning contents and an agent server. The agent server receives student profiles 
from the robot which are stored in a database. Based on student information, it ac-
quires proper learning content from the main server and submits it to the robot. 
The robot uses the received content in the learning process with the student and 
obtains interaction data submitted afterwards to the agent server in order to per-
form student learning evaluation. 

In [61] the results of a study concerning the relevancy of computer utilization 
by young children to their use of education robots are presented. Such a correla-
tion could be considered possible due to the fact that robots usually have an LCD 
screen presenting e-learning content just like computers. The study involved three 
early childhood classes of three-, four- and five-year-old children. When the study 
was conducted, the iRobiQ robot had been used in these three classes for about 
eight months. Three classes were studied to identify relationship between comput-
er and robot utilization according to age. Results showed that although computer 
utilization skills differed according to the age of students, there was no difference 
in robot use at any age. This implies that it is easier for younger children to inte-
ract with robots compared to computers. Furthermore, children’s traits in using 
computers were not related with the corresponding traits in using robots. More 
specifically, computer utilization frequency and capability were not correlated to 
robot utilization. It seems that robot characteristics such as mobility, gestures, 
sounds, facial expressions, vocal and visual recognition overcome certain comput-
er limitations. 

In [55] results of an extensive study involving socialization between toddlers 
and robots are presented. The study involved 18- to 24-month-old toddlers and the 
robot QRIO. There were forty-five (45) hourly sessions spanning five months rec-
orded with video cameras. The videos were studied and analyzed for two years. 
The young age of children enabled researchers to focus on social interaction not 
much dependent on speech. In addition, children at such a young age do not have 
preconceived notions of robots. The study consisted of three phases. During the 
first and third phase, the robot used its full behavioral repertoire while interacting 
with children. During the second phase, the robot was programmed to produce in-
teresting but predictable behaviors. During the first and third phase, the quality of 
interaction between toddlers and robot was high. During the second phase, the 
quality of interaction declined meaning that toddlers preferred interacting with the 
robot when it exhibited its entire behavior repertoire. The children did not lose in-
terest in the robot throughout the prolonged time period of five months. Moreover, 
the children’s haptic behavior towards the robot progressively changed and re-
sembled behavior towards a peer. The children’s social and care-taking behavior 
towards the robot was very different compared to their behavior towards control 
toys used throughout the sessions. The results ultimately showed that the robot 
was close to autonomously bond and socialize with young children for significant 
time periods. 

QRIO can also be used for dance interaction with toddlers in a classroom envi-
ronment [54]. In fact, QRIO supports various dance interaction technologies from 
non-autonomous choreographed dance to autonomous one. Two modes are sup-
ported for the autonomous dance technologies: activeness and passiveness. In the 
passive mode, QRIO reacts to the outside motion to provide motion imitation with 
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the partner. In the active mode, QRIO spontaneously moves to maximize the in-
formation for the presence of a reactive partner. Activeness is based on contingen-
cy detection formulated by Bayesian inference. In real-time dance interactions, the 
robot is also able to include emotion expressions. Facial expressions and whole 
body gestures can be used to express emotions. Among others, neural networks 
and reinforcement mechanisms are employed for this task. 

Table 4 summarizes results derived from the aforementioned approaches. 

Table 4 Summary of approaches integrating robots in typical classrooms 

Case Study Key Points 

iRobiQ as teaching assistant, 111 five- 
year-old children in two kindergartens and 
two childcare centers, two-week study [27]

Robots seem to be more effective when in class-
rooms, close to children and used by individuals. 

iRobiQ for language teaching in a kinder-
garten [52] 

Children’s linguistic abilities improved especially in 
aspects such as story making, story understanding 
and word recognition. 

PaPeRo in two nursery facilities, 12  
children and their parents [28] 

Robot provides asynchronous network-based  
communication among parents, nursery teachers and 
children. 

Active recognition photography system, 
AnyRobot I and II in a nursery with 32 
children from three to four years old,  
two-month study [60] 

Photo evaluation and classification, provision of 
quality photographs of children at classrooms to  
parents. 

iRobiQ, 23 three-year-old children, 20 four-
year-old children, three-month study [26] 

Children remained interested in robots during a long 
period. Children usually interacted with robots in 
small groups but usually in pairs, roles similar to 
those assumed in other play activities. 

Kibo introduced to a kindergarten during a 
show [31] 

Four robots demonstrated synchronized motion  
and facial expressions, followed teacher’s voice  
instructions and reacted to teacher’s postures and  
facial expressions. 

Robot personalized to student traits [34] Student’s visual and vocal data used to adapt  
contents provided by a robot according to student’s 
needs, network-based architecture. 

iRobiQ in three early childhood classes of 
three-, four- and five-year-old children, 
eight-month study [61] 

There is no relationship between computer and robot 
utilization. 

QRIO, 18- to 24-month-old toddlers, video 
camera recording, five-month study [55] 

Throughout the 5 months, children retained interest 
in the robot. The robot was close to autonomously 
bond and socialize with young children for signifi-
cant time periods. 

QRIO, dance interaction with toddlers in a 
classroom environment [54] 

Robot supports dance interaction technologies  
ranging from non-autonomous choreographed dance 
to autonomous one. Robot expresses emotions during 
dancing. 
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4.2   Robots and Young Children with Special Needs 

In [2] an approach to train toddlers seated on mobile robots to steer using force-
feedback joystick is presented. The main purpose of the approach is to train  
infants with special needs that display limited independent walking. Mobility im-
pairments limit the typical development of a child hindering exploration and social 
contacts and thus negatively affecting life quality. The hardware in the experiment 
setup consisted of a mobile robot, sensors and a force-feedback joystick. The 
study involved toddlers that on average were thirty months old. Separate driving 
experiments were performed for ten typically developing toddlers as well as two 
toddlers with special needs. The two toddlers with special needs were a two-year-
old with spina bifida and a three-year-old with cerebral palsy. The first child had 
good control of hand movement lacking the ability to walk and balance himself 
whereas the second child had decreased control of hand movement and coordina-
tion. The results were positive for all groups of toddlers. More specifically, the 
toddlers with special needs were able to learn to make turns and follow lines after 
five non-consecutive days of training. The learnt behavior was displayed several 
days after training and also in different configuration and location. 

In [19] requirements for robots in autism therapy and preliminary trial results in 
a clinical setting are presented. The purpose of the defined requirements for robots 
and user interfaces are to provide guidelines in developing robots that will effec-
tively assist child autism therapists. Robot design requirements defined concern 
functionality and appearance, safety and autonomy. Each type of robot exhibits 
different characteristics, advantages and disadvantages and thus robot design re-
quirements enable a robot to perform desired therapist activities. As far as auton-
omy is concerned, it should be mentioned that therapists need to have certain  
control on the robot and so autonomy to a certain degree is desired. The user inter-
face should be friendly to therapists, responsive, flexible and controlled with a 
(preferably small) handheld device. The researchers built two humanoid robots 
(i.e. Troy and Trevor) that satisfied the defined requirements. They present prelim-
inary trial results for Troy. Troy has been tested with two typically developing 
children, a four-year-old boy and a three-year-old girl. Results concerning the 
children’s social interaction with Troy and the clinician were positive. Promising 
preliminary results involving two children with autism are also presented. The two 
children showed interest in Troy and a higher degree of interaction with the the-
rapist compared to sessions without Troy. 

In [37] socially interactive mobile robots are presented such as Tito and Roball. 
For instance, Tito was used in trials conducted by a psycho-educator with four 
five-year-old children with autism. Tito records and stores the timing between its 
interactions with a child. Preliminary results show that Tito becomes an incentive 
for the child. 

In [51] issues concerning the use of social robots to diagnose, treat and under-
stand autism are discussed. The discussion is based on three years of integration 
and immersion with a clinical research group at the Yale Child Study Center 
which performs diagnostic evaluations of children for autism. A person with aut-
ism is characterized by social and communicative impairments. Diagnosis is based 
on a child’s social skills such as eye-to-eye gaze, facial expression, body posture 
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and gestures. There have been various studies showing that a robot motivates and 
engages children. However, an argument of the research is that when interacting 
with robots, persons with autism may not display a behavior such as the one ex-
pected by typical persons. This aspect should be studied and taken into considera-
tion. For instance, a pilot study involving typical and autistic preschool children’s 
interactions with ESRA, a simple robot generating facial expressions, was carried 
out. Children reactions to two robot conditions (i.e. a contingent and a non-
contingent condition) were studied. Typical children were attentive to the robot 
only in the contingent condition whereas children with autism responded with at-
tentiveness to both robot conditions. The research also introduces quantitative, ob-
jective metrics of social response to handle autistic diagnosis problems. Metrics 
concern passive and interactive observations. Passive sensing can be performed by 
social robots and relevant metrics involve detection of gaze direction, position 
tracking and vocal prosody. Socially interactive robots with certain autonomy 
provide the opportunity to effectively obtain information concerning children’s 
social behavior. A clinician could possibly obtain relevant information in similar 
quality and quantity only with extensive work. 

In [7] a robotic dog was used for pre-orientation and interaction of toddlers and 
preschoolers who are blind. The robot used was a modified Sony Aibo to suit inte-
raction with the blind. The results showed that very young children who were 
blind were able to operate the robot. A difficult task in robot operation for persons 
who are blind concerns connection and disconnection of the recharger. The use of 
distinctive texture solved this problem. Very young children who were blind due 
to their interaction with the robot became more active, excited and engaged into 
playful learning activities. The results show that robots can be used in an educa-
tion environment at least as assistants for people with disabilities. For people with 
low vision, language and text presentation is important. In this context, robots can 
also act as human-computer interface enhancing accessibility. In a constrained en-
vironment, robots could be used in autonomous vehicles for individual transport of 
people who are blind and restricted to a wheel chair. 

In [33] a robot-assisted observation system for children with autism was devel-
oped. The system was developed for a specialized kindergarten for developmen-
tally disabled children. The system consists of six pet robots, a handheld device 
(e.g., PDA) used to input data concerning observations, video cameras with mi-
crophones to record data and a remote server to maintain a database with recorded 
data. Experiments were conducted three times per week for three months. Child-
ren with autism interacted with the robots and recorded data was transmitted to the 
database. The system provides efficient information processing and facilitates data 
analysis (e.g., statistical graphs are produced). Further data analysis facilities 
could be provided but the successful trial in the kindergarten demonstrated that the 
observation system is useful for education environments. 

Table 5 summarizes results derived from the aforementioned approaches. 

4.3   General Approaches Concerning Robots and Young Children 

In [32] scenario-based behavior design concerning a network-based robot is ex-
plored. The robot used in the research is Porongbot. Scenario-based design was 
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used to extract basic scenarios and detailed scenarios concerning robot behaviors 
and user responses during human-robot interaction. Appropriate tasks (e.g., turn 
on/off, play with) for the derived scenarios were also defined. Behaviors were eva-
luated via computer simulation according to three parameters: sociability (i.e. ro-
bot’s easiness in generating dialogues), activity (i.e. how intense robot movements 
are) and agreeableness (i.e. how kindly the robot behaves). Robot behaviors 
should be diverse, understandable, appropriate to current situations and coherent 
with personality profile. Scenarios were implemented in the form of scripts and a 
behavior selection model was implemented. The approach was implemented and 
evaluated through a simulator. 

Table 5 Summary of approaches involving robots and children with special needs 

Case Study Key Points 

Training of toddlers that display limited  
independent walking, tested with a two- and 
a three-year-old child [2] 

Toddlers seated on mobile robots are trained to steer 
using force-feedback joystick. The learnt behavior 
was displayed several days after training and also  
in different configuration and location. 

Troy and Trevor in autism therapy, Troy 
tested with two children with autism [19] 

Two children with autism showed interest in Troy 
and a higher degree of social interaction with the the-
rapist compared to sessions without Troy. 

Tito, four five-year-old children with  
autism [37] 

Preliminary results show that Tito becomes an incen-
tive for the child. 

Social robots used to diagnose, treat and 
understand autism [51] 

Introduction of quantitative, objective metrics of  
social response to handle autistic diagnosis problems. 
Socially interactive robots with certain autonomy 
may effectively obtain information concerning child-
ren’s social behavior. 

Robotic dog for pre-orientation and interac-
tion of children who are blind [7] 

Very young children who were blind were able to 
operate the robot and became more active, excited 
and engaged into playful learning activities. 

Robot-assisted observation system for 
children with autism in a specialized  
kindergarten, experiments conducted for 
three months [33] 

The system provides efficient information processing 
and facilitates data analysis. 

In [50] requirements and specific tools for extended human-robot interactions 
with children as subjects are presented. More specifically, special recording and 
analysis tools are required. The study of human-robot interaction may become so-
phisticated and in the specific research the focus was on extended interaction se-
quences. There are multiple recording devices (e.g., sensors, cameras) producing 
data (e.g., facial expressions) from multiple viewpoints. The time scale of events 
varies and certain behaviors (e.g., changes in eye gaze) may occur within seconds. 
All data needs to be time-synchronized to constitute a consistent source for analy-
sis. Furthermore, the large amount of (audio and video) data produced needs to be 
automatically annotated. Manual annotation would be too time-consuming and 
certain important details from the multiple sources may be missed. Therefore, 
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tools based on computer vision algorithms that would automate detection and do-
cumentation of behaviors are required. The researchers mention solutions they 
have developed for recording and analysis. For recording, they present a scalable 
system based on seven cameras and microphones in which audio and video data is 
automatically synchronized and timestamped. A technique with appropriate con-
trol interface was developed enabling robot control by a concealed human opera-
tor so that the person interacting with the robot believes it is totally autonomous. 
Two analysis tools are presented. One analysis tool processes video data to pro-
vide annotations involving head pose and eye gaze. The other tool provides a 
framework for combination of visual data so that it can be explored by other ap-
plications and tools across a common timeline. The presented tools were used to 
record and analyze interactions of four- to eight-year-old children with a robot. 
Such tools are necessary to robot designers, teachers and therapists. For teachers 
specifically the need for such tools is twofold. On the one hand, teachers need to 
study and evaluate educational technology used in classroom. On the other hand, 
analyzed recorded data could be used in educating teachers to new practices [38]. 

In [13] full-body gesture recognition for interaction with a small robot (i.e. 
Sponge Robot) is investigated. An aspect that had not been considered prior this 
research concerned full-body gestures that is, gestures affecting the whole body of 
the robot (i.e. position and orientation). A small and light humanoid robot needs to 
recognize such gestures because people will pick it up and interact playfully with 
it by hugging, shaking and moving it around. A robot should be able to respond to 
such interaction to create bonds with humans it interacts with. The specific re-
search identifies corresponding gestures and presents a system for their recogni-
tion. Data to identify gestures was collected at a research institute and a university 
from participants interacting playfully with the robot. Video recording was used to 
record more than a thousand gesture instances. An intelligent system based on 
Support Vector Machines was developed to learn from the collected data and per-
form gesture recognition. It should be mentioned that certain gestures have a 
stronger effect than others whereas certain gestures are interpreted in different 
ways. 

Detailed results concerning Roball are presented in [49]. In this work, require-
ments concerning child-robot interaction are defined. Roball satisfies such re-
quirements. An adaptive algorithm was developed for adapting Roball’s behavior 
to the received interaction so that children’s communication with the robot is rein-
forced. For instance, according to the interaction it is receiving, the robot may 
simply wander, avoid obstacles, make noises, produce speech or go faster. Roball 
was used to study toddler-robot interactions. Roball’s characteristics attracted the 
interest of young children and demonstrated that locomotion capabilities are re-
quired in child environments. Trials with young children were conducted in the 
lab and in typical environments for children. A trial was also conducted at a high 
school. 

In [39] a humanoid robot was developed that dances in real-time with sponta-
neous and dynamic movements in synchronism to music. It was the first approach 
in which a robot dynamically danced in correspondence to music rhythm. The 
overall framework consists of two main modules: a music analysis and a robot 
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control module. The music analysis module is based on Marsyas, an open source 
software framework for audio analysis and synthesis emphasizing to music sig-
nals. This module perceives music rhythm. The robot control module reacts to 
rhythm data sent by the aforementioned module and to sensor data to promote dy-
namic dance movements. The researchers mention that their future plans involve 
the issue of multi-robot dance that is, the synchronization of multiple dancing  
robots. 

Table 6 summarizes key points of general approaches concerning young child-
ren and robots. 

Table 6 Summary of general approaches involving robots and young children 

Case Study Key Points 

Porongbot, scenario-based design [32] Scenarios concerning diverse, understandable, ap-
propriate and coherent robot behaviors were de-
signed, implemented and evaluated through a simula-
tor. 

Tools for extended human-robot  
interactions, used to record and analyze  
interactions of four- to eight-year-old  
children with a robot [50] 

Tools and algorithms for scalable recording,  
synchronization, automatic annotation of interaction 
data. 

Sponge Robot, gesture recognition [13] Full-body gesture recognition for small and light  
robots. 

Roball [49] Requirements concerning child-robot interaction are 
defined. An adaptive algorithm was developed for 
adapting Roball’s behavior. 

Real-time robot dancing [39] Real-time robot synchronization to music rhythm. 
Dynamic dance movements achieved based on music 
analysis and sensor data. 

4.4   Discussion 

A general comment that can be made concerning robots in early childhood settings 
is that several approaches have been presented employing different types of ro-
bots. A direct comparison among the approaches is difficult to be made but certain 
issues can be pointed out. 

A requirement to assess the effectiveness of integrating robots in early child-
hood education concerns evaluation of the results. Long term interaction of young 
children with robots could highlight advantages and limitations of robotic technol-
ogy. Some of the surveyed approaches involved long term child-robot interaction. 
Such were the approaches presented in [26] and [61] that involved integration of 
iRobiQ in classroom activities for a time period of three and eight months respec-
tively. Furthermore, in [55] it is mentioned that children interacted with QRIO for 
five months, ARPS was used for two months [60] and in [33] experiments con-
cerning the presented observation system were conducted for three months. In cer-
tain approaches, the total duration of interaction was brief. For instance, in [31] 
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robots were introduced to a kindergarten during a show. There are also approaches 
for which the total duration of interaction is not mentioned.  

For evaluation purposes, data regarding child-robot interaction needs to be re-
corded and extensively analyzed by teachers and experts in robotic technology. A 
set of video cameras and microphones are necessary for recording data. Handheld 
devices such as PDAs or tablet PCs could be useful for inputting observation data 
perhaps to a database hosted on a remote server [33]. Analysis of recorded video 
and photo data concerning child-robot interaction is explicitly mentioned in cer-
tain approaches (e.g., [55], [13], [60]). The most extensive analysis of recorded 
video data seems to involve young children’s interaction with QRIO [55]. Chil-
dren interacted with QRIO for five months but analysis of recorded data was car-
ried out for two years. Moreover, in [13] it is mentioned that more than a thousand 
gesture instances were recorded in video. As the study of child-robot interaction 
may turn out to be a time-consuming and sophisticated process, special recording 
and analysis tools are required such as the ones presented in [50]. Useful ideas in 
this context could also be found in the observation system described in [33]. A 
system such as ARPS could also be used in this process to evaluate and classify 
photos [60]. 

Closer correlation of robot-assisted learning with early childhood education 
curriculum is also necessary. In [31] it is mentioned that iRobiQ was successful in 
improving children’s linguistic abilities in specific aspects. Children’s communi-
cation skills were also enhanced with robots especially in the case of children with 
special needs. Research on other aspects such as mathematics and science is also 
required. 

Several of the approaches explicitly mention testing in classroom environ-
ments. Such approaches were for instance the ones presented in [27], [52], [28], 
[60], [26], [34], [61], [55], [54], [31], [33] and [49]. Certain of these approaches 
such as the ones presented in [27], [28], [26] and [61] explicitly mention testing in 
different classes and/or different facilities. Such evaluation results would be useful 
for the generalization of the reached conclusions. 

As mentioned in Section 2, educational technology in early childhood usually 
involves a combination of technological resources. Most of the approaches do not 
describe how a combination of robots and other technological resources (e.g., 
computers, interactive whiteboards, programmable toys) were effective in enhanc-
ing different learning aspects. This is a missing point in most of the surveyed ap-
proaches. Combination of robots with other technological resources is presented in 
approaches involving observation, recording and analysis (e.g., [33], [50]).  

Some type of robot and computer functionality combination is described in cer-
tain approaches. More specifically, computer functionality is provided to learners 
through robots. This could be an interesting research direction. Robots connected 
to networks such as iRobiQ, Porongbot and the one presented in [34] could pro-
vide contents and services hosted in remote computers to students. Moreover,  
robots with a touch screen provide to a certain degree similar functionality to 
computers as they are able to display software applications and receive inputs 
from students. For there reasons, the research presented in [61] explored the  
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relevancy of computer and robot utilization by young children. An analysis com-
paring the effectiveness of computers and robots in enhancing young children’s 
learning would be interesting. 

A further comment that can be made is that more approaches concerning inte-
gration of robots in early childhood settings have been presented compared to the 
approaches discussing integration of (computer-based) IESs in corresponding en-
vironments. It seems that more researchers are working in the field of robotics in 
early childhood. Furthermore, even very young children may interact with robots 
whereas with IESs this could be more difficult. An interesting approach with diffi-
culties in its implementation could be the combination of robotic and (computer-
based) IES technologies as in [34]. 

An interesting aspect involves the form and size of robots that have been inte-
grated in early childhood settings. The size of the robots is small so that young and 
very young children may find it appealing to interact with them. Most of the ro-
bots have some type of humanoid form. Such robots are iRobiQ, Sponge Robot, 
PaPeRo, Kibo, Troy, Trevor, Tito and QRIO. Troy was used in autism therapy and 
differs from other humanoid robots as it has a computer screen for its face. Robots 
in the form of pets have also been used in early childhood (e.g., [7]). Roball is 
quite different from robots described in the other surveyed approaches as it is en-
capsulated within a sphere. Roball signifies that different robot forms than the 
‘usual’ ones may be explored. Requirements concerning learners and learning en-
vironment need to be carefully studied when implementing robots. Children with 
special needs may impose different requirements from robots as their reactions 
may differ from other children. Roball and Sponge Robot are robots that young 
children are able to lift up. Specifically, Sponge Robot has been developed for 
playful interaction when lifted up and differs from other robots in this context. 

Certain robots were developed especially for children with special needs. Such 
robots are described in [2], [19], [37], [51], [7] and [33]. Some of these robots in 
spite of being developed for children with special needs were also tested with typ-
ical children (e.g., [2], [19], [51]) to record differences in children’s reactions. 
There are no explicit reports concerning interaction of certain robots such as 
QRIO, iRobiQ, Sponge Robot, Porongbot, PaPeRo and Kibo with children having 
special needs. In [49] it is mentioned that Roball satisfies requirements of children 
with autism. 

The surveyed approaches concern young children with a variety of ages.  
Certain approaches concern very young children. More specifically: 

• In [55] QRIO interacted with 18- to 24- month-old toddlers, in [2] the study in-
volved toddlers that were on average thirty months old (i.e. two to three years 
old), in [7] the robotic dog interacted with very young children. 

• iRobiQ in [26] and [61] and Troy in [19] interacted with three- and four- year-
old children. This was also the case for the study in [60] involving ARPS also 
concerned three-year-old children. 

• In [26] and [61] iRobiQ interacted with four-year-old children and in [19] Troy 
was tested with a four-year-old child. ARPS in [60] involved four-year-old  
(besides three-year-old) children. 
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• The approach in [28] was evaluated in nursery facilities thus it probably in-
volved children under five. 

• In [27] and [61] iRobiQ interacted with five-year-old children and so did Tito 
in [37]. 

• In [31], [52] and [33] Kibo, iRobiQ and the robot-assisted observation system 
respectively were used in a kindergarten and thus the specific research probably 
involved children who were at least five years old. 

• In [50] interactions of four- to eight-year-old children with a robot were re-
corded and analyzed. 

In total, it can be mentioned that approaches presented in [55], [2], [7], [26], [61], 
[19], [60] and [50] were tested with children under five. The approaches presented 
in [27], [61], [37], [31], [52], [33] and [50] were tested with children who were at 
least five years old. Certain approaches (e.g., [50], [61]) were tested with children 
under five as well as with children who were at least five years old. Roball in [49] 
was also successfully tested in a high school setting. Perhaps certain robots dis-
cussed in the surveyed approaches could also be used in elementary schools. 

5   Conclusions 

This paper discusses issues regarding application of Artificial Intelligence me-
thods in early childhood education. The discussion involves Intelligent Education-
al Systems (i.e. Intelligent Tutoring and Adaptive Educational Hypermedia  
Systems) and robots. Such a discussion is useful to Artificial Intelligence re-
searchers and practitioners, educational technology researchers and practitioners, 
teachers, undergraduate and postgraduate students. 

Research work in early childhood educational technology is not yet as exten-
sive as in other levels of education. Approaches surveyed in this paper demon-
strate that fruitful results may be produced by incorporating Artificial Intelligence 
methods in early childhood education. Results have shown that children are moti-
vated in taking part in learning and social activities and remain interested in the 
technological resource even in long term interaction. Approaches enhancing lite-
racy of children with special needs have also been successful. An important aspect 
is that learning goals are achieved. 
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Recursively Generated Evolutionary Turing 
Machines and Evolutionary Automata** 

Mark Burgin and Eugene Eberbach* 

Abstract. One of the roots of evolutionary computation was the idea of Turing 
about unorganized machines. The goal of this paper is the development of founda-
tions for evolutionary computations, connecting Turing’s ideas and the contempo-
rary state of art in evolutionary computations. The theory of computation is based 
on mathematical models of computing automata, such as Turing machines or finite 
automata. In a similar way, the theory of evolutionary computation is based on 
mathematical models of evolutionary computing automata, such as evolutionary 
Turing machines or evolutionary finite automata. The goal of the chapter is to 
study computability in the context of the theory of evolutionary computation and 
genetic algorithms. We use basic models of evolutionary computation, such as dif-
ferent types of evolutionary machines, evolutionary automata and evolutionary al-
gorithms, for exploration of the computing and accepting power of various kinds 
of evolutionary automata. However, we consider not only how evolutionary auto-
mata compute but also how they are generated because a rigorous study of  
construction techniques for computational systems is an urgent demand of infor-
mation processing technology. Generation schemas for evolutionary automata are 
studied and applied to computability problems.  

1   Introduction 

Alan Turing was one of the founders of theoretical computer science. His basic 
model of computation, which is now called Turing machine, is the most popular 
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in computer science. He also had many other ideas. In particular, Turing (1948) 
proposed to use what is now called genetic algorithms in his unorganized ma-
chines. Turing while at Cambridge proposed his automatic machines (now known 
as Turing machines) and choice machines. In 1939 he defended his Ph.D. on 
oracle machines under Alonzo Church supervision at Princeton. During World 
War II, Turing’s top secret work was on Colossus 1st electronic computer to 
break Enigma code.  After the end of the war Turing joined the National Physical 
Laboratory in 1945 to work on the Automatic Computing Engine (ACE) under the 
supervision of Sir Charles Darvin (the grandson of the founder of the theory of 
evolution). Before leaving for Manchester in 1948, Turing produced a final report 
on ACE which can be viewed as a blueprint for the future field of evolutionary 
computation. Titled Intelligent Machinery (Turing 1948), this report was left un-
published until 1968, because Darwin, his boss, considered it to be a “schoolboy 
essay" not suitable for publication. 

In this report, among other futuristic ideas, including robots taking country 
walks, Turing proposed new models of computation, which he called unorganized 
machines (u-machines). There were two types of u-machines, those based on 
Boolean networks and those based on finite state machines. Turing took his inspi-
ration from the working of the human cortex, and its ability for self-adaptation. 

•  A-type and B-type u-machines were Boolean networks made up of a fixed 
number of two-input NAND gates (neurons) and synchronized by global clock. 
While in A-type u-machines the connections between neurons were fixed, B-
type u-machines had modifiable switch type interconnections. Starting from the 
initial random configuration and applying a kind of genetic algorithm, B-type 
u-machines were supposed to learn which of their connections should be on and 
which off. 

•  P-type u-machines were tapeless Turing Machines reduced to their Finite State 
Machine control, with an incomplete transition table, and two input lines for 
interaction: the pleasure and the pain signals. For configurations with missing 
transitions, the tentative transition to another state could be reinforced by 
“pleasure” input from the environment, or cancelled in the presence of “pain”. 

In his B-type u-machines, Turing pioneered two areas at the same time: neural 
networks and evolutionary computation (more precisely, evolutionary artificial 
neural networks EANNs), while his P-type u-machines represent reinforcement 
learning. However, this work had no impact on these fields, due to the unfortunate 
combination of Turing's death and the twenty-year delay in publication (for more 
details see Teuscher 2002,  Eberbach et al 2004).  

Turing was convinced that his B-type u-machine can simulate his Universal 
Turing Machine, though he never provided a formal proof. In order to simulate 
the infinite tape of a Turing Machine, a u-machine with an infinite number of neu-
rons would be needed. This is due to the discrete nature of the neurons, which 
were based on two input Boolean NAND gates. By contrast, two real-valued neu-
rons are sufficient to model a Turing Machine. 

B-type u-machines were defined to have a finite number of neurons, and it is 
not clear whether Turing was aware that infinitely many neurons were needed for 
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the simulation. This inconsistency would certainly have been uncovered when 
working on the formal proof. But perhaps Turing was aware of it, and expected to 
have no problems extending his definitions to the infinite case. 

In any case, these ideas became one of the roots of evolutionary computation in 
general and evolutionary computation theory, in particular.  

It is necessary to state that evolutionary computation is also rooted in ideas of 
John von Neumann, who sought to model one of the most basic life's processes – 
reproduction - by designing self-reproducing automata, which were later called 
cellular automata. At the Hixon Symposium in 1948, von Neumann discussed the 
idea of self-replicating machines, which  operated in a very simple environment, 
had uniform components, each of which was a finite automaton organized in a 
two-dimensional array (von Neumann 1951). For the building blocks for physical 
realization of self-replicating machines, he proposed using computer chips. Ma-
thematical theory of self-replicating machines was published in von (Neumann, 
1966). Later Codd (1968), Banks (1971) and Langton (1984) simplified the con-
struction of von Neumann. Note that evolution of cellular automata naturally lead 
to cellular programming being one of subareas of evolutionary computation. 

The third root was experiments and exploration that involved what is now 
called artificial life, evolutionary robotics and evolutionary simulation and 
optimization, which were pioneered by Barricelli (1954), Friedman (1956), Box 
(1957), Fraser (1957), Friedberg, R. M. (1958) and Friedberg, Dunham and North 
(1959). 

Now the main area of evolutionary computation applications are: (1) search 
methods that work well heuristically but don’t need exponential time; (2) simula-
tions of populations to see what patterns emerge over time; and (3) comparisons 
of policies by using simulations to assess their effects. To achieve these goals four 
main approaches are used: Genetic Algorithms (Holland 1975), Genetic Pro-
gramming (Koza 1992; 1994; 1999), Evolution Strategies (Rechenberg 1973) and 
Evolutionary Programming (Fogel et al 1966). Additional approaches include Ant 
Colony Optimization ACO, also known as Ant Colony Systems (ACS) developed 
by Jim Kennedy and Russell Eberhart in 1995 (Kennedy and Eberhart 1995; Ken-
nedy et al. 2001; Dorigo and Stuetzle 2004), Particle Swarm Optimization (ACO), 
also known as Ant Colony Systems (ACS) developed by Marco Dorigo and his 
coauthors in 1997 (Bonabeau et al 1999), co-evolution (Michalewicz and Fogel 
2004), Artificial Immune Systems (Mo 2009), evolutionary robotics (Friedman 
1956), Evolutionary Artificial Neural Networks (EANNs) (Yao 1999), evolvable 
hardware, behavior engineering, evolutionary multiobjective optimization, Artifi-
cial Life (Barricelli 1954), Classifier Systems, DNA-Based Computing and some 
fields of bioinformatics (Back et al 1997). Note that some scientists question 
whether GP deserves to be counted as one of four main areas of evolutionary 
computation, because it has been proposed much later than GA, ES and EP, and 
John Koza introduced originally GP as a special case of GAs on tree structures. 

Applications of evolutionary computation are vast and diverse. They include 
solutions of intractable (hard and NP-complete) optimization problems, machine 
learning, data mining, neural network training, robotics, control, electronic circuit 
design, games, economics, network design, pattern recognition, genome and  
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protein analysis, DNA-based computing, evolvable hardware and many others. It 
is also necessary to mention an increased interest in applications of to the prob-
lems of robotics in general and to such areas as robot shaping and behavior engi-
neering in particular (cf., for example, (Nolfi 1994; Dorigo and Colombetti 1997; 
Dozier 2001; Katagami and Yamada 2001)). For instance, having some schemas 
of robot behaviors, a population of candidate behaviors is evolved by an evolutio-
nary computation to find a behavior that optimizes a pre-specified fitness func-
tion. Practical results in behavior engineering, however, show that although  
evolutionary technique has proved useful and effective in many cases, the devel-
opment of a precise evaluation (fitness) function and finding an optimal behavior 
is often difficult, while theoretical results disclose that in some cases it is imposs-
ible to build a precise fitness function and find an optimal behavior. 

 However, in spite of a diversity of useful applications, evolutionary computa-
tion theory is still very young and incomplete (Fogel 2001; Michalewicz 1996; 
Kennedy et al 2001; Michalewicz and Fogel 2004). Studied in evolutionary com-
putation theoretical topics include convergence in the limit (elitist selection, Mi-
chalewicz's contractive mapping GAs, (1+1)-ES), convergence rate (Rechenberg's 
1/5 rule), the Building Block analysis (Schema Theorems for GA and GP), best 
variation operators (No Free Lunch Theorem). However, these authors do not in-
troduce automaton models – rather they apply high-quality mathematical appara-
tus to existing process models, such as Markov chains, etc. They also cover only 
some aspects of evolutionary computation like convergence or convergence rate. 
At the same time, very little has been known about expressiveness or computa-
tional power of evolutionary computation and its scalability. In other words, evo-
lutionary computation is not treated as a distinct and complete area with its own 
distinct model situated in the context of general computational models. This 
means that in spite of intensive usage of mathematical techniques, evolutionary 
computation lacks theoretical foundations. As a result, many properties of evolu-
tionary processes could not be precisely studied or even found by researchers. 
Conventional computation has many models. One of the most popular is Turing 
Machine. In contrast to this, until recently evolutionary computation did not have 
a theoretical model able to represent practice in this domain.  

As a result, many properties of evolutionary computation processes and results 
could not be precisely evaluated, studied or even found by researchers. Only re-
cently a rigorous mathematical foundations of evolutionary computation has been 
created (Eberbach 2005; Burgin and Eberbach 2008; 2009; 2009a) although they 
provide only the beginning of a rigorous mathematical theory of evolutionary 
computations. In this theory, evolutionary automata play the role similar to the 
role of Turing machines, finite automata and other mathematical models in the 
general theory of computation.  

Our approach is aimed at providing more rigorous foundations for evolutionary 
computation. It is based on evolutionary Turing machine (ETM) model (Eberbach 
2005; Burgin and Eberbach 2007), grid automata (Burgin 2003a; 2003b) and  
super-recursive algorithms (Burgin 2003; 2005). This approach provides flexible 
tools for estimating convergence and expressiveness of evolutionary processes 
and algorithms, as well as for developing efficient evolutionary algorithm  
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architectures for solving problems in science and technology. Using these tools, 
we were able to prove that to reach an optimum in a general case, an algorithmic 
evolutionary processes requires, in general, an infinite number of steps. This goes 
beyond classical recursive algorithms and Turing Machines. The first constructed 
versions of our model, sequential evolutionary Turing machine (Eberbach 2005) 
and weighted evolutionary Turing machine (Burgin and Eberbach 2007a, and 
Eberbach and Burgin 2007b), provide a generic theoretical model for evolutionary 
computation in the case of mono-evolution when a single agent performs evolu-
tion of generations and a single solution for one individual is designated to 
represent the whole population. An evolutionary Turing machine is an extension 
of the conventional Turing machine, which goes beyond the Turing machine and 
belongs to the class of super-recursive algorithms (Burgin 2005). 

To build efficient models of cooperating and competing agents, sequential evo-
lutionary Turing machines and weighted evolutionary Turing machines were  
extended by building several new types of more powerful evolutionary Turing 
machines: parallel and parallel weighted evolutionary Turing machines (Burgin 
and Eberbach 2006; 2007, and Eberbach and Burgin 2007a). This made possible 
to naturally estimate convergence for interacting agents as instances of multiob-
jective optimization.  

In (Eberbach and Burgin 2007), several types of self-constructing evolutionary 
Turing machine models are introduced, reflecting self-evolution of evolutionary 
machines. These new models allow one to study evolution of solutions and evolu-
tionary algorithms at the same time. The goal is to figure out what can be gained 
by adding “evolution of evolution”. We found that self-constructive abilities al-
low one to essentially increase efficiency of evolutionary processes. However, 
these abilities do not increase expressiveness of recursive evolutionary algorithms 
and evolutionary computation in general. To achieve higher expressiveness, it is 
necessary to use more powerful algorithms, such as inductive Turing machines 
(Burgin 1999; 2003; 2005) and limit Turing machines (Burgin 1993; 2005). 

However, evolutionary Turing machines form only one class in a big diversity 
of evolutionary finite automata introduced and studied in (Burgin and Eberbach 
2009; 2009a; Eberbach and Burgin 2009). This, more general model of evolutio-
nary computation, was used to explore universality of basic evolutionary finite au-
tomata (Burgin and Eberbach 2009) and expressiveness of evolutionary finite  
automata (Burgin and Eberbach 2009a; 2010). 

In this chapter, we develop a general approach to evolutionary processes in the 
computational context, build mathematical models of systems functioning of 
which is based on evolutionary processes and study properties of such systems. 
To achieve this goal, this chapter is organized as follows. In section 2, we intro-
duce and study the main concept of the mathematical theory of evolutionary ma-
chines and processes – basic evolutionary machines, special cases of which are 
evolutionary Turing machines, evolutionary inductive Turing machines, evolutio-
nary limit Turing machines, evolutionary pushdown automata and evolutionary 
finite automata. In Section 3, we describe and study functioning of basic evolutio-
nary machines. In section 4, we describe and study construction (generation) of 
basic evolutionary machines. Section 5 contains conclusions and problems to be 
solved in the future.  
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2   Basic Evolutionary Machines 

Evolutionary computations are artificial intelligence processes based on the 
theory of natural selection and evolution. Evolutionary computations are directed 
by evolutionary algorithms. In technical terms, an evolutionary algorithm is a 
probabilistic beam hill climbing search algorithm directed by the chosen fitness 
function. It means that the beam (population size) maintains multiple search 
points, hill climbing implies that only a current search point from the search tree 
is remembered and used for optimization (going to the top of the hill), and the 
termination condition very often is set to the optimum of the fitness function.  

Let X be the representation space, also called the optimization space, for spe-
cies (systems) used in the process of optimization and a fitness function f: X → R 
is chosen. 

Definition 2.1. A generic evolutionary algorithm (EA) E can be represented as the 
collection E = (X, X[0], F, f, s, v, R) and described in the form of the functional 
equation (recurrence relation) R working in a simple iterative loop in discrete time 
t, defining generations X[t] , t = 0, 1, 2, 3, ... (Fogel 1995, Michalewicz and Fogel 
2004, Fogel 2001):  

                         X[t+1] = s (v (X[t])),  

where 

– a representation space X; (e.g., X consists of fixed binary strings for genet-
ic algorithms (GAs), of Finite State Machine descriptions for evolutionary 
programming (EP), of parse trees for genetic programming (GP), of vec-
tors of real numbers for evolution strategies (ES)); 

– selection operators si (e.g., truncation, proportional selection or tourna-
ment), i = 1,2,3,… ;  

– variation operators vj (e.g., mutation, crossover or some combination of 
mutations and crossover), i = 1, 2, 3, … ; 

– a fitness function f: X → R, which typically takes values in the domain of 
nonnegative real numbers and is extended to the subsets of the set X by the 
following rule                                               

                              if Y ⊆ X, then f(Y) = max {f(x); x ∈ Y } 

– a termination or search condition (goal of evolution) C; 
– X[0] is an initial population; 
– X[t] ⊆ X  is the  population produced on the (n-1)-th stage of the evolutio-

nary algorithm (EA) A; 
– F ⊆ X is the set of final populations satisfying the termination condition 

(goal of evolution).  

Often the termination condition of an evolutionary algorithm is given as a subset F 
of the representation space X. Computation halts when an element from F is ob-
tained. Another form of a termination condition is optimum (maximum or mini-
mum) of the fitness function f(x) , which is extended to the fitness function f(X[t]) 
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of the best individual in the population X[t] ∈ F, where f(x) typically takes values 
in the domain of nonnegative real numbers. Computation, for example, halts when 
a maximum of the fitness function f(x) is obtained. In many cases, it is impossible 
to achieve or verify this optimum. Thus, another termination condition is used 
(e.g., the maximum number of generations or the lack of progress through several 
generations).  

Dynamics of the evolutionary algorithm A is described in the form of the func-
tional equation (recurrence relation) working in a simple iterative loop with parts 
of the space X called generations in discrete time t = 0,1,2,3,... (Fogel 1995, Mi-
chalewicz and Fogel 2004, Fogel 2001):  

            X[t+1] = s (v (X[t]))     

This functional equation describes how the evolutionary algorithm A taking the 
generation X[t] ⊆ X produces the generation X[t + 1] ⊆ X. An initial population 
X[0] ⊆ X is given as the input of the evolutionary algorithm. Selection is based on 
the fitness function f(x), which is often extended from elements of X to subsets of 
X, giving the best value on the elements in this subset as its value for this subset. 

Definition 2.1 is applicable to all typical evolutionary algorithms, including 
GA, EP, ES, GP. It is possible to use it to describe other emerging subareas like 
ant colony optimization, or particle swarm optimization. Of course, it is possible 
to think and implement more complex variants of evolutionary algorithms. 

Evolutionary algorithms evolve population of solutions X, but they may be the 
subject of self-adaptation (like in ES) as well. For sure, evolution in nature is not 
static, the rate of evolution fluctuates, their variation operators are subject to slow 
or fast changes, and its goal (if it exists at all) can be a subject of modifications as 
well. 

Formally, an evolutionary algorithm looking for the optimum of the fitness 
function violates some classical requirements of recursive algorithms. If its termi-
nation condition is set to the optimum of the fitness function, it may not terminate 
after a finite number of steps. To fit it to the conventional algorithmic approach, 
an artificial (or somebody can call it pragmatic) stop criterion has had to be added 
(cf., for example, (Michalewicz 1996; Koza 1992)). To remain recursive, i.e., to 
give some result after a finite number of steps, the evolutionary algorithm has to 
reach the set F of final populations satisfying the termination condition after a fi-
nite number of generations or to halt when no visible progress is observable. 
Usually this is a too restrictive condition, and naturally, in a general case, evolu-
tionary algorithms form a special class of super-recursive algorithms (Burgin 
2005). 

Now, we define a formal algorithmic model of evolutionary computation - an 
evolutionary automaton also called an evolutionary machine. 

Let K be a class of automata. 

Definition 2.2. A basic evolutionary K-machine (BEM), also called basic evolu-
tionary K-automaton, is a (possibly infinite) sequence E = {E[t]; t = 0, 1, 2, 3, ... } 
of automata E[t] from K each working on the population X[t] (t = 0, 1, 2, 3, ...)  
where: 
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– the automaton E[t] called a component, or more exactly, a level automaton, 
of E represents (encodes) a one-level evolutionary algorithm that works 
with the generation X[t] of the population by applying the variation opera-
tors v and selection operator s; 

– the first generation X[0] is given as input to E and is processed by the au-
tomaton E[0], which generates/produces the first generation X[0] as its 
output, which goes to the automaton E[1]; 

– for all t = 1, 2, 3, ... , the generation X[t + 1] is obtained by applying the 
variation operator v and selection operator s to the generation X[t] and 
these operations are performed by the automaton E[t], which receives X[t] 
as its input;  

– the goal of the BEM E is to build a population Z satisfying the search  
condition.  

The desirable search condition is the optimum of the fitness performance measure 
f(x[t]) of the best individual from the population X[t]. There are different modes of 
the BEM functioning and different termination strategies. When the search condi-
tion is satisfied, then working in the recursive mode, the BEM E halts (t stops to 
be incremented), otherwise a new input population X[t + 1] is generated by E[t]. 
In the inductive mode, it is not necessary to halt to give the result (cf. (Burgin 
2005)).When the search condition is satisfied and E is working in the inductive 
mode, the BEM E stabilizes (the population X[t] stops changing), otherwise a new 
input population X[t + 1] is generated by E[t].  

We denote the class of all basic evolutionary machines with level automata 
from K by BEAK.  

An important property of living systems is their ability to change in the process 
of functioning. To reflect this property, we introduce reconfigurable evolutionary 
K-machines. This model of evolutionary computation is rooted in reflexive Turing 
machines introduced as a generic model for programs (algorithms) that change 
(improve) themselves while they are working (Burgin 1992), reconfigurable soft-
ware (Ito et al 2003) and reconfigurable and transformable computers (Thornburg 
and Casselman 1994; Chow et al 1995; Casselman et al 1995). 

Definition 2.3. A basic reconfigurable evolutionary K-machine (BRCEM) is a 
basic evolutionary K-machine E = {E[t]; t = 0, 1, 2, 3, ... } in which it is possible 
to change (transform) the automata E[t] in the process of computation. 

A new direction in computer technology is based on the idea of a recofigurable 
computer (Hauck and DeHon 2008). In contrast to conventional computers, a 
recofigurable computer computes a function by configuring functional units and 
wiring them up in space.  This allows, for example, parallel computation of specif-
ic, configured operations. A recofigurable computer can be easily and quickly 
modified from a remote location to upgrade its performance or even to perform a 
completely different function.  As a result of such advantages, reconfigurable 
computers serve as powerful tools for many applications, such as research and de-
velopment tools for sophisticated electronic systems or verification on electronic 
designs.  
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The concept of reconfigurable computing has existed since the 1960s, when 
Gerald Estrin proposed the concept of a computer made of a standard processor 
and an array of “reconfigurable” hardware. The mission of the main processor was 
to control the behavior of the reconfigurable hardware (Estrin 1960) . The latter 
would then be tailored to perform specific tasks, such as image processing or 
pattern matching. Once the task was done, the hardware could be adjusted to do 
some other task. This resulted in a hybrid computer structure combining the 
flexibility of software with the speed of hardware. When suggested, this idea was 
far ahead of its time in needed electronic technology. That is why only in the 
eighties and nineties, different researchers proposed various reconfigurable 
architectures developed in industry and academia, such as Matrix, Elixent, PACT 
XPP, Silicon Hive, Montium, Pleiades, Morphosys, and PiCoGA (Hauck and 
DeHon 2008). These designs were feasible due to the constant progress of silicon 
technology that let complex designs be implemented on one chip. The world's first 
commercial reconfigurable computer, the Algotronix CHS2X4, was completed in 
1991 (Hartenstein 2001).  

An important class of evolutionary machines is evolutionary finite automata 
(Burgin and Eberbach 2009a). 

Definition 2.4. An evolutionary finite automaton (EFA) is an evolutionary ma-
chine E in which all automata E[t] are finite automata G[t] each working on the 
population X[t] in generations t = 0, 1, 2, 3, ...   

We denote the class of all evolutionary finite automata by EFA. 
It is possible to consider deterministic finite automata, which form the class 

DFA, and nondeterministic finite automata, which form the class NFA. This gives 
us two classes of evolutionary finite automata: EDFA of all deterministic evolu-
tionary finite automata and ENFA of all nondeterministic evolutionary finite au-
tomata. 

Note that it is also possible to consider reconfigurable evolutionary finite auto-
mata. 

Evolutionary Turing machines (Eberbach 2005; Burgin and Eberbach 2008) are 
another important class of evolutionary machines. 

Definition 2.5. An evolutionary Turing machine (ETM) E = {TM[t]; t = 0, 1, 2, 3, 
...} is an evolutionary machine E in which all automata E[t] are Turing machines 
TM[t] each working on population X[t] in generations t = 0, 1, 2, 3, ...   

Turing machines TM[t] as components of the ETM E perform multiple compu-
tations in the sense of (Burgin 1983). 

Note that it is also possible to consider reconfigurable evolutionary Turing ma-
chines. 

Variation and selection operators are recursive to allow problem computation 
on Turing machines. So, it is natural to assume that the same Turing machine 
computes values of the fitness function f. This brings us to the concepts of 
weighted Turing machines and weighted evolutionary Turing machines, which 
were introduced and studied in (Burgin and Eberbach 2008). 
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Note that it is possible to define also the class of evolutionary pushdown auto-
mata EPDA and evolutionary linearly bounded automata ELBA as evolutionary 
extensions of pushdown automata and linearly bounded automata, respectively. 

Definition 2.6. A weighted Turing machine (T, f) computes a pair (x, f(x)) where x 
is a word in the alphabet of T and f(x) is the value of the evaluation function f of 
the machine (T, f). 

Examples of weighted Turing machines are fuzzy Turing machines (Wieder-
mann 2004), which are theoretical model for fuzzy algorithms (Zadeh 1968; Zheru 
Chi et al 1996). 

Another example of weighted Turing machines in particular and weighted algo-
rithms in general are Turing machines that compute recursive real numbers and 
recursive real-valued functions (Rice 1951; Freund 1983). 

Weighted algorithms find applications in many areas (cf., for example, (JiJi, et 
al, 2000) for chemistry or (Arya, et al, 2001) for planar point location). 

It is necessary to remark that only in some cases it is easy to compute values of 
the fitness function f. Examples of such situations are such fitness functions as the 
length of a program or the number of parts in some simple system. However, in 
many other cases, computation of the values of the fitness function f can be based 
on a complex algorithm and demand many operations. For instance, when the op-
timized species are programs and the fitness function f is time necessary to 
achieve the program goal, then computation of the values of the fitness function f 
can demand functioning or simulation of programs generated in the evolutionary 
process. We encounter similar situations when optimized species are computer 
chips or parts of plane or cars. In this case, computation of the values of the fitness 
function f involves simulation. 

Weighted computation realized by weighted Turing machines allows us to ex-
tend the formal algorithmic model of evolutionary computation taking the class of 
all weighted Turing machines as K and defining a weighted evolutionary Turing 
machine as a basic evolutionary K-machine or basic evolutionary K-automaton.  

Definition 2.7. A basic weighted evolutionary Turing machine (WETM) E = 
{TM[t]; t = 0, 1, 2, 3, ... }  is a series of (possibly infinite) weighted Turing ma-
chines TM[t] each working on population X[t] in generations t = 0, 1, 2, 3, ...  
where: 

– each δ[t] transition function (rules) of the weighted Turing machine TM[t] 
represents (encodes) an evolutionary algorithm that works with the popula-
tion X[t], and evolved in generations 0, 1, 2, ... , t; 

– only generation X[0] is given in advance, and any other generation depends 
on its predecessor only, i.e., the outcome of the generation t = 0, 1, 2, 3, ...  
is the generation X[t + 1] obtained by applying the recursive variation v 
and selection s operators working on generation X[t] and computing the 
fitness function f for the generation X[t + 1]; 

– the goal (or halting) state of WETM E is a population X[t] satisfying the 
termination condition;  
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– when the termination condition is satisfied, then the WETM E halts (t 
stops to be incremented), otherwise a new input population X[t + 1] is gen-
erated by TM[t + 1].  

The desirable termination condition usually is the optimum of the fitness perfor-
mance measure f(x[t]) of the best individual from the population X[t]. 

In general, because the fitness function can be the subject of evolution as well, 
evolution is potentially an infinite process. Changing the transition function δ[t] of 
the Turing machines can be thought as some kind of evolvable hardware, or as-
suming fixed hardware, we can think about reprogrammable evolutionary algo-
rithms. Mathematical models of Turing machines in which the transition function 
δ[t] changes while the machine performs computation are reflexive Turing ma-
chines (Burgin 1992). 

We do not consider here such ETM that change transition functions δ[t] and/or 
memory of the Turing machines TM[t] or/and fitness functions. We study these 
machines in another work. Note that the memory of conventional Turing machines 
and inductive Turing machines consists of n-dimensional tapes (usually n is equal 
to one) and is not changing in computational processes. Turing machines and in-
ductive Turing machines with structured memory allow one to change this memo-
ry in the process of computation (Burgin 2005). This feature of machines can es-
sentially improve their efficiency. 

One more class of evolutionary K-machines are basic evolutionary inductive 
Turing machines introduced and studied in (Burgin and Eberbach 2009; 2009a). 

Definition 2.8. A basic evolutionary inductive Turing machine (EITM) EI = 
{ITM[t]; t = 0, 1, 2,...} is an evolutionary machine E in which all level automata 
E[t] are inductive Turing machines ITM[t] (Burgin 2005) each working on the 
population X[t] in generations t = 0, 1, 2, ...   

Simple inductive Turing machines are abstract automata (models of algorithms) 
closest to Turing machines. The difference between simple inductive Turing ma-
chines and Turing machines is that a Turing machine always gives the final result 
after a finite number of steps and after this it stops the process of computation or, 
at least, the machine informs when the result is obtained. There are different ways 
to inform that the final result is obtained. For instance, it is possible to have a spe-
cial symbol in the output alphabet. This symbol is used only to indicate that what 
is in the output tape is the final result. Thus, when a Turing machine comes to a 
final state, it repeats the output with this special symbol, indicating that this is the 
final result. Another way to inform that the final result is obtained is to halt after 
obtaining this result. It is always possible to assume that after obtaining the final 
result, the Turing machine stops (cf., for example, (Hopcroft et al 2001)). When 
starting with some input x, a Turing machine never comes to a final state, it does 
not give its final result for this input. 

In a similar way, inductive Turing machines give the final result after a finite 
number of steps. However, in contrast to Turing machines, inductive Turing ma-
chines do not always stop the process of computation or inform when the final re-
sult is obtained. In some cases, they do this, while in other cases they continue 
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their computation and give the final result. Namely, when the content of the output 
tape of a simple inductive Turing machine forever stops changing, it is the final 
result. 

Definition 2.9. An evolutionary inductive Turing machine (EITM) EI = {ITM[t]; t 
= 0, 1, 2, ...} has order n if all inductive Turing machines ITM[t] have order less 
than or equal to n and at least, one inductive Turing machine ITM[t] has order n.  

We remind (cf. (Burgin 2005)) that inductive Turing machines with recursive 
memory are called inductive Turing machines of the first order. The memory E is 
called n-inductive if its structure is constructed by an inductive Turing machine of 
the order n. Inductive Turing machines with n-inductive memory are called induc-
tive Turing machines of the order n + 1. 

We denote the class of all evolutionary inductive Turing machines of the order 
n by EITMn . 

Note that it is also possible to consider weighted evolutionary inductive Turing 
machines and reconfigurable evolutionary inductive Turing machines. 

Remark 2.1. It is often assumed that variation and selection operators are recur-
sive to ensure that all computing steps of machines ITM[t] are recursive. Other-
wise, we go beyond inductive Turing machines of the first order (Burgin 2005). 
However, it is possible to release this restriction to allow nonrecursive steps and 
solutions. 

Taking limit Turing machines (Burgin 2005) as the class K, we obtain one 
more class of evolutionary K-machines called basic evolutionary limit Turing ma-
chines. 

Definition 2.10. A basic evolutionary limit Turing machine (ELTM) EI = 
{LTM[t]; t = 0, 1, 2,...} is an evolutionary machine E in which all automata E[t] 
are limit Turing machines LTM[t] [2] each working on the population X[t] in gen-
erations t = 0, 1, 2,...   

When the search condition is satisfied, then the ELTM EI stabilizes (the popu-
lation X[t] stops changing), otherwise a new input population X[t + 1] is generated 
by LTM[t]. 

Similar to inductive Turing machines, limit Turing machines with recursive 
memory are called inductive Turing machines of the first order (cf. (Burgin, 
2005). Limit Turing machines with n-inductive memory are called inductive Tur-
ing machines of the order n + 1. 

Definition 2.11. An evolutionary limit Turing machine (ELTM) EI = {LTM[t]; t = 
0, 1, 2, ...} has order n if all limit Turing machines LTM[t] have order less than or 
equal to n and at least, one limit Turing machine LTM[t] has order n.  

We denote the class of all evolutionary limit Turing machines of the order n by 
ELTMn . 

Note that it is also possible to consider weighted evolutionary limit Turing ma-
chines and reconfigurable evolutionary limit Turing machines. 

Let us obtain some initial properties of basic evolutionary machines. 
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Lemma 2.1. If K ⊆ H, then BEAK ⊆ BEAH. 

Lemma 2.2. If K = H ∪ G, then BEAH ∪ BEAG ⊆ BEAK. 

Lemma 2.3. If K = H ∩ G, then BEAK ⊆ BEAH ∩ BEAG. 

Basic evolutionary K-machines from BEAK are called unrestricted because se-
quences of the level automata and the mode of the evolutionary machines func-
tioning are arbitrary. 

At the same time, it is possible to consider only basic evolutionary K-machines 
from BEAK in which sequences of the level automata have some definite type Q. 
Such machines are called Q-formed basic evolutionary K-machines and their class 
is denoted by BEAKQ. 

As abstract automata are represented by words, their sequences are also 
represented by sequences of words. Thus, it is possible to assume that Q is a class 
(type) of sequences of words. 

We consider here the following key classes of sequences: 

1. The class FS of all finite sequences. 
2. The class PS of all periodic sequences. 
3. The class APS of all almost periodic sequences, i.e., sequences that consist of 

two parts: the finite sequence at the beginning (called the “head”) and a period-
ic sequence (called the “tail”) that goes after the first part. 

4. The class DS of all decidable sequences, i.e., sequences such that for any se-
quence l and any automaton A from K, it is possible to find whether A belongs 
to the sequence l or does not belong. 

5. The class SDS of all semidecidable sequences, i.e., sequences such that for any 
sequence l and any automaton A from K, it is possible to find whether A be-
longs to the sequence l. 

6. The class RES of all recursively enumerable sequences with respect to some 
enumeration ν of the class K, where a sequence l is recursively enumerable 
when there is a recursive algorithm C (e.g., a Turing machine) such that deter-
mines (computes numbers of elements from the sequence l. 

7. The class of all inductively enumerable sequences with respect to some enume-
ration ν of the class K, where a sequence l is inductively enumerable when 
there is an inductively algorithm C (e.g., an inductive Turing machine) such 
that determines (computes numbers of elements from the sequence l. 

Note that in a general case, evolutionary automata cannot be codified by (finite) 
words, while this condition is essential for many results in this paper. That is why 
we consider classes of evolutionary automata that can be codified by finite words, 
such as bounded, periodic and almost periodic evolutionary automata. 

Thus, when the type Q contains all finite sequences, we have bounded basic 
evolutionary K-machines.  

Definition 2.12. a) An evolutionary machine (evolutionary automaton) E = {E[t]; 
t = 0, 1, 2, 3, ... , n - 1} is called an n-level bounded evolutionary machine (auto-
maton) or an FS-formed basic evolutionary machine.  
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b) The number n of levels is called the length of the evolutionary machine (evo-
lutionary automaton) E. 

Basic bounded evolutionary K-machines are studied in (Burgin and Eberbach 
2010) for such classes K as finite automata, push down automata, Turing ma-
chines, inductive Turing machines and limit Turing machines. 

Here are some results describing properties of basic bounded evolutionary K-
machines. 

As we know from the theory of automata and computation, it is proved that dif-
ferent automata or different classes of automata are equivalent. However there are 
different kinds of equivalence. Here we consider two of them: functional equiva-
lence and linguistic equivalence. 

Definition 2.13 (Burgin 2010). a) Two automata (machines) A and B are function-
ally equivalent if given the same input, they give the same output.  

b) Two classes of automata A and B are functionally equivalent if for any au-
tomaton from A, there is a functionally equivalent automaton from B and vice  
versa. 

For instance, it is proved that deterministic and nondeterministic Turing ma-
chines are functionally equivalent (Hopcroft et al 2001). Similar results are proved 
for evolutionary machines. An example of such result is given below. 

Theorem 2.1 (Burgin and Eberbach 2010). For any n-level evolutionary finite au-
tomaton E, there is a finite automaton AE functionally equivalent to E. 

One more important type of automata equivalence is linguistic equivalence. 

Definition 2.14 (Burgin 2010). a) Two automata (machines) A and B are linguisti-
cally equivalent if they accept (generate) the same language, i.e., L(A) = L(B).  

b) Two classes of automata A and B are linguistically equivalent if they accept 
(generate) the same class of languages. 

For instance, it is proved that deterministic and nondeterministic finite automa-
ta are linguistically equivalent (cf., for example, (Hopcroft et al 2001)). Similar re-
sults are proved for evolutionary automata. An example of such result is given  
below. 

Corollary 2.1 (Burgin and Eberbach 2010). For any n-level evolutionary finite au-
tomaton E, there is a finite automaton AE linguistically equivalent to E.  

Proof directly follows from Theorem 2.1 because as it is proved in (Burgin 
2010), functional equivalence implies linguistic equivalence. 

When the type Q contains all periodic sequences, we have periodic basic evolu-
tionary K-machines.  

Definition 2.15. a) An evolutionary machine (evolutionary automaton) E is called 
periodic or an PS-formed basic evolutionary machine if the sequence E = {E[t]; t 
= 0, 1, 2, 3, ...} of automata E[t] from K is either finite or periodic, i.e., there is a 
finite initial segment of this sequence such that the whole sequence is formed by 
infinite repetition of this segment.  

b) The repeating sequence is called the automaton period of the evolutionary 
machine E and the number of automata in the period is called the numerical pe-
riod, or simply, period, of the automaton period of the evolutionary machine E. 
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Periodic basic evolutionary K-machines are studied in (Burgin and Eberbach 
2010) for such classes K as finite automata, pushdown automata, Turing ma-
chines, inductive Turing machines and limit Turing machines. 

Lemma 2.3. If an evolutionary K-machine K = {K[t]; t = 0, 1, 2, 3, ... k} is func-
tionally equivalent to an evolutionary K-machine H = {H[t]; t = 0, 1, 2, 3, ... k} 
and an evolutionary K-machine G = {G[t]; t = 0, 1, 2, 3, ... k} is functionally 
equivalent to an evolutionary K-machine F = {F[t]; t = 0, 1, 2, 3, ... k}, then the 
evolutionary K-machine V = K ° G = { K[0], K[1], K[2], … , K[k], G[0], G[1], 
G[2t], ... } is functionally equivalent to the evolutionary K-machine W = H ° F = { 
H[0], H[1], H[2], … , H[k], F[0], F[1], F[2t], ... }. 

It means that functional equivalence is closed with respect to the sequential 
composition of evolutionary machines. 

As functional equivalence is stronger than linguistic equivalence (Burgin, 
2010), we obtain the following result. 

Corollary 2.2. If an evolutionary K-machine K = {K[t]; t = 0, 1, 2, 3, ... k} is lin-
guistically equivalent to an evolutionary K-machine H = {H[t]; t = 0, 1, 2, 3, ... k} 
and an evolutionary K-machine G = {G[t]; t = 0, 1, 2, 3, ... k} is linguistically 
equivalent to an evolutionary K-machine F = {F[t]; t = 0, 1, 2, 3, ... k}, then the 
evolutionary K-machine V = K ° G = { K[0], K[1], K[2], … , K[k], G[0], G[1], 
G[2t], ... } is linguistically equivalent to the evolutionary K-machine W = H ° F = 
{ H[0], H[1], H[2], … , H[k], F[0], F[1], F[2t], ... }. 

It means that linguistic equivalence is also closed with respect to the sequential 
composition of evolutionary machines. 

Here are some results describing properties of basic periodic evolutionary K-
machines. 

Theorem 2.2 (Burgin and Eberbach 2010). Any periodic evolutionary finite au-
tomaton F with the period k > 1 is functionally equivalent to a periodic evolutio-
nary finite automaton E with the period 1. 

Corollary 2.1 (Burgin and Eberbach 2010).  Any periodic evolutionary finite au-
tomaton E is functionally equivalent to a one-dimensional one-way cellular auto-
maton. 

Proof directly follows from Theorem 2.2 because any periodic evolutionary  
finite automaton with the period 1 is a one-dimensional one-way cellular  
automaton. 

It is proved that functional equivalence is stronger than linguistic equivalence 
(Burgin, 2010). This allows us to obtain the following results. 

Corollary 2.2. Any periodic evolutionary finite automaton F with the period k > 1 
is linguistically equivalent to a periodic evolutionary finite automaton E with the 
period 1. 

Corollary 2.3. Any periodic evolutionary finite automaton E is linguistically 
equivalent to a one-dimensional one-way cellular automaton. 
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When the type Q contains all almost periodic sequences, i.e., sequences that 
consist of two parts: the finite sequence at the beginning and a periodic sequence, 
we have almost periodic basic evolutionary K-machines.  

Definition 2.16. a) An evolutionary machine (evolutionary automaton) E is called 
almost periodic or an PS-formed basic evolutionary machine if the sequence E = 
{E[t]; t = 0, 1, 2, 3, ...} of automata E[t] from K consists of two parts: the finite 
sequence at the beginning (called the “head”) and a periodic sequence (called the 
“tail”), which goes after the first part and is formed by infinite repetition of its ini-
tial finite segment. Each of these parts may be empty. 

b) The repeating sequence is called the automaton period of the evolutionary 
machine E and the number of automata in the period is called the numerical pe-
riod, or simply, period, of the automaton period of the evolutionary machine E. 

Theorem 2.3. Any almost periodic evolutionary finite automaton F with the pe-
riod k > 1 is functionally equivalent to an almost periodic evolutionary finite au-
tomaton E with the period 1 and the head with length 1. 

 Proof. Let us consider an arbitrary almost periodic evolutionary finite automa-
ton E = {E[t]; t = 0, 1, 2, 3, ...}. By Definition 2.14, the sequence {E[t]; t = 0, 1, 2, 
3, ...} of finite automata E[t] consists of two parts: the head H = {E[t]; t = 0, 1, 2, 
3, ... k} and the tail T = {E[t]; t = k + 1, k + 2, k + 3, ...}. By Definition 3.1, H is an 
n-level evolutionary finite automaton. 

As the head H = {E[t]; t = 0, 1, 2, 3, ... , k} is finite, by Corollary 2.1, the evolu-
tionary machine H is functionally equivalent to a finite automaton AH . 

The tail T = {E[t]; t = k + 1, k + 2, k + 3, ...} is either finite or periodic, i.e., 
there is a finite initial segment of this sequence such that the whole sequence is 
formed by infinite repetition of this segment. When the sequence {E[t]; t = k + 1, k 
+  2, k + 3, ...} of automata E[t] from K is finite, then by Corollary 2.1, the evolu-
tionary machine T is functionally equivalent to a finite automaton AT . By Defini-
tion 4.1, AT is a periodic evolutionary finite automaton with the period 1. By 
Lemma 2.3, the evolutionary automaton E is functionally equivalent to the evolu-
tionary automaton Ef = { E[0] = AH , E[1] = AT }. It is possible to consider AH as 
the head and AT as the tail of the automaton Ef . As the length of AH is equal to 1 
and the length of AT is equal to 1, in this case, theorem is proved.  

Now let us assume that the tail T = {E[t]; t = k + 1, k + 2, k + 3, ...} of the au-
tomaton E is infinite. As it is a periodic evolutionary machine, by Theorem 2.2, 
there is a periodic evolutionary finite automaton ET = {ET[t]; t = 0, 1, 2, 3, ...} with 
the period 1, i.e., ET[t] = A for all t = 0, 1, 2, 3, ... , which is functionally equiva-
lent to T. Thus, evolutionary machine E is functionally equivalent to the almost 
periodic evolutionary finite automaton B = { B[0] = AH , B[1] = A, B[2] = A, B[3] = 
A, ...} of where automata B[t] coincide with A for all t = 1, 2, 3, .... Thus, B is an 
almost periodic evolutionary finite automaton with the period 1 and the head with 
length 1.  

Theorem is proved.   
As functional equivalence is stronger than linguistic equivalence (Burgin, 

2010), we obtain the following result. 
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Corollary 2.4. Any almost periodic evolutionary finite automaton F with the pe-
riod k > 1 is linguistically equivalent to an almost periodic evolutionary finite au-
tomaton E with the period 1 and the head with length 1. 

3   Computations by Evolutionary Machines 

Another condition on evolutionary machines determines their type and mode of 
functioning or computation. According to the theory of algorithms and computa-
tion, there are three basic types of automaton functioning (Burgin 2005; 2010): 

Computing type of functioning is when the automaton receives an input  
and gives an output. Automata working in the computing manner are called  
transducers. 

Accepting type of functioning is when the automaton receives an input and ei-
ther accepts this input or does not accept it. Automata working only in the accept-
ing manner are called acceptors. 

Generating type of functioning is when the automaton does not receive an input 
but gives an output. Automata working only in the generating manner are called 
generators. 

Note that acceptors can also give some output although their result is either ac-
ceptance or rejection, i.e., the result and output are not the same for acceptors. Be-
sides, this shows that a transducer can work in the accepting manner. 

There are also three additional types of automaton functioning (Burgin 2010): 
decidability, semidecidability and semi-codecidability. 

Evolutionary machines consist of components called level automata. This 
means that there are local and global modes of evolutionary machines functioning, 
i.e., functioning of each level automaton in the evolutionary machine goes accord-
ing to the local mode, while functioning of the whole evolutionary machine goes 
according to the global mode 

When all automata in a class K are transducers or generators, they give output. 
In a general case, this output consists of two parts: transaction output and terminal 
output.  

Definition 3.1. Transaction output of the level automaton E[t] is the generation 
X[t], which is transmitted to the next level automaton E[t + 1]. 

This means that the transaction output always remains in the evolutionary ma-
chine, providing interaction of the components. 

Definition 3.2. Terminal output of the level automaton E[t] is given for some ex-
ternal system, e.g., for the user. 

For instance, the level automaton E[t] can inform the user about the maximal or 
minimal value of the fitness function f(x) for the generation X[t], i.e., the optimum 
of the fitness performance measure f(x[t]) of the best individual from the popula-
tion X[t]. 

Note that to work in the computing manner, an evolutionary machine has to 
give some terminal outputs. 

At first, let us we consider the following global accepting modes of evolutio-
nary automaton functioning.  
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1. The existential mode is characterized by the rule: An evolutionary automaton 
E accepts the generation X[0], e.g., in the form of a word w, given to the level 
automaton E[0] as input if and only if there is a level automaton E[t] that ac-
cepts the generation X[t - 1] (which can be also in the form of a word) pro-
duced by the level automaton E[t - 1]. 

2. The coexistential mode is characterized by the rule: An evolutionary automa-
ton E rejects the generation X[0], e.g., in the form of a word w, given to the 
level automaton E[0] as input if and only if there is a level automaton E[t] that 
rejects the generation X[t - 1] (which can be also in the form of a word) pro-
duced by the level automaton E[t - 1]. 

3. The universal mode is characterized by the rule: An evolutionary automaton E 
accepts the generation X[0], e.g., in the form of a word w, given to the level au-
tomaton E[0] as input if and only if all level automata E[t] accept the corres-
ponding generation X[t - 1] (which can be also in the form of a word) produced 
by the level automaton E[t - 1]. 

4. The couniversal mode is characterized by the rule: An evolutionary automaton 
E rejects the generation X[0], e.g., in the form of a word w, given to the level 
automaton E[0] as input if and only if all level automata E[t] reject the corres-
ponding generation X[t - 1] (which can be also in the form of a word) produced 
by the level automaton E[t - 1]. 

5. The infinitary mode is characterized by the rule: An evolutionary automaton E 
accepts the generation X[0] given to the level automaton E[0] as input if and 
only if there are infinitely many level automata E[t] each of which accepts the 
generation X[t - 1] produced by the level automaton E[t - 1]. 

6. The cofinitary mode is characterized by the rule: An evolutionary automaton E 
accepts the generation X[0] given to the level automaton E[0] as input if and 
only if almost all, i.e., all but a finite number of, level automata E[t] accept the 
corresponding generation X[t - 1] (which can be also in the form of a word) 
produced by the level automaton E[t - 1]. 

7. The n-ary mode is characterized by the rule: An evolutionary automaton E ac-
cepts the generation X[0] given to the level automaton E[0] as input if and only 
if the level automaton E[n] accepts the generation X[t - 1] produced by the lev-
el automaton E[t - 1]. 

8. The complete n-ary mode is characterized by the rule: An evolutionary auto-
maton E accepts the generation X[0] given to the level automaton E[0] as input 
if and only if each level automaton E[t] accepts the generation X[t - 1] pro-
duced by the level automaton E[t - 1] for all = 0, 1, 2, … , t. 

9. The componential mode when the input is accepted by parts is characterized by 
the rule: An evolutionary automaton E accepts the generation X[0], e.g., in the 
form of a word w, given to the level automaton E[0] as input if and only if the 
generation X[0], e.g., in the form of a word w,   consists of parts X0 , X1 , X2 , 
… , Xk , e.g., the word w is equal to w1w2 … wk , and each level automaton E[t] 
accepts the corresponding part Xt (the word wt) where t = 0, 1, 2, … , k. 

Let us consider how different modes of functioning influence properties of evolu-
tionary automata and what relations between evolutionary automata they induce. 
At first, we reflect on automata working in the accepting mode. 
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Definition 3.3 (Burgin 2005). An automaton B is dual to an automaton A if A ac-
cepts a word w if and only if the automaton B rejects w.  

For finite automata, duality is characterized linguistically as properties of finite 
automata (cf., for example, (Hopcroft et al 2001)) show.  

Let us take two finite automata A and B. 

Proposition 3.1. The automaton B is dual to the automaton A if and only if L(B) is 
equal to the complement CL(A) of the language L(A). 

The same result is true for any total automaton, i.e., for an automaton that al-
ways either accepts a word or rejects it. 

Proposition 3.2. An automaton B is dual to a total automaton A if and only if L(B) 
is equal to the complement CL(A) of the language L(A). 

Note that while the dual automaton is uniquely up to the linguistic equivalence 
determined in the domain of finite automata, in a general case, for example, for 
Turing machines, this not true, i.e., one Turing machine can have many dual Tur-
ing machines. However, in some cases, uniqueness may be true for Turing ma-
chines and more powerful automata. 

Proposition 3.3. If A is a total automaton, then its dual automaton is uniquely de-
fined up to the linguistic (functional) equivalence. 

Corollary 3.1. If A is a total Turing machine, then its dual Turing machine is uni-
quely defined up to the linguistic equivalence. 

Corollary 3.2. If A is a total inductive Turing machine, then its dual inductive 
Turing machine is uniquely defined up to the linguistic equivalence. 

Corollary 3.3. If A is a total evolutionary finite automaton, then its dual evolutio-
nary finite automaton is uniquely defined up to the linguistic equivalence. 

Corollary 3.4. If A is a total evolutionary Turing machine, then its dual evolutio-
nary Turing machine is uniquely defined up to the linguistic equivalence. 

Corollary 3.5. If A is a total evolutionary inductive Turing machine, then its dual 
evolutionary inductive Turing machine is uniquely defined up to the linguistic 
equivalence. 

Proposition 3.4. a) An evolutionary machine E working in the global couniversal 
accepting mode is dual to the machine E working in the global universal accepting 
mode. 

b) An evolutionary machine E working in the global coexistential accepting 
mode is dual to the machine E working in the global existential accepting mode. 

This result shows that there is a duality between different modes of functioning. 
Proposition 3.3 implies the following result.. 

Proposition 3.5. If an automaton A is total, an automaton B dual to A and an au-
tomaton C dual to B, then the automaton C is functionally and linguistically 
equivalent to the automaton A. 

We remind that the acceptance language Lacc(A) of an automaton A is the set of 
all words accepted by A. 
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Proposition 3.6. If an evolutionary machine E works either in the global universal 
accepting mode or in the infinitary mode or in the cofinitary mode and all its level 
automata work in the local accepting mode, then the language Lacc(E) of E is emp-
ty when at least one of its components does not accept the empty word or it con-
sists only of the empty word. 

Indeed, any automaton E[t] with t > 1 does not receive any input or what is 
equivalent, receives only the empty word ε as its input. Thus, assuming that E 
works in the global universal accepting mode, when all automata E[t] accept ε, we 
have Lacc(E) = {ε} by the definition of the global universal accepting mode. When 
at least one automaton E[t] does not accept ε, we have Lacc(E) = ∅ by the same de-
finition. 

The same is true when E works in the infinitary mode or in the cofinitary mode. 

Proposition 3.7. If an evolutionary machine E works in the global existential ac-
cepting mode and all its level automata work in the local accepting mode, then 
there are two possibilities for the language Lacc(E) of E: 1) Lacc(E) coincides with 
the language Lacc(E[0]) of E[0] when either E[0] accepts the empty word or all 
components E[t] do not accept the empty word; 

2) Lacc(E) is of the union of the language Lacc(E[0]) of its first component E[0] 
and the empty word. 

Indeed, any automaton E[t] with t > 1 does not receive any input or what is 
equivalent, receives only the empty word ε as its input. Thus, when all automata 
E[t] accept ε, we have Lacc(E) = Lacc(E[0]) by the definition of the global existen-
tial accepting mode.  

When all automata E[t] do not accept ε, we have Lacc(E) = Lacc(E[0]) by the 
same definition. 

When at least one automaton E[t] with t > 1 accepts ε but E[0] does not accept 
ε, we have Lacc(E) = Lacc(E[0]) ∪{ε}by the definition of the global existential ac-
cepting mode. 

Proposition 3.7 is proved. 
Proposition 3.7 implies the following result. 

Corollary 3.6. If an evolutionary machine E works in the global existential ac-
cepting mode, all its level automata work in the local accepting mode and its first 
component accepts the empty word, then E is linguistically equivalent to its first 
component.  

Proposition 3.8. For any n-level evolutionary finite automaton E, complete n-ary 
and universal accepting modes give the same results. 

This result shows that there is functional equivalence between different modes 
of functioning. 

Corollary 3.7. The class of all n-level evolutionary finite automata that work in 
the complete n-ary accepting mode is linguistically equivalent to the class of all n-
level evolutionary finite automata that work in the universal accepting mode. 

In some cases, the structure of an automaton is not correlated with its mode of 
functioning. 
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Proposition 3.9. The language of an n-level evolutionary finite automaton E = 
{E[0] , E[1] , E[2] , E[3] , ... , E[n - 1] } that works in the infinitary accepting 
mode is empty. 

In some modes of functioning, the structure of an automaton does not influence 
the final result. 

Proposition 3.10. The language of an n-level evolutionary finite automaton E that 
works in the cofinitary accepting mode contains all words in the alphabet of the 
automata from K. 

In some cases, the evolutionary structure of an automaton does not increase its 
power. 

Proposition 3.11. The language of an n-level evolutionary finite automaton E that 
works in the k-ary mode (k ≤ n) is regular. 

Corollary 3.8. The class of all n-level evolutionary finite automata that work in 
the n-ary accepting mode is equivalent to the class of all accepting finite automata. 

Proposition 3.12. The class of all languages of evolutionary finite automata that 
work in the n-ary accepting mode coincides with the class of all regular languages. 

Corollary 3.9. The class of all evolutionary finite automata that work in the n-ary 
accepting mode is linguistically equivalent to the class of all accepting finite au-
tomata. 

Proposition 3.13. For any 1-level evolutionary finite automaton E, 1-ary, com-
plete n-ary for any n > 0, existential and universal accepting modes produce the 
same results. 

This result shows that there is functional equivalence between different modes 
of functioning. 

Corollary 3.10. The classes of all 1-level evolutionary finite automata that work 
in the complete n-ary accepting mode, of all 1-level evolutionary finite automata 
that work in the universal accepting mode, of all 1-level evolutionary finite auto-
mata that work in the existential accepting mode and of all finite automata are lin-
guistically equivalent. 

Let us assume that all generations are represented by words in some alphabet. 

Proposition 3.14. An n-level evolutionary finite automaton E = {E[0] , E[1] , E[2] 
, E[3] , ... , E[n - 1] } that works in the componential accepting mode is linguisti-
cally equivalent to the sequential composition of the automata E[0] , E[1] , E[2] , 
E[3] , ... , E[n - 1] . 

Corollary 3.11. The class of all evolutionary finite automata that work in the 
componential accepting mode is linguistically equivalent to the class of all finite 
automata. 

Let us also consider global computing modes of basic evolutionary automaton 
functioning. 
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1. The finite-state mode: any computation is going by state transition where states 
belong to a fixed finite set. 

2.  The bounded mode: the number of steps of all computations is bounded by the 
same number. 

3.  The terminal or finite mode: the number of steps in any computation is finite. 
4.  The inductive mode: the computation goes into one direction, i.e., without re-

versions, and if for some t, the generation X[t] stops changing, i.e., X[t] = X[q] 
for all q > t, then X[t] is the result of computation. 

5.  The limit mode: the computation goes into one direction and the result of com-
putation is the limit of the generations X[t]. 

6.   The componential mode when the input is accepted by parts is characterized 
by the rule:  

An evolutionary automaton E accepts the generation X[0], e.g., in the form of a 
word w, given to the level automaton E[0] as input if and only if the generation 
X[0], e.g., in the form of a word w,   consists of parts X0 , X1 , X2 , … , Xk , e.g., the 
word w is equal to w1w2 … wk , and each level automaton E[t] accepts the corres-
ponding part Xt (the word wt) where t = 0, 1, 2, … , k.  

Proposition 3.15. If an evolutionary machine E works in the global computing 
mode, while all its level automata work in the local accepting mode, then E does 
not give output and its language is empty. 

This result shows that in some modes of functioning, the structure of an auto-
maton does not influence the final result. 

Proposition 3.16. An evolutionary K-machine E that works in the bounded by n 
computing mode is functionally equivalent to an n-level evolutionary K-machine 
H = {H[0] , H[1] , H[2] , H[3] , ... , H[n - 1] }. 

Let us assume that all generations are represented by words in some alphabet. 

Proposition 3.17. An n-level evolutionary finite automaton E = {E[0] , E[1] , E[2] 
, E[3] , ... , E[n - 1] } that works in the componential computing mode is function-
ally equivalent to the sequential composition of the automata E[0] , E[1] , E[2] , 
E[3] , ... , E[n - 1] . 

Corollary 3.12. The class of all evolutionary finite automata that work in the 
componential computing mode is functionally equivalent to the class of all finite 
automata. 

It is proved that functional equivalence is stronger than linguistic equivalence 
(Burgin, 2010). This allows us to obtain the following results. 

Corollary 3.13. An n-level evolutionary finite automaton E = {E[0] , E[1] , E[2] , 
E[3] , ... , E[n - 1] } that works in the componential mode is linguistically equiva-
lent to the sequential composition of the automata E[0] , E[1] , E[2] , E[3] , ... , 
E[n - 1] . 

Corollary 3.14. The class of all evolutionary finite automata that work in the 
componential mode is linguistically equivalent to the class of all finite automata. 
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4   Construction of Evolutionary Machines 

Our approach to generation or construction of evolutionary machines is based on 
the concept of a reflexive Turing machine suggested as a generic model for soft-
ware and hardware that change (improve) themselves while they are working 
(Burgin 1992). This model was developed to test the conjecture of Kleene that an 
algorithm that changes (improves) itself while working can have higher computa-
tional/decision power that Turing machines (Kleene 1960). In (Burgin 1992), it is 
proved that a Turing machine can simulate any reflexive Turing machine. This 
disproved the Kleene conjecture and gave more evidence in support of the 
Church-Turing Thesis, although at that time it was known that the Church-Turing 
Thesis in its strong form (equating all possible computations with Turing ma-
chines) is invalid (Burgin 1987). In (Eberbach 1993) and (Eberbach 1994) self-
modifying algorithms have been studied in the context of a Calculus of  
Self-modifying Algorithms (CSA). 

There are different forms of evolutionary machine construction/generation, 
which are classified here according to their construction/generation procedure: 

1. Local static independent construction (generation) of a basic evolutionary K-
machine E = {E[t]; t = 0, 1, 2, ... } is performed by the level automata E[t] so 
that E[t] constructs E[t + 1] and the result does not depend on the input to E[t] 
and on the previous level automata E[k]. 

2. Local static sequential construction (generation) of a basic evolutionary K-
machine E = {E[t]; t = 0, 1, 2, ...} is performed by the level automata E[t] so 
that E[t] constructs E[t + 1] and the result does not depend on the input to E[t] 
but may depend on the previous level automata E[k]. 

3. Local dynamic independent construction (generation) of a basic evolutionary 
K-machine E = {E[t]; t = 0, 1, 2, ... } is performed by the level automata E[t] so 
that E[t] constructs E[t + 1] and the result does not on the previous level auto-
mata E[k] but may depend on the input to E[t]. 

4. Local dynamic sequential construction (generation) of a basic evolutionary K-
machine E = {E[t]; t = 0, 1, 2, ... } is performed by the level automata E[t] so 
that E[t] constructs E[t + 1] and the result depends on the input to E[t] and on 
the previous level automata E[k]. 

5. Global static construction (generation) of a basic evolutionary K-machine E = 
{E[t]; t = 0, 1, 2, ... } is performed by a separate automaton C so that it con-
structs E and then E starts working. 

6. Global dynamic construction (generation) of a basic evolutionary K-machine E 
= {E[t]; t = 0, 1, 2, ... } is performed by a separate automaton C so that con-
struction of E depends on the first input X[0]. 

7. Global hyperdynamic construction (generation) of a basic evolutionary K-
machine E = {E[t]; t = 0, 1, 2, ... } is performed by a separate automaton C so 
that construction of E depends on each input X[t]. 

Evolutionary machines can be constructed by people, by automata (devices) and in 
the process of interaction of people with automata. Here we consider construction 
that is controlled by definite rules, i.e., by an algorithm. Such a construction can 
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be realized by some automata and it is possible to formalize this process by the 
following mathematical schema. 

Let us consider two classes of automata K and H, a sort of word sequences Q, 
and a mode μ of functioning/computation. These parameters determine the follow-
ing types of evolutionary machines: 

Unconstrained μ-evolutionary K-machines EAKμ 

Q-formed μ-evolutionary K-machines    EAKμ
Q 

H-generated μ-evolutionary K-machines    HEAKμ 

Self-constructing μ-evolutionary K-machines   SCEAKμ 

Let K and G be two classes of automata. 

Lemma 4.1. If K ⊆ G, then EAKμ ⊆ EAGμ. , EAKμ
Q ⊆ EAGμ

Q, HEAKμ ⊆ 
HEAGμ and SCEAKμ ⊆ SCEAGμ . 

Let Q and P be two classes of word sequences. 

Lemma 4.2. If Q ⊆ P, then EAKμ
Q ⊆ EAGμ

Q, HEAKμ ⊆ HEAGμ and SCEAKμ 
⊆ SCEAGμ . 

Let H and F be two classes of automata. 

Lemma 4.3. If H ⊆ F, then HEAKμ ⊆ FEAGμ . 
This shows that construction of evolutionary automata is a monotone operation. 

Theorem 4.1. SCEAKμ = KEAKμ . 
This shows that construction of evolutionary automata by automata that belong 

to the basic class K coincides with self-construction. 

Definition 4.1. An evolutionary machine (evolutionary automaton) E is called re-
cursively generated if all (descriptions of the) automata E[t] from the sequence E 
= {E[t]; t = 0, 1, 2, 3, ... } of automata E[t] are generated (formed) by a recursive 
algorithm/automaton, e.g., by a Turing machine.  

Periodic evolutionary machines are special cases of recursively generated evo-
lutionary machines.  

Proposition 4.1. Any periodic evolutionary finite state-transition machine is 
equivalent to some recursively generated evolutionary finitely specified state-
transition machine. 

Proposition 4.2. Any recursively generated evolutionary inductive Turing ma-
chine has the first order. 

Recursively generated evolutionary machines are special cases of self-
constructing evolutionary machine (SBETM)  E = { TMK ; TM[t]; t = 0, 1, 2, 3, ... } 
with a basic constructor. 

Definition 4.2. A self-constructing evolutionary machine (SBETM) also called a 
self-constructing evolutionary automaton E = { AK ; E[t]; t = 0, 1, 2, 3, ... } with a 
basic constructor is a system that consists of a constructing automaton AK called 
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the basic constructor of E and a virtual series of (possibly infinite) automata E[t] 
each working on population X[t] in generations t = 0, 1, 2, 3, ...  in the perfor-
mance cycle t where in each cycle t of performance, the automaton AK constructs 
the next automaton E[t + 1] from the descriptions of the automaton E[t], f(x[t]) and 
some parameters of X[t] and each automaton E[t] represents an evolutionary algo-
rithm that works with the population X[t], and evolved in generations 0, 1, 2, ... , t. 

As we see, a single automaton AK – constructor is responsible for evolution of 
an evolutionary algorithm. Evolutionary algorithms are embedded in “hardware” 
of a series of automata E[t].  

In this context, self-constructing evolutionary Turing machines (SBETM) with 
a basic constructor introduced form an important class of recursively generated 
evolutionary machines. 

Definition 4.3. A self-constructing evolutionary Turing machine (SBETM) E = 
{TMK ; TM[t]; t = 0, 1, 2, 3, ... } with a basic constructor is a recursively generat-
ed evolutionary machine in which the basic constructor is a Turing machine TMK , 
which constructs a (possibly infinite) series of Turing machines TM[t] each work-
ing on population X[t] in generations t = 0, 1, 2, 3, ...  in the performance cycle t. 

As we see, a single Turing Machine TMK – constructor is responsible for evolu-
tion of an evolutionary algorithm. Evolutionary algorithms are embedded in 
“hardware” of a series of Turing Machines TM[t].  

Proposition 4.3. Any periodic evolutionary Turing machine is functionally equiv-
alent to some self-constructing evolutionary Turing machine. 

Theorem 4.2. For any Turing machine T, there is a recursively generated evolu-
tionary finite automaton AT that simulates T working in the recursive mode.  

This result shows that it is possible to use evolutionary construction for simu-
lating more powerful automata by less powerful ones. 

Theorem 4.3. For any inductive Turing machine M, there is a recursively generat-
ed evolutionary finite automaton AM that simulates M working in the inductive 
mode.  

The inverse result to Theorem 4.2 is also true. 

Theorem 4.4. For any recursively generated evolutionary Turing machine E, there 
is a Turing machine TE that simulates E working in the recursive mode.  

Corollary 4.1. For any recursively generated evolutionary finite automaton E, 
there is a deterministic Turing machine TE that simulates E working in the recur-
sive mode.  

Corollary 4.2. The following classes of automata are functionally equivalent:  
1) the class DT of all deterministic Turing machines; 
2) the class RGET of all recursively generated evolutionary Turing machines. 

Corollary 4.3. Recursively generated evolutionary finite automata generate  
(accept) all recursively enumerable languages and only such languages. 
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Corollary 4.4. Recursively generated evolutionary Turing machines working in 
the recursive mode generate (accept) all recursively enumerable languages and  
only such languages.  

5   Conclusion 

We started our chapter with a description of Turing’s unorganized machines that 
were supposed to work under the control of some kind of genetic algorithms (note 
that Turing never formally defined a genetic algorithm or evolutionary computa-
tion). This was our inspiration. However, our evolutionary machines are closely 
related to conventional Turing machines, as well as to the subsequent definitions 
of genetic algorithms from 1960-80s. This means that level automata of evolutio-
nary machines are finite automata, pushdown automata or Turing machines rather 
than more primitive NAND logic gates of u-machines. Additionally, most of  
computability theory has been based on Turing a-machines, whereas Turing  
u-machines were almost forgotten. We have introduced several classes of  
evolutionary machines, such as bounded, periodic and recursively generated evo-
lutionary machines, and studied relations between these classes, giving an inter-
pretation of how modern u-machines could be formalized and how rich their  
computations and types are. Of course, we will never know whether Turing would 
accept our definitions of evolutionary automata and formalization of evolutionary 
computation. 

In addition, it is possible to introduce other classes of evolutionary automata, 
for example, evolutionary pushdown automata, evolutionary timed automata or 
evolutionary context-free grammars, and to study relations between known 
classes of conventional automata and newly introduced classes of evolutionary 
automata. 

The reader may and should ask the question what is the importance and applica-
tions of the evolutionary machine subclasses introduced in this paper. Do these 
subclasses somehow allow us to understand better evolutionary computation, its 
power and limits?  The current practice of evolutionary computation is captured by 
bounded evolutionary machines, where the process of evolution stops after a finite 
number of generations, or if we do not observe sufficiently long any changes in so-
lutions. On the other hand, periodic evolutionary machines allow researchers and 
engineers to capture some infinite processes, e.g., a search for a global fitness op-
timum that is a desired goal of evolutionary computation. In fact, the bulk of evolu-
tionary algorithms used currently is static, corresponding to periodic evolutionary 
machines with the period 1 (Theorem 4.1. explains why in theory to consider peri-
odic evolutionary machines with period 1 is sufficient). Thus the majority of evolu-
tionary algorithms studied currently are bounded and periodic with the period 1.  

Structure of periodic evolutionary machines with period 1 is static because all 
components of this machine are the same. When period of a periodic evolutionary 
machine is larger than 1, then some limited structural dynamics exists and we ob-
tain more flexibility organizing evolutionary processes. 

Recursively generated evolutionary machines represent constructive dynamics 
of evolutionary driving forces and mechanisms. Such evolutionary machines form 
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the most general class, giving means to describe properly the process of self-
evolution. Of course, the self-evolution is still not sufficiently studied or used 
phenomenon, and most researchers use rather static evolutionary algorithms in 
their approaches. In the limited form, self-evolution found a wide acceptance in 
evolution strategies to speed up the process of search. The future of recursively 
generated evolutionary machines, seems to be in the study of evolvable hardware, 
and in expanding the venue of evolutionary computation from universal computa-
bility to a wider concept – universal constructability. This means evolutionary ro-
botics should be another area where recursively generated evolutionary machines 
would be useful for future study and applications. 

Research presented in this paper is only the first step in this direction. There are 
open problems solution of which is important for the development of foundations 
of evolutionary computations. For instance, Corollary 4.2 implies that there is an 
inductive Turing machine M such that no evolutionary Turing machine that works 
in the global recursive mode can model M. At the same time, we know (cf., for 
example, (Burgin 2005)) that machines that work in the inductive mode are often 
more powerful than machines that work in the recursive mode. 

Problem 1. Can an inductive Turing machine of the first order simulate an arbi-
trary recursively generated evolutionary inductive Turing machine? 
Problem 2. Can an inductive Turing machine of the first order simulate an arbi-
trary periodic evolutionary inductive Turing machine? 

We have described here classes of languages generated or accepted by bounded 
evolutionary finite automata (cf. Section 2), by recursively generated evolutionary 
finite automata (Corollary 4.3) and by recursively generated evolutionary Turing 
machines (Corollary 4.4). 
Problem 3. What class of languages is generated/accepted by periodic evolutio-
nary finite automata? 
Problem 4. What class of languages is generated/accepted by recursively generat-
ed evolutionary inductive Turing machines? 
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Abstract. We are going to observe special algebraic Turing machines de-
signed for different assignments of cryptography such as classical symmetric
encryption, public key algorithms, problems of secure key exchange, devel-
opment of hash functions. The security level of related algorithms is based
on the discrete logarithm problem (DLP) in Cremona group of free module
over finite commutative ring. In the case of symbolic computations with ”suf-
ficiently large number of variables” the order of generator (base of DLP) is
impossible to evaluate and we have ”hidden discrete logarithm problem”. In
the case of subgroups of Cremona group DLP is closely connected with the
following classical difficult mathematical problems:

(1) solving the system of nonlinear polynomial equations over finite fields
and rings,

(2) problem of finding the inverse map of bijective polynomial multivariable
map.

The complexity of Discrete Logarithm Problem depends heavily from the
choice of base. Generation of good ”pseudorandom” base guarantees the high
complexity of (1) and (2) and security of algorithms based on corresponding
DLP. We will use methods of theory of special combinatorial time dependent
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dynamical systems for the construction of special Turing machines for the
generation of the nonlinear DLP bases of large (or hidden) order and small
degree.

Keywords: Symbolic computations, algebraic transformations over commu-
tative rings, Cremona groups, Cryptography, discrete logarithm problem, dy-
namical systems of large girth, dynamical systems of large cycle indicator.

1 Introduction

The common definition of the computation can be formulated in terms of
Finite Automaton (FA). Recall that FA is a finite directed graph with some
special vertices (initial states and accepting states) and colours on arrows
taken from the chosen alphabet. The principle difference of Turing machine
from finite automaton is existence of ”potentially infinite” memory defined
via ribbon on which any word in special (external) alphabet can be written.

To reformulate the concept of Turing Machine on the language of graph
theory one needs an infinite family of graphs of increasing rder instead of one
graph in the definition of Finite Automaton. The Alan Turing’s impact on
Computer Science contains the concept of modern computer [5] and theoreti-
cal foundations of artificial intelligence and remarkable examples of practical
cryptology. During the Second World War, Turing was a leading participant
in the efforts at Bletchley Park to break German ciphers. He used cryptanal-
ysis work carried out in Poland by Marian Rejewski, Jerzy Rożycki, Henryk
Zygalski from Cipher Bureau for the elaboration of several crucial insights
into breaking both the Enigma machine and the Lorenz SZ 40/42 attachment
codenamed Tunny by the British specialists (see [11], [25], [26]).

The natural question related to Turing’s heritage is: ”What kind of Tur-
ing Machine Can be effectively used in Cryptography?” or ” What class of
families of directed graphs is useful for cryptographical purposes?”.

The different areas of Mathematics (Number Theory, Mathematical Logic,
CommutativeAlgebra and etc) have interesting applications to Information Se-
curity. It is clear, that the concept of Turing Machine is universal, each crypto-
graphical algorithm can be described in terms of machine commands. Of course
the need of such interpretation is not always well motivated, different interpre-
tations of the same algorithmmay have different computational complexity.

The symbolic computations technique allow us to create a public key mode
for the encryption scheme based on special dynamical systems associated with
algebraic graphs. The definitions and examples of such dynamical systems
defined over arbitrary commutative rings were given in [48], their applications
to the cryptosystems development the reader can find in [48], [50], [52], [56]
(see also futher references in this books). We introduce stronger definitions of
special dynamical systems: dynamical systems of large girth and large cycle
indicator and their modifications (symmetric, bipartite system, etc). It allows
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us to get a wider variety of key spaces based on various multiplicative subsets
of chosen commutative ring K in comparison with the approach of [48] and
[52], where the alphabet for the key space was set as Reg(K) (totality of
regular elements). Other recent results are connected with the evaluation of
the order and polynomial degree of nonlinear encryption transformation.

Notice, that the earliest applications of dynamical systems and related
chaos in cryptography were proposed by Pecora and Caroll in 1990 in [40]
and then developed by Kocarev in [21] and Parlitz in [35], using analogue sig-
nals and binary information models, respectively. One of the first important
publication in this direction belongs to Biham (see [1]).

They used both discrete and continuous chaotic dynamical systems. Ap-
plication of discrete system in cryptography was first proposed by Habutsu
in [10] and then developed by Kotulski and Szczepański in [24]. The idea sug-
gested by Habutsu assumed some internal parameter of the tent map playing
the role of secret key. Then, the message (initial condition) is transformed
by several inverse iteration of the map. Kotulski and Szczepański in [24] give
generalization of this idea, where secret key is connected with the initial con-
dition instead of parameter of the system. In continuous case the message
is encrypted by the usage of continuous, chaotic, dynamical systems. The
system is described via system of nonlinear ordinary differential equations
and its characterization like chaos, ergodicity, etc. Chaotic property ensures
sensitivity to small changes of initial conditions.

Applications of dynamical systems to cryptography currently form a very
popular direction. Research on this topic is in continuation in the USA, Rus-
sia, Switzerland, Poland, Ukraine and other countries. For instance, recently
a new approach to constructing cryptosystems based on the idea of control-
ling chaos has been developed. Introduction of secret key through the initial
condition of the discrete chaotic system was proposed. So called reflection
law models the reader can find in [9], [16], [27]. One of the latest publications
on the use of Chaos Space on [30], [31].

We concentrate on other cycle of ideas coming from Extremal Graph The-
ory and Theory of Expanding Graphs. Remarkable similarity of Random
graphs and explicit constructions of Extremal graphs and Expanders allows
to develop graph based dynamical systems.

In section 2 we introduce basic definitions of cryptography and concept of
dynamical system F (K)of large girth over finite commutative ring K. Such a
dynamical system is formed by special invertible nonlinear polynomial maps
Ft,n, t ∈ K of Kn (Cartesian power of K) into Kn. For fixed positive integer
n transformations Ft,n, t ∈ K generate a subgroup Gn of Cremona group
of bijective polynomial maps of Kn into itself such that their inverse is also
polynomial transformation. It is important that for each sequence of repre-
sentatives gn ∈ Gn the order |gn| is growing to infinity with the growth of
parameter n. For each multiplicative set Q i.e. subset of nonzero elements of
ring K, which is closed under the ring multiplication.
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In fact, the definition of dynamical system of large girth is motivated
by ideas of Extremal Theory of Algebraic graphs (see [48], where weaker
requirements had been used for the definition of linguistic dynamical system,
in the case of fields definitions are equivalent).

To create theory of dynamical system of large girth on solid base we need
the statements on their existence.

The creation of ”K-theory” (similar to algebraic K-theory in algebraic
geometry) of linguistic dynamical system for each pair K, Reg(K), where
Reg(K) is a totality of regular elements of K, leads to the development of
new cryptosystems. As it was expected the speed of symmetric algorithms
over the alphabet Z2m are faster in comparison with previously developed
stream ciphers over finite fields F2m . Surprisingly orders of encryption maps
over the modulo rings growth faster than in the case of field. We realize,
that linguistic dynamical systems and their modifications can be used for
construction of families fn of bijective transformation of Kn such that the
order |fn| is growing with the growth of parameter n, but polynomial degree of
each fn is bounded by some independent constant. Such maps of good density
(large number of nonzero coefficients in front of monomial expressions) are
important for the key exchange protocols based on symbolic computations
(see subsection 2 of section 2). The theory of linguistic dynamical systems is
connected with the theory of extremal directed graphs without commutative
diagrams [50], [51], [52], [55] and [56].

Recent results on dynamical systems of large girth allow us to construct
the family of directed graphs of large girth for each pair (K, Q), where K

is a commutative ring and Q is a multiplicative set in K. They give us an
possibility to create an interesting Turing machines. An example of inter-
esting machines corresponds to pair Boolean ring B(M) = {f : M → F2}
of all characteristic functions of subsets for M = {1, 2, . . . ,m}, m ≥ 2 and
multiplicative set Qi, 1 ≤ i ≤ m consisting of all charactersitic functions
for subsets containin i ∈ M . The public transformation for this pair will be
Boolean map on the vector space B(M)n = F2

mn.
Finally, we noticed that for the generation of public rules via Turing ma-

chines corresponding to dynamical system we need appearance of distinct
maps corresponding to different strings in internal alphabet Q of restricted
length. It was the motivation of the concepts of dynamical systems of large
cycle indicator and corresponding to them families of graphs of large cycle
indicator. The theory of extremal graphs of large cycle indicator appears
very recently (see [53], [54] and next chapter of this book). We hope that
idea of dynamical systems of large cycle indicator will lead to new interesting
systems in multivariate cryptography, which can produce secure solution for
both Turing machine and Quantum computers [44].

The main task of this chapter present the results on latest developments
on the use of graph based dynamical systems in cryptography.
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2 On Cryptography Basics, Cremona Group
and Dynamical Systems

2.1 Symmetric Cryptography

Assume, that an unencrypted message, plaintext , which can be image data, is
a string of bytes. It is to be transformed into an encrypted string or ciphertext ,
by means of a cryptographic algorithm and a key. The recipient has to read
the message, so encryption must be invertible.

An assumption, first codified by Kerckhoffs in the nineteenth century, is
that the algorithm is known and the security of algorithm rests entirely on
the security of the key.

Conventional wisdom holds that in order to defy easy decryption, a cryp-
tographic algorithm should produce seeming chaos, that is, ciphertext should
look and test random. In theory an eavesdropper should not be able to de-
termine any significant information from an intercepted ciphertext.

So in a case of symmetric encryption when two correspondents (with com-
mon names Alice and Bob) share the encryption algorithms together with the
key. We may think about a Turing machine with external alphabet K used
for writing ”potentially infinite plaintext” and the internal machine alpha-
bet Q for writing the secret word (the key or password). Generally speaking,
attacks to a cryptosystem fall into 2 categories: passive attacks , in which
adversary monitors the communication channel and active attacks , in which
the adversary may transmit messages to obtain information (e.g. ciphertext
of chosen plaintext).

Correspondents may achieve good resistance to passive attack with one
time pad algorithm (see [20]) for which plaintext x and the key b are vectors
from the vector space Fn

q over finite field Fq and the encryption map is x →
x + b.

An encryption algorithm in terms of commutative algebra over finite field
with some resistance to active attacks has to be a nonlinear map.

All algorithms for the symmetric encryption are divided into block ciphers
and stream ciphers. In case of block ciphers the plainspace P is partited
into blocks Bi, i = 1, 2, . . . , n of equal size restricted by some constant. The
encryption map corresponding to chosen key maps each set Bi into itself.

Stream cipher is the fast encryption algorithm which is not a block cipher.
It means, that the partition onto invariant blocks does not exist. Let us use
the language of permutation group theory for the studies of the principle
difference between block ciphers and stream ciphers. The encryption map is
a bijection (permutation) on plainspace.

We may consider the permutation group GA generated by encryption and
decryption maps for chosen algorithm A. For the construction of GA we
may use various keys from the keyspace. Two points p and p′ belong to the
same orbit, if there is a permutation π ∈ GA such that π(p) = p′. In a
case of block cipher each block is a union of some orbits. So, the size of



236 V. Ustimenko and U. Romańczuk

the orbit does not grow with the growth of the size of the plainspace, it is
bounded by the size b of block Bi. We will use the term stream cipher in case
of encryption algorithm with unbounded size for each orbit. By definition a
transitive permutation group is a subgroup of corresponding symmetric group
with exactly one orbit. The algorithm A with transitive group GA has the
following property: for arbitrary pair p and p′ there is π in GA corresponding
to some combination of keys such that π(p) = p′. We refer to such encryption
algorithm as transitive machine.

We are going to investigate further some special algebraic nonlinear Turing
encryption machines.

So, we assume, that external alphabetK is a commutative ring and internal
alphabet Q is the multiplicative set of K, i.e. the totality of nonzero ring
elements closed under multiplication in K.

The reader may keep in mind the following simple examples:

(1) Obvious example of multiplicative set is the multiplicative group F∗
q of

finite field Fq, where q is a prime power.
(2) Letus consider the ringZm corresponding to arithmeticmodulom, a ∈ Zm

is some residuemodulom. The totality of elements b ∈ Zm, which aremu-
tually prime with a, form a multiplicative setQa of the ring.

(3) The Cartesian power Fm
2 of the finite field F2 with two elements is a

Boolean ring Bm containing all functions f from the finite set M =
{1, 2, . . . ,m} into F2. Recall, that

(x1, x2, . . . , xm) + (y1, y2, . . . , ym) = (x1 + y1, x2 + y2, . . . , xm + ym)

(x1, x2, . . . , xm) · (y1, y2, . . . , ym) = (x1y1, x2y2, . . . , xmym).

We can identify ring Bm with the totality of subsets of {1, 2, . . . ,m}
with operation of symmetric difference of subsets and intersection. The
totality Qi = {y ∈ Bm|yi = 1} is an example of multiplicative subset in
Bm.

(4) If K is a general commutative ring with unity, I is some ideal of K, then
the totality of all invertible elementsmodulo I is amultiplicative set. Sym-
bol Reg(K) stands for the totality of regular elements of K, i. e. nonzero
divisors. Free module Kn is a Cartesian product of n copies of K.

(5) Symbol Reg(K) stands for the totality of regular elements of K, i. e. non
zero divisors. Set Reg(K) is a multiplicative set for each commutative
ring K.

We refer to elements t1, t2, . . . , ts, s ≥ 1 of commutative ring K as mul-
tiplicative generators, if there is a multiplicative set Q containing all ti,
i = 1, 2, . . . , s. Symbol < t1, t2, . . . , ts > stands for the minimal multiplicative
subset of K containing each multiplicative generator ti.

Recall, that a free moduleKn is simply a Cartesian product of n copies ofK.
Let us consider special generators of nonlinear maps on free modules Kn,

n = 3, 4, . . .
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We refer to a family F(K) of bijective nonlinear polynomial maps Ft,n =
F (t, n,K) , n = 3, 4, . . ., t ∈ K of free module Kn into itself as dynamical
system F (K) of large girth, if the inverse map for Ft,n is a polynomial map
F ′
t,n = F ′(t, n,K) and there is an independent constant c, c > 0 such that for

each set of multiplicative generators Q of K the following conditions hold

(1) for the sequence of elements t1, t2, . . . , tk, 1 ≤ k ≤ 2cn from Q the
compositions Ft1,t2,...,tk,n = F (t1, t2, . . . , tk, n,K) of maps Ft1,n , Ft2,n,
. . . , Ftk,n have no fixed points.

(2) for eachpair of distinct sequences (t1, t2, . . . , tk) ∈ Qk and (t′1, t
′
2, . . . , t

′
s) ∈

Qs of length k < cn and s < cn and each point x from the free moduleKn

values of Ft1,t2,...,tk,n(x) and Ft′1,t
′
2,...,t

′
s,n

(x) are different.
(3) for each set of multiplicative generators {t1, t2, . . . , ts} the order of trans-

formation Ft1,t2,...,ts,n is going to infinity, when parameter n is growing.

We apply term ”time” to a regular parameter t defining map Ft,n =
F (t, n,K). We refer to F (K) as balanced dynamical systems of large girth
and denote it BF (K) if F ′

t,n = F ′(t, n,K) also form a dynamical system
F ′(K) of a large girth.

For the chosen ring K it is nice to have the constant c ”as large as is
possible” to have a wider family of polynomial maps without fixed points.

Before we consider some encryption machines corresponding to defined
above objects we formulate the statement on the existence of dynamical sys-
tems of large girth.

Theorem 1. For each commutative ring K there exists a balanced dynamical
system BF (K) of large girth with c ≥ 1/3.

We associate with the pair (F (K), Q), where F (K) is a general dynamical
system and Q is a multiplicative subset of K, the following encryption Turing
machine T (F (K), Q, τ1, τ2) depending on two sequences τ1, τ2 of chosen bi-
jective affine transformations τ1,n = τ1(n,K) and τ2,n = τ2(n,K) (polynomial
maps of Kn into itself of degree 1).

We will treat elements p = (p1, p2, . . . , pn) of Kn , n = 3, 4, . . . as po-
tentially infinite plaintext written in the alphabet K. We will choose string
t = (t1, t2, . . . , ts) of internal alphabet Q and chosen bijective affine transfor-
mations τ1,n and τ2,n (polynomial maps of Kn into itself of degree 1), these
data will form our key. Correspondents Alice and Bob will share the data and
can use the composition Fτ1,n,τ2,n,t of τ1,n, Ft1,n, Ft2,n, . . . , Fts,n and τ2,n as
encryption map.

Notice, that they can decrypt with the composition of τ−1
2n , F ′

ts,n,

F ′
ts−1,n,. . ., F

′
t1,n and τ−1

1,n. If Alice and Bob fix sequences of transformation
τ1,n and τ2,n and vary strings t1, t2, . . . , ts with parameter s from the interval
2 ≤ s < cn, then different keys will produce distinct ciphertexts from the cho-
sen plaintext p. We may assume that n is ”potentially infinite”, because our
encryption tool is a special Turing machine. Our encryption map in a case of
”short” keys has some similarity with above mentioned one time pad. Notice,
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that for our the algorithm corresponding to dynamical system F (K, Q) is a
stream cipher, because the cardinality of

{Fτ1,n,τ2,n,t(p)| t = (t1, t2, . . . , ts), ti ∈ Q, i = 1, 2, . . . , s, 2 ≤ s ≤ cn}

is growing with the growth of n.
In fact, if |Q| ≥ 2 it grows exponentially with the speed |Q|O(n). The en-

cryption algorithm can be even a transitive machine. Notice, that in case of a
block cipher, size of each orbit of coresponding Turing machine is restricted
by the size of a block (constant). So our private key algorithm is a stream
cipher. Symbol T (F (K), Q) will stand for the canonical encryption Turing
machine corresponding to identical maps τ1,n, τ2,n, n = 3, 4, . . .. On theory
of dynamical systems terminology nonidentical affine maps from sequences τ1
and τ2 are used for ”desynchronisation’ of canonical machine. We also con-
sider universal canonical Turing machine UT (F (K)) and its desynchronised
version UT (F (K), τ1, τ2) obtained simply by the change of Q on K − {0} in
the definitions of T (F (K), Q) and T (F (K), Q, τ1, τ2), respectively.

Turing machine T (F (K), Q, τ1, τ2) will be transitive exactly in the case of
transitivity of T (F (K), Q) and canonical machine T (F (K), Q).

Let F∗
q stand for the multiplicative group of finite field Fq.

Theorem 2. For each finite field Fq, charFq �= 2, there exists a balanced
dynamical system F (Fq) of large girth with c ≥ 2/3 such that algorithm
T (F (Fq),Fq

∗) executes transitive encryption.

Let K be a general commutative ring with a unity and Kn is n-dimensional
free module over K. Recall, that Cremona group C(Kn) is a totality of bijec-
tive polynomial maps f of Kn into itself, such that the inverse map f−1 is
also polynomial one.

Let us consider the group GQ of all transformation produced by Turing
encryption machine T (F (K), Q) associated with the dynamical system F (K)
and multiplicative set Q. Assume, that G(Q, τ1) corresponds to Turing Ma-
chine T (F (K), Q, τ1, τ2) in the case τ2 = τ1

−1. The transformation group
G(Q, τ1) is conjugated with the group GQ generated by bijective maps Ft,n,
t ∈ Q. Notice, that groups GQ and G(Q, τ1) are similar, but their mixing
properties in terms of alphabet K may be different. For instance, the mini-
mal Hamming distance between g(p) and g(p′), where g ∈ GA, p and p′ are at
the distance 1, may depend heavily on the choice of τ1 (see [22], [57] for the
examples). Obviously, GQ is a subgroup of Cremona group C(Kn) generated
by transformations Ft,n, t ∈ Q.

We also will consider group G associated with universal Turing machine.
We will evaluate time execution and properties of Chaos corresponding to
above mentioned stream ciphers after the description of explicit construction
of corresponding dynamical systems. We also discuss the security level of such
private keys.
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Let us consider some modifications of the definition of dynamical system
of large girth. Let K be a commutative ring. We refer to a pair of sequences of
bijective nonlinear polynomial maps Pt,n = P (t, n,K) and Lt,n = L(t, n,K),
n = 1, 2, . . . , t ∈ K of free module Kn into itself as bipartite dynamical
system B(K) of large girth, if the inverse maps P ′

t,n = P ′(t, n,K) and L′
t,n =

L′(t, n,K) for Pt,n and Lt,n are also polynomial maps of Kn and there is an
independent constant c, c > 0, such that for each multiplicative set Q of K
the following three conditions hold

(1) for the sequence of elements t1, t2, . . . , tk, 2 ≤ 2k ≤ 2cn from Q the
compositions of the kind

FP,t1,t2,...,t2k,n = FP (t1, t2, . . . t2k−1, t2k, n,K) =

= Pt1,n ◦ Lt2,n ◦ . . . ◦ Pt2k−1,n ◦ Lt2k,n

FL,t1,t2,...,t2k,n = FL(t1, t2, . . . t2k−1, t2k, n,K) =

= Lt1 ◦ Pt2 ◦ Lt3 ◦ Pt4 ◦ . . . ◦ Lt2k−1
◦ Pt2k

have no fixed points on Kn.
(2) for each pair of distinct sequences (t1, t2, . . . , t2k) ∈ Qk and

(t′1, t
′
2, . . . , t

′
2s) ∈ Qs of length k < cn and s < cn and each point x from

the free module Kn values of FP,t1,t2,...,t2k,n(x) and FP,t′1,t
′
2,...,t

′
2s,n

(x)
are different, FL,t1,t2,...,t2k,n(x) �= FL,t′1,t

′
2,...,t

′
2s,n

(x) .
(3) for each set ofmultiplicative generators {t1, t2, . . . , ts} the orders of trans-

formations FP,t1,t2,...,ts,n and FL,t1,t2,...,ts,n is going to infinity, when pa-
rameter n is growing.

We refer to B(K) as balanced bipartite dynamical systems of large girth and
denote it BB(K) if inverse maps P ′

t,n and L′
t,n for Pt,n and Lt,n also form a

bipartite dynamical system B′(K) of a large girth.

Theorem 3. For each commutative ring K, there exists a balanced bipartite
dynamical system BB(K) of large girth with c ≥ 2/3.

This statement is an interesting one, because of a rather large constant c for
a family of maps.

In the following two definitions of dynamical system the family of maps is
closed under the unary operation of taking the inverse.

Sequence Q = {t1, t2, . . . , tr} of K is a multiplicative difference sequence
if ti+1 + ti form multiplicative set of generators . The natural way to
form multiplicative difference set from the set of multiplicative generators
α1, α2, . . . , αr−1 is assume that t1 is arbitrary element of commutative ring,
t2 = −t1 + α1, t3 = −t2 + α2, . . ., tr = −tr−1 + αr−1.

We refer to a family F(K) of distinct bijective nonlinear polynomial maps
Ft = F (t, n,K), n = 1, 2, . . ., t ∈ K − {0} of free module Kn into itself as
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symmetric dynamical system SF (K) of large girth, if the following conditions
hold

(1) for each t ∈ K there is a t′ ∈ K such that Ft′,n is the inverse map for
Ft,n, n = 2, 3, . . ..

(2) there is an independent constant c, c > 0, such that for each multiplica-
tive sequence t1, t2, . . . , tk, 1 ≤ k ≤ 2cn the composition Ft1,t2,...,tk,n of
maps Ft1,n , Ft2,n, . . . , Ftk,n acting on Kn has no fixed points.

(3) for each pair of multiplicative sequences t1, t2, . . . , tk and t′1, t
′
2, . . . , t

′
s

of length k < cn and s < cn and each point x from the free module Kn

values of Ft1,t2,...,tk,n(x) and Ft′1,t
′
2,...,t

′
s,n

(x) are different.
(4) for eachmultiplicative difference sequence t1, t2, . . . , ts the order of trans-

formation Ft1,t2,...,ts,n is going to infinity, when parameter n is growing.

Theorem 4. For each commutative ring K, there exists symmetric dynamical
system SF (K) of large girth with c ≥ 1/3, such that t′ = −t, t ∈ K.

Let K be a commutative ring K. We refer to a pair of sequences of bijective
nonlinear polynomial maps Pt = P (t, n,K) and Lt = L(t, n,K), n = 1, 2, . . .
, t ∈ K of free module Kn into itself as symmetric bipartite dynamical system
SB(K) of large girth, if

(1) the inverse map P ′
t,n = P ′(t, n,K) for Pt,n is some map of a kind Lt′,n,

t′ ∈ K and the inverse map L′
t,n = L′(t, n,K) for Lt,n is some map of a

kind Pt′,n, t
′ ∈ K

(2) there is an independent constant c, c > 0, such that

(2.1) for each multiplicative difference sequence t1, t2, . . . , t2k, 1 ≤ k ≤ 2cn
the composition FP,t1,t2,...,t2k,n = FP (t1, t2, . . . , t2k, n,K) of maps Pt1,n,
Lt2,n, Pt3,n, Lt4,n, . . . , Pt2k−1,n , Lt2k,n and the map FL,t1,t2,...,t2k,n =
FL(t1, t2, . . . , t2k, n,K) of kind

Lt1,n ◦ Pt2,n ◦ Lt3,n ◦ Pt4,n ◦ . . . ◦ Lt2k−1,n ◦ Pt2k,n

have no fixed points
(2.2) for each pair of multiplicative difference sequences t1, t2, . . . , tk and t′1,

t′2, . . . , t′s of even length k < cn and s < cn and each point x from the
free module Kn values of FP,t1,t2,...,tk,n(x) and FP,t′1,t

′
2,...,t

′
s,n

(x) (and
FL,t1,t2,...,tk,n(x) and FL,t′1,t

′
2,...,t

′
s,n

(x)) are different.
(2.3) for each pair of multiplicative difference sequences t1, t2, . . . , tk and t′1,

t′2, . . . , t
′
s of odd length k < cn and s < cn and each point x from the

free module Kn values of FP,t1,t2,...,tk−1,n◦Ptk,n(x) and FP,t′1,t
′
2,...,t

′
s−1,n

◦
Pt′s,n (and FL,t1,t2,...,tk−1,n ◦Ltk,n(x) and FL,t′1,t

′
2,...,t

′
s−1,n

◦Lt′s,n(x)) are
different.

(2.4) for each multiplicative difference sequence of kind {t1, t2, . . . , ts}, s is
even, the order of transformation FP,t1,t2,...,ts,n and FL,t1,t2,...,ts,n is go-
ing to infinity, when parameter n is growing.
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Theorem 5. For each commutative ring K, there exists symmetric bipartite
dynamical system SB(K) of large girth with c ≥ 2/3 such that t′ = −t, t ∈ K.

Similarly to a case of dynamical system of large girth we can associate with
introduced above objects and multiplicative sets different Turing machines
(see the next section for the definition and geometrical interpretation).

2.2 Idea of a Asymmetry

The paper [6] by Diffie and Hellman was published in 1976. This remark-
able paper changed the shape of Cryptography, some new directions were
developed. Below are the basic definitions of Modern Cryptography.

One way function is the one to one correspondence satisfying following
requirements:

(i) there exists a polynomial algorithm for the computation of the valueF (x).
(ii) the polynomial algorithm of finding inverse map F−1 does not exist.

The conjecture on existence of one way function is open. For practical use
one may substitute requirement (ii) on weaker condition:

(ii)’ the complexity of polynomial algorithm of finding inverse map F−1 is
equivalent to solving of one NP -hard problem from the known list of
equivalent problems (see [20]).

Trapdoor function with a secret parameter K is a one to one correspondence
FK : X → Y satisfying the following 3 requirements:

(i) there exists a polynomial algorithm for the computation of the value
FK(x) for each K and x.

(ii) the polynomial algorithm of finding inverse map F−1
K for unknown K

does not exist.
(iii) there exists a polynomial algorithm for the computation of the inverse

for FK(x) with known parameter K.

Again the statement on the existence of trapdoor function has not been
proven yet.

There are examples of functions satisfying (i) and (iii) and requirement
(ii)’. The most famous one is the encryption function for RSA cipher.

The above given definitions are motivated by an idea of public key or asym-
metric cryptographical algorithm. Let us consider the way to use trapdoor
functions for the solution of new cryptographical assignments.

Alice (the holder of secret parameter K) wants safe delivery of secret mes-
sages via open communication channel. Bob (public user) does not have a
parameter K. He gets an encryption function FK(x) via open channel with-
out option to compute K. If Alice (or somebody else) sends him encrypted
plaintext FK(p), he can not decrypt and get p. Of course, the holder of K
may enjoy the property (iii) and decrypt Bob’s messages within polynomial
time. The adversary, as Bob, has no option to decrypt Bob’s messages.
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Notice, that the adversary can make attacks of type (iii), because he can
compute the corresponding ciphertext for any chosen plaintext. Encryption
based on the trapdoor function (of course, in the case of its existence) has a
wonderful resistance to attacks of type (iii).

The term ”public key” is used, because Alice presents encryption function
to public (printing in telephone book, sending by internet, etc).

In the same paper Diffie and Hellman proposed the key exchange algorithm
[6]. They used the encryption function, based on Little Fermat’s Theorem,
introduced in the previous unit. Correspondents Alice and Bob establish a
primitive element b of multiplicative group of prime finite field Fp via open
communication channel. They choose positive integers nA and nB, respec-
tively.

They exchange elements hA = bnA and hB = bnB via open channel. Finally,
Alice and Bob compute common vector c as hnA

B and hnB

A , respectively. So
they can use c as a key in some symmetric encryption method.

The security of ”symbolic Diffie-Hellman algorithm” is based on the dis-
crete log problem for the cyclic multiplicative group for Fp:

Really, the adversary (Catherina) has field elements b, c1 = bnA , and c2 =
bnB . She has to solve one of the equations bx = ci, i = 1, 2. Let the adversary
get nA as a solution of the first equation. Then, she computes c as cnA

2 .
The discrete logarithm problem is on the list of NP -hard problems. So the

above mentioned protocol for the key exchange is secure, if the chosen prime
number is sufficiently large.

2.3 On the Discrete Logarithm Problem for Special
Subgroups of Cremona Group

The discrete logarithm problem (DLP) can be formally defined for any finite
group G: for given b ∈ G find the solution for the equation bx = g, where x is
unknown natural number. The classical discrete logarithm problem famous in
Numbers Theory is when the group G = Z∗

p = F∗
p i.e. the multiplicative group

of integers between 1 and p− 1 modulo p (p is prime number). Recall, that
multiplicative group F∗

p is isomorphic to additive group Zp−1, for which DLP
is equivalent to finding the solution of linear equation. This fact demonstrates,
that group theoretical DLP, in fact, depends not only on chosen abstract
finite group, but also on the ways of its representations. Both groups F∗

p and
Zp−1 are isomorphic subgroups of symmetric group Sp of order p!. They are
isomorphic, but not similar (groups are not conjugated by some permutation
from Sp). So they are distinct transformation groups.

DLP problem can be considered formally for any finite transformation
group. In fact, even the case of group Z∗

n, where n is a composite number,
acting on set Zn is not investigated properly. We can consider the following
natural generalisations of DLP for F∗

p.
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1) Notice, that each permutation from Sp can be written in the form of
polynomial transformation x → f(x), f(x) ∈ Fp[x]. We can identify F∗

p with
totality of maps x → ax of degree 1, where a �= 0.

The simplest generalisation DLP can be obtained by the change of the pair
F∗
p, Sp on the pair of groups GLn(Fp) (general linear group over Fp) and sym-

metric group Spn . Recall, that GLn(Fp) consists of all bijective linear trans-
formations x → xA of the vector space Fn

p , where A is non singular quadratic
matrix with entries from Fp. Notice, that each permutation from Spn can
be written in the form x → F (x), where F (x) = (f1(x), f2(x), . . . , fn(x)),
fi(x) ∈ Fp[x1, x2, . . . , xn], i = 1, 2, . . . , n is a bijective polynomial map from
the vector space Fn

p into itself. Similarly to the case n = 1 we can identify
GLn(Fp) with totality of invertible polynomial maps x → xA of degree 1. It
is clear that GL1(Fp) = F∗

p and change of F∗
p on GLn(Fp) or Spn leads to

natural generalisation of classical DLP.
2) The second step of generalisation DLP is the change of the field Fp to

the general finite commutative ring K, vector space Fn
p into free module Kn,

symmetric group Spn into Cremona group C(Kn) .
The DLP problem for the cyclic group generated by nonlinear transforma-

tion f of order t from Cremona group C(Kn), i.e. problem of solving fy = g
is more difficult than the problem of finding g−1. If integer y is known to-
gether with t, then our equation can be written in the form f t−y = g−1

and we are computing the inverse map for g. So, in the case of subgroups of
Cremona group DLP is closely connected to the following classical difficult
mathematical problems:

(1) solving the system of nonlinear polynomial equations over finite fields
and rings.

(2) problem of finding the inverse map of bijective polynomial multivariable
map.

Let us discuss the known results of the oldest classical problem (1) of investiga-
tion of the system of nonlinear equations g(x) = b, g ∈ C(Kn), x, b ∈ Kn. This
problemhas been investigated for centuries and nowadays research on this topic
is very interesting, but actualy the complexity of the best known algorithm is
practically the same as those given by the famous Gauss elimination method.
If the degree of g is d, then the best known general algorithm has complexity
dO(n2). In the casewhen the solution space of the systemhas dimension zero and
some special restrictions on g are fulfilled the solution can be found for dO(n)

(see, survey [28]) . It is clear, that if g−1 is known, thenx = g−1(b). So, the prob-
lem (2) of finding the inverse map of bijective polynomial multivariable map is
more sophisticated. In fact, it is much harder algebraic problem in comparison
with the solving of non linear equation. Traditionally specialists use dO(n) as a
lower bound for the complexity of both problems.

The efficient general algorithm of finding g−1 is known only in the case when
g is linear map. There is an amassing gap between linearity and nonlinearity,
which can be used to guarantee the security of cryptographical tools.
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Any finite abstract group can be considered as a subgroup of certain Cre-
mona group. It means that complexity of DLP depends heavily on the choice
of a base. Generation of a good ”pseudorandom” base guarantees the high
complexity of (1) and (2) and security of related proposed cryptographical
security tools.

Let us discuss some issues connected with the ”mass problem” of genera-
tion of sequences of maps fn ∈ C(Kn) such that their representatives could
be used as appropriate bases for discrete logarithm problem. Let fy

n(x) be
the iteration of fn(under the superposition operation of Cremona group) con-
ducted y-times. The discrete logarithm problem fy

n = gn has an easy solution,
if degree of fy

n is growing linearly with the growth of y (y is a ratio of degrees
bn and fn). To make DLP a difficult problem we have to assume that degree
of Fn(x) = fy

n(x), x ∈ Kn is very sophisticated function or deggn(x) is simply
bounded by some small constant. We concentrate on studies of the second
case (small degree of gn(x)). We have to care about the large order tn of fn to
make discrete logarithm problem difficult. It is nice to have the computation
of order as unfeasible, so to have ”hidden discrete logarithm problem”.

Let us refer to the family of polynomial maps fn = fn(x1, x2, . . . , xn), such
that the order |fn| is growing with n to infinity and degrees of non-identical
maps fy

n , where n and y are positive integers, restricted by a constant r
independent from n and y as a family of polynomials of large order and
stable degree.

The existence of such families of polynomials fn, with r ≥ 4 can be ob-
tained via consideration of maps f = gn ◦ τn ◦ g−1

n , where τn is an invertible
linear map of increasing order (for instance one can use famous Singer cycle,
order of which is growing exponentially with the order of n) and gn is bijec-
tive non-linear polynomial map with degree bounded by some constant s. If
the degree of gn is s ≥ 2, then with probability close to 1 the degree of fn
will be at least 4.

Let us refer to maps of kind gn ◦ τn ◦ g−1
n as pseudolinear maps of large

order and stable degree. The explicit construction of families of polynomials
of large order and very small degree is an interesting mathematical task. Of
course, the case of nonpseudolinear families is the case of special interest.
Next section is devoted to some solutions of this task with the usage of graph
based dynamical systems.

2.4 On the History of Constructive Multivariate
Cryptography

We are given a shorter version of historical remark in [41]. Multivariate
cryptography is quite popular nowadays because it can be a possible op-
tion applicable to both conventional and quantum computers (see [15]). In
multivariate cryptography the public key cryptosystems are based on the
problem of solving system of nonlinear equations which complexity we dis-
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cuss above. Imai and Matsumoto (1988, see [33]) have been proposed, the
first cryptosystem (MIC) based on the map from Cremona group over the
finite field of characteristic 2. The MIC* cryptosystem was based on the idea

of hiding a monomial x2l + 1 by left and right shifts by two invertible affine
transformations (see [20]). This cryptosystem was rather efficient for imple-
mentations. Unfortunately this cryptosystem was broken by Patarin (see [36],
1995). Next year [37] J. Patarin proposed a generalization of MIC cryptosys-
tem called HFE. In attempt to improve security level of HFE the proposed
secret key computation was more sophisticated in comparison with MIC cryp-
tosystem. Unfortunately the efficient cryptanalisis for the primitive instance
of HFE was broken in 1999 (see [17]). The attack uses a simple fact that every
homogeneous quadratic multivariate polynomial has a matrix representation.
Using this representation a highly over defined system of equations can be
obtained which can be solved by a new technique called relinearization [17].
Other efficient attacks on the HFE scheme can be found in [3], [13], [4]. J.
Patarin [38] investigated whether it is possible to repair MIC with the same
kind of easy secret key computations. He designed some cryptosystems known
as Dragons with multivariate polynomials of total degree 3 or 4 in public key
(instead of 2) with enhanced security and with efficiency comparable to MIC.
In Dragon cryptosystems the public key was of mixed type of total degree 3
which is quadratic in plaintext variables and linear in ciphertext variables.
However Patarin found [38] that Dragon scheme with one hidden monomial is
insecure. A public key scheme based on the composition of tame transforma-
tion methods (TTM) was proposed in 1999 (see [34]). Next year this scheme
has been broken (see [12], where the cryptanalysis is reduced to an instance of
the Min-Rank problem that can be solved within a reasonable time. In 2004
Ding [7] proposed a perturbed variant of MIC* cryptosystem called PMI. The
PMI system attempts to increase the complexity of the secret key compu-
tations in order to increase security, using a system of r arbitrary quadratic
equations over Fq with the assumption that r << n, where n is the bitsize.
The PMI Cryptosystem was broken by Fouque, Granboulan and Stern [8].
The trick of the attack on PMI is to use differential cryptanalysis to reduce
the PMI system to the MIC* system. A cryptosystem called Medium Field
Equation [29] was proposed in 2006 but it also was broken one year later of
appearance (Ding, [14] using high order linearization equation attack.

Despite mention above sequence of unsuccessful attempts to construct se-
cure and efficient multivariable cryptosystems public key development based
on symbolic computation became a popular area of research [15]. Rather in-
formative introduction to hidden monomial cryptosystems can be found in
reference [20]. An examples of cryptosystem which are still under the investi-
gation of cryptoanalitics is [41] and cryptosystems based on special dynamical
systems, which we observe in this chapter (see the conclusion).
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3 Dynamical Systems with Large Cycle Indicator,
Related Public Keys and Key Exchange Protocols

One direction for the construction of such families is the studies of special
dynamical systems of large girth, which produce maps of bounded degree.

Theorem 6. For each commutative ring K, there exists a balanced bipar-
tite dynamical system BB(K) of large girth with c ≥ 1/2, such that each
nonidentical transformation of kind FP,t1,t2,...,tl,n or FL,t1,t2,...,tl,n, where
(t1, t2, . . . , tl) ∈ Kl is a cubical map.

Theorem 7. For each commutative ring K, there exists a balanced dynam-
ical system BF (K) of large girth with c ≥ 1/4, such that each nonidentical
transformation of kind Ft1,t2,...,tl,n, where (t1, t2, . . . , tl) ∈ Kl is a cubical
map.

Theorem 8. For each commutative ring K, there exists symmetric bipartite
dynamical system SB(K) of large girth with c ≥ 1/2, such that t′ = −t, t ∈ K

and each nonidentical transformation of kind FP,t1,t2,...,tk,n or FL,t1,t2,...,tk,n,
where (t1, t2, . . . , tk) ∈ Kk is a cubical map.

Theorem 9. For each commutative ring K, there exists symmetric dynamical
system SF (K) of large girth with c ≥ 1/4, such that t′ = −t, t ∈ K and each
nonidentical transformation of kind Ft1,t2,...,tl,n, where (t1, t2, . . . , tl) ∈ Kl is
a cubical map.

The following generalisations lead to interesting examples.
Let K be a commutative ring. We refer to a sequence of nonlinear bijective

maps Ft = F (t, n,K) , n = 1, 2, . . . , t ∈ K − {0} of free module Kn as
dynamical system F (K) of large cycle indicator, if the following conditions
hold

(1) there is an independent constant c such that for each set of Q of multi-
plicative generators inK and each different pair of sequences t1, t2, . . . , tk,
ti ∈ Q, 1 ≤ k ≤ cn and t′1, t

′
2, . . . , t

′
s, t

′
i ∈ Q, 1 ≤ s ≤ cn: compositions

F1 = Ft1,t2,...,tk,n and F2 = Ft′1,t
′
2,...,t

′
s,n

of maps Ft1,n, Ft2,n, . . ., Ftk,n

and Ft′1,n, Ft′2,n, . . ., Ft′s,n are different in some point x ∈ Kn, i.e. there is
x such that F1(x) �= F2(x).

(2) for each set of multiplicative generators {t1, t2, . . . , ts} the order of trans-
formation Ft1,t2,...,ts,n is going to infinity, when parameter n is growing.

Obviously, each dynamical system of large girth is a dynamical system of
large cycle indicator. So, we have explicit constructions of such objects.

Public key. Let F (K, Q) be a dynamical system of large cycle indicator, αn

and βn are affine transformations of the free module Kn. The transformation

f = αn ◦ Ft1,t2,...,tk,n ◦ βn,

acting on the free module Kn can be written in the form of public rule
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x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn),

where polynomials fi(x1, x2, . . . , xn) ∈ K[x1, x2, . . . , xn], i = 1, 2, . . . , n are
written in standard form, i. e as sums of monomial expressions.

Notice, if 1 ≤ k ≤ cn and αn and βn are fixed, then different strings
produce distinct public rules as above.

Transformations F1 = Ft1,t2,...,tk,n and F2 = Ft′1,t
′
2,...,t

′
s,n

from the group
Gn generated by Ft,n, t ∈ Q are different maps, if 1 ≤ k, s ≤ cn. If one
of parameters are outside the interval 1 ≤ k, s ≤ cn, then the problem on
equality F1 and F2 can be very complicated, see, for instance [32] for general
group theoretical algorithm to check whether or not two group elements are
equal.

Let K be a commutative ring. We refer to a pair of sequences of bi-
jective nonlinear polynomial maps Pt,n = P (t, n,K) and Lt = L(t, n,K),
n = 1, 2, . . . , t ∈ K of free module Kn into itself as bipartite dynamical sys-
tem B(K) of large cycle indicator, if the inverse maps P ′

t,n = P ′(t, n,K) and
L′
t,n = L′(t, n,K) for Pt,n and Lt,n are also polynomial maps of Kn and there

is an independent constant c, c > 0, such that for each multiplicative set Q
of K the following two conditions hold

(1) for each pair of distinct sequences (t1, t2, . . . , t2k) ∈ Q2k and
(t′1, t

′
2, . . . , t

′
2s) ∈ Q2s of length k < cn and s < cn, there exists

a point x from the free module Kn values of FP,t1,t2,...,t2k,n(x) and
FP,t′1,t

′
2,...,t

′
2s,n

(x) are different, FL,t1,t2,...,t2k,n(x) �= FL,t′1,t
′
2,...,t

′
2s,n

(x) .
(2) for each set ofmultiplicative generators {t1, t2, . . . , ts} the orders of trans-

formations FP,t1,t2,...,ts,n and FL,t1,t2,...,ts,n is going to infinity, when pa-
rameter n is growing.

We refer to B(K) as balanced bipartite dynamical systems of large cycle in-
dicator and denote it BB(K), if inverse maps P ′(t, n,K) and L′(t, n,K) for
P (t, n,K) and L(t, n,K) also form a bipartite dynamical system B′(K) of
large cycle indicator.

Obviously, each bipartite dynamical system of large girth is a bipartite
dynamical system of large cycle indicator. So, we have explicit constructions
of such objects.

We obtain definition of symmetric dynamical system SF (K) of large cycle in-
dicator, if we omit condition (2)within the list above and change it for condition:

(2’) for each pair of multiplicative irreducible sequences t1, t2, . . ., tk and
t′1, t

′
2, . . ., t

′
s of length k < cn and s < cn, there exists point x from the

free module Kn, such that values of Ft1,t2,...,tk,n(x) and Ft′1,t
′
2,...,t

′
s,n

(x)
are different.

Let K be a commutative ring. We refer to a pair of sequences B(K) of bijective
nonlinear polynomial maps Pt,n = P (t, n,K) and Lt,n = L(t, n,K), n =
1, 2, . . . , t ∈ K of free module Kn into itself as symmetric bipartite dynamical
system SB(K) of large cycle indicator, if
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(1) the inverse map P ′
t,n = P ′(t, n,K) for Pt,n is some map of kind Lt′,n =

L(t′, n,K)), t′ ∈ K and the inverse map L′
t,n = L′(t, n,K) for Lt,n is

some map of kind Pt′,n, t
′ ∈ K.

(2) There is an independent constant c, c > 0, such that

(2.1 ) for each pair of multiplicative difference sequences t1, t2, . . . , tk and
t′1, t

′
2, . . . , t

′
s of even length k < cn and s < cn there is a point x from

the free module Kn values of FP,t1,t2,...,tk,n(x) and FP,t′1,t
′
2,...,t

′
s,n

(x)
(and FL,t1,t2,...,tk,n(x) and FL,t′1,t

′
2,...,t

′
s,n

(x)) are different.
(2.2) for each pair of multiplicative difference sequences t1, t2, . . . , tk

and t′1, t′2, . . . , t′s of odd length k < cn and s < cn there is a
point x from the free module Kn values of FP,t1,t2,...,tk−1,n ◦ Ptk,n(x)
and FP,t′1,t

′
2,...,t

′
s−1,n

◦ Pt′s,n(x) (and FL,t1,t2,...,tk−1,n ◦ Ltk,n(x) and

FL,t′1,t
′
2,...,t

′
s−1,n

◦ Lt′s,n(x)) are different.

(2.3) for each multiplicative difference sequence of kind t1, t2, . . . , ts, s is
even, the order of transformation FP,t1,t2,...,ts,n (and FL,t1,t2,...,ts,n) is
going to infinity, when parameter n is growing.

Theorem 10. For each commutative ring K, there exists symmetric bipartite
dynamical system SB(K) of large cycle indicator with c = 1, such that t′ =
−t, t ∈ K.

It is possible to show that the constant c in previous statement is the largest
possible one [53], [54] (see also next our chapter in this book).

Similarly to the case of dynamical systems of large girth we can associate
universal Turing machines to other dynamical systems, which were introduced
above. In fact, we consider more general Turing machine for general algebraic
graph later.

3.1 On the Case of Ring Extensions

Let us consider the case when a commutative ring K itself is a free module
over the other ring R, i. e. K = Rm. The reader may think over the following
examples.

(1) Commutative ring K is a Kronecker extension ofR: there is a polynomial
p(x) ∈ R[x] of degree ≥ 2, such that K = R[x]/p(x). Commutative ring
R[x]/p(x) can be with large multiplicative sets. Obvious examples: if
p(x) = xn+a1x

n−1+. . .+an−1x, then Q = {f(x) ∈ R[x]/p(x)|f(0) �= 0}
is a multiplicative set, if R = Fp, p is prime, and p(x) is irreducible
polynomial, then K = R[x]/p(x) is a finite field with multiplicative
group K− {0}.

(2) Recall, that a Boolean ring Bm is the Cartesian power Fm
2 of the finite

field F2, i.e a vector space over F2. We can generalize this example simply
by consideration of m-th Cartesian power Rm of general commutative
ring R.
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We can generalize the Turing machine T (F (K), Q, τ1, τ2) associated with
dynamical system of large girth (cycle indicator) or bipartite dynamical sys-
tem via wider choice of linear transformations of the module Kn. We assume,
that τ1 and τ2 are bijective linear maps of Rmn given by rules:.

x1 → α1,1x1 + α1,2x2 + . . .+ α1,mnxmn + β1

x2 → α2,1x1 + α2,2x2 + . . .+ α2,mnxmn + β2

. . .

xmn → αmn,1x1 + αmn,2x2 + . . .+ αmn,mnxmn + βmn

Let us use symbol TR(F (K), Q) for generalized Turing machine as above.

Proposition 1. Let F (R) be a dynamical system of Theorem 1 or Theorem
2, p(x) ∈ R[x] and K = R[x]/p(x) or K = Rm. Then, Turing machine
TR(K, Q) produces cubical maps.

4 On the Velocities of Growth of Orders for
Polynomial Encryption Maps Based on Dynamical
Systems of Large Girth and of Large Cycle Indicator

Recall, that each dynamical system F (K) of large girth or large cycle in-
dicator is connected with Turing machine T (F (K), Q, τ1, τ2), where Q is a
multiplicative subset of K and τi, i = 1, 2 are sequences of bijective affine
maps τi,n = τi(n,K), i = 1, 2 on corresponding free modules Kn. As it follows
from definitions for τ1,n

−1 = τ2,n the order of transformation Ft1,n,t2,n,...,tk,n

is growing to infinity with the growth of n.
Further, we will evaluate transformations of graph based Turing machine

with internal alphabet Q = Reg(K).
Theorems 6 and 10 have been proven via explicit constructions of bipar-

tite dynamical system BD(K)of large girth and bipartite dynamical system
BA(K) of large cycle indicator (see next chapter of this volume). We com-
pare the growth of orders for FD,t1,t2,n = FD(t1, t2, n,K), and FA,t1,t2,n =
FA(t1, t2, n,K) t1+ t2 ∈ Reg(K). Obviously, we can assume that τi,n, i = 1, 2
are identical maps.

We evaluate orders of permutations FA,t1,t2,n and FD,t1,t2,n from below
via the lengthes of their minimal cycles (or length of some cycle). Recall that
the order of permutation is the least common multiple of all cycle lengthes.

We have run computer tests, to measure the length of the cycles gener-
ated by powers of the above mentioned maps corresponding to ”password”
t1, t2 for the bipartite dynamical systems BD(K) and BA(K). with different
parameters n, and different commutative rings K.
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Table 1 shows these results for the first few prime numbers p (K = Zp).
Each test was repeated at least 20 times, every time with a random start
point, and random (t1, t2) parameter.

Table 1 Cycle length for FA,t1,t2,n, for the case K = Zq, where q is prime

n =4 n =10 n =30 n =50 n =100 n =200 n =400 n =600 n =1000

q =3 9 27 81 81 243 243 729 729 2187
q =5 5 25 125 125 125 625 625 625 3125
q =7 7 49 49 343 343 343 2041 2041 2041
q = 11 11 11 121 123 121 1331 1331 1331 1331

It is easy to see that the cycle length is always a power of the prime number
p. Another property is that cycle length does not depend on starting point,
nor parameters (t1, t2). This property does not hold for p = 2. In that case
the cycle length is always a power of 2, but for the same n we have different
results depending on start point x, and (t1, t2).

Recall that the order of permutation is a least common multiple of its
cycles. So in our experiment cycle length and order are same.

Table 2 Cycle length of FA,t1,t2,n for the case K = Zq , where q is some composite
numbers

n = 4 n = 10 n =30 n =50 n =100 n =200 n =400

q =4 16 32 64 128 256 512 1024
q =6 72 432 2592 5184 31104 62208
q =8 32 64 128 256 512 1024 2048
q =9 27 81 243 243 729 729 2187
q =15 45 675 10125 10125 30375 151875 455625

The comparison of cycles in cases FD,t1,t2,n and FA,t1,t2,n encryption
demonstrates big advantage of BA(K). The typical example is below (see
tables 3 and 4).

Table 3 Cycle length of FA,t1,t2,n for the case K = Zq, where q = 15

nMIN nMAX cycle length

4 4 45
5 8 225
9 24 675
25 26 3375
27 80 10125
81 120 30375
140 240 151875
260 620 455625
640 720 2278125
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Table 4 Cycle length of FD,t1,t2,n for the case K = Zq, where q = 15

nMIN nMAX cycle length

4 7 45
8 17 225
18 53 675
54 65 3375
150 249 10125
250 299 30375
300 649 151875
650 1000 455625

5 Conclusion

The public key cryptosystem corresponding to symmetric bipartite dynam-
ical system SBD(Fq) over finite field Fq was proposed in [49](2004). The
Computer program in ”Mathematica” were generated cubical public rules
Rt,τ1,n,τ2,n, = R(t, τ1,n, τ2,n, n,K) of kind τ1,n ◦ FD,t1,t2,...,ts,n ◦ τ2,n for the
string t = t1, t2, . . . , ts, ti + ti+1 �= 0 and τ1,n = τ1(n,Fq), τ2,n = τ2(n,Fq),
which are invertible affine maps of vector space Fn

q . The rules are correspond-
ing to regular bijective polynomial map Ht,n = H(t, τ1,n, τ2,n), n,K)) of the
vector space.

The important fact that independently from the choice of string t the en-
cryption map is a cubical one was proven in [61]. So for each string t the com-
putation of the public rule takesO(n4) field operation. If we fixe maps τ1,n and
τ2,n and keep s �= [n + 5]/2 then maps Ht,n and Ht′,n, t �= t′ are strongly
different, i. e, for each x ∈ Fq the values of Ht,n(x) and Ht′,n(x) are different.

The hidden by affine maps dynamical system (or hidden graph) allows us
to decrypt with O(n) field operation. In fact corresponding private key had
been considered earlier (1998, see [46] or [47]), the method is used as stream
cipher encryption. It means, that the complexity gap between encryption
and decryption is larger in comparison with the cubical map of [41], where
encryption and decryption can be done forO(n3) andO(n2), respectively. The
public key corresponding to balanced bipartite dynamical system BB(Fq)
over finite field Fq is an example of Key Dependent Cryptography, our key
is the string t of length s in the internal alphabet Fq of encrypting Turing
machine. To achieve better security Alice can chose longer key.

The case τ2,n = τ−1
1,n is very important, because from the defini-

tion of symmetric dynamical system follows, that the order of Ht,n =
H(t, τ1,n, τ2,n, n,Fq) is growing to infinity with the growth of n. Other im-
portant property: the composition Hx

t,n of Ht,n with itself taken x times
is a cubical map (or identity, where x is the multiple of the order). Both
properties we can use for ”hidden discrete logarithm” method of symbolic
key exchange protocol (see [42], [43], [56], [58], [59], [60]). World hidden is
used because of order of cyclic group < Ht,n > generated by map Ht,n for
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”sufficiently large” n is impossible to compute for the public user with his
restricted computational resources.

We can use map Ht,n = H(t, τ1,n, τ2,n, n,Fq) with fixed sequence τ1,n as
hash function for the text t = (t1, t2, . . . , ts), s >> n with the value Ht,n in
standard symbolic form. We can think that the outcome of computation is
the list of coefficients of n public rules taken in lexicographical order (string
of n4 +O(n3) field elements). We will ignore condition ti + ti+1 �= 0. We can
make outcome shorter via application of differential operator(

∂

∂x1
+

∂

∂x2
+ . . .+

∂

∂xn

)i

, where 1 ≤ i ≤ 3, x = (x1, x2, . . . , xn) ∈ Fn
q , to each symbolic coordinate for

the construction a shorter list with n4−i +O(n3−i) field elements.
It demonstrates the option for application of theory of graph based dynam-

ical systems to the development of Public Key Infrastructure (PKI). Recall,
that the PKI task is the development of security systems including private
and public keys, tools for identifications (electronic signatures and etc), key
exchange protocols and etc.

The further step was to expand the theory of dynamical system of large girth
for the case of arbitrary commutative ring. Obviously, arithmetics Z2m modulo
2m is much faster in comparison with finite field F2m . So Turing machines of
dynamical systems over arithmetical rings have important advantage.

First cryptosystems corresponding to dynamical systems over general com-
mutative ring K was suggested in [50], some their implementations have been
discussed in [56]. Recent studies of properties of such implemented crypto-
graphical tools the reader can find in [2], [18], [19], [22], [57], [23]. In mentioned
above works the internal alphabet of Turing machine was Reg(K) under as-
sumption that this set contains at least 3 elements. Computer simulations
bring some unexpectedly good results for the case of Zm, where m is com-
posite number (see [18], [19], [23], [42]).

The more general cryptosystems for the pair (K, Q), where Q is multi-
plicative set is proposed in current chapter. Such a generalisation is impor-
tant, because of option to construct Boolean maps over Boolean rings Bm,
|Bm| = 2m.

Finally, we start the new direction - studies of dynamical systems with large
cycle indicator. The explicit construction BA(K) of such bipartite system
which satisfying to conditions of Theorem 10 a reader can find in the next
our chapter of this book .

The cryptosystem based on maps generated via BA(K) was introduced in
[53]. The paper [19], [23] is devoted to implementation of this cryptosystem
and studies of its properties. Results of computer stimulations demonstrate
the advantage of new cryptosystem in comparison with security tools based
on dynamical system BD(K) discribed in the next chapter (better density of
public rules, larger cyclic groups generated by encryption map, and etc).
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In cases of our dynamical systems BD(K) of large girth and dynamical
systems BA(K) of large cycle indicator our public rules are given by cubical
polynomials yi = fi(x1, . . . , xn), i = 1, 2, . . . , n, which are written in standard
way as linear combinations of monomials of kind xn1

i1
xn2

i2
xn3

i3
, where i1, i2, i3 ∈

{1, 2, . . . , n}, n1, n2, n3 ∈ {0, 1, 2, 3}, n1 + n2 + n3 ≤ 3, with the coefficients
from K = Fq. The cryptanalyst Cezar, having only a formula for y, has a
very hard task to solve the system of n equations of n variables of degree 3.
As we discussed in section 2 it is solvable in the exponential time O(3n

3

) by
the general algorithm based on the Gröbner basis algorithm or alternative
methods. Anyway studies of specific features of our polynomials could lead
to effective cryptanalysis. This is an open problem for specialists.

Authors of [45] have tried Gröbner Basis Attacks to our cryptosystem
based on BD(K) implemented via standard tools of Computational Algebraic
Geometry. The results did not lead to the solution of system formed by public
rules. In fact the current situation in studies of our cryptosystems based on
BD(K) andBA(K) is similar to investigations of cubical public rules suggested
in [41].

In case of ring extensions K = Rm (see subsection 3.1) we can modify the
algorithms by the choice of affine maps τ1 and τ2 as transformations of free
module Rmn of degree 1. This trick is, in fact, similar to the choice of affine
maps in MIC cryptosystem. This is an option to hide nonlinear dynamical
system maps dipper and improve the density of public rules.

References

1. Biham, E.: Cryptanalysis of the Chaotic-Map Cryptosystem Suggested at
EUROCRYPT 1991. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS,
vol. 547, pp. 532–534. Springer, Heidelberg (1991)

2. Boudeliouua, I., Al Raissi, M., Touzene, A., Ustimenko, V.: Performance of
Algebraic Graphs Based Stream-Ciphers Using Large Finite Fields. Annalles
UMCS Informatica AI X1 2, 81–93 (2011)

3. Courtois, N.T.: The Security of Hidden Field Equations (HFE). In: Naccache,
D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg
(2001)

4. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer,
Heidelberg (2000)

5. Davis, M.: The Universal Computer: The Road from Leibniz to Turing (2011)
6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on Info.

Theory IT-22(6), 644–654 (1976)
7. Ding, J.: A New Variant of the Matsumoto-Imai Cryptosystem through Per-

turbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 305–318. Springer, Heidelberg (2004)

8. Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multi-
variate Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 341–353. Springer, Heidelberg (2005)



254 V. Ustimenko and U. Romańczuk
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Abstract. We observe recent results on the applications of extremal graph
theory to cryptography. Classical Extremal Graph Theory contains Erdős
Even Circuite Theorem and other remarkable results on the maximal size of
graphs without certain cycles. Finite automaton is roughly a directed graph
with labels on directed arrows. The most important advantage of Turing ma-
chine in comparison with finite automaton is existence of ”potentially infinite
memory”. In terms of Finite Automata Theory Turing machine is an infinite
sequence of directed graphs with colours on arrows. This is a motivation of
studies of infinite families of extremal directed graphs without certain com-
mutative diagrams. The explicite constructions of simple and directed graphs
of large girth (or large cycle indicator) corresponds to efficient encryption of
Turing machines.

1 Introduction

The term graph becomes the common word of Modern Mathematics and The-
oretical Computer Science. Recall, that the abstract model of a computer, if
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we ignore the memory, is a finite automaton, roughly a directed graph with
colours on arrows taken from some finite alphabet. To make a graph theo-
retical model of a computer with memory working with potentially infinite
data, one have to use a concept of Turing machine, which can be described
via the infinite family of directed graphs of increasing order. Studies of fami-
lies of graphs (not an individual graph) satisfying a special requirements are
highly motivated by applications in Economics, Natural Sciences, Computer
Science, Networking and in Mathematics itself. For instance, the problem of
constructing infinite families of small world graphs has many remarkable ap-
plications in all above mentioned areas and in sociology. Everybody knows
that the ”small world graph” of binary relation ”two persons shake hands”
on the set of people in the world has small diameter (with large probability
7). Other important direction in studies of infinite families of simple graphs is
Extremal Graph Theory. The girth of the graph is minimal length of its size
(see [3],[4],[5],[6]). Some important results in this direction had been obtained
in the 50th by Paul Erdős via studies of families of graphs of large girth, i.e.
infinite families of simple regular graphs of fixed degree and increasing order,
such that the girth of the member is growing logarithmically with the growth
of the order. The existence of such a family with arbitrary large degree was
proved by Erdős famous probabilistic method.

Basically, just 3 explicit constructions of families of graphs of large girth
with unbounded girth and bounded but arbitrarily large degree are known:
the family of Cayley graphs introduced by G. Margulis [35] approximately
40 years after the appearance of Erdős probabilistic construction, the family
of algebraic graphs D(n, q) (see [29]) defined over the arbitrary finite field
Fq, their connected components CD(n, q) [30] and regular version of polarity
graphs forD(n, q) or CD(n, q) (see [31], [50]). Families of graphs of large girth
are traditionally used in Networking [2]. The above mentioned families of
simple graphs of large girth can be easily converted in special finite automata
and used for different applications. Family of Cayley graphs leads to linear
automata, but other families are related to depending on time nonlinear
dynamical systems defined on the vector space Fn

q or variety Fn
q ∪ Fn

q [50].
Related to them Turing machines turns out to be appropriate tools for the
construction of stream ciphers and polynomial public key algorithms.

We have been investigating the cryptographical properties of infinite fami-
lies of simple graphs of large girth with the special colouring of vertices since
1998 (see [46], [47], [48] and further references), the properties of graph based
private or public keys had been considered in [49], [50], [51]).

Bipartite graphs D(n, q) and CD(n, q) lead to the discovery of an inter-
esting LDPC codes and turbocodes in error correction theory (see [16], [17],
[18], [19], [38], [43], [44], and further references). Recall, that infinite families
of graphs are traditionally used in classical Coding Theory. Foundations of this
theory are based on the concept of finite distance-transitive or distance-regular
metrics (distance regular and distance transitive graphs in another terminol-
ogy). According to the famous Hilbert’s approach to Mathematical Concept of
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Geometry it is a special incidence system (or multipartite graph). The major-
ity of all known families of distance transitive graphs are constructed in terms
of the incidence geometry of simple group of Lie type or geometry of its Weyl
group. Known constructions of families of distance-regular but not distance
transitive graphs (such as Ustimenko, Hemmeter and Egava constructions) are
also based on the properties of such geometries (see subject index in [9]). In
fact, some new nonclassical areas of Coding Theory like LDPC codes and tur-
bocodes use objects constructed via finite geometries: for the first construc-
tions of LDPC codes Tanner used finite geometries of rank 2, the infinite alge-
braic family of graphs of large girth is related to infinite rank 2 geometry over
finite field has been applied to constructions of new families of LDPC codes.

We realised, that only few families of simple graphs of large unbounded
girth and arbitrarily large degree are known, but finite automata are directed
graphs. This observation motivates the development of more general theory
of directed graphs of large girth and their cryptographical applications. Ex-
panded theory allows to obtain new explicit algebraic constructions of infinite
families of graphs of large girth. The first results on Extremal Digraph Theory
were obtained rather recently. Instead of prohibition of cycles of small length
there used requirements of absence of commutative diagrams. The analogue
of Erdős upper bound for the graphs on v vertices of girth > 2n and some
other bounds had been obtained. New theory is principally different from the
case of simple graph: the Erdős bound is known to be sharp only in excep-
tional case of n = 2, 3 and 5, but its analogue for the digraphs is always sharp.
The framework of Extremal Digraph Theory allows to construct an infinite
family of algebraic directed graphs of large girth for each finite commutative
ring K with more than 3 regular elements.

On this basis we can define, depending on time, dynamical systems over
free modules Kn, n ≥ 3. Change of finite fields on arithmetical rings Z28 , Z216

and Z232 usually used in computers for arithmetical computations allows to
speed up the computations in encryption algorithms. Our first constructions
used Turing machines with the internal alphabet Reg(K) (totality of regular
ring elements, i. e. non zero divisors) (see [52], [53], [54], [56], [59], [60],
[61], [62]). The last results on Extremal Digraph Theory allow to change
Reg(K) for arbitrary subset of nonzero elements, which is closed under ring
multiplication (see [57], [58], [70]).

We also discuss the new direction in Extremal Graph Theory (case of sim-
ple graphs). The definition of family of graphs of large cycle indicator was
motivated by cryptographical applications. The maximal size of the graph
with cycle indicator > d was estimated explicitly. The algebraic construc-
tions of family of simple graphs of large cycle indicator and its analogues for
commutative rings correspond to special time dependent dynamical system.
We shortly observe the first results of the implementation of graph based
cryptographical algorithms for the case of families of graphs of large cycle
indicator. It is interesting that all known constructions of simple graphs of
large girth or large cycle indicator are families of expanding graphs.
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In conclusion we discuss the common properties for the class of Turing
machines related to the known dynamical systems of large girth or large
cycle indicator.

2 On Algebraic Graphs, Automata and Turing
Machines Related to Algebraic Graph

The missing theoretical definitions on directed graphs the reader can find in
[37]. Let φ be an irreflexive binary relation over the set V , i.e., φ ∈ V × V
and for each v the pair (v, v) is not the element of φ.

We say that u is the neighbour of v and write v → u if (v, u) ∈ φ. We use
the term balanced binary relation graph for the graph Γ of irreflexive binary
relation φ over a finite set V such that for each v ∈ V the sets {x|(x, v) ∈ φ}
and {x|(v, x) ∈ φ} have the same cardinality. It is a directed graph without
loops and multiple edges. We say that a balanced graph Γ is k-regular, if for
each vertex v ∈ Γ the cardinality of {x|(v, x) ∈ φ} is k.

If graph Γ corresponds to binary relation φ, then inverse graph Γ−1 corre-
sponds to binary relation φ−1 = {(x, y)|(y, x) ∈ φ}. Let K be a commutative
ring. The closed subsets in Zariski topology are exactly solution sets for the
system of algebraic equations

f1(x1, x2, . . . , xn) = 0, f2(x1, x2, . . . , xn) = 0, . . . , fr(x1, x2, . . . , xn) = 0,

where fi ∈ K[x1, x2, . . . , xn], i = 1, 2, . . . , r. This family of such closed sub-
sets lead to definition of algebraic variety Md(K) of dimension d in Zarissky
topology which can be considered as special subset of Kn for appropriate n
(see [49] and further references). In our examples algebraic variety Md(K)
will be isomorphic to Rd or Rd ∪Rd, where R is a certain commutative ring.

We will say that binary relation φ on the set M is algebraic relation over
commutative ring K and corresponding graph Γ is algebraic graph over K,
if M has structure of algebraic variety Md(K) as well as subset φ of variety
Md(K) × Md(K). We identify relation φ and corresponding directed graph
Γ . We refer to Γ as semiregular graph, if for each vertex v ∈ Md(K) sub-
set {x|(v, x) ∈ φ} is isomorphic to algebraic variety Ns(K) of dimension s
independently on v.

We say that semiregular graph Γ is algebraic graph over commutative ring
K with bijective colouring or algebraic automate over K if for each t ∈ Ns(K)
there is a regular automorphism ft : Md(K) → Md(K), such that (x, y) ∈ φ if
and only if there exists t ∈ Ns(K) such that ft(x) = y. We assume that t �= t′

implies ft(x) �= ft′(x) and refer to Ns(K) as a time set or a colour set. We
refer to ft, t ∈ Ns(K) as a transition function (standard term of automata
theory).
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We refer to the family of algebraic automata Γn(K) with vertex setsMd(K)
of increasing dimension over the same set of colours Ns(K) as bijective al-
gebraic Turing machine (see [44], [49], [53], [56], [59] and [65]) for various
examples of such machines). Notice, that in the case d = n i.e. Mn(K) = Kn

the group of all automorphisms of variety will be Cremona group C(Kn). If
(t1, t2, . . . , tl) is a word in alphabet Ns(K), then composition Ft1,t2,...,tl,n(x)
of transition functions fti , i = 1, 2, . . . , l acts on each variety Mn(K) as bi-
jective transformation. The computation of Ft1,t2,...,tl,n in the point x from
Mn(K) corresponds to directed walk

x → ft1(x) → ft2(ft1(x)) → . . . → ftl(ftl−1
(. . . (ft1(x)) . . .) = y.

The inverse map F−1
t1,t2,...,tl,n corresponds to a certain directed walk in the

inverse graph Γ−1
n (K). Let us assume that all graphs from the family Γn(K)

are strongly connected, i.e. from each pairs of vertices (x, y) from the graph
there is a directed walk from x to y. In a case of strongly connected alge-
braic graph for each pair (x, y) of vertices there is a computation Ft1,t2,...,tl,n

shifting x into y.
E. Moore [36] used the term tactical configuration of order (s, t) for bireg-

ular bipartite simple graphs with bidegrees s+1 and r+1. It corresponds to
the incidence structure with the point set P , the line set L and the symmetric
incidence relation I. Its size can be computed as |P |(s+ 1) or |L|(t+ 1).

Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for the tactical
configuration with partition sets P (point set) and L (line set) and an inci-
dence relation I. We define the following irreflexive binary relation φ on the
set F :

Let (P,L, I) be the incidence structure corresponding to regular tactical
configuration of order t. Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈
L, p ∈ P, lIp} be two copies of the totality of flags for (P,L, I). Brackets and
parentheses allow us to distinguish elements from F1 and F2. Let DF (I) be
the directed graph (double directed flag graph) on the disjoint union of F1

with F2 defined by the following rules:

(i) (l1, p1) → [l2, p2] if and only if p1 = p2 and l1 �= l2,
(ii) [l2, p2] → (l1, p1) if and only if l1 = l2 and p1 �= p2.

3 Extremal Simple Graphs of Large Girth or Large
Cycle Indicator

The missing definitions of graph-theoretical concepts which appear in this
unit can be found in [6], [45] or [56]. All graphs we consider are simple graphs,
i. e. undirected without loops and multiple edges. Let V (G) and E(G) denote
the set of vertices and the set of edges of G, respectively. |V (G)| is called the
order of G, and |E(G)| is called the size of G. A path in G is called simple
path if all its vertices are distinct. When its convenient, we shall identify G
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with the corresponding antireflexive binary relation on V (G), i.e. E(G) is a
subset of V (G) × V (G). The length of a path is a number of its edges. The
girth of a graph G, denoted by g = g(G) is the length of the shortest cycle
in G.

Classical Extremal Graph Theory developed by P. Erdős and his school
had been started with the following problem.

Problem 1. What is the maximal value ex(v, Cn) for the size (number of
edges) of graph on v vertices without cycles Cn of length n (see [6] and
further references)?

To discuss the behavior of function ex(v, Cn) for large variable v we will use
the following standard notations. Let f and g be two real valued functions
on (a,∞).

1. f(x) ⇔ g(x), x → ∞ if f(x)/g(x) → 1 for x → ∞;
2. f(x) = o(g(x)), x → ∞ if f(x)/g(x) → 0 for x → ∞;
3. f(x) = O(g(x)), x → ∞ if there exists C and x0 such that |f(x)| < C|g(x)|

for all x > x0;
4. f(x) = Ω(g(x)), x → ∞ if there exists a c > 0 and a sequence x1, x2, . . . →

∞ such that |f(xi)| > c|g(xi)| for all i ≥ 1.

0 If n = 2d+1 is odd, one can assume that v is even and takes the complete
bipartite graph with the partition sets of same cardinality v/2. It contains
v2/4 vertices, so

ex(v, C2d+1) = O(v2).

If n = 2d is even, then according to famous Erdős Even Circuit Theorem

ex(v, C2d) = O(v1+1/d).

For the proof of this result and its generalisations see [7], [14] and further
references. It had been obtained by famous Erdős probabilistic method. The
upper bound of the theorem is known to be sharp

ex(v, C2d) = Ω(v1+1/d)

for k = 2, 3 and 5 only (see [12], [13] for n = 2 and [1] for n = 3, 5). The
equivalence

ex(v, C4) ⇔ 1/2v3/2

had been obtained in [10] and [12]. The best lower bound

ex(v, C6) ≥ 1/2v4/3 + o(v4/3)

had been proven in [31]. The best known lower bound for the case n = 5 had
been obtained in [32]:

ex(v, C10) ≥ 4/5
6/5

v6/5.
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The studies of maximal size ex(v, C3, C4, . . . , C2d) for graph on v vertices
without cycles C3, C4, . . . , C2d i.e. graphs of girth > 2d historically had been
motivated by their applications to Telephone Networking (see [2]). As it fol-
lows from Erdős Even Circuit Theorem

ex(v, C3, C4, . . . , C2d) = O(v1+1/d).

More precise evaluations lead to the following bounds:

ex(v, C3, C4, . . . , C2d, C2d+1) ≤ (1/2)1+1/dv1+1/d + o(v1+1/d) (1)

ex(v, C3, C4, . . . , C2d) ≤ (1/2)v1+1/d + o(v1+1/d) (2)

The inequality (1) had been established in [13] for all integers d ≥ 1. The
upper bound (2)can be obtained by similar probabilistic arguments (see, for
instance, [56]). Similar to the case of ex(v, C2d) both bounds (1) and (2) are
known to be sharp up to magnitude for d = 2, 3 and 5 only. The lower bound

ex(v, C10) ≥ 4/56/5v6/5

above and inequality (2) imply that

ex(v, c10) �= ex(v, C3, C4, . . . , C10).

An interesting question:

Question 1. Whether or not ex(v, C6) �= ex(v, C3, C4, C5, C6)?

The first general lower bounds of kind

ex(v, C3, C4, . . . Cn) = Ω(v1+c/n) (3)

where c is some constant < 1/2 had been obtained in 50th by famous Erdős
via studies of families of graphs of large girth, i.e. infinite families of simple
regular graphs Γi of degree ki and order vi such that

g(Γi) ≥ clogki
vi,

where c is the independent of i constant. Erdős proved the existence of such
a family with arbitrary large but bounded degree ki = k with c = 1/4 by his
famous probabilistic method.

Just several explicit families of graphs of large girth with unbounded girth
and arbitrarily large k are known: the family of Cayley graphs had been
defined by G. Margulis and investigated further by several authors (see [35]
and [33]), the family of algebraic graphs CD(n, q) [30], family of polarity
graphs [31] and its modifications suggested in [50]. Some examples of families
of bounded degreee the reader can find in [3], [4], [5].

Notice, that
ex(v, C2d) ≥ ex(v, C3, C4, . . . , C2d+1).



264 V. Ustimenko and U. Romańczuk

The best known lower bound for d �= 2, 3, 5 had been obtained in [30]:

ex(v, C3, C4, . . . , C2d+1) = Ω(v1+2/(3d−3+e)) (4)

where e = 0 if d is odd, and e = 1 if d is even.
Let Γ be a simple graph and CindΓ (x) be the length of the minimal cycle

containing vertex x ∈ V (Γ ) and Cind(Γ ) = max{CindΓ (x)|x ∈ V (Γ )}. We
refer to parameter Cind(Γ ) as cycle indicator of the graph Γ .

Question 2. What is the maximal value ex(v, Cind(Γ ) ≥ 2d) for the size
(number of edges) of graph Γ on v vertices of cycle indicator Cind(Γ ) ≥ 2d?

The following statement the reader can find in [58].

Theorem 1
ex(v, Cind(Γ ) > 2d) ⇔ 1/2v1+1/d

We will consider families of graphs of large cycle indicator, i.e. infinite families
of simple regular graphs Γi of degree ki and order vi such that the cycle
indicator

Cind(Γi) ≥ clogki
vi,

where c is the independent of i constant. As it follows from previous statement
the largest constant for the family of graphs of large girth is 2.

3.1 On Families of Digraphs of Large Girth or Large
Cycle Indicator

It is known that finite automaton roughly is a directed graph (or shortly
digraph) with labels on arrows. So the Computer Science motivates the de-
velopment of Extremal Graph Theory for Directed Graphs, which can named
shortly as Extremal Digraph Theory.

This unit is devoted to analogs of the above bounds for the special class
of directed graphs. We will consider here the directed graphs without loops
and multiple arrows (graphs of irreflexive binary relations). We assume that
the commutative diagram is formed by two directed paths for which the same
starting and ending points form the full list of common vertices. We refer to
the length of maximal path (number of arrows) as the rank of the diagram.We
will count a directed cycle of length m as a commutative diagram of rank m.

Let Γ be the graph of binary relation. The path between vertices a and b is
the sequence a = x0 → x1 → . . . → xs = b of length s, where xi, i = 0, 1, . . . s
are distinct vertices.

We say that the pair of paths a = x0 → x1 → . . . → xs = b, s ≥ 1 and
a = y0 → y1 → . . . → yt = b, t ≥ 1 form an (s, t)-commutative diagram Os,t

if xi �= yj for 0 < i < s, 0 < j < t. Without loss of generality we assume
that s ≥ t. We refer to the number max(s, t) as the rank of Os,t. It is ≥ 2,
because the graph does not contain multiple edges.



On Extremal Graph Theory, Explicit Algebraic Constructions 265

Notice, that the graph of antireflexive binary relation may have a directed
cycle Os = Os,0: v0 → v1 → . . . → vs−1 → v0, where vi, i = 0, 1, . . . , s − 1,
s ≥ 2 are distinct vertices.

We will count directed cycles of length ≥ 3 as commutative diagrams.
Notice, that studies of maximal size of directed graphs without certain

commutative diagrams without some restrictions on numbers of inputs or
outputs of the vertex do not make a sense in graph.

Really, the graph with the vertex set: P ∪ L = V , with the subdivision
into point set P and line set L of same cardinality, |P ∩ L| = 0, |V | is even
number v, formed by all arrows from point to line has order O(v2) and does
not contain directed cycles or commutative diagrams. That is why we will
consider only graphs for which the number iv of inputs x → v and number
ov of outputs v → x are at least two for each vertex v.

Let us assume that the girth indicator Gind(Γ ), Gind(Γ ) ≥ 2 of the di-
rected graph Γ is the minimal rank of its commutative diagram. Notice that,
if the girth indicator of the graph is > d, then for each pair of vertices a, b
the number of directed paths from a to b of length ≤ d is ≤ 1.

Let E(d, v) be the maximal size (number of arrows) for the graph on v
vertices with the girth indicator > d. The following analog of (1) has been
proven in [56].

Theorem 2
E(d, v) ⇔ v1+1/d

The above Theorem 2 is analog of bound (2) for directed graphs. The analog
of (1)will be introduced below.

The maximal size E(d, v) (number of arrows) of the binary relation graphs
with the girth indicator > d coincides with Ex(v,Os,t, s+ t ≥ 3|2 ≤ s ≤ d).

Let Ex2d+1(v) be the maximal size of the balanced directed graph with
the girth indicator > d and without diagrams Qd+1,d, then this number co-
incide with Ex(v,Od+1,d, Os,t|3 ≤ s ≤ d). In lecture notes [56] the following
statement is proven.

Theorem 3
Ex2d+1(v) ⇔ (1/2)1/dv1+1/d

Remark 1. Let EP (d, v) (Ex2d+1
P (v), ExP (Od,d, v)) be the maximal size for

the balanced graph on v vertices with the girth indicator > d satisfying the
graph theoretical property P . If P is the property to be a graph of symmetric
irreflexive relation, then

EP (d, v) = 2ex(v, C3, . . . , C2d−1, C2d),

Ex2d+1(v) ≥ 2ex(v, C3, C4 . . . , C2d),

because undirected edge of the simple graph corresponds to two arrows of
symmetric directed graph. So, the bounds of the Theorems 1 and 2 imply
inequalities (1) and (2) respectively.
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Remark 2. The precise computation of E(d, v) and Ex2d+1(v) do not provide
the sharpness of (1) and (2)So, the questions on the sharpness of (1) and (2)
up to magnitude for n �= 3, 4 and 5 are still open, the lower bound (4)is still
the best known.

The analogs of the mentioned above statements for k-regular digraphs the
reader can find in [53], where also the problem of minimization of digraph
order for graphs with girth indicator> d were investigated. Some other results
on extremal digraph theory the reader can find in [59] or in survey [60].

We will use the term the family of directed graphs of large girth for the
family F of directed balanced regular graphs Γi of degree ki and order vi
such that

Gind(Γi) ≥ clogki
vi,

where c is the independent of i positive constant.
It agrees with the well known definition for the case of the simple graphs

given in previous unit. We have to notice that the girth of simple graph is
double of its girth indicator.

As it follows from the Theorem 2 the parameter c is at most 1. We refer
to the maximal value of c satisfying the above inequality as speed of growth
of the girth indicator for F.

Let Γ be a directed graph with the vertex set V (Γ ). Let us assume that
the girth indicator of vertex x Gind(x) of the vertex x ∈ V (Γ ) is the minimal
rank of commutative diagram of the graph with the starting point x.

We define a diagram indicator Dind(Γ ) of the graph Γ as

max{Gind(x)|x ∈ V (Γ )}.

It is clear that
Dind(Γ ) ≥ Gind(Γ ).

Question 3. What is the maximal value Ex(v,Dind(Γ ) > d) for the size
(number of edges) of graph Γ on v vertices of diagram indicatorDind(Γ ) ≥ d?

The following statement a reader can find in [58].

Theorem 4
Ex(v,Dind(Γ ) > d) ⇔ v1+1/d

We will use the term the family of directed graphs of large cycle indicator for
the family F of balanced directed regular graphs Γi of degree ki and order vi
such that

Dind(Γi) ≥ clogki
vi,

where c is the independent of i positive constant (speed of cycle indicator
growth). As it follows from previous theorem the speed of cycle indicator
growth is bounded above by 1.
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3.2 Explicit Algebraic Constructions of Graphs,
Digraphs of Large Girth or Large Cycle Indicator
and Dynamical Systems

Recall, that a free module Kn is simply a Cartesian product of n copies of
K. Let us consider special generators of nonlinear maps on free modules Kn,
n = 3, 4, . . .. Let Q is the multiplicative set of K, i.e. the totality of nonzero
ring elements closed under multiplication in K.

We refer to a family F(K) of bijective nonlinear polynomial maps Ft,n =
F (t, n,K) , n = 3, 4, . . ., t ∈ K of free module Kn into itself as dynamical
system F (K) depending on time, if the inverse map for Ft,n is a polynomial
map F ′

t,n = F ′(t, n,K).
For each multiplicative subset Q such that |Q| ≥ 2 of K we consider the

family of graphs corresponding to the dynamical system depending on time
define as a binary relations φn,Q = φ(n,Q,K) on Kn: (x, y) ∈ φn if and
only if Ft,n(x) = y for some t ∈ Q. If all families Γ (Q) consisting of φn,Q

are families of directed graphs of large girth we refer to F (K) as dynamical
system of large girth with coefficient cQ ≥ c for some constant c > 0.

We apply term ”time” to a regular parameter t defining map Ft,n =
F (t, n,K). We refer to BF (K) as balanced dynamical systems of large girth
if F ′

t,n = F ′(t, n,K) also form a dynamical system F ′(K) of a large girth.
We refer to a family F(K), where K is a field, of distinct bijective nonlinear

polynomial maps Ft = F (t, n,K), n = 1, 2, . . ., t ∈ K − {0} of n-dimensional
vector space Kn into itself as symmetric dynamical system SF (K) of large
girth, if the following conditions hold

(1) for each t ∈ K there is a t′ ∈ K such that Ft′,n is the inverse map for
Ft,n, n = 2, 3, . . .,

(2) the family of graphs corresponding to the dynamical system depending
on time define as a binary relations φn,Q = φ(n,Q,K) on Kn: (x, y) ∈ φn

if and only if Ft,n(x) = y for some t �= 0 is a family of graphs of large
girth.

We refer to a pair of sequences of bijective nonlinear polynomial maps Pt,n =
P (t, n,K) and Lt,n = L(t, n,K), t ∈ K, n = 1, 2, . . . of free module Kn into
itself as bipartite dynamical system B(K) depending on time, if the inverse
maps P ′

t,n = P ′(t, n,K) and L′
t,n = L′(t, n,K) for Pt,n and Lt,n) are also

polynomial maps of Kn.
For each multiplicative subset Q, such that |Q| ≥ 2, of K we consider the

family of bipartite graphs corresponding to the bipartite dynamical system
depending on time B(K) defined as a binary relations ξn,Q on the set Pn∪Ln,
where Pn = Ln = Kn, ξn,Q = ξ(n,Q,K): (p, l) ∈ ξn,Q if and only if Pt,n(p) = l
for some t ∈ Q, where p ∈ Pn or Lt,n(l) = p for some t ∈ Q, where l ∈ Ln.

If all families of graphs Γ (Q) consisting of ξn,Q are families of directed
graphs of large girth we refer to B(K) as bipartite dynamical system of large
girth with coefficient cQ ≥ c for some constant c > 0.
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We refer to B(K) as balanced bipartite dynamical systems of large girth
and denote it BB(K) if inverse maps P ′

t,n and L′
t,n for Pt,n and Lt,n also

form a bipartite dynamical system B′(K) of a large girth.
We refer to a family F(K), where K is a field, of distinct bijective nonlinear

polynomial maps Pt,n = P (t, n,K) and Lt,n = L(t, n,K), n = 1, 2, . . . , t ∈ K

of n-dimensional vector space Kn into itself as symmetric bipartite dynamical
system SB(K) of large girth, if the following conditions hold

(1) for each t ∈ K there is a t′ ∈ K such that Lt′,n, Pt′,n are the inverse
maps for Pt,n, Lt,n, n = 2, 3, . . ., respectively,

(2) the family of graphs corresponding to the bipartite dynamical system
depending on time define as a binary relations ξn,K on the set Pn ∪Ln,
where Pn = Ln = Kn: (p, l) ∈ ξn,K if and only if Pt,n(p) = l for some
t �= 0, where p ∈ Pn or Lt,n(l) = p for some t ∈ K, where l ∈ Ln is a
family of bipartite graphs of large girth.

We refer to a family F(K), where K is a field, of distinct bijective nonlinear
polynomial maps Pt,n = P (t, n,K) and Lt,n = L(t, n,K), n = 1, 2, . . . , t ∈ K

of n-dimensional vector space Kn into itself as symmetric bipartite dynamical
system SB(K) of large cycle indicator, if the following conditions hold

(1) for each t ∈ K there is a t′ ∈ K such that Lt′,n, Pt′,n are the inverse
maps for Pt,n, Lt,n, n = 2, 3, . . ., respectively,

(2) the family of graphs corresponding to the bipartite dynamical system
depending on time define as a binary relations ξn,K on the set Pn ∪Ln,
where Pn = Ln = Kn: (p, l) ∈ ξn,K if and only if Pt,n(p) = l for some
t �= 0, where p ∈ Pn or Lt,n(l) = p for some t ∈ K, where l ∈ Ln is a
family of bipartite graphs of large cycle indicator.

Below we consider the family of graphs A(n,K), where n > 5 is a positive
integer and K is a commutative ring. Such graphs were introduced formally in
[50], but interesting pure and applied properties of A(n,K) were introduced
in [39]. Graphs A(n,K), where K is the commutative ring with unity of char-
acteristic �= 2 are connected. This result of [57] was deduced from theorems
of [55]. Let P and L be two copies of Cartesian power KN, where K is the
commutative ring and N is the set of positive integer numbers. Elements of
P will be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets. If x ∈ V ,
then (x) ∈ P and [x] ∈ L. It will also be advantageous to adopt the notation
for co-ordinates of points and lines introduced in [16] for the case of a general
commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .),

[l] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , li,i, li,i+1, . . .].

The elements of P and L can be thought of as infinite ordered tuples of
elements from K, such that only a finite number of components are different
from zero.
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We now define an incidence structure (P,L, I) as follows. We say that the
point (p) is incident with the line [l], and we write (p)I[l], if the following
relations between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

li,i+1 − pi,i+1 = li,ip0,1

The incidence structure (P,L, I) we denote as A(K). We identify it with the
bipartite incidence graph of (P,L, I), which has the vertex set P ∪L and the
edge set consisting of all pairs {(p), [l]} for which (p)I[l].

For each positive integer n ≥ 2 we obtain an incidence structure (Pn, Ln, In)
as follows. First, Pn and Ln are obtained from P and L respectively by simply
projecting each vector into its n initial coordinates with respect to the above
order. The incidence In is then defined by imposing the first n−1 incidence
equations and ignoring all others. The incidence graph corresponding to the
structure (Pn, Ln, In) is denoted by A(n,K).

For each positive integer n ≥ 2 we consider the standard graph homomor-
phism φn of (Pn, Ln, In) onto (Pn−1, Ln−1, In−1) defined as simple projection
of each vector from Pn and Ln onto its n− 1 initial coordinates with respect
to the above order.

Let PA,t,n = PA(t, n,K) be the operator of taking the neighbour of point
(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .)

of kind
[l] = [p0,1 + t, l1,1, l1,2, l2,2, l2,3, . . . , li,i, li,i+1, . . .],

where parameters l1,1, l1,2, l2,2,l2,3, . . ., li,i, li,i+1, . . . are computed con-
sequently from the equations in definition of A(n,K). Similarly, LA,t,n =
LA(t, n,K) is the operator of taking the neighbour of line

[l] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , li,i, li,i+1, . . .]
of kind

(p) = (l1,0 + x, p1,1, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .),
where parameters p1,1, p1,2, p2,2, p2,3,. . ., pi,i, pi,i+1, . . . are computed con-
sequently from the written above equations.

Notice, that Pn = Ln = Kn. So we can think that PA,t,n and LA,t,n

are bijective operators on the free module Kn. The following statement is
presented in [57].

Theorem 5. For each commutative ring K transformations PA,t,n and LA,t,n

of Kn form symmetric bipartite dynamical system SBA(K) of large cycle in-
dicator with c = 1, such that t′ = −t, t ∈ K and each nonidentical transfor-
mation of kind FAP ,t1,t2,...,tl,n or FAL,t1,t2,...,tl,n, where (t1, t2, . . . , tl) ∈ Kl is
a cubical map.

Let DAn(K) (DA(K)) be the double directed graph of the bipartite graph
A(n,K) (A(K), respectively). Remember, that we have the arc e of kind
(l1, p1) → [l2, p2], if and only if p1 = p2 and l1 �= l2. Let us assume that the
colour ρ(e) of the arc e is l11,0 − l21,0. Recall, that we have the arc e′ of kind
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[l2, p2] → (l1, p1), if and only if l1 = l2 and p1 �= p2. Let us assume that the
colour ρ(e′) of arc e′ is p11,0 − p21,0.

The vertex set for the graph DAn(K) consists of two copies F1 and F2

of the edge set for A(n,K). We consider two families of bijective nonlinear
polynomial maps PDA,t,n+1 = PDA(t, n + 1,K) : F1 → F2 and LDA,t,n+1 =
LDA(t, n + 1,K) : F2 → F1, n = 3, 4, . . ., t ∈ K. It is easy to see that F1 =
F2 = Kn+1, so we may treat PDA,t,n+1 and LDA,t,n+1 as automorphisms of
Kn+1. The following statement is equivalent to previous theorem.

Theorem 6. For each commutative ring K families of maps PDA,n+1,t and
LDA,n+1,t form a balanced bipartite dynamical system BBDA(K) of large cy-
cle indicator with c ≥ 1, such that each nonidentical transformation of kind
FPDA,t1,t2,...,tl,n+1 or FLDA,t1,t2,...,tl,n+1, where (t1, t2, . . . , tl) ∈ Kl is a cubical
map.

We present the definition [47] of the family of graphs D(n,K), where n >
2 is positive integer and K is a commutative ring, such graphs have been
considered in [29] for the case K = Fq.

Let P and L be two copies of Cartesian power KN, where K is the commu-
tative ring and N is the set of positive integer numbers. Elements of P will
be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets. If x ∈ V ,
then (x) ∈ P and [x] ∈ L. It will also be advantageous to adopt the notation
for co-ordinates of points and lines introduced in [30] for the case of general
commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of elements
from K, such that only finite number of components are different from zero.

We now define an incidence structure (P,L, I) as follows. We say the point
(p) is incident with the line [l], and we write (p)I[l], if the following relations
between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

l′i,i − p′i,i = li,i−1p0,1 (6)

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′
i,i

(This four relations are defined for i ≥ 1, p′1,1 = p1,1, l
′
1,1 = l1,1). This inci-

dence structure (P,L, I) we denote as D(K). We speak now of the incidence
graph of (P,L, I), which has the vertex set P ∪ L and edge set consisting of
all pairs {(p), [l]} for which (p)I[l].
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For each positive integer n ≥ 2 we obtain an incidence structure (Pn, Ln, In)
as follows. First, Pn and Ln are obtained from P and L, respectively, by sim-
ply projecting each vector into its n initial coordinates. The incidence In is
then defined by imposing the first n−1 incidence relations and ignoring all
others. The incidence graph corresponding to the structure (Pn, Ln, In) is
denoted by D(n,K).

Let PD,t,n = PD(t, n,K) be the operator of taking the neighbour of point
(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p

′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

of kind
[l] = [p0,1 + t, l1,1, l1,2, l2,1, l2,2, l

′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .],

where parameters l1,1, l1,2, l1,2, l2,2, . . . , li,i, l
′
i,i, li,i+1, li+1,i, . . . are computed

consequently from the equations in definition of D(n,K). Similarly, LD,t,n =
LD(t, n,K) is the operator of taking the neighbour of line

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, . . . , li,i, li,i+1, l
′
i,i, li+1,i, . . .]

of kind
(p) = (l1,0 + x, p1,1, p1,2, p2,1, p2,2, . . . , pi,i, pi,i+1, p

′
i,i, pi+1,i, . . .),

where parameters p1,1, p1,2, p2,1, p2,2,. . ., pi,i, pi,i+1, p
′
i,i, pi+1,i, . . . are com-

puted consequently from the equations written above.
Notice, that Pn = Ln = Kn. So, we can think that PD,t,n and LD,t,n are

bijective operators on the free module Kn.

Theorem 7. For each commutative ring K transformations PD,t,n and LD,t,n

of Kn form symmetric bipartite dynamical system SBD(K) of large girth with
c = 1/2, such that t′ = −t, t ∈ K and nonidentical transformation of kind
FDP ,t1,t2,...,tl,n or FDL,t1,t2,...,tl,n, where (t1, t2, . . . , tl) ∈ Kl is a cubical map.

In such form this and following statements on dynamical systems were given
in [57], see [56] for previous less general variants.

LetDD(n,K) (DD(K)) be the double directed graph of the bipartite graph
D(n,K) (D(K), respectively). Remember, that we have the arc e of kind
(l1, p1) → [l2, p2], if and only if p1 = p2 and l1 �= l2. Let us assume that the
colour ρ(e) of the arc e is l11,0 − l21,0. Recall, that we have the arc e′ of kind
[l2, p2] → (l1, p1), if and only if l1 = l2 and p1 �= p2. Let us assume that the
colour ρ(e′) of arc e′ is p11,0 − p21,0.

The vertex set for the graph DD(n,K) consists of two copies F1 and F2

of the edge set for D(n,K). We consider two families of bijective nonlinear
polynomial maps PDD,t,n+1 = PDD(t, n + 1,K) : F1 → F2 and LDD,t,n+1 =
LDD(t, n+ 1,K) : F2 → F1, n = 3, 4, . . . , t ∈ K. It is easy to see that F1 =
F2 = Kn+1, so we may treat PDD,t,n+1 and LDD,t,n+1 as automorphisms of
Kn+1.

The following statement is equivalent of the previous theorem.

Theorem 8. For each commutative ring K families of maps PDD,n+1,t and
LDD,n+1,t form a balanced bipartite dynamical system BBDD(K) of large
cycle indicator with c ≥ 1/2, such that each nonidentical transformation of
kind FPDD ,t1,t2,...,tl,n+1 or FLDD ,t1,t2,...,tl,n+1, where (t1, t2, . . . , tl) ∈ Kl is a
cubical map.
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3.3 Polarities of Incidence Structures and Related
Dynamical Systems

Let P and L be disjoint sets, the elements of which we call points and lines,
respectively. A subset I of P × L is called an incidence relation on the pair
(P,L). The incidence graph Γ of tactical configuration (P,L, I) is defined to
be the bipartite graph with vertex set P ∪ L and edge set {{p, l}|p ∈ P, l ∈
L, (p, l) ∈ I}.

Let π : P ∪L → P ∪L be a bijection for which the following relations hold

(i) P π = L and Lπ = P ,
(ii) for all p ∈ P , l ∈ L (lπ, pπ) ∈ I if and only if (p, l) ∈ I,
(iii) π2 = 1.

We call such π a polarity of the incidence structure (P,L, I). Note, that π
induces an order two automorphism of the incidence graph Γ which inter-
changes the bipartition sets P and L. We shall use the term ”polarity” and
the notation ”π” for the graph automorphism as well.

We now define the polarity graph Γ π of the structure (P,L, I) with respect
to polarity π. It is the graph with the vertex set V (Γ π) = P and edge set
E(Γ π) = {{p1, p2}|p1, p2 ∈ P, p1 �= p2, (p1, p2

π) ∈ I}.
Finally, we call point p ∈ P an absolute point of the polarity π provided

(p, pπ) in I.
The following proposition the reader can find in [50].

Proposition 1. The map π given by the close formula
pπ = [p10,−p11, p21, p12,−p′22,−p22, . . . ,−p′ii,−pii, pi+1,i, pi,i+1, . . .],
lπ = (l01,−l11, l21, l12,−l′22,−l22, . . . ,−l′ii,−lii, li+1,i, li,i+1, · · ·)

is a polarity of D(n,K) if n is even.

The neighbourhood of vertex v polarity graph Dπ(n,K) contains |K| points
or |K| − 1 vertices.

We consider k-regular algebraic automat RDπ(n,K), n = 2s over commu-
tative ring on the set Pn = Kn defined by function FDπ ,t,n(x) = π[Pt,n(x)],
t ∈ K− {0}. It is easy to see that simple graph RDπ(n,K) is a subgraph of
polarity graph Dπ(n,K). Function FDπ ,t,n(x), n = 2s can be written in the
form of

(x1, x2, . . . , xn−1, xn) = (x1 + t, f2(x1, x2), . . . , fn−1(x1, x2, . . . , xn−1),

fn(x1, x2, . . . , xn)).

We assume that FDπ,t,n−1(x) is defined by the rule

(x1, x2, . . . , xn−1) = (x1 + t, f2(x1, x2), . . . ,

fn−1(x1, x2, . . . , xn−1)).

Theorem 9. For each commutative ring K family of functions FDπ,t,n, n =
3, 4, . . ., t ∈ K − {0} form a symmetric dynamical system SFDπ (K) of large
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girth with c ≥ 1/4, such that t′ = −t, t ∈ K and each function FDπ,t1,t2,...,tr,n

is a cubical map.

Let us consider the family DD(n,K) of double directed graphs for bipartite
graphs D(n,K) (D(K), respectively). Remember, that we have the arc e of
kind (l1, p1) → [l2, p2] if and only if p1 = p2 and l1 �= l2.

The vertex set for the graph DD(n,K) consists of two copies F1 and F2 of
the edge set forD(n,K). Let us assume that n is even and consider the follow-
ing binary relation ξn (directed graph) on the set F1: ([l1], (p1))I([l2], (p2))
if and only if π[l2] = (p1) and the first coordinates of p2 equals to the first
coordinate of l1 plus t, t �= 0. Let St,n([l1], (p1)) be the neighbour of vertex
of graph ξn from F1 corresponding to parameter t.

The following statement follows from the previous theorem.

Theorem 10. For each commutative ring K the family F(K) of maps St,n =
S(t, n,K) is a balanced dynamical system BFDDπ (K) of large girth with c ≥
1/4, such that each nonidentical transformation of kind FS,t1,t2,...,tl,n, where
(t1, t2, . . . , tl) ∈ Kl is a cubical map.

3.4 Improvement of Constants, Transitivity of Some
Turing Machines

The following results on graphs D(n,K) the reader can find in [50]. To fa-
cilitate notation in the future results, it will be convenient for us to de-
fine p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = −1,
p′1,1 = p1,1, l

′
1,1 = l1,1) and to assume that (6) are defined for i ≥ 0.

Notice, that for i = 0, the four conditions (6) are satisfied by every point
and line, and, for i = 1, the first two equations coincide and give l1,1−p1,1 =
l1,0p0,1.

Let n ≥ 6, s = [(n + 2)/4], and let u =
(uα, u11, · · · , uss, u

′
ss, us,s+1, us+1,s, . . .) be a vertex of D(n,K)

(α ∈ {(1, 0), (0, 1)}, it does not matter whether u is a point or a line). For
every r, 2 ≤ r ≤ s, let

ar = ar(u) =
∑
i=0,r

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, . . . , as). Similarly, we assume a = a(u) =
(a2, a3, . . . , as, . . .) for the vertex u of infinite graph D(K).

Let η be the equivalence relation:

uηv ⇔ a(u) = a(v)

on the vertex set of graph D(n,K) (D(K)), respectively.

Proposition 2. (i) For any sequence xi ∈ K, i = 2, . . . , s , 2 ≤ s ≤ [(n +
2)/4], there exists a vertex v of D(n,K) for which a(v) = (x2, . . . , xs) =
(x).
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(ii) The equivalence class Cm for the equivalence relation η on the set Kn∪Kn

is isomorphic to the affine variety Km ∪ Km , n = [4/3m] + 1 for
n = 0, 2, 3 mod 4, n = [4/3m] + 2 for n = 1 mod 4.

(iii) The vertex setCm is the union of several connected components ofD(n,K).

Let C be the equivalence class on η on the vertex set D(K), then the
induced subgraph with the vertex set C is the union of several connected
components of D(K).

We shall use notation C(m,K) (C(K)) for the induced subgraph ofD(n,K)
(D(K)) with the vertex set Cm (vertex set C, respectively).

The graph C(m, q) in the case of K = Fq coincides with CD(n, q). The
following statement was proven in [55].

Theorem 11. Let K be commutative ring with unity of characteristic d, d �=
2. Then graphs C(m,K), m ≥ 6 and C(K) are connected.

If K = Fq, q is odd, then the graph C(Fq) is a q-regular tree. In cases char(K)
the questions of the description of connected components of C(m,K) and
C(K) are open.

Notice, that Pn = Ln = Kn. Recall, that PD,t,n = PD(t, n,K) and LD,t,n =
LD(t, n,K) are bijective operators on the free module Kn associated with the
bipartite graph D(n,K) on the vertex set Pn ∪ Ln, where Pn = Ln = Kn.
Let PC,t,m and LC,t,m are restrictions of this operators on the sets of points
and lines of the graph C(m,K).

Theorem 12. For each commutative ring K transformations PC,t,m and
LC,t,m of Km form symmetric bipartite dynamical system FC(K) of large
girth with c = 2/3 such that t′ = −t, t ∈ K.

Let PDC,t,m and LDC,t,m be restrictions of maps PDD,t,n and LDD,t,n on the
totality FDC(n,K) of all elements (l1, p1) and [l1, p1], where l1 and p1 are
vertices of C(m,K). It is easy to see, that set of vertices of double directed
graph DC(m,K) of C(m,K) is isomorphic to Km+1 ∪Km+1.

Theorem 13. For each commutative ring K families of maps PDC,t,m and
LDC,t,m form a balanced bipartite dynamical system BBDC(K) of large cycle
indicator with c ≥ 2/3.

Recall, that k-regular algebraic automat RD(n,K), n = 2s over commutative
ring K on the set Pn = Kn defined by the function PDπ ,t,n(x) = π[Pt,n(x)],
t ∈ K− {0}. Let PCDπ ,t,n be the restriction of map PDπ ,t,n on the point set
of graph CD(n,K).

Theorem 14. For each commutative ring K family of functions PCDπ ,t,n,
t ∈ K−{0} form symmetric dynamical system SFCDπ(K) of large girth with
c ≥ 1/3 such that t′ = −t, t ∈ K.

Remark 3. Dynamical system of Theorem 14 corresponds informally to family
of graph CDπ(n,K).



On Extremal Graph Theory, Explicit Algebraic Constructions 275

Let CSt,n be the restriction of map St,n as in the Theorem 10 on totality of
[l], (p) from D(n,K)) onto subset of pair ([l], (p)) from CD(n,K)

Theorem 15. For each commutative ring K the family of maps CSt,n is a
balanced dynamical system BFCDπ(K) of large girth with c ≥ 1/3.

Theorems of our previous chapter on the existence of dynamical systems of
large girth or cycle indicator are direct corollaries from the results of this
section.

3.5 Correlation with Expansion Properties

Our applications of the Graph theory to Cryptography is based on the use
of the graphs of high girth. Other cryptographic application uses expansion
properties of graphs, which is also important for parallel computations and
some other area of Computer Science (see [33] and further references).

In fact, there is an interesting correlation between these two properties:

(i)All infinite families of simple algebraic regular graphs of given degree de-
fined over finite field Fq, q is prime power, which have been considered
above, are infinite families of expanders with the second largest eigenvalue
bounded by constant 2

√
q.

(ii)The list is CD(n, q), their regular polarity graphs CDπ(n, q), A(n, q).

Let us consider these facts in more details. Recall, that adjacency matrix T for
k-regular graph X on the vertex set {1, 2, . . . ,m} is m×m matrix (ti,j) such
that ti,j = 1 if nodes i and j are connected by an edge, if i and j do not form
an edge in X , then ti,j = 0. The matrix T of simple graph is symmetrical,
so all its eigenvalues (eigenvalues of the graph) are real numbers. It is easy
to see that k is the largest eigenvalue of the graph. Let λ1(X) be the second
largest eigenvalue.

Let A be a set of vertices of simple graph X . We define ∂A to be the set
of all elements b ∈ X −A such that b is adjacent to some a ∈ A.

We say that k-regular graph with n vertices has an expansion constant c
if there exists a constant c > 0, such that each set A ⊂ X with |A| ≤ n/2,
that |∂A| ≥ c|A|.

One says that the infinite family of graph Xi is a family of expanders, if
there exists a constant c which is an expansion constant for each graph Xi.

An explicit construction of infinite families of t-regular expanders (k-fixed)
turns out to be difficult. It can be shown that if λ1(X) is the second largest
eigenvalue of the adjacency matrix of the graph X , then c ≥ (k − λ1)/2k.
Thus, if λ1 is small, the expansion constant is large.

So, the family Xi of t-regular graphs will be a family of expanders, if
the upper bound for the limit λ1(Xn). n → ∞ is bounded away from t. A
well-known result of Alon and Bopanna says, that if Xn is an infinite family
of k-regular graphs (k fixed), then limλ1(Xn) ≥ 2

√
k − 1. This statement

was the motivation of Ramanujan graphs as special objects among k-regular
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graphs. A finite t-regular graph Y is called Ramanujan, if for every eigenvalue
λ of Y , either |λ| = k or |λ| ≤ 2

√
k − 1. So, Ramanujan graphs are, in some

sense, the best expanders. There is an interest to families of the Ramanujan
graph of unbounded degree too.

Gregory Margulis constructed the first family of expanders via studies of
Cayley graphs of large girth. He uses representation theory of semisimple
groups.

Lubotzky, Phillips and Sarnak [33] proved that graphs defined by Margulis
[34] are Ramanujan graphs of degree p+ 1 for all primes p. M. Morgenstern
proved that, for each prime degree q, there exists a family of Ramanujan
graphs of the degree q − 1. Recent developments in constructive theory of
expanding graphs the reader can find in [15].

The q or q−1 regular graphs related to dynamical systems over finite with
the second largest eigenvalue bounded by 2

√
q are very close to Ramanujan.

Computer experiment supports the conjecture that graphs CD(n,Zm), their
regular polarity graphs CDπ(n,Zm), A(n,Zm) are also expanders. Expanding
properties of graphs related to dynamical systems of large girth or large cycle
indicator lead to good mixing properties of stream ciphers based on such
systems (see the section on implementations below).

4 On the Recent Implementation of Turing Machines
Related to Graph Based Dynamical Systems

We have implemented stream cipher corresponding to bipartite dynamical
system B(K) of theorem 5 and sequences of affine transformations τ1,n =
τ1(n,K) and τ2,n = τ2(n,K) of free module Kn, n = 3, 4, . . . (see [56]). We
used ”sparse” affine transformationsτ1,n and τ2,n , so their computations take
O(n). Numerical examples the reader can find in [24]. In our tables for the
evaluation of time execution we will simply use identical affine maps.

The alphabet for password (internal alphabet of corresponding Turing ma-
chine) is the multiplicative set Q = Reg(K), which consist of all odd residues
of the ring, |Q| = 2m−1 We implemented also universal Turing machine with
Q = K.

To achieve high speed property, commutative ring K = Z2m , m ∈
{8, 16, 32}, with operations +,× modulo 2m has been chosen. Parameter n
stands for the length of plaintext (input data) and the length of ciphertext.
We mark by T (Z28) the algorithm with m = 8, by T (Z216) the algorithm
with m = 16, and by T (Z232) the algorithm with m = 32. All the tests in
this cases reader can find in paper [56], were run on computer with param-
eters: AMD Athlon 1.46 GHz processor, 1 GB RAM memory, Windows XP
operating system. The program was written in Java language. Well known
algorithms RC4 and DES which were used for comparison where taken from
Java standard library for cryptography purposes - javax.crypto.



On Extremal Graph Theory, Explicit Algebraic Constructions 277

Similar implementation of symmetric dynamical system corresponding to
polarity graphs of D(n,K) the reader can find in [25].

In the article [8] has presented results of implemented stream cipher
corresponding to bipartite dynamical system B(F2m), m ∈ {8, 16, 32}, cor-
responding Turing machine T (F28), T (F216) and T (F232), respectively, was
implemented in C++. The experiment was conducted on machine that has a
2.99 GHz Intel(R) Core(TM)2 Duo CPU and a 1.96 GB of RAM. The results
of these runs are shown in the tables of this unit.

Authors use encryption map in combination with affine transformation of
the cipher space. Our objective is to study the performance of the encryption
tool for different values of m = 8, 16, 32. The results show that performance
(speed) of algorithms is getting better when m is increased.

In this subsection we will use the term unit for the character of our natural
alphabet.

The algorithm has been implemented using C++ language. A readymade
library created in 2009 of procedures for finite field arithmetic in F2m for m =
8, 16 and 32 will be used to perform the necessary operations of multiplication
and XOR (addition/subtraction) on a finite field. The library is written in C,
but it is compatible with C++ as well. It is especially tailored for m equal
to 8, 16 and 32, but it is also applicable for any other value of m. We refer
to our algorithms as

Prior to going into further details, it is important to talk a little about the
implementation approach that reveals how the date in the input files is con-
verted to F2m elements. The system accepts various types of data files such
as video, image, text and audio. The system reads these files as streams of
binary bits into units and directly converts each unit to its decimal represen-
tation. However, when dealing with text files and characters, a byte consists
of 8-bits and the ASCII code of a character represents it in decimal. To find
the polynomial that stands for a particular character, we convert the decimal
value of the character to its binary representation. The binary bits correspond
to the coefficients of the polynomial in F28 . If F216 is intended to be utilized
in the algorithm, we consider a unit of two characters at a time. Similarly
for m = 32, we divide the data to be encrypted into units of four characters
and convert the units to their corresponding polynomial versions in F232 . For
a unit of size 1-byte (i.e. m = 8), the fastest way to perform multiplication
is to employ multiplication table and store this table internally. This table
consumes 2(m+2) bytes, so it is only applicable when w is reasonably small.
For example, when m = 8, this is 256 KB. However, when we select a unit
of size 2-bytes, this multiplication table consumes 2(2m + 2) bytes and in
case of m = 16, this table is 234 bytes which is very large and cannot fit into
memory. The proposed solution states that when multiplication tables cannot
be employed, the most efficient way to carry out multiplication is to use log
and inverse log tables, as described in [8]. The log table consumes 2(m+ 2)
bytes and the inverse log table consumes 3 · 2(m+2) bytes, so when m = 16,
this is approximately 1 MB of tables which can easily fit into a memory.



278 V. Ustimenko and U. Romańczuk

The experimental evaluation of any algorithm is essential to acquire a
realistic vision of the resources required by the algorithm. In this section,
we will test the execution time of the algorithm upon various sizes of date
files, passwords and determine its time complexity in order to measure the
efficiency of our algorithm. Analyzing the algorithm structure shown in the
previous section, we expect that as we increase the unit size, performance
of the algorithm will improve since the plaintext and the password will be
consumed faster. Consequently, the expected execution time to produce the
cipher text will relatively decrease.

4.1 Comparison of Our Symmetric Algorithm with
RC4

RC4 is a well known and widely used stream cipher algorithm. Protocols SSL
(to protect Internet traffic) and WEP (to secure wireless networks) use it as
an option. Nowadays RC4 is not secure enough and not recommended for
the use in a new system. Anyway we chose it for comparison, because of its
popularity and high speed.

Table 1 RC4 vs high girth graph based algorithm (128 bit password)

File [MB] RC4 [s] T (Z28) [s] T (Z216) [s] T (Z232) [s] T (F28) [s] T (F216) [s] T (F232) [s]

4 0.15 0.67 0.19 0.08 422.02 201.99 96

16.1 0.58 2.45 0.71 0.30 1698.62 812.98 386.4

38.7 1.75 5.79 1.68 0.66 4083.01 1954.2 928.8

62.3 2.24 9.25 2.60 1.09 6572.9 3145.91 1495.2

121.3 4.41 18.13 5.14 2.13 12797.64 6125.17 2911.2

174.2 6.30 25.92 7.35 2.98 18378.8 8796.41 4180.8

RC4 is not dependent on password length in terms of complexity, and our
algorithm is. Longer password makes us do more steps between vertices of
graph. So, for a fair comparison we have used fixed password length equal to
suggested upper bound for RC4 (16 Bytes).

4.2 Comparison with DES

In the next test we have compared our algorithm with popular old block
cipher DES (Data Encryption Standard). DES is more complicated and have
better cryptographical properties than RC4, but it is much slower.

The version of DES implemented in Java library uses 64 bit password and
makes from it 56 bit key (due to documentation).
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Table 2 DES vs high directed graph based algorithm, 64 bit password

File [MB] DES [s] T (Z28) [s] T (Z216) [s] T (Z232) [s] T (F28) [s] T (F216) [s] T (F232) [s]

4 0.81 0.35 0.11 0.05 211.01 100.99 48

16.1 2.99 1.23 0.40 0.18 846.31 406.49 193.22

38.7 7.24 2.90 0.92 0.41 2025.68 977.1 464.4

62.3 11.69 4.60 1.49 0.68 2041.51 1572.96 747.61

121.3 22.85 9.03 2.85 1.25 6398.82 3062.58 1455.63

174.2 33.60 13.00 4.08 1.82 9189.4 4398.22 2090.45

4.3 On the Expansion of Speed Evaluation for Some
Other Stream Ciphers

In the papers [48], [49] were discussed the importance of finite automata
related to algebraic graph B(n, S,K) over commutative ring K defined by
the system S of quadratic equations on the variety P ∪ L, P = Kn, L = Kn

in the following manner.
Point (x1, x2, . . . , xn) and line [y1, y2, . . . , yn] are connected by an edge if

and only if the following system S of relations holds.

y2 − x2 = x1y1

yj − xj = xkjylj , kj < j, lj < j, j = 3, 4, . . . , n

Such graphs over fields are playing an important role in Theory of geometries
associated with Simple Lie Algebras (see [67], [68], [69]).

It is clear that graph D(n,K) is a special one from the defined above class
of graphs. Other important for us family of graphs is formed by alernating
graph A(n,K). We can rewrite the equations in their definition (for example
in case, when n is even) as

y2 − x2 = y1x1,

y3 − x3 = x1y2,

y4 − x4 = y1x3,

. . .

yn−1 − xn−1 = x1yn−2,

yn − xn = y1xn−1,

So A(n,K) is a graph of kind B(n, S,K).
Other example is family of Wenger graphs W (n,K) defined by system of

equations
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y2 − x2 = x1y1

y3 − x3 = x1y2,

. . .

yn − xn = x1yn−1.

As it was proven in [65] for fixed K = Fq family W (n,K) is a family of small
world graphs without small cycles. the stream cipher based on Wenger graphs
was proposed in [65].

Other class of important graphs Γ (n, S,K) is corresponding to symmetric
binary relatin on the set Kn: (x1, x2, . . . , xn) and (y1, y2, . . . , yn) if and only
is equations from the system S hold. It is clear that polarity graphs Dπ(n,K)
is a special subgraph of kind Γ (n, S,K).

The following statement is following instantly from the definitions.

Proposition 3. Let C be the computation in finite automaton corresponding
to walk of length min graph B(n, S,K) or Γ (S,K). Then the execution of C
takes 2nm+m ring operations

It means that we can evaluate execution of other stream ciphers (encryption
via bipartite dynamical systems of large width based on A(n,K), symmetric
dynamical systems of large girth based on polarity graphs for D(n,K) [66],
stream cipher based on Wenger graphs W (n,K)) defined over rings Z2m ,
m = 6, 8, 16 or fields F2m , m = 6, 8, 16 looking on tables in previous units
of this section.

Remark 4. In difference with speed evaluation other properties including mix-
ing parameters, description of orbits, orders of bijective encryption maps and
etc, are very dependable from the list of equations for the system S In the
next unit we compare the orders of cubical encryption maps of bipartite dy-
namical system of large girth corresponding to graphs D(n,K) with orders of
cubical transformations of dynamical system of large width related to graphs
A(n,K).

5 Conclusion

We use several infinite families of simple algebraic graphs without small cycles
for the constraction of different dynamical systems of large girth or large cycle
indicator over the finite fields (see previous chapter of the book). In fact the
concept of such dynamical system was motivated by Extremal Graph Theory.

The list of families of the graphs is the following:

1. Bipartite graphs D(n, q), q = pm, p is prime. They are disconnected, but
their connected components are growing fast. The projective limit of this
graph is an infinite q - regular forest.
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2. The induced subgraphs CD(n, q) of graph D(n, q). In the case of odd
parameter q they are simply connected components of D(n, q). The well
defined projective limit of bipartite graphs CD(n, q is a q regular tree.

3. Regular polarity graphs Dπ(2n, q) of degree q−1. They also form a family
of graphs of large girth. Essential difference between polarity graphs and
D(n, q) or CD(n, q) is that polarity graphs are not bipartite graphs and
they contain cycles of odd length.

4. We can also consider a family CDπ(2n, q) of induced subgraphs of
Dπ(2n, q) with the better speed of growth.

5. A family of bipartite graphs A(n, q) of large cycle indicator. If q is odd
then the projective limit of A(n, q) is a q-regular tree and A(n, q) is a
family of graphs of increasing girth. We may conjecture that graphsA(n, q)
also form a family of large girth. Anyway we can prove that the speed of
growth for the girth of A(n, q) is less than the velocity of the growth of
large indicator. It means that graphs A(n, q) are not vertex transitive. So
the studies of girth for A(n, q) or cryptanalytic studies of related Turing
encryption machine look more difficult in comparison with cases 1, 2, 3 of
edge transitive graphs.

Finally, we can consider the generalisations D(n,K), CD(n,K), Dπ(n,K),
CDπ(n,K), A(n,K) of graphs 1, 2, 3, 4, 5 for more general cases of com-
mutative rings. After that we can pick up multiplicative subset T of K and
Play with Turing machines which correspond to double directed graphs for
D(n,K), CD(n,K), Dπ(n,K), CDπ(n,K), A(n,K). So, we get a rather wide
class of algorithms, which have many common features. In fact one can al-
ternatively use a symmetric dynamical systems of large girth or large cy-
cle indicator associated with simple graphs(D(n,K), CD(n,K), Dπ(n,K),
CDπ(n,K) and A(n,K) (see the previous chapter of the book), but we do
not discuss this approach here.

If you implement such machines on symbolical level you will get a cubical
public rule for which a public user will encrypt the plaintext with O(n4) steps
of Turing machine. Alice can use a numerical private key decryption. So, she
can use the stream cipher and decrypt forO(n) steps. Despite the difference of
graph properties the speed of execution of private key depends on the chosen
ring only (see discussion and tables in previous units). Of course, the choice
of arithmetical rings Z2m speed up the execution time of stream ciphers in
comparison with the case of finite fields F2m . Currently, we work on a very
promising case of Boolean rings.

If we choose special ”sparce” affine transformations, then stream ciphers
will have very good mixing properties [24], [66], i.e. change of one character
of password or plaintext leads to change 96% - 98% characters of ciphertext.
For mixing properties it is important that our graphs are good expanders.
Other implementations of stream ciphers a reader can find in [25], [26], [27].

In papers [20], [21], [22] we investigated the density properties of public
rules corresponding to Turing machine for graph based dynamical systems
of large girth or large cycle indicator.The reslts of thetables with numbers of
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nonzero cubical monomials do not depend seriously on the choice of algebraic
graph over finite field. We can only say that the choice of graph A(n, q) has
some advantages.

Graph based Turing machines implemented via tools of Computer algebra
with the use of two mutually inverse affine transformations have the following
property: each nonidentical power of the map is also a cubical transformation.
So, one can use it in the symbolical key exchange protocol (see [39], [40], [61],
[62], [63], [64]) or the development of as a fast hash function (see [70]). Other
option is a conjugation of linear map of large order by cubical graph based
transformation (see [41]).

We hope that some of above mentioned algorithms can be tested as tools for
various tasks which appear in the development of Public Key Infrastructures
(see [11], [23], [42]). Some of the presented algorithms may attract attention
of specialists in Cryptanalisis.
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which a set of “source files” can be derived. More specifically we will illustrate
how to use corpus data to extract relevant keywords, multiword expressions,
glossary building and text patterns in order to build an AIML knowledge
base that could be later used to build interactive conversational systems.
The approach we propose does not require deep understanding techniques
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1 Introduction: Turing Test and Conversational Agents

This work is aimed at understanding how it is possible to analyze the text of a
fictional book in order to create an artificial agent that can answer questions
about the same content. The critical step is to build a knowledge base in
a format usable for a conversational system that should face information
exchange at a human level, i.e. using natural language. We proposed a natural
language interpreter/generator, without deep understanding of the text, or
phrase structure analysis.

The chapter looks at historical evolution of such conversational systems,
trying to concentrate on application in education. We then propose a specific
educational application, choosing a children novel book as text source being
the main corpus.

The educational application we illustrate is focused on specific domain and
purpose chatbot design, is corpus-based, but does not require deep under-
standing techniques to be applied to the knowledge base. We further propose
some possible future improvements regarding the ability to take synonymy
and semantic inference into the answer retrieval system. Section 1 illustrates
the historical background of chatbot systems design with reference to Tur-
ing imitation game proposal. We present some major experiences in chatbot
construction and their approach, specifically focusing on chatbots built for
educational purposes. The end of the Section proposes an overview of AIML
(Artificial Intelligence Mark-up Language), the markup language chosen for
the construction of our chatbot system. Section 2 addresses the main lin-
guistic issues posed by corpus selection and exploitation, glossary building
and FAQ construction from corpora and provides examples from our chatbot
case study, the Talking Cricket, answering questions about the child story
“Adventures of Pinocchio.”

Section 3 is dedicated to the design approach from a software engineering
point of view: requirements, input set definition, implementation and testing.
We then discuss the overall proposed methods in section 4. Section 5 provides
readers with a brief illustration of selected tools and resources useful to build
similar chatbots.

1.1 Turing Test as a Regulative Idea

In his 1950 paper Computing Machinery and Intelligence Alan Turing de-
scribed for the first time the imitation game, later best known as the Turing
test. In the imitation game an interrogator engages in communication with
a man and woman, situated in separate rooms. The interrogator poses ques-
tions to discover who is the woman between the two. A variant of the game
substitutes the woman with a machine. The objective of the game is to ob-
serve if the interrogator, by asking questions, is able to assess which is the
machine. The interrogator is free to ask questions on any topic in order to
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pursue his task. The machine passes the test if it is able to perform not worst
than the man in the man-woman game.

With the imitation game Turing explicitly replaces the question “Can ma-
chines think?”, which he considers meaningless, with another sort of questions
“Are there imaginable digital computers which would do well in the imitation
game?”.

The debate that started from the 1950 paper has been so intense and
fruitful in its philosophical, theoretical, methodological aspects - to last up
to today. The Turing test posed challenges to Artificial Intelligence (AI), but
also to the philosophical debate on intelligence, thinking, meaning and rea-
soning, focusing its approach on performance evaluation. The roots of the
imitation game can be further traced in XVIIth century thought, especially
in Descartes, but also in Leibniz, as pointed out by N. Chomsky (2008). What
seems truly interesting in the light of current computational linguistics trends
is that the Turing test poses language, natural language, in its spontaneous
register of conversation, to the core of the evaluation of man-machine interac-
tion. The Turing test can be considered a sort of regulative idea, as it guides
and grounds empirical investigation in intelligent and conversational system
design and testing.

A deep overview of the manifold issues Turing paper raised is given in
three recent publications: The Turing test: the elusive standard of artifi-
cial intelligence (Moor 2003); The Turing test: verbal behavior as the hall-
mark of intelligence (Shieber 2004); Parsing the Turing test: philosophical
and methodological issues in the quest for the thinking computer (Epstein
2008).

Among the many questions raised by the imitation game one of the most
obvious has been to test its discriminative power by creating conversational
agents able to face such a challenge. From the mid-Nineties onwards the
wide accessibility to the world wide web and advances in various fields of
computational linguistics and artificial intelligence lead to a larger demand
for computer programs capable of interacting with users. Those applications
tend to be centred in specific domains and thus restricted in tasks performed
and in the extension of their knowledge bases. Still some chatbot applications
aim at broader scopes and can aim at challenging humans in unrestricted
Turing tests.

As an acknowledgment of the interest in these applications in 1990, the
Loebner Prize proposed a competition for artificial intelligence chatbots to
contest in an unrestricted Turing test (Mauldin 1994). On the same path is
to be seen the recent Jeopardy human-versus-machine match won by IBM
question answering (QA) computing system Watson in 2011.

1.2 Chatbot Early History and General Developments

Chatbots (or chatter-bots, conversational agents, dialogue systems) are ap-
plications that simulate human conversation through a textual interaction
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between a human user providing the input and the agent that responds to it
(answering or making questions). The first attempt at building a conversa-
tional agent was ELIZA, designed in the late Sixties by Joseph Weizenbaum
(1966) as a fictitious psychotherapist engaging in a conversation with users.
ELIZA used a keyword matching technique in order to perform her task.

Similar to ELIZA is PARRY (Colby et al. 1971), the paranoid bot, im-
plemented in MLISP (meta-lisp), who also dialogued with ELIZA creating
the first machine-machine conversation log. Immediately after, care has been
taken to provide these chatbots of a more user-friendly interface, focusing on
the development of text and natural language interfaces (Shawar and Atwell
2007), as in Cliff and Atwell (1987) and Wilensky et al. (1988).

A rebirth of research on chatbot architecture has begun since the ’80s
(Shawar and Atwell 2007a). For example, Hutchens (1996, 1998) implemented
MegaHal, a chatbot that produces its answers thanks to the mechanism of
the Markov chain, which bases its answers on what the user and the con-
versational agent have previously said in their conversation. CONVERSE
(Batacharia et al. 1999) uses various tools of computational linguistics (text
parser, spell checker, etc.) to analyze and understand user questions, while
linguistic databases and dictionaries are used by a CONVERSE special mod-
ule to understand user questions and generate answers. Another very suc-
cessful example of chatbot is A.L.I.C.E. (http://alice.pandorabots.com),
the Artificial Linguistic Internet Computer Entity, a general purpose “un-
restricted” conversational agent using pattern-matching and AIML, or Ar-
tificial Intelligence Markup Language, a derivative of Extensible Mark-up
Language (XML). A.L.I.C.E. has about 50,000 categories manually coded by
a community of about 500 editors (Wallace 2009). Jabberwocky (Pirner 2007)
is able to answer questions on the homonymous poem by Lewis Carroll. This
chatbot has a learning mechanism based on its interaction with human users;
the mechanism that uses pattern matching is similar to that of ELIZA, while
its knowledge base is not contained in AIML files, but in simple text files
containing a particular template for questions and answers.

In more recent years, the attempts to solve the problem concerning the
construction of chatbot knowledge base and its representation have been
various. Agostaro et al. (2005) proposes a LSA-bot. The knowledge base
of this chatbot is created with the mechanism of Latent Semantic Analysis
(LSA) by which a corpus of documents is mapped to a data-driven conceptual
space. In the course of a conversation between this LSA-bot and a human
user, the sentences of user input are mapped into the same conceptual space;
at this point the chatbot is able to answer due to a binding mechanism based
on the level of similarity between the question of the user and the LSA-bot
knowledge base. Augello et al. (2009) use the LSA to create a semantic space
integrated with a semi-structured knowledge base. The knowledge of their
chatbot is composed of an AIML file, DBpedia and Wikipedia: through the
AIML categories the conversational agent is able to find a match between
the user input sentence and DBpedia resources; if it finds no correspondence,

http://alice.pandorabots.com
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it looks for the answer in the LSA-based semantic space representing the
knowledge contained in Wikipedia.

Spoken language conversation samples are the source of approaches that
extract data from spoken dialogue corpora or large reference corpora (Shawar
and Atwell 2003b, 2005), in (Shawar and Atwell 2003b) the authors describe
how to implement a corpus-based chatbot like ELIZA or ALICE. They im-
plement a Java program that transforms a corpus of plain texts into pattern
and template in the AIML format; the corpus they use is the Dialogue Di-
versity Corpus, that is made up of links to different corpora of dialogues
on multiple subjects (e.g. physics, algebra, astronomy, etc.) transcribed by
hand. According to Wu, Wang, Li and Li (Wu et al 2008), the mechanism of
acquisition of knowledge proposed by Shawar and Atwell (Shawar and Atwell
2003b) is not suitable to restricted domains of knowledge, but is only apt to
be used for the acquisition of common sense knowledge. Additionally, this ap-
proach is based on a manually trascribed training corpus. For these reasons,
Wu and the other authors use threads of online forums as a training corpus,
further translated automatically into AIML format. These kind of conver-
sations are thus considered suitable for automatic conversion as they hold
a question-answer structure similar to the structure of the AIML template
and, moreover, the dialogues in forum threads tend to be about a restricted
domain of knowledge.

Now online we can find a large number of professional and non
professional chatter-bots, some of which can be found at Pandorabots
(http://www.pandorabots.com), a webservice, where it is possible to test
and host chatbot prototypes. Recent experimentations try to combine tradi-
tional conversational agent design techniques with machine learning in order
to avoid the largely manual approach typical of content supply (Shawar and
Atwell 2003a, 2005; Chantarotwong 2006). Some recent tools try to derive
information directly from the web (Ueno et al. 2010; Augello et al. 2009).

Latest developments in conversational agents, especially those aimed at
entertainment and simulation games, are associated to speech synthesis and
multidimensional avatars and talking heads and embodied agents, capable of
emotion expressions and gesture (Vrajitoru 2006; Augello et al. 2011; Santos-
Perez et al. 2011).

1.3 Chatbot Applications for Educational Purpose

Applications of chatbots vary from tutoring, e-commerce, information re-
trieval, as helpdesk tools, customer support, automatic answering systems
and human digital assistants. One of the most prolific, best-documented and
useful application concerns the use of chatbots in education.

Early in 2003, Wallace, Tomabechi and Aimless envisaged “chatterbots
acting as talking books for children”, chatter-bots for foreign language in-
struction, and teaching in general (Wallace et al. 2003). Since then, the use

http://www.pandorabots.com
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of these conversational agents as educational tools has been further explored
(Kerly et al. 2007; Kelly at al. 2009). They are seen as learning companions
(Eynon et al. 2009), (Jia et al. 2003), helpers (Feng et al. 2006; Vieira et al.
2004), tutors (De Pietro and Frontera 2005; Kim et al. 2002) and as peda-
gogical agents (Veletsianos et al. 2010), but, as in the case of other learning
environments supported by software agents, they are mostly used in relation
to specific domains of learning (e.g. FREUDBOT and SOFIA).

FREUDBOT (Heller et al. 2005) is a chatbot who mimics the character
of Sigmund Freud, who speaks to learners in the first person about Freudian
theories and life episodes. The content of this chatbot is written in AIML
and its developer has added some particular control features: for example,
if FREUDBOT does not know the answer to a question, it admits not to
know the topic and asks the learner to provide additional information or
to change the subject of the conversation. SOFIA (Knill et al. 2004) is a
calculus chatbot, a conversational agent that helps students to solve general
mathematical problems. The main mathematical knowledge of SOFIA is con-
tained in plain text files that are converted to AIML thanks to Perl scripts;
this knowledge base is used to produce glossaries of mathematical definitions
and algorithms and a help for students. This chatbot is able to communicate
with other mathematical agents such as Pari, web resources as Wikipedia
and a computer algebra system via its web interface in order to solve algebra
problems.

Pirrone et al. (2008) describe an Intelligent Tutoring System (ITS), that,
thanks to a particular cognitive architecture, is able to enrich its knowledge by
interaction with users and by external web resources, representing structured
and unstructured information in the same framework. The knowledge base of
this ITS is made up of an ontology that is integrated with other information
from Wikipedia, Wordnet, folksonomies and learning documents provided by
the teacher and collected in a dedicated database. Through the mechanism
of LSA, the knowledge base of the chatbot is represented in a semantic space,
where the various documents are connected with the symbolic representation
of the topic of conversation. Also the student input sentences are represented
via LSA in order to assess the level of similarity between the user questions
and the chatbot knowledge base. To provide its answers, this ITS needs an
AIML file that describes the typical structure of the interaction in natural
language. This tutorbot holds a student model, that describes the assessment
level of each student, and, according to it, the chatbot searches the knowledge
base and provides the appropriate material for each student; moreover, during
conversation, the chatbot is able to evaluate the improvements of the user
and to update its model.

Some of the applications of chatbots are focused on language learning and
practice (Shawar and Atwell 2007a). Jia proposes several chatbot intended
as systems for teaching English as a foreign language (Jia 2003, 2004, 2009).
He describes a chatbot based on keywords like a “partner learning of foreign
language” (Jia 2003) for Chinese university and college students who speak
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fluent English. This chatbot is based on AIML files and on pattern-matching
techniques, like ELIZA. This type of chatbot, according to Jia, does not per-
form satisfactorily because it is simply based on the mechanics of keywords,
completely ignoring grammar and semantics.

A few years later, Jia proposes a chatbot (Jia 2004, 2009) based on the
representation of grammatical structures that underly natural language sen-
tences. CSIEC (Computer Simulation in Educational Communication) is an
English learning companion that “generates communicative response accord-
ing to the user input, the dialogue context, the user and its own personality
knowledge, common sense knowledge, and inference knowledge” (Jia 2009).
Jia introduces also a NLML (Natural Language Markup Language), an XML
dialect designed for annotating natural language texts. NLML annotation can
be written manually thanks to a GUI pattern-template editor, or automat-
ically generated. In the latter case, an English parser analyzes natural lan-
guage texts and the resulting grammatical structure is converted into NLML.
Then the NLML parser translates NLML annotation into NLOMJ (Natural
Language Object Model in Java), that is into the objects that represent the
grammar elements in the rules. NLDB (Natural Language Database) con-
tains the NLOMJs, and other tables containing all the chatbot knowledge: a
“table direct-response”, that, according to Jia, “must be done by an author
who is good at English grammar and dialogue generation” and an inference
rule table, while for the semantic knowledge the system takes advantage of
WordNet. In a chatting session with students, the input text is parsed and
transformed first in NLML and then into NLOMJ. CSIEC has two answer
mechanisms. Thanks to a pattern-matching mechanism, CSIEC searches for
the correct direct answers in NLDB in the “table direct-response” and in
the first case the answer is produced just taking into account the student
input. A second type of answer is produced using the GTE (Generation of
Textual Entailment) mechanism makes inference on a text thanks to an in-
ference rule table contained in NLDB. At the end the CR (Communication
Response) mechanism generates the answer, taking into account user input
and the knowledge in NLDB.

Most applications of chatbots as foreign language learning tools assume
students to possess a good level of proficiency of the second language in
order to interact with them, and learners can mostly have a general conver-
sation with them. On the contrary in (De Gasperis and Florio 2012), authors
describe two chatbots designed for students who have no fluency in the sec-
ond language. The first conversational agent is intended for English word
spelling improvement and proposes to students exercises that are typical of
a foreign language text book. Students have English chat sessions with their
virtual tutor, checking their conversation, proposing to learners the correct
sentence in case they produce an incorrect one. The second is an expert fable
chatbot that can answer to student question about a fable that learners have
to read. This conversational agent is indented to check and improve learners
reading comprehension of a text in a foreign language. Both chatbots are
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ALICE-like based, but their AIML knowledge base is automatically gener-
ated form plain text documents such as FAQ, glossary, multiwords, keywords
and stopwords files as described in this chapter.

1.4 AIML Language and Architecture

AIML is the Artificial Intelligence Markup Language defined by Richard Wal-
lace (Wallace 2009) aimed at describing lexical knowledge bases for conver-
sational agents. It is derived from XML with the purpose of describing units
of textual knowledge called categories:

<category>

<pattern>WHO IS PINOCCHIO</pattern>

<template>

Pinocchio in the main character in the book:

Adventures of Pinocchio, written by Carlo Collodi.

</template>

</category>

Here is described the exact text pattern WHO IS PINOCCHIO to be
matched in a question that has to produce as output the text between the
< template > tags.

Categories can also be linked together where there is a semantic common
base by means of the SRAI construct:

<category>

<pattern>WHO IS THE PINE-WOOD MARIONETTE</pattern>

<template>

<srai>WHO IS PINOCCHIO</srai>

</template>

</category>

effectively realizing a link between the two categories:

WHO IS PINOCCHIOWHO IS THE PINE-WOOD MARIONETTE SRAI

Fig. 1 Two categories linked by the SRAI AIML relation

An important feature of the AIML pattern is that wildcards can be used
‘ ’ and ‘*’, the first with higher priority over the latter. For example a more
general category can be used for all “WHO IS” questions, obtained combining
the wildcards, the SRAI construct and the <star/> element:
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<pattern> WHO IS * </pattern>

<template>

<srai>

WHO_QUESTION <star/>

</srai>

</template>

<star/> is a monolithic tag that copies the text selected by the position of
the wild card.

SRAI constructs can be linked in a tree like structure in order to reduce
lexical forms to a common root.

* BIRD

BIRD

SRAI

BIRD * SRAI

* BIRDS

SRAI

BIRDS *

SRAI

Fig. 2 Many categories linked to the same root element by SRAI relations

In Fig. 2 many categories are generated combining wildcards, singular and
plural lexemes, all linked to the same root concept made by the lemma BIRD.
This tree-like connection could also be used with synonyms and verbs forms
so that user input text can be reduced to a sequence of lemmas.

AIML has a much more complex TAG set and possible parameters (Wal-
lace 2009), such as temporal memory, variables, topics, etc.., but we found
that for the purpose of this chapter, to automatically generate AIML knowl-
edge bases starting from text corpora, it is sufficient to consider only the
following elements:

1. categories
2. SRAI construct
3. wildcards

Once all the AIML categories have been aggregated into .aiml files, they
can be used with an AIML interpreter so that a human can engage in a
conversation with it. AIML files are also incremental, they can be added to the
chatter-bot memory as needed, supplying it with the respective knowledge.

For example, the explanation of words that can be derived by a glossary
can be integrated in single .aiml file.
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2 Corpus Based Chatbots and Linguistic Issues

In the last few years a number of tools have been developed combining the
chatbot architecture with corpora. Spoken language corpora can be used to
provide new topics and naturally occurring linguistic samples for the dialogue
in general purpose chatbots, while domain-specific corpora can be used to
provide a knowledge base that can be queried using natural language and
interacting by means of the conversational agent.

General problems of objective and domain specificity still apply to knowl-
edge bases constituted by corpora. Chatbots modeled on spoken language
conversation and large reference corpora can produce interesting results from
the point of view of the naturalness of the dialogue turns (Shawar and Atwell
2005), but still cannot avoid the problem of inconsistencies, illogical dialogue
sequences and unreliability of information sources.

Furthermore it has become overtly clear that general purpose chatbots pose
problems radically different than those of task-specific and domain-specific,
i.e. restricted, chatbots. While the use of spoken conversational routines and
natural spontaneous language are capital for the design of general purpose
chatbots, for chatbots built to respond to narrower objectives such features
are not considered so relevant. The idea of simulating a human being and
eventually deceiving the user has now been completely removed from the
scene, focusing more on coherence in question answering systems built for
specific purposes on restricted domains.

2.1 The Corpus

A corpus, intended as a collection of texts, can be used in chatbot creation
for many purposes, depending on the kind of text included and on the specific
objective of the conversational agent application. It can be used to train a
chatbot, as in the case of spoken corpora containing spontaneous natural
conversation (Shawar and Atwell 2003a), and it can be used as a knowledge
base to build conversation and information structure for a dialogue system.

There are many digital libraries that contain free and out of copyright
restriction texts. The best known multilingual digital libraries are: Internet
Archive (http://www.archive.org) containing 3,209,736 books of all gen-
res in various formats and Project Gutemberg (http://www.gutenberg.org)
which offers about 38,000 books, mostly fictional works. Depending on the
kind of corpus needed for the chatbot project different pre-processing pro-
cedures will be required, such as eliminating unneeded information, links,
coding, etc.

For our case study we chose to develop a prototype of a conversational
agent for educational purposes. We selected children books as our source
texts and decided to opt for the well known novel Adventures of Pinoc-
chio by Carlo Collodi. We used the English translation of Pinocchio by Carol
Della Chiesa. The electronic text is freely available at the Project Gutemberg

http://www.archive.org
http://www.gutenberg.org


AIML Knowledge Base Construction from Text Corpora 297

website (http://www.gutenberg.org). The chatter-bot built was named:
“The Talking Cricket”.

When building a conversational agent from corpora, especially if intended
for educational purposes, it is necessary to determine how to use the corpus
and how to integrate corpus data with other data that might be useful for the
application. In our case-study we chose to use the text itself as the domain
for the chatbot and also as the main corpus for the Talking Cricket chatbot
question-answering system.

When dealing with literary text and building a chatbot to develop tex-
tual understanding and analysis in learners, it is important to consider using
different sources as knowledge bases for the chatbot:

1. the original text itself as a primary source
2. summaries of the text, manually or automatically generated
3. para-textual and inter-textual information (from essays, literary criticism,

external information on the work fortune and historical information on
author/s, etc.).

2.2 Building a Glossary: Linguistic Issues

A glossary is useful in chatbot design in order to cope with the possibility that
learners (whether natives or second language learners) might need linguistic
explanations of terms and words occurring in the text that is the object of the
chatbot domain. The glossary is thus intended to contain significant words or
multiwords occurring in the chatbot conversation and/or in the source text
that the user might not know. Thus the glossary will provide explanation on
the meaning of those words. Since words are not all equally well known by
people bearing different education degrees, it is appropriate to evaluate the
objectives of each chatbot application in order to define which threshold to
set for glossary inclusion.

Glossary candidates are the words that we presume that the chatbot user
might not know and thus might need to find the meaning of. We can select
those words manually, but in this case we would certainly hazard on the user
knowledge. The best way to select glossary candidates is to presume little
knowledge in the final user, in order to prevent the case in which the user
poses a definition question and the chatbot does not have the correct answer.

The fist step in selecting glossary candidate entries is to develop a pro-
cedure to eliminate non relevant vocabulary, e.g. mainly extremely high
frequency words that presumably are well known to native speakers. The
necessity of eliminating non relevant vocabulary comes from the aim at econ-
omizing on glossary entries to be coded in the system.

A large portion of the vocabulary of every language, containing about 2,000
words, among the most frequent in the language, are commonly known by
native speakers having primary education. The top 2,000 words of a reference
corpus generally contain most function words (and, it, on, to, the, etc.) and

http://www.gutenberg.org
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very common content words (to do, to make, man, home, etc.). Those words,
not only are commonly known, but also have a very high coverage rate on
any text of a specific language (Guiraud 1960), and are generally called the
“fundamental vocabulary” of a given language. It is very unlikely that a
native speaker will need explanation for those terms.

To further economize on glossary candidates it is possible to restrict the
word list to nouns and verbs, extracted both from the corpus list and the
reference corpus list in order to obtain the most salient possible words to be
included in the glossary.

Thus a good practice is to eliminate from the glossary candidate list the
most common lemmas of the language. In order to do so we need:

1. a lemmatized frequency list of a reference corpus (lemma list A) for the
language we are processing

2. a lemmatized frequency list of the corpus (lemma list B) we intend to use
for the chatbot.

Finding a Lemmatized Frequency List of a Reference Corpus

A reference corpus is a very large corpus, balanced by genres (containing texts
from written and spoken language), aimed at representing most variation
registers and text types of that language. The golden standard is generally
set to 100 million words.

Frequency data on usage of words in a reference corpus are generally given
in a lemmatized form. This means that all running words that occur inflected
in texts, such as abandoned, loves, men, does, etc., are grouped in lemmas
that represent the general lexical class for that form, cumulating frequencies
of all inflected forms pertaining to that lexeme.

The usual format for a lemmatized frequency list is the following:

rank, frequency, lemma, word-class

For the English language a very often used reference corpus is the British
National Corpus (http://info.ox.ac.uk/bnc), which we used in our case
study. It is also possible to use other similar resources such as the American
National Corpus (http://americannationalcorpus.org), or existing refer-
ence corpora for other languages, if a lemmatized version of the vocabulary
of the corpus is given.

A sample of the most common words in English (BNC), ordered by inverse
frequency, will be similar to the following: 1, 6187267, the, det; 2, 4239632, be,
v; 3, 3093444, of, prep; 4, 2687863, and, conj; 5, 2186369, a, det; 6, 1924315,
in, prep, etc. The further step is to extract from the list the top ranked verbs
and nouns. We will now have a lemmatized frequency list of the so-called
fundamental vocabulary of the reference corpus (lemma list A).

http://info.ox.ac.uk/bnc
http://americannationalcorpus.org


AIML Knowledge Base Construction from Text Corpora 299

Lemmatizing the Corpus and Extracting Glossary Candidates

In order to build a lemmatized frequency list of the corpus (lemma list B)
we need a specific tool called a POS-tagger or a lemmatizer. The POS tagger
performs the operation of analysing the corpus and tagging all inflected forms
with its part-of-speech (or word-class) in the context the word occurs, and
associating it to its reference lemma.

There are many ways of performing this tasks and many available tools,
depending on the language needed. A freely available tool that performs POS
tagging for English and many other languages is TreeTagger (Schmid 1994).

Once the corpus has been tagged for lemma and part of speech all we need
to do is building a lemmatized frequency list that summarizes data on lemma,
word-class and number of occurrences in the corpus in order to compare it
to the reference corpus lemmatized list.

Table 1 Example of a POS-tagged text output

Word POS Lemma

how WRB how
it PP it

happened VVD happen
that IN/that that

Mastro NP Mastro
Cherry NP Cherry

carpenter NN carpenter
found VVD find

a DT a
piece NN piece

of IN of
wood NN wood

If the tagset used for the reference corpus and that used for the corpus are
different, they need to be converted in a common coding in order to make
the matching possible. In our case the reference corpus BNC has a larger
tagset than that used by TreeTagger for the corpus (e.g. the BNC tags nouns
NN0: Common noun, neutral for number; NN1: Singular common noun, NN2:
Plural common noun, while TreeTagger uses only two tags NN: for Singular
or mass nouns and NNS for plural nouns, verb tagging is more divergent) so
it was necessary to re-code both lemma list in a common tagset.

From the corpus list (lemma list B), sorted by inverse frequency, we filter
and re-move the reference corpus list (lemma list B) by matching both lemma
and POS in both lists and obtain a list of candidate for the glossary of
the chatbot (lemma list C). It is very important to match both lemma and
word-class since several lemmas exist in different word-classes (e.g. love as
noun and love as verb).



300 G. De Gasperis, I. Chiari, and N. Florio

The lemma list (C) now contains relevant words that occur in the corpus,
but not words that appear banal and common to a native speaker.

Depending on the specific objective for the glossary, it is possible to re-
move from the list all hapax, words that occur only once in the corpus. To
evaluate this option it is important to fully assess tasks and objectives of the
chatbot application and to manually screen hapax. In our prototype we did
not remove hapax from the glossary list since the corpus was not so large
and rarely occurring nouns and verbs were considered relevant to the global
understanding of the work by our future users.

Glossary Entries and Definitions

When building a glossary we might not need only common words (especially
verbs and nouns) occurring in the corpus but we also need proper nouns and
named entities (in our case study: Pinocchio, Geppetto, Antonio, Polend-
ina, Tunny, Melampo, Harlequin, Cherry, Eugene, John, Pulcinella, Alidoro,
Romeo, Rosaura, Medoro), all of which can be extracted from lemma list C
(by selecting noun, verb and proper noun POS tags).

The next step is to build the glossary by associating the lemma list C to
glossary definitions. Depending on the specific goals of the chatbot we will
choose the appropriate source for our definitions. In our case we provided brief
definition for proper nouns (character nouns) occurring in the corpus from
the Wikipedia page of Adventures of Pinocchio and used Wordnet (Fellbaum
1998, 2005) definitions for all the remaining words. It is also possible to
link glossary entries to Wiktionary (http://en.wiktionary.org) or other
available sources. Along with the lemma list we need to collect multiword
expressions. It is not always necessary to include multiword expressions in
the glossary, but it is very important if those multiwords constitute keywords
or named entities (such as Mastro Cherry, Mastro Antonio in our case study).

2.3 Corpus Based FAQ

In this section we will present some of the most relevant issues in designing
the FAQ for chatbot creation from text, keyword, multiword selection, and
grammatical and semantic problems that might arise in the design process.

General Issues

The fist problem to address in building FAQs from corpora is how to use the
corpus, whether to use it as a knowledge base or as a machine learning tool.
In the first case the corpus will be analyzed combining manual and automatic
means in order to select portions of the text to be included in the FAQ. In the
latter case the corpus itself is to be considered the source of both questions
and answers for the FAQ and of the categorization of topics and categories in
AIML. In our paper we have chosen to adhere to the former approach, thus

http://en.wiktionary.org
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FAQ building is text-centred but task definition and question selection has
been conducted (semi)manually.

The texts of the corpus have been used as the main source for the answers
in a bottom up procedure. After choosing portions of text to be selected as
answers, a keyword analysis has been made on each piece of text in order
to build questions for the FAQ and keywords to be matched with the user
input.

The goal is to build a set of questions (Q) and answers (A) that are re-
lated to the main content of the source corpus. For example, from the first
chapter a selection of relevant sections of the text is generated, manually or
automatically. We preferred to select paragraphs manually in order not to
introduce further complexity in the set of software tools needed to achieve a
reasonable result. Starting from these selections of the first chapter, the most
significant sentences are selected as possible answers. Then each answer has
been associated to possible questions including their formal variants.

At this point it is important to evaluate the opportunity of introducing the
processing of inflected forms (e.g. loved, did, noses, etc.) and synonyms (e.g.
story, novel, book, etc.) to be able to cope with input that is presented in a dif-
ferent textual form from that of the keywords present in the source texts, but
ultimately to be considered equivalent in the question answering procedure.
Choosing to take into account inflected forms and synonyms largely depends
on the language of the chatbot and on the specific aims for the application.

Another relevant issue is that of incomplete, ill-formed or ungrammatical
input. When designing the FAQ it is important to consider the fact that
for multiple reasons it is common for the user to pose question that seem
incomplete or far from a well-formed standardized questions. Thus it is im-
portant in addressing the problem of input analysis to use an approach that
allows the user freedom in the wording of questions and that allows deviating
and unusual grammatical rules. Pattern- or keyword matching techniques
and careful selection of stopwords generally make it possible to solve this
problem, as in our case study.

Stopwords can have a great impact on the efficiency of the final AIML
categories matching. Using a combination of wildcards and SRAI the stop
words can be carefully filtered out from the user input, so that ideally only
a list of significant lemmas from the user input is matched with a list of
significant lemmas of a question, so to find the right answer, as shown in
Fig. 3.

User INPUT Stop words filter Question AnswerKeywords match

Fig. 3 Ideal workflow from the user input to the right answer.
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A further problem is the scope and level of generality of the question and
answer relationship. Using corpora for FAQ building tends to focus ques-
tion/answer scope to local ranges, because small bits of texts, often single
sentences, are chosen as relevant answers in FAQs, following a general char-
acteristic of spontaneous conversation.

Human: Why was Mastro Cherry called that way?

The Talking Cricket: His real name was Mastro Antonio, but

everyone called him Mastro Cherry, for the tip of his nose

was so round and red and shiny that it looked like a ripe cherry.

But in the case of applications that are aimed at general knowledge querying
and for text analysis in educational contexts it is also relevant to introduce a
broader and global level of question answering that might include summarized
information.

A further relevant aspect is the selection of keywords to be used both
for input analysis and pattern-matching. The selection of keywords can be
done manually or automatically depending of objectives of the application
and extension of the corpus chosen. Associated to this step is the relevance
of multiword expressions identification and processing of inflected forms and
semantic aspects.

Pattern-matching techniques generally do not adequately respond to the
complexity of texts produced in languages like those of the Romance or
Semitic families that possess a rich morphology and thus present the same lex-
eme inflected in multiple textual forms. Keyword selection and input match-
ing strongly rely on the capability of processing a large number of forms (e.g.
any Italian verb has about 50 different textual forms that can be reduced
to the same lemma). Precision in associating the user input with the correct
answer relies on the capability of using this grammatical information in the
matching process. Since our case study is in the English language, that is not
particularly rich in morphology compared to other languages, we decided to
stick to traditional pattern-matching techniques.

The same problem arises with the use of synonyms (e.g. marionette, pup-
pet) or co-referent expressions (e.g. Mastro Cherry, Mastro Antonio, the car-
penter), but also with hyperonyms and hyponyms (e.g. the novel, the book;
the cat, the animal).

In future developments of the Talking Cricket prototype we intend to use
Wordnet information on inflections and sets of synonyms to allow a better
management of keywords and input matching.

The Talking Cricket FAQ Design

The Talking Cricket (http://glottoweb.org/talkingcricket) uses two
kinds of sources as knowledge bases: the English translation of Adventures
of Pinocchio and the Wikipedia page on the work to provide minimal para-
textual information for the chat-bot.

http://glottoweb.org/talkingcricket
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The Talking Cricket mainly uses the exact wording of the original text to
answer question about episode and story development, while using external
sources to inform the user on the author, characters and textual analysis.
The general approach has privileged local scope questions and answers since
the text has been chosen to be the main base to be questioned. So questions
are designed in order to be answered by a small self-contained portion of the
source text, without any manual rewriting.

Q Why did Mastro Cherry sing?

A The poor fellow was scared half to death, so he tried to

sing a gay song in order to gain courage.

Summaries of chapters, provided in the source text itself, are used for broader
scope question/answers, regarding story development of each chapter.

Q What happens in the first chapter?

A How it happened that Mastro Cherry, carpenter, found

a piece of wood that wept and laughed

like a child.

Broader scope question/answer typologies are extracted from the Wikipedia
page on the novel and give information about the book that are not con-
tained in the source text itself, but that can be useful to young users of the
educational chatbot we designed.

Q Who is the author of the book?

A The Adventures of Pinocchio is a novel

for children by Italian author Carlo Collodi

Q Who is Carlo Collodi?

A Carlo Lorenzini (November 24, 1826 - October

26, 1890), better known by the pen name Carlo Collodi, was an

Italian children’s writer known for the world-renowned fairy

tale novel, The Adventures of Pinocchio.

At the moment the prototype of the Talking Cricket is able to chat about
the first chapter of the book and about external para-textual information.
Further versions of the Talking Cricket prototype will include automatically
generated summaries of episodes in the text in order to answer to general
aspects of the story development.

3 Steps for Chatter-Bot Generation

The following sequence diagram shows the overall procedure needed to build
the restricted AIML FAQ based chatter-bot the Talking Cricket shown in
this chapter, but it can be used in general on any other source text corpus:
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Fig. 4 Sequence diagram to generate the FAQ chatter-bot lexical knowledge base

In a language learning context, the story expert is the educator and the
user is the student. The story expert/educator has to produce text files as
knowledge seeds in order to generate the lexical knowledge base about the
story. No programming skills are required, files can be edited writing in free
text form, just taking care of a straightforward format to separate questions
from answers (FAQ), or item from definitions (glossary). Only after the lexical
knowledge base is generated in the form of AIML files, it can be uploaded
to an online AIML interpreter, if the learning application is web based, or
locally saved to a folder where standalone interpreter can read them. Then
the user/student can interact in real time with the interpreter which matches
user text input with AIML categories to return an answer. The user/student
can use free text, as far as there are no typing errors and she/he keeps using
lexemes being part of the lexical set used in the FAQ questions and the
glossary items. The AIML agent will reply a structured text, not free, meaning
that the output text it is just copied from the answers of the FAQ set, or the
glossary definitions where applicable.

3.1 Requirements for the Chatter-Bot

The overall design of the Talking cricket chatter-bot is based on requirements
that are needed to keep the application up-to-date with current conversa-
tional agents technology:
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1. restricted knowledge domain
2. human computer interaction requirements:

a. textual interface
b. free text from the user
c. structured answer text from the chatter-bot

3. no temporal memory
4. resolution of lexical ambiguity by finite number of choices
5. no answer transparency

Requirement n.1 implies that chatter-bot will not answer general knowledge
questions, but only on the specific subject defined by the FAQ and the glos-
sary. This also means that this kind of chatter-bot cannot be considered at
the unrestricted Turing test level.

Requirement n. 2 is related to the simplified implementation, but it could
feasibly evolve in future version in a semantic network representation that
could allow some form of text re-generation of the FAQ answers.

Requirement n.3 implies that chatter-bot output is independent from any
previous interaction.

Requirement n.4 implies that in case of multiple possible answers derived
from the user input processing, the chatter-bot should explicitly ask for a
more detailed question to overcome the ambiguity.

Requirement n.5 implies that in case no answer is available for a given user
input, the chatter-bot should produce a standard output to let the user be
aware that the given knowledge base is insufficient to give a proper answer.

3.2 Input Set Definition

The story expert needs to analyze the given text corpus and derive from it
units of lexical knowledge that can seed the generation of the chatter-bot
knowledge base.

This is a-priori work made by the chatter-bot designer. This can be sup-
ported by several computational linguistic tools now available, but still is not
completely automated.

Data is organized as follows:

1. a FAQ file F, frequently asked questions, is a free text file composed of
several units of FAQ-knowledge:

Q <the question phrase> | {Q <alternative version>}

A <the answer phrase> | {A <alternative version>}

for as many units as needed to cover the restricted knowledge domain.
2. a glossary file G, where important keywords and or multi-word expressions

will be listed with their free text definition:
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G <the glossary item> | {G <alternative version>}

D <the glossary item definition>

the glossary item can be a single word or a multi word.
3. a keywords file K, just listed one on each text line
4. a multiwords file M, just listed as many as needed on each text line
5. a stopwords file S, listed all of the non meaningful words, like articles,

prepositions, adjectives, adverbs and other forms, mostly taken from the
question text in the FAQ set.

Text files <F, G, K, M, S> can be directly typed by the story expert using
a simple text editor; this set makes the input of the PyGenBot software
package, as seen in the previous sequence diagram.

Fig. 5 Workflow from input data set to AIML output.

3.3 Chatter-Bot Lexical Knowledge Base
Construction

The generator algorithm has been developed (De Gasperis, 2010) in Python
programming language resulting into about 500 lines of code. The program
has been named PyGenBot.

The main steps of the generation algorithm can be summarized as the
following:
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Algorithm 1: Main AIML Generation Algorithm

F0. merge user defined multiwords and character names

from the glossary

F1. extract all the relevant category lists from FAQ questions

F2. calculate possible branches from each category

F3. extract the answers

F4. generate AIML output set linking categories to answers

Detailed Steps of F1

A single category, such as it is defined in the AIML, is a couple of pattern-
template. The pattern need to coincide with one or more words taken from
the question text so that they can be matched in the user question and linked
to the proper answer of the FAQ file, as listed in Algorithm 2.

Algorithm 2: Generation of AIML categories

define Dw as the stopwords set

define Pw as the multiwords entries set

define Kw as the keywords entries set

FOR all questions q in FAQ file DO

build list L of meaningful words/multiwords wi from q

(i.e. filter out all wi in Dw and use wi in Pw

taken as a sequence or in Kw)

initialize an emtpy category list C

FOR all words/multiwords wi in L DO

append wi in C combined with all the others taken 2 by 2

END FOR

build a category list M with all the meaningful words found in q

append C and M to category list set Sc

END FOR

Detailed Steps of F2

This method, shown in algorithm F2, is needed to calculate all the possible
outgoing branches from a category that can lead to different answers. This
will be used later as information to generate the AIML code, as shown in
algorithm 3.

Algorithm 3: Extraction of categories branches

Let OUT be the output dictionary map indexing

a category to a list of integers

FOR all categories list Cl in Sc DO

let Ai be the answer which question Qi has generated Cl

FOR all categories ci in Cl DO

append the integer i to the OUT[ci] list
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END FOR

END FOR

return OUT

In the implementation, the powerful dictionary data structure as defined in
the Python language, here OUT [< category >] is crucial during the calcula-
tion of the categories branches.

Detailed Steps of F4

This method finally generates the FAQ AIML file, trying to catch all of
the meaningful word from the user sentence and matching them with the
meaningful words sequences from the FAQ questions. It uses SRAI recursions
as defined by the AIML 1.0.1 standard [3].

Generation of GLOSSARY-AIML

The generation of Glossary AIML takes into account the list of most signif-
icant lexemes selected by the linguistic analysis; for each glossary item, its
definition is manually selected from Wordnet.

Algorithm 4: Generation of final AIML

FOR all questions Qi DO

given the category list Cl generated from Qi

let Ta be the AIML SRAI template containing the answer text

FOR all categories ci in Cl DO

IF ci is a combination of two words THEN

generate all possible edges (SRAI) to Ta

ELSE IF ci has just one branch THEN

generate an edge (SRAI) to Ta

IF ci is just a single word

and is a glossary item THEN

generate an edge (SRAI) to the glossary definition

END IF

ELSE IF ci has multiple branches to several answers THEN

generate an edge (SRAI) to a phrase

asking the user to be more specific.

END IF

END FOR

END FOR

AIML Ouput

The generation of the chatter-bot AIML includes code generation from the
FAQ file and from the glossary file. Also a reduction AIML is needed so that
it could filter out the stopwords set, during user interaction, so that each
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sentence the user enters during the conversation will be reduced to a sequence
of meaningful words that can be matched with a FAQ AIML/GLOSSARY
AIML knowledge-base unit, in order to best match the right answer to the
asked question.

3.4 Chatter-Bot Testing

In (Shawar and Atwell 2007b), the authors illustrate different chatbot eval-
uation methods, and describe three different metrics they used to evaluate
three different chatbot prototypes (see (Shawar and Atwell 2007b) for more
details) and at the end they conclude that “evaluation should be adapted to
the application and to user needs”. As regards the Talking Cricket chatbot,
a dialogue efficiency metrics has been used for evaluating it, measuring the
correctness of the responses given by the chatbot. For this purpose different
quality levels has been defined:

1. Level 0: the Talking Cricket answers correctly to all questions in the FAQ
file

2. Level 1: the Talking Cricket gives the correct answer for at least 50% of
questions that have semantic variations with respect to the questions in
the FAQ file

3. Level 2: the Talking Cricket gives the correct answer for all the question
that presents semantic variants of all questions with respect to the FAQ
questions.

The testing phase demonstrate the Talking Cricket has reached Level 1.
Firstly the Talking Cricket has been tested by submitting to it all the FAQ
question and it answered correctly in all cases, as the following example of
conversation shows:

Human: Who found the piece of wood?

talking_cricket: Mastro Cherry, carpenter, found a piece of wood

that wept and laughed like a child.

Human: What does the carpenter’s nose look like?

talking_cricket: His real name was Mastro Antonio, but everyone

called him Mastro Cherry, for the tip of his nose was so round

and red and shiny that it looked like a ripe cherry.

Human: Why is Mastro Cherry filled with joy?

talking_cricket: As soon as he saw that piece of wood, Mastro

Cherry was filled with joy.

Human: What is the book ending?

talking_cricket: After long months of working for the farmer and

supporting the ailing Geppetto (Mastro Cherry) he goes to town

with what money he has saved (40 pennies to be exact) to buy
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himself a new suit. He meets the snail, who tells him that the

Blue-haired Fairy is ill and needs money. Pinocchio instantly

gives the snail all the money he has, promising that he will help

his mother as much as he is helping his father. That night, he

dreams he is visited by the Fairy, who kisses him. When he wakes

up, he is a real boy at last. Furthermore, Pinocchio finds that

the Fairy left him a new suit and boots, and a bag which

Pinocchio thinks is the forty pennies he originally loaned to

the Blue Fairy. The boy is shocked to find instead forty freshly

minted gold coins. He is also reunited with Geppetto, now healthy

and resuming woodcarving. They live happily ever after.

Human: Who is Pinocchio?

talking_cricket: Pinocchio is a naughty, pine-wood marionette who

gains wisdom through a series of misadventures which lead him to

becoming a real human as re-ward for his good deeds.

Human: What is firewood?

talking_cricket: a fire fed by pieces of wood.

Human: What does it mean mistake?

talking_cricket: an understanding of something that is not correct;

"he wasn’t going to admit his mistake";

"make no mistake about his intentions";

"there must be some misunderstanding--I don’t have a sister".

Then, questions that have semantic variations with respect to the questions
in the FAQ file are made to the Talking Cricket and it has answered correctly
to the 50% of the case, as the following chat session example demonstrates:

Human: What kind of piece of wood mastro cherry found?

talking_cricket: Mastro Cherry, carpenter, found a piece of wood

that wept and laughed like a child.

Human: To what fruit does the nose of Mastro Antonio look like?

talking_cricket: His real name was Mastro Antonio, but everyone

called him Mastro Cherry, for the tip of his nose was so round

and red and shiny that it looked like a ripe cherry.

Human: What does the carpenter wish to make with the piece of

wood?

talking_cricket: He mumbled half to himself: "I shall use it to

make the leg of a table.".

Human: For what reason is Mastro Cherry filled with joy?

talking_cricket: As soon as he saw that piece of wood, Mastro

Cherry was filled with joy.
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The following example shows some cases where the chatbot did not provide
correct replies and admits to not knowing the answer:

Human: What is the reason for the joy of Mastro Antonio?

talking_cricket: No glossary information about " the reason for

the joy of Mastro Antonio", maybe... the reason for the joy of

Mastro Antonio.

Human: What is the meaning of firewood?

talking_cricket: No glossary information about " the meaning of

firewood", maybe... the meaning of firewood.

Human: what is the real name of mastro cherry?

talking_cricket: No glossary information about " the real name

of mastro cherry", maybe... the real name of mastro cherry.

In few cases the talking Cricket has given an incorrect answer:

Human: What happened when Mastro Cherry sees the piece of wood?

talking_cricket: As he was about to give it the first blow, he

stood still with arm up-lifted, for he had heard a wee, little

voice say in a beseeching tone: "Please be careful!

Do not hit me so hard!".

If users ask question very different from the FAQ questions, as the Level 2
requires, in most cases the chatbot do not provide the correct answers:

Human: Why did Mastro Cherry want to hit the piece of wood

with an axe?

talking_cricket: He mumbled half to himself: "I shall use it

to make the leg of a table.".

Human: What instilled courage in mastro antonio?

talking_cricket: Sorry, I

do not understand what you wrote in this form.

Can you ask it in other words, please?

4 Discussion

This chapter gives an overview of past and present research on chatbot design
and illustrates procedures in order to build a corpus-based conversational agent
that takes into account some basic linguistic issues. More specifically we have
discussed glossary candidates selection, FAQ construction and presented tools
to automatically compile AIML from pre-processed text documents. We also
introduced a simple quality level grid of FAQ chatter-bots that can help to eval-
uate qualitatively their performance, counting the number of correct answers,
i.e. the error in respect to a desired behaviour. The lower the quality level, more
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the behaviour of the chatter-bot is dependent on lexical adherence to the text
sources of the FAQ.The quality raises if the chatter-bot exhibits behaviour that
suggests its capability of taking into account lexical variation within the same
semantic set, that should not depend on the exact match with the source text
(by using keywordmatch o searching over the multiple textual forms related to
the same concept). As more machine learning algorithm will be introduced the
quality of such FAQ chatter-bots can definitively be enhanced so they can be
used proficiently in real world applications.

One of the major weaknesses in existing chatbot systems is the lack of
memory. Chatbots generally engage in conversations that cannot be appre-
ciated throughout turns. It has been often pointed out that this lack in the
ability of keeping track of the conversational turns and their development is
an element that reveals the unnaturalness of the communicative interchange,
because in introduces inconsistency and incoherence in the turn sequences.
This is especially witnessed in general-purpose chatbots, such as ALICE.
Users tend to engage in short exchanges and tend not to come back to the
tool after the first try in 88% of the cases (Jia 2004). Some attempts at taking
into account at least a form of short-term memory have been made (Vrajitoru
2003), but this issue is far from being properly addressed. There are cases in
which the input provided by the user can be associated to multiple answers.
In this case, if short term memory is introduced to keep track of the turn
sequences, it is possible to conceive a further intervention of the chatbot to
ask questions to the user in order to give the appropriate answer.

As we have pointed out (2.3.1) further improvements can address the prob-
lem of dealing with languages with rich morphology and with introducing
systematically (and automatically) the semantic properties of keywords, such
as synonyms, hyperonyms and co-reference. In a future development of the
Talking Cricket prototype we mean to integrate Wordnet information on
these aspects to improve the automatic generation of keywords and of input
pattern-matching.

A further issue regards the automatic alignment of Wordnet definition
with glossary entries. At the moment the correct word sense for each of the
glossary entries has been selected manually, but when the corpus source of the
chatbot is a larger text, manual alignment may not be a feasible option. The
easiest solution could be to integrate the whole Wordnet lemma entry letting
the user disambiguate the specific word sense present in the text; the hardest,
and most challenging option, is to evaluate the possibility of automatizing
at least partly the word sense disambiguation task by relying on ontologies,
especially when the domain of the application is restricted.

5 Tools and Resources

Here we refer to useful tools and examples available online, mostly free or
open source, that can be used to approach the text corpora study in order to
produce good linguistic based chatter-bots and to understand their evolution.
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Chatter-Bot Hosting

Making chatbots and let them “live” online can be done in several different
ways. First of all the chatter-bot need to be hosted in some kind of server.
The most common way is uploading AIML files on an online chatbot hosting
server where users can chat online with their own conversational agent. Some
commercial and free chatbot hosting service are:

• Pandorabots (http://www.pandorabots.com)
Pandorabots is a chatbot hosting web service; allows anyone to develop
their own chatbots manually writing the AIML files, were the chatbots
can also be published. Users can upload their AIML knowledge files on
Pandorabots server. It is free as long as the interaction keeps traffic lower
than a given threshold. Chatbots hosted on Pandorabots can be integrated
on web pages, in Second Life, in online games and on instant messaging
service, respond to email or in forum threads, appear in social networks
as Twitter and Facebook and run on mobile smart-phones applications.

• AI-Buddy (http://www.ai-buddy.com)
AI-buddy is a chatbot hosting service that enables users to create chatbots
for AIM, AOL, the web, email and mobile phones. It provides a set of tool
to create chat-bots, as for example a bot editor. It also offers a free plan
for low traffic chabots.

AIML Interpreters

Otherwise a chatter-bot master can use some other open source AIML inter-
preter, install on its own virtual private server and let it answer question to
online users:

• Program D (http://aitools.org/Program_D)
Program D is an AIML bot engine implemented in Java, easy to configure
and runs in a GUI application.

• Program W (http://programw.sourceforge.net)
Program W is an AIML interpreter implemented in Java that extends
ProgramD, adding new AIML tags that allow user to create chatbots able
to question the WordNet lexical dictionary.

• PyAIML (http://pyaiml.sourceforge.net)
PyAIML, also known as Program Y, is an AIML interpreter implemented
with Python, developed as an extension to the AIML chatbot Howie.

• Program E (http://sourceforge.net/projects/programe)
Program E is an AIML application written in PHP for running chatbots. It
uses a MySQL database where AIML files have to be uploaded. It provides
an AIML rule engine and HTML, Flash and XML-R chat interfaces.

Selected Online Tools

Here follows a list of some of the tools mentioned in this chapter.

http://www.pandorabots.com
http://www.ai-buddy.com
http://aitools.org/Program_D
http://programw.sourceforge.net
http://pyaiml.sourceforge.net
http://sourceforge.net/projects/programe
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The Talking Cricket

(http://glottoweb.org/talkingcricket)

“The Adventures of Pinocchio” story expert (limited to the first chapter and
some meta knowledge) developed for this chapter.

British National Corpus

(http://info.ox.ac.uk/bnc)

The British National Corpus (BNC) is a 100 million word corpus, contain-
ing samples of written (90) and spoken (10) language from a wide range of
sources, designed to represent a wide cross-section of British English from
the later part of the 20th century. The corpus is encoded according to the
Guidelines of the Text Encoding Initiative (TEI). Data and documentation
(lemma lists, forms list, corpus composition, etc.) is freely available at the
following address:
ftp://ftp.itri.bton.ac.uk/bnc.

A detailed version of the frequency data can be found in Leech et al.
2001. The lemmatized frequency list for the 6,318 words with more than 800
occurrences in the BNC is called lemma.al [123kb], is a space-separated text
and can be found at:
ftp://ftp.itri.bton.ac.uk/bnc/lemma.al.

Project Gutemberg

(http://www.gutenberg.org)

Project Gutemberg is a library of free electronic versions of printed books,
founded in 1971 by Michael Hart. The texts available are free because they
are of public domain, they are never been covered by copyright, or copy-
right restriction have lapsed. The library offers also some copyrighted texts
given permission from authors to this form of publication. In 2011 Project
Gutemberg collection contains 33,000 eBooks, most of which are in English.

TreeTagger

(http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger)

TreeTagger was developed by Helmut Schmid at the Institute for Compu-
tational Linguistics of the University of Stuttgart. The tool is language in-
dependent and performs POS-tagging on a large number of languages such
as German, English, French, Italian, Dutch, Spanish, Bulgarian, Russian,
Greek, Portuguese, Chinese, Swahili, Latin, Estonian. It can be used for other

http://glottoweb.org/talkingcricket
http://info.ox.ac.uk/bnc
ftp://ftp.itri.bton.ac.uk/bnc
ftp://ftp.itri.bton.ac.uk/bnc/lemma.al
http://www.gutenberg.org
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
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languages if provided with a manually tagged training corpus. It is available
for Sparc, Linux and Windows PC and Mac.

WordNet

(http://wordnet.princeton.edu)

Wordnet is a free and open source lexical database of the English language.
Wordnet contains semantic and cognitive information on nouns, verbs, ad-
jectives and adverbs grouped in sets of synonyms (synsets). The synsets are
further interlinked by means of conceptual-semantic and lexical relations.
Wordnet can be freely browsed but can also be downloaded and used for
multiple application objectives. For chatbot improvements it can be used in
word definition association for glossary building and for synonym sets to be
used in generating questions for the FAQ.
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Multidisciplinary Trends in Modern Artificial 
Intelligence: Turing's Way 

Elena N. Benderskaya and Sofya V. Zhukova* 

Abstract. The paper faces the challenge to generalize existing trends and  
approaches in the field of artificial intelligence. Under consideration are expert 
systems, dynamic neural networks, probabilistic reasoning, fuzzy logic, genetic 
algorithms, multi-agent systems, bio-inspired algorithms, distributed nonlinear 
computing, chaos-driven pattern recognition. Each approach strengths and limita-
tions are stated without exhaustive treatment to involve specialist from adjacent 
fields in discussion. The most perspective research directions are revealed and 
analyzed in reference to Turing’s way in artificial intelligence and beyond.  

Keywords: artificial intelligence, multidisciplinarity, bio-inspired methods, chaotic 
neural network, Turing machine, self-organization, chaotic maps, chaotic  
computing. 

1   Introduction 

Modern trends in scientific research are inspired by innovations in adjacent scien-
tific domains. There are no exceptions among knowledge areas. This can be con-
sidered as a distinctive mark of up-to-dateness in modern science. Some scientific 
fields are inconceivable without utilization of knowledge from other domains 
because originally they were developed beyond disciplines boundaries. One of 
such fields is Artificial Intelligence (AI). 

It is worth noticing that in artificial intelligence the role of multidisciplinary re-
search became not only important but transformed greatly in the way that almost 
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every new approach encourages a scientist to look into more and more distant 
from original background scientific areas. More over most of the recent AI ad-
vances come from directions previously considered to be beyond AI field.  

The joint application of symbolic and connectionist AI methods in the form of 
separate parts of intelligent systems or within hybrid solutions often faces conser-
vatism and inertia when the number of combined scientific approaches is growing. 
The value of contradictory hypothesis testing is discussed widely but the most 
prominent to mention is the paper by Alan Turing "Can Automatic Calculating 
Machines be Said to Think?" This revolution work proposed to combine both 
methodology of symbolic AI (vividly represented by computer chess playing) and 
connectionist AI (when machine is learning like human being). 

It is a well-known fact that every book on artificial intelligence refers to Alan 
Turing’s contributions to symbolic AI – computability theory, complexity theory, 
universal Turing machine, etc. AI books often mention Turing’s test to measure 
machine's ability to exhibit intelligent behavior. There still exists a controversy 
about its up-to-dateness but all agree upon significance of the “imitation game” for 
the formation of AI as a separate scientific domain. 

To our point of view intuition of Turing genius lead him to the discoveries im-
portant for the development of truly intelligent systems. To start discussion let us 
question the relevance between thinking processes, formation of amazing patterns 
on fishes scales or spots on leopard’s fell. At the first glance there is no relevance 
at all and the very question sounds queer. The only connection is that all these 
issues are covered by wide set of Turing interests. Analysis of modern artificial 
intelligence trends on the following pages gives the answer to the question.   

In this chapter are considered not only adjacent to AI scientific areas but also 
those that in the nearest future would become perspective to resolve the limitations 
of existing AI techniques. 

It is worth tracking the influence of Turing ideas on current blue lines in AI to 
reveal the correlation between stated in the past AI antagonisms and advances of 
the present. Further discussion notices that almost all new methods and perspec-
tives were foreseen by Alan Turing. Through the lens of his holistic vision this 
paper considers evolution of inhomogeneous nonlinear dynamic system applicable 
to accomplish rather universe approach to clustering problem. Evolution of new 
clustering method based on chaotic neural network (CNN) is examined as an ex-
ample of highly multidisciplinary research. And this research combines advances 
from very different knowledge domains. Clustering problem as one of the most 
interesting within AI field is under concern because its solution in general case is 
supposed to be the key to breakthrough towards naturally intelligent systems. Our 
understanding of “truly intelligent system” is given further on in reference to Tur-
ing AI principal works that represent his way in artificial intelligence and beyond. 
Relying upon multidisciplinary analysis authors generalizes advantages and limi-
tations of different AI domains from the position of “big picture” approach with-
out exhaustive treatment of details in order to identify the most perspective  
upcoming AI trends. 



Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 321
 

2   Artificial Intelligence: Challenges and Multidisciplinarity 

Since the moment of origin artificial intelligence has been a multidisciplinary field 
and comprised knowledge from various scientific domains [38]. Most likely its 
emergence can be considered as the starting point that sped up mutual penetration 
and integration of sciences. This process is somewhat opposite to the one of 
sciences differentiation and their branching of philosophy.  

Necessity to address research results from various knowledge domains comes 
from complex notion of AI. At the very beginning it was important to specify 
research object of natural intelligence in terms of properties, functions, capabilities 
[38]. After this first stage it became possible to appeal to theory of engineering 
analysis and synthesis. Natural intelligence definition involved knowledge from 
such adjacent areas as psychology, physiology, biology, neurology, etc. This inte-
gration process predetermined extensive incorporation of terminology, research 
methods and their modifications in order to fit the requirements of particular re-
search. Diversified nature of AI field is widely discussed in literature but it is 
worth mentioning in order to understand the transformation spiral and perspectives 
of this extremely multidisciplinary area [14, 34, 55]. 

Though the need for interdisciplinary investigations sufficiently increased dis-
cipline differentiation processes continue flourishing as the research objects be-
come more and more composite and theories more intricate. From this point of 
view computer vision and machine vision introduce undoubtful advances in ob-
jects and people identification in real environment characterized by variances in 
locations, low quality video signals, etc. At the same time automatic video 
processing systems capable not only to detect multiple objects and recognize 
scenes (or context) in real time are still missing. It seems like Pareto 80/20 
principal [15] govern AI research contributions – the rest 20 percent of 
development efforts may take much longer time than some novel alternative 
research direction (design innovation).  

2.1   Symbolic and Connectionist Artificial Intelligence 

Two main approaches within AI field, namely Symbolic AI (associated with ex-
perts systems, knowledge bases, ontologies, etc.) and Connectionist AI (associated 
with neural networks and implicit knowledge learning, etc.) no more compete but 
supplement each other [32, 37, 43]. The most vivid examples are neuro-fuzzy 
systems when both learning processes and explicit knowledge statements are 
combined.  

However, despite this mutual enrichment AI theory is still far from its 
ambitious goal that seemed to be so quick and easy to solve – creation of genuine 
intelligent systems [4, 12, 15, 18] capable to learn, set goals and solve problems 
without external assistance, find new solutions that were not foreseen at the 
development stage. The system with such abilities in this paper is referred as truly 
intelligent system.  

Let us examine principal AI approaches from the point of truly intelligent 
systems design. The reasons why various compositions of advantageous methods 
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intersections do not fully get over existing limitations of artificial intelligent 
systems are proposed for discussion. 

One of the main issues that challenge Symbolic AI researchers consists in im-
possibility to formalize all variants of states a system can converge to [21, 43]. 
After making some assumptions a set of problems of a certain class (dependent on 
the limitations) are successfully solved. In case of heavy assumptions universality 
appears to be unattainable. The system is intelligent at the extent of input data 
comprehensiveness and predesigned scenarios. When we speak about simple prob-
lems it is just enough but to solve complex ones AI concept acquires new know-
ledge creation within system itself. There is another point of consideration that 
deals not only with the ability to arrive at some logical inference or prove a theo-
rem (both based on previous systems knowledge) but with compensation of in-
complete, inconsistent input data and imperfection of underlying models. And the 
complexity of the system namely the amount of freedom degrees should be 
enough to generate intelligent behavior including the case when system’s dynam-
ics is absolutely unpredictable. As systems behavior can be unexpected the ethical 
issues of AI development are on the agenda among specialists from absolutely 
different domains. For example AI ideas are widely exploited in science fiction. 
One of the common visions was expressed by I. Azimov who’s main idea is to put 
veto on the robot’s actions that can be potentially harmful for a human being. The 
veto is an inevitable step in situation when a machine should function in a com-
plex unknown environment and demonstrate creative non routine approach to 
analysis, independent way of thinking.  

Connetcionist AI researches face the same restriction on representation of ade-
quate size and quality of training samples. Neural networks are good at operating 
with implicit data and generalizing through learning process. At the same time 
approximation results on feed-forward networks depend drastically [25] on the 
quality of training sample. And we know that in real world comprehensive data in 
most cases is unavailable. Self-organizing maps (SOM) being a wonderful tool to 
visualize datasets topology suffer from post-processing expenditures on cluster’s 
number estimation. Hundreds of modifications aim to overcome k-means and 
SOM problems induced by averaging out concept. This concept is based on calcu-
lation of clusters centers and metric-based approach. The averaging out concept 
mostly fails when clusters number uncertainty play a significant role. Other well-
known neural network representatives have tight relations with their algebraic 
versions: Radial Basis Function Network is analogous to potential function me-
thod; Feed Forward Neural Network represents a system of nonlinear approxima-
tors; Adaptive Resonance Theory Networks correspond to k-means modifications, 
Bayesian Networks are variations of probability reasoning [25]. Briefly speaking 
most classical neural networks represent parallel implementation of corresponding 
pattern recognition methods of algebraic computations and thus inherit their ad-
vantages and most of disadvantages.   

2.2   In Between AI Approaches: Multi-Agent Systems 

Function-behavior modeling deals with idea to divide all possible agent behavior 
patterns into functional blocks. Rules and function database is created on the basis 
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of developer vision on agents functioning and adaptation. Thus this approach inhe-
rits the advantages and disadvantages of Symbolic AI. Self-organization and adap-
tation effects occur in such systems but from the very start are limited by the rules. 
In other words function approach can be interpreted as bottom-up system devel-
opment. In this approach agent is governed by formal rules for individual func-
tioning in changing environment and thus is rather complex. 

The multi-agent approach [122] adjoin distributed intelligence techniques. In-
telligent agents are more simple than discussed previously (neuron, cell, ant, bee) 
but have more degrees of freedom. Evolution processes are given on the overall 
systems level. Cooperative self-organization effects that can emerge totally de-
pend on the global description of multi-agents system. In this case the uncertainty 
of macro-level decisions corresponds to the idea of top-down design [27]. In such 
systems under the main focus of consideration is cooperative interaction within 
distributed elements network that share intelligent decision making. Cooperation 
principals that define these systems predetermine their application area - approx-
imate optimization of complex function (too hard for classical optimization tech-
niques). At this point of view multi-agent approach relates more to bio-inspired 
methods.  

3   Natural and Artificial Intelligence 

Some scientists working in AI field are rather skeptic about brain modeling. They 
consider AI field as separate intellectual tasks that can be solved without reference 
to natural analogues. However the complexity level of tasks is increasing dramati-
cally and there is the demand for new approaches. And again like many years ago 
the scope and capabilities of intelligent systems are questioned. It is a well-known 
fact that a lot of complex intelligent tasks in AI field in reality are very simply 
accomplished in everyday life by a human being. It is not out of place to mention 
that AI as a scientific domain arose to formalize human thought and perception. 
And the famous paper by Alan Turing "Can Automatic Calculating Machines be 
Said to Think?" was a significant start. The issue of truly intelligent system crea-
tion, creation of systems able to perceive, adapt and operate like human beings 
stands to be open. Thus it occur natural to address brain sciences that consider 
human cortex as the most effective intelligent system. 

The most perspective direction is based on the attempts to model the work of 
human brain, which is a highly complex, nonlinear and parallel information-
processing system. Complex cortex structure is modelled and formed by artificial 
neuron lattices, which are joined by great amount of interlinks. This global link of 
simple neurons provides their collective behaviour. Each neuron carries out the 
role of a processor. That’s why neuron network structure is the most appropriate 
base for parallel computing – there is no need to prepare data (in neural network 
input data is already parallelized). For parallel computing to work software should 
partition its work and the data it operates on over hundreds of processors. High 
speed and with the same time high quality solution of the most various compli-
cated problems can be received by means of microsystem’s collective behaviour.  
The main idea of self-organization is in distributed character of data processing, 
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when one element dynamics means nothing, but at the same time group dynamics 
define macroscopic unique state of the whole system, that allows this system to 
reveal capabilities for adaptation,  learning, data mining and as one of the results -  
high computation effectiveness.  

Advances in experimental brain science show [13] that cognition, memory, at-
tention processes are the results of cooperative chaotic dynamics of brain cortex 
elements (neurons).  Thus the design of artificial dynamic neural networks on the 
base of neurobiological prototype seems to be the right direction of the search for 
innovative clustering techniques. Computer science development predetermined 
promising possibilities of computer modelling. It became possible to study com-
plex nonlinear systems. Great evidence for rich behaviour of artificial chaotic 
systems was accumulated and thus chaos theory came into being [23, 44, 54]. 
Dynamics exponential unpredictability of chaotic systems, their extreme instabil-
ity generates variety of system’s possible states that can help us to describe all the 
multiformity of our planet. 

Latest promising results in the field of genetic engineering together with wide 
accumulation of experimental data on brain dynamics obtained by means of mod-
ern techniques in noninvasive supervision over brain functioning [62, 66] ex-
tended greatly the knowledge on cortex activities. High performance computing 
makes possible to model and minutely examine memory and behavioral processes 
that are accomplished by cells. A lot of research activities deal with estimation of 
chemical connection concentrations and potential levels that indicate different 
states of neural systems. It is worth mentioning that equation that govern neuron 
functioning was deduced in the late 1940’s. It would seem that having knowledge 
on the structure and properties of basic construction element it is possible to ex-
tend this knowledge to real-life intelligent system. However time passed but things 
are nearly right where they started. Only recently were obtained results on rat 
brain modeling, cultivation of biological neurons on substrates (without holistic 
vision on future applications of electric current effects). It’s time to absorb know-
ledge from much broader set of areas than previously because wide knowledge 
about micro-level functioning seldom leads to understanding a system as a whole 
entity. Scaling without taking into account synergetic effects isn’t much helpful in 
getting the big picture [17, 22, 45, 51].  

Intensive computer development substantially influenced directions within ar-
tificial intelligence field.  Together with obvious valuable contribution to our opi-
nion there appeared an undesirable extensive search component when approx-
imately right solutions are simply looked through. At the same time in [1, 65] is 
discussed the ineffectiveness of NP-complete problem solution by means of clas-
sical computer. Thus a lot of time is spent on data gatherings and search proce-
dures (genetic algorithms, evolutionary computations, etc.) and in the end solu-
tions hardly related to intelligent ones are obtained. It seems that research focus 
shifts more and more to empirical studies via computer modeling of different hy-
brid models and algorithms [43]. Theoretical generalization and harmonization of 
scientific results in adjacent areas somehow pale into insignificance. 

Incoordination and fragmentation of knowledge is also on the agenda. Know-
ledge integration in holistic well-composed theory is under consideration in many 
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research papers [22, 64]. Answering the question about the paradigm that can stick 
together multi-level and multi-aspect information about such complex system as 
brain push the mind to synergetics. Synergetics is a holistic science that explains 
formation and self-organization of patterns and structures in open systems. Incor-
porating nonlinear dynamics into artificial intelligence field is rather natural as it 
is proved that brain is first of all a dynamic system.  

It is assumed that development of full-fledged artificial intelligence theory 
seems to be impossible without knowledge from physics and chemistry, medicine 
and  biology [16, 19, 30]. Many scientists working in neuroinformatics area have 
their major  mostly in physics and chemistry. For example such approach as cy-
bernetic physics  focuses on the idea that a lot of cybernetic systems can’t be in-
vestigated without physical analogues. It is important to stress that extent of 
knowledge aggregation has increased greatly since last decade and thus we face 
the importance to acquire more global development skills. 

From another point of view astonishing growth of computing power would 
hardly help with intelligent problems solution as brain frequencies are incommen-
surably smaller in comparison to computer processor units (CPU) frequencies. 
CPUs are oriented to deal with algebraic well-formalized data while brain operates 
mainly with imprecise, incomplete, implicit patterns and «calculates» them ap-
proximately before conscience starts formulating its logical findings. Neurophysi-
ologists proved the fact that discovery moments happen earlier than awareness, 
voicing out or accomplishment phases take place. 

So the dilemma sounds like this: at what extent we should fix our efforts on bi-
ological processes imitation and at the same time what level of abstraction from 
origin prototype is bearable?  

There is a huge amount of isolated single-purpose models and methods [38, 53] that 
are effective in narrowly defined problems. But it is hard to consider them separately 
as basic ideas for general theory. Thus there are a lot of methods, great theoretical 
contributions and empirical materials deeply worked through but general picture hap-
pens to be rather messy. Like in the old story about six wise men from Indostan who 
recognized parts of a big picture (the Elephant) with blind eyes. 

It is obvious that claim about unprecedented attempt to combine all existing ar-
tificial intelligence models into the unified super one wouldn’t give a positive 
effect. And here arises more particular research question about most perspective 
trends from behalf of Turing’s scientific fields and development of general AI 
theory.  

3.1   Bio-inspired Methods and Transdisciplinarity 

For centuries humans admire animate nature and accessories applied by life crea-
tures to fulfil various functions. At first it was just formal resemblance and 
mechanistic imitation, then along with sciences maturity the focus shifted on inner 
construction of living systems.  

However due to the complexity of a living system it is reproduced partly. Sepa-
rate subsystems embody limited set of functions and principals. Just independently 
showed up several AI directions: artificial neural networks (attempts to mimic 
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neural system), genetic algorithms (data transfer by means of inheritance), artifi-
cial immune systems (partial reproduction of immune system), evolutionary mod-
elling (imitation of evolution development principals). The idea of natural self-
organization within individuals is the basis for swarm and ant colony technologies 
[11, 24]. It is important to note that nearly all mentioned technologies deal with 
distributed parallel data processing thanks to numerous simple processing units 
comprised into self-organized networks that adapt to ever-changing environment 
(input information).  

Of course there exit substantial peculiarities in the types of local cooperation 
and global behaviour mechanisms predetermined by system’s goal (as it is well-
known systems demonstrate not only interconnectivity of elements but their ability 
to serve one purpose).   

Evolution of society and new computer technologies have in common the idea 
of small worlds modelling. Communities of various natures (interests clubs, com-
puter clusters, marketing networks, etc.) speak up for strong local linkage of units 
and weak connectivity outward nearest neighbours (nodes of the net).   

Recent research on brain activities gives evidence for its cluster organization 
[33]. So we can generalize that small-world models reflect both animate nature 
and abiocoen. Originally the notion bio-inspired comprised problem solving ap-
proaches borrowed from living systems but nowadays it is understood more 
widely. Results in the field of chaos theory and nonlinear dynamics contribute 
greatly to bio-inspired methodology as soon as nonlinear chaotic models find their 
application in data mining. We propose to classify bio-inspired methods via fol-
lowing issues:  

• structure and connection: neural networks (macro level) and  artificial immune 
systems (micro level);  

• collective behaviour : ant-based networks, swarm methods, multi agent sys-
tems, small-world networks;  

• evolution and selection: genetic algorithm, evolutionary programming, evolu-
tionary modelling and evolutionary computations;  

• linguistics: fuzzy logic. 

To step forward with generalization one can note that nearly all mentioned meth-
ods realize collective data processing through adaptation to external environment. 
Exception is fuzzy logic that is more relative to classical mathematics (interval 
logic reflects the diversity of natural language descriptions). 

It is worth noticing that in last Turing’s works connectionist AI methods in the 
form of specific neural networks development were under consideration. His pa-
pers are more and more often referred in respect to advances not only in Symbolic 
AI but also connectionist direction. What is more interesting he also introduced 
ideas to apply evolutionary mechanisms to estimate system’s parameters.  

Recent modifications of bio-inspired methods are developed as heuristics. The 
desire to enlarge the abilities of intellectual systems is represented by a separate 
knowledge domain within artificial intelligence field revealed – soft computing 
[14, 37, 46]. Soft computing considers various combinations of bio-inspired me-
thods. As a result there appeared such hybrid methods like: neural-fuzzy methods, 
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genetic algorithms with elements of fuzzy logic, genetic algorithms. It is important 
to note that the basics of genetic algorithms were also developed by А.Turing 
[60]. Neural networks apparatus was also extended with fuzzy logic with genetic 
algorithm constituent, fuzzy systems with neural network constituent, etc.  One of 
the main ideas of such combinations is to obtain flexible tool that allow to solve 
complex problems and to compensate drawbacks of one approach by means of 
cooperation with another. 

For example, fuzzy logic and neural network combination provides learning ab-
ilities and at the same time formalize knowledge due to fuzzy logic element [37]. 
Fuzzy logic is applied as soon as we want to add some flexibility to a data mining 
technique. One of the main drawbacks of all fuzzy systems are absence of learning 
capabilities, absence of parallel distributing processing and what is more critical 
the rely on expert’s opinions when membership functions are tuned. Besides input 
parameters sensitivity almost all methods suffer from dimension curse and remain 
to be resource consuming. The efficiency of these methods depends greatly on the 
parallel processing hardware that simulate processing units: neurons of neural 
networks, lymphocyte in artificial immune systems,  ants and swarms, agents in 
multi-agent systems, nodes in small-world networks, chromosomes in genetic 
algorithms, genetic programming, genetic modeling. 

In spite of the fact that origin of artificial intelligence is already bio-inspired the 
approximation to biological prototype can differ. More and more attention is given 
to bio-inspired neural networks with neurons similar to nerve cells. Classical neur-
al network models are comprised of formal neurons. Recent investigations speak 
for the sputter out phase in neural network models design as the solutions im-
provements remain to be insufficient in comparison to huge efforts spent in this 
direction. Most likely detailed reproduction of the processes occurring in separate 
nerve cells without understanding the principals of mutual interactions will result 
with analogous effect. Chemical and physical reaction imitations were originally 
considered to be more perspective in biological applications rather than in artifi-
cial intelligence problems. From the AI side hardware implementation on appro-
priate organic basis or neural tissue allows transformation of intelligent system 
appearance but does not really add to its data processing abilities. 

Obtained results supplement our knowledge on multiform behavior of biologic 
systems but simple reproduction of neuron ensembles characteristics for partial 
regimes is hardly to be generalized. It is underlined that improvement of one part 
of parameters negatively influence on another one previously well-tuned. Bottom-
up design starting from the lowest level most likely will not result with emergence 
of system with new qualities. Synergy effects occur mainly when self-organization 
principals underlie the system [22, 30, 64]. 

We can benefit from synergetic effects if consider not only collective dynamics 
but also physical and chemical nature of construction elements – nonlinear oscilla-
tors with chaotic dynamics. As it is shown in numerous investigations on nonlin-
ear dynamics: the more is the problem complexity the more complex should be the 
system dynamics. All over the world investigations on molecular level take place 
to get new materials, to find new medicine, to solve pattern recognition problem, 
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etc. Most of them consume knowledge from adjacent disciplines: biology, chemis-
try, math, informatics, nonlinear dynamics, and synergetics. 

3.2   Dynamic and Nonlinear Artificial Intelligence  

Special hopes rest on dynamic neural networks, also called recurrent neural net-
works or feedback networks. In spite of input stimuli processing previous systems 
dynamics is analyzed. One of the first models in this class Hopfield’s model man-
ages to mimic processes of associative memory. The results fully correlate to neu-
rophysiology evidence about close connection between memory and recognition 
activities.  However the structure of Hopfield network along with doubtless advan-
tages has a lot of application limitations [25]. Existing model upgrades aim to 
overcome diverse difficulties but in the meantime the answer to all related ques-
tions is still out there. Special models of Elman and Jordan neural networks are 
applicable to separate class of tasks but suffer from limitations and do not bring 
closer recognition universality [25]. 

The amount of publications that link Turing ideas to modern trends in Connec-
tionist AI increased greatly through recent decades. Formerly symbolic AI and 
philosophy of logic were widely recognized as the main directions of his contribu-
tions. However today one can see how versatile and comprehensive the expertise 
areas of this remarkable Scientist are.   

Separate class of dynamic neural networks comprise reservoir computing [39, 
41]. The origins of such systems can be found among neural networks with ran-
dom structure capable to generate promising complex dynamics. More detailed 
consideration of these models will be given in following section. 

Independently from each other new structures were introduced by Maas and 
Jager in [31]. Both models are comprised by a random neural network and an 
observer. To the point is the remark that development of neural networks with 
random structure was originally proposed by A. Turing [56, 63]. 

Maas neural network is formed of spike neurons (Liquid State Machines, LSM) 
while Jager neural network (Echo State Networks, ESN) consists of formal neu-
rons with sigmoid transfer function. These two models gave birth to reservoir 
computing. In these models the principal of complexity commensurability be-
tween a problem and a solving technique is fulfilled. The evolution curve of mem-
ory investigations can be represented like this: 

• First stage. Static neural networks with patterns stored by means of weight 
assignment [25].  

• Second stage. Hopfield and Haken neural networks with images in memory that 
correspond to fix-point attractors in the phase space [22, 25]. 

• Third stage. Dynamic neural networks with closed trajectories forming cycle 
attractors that correspond to patterns the system converges to [65]. 

• Current stage. Neural networks with unstable dynamics characterized by set of 
trajectories scaled in the phase space to a location with infinite number of 
switching states [6, 40]. 
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When speaking about reservoir computing one of the main difficulties consist in 
no guarantees whether system would produce the required dynamics. The experi-
ments with LSM and ESN reveal two issues. First of all, we need a wide variety of 
systems states in order to keep it unstable. Second of all, input stimuli should not 
transfer system into turbulent regime, because in this case it is impossible to iden-
tify desired signal. In terms of Prigogine [51] the system should balance between 
order and chaos. In it was discovered that the cutting edge between chaos and 
order forms not a strict line but an interval of systems parameters values. Analysis 
of papers on reservoir computing together with own experiments lead to several 
conclusions.   

First, estimation of proper value of neurons number is still on the agenda.  The idea 
that small number of neurons is not enough to generalize knowledge is supported by 
common sense and strong proof given in. Adding extra neurons (degrees of freedom) 
in feed-forward neuron network often results with memorizing but not generalization 
of input patterns. Sometimes pseudo laws in datasets can be revealed. In reservoir 
networks additional neurons lead to system’s transfer to an ignorance regime when no 
reactions occur in respond to input signals. This can be interpreted as persistence on 
systems own opinion that can’t be changed by outer world. Lack of neurons (like in 
feed-forward) ends up with insufficient number of freedom dimensions when different 
patterns are recognized in the same way instead of being distinguished. To train the 
observer different techniques are applied [39].  

Second, there is no common approach to observer design. Analysis result al-
lows to conclude that simplified model of observer prevents from taking advan-
tage of reservoir rich capacities. Some surprising advances demonstrate that the 
observer constituent produce better results if no relation to reservoir is provided. 
The solution quality depends greatly on the observer skills to interpret reservoir 
dynamics. As suitable analogy student-teacher interaction can be considered with 
the aim to evaluate student’s residual knowledge. It is inappropriate way to use 
feed-forward network because right answers in this case are hardly formalized and 
can be expressed in many ways. Different right answers variations are comprised 
within instructor’s knowledge and experience. If we step back to observer - a ra-
ther complex structure should be designed to analyze reservoir output in order to 
create an adequate interpretation.  

Third, there exists a great uncertainty about reservoir parameters (especially ac-
tual for Maas bio-inspired model). Empiric (intuitive) parameter assignment is 
done on the basis of preliminary experiments series. There is strong proof that 
Turing machine can be realized on reservoir neural network [39, 40] but wide 
practical application of this approach is still the matter of future investigations. 

4   Chaos and Artificial Intelligence  

Truly intelligent systems demonstrate the adequate decision making in previously 
unseen environment.  Chaotic systems are hard to control because of unpredictable 
unstable dynamics. Thus chaotic issues could fill the missing point in artificial 
intelligence. As far back as in 1950 A. Turing marked importance of unexpected 
elements in human behavior [60].   
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To develop a network with complex behavior basic transfer functions in recur-
rent neural networks are replaced with chaotic maps [29]. Application of functions 
that provide deterministic chaos corresponds with the current trend to combine 
linkage complexity concept with gradual complication of processing units. The 
most applicable is one-dimension logistic map [48] that allows to control chaos by 
means of one parameter.   

Fundamental research on coupled map lattices is conducted in the field of mo-
lecular physics and nonlinear dynamics. Globally and locally coupled maps attract 
attention due to self-organization phenomena they produce. Research results can 
be applied to neural network design to solve one of the most complex pattern rec-
ognition problem – clustering [5, 6]. It is important to stress that incorporation of 
input data in chaos-driven systems is one of the main success points. The devel-
opment of unified approach to AI requires keeping the system in harmony with 
input changes. Isolation from the environment is not effective from the point of 
systems results scaling in upstream applications. This idea is widely discussed in 
[49] where the role of chaos intelligent agent is considered. Most likely that such 
holistic approach will help to formalize at last such complex notion as context. 

During the last decades the emergence of collective dynamics in large networks 
of coupled units has been investigated mostly in physics, chemistry, biology, and 
ecology [48]. The synchronization effects in systems of coupled oscillators 
nowadays provide a unifying framework for different phenomena observed in 
nature. Complex networks have recently provided a challenging framework for the 
study of synchronization among dynamic units. Synchronization is considered on 
the edge of interplay between overall topology complexity and local dynamical 
properties of the coupled units. A key problem is to assess conditions that 
guarantee the stability of the synchronous behavior for a concrete network 
topology (it can vary e.g. in the form of coupling configuration). 

The complexity of interconnected chaotic systems comes from different direc-
tions:  

• nonlinear dynamics of elements; 
• exponential dependence on initial conditions;  
• unpredictable dependence on adjacent systems dynamics; 
• insufficient mathematical apparatus that help to describe multidimensional 

nonlinear systems;  
• computer modelling methodology (the calculations precision starts to be critical 

in terms of forecasting the long term behaviour of nonlinear systems). 

These directions focus mainly on the analysis of interdependent pairs of chaotic 
oscillators, or on the overall dynamics of oscillators ensemble with homogeneous 
type of linkage [48]. 

As it is hard to find formal mathematical solution for the system of 
multidimensional difference equations we can try to obtain the solution by means 
of computer programming and visualizing of the results. Rapid development of 
computer technologies extends the abilities of scientist to find answers by means 
of computer modeling techniques.  
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4.1   Chaotic Neural Network Basics 

Chaotic neural networks seized attention of scientists from various points of view 
due to the amazing effects they produce. Phenomenology of structure formation in 
nature inspired scholars to mimic complex and with the same time quasi-optimal 
solutions to generate artificial systems with similar capabilities.   One of the do-
minant ways to provide collective dynamics of previously unordered elements  is 
self-synchronization that happens without any outside enforcement. 

The origins of chaotic neural network can be found in the works of Angelini 
and his colleagues who proposed the idea to apply self-organization effects occur-
ring in chaotic map lattices to solve clustering problems. 

To ensure distributed data processing it was proposed to consider each 
processing block as a neuron with nonlinear transfer function namely logistic map. 
The phenomenological behavior of globally coupled logistic maps organized in 
chains or having random linkage was investigated in detail by K. Kaneko. 

Examination of system dynamics via clustering wave effects and map lattices 
allowed to articulate the peculiarities of CNN functioning regimes. 

Primary results on modeling high dimensional chaotic map lattices were pub-
lished by K. Kaneko [35]. These works showed up the fact that globally coupled 
chaotic map lattices exhibit formation of ensembles synchronously oscillating 
elements. These ensembles were called clusters serving as system’s attractors. If 
there appear to be several clusters then the system is characterized by multistabili-
ty, when several attractors coexist in the phase space at the same parameters val-
ues. 

To apply oscillatory clustering phenomenon L. Angelini and his colleagues 
proposed [2] to hand on information about input dataset to logistic map network 
by means of inhomogeneous weights assignment 
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dean distance between neurons i and j, а – local scale, depending on k-nearest 
neighbors. The value of a is fixed as the average distance of k-nearest neighbor 
pairs of points in the whole system.  So we can see that here the authors used mod-
ified Euclidean metric.  

Each neuron is responsible for one object in the dataset, but the image itself is 
not given to inputs, because CNN does not have classical inputs – it is recurrent 
neural network with one layer of N neurons. Instead, the image (input dataset) 
predetermines the strength of neurons interactions (as at Hopfield’s network [25]).  

As long as 0=iid  ( Ni ,1= ), then there is no loops in Angelini’s model. Evo-

lution of each neuron is governed by  
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state is dependent on the state of all other elements. In [35] the system’s function-
ing is divided into two parts: transition regime and stationary regime. The statio-
nary regime of difference equation system (2) corresponds to a macroscopic at-
tractor which is independent of the initial conditions. During transition period Tp 
the system converges to the macroscopic attractor. Stationary regime is characte-

rized by gathering statistics about dynamics of each variable yi ( Ni ,1= ).  

4.2   Clustering Challenges 

Clustering problem is one of the most challenging in modern artificial intelligence 
as it highly complex and resource consuming. The division of input data set into 
subsets in most cases is interpreted as optimization task with goal function deter-
mined by inter and inner cluster distances. This approach obliges the user to give a 
priori information about priorities. What is more important, compactness of clus-
ters and their diversity in feature space, or inner cluster density and small numbers 
of clusters? The formalization process of clustering problems in terms of optimi-
zation procedures and advantages of bio-inspired methods is one of the edge one 
in data mining [24]. 

During the last decade three curses formed an alliance: great volume of infor-
mation, its increasing variety and velocity of data processing. These curses prede-
termine strict quality requirements to data mining systems. The costs of wrong 
decisions increase exponentially as the environment changes rapidly. Under this 
condition the development of automatic clustering systems seems to be one of the 
most pressing problems. At the moment the greater part of existing clustering 
systems are semiautomatic. And the key reason for this is the multiformity of da-
tasets that cannot be formalized in one unified way.  

The set of elements division into non-overlapping groups (clusters) is provided 
via criterion of similarity that predetermines the result. In terms of neural networks 
it is solved by means of unsupervised learning or learning without a teacher [20]. 
This term means that system should learn by itself to extract the solution from input 
dataset without external aid. Thus the division must be provided automatically.  

To solve clustering problem a lot of clustering techniques were developed to 
reveal most appropriate division of objects in the input dataset in terms of concrete 
measures of similarity (metrics). There are two types of metrics [46]: type 1 - 
similarity measure between objects within a cluster (euclidean, cityblock, Mahala-
nobis, Minkowski, cosine, Chebyshev, supremum norm, etc.); type 2 - similarity 
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(or dissimilarity) measure between the clusters themselves (single linkage, com-
plete linkage, median clustering, centroid clustering, Ward’s method, statistical 
clustering, etc.). Numerous clustering techniques are named according to the con-
crete metric or group of metrics. 

The similarity measure depends greatly on mutual disposition of elements in 
the input dataset. If we have no a priori information about the type of groups (el-
lipsoidal, ball-shaped, compact, scattered due to some distribution or just chaoti-
cally, and this list is endless) then the probability of erroneous measure choice is 
very high [36]. If our hypothesis about the clusters interrelations or their form or 
their density does not fulfill then the application of clustering method to this data-
set will perform erroneous results.  

To overcome the data uncertainty about possible clusters interrelations usually 
an expert estimations are used to decide on the choice of clustering technique or 
interpret clusterization results. Without an expert application of a method to con-
crete dataset (when there is no a priori information available) each time is a rou-
lette game. This is a serious obstacle on the way to automatic clustering. 

To summarize there are three targets to be hit by one clustering technique: it 
should be fast in terms of calculations, independent to the information about num-
ber and topology of clusters, flexible to reveal inner structure of input dataset.  So 
the main question is how to accomplish all this issues in one method. 

5   Evolution of CNN 

Among recent advances in clustering a particular niche is occupied by chaotic 
neural networks. It is important to focus that complexity of these systems prede-
termines consecutive knowledge utilization from different scientific domains in 
order to meet clustering targets. The example of this involvement is considered 
below in reference to our previous research results. 

5.1   Synchronization Phenomenon and Oscillatory Clusters 

Utilization of information theory results together with statistical apparatus happen 
to be insufficient to analyze complex CNN dynamics. To investigate CNN beha-
vior results from oscillation theory, synchronization theory, chaos theory and non-
linear dynamics were applied. This synergy of approaches gave the chance to 
discover new synchronization type – fragmentary synchronization. Synchroniza-
tion as a universal concept is thoroughly discussed in literature [48]. One of the 
most important generalizations of inner synchronization effects are the conditions 
that cause inner synchronous motions among groups of nonlinear: 

• large amount of globally coupled nonlinear elements; 
• weak coupling strength to exclude the possibility of several elements to sup-

press individual dynamics of all others; 
• instability dynamics of each nonlinear element; 
• feedbacks to provide own element’s dynamics tuning to the neighbors’ fluctuations.  
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The main focus of research in terms of synchronization is on the combination of 
systems parameters that predetermine the appearance of different synchronization 
types corresponding to functioning regimes. In accordance with [47, 48] in the 
ensembles of poorly connected identical neurons emerge synchronization of vari-
ous types, depending on the system’s parameter combination. We introduce these 
types on the example of CNN: 

• complete synchronization; 
• imphase and phase synchronization; 
• lag synchronization (time series coincide but with some delay in time); 
• generalized synchronization. 

Besides these well-known synchronization types we found out CNN to produce 
new synchronization type – we named it fragmentary synchronization. It is charac-
terized by different oscillatory melodies-fragments. Synchronization is no more 
about comparing separate trajectories, but about integrative consideration of clus-
ter’s music of fragments.  

The dynamics of a separate neuron output highly depends on initial conditions, 
but the most fruitful about CNN is its ability to form stable (independent of initial 
conditions) synchronous clusters in terms of joint dynamics of neurons. Stable 
mutual synchronization of neurons (points) within each cluster in terms of CNN 
corresponds to the macroscopic attractor, when we receive indifferent to initial 
conditions oscillatory clusters, though instant outputs of neurons differ greatly. 
The complexity of mutual oscillations depends on the complexity of input image 
[5, 8]. The system is stable in terms of mutual synchronous dynamics of outputs 
within time but not in terms of instant values of separate neurons.  

5.2   Structure Complexity and Delaunay Triangulation 

At present in general case solving high dimension system of difference equation 
does not always succeed. The solution is frequently obtained by means of comput-
er modeling. Though this process can be automated at great extent nevertheless it 
re-quires large computational resources and expert assistance at the final stage of 
CNN parameters definition. Number of clusters and their structure constancy that 
is independent from initial conditions serve as a criterion for unique and proper 
clustering result. 

A priori uncertainty about amount and topology of clusters now is replaced by 
un-certainty about CNN parameters. To obtain clustering results of good quality 
was applied apparatus from geometry, namely topology theory. 

In CNN model weights matrix W is calculated under the condition that pre-
viously was determined local scale a on the base of a priori unknown value of k-
nearest neighbors. Generalization of classical clustering methods brings to a con-
clusion that only geometrical criterion of least distances [36, 46] values does not 
always provide proper clustering results especially if the assumption about the 
metric happens to be wrong.  To fix the parameters that ensure stable clustering 
results CNN has been run over and over again from different initial conditions and 
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various k-nearest neighbor values. To reduce number of frequentative experiments 
we proposed to calculate weights coefficients using Delaunay triangulation [50].  

Triangulation is a set of lines connecting each point to its natural neighbors 
from every quarter. These lines form a loop-free graph with triangles as compo-
nent parts. There are many ways to find triangulation. If for each triangle is true 
the condition that the unique circle circumscribed about the triangle contains no 
data points then we deal with Delaunay triangulation. Delaunay triangulation [50] 
gives us all the nearest neighbors of each point from all directions. The value of a 
is now fixed as the average distance of Delaunay-nearest neighbor pairs of points 
in the whole system. Thus we form the proper mean field that contributes greatly 
to convergence of CNN dynamics to macroscopic attractor. 

5.3   Clustering and Classification by CNN 

To extend functionality of CNN it was modified to solve both clustering and clas-
sification problems. Solutions of complex pattern recognition problems deal with 
clustering and classification processes. When there is no information about typical 
representatives of classes (or group labels assigned to objects) clustering is prelim-
inary accomplished. There are two main approaches to use clustering results.  

First one considers clustering as the mechanism to get group labels and clus-
tered image becomes training data for classification algorithms that either con-
structs classifier (discriminant rule) in the form of surfaces or class centers. (In 
case of unknown number of clusters there is the need to combine centers of clus-
ters to reflect more closely real number of groups in the input dataset). This ap-
proach in fact doubles classification time.  

Second approach generalize clustering results in the form of computing centers 
of clusters with further comparison of new object with centers of clusters as their 
typical representatives in order to classify new object. Thus classification process 
can be realized in two different ways: classification with fixed classes and classifi-
cation with changing classes (dynamic clustering). If a new object belongs to a 
class that previously was not recognized wrong classification take place, as pattern 
recognition system can’t generate the answer “I don’t know” without fuzzification 
[46]. Thus modern pattern recognition system somehow should combine both 
classification and clustering abilities to reduce the computational complexity and 
to increase clustering and classification quality. 

It was shown in [9] that CNN is capable to provide not only clustering but clas-
sification solutions in parallel which is more efficient in comparison to Kohonen’s 
network, where objects can be classified only consequently. A lot of existing clus-
tering techniques do not support incremental clustering. However it is possible via 
CNN application to form new clusters without recalculation of previously revealed 
clusters and thus accomplish clustering-on-the-fly. 

The performance of new clustering technique was compared to other methods. 
Overwhelming majority of clustering techniques use geometric interpretation of 
objects similarity measure [20, 36, 46, 61]. The title of a method depends either  
on the metric name or combination of metrics. The necessity to apply several me-
trics comes from two types of measures: inner cluster distance used to estimate 
similarity between objects within a cluster and inter cluster distance to calculate 
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dissimilarity of objects from different clusters. In case of no a priori information 
about input dataset to prove or reject each of the hypothesis the final decision is 
made by an expert. When feature space is multidimensional and there is no a pri-
ori information about cluster topology it is appropriate to choose the clustering 
answer by means of voting principle.  

In [7, 9] clustering results were produced for several problems from FCPS set 
[61] by means of 42 clustering techniques. The results were obtained for 41 com-
binations metrics combinations and k-means. Similarity measures between objects 
within a cluster (euclidean, cityblock, Mahalanobis, Minkowski, cosine, Cheby-
shev, square euclidean) and similarity measure between the clusters themselves 
(single linkage, complete linkage, median clustering, centroid clustering, average 
linkage, weighted method) were modelled. 

The results demonstrate that even for test clustering problems there does not 
exist one combination of metrics that produces best fit solutions for all considered 
input datasets simultaneously. To solve pattern recognition problems by classical 
methods a priori information about number and topology of clusters is extremely 
important. CNN is free from this disadvantage as it manages to produce 100% 
correct clustering results of problems from FCPS.  

5.4   Fractals and Oscillatory Dynamics  

The captivating interplay of oscillations within dynamical clusters that we call 
fragmentary synchronization could hardly be interpreted somehow in a numerical 
way. Other problem that seemed to have no answer is that the dependence be-
tween clustering quality and the size of outputs statistics is not obvious. The ex-
tensive growth of CNN states to be analysed sometimes is not successful in terms 
of clustering quality and predetermines even worse results than those obtained on 
a smaller dataset. Such observations force us to focus mainly on synchronization 
of time-series in order to reveal some order in the macroscopic attractor, com-
prised by temporal sequences. To indicate the existence of macroscopic attractor 
the coincidence of clustering results (synchronous dynamical clusters) is obtained 
for different initial conditions.  

As it is resource consuming to reveal fragmentary clusters the oscillatory dy-
namics of CNN needs to be considered in detail. Under the notion of fractal coex-
ists a wide set of structures, both of spatial and temporal nature that demonstrate 
self-similarity. The very word fractal is formed from latin «fractus» which means to 
consist of fragments.  Broad definition tells that fractal is the structure consisted of 
the parts which are similar the whole [42]. In the case of CNN it is more applicable 
to say that fractals are signals that display scale-invariant or self-similar behaviour.   

In terms of recurrent behaviour of CNN outputs we consider the joint dynamics 
of neurons as waves of complex form. After careful consideration we noticed that 
there exist quasi similar fragments not only in terms of horizontal lines that com-
prise melodies, but repeating waves in the overall chaotic neural network [10]. 

This temporal similarity leads us to the hypothesis of oscillations fractal struc-
ture that was proved in [10]. The structure of fragments and overall dynamics  
of CNN was investigated by means of recurrence and cross-recurrence plots  
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visualization techniques. Understanding the mechanism of fragments interplay 
(periodical vertical similarity) along with oscillatory clusters interplay (horizontal 
dissimilarity of cluster’s melodies) is vital for discovering the low resource con-
suming algorithm of CNN outputs processing in order to translate nonlinear lan-
guage of oscillation into the language of images in data mining field (important to 
solve general clustering problem).  

New CNN features were discovered to utilize benefits of chaotic effects. In 
some cases they allow to simplify analysis of CNN results. More over fractal na-
ture of generated by CNN chaotic codes predetermines fault tolerance of proposed 
clustering technique.  Even serious losses in CNN statistics may not influence 
clustering quality. 

Together with fractal structures the role of different chaotic maps (transfer 
functions) was investigated in [9]. The word chaos is naturally associated with 
extremely unpredictable systems dynamics, but not with the stable, and recurrent 
reproduction of the same results. And in case of clustering problems there should 
be generated the only solution every time the method is applied. The chaotic dy-
namic of CNN is guaranteed by logistic map. A hypothesis is formulated that 
chaos in CNN dynamics is important only to ensure the sufficient level of instabil-
ity to make the emergence of self-organizing phenomenon possible. Similar clus-
tering dynamics for different chaotic maps prove the hypothesis that transfer func-
tion does not matter unless it is one-dimensional discrete chaotic map with con-
stant mean value.  

6   Chaotic Neural Network and Multidiscilinarity 

The analysis of chaotic neural networks origins and modifications foster the de-
velopment of approaches roadmap to clarify the evolution track. To solve highly 
complicated problems it is appropriate to combine achievements in nonlinear dy-
namics, self-organization theory and neural networks theory. The proposed clus-
tering technique possesses features of almost every of bio-inspired methods: 

• from small–world networks we take irregular, incomplete linkage between 
elements in (clusters are formed by nearest neighbours); 

• from ant-based networks we take parallel performance of elements (the solu-
tion is generated both by individual and collective dynamics of elements);   

• from genetic algorithms we take iterative improvement of intermediate solution  
by means of previous experience interchange (extensive search of best fit solu-
tion);  

• from fuzzy logic we take interval logic in post processing of clustering results 
(both vertical when we analyse fractal structure of system’s output dynamics 
and horizontal when time-series analysis is conducted); 

• from neural networks we take processing element with complex transfer func-
tion (logistic map) and stress that in case of new technique its dynamics can be 
interpreted as learning process;  

• from classical self-organizing maps we take k-means metric.  
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The visualization of knowledge utilization process of chaos applications to data min-
ing problems is given on Fig. 1. CNN can be considered from various perspectives: 

• from the point of nonlinear dynamics: a discrete nonlinear dynamic system that 
induced chaotic oscillations; 

• from the point of Connectionist AI: oscillatory neural network; 
• from the point of pattern recognition: a system learning without a teacher (thus 

it is possible to apply CNN to clustering problems); 
• from the point of control theory and output-input influence: recurrent system. 

 

 

Fig. 1 Evolution of chaotic neural network 

7   Turing Ideas and Hardware Implementation of CNN 

Our observation of Turing advances in different scientific fields lead us to conclu-
sion that he proceeded in both symbolic and connectionist AI directions (Fig. 2) 
[57-60]. His broad vision predetermined a lot of modern trends in AI, namely 
random neural networks, DNA computing, discrete cells modeling, chemical uni-
versal Turing machine [3, 26]. What is more important in reference to CNN im-
plementation Turing has managed to develop the mathematical basics for upcom-
ing era of chemical computers realized on the basis of reaction-diffusion media. 
On the intersection of symbolic and connectionist AI among Turing interest is 
found one of the most perspective direction – biochemistry. And the reason for 
that is the chaotic nature of processes in reaction-diffusion systems so attractive 
for hardware implementation of artificial intelligent systems.   Open questions 
CNN hardware implementation can be resolved by application of reaction-
diffusion models proposed by Alan Turing. The value of Turing works for devel-
opment of modern AI together with highly-performance computation is found in 
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new computational paradigm – DNA computing [52]. Turing’s developments are 
also actual in evolutionary computation and cellular interactions applied to model 
artificial/natural neuron cells and complex biological systems (models of multi-
local interactions). 

The origins of brain functioning, spots on animals fell have common features 
and refer to self-organization – one of the main phenomenon of Turing’s attention. 
Thus bifurcation modeling (namely Turing bifurcation) is important for further AI 
development. Fundamental principle of chaos from order emergence together with 
boundless opportunities of chaotic systems applications open new perspectives for 
AI researches. 

 

 

Fig. 2 Turing’s Way in artificial intelligence 

We can benefit from synergetic effects if consider not only collective dynamics 
but also physical and chemical nature of construction elements – nonlinear oscilla-
tors with chaotic dynamics.  

8   Conclusion  

This paper analyses research trends and prospects of improvement in artificial 
intelligence (AI) methodology.  Under the transformation pressure the role of 
disciplines intersections changes in order to attain a quantum leap in intelligent 
systems development. Though a lot of promising results were published regarding 
complex intelligent problems the holistic findings on true intelligence are still a 
matter of future research. An attempt was undertaken to rise up over multiformity 
of AI models and methods in order to skip exhaustive considerations and focus on 
the essence of AI paradigms.  
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Connectionist AI succeed greatly in the growth of multidisciplinary intersec-

tions. It combines not only different sections of mathematics (formal logic, infe-
rence theory, probability theory, opportunity theory, automata theory) but also 
methods from mathematical physics, biophysics, neurobiology, etc. This trend is 
caused by biological nature of artificial intelligence. Thus brain research results 
should be involved into consideration. 

The genius guess about the role of elements with random components was giv-
en the evidence in very different applications (randomized methods and probabil-
istic search). The digression from original deterministic way of functioning to 
foster unpredictable behavior is consonant to human being nature. Thus investiga-
tions of approaches that add digression and facilitate uncommon decision making 
are very relevant today. One of the possible ways is application of nonlinear ele-
ments with chaotic dynamics. As it is shown in many papers these systems pro-
duce complex functioning regimes with new system states. A. Turing’s research 
achievements in many scientific fields can serve as a required knowledge basis for 
further development of next generation AI systems. 

Intellectual systems development specified to solve certain class of problems 
should be obviously accomplished by means of approved methods or their hybrid 
modifications. Detailed reproduction of separate neuron cell ensembles in attempt 
to investigate some cortex domain is rational in neurophysiology models. Unified 
approach to development of artificial intelligent systems with quality commensur-
able to natural neural systems to our opinion should be based on distributed en-
sembles of coupled maps. This direction of research is attractive to combine ideas 
of agent theory, neural network theory, nonlinear dynamics, synchronization 
theory, formal logics. Ample opportunities to apply complex synergetic effects to 
deal with uncertainty not only in technical but also in biological, economic, geo-
political systems foster an idea that in the nearest future nonlinear dynamics and 
chaos will become the most demanded apparatus to understand and model cogni-
tion processes.  

References 

1. Aaronson, S.: The Limits of Quantum Computers. Scientific American 298/3(50-7), 
36–8733 (2008) 

2. Angelini, L., Carlo, F., Marangi, C., Pellicoro, M., Nardullia, M., Stramaglia, S.: Clus-
tering data by inhomogeneous chaotic map lattices. Phys. Rev. Lett. (85), 78–102 
(2000) 

3. Arbib, M.: Turing Machines, Finite Automata and Neural Nets. Journal of the ACM 8, 
467–475 (1961) 

4. Baum, S.D., Goertzel, B., Goertzel, T.: How long until human-level AI? Results from 
an expert assessment. Technological Forecasting & Social Change 78, 185–195 (2011) 

5. Benderskaya, E.N., Zhukova, S.V.: Clustering by Chaotic Neural Networks with Mean 
Field Calculated Via Delaunay Triangulation. In: Corchado, E., Abraham, A., Pedrycz, 
W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 408–416. Springer, Heidelberg 
(2008) 



Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 341
 

6. Benderskaya, E.N., Zhukova, S.V.: Fragmentary Synchronization in Chaotic Neural 
Network and Data Mining. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. 
(eds.) HAIS 2009. LNCS, vol. 5572, pp. 319–326. Springer, Heidelberg (2009) 

7. Benderskaya, E.N., Zhukova, S.V.: Dynamic Data Mining: Synergy of Bio-Inspired 
Clustering Methods. In: Funatsu, K. (ed.) Knowledge-Oriented Applications in Data 
Mining, pp. 398–410. InTech (2011) ISBN: 978-953-307-154-1  

8. Benderskaya, E.N., Zhukova, S.V.: Self-organized Clustering and Classification: A 
Unified Approach via Distributed Chaotic Computing. In: Abraham, A., Corchado, 
J.M., González, S.R., De Paz Santana, J.F. (eds.) International Symposium on Distri-
buted Computing and Artificial Intelligence. AISC, vol. 91, pp. 423–431. Springer, 
Heidelberg (2011) 

9. Benderskaya, E.N., Zhukova, S.V.: Oscillatory Chaotic Neural Network as a Hybrid 
System for Pattern Recognition. In: Proceedings of IEEE Workshop on Hybrid Intelli-
gent Models and Applications, Paris, France, April 10-15, pp. 39–45 (2011) 

10. Benderskaya, E.N., Zhukova, S.V.: Chaotic Clustering: Fragmentary Synchronization 
of Fractal Waves. In: Esteban, T.-C. (ed.) Chaotic Systems, pp. 187–202. InTech 
(2011) ISBN: 978-953-307-564-8 

11. Blum, C., Merkle, D.: Swarm Intelligence: Introduction and Applications. Springer 
(2009) ISBN 978-3642093432 

12. Bobrow, D.G., Brady, M.: Artificial Intelligence 40 years later. Artificial Intelli-
gence 103, 1–4 (1998) 

13. Borisyuk, R.M., Borisyuk, G.N., Kazanovich, Y.B.: The synchronization principle in 
modelling of binding and attention. Membrane & Cell Biology 11(6), 753–761 (1998) 

14. Boryczka, U.: Finding groups in data: Cluster analysis with ants. Applied Soft Compu-
ting (9), 61–70 (2009) 

15. Chinchuluun, A., Pardalos, M.P., Migdalas, A., Pitsoulis, L.: Pareto Optimality. Game 
Theory and Equilibria. In: SOIA, Springer (2008) 

16. Cooper, S.B.: Emergence as a computability-theoretic phenomenon. Applied Mathe-
matics and Computation 215, 1351–1360 (2009) 

17. Cristianini, N.: Are we still there? Neural Networks 23, 466–470 (2010) 
18. Delvenne, J.: What is a universal computing machine? Applied Mathematics and 

Computation 215, 1368–1374 (2009) 
19. Diller, A.: Why AI and Robotics are going nowhere fast? In: Vallverdu, J. (ed.) Think-

ing Machines and the Philosophy of Computer Science: Concepts and Principles, pp. 
328–343, Information Science Reference (2010) 

20. Dimitriadou, E., Weingessel, A., Hornik, K.: Voting-Merging: An Ensemble Method 
for Clustering. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, 
vol. 2130, pp. 217–224. Springer, Heidelberg (2001) 

21. Giarratano, J.C., Riley, G.D.: Expert Systems. Principles and Programming. Course 
Technology (2004) 

22. Haken, H.: Synergetic Computers and Cognition: A Top-Down Approach to Neural 
Nets. Springer, SSS (2010) 

23. Haken, H.S.: Introduction and Advanced Topics. In: Physics and Astronomy Online 
Library, p. 758. Springer (2004) 

24. Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1(2), 
95–113 (2007) 

25. Haykin, S.: Neural Networks. A Comprehensive Foundation. Prentice Hall PTR, Up-
per Saddle River (1998) 



342 E.N. Benderskaya and S.V. Zhukova
 

26. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural net-
works and Turing machines. Proceedings of the National Academy of Sciences of the 
United States of America 88, 10983–10987 (1991) 

27. Hutter, M.: Universal Algorithmic Intelligence: A mathematical top-down approach. 
In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence, pp. 227–290. 
Springer (2007) 

28. Hyötyniemi, H.: Turing Machines are Recurrent Neural Networks. In: Alander, J., 
Honkela, T., Jakobsson, M. (eds.) Proceedings of STeP 1996, pp. 13–24 (1996) 

29. Inoue, M., Kaneko, K.: Dynamics of coupled adaptive elements: Bursting and intermit-
tent oscillations generated by frustration in networks. Physical Review E (81), 026203, 
1–14 (2010) 

30. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability 
and Bursting. MIT Press (2010) 

31. Jaeger, H.: Short term memory in echo state networks. GMD Report 152: German Na-
tional Research Center for Information Technology (2001) 

32. Jang, J.R., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational 
Approach to Learning and Machine Intelligence. Prentice-Hall (1997) 

33. Kaiser, M.: Brain architecture: a design for natural computation. Philosophical Trans-
actions of the Royal Society A 365(1861), 3033–3045 (2007) 

34. Kamps, M.: Towards Truly Human-Level Intelligence in Artificial Applications. Cog-
nitive Systems Research (2011) doi:10.1016/j.cogsys.2011.01.003 

35. Kaneko, K.: Chaotic but regular posi-nega switch among coded attractors by cluster-
size variations. Phys. Rev. Lett. 63(14), 219–223 (1989) 

36. Kumar, B.V., Mahalanobis, A., Juday, R.D.: Correlation Pattern Recognition, p. 402. 
Cambridge University Press (2006) 

37. Lin, C.-T., Lee, C.S.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent 
Systems. Prentice Hall (1998) 

38. Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem 
Solving. Addison-Wesley (2008) 

39. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural 
network training. Computer Science Review 3(3), 127–149 (2009) 

40. Maass, W., Natschlaeger, T., Markram, H.: Real-time computing without stable states: 
A new framework for neural computation based on perturbations. Neural Computa-
tion 14(11), 2531–2560 (2002) 

41. Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook, 
2nd edn. Springer (2010) 

42. Mandelbrot, B.: The Fractal Geometry of Nature, p. 468. W.H. Freeman (1983) 
43. Mira, J.M.: Symbols versus connections: 50 years of artificial intelligence. Neurocom-

puing 71, 671–680 (2008) 
44. Mosekilde, E., Maistrenko, Y., Postnov, D.: Chaotic synchronization. World Scientific 

Series on Nonlinear Science, Series A vol. 42, 440 (2002) 
45. Oliveira, F.: Limitations of learning in automata-based systems. European Journal of 

Operational Research 203, 684–691 (2010) 
46. Pedrycz, W., Weber, R.: Special issue on soft computing for dynamic data mining. 

Applied Soft Computing (8), 1281–1282 (2008) 
47. Peitgen, H., Jürgens, H., Dietmar, S.: Chaos and Fractals. New Frontiers of Science, 

2nd edn., vol. XIII(864), p. 125 illus (2004) ISBN: 978-0-387-20229-7 



Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 343
 

48. Pikovsky, A., Maistrenko, Y.: Synchronization: Theory and Application. NATO 
Science Series II: Mathematics, Physics and Chemistry, p. 268. Springer (2008) ISBN- 
9781402014178 

49. Potapov, A.V., Ali, M.K.: Nonlinear dynamics and chaos in information processing 
neural networks. Differential Equations and Dynamical Systems 9(3-4), 259–319 
(2001) 

50. Preparata, F.R., Shamos, M.I.: Computational Geometry. An Introduction. Mono-
graphs in Computer Science, p. 398. Springer (1993) 

51. Prigogine, I.: Order Out of Chaos. Shambala (1984) 
52. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing ma-

chines. DNA Based Computers 6, 75–120 (1996) 
53. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall 

(2002) 
54. Schweitzer, F.: Self-Organization of Complex Structures: From Individual to Collec-

tive Dynamics. CRC Press (1997) 
55. Simon, H.A.: Artificial intelligence: an empirical science. Artificial Intelligence 77, 

95–127 (1995) 
56. Teuscher, C.: Turing’s Connectionism An Investigation of Neural Network Architec-

tures (2002) 
57. Saunders, P.T. (ed.): Turing, A. M. Collected Works of A. M. TUring: Morphogenesis. 

North-Holland (1992) 
58. Britton, J.L. (ed.): Turing, A. M. Collected Works of A. M. Turing: Pure Mathematics. 

North-Holland (1992) 
59. Ince, D.C. (ed.): Turing, A. M. Collected Works of A. M. TUring: Mechanical Intelli-

gence. North-Holland (1992) 
60. Gandy, R., Yates, C. (eds.): Turing A. M. Collected Works of A. M. Turing-

Mathematical Logic. Elsevier (2001) 
61. Ultsch, A.: Clustering with SOM: U*C. In: Proc. Workshop on Self-Organizing Maps, 

Paris, France, pp. 75–82 (2005) 
62. Velazquez, J.: Brain, behaviour and mathematics: Are we using the right approaches? 

Physica D 212, 161–182 (2005) 
63. Webster, C.S.: Alan Turing’s unorganized machines and artificial neural networks: his 

remarkable early work and future possibilities. Evolutionary Intelligence, 1–9 (July 22, 
2011) 

64. Wolfram, S.: A New Kind of Science. Wolfram Media (2002) 
65. Zak, M.: Quantum-inspired resonance for associative memory. Chaos, Solitons and 

Fractals 41, 2306–2312 (2009) 
66. Zbilut, J.P., Giuliani, A.: Biological uncertainty Theory Bioscience 127 (2008) 



An Overview of Computational Sparse Models
and Their Applications in Artificial Intelligence

Yue Deng, Qionghai Dai, and Zengke Zhang

Abstract. Computational sparse models are drawing more and more attentions in
a wide range of scientific communities including statistic signal processing and ma-
chine learning. The prominent goal of them aims at revealing the sparse structure or
correlation among redundant data in terms of computational approaches, e.g. convex
optimization and probability inference. The main scope of this chapter concentrates
on reviewing the state-of-the-art sparse models and discussing their applications in
the field of artificial intelligence. After a brief introduction to the the general idea of
sparse computation, the bulk of the chapter will be split into three core sections on
sparse signal optimization, low rank matrix completion and low rank structure learn-
ing. These three parts respectively correspond to the sparse models for vector case,
matrix case and the combination of both. In order to effectively solve the sparse
models reviewed in this chapter, we will unify the solutions to all of them in the
general framework of proximal gradient algorithm which is a benchmark method
for convex optimization with quadratic term. Besides, in each section, after theoret-
ical discussions, some interesting applications of the model will be presented and
introduced. Some of these applications are from other researchers’ and our previous
publications and some of them are novelly proposed in this book chapter.

Keywords: sparse learning, low rank matrix completion, artificial intelligence,
machine learning, computer vision.

1 Introduction

When Alan Turing set up the basic concept of Turing Machine in the year 1936 [1]1,
he must have not expected that, after about eighty years, the data acquisition and
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processing demands in people’s daily life are expanding in such an unpredictable
rate that is far beyond Moore’s law. It is widely known that the foundation of Turing’s
theory is computation, which is meanwhile the basis of modern artificial intelligence
(AI) [2]. As an important branch of Turing’s theory, machine learning approaches
for data processing are now playing a central role in diverse areas of artificial intel-
ligence. A robust learning machine (a.k.a. methodology) could intelligently extract
useful information from massive data and generalize the learning results to the un-
known samples to make predictions and decisions. Therefore, one of the most chal-
lenging and critical problems of Turing’s configuration is the interaction between
data and computation. As an honor for the great scientist Alan Turing [3], in this
chapter, we concentrate on introducing a kind of prevalent and powerful computa-
tional models, i.e. sparse models to the researchers in the area of AI. In a nutshell,
we will discuss how to reveal the intrinsic sparse structure of high-dimensional data
and how to apply these effective computational models to solve practical problems.

Sparse data structure can be found in many scientific disciplines in real world. For
example, in cognitive science, temporal EEG signals are captured from many chan-
nels and at a certain time tick, only a small portion of channels have responses of
the brain while other channels have zero values [4, 5]. In medical image processing,
only a small number of basis in the dictionary contribute to the final reconstruction
of the noiseless image[6, 7]. In manifold learning [8], the neighboring nodes on the
graph span as a linear subspace and thus the affinity matrix of nodes is sparse with
most entries be zero [9, 10, 11]. In 3D vision, the multiview images are redundant
to describe a certain object and their intrinsic structure is low rank [12]. The sparse
examples in practical world are too numerous to mention individually and we will
introduce some representative and interesting ones later in this chapter.

From aforementioned discussions, it is apparent that learning sparse structure
from high dimensional data is desired for many scientific researches. Accordingly,
we will introduce some state-of-the-art sparse models in this chapter. For the sake
of logic and brevity, the sparse models reviewed in this chapter are categorized into
three kinds, i.e. sparse signal optimization, low rank matrix completion and low rank
structure learning.

Sparse Signal Optimization: Sparse signal optimization is the foundation of al-
most all the consequent sparse models. It considers to recover the sparse structure
of the signal with linear constraints. Sparse structure means that the vector only
contains a small portion of non-zero entries. In signal processing, sparse signal op-
timization is always referred as compressive sensing[13, 14, 15, 16, 17]. The goal
of compressive sensing aims at reconstructing a desired signal from a small number
of projections. In statistics, it is always called sparse variable selection which sup-
pose that the observed output is only attributed by a small number of input variables
[18, 19, 20]. In pattern recognition and machine learning, sparse signal optimization
is generally named sparse representation or sparse learning[21, 22]. See section 2
for details.

Low Rank Matrix Completion: Low rank matrix is a specific case of sparse signal.
The rank of a matrix is equivalent to the number of its non-zero singular values
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[23]. Therefore, it naturally inspires us to extend the power of sparse models from
vector data to matrix cases. One famous sparse model for matrix is low rank matrix
completion (MC)[24, 25]. It subjects to whether it is possible to recover the whole
matrix from only a small portion of observed entries. It seems to be an ill-posed
topic since there are countless solutions to fill into the unknown entries in the matrix.
However, recent developments of compressive sensing indicated that when the rank
of the incomplete matrix is low, i.e. the singular vectors are sufficient spread, the
incomplete matrix can be exactly recovered via sparse computation. Please refer to
section 3 for discussions.

Low Rank Structure Learning: Low rank structure learning(LRSL) can be re-
garded as a combination of the aforementioned two sparse models [26]. It learns the
low rank structure of a matrix from noisy observations corrupted by sparse errors.
Therefore, in the formulation of LRSL, both the sparse signal and low rank ma-
trix should be simultaneously optimized and recovered. In this chapter, we will re-
spectively introduce two models on LRSL, i.e. Principal Component Pursuit (PCP)
[27, 28] and Low Rank Representation (LRR) [29, 30]. The former recovers the
low rank matrix from additive corruptions and the latter aims at revealing the low
rank structure of the affinity matrix for data representation. Detailed discussions are
provided in section 4

Although these sparse models are very effective, the solutions to them are not
that straightforward. For signal optimization, the sparse signal is always of very
high dimensional but the number of observations is quite limited, which yields to
an under-determined problem. For matrix completion, there are countless choices
to fit into the missing entries and an optimal one should be optimized. In low rank
structure learning, it is desired to recover two terms from one equation which is an
ill-posed problem. In general, it is not straightforward to obtain the solutions to these
sparse models and some intelligent computational approaches should be involved.
Existing works to solve sparse models always follow two ways, i.e. with probability
inference and with convex optimization.

Probability graphical models [31] and inferences are very powerful tools for a
huge number of practical problems in AI. In sparse computation, it assumes that
sparse signals are random variables sampled from some specific distributions, e.g.
Laplacian distribution. The density function of Laplacian distribution exhibits an
impulse around zero, which guarantees that the sampled variable has high proba-
bility to be zero. Some previous works have been devoted to solving sparse models
in the Bayesian framework [32, 33]. However, since the prior distribution of sparse
signals is no longer Gaussian, we cannot always expect to make the joint probability
tractable. Widely used strategies to make inferences always rely on approximating
algorithms, e.g. Gibbs sampling. Unfortunately, Gibbs sampling is too much time
consuming and, more crucial, the final solution is only an approximation to the
global optimum. Therefore, more and more attentions are now paid to solving the
sparse models via convex optimization.

There are many prevalent convex optimization strategies for sparse optimization,
e.g. shrinkage thresholding[34, 35] and Augmented Lagrangian Multiplier [36, 37].
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This chapter prefers to solve all the reviewed sparse models in the framework of
Proximal Gradient (PG) algorithm [38, 39]. It is not only because that PG method
has concise formulations and exhibits solid theoretical convergence guarantee [40].
More general, PG is a general paradigm for the optimizations with a smooth function
plus a quadratic term. To our knowledge, many models in machine learning and
artificial intelligence finally subject to the objective in such form. Therefore, we
introduce PG method in this chapter and hope it may inspire readers to generalize
its effectiveness to other problems.

Another goal of this chapter is to review some interesting applications of sparse
models. We will divide these applications into each section after the discussions of
the individual model. It will be verified that sparse models can be applied to a diverse
of areas in AI including machine learning, signal and image processing, computer
vision, robotics, sensor network, finance, etc. In the application review, most works
will be generally discussed and their citations are provided for interested readers.
But we will elaborately discuss one to two benchmark applications of each model
as application highlights. Some of these detailed materials are from previous works;
and some of the applications (e.g. illumination decomposition) are novelly proposed
in this book chapter.

2 Sparse Signal Optimization

In this section, we will discuss sparse vector optimization and its applications in
compressive sensing and pattern recognition.

2.1 Sparse Signal Pursuit

Sparse signal pursuit (a.k.a sparse signal optimization) aims at recovering a sparse
signal from an under-determined linear system by

(P0) : min ‖x‖�0 s.t. y = Ax, (1)

where ‖x‖�0 is the �0 norm which counts the number of non-zero entries in a vector
x and y = Ax is an under-determined linear constraint. In compressive sensing,
x ∈ Rn is the unknown sparse signal; A ∈ RN×n is a full rank projection matrix
and y ∈ RN are the measurements of the unknown signal. If n > N , the linear
constraint yields to an over-determined problem that can be typically solved via
least square minimization. However, when n < N , the under-determined equation
can only be solved by imposing other priors. For compressive sensing, Eq.1 imposes
a prior that the original signal is sparse.

In sparsity pursuit, P0 uses the �0 norm which is a natural description to the spar-
sity of a vector. However, the general optimization in (1) is intractable and the exact
solution to it subjects to an NP-hard problem. Accordingly, in order to efficiently
solve the sparse optimization, Tao et al. proposed to minimize the convex envelope
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of �0 norm, i.e. using �1 norm as a tradeoff [13]. �1 norm accumulates the absolute
value of all the entries in a vector, which can be expressed as ‖x‖�1 =

∑
i |xi|.

(P1) : min ‖x‖�1 s.t. y = Ax. (2)

P1 is convex and its solution can be recast as a linear program (LP). From the per-
spective of signal reconstruction, Candès et al. use the Restricted Isometry Prop-
erty (RIP) [41, 42], Uniform Uncertainty Principal (UUP) and Exact Reconstruction
Principal(ERP)[43, 44] to theoretically justify the sufficient condition of exactly re-
covering a sparse signal from random measurements via �1 minimization.

The problem in P1 is also known as the basis pursuit [45], in which a more general
case was considered that the observation y is contaminated with noises. Therefore,
basis pursuit relax the strict equality in P1 and allows some Gaussian noise. The
formulation of basis pursuit relax the linear constraint of P1 in the objective function
and solves,

min ‖x‖�1 +
μ

2
‖y −Ax‖22 . (3)

Compared to (2), the objective in (3) allows recovery residual in Ax − y and μ
is a given positive parameter whose value is determined by the noisy levels in the
observed measurements.

In light of the high interests in efficiently solving the �1 least square problem in
(3), many algorithms have been devoted to the corresponding field. A good review of
these algorithms are provided in [46], where the authors conclude the algorithms in
the following categories: greedy pursuit type algorithm [47], gradient projection [48,
49],Homotopy [50], Iterative Shrinkage-Thresholding [34, 51], Proximal Gradient
(PG) [39, 38] and Augment Lagrangian Multiplier [37]. In this section, we will
introduce the PG method to solve it.

2.2 Proximal Gradient Method

The general proximal gradient algorithm is designed to solve the problem in the
form of,

min
.
= f(x) + g(x), (4)

where f(·) is a bounded, convex and smooth function; g(·) is convex and lower
semimountainous [39]. When assuming the domain of f(·) is closed and ∇f is
Lipschitz continuous, we get,

‖∇f(x1)−∇f(x2)‖2 ≤ Lf ‖x1 − x2‖ ,

where Lf is the Lipschitz constant. Accordingly, it is possible to extend the contin-
uous f(x) at a particular point α by,

g(x) + f(x) ≈ g(x) + f(α)+ < ∇f(α), x − α > +
Lf

2
‖x− α‖22 , (5)
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where < ·, · > defines the inner product. In PG method, instead of directly min-
imizing (4), we minimize its upper bound at α for substitution. For the sake of
computational simplicity, we combine the inner product into the quadratic term. By
dropping all the terms that are irrelative to the optimization variables in (5), we get,

Γ (x|α) = g(x) +
Lf

2

∥∥∥x− (α− L−1
f ∇f(α)

∥∥∥2
2
. (6)

Eq. (6) is a formulation of PG method for general optimizations in the form of (4).
Using PG method, we should iteratively select the given point α to construct the
upper bound and then to minimize it. It becomes clear later that if we apply PG
method to (6), we can directly get its closed-form solution at each iteration which
greatly simplify the �1 minimization problem.

The only problem remaining here is how to select the α to construct the upper-
bound at each iteration. One natural choice is to set αk = x∗

k that we extend f(x)
at the optimal point obtained in the last iteration. Such selection guarantees the
convergence rate is no worse than O(k−1) [35]. In [40], an accelerating strategy
was proposed to set αk = x∗

k +
tk−tk−1

tk
(x∗

k − x∗
k−1) with t2k+1 − tk+1 ≤ t2k.

The accelerate proximal gradient method could make the optimization converge in
a rate with O(k−2). Without the loss of generality, in this chapter we will choose
the accelerate method for PG optimization.

2.3 Solving Basis Pursuit via PG

The PG method introduced here is a general optimization strategy for many prob-
lems in machine learning. Specifically, in this part, we will show how to apply it to
solve the basis pursuit problem in (3). It is possible to directly define g(x) = 1

μ‖x‖�1
and f(x) = 1

2‖Ax− y‖22. By taking these two terms into (5), the basis pursuit prob-
lem yields to:

min
1

μ
‖x‖�1 +

Lf

2

∥∥∥x− (α− L−1
f AT (Aα − y))

∥∥∥2
2

(7)

It is well known (see, for example, [52]) that for scalars x and y, the unique optimal
solution to the problem

min
x

τ |x|+ 1

2
‖x− y‖22 (8)

is given by
x∗ = sgn(y)max(|y| − τ, 0)

.
= sτ (y). (9)

According to all the discussions above, we give the iterative solutions to (3) in
Algorithm 1.

In Algorithm.1, the only parameter need to be specified is μ, which controls the
balance between the sparsity of the signal and the noise tolerance. Recalling Eq.3,
it is apparent that a large μ will make the residual in the quadratic term ‖y −Ax‖2
be small and relax the sparsity constraint. One the contrary, if μ is too small, too
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Algorithm 1. Solving basis pursuit via Proximal Gradient method
Input : Random projection matrix A and the measurements vector y
Initialization: k = 1, Lf > 0, t0 = t1 = 1, η < 1 and x0 = x1 = 0.
repeat1

αk = xk +
tk−tk−1

tk
(xk − xk−1) ;2

Gk = αk − L−1
f AT (Aαk − y);3

xk+1 = s1/(μLf )(G);4

tk+1 =
1+

√
4t2

k
+1

2
,μk+1 = max(ημk, μmax);5

k = k + 1;6

until convergence ;7

Output : xk+1.

much noise will be leave in the quadratic term but returning an absolutely sparse
signal in ‖x‖�1 . Accordingly, in Algorithm.1, μk is initialized to be a relative small
value, e.g. μ0 = 1e − 3 and then they are increased during the iterations until
a maximal value μmax is obtained. μmax is always determined by the noises in
the original observation y. Alternatively, one can also incrementally increase μk

until the recovery residual is less than some user specified threshold. This parameter
setting strategy is also applied to the other sparse models discussed later in this
chapter.

2.4 Applications in Compressive Sensing

Compressive sensing is one of the most hot topics in signal processing over the
last decade. Thanks to the theoretical contributions in [15][13], we know that it
is possible to exactly recover a sparse signal with a sampling frequency less than
the famous Nyquist law. Many practical applications on compressive sensing have
been proposed covering a wide range of areas in medical image processing [6][7],
graphics [53] and portfolio management [23]. Except for these theoretical works
and simulations, some practical hardware-based systems on compressive sensing
have been realized. Eldar et al. successfully set up a DSP system to sample and
recover the signal beyond Nyquist law [54]. Recently, a conceptual camera, i.e.
single pixel camera, was invented in [55]. The camera could produce a photo with
only single-pixel sensor. Behind the magic configuration, the theoretical guarantee
is compressive sensing.

Fig.1 provides the system overview and some results of the single-pixel camera.
In Fig.1(a), the lights from the original image are first filtered by a digital encoder
system, i.e. DMD+ALP board. The encoder is a digital chip produced by TI which is
composed of many small mirrors. The status of these small mirrors are controlled by
computer. If the mirror status is on, then the light can be reflected from such a point
and vice versa. Therefore, TI chip plays an important role to produce the projection
matrix, i.e. A in Eq.2. Then, all the passed lights are accumulated via Lens 2 in
Fig.1(a) and the total energy is sensed by the single-pixel photodiode circuit. The
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(a) The system overview of the single-pixel camera

(b) Images of the single-pixel camera.

Fig. 1 The overview and experimental results of the single-pixel camera realized under the
configuration of CS theory. Reproduced with permission from [55] c© 2008 IEEE.

projection and sampling procedures are repeated for multiple times with different
but known random projections imposed on the TI chip. We record all the sensing
results of the single-pixel camera and they are stacked as the measurement vector y.
Besides, the random generated variables are accumulated to span as the projection
A in Eq.2. Accordingly, based on the �1 minimization strategies reviewed above, it
is possible to recover the exact image x from compressive sensing. Two results of
the single-pixel camera are provided in Fig.1(b). It is worth noting that although the
image is not a sparse signal, sparse coefficients are available by processing the image
with some wavelet transformations. The sparse coefficients are used in compressive
sensing.
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2.5 Sparse Learning

Different from the applications in signal processing, the prominent goal of sparse
models in machine learning is to increase the scalability of knowledge represen-
tation. We conclude the effectiveness of sparse learning from the following three
perspectives.

To avoid over-fitting phenomena. Over-fitting phenomena always appears in
many supervised and semi-supervised learning problems. The training procedure
too much preserves and fits the structures of the historical data in the training set.
The learned parameters are not ideal for predictions of the new data in the test-
ing set. It is an effective way to avoid the over-fitting problem by imposing some
regularization terms, e.g. �1 term. Such regularization makes the optimization find a
balance between the data and the model. Some benchmark works of applying sparse
regularizations in machine learning can be found in [20, 56] for regression, in [22]
for bayesian learning and in [57, 58] for Support Vector Machine (SVM).

Fig. 2 Occluded faces classification. The first row shows the top five classification results
via Nearest Neighbor Classification (NNC). The corresponding Euclidean Distance (ED) of
these images to the query image is listed below each image. Due to the disturbance by oc-
clusions, none of these five classified images belongs to the subject. The second row provide
top five results by Sparse Representation Classification (SRC). Among these five faces, three
faces which are marked with the red mask are the same to the query image. The correspond-
ing Sparse-classification Coefficients (SC) are denoted below the images. Reproduced with
permission from [59] c© 2011 IEEE.

To improve robustness to corruptions. In many applications, the data acquired
from practical world are not clean. For example, the data is corrupted by some large
noises and disturbances. To improve the robustness of machine learning algorithms
to the corrupted data, sparse models have been used as a classifier in [60, 59]. It con-
siders that a corrupted sample can be sparsely represented by a number of basis in
the training set. The classification result is determined by the amplitude of the rep-
resentation coefficients. In Fig.2, we provide the classification result of an occluded
face [59]. The input sample is a face corrupted by a scarf and the classification re-
sults via sparse classification (SC) and nearest neighbors classification (NNC) are
provided, respectively. Obviously, SC generally outperforms typical classifier on the
noisy data classification.
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To reduce the complexity of data representation. Sparse models could also be
used to reveal the intrinsic structure for data representation. In manifold learning
[8], one difficult problem is how to construct the initial graph topology based on
the intrinsic data structures. Typical approaches use K-nearest-neighbors (KNN)
method or the KNN method with a Gaussian kernel (GKNN) to represent the initial
linearity of manifold structure. However, these approaches too much rely on the pa-
rameter selection, e.g. the number of k in KNN graph. Accordingly, recent works
proposed to use �1 minimization to learn the initial affinity matrix [61, 62]. In a
nutshell, one node can be sparsely represented by all the other nodes in the graph
and we only connect the node to the ones with large coefficients. In [10], we incor-
porate a random walk model into the sparse graph for face recognition and achieve
promising learning performances. Fig.3 provides the learning results by applying
the random walk model on different graph topologies for face recognition. Two face
datasets used here are AR and FERET. It is apparent that the random walk model on
the sparse graph generally performs better than the recognition rates on KNN and
GKNN graphs.

Fig. 3 The comparisons of commute time [10] with different graph similarities on different
graph topologies: K-Nearest-Neighbors(KNN), Gaussian KNN(GKNN),Sparse Graph(SG)
[61] and Sparseness Induced Graph (SIG)[62]. Reproduced with permission from [10] c©
2012 Elsevier.

3 Low Rank Matrix Completion

Previously, we have introduced the sparse optimization for vector cases. In this part,
we will consider applying sparse optimization on matrices. For vector case, the spar-
sity always means the number of non-zero entries; and for matrix case, the sparsity
refers to the rank of the matrix. Essentially, the low rankness and vector sparsity are
two sides of a coin because the rank of a matrix is equivalent to the number of its
non-zero singular values. In this section, we start the discussions from an interesting
problem of low rank matrix completion.
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3.1 Low Rank Matrix Completion

Suppose we are given an incomplete matrix PΩ(Y ) ∈ Rn1×n2 and only information
available about it is a sample of entries Yij , (i, j) ∈ Ω, where Ω is a subset of the
compete set of entries [n1] × [n2]. Based on the incomplete set Ω, the sampling
operator PΩ(Y ) : Rn1×n2 → Rn1×n2 is defined by

[PΩ(Y )]ij =

{
Yij , (i, j) ∈ Ω
0, otherwise.

(10)

Thus, matrix completion problem subjects to whether it is possible to recover the
whole matrix only from the information PΩ(Y ). It seems to be an ill-posed topic
since there are countless solutions to be filled into the unknown entries of the matrix.
However, recent developments in compressed sensing indicated that when the rank
of the incomplete matrix is low, i.e. the singular vectors of Y are sufficient spread,
this incomplete matrix can be recovered via convex optimization.

The task of matrix completion may be described as that there is a unique low-rank
matrix X which is consistent with the observed entries and one would, in principle,
recover the unknown matrix by solving

min rank(X)
s.t. PΩ(X) = PΩ(Y ),

(11)

where X ∈ Rn1×n2 represent the decision variables and should be recovered via
optimization. Unfortunately, solving this problem is proven to be NP-hard and all
known algorithm for exactly solving it are doubly exponential in theory and in prac-
tice [23]. Directly minimizing the rank of a matrix is comparable to the intractable
�0-minimization problem in sparse signal recovery.

A modern approach for solving this problem is to optimize its convex envelope
via convex relaxation [25, 24]. Nuclear norm is the convex envelope of rank(X),
which is expressed as ‖ · ‖∗. Assume that the matrix X has r singular values of
σ1 > σ2 · · · > σr > 0, i.e. rank(X) = r. The nuclear norm of X is defined as the

summation of its singular values, i.e.‖X‖∗ =
r∑

i=1

σi(X).

In real world applications, one will only observe a few entries corrupted at
least by noises. The noises can be small Gaussian noises or some large distur-
bances2. When the Frobenius norm of noise term is less than some threshold, i.e.
‖ PΩ(N) ‖F≤ δ , Candès et al. proved that it is possible to exactly recover the
incomplete and noisy matrix [24] by,

min ‖X‖∗
s.t. ‖PΩ(N)‖F = ‖PΩ(Y −X)‖F ≤ δ.

(12)

2 If the matrix was corrupted by large noises, it can be removed by imposing an isolate �1
term in the objective to penalize large noises. We will discuss it in section 4.
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In order to stably recover X from a noisy observed matrix Y , the following reg-
ularized nuclear norm minimization was used as the objective function for matrix
completion, i.e.

min ‖X‖∗ +
μ

2
‖PΩ(X − Y )‖2

F
. (13)

3.2 PG Optimization for MC

The matrix completion model in (13) can also be solved via PG method introduced
in section 2.2. We regard the nuclear norm term as g(x) and the quadratic term as
f(x) in Eq.4. Accordingly, after convex relaxation in PG method, (13) yields to,

min
1

μ
‖X‖∗ +

Lf

2

∥∥∥X − (α− L−1
f PΩ(α− Y ))

∥∥∥2
F
, (14)

where α is a given point. Without the loss of generality, in the accelerated PG frame-
work, we can select αk = Xk+

tk−1−1
tk

(Xk−Xk−1). For matrices X,D, a number
of authors, e.g. [63, 25, 26], have shown that the unique optimal solution to the
problem

min
X

α ‖X‖∗ +
1

2
‖X −D‖2F (15)

is given by
X∗ = Usα(Σ)V T .

= dα(D), (16)

where D = UΣV T denotes the singular value decomposition of D and sα(·) is de-
fined in Eq.9. According to all the discussions above, we give the iterative solutions
to (13) in Algorithm. 2

Algorithm 2. Matrix completion via Proximal Gradient method
Input : Indicator matrix PΩ and the observation matrix Y
Initialization: k = 1, Lf > 0, t0 = t1 = 1, η < 1 and X0 = X1 = 0.
repeat1

αk = Xk +
tk−tk−1

tk
(Xk −Xk−1) ;2

Gk = αk − L−1
f PΩ(αk − Y );3

Xk+1 = d1/(μLf )(Gk);4

tk+1 =
1+

√
4t2

k
+1

2
,μk+1 = max(ημk, μmax);5

k = k + 1;6

until convergence ;7

Output : Xk+1.

Fig.4 provides a toy example of matrix completion that we use a vector to stack
as a rank one matrix. Then, some of its entries are randomly sampled out as un-
known positions and the noises are added to the observed entries. The added noises
include both Gaussian noises and some kinds of large corruptions. Because it in-
volves some large corruptions on the observed entries, for matrix completion, we
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use the Log-sum Penalty Completion (LPC) method introduced in [12] to complete
it. Also, we compare MC based method with average filling and random filling. For
average filling, we use the average value of all the known values of the row to fill
into the unknown position. For random sampling, the unknown entries are filled
by randomly selecting one known entry in the same row. It is apparent that matrix
completion method outperforms other methods without optimization.

3.3 MC Applications: A General Review

Matrix completion arises a number of applications in practical world. One of the
most acknowledged applications is the collaborative filtering [64], which is also
known as the Netflix problem. The Netflix problem assumes that only a small num-
ber of factors actually affect users’ attitude towards some certain object, e.g. games,
music and movies on the internet. However, one user only leave their comments
or scores on some resources but not to all. It becomes important to infer a user’s
attitude towards some movies that he has not watched and to make a recommenda-
tion for him. It is possible to solve this important problem in the matrix completion
framework. We scan the labeled scores of a user as an incomplete vector and ac-
cumulated such scoring vectors from multiple users. These scores are stacked as
an incomplete matrix by aligning the scores of same movies in the same row. If a
user has not watched the movie, the corresponding position is labeled as unknown
and its value can be inferred via matrix completion. The completed matrix gives the
answers of the user’s attitude to the movies that he has not watched yet.

Fig. 4 A toy example for a rank-one matrix completion with different methods.
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Matrix completion is also a powerful tool for locating sensors in a network. In
global positioning, one can reveal the distances and relationships between different
pair of sensors by Multidimensional Scaling (MDS) [65]. However, not all the dis-
tance information between a pair of sensors are available. Therefore, one can only
get an incomplete matrix. The incomplete matrix is low rank since all the sensors
are distributed on a 2D (rank 2) or 3D (rank 3) planer. Accordingly, it is possible to
solve this problem by low rank matrix completion.

For computer vision, Tong et al. [66] make use of matrix completion for light
transport. Based on the traditional light transport equation, they attempted to re-
cover the light transport matrix from different light sources. The kernel Nystrom
method proposed in the paper is robust to complex lighting conditions. Inspired by
previous works, we have introduced matrix completion framework to a typical 3D-
based vision problem of noisy depth maps fusion for Multiview stereo (MVS) [12].
We will introduce this work in the next subsection.

3.4 Noisy Depth Maps Fusion via MC

Extracting depth maps (a.k.a. point clouds) from multiple images is a well studied
subject in computer vision. But the depth maps extracted via the stereo algorithm
owns the properties as incompleteness, noisy and high-dimensional.

1) Incompleteness. In stereo system, camera can only see part of a whole object
due to self-occlusions and the localization of sensors. 2) Noisy. Recovering 3D in-
formation from calibrated images is a systematic work involving steps as camera
calibration, feature points matching, optic-flow optimization , etc. Any error in each
step may disturb the accuracy of the final result. Thus, the point cloud acquired by
stereo system is full of noise. The quality of them is not comparable to the ones
acquired by 3D scanner. 3) High-dimensional. In the pursuit for high accuracy, it is
required to accumulate millions of discrete points to approximate the 3D geometry
of a real-world object. Thus, mathematically speaking, stereo-based fusion needs to
seek for a unique and dense solution to represent the original high-dimensional and
incomplete data in spite of noises.

In order to address the aforementioned properties, we consider the point clouds
fusion problem as an incomplete low-rank matrix completion problem. The basic
idea for the proposed fusion algorithm is comprehensible. Although each calibrated
camera can only recover a potion of the 3D geometry of a certain object, we suppose,
it can see all the geometry of the object. From each view, the observed points are
regarded as known entries and the unseen points are viewed as missing entries.
The points from each view are regarded as a vector. In stereo system, it is able
to accumulate such vectors from all the views. When composing these incomplete
vectors as an incomplete matrix, its intrinsic rank should be one since the vectors
describe the same object.

Following the idea in [12], the depth maps of each view are accumulated in an in-
complete and noisy matrix PΩ(Â). In MVS system, there are n cameras distributed
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around the object, and thus, n incomplete vectors are accumulated and are combined
in a matrix, we obtain

PΩ(Â) = [V1, V2, V3, ...Vn]. (17)

In the observed incomplete matrix PΩ(Â), columns represent different cameras and
rows represent point cloud information on the 3D object. If we can complete a noise-
less matrix A from PΩ(Â), the rank of A should be low since all the vectors in the
matrix, i.e. V1, V2, ...Vn, describe the same object. Theoretically, if there are no er-
rors in the depth information, the rank of the completed matrix A should be one.
However, due to the errors and disturbance, it is required to complete the incom-
plete matrix by simultaneously removing the noises on the observed entries. In [12],
inspired by [27], we design an optimization to complete the noisy matrix by

min ‖A‖∗ + λ
∑

ij(logNij)

s.t. PΩ(Â) = PΩ(A) + PΩ(N).
(18)

In (18), PΩ(Â) is the observed incomplete matrix, and PΩ(·) indicates the loca-
tions of the visible points. A is the desired fusion matrix that should be recov-
ered and N accumulates large outliers in the depth maps. The large outliers are
penalized by log-sum term. Fig.5 shows the results of the proposed algorithm on
reconstructing human bodies. Matrix completion is effective to handle the noises
and conflicts among different cameras. Nevertheless, it doesn’t degrade the orig-
inal high-frequency information in the depth information. From Fig.5, the fold on

Fig. 5 Reconstructions on human bodies in [67]. The first column shows the ground truth.
Columns 2 to 3 provide the reconstructions with and without matrix completion strategy.
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clothes is preserved during the reconstruction. More experimental discussions about
the fusion algorithm may refer to [12].

4 Low Rank Structure Learning from Corruptions

In this part, we introduce the Low Rank Structure Learning problem, which can
be regarded as the combination of the two sparse models discussed previously. Be-
sides, we will propose an illumination decomposition algorithm based on low rank
structure learning.

4.1 Low Rank Structure Learning

Low rank structure learning aims at recovering a low rank matrix from sparse cor-
ruptions which can be formulated as

min
(A,N)

rank(A) + λ ‖N‖�0
s.t. P = f(A) + g(N),

(19)

where data matrix P is the only known matrix in the optimization; rank(A) is
adopted to describe the low-rank structure of matrix A and the sparse noise is pe-
nalized via ‖N‖�0; f(·) and g(·) are both linear mappings. The value of parameter λ
is given which controls the balance between the rank term and the noise term. Based
on the discussions of the previous two sparse models, it is not difficult to know that
directly solving (19) is NP hard and we may utilize convex envelopes to make the
problem trackable. Accordingly, the objective in (19) yields to min ‖A‖∗+λ‖N‖�1 .

Derived from the basic formulation in (19), Principal Component Pursuit (PCP)
problem [27] was proposed with the constraint P = A +N . In PCP model, P is a
corrupted matrix obtained in practical world and the desired goal is to recover the
intrinsic low rank matrix A by removing sparse error N from P . Applications of
PCP model in computer visions includes video background modeling [27], texture
alignment[68], face analysis[26, 69] and image classification [70].

Recently, Low rank representation (LRR) was proposed to recover the low rank
correlations among data by eliminating the disturbances of large noises. For LRR,
the constraints in (19) changes to be P = PA + N [30, 29], where P is the data
matrix, A is the affinity matrix that records the correlations between pairs of data in
P and N is the residual of such a representation. LRR model has been successfully
applied to the problem of subspace clustering [71] and generally outperforms many
other methods on the benchmark dataset for motion segmentation [72]. In [26], the
LRR model is extended to an financial application of stock categorization.

The optimization for LRSL involves two terms in one objective. Accordingly, it
is only possible to solve this kind of models by distributed optimization strategy
[37]. Distributed optimization solves LRSL via an iterative way that in an iteration,
it only update one variable and regarded others as fixed constants. Let us take the
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PCP model as an example to present how distributed optimization works for LRSL.
Following the basic idea in PG method, PCP model can be formulated as,

min ‖A‖∗ + λ‖N‖�1 +
μ

2
‖P −A−N‖2F . (20)

In (20), when updating N , A is regarded as a constant and we get the noise term
optimization, i.e.

min
N

λ ‖N‖�1 +
μ

2
‖N − (P −Ak)‖2F , (21)

which is a classic sparse vector optimization problem introduced in section 2. Sim-
ilarly, the updating rule for low rank matrix subjects to,

min
A

‖A‖∗ +
μ

2
‖A− (P −Nk)‖2F . (22)

Eq.(22) is now in the same form as the rank optimization problem introduce in
section 3. We give the iterative updating rules and solutions to PCP problem in
Algorithm 3.

Algorithm 3. Principal Component Pursuit (PCP) via Proximal Gradient
method

Input : Data matrix P
Initialization: k = 1, Lf > 0, t0 = t1 = 1, η < 1 and A0 = A1 = N0 = N1 = 0.
repeat1

αN
k = Nk +

tk−tk−1

tk
(Nk −Nk−1); αA

k = Ak +
tk−tk−1

tk
(Ak − Ak−1) ;2

GN
k = αN

k − L−1
f [αN

k − (P − Ak)]; GA
k = αA

k − L−1
f [αA

k − (P −Nk)];3

Nk+1 = sλ/(μLf )(G
N
k );Ak+1 = d1/(μLf )(G

A
k );4

tk+1 =
1+

√
4t2

k
+1

2
,μk+1 = max(ημk, μmax);5

k = k + 1;6

until convergence ;7

Output : (Ak+1Nk+1).

After theoretical discussions, we will show how to use the powerful LRSL
method to solve some practical problems. In the next section, we propose an il-
lumination decomposition algorithm based on the PCP model.

4.2 Illumination Decomposition via LRSL

Decomposing the global illumination from material is a hot topic in the areas of
graphics and image processing. The key framework for illumination decomposition
always subjects to the basic illumination equation:

I = M × L. (23)
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In (23), I is the pixel on the image; M represents the material reflectance and L
denotes the intensity of illumination. In practice, only the pixel value of I are avail-
able. Illumination decomposition refers to recovering two variables (i.e. M and L)
from only one equation. This is an ill-posed problem. However, this problem can be
efficiently solved from the perspective of low rank structure learning.

The first column in Fig.6 shows a number of images of Taj Mahal collected from
the Internet. These photos are taken from different views, at different time and un-
der different illuminations. However, there is one thing in common for these photos.
They all show the same scene, i.e. the Taj Mahal. If we stack the material reflectance
of images as a matrix, it should be low-rank because the material reflectance is
similar of the same scene. However, it is impossible to assemble these material re-
flectance. The only information available is the pixel value while not the reflectance.
Fortunately, based on low rank structure learning, it is possible to use the low rank
prior of the reflectance matrix to conduct the illumination decomposition.

Consider a matrix I which is developed by stacking pixel values of the scene as
rows. Then, we perform the natural logarithm on the pixel matrix,

log I = logM︸ ︷︷ ︸
low rank

+ logL︸ ︷︷ ︸
noise

. (24)

Compare to the basic model in (20), logI , logM and logL correspond to P , A and
N , respectively. Because they share the similar material reflectance in common,
logM should be low rank. Theoretically, it is a rank one matrix. The global illu-
mination logL is regarded as the noise added to the low-rank matrix. Due to this
property, it is possible to decompose the illumination (logL) from a low rank matrix
(logM ) via optimization introduced in Algorithm 3.

For implementation, we introduce the detailed procedures to construct the pixel
matrix I in Fig.6. First, the foreground scene is segmented from the background.
Then, the histogram statistic is made. According to the histogram distribution, q

Fig. 6 The overview of pixel matrix development.
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(a) Taj Mahal under global
illumination.

(b) Taj Mahal with illumination de-
composition.

(c) Great wall under global
illumination.

(d) Great wall with illumination de-
composition.

Fig. 7 Global illumination decomposition via low rank structure learning.
(Best viewed in color.)

pixels 3 located around the peak are obtained. These q pixels are considered as the
most representative values of the scene. These pixels are written in the form of a
vector Ii, where the subscript i implies that this vector is from the ith image. By
stacking sampling data of each image, we obtain the image matrix, i.e. I ∈ Rq×n.

After constructing the pixel matrix from n images, the PCP algorithm is imple-
mented on the matrix to learn the low-rank matrix (logM ) from noise(logL). For
these color images, the red, green and blue channels are computed separately. From
the experimental result, the recovered rank of the material matrix is definitely equiv-
alent to one, which verifies the theoretical analysis. When getting the estimation of
lighting (L) and material (M ), it is not a difficult task to remove the illumination
from the image. We follow the idea in [73] to remove the illuminations. Fig.7 shows
the illumination decomposition result for the Taji Mahal and the Great Wall.

The effectiveness of illumination decomposition by PCP could be verified from
the comparisons between Fig.7(a) and Fig.7(b). In Fig.7(a), Taj Mahal is rendered
by the global purple illumination. After decomposition, Taj Mahal turns to be white.
The decomposition effects can also be demonstrated from the comparison between
Fig.7(c) and Fig.7(d). The Great Wall is illuminated with the setting sun. The white

3 q is selected as 100 in this experiment.
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wall is rendered to be yellow. After illumination decomposition, the great wall turns
to be white in Fig.7(d). The yellow cloud in Fig.7(c) also changes to be white in
Fig.7(d).

5 Discussions on Future Works

In this chapter, we reviewed some state-of-the-art sparse models. We discussed the
computational approaches to solve these models with convex optimization and also
introduced some interesting applications of these models for artificial intelligence,
signal processing and machine learning. Although sparse models have achieved sig-
nificant progresses during the last decade, there are still some challenges and open
problems for this hot topic. At the end of this chapter, we discuss some directions
that deserve future efforts from the following three perspectives.

Theoretical perspective: All the models reviewed above are solved based on the
�1 heuristic approach that we use �1 norm to approximate the essential �0 sparsity.
This is because �1 norm is the convex envelop of the �0 norm. In optimization, con-
vex objective greatly facilitate the computations and naturally owns a number of
sound properties. However, recent works in [74, 75] indicate that some non-convex
surrogate may further improve the performance and robustness for sparse optimiza-
tion. This is because these terms, although not convex, are much closer approxima-
tions to �0 norm rather than the convex �1 norm. But these non-convex optimizations
can only be solved by some non-convex optimization strategies. Besides, by �1 op-
timization, the converged point is the global optimum since the objective is convex.
But with some non-convex objective, the convergence of the algorithm should be
further justified. In [26], we use the log-sum term to replace the �1 norm for low
rank structure learning. But we could only prove that the converged point is a sta-
tionary point. Therefore, using non-convex surrogates for sparse optimization and
constructing their theoretical guarantees are still worth great efforts.

Computational perspective: Thanks to the advanced convex optimization algo-
rithms, sparse optimization for most vectors and matrices of relative small scale can
be finished in almost real time. But the dimensionality of data is expanding in an
unexpected rate that many practical applications need to solve an optimization with
large scale vectors, e.g. for gene data. Therefore, finding fast optimization strate-
gies is becoming more and more important. Some recent works try to linearize the
quadratic penalty in sparse optimization and add a proximal term to accelerate the
convergence [76, 77]. Such linearized methods show promising results on the tasks
of nuclear norm minimization and on the low rank representation[30]. To our knowl-
edge, many more works are now contributing to the topic of large scale sparse signal
optimization by the researchers in the field of applied mathematics, signal process-
ing and machine learning. We hope and believe that such bottleneck will be broken
in the not too far future.

System perspective: Although solid theoretical guarantees for compressive sens-
ing have been established on textbooks, there are hardly practical systems realized
in the real industry. We have reviewed some conceptual systems [55, 54] in this
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chapter. However, they are only laboratory models. It is desired to generalize the
power of sparse models to real world systems for signal processing, data compres-
sion, knowledge representation and machine learning. It is our great honor to see
that this chapter may inspire related researchers to contribute their intelligences to
implementing sparse models in real world devices and systems. We hope the gap
between theory and practice will be filled in the not far future.
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MiTS in Depth: An Analysis of
Distinct Tabu Search Configurations
for Constructing Mixed Covering
Arrays

Loreto Gonzalez-Hernandez, Jose Torres-Jimenez,
and Nelson Rangel-Valdez

Abstract. Alan turing work is related with the first use of heuristic algo-
rithms. His work on broking the Nazi code of the Enigma cipher was oriented
by a guided search whose expected result in most of the times would be the
deciphering of the codes, even though sometimes it might not work. This
idea reflects the modern meaning of an heuristic, and represents the main
relationship with this chapter, as it involves the use of metaheuristics to try
to guide the search to find a solution faster, or a better solution of a problem.
The metaheuristic is Tabu Search (TS), and it is used to solve the Mixed Cov-
ering Array Problem (MCAP). This problem focuses on the construction of
optimal test sets for software testing. The metaheuristic is designed through
a fine tuning process that involves the parameters: initialization function,
tabu list size, stop criterion, and neighborhood functions. The contributions
are: a) a more robust fine tune process to design a new TS approach; b) the
analys is of parameter values of the TS; and, c) new bounds over a benchmark
reported in the literature.

1 Introduction

AlanTuring is considered one of the founders of theComputer Science, someone
who brought to us the first formalization of the concept of an algorithm through
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the Turing machine, presented in his ground-breaking paper entitled: On com-
putable numbers, with an application to the Entscheidungsproblem [45].

Alan Turing had worked in many research areas concerning Artificial In-
telligence (AI), or Cryptography. However, the main relationship with the
present work is related with one of the first uses of the term heuristics. It
is well known that Alan Turing was one of the main contributors for the
break-out of the German Enigma ciphers at Bletchley Park. Turing himself
was found in the task of solving problems by means of searching through
the space of possible solutions, guided by rule-of-thumb principles; this idea
received the name of heuristic search and can be seen as a set of shortcuts
to find a solution that is believed as correct. Nowadays, the term represents
part of the foundations that rule the modern AI, as it is the base of most of
the techniques (which have evolved into metaheuristics) used in the modern
phenomenon that is trying to emulate partially what is called the machine
learning. Therefore, the use of the Tabu Search metaheuristic to guide the
sear ch of a solution for the problem of designing optimal test, can be seen as
the result of the evolution and impact over the informatic society, produced
by the first application of a search called heuristic, which was done by Alan
Turing.

Software systems are used in many areas of our society, e.g. they are in
education, business, medicine, government, airlines etc., so a failure in them
can lead to large losses, as in the case of the Ariane 5 rocket, which exploded
37 seconds after launch because of a malfunction in the control software [32].
This scenario reflects the importance of paying special attention in the reli-
ability of the software.

The first formal report about the impact of failures in software was due
to the National Institute of Standard and Technologies (NIST) in 2002 [42].
This report showed that failures in software coasted over 60 billions, but
that an important saving of 22 billions could be achieved if more adequate
software testing schemes were developed; ten years after this publication, it
continues being a point of reference for many related research works [26, 27].
In addition, more recent reports have appeared bringing information about
how failures in software still affect the industry of informatics. For example,
Coverity, a leader company in development testing1, carried out a study that
reported high-risk deffects in the kernel of the Android Operative System2.
Indeed, And roid is a platform widely used by mobile technology that still has
several bugs, situation that shows fault detection as one of the main concerns
in software development. Based on this fact, it can be seen the importance
of an adequate testing process.

Software testing has the aim to detect failures of system components, in
this way, the bugs can be corrected before the software begins to be used. The
1 http://www.coverity.com/
2 Coverity Scan: 2011 Open Source Integrity Report

http://www.coverity.com/library/pdf/coverity-scan-2011-open-source-integrity-
report.pdf
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greater the number of failures found, the testing process will be more effec-
tive. Many software testing methods have been proposed, which are target to
detect several types of failures that can be effective for certain testing scenar-
ios. Given this view there are two basic strategies that can be used to design
test cases. These are called white box (sometimes called clear or glassbox) and
the black box (sometimes called functional or specification) test strategies [4].
The white box approach focuses on the inner structure of the software, i.e. is
related to the source code, verifying its correct functionality. On the contrary,
black box testing takes an external perspective of the test object to derive
test cases. The test designer selects valid and invalid inputs and determines
if the output is the one that was expected, based on the input configuration.
In this approach there is no knowledge of the test object’s internal structure
(i.e., how it works). The tester only has knowledge of what it does. In this
chapter, software testing assumes to the black box strategy.

The stage of testing is carried out through test cases that involve the
execution of a software with parameters and values. A parameter is defined
as an element of software that serves as input, receiving an unique value from
a set of possible values. In this context, it is assumed that exists a software
which can be constituted by components or modules, every component (or
module) has a set of k parameters, each parameter receives a unique input
value from a possible set of v values. A test case (or configuration) indicates
the values that have to be set up in each of the k parameters to execute a run.
The term interaction between parameters or interactions of size t is referred
to the set of combinations of values that exists between these t parameters.
If each parameter has v possible values, there are vt different combinations.

It would be ideal to test all possible input configurations during the stage
of testing, unfortunately this approach is most times infeasible, in terms of
time and budget, in fact, Hinch et al. [21] comment that sometimes this stage
consumes more than the half of the total cost of the development, likewise
Hartman [20] affirms that it is more than 80%. Therefore to carry out the
verification in an exhaustive way, generally uses excessive resources. To clarify
this point, suppose that we want to test a system that has 12 parameters
each with 4 possible values, for testing all the combinations it is necessary
to use 412 = 16, 777, 216 test cases. This quantity is too large for practical
purposes. In the same way, when the number of values of each parameter
increases, also the total number of configurations grows exponentially. For
this reason, another alternative has to be taken in order to conduct the tests
using the minimum of possible cases and t he maximum coverage.

Recent studies have shown that close to 100% of the known failures of dif-
ferent kinds of software were triggered with interactions among 6 parameters
[28], this means that it is possible to construct an effective test set, if it con-
tains all the interactions of size 6. In this way, the overall number of test cases
can be reduced significantly. Combinatorial Testing (CT) is an approach that
can be used for software testing based on the results of these studies. The
main advantage is that the test suite constructed by this approach offers a
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certain degree of coverage, i.e. all configurations between t parameters ap-
pear (at least once) in every t-sub-set of the test suite, so if a failure of the
software under test (SUT) is produced for a specific combination of values
between t parameters, this combination will be included in the test suite.

Under this criterion, instead of using 412 = 16, 777, 216 test cases (by the
exhaustive approach) it would require 46 = 4, 096 tests [9]. It represents a
decrease of over 99% in the size of this test suite, therefore CT is an acceptable
approach that influences in the cost of the tests and the required degree
of coverage [49]. CT uses combinatorial objects to represent the test suite,
the most common are Covering Arrays (CAs) and Mixed Covering Arrays
(MCAs). CAs and MCAs are matrices of size N ×k where each row indicates
a test case and the columns represent the k parameters of the software.

There is a great variety of approaches in the literature used to construct
CAs [29, 30, 31]. However, only a few of them address the more general
problem of constructing MCAs. Due to this situation, this chapter presents
the analysis of two of the most recent implementations of the Tabu Search
(TS) algorithm created for this purpose (constructing MCAs) with the goal
of designing an experiment through which a better implementation can be
used to construct MCAs. The analysis includes the study of different values
of parameters for the TS algorithm.

To the best of our knowledge, the most recent approaches used to con-
struct MCAs are the TS algorithms with a mixture of neighborhood functions
(called MiTS), which are reported in [18, 17], and the tool ACTS from the
NIST [26]. The following points were observed from the analysis of [18, 17]
as areas of opportunity: a) the granularity of the mixture in the neighbor-
hood function was not uniform, and then it can be standardized; b) there
are different types of functions to create the initial solution, so all of them
were considered at once; c) the mixture of neighborhood functions is het-
erogeneous, so it was designed a fine tuning process that considered all the
functions. The benchmark presented in [26] was used to evaluate the per-
formance of the TS approach proposed in this chapter, as a result from the
analysis of the previous reported techniques.

The main reason to develop the research presented in this chapter was
derived from the results of the study over the TS implementations found in
[18, 17], which lack of a deeper analysis. Moreover, both strategies present
potential areas of opportunity because their respective experimental designs
involved different parameters, so they can be combined into one more robust
fine tuning process in order to design a better TS implementation. Given that
all these implementations are based on a mixture of neighborhood functions
(including the one propose here) all of them will be referred as MiTS.

In general, the research works about MiTS do not present an analysis about
the individual behavior or contribution of each parameter of the TS algorithm
over the quality of the solution. Additionally, they do not contemplate an anal-
ysis of the new benchmark published in a recent research work of the NIST.
Finally, the ACTS tool (which firstly began as the deterministic strategy IPO,
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and after that became the non deterministic algorithm IPOG-F) is still widely
used in scientific literature. This tool was developed by NIST researchers,
and recently it has been used to design the test sets of a platform for smart
phone apps, named Android [26]; this benchmark is used in this chapter for
comparison.

Summarizing, the main purpose of this chapter is to point out some of the
weaknesses in the values considered by previous approaches. The research
question that guide the study focused in the construction of a better MiTS
design through a more robust fine tuning of the parameters of the most recent
TS approaches implemented to solve the Mixed Covering Array construction
Problem (MCAP). In other words, this chapter characterizes the previous
reported strategies, called MiTS, that have been used to construct MCAs;
and exploits the results from the characterization in favor of the design of a
better MiTS design, which is used to create new bounds in a new benchmark
reported in [26].

In order to guide the information presented in this chapter, its organiza-
tion has been structured in the following way. Firstly, a brief summary of the
most relevant strategies for the present research are analyzed in Section 2.
After that, Section 3 presents a formal definition of the problem of construc-
tion of MCAs, including some of the basic acronyms that are used during
the chapter. The structure continues in Section 4 with the characterization
of the parameters of the TS approach proposed in this chapter; specifically,
the initial solutions, the stop criterion, the number of evaluations, the neigh-
borhood functions, and the tabu list size are presented and defined. The
following expected step is to fine tune the parameters of the TS combining
the different parameters reported in the recent scientific literature, in order to
produce a better MiTS design, this activity is presented in Section 5, which
concludes with the analysis of the individual behavior of the different values
of the parameters of TS, and the comparison of the resulting MiTS against
a benchmark derived from a research work done by the NIST. Finally, in
Section 6 are summarized the main conclusions derived from this research.

2 Related Work

This section gives a brief state-of-the-art of the construction strategies of CAs
and MCAs. Also, it is presented a summary of the representative approaches
that are of interest for the present research (used for experimental compar-
isons). Finally, two recent works that were used for analysis and design of the
proposed approach are presented at the end of this section.

The problem to construct CAs with the minimum possible number of rows
is known in the literature as the Covering Array Construction (CAC) prob-
lem. It consist in given as input k parameters with v possible values and a t
size of interaction between them; obtain the minimum possible N rows. This
problem is a highly combinatorial and hard to solve for exact approaches.
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Nevertheless there are some special cases where can be used direct methods
to construct CAs in polynomial time.

The case t = v = 2 was solved firstly by Reyni [36] for even values of k, after
by Katona [24] and Kleitman and Spencer [25] for any value of k. Bush [5]
reported a method that uses Galois Finite Fields to construct CA(v2; 2; v +
1; v) where v is a prime or a power of prime and t < v. Another direct
method that can construct some optimal CAs is named Zero-sum [12], it
leads to CA(vt; t, t + 1, v) for any t > 2.

Another methods that have been developed to construct CAs are: a) al-
gebraic methods [23, 10], b) recursive methods [14, 13], c) greedy methods
[15, 2], d) metaheuristics [44, 43] and e) exact methods [1, 48]. Recently, the
post-optimization process [19, 34] is an alternative that has been used to im-
proved the size of some CAs and MCAs constructed by other strategies. A
most detailed explanation of all these methods can be found in recent surveys
[29, 30, 31].

Some of the metaheuristics that have been implemented to construct CAs
including Simulated Annealing [33, 43], Tabu Search (TS) [35, 22, 50], Hill
Climbing (HC) [8], Great Deluge (GD) [3], and those in the category of
artificial life algorithms such as Genetic Algorithms (GA) [40], Memetic Al-
gorithms [38] and Ant Colony Optimization Algorithm (ACO) [39]. Some of
the best reported result of these metaheuristics have been constructed by SA
and TS.

Table 1 presents a summary of research works that have used strategies for
the construction of CAs and MCAs, which are of interest for this research.

Table 1 Some approaches for the construction of MCAs used as benchmarks in
this research work.

Approach Year Reference

Tconfig 1996 [47]
AETG 1997 [7]
TCG 1997 [7]
IPO 2002 [41]
SA 2003 [8]
GA 2004 [39]

ACO 2004 [39]
DDA 2004 [11]
TS 2010 [18]
TS 2010 [17]

ACTS 2010 [26]

The main features of the TS approach presented in Table 1 are: a) the
functions I to create the initial solution; b) the size of tabu list T ; c) the
maximum number of evaluations E ; and d) the probabilities ρ to use the
neighborhood functions N . Table 2 presents the codification for each of them.
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Table 2 Main features of the TS approaches presented in [18, 17].

Code Description

Initialization functions
I1 Random initialization
I2 Hamming distance
I3 Subsets of t columns

Tabu list sizes
T 1 N ∗ k ∗ vmax/8
T 2 N ∗ k ∗ vmax/10
T 3 N ∗ k ∗ vmax/12

Maximum number of evaluations
E1 N ∗ k ∗ vmax

t*100
E2 N ∗ k ∗ vmax

t*150
E3 N ∗ k ∗ vmax

t*200

Neighborhood funtions
N 1 Select randomly a position (i, j) of the matrix
N 2 Select randomly a column i of the matrix
N 3 Change each cell of the matrix
N 4 Coverage of a missing combination

Table 3 Different configurations of parameter values used for TS Approaches. A
symbol x denotes that it was considered in the approach.

Research work I1 I2 I3 T 1 T 2 T 3 E1 E2 E3 N 1 N 2 N 3 N 4

TS [18] x x x x x x x x x x x
TS [17] x x x x x x

Proposed Approach x x x x x x x x x x x

Table 3 indicates where these features have been used, and how a combination
of them was implemented in the design presented in our proposal approach.

3 Mixed Covering Array Problem

The purpose of this section is to present the basic notation to be used during
the chapter, that is related with the definition of the problem that is object
of study in this research.

If a software system has k parameters each with v possible values, it would
take vk configurations if it wants to be tested in an exhaustive way. However
another method called combinatorial testing (CT) can be used [6]. The main
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goal of this approach is to find the minimum possible number of tests which
satisfies the indicated coverage.

The combinatorial structures used are described as follows: An orthogonal
array (OA), denoted by OAλ(N ; t, k, v), is an N × k array on v symbols such
that every N × t sub-array contains all the ordered subsets of size t from v
symbols exactly λ times. Orthogonal arrays have the property that λ = N

vt .
When λ = 1, it can be omitted from the notation and the OA is optimal. An
orthogonal array OA(N ; t, k, v) is a special type of CA(N ; t, k, v) [5].

A covering array (CA) is a mathematical object, denoted by CA(N ; t, k, v)
which can be described like a matrix with N × k elements, such that every
N×t sub-array contains all possible combinations of vt symbols at least once.
N represents the rows of the matrix, k is the number of parameters, which
has v possible values and t represents the strength or the degree of controlled
interaction [1].

A CA has the same cardinality in all their parameters. However, software
systems are generally composed with parameters that have different cardi-
nalities; in this situation a mixed covering array (MCA) can be used.

A mixed covering array, or MCA(N ; t, k, v1v2 . . . vk), is a N×k array where
v1v2 . . . vk is a cardinality vector that indicates the values for every column
[8]. The MCA has the following properties:

1. Each column i (1 ≤ i ≤ k) contains only elements from a set Si with
|Si| = vi.

2. The rows of each N × t sub-array cover all t -tuples of values from the t
columns at least once.

The shorthand notation MCA(N ; t, k, wr1
1 wr2

2 . . . wrs
s ), where k =

∑s
i=1 ri

and wj ∈ {v1, v2, . . . , vk}, for all 1 ≤ j ≤ k, can be used alternatively. The
problem of constructing a given MCA(t, k, v1v2 . . . vk) is called the Mixed
Covering Array problem (MCAP). The minimum N for which there exists a
MCA is called mixed covering array number MCAN(k, t, v1v2 . . . vk).

The previous definitions can be illustrated with a simple instance. Suppose
that we want to verify a Web Service in four different aspects: O.S., Inter-
preter, Protocol and Web browser. The first aspect has three possible values
and the rest of them have two possible values as shown in Table 4. Every
possible value of each parameter is labeled like 0, 1, or 2 as the case.

Table 4 Parameters of a Web Service, The first with three possible values and the
rest with two.

O.S. Interpreter Protocol Web browser

0 → Windows Server Pearl http Firefox
1 → Debian GNU Ajax ftp Chrome
2 → SUN Solaris
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The MCA(6; 2, 4, 3123) is a test suite that covers all interactions between
pairs in the Web Service where every row indicates the configuration of a test
case. The mapping of the MCA to the corresponding software test suite is
shown in Table 5.

Table 5 Mapping of the MCA(6; 2, 4, 3123) to the corresponding pair-wise test
suite.

O.S. Interpreter Protocol Web browser

0 0 1 1 → Windows Server Pearl ftp Chrome
0 1 0 0 → Windows Server Ajax http Firefox
1 0 0 1 → Debian GNU Pearl http Chrome
1 1 1 0 → Debian GNU Ajax ftp Firefox
2 0 1 0 → SUN Solaris Pearl ftp Firefox
2 1 0 1 → SUN Solaris Ajax http Chrome

4 Proposed Approach

The goal of this section is to describe the proposed TS design studied in this
chapter, and to discuss the characteristics and parameter values that define
it.

The Tabu Search (TS) metaheuristic is a local search optimization ap-
proach that copes with different problems of combinatorial optimization [37].
The TS was proposed by Glover and Laguna [16]. The general idea behind
TS is based on a tabu list. The tabu list keeps track of the last movements
done to transform the actual solution s into a new solution s′. Then, every
time that a new solution is created, the solution s must be changed avoiding
the use of the movements found in the tabu list. The tabu list can be defined
as a memory that stores information of forbidden moves; the use of those
moves allows the TS to avoid been stuck in a local optimal solution, because
the new good solution can not be used to create other solutions until they
leave the tabu list. Another distinguishing feature of TS is the aspiration
criteria, which allows the use of movements in the tabu list when they can
create better solutions than the best so far.

The Algorithm 1 shows the pseudocode that guides the design of the TS
approaches presented in this chapter. The elements that define the algorithm
are: a) the initial solution so; b) the tabu list size T ; c) the neighborhood
function N (s, ρ1, ρ2, ρ3, ρ4); d) the evaluation function C(s); and e) the stop
criterion sbest > 0 and e < E .

The key feature of the Algorithm 1 is the use of a mixture of neighborhood
functions to create a neighbor. All the TS approaches presented in this chap-
ter use this feature. For simplicity, we will refer to any of those approaches
as MiTS design in the rest of the document (MiTS stands for TS with a
mixture of neighborhood functions).
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Algorithm 1. General pseudocode for the design of the TS approaches.
s ←so;1

sbest ←s;2

while C(sbest) > 0 and e < E do3

s’ ←F(s,ρ1, ρ2, ρ3, ρ4);4

if C(s’) < C(sbest) then5

sbest ←s’;6

end7

if NotInTabuList(s’) then8

s ←s’;9

UpdateTabuList(s, s’);10

end11

e ←e+NumEvalRequired(s,i);12

end13

The following subsections describe in depth each of the elements
of a MiTS design. The descriptions use a matrix MN×k to represent
MCA(N ; t, k, v1v2 . . . vk). Each cell mi,j ∈ M can take values from
{0, 1, ..., vj − 1}, where vj is the cardinality of the alphabet corresponding
to the parameter j in the instance.

4.1 Creating the Initial Solution

The purpose of this subsection is to describe the different strategies consid-
ered to construct an initial matrix that serves as input for the TS algorithm.
These strategies are common in TS approaches that construct MCAs.

Given the MCAP instance MCA(N ; t, k, v1 . . . vk), a solution s is repre-
sented as a matrix M of size N × k, where the columns are the parameters
and the rows are the cases of the test set that is constructed. Each cell mi,j in
the array accepts values from the set {0, 1, ..., vj − 1}, which is the alphabet
of the jth column.

An initial solution so is a matrix M which not necessary is a MCA but
can be used to construct one by TS. Three techniques were studied for the
construction of so; these are described in the following paragraphs.

The first technique, or I1, randomly selects a value for each cell mi,j ∈ M
to construct so.

The second strategy, denoted by I2, generates so as a random matrix M
having the maximum Hamming distance. The Hamming distance between
two rows Ri, Rj of a matrix M is the number of columns at which the cor-
responding symbols are different. A random matrix M will be of maximum
Hamming distance if it is constructed under the following conditions: a) the
first row R1 is generated at random; b) for each row Ri, where i > 1, two
candidate rows c1, c2 are randomly generated, then the row Ri will be the
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candidate row that maximizes the accumulated Hamming distance H(M, ci),
which is formally defined in Equation 1.

Table 6 exemplifies the evaluation of H(M, ci) and the use of I2 as the
function that initializes the matrix M for a TS approach. Firstly, in the
example it is supposed that the matrix M already has two rows R1, R2.
Then, in order to add the row R3 the function I2 must choose between two
candidate rows generated at random (in this case these rows are {c1, c2}).
Note that the rows R1, c1 have a Hamming distance of 5 and the rows R2, c1

have a Hamming distance of 3 resulting in a value of H(M, c1) = 8, i.e. the
Hamming distances between the candidate row c1 and the rows of the matrix
M is of 8 (see Figure 6(a) for reference). Following the same process with the
candidate row c2, the result is H(M, c1) = 6 (see Figure 6(b) for reference).
Therefore, the candidat e row c1, which has the maximum Hamming distance,
is added to the matrix M as the row R3 (see Figure 6(c) for reference), to
continue the process of creation of the initial solution through the function
I2.

H(M, ci) =

i−1∑
s=1

k∑
v=1

h(ms,v, mi,v),

where ms,v, mi,v ∈ M

and h(ms,v, mi,v) =

{
1 if ms,v �= mi,v

0 otherwise

(1)

Table 6 Initial solution s0 created through the initialization function I2. This
example presents a matrix s0 =M with two rows R1, R2, R3, and the selection of
R3 from {c1, c2}.

(a) Candidate row
c1

M

R1 1 1 1 1 0 1 1 0
R2 1 1 0 1 0 1 1 1
c1 0 1 0 1 1 0 1 1

H(M, c1) = 8

(b) Candidate row
c2

M

R1 1 1 1 1 0 1 1 0
R2 1 1 0 1 0 1 1 1
c2 0 0 0 1 0 1 1 0

H(M, c2) = 6

(c) Resulting matrix
M

M

R1 1 1 1 1 0 1 1 0
R2 1 1 0 1 0 1 1 1
R3 0 1 0 1 1 0 1 1

The third technique, or I3, generates the matrix M using smaller sub-
matrices that already are MCAs. To create those submatrices it follows a
simple process. Initially, we take the first t columns of M and generate all
the combinations of symbols derived from the alphabets of those columns.
After that, each combination is assigned to a different row of M in increas-
ing order starting at row r1. The whole set of combinations is duplicated
as many times as it be necessary to complete the N rows of M. Each time
that a new copy of the set of symbols is required to complete the matrix,
the combinations must be assigned in the same order they were assigned the
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first time. Once that this process is concluded, the first t columns will form
a MCA that is a submatrix of M. After that, we choose the next t columns
in M and proceed in a similar way; we proceed in this way until the matrix
M is completely filled.

Table 7 Initial solution s0 created using initialization function I3, such that the
TS can be used to create the MCA(10; 2, 5, 3322).

(a)

m1

A B

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

(b)

M1

A B C D E

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2
0 0

(c)

m2

C D

0 0
0 1
1 0
1 1
2 0
2 1

(d)

M2

A B C D E

0 0 0 0
0 1 0 1
0 2 1 0
1 0 1 1
1 1 2 0
1 2 2 1
2 0 0 0
2 1 0 1
2 2 1 0
0 0 1 1

(e)

m3

E

0
1

(f)

M3

A B C D E

0 0 0 0 0
0 1 0 1 1
0 2 1 0 0
1 0 1 1 1
1 1 2 0 0
1 2 2 1 1
2 0 0 0 0
2 1 0 1 1
2 2 1 0 0
0 0 1 1 1

Table 7 shows an initial solution matrix so = M for
MCA(10; 2, 5, 3322). The columns of this matrix will be referred as
{A, B, C, D, E}, and its rows by {1, 2, 3, ..., 10}. The first step is the
creation of a submatrix m1 that already is a MCA; given that the MCA
is of strength t = 2, and the first two columns have 3 parameters, the
submatrix created is of size 9 × 2 and has all the symbol combinations
{(0, 0), (0, 1), (0, 2), ..., (2, 2)} (see Table 7(a) for reference). This submatrix
m1 is then added to the columns {A, B} of the matrix M1, starting in the
first row, as shown in Table 7(b). Note the matrix M1 required one more
row, it was taken from the first row of the submatrix m1 created in this
iteration to complete the set. The process is repeated, but this time taking
the following two columns of M, and their alphabets of values v = 3 and
v = 2, respectively (see Tables 7(c) and 7(d) for reference); here, it is shown
the use of the submatrix m2 plus its first four rows to complete the required
rows in the matrix M2 in columns {C, D}. Finally, the third iteration,
involved the submatrix m3 created from the remaining column {E}, which
has an alphabet value of v = 2; this submatrix was copied five times in
M3 to end the construction of the initial matrix s0 = M = M3 using the
method I3. It is important to point out that the submatrices m1, m2, m3 are
already MCAs.
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4.2 Tabu List Definitions

Tabu Search approaches use a list of movements that can’t be made by the
algorithm when constructing a solution. These prohibited movements, also
called Tabu movements, commonly are changes in a solution to produce new
ones. Those changes depend on the problem and the strategy used to solve
it.

In this chapter, a tabu movement is characterized by the tuple
(N , v, i, j, m), i.e. when it happens again that the neighborhood function N
sets the symbol v in the cell mi,j ∈ M and produces exactly the same number
l of missing combination of symbols. A missing combination of symbols, or
just missing, is a combination of symbols that the matrix M doesn’t have in
subset of t columns (or t-tuple) and needs it to become a MCA.

The management of the Tabu movements is generally done through three
main parameters: the expiration criteria, aspiration criteria, and the size of
the tabu list. The expiration and aspiration criteria control the permanence
of the Tabu movements in the list. While the expiration time E rules the
period of time that a movement is considered tabu, the aspiration criterion
A represents exceptions to that rule.

Even though the aspiration criterion allows that good movements become
valid when they are tabu, they are out from the scope of the TS designs
analyzed in this chapter. Hence, we only consider the expiration criterion and
we define it as the number of generated solutions E, i.e. after E neighbors
have been created, a movement in the tabu list will not be prohibited any
longer.

The size of tabu list, or T , is defined by the expiration time E. Only after
E solutions have been generated, a movement will left the tabu list. This
action implies a size for the tabu list of T = E. Therefore, the TS designs
presented in this chapter will define the tabu list only by its size T . Table
2 presents the different values of T studied for MiTS. These values depends
on the size of the matrix M and on vmax =

∏i=t
i=1 wi (where wi is the ith

cardinality of alphabet in decreasing order).

4.3 Neighborhood Functions

The movements that form new solutions comes from the neighborhood func-
tion. A neighborhood function f(s) is a set of movements that allow the
generation of new solutions s′ given a current solution s. The solution s′ is
called a neighbor of s. Whenever some of the movements performed by the
neighborhood function are random, the set of neighbors derived from s are
called the neighborhood and denoted by N (s). When more than one neighbor
are possible, the use of an objective function that evaluates their cost will
decide the one that will be chosen as the new solution s′.

A neighbor is a solution created from another solution through heuris-
tics. The function that creates neighbors is called neighborhood function.
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Different mixtures of four different neighborhood functions were consid-
ered during the design of the different TS considered in this chapter. All
the functions modify the matrix M that represents the solution s for the
MCA(N ; t, k, v1 . . . vk).

In order to describe the neighborhood functions, three sets derived from
an instance MCA(N ; t, k, v1 . . . vk) of the MCAP will be defined as follows:
a) the set C = {c1, c2, ..., cl}, where each of its elements c is a t tuple to be
covered; b) the set A, where each of its elements Ai is a set containing the
combinations of symbols that must be covered in the t tuple ci ∈ C; and c)
the set R = {r1, ..., rN}, where each element ri ∈ R will be a test set of
the MCA that will be constructed. The cardinality l = |C| is given by the
expression

(
k
t

)
. The cardinality |Ai| of each Ai ∈ A is given by |{0, 1, ..., vi −

1}|, where vi is the cardinality of the alphabet of column i in the MCA
that is constructed. The cardinality of the set R is N , the expected number
of rows in the MCA. Table 8 co ntains the sets C,A,R derived from the
MCA(10; 2, 5, 3322) instance shown in Table 7.

The function N1(s) randomly chooses a position (i, j) of the matrix M
and carries out all the possible changes of symbol in that cell. This function
has vj − 1 possible neighbors.

The neighborhood function N2 works directly over the test set R that is
being formed. This function randomly selects a column or parameter from
the test set (which in our case will be a value 1 ≤ j ≤ k). After that, for each
different test case ri ∈ R, the function N2 changes the symbol at ri,j , where
j is the jth symbol in ri ∈ R, and evaluates the number of missing symbol
combinations. In this neighborhood function, every possible change of symbol
in ri,j is made. The number of calls to the evaluation function performed in
N2 are O((vj −1) ·N), because there are vj −1 possible changes of symbols in
column j and there are N different test cases. The neighborhood function N2

will choose to change the symbol at ri,j to v′ if changing the jth symbol in
test case ri for the symbol v′ minimizes the number of missing combin ations
among all the other possible changes of symbols performed by the function.

The neighborhood function N3 is a generalization of the function N2 in
the sense that it performs all the changes of symbols in the whole test set R.
Again, the change of symbol that minimizes the number of missing combina-
tions will be the one chosen by this function to create the new neighborhood.
The number of evaluations of the objective function performed by this neigh-
borhood function is O((vj − 1) · N · k).

Finally, the neighborhood function N4 consists in two phases. The first
phase searches for a t tuple c′ ∈ C such that it contains at least one symbol
combination a′ missing. To do that, the function N1 randomly chooses a t
tuple ci ∈ C to start with. Then, it checks if ci has a symbol combination
a ∈ Ai not covered yet. If the neighborhood function N1 fails in its first try,
it takes the next combination in order ci+1 if i + 1 <

(
k
t

)
otherwise it takes

c1. This process continues until a non-covered t tuple c′ is found, and one of
its missing symbol combination is identified, denoted by a′.
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Table 8 Example of the sets C,A,R derived from instance MCA(10; 2, 5, 3322)
shown in Table 7.

C ← {c1 = (A, B), c2 = (A,C), c3 = (A,D), c4 = (A,E), c5 = (B, C),
c6 = (B, D), c7 = (B,E), c8 = (C, D), c9 = (C, E), c10 = (D, E)}

A ← {A1 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},
A2 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},
A3 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A4 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A5 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},
A6 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A7 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A8 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A9 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A10 = {(0, 0), (0, 1), (1, 0), (1, 1)}}

R ← {r1 = {0, 0, 0, 0, 0},
r2 = {0, 1, 0, 1, 1},
r3 = {0, 2, 1, 0, 0},
r4 = {1, 0, 1, 1, 1},
r5 = {1, 1, 2, 0, 0},
r6 = {1, 2, 2, 1, 1},
r7 = {2, 0, 0, 0, 0},
r8 = {2, 1, 0, 1, 1},
r9 = {2, 2, 1, 0, 0},
r10 = {0, 0, 1, 1, 1}}

Once that a non-covered t tuple c′ ∈ C is found and a missing symbol
combination a′ identified, the second phase of N1 starts. This phase searches
for the best test case r ∈ R where the symbol combination a′ can substitute
the symbols defined by the non-covered t tuple c′ in that case. The test case
r′ will be the one that, when substituting the symbols described by c′ for
the symbol combination a′, minimizes the total number of missing symbol
combination in the MCA constructed. The number of evaluations of the ob-
jective function done by the neighborhood function N4 is O(N), because in
the worst case the function requires to change the symbol combination for c′

in each of the N test cases.
The design of the approach presented in this section was based on the

premise that using a mixture of neighborhood functions in TS, rather than
just one, improves the construction of MCAs. When more than one neighbor-
hood function is used, each function Ni is assigned a probability of selection
ρi. Given that the MiTS designs considered in this chapter use four different
neighborhood functions, a set ρ = {ρ1, ρ2, ρ3, ρ4} of probabilities must be
specified to describe its participation in the generation of neighbors.

The following subsection defines the evaluation function used in this chap-
ter to implement the MiTS algorithm.
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4.4 Evaluation Function

Whenever a matrix M is not a MCA(N ; t, k, v1v2 . . . vk), we say that there are
some combination of t symbols missing in the matrix (and that are required
for M to become a MCA). The missing combinations of symbols can be
found in any subset of t columns of M. In the rest of the chapter, a t-tuple
will be one subset of t columns of M. Also, a missing will be one missing
combination of symbols in M, regardless of the t-tuple that misses it.

The evaluation function C(s) of a solution s is defined as the number of
missings. In this way, the matrix M will be a MCA if it has zero missings.
A formal definition for C(s) is given in Equation 2. In this equation C(s) =
f(M, C,A), where M is the matrix of the solution s and C,A are the sets of
t-tuples and of combination of symbols, respectively.

f(M, C,A) :
∑

∀c∈C
∑

∀Ai∈A
∑

∀a∈Ai
g(M, c, a)

where

g(M, c, a) =

{
1 if Matrix M doesn’t contain a in c
0 otherwise

(2)

An example of the use of the evaluation function f(M, C,A) is shown in
Table 9, where the number of missing symbol combinations in matrix M
shown in Table 7 is counted. Table 9 shows in the first column the differ-
ent combinations of symbols to be covered in the matrix. The rest of the
columns show the different t tuples in the matrix and the number of times
that each combination of symbol is covered in M. A symbol − represents
that a combination of symbols must not be satisfied in a certain combination
c; in the other side, the value 0 represents that a combination has not yet
been satisfied. The results obtained from f(M, C,A) are shown at the end of
the table, note that the matrix M still has 8 missing combinations making
it a non MCA.

The cost of evaluating f(M, C,A) is O(
(

k
t

)
× N), because the operation

requires to examine the N rows of the matrix M and the
(

k
t

)
different t tuples.

With the aim of improving the time of this calculation, we implemented the
P matrix. This matrix is shown in Table 9 and it is of size

(
k
t

)
× vmax, where

vmax =
∏i=t

i=1 vi and vi is the ith alphabet cardinality taken in decreasing
order from the cardinalities of the columns of M. Each element pij ∈ P
contains the number of times that the ith combination of symbols is found
in the t tuple cj ∈ C; the value of pij is not taken into account if the ith

combination of symbols must not be included in the t tuple cj .
To avoid the expensive cost O(

(
k
t

)
× N) at every call of f(M, C,A), the

matrix P is used for a partial recalculation of the cost of M, i.e., the cost of
changing a symbol in a cell mij ∈ M is determined and only the affected t
tuples in P are updated, modifying the results from f(M, C,A) according to
that changes. The cells in P that must be updated when changing a symbol
from mij ∈ M are the t tuples that involve the column j of the matrix M.
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Table 9 Matrix P of symbol combinations covered in M (from Table 7) and results
from evaluating M with f(M, C,A).

P c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

(0, 0) 2 2 2 2 2 2 2 2 2 5
(0, 1) 1 2 2 2 2 2 2 2 2 0
(0, 2) 1 0 − − 0 − − − − −
(1, 0) 1 0 1 1 2 1 1 2 2 0
(1, 1) 1 1 2 2 0 2 2 2 2 5
(1, 2) 1 2 − − 1 − − − − −
(2, 0) 1 2 2 2 0 2 2 1 1 −
(2, 1) 1 1 1 1 2 1 1 1 1 −
(2, 2) 1 0 − − 1 − − − − −

f(M, C,A) = 8

On this way, the complexity taken for the update of f(M, C,A) is reduced
to O(

(
k−1
t−1

)
× 2).

4.5 Stop Criterion

The stop criterion for the MiTS algorithm is a given number of evaluations
E of the objective function. Some values that have been considered in the
literature are shown in Table 2. An alternative stop criterion is when the
MCA has been created, i.e. when the number of missings is 0.

The stop criterion to be analyzed for the MiTS design considered in this
chapter are in relation with the ones reported in the literature for the MCAP.
In this respect, the values reported in [18, 17] are included in Table 2, and
therefore they will be considered for the designs in this chapter. All these
values are dependent on the size of the problem, which for the case of MCAs
are defined in terms of the parameters of a MCA matrix, N , k, v and t.
Additionally, a constant is added by the previous works in order to have a
good starting point. Their results show that these values for the stop crite-
rion works well for their purpose, reason why they remain unchanged in the
present work; and because the purpose of the research in the chapter is to
analyze their effect in the algorithm in combination with other parameter
values (something that is missing in previous works).

5 Experimental Design: Analysis and Results

The purpose of this section is to present the methodology followed to ana-
lyze two state-of-the-art MiTS designs. From this study, the most important
characteristics were extracted and combined into a single fine tuning pro-
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cess, with the purpose of yielding an improved MiTS design. This last design
is used to solve a recent benchmark, that no of the other approaches have
solved. In addition, it presents an analysis of the effect in the performance of
the MiTS design, due to individual elements such as the initial solution I,
tabu list size T , and the mixture of neighborhood functions N .

The MiTS designs were based on the different parameter values discussed
so far, which were derived from the approaches [18, 17], they are: the three
initialization functions I, the three different tabu list size T , and the mixture
of neighborhood functions N . The value of the number of evaluations E was
set to E3 = N ∗ k ∗ vt

max ∗ 200, because it was the one that yielded the best
results in the previous approaches.

The organization of this section is presented in three main parts. The first
one, shown in subsection 5.1, has as goal to present the characterization of
the MiTS design presented in [18]. The information presented includes a brief
summary of the parameter values of its design (e.g. which initialization func-
tions were used, or how is composed the set of neighborhood functions used in
the mixture, etc.), the methodology followed in the fine tuning process, and
the results achieved by the approach. This part ended with an analysis of the
information pointing out the main weaknesses of the approach, in relation to
the robustness of the fine tuning process.

The second part, presented in subsection 5.2, is somehow related with
the first one, in the sense that it summarizes the information relating the
TS approach presented in [17]. Again, it presents the way in which the fine
tuning process was developed, in order to adjust the parameter values of the
TS approach. Also, it includes a summary of the results achieved in that
approach. This subsection ends with a general revision of both approaches
[18, 17]. The results from these revisions point out the weaknesses of the
approaches in relation to the fine tuning process of their parameter values;
weaknesses that are studied as the main contribution of this chapter in the
subsection 5.3.

The subsection 5.3 presents the main contribution of this chapter, i.e.
the analysis of a more robust fine tuning of the parameter values of a TS
approach, that includes the most relevant characteristics found in the ap-
proaches reported in [18, 17]. Firstly, it shows the methodology to fine-tune
the parameters of the MiTS design proposed in this chapter, which combines
all the initialization functions, neighborhood functions, and tabu list sizes
described previously. After that, it presents an analysis of the best MiTS
design resulting from the fine-tuning, pointing out the difference in relation
with the performance between the use of a mixture of neighborhood func-
tions, or using a single one; or, the difference of performance among all the
initialization functions, and tabu list sizes. Finally, it shows the results from
the comparison of the best MiTS design against a state-of-art algorithm, us-
ing a recent benchmark reported in the lite rature, which was not included
in the previous reported approaches.
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5.1 First MiTS Design for MCA

To the best of our knowledge, the works presented in [18, 17] are the only
ones that use MiTS designs to construct MCAs. This subsection describes
the MiTS design of [18].

In [18], it is presented a MiTS design that is derived from a fine-tuning
of the following parameters: the initialization function I, the tabu list size
T , the number of evaluations E , and the neighborhood functions N . Table 2
shows a summary of the different values considered for these parameters.

The methodology proposed in [18] combines a
MCA(9; 2, 3, 2312) and the solutions of the Diophantine equation
x1 + x2 + x3 = 5 in a full factorial design to find the combination of
values for I, T , E and N that gives the best performance in a MiTS design.
The MCA is shown in Table 10; this MCA has 9 test cases and is used to
configure the values of I, T and E .

The use of the Diophantine equation x1 + x2 + x3 = 5 defines a gran-
ularity of 0.2, i.e. the discretization level of the probability values for each
neighborhood; then the probabilities values ρ considered for the neighbor-
hood functions N are ρ = {0, 0.2, 0.4, 0.6, 0.8, 1.0}. A particular solution of
the Diophantine equation will assign the probability value xi

5 to the neigh-
borhood function Ni, where xi refers to the variable value on that particu-
lar solution. The number of different solutions for the Diophantine equation
x1 + x2 + x3 = 5 is 21. Hence, in [18] were considered 21 different configura-
tions of probabilities values to fine-tune the parameters of the MiTS design;
these configurations are presented in Table 11.

Table 12 shows the combination of each row from MCA(9; 2, 3, 2312) with
each solution of x1 +x2+x3 = 5. Each cell in this table represents a combina-
tion of a specific configuration of the probability values for the neighborhood
functions, with a specific configuration of the parameters of initial solution,
tabu list size and number of evaluations of the TS approach (e.g. cell {C9,
C2-P} makes reference to the particular use of the initialization function I2,

Table 10 Values of I, T and E used for constructing the test cases to fine-tune
parameters in [18].

Codification so T E

C1 I1 T 1 E1

C2 I1 T 1 E2

C3 I1 T 2 E2

C4 I1 T 2 E3

C5 I1 T 3 E1

C6 I2 T 1 E3

C7 I2 T 2 E1

C8 I2 T 3 E2

C9 I2 T 3 E3
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Table 11 Different configurations for the probabilities values of the neighborhood
functions used in [18].

Codification ρ1 ρ2 ρ3

C1-P 0.0 0.0 1.0
C2-P 0.0 0.2 0.8
C3-P 0.0 0.4 0.6
C4-P 0.0 0.6 0.4
C5-P 0.0 0.8 0.2
C6-P 0.0 1.0 0.0
C7-P 0.2 0.0 0.8
C8-P 0.2 0.2 0.6
C9-P 0.2 0.4 0.4
C10-P 0.2 0.6 0.2
C11-P 0.2 0.8 0.0
C12-P 0.4 0.0 0.6
C13-P 0.4 0.2 0.4
C14-P 0.4 0.4 0.2
C15-P 0.4 0.6 0.0
C16-P 0.6 0.0 0.4
C17-P 0.6 0.2 0.2
C18-P 0.6 0.4 0.0
C19-P 0.8 0.0 0.2
C20-P 0.8 0.2 0.0
C21-P 1.0 0.0 0.0

tabu list size T3 and number of evaluations E3 with the mixture of neighbor-
hood functions N1 = 0.00,N2 = 0.20,N3 = 0.80, indicating their probability
of being chosen). These combinations represent the test set of the full facto-
rial design used for the fine-tuning of MiTS in [18]. Each of the 189 different
configurations constituted a different MiTS design and were used to construct
the MCA(30; 2, 19, 6151463823). Table 12 shows the percentage from 31 runs
in which each configuration made it at constructing the MCA, i.e. the MCA
without missings.

The information of the Table 12 shows a poor performance in the combina-
tions that involves only one neighborhood function, such as the rows labeled
with C1-P, C6-P and C21-P. On the other hand, a configuration involving a
mixture of neighborhood functions (the configuration {C9, C2-P}) was the
one with the best performance, it could construct a MCA in 90.32% of the
31 runs. The MiTS design constructed using the configuration {C9, C2-P}
was used to solve a benchmark reported in the literature. The benchmark
and the results comparing the design with other state-of-the-art algorithms
are reported in Table 13.

The results presented in this subsection show that better designs can be
found using a mixture of neighborhood functions than considering each one
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Table 12 Full factorial design for the fine-tuning of a MiTS design in [18]. For
each design it is presented the percentage of hits that each configuration (MiTS
design) had from 31 runs.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Average

C1-P 6.45 16.13 9.68 3.23 6.45 3.23 12.90 3.23 6.45 7.53
C2-P 29.03 54.84 54.84 64.52 38.71 64.52 25.81 64.52 90.32 54.12
C3-P 38.71 58.06 74.19 87.10 61.29 67.74 58.06 74.19 87.10 67.38
C4-P 32.26 35.48 45.16 61.29 54.84 54.84 51.61 83.87 67.74 54.12
C5-P 19.35 12.90 45.16 58.06 48.39 45.16 45.16 58.06 83.87 46.24
C6-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C7-P 3.23 9.68 29.03 25.81 19.35 16.13 6.45 41.94 41.94 21.51
C8-P 12.90 38.71 38.71 64.52 41.94 32.26 29.03 48.39 64.52 41.22
C9-P 12.90 32.26 48.39 61.29 45.16 58.06 41.94 64.52 67.74 48.03
C10-P 19.35 6.45 25.81 29.03 25.81 16.13 25.81 41.94 45.16 26.16
C11-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C12-P 3.23 0.00 6.45 3.23 6.45 3.23 0.00 12.90 0.00 3.94
C13-P 0.00 3.23 0.00 9.68 3.23 6.45 3.23 6.45 19.35 5.73
C14-P 0.00 0.00 0.00 0.00 0.00 3.23 0.00 3.23 3.23 1.08
C15-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C16-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C17-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C18-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C19-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C20-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C21-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 8.45 12.75 17.97 22.27 16.74 17.67 14.29 23.96 27.50 17.96

Table 13 Comparison made in [18] between its MiTS design and some results
previously reported. The * means that the solution is an optimal.

Instance TConfig IPO AETG TCG SA GA ACO DDA MiTS Best Time
[46] [2] [41] [2] [7] [7] [8] [39] [39] [11] reported (sec.)

MCA(N ; 2, 513822) 21 21 19 18 15 15 16 21 15 15* 0.03
MCA(N ; 2, 716151453823) 91 48 45 42 42 42 42 43 42 42* 0.26
MCA(N ; 2, 415317229) 39 34 41 34 30 37 37 35 30 29 25.22
MCA(N ; 2, 41339235) 29 26 28 26 21 27 27 27 22 21 5.81
MCA(N ; 2, 101918171615141312111) 91 90 90* 0.55
MCA(N ; 2, 82726252) 70 64 64* 1.87
MCA(N ; 2, 665534) 56 50 50 3.94
MCA(N ; 2, 4534) 23 19 19 0.13
MCA(N ; 3, 524232) 114 100 108 106 100 100* 3.21
MCA(N ; 3, 101624331) 377 360 360 361 360 360* 37.18

individually. We can conclude this through the results that show the MiTS
design being competitive against representative algorithms in the state-of-
the-art. The next subsection describes another MiTS design reported in the
literature.
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5.2 Second MiTS Design for MCA

The work presented in [17] shows another MiTS design. The main contri-
butions of this work are the initialization function I3 and the neighborhood
function N4. This work analyzed different MiTS designs which only varied
in the mixture of the neighborhood functions used. The values for I, T and
E were fixed to I3, T3 and E3, respectively. The neighborhood functions con-
sidered were N2,N3,N4.

The methodology for fine-tuning used in [17] is based in the Diophantine
equation x1 + x2 + x3 = 10. The granularity defines probabilities values of
ρ = {0, 0.1, 0.2, . . . , 0.9, 1.0} for each neighborhood function. A total of 66
configurations for the probabilities values were derived from the Diophantine
equation x1 + x2 + x3 = 1.0.

A total of 66 different MiTS designs were tested in [17]. The main differ-
ences between these designs and the ones studied in [18] are: a finer granu-
larity in the probabilities ρ, the use a different set of neighborhood functions
and a new initialization function.

The performance of the 66 designs tested in [17] was evaluated using the
MCA(30; 2, 19, 6151463823). Again, each MiTS design was run 31 times and
each time its goal was the construction of the MCA. A summary of the re-
sults derived from this experimentation is shown in Table 14. This summary
includes only the 6 best configurations. The configurations are rated accord-
ing to both the percentage of the runs in which they could construct the
MCA without missings and the spent time to build the MCA. In this way,
the best configuration of probabilities that resulted from the experiment was
ρ2 = 0.6, ρ3 = 0.4, ρ4 = 0; it constructed the MCA(30; 2, 19, 6151463823) in
all the runs having the smallest average time (0.11 seconds per run).

Table 14 Performance of MiTS design in [17] with the 6 best combinations of
probabilities ρ which constructed the MCA (30; 2, 19, 6151463823) without missings
in 100% of the runs.

XXρ1XX XXρ2XX XXρ3XX Avg. time (sec.)

0.4 0.6 0.0 0.11
0.2 0.8 0.0 0.15
0.3 0.7 0.0 0.16
0.6 0.3 0.1 0.17
0.8 0.2 0.0 0.18
0.1 0.9 0.0 0.18

The winner configuration ρ2 = 0.6, ρ3 = 0.4, ρ4 = 0 was compared in [17]
against state-of-the-art algorithms. Two benchmarks were considered in this
cases: a new benchmark proposed in the chapter, and a test set coming from
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Table 15 Results of the performance of MiTS for the new benchmark of MCA
instances.

Instance N*
IPOG-F MiTS

N Time (sec.) N Time (sec.)

MCA(N ; 2, 6, 223242) 16 16 0.009 16 0.00202
MCA(N ; 3, 6, 223242) 48 51 0.002 48 0.01647
MCA(N ; 4, 6, 223242) 144 146 0.019 144 0.11819
MCA(N ; 5, 6, 223242) 288 295 0.014 288 0.17247
MCA(N ; 6, 6, 223242) 576 576 0.004 576 0.00162
MCA(N ; 2, 8, 22324252) 25 25 0.003 25 0.00716
MCA(N ; 3, 8, 22324252) 100 107 0.009 100 17.50079
MCA(N ; 4, 8, 22324252) 400 433 0.035 400 94.88019
MCA(N ; 5, 8, 22324252) 1200 1357 0.201 1200 11379.21255
MCA(N ; 6, 8, 22324252) 3600 3743 0.995 3600 7765.91885
MCA(N ; 2, 10, 2232425262) 36 36 0.004 36 0.06124
MCA(N ; 3, 10, 2232425262) 180 207 0.034 185 991.70933
MCA(N ; 2, 12, 223242526272) 49 50 0.006 49 0.42382
MCA(N ; 3, 12, 223242526272) 294 356 0.061 330 528.76392
MCA(N ; 2, 14, 22324252627282) 64 67 0.002 64 1.53441
MCA(N ; 2, 16, 2232425262728292) 81 86 0.012 81 26.93236
MCA(N ; 2, 18, 2232425262728292102) 100 107 0.016 100 702.30086
MCA(N ; 2, 20, 2232425262728292102112) 121 131 0.017 122 3927.93448

Table 16 Results of the performance of the MiTS design of [17] for TCAS module.
It is compared against other approaches found in the literature.

t-way
MiTS IPOG-F ITCH Jenny TConfig TVG

Best
Size Time Size Time Size Time Size Time Size Time Size Time

2 100 0.03 100 0.8 120 0.73 108 0 108 1 hour 101 2.75 100
3 400 26.21 400 0.36 2388 1020 413 0.71 472 12 hour 9158 3.07 400
4 1200 10449.12 1361 3.05 1484 5400 1536 3.54 1476 21 hour 64696 127 1200
5 3600 627079.08 4219 18.41 NA >1 day 4580 43.54 NA 1 day 313056 1549 3600

the Traffic Collision Avoidance System (TCAS) module. The results achieved
in these benchmarks are presented in Tables 15 and 16, respectively.

Again, we can observe, through the results presented in this subsection,
that the use of a mixture of neighborhood functions can lead to better results
than the use of a single one.

Despite of fact that the work presented in [17] involves the same parameters
studied in [18], it does not include all the parameter’s values. For example,
the initialization function I3 or the neighborhood function N4 are studied in
[17] but not in [18]. On the other side, the neighborhood function N1 used
in [18] or the different combinations of values for the parameters T , I, E are
not included in the analysis of different MiTS design of [17]. These facts sug-
gest the necessity of a better fine-tuning for the evaluation of MiTS designs.
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This constitutes the main contribution of this chapter, a more robust fine-
tuning for the parameters to configure MiTS designs, which is described in
the following subsection.

5.3 Third MiTS Design for MCA

The purpose of this section is to present a more detailed fine-tuning for the
parameters of MiTS designs. The goal of the fine-tuning is to consider a
combination of values not previously considered. Particularly, the fine-tuning
in this chapter involves all the different values for the parameters I, T , N
presented in [18, 17].

The values for the parameters I, T , N are shown in Table 2. The parameter
E was fixed to E= (N ∗ k ∗ vt

max ∗ 200) ∗ 0.1. The reason to fix this value in
the fine tuning process was to perform it faster. In the other side, this value
was fixed because it was used in the both previous approaches [18, 17] giving
the best results in them. The value of E only was reduced in the fine tuning
experiment, due to the time consuming task that represented to test 286
different combinations. The value of number of evaluations E was a tenth of
the original, it was enough to show the performance of every combinations,
and to discriminate among them in order to chose a winner.

The solutions of the Diophantine equation x1 + x2 + x3 + x4 = 10 were
used to define the set of configurations for the probability values considered
for the neighborhood functions N . The total number of configurations were
286. This 286 configurations was combined with the 3 values for the initial
solutions I and the 3 values for the tabu list size T to create a full factorial
design with 2574 test cases. Each test case represents a different MiTS design.

In order to evaluate the different MiTS designs, we solve with them the
instance MCA(137; 3, 9, 524433) (taken from new benchmark found in [26]).
Each MiTS design tried to construct the MCA 31 times. For each run it was
recorded the number of missings, the spent time in seconds, and the number
of evaluations (calls to the objective function). The design with the greatest
hit rate, i.e. the one that constructed the MCA with zero missings in most of
runs, is considered as the best configuration to solve the new benchmark. The
spent time and the number of evaluations were considered as alternatives to
break ties among configurations with the same hit rate.

The MiTS designs were implemented in C language and compiled with
gcc. The instances have been run on a cluster using eight processing nodes,
each with two dual-core Opteron Processors. The features of each node are:
Processor 2 X Dual-Core AMD, Opteron Processor 2220, 4GB RAM Memory,
Operating Systems Red Hat Enterprise Linux 4 64-bit and gcc 3.4 Compiler.

Table 17 shows the 6 best configurations (or MiTS designs) derived from
the values of I, T and N . The configurations are shown in descending order
according to the hit rate, where a hit is a run where the number of missings
was zero in the constructed MCA. The ties are broken using the average time
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per run spent by each design. Table 17 also reports the minimum, maximum
and average number of evaluations required by these configurations. The
statistics are presented also for the spent time and are calculated taking in
consideration only the runs that were hits.

Note that according with the results shown in Table 17, the 6 best con-
figurations have a mixture of neighborhood functions in them. Particularly,
the best MiTS design was the one that has the parameter values I2, T2 and
ρ = {0.1, 0.9, 0.0, 0.0}. This configuration constructed the MCA in 27 of the
31 runs with an average time per run of 3.98 seconds.

Figures 1, 2 and 3 present three graphs of the performance of the best MiTS
design (the one with parameter values I2, T2 and ρ = {0.1, 0.9, 0.0, 0.0}). The
performance is compared against the different parameter values for I, T and
N taken individually. The three graphs show in the x axis the number of
evaluations and in the y axis the average number of missings, both shown
in logarithmic scale. The curves in the graphs represent the evolution of the
average number of missings.

Figure 1 presents the performance of the four neighborhood functions
N1,N2,N3,N4, considered as the only neighborhood functions against the
design with the best mixture Best. In this analysis, the values of the rest of
the parameters were I = I2 and T = T2. According with the results shown
in this graph, the use of the neighborhood function N2 without a mixture
is good. However, a slight difference in the mixture (i.e., the winner MiTS
design) produced better results, reducing the average number of missings at
the end of the construction.

The influence of the different tabu list size is presented in the Figure 2.
Again, a set of curves is shown and each of them represents the average
number of missings in the time line for three different MiTS designs. In
this case, the designs fixed the values of I and N to those of the winner
configuration and varied the value of T to {T1, T2, T3}.

Figure 3 shows an analysis similar to those presented in Figures 1 and
2, but in this case considering only the different initialization functions
I1, I2, I3. The values of T and N were fixed to the values of the winner
configuration.

Table 17 Best MiTS designs resulting from the new fine-tuning.

I T Functions
hits

Evaluations Time (in sec.)
N1 N2 N3 N4 min max avg. min max avg.

I2 T2 0.1 0.9 0.0 0.0 27/31 333333 1217257 835064.04 1.52187 5.84 3.98
I2 T3 0.1 0.9 0.0 0.0 27/31 496903 1203142 844586.93 2.37464 5.82 4.04
I2 T2 0.0 0.9 0.0 0.1 26/31 307702 1082437 693603.31 1.43583 5.20 3.32
I1 T2 0.1 0.9 0.0 0.0 26/31 373740 1171270 781610.15 1.7311 5.61 3.72
I2 T2 0.2 0.8 0.0 0.0 25/31 451141 1228757 879799.16 1.86683 5.00 3.59
I2 T1 0.0 0.9 0.0 0.1 25/31 364968 1196284 778860.40 1.75208 5.77 3.73
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Fig. 1 Comparison of the performance of the configuration of neighborhood func-
tions ρ = {0.1, 0.9, 0.0, 0.0} against the different configurations that involve one
neighborhood function. The initialization function was I2 and the tabu list size T2.
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Fig. 2 Comparison of the performance of the different sizes of the tabu list using
as I2 and ρ = {0.1, 0.9, 0.0, 0.0} as the initialization function and the mixture of
neighborhood functions, respectively.

Observe that the performance graphs presented in Figures 1, 2, and 3 show
that some designs are better than others (because some reach smaller values
in the average number of missings). However, the difference between designs
varying the initial solution or the tabu list size are not so significant that
the ones that vary the mixture of neighborhood functions, i.e. some mixtures
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Fig. 3 Comparison of the performance of the different initialization function when
the tabu list size and the mixture of neighborhood functions are fixed to I2 and
ρ = {0.1, 0.9, 0.0, 0.0}, respectively.

of neighborhood functions improve others in an order of magnitude. The
importance of the mixture of neighborhood function is also supported by
the fact that from the 1462 configurations that were able to construct the
MCA without missings, only 209 involved the use of only one neighborhood
function (all of them suggest the use of the neighborhood function N2).

It is important to point out that the performance achieved by MiTS,
through the use of the different considered tabu list sizes, conducted to a
similar overall performance, giving the idea that this parameter is unneces-
sary. However, the fact is that a potential area of opportunity for studying
a wider range of values of T is present, and it opens the possibility of con-
structing better MiTS designs (because a better avoidance of local optimal
solutions could be achieved).

Finally, to complete the experimentation of this subsection, we test the
best MiTS design in a benchmark reported recently in [26]. The benchmark
is a platform for smart phone apps, named ANDROID, reported in [26]. The
benchmark is described in column 1 of Table 18. The column 2 shows the the-
oretical lower bounds. The column 4 presents the best upperbounds found so
far. The values were obtained using the ACTS tool developed by the NIST3.
The MiTS design, using the values I2, T2 and ρ = {0.1, 0.9, 0.0, 0.0} (for the
probability values of the neighborhood functions N ), was used to improve the
upperbounds of this benchmark. The algorithm stops until the initial solution
becomes a MCA, i.e. the matrix has no missings. The results are presented in
the column 3. These results show that it is possible to construct smaller MCAs
3 http://math.nist.gov/coveringarrays/

http://math.nist.gov/coveringarrays/
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Table 18 Instances from NIST

Instance N* MiTS ACTS

MCA(N ; 2, 9, 524433) 25 25 29
MCA(N ; 3, 9, 524433) 100 108 137
MCA(N ; 4, 9, 524433) 400 600 625
MCA(N ; 5, 9, 524433) 1600 2400 2532
MCA(N ; 6, 9, 524433) 6400 8500 9168

for this benchmark using a MiTS design. The constructed matrices are avail-
able under request at http://www.tamps.cinvestav.mx/~jtj/aplication.php.

In conclusion, we have presented so far a new MiTS design for the con-
struction of MCAs. The performance of the design was compared against
traditional designs using single neighborhood functions. Also, the design was
used to improve existing upperbounds found for a benchmark in the litera-
ture. The results show the benefits that can be achieved from using a mix-
ture of neighborhood functions together with an adequate methodology for
fine-tuning the parameters of a TS approach, in the construction of MCAs.
These benefits are summarized in the quality of the solution of the MCAs
constructed, measured in terms of the their size.

6 Conclusions

This chapter focused on the design of different TS approaches for the con-
struction of MCAs. The TS approaches, name MiTS designs, involve a mix-
ture of neighborhood functions. Basically, this chapter presents an analysis
of the state-of-art algorithms that use MiTS designs for the construction of
MCAs. The analysis identified the following sets: initial solutions I = {I1, I2,
I3}, tabu list sizes T = {T1, T2, T3} and neighborhood functions N =
{N1,N2,N3,N4}.

Also, a new fine-tuning that combines all the different values for I, T ,N ,
which has not being previously done, is proposed. The aim of the fine-tuning
is to extend the analysis of MiTS designs.

The methodology uses a full factorial design among I, T ,N to define dif-
ferent MiTS designs. A total of 2574 designs resulted from the methodology
and were evaluated according to their performance on the construction of
MCAs.

The performance of the different MiTS designs was tested in
MCA(137; 3, 9, 524433). Each design tried to construct the MCA 31 times.
The configuration I2, T2 and ρ = {0.1, 0.9, 0.0, 0.0} was the one with the
best performance because it constructed the MCA in 27 of the 31 tries in less
time. The platform for smart phone apps, named ANDROID, was used to test
the best MiTS design reported in this chapter. The benchmark derived from

http://www.tamps.cinvestav.mx/~jtj/aplication.php
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ANDROID is formed by the MCA(N ; t, 9, 524433) for t = {2, 3, 4, 5, 6}. The
MiTS design with configuration I2, T2 and ρ = {0.1, 0.9, 0.0, 0.0} improved
the upperbounds previously reported by a state-of-the-art algorithm.

Our work, in combination with the results previously reported over the set
of neighborhood functions N = {N1,N2,N3,N4}, reveals that the neighbor-
hood function N2 is important for the construction of MCAs. The importance
is denoted by the fact that this function appears in all the mixtures that have
been analyzed so far.

In conclusion, the results obtained from the analysis presented in this
chapter for MiTS designs extend the evidence previously reported that a
mixture of neighborhood function can yield better TS performance for the
construction of MCAs than the use of only one neighborhood function.

As a result of the research developed in this work, it is possible to see
how individual elements of the parameter of a TS algorithm can affect its
performance. Due to this reason, it is suggested as future work to extend
the analysis to those parameter values not considered so far, in the analysis
of new MiTS designs. Some interesting areas of opportunity are the use of
the lévy flight random walk as a possible alternative for the construction of
the initial solution, or varying the values of the number of evaluations E or
the tabu list size T , or finally, the use of new neighborhood functions in the
mixture.
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Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009. LNCS, vol. 5975,
pp. 86–97. Springer, Heidelberg (2010)

39. Shiba, T., Tsuchiya, T., Kikuno, T.: Using artificial life techniques to generate
test cases for combinatorial testing. In: Proceedings of the 28th Annual Inter-
national Computer Software and Applications Conference, COMPSAC 2004,
September 27-30, vol. 1, pp. 72–77. IEEE Computer Society, Washington, DC
(2004)

40. Stardom, J.: Metaheuristics and the search for covering and packing arrays.
Master’s thesis, Simon Fraser University (2001)

41. Tai, K.C., Lei, Y.: A test generation strategy for pairwise testing. IEEE Trans-
actions on Software Engineering 28, 109–111 (2002)



402 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

42. Tassey, G.: The economic impacts of inadequate infrastructure for software
testing. Technical report, National Institute of Standards and Technology
(May 2002)

43. Torres-Jimenez, J., Rodriguez-Tello, E.: Simulated annealing for constructing
binary covering arrays of variable strength. In: IEEE Congress on Evolutionary
Computation, CEC 2010, July 18-23, pp. 1–8 (2010)

44. Torres-Jimenez, J., Rodriguez-Tello, E.: New bounds for binary covering ar-
rays using simulated annealing. Information Sciences 185(1), 137–152 (2012)

45. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society 42, 230–265
(1936)

46. Williams, A.W.: Determination of test configurations for pair-wise interac-
tion coverage. In: TestCom 2000: Proceedings of the IFIP TC6/WG6.1 13th
International Conference on Testing Communicating Systems, August 29-
September 1, pp. 59–74. B.V. Kluwer, Deventer (2000)

47. Williams, A.W., Probert, R.L.: A practical strategy for testing pair-wise cov-
erage of network interfaces. In: Proceedings of the The Seventh International
Symposium on Software Reliability Engineering, ISSRE 1996, October 30-
November 02, pp. 246–254. IEEE Computer Society, Washington, DC (1996)

48. Yan, J., Zhang, J.: Backtracking algorithms and search heuristics to generate
test suites for combinatorial testing. In: 30th Annual International on Com-
puter Software and Applications Conference, COMPSAC 2006, September
17-21, vol. 1, pp. 385–394. IEEE Computer Society, Washington, DC (2006)

49. Yan, J., Zhang, J.: A backtraking search tool for constructing combinatorial
test suites. The Journal of Systems and Software 81, 1681–1693 (2008)

50. Zekaoui, L.: Mixed covering arrays on graphs and tabu search algorithms. Mas-
ter’s thesis, Ottawa-Carleton Institute for Computer Science at the University
of Ottawa (2006)



Part II
Evolutionary Computation

and Metaheuristics



Metaheuristic Optimization: Nature-Inspired
Algorithms and Applications

Xin-She Yang

Abstract. Turing’s pioneer work in heuristic search has inspired many generations
of research in heuristic algorithms. In the last two decades, metaheuristic algorithms
have attracted strong attention in scientific communities with significant develop-
ments, especially in areas concerning swarm intelligence based algorithms. In this
work, we will briefly review some of the important achievements in metaheuris-
tics, and we will also discuss key implications in applications and topics for further
research.

1 Introduction

Alan Turing pioneered many areas from artificial intelligence to pattern formation.
Turing was also the first to use heuristic algorithms during the second World War for
his code-breaking work at Bletchley Park. Turing called his search method heuristic
search, as it could be expected it worked most of time, but there was no guarantee
to find the true or correct solution, but it was a tremendous success [6]. In 1945,
Turing was recruited to the National Physical Laboratory (NPL), UK where he set
out his design for the Automatic Computing Engine (ACE). In an NPL report on
Intelligent machinery in 1948 [33], he outlined his innovative ideas of machine in-
telligence and learning, neural networks and evolutionary algorithms [38]. In this
chapter, we will review the latest development in metaheuristic methods, especially
swarm intelligence based algorithms.

2 Metaheuristics

Metaheuristic algorithms, especially those based on swarm intelligence, form an im-
portant part of contemporary global optimization algorithms [21, 40, 2, 3, 4, 24, 26]
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Good examples are simulated annealing [22], particle swarm optimization [21] and
firefly algorithm [40, 41]. They work remarkably efficiently and have many advan-
tages over traditional, deterministic methods and algorithms, and thus they have been
applied in almost all area of science, engineering and industry [15, 11, 42, 43, 51].

Despite such a huge success in applications, mathematical analysis of algorithms
remains limited and many open problems are still un-resolved. There are three chal-
lenging areas for algorithm analysis: complexity, convergence and no-free-lunch
theory. Complexity analysis of traditional algorithms such as quick sort and ma-
trix inverse are well-established, as these algorithms are deterministic. In contrast,
complexity analysis of metaheuristics remains a challenging task, partly due to the
stochastic nature of these algorithms. However, good results do exist, concerning
randomization search techniques [2].

Convergence analysis is another challenging area. One of the main difficulties
concerning the convergence analysis of metaheuristic algorithms is that no generic
framework exists, though substantial studies have been carried out using dynamic
systems and Markov processes. However, convergence analysis still remains one of
the active research areas with many encouraging results [5, 17].

Along the mathematical analysis of optimization algorithms, another equally
challenging, and yet fruitful area is the theory on algorithm performance and com-
parison, leading to a wide range of no-free-lunch (NFL) theorems [36, 19]. While
in well-posed cases of optimization where its functional space forms finite domains,
NFL theorems do hold; however, free lunches are possible in continuous domains
[2, 37, 34].

In this chapter, we intend to provide a state-of-the-art review of widely used
metaheuristic algorithms. We will also briefly highlights some of the convergence
studies. Based on these studies, we will summarize and propose a series of recom-
mendations for further research.

3 Metaheuristic Algorithms

There are more than a dozen of swarm-based algorithms using the so-called swarm
intelligence. For a detailed introduction, please refer to [43, 26]. In this section, we
will focus on the main chararcteristics and the ways that each algorithm generate
new solutions, and we will not discuss each algorithm in details. Obviously, not all
metaheuristic algorithms are swarm-inspired, for example, harmony search is not a
swarm-intelligence-based algorithm. Similarly, genetic algorithms are bio-inspired,
or more generally nature-inspired, but they are not based on swarm intelligence.
Here we will introduce a few population-based metaheuristic algorithms which are
widely used or active research topics. Interested readers can follow the references
listed at the end of this chapter and also refer to other chapters of this book.
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3.1 Ant Algorithms

Ant algorithms, especially the ant colony optimization [10], mimic the foraging be-
haviour of social ants. Primarily, it uses pheromone as a chemical messenger and the
pheromone concentration as the indicator of quality solutions to a problem of inter-
est. As the solution is often linked with the pheromone concentration, the search
algorithms often produce routes and paths marked by the higher pheromone con-
centrations, and therefore, ants-based algorithms are particular suitable for discrete
optimization problems.

The movement of an ant is controlled by pheromone which will evaporate over
time. Without such time-dependent evaporation, the algorithms will lead to prema-
ture convergence to the (often wrong) solutions. With proper pheromone evapora-
tion, they usually behave very well.

There are two important issues here: the probability of choosing a route, and the
evaporation rate of pheromone. There are a few ways of solving these problems,
although it is still an area of active research. Here we introduce the current best
method.

For a network routing problem, the probability of ants at a particular node i to
choose the route from node i to node j is given by

pi j =
φα

i j dβ
i j

∑n
i, j=1 φα

i j dβ
i j

, (1)

where α > 0 and β > 0 are the influence parameters, and their typical values are α ≈
β ≈ 2. φi j is the pheromone concentration on the route between i and j, and di j the
desirability of the same route. Some a priori knowledge about the route such as the
distance si j is often used so that di j ∝ 1/si j, which implies that shorter routes will be
selected due to their shorter traveling time, and thus the pheromone concentrations
on these routes are higher. This is because the traveling time is shorter, and thus the
less amount of the pheromone has been evaporated during this period.

3.2 Bee Algorithms

Bees-inspired algorithms are more diverse, and some use pheromone and most do
not. Almost all bee algorithms are inspired by the foraging behaviour of honey bees
in nature. Interesting characteristics such as waggle dance, polarization and nectar
maximization are often used to simulate the allocation of the foraging bees along
flower patches and thus different search regions in the search space. For a more
comprehensive review, please refer to [26, 40].

In the honeybee-based algorithms, forager bees are allocated to different food
sources (or flower patches) so as to maximize the total nectar intake. The colony has
to ‘optimize’ the overall efficiency of nectar collection, the allocation of the bees is
thus depending on many factors such as the nectar richness and the proximity to the
hive [23, 39, 20, 27].
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The virtual bee algorithm (VBA), developed by Xin-She Yang in 2005, is an op-
timization algorithm specially formulated for solving both discrete and continuous
problems [39]. On the other hand, the artificial bee colony (ABC) optimization algo-
rithm was first developed by D. Karaboga in 2005. In the ABC algorithm, the bees
in a colony are divided into three groups: employed bees (forager bees), onlooker
bees (observer bees) and scouts. For each food source, there is only one employed
bee. That is to say, the number of employed bees is equal to the number of food
sources. The employed bee of an discarded food site is forced to become a scout for
searching new food sources randomly. Employed bees share information with the
onlooker bees in a hive so that onlooker bees can choose a food source to forage.
Unlike the honey bee algorithm which has two groups of the bees (forager bees and
observer bees), bees in ABC are more specialized [1, 20].

Similar to the ants-based algorithms, bee algorithms are also very flexible in deal-
ing with discrete optimization problems. Combinatorial optimization such as rout-
ing and optimal paths has been successfully solved by ant and bee algorithms. In
principle, they can solve both continuous optimization and discrete optimization
problems; however, they should not be the first choice for continuous problems.

3.3 Genetic Algorithms

Genetic algorithms are by far the most widely used [18], and one of the reasons is
that the GA appeared as early as in the 1960s, based on the evolutionary features of
biological systems. Genetic operators such as crossover and mutation are very pow-
erful in generating diverse solutions or search points, while elitism, adaptation and
selection of the fittest help to ensure the proper convergence of genetic algorithms.

Parameter choices are also important, but there are many parametric studies in
the literature, and the overall literature of genetic algorithms is vast. In essence, the
crossover should be more frequent with the highest probability, often above 0.7 to
0.95. On the other hand, mutation rate should be very low, because if the mutation
rate is too high, the solutions generated are too diverse, and thus makes it difficult
for the search process to converge properly. Therefore, mutation rate is typically 0.1
to 0.01.

Genetic algorithms have many variants and often combined with other algorithms
to form hybrid algorithms, and encode and decoding can be binary, real or even
imaginary. Interested readers can refer to the recent books, for example, Goldberg
[16] and other relevant books listed in the bibliography.

3.4 Differential Evolution

Differential evolution (DE) can be considered as a vectorized and improved genetic
algorithm, though DE has its own unique mutation operator and crossover operation
[32]. Mutation is carried out by the donor vector based on the difference of two ran-
domly chosen solution vectors; in this sense, its mutation is like an exploration move
in pattern search. Alternatively, we can consider it as a multi-site mutation vector,
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based on genetic algorithms. Crossover is more elaborate which can be performed
either in a binomial or exponential manner. There are many variants of DE and they
are often combined with other algorithms to form efficient hybrid algorithms [28].
DE can also be combined with other methods such as eagle strategy to get even
better results [48].

3.5 Particle Swarm Optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in
1995 [21], based on the swarm behaviour such as fish and bird schooling in nature.
Since then, PSO has generated much wider interests, and forms an exciting, ever-
expanding research subject, called swarm intelligence. PSO has been applied to al-
most every area in optimization, computational intelligence, and design/scheduling
applications.

The movement of a swarming particle consists of two major components: a
stochastic component and a deterministic component. Each particle is attracted to-
ward the position of the current global best g∗ and its own best location x∗i in history,
while at the same time it has a tendency to move randomly.

Let xi and vi be the position vector and velocity for particle i, respectively. The
new velocity and location updating formulas are determined by

vt+1
i = vt

i +αε1[g
∗ − xt

i ]+β ε2[x
∗
i − xt

i ]. (2)

xt+1
i = xt

i + vt+1
i , (3)

where ε1 and ε2 are two random vectors, and each entry taking the values between 0
and 1. The parameters α and β are the learning parameters or acceleration constants,
which can typically be taken as, say, α ≈ β ≈ 2.

There are at least two dozen PSO variants which extend the standard PSO al-
gorithm, and the most noticeable improvement is probably to use inertia function
θ (t) so that vt

i is replaced by θ (t)vt
i where θ ∈ [0,1]. This is equivalent to introduc-

ing a virtual mass to stabilize the motion of the particles, and thus the algorithm is
expected to converge more quickly.

3.6 Firefly Algorithm

Firefly Algorithm (FA) was developed by Xin-She Yang at Cambridge University
[40, 41], which was based on the flashing patterns and behaviour of fireflies. In
essence, each firefly will be attracted to brighter ones, while at the same time, it
explores and searches for prey randomly. In addition, the brightness of a firefly is
determined by the landscape of the objective function.

The movement of a firefly i is attracted to another more attractive (brighter) firefly
j is determined by

xt+1
i = xt

i +β0e−γr2
i j (xt

j − xt
i)+αt εt

i , (4)
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where the second term is due to the attraction. The third term is randomization with
αt being the randomization parameter, and εt

i is a vector of random numbers drawn
from a Gaussian distribution or uniform distribution. Here is β0 ∈ [0,1] is the attrac-
tiveness at r = 0, and ri j = ||xt

i − xt
j|| is the Cartesian distance. For other problems

such as scheduling, any measure that can effectively characterize the quantities of
interest in the optimization problem can be used as the ‘distance’ r. For most imple-
mentations, we can take β0 = 1, α = O(1) and γ = O(1).

Ideally, the randomization parameter αt should be monotonically reduced gradu-
ally during iterations. A simple scheme is to use

αt = α0δ t , δ ∈ (0,1), (5)

where α0 is the initial randomness, while δ is a randomness reduction factor similar
to that used in a cooling schedule in simulated annealing. It is worth pointing out
that (4) is essentially a random walk biased towards the brighter fireflies. If β0 = 0,
it becomes a simple random walk. Furthermore, the randomization term can easily
be extended to other distributions such as Lévy flights. A basic implementation can
be obtained from this link.1 High nonlinear and non-convex global optimization
problems can be solved using firefly algorithm efficiently [14, 49]).

3.7 Harmony Search

Harmony Search (HS) is a music-inspired metaheuristic algorithm and it was first
developed by Z. W. Geem et al. in 2001 and a recent summary can be found at Geem
[12]. Harmony search has three components: usage of harmony memory, pitch ad-
justing, and randomization.

The usage of harmony memory is similar to choose the best fit individuals in
the genetic algorithms, while pitch adjustment is similar to the mutation operator in
genetic algorithms. Further more, randomization is used to increase the diversity of
the solutions.

3.8 Bat Algorithm

Bat algorithm is a relatively new metaheuristic, developed by Xin-She Yang in 2010
[44]. It was inspired by the echolocation behaviour of microbats. Microbats use a
type of sonar, called, echolocation, to detect prey, avoid obstacles, and locate their
roosting crevices in the dark. These bats emit a very loud sound pulse and listen for
the echo that bounces back from the surrounding objects. Their pulses vary in prop-
erties and can be correlated with their hunting strategies, depending on the species.
Most bats use short, frequency-modulated signals to sweep through about an octave,
while others more often use constant-frequency signals for echolocation. Their sig-
nal bandwidth varies depends on the species, and often increased by using more
harmonics.

1 http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm
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Inside the bat algorithm, it uses three idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers in some magical way;

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automatically
adjust the wavelength (or frequency) of their emitted pulses and adjust the rate
of pulse emission r ∈ [0,1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) A0 to a minimum constant value Amin.

BA has been extended to multiobjective bat algorithm (MOBA) by [47], and pre-
liminary results suggested that it is very efficient.

3.9 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang and Suash Deb [45, 46]. CS is based on the
brood parasitism of some cuckoo species. In addition, this algorithm is enhanced by
the so-called Lévy flights, rather than by simple isotropic random walks. This algo-
rithm was inspired by the aggressive reproduction strategy of some cuckoo species
such as the ani and Guira cuckoos. These cuckoos lay their eggs in communal nests,
though they may remove others’ eggs to increase the hatching probability of their
own eggs. Quite a number of species engage the obligate brood parasitism by laying
their eggs in the nests of other host birds (often other species).

In the standard cuckoo search, the following three idealized rules are used:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
• The best nests with high-quality eggs will be carried over to the next generations;
• The number of available host nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability pa ∈ [0,1]. In this case, the host bird
can either get rid of the egg, or simply abandon the nest and build a completely
new nest.

As a further approximation, this last assumption can be approximated by a fraction
pa of the n host nests are replaced by new nests (with new random solutions). Recent
studies suggest that cuckoo search can outperform particle swarm optimization and
other algorithms [46].

This algorithm uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter pa. The lo-
cal random walk can be written as

xt+1
i = xt

i + s⊗H(pa− ε)⊗ (xt
j − xt

k), (6)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform
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distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

xt+1
i = xt

i +αL(s,λ ), L(s,λ ) =
λΓ (λ )sin(πλ/2)

π
1

s1+λ , (s � s0 > 0). (7)

A vectorized implementation can be obtained from this link here.2

The literature on cuckoo search is expanding rapidly. Interestingly, cuckoo search
was originally published in 2009 and our matlab program was in the public domain
in 2010, while some authors later in 2011 used a different name, cuckoo optimiza-
tion algorithm, to essentially talk about the same inspiration from cuckoo behaviour.

There have been a lot of attention and recent studies using cuckoo search with
diverse range of applications [13, 35, 50]. Walton et al. improved the algorithm by
formulating a modified cuckoo search algorithm [35], while Yang and Deb extended
it to multiobjective optimization problems [50]. Durgun and Yildiz applied it to
structural design optimization [9].

There are other metaheuristic algorithms which have not been introduced here,
and interested readers can refer to more advanced literature [43, 26].

4 Artificial Neural Networks

Artificial neural networks in essence belong to optimization algorithms, though they
may work in a different context.

The basic mathematical model of an artificial neuron was first proposed by W.
McCulloch and W. Pitts in 1943, and this fundamental model is referred to as the
McCulloch-Pitts model. Other models and neural networks are based on it.

An artificial neuron with n inputs or impulses and an output yk will be activated
if the signal strength reaches a certain threshold θ . Each input has a corresponding
weight wi. The output of this neuron is given by

yl = Φ
( n

∑
i=1

wiui
)
, (8)

where the weighted sum ξ = ∑n
i=1 wiui is the total signal strength, and Φ is the so-

called activation function, which can be taken as a step function. That is, we have

Φ(ξ ) =
{

1 if ξ ≥ θ ,
0 if ξ < θ . (9)

We can see that the output is only activated to a non-zero value if the overall signal
strength is greater than the threshold θ .

The step function has discontinuity, sometimes, it is easier to use a nonlinear,
smooth function, called a Sigmoid function

2 http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-
algorithm
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S(ξ ) =
1

1+ e−ξ , (10)

which approaches 1 as U → ∞, and becomes 0 as U →−∞. An interesting property
of this function is

S′(ξ ) = S(ξ )[1− S(ξ )]. (11)

4.1 Neural Networks

A single neuron can only perform a simple task – on or off. Complex functions can
be designed and performed using a network of interconnecting neurons or percep-
trons. The structure of a network can be complicated, and one of the most widely
used is to arrange them in a layered structure, with an input layer, an output layer,
and one or more hidden layer (see Fig. 1). The connection strength between two
neurons is represented by its corresponding weight. Some artificial neural networks
(ANNs) can perform complex tasks, and can simulate complex mathematical mod-
els, even if there is no explicit functional form mathematically. Neural networks
have developed over last few decades and have been applied in almost all areas of
science and engineering.

The construction of a neural network involves the estimation of the suitable
weights of a network system with some training/known data sets. The task of the
training is to find the suitable weights wi j so that the neural networks not only can
best-fit the known data, but also can predict outputs for new inputs. A good arti-
ficial neural network should be able to minimize both errors simultaneously – the
fitting/learning errors and the prediction errors.

The errors can be defined as the difference between the calculated (or predicated)
output ok and real output yk for all output neurons in the least-square sense

E =
1
2

no

∑
k=1

(ok − yk)
2. (12)

Here the output ok is a function of inputs/activations and weights. In order to mini-
mize this error, we can use the standard minimization techniques to find the solutions
of the weights.

A simple and yet efficient technique is the steepest descent method. For any initial
random weights, the weight increment for whk is

Δwhk =−η
∂E

∂whk
=−η

∂E
∂ok

∂ok

∂whk
, (13)

where η is the learning rate. Typically, we can choose η = 1.
From

Sk =
m

∑
h=1

whkoh, (k = 1,2, ...,no), (14)

and
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Fig. 1 Schematic representation of a three-layer neural networks with ni inputs, m hidden
nodes and no outputs.

ok = f (Sk) =
1

1+ e−Sk
, (15)

we have
f ′ = f (1− f ), (16)

∂ok

∂whk
=

∂ok

∂Sk

∂Sk

∂whk
= ok(1− ok)oh, (17)

and
∂E
∂ok

= (ok − yk). (18)

Therefore, we have

Δwhk =−ηδkoh, δk = ok(1− ok)(ok − yk). (19)

4.2 Back Propagation Algorithm

There are many ways of calculating weights by supervised learning. One of the sim-
plest and widely used methods is to use the back propagation algorithm for training
neural networks, often called back propagation neural networks (BPNNs).

The basic idea is to start from the output layer and propagate backwards so as to
estimate and update the weights.

From any initial random weighting matrices wih (for connecting the input nodes
to the hidden layer) and whk (for connecting the hidden layer to the output nodes),
we can calculate the outputs of the hidden layer oh

oh =
1

1+ exp[−∑ni
i=1 wihui]

, (h = 1,2, ...,m), (20)

and the outputs for the output nodes

ok =
1

1+ exp[−∑m
h=1 whkoh]

, (k = 1,2, ...,no). (21)
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The errors for the output nodes are given by

δk = ok(1− ok)(yk − ok), (k = 1,2, ...,no), (22)

where yk(k = 1,2, ...,no) are the data (real outputs) for the inputs ui(i = 1,2, ...,ni).
Similarly, the errors for the hidden nodes can be written as

δh = oh(1− oh)
no

∑
k=1

whkδk, (h = 1,2, ...,m). (23)

The updating formulae for weights at iteration t are

wt+1
hk = wt

hk +ηδkoh, (24)

and
wt+1

ih = wt
ih +ηδhui, (25)

where 0 < η ≤ 1 is the learning rate.
Here we can see that the weight increments are

Δwih = ηδhui, (26)

with similar updating formulae for whk. An improved version is to use the so-called
weight momentum α to increase the learning efficiency

Δwih = ηδhui +αwih(τ − 1), (27)

where τ is an extra parameter.

5 Characteristics of Metaheuristics

Metaheuristics can be considered as an efficient way to produce acceptable solutions
by trial and error to a complex problem in a reasonably practical time. The complex-
ity of the problem of interest makes it impossible to search every possible solution
or combination, the aim is to find good feasible solution in an acceptable timescale.
There is no guarantee that the best solutions can be found, and we even do not know
whether an algorithm will work and why if it does work. The idea is to have an
efficient but practical algorithm that will work most the time and is able to produce
good quality solutions. Among the found quality solutions, it is expected some of
them are nearly optimal, though there is often no guarantee for such optimality.

The main components of any metaheuristic algorithms are: intensification and
diversification, or exploitation and exploration [4, 40, 43]. Diversification means to
generate diverse solutions so as to explore the search space on the global scale, while
intensification means to focus on the search in a local region by exploiting the infor-
mation that a current good solution is found in this region. This is in combination
with the selection of the best solutions.
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As seen earlier, an important component in swarm intelligence and modern meta-
heuristics is randomization, which enables an algorithm to have the ability to jump
out of any local optimum so as to search globally. Randomization can also be used
for local search around the current best if steps are limited to a local region. When
the steps are large, randomization can explore the search space on a global scale.
Fine-tuning the randomness and balancing local search and global search are cru-
cially important in controlling the performance of any metaheuristic algorithm.

Randomization techniques can be a very simple method using uniform distri-
butions and/or Gaussian distributions, or more complex methods as those used in
Monte Carlo simulations. They can also be more elaborate, from Brownian random
walks to Lévy flights.

6 No-Free-Lunch Theorems

The seminal paper by Wolpert and Mcready in 1997 essentially proposed a frame-
work for performance comparison of optimization algorithms [36], using a com-
bination of Bayesian statistics and Markov random field theories. Let us sketch
Wolpert and Macready’s original idea. Assuming that the search space is finite
(though quite large), thus the space of possible objective values is also finite. This
means that objective function is simply a mapping f : X  → Y , with F = Y X as
the space of all possible problems under permutation.

As an algorithm tends to produce a series of points or solutions in the search
space, it is further assumed that these points are distinct. That is, for k iterations, k
distinct visited points forms a time-ordered set

Ωk =
{(

Ω x
k (1),Ω

y
k (1)

)
, ...,

(
Ω x

k (k),Ω
y
k (k)

)}
. (28)

There are many ways to define a performance measure, though a good measure still
remains debatable [30]. Such a measure can depend on the number of iteration k, the
algorithm a and the actual cost function f , which can be denoted by P(Ω y

k‖ f ,k,a).
Here we follow the notation style in the seminal paper by Wolpert and Mcready
(1997). For any pair of algorithms a and b, the NFL theorem states

∑
f

P(Ω y
k | f ,k,a) = ∑

f

P(Ω y
k | f ,k,b). (29)

In other words, any algorithm is as good (bad) as a random search, when the perfor-
mance is averaged over all possible functions.

Along many relevant assumptions in proving the NFL theorems, two fundamental
assumptions are: finite states of the search space (and thus the objective values), and
the non-revisiting time-ordered sets.

The first assumption is a good approximation to many problems, especially in
finite-digit approximations. However, there is mathematical difference in countable
finite, and countable infinite. Therefore, the results for finite states/domains may
not directly applicable to infinite domains. Furthermore, as continuous problem are
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uncountable, NFL results for finite domains will usually not hold for continuous
domains [2].

The second assumption on non-revisiting iterative sequence is often considered
as an over-simplification, as almost all metaheuristic algorithms are revisiting in
practice, some points visited before will possibly be re-visited again in the future.
The only possible exception is the Tabu algorithm with a very long Tabu list [15].
Therefore, results for non-revisiting time-ordered iterations may not be true for the
cases of revisiting cases, because the revisiting iterations break an important as-
sumption of ‘closed under permutation’ (c.u.p) required for proving the NFL theo-
rems [25].

Furthermore, optimization problems do not necessarily concern the whole set
of all possible functions/problems, and it is often sufficient to consider a subset of
problems. It is worth pointing out active studies have carried out in constructing
algorithms that can work best on specific subsets of optimization problems, in fact,
NFL theorems do not hold in this case [8].

These theorems are vigorous and thus have important theoretical values. How-
ever, their practical implications are a different issue. In fact, it may not be so im-
portant in practice anyway, we will discuss this in a later section.

7 Search for Free Lunches

The validity of NFL theorems largely depends on the validity of their fundamen-
tal assumptions. However, whether these assumptions are valid in practice is an-
other question. Often, these assumptions are too stringent, and thus free lunches are
possible.

One of the assumptions is the non-revisiting nature of the k distinct points which
form a time-ordered set. For revisiting points as they do occur in practice in real-
world optimization algorithms, the ‘closed under permutation’ does not hold, which
renders NFL theorems invalid [29, 25, 31]. This means free lunches do exist in
practical applications.

Another basic assumption is the finiteness of the domains. For continuous do-
mains, Auger and Teytaud in 2010 have proven that the NFL theorem does not hold
[2], and therefore they concluded that ‘continuous free lunches exist’. Indeed, some
algorithms are better than others [7]. For example, for a 2D sphere function, they
demonstrated that an efficient algorithm only needs 4 iterations/steps to reach the
global minimum.

No-free-lunch theorems may be of theoretical importance, and they can also have
important implications for algorithm development in practice, though not everyone
agrees the real importance of these implications.

There are three kinds of opinions concerning the implications. The first group
may simply ignore these theorems, as they argue that the assumptions are too strin-
gent, and the performance measures based on average overall functions are irrele-
vant in practice. Therefore, no practical importance can be inferred, and research
just carries on.
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The second kind is that NFL theorems can be true, and they can accept that the
fact there is no universally efficient algorithm. But in practice some algorithms do
performance better than others for a specific problem or a subset of problems. Re-
search effort should focus on finding the right algorithms for the right type of prob-
lem. Problem-specific knowledge is always helpful to find the right algorithm(s).

The third kind of opinion is that NFL theorems are not true for other types of
problems such as continuous problems and NP-hard problems. Theoretical work
concerns more elaborate studies on extending NFL theorems to other cases or on
finding free lunches [2]. On the other hand, algorithm development continues to
design better algorithms which can work for a wider range of problems, not neces-
sarily all types of problems. As we have seen from the above analysis, free lunches
do exist, and better algorithms can be designed for a specific subset of problems
[41, 46].

Thus, free lunch or no free lunch is not just a simple question, it has impor-
tant and yet practical importance. There is certain truth in all the above arguments,
and their impacts on optimization community are somehow mixed. Obviously, in
reality, the algorithms with problem-specific knowledge typically work better than
random search, and we also realized that there is no universally generic tool that
works best for all the problems. Therefore, we have to seek balance between spe-
ciality and generality, between algorithm simplicity and problem complexity, and
between problem-specific knowledge and capability of handling black-box opti-
mization problems.
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Bat Algorithm and Cuckoo Search: A Tutorial

Xin-She Yang

Abstract. Nature-inspired metaheuristic algorithms have attracted much attention
in the last decade, and new algorithms have emerged almost every year with a vast,
ever-expanding literature. In this chapter, we briefly review two latest metaheuris-
tics: bat algorithm and cuckoo search for global optimization. Bat algorithm was
proposed by Xin-She Yang in 2010, inspired by the echolocation of microbats, while
cuckoo search was developed by Xin-She Yang and Suash Deb in 2009, inspired by
the brood parasitism of some cuckoo species. Both algorithms have shown superi-
ority over many other metaheuristics over a wide range of applications.

1 Bat Algorithm

1.1 Behaviour of Microbats

Bats are fascinating animals. They are the only mammals with wings and they also
have advanced capability of echolocation. It is estimated that there are about 1000
different species which account for up to 20% of all mammal species. Their size
ranges from tiny bumblebee bats (of about 1.5 to 2 g) to giant bats with a wingspan
of about 2 m and weight up to about 1 kg. Microbats typically have a forearm length
of about 2.2 to 11 cm [14, 15]. Most bats uses echolocation to a certain degree;
among all the species, microbats are a famous example as microbats use echoloca-
tion extensively, while megabats do not [1, 5].

Most microbats are insectivores. Microbats use a type of sonar, called echoloca-
tion, to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
These bats emit a very loud sound pulse and listen for the echo that bounces back
from the surrounding objects. Their pulses vary in properties and can be corre-
lated with their hunting strategies, depending on the species. Most bats use short,
frequency-modulated signals to sweep through about an octave, while others more
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often use constant-frequency signals for echolocation. The bandwidth of echoloca-
tion signals varies with species, and often increases by using more harmonics.

Studies show that microbats use the time delay from the emission and detection
of the echo, the time difference between their two ears, and the loudness variations
of the echoes to build up three dimensional scenario of the surrounding. They can
detect the distance and orientation of the target, the type of prey, and even the mov-
ing speed of the prey such as small insects. Indeed, studies suggested that bats seem
to be able to discriminate targets by the variations of the Doppler effect induced by
the wing-flutter rates of the target insects [1].

1.2 Acoustics of Echolocation

Though each pulse only lasts a few thousandths of a second (up to about 8 to 10 ms),
however, it has a constant frequency which is usually in the region of 25 kHz to 150
kHz. The typical range of frequencies for most bat species are in the region between
25 kHz and 100 kHz, though some species can emit higher frequencies up to 150
kHz. Each ultrasonic burst may last typically 5 to 20 ms, and microbats emit about
10 to 20 such sound bursts every second. When hunting for prey, the rate of pulse
emission can be sped up to about 200 pulses per second when they fly near their
prey. Such short sound bursts imply the fantastic ability of the signal processing
power of bats. In fact, studies show the integration time of the bat ear is typically
about 300 to 400 μs.

As the speed of sound in air is typically v = 340 m/s at room temperature, the
wavelength λ of the ultrasonic sound bursts with a constant frequency f is given by

λ =
v
f
, (1)

which is in the range of 2 mm to 14 mm for the typical frequency range from 25
kHz to 150 kHz. Such wavelengths are in the same order of their prey sizes [1, 14].

Amazingly, the emitted pulse could be as loud as 110 dB, and, fortunately, they
are in the ultrasonic region. The loudness also varies from the loudest when search-
ing for prey and to a quieter base when homing towards the prey. The travelling
range of such short pulses are typically a few metres, depending on the actual fre-
quencies. Microbats can manage to avoid obstacles as small as thin human hairs.

Obviously, some bats have good eyesight, and most bats also have very sensitive
smell sense. In reality, they will use all the senses as a combination to maximize
the efficient detection of prey and smooth navigation. However, here we are only
interested in the echolocation and the associated behaviour.

Such echolocation behaviour of microbats can be formulated in such a way that
it can be associated with the objective function to be optimized, and this makes it
possible to formulate new optimization algorithms. We will first outline the basic
formulation of the Bat Algorithm (BA) and then discuss its implementation.
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1.3 Bat Algorithm

If we idealize some of the echolocation characteristics of microbats, we can develop
various bat-inspired algorithms or bat algorithms [18, 20]. For simplicity, we now
use the following approximate or idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers;

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin (or
wavelength λ ), varying wavelength λ (or frequency f ) and loudness A0 to search
for prey. They can automatically adjust the wavelength (or frequency) of their
emitted pulses and adjust the rate of pulse emission r ∈ [0,1], depending on the
proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) A0 to a minimum value Amin.

Another obvious simplification is that no ray tracing is used in estimating the time
delay and three dimensional topography. Though this might be a good feature for
the application in computational geometry; however, we will not use this, as it is
more computationally extensive in multidimensional cases.

In addition to these simplified assumptions, we also use the following approxima-
tions, for simplicity. In general the frequency f in a range [ fmin, fmax] corresponds
to a range of wavelengths [λmin,λmax]. For example, a frequency range of [20 kHz,
500 kHz] corresponds to a range of wavelengths from 0.7 mm to 17 mm.

For a given problem, we can also use any wavelength for the ease of implemen-
tation. In the actual implementation, we can adjust the range by adjusting the fre-
quencies (or wavelengths). The detectable range (or the largest wavelength) should
be chosen such that it is comparable to the size of the domain of interest, and then
toning down to smaller ranges. Furthermore, we do not necessarily have to use the
wavelengths themselves at all, instead, we can also vary the frequency while fixing
the wavelength λ . This is because λ and f are related, as λ f is constant. We will
use this later approach in our implementation.

For simplicity, we can assume f ∈ [0, fmax]. We know that higher frequencies
have short wavelengths and travel a shorter distance. For bats, the typical ranges are
a few metres. The rate of pulse can simply be in the range of [0,1] where 0 means
no pulses at all, and 1 means the maximum rate of pulse emission.

Based on the above approximations and idealization, the basic steps of the Bat
Algorithm (BA) can be summarized as the pseudo code shown in Fig. 1.

1.3.1 Movement of Virtual Bats

In the standard bat algorithm [20, 24], we have to use virtual bats. We have to define
the rules how their positions xi and velocities vi in a d-dimensional search space are
updated. The new solutions xt

i and velocities vt
i at time step t are given by

fi = fmin +( fmax − fmin)β , (2)
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Bat Algorithm

Initialize a population of n bats xi (i = 1,2, ...,n) and vi
Initialize frequencies fi, pulse rates ri and the loudness Ai

while (t <Max number of iterations)
Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions [(2) to (4)]
if (rand > ri)

Select a solution among the best solutions
Generate a local solution around the selected best solution

end if
Generate a new solution by flying randomly
if (rand < Ai & f (xi) < f (x∗))

Accept the new solutions
Increase ri and reduce Ai

end if
Rank the bats and find the current best x∗

end while

Fig. 1 Pseudo code of the bat algorithm (BA).

vt+1
i = vt

i +(xt
i − x∗) fi, (3)

xt+1
i = xt

i + vt
i, (4)

where β ∈ [0,1] is a random vector drawn from a uniform distribution. Here x∗
is the current global best location (solution) which is located after comparing all
the solutions among all the n bats at each iteration t. As the product λi fi is the
velocity increment, we can use fi (or λi ) to adjust the velocity change while fixing
the other factor λi (or fi), depending on the type of the problem of interest. In our
implementation, we will use fmin = 0 and fmax = O(1), depending on the domain
size of the problem of interest. Initially, each bat is randomly assigned a frequency
which is drawn uniformly from [ fmin, fmax].

For the local search part, once a solution is selected among the current best solu-
tions, a new solution for each bat is generated locally using random walk

xnew = xold + ε At , (5)

where ε is a random number which can be drawn from a uniform distribution in
[−1,1] or a Gaussian distribution, while At =<At

i > is the average loudness of all
the bats at this time step.

The update of the velocities and positions of bats have some similarity to the
procedure in the standard particle swarm optimization, as fi essentially controls the
pace and range of the movement of the swarming particles. To a degree, BA can be
considered as a balanced combination of the standard particle swarm optimization
and the intensive local search controlled by the loudness and pulse rate.
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1.3.2 Loudness and Pulse Emission

Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated
accordingly as the iterations proceed. As the loudness usually decreases once a bat
has found its prey, while the rate of pulse emission increases, the loudness can be
chosen as any value of convenience. For simplicity, we can use A0 = 1 and Amin = 0,
assuming Amin = 0 means that a bat has just found the prey and temporarily stop
emitting any sound. Now we have

At+1
i = αAt

i, (6)

and
rt

i = r0
i [1− exp(−γt)], (7)

where α and γ are constants. In fact, α is similar to the cooling factor of a cooling
schedule in simulated annealing. For any 0 < α < 1 and γ > 0, we have

At
i → 0, rt

i → r0
i , as t → ∞. (8)

In the simplest case, we can use α = γ , and we have used α = γ = 0.9 in our
simulations.

The choice of parameters requires some experimenting. Initially, each bat should
have different values of loudness and pulse emission rate, and this can be achieved
by randomization. For example, the initial loudness A0

i can typically be around [1,2],
while the initial emission rate r0

i can be around zero, or any value r0
i ∈ [0,1] if using

(7). Their loudness and emission rates will be updated only if the new solutions
are improved, which means that these bats are moving towards the optimal solution
[18, 20].

1.3.3 Discussions

The bat algorithm is much superior to other algorithms in terms of accuracy and
efficiency [18, 25]. If we replace the variations of the frequency fi by a random
parameter and setting Ai = 0 and ri = 1, the bat algorithm essentially becomes the
standard particle swarm optimization (PSO).

Similarly, if we do not use the velocities, we use fixed loudness and rate: Ai and
ri. For example, Ai = ri = 0.7, this algorithm is virtually reduced to a simple har-
mony search (HS) [19], as the frequency/wavelength change is essentially the pitch
adjustment, while the rate of pulse emission is similar to the harmonic acceptance
rate (here with a twist) in the harmony search algorithm. The current studies imply
that the proposed new algorithm is potentially more powerful and thus should be
investigated further in many applications of engineering and industrial optimization
problems.
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1.4 Further Topics

Bat algorithms start to attract attention, as many researchers have written to the
authors to request a demo code. More applications for both single objective and
multiobjective optimization problems have appeared in the literature [25, 24, 16].

From the formulation of the bat algorithm and its implementation and compari-
son, we can see that it is a very promising algorithm. It is potentially more powerful
than particle swarm optimization and genetic algorithms as well as harmony search.
The primary reason is that BA uses a good combination of major advantages of
these algorithms in some way. Moreover, PSO and harmony search are the special
cases of the bat algorithm under appropriate simplifications.

In addition, the fine adjustment of the parameters α and γ can affect the conver-
gence rate of the bat algorithm. In fact, parameter α acts in a similar role as the cool-
ing schedule in the simulated annealing. Though the implementation is slightly more
complicated than those for many other metaheuristic algorithms; however, it does
show that it utilizes a balanced combination of the advantages of existing success-
ful algorithms with innovative feature based on the echolocation behaviour of bats.
New solutions are generated by adjusting frequencies, loudness and pulse emission
rates, while the proposed solution is accepted or not, depending on the quality of the
solutions controlled or characterized by loudness and pulse rate which are in turn
related to the closeness or the fitness of the locations/solution to the global optimal
solution.

The exciting results suggest that more studies will be needed to carry out the
sensitivity analysis, to analyze the rate of algorithm convergence, and to improve the
convergence rate even further. More extensive comparison studies with a more wide
range of existing algorithms using much tough test functions in higher dimensions
will pose more challenges to all optimization algorithms, and thus such comparisons
will potentially reveal the virtues and weakness of all the algorithms of interest.

An interesting extension will be to use different schemes of wavelength or fre-
quency variations instead of the current linear implementation. In addition, the rates
of pulse emission and loudness can also be varied in a more sophisticated man-
ner. Another extension for discrete problems is to use the time delay between pulse
emission and the echo bounced back. For example, in the travelling salesman prob-
lem, the distance between two adjacent nodes/cities can easily be coded as the time
delay.

As microbats use time difference between their two ears to obtain three-
dimensional information, they can identify the type of prey and the velocity of a fly-
ing insect. Therefore, a further natural extension to the current bat algorithm would
be to use the directional echolocation and Doppler effect, which may lead to even
more interesting variants and new algorithms.
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2 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang of Cambridge University and Suash Deb of
C. V. Raman College of Engineering. CS was based on the brood parasitism of
some cuckoo species. In addition, this algorithm is enhanced by the so-called Lévy
flights, rather than by simple isotropic random walks. Recent studies showed that
CS is potentially far more efficient than PSO and genetic algorithms [21, 22, 3].

2.1 Cuckoo Breeding Behaviour

Cuckoo are fascinating birds, not only because of the beautiful sounds they can
make, but also because of their aggressive reproduction strategy. Some species such
as the ani and Guira cuckoos lay their eggs in communal nests, though they may
remove others’ eggs to increase the hatching probability of their own eggs. Quite a
number of species engage the obligate brood parasitism by laying their eggs in the
nests of other host birds (often other species) [9].

There are three basic types of brood parasitism: intraspecific brood parasitism,
cooperative breeding, and nest takeover. Some host birds can engage direct conflict
with the intruding cuckoos. If a host bird discovers the eggs are not their owns, they
will either get rid of these alien eggs or simply abandon its nest and build a new nest
elsewhere. Some cuckoo species such as the New World brood-parasitic Tapera have
evolved in such a way that female parasitic cuckoos are often very specialized in the
mimicry in colour and pattern of the eggs of a few chosen host species. This reduces
the probability of their eggs being abandoned and thus increases their reproductivity.

In addition, the timing of egg-laying of some species is also amazing. Parasitic
cuckoos often choose a nest where the host bird just laid its own eggs. In general, the
cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo chick
is hatched, the first instinct action it will take is to evict the host eggs by blindly
propelling the eggs out of the nest, which increases the cuckoo chick’s share of food
provided by its host bird. Studies also show that a cuckoo chick can also mimic the
call of host chicks to gain access to more feeding opportunity.

2.2 Lévy Flights

Various studies have shown that the flight behaviour of many animals and insects
may pose some typical characteristics of Lévy flights [2, 10]. A recent study showed
that fruit flies or Drosophila melanogaster, explore their landscape using a series of
straight flight paths punctuated by a sudden 90o turn, leading to a Lévy-flight-style
intermittent scale free search pattern [12, 13].

Studies on human behaviour such as the Ju/’hoansi hunter-gatherer foraging pat-
terns also show the typical feature of Lévy flights [4]. Even light can be related to
Lévy flights. Subsequently, such behaviour has been applied to optimization and
optimal search, and preliminary results show its promising capability [10, 11].
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2.3 Cuckoo Search

For simplicity in describing our standard Cuckoo Search developed by Xin-She
Yang and Suash Deb [21, 22], we now use the following three idealized rules:

• Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen
nest;

• The best nests with highest quality eggs will be carried over to the next generations;
• The number of available host nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability pa ∈ [0,1]. In this case, the host bird
can either get rid of the egg, or simply abandon the nest and build a completely
new nest.

As a further approximation, this last assumption can be approximated by a fraction
pa of the n host nests are replaced by new nests (with new random solutions). For a
maximization problem, the quality or fitness of a solution can simply be proportional
to the value of the objective function. Other forms of fitness can be defined in a
similar way to the fitness function in genetic algorithms.

For the implementation point of view, we can use the following simple represen-
tations that each egg in a nest represents a solution, and each cuckoo can lay only
one egg (thus representing one solution), the aim is to use the new and potentially
better solutions (cuckoos) to replace a not-so-good solution in the nests. Obviously,
this algorithm can be extended to the more complicated case where each nest has
multiple eggs representing a set of solutions, or representing multiobjectives [24].

For this present tutorial, we will use the simplest approach where each nest has
only a single egg. In this case, there is no distinction between egg, nest or cuckoo,
as each nest corresponds to one egg which also represents one cuckoo.

Based on these three rules, the basic steps of the Cuckoo Search (CS) can be
summarized as the pseudo code shown in Fig. 2.

This algorithm uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter pa. The lo-
cal random walk can be written as

xt+1
i = xt

i + s⊗H(pa− ε)⊗ (xt
j − xt

k), (9)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

xt+1
i = xt

i + αL(s,λ ), (10)

where

L(s,λ ) =
λΓ (λ )sin(πλ/2)

π
1

s1+λ , (s � s0 > 0). (11)
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Cuckoo Search via Lévy Flights

Objective function f (x), x = (x1, ...,xd)T

Generate initial population of n host nests xi

while (t <MaxGeneration) or (stop criterion)
Get a cuckoo randomly/generate a solution by Lévy flights

and then evaluate its quality/fitness Fi

Choose a nest among n (say, j) randomly
if (Fi > Fj),

Replace j by the new solution
end
Abandon a fraction (pa) of worse nests & generate new solutions
Keep best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Postprocess results and visualization

Fig. 2 Pseudo code of the Cuckoo Search (CS).

A vectorized implementation can be obtained from this link here1.
The Lévy flight essentially provides a random walk whose random step length is

drawn from a Lévy distribution

Lévy ∼ 1

sλ+1
, (0 < λ ≤ 2), (12)

which has an infinite variance with an infinite mean. Here the steps essentially form
a random walk process with a power-law step-length distribution with a heavy tail.
Some of the new solutions should be generated by Lévy walk around the best so-
lution obtained so far, this will speed up the local search. However, a substantial
fraction of the new solutions should be generated by far field randomization and
whose locations should be far enough from the current best solution, this will make
sure that the system will not be trapped in a local optimum.

The advantages of CS may be related to the characteristics in the algorithm.
Firstly, CS is a population-based algorithm, in a way similar to GA and PSO, but it
uses some sort of elitism and/or selection similar to that used in genetic algorithms
and harmony search. Secondly, the randomization in CS is more efficient, as its step
length distribution is heavy-tailed, and any step size (whether large or small) is pos-
sible. Thirdly, the number of parameters in CS to be tuned is fewer than GA and
PSO, and thus it is potentially more generic to adapt to a wider class of optimiza-
tion problems. In addition, each nest can have many eggs and thus represent a set
of solutions, CS can thus be extended to the type of meta-population algorithms, or
even hyper-heuristic algorithms.

1 http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-
algorithm
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2.4 Choice of Parameters

We have carried out a parametric study by varying the number of host nests (or
the population size n), the probability pa and other parameters. We have used n =
5,10,15, 20, 30, 40,50, 100, 150, 250,500 and pa = 0, 0.01, 0.05,0.1, 0.15,0.2,
0.25, 0.3,0.4,0.5. From our simulations, we found that n = 15 to 40, pa = 0.25
to 0.5 and λ = 1 to 1.5 are sufficient for most optimization problems. In addition,
the step size scaling factor α should be linked with the upper limits/bounds Ub and
lower bounds Lb in the following empirical way

α = 0.01(Ub−Lb), (13)

which makes that the steps are not too aggressive (jumping out of the feasible do-
main), thus ensuring most newly-generated solutions in the right search regions.
Here Ub and Lb are d-dimensional vectors with the same dimensions as the solution
vector.

Results and analysis also imply that the convergence rate, to some extent, is not
sensitive to the parameters used. This means that the fine adjustment is not needed
for any given problems.

2.5 How to Do Lévy Flights

Broadly speaking, Lévy flights are a random walk whose step length is drawn from
the Lévy distribution, often in terms of a simple power-law formula L(s) ∼ |s|−1−β

where 0 < β ≤ 2 is an index. Mathematically speaking, a simple version of Lévy
distribution can be defined as

L(s,γ,μ) =

⎧⎪⎨⎪⎩
√

γ
2π exp[− γ

2(s−μ) ]
1

(s−μ)3/2 , 0 < μ < s < ∞

0 otherwise,

(14)

where μ > 0 is a minimum step and γ is a scale parameter. Clearly, as s → ∞, we
have

L(s,γ,μ) ≈
√

γ
2π

1

s3/2
. (15)

This is a special case of the generalized Lévy distribution.
In general, Lévy distribution should be defined in terms of Fourier transform

F(k) = exp[−α|k|β ], 0 < β ≤ 2, (16)

where α is a scale parameter. The inverse of this integral is not easy, as it does not
have analytical form, except for a few special cases.

For the case of β = 2, we have

F(k) = exp[−αk2], (17)
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whose inverse Fourier transform corresponds to a Gaussian distribution. Another
special case is β = 1, and we have

F(k) = exp[−α|k|], (18)

which corresponds to a Cauchy distribution

p(x,γ,μ) =
1
π

γ
γ2 +(x− μ)2 , (19)

where μ is the location parameter, while γ controls the scale of this distribution.
For the general case, the inverse integral

L(s) =
1
π

∫ ∞

0
cos(ks)exp[−α|k|β ]dk, (20)

can be estimated only when s is large. We have

L(s) → α β Γ (β )sin(πβ/2)
π |s|1+β , s → ∞. (21)

Here Γ (z) is the Gamma function

Γ (z) =
∫ ∞

0
tz−1e−t dt. (22)

In the case when z = n is an integer, we have Γ (n) = (n−1)!.
Lévy flights are more efficient than Brownian random walks in exploring un-

known, large-scale search space. There are many reasons to explain this efficiency,
and one of them is due to the fact that the variance of Lévy flights

σ2(t) ∼ t3−β , 1 ≤ β ≤ 2, (23)

increases much faster than the linear relationship (i.e., σ2(t) ∼ t) of Brownian ran-
dom walks. It is worth pointing out that a power-law distribution is often linked to
some scale-free characteristics, and Lévy flights can thus show self-similarity and
fractal behavior in the flight patterns. Here β is exactly the parameter λ used earlier.

From the implementation point of view, the generation of random numbers with
Lévy flights consists of two steps: the choice of a random direction and the genera-
tion of steps which obey the chosen Lévy distribution. The generation of a direction
should be drawn from a uniform distribution, while the generation of steps is quite
tricky. There are a few ways of achieving this, but one of the most efficient and yet
straightforward ways is to use the so-called Mantegna algorithm for a symmetric
Lévy stable distribution [8]. Here ‘symmetric’ means that the steps can be positive
and negative.

A random variable U and its probability distribution can be called stable if a
linear combination of its two identical copies (or U1 and U2) obeys the same distri-
bution. That is, aU1 + bU2 has the same distribution as cU + d where a,b > 0 and
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c,d ∈ℜ. If d = 0, it is called strictly stable. Gaussian, Cauchy and Lévy distributions
are all stable distributions.

In Mantegna’s algorithm, the step length s can be calculated by

s =
u

|v|1/β , (24)

where u and v are drawn from normal distributions. That is

u ∼ N(0,σ2
u ), (25)

and
v ∼ N(0,σ2

v ), (26)

where

σu =
{ Γ (1 + β )sin(πβ/2)

Γ [(1 + β )/2] β 2(β−1)/2

}1/β
, σv = 1. (27)

This distribution (for s) obeys the expected Lévy distribution for |s| ≥ |s0| where s0

is the smallest step. In principle, |s0| � 0, but in reality s0 can be taken as a sensible
value such as s0 = 0.1 to 1.

Studies show that Lévy flights can maximize the efficiency of resource searches
in uncertain environments. In fact, Lévy flights have been observed among foraging
patterns of albatrosses and fruit flies, and spider monkeys. In addition, Lévy flights
have many applications. Many physical phenomena such as the diffusion of fluores-
cent molecules, cooling behavior and noise could show Lévy-flight characteristics
under the right conditions.

The literature on cuckoo search is expanding rapidly. There have been a lot of
attention and recent studies using cuckoo search with diverse range of applications
[7, 17, 26]. Walton et al. improved the algorithm by formulating a modified cuckoo
search algorithm [17], while Yang and Deb extended it to multiobjective optimiza-
tion problems [26]. Durgun and Yildiz applied it to structural design optimization
[6]. Interested readers can refer to more advanced literature [22, 23].

At present, metaheuristic algorithms are inspired by some specific features of
the successful biological systems such as social insects and birds. Though they are
highly successful, however, these algorithms still have room for improvement. In
addition to the above open problems, a truly ‘intelligent’ algorithm is yet to be devel-
oped. By learning more and more from nature and by carrying out ever-increasingly
detailed, systematical studies, some truly ‘smart’ self-evolving algorithms will be
developed in the future so that such smart algorithms can automatically fine-tune
their behaviour to find the most efficient way of solving complex problems. As
an even bolder prediction, maybe, some hyper-level algorithm-constructing meta-
heuristics can be developed to automatically construct algorithms in an intelligent
manner in the not-too-far future.
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D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–
74. Springer, Heidelberg (2010)

19. Yang, X.-S.: Harmony Search as a Metaheuristic Algorithm. In: Geem, Z.W. (ed.) Music-
Inspired Harmony Search Algorithm. SCI, vol. 191, pp. 1–14. Springer, Heidelberg
(2009)

20. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, UK
(2010)
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Memory and Learning in Metaheuristics 

Arif Arin and Ghaith Rabadi* 

Abstract. The rapid increase of dimensions and complexity of real life problems 
makes it more difficult to find optimal solutions by traditional optimization 
methods. This challenge requires intelligent and sophisticated algorithms to make 
the right decisions given a set of inputs and a variety of possible actions. In the 
problem solving arena, this definition is transformed into the term of artificial 
intelligence. Artificial intelligence emerges in metaheuristics via memory and 
learning in algorithms. Metaheuristics are promising approaches that can find 
near-optimal solutions in an acceptable amount of time. Many successful 
metaheuristics employ “intelligent” procedures to obtain high quality solutions for 
discrete optimization problems. To demonstrate the contribution of memory and 
learning into metaheuristics, Estimation of Distribution Algorithms will be 
incorporated as a memory and learning mechanism into Meta-RaPS (Meta-
heuristic for Randomized Priority Search) which is classified as a memoryless 
metaheuristic. The 0-1 multidimensional knapsack problem will be used to 
evaluate the “intelligence” of the new algorithm. 

Keywords: Artificial intelligence, memory, learning, metaheuristics, Meta-RaPS, 
0-1 multidimensional knapsack problem. 

1   Introduction 

One of the most important effects of improvement in modern sciences and 
technologies is understanding and modeling real life problems realistically and in 
more detail. The natural outcome of this fact is the rapid increase of problem 
dimensions and complexity, which challenges us to develop more sophisticated 
approaches. A powerful answer to this challenge can be based on solving 
problems by incorporating intelligence in the proposed solution methods. 
Intelligence can defined as the ability to make the right decisions given a set of 
inputs and a variety of possible actions. In the problem solving arena, this is 
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transformed into the term “artificial intelligence”, or AI, that emerges by 
systematizing intellectual tasks relevant to human intellectual activity. AI employs 
intelligent procedures to understand and to create intelligent entities [1]. 

Alan Turing started the AI approach when he worked out how mental 
computations could be broken down into a sequence of steps that could be 
mechanically simulated [2]. In the 1950s, while the AI term had not yet been 
introduced, Alan Turing came up with an idea of building intelligent machines 
where he proposed that if the problem can be expressed as an algorithm, or a 
precise set of formal instructions, then it can be computed mechanically by a 
machine. Turing proposed that if this machine’s response were indistinguishable 
from a human’s, then the computer could be considered a thinking machine, and 
this became known as the Turing Test [3]. Turing machine is one of the most 
important breakthroughs of the twentieth century that led both to the invention of 
the modern computer and to new ways of thinking of human cognition. 

Computational Intelligence (CI) is a modern name for the subfield of AI (also 
named scruffy or soft) techniques. CI has a similar meaning to the well-known 
phrase AI, although CI is perceived more as a “bottom up” approach from which 
intelligent behavior can emerge, whereas AI tends to be studied from the “top 
down”, and derive from pondering upon the “meaning of intelligence” [4]. CI 
involves approaches based on strategy and outcome, and includes adaptive and 
intelligence systems, e.g. evolutionary computation, swarm intelligence (particle 
swarm and ant colony optimization), fuzzy systems, and artificial neural networks 
[5, 6].  

Metaheuristics can be viewed as another name for the strategy-outcome 
perspective of scruffy AI. Heuristic is an algorithm that finds ‘good enough’ 
solutions to a problem without concern for whether the solution can be proven to 
be optimal [7]. Birattari [8] defines a heuristic as “a generic algorithmic template 
that can be used for finding high quality solutions of hard combinatorial 
optimization problems”. Heuristic approaches have already proved themselves in 
many large scale optimization problems by offering near-optimal solutions where 
it is difficult to find optimal solutions by other approaches. In theory, there is a 
chance to find the optimum solution by implementing heuristic methods. 
However, often being trapped in local optima can move the heuristics away from 
the optimum solution. Metaheuristics or “modern heuristics” confront this 
challenge by adding strategies and mechanisms to existing construction and local 
search mechanisms in heuristics to avoid local optima [9]. Glover and Laguna [10] 
define metaheuristics as “a master strategy that guides and modifies other 
heuristics to produce solutions beyond those that are normally generated in a quest 
for local optimality”. A procedure in a metaheuristic is considered black box in 
that little (if any) prior knowledge needs to be known about it by the 
metaheuristic, and as such it may be replaced with a different procedure. 

2   Concepts of Memory and Learning  

There are substantial relationships between the term intelligence and the terms 
memory and learning. “Intelligence” is the ability that requires information captured 
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by “learning” and stored in “memory” to make correct decisions in solving problems. 
The level of intelligence depends on the efficiency of learning activities and the 
capacity of memory; thus enhancing intelligence will then mean enhancing both 
memory and learning. Most researchers accept intelligence as an umbrella that covers 
the intellectual activities.  

Webster`s Dictionary [11] defines memory as “the act or fact of retaining and 
recalling impressions, facts, etc.”; and learning as “knowledge acquired by 
systematic study or by trial and error”. Based on these definitions, we can see that 
the concepts of learning and memory are closely related. Furthermore, learning 
can be thought of as the acquisition of skill or knowledge, while memory as the 
expression of what you have acquired. Another factor that can be used in defining 
these two concepts is the rate at which the two processes occur: If the new skill or 
knowledge is gained slowly, that is learning, and if the gain happens instantly, that 
is considered creating a memory [12].  

The structure of memory is central to one's knowledge of the past, 
interpretation of the present, and prediction of the future [13]. Memory related to 
the past can be employed to create predictive models in the present, and therefore 
can guide current thoughts, decisions, and actions. Learning lets human beings 
have a greater degree of flexibility and adaptability than any other species. 

Due to significant advancement in neuroscience, the concepts of memory and 
learning have undergone enormous changes over the last decade. In cognitive 
psychology, types of memory can be classified in a number of ways, depending on 
the criterion used. With duration as the criterion, it is divided into three functions 
for storage: sensory, short-term, and long-term [14]. Sensory memory takes the 
information provided by the senses and retains it accurately but very briefly. It is 
often considered part of the process of perception, and essential for storing 
information in short-term memory. The short-term memory temporarily records 
the succession of events, and determines what information moves from sensory 
memory to short-term memory. This information will quickly disappear forever 
unless we make a conscious effort to retain it. Sensory memory is a necessary step 
for short-term memory, and short-term memory is a necessary step toward the 
next stage of retention, long-term memory. Long-term memory is relatively 
permanent storage with information stored on the basis of meaning and 
importance. Its capacity seems unlimited; however it sometimes distorts the facts, 
and tends to become less reliable as time goes by [14]. 

Based on the distinctions related to memory structure, learning can be accepted 
as a long-term change in mental representations or associations as a result of 
experience [15]. If learning is a change in behavior, it can then be measured by 
observing the changes in behavior. The most common ways of measuring learning 
are recording the reduction in errors, the changes in the form and/or intensity of 
the behavior, the change in the speed with which a behavior is performed, and the 
change in the rate or frequency at which a behavior occurs [16]. 

Since memory stores and retrieves the information that is learned, it is then an 
essential component to all learning activities. Memory is nothing more than the 
record left by a learning process, and thus, memory depends on learning. But 
learning also depends on memory because the knowledge stored in memory 
provides the framework to new knowledge.  
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3   Memory and Learning Mechanisms in Metaheuristics 

Alan Turing was probably the first to use heuristic algorithms during the Second 
World War in breaking German Enigma ciphers via his cryptanalytic 
electromechanical machine, the Bombe. The bombe used an algorithm to search for 
the correct setting coded in an Enigma message among about 1022 potential 
combinations. Turing named his search method as heuristic search, as was expected 
to work most of the time, but there was no guarantee to find the correct solution; it 
was a great success, nevertheless [1].  

Glover and Laguna [10] introduced a classification method for metaheuristic 
algorithms that depends on three design choices: the use of adaptive memory, the 
type of neighborhood exploration used, and the number of current solutions 
carried from one iteration to the next. The metaheuristic classification notation can 
be represented in a three-field form of a|b|c. If the metaheuristic has adaptive 
memory, the first field, a, will be A, and M if the method is Memoryless. 
Depending on the neighborhood mechanism, the second field, b, will be N for 
somehow systematic neighborhood search, and S for using random sampling. The 
third field, c, can be 1 for a single-solution approach or P for a population-based 
approach with population size P. The classification method for metaheuristics is 
summarized in Table 1. 

Table 1 Classification Method for Metaheuristics 

a b c 
Use of          

Adaptive Memory 
Type of              

Neighborhood 
Number of Solutions 

Carried at each iteration 
A M N S 1 P 

Adaptive 
Memory 

Memoryless Systematic 
Neighborhood 

Search 

Random 
Sampling 

Single 
Solution 

Population 
Size of P 

The mechanisms of memory and learning in algorithms store various 
information related to search history so that the algorithm can reach high quality 
solutions. Learning takes place when the problem at hand is not well known at the 
beginning, and its structure becomes clearer and clearer when more experience 
with the problem is gained. Online learning is the type of learning in which an 
algorithm uses task-dependent local properties for a problem instance while it is 
solving that instance to determine the appropriate level trade-off between 
diversification and intensification [1]. Different memory and learning structures 
have been used in different metaheuristics, as shown in Table 2 in which only 
Tabu Search (TS) is a single-solution metaheuristic and the rest are population-
based metaheuristics.  

The memory and learning structures can be described in the best way by taking 
TS algorithm as a baseline. In the memory and learning structures of TS,  
four main aspects are defined; recency, frequency, quality, and influence. The  
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recency-based memory keeps track of the attributes of the solutions found in the 
search process which have changed in the recent past. Attributes found in the 
solutions visited recently are defined as tabu-active which are called tabu in TS.  

Table 2 Memory structures in some metaheuristics (adapted from [18]) 

Metaheuristics Search Memory 

Tabu search Tabu list 
Evolutionary algorithms Population of individuals 
Scatter search Population of solutions 
Path relinking Population of solutions 
Ant colony optimization Pheromone matrix 
Particle swarm optimization Population of particles 
Estimation of distribution algorithms Probabilistic learning model 

While the aspect of recency can be accepted as a short term memory 
implementation, the aspect of frequency deals with the long term TS strategies. The 
frequency-based memory consists of mainly two ratios: transition frequencies, 
which record how often the attributes are changed, and residence frequencies, 
which record how often the attributes are component of solutions produced. In 
scheduling for example, the number of times job j has been moved to an earlier 
position in the sequence can be an example for transition frequencies, and the sum 
of tardiness of job j when it occupies position Pj can be an example for residence 
frequencies [10]. The quality-based memory discovers the common elements in 
good solutions, or the paths that lead to good solutions. In these mechanisms some 
penalties can also be applied to move away from poor solutions. The last aspect of 
influence-based memory considers the effects of the decisions made in the solution 
process on both the quality and the structure. The quality aspect can be accepted as 
a special case of the influence aspect.  

Intensification and diversification are two important strategies for the memory 
structure. According to Rochat and Taillard [19] “diversification drives the search 
to examine new regions, and intensification focuses more intently on regions 
previously found to be good.” Intensification strategies modify the algorithm to 
search the promising regions more thoroughly based on high quality solution 
features found in the search process, or by modifying choice rules to favor the 
inclusion of attributes of these solutions. These strategies focus on inspecting the 
neighborhood of elite solutions by incorporating their good attributes into new 
solutions. On the other hand, diversification strategies encourage the algorithm to 
explore new regions and mainly utilize the long term memory mechanisms. Local 
search optimization methods often rely on diversification strategies to reach better 
solutions. Diversification strategies help prevent cycling of the search process, and 
give more robustness to the algorithm. 

The more sophisticated version of TS includes longer term memory with 
associated intensification and diversification strategies. Glover and Laguna [10] 
define this approach as Adaptive Memory Programming (AMP) because it is 
based on exploiting the strategic memory components. Based on the AMP 
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approach, Dr´eo et al. [20] present Adaptive Learning Search (ALS) in which the 
memorized data is not only the raw data input, but also the information on the 
distribution and, thus, on the solutions. The algorithm for ALS consists of the 
following steps: 

1. Initialize a sample. 
2. Until the stopping criteria is met, do: 

 
a. Sampling: either explicit, implicit or direct; 
b. Learning: the algorithm extracts information from the sample; 
c. Diversification: it searches for new solutions; 
d. Intensification: it searches to improve the existing sample; and  
e. Replace the previous sample with the new one. 

The main difficulty for metaheuristic search is the issue of balancing the 
intensification and diversification strategies. The search process can easily converge 
toward a local optimum and to diversify the search process, or to visit the solutions 
with different attributes, requires increasing the number of moves or components that 
are labeled as undesirable. For TS, the discussion then turns into finding the optimum 
tabu list size. Indeed, the reactive TS is designed to automatically adapt the tabu list 
size [21].  

The term reactive search supports the integration of learning techniques into 
metaheuristic search to solve complex optimization problems. The word reactive 
here describes an immediate response to events during the search through an 
internal feedback loop for online adaptation. The knowledge related to the search 
history is utilized for adaptation in an autonomic manner. The algorithm keeps the 
ability to respond to different situations during the search process, but the 
adaptation is automated, and executed while the algorithm runs on a single 
instance reflecting on its past experience. Intelligent optimization refers to a more 
extended area of research, including online and offline schemes based on the use 
of memory, adaptation, and incremental development of models, experimental 
algorithmics applied to optimization, intelligent tuning, and design of 
metaheuristics [17].  

4   Metaheuristics with Memory and Learning  

Memory and learning in metaheuristics represent the information extracted and 
stored during the search for better solutions. The content of these mechanisms 
varies from a metaheuristic to another (Table 2). While tabu list represents 
memory in TS, in most of the metaheuristics such as evolutionary algorithms and 
scatter search, the search memory is limited to the population of solutions. In Ant 
Colonies Optimization (ACO), the pheromone matrix is the main component of 
the search memory, whereas in Estimation Distribution Algorithms, it is a 
probabilistic learning model that composes the search memory.  



Memory and Learning in Metaheuristics 441
 

4.1   Tabu Search (TS) 

TS algorithms, introduced by Glover [22], are one of the most common single-
solution based metaheuristics that improve a single solution. The major property 
of this approach emerges from storing information related to the search process, 
which is called memory. A TS can be classified either as A|N|1 or A|N|P. The 
reason behind this classification is that TS employs the adaptive memory using a 
neighborhood search and it moves from one current solution to the next after 
every iteration. 

A TS begins with local or neighborhood search and generally the whole 
neighborhood is explored deterministically and the best solution found in the 
neighborhood is selected as the new current solution. According to Talbi [18], a 
TS may be considered as a dynamic transformation of the neighborhood; however, 
this mechanism may create cycles, which in order to be avoided, the TS 
“memorizes” the recent search trajectory by means of a tabu list. Usually, a tabu 
list consists of a constant number of solutions or attributes of the moves, which are 
updated at each iteration of the search process. Besides the tabu list, there is 
another mechanism called the aspiration criteria, to accept a solution that is 
“good” even though it is in the tabu list. A common aspiration criterion is if a 
solution is better than the best solution so far. 

Due to the fact that a tabu list generally contains the information of recent 
solutions or moves, it can be classified as a short-term memory. Along with the 
short-term memory, in a TS there are medium-term and long-term memory 
mechanisms to apply for different purposes. While the medium-term memory, or 
intensification memory, stores the elite solutions and gives priorities to their 
attributes, the long-term or diversification memory, keeps the information of the 
visited solutions to use in exploring unvisited regions in the solution space. 

Although TS was originally developed for combinatorial optimizations, in 
recent years it has been employed to solve continuous optimization problems too 
[23]. There are many new successful hybrid methods of TS with linear 
programming [24], branch-and-bound [25], genetic algorithms [26], simulated 
annealing [27], neural networks [28], ant colony optimization [29] and scatter 
search [30]. TS has wide range of applications including those in scheduling [31, 
32], in production and logistics [33, 34] and vehicle routing problem [35, 36]. 

Reactive Tabu Search 

As a design parameter, the size of the tabu list plays a very important role in 
reaching high-quality solutions. Increasing the size of the tabu list can prevent 
cycles; however it can constrain the search process in a certain region, too. To 
handle this trade-off, various methods are developed in the literature. During the 
search process, the robust tabu approach chooses randomly different tabu list sizes 
from a specified range, and the deterministic tabu approach picks tabu list sizes 
that are previously assigned. A common feature of these methods is that they 
require a fixed range determined before the start of the search process [37]. These 
facts brought Battiti and Tecchiolli [21] to the more sophisticated version of the 
TS, a reactive tabu search in which the size of the tabu list dynamically, or 
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reactively, adapts as the search progresses. They created an analogy between the 
evolution of the search process in combinatorial optimization and the theory of 
dynamic systems. According to the authors, similar to a dynamic system, three 
cases should be avoided in the search process: local minima, limit cycles, and 
chaotic attractors. Local minima are attractors of the system dynamics, and they 
are fixed points until the system is enforced by some phenomena to leave the local 
optimum and continue the search process. Limit cycles, or closed orbits, denote 
the case of visiting solutions previously found in the search process. Even in the 
absence of local minima and limit cycles, the solution space can be narrowed or 
deformed, and the search process can visit only parts of the solution space due to 
the chaotic attractors [38]. Battiti and Tecchiolli [21] used the term “chaotic 
attractor” as an example of a dynamic behavior that could affect the search 
process. In their study, chaotic attractors are identified "by a contraction of the 
areas, so that trajectories starting with different initial conditions will be 
compressed in a limited part of the solution space, and by a sensitive dependence 
upon the initial conditions, so that different trajectories will diverge”. They 
suggested that for an effective and efficient search process, preventing limit cycles 
is not enough, and the chaotic-like attractors should be removed too.  

According to Glover and Laguna [39], avoiding cycles is not the ultimate 
purpose of the search process; another purpose is to continue the exploration of 
new solution regions. To reach these goals, reactive tabu search implements two 
mechanisms: first is adapting the size of tabu list (tabu tenure) throughout the 
search process depending on the repetitions of the solutions. The algorithm stores 
the information related to the solutions visited during the search process to control 
the repetitions and the interval between visits. The mechanism increases the size 
of tabu list when the number of repetitions exceeds a certain threshold, and vice 
versa. The second mechanism is an escape or diversification strategy, to take the 
search process out from its current region randomly if it repeats itself excessively 
[40], or in other words, when there is evidence for chaotic attractors in the search 
space. 

While adapting the size of the tabu list, intensification strategies are also 
employed to deeply search the area that gives good or elite solutions. Reactive 
tabu search algorithm aims to balance the intensification and diversification 
functions to control and run the search process fluently. As in the basic tabu 
search, in addition to the tabu list, the aspiration criteria also help prevent getting 
trapped at a local optimal solution. As a new approach to TS, reactive tabu search 
produced promising results for the problems to which it was applied [41, 42]. 

4.2   Evolutionary Algorithms (EAs) 

The works of J. Mendel on the heredity from parents to offspring, and C. Darwin`s 
theory of evolution presented in his famous book On the Origin of Species in 
around nineteenth century have inspired computer scientists in designing 
evolutionary algorithms in the 1980s. Since then different approaches have 
evolved independently in the evolutionary algorithms area: Genetic algorithms, 
mainly developed by J. H. Holland [43, 44]; evolution strategies, developed by I. 
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Rechenberg [45, 46] and H-P. Schwefel [47]; evolutionary programming by L. 
Fogel [48, 49]; and genetic programming proposed by J. Koza [50]. Each of these 
approaches is inspired by the principles of natural evolution. 

Genetic Algorithms (GA) are generally associated with binary representations; 
however, other types of representations can also be employed in different versions 
of GAs. The GA usually implements a crossover operator to two solutions having a 
“good” fitness values, and a mutation operator to modify the individual solution to 
create diversity. The replacement, or survivor selection, is performed by replacing 
the parents systematically with offspring. The basic crossover operator is based on 
n-point or uniform crossover while the mutation is bit flipping. Probabilities are 
applied to both of the crossover and mutation operators. 

Evolution Strategies (ES) are mostly applied to continuous optimization where 
the problem representations are based on real-valued vectors. ES usually use an 
elitist replacement strategy, and a normally (Gaussian) distributed mutation, while 
crossover is rarely used. An individual is composed of the problem’s decision 
variables as well as some search parameters in order to evolve both the solution 
and the strategy parameters (e.g., mutation step size) at the same time. Their main 
advantage is their efficiency in terms of time complexity [18]. 

Evolutionary programming (EP) mainly uses mutation, but not recombination 
or crossover. Traditional EP algorithms have been developed to evolve finite state 
machines to solve time series prediction problems and more generally to evolve 
learning machines [49]. Contemporary EP algorithms have later been applied to 
solving continuous optimization problems using real-valued representations. They 
use normally distributed mutations and self-adaptation principle of the parameters 
as in ESs. The parent selection operator is deterministic, while the replacement 
operator is probabilistic and is based on a stochastic tournament selection [51]. EP 
is less used than the other approaches of EAs because of its similarity to ES. 

Genetic programming (GP) expands the scope of the generic model of learning 
to the space of programs. Its main distinction from other EAs approaches is that 
the evolving individuals are themselves programs (nonlinear representation based 
on trees) instead of fixed length strings from a limited alphabet of symbols (linear 
representation). GP is a form of program induction that creates programs to solve 
a given task. In GP, the parent selection is based on fitness proportions and the 
survivor selection is a generational replacement. The crossover operator is based 
on subtrees exchange and the mutation is based on random change in the tree. One 
of the main problems in GP is the uncontrolled growth of trees which is called 
bloat. Theory of GP is less developed than in evolution strategies and genetic 
algorithms [52] and it is widely applied in machine learning and data mining tasks 
such as prediction and classification. 

In EAs, the population is usually generated randomly. Every individual in the 
population is an encoded version of a solution that is called “chromosome” while 
the decision variables within a solution (chromosome) are genes. The possible 
values of variables (genes) are the alleles and the position of an element (gene) 
within a chromosome is called locus. An objective function stands for a fitness 
value which shows the ability of an individual or a solution to survive in its 
environment. At each step, individuals are selected to form parents depending on 
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their fitness value; individuals with better fitness are selected with a higher 
probability. The selection mechanism will lead the population to better solutions. 
However, individuals not having “good” fitness are not discarded immediately 
since they may have useful genetic material for future operations. The selection 
process is executed by assigning a strategy, e.g. roulette wheel selection, 
tournament selection, stochastic universal sampling, or rank-based selection. 

The selected individuals are then reproduced using variation operators (e.g., 
crossover, mutation) to generate new offspring. Finally, a replacement mechanism 
is applied to select which individuals (parents and offspring) of the population will 
survive to the new generation. Mutation operators are unary operators acting on a 
single individual representing small changes to selected individuals of the 
population. The probability Pm defines the mutation probability for each element 
(gene) of the representation. In general, small values are recommended for this 
probability (Pm ∈ [0.001, 0.01]). Some strategies initialize the mutation probability 
to 1/k where k is the number of decision variables, meaning that only one variable 
is mutated. The role of crossover operators is to pass down some characteristics of 
the two parents to generate the offspring. Unlike unary operators such as mutation, 
the crossover operator is binary and sometimes n-ary. The crossover probability 
Pc represents the proportion of parents on which a crossover operator will act. The 
common values for crossover probability are typically selected in the interval 
[0.45, 0.95].  

The population size is another important parameter for EAs and usually larger 
population sizes have greater chances of converging to better or optimal solutions. 
While the sampling errors become more important in smaller populations, the time 
complexity of EAs grows linearly with the size of the population. A proper level 
of population size between the quality of the obtained solutions and the search 
time must be determined. In practice, a population size between 20 and 100 is 
usually considered typical. 

In addition to different GA designs developed for problems in the literature 
such as constrained optimization [53], allocation [54], supply chain [55], GA has 
successfully been applied in real world problems including satellite optimization 
[56], robust optimization [57], airfoil design [58], and software testing [59]. Like 
GA, ES has been also used in solving problems such as video tracking system 
optimization [60], computing periodic orbits [61] and vehicle routing problems 
[62]. Different variants of ES were recently introduced in the algorithm arena, e.g. 
multi-criteria of co-ES [63], mixed-integer ES [64]. There is an interesting survey 
to explore the effects of different strategies on organizational performance, such as 
balanced scorecard [65]. A basic introduction to ES can be found in [66]. 

Beside GA and ES, using EP technique also created novel approaches to 
optimization problems including fuzzy clustering [67], pattern classification [68], 
and production planning [69]. Huaxiang and Jing [70] designed an adaptive EP 
based on reinforcement learning theory to learn individual mutation operators. Liu 
[71] presented new discoveries in fast EP. Like other EAs, GP approach has been 
successful in solving optimization problems in many areas including strategy  
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development [72], software reliability [73], flexible process planning [74] and 
robot failure recognition [75]. Researches that produced very recent surveys about 
applications of different GP variants are included in [76-78]. O'Neill et al. 
discussed some of the challenges and open issues in GP despite the successful GP 
application to a number of challenging real-world problem domains [79]. 

4.3   Scatter Search  

The concept of scatter search (SS), first proposed by Glover [80], is a deterministic 
algorithm applied to both combinatorial and continuous optimization problems. SS 
is a population metaheuristic that recombines solutions selected from a reference 
set to build others, and from this point of view, it can be seen as an evolutionary 
algorithm [81]. SS create the reference set by selecting “good” solutions from the 
population obtained in the previous search process. The selected solutions from the 
reference are combined to provide starting solutions to an improvement procedure, 
and the reference set is updated to incorporate both high-quality and diversified 
solutions [18]. The diversity can be measured by taking the minimum Hamming 
distance from a solution to any solution selected for the reference set. The set of 
solutions is evolved by using of recombination of solutions and applying some 
local search algorithms. 

SS is designed by integrating of five methods: 

1. A Diversification Generation Method to generate a set of diverse initial 
solutions in order to diversify the search by selecting high-quality 
solutions.  

2. An Improvement Method to transform a trial solution into one or more 
enhanced trial solutions, in general, by applying a local search procedure. 

3. A Reference Set Update Method to create a reference set from the “best” 
solutions by keeping both diverse and high-quality solutions. 

4. A Subset Generation Method to operate on the reference set, to produce a 
subset of its solutions as a basis for creating combined solutions. This 
method is similar to the selection operator in EAs with the differences 
being, first, SS uses a deterministic operator, whereas in EAs, it is 
generally a stochastic operator; second, the size of the reference set in SS is 
much smaller than the size of the population in EAs [18]. 

5. A Solution Combination Method to transform a given subset of solutions 
produced by the Subset Generation Method into one or more combined 
solutions. The combination method can be seen as the crossover operator in 
EAs where more than two individuals are recombined. 

In recent years, SS has been applied to different optimization problems including 
dynamic optimization [82], clustering [83], multi-objective optimization [84], 
facility location problem [85], vehicle routing problem [86], and scheduling [87, 
88]. SS has also interesting real world applications such as satellite module layout 
design [89], detecting credit card fraud [90], crew rostering in the airline industry 
[91] and water distribution networks [92]. 
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4.4   Path Relinking 

Features used in SS are applied in the Path Relinking (PR) concept, too. PR can be 
accepted as an approach to integrate intensification and diversification strategies as it 
allows exploring paths connecting elite solutions found by scatter search. PR approach 
generates new solutions by exploring trajectories connecting the initiating solution and 
the guiding solution. While following the path from the initiating towards the guiding 
solution the high-quality solutions are created by selecting moves with “good” 
attributes contained in the guiding solution [81]. At each iteration, the best move in 
terms of the objective function and decreasing the distance between the two solutions 
is selected. This is repeated until the distance is equal to 0 at which point the best 
solution found in the trajectory is returned by the algorithm. 

The approach is named Path Relinking because it generates a path between 
solutions linked by a series of moves during a search to incorporate attributes of 
the guiding solution while recording the objective function values [10]. 

For each pair of solutions, different alternatives exist in selecting the starting 
and the target solutions:  

• Forward: The worst of both solutions is used as the starting solution. 
• Backward: The better of both solutions is used as the starting solution. 

Since the starting solution’ neighborhood is more explored than that of the 
target solution, the backward strategy is in general better than the forward 
one. 

• Back and forward relinking: Two paths are constructed in parallel, using 
alternatively both solutions as the starting and the target solutions. 

• Mixed relinking: Two paths are constructed in parallel from both solutions 
but the guiding solution is an intermediate solution at the same distance 
from both solutions. 

Recent PR approaches have been developed to solve the problems such as large-
scale global optimization [93], team orienteering problem [94] and scheduling 
[95]. There are many successful hybrid applications where PR is used to add a 
memory mechanism by integrating it into other algorithms; PR with GRASP [96, 
97]; TS [98], GA [99, 100], and memetic algorithms [101]. Some of these hybrid 
algorithms include continuous optimization problems [102], max-min diversity 
problem [103], generalized quadratic assignment problem [104], and lot sizing 
problem [105]. 

4.5   Swarm Intelligence 

In the field of optimization there are some promising algorithms inspired by the 
behavior of some species such as ants, birds, fish, bees, etc. These types of algorithms 
are called swarm intelligence algorithms. The expression "swarm intelligence" was 
first used by Beni, Hackwood, and Wang [106-108] in the context of cellular robotic 
systems. Swarm intelligence is defined as a field of computer science which is 
focused on the efficient computational methods for solving problems in a way that is 
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inspired by the behavior of real swarms or insect colonies [109, 110]. The main 
characteristics of (artificial) swarm intelligence algorithms are that the particles, or 
species, are simple and nonsophisticated agents; they cooperate by an indirect 
communication instrument; and they move in the decision space of the optimization 
problem [111].  

Indeed, the behavior of real species is complex; they can process a lot of 
sensory inputs, which means a large amount of information. However, the 
complexity of the species is still not sufficient to describe what these social 
colonies can do. This issue of how to connect individual behavior with collective 
performance can be explained by using self-organization (SO) concept, and in 
reality, the activities of social species are self-organized. SO theories originally 
developed in the context of physics and chemistry but have been extended to 
social insects to show that complex collective behavior may emerge from 
interactions among individuals that exhibit simple behavior [112, 113]. Recent 
research shows that SO is a major component of a wide range of collective 
phenomena in social species [114]. The modeling of social species by means of 
SO can help design artificial distributed problem-solving devices that self-
organize to solve problems, or in other words swarm-intelligent systems. SO is 
based on four elements [109]: 

• Positive feedback (amplification) promotes the creation of structures. For 
instance, recruitment to a food source is a positive feedback that relies on 
trail laying and trail following in some species like ants. 

• Negative feedback counterbalances positive feedback and helps stabilize 
the collective pattern; it may take the form of saturation, exhaustion, or 
competition. 

• Amplification of fluctuations (random walks, errors, random task-
switching, etc.). Not only do structures emerge despite randomness, but 
randomness is often crucial since it enables the discovery of new solutions, 
and fluctuations can act as seeds from which structures nucleate and grow. 

• Multiple interactions. A single individual can generate a self-organized 
structure, however, SO generally requires a minimal density of mutually 
tolerant individuals. Moreover, individuals should be able to make use of 
the results of their own activities as well as of others'. 

SO in social insects often requires interactions among insects and such interactions 
can be direct or indirect. Indirect interactions are more subtle however; two 
individuals interact indirectly when one of them modifies the environment and the 
other responds to the new environment at a later time. This type of interaction is an 
example of stigmergy, which was introduced by Grasse [115, 116] and is considered 
the second most important theoretical concept of swarm intelligence after self-
organization. Stigmergy (from the Greek stigma: sting, and ergon: work) does not 
describe how species coordinate their activities, however, it does provide a general 
mechanism that relates individual and colony-level behaviors: individual behavior 
modifies the environment, which in turn modifies the behavior of other individuals. 

The most successful swarm intelligence inspired optimization algorithms are ant 
colony and particle swarm optimization. Besides the wide range of applications of 
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swarm intelligence in the literature, hybrid techniques in which swarm intelligence 
algorithms work with other metaheuristics can also be a promising concept to make 
use of both the intelligence of swarms and the efficiency of metaheuristics. 

Ant Colony Optimization 

Ant colony optimization (ACO) is one of the most successful swarm intelligence 
algorithms. The possibility of “forming of communication by means of modifications 
of the environment” is defined as stigmergy, which is one of the basic concepts for 
the ACO [117].  

The ACO aims to imitate the real ants as multiagent systems to solve 
optimization problems and was first proposed by Dorigo [118]. Even though real 
ants cannot see well, they can find the shortest path between two points. In this 
process they are using a very simple and yet powerful mechanism; a chemical trail 
called pheromone. The ants follow their routes according to the amount of 
pheromone; the larger the amount of the pheromone on a route, the larger the 
probability of being selected by the ants. However the pheromone is a volatile 
substance and it decreases over time. In the beginning of the process, the 
probabilities of selecting the routes by ants are equal, but since the shorter routes 
need less time to travel, they will emerge with higher rates of selection due to higher 
amounts of pheromone. This process, supported by the evaporation mechanism, will 
end up with finding the shortest path. The pheromone trail in essence represents the 
long term memory of the entire system and where information related to the process 
stored [119]. 

ACO is composed of two main steps: construction of solutions and updating the 
pheromone. In the first step solutions are constructed by adding solution components 
to partial solutions according to the probabilistic transition rule in equation (1): 
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where τij is pheromone desirability, ηij is heuristic desirability, α is ratio of 
pheromone desirability (0 < α < 1), and β is ratio of heuristic desirability (0 < β < 
1) for selecting component j after the component i. By using this probabilistic 
transition the construction algorithm takes into account both the amount of 
pheromone and problem-dependent heuristic information.  

In the second step the amount of pheromone is updated in two phases: 
evaporation phase and reinforcement phase. In the evaporation phase the 
pheromone trail is reduced by a fixed ratio q (0 < q ≤ 1) for all components in the 
decision space by applying equation (2). 

τij = (1 – q) τij . (2)

This evaporation process protects all ants from a premature convergence toward 
good solutions and encourages diversifying the search space. 

In the reinforcement phase, the amount of the pheromone is updated according 
to solutions generated by using two main strategies: online and offline updates. In 



Memory and Learning in Metaheuristics 449
 

the case of online updating, the pheromone trail is updated by an ant either at each 
step of the solution construction (step-by-step updating) or after a complete 
solution is generated (delayed updating). The offline updating is more popular 
where the updating process is applied only after all ants generate a complete 
solution. In this approach different strategies can be performed including quality-
dependent, rank-based, elitist solution, best-worst, moving average, and minimum 
pheromone values update [120]. 

The selection of the of ACO parameters plays a critical role in the search 
process. Therefore, a good trade-off between the ratios of the pheromone 
desirability (or intensity), and heuristic desirability (or visibility) must be found to 
balance intensification and diversification. If the ratio of pheromone desirability is 
equal to 0, the ACO algorithm will act like a stochastic greedy algorithm, and if 
the ratio of heuristic desirability is equal to 0, only the pheromone trails will guide 
the search. The number of ants is not a critical parameter and mainly depends on 
the computational capacity [18]. 

Different variants of ACO have been generated to deal with continuous 
optimization [121, 122], mixed integer nonlinear programming [123], neural 
networks [124] and scheduling [125-126]. There are also hybrid versions of ACO 
with fuzzy systems [127, 128], simulated annealing [129], and memetic algorithm 
[130]. Besides travelling salesman problem [131], multidimensional knapsack 
problem [132], and vehicle routing problem [133], there are interesting application 
areas investigated by ACO such as supply chain management [134], project 
management [135], airline crew scheduling [136] and satellite control resource 
scheduling [137]. There is a recent survey that reviews various research and 
implementation of ACO [138]. 

Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic population-based metaheuristic 
inspired by swarm intelligence. PSO simulates the social behavior of natural 
organisms, e.g. bird flocking or fish schooling, in search of food. Among these 
organisms, or the swarm, a dynamic behavior in relatively complex displacements 
can be observed, where the individuals have access to limited information, like 
their closest neighbors’ positions and speed [117]. Each individual uses the local 
information regarding this displacement to decide on its own displacement. In 
other words, a coordinated behavior using local movements emerges without any 
central control.  

In PSO algorithms, each individual particle of a swarm represents a potential 
solution in a multidimensional search space. The particles start searching 
randomly for the optimal solution of a given objective function by moving through 
the search space. The objective function measures the quality or amount of food at 
each place and the particle swarm searches for the place with the best or most food 
[120]. The position of each particle is adjusted according to its velocity (i.e., rate 
of change) and the difference between its current positions, the best position found 
by its neighbors, and the best position it has found so far. As the model is iterated, 
the swarm focuses more and more on an area of the search space containing high-
quality solutions [139]. 



450 A. Arin and G. Rabadi
 

The individual particle is represented by the vector xi, which has its own 
position and velocity. Each particle adjusts its position according to the global 
optimum with respect to two factors: the best position visited by itself (pbesti) 
denoted by the vector pi, and the best position visited by the whole swarm (gbest) 
denoted by the vector gi. The vector (pi - xi) shows the difference between the 
current position of the particle i and the best position of its neighborhood. The 
neighborhood, which must be defined for each particle, describes the social 
influence between the particles in the swarm. To define a neighborhood, two 
methods are traditionally used: the global best method and the local best method. 
In the global best method, the neighborhood is defined as the whole population of 
particles, whereas in the local best method, the neighborhood of a particle is the 
set of directly connected particles, in which case, the neighborhood may be empty 
and the particles isolated [18]. A particle is composed of three vectors: the x-
vector for its current position, the p-vector for the location of the best solution 
found so far by the particle and the v-vector for the direction of the particle to 
travel in the search space. In each iteration, the movement of the particle can be 
given by equation (3):  

xi(t) = xi(t−1) + vi(t) . (3)

Updating of the particles’ positions is dependent on the direction of their 
movement, their speed, the best preceding position pi and the best position pg 
among the neighbors as shown in the equation (4): 

vi(t) = vi(t − 1) + ρ1α1 × (pi − xi(t − 1)) + ρ2 α2 × (pg − xi(t − 1)) . (4)

where ρ1 and ρ2 are random variables in the range [0, 1], and the α1 and α2 represent 
the learning factors. The parameter α1 is the cognitive learning factor that decides 
the level that a particle has toward its own success, and the parameter α2 is the 
social learning factor that reflects the level of attraction that a particle has toward 
the success of its neighbors. Socio-psychology suggests that the movements of the 
individuals are influenced by their last behavior and that of their neighbors who are 
closely placed in the social network and not necessarily in space.  

To control the balance between intensification and diversification of the search 
space, a weight w, called inertia, is generally added to the velocity update 
procedure as in equation (5): 

vi(t) = w × vi(t − 1) + ρ1 × (pi − xi(t − 1)) + ρ2 × (pg − xi(t − 1)) . (5)

A large inertia weight encourages diversify the search, and a smaller inertia weight 
encourages intensify the search in the current region. According to new velocity 
each particle updates its position in the solution space was given in equation (3). 

After these updates each particle will update the best local solution, pi = xi             
if (xi) < pbesti, and the best global solution of the swarm, gi = xi if (xi) < gbest. As 
such, a particle changes its position after each iteration according to its own and to 
its neighbors’ positions. 

Unlike ACO algorithms, PSO has been successfully designed originally for 
continuous optimization problems; however, by employing velocity models, PSO 
can be applied to discrete optimization problems also. Velocity models for discrete 
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optimization problems are inspired from mutation and crossover operators in EAs. 
The velocity models may be real valued, stochastic, or based on a list of moves. In 
stochastic velocity models for binary encodings, the velocity is associated with the 
probability for each binary dimension to take value of 1.  

PSO creates promising solutions to the problems in areas such as scheduling 
[140, 141], neural networks [142], nonlinear optimization [143], and supply chains 
[144].  In the literature there are also studies in multiobjective PSO [145, 146] and 
discrete PSO [147, 148]. PSO has widespread real life applications in 
multidisciplinary optimization [149], unmanned aerial vehicle (UAV) attitude 
controller [150], task allocation for on-orbit servicing spacecrafts [151], reliability 
[152], and face recognition [153]. Kameyama [154] reviews the progress of PSO 
research so far, and the recent achievements for application to large-scale 
optimization problems. 

4.6   Estimation of Distribution Algorithms 

Estimation of distribution algorithms (EDA) are recent optimization techniques 
that belong to the class of the population-based metaheuristics. While creating 
new populations, EDA implements a probabilistic learning model that is used as 
memory. EDA is an outgrowth of genetic algorithms where statistical information 
is obtained from the population to form a new population and the Darwinian 
operators are replaced by probability distributions. EDA have been specifically 
designed for black box optimization (BBO) problems in which objective functions 
are not given in a closed analytical form [155]. In a BBO, the structure of an 
optimization problem is hidden from the optimization process and the only 
information that can be exploited is a quality measure that is assigned to candidate 
solutions. 

The idea behind EDA is transforming the optimization into a search over 
probability distributions. From the population, EDA estimates the probability 
distribution for each decision variable and with the help of this distribution it 
generates new solutions, which then replace the old population according to given 
rules. This process iterates until termination criteria are met.  

The main step in EDA is estimating the probability distribution P(x). If the 
optimization problem is represented by a bit vector, the distribution is represented 
by a single vector of n probability elements P = (p1, p2, ..., pn). Each element of 
this probability vector stands for the probability of being included in the solution, 
i.e. 1 if selected, 0 otherwise with probability of 1 - pn. 

Since the interactions between the decision variables are important in many 
optimization problems, EDA takes into account the level of variable interactions 
in the probabilistic model and can be classified as univariate, bivariate, and 
multivariate EDAs. In the class of univariate EDAs, no interactions between the 
decision variables are considered in the generation of the probabilistic model. In 
the bivariate EDAs the interactions between two decision variables and for the 
multivariate EDAs the interactions among more than two decision variables define 
the probabilistic model. If the interactions between the variables in the 
optimization problem are not significant, univariate and bivariate EDAs will give 
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better results; however if higher order interactions between the variables emerge, 
multivariate EDAs should be used to improve the solutions. 

EDAs also differ by the probabilistic models and their construction methods. 
One of the most known EDAs is Population-Based Incremental Learning (PBIL) 
which is the first EDA strategy applied to solve optimization problems [156]. In 
PBIL, after generating new solutions, the best solution or the set of best solutions, 
is selected to create the probability distribution of best solutions, Pbest = (p1

best, 
p2

best, ..., pn
best), which will be used to update the probability distribution of 

solutions, P = (p1, p2, ..., pn), by using the rule in equation (6): 

pi = (1 − α) pi + α pi
best . (6)

where α is the learning factor. A smaller learning factor implies a diversifing 
search process and a higher learning factor means an intensifing search process. 
According to Sa´ez [157], the mutation operator plays also an important role 
during the search process to guarantee convergence, avoiding local optima, and 
maintaining the diversity through the iterations. The mutation operator in PBIL 
algorithms can be applied at two levels: solution vector or probability matrix to 
maintain genetic diversity. Besides the genetic algorithm operators, local search 
algorithms can also be implemented in EDA to enhance the solution quality [158].  

In the literature there are different EDA designs developed for continuous 
optimization [159] and dynamic optimization problems [160]. Besides 
multiobjective EDA applications [161, 162], EDA created high quality solutions 
when hybridized with algorithms such as PSO [163], memetic algorithms [164], 
neural networks [165] and variable neighborhood search [166]. Scheduling [167], 
robust airfoil optimization [168], and real-time video tracking [169] are among the 
very recent applications of EDA. Hauschild and Pelikan [170] presented in their 
survey different types of EDAs, their advantages over other metaheuristics and 
some efficiency enhancement techniques applied to EDAs. An extensive 
information about EDA can be found in [171]. 

5   Contribution of Memory and Learning into the Meta-RaPS 
Metaheuristic 

Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a fairly new 
metaheuristic that can produce high quality solutions for discrete optimization 
problems, such as the Resource Constrained Project Scheduling  Problem [172], 
the Vehicle Routing Problem [173], the Traveling Salesman Problem [174], the 0–
1 Multidimensional Knapsack Problem [175], the Parallel Machine Scheduling 
Problem with Setup Times [176], Early/Tardy Single Machine Scheduling 
Problem [177], Parallel Multiple-Area Spatial Scheduling Problem with Release 
Times [178] and Aerial Refueling Scheduling Problem (ARSP) [179]. 

Meta-RaPS can currently be classified as a memoryless metaheuristic and it 
should benefit from existing memory and learning mechanisms to increase its 
effectiveness. Thus, we propose incorporating memory and learning mechanisms 
into Meta-RaPS to study whether such techniques can help it become more 



Memory and Learning in Metaheuristics 453
 

“intelligent”. Specifically, the EDA approach will be incorporated into Meta-RaPS 
as a memory and learning mechanism and the 0-1 multidimensional knapsack 
problem will be used as a testbed to evaluate the effectiveness of the proposed 
algorithm. 

5.1   Meta-RaPS  

Meta-RaPS is based on the “Computer Method of Sequencing Operations for 
Assembly Lines” (COMSOAL) introduced by Arcus [180]. COMSOAL is an iterative 
computer heuristic created for balancing large complex assembly lines. Meta-RaPS 
first generates a feasible solution by including randomness in the construction phase 
and improves the feasible solution in the improvement phase. Indeed, Meta-RaPS is a 
general form of GRASP (greedy randomized adaptive search procedure) which is a 
greedy metaheuristic that consists of two phases: construction and local search. The 
feasible solutions constructed in the first phase are improved in the second phase of 
local search. Although GRASP generates solutions by introducing randomness, it does 
not implement any probabilistic priority to the best solutions [181].  

Moraga et al. [182] defines Meta-RaPS as “generic, high level search procedures 
that introduce randomness to a construction heuristic as a device to avoid getting 
trapped at a local optimal solution”. Meta-RaPS, which can be classified as M|S|1, 
combines the mechanisms of priority rules, randomness, and sampling. Like 
GRASP, Meta-RAPS is a two-phase metaheuristic: a constructive phase to create 
feasible solutions and an improvement phase to improve them. In the constructive 
phase, a solution is built by repeatedly adding feasible components or activities to 
the current solution in an order that is based on their priority rules until the stopping 
criterion is satisfied. Generally, solutions obtained by implementing only 
constructive algorithms can reach mostly local optima, which can be avoided in 
Meta-RaPS by employing randomness in the constructive phase. 

Meta-RaPS uses four parameters: number of iterations (I), the priority percentage 
(p%), the restriction percentage (r%), and the improvement percentage (i%). Meta-
RaPS does not select the component or activity with the best priority value in every 
iteration, nor does it select the one with the lowest incremental cost as in. Instead, the 
algorithm may randomly accept an activity or component with a good priority value, 
but not necessarily the best one. The parameter p% is used to decide the percentage of 
time a component or activity with the best priority value will be added to the current 
partial solution, and 100% − p% of time it will be randomly selected from a candidate 
list (CL) containing “good” components or activities. The CL is created by including 
items whose priority values are within r% of the best priority value. The CL is 
therefore created using equations (7) and (8) where Pb is the component or activity 
with the best priority value and F is the set of feasible components or activities [183]: 

CL = { i : i ∈ F and Pi ≤ Pb · (1 +  r%) } for minimization . 

CL = { i : i ∈ F and Pi ≥ Pb · (1 -  r%) } for maximization . 

(7)

  (8)

In the construction phase, the level of the randomness is adjusted by controlling 
the values of the parameters p% and r% where smaller values of p% and larger 
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values of r% will randomize the search more. The construction phase of Meta-
RaPS is completed when a feasible solution is produced. 

The improvement phase is performed if the feasible solutions generated in the 
construction phase are within i% of the best unimproved solution value from the 
preceding iterations. For the feasible solution to be improved in this phase, it must 
be determined whether its objective function value Z satisfies the requirements in 
(9) and (10) where Z* is the solution with the best objective function value 
obtained in the construction phase: 

Z ≤ Z* · (1 + i%) } for minimization . 

Z ≤ Z* · (1 - i%) } for maximization . 

(9)

  (10)

The quality of the solution created by Meta-RaPS is heavily dependent to its 
parameters, especially the number of iterations and the improvement percentage. 
However, increasing the values of these parameters will also increase the need for 
more computational time. DePuy et al. [184]  emphasized that the advantages of the 
Meta-RaPS over other metaheuristics are that run times for Meta-RaPS is not 
significantly affected by the size of the problem, it is easy to understand and 
implement, and can generate a feasible solution at every iteration. 

5.2   The 0-1 Multidimensional Knapsack Problem 

The 0-1 multidimensional knapsack problem (MKP) is the generalized form of the 
classical knapsack problem (KP). In KP there is a knapsack with an upper weight 
limit b, a set of n items with different profits cj and weights aj per item j. The 
problem is to select the items from the set such that the total profit of the selected 
items is maximized without exceeding the upper weight limit of the knapsack. If 
m knapsack exist, the problem becomes the MKP in which each knapsack has a 
different upper weight limit bi, and an item j has a different weight aij for each 
knapsack i. The objective is to find a set of items with maximal profit such that the 
capacity of each knapsack is not exceeded [185]. The MKP can be formulated as 
in the equations (11 - 13): 

Maximize  
1

n

j j
j

c x
=
∑ . (11)

Subject to 
1

n

ij j i
j

a x b
=

≤∑ ,  i = 1, …, m; j = 1, …, n . (12)

xj ∈ {0,1},  j = 1, …, n (13)

where x is a vector of binary variables such that xj = 1 if item j is selected, and xj = 
0 otherwise. The MKP can be accepted as a special case of the general linear 0-1 
integer programming problem with nonnegative coefficients. In the literature it is 
assumed that profits, weights and capacities are positive integers. However they 
can be easily extended to the case of real values [186].  
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The MKP is a resource allocation problem, which can be used to model many 

problems in the literature such as the capital budgeting, project selection, cutting 
stock and many loading problems.  

The MKP is an NP-hard problem whose difficulty increases with more constraints. 
To solve the MKP, both exact and approximation algorithms have been used. The 
development of exact algorithms began at the same time for both the KP and MKP 
[187], and included dynamic programming, branch-and-bound network approach, 
hybridization of dynamic programming and branch-and-bound, special enumeration 
technique and reduction schemes. Even when recent advances of methods such as 
branch-and-cut have made the solution of middle size MKP instances possible, 
increasing the number of constraints makes approximation algorithms necessary.  

The MKP is often used as a platform to evaluate new metaheuristics [188]. 
Battiti and Tecchiolli [189] solved the MKP instances by employing the Reactive 
Tabu Search with satisfactory performances. Moraga et al. [175] implemented 
Meta-RaPS and achieved good results when compared their algorithm to both the 
optimal solution and other 0-1 MKP solution techniques such as simulated 
annealing, tabu search, genetic algorithms, and 0-1 MKP heuristics. Dynamic 
programming based approach [190], exact methods [191], and heuristic methods 
[192, 193] are among the recent approaches to 0-1 MKP presented in the 
literature. Wilbaut and Hanafi [194] proposed several convergent algorithms to 
solve a series of small sub-problems of 0-1 MKP generated by relaxations. There 
are extensive surveys produced on the 0-1 MKP with interesting reviews and 
effective heuristics with their applications in [195, 196]. 

5.3   A Representative Example of 0-1 Multidimensional Knapsack 
Problem 

Suppose there are three knapsacks with the upper weight limits of 82, 65, and 51, 
respectively. A decision maker has to select a set of items from 8 items with 
different profits and different weights such that the total profit is maximized 
without exceeding the upper weight limit of each knapsack. Data for the example 
MKP problem is summarized in the Table 3. 

Table 3 The 0-1 multidimensional knapsack problem example 

Constraints 
Item Profit 1 2 3 

1  9 19 20  3 
2  5 14 13  2 
3 19 13  6  5 
4 10   9 10 11 
5 17 15  4 14 
6 11 27 18 23 
7 16 25 27  6 
8   6 18  5 13 
Upper Weight 

Limits: 82 65 51 
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The 0-1 MKP can be coded as a general linear 0-1 integer programming 
problem with nonnegative coefficients, as in the equations (14 - 18). 

Maximize    9x1 +   5x2 + 19x3 + 10x4 + 17x5 + 11x6 + 16x7 +   6x8       (14) 

Subject to 19x1 + 14x2 + 13x3 +   9x4 + 15x5 + 27x6 + 25x7 + 18x8 ≤ 82     (15) 

  20x1 + 13x2 +   6x3 + 10x4 +   4x5 + 18x6 + 27x7 +   5x8 ≤ 65     (16) 

  3x1 +   2x2 +   5x3 + 11x4 + 14x5 + 23x6 +   6x7 + 13x8 ≤ 51    (17) 

      xi ∈ {0,1}, i = 1, …, 8                                                            (18) 

When this example is solved optimally, items 3, 4, 5, 7 and 8 will be selected with 
an optimum profit of 68.  

5.4   Meta-RaPS Solution for 0-1 Multidimensional Knapsack 
Problem 

In this section, the 0-1 MSP example will be solved first by using Meta-RaPS without 
a memory mechanism incorporated. Meta-RaPS is a two-phase metaheuristic: a 
constructive phase to create feasible solutions and an improvement phase to improve 
them. In solving the MKP example with Meta-RaPS, the Dynamic Greedy Rule 
(DGR) will be used as a priority rule in determining the priorities or order of the items 
between them [175]. In this rule, a penalty factor for each item is calculated according 
to the equation (19): 

m
ij

i
j=1 j j

a
w =

b -CW∑ , for i = 1, …, n. (19)

where aij is the coefficients of item i in constraint j, bj is the amount of resource for 
each constraint j, and CWj is the amount of resource j consumed by the items so 
far; i.e., in the partial solutions. To determine the priority of an item i, its profit ci 
is divided by its penalty factor, i.e. ci/wi. The item with maximum ci/wi has the 
highest priority in the solution process. Because the penalty factors change after 
each iteration in the construction process, the priorities of the items are updated 
after each item is added to the partial solution. For example, in the beginning of 
the process, the priority of item 3 is obtained after the calculations given in 
equations (20-21): 

3
3 j 31 32 33

3
j 1 j j 1 2 3

a a a a 13 6 5
w 0.35.

b CW b 0 b 0 b 0 82 0 65 0 51 0=
= = + + = + + =

− − − − − − −∑  (20)

3
3

3

c 19
priority 54.5.

w 0.34
= = =

 
(21)
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Since in the construction phase of the Meta-RaPS the items are added to the partial 
solutions, and their order is not important, the initial priority matrix in Table 4 is 
created by adding the priority of item i to the priority of item j if item i is selected 
after j was included in the (partial) solution, i.e. priorityij = priorityi + priorityj, and 
priorityij = priorityji. The parameters used in the Meta-RaPS are as given in Table 5. 

Table 4 The initial priority matrix 

Item 1 2 3 4 5 6 7 8 

1 - 27.2 69.5 35.9 47.8 25.4 34.1 25.9 
2 27.2 - 66.7 33.1 45.0 22.6 31.3 23.1 
3 69.5 66.7 - 75.3 87.2 64.9 73.6 65.3 
4 35.9 33.1 75.3 - 53.6 31.3 40.0 31.7 
5 47.8 45.0 87.2 53.6 - 43.2 51.9 43.6 
6 25.4 22.6 64.9 31.3 43.2 - 29.5 21.3 
7 34.1 31.3 73.6 40.0 51.9 29.5 - 30.0 
8 25.9 23.1 65.3 31.7 43.6 21.3 30.0 - 

Table 5 The Meta-RaPS parameters 

Parameter Value 

Priority percentage (p) 0.6 
Restriction percentage (r) 0.2 
Improvement percentage (i) 0.7 
Number of iterations (I) 10 

Meta-RaPS does not select every time the item with the best priority value. The 
algorithm may accept one with good priority value, not the best, based on a 
randomized approach. The priority percentage (p%) is employed to decide the 
percentage of time the item with the best priority value will be added to the 
current partial solution, and (1-p)% of the time an item with the good priority 
value is randomly selected from a candidate list (CL) which contains items with 
“good” priorities. The CL is created for maximization problems by including the 
ones whose priority values are higher than the lower limit found by equation (22).  

Lower Limit = Maximum Priority · (r%) . (22) 

Checking the feasibility of the (partial) solution in every step of every iteration is 
very important. That is, the items with the highest priorities and those in the CL 
must ensure that the (partial) solution are feasible (within the limits of the 
constraints) if added to the (partial) solution. 

Meta-RaPS starts by selecting an item randomly as the first item in the partial 
solution. Because the selected item consumes some of the resources, the priorities 
in the priority matrix should be updated after each item is added to the partial 
solution. If, for example, item 5 is selected in the beginning, the updated priorities 
would be as in Table 7.a. Maximum and minimum priorities of row 5 in Table 6.a. 
are 69.9 and 33.8, respectively. If the random number created is smaller than or 
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equal to p%, the item with maximum priority is chosen; otherwise, another item is 
selected randomly from the CL. In the 1st step of iteration 1, because the random 
number happened to be 0.76 which is greater than p = 0.60, an item from the CL is 
accepted randomly which is for now item 7 as shown in Table 6.b.  

Table 6.a The updated priorities after selecting item 5 

Item 1 2 3 4 5 6 7 8 

1 - 23.5 57.4 29.8 38.5 21.3 29.4 21.5 
2 23.5 - 54.9 27.3 36.0 18.8 26.9 19.0 
3 57.4 54.9 - 61.2 69.9 52.8 60.8 53.0 
4 29.8 27.3 61.2 - 42.2 25.1 33.2 25.3 
5 38.5 36.0 69.9 42.2 - 33.8 41.8 34.0 
6 21.3 18.8 52.8 25.1 33.8 - 24.7 16.9 
7 29.4 26.9 60.8 33.2 41.8 24.7 - 24.9 
8 21.5 19.0 53.0 25.3 34.0 16.9 24.9 - 

Table 6.b The report for the 1st step in iteration 1 

Item 
Max 

Priority 
Min 

Priority 
Lower 
Limit 

Max 
Item 

Candidate 
List 

Random 
Number p Decision Profit 

5 69.9 33.8 41.0 3 4, 7 0.76 > 0.60 Select 7 17 

After item 7 is added to the partial solution, the priority matrix is updated, and 
the column and row of item 5 are deleted. This step is completed by using the 
updated priority matrix (Table 7.a. and b.). 

Table 7.a The updated priorities after selecting item 7 

Item 1 2 3 4 5 6 7 8 

1 - 14.3 37.3 19.5   13.7 18.0 13.9 
2 14.3 - 35.8 18.0   12.2 16.5 12.4 
3 37.3 35.8 - 40.9   35.1 39.5 35.4 
4 19.5 18.0 40.9 -   17.3 21.7 17.6 
5                 
6 13.7 12.2 35.1 17.3   - 15.9 11.8 
7 18.0 16.5 39.5 21.7   15.9 - 16.1 
8 13.9 12.4 35.4 17.6   11.8 16.1 - 

Table 7.b Report for the 2nd step in iteration 1 

Item 
Max 

Priority 
Min 

Priority 
Lower 
Limit 

Max 
Item 

Candidate 
List 

Random 
Number p Decision Profit 

5 69.9 33.8 41.0 3 4, 7 0.76 > 0.60 Select 7 17 

7 39.5 15.9 20.6 3 4 0.28 ≤ 0.60 Select 3 16 
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This process is followed until there are no items left without affecting the 
feasibility of the partial solution. After adding item 3 to the partial solution, it can 
be seen from the report in Table 8 that item 4 has the highest priority, and there 
are no items in the CL. However, accepting item 4 makes the partial solution 
infeasible, and therefore cannot be selected. Because the other items (2, 6, 8) give 
the same result, the first iteration of the algorithm stops. The constructed solution 
in the first iteration is (5, 7, 3, 1) and the total profit is 61. The construction phase 
of Meta-RaPS continues in this fashion until the number of iterations or any other 
stopping criterion is met. 

Table 8 Report for the construction phase in iteration 1 of Meta-RaPS 

Item 
Max 

Priority 
Min 

Priority 
Lower 
Limit 

Max 
Item 

Candidate 
List 

Random 
Number p Decision Profit 

5 69.9 33.8 41.0 3 4, 7 0.76 
> 

0.60 
Select 7 17 

7 39.5 15.9 20.6 3 4 0.28 ≤ 0.60 Select 3 16 

3 31.4 26.7 27.6 4 1 0.83 
> 

0.60 
Select 1 19 

1 5.79 3.59 5.13 4 - - - Stop 9 

       Total Profit : 61 

The improvement phase is performed if the feasible solutions generated in the 
construction phase are within i% of the best unimproved solution value from the 
preceding iterations. To decide whether to perform the improvement phase after 
the construction phase for maximization problems or not, the value of Δ in 
equation (23) is calculated: 

Δ = WCS + (BCS – WCS) · (i%) . (23)

where WCS and BCS are the Worst Constructed Solution and Best Constructed 
Solution, respectively. If the current solution (CS) is smaller than or equal to the 
Δ-value, the improvement phase will be executed. At the end of the construction 
phase for iteration 4, the data collected in this process is summarized in the Table 
9. According to Table 8 an improvement phase is required for iterations 2 and 3.  

Table 9 Decision phase for improvement of constructed solutions in iteration 1 of Meta-
RaPS 

Iteration 
Constructed 

Solutions 
BCS WCS CS Δ CS vs. Δ Decision 

1 61       

2 60 61 60 60 60.7 CS ≤ Δ Improve 

3 56 61 56 56 59.5 CS ≤ Δ Improve 

4 61 61 56 61 59.5 CS > Δ Not Improve 

 



460 A. Arin and G. Rabadi
 

In the improvement phase, two different algorithms will be employed: the 2-opt 
and the insertion algorithms. In the 2-opt algorithm, an item in the solution is 
replaced in a systematic way with another item that is not in the solution, while in 
the insertion algorithm, items that are not in the solution are inserted to the 
solution. In both algorithms the solutions must remain feasible. Table 10 
summarizes the solution report of the 0-1 MKP example by Meta-RaPS for which 
it could find the optimum value at the 4th iteration. 

Table 10 Meta-RaPS solution report for the 0-1 MKP example 

Iteration Construction Phase Improvement Phase 

1 61 - 
2 60 67 
3 56 61 
4 61   68* 

5.5   Meta-RaPS EDA Solution for the 0-1 Multidimensional 
Knapsack Problem 

An Estimation of Distribution Algorithm (EDA) implements a probabilistic 
learning model as a memory mechanism where it estimates the probability 
distribution for each decision variable to generate new solutions which replace the 
old ones according to some rules. This process iterates until termination criteria 
are met.  

To be able to estimate the distribution of the solutions for Meta-RAPS EDA 
algorithm, a set of five feasible solutions is generated randomly in Table 11, and 
the probability of an item being in this set, P’(i), is calculated as in the equation 
(24), e.g., if item 1 is found four times in five solutions then P’(1) = 4 / 5 = 0.8. 

P’(item i) = #item i in solutions

#solutions in memory set
  (24) 

Table 11 The random solution set and related information 

Item 1 2 3 4 5 6 7 8 f(x) 
f(x) 

Ratio 
S1 0 0 1 1 0 1 1 0 56 0.21 
S2 1 1 1 1 1 0 0 0 60 0.23 
S3 1 1 1 1 0 0 0 1 49 0.19 
S4 1 1 0 1 1 0 0 1 47 0.18 
S5 1 1 0 0 1 0 1 0 47 0.18 

P’(i) 0.8 0.8 0.6 0.8 0.6 0.2 0.4 0.4 ∑ 259 1.00 
P(i) 0.156 0.156 0.127 0.164 0.119 0.043 0.080 0.074   
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To include the effect of their objective function values into the process, the 
ratio of the objective function value to the total objective function value of 
solutions in the set is calculated for each solution. For example, the objective 
function value of solution 1, coded as S1 in the first row, is 56 and equal to 21% 
of the total objective function value for all solutions in the set which is 259. The 
contribution of each item can be found by taking the mean of ratios of the 
objective function values for the solutions where the item is selected. Item 1 is 
found in solutions 2, 3, 4 and 5, and their ratios are 0.23, 0.19, 0.18 and 0.18, 
respectively. The contribution of item 1 is the mean of these ratios which is 0.195. 
If this contribution is multiplied by P’(i) the probability of being selected for item 
1, P(i), is obtained as P(1) = 0.8 · 0.195 = 0.156. Next, the conditional probability 
P(item i | item j) for each item is computed, which is the probability of selecting 
item i given that item j has been already selected in the solution set. The 
conditional probability is found by using equation (25). 

P(item i | item j) = P(item i  item j)

P(item j)

∩ . (25) 

For example, assuming item 1 is already selected, the probability of selecting item 
3 as the next item for the partial solution can be calculated as in (26): 

( ) # times both item 3 and item 1 selected (in S2 and S3) 2
P item 3 |  item 1 0.5

# times item 1 selected (in S2, S3, S4, S5) 4
= = =  (26)

After obtaining the conditional probabilities for all pairs of items, the conditional 
probability matrix in Table 12 is formed. 

Table 12 The conditional probability matrix 

Item 1 2 3 4 5 6 7 8 

1 - 1.00 0.50 0.75 0.75 0.00 0.25 0.50 
2 1.00 - 0.50 0.75 0.75 0.00 0.25 0.50 
3 0.67 0.67 - 1.00 0.33 0.33 0.33 0.33 
4 0.75 0.75 1.00 - 0.50 0.25 0.25 0.50 
5 1.00 1.00 0.33 0.67 - 0.00 0.33 0.33 
6 0.00 0.00 1.00 1.00 0.00 - 1.00 0.00 
7 0.50 0.50 0.50 0.50 0.50 0.50 - 0.00 
8 1.00 1.00 0.50 1.00 0.50 0.00 0.00 - 

To transform these two types of probabilities into an estimation of distribution 
for items in solutions, the probability of selecting item i given that item j has been 
already selected is multiplied by the probability of selecting item i, i.e. P(item i) · 
P(item i | item j).  
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Table 13 The probabilistic priority matrix 

Item 1 2 3 4 5 6 7 8 

1 - 0.157 0.064 0.123 0.089 0.000 0.020 0.037 
2 0.157 - 0.064 0.123 0.089 0.000 0.020 0.037 
3 0.105 0.105 - 0.164 0.039 0.014 0.026 0.024 
4 0.118 0.118 0.127 - 0.059 0.011 0.020 0.037 
5 0.157 0.157 0.042 0.110 - 0.000 0.026 0.024 
6 0.000 0.000 0.127 0.164 0.000 - 0.080 0.000 
7 0.078 0.078 0.064 0.082 0.059 0.022 - 0.000 
8 0.157 0.157 0.064 0.164 0.059 0.000 0.000 - 

The probabilities in Table 13 constitute the probabilistic priority matrix that 
serves as the priority matrix in Met-RaPS. For example, to find 0.064 in Table 13, 
that is the information within the estimation of distribution for item 3 after item 1 
is selected, the probability of selecting item 3 given that item 1 has been selected 
(= 0.50) is multiplied by the probability of selecting item 3 (= 0.127). Progressing 
in the same fashion, at the end of the construction phase in iteration 1, the solution 
(5, 3, 4, 8, 1) with the total profit of 61 is obtained. The detailed report for the last 
step in iteration 1 is in Table 14. 

Table 14 Report for the construction phase in iteration 1 of Meta-RaPS EDA 

Item 
Max 

Priority 
Min 

Priority 
Lower 
Limit 

Max 
Item 

Candidate 
List 

Random 
Number p Decision Profit 

5 0.157 0.000 0.031 1,2 3 0.76 > 0.60 Select 3 17 

3 0.164 0.014 0.044 4 1,2 0.28 ≤ 0.60 Select 4 19 

4 0.118 0.011 0.032 1,2 8 0.83 > 0.60 Select 8 10 

8 0.157 0.000 0.031 1,2 - 0.58 ≤ 0.60 Select 1 6 

1 All are NF 9 

       Total Profit : 61 

As in Meta-RaPS, the current solutions are improved whenever the current 
solution (CS) is smaller than or equal to the Δ-value calculated using equation (23) 
as shown in Table 15. And Table 16 summarizes the solution report at the end of 4 
iterations of Meta-RaPS EDA algorithm, which could find the optimum value at 
the 2nd and 4th iterations for the MKP example. 

Table 15 Decision phase for improvement of constructed solutions in iteration 1 of Meta-
RaPS EDA 

Iteration 
Constructed 

Solutions 
BCS WCS CS Δ CS vs. Δ Decision 

1 61       

2 56 61 56 56 59.5 CS ≤ Δ Improve 

3 56 61 56 56 59.5 CS ≤ Δ Improve 

4 56 61 56 56 59.5 CS ≤ Δ Improve 
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Table 16 Meta-RaPS EDA solution report of the 0-1 MKP example 

Iteration Construction Phase Improvement Phase 

1 61 - 
2 56   68* 
3 56 58 
4 56   68* 

After the improvement phase at the end of each iteration of algorithm, the Meta-
RaPS EDA memory matrix is updated by replacing the solution found in the current 
iteration with the solution in the memory matrix according to some criteria, e.g. 
objective function value or diversity. The memory update process can be also 
accomplished by replacing the new solution with any solution selected randomly.  

5.6   Comparison of Meta-RaPS and Meta-RaPS EDA 

Because of the memoryless nature of Meta-RaPS, it begins every iteration from 
the same point, and has no information about the search history. However, in the 
case of Meta-RaPS EDA, the probabilistic priority matrix serves as a memory 
which is updated at every iteration, and converges to its optimum values as 
iterations proceed. If the items in the probabilistic priority matrix are tracked, it 
can be easily observed from Fig. 1 and 2 that the means of the probabilistic 
priorities of optimal items are increasing while other items’ means of the 
probabilistic priorities are decreasing. Because of the probabilistic nature of Meta-
RaPS EDA algorithm the trend for convergence and accuracy of the probabilistic 
priority matrix can be expected to increase with the size of the instances. 

 

Fig. 1 The trend of probabilistic priorities of items selected in optimal solution 
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Fig. 2 The trend of probabilistic priorities of items not selected in optimal solution 

This small example presents the role of memory in improving the search in Meta-
RaPS. To further evaluate the performance, Meta-RaPS EDA will be applied to 0-1 
MKP instances that exist in the literature, and the performances of both algorithms will 
be compared in terms of solution quality, or deviation percentage. The deviations 
between solutions s (solution found in the current method) and s* (optimum solution 
or best solution found) will be calculated using the following equation (27): 

( *) - ( )
100.

( *)

f s f s
x

f s
 (27) 

55 small and medium 0-1 MKP test instances and 30 large ones available from the 
OR-Library will be used to evaluate the Meta-RaPS algorithms [197]. Comparison 
of the solutions for small/medium size and large 0-1 MKP test instances with 
Meta-RaPS and Meta-RaPS EDA is summarized in Table 17. Meta-RaPS EDA 
algorithm could produce quiet promising results compared to Meta-RaPS, 
confirming the previous result of representative 0-1 MKP example. 

Table 17 Comparison of solutions by Meta-RaPS and Meta-RaPS EDA 

Solution Method 
Average Deviation% 

Small/Medium Large 
Meta-RaPS 0.003 0.600 
Meta-RaPS EDA 0.001 0.022 

6   Conclusion 

In our constantly changing environment, we always adapt ourselves to different 
situations that we encounter in our life. Instead of “hardwiring” [198] into us all 
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types of behavior, we learn the best strategies in certain cases and store them in 
our brain to call when similar situations arise again. 

Learning, according to David Fogel [199], is an intelligent process in which the 
basic unit of mutability is the idea. “Good” adaptive ideas are maintained, much as 
good genes increase in a population, while poor ideas are forgotten. In insect 
societies this only requires the evaporation of pheromone trails; in humans it 
requires time for actual forgetting [110]. In similar manner, memory and learning 
mechanisms in metaheuristics can learn and remember “good” ideas related to the 
search process to make it possible to create high quality solutions for optimization 
problems by utilizing this information. 

Artificial intelligence emerges in metaheuristics via memory and learning of 
algorithms. Intelligent metaheuristics that can learn and memorize, maintain a 
single candidate solution or a population of solutions that provides the information 
acquired by the process, and the basis for making future decisions. The use of 
prior knowledge created by the adapted solutions can sometimes be interesting, 
innovative, and even competitive with human expertise [200]. 

Combinatorial problems, such as scheduling, are not well solved by traditional 
computer science and exact optimization techniques, and in such cases, 
metaheuristics and techniques provided by artificial intelligence can provide 
excellent solutions. With the ability of learning and memorizing the search 
history, an intelligent algorithm can be used to find good initial starting point(s), 
and then a local method is employed to search for better solution from the initial 
starting point(s) [201]. 

Since Alan Turing created the Turing machine in 1950, and John McCarthy 
named this approach as Artificial Intelligence in 1956 at a conference in 
Dartmouth College, in New Hampshire, the aim of Artificial Intelligence is no 
longer to create a robot as intelligent as a human, but rather to have algorithms and 
metaheuristics learn and memorize in a similar way like the human brain while 
solving problems. There are convincing reasons to employ memory and learning 
functions in metaheuristics, or intelligent algorithms, especially as the solution 
environment is becoming so complex that human beings can no longer understand 
it, and software systems become so intractable that they can no longer be 
controlled. As a scruffy artificial intelligence technique, metaheuristics that can 
learn and memorize offer an efficient way of designing "intelligent" solution 
procedures, in which autonomy, emergence, and distributed functioning replace 
control, preprogramming, and centralization [109]. 

In this chapter, we demonstrated how memory and learning can be 
implemented in a memoryless metaheuristic like Meta-RaPS and showed that 
incorporating a method such as EDA can result in a significant improvement to 
the metaheuristic’s performance. In the optimization area there are some powerful 
metaheuristics whose power comes from their ability to memorize and learn in 
reaching high-quality solutions for large scale problems. Memory and learning 
abilities are among the main features that draw the line between human beings’ 
excellence and other beings, and now they are revealing the difference between 
intelligent algorithms and others. 
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On Some Aspects of Nature-Based Algorithms  
to Solve Multi-Objective Problems 

Susmita Bandyopadhyay and Ranjan Bhattacharya* 

Abstract. This chapter presents an overview of various nature-based algorithms to 
solve multi-objective problems with the particular emphasis on Multi-Objective 
Evolutionary Algorithms based on Genetic Algorithm. Some of the significant 
hybridization and the modification of the benchmark algorithms have also been 
discussed as well. The complexity issues have been outlined and various test prob-
lems to show the effectiveness of such algorithms have also been summarized. At 
the end, a brief discussion on the software packages used to model these type of 
algorithms are presented. 

Keywords: Nature based algorithms, Multi-Objective Evolutionary Algorithm, 
Hybrid algorithm, Complexity, Test Problem. 

1   Introduction 

Problems in real world are mostly multi-objective in nature. Thus the relevance of 
multi-objective problems is quite essential. This is the cause of increased populari-
ty and attention towards multi-objective problems and their solution methodolo-
gies. The practical problem lies in the fact that most multi-objective problems are 
difficult to solve by simple and deterministic methods. This fact has attracted im-
mense attention from both the research community and practitioners in various 
fields of study. Such difficulty has also resulted in a number of methods and algo-
rithms to solve such problems.  

However, a constrained multi-objective problem consists of more than one ob-
jective and one or more constraints. The general form of a constrained multi-
objective problem is given below. 
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Minimize 1 2( ) [ ( ), ( ),..., ( )]T
kf x f x f x f x=  

Subject to the constraints: 

( ) 0ig x ≥ , 1, 2,...i I=  

( ) 0jh x = , 1, 2,...j J=  

Where ( )if x  is the ith objective function, ( )ig x  is the expression for the con-

straint in-equation, ( )jh x  is the expression for the constraint equation. 

Since a single objective problem contains only one objective, thus we get a sin-
gle solution for a single objective problem. But since the number of objectives in a 
multi-objective problem is more than one, thus we get a set of solutions instead of 
a single solution since the objectives of a multi-objective problem cannot be opti-
mized altogether. Thus the results of a multi-objective problem consist of a set of 
compromised solutions which is known as Pareto optimal solution, termed after 
the name of Vilfredo Pareto [1]. This chapter focuses on the study on nature based 
algorithms to solve multi-objective problems. 

The existing literature shows research studies applying various existing algo-
rithms in order to solve the multi-objective problem considered in their studies. 
The research studies have either applied deterministic mathematical approach or 
non-mathematical approach. Mathematical approach includes methods like Goal 
programming [2-4] and non-mathematical approach includes various nature based 
methods. The mathematical technique has limited search capability whereas nature 
based methods present no standard way to guarantee global optimum solution [5]. 
However nature based algorithms have the potential advantage of producing more 
than one solution instead of a single solution. The nature-based algorithms are 
popular mainly because of the population based nature of their solution. This 
means that we obtain a population of solutions on applying the nature-based algo-
rithms and as a result the decision maker may choose solution from the population 
of solutions. 

A significant number of research studies are observed to propose new algo-
rithms, new strategies, and hybrid algorithms and modify existing algorithms. 
Thus the study of multi-objective optimization cannot be confined to proposed 
algorithms only. Thus in this chapter, a number of aspects of multi-objective op-
timization have been studied. 

The remainder of this chapter is organized into the following sections. Section 
2 presents various benchmark nature based phenomenon applied to propose multi-
objective algorithms in the existing literature; section 3 studies various benchmark 
multi-objective optimization algorithms based on the nature based phenomenon as 
discussed in section 2; section 4 discusses some additional algorithms which are 
not present in section 3; section 5 discusses various hybrid algorithms as proposed 
in the existing literature; section 6 discusses the modifications to the existing algo-
rithms as proposed in the existing literature; section 7 considers the issues related 
to the complexity of the algorithms; section 8 summarizes test problems in order 
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to test the performance of the proposed algorithms; section 9 outlines the various 
software packages used to implement the algorithms; section 10 concludes this 
chapter.  

2   Benchmark Nature Based Phenomenon 

A brief description to each of the nature based phenomenon on which the multi-
objective optimization algorithms have been developed, is given below. 

2.1   Genetic Reproduction 

Genetic Reproduction is the process of producing offsprings. In sexual selection 
under consideration, members of one sex compete with each other in order to mate 
with the member of other sex. The winner of the competition gets the opportunity 
to mate. The mating is the process of pairing with opposite sex. As a result, the 
genetic data of both the male and female are combined and offsprings are pro-
duced from such combination. Thus the offsprings contain the characteristics of 
both parents. Here, the crossover operation indicates the exchange of genetic data. 
The genetic data refers to the genes in a chromosome. The mutation refers to the 
permanent change to the sequence of genes. Mutation alters the amino acid se-
quence of the protein as encoded by the genes.  

2.2   Swarm Behavior 

Swarm basically indicates groups of insects which live in colonies, such as ants, 
bees, wasps, termites and so on [6]. The behaviors of such insects have drawn 
attention to researchers in proposing algorithms. The relevant interesting beha-
viors include ant foraging behavior, communication and networking among in-
sects and colonies, division of labor, task allocation, nest building, cooperative 
transport etc. The basic emphasis is generally on the behaviors social insects.  

2.3   Ant Colony 

Ant colony is an underground place where ants live, eat and mate. Worker ants 
build their colony and also carry food to their colony. Ants’ behavior for searching 
and carrying foods has led to the development of ant colony optimization algo-
rithm. Ants use a signaling communication system based on their deposit of a 
substance called pheromone, on their path. An ant foraging for food lay down 
their pheromone to mark its route so that it can return to its nest after searching for 
food, reinforcing the trail of pheromone. The other nearby ants may get attracted 
by the pheromone and may follow the same route with greater probability. All the 
ants deposit pheromone on their route which strengthens the attraction towards the 
substance for other ants. The process works as a positive feedback system and 
may lead the ants to follow the shortest route to the food source. 
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2.4   Immunity System 

Immunity system can be defined as the protective mechanism against the external 
injurious foreign bodies in a living being. Vertebrates have a very complex im-
mune system that protects us from infectious and toxic agents [7] which are called 
antigens. As any infectious or toxic agent enters inside physical system of a verte-
brate, the immune system generates lymphocyte receptors through a complex 
series of processes. Thus antibodies are formed to combat these antigens. Such 
system may be represented by algorithms where antigens are represented by worse 
results and antibodies or better results are required to get rid of the antigens. 

In the next two sections, a brief glance of all the benchmark algorithms along 
with some other proposed algorithms from the existing literature are provided. 
Before going into the following sections, Figure 1 presents a list of all the algo-
rithms discussed in this chapter, in the form of a chart.  

 

Fig. 1 Nature-Based Algorithms Discussed 

3   Nature Based Benchmark Multi-Objective Optimization 
Algorithms 

A variety of nature based multi-objective optimization algorithms have been pro-
posed in the existing literature. This section provides a glimpse of those algo-
rithms with the particular emphasis on the Multi-Objective Evolutionary Algo-
rithms (MOEA) [8].  

3.1   Genetic Algorithms 

Genetic algorithms are a kind of meta-heuristics developed based on the natural 
process of genetic reproduction. Genetic algorithms proposed by John Holland [9] 
and later developed by Goldberg [10], have the largest share in the existing  
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literature in terms of the number of research publications. Genetic algorithms have 
been used widely to solve multi-objective problems. Numerous algorithms in this 
direction are observed. Such a large number of different algorithms are difficult to 
present within a very short span of space. However some of them are discussed 
below. 

Nondominated Sorting Genetic Algorithm (NSGA) 
Nondominated Sorting Genetic Algorithm (NSGA) was originally developed by 
Srinivas and Deb [11] and later it was modified to NSGA-II [12]. NSGA-II is a 
widely applied Multi-Objective Evolutionary Algorithm (MOEA) in the literature. 
The basic features of NSGA-II are the classification of individuals (chromosomes) 
in a population into ranks and assign crowding distance value to each individual. 
The population is then sorted based on the nondomination level. A mating pool of 
chromosomes is created from the selected individuals in the population and genet-
ic operators (crossover and mutation) are applied to the individuals in the mating 
pool in order to generate the offspring population. The offspring population is then 
combined with the original population to form an intermediate population. At last 
the best individuals are selected until the original population size is filled up. Fig-
ure 2 shows the pseudo code of NSGA-II. 

     

Fig. 2 Nondominated Sorting Genetic Algo-
rithm – II  

Fig. 3 Strength Pareto Evolutionary  
Algorithm 2 

Strength Pareto Evolutionary Algorithm (SPEA) 
Strength Pareto Evolutionary Algorithm (SPEA) was originally developed by 
Eckart Zitzler and Lothar Thiele [13] and later modified to SPEA2 [14]. The fea-
tures of SPEA2 include: 1) the provision of an external archive of nondominated 
individuals to which Nondominated individuals are copied at each generation and 
a strength value is computed for each individual, 2) improved fitness assignment 
that considers the number of individuals that a particular chromosome dominates 
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and the number of individuals that dominate the particular individual under con-
sideration, 3) an efficient search technique by nearest neighbor density estimation 
technique. Figure 3 shows the pseudo code of SPEA2. 

Pareto Archived Evolution Strategy (PAES) 
Pareto Archived Evolution Strategy (PAES) was proposed by Joshua D. Knowles 
and David W. Corne [15]. The evolutionary strategy as proposed by original 
PAES and its several modifications includes (1+1) (single parent single offspring) 
strategy, (1+λ) strategy, (µ+λ) strategy. PEAS maintains diversity in solutions 
through a crowding procedure by dividing the objective space recursively. Each 
solution has a coordinate location in the objective space and is placed in a grid 
location. Each grid contains a number of solutions and a map of such grids is pro-
vided. Figure 4 shows the pseudo code of PEAS for (1+1) strategy. 

 

   

Fig. 4 Pareto Archived Evolution Strategy        Fig. 5 Niched Pareto Genetic Algorithm 

Niched Pareto Genetic Algorithm (NPGA) 
Niched Pareto Genetic Algorithm (NPGA) was originally proposed by Horn et al. 
[16] and later enhanced to NPGA 2 by Erickson et al. [17]. The main feature of 
NPGA was the introduction of Tournament Selection in which two chromosomes 
are chosen randomly and the better chromosome based on nondomination is se-
lected. NPGA 2 added Pareto ranking along with the Tournament Selection.  
Figure 5 shows the pseudo code of NPGA 2. 

Pareto Envelope-Based Selection Algorithm (PESA) 
Pareto Archived Selection Algorithm (PESA) was proposed by Corne et al. [18] 
and later modified to PESA-II [19]. PESA maintained diversity through crowding 
distance measurement by dividing the phenotype space into hyper grids and divid-
ing the solutions into the grids. PESA-II improved PESA by introducing hyperbox 
concept where the algorithm puts the individuals in the hyperbox after selecting a 
hyperbox for that individual. Figure 6 shows the pseudo code of PESA-II. 
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Fig. 6 Pareto Envelope-based Selection 
Algorithm   

Fig. 7 Multi-Objective Messy Genetic  
Algorithm 

MultiObjective Messy Genetic Algorithm (MOMGA) 
Multiobjective Messy Genetic Algorithm (MOMGA) was proposed by David A. 
Van Veldhuizen and Gary B. Lamont [20] and later extended by Deb [21]. 
MOMGA is performed in three phases – 1) initialization phase, 2) primordial 
phase and 3) juxtapositional phase. In the initialization phase, the basic building 
blocks are developed; in primordial phase, tournament selection is performed and 
the population size is reduced if required; in juxtapositional phase, cut and splice 
recombination operator is applied over the selected individuals. The pseudo code 
of MOMGA is shown in Figure 7. 

Micro Genetic Algorithm (µGA) 
Micro GA (µGA), proposed by Coello and Pulido [22], is performed over small popu-
lation and the population is divided into two parts – replaceable and non-replaceable 
parts. The non-replaceable part occupies a portion of population memory and never 
changes over the iterations. The replaceable part of the population goes through 
changes over a number of iterations. Figure 8 shows the pseudo code of µGA. 

 

Fig. 8 Micro Genetic Algorithm 
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Some Other Algorithms 
Vector Evaluated Genetic Algorithm (VEGA), proposed by Schaffer [23] is the 
first Multi-Objective Genetic Algorithm and simple to understand. In VEGA, 
population is divided into a number of subpopulations. Each subpopulation is 
evaluated for a different objective. The disadvantage is that the solutions tend to 
converge to the extreme value of objective. 

Weight Based Genetic Algorithm (WBGA), proposed by Hajela and Lin [24], 
considered weighted average of the objectives considered. The algorithm faces 
difficulties in non-convex function space. 

Rank-Density-based multiobjective Genetic Algorithm (RDGA), proposed by 
Lu and Yen [25] reduces the problem under consideration into bi-objective prob-
lem with solution rank and density as objective. The disadvantage lies in the diffi-
culty in implementation of the algorithm. 

Lexicographic Ordering Genetic Algorithm (LOGA), proposed by Fourman 
[26], first takes the rankings of the objective under consideration. The algorithm, 
then, solves the objectives sequentially, starting with the most preferred one and 
proceeding according to decreasing order of ranks of the objectives. 

3.2   Particle Swarm Optimization 

Particle Swarm Optimization (PSO) algorithm is a kind of meta-heuristics devel-
oped based on the swarm behavior. Particle Swarm Optimization, developed by 
Eberhart and Kennedy [27] was initially applied to single objective optimization 
and can also be applied to multi-objective optimization. Here the words ‘swarm’ 
and ‘particle’ indicates the ‘population of solutions’ and ‘a particular solution’. 
The progress of the algorithm represents the evolution of the solution to the next 
generation. Thus the positions of the particles (solutions) are updated and modifi-
cation is performed by updating the velocity of the particles. In general, a particu-

lar solution ix  can be modified by the expression (1). 

1( 1) ( ) ( 1)i i ix t x t v t−+ = + +
                                      

 (1) 

Where t and (t+1) are the previous and current iterations, iv  is the velocity of 

particle (solution) i.  
The general expression to update the velocity is given in expression (2) [28]. 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i ij ij ij gj ijv t wv t c r p t x t c r p t x t+ = + − + −
     

 (2) 

Where the parameter w is called inertia weight, positive constants 1c and 2c are 

called cognitive and social parameters respectively, 1r and 2r are two uniformly 

distributed random numbers in the range [0,1], ijp is the best solution (particle) 

that ijx has viewed, gjp is the best particle (known as leader).  
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Durillo et al. [29] have summarized four velocity updating schemes among 
several others. The four expressions are as 1) proposed by Reyes-Sierra and Coel-
lo [30] in their proposed algorithm called OMOPSO (Optimized Multi-Objective 
PSO) (expression 3); 2) proposed by Durillo et al. [31] in the proposed algorithm 
called SMPSO (Spread constrained Multiobjective PSO) (expression 5); 3) pro-
posed by Ratnaweera et al. [32] in the proposed algorithm called MOPSO TVAC 
(MultiObjective PSO Time-Varying Acceleration Coefficients) (expressions 7 & 
8); 4) proposed by Ratnaweera et al. [32] in the proposed algorithm MOHPSO 
(MultiObjective self-organizing Hierarchical PSO) (expressions 9 & 10). 
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2 2 2 2( )f i i

iter
c c c c

MAXITR
= − +

                                   
 (8) 

Where, 1 fc , 1ic , 2 fc , 2ic are constants, iter is the current iteration number, 

MAXITR is the maximum number of iterations. 

1 1 2 2( ) ( ( 1) ( )) ( ( ) ( ))i ij ij gj ijv t c r p t x t c r p t x t= − − + −
               

 (9) 

If , ( )i jv t =0, then , ( )i jv t  is reinitialized by expression (10). 
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Where, rand1, rand2 and rand3 are uniformly distributed random numbers in the 
range [0,1]. Figure 9 shows the pseudo code of a generalized PSO. 

   

Fig. 9 Particle Swarm Optimization                 Fig. 10 Differential Evolution 

3.3   Differential Evolution (DE) 

Differential Evolution (DE), proposed by Storn and Price [33] indicates the differ-
ences of individuals for mutation. The algorithm uses floating-point encoding. The 
first multi-objective application of DE was implemented by Chang et al. [34]. In 
multi-objective version of DE, an external archive (known as ‘Pareto optimal set’) 
of nondominated solutions is provided and crossover is performed over three ran-
domly chosen parents instead of two parents. Better offsprings replace the worse 
individuals in the population [35].  

Numerous multi-objective versions of DE have been in the existing literature. 
Some of the significant research studies among them include Pareto DE (PDE) 
[36], Self-adaptive PDE (SPDE) [37], Pareto DE Approach (PDEA) [38], Adap-
tive PDE (APDE) [39], Multi-Objective DE (MODE) [40], Vector Evaluated DE 
(VEDE) [41], Multi-Objective DE based Decomposition (MODE/D) [42], DE for 
Multi-Objective optimization with Random Sets (DEMORS) [43]. Some of these 
approaches are hybrid approaches, such as, MODE. MODE is the hybridization of 
NSGA-II and DE. Figure 10 shows the pseudo code for a multi-objective applica-
tion of differential evolution. 

3.4   Artificial Immune System (AIS) 

Artificial Immune System (AIS) is a meta-heuristics developed based on the Im-
mune System as introduced in section 2. Artificial Immune Systems was first  
implemented as an algorithm by Bersini and Varela [44] and later applied to  
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multi-objective problem by Yoo and Hajela [45]. Among several approaches to 
applying AIS, Yoo and Hajela [45] applied linear aggregating function to aggre-
gate the objectives considered to scalar value which was used as fitness function. 
The algorithm chooses an antigen randomly from a population of antigens. There 
is a population of antibodies from which a sample is taken randomly. Then each 
antibody in the sample population is matched with the selected antigen and a 
matching score is computed for the antigen based on the Hamming distance meas-
ure. This matching score is added to the fitness value of the antigen. The above 
process is repeated for a pre-specified number of times. Figure 11 shows the pseu-
do code for Artificial Immune Algorithm (AIA). 

   

Fig. 11 Artificial Immune Algorithm       Fig. 12 Ant Colony Optimization Algorithm 

3.5   Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) is a kind of meta-heuristics developed based on 
the behavior of ants in an ant colony. In Ant Colony Optimization, ants deposit 
and follow the trail of a substance called pheromone as mentioned in section 2. At 
the end of the process, it is seen that the ants are following the shortest route. Thus 
it can be used as an optimization method to find the best solution to a problem. 
Gambardella and Dorigo [46] developed an Ant-Q algorithm by combining Ant 
system with the Q-Learning mechanism. Later, Mariano and Morales [47] pro-
posed an extended Ant-Q algorithm known as MOAQ (Multi-Objective Ant Q) to 
solve multi-objective problem. The algorithm is similar to the Lexicographic Or-
dering algorithm where a family of agents is assigned to each objective. The 
agents search for the solution of the objective and communicate the solution with 
the other family. Agents try to modify their objective without affecting the solu-
tion found for other objectives by other families. After completing the iteration, 
the solutions obtained are evaluated using dominance relationships. The Nondo-
minated solutions are kept in an external archive. These solutions are used for the 
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next iteration. Figure 12 shows the pseudo code for Ant Colony Optimization 
algorithm. 

3.6   Simulated Annealing (SA) 

Simulated Annealing (SA) [48] is a meta-heuristic which simulates the process of 
annealing where a solid is heated and then cooled continuously. Thus the tempera-
ture is raised up to a certain level (higher energy state) and then the temperature is 
lowered up to a certain level (lower energy state).  SA is actually an adaptation of 
the Metropolis-Hastings algorithm (MHA) which is a Monte Carlo method used to 
generate sample states of a thermodynamic system. MHA is used to find a  
sequence of random samples from a probability distribution for which direct  
sampling is difficult. The generated sequence may be used to approximate the 
distribution. 

The implemented single objective optimization algorithm also depends on the 
temperature value. The solution is modified based on the current temperature. The 
two other important parameters of the algorithm are the cooling schedule and the 
number of iterations. SA was first used in multi-objective optimization in the work 
of Serafini [49]. In this algorithm, a neighboring solution is compared with the 
current solution under consideration and the better solution is accepted as the cur-
rent state. A set of nondominated solutions are stored in a memory and further 
filtering procedure is applied to reduce the number of nondominated solutions. 
Figure 13 shows the pseudo code for Simulated Annealing Algorithm. 

    

Fig. 13 Simulated Annealing Algorithm            Fig. 14 Tabu Search Algorithm 

3.7   Tabu Search (TS) 

Glover [50] proposed Tabu search (TS) algorithm. Tabu search approach is based 
on the idea of accepting the nearest neighboring solution that has smallest cost, 
thus making it a local search procedure. A total of three types of memories are 
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considered.  The short term memory of already found solutions is set as ‘Tabu’ so 
that those solutions are never revisited. The intermediate memory is used to store 
the intermediate or current near-optimal solutions and the long term memory is 
used to record the search space areas which have already been searched. Thus 
diverse solutions can be obtained by the proper use of the long term memory.  

A problem faced by TS is that the search may converge to a small area in the 
search space. In order to resolve this problem, the tabu list is made to consist of 
the attribute of a solution instead of the entire solution which results in to another 
problem. When a single attribute is made a tabu, then more than one solution may 
become tabu and some of these solutions which have to be avoided, might be bet-
ter solutions but might not be visited. In order to get rid of this problem, “aspira-
tion criteria” is used. An aspiration criterion overrides the tabu state of a solution 
and includes the better solution which could otherwise be excluded. An aspiration 
criterion, commonly used, can be – to allow solutions which are better than the 
current best solutions. 

The research study of Gandibleaux et al. [51] was probably the first to apply ta-
bu search to solve multi-objective problems. The Multi-Objective Tabu Search 
[51] used a reference point with respect to which the improvement of the objec-
tives is measured. Thus the choice of such reference point is vital for the effective 
implementation of the algorithm. Generally the reference point (also called, uto-
pian point) represents the best objective value for each objective. The value of 
such point may be obtained by solving the each objective of the problem separate-
ly. Figure 14 shows the pseudo code of Tabu Search algorithm. 

4   Other Miscellaneous Algorithms 

4.1   High-Dimensional Objective Genetic Algorithm (HOGA) 

HOGA, proposed by Hunag et al. [52], is developed on the basis of the idea that 
the well-known Multi-Objective Evolutionary Algorithms (MOEAs) are not ap-
propriate for high dimensional problems. HOGA is based on Shannon entropy in 
order to calculate the weight for each object. HOGA views GA as a Markov chain 
where vector x(n) is modified to vector x(n+1) in the next generation by the fol-
lowing transformation. 

mutation selection crossover
( ) ( ) ( ) ( ) ( 1)x n y n u n v n x n⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ × ⎯⎯⎯⎯⎯→ +  

HOGA uses grey coding to encode its parameters and concatenates the parameters 
to chromosome. Mutation applied is the bit mutation and single point crossover is 
used. Convergence analysis has also been performed in martingale framework 
which sets guidelines for HOGA. Fitness assignment is done using Shannon en-
tropy. The fitness of individual is given by expression (). 
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Where jW is the weight of object j, and is given by, 
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Where jE  is the entropy of the jth objective function and is given by, 
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Where ijpx  is the evaluation for ijf  and is given by, 
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Where we consider n real-valued objective function to m individuals, given by, 
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4.2   Pareto Converging Genetic Algorithm (PCGA) 

PCGA, proposed by Kumar and Rockett [53] is supposed to have the following 
properties: 1) the algorithm should maintain Nondominated solutions across evo-
lutions; 2) the algorithm should preserve diversity and should not get trapped into 
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local optima; 3) the algorithm should have a mechanism to check for convergence 
to the Pareto optimal front. The idea of PCGA is delineated in the following 
points. 

1. The population is divided into some islands and individuals are ranked in each 
island. The rank of each individual is determined by the number of individuals 
by which it is dominated. Ranks of all nondominated individuals are same. Ties 
are broken randomly for individuals with equal objective vector. 

2. A pair of individuals is chosen randomly and crossover and/or mutation are 
performed on the selected pair of individuals. Thus two offsprings are produced 
from two parents. 

3. These offsprings are inserted into the population based on the ranks in the pop-
ulation. If the size of population would be N then the size of the population af-
ter inserting the two offsprings would be (N+2). 

4. Two lowest ranked individuals are discarded from the population in order to 
keep the original population size of N. 

The above process is continued for each island till the stopping criteria is satisfied. 
Two types of histograms are drawn to check for the stopping criteria – 1) intra-
island histogram (histogram of individuals in a single island) and inter-island his-
tograms (histogram of individuals from merged islands. A match between two 
intra-island histograms from two successive epochs or a match of one histogram 
with another from a merged state for the merged islands, may stop the algorithm. 

4.3   Real-Coded Quantum Clone MOEA (RQC-MOEA) 

RQC-MOEA, proposed by Xiawen and Yu [54], is developed in order to get rid of 
the disadvantage of the binary coded quantum MOEA. The disadvantages of bi-
nary coded quantum MOEA are the lower efficiency and the chance of coding 
inaccuracy. The overall idea of RQC-MOEA is delineated in the following points. 

1. The population is initialized by triploid chromosomes. RQC-MOEA uses the 
quantum bit concept of digital computers and proposes a triploid chromosome 
structure, given by, 

1 2

1 2

1 2
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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Where, 1x , 2x , …, nx  are the decision vectors; iα  and iβ  are the probability 

amplitude for the corresponding quantum bits. iα  and iβ  are initialized by 

“chaos-based method” in order to increase the diversity in the population. The algo-

rithm generates a random number 0y  by uniform distribution in the range [0, 1]. 

Then the following expressions are used to calculate iα  and iβ . 
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1 14 (1 )i i iy y y− −= −
                                         

 (17) 

(2i Cosα = π )iy
                                         

 (18) 

(2i Sinβ = π )iy
                                           

 (19) 

iα  , iβ  represent the allele of ix  and 
2 2

1α β+ = .  

An empty Nondominated set ND is also initialized. Let the initial population 

and the Nondominated set are 0P  and 0ND  respectively. 

2. The algorithm uses Gaussian mutation. The population of size N is divided into 
m1 and m2 individuals and m1 and m2 individuals mutate according to equation 
(20) and (21). 
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Where, r1 and r2 are random numbers.  
An improved version of crowding distance measure of NSGA-II is also applied 

in RQC-MOEA.  

3. For crossover, select two chromosomes and exchange their probabilities ran-

domly. Both 1t
iα +  and 1t

iβ +  are updated by the following expressions. 
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 (23) 

4. The population at generation t ( tP ) and the Nondominated set at generation 

(t+1) ( 1tND + ) are merged together. Truncation may be applied if required in 

order to keep the original size.  

5. A cloning method is used to clone the chromosomes in 1tND +  in order to get 

1tP+ . 

6. The above process is continued till the last generation number. 
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The authors of this algorithm show that RQC-MOEA maintains a “good balance” 
and performs better than NSGA-II and SPEA2. 

4.4   Multi-Objective Gene Expression Programming (MOGEP) 

The contribution of the MOGEP, proposed by Nie et al. [55], lies in the fitness 
assignment scheme, diversity maintenance strategy and elitist strategy. An exter-
nal archive of nondominated individuals is maintained. At the end of each itera-
tion, these nondominated solutions are saved into the population for the next  
generation. This strategy helps to maintain diversity and elitism in the population.  

The fitness assignment scheme combines the Pareto dominance relation and 
density information. Each individual in the population is assigned a rank through 
nondomination and density information. The fitness is determined by incorporat-
ing density information into the rank. 

The rank, density and fitness are calculated by expressions (24), (25) and (27) 
respectively. 

( ) 1( )jR i j i PF= − ∈
                                       

 (24) 

max( ) exp( 2* / )k
iD i d d= −

                              
 (25) 

Where, 

max max{ , }k
i jd d i PF= ∈

                                 
 (26) 

( ) ( ) ( )f i G R i D i= − −                                        (27) 

Where,  

( )R i : Rank if individual i 

jPF : j-th Pareto front 

( )D i : Density of individual i 
k
id : k-th element of individual i 

The fitness of individuals in 1PF  lies in the range [G-1,G), fitness of individuals 

in 2PF  lies in the range [G-2,G-1), … , fitness of individuals in GPF  lies in the 

range [0,1). 
The chromosome is encoded in an interested way, based on the application of 

the algorithm on the scheduling problem. The two sets – Function Set (FS) and 
Terminal Set (TS) ae used to construct a chromosome, where FS and TS are given 
by, 

FS={+, -, *, /} and TS={p, r, d, sl, st, wt} 
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Where p: processing time of job; r: release date of job; d: due date of job; sl: posi-
tive slack and is given by sl=max{d-pd-max{t,r},0}, t: idle time of machine; st: 
stay time of job and is given by st=max{t-r,0}; wt: wait time of job and is given by 
wt=max{r-t,0}. 

The encoding is done in the following way. The head of each chromosome con-
tain element from FS and TS, the tail of each chromosome contains element from 
TS only, the length of head and tail must satisfy the expression tl=hl*(arg-1)+1, 
where hl and tl are the lengths of head and tail respectively. “arg” is the maximum 
number of arguments for all operations in FS. 

4.5   GAR-SD 

GAR-SD, proposed by Pachón et al. [56], is basically a rule based algorithm and 
deals with Subgroup Discovery (SD). The most common aspects of SD are cover-
age, significance, unusualness, support, confidence, among which, significance 
(SIG), Support (SUP) and Confidence (CONF) are defined below. 

SIG is the “average of likelihood ration of each rule”; SUP is the “percentage 
of target examples positives covered by the rules”; CONF is the “average of the 
relative frequency of examples satisfying the complete rule among those satisfying 
only the antecedent”. 

The algorithm can work for both numeric and discrete attributes. The role of 
MOEA in this algorithm is to find the most effective rule for each subgroup. The 
algorithm defines “subgroup discovery” as the “conjunctions of features that are 
characteristics for a selected class of individuals. An individual in the population 
represents a rule. The algorithm is especially applicable to database applications. 
The overall idea of the algorithm is listed in the following points. 

 
1. Let S_SUP represents the percentage of examples covered by rules in a sub-

group and G is the maximum number of generations. The algorithm first gene-
rates and initializes the population ( ( )P nGen ) at generation nGen . 

2. Each individual in the population is evaluated.  
3. The best individuals are selected to develop the next generation ( 1)P nGen +  

by crossbreeding and mutation. 
4. The best individuals are included in the set of rules R. the lower and upper 

bounds of the rules in R are adjusted. 
5. The above process continues till the maximum generation number. 

4.6   S-Metric Selection Evolutionary Multi-Objective Algorithm 
(SMS-MOEA) 

SMS-MOEA, proposed by Beume et al. [57], uses S-metric to approximate Pareto 
front and focuses on convergence rate of evolutionary algorithm. S-metric is not a 
metric in mathematical sense, but rather a quality measure based on the closeness 
of solutions to Pareto front. 



On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 495
 

The target of SMS-MOEA is to maximize the S-metric value of the population. 
SMS-MOEA performs (µ+1) selection. Nondomination sorting is performed over 
the population and (µ+1) individuals are partitioned based on nondomination. The 
hypervolume of the worst set is determined and individuals with the least contri-
bution to the set are rejected, therefore, minimizing the “loss of the population 
dominated hypervolume”. SMS-MOEA applies Simulated Binary Crossover 
(SBX) and Guassian or uniform mutation on the hypersphere surface. 

4.7   Multi-Objective Optimization Using Cross Entropy Method 
(MOO CEM) 

In MOO CEM, proposed by Bekker and Aldrich [58], a truncated normal distribu-
tion is used for each decision variable and is given by, 
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Where iu and il  are the upper and lower limits of decision variable ix ; and 

( )nh x  is the density and is the normal probability density function defined over  

(–infinity) and (+infinity); n is the number of decision variables. The main fea-
tures of the algorithm are stated below. 

Each individual in the population is assigned a Pareto rank and a solution hav-
ing rank 0 is Nondominated. The solutions whose ranks are below a threshold 
value are the elitist ones and represent the weakly nondominated set. 

A histogram is constructed by the values of the decision variables in the elite 
vector. The histograms are maintained throughout the entire search process for 
nondominated solutions. The new population for the next generation is formed 
‘proportionately’ based on the class frequencies for each decision variable. Ad-
justments to histogram frequencies are performed in order to prevent premature 
convergence. 

4.8   Multi-Objective Symbiotic Evolutionary Algorithm (MOSEA) 

MOSEA, proposed by Shin et al. [59], imitates the symbiotic and endosymbiotic 
evolution. Symbiotic evolution is supposed to encourage parallel search capability 
and the endosymbiotic evolution is supposed to encourage solution convergence to 
Pareto optimal front. Thus MOSEA encourages both divergence and convergence 
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to the Pareto optimal front. Symbiotic evolution can be defined as reciprocative 
positive changes among two or more interacting species where the chance of sur-
vival of one species depends on the survival success of the other ‘interacting’ 
species. Endosymbiotic evolution represent the evolution from prokaryotes to 
eukaryotes. Here, “relatively simple structured prokaryotes enter into a larger host 
prokaryote. Later they live together in symbiosis and evolve into eukaryote”. 

The authors applied MOSEA on FMS (Flexible Manufacturing System) prob-
lems and also used the strategies for elitist and fitness sharing. The entire popula-
tion is divided into two levels. Level 1 contains symbionts representing several 
process plans of the parts and level 2 representing endosymbionts contains the 
complete process plan. A good combination of individuals in level 1 are trans-
ferred to level 2. The good combination is obtained by interactions among indi-
viduals following symbiosis and andosymbiosis. 

MOSEA is a multi-level algorithm which is mainly divided into three levels - 
initialization level, evaluation level 1 and evaluation level 2. The levels are de-
scribed below in brief. 

1. In the initialization level, an empty set ND  of nondominated solutions is 
initialized and individuals’ fitness values are determined based on the ob-
jective vector. 

2. In the first level of evaluation, crossover and mutation are applied over the 
population P  to produce population P′ . Then all nondominated individu-
als are copied to the set ND . 

3. In the second level of evaluation, the populations of P , P′  and ND com-
bined to form an intermediate population. The best individuals are chosen 
from this intermediate population to form the final population for the next 
generation. 

4.9   Multi-Objective Modified Shuffled Frog Leaping Algorithm 
(MMSFLA) 

MMSFLA, proposed by Niknam et al. [60], is a memetic meta-heuristic algorithm 
and is based on the global exchange of information among the individuals in a 
population of ‘frogs’. In MMSFLA, a population of frogs is the host for memes, 
each of which consists of a number of memetypes (similar to ‘genes’ in a chromo-
some). The memetypes are improved through interaction among the frogs. The 
improvement represents the change of position of frog and is done by modifying 
the leap size. In this way, the algorithm improves the ideas held by the frogs in the 
virtual population of frogs without changing the physical characteristics of the 
individuals in the population. The overall algorithm is stated below. 

 
1. The algorithm first generates N frogs as the initial population and initializ-

es an empty Pareto archive set A. 
2. Nondominated sorting is performed over the population followed by the 

updation of set A. 



On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 497
 

3. The frogs are divided into parallel memplexes and memetic evolution is 
applied within each memeplex. 

4. Next population of frogs is shuffled and mutation is applied on the shuffled 
population. 

5. The gene transfer operation followed by swapping mutation is applied 
next. 

6. The next generation of frogs is formed by selecting the best frogs, after up-
dating the value of dynamical ideal point, which is basically a “virtual 
point” with coordinates obtained by separately optimizing each objective 
function. 

4.10   Objective Space Dividing MOEA (OSD MOEA) 

OSD MOEA, proposed by Li et al. [61], divides the objective space and chooses 
the individuals nearer to the minimal value of objectives for the next generation. 
The main contribution lies in the mechanism for dividing the objective space, a 
crowding mechanism and the choice of operator. OSD MOEA uses Adaptive Grid 
Algorithm (AGA) to divide the objective space. First, the objective space is di-
vided using AGA to compute the total indexes. Then the nondomination sorting is 
performed based on these indexes. The population is sorted in the ascending order 
of indices. This reduces the computation of vast information of grid density. The 
operators are chosen based on the index sorting and the individual crowding. The 
division of the objective space along with the idea of the algorithm is shown  
below. 

 
1. First, the maximum and minimum values of each objective are found out. 

These values are used as the corner points of a grid to be drawn. These 
corner points are joined by lines in order to form the squares in the grid. 
The finer the grid is, the more is the effective of the grid in processing so-
lutions. Thus the entire objective space is divided into a number of equally 
sized cells. If the number of objectives is two, then the space will be di-
vided in the form of a matrix similar to that shown in Figure 15. 

 

Fig. 15 An Example of a Grid 
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2. The solutions are assigned to these cells based on their values. If some so-
lutions are beyond the boundary of this space then those are discarded. 
Thus each solution gets a positional coordinate. 

3. The coordinates (or indexes) of each solution are added and the results are 
sorted in the ascending order of their values. This order is the sorted order 
of the solutions. The individuals with lower indexes are given higher prior-
ity in order to ensure that the best nondominated individuals are chosen. 

4. An algorithm called “Partitioned Quasi-Random Selection” is used for se-
lecting the best individuals. First, the algorithm finds the individuals with  
same total value of indexes. Secondly, an individual with lowest value of 
index of single objective is chosen. Finally, a comparison is made between 
the “value of index of another different objective while choosing another 
kind of individual with different total value of indexes”, until enough indi-
viduals are chosen. Thus this algorithm chooses only part of individuals for 
selection. The selection also takes into account the crowding distance me-
chanism. 

5. The genetic operators (crossover and mutation) are applied on the selected 
individuals and intermediate population is formed by combining the origi-
nal population with the offspring population. 

6. The objective space division algorithm is again applied and the individuals 
in the intermediate population are sorted in the ways described in steps 1-3. 
The best individuals selected from this intermediate population are allowed 
to enter the next generation of solutions. 

4.11   Multi-Objective Membrane Algorithm (MOMA) 

MOMA, proposed by [62], combines Quantum-Inspired Evolutionary Algorithm 
(QIES) with P system. MOMA uses 1) Q-bits (quantum bits), 2) classical bits, 3) 
Q-gates (Quantum Inspired gates), 4) P system that consist of a membrane, 5) a 
replacement strategy. An object for MOMA consists of 1) Q-bits, 2) classical bits, 
3) rule comprising Q-gates, 4) P system. The rule is composed of evolution rule, 
observation rule and communication rule. The authors have applied MOMA to 
solve knapsack problem. The idea of MOMA is depicted in the following points. 

 
1. The objects and the membranes are initialized and a population of individ-

uals is generated. N Q-bit individuals are scattered over the elementary 
membranes so that each membrane contains at least one Q-bit individual. 

2. Then QIEA is performed over the membrane. Binary solutions are proba-
bilistically produced from Q-bit individuals and fitness value based on the 
evaluation function is assigned to each of these binary solutions. 

3. After this, Nondominated sorting is performed in order to select Pareto bi-
nary solutions and these solutions are then stored. Next Q-gate evolutio-
nary rules are applied to transform Q-bits of the individuals at the current 
generation to the Q-bits at the next generation.  
 



On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 499
 

4. Communication rules are applied to send the local Pareto binary solutions 
from the elementary membranes to the skin membrane. After this, a fast 
nondominated sorting is applied to select global Pareto binary solutions 
from the elementary membranes.  

5. An effective replacement strategy is applied to select better global Pareto     
binary solutions for the next generation. The above sequence of operations 
is repeated until a stopping criterion is satisfied. 

4.12   Regularity Model Based Multi-Objective Estimation 
Distribution Algorithm (RMMEDA) 

RMMEDA is proposed by Mo et al. [63]. Estimation Distribution Algorithm 
(EDA) replaces the traditional genetic operators (crossover and mutation) by 
learning and sampling the probability distribution. EDA basically uses statistical 
information from a search process and builds a probability model to characterize 
better solutions and then results in a set of trial solutions based on the model built.  

In EDA, each member of a population is represented by probability distribu-
tions. For example, if each member of a population is represented by a six bit 
string, then the EDA for the population may be represented by a vector of six 
probabilities, (p1, p2, p3, p4, p5, p6), where each p is the probability of that posi-
tion. In case of EDA, new solutions of a population can be obtained by sampling 
the distribution of the current solution. Some of the popular EDAs include – Popu-
lation Based Incremental Learning (PBIL), Bayesian Optimization Algorithm 
(BOA), Estimation of Bayesian Networks Algorithm (EBNA), Hill Climbing with 
Learning (HCwL), Estimation of Gaussian Networks Algorithm (EGNA), Proba-
bilistic Incremental Program Evolution (PIBE) and so on. 

An improved version of RMMEDA includes nondominated sorting in order to 
filter the solutions further. The population is sorted before building the probability 
model and the best half of the population of solutions is selected over which the 
probability model is further applied. The basic idea of RMMEDA is described in 
the following steps. 

1. An initial population is generated using EDA and fitness is assigned to 
each individual in the population. A probability model is built to model the 
distribution of solutions. 

2. New solutions are generated using the built probability model and the new 
solutions are combined with the old solutions to build an intermediate pop-
ulation of solutions.  

3. Best individuals are chosen from the intermediate population to fill the 
population size of N. The above process is repeated till the maximum 
number of generations. 
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4.13   Multi-Objective Greedy Randomized Adaptive Search 
Procedure MetaHeuristic Algorithm (mGRASP/MH) 

mGRASP/MH, proposed by Li and Landa-Silva [64],  is a multi-start algorithm 
since the algorithm repeatedly improves the starting solution. Both the Greedy 
randomized procedure and local search procedure are applied in each iteration. 
The best of the local solutions is retained in the iteration.  

The starting solution is built by greedy randomized construction procedure. An 
empty set E of all component solution is initialized. For each element e in E a greedy 
function g(e) is calculated. Then a Restricted Candidate List (RCL) is prepared by 
components with low g values. A common way to select the elements is to select g 

value that lies between min min max min[ , ( )]g g g gα+ × − for [0,1]α ∈ , where 

α is a balancing factor between greediness and randomness. Thus when 0α = , the 

minimum g value is selected. For 1α = , each component has equal chance to be 
selected. 

At each iteration, greedy solutions are generated based on λ(i) and π(i) where λ(i) 
and π(i) are the weight vector and the objective vector for the i-th individual re-
spectively. After this, local search procedure is performed in order to find the best 
local solution. This solution then replaces the worst individual in the population. 
At last, λ(i) is modified adaptively. The above sequence of operations is repeated 
until the stopping criterion is satisfied. 

4.14   Multi-Objective Honey Bee Mating Optimization (MHBMO) 

MHBMO, proposed by [65] is based on the social activities of bees in their colo-
ny. There are three types of bees in a colony – queen bee, drone bees and worker 
bees. MHBMO maintains an external archive of nondominated solutions 
representing selected queen bees. Each time when a better solution is obtained, the 
better solution replaces a worse solution in the population. 

MHBMO uses several queens (Nondominated solutions). There is also a popu-
lation of drones. A queen and a drone are selected randomly and the mating hap-
pens based on the probability expression provided in expression (29).  

Pr( ) exp( / ( ))queen droneD F F S t= − −
                          

 (29) 

Where, 

2 2 2
1 1 2 2( ) ( ) ... ( )queen drone queen drone queen drone

queen drone k kF F f f f f f f− = − + − + + −   

(30) 

The offspring is compared with the archive of solutions. If the offspring is better 
than any solution, then it replaces the worse solution in the population. The overall 
procedure of MHBMO is shown below. 
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1. First an initial population of drones is initialized from where a set of 
drones is selected randomly. A repository of queens is also maintained. 
The objective functions of the selected drones are calculated. If a selected 
drone is nondominated then that drone is added to the repository of 
queens.  

2. A drone from the set of selected drone and a queen from the repository of 
queens are selected and mating is performed between the selected drone 
and the selected queen based on the probability given in expression (29). 

3. Next objective functions are evaluated for each brood. If a brood is non-
dominated then that brood is added to the repository of queens. The 
above process continues until a particular pre-specified convergence con-
dition is satisfied. 

4.15   Bacteria Foraging Algorithm (BFA) 

BFA, proposed by Tabatabaei et al. [66], is based on the notion that natural selec-
tion favors living beings with better foraging capability or strategy and eliminates 
living beings with worse foraging strategy.  BFA has been developed based on the 
foraging strategy of E. Coli bacteria living in the human intestines. Four 
processes, viz., chemotaxis, swarming, reproduction and elimination & dispersal, 
govern the foraging activities of E. Coli. Chemotaxis is the process of deciding 
over the proper swimming direction of movement for the bacteria. Swarming is 
the process of grouping with others in a swarm or group, around the food source. 
Next, half the population in the swarm that are worse, die and each of the individ-
ual bacteria in the other half split into two bacteria so that the size of the popula-
tion remains same. This process is called reproduction. At last, elimination and 
dispersal of bacteria may happen due to environmental adversity. 

The BFA algorithm has also been developed following the processes depicted 
above. After initialization and creating the population of bacteria, elimination and 
dispersal of the worse solutions are performed. Then, reproduction of the solutions 
starts. After this, the position is modified in the chemotaxis phase. Then again the 
worse solutions (unhealthy bacteria) are discarded. In this way, the process con-
tinues until a stopping criterion is satisfied. 

4.16   Cultural Algorithms (CA) 

Although cultural algorithms may not be included as a true nature based algo-
rithm, but still, this algorithm is based on human beliefs and behavior traits. 
Among a few research studies on cultural algorithm application on multi-objective 
problems, the research study of Raynolds [67] is discussed below. 

A population of individuals is generated first, each individual being represented 
by certain behavior traits. An evaluation function evaluates the performance of 
each individual in solving the given problem. Each individual has a set of beliefs 
which are modified by “group mappa” representing general experience gathered. 
Experience of each individual is added to group mappa which in turn shapes the 
belief.  The individual mappa is the combination of group mappa and individual 
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belief. If the resultant individual mappa for an individual is found to be lower than 
a threshold value, then that individual is discarded from the population (belief 
space). Then a selection process is performed to select individuals from the parent 
population. Domain-specific genetic operator is then applied on the selected indi-
viduals. The communication channel used and the protocols influence the interac-
tion between the population and the belief space.  

The multi-objective version of cultural algorithm proposed by Coello and Be-
cerra [68] used evolutionary programming for searching and Pareto ranking to 
rank individuals in the population. The belief space consists of a phenotypic nor-
mative part and a grid of nondominated solutions. The phenotypic normative part 
contains the lower and upper bounds of the intervals of each objective. The grid is 
built within these bounds.  

4.17   Firefly Algorithm (FA) 

Firefly Algorithm (FA) [69] is a nature inspired algorithm based on the flashing 
behavior of fireflies which are mainly found in tropical and temperate regions. FA 
is particularly suitable for multimodal optimization according to Yang [69], Par-
ticle Swarm Optimization (PSO) is a special case of FA. The fireflies flash light 
through a process known as “bioluminescence”, because of three reasons – 1) to 
communicate with the mating partners, 2) to attract preys and 3) as protective 
warning mechanism. The opposite sexes come together based on the flashing 
rhythms, flashing rate and the time duration of flash. Each species has unique 
flashing pattern and the female fireflies may imitate the flashing pattern of other 
firefly species in order to attract and eat the males of other species. The algorithm 
is based on these behaviors of fireflies.  

We know that light intensity I is inversely proportional to the distance r by the 

relation 21/I r∞  and the light becomes weaker as the air absorbs light. These 
two factors are important influence on FA. In the algorithm, first a generation of 
fireflies is initialized, each objective function is associated with a light intensi-

ty iI , an absorption coefficient γ  is defined. The algorithm compares the intensi-

ties of each pair of fireflies in the population and the lower intensity firefly is 
moved towards a higher intensity firefly. The attractiveness is varied with distance 
and new solutions are generated by updating the fireflies following the expression 
(31).  

1 2exp[ ]t t
i i ij t tx x rβ γ α ε+ = + − +

                               
 (31) 

Where, t is the generation number, β  is the attractiveness that depends on r and is 

proportional to light intensity, ijr is the distance between the ith and jth firefly, tα  

is a parameter that controls the step size, tε  is a vector drawn from a pre-specified 

distribution.  
FA has found its application in wireless sensor network, travelling salesman prob-

lem, feature selection, image processing, clustering and continuous optimization.  
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4.18   Cuckoo Search (CS) 

CS [70] is based on the brooding behavior of some species of cuckoo and is en-
hanced by Levy flight behavior of some birds and flies, with jump steps based on 
a distribution. The basic idea is: cuckoos generally lay their eggs in the nest of 
other species of birds. There are three types of brooding parasitism – 1) intraspe-
cific brood parasitism, 2) cooperative brooding and 3) nest takeover. The cuckoo 
may choose a nest of another selected species for which the chance of abandoning 
or destroying eggs is the least. Then they lay eggs in the selected nest. The cuckoo 
may also destroy the eggs of the host bird in order to increase the chance of sur-
vival of its eggs.  

The algorithm based on CS generates a population of nests. Then the algorithm 
gets a cuckoo depending on its fitness. Then a nest is chosen randomly. The fit-
nesses of the nests are compared and better nest replaces the worse nest. Then the 
solutions are ranked and the best ones are kept in the new population. An impor-
tant aspect of this algorithm is the application of levy flights and random walk to 
generate new solution. The expression to update a solution is given by expression 
(32). 

1t t tx x sE+ = +
                                            

 (32) 

Where, t is the generation number, s is the step size which indicates how far a 

random walker can go for a fixed number of iterations, tE is drawn from a distri-

bution which is normal distribution generally.  
The multi-objective version of this algorithm assigns random weights to com-

bine the objectives into a single objective. CS algorithm has been applied in  nurse 
scheduling problem, welded beam design problem, spring design problem, wire-
less sensor network, knapsack problem, software testing.  

4.19   Gravitational Search Algorithm (GSA) 

GSA [71] is based on the law of gravity and the mass interactions. In this algo-
rithm, a collection of mass (search agents) interact among themselves based on 
Newton’s law of gravity and the laws of motion. A population of search agents is 
generated and the fitness of each agent is evaluated. Each of the agents has four 
specifications – 1) position, 2) inertial mass, 3) active gravitational mass and 4) 
passive gravitational mass. The inertial mass, active & passive gravitational mass 
and the best and the worst of the agents are found out. The positions of the agents 
are updated based on the total force in different directions, acceleration and ve-
locity of the agents. The best agents are then chosen for the new population of 
solutions. The multi-objective version of GSA is called NSGSA (Nondominated 
Sorting GSA) proposed by Nobahari et al. [72]. The NSGSA uses non-dominated 
sorting in order to update the acceleration. The elitist solutions are preserved in an 
external archive. The positions are also mutated using the “sign and reordering” 
mutation (turbulence). 
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4.20   Charged System Search (CSS) 

CSS [73] is based on the Coulomb’s law of electrostatics and Newton’s laws of 
mechanics. CSS is a multi-agent approach where each represents a charged par-
ticle (CP). The CPs can affect each other depending on the distance among them 
and their fitness values. The population consists of charged particles. The proba-
bilities of moving and the attracting force vector are calculated for each CP and 
then the new positions and velocities of the CPs are determined. The better 
charged particles are accepted as the new solutions. CSS is particularly suitable to 
non-smooth or non-convex domains and is considered both as a good global and 
local optimizer. 

4.21   Miscellaneous Algorithms 

Intelligent Water Drops (IWD) algorithm [74] is based on how the natural rivers 
find their optimal paths to their destinations. The selection of optimal path here is 
based on the actions and reactions among the water drops and the interactions of 
the water drops with the riverbeds. The water drops cooperate with each other in 
order to find the optimal path and the solution is constructed incrementally. 

River Formation Dynamics (RFD) [75] is based on the idea of how water forms 
river by eroding the ground and depositing sediments. The altitudes of places are 
dynamically changed because of the actions by water and as a result decreasing 
gradients are formed. In this way, new gradients are formed by drops. Here good 
solutions are characterized by decreasing altitudes. 

Self-Propelled Particles (SPP) algorithm [76], also known as “Couzin-Vicsek 
Algorithm” is based on the idea of “self-ordered motion in systems of particles 
with biologically motivated interaction”. Particles move with constant absolute 
velocity and an average direction of the motion of the particles in their neighbor-
hood is assumed. 

Some other significant research studies include the research studies of Luna et 
al. [77], Raúl et al. [78], Farooq and Lam [79], Xueshun et al. [80], Tapia et al. 
[81], Basgalupp et al. [82], Li et al. [83]. 

5   Hybrid Algorithms 

A number of hybrid algorithms are observed in the existing literature. The hybri-
dization has been performed between different types of algorithms and sometimes 
a part of the proposed algorithm has been modified by other algorithm in order to 
enhance the performance. Since a detailed discussion of such algorithm may lead 
to the repetition of the same concepts discussed before thus a table of such re-
search studies along with the algorithms used in the hybridization is provided in 
Table 1. 
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Table 1 Hybrid Algorithms 

Reference Algorithms Hybridized 
[84] Differential Evolution; BioGeography Based Optimization 
[85] Multi-Objective Evolutionary Algorithm based on Decomposition 

(MOEA/D); Problem specific generalized subproblem-dependent 
heuristics 

[86] Ant Colony Optimization; Simulated Annealing 
[87] Nondominated Sorting Differential Evolution; Back Propagation 

Algorithm 
[88] Differential Evolution; Cultural Algorithm 
[89] Evolutionary Computing; Neural Network 
[90] Nondominated Sorting Genetic Algorithm-II; Particle Swarm 

Optimization 
[91] Differential Evolution; Estimation of Distribution Algorithm 
[92] Nondominated Sorting Genetic Algorithm-II; Neural Network 
[93] Immune Algorithm; Differential Evolution 
[94] Immune Algorithm; Game Theory 
[95] Particle Swarm Optimization; Genetic Algorithm 
[96] Differential Evolution; Rough Set Theory 
[97] Nondominated Sorting Genetic Algorithm-II; Sequential Quadratic 

Programming 

6   Modification/Improvement of Existing Algorithms 

A number of research studies on the improvement of the existing algorithms, are 
observed in the existing literature. Some of the significant research studies on the 
improved algorithms are presented in this section. 

Murugan et al. [98] used controlled elitism to improve NSGA-II. Elitism in 
NSGA-II is maintained through tournament selection and crowding distance main-
ly. A geometric distribution is also used in this paper to distribute the individuals 
among the fronts. Wang et al. [99] used partial order relation and Cauchy Distri-
bution was used for crossover operator. Individuals were sorted by Cauchy Distri-
bution in order to generate nondominated individuals.  

Sato et al. [100] embedded δ-similar elimination method into NSGA-II to im-
prove its distribution and used Geometric distribution for controlled elitism which 
is a way to reduce excessive selection pressure. The main idea is: if two individu-
als are within δ distance, the similar elimination procedure is used to eliminate any 
one of those two individuals. Long et al. [101] applied a better preservation strate-
gy to NSGA-II to increase diversity in the solution. Yan et al. [102] proposed an 
improved NSGA-II in which genetic operators are applied to the population at first 
and invalid individuals from the resultant population are modified to valid  
individuals. Mansour et al. [103] used node-depth encoding scheme to modify 
NSGA-II.  
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Lakashminarasimman et al. [104] proposed dynamic crowding distance and 
controlled elitism to improve NSGA-II. Controlled elitism is supposed to maintain 
“lateral diversity of nondominated front” whereas dynamic crowding distance 
“improves distribution of nondominated solutions”. The main disadvantage of 
crowding distance mechanism as observed by the authors is the lack of uniform 
diversity in the obtained nondominated solutions. The dynamic crowding distance 
was measured by expression (33). 
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 r: number of objectives 

iCD : Crowding distance of the ith individual 

Coelho et al. [105] modified NSGA-II by applying chaotic sequence based on 
“Zaslavskii map” in the crossover operator which results in the greater conver-
gence and effective distribution. Aguirre and Tanaka [106]  used ε -sampling to 
sample the population into smaller subgroups and ε -ranking to rank the groups. 
Yijie and Gongzhang [107] proposed three modes of crossover operator, viz., max 
distance, max-min distance and neighboring max and used these operators in the 
existing algorithm. Jie et al. [108] proposed a ‘delete’ operator in order to increase 
the search capability and the operator was incorporated in NSGA-II. The main 
idea is that, when selecting the elitist, if neither of the two individuals in a popula-
tion wins and they are nearly same, then delete one of them. A ‘circular selection’ 
is also presented to preserve good genes of the parent population.   

Ripon et al. [109] proposed an improved version of Precedence Preservation 
Crossover (IPPX). Onety et al. [110] applied a new strategy in NSGA-II which is 
the application of different encoding schemes for different parts of population, in 
two levels. At level 1, the first part of the population is encoded and in the level 2, 
the second part of the solution is encoded. The proposed approach was found to be 
an effective one. Tiwari et al. [111] improves micro genetic algorithm by propos-
ing a selection strategy that reduces the probability of searching less desirable 
regions. The algorithm is designed to obtain “fast and reliable convergence” and 
also decouples the external archive with the current population.  

Among the other significant research studies the research studies of Fernandez et al. 
[112], Wang and Yang [113], Sun [114], Ishibuchi et al. [115] are significant.  
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7   Test Functions 

Test functions can be defined as the functions or algebraic expressions of various 
natures, which may be used to verify the various aspects or characteristics of an 
algorithm. A few papers in the existing literature are observed to set guidelines on 
test functions. However, guidelines on test functions for testing algorithms han-
dling more than two objectives are rarely available. 

Deb [116] has clearly identified the problems faced while solving Multi-
Objective Problems (MOPs) with an algorithm. Deb [116] has identified four fac-
tors that may prevent an algorithm to converge to the true Pareto front. These are: 
1) multimodality, 2) deception, 3) isolated optimum and 4) collateral noise. He has 
also identified the factors which may lead the multi-objective algorithms to face 
difficulties in obtaining diverse solutions. These are: 1) “convexity or non-
convexity in the Pareto optimal front”, 2) “discreteness in the Pareto optimal 
front”, 3) “non-uniform distribution of solutions in the Pareto optimal front”. After 
investigating with a number of different kinds of functions, Deb [116] has summa-
rized a table of different kinds of functions for both the objectives and the con-
straints and their effects. 

Viennet et al. [117] had summarized a total of six bi-objective and one  
tri-objective unconstrained test problems. The test problems were found to be 
effective from the experimentations conducted by the authors. A total of six con-
strained bi-objective test problems were also investigated. However, while devel-
oping test functions, the following characteristics for the test functions should be 
kept in mind, in order to test the performance of an algorithm [8]. Saxena et al. 
[118] took a modular approach in developing test instances. They considered  
objective function of the form as shown in expression (35). 

( ) ( ) ( 1: ),i i i mf x xI y nα β= + +
                              

 (35) 

Where,  

M: Number of objectives 
N: Number of decision variables 

1 2( , ,..., )mxI x x x=  and 1 2( , ,..., )m m nxII x x x+ +=  

iα : Functions from 
1

[ , ]
m

i i
i

a b
=

∏  to R 

iβ : Function from n mR − to R  

The research studies of Trautmann et al. [119], Wagner et al. [120], Liang et al. 
[121] have also provided tests for checking convergence of solutions. Deb [122] 
proposed the use of five basic functions, viz., Sphere function (expression 36), 
Rastrigin’s function (expression 37), Weierstrass function (expression 38), Grie-
wank’s function (expression 39) and Ackley’s function (expression 40). A combi-
nation of these functions was used for a ten-objective problem in order to test 
various aspects of the test functions. 
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2

1

( )
D

i
i

f x x
=

=∑ ,  [ 100,100]Dx ∈ −                       (36) 

2

1

( ) ( 10 (2
D

i
i

f x x Cos
=

= −∑ π ) 10)ix + , [ 5,5]Dx ∈ −                  (37) 

max

1 0

( ) ( [ (2
D k

k

i k

f x a Cos
= =

=∑ ∑  π ( 0.5))])k
ib x + , [ 100,100]Dx ∈ −         (38) 

2

1 1

( ) ( ) 1
4000

DD
i i

i i

x x
f x Cos

i= =

= − +∑ ∏ , [ 100,100]Dx ∈ −                (39) 

2

1

1
( ) 20exp( 0.2 )

D

i
i

f x x
D =

= − − ∑  

1

1
exp( (2

D

i

Cos
D =

− ∑ π )) 20ix e+ + , [ 32,32]Dx ∈ −                     (40) 

Deb et al. [122] had provided a set of test functions for solving problems with 
more than two objectives. Table 2 provides an effective subset of all test functions 
proposed in the existing literature, so far. 

Table 2 Test Functions 

Paper Test Functions 
Deb 
[116] 1 1( )f x c x=  

1

( )
m

i i
i

f x c x
=

=∑  

4
1 1( ) 1 exp( 4 ) (5f x x Sin= − − π 1)x , 10 1x≤ ≤ , for m=1 

or 
4

1( ) 1 exp( 4 ) (5f x r Sin= − − π )r  where, 

2

1

m

i
i

r x
=

= ∑  

1 1
1

2 20.2 0.6
( ) 2.0 exp 0.8exp

0.004 0.4
{( ) } {( ) }x x

f x
− −

= − − − −  
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Table 2 (continued) 
 

 

1
1

( ) ( )
m

i
i

f x f l
=

=∑  where, f is actually the expression for g 

defined below. 

2 ( ), ( )
( ( ))

1, ( )
i i i

i
i i

u l u l l
g u l

u l l

+ <⎧
= ⎨ =⎩

 

Where, ( )iu l is the unitation of the first substring of length il  

 
Coel-
lo et 
al. [8] 

2
1( )f x x=  

2
2 ( ) ( 2)f x x= −  

5 510 10x− ≤ ≤  

2
1

1

1
( ) 1 exp( ( ) )

n

i
i

f x x
n=

= − − −∑  

2
2

1

1
( ) 1 exp( ( ) )

n

i
i

f x x
n+

= − − +∑  

4 4;ix− ≤ ≤  1, 2,3i =  

2 2
1 1 1 2 2( , ) [1 ( ) ( ) ]f x y A B A B= − + − + −  

2 2
2 ( , ) [( 3) ( 1) ]f x y x y= − + + +  

1 0.5 1 2 1 2 1.5 2A Sin Cos Sin Cos= − + −  

2 1.5 1 1 2 2 0.5 2A Sin Cos Sin Cos= − + −  

1 0.5 2 1.5B Sinx Cosx Siny Cosy= − + −  

2 1.5 2 0.5B Sinx Cosx Siny Cosy= − + −  

1
2 2

1 1
1

( ) ( 10exp(( 0.2)* ))
n

i i
i

f x x x
−

+
=

= − − +∑  

2
1

( ) ( 5 ( ) )
n

b
i i

i

a
f x x Sin x

=

= +∑  

5 5ix− ≤ ≤ , 1, 2,3i = , 0.8a = , 3b =  
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Table 2 (continued) 
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Deb 
et al. 
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1 1 2 1
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Table 2 (continued) 
 

 
1 1( ) (1 ( )) (Mf x g x Cos x= + π 2/2) (Cos x π 2/2)... ( MCos x − π 1/2) ( MCos x − π

/2) 

2 1( ) (1 ( )) (Mf x g x Cos x= +  

π 2/2) (Cos x π 2/2)... ( MCos x − π 1/2) ( MSin x − π /2) 
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. 
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Table 2 (continued) 

 
1 1 2 2 1( ) (1 ( )) ( /2) ( /2)... ( /2) ( /2M M Mf x g x Cos x Cos x Cos x Cos xπ π π ππ π π π− −= +

2 1 2 2 1( ) (1 ( )) ( /2) ( /2)... ( /2) ( /2M M Mf x g x Cos x Cos x Cos x Sin xπ π π ππ π π π− −= +
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Table 2 (continued) 

 
1 1 2 2 1( ) (1 ( )) ( /2) ( /2)... ( /2) ( /2)M M Mf x g x Cos Cos Cos Cosθπ θπ θ π θ π− −= +

2 1 2 2 1( ) (1 ( )) ( /2) ( /2)... ( /2) ( /2)M M Mf x g x Cos Cos Cos Sinθπ θπ θ π θ π− −= +

3 1 2 2( ) (1 ( )) ( / 2) ( / 2)... ( / 2)M Mf x g x Cos Cos Sinθ π θ π θ π−= +
. 
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Table 2 (continued) 
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Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ = , where 
2 2( ) ( ) ( ) 1 0

M jjg x f x f x= + − ≥ , 1, 2,..., ( 1)j M∀ = −  

8   Software Packages Used 

Every proposed multi-objective evolutionary algorithm needs software for expe-
rimentation. Researchers in the existing literature have either used any existing 
software or have proposed new software tools.  

First of all, among the existing software, Matlab, C, C++ have been widely 
used to implement any contributed algorithm. However, there are a few research 
studies which have also proposed some software frameworks. 

Liefooghe et al. [123] proposed a software framework named ParadisEO-
MOEO which is basically developed using C++ object-oriented concept. Thus all 
the components of the software including the initialization, stopping criteria, fit-
ness assignments, diversity assignments, selection schemes, replacement and so 
on, are represented by objects. 

Although some multi-objective tools are available such as the toolbox of Mat-
lab, but while implementing a newly proposed algorithm, these tools cannot work 
effectively because of the newly proposed logic in the algorithm. Therefore, in 
those situations, the programs are developed using the existing programming lan-
guages. 

The main problem seems to lie in representing the results of a multi-objective 
nature based algorithm. Although, the latest version of Excel may sometimes be 
simple to use, but the main difficulty is faced while representing the Pareto optim-
al solutions of the algorithm. However some plot attainment software such as 
‘dplot’ may be used. The feature of ‘dplot’ is that the tools of dplot software are 
embedded into Excel after installation of the software. Therefore, the ordinary 
known software framework of Excel can easily be used along with additional tools 
of dplot software. Besides GRS software package is capable of generating and 
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illustrating Pareto optimal solutions. among some other software packages, 
NIMBUS is particularly remarkable.  

9   Complexity of Nature Based Algorithms 

One of the basic causes for the development of a vast number research studies is 
the complexity of the previously existing deterministic solution methodologies. 
The multi-objective problems are basically NP hard problems. In order to reduce 
the time complexity of the traditional methods, a vast number of multi-objective 
evolutionary algorithm have been proposed in the existing literature. However, the 
nature based multi-objective algorithms do not ensure global optimal solutions and 
therefore these methods are still drawing a lot of attention from the research com-
munity. However the inherent complexity issues of the algorithms has resulted in 
a very few research studies which have endeavored to simplify some aspects of 
the already existing benchmark evolutionary algorithms. For example, three way 
radix quick sort algorithm has been used by Gao et al. [124] in order to reduce the 
complexity of the sorting process of NSGA-II. Sun and Ding [125] have used 
simple quick sort to enhance sorting efficiency and Liu et al. [126] have used 
quick sort to reduce the time complexity of their algorithm. 

10   Conclusion 

The existing literature on the nature based algorithms can mainly be categorized 
into 1) the research papers proposing new ideas, 2) research papers proposing 
hybrid algorithm, 3) the research papers on the modification of the existing algo-
rithms, 4) the research studies which have applied the existing algorithms. Be-
sides, a few research studies have also investigated test suites for testing the pro-
posed algorithm are also observed in the existing literature. 

In this chapter, brief descriptions of each of the existing benchmark nature 
based algorithms have been discussed at first. These benchmark algorithms are 
frequently seen to be applied in the existing literature. The other nature based 
algorithms which are not frequently applied, have also been discussed. A total of 
twenty three such algorithms have been discussed. Besides the some significant 
hybrid algorithms and some research studies which have modified the existing 
algorithms have also been discussed. The test problems proposed to test various 
aspects of the proposed algorithms have also been summarized. At last a glimpse 
of the software packages which are in use to implement the nature based algo-
rithms have been shown and complexity issues have been outlined. 
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Image Processing with Spiking Neuron
Networks

Boudjelal Meftah, Olivier Lézoray, Soni Chaturvedi,
Aleefia A. Khurshid, and Abdelkader Benyettou

Abstract. Artificial neural networks have been well developed so far. First two
generations of neural networks have had a lot of successful applications. Spiking
Neuron Networks (SNNs) are often referred to as the third generation of neural net-
works which have potential to solve problems related to biological stimuli. They
derive their strength and interest from an accurate modeling of synaptic interactions
between neurons, taking into account the time of spike emission.

SNNs overcome the computational power of neural networks made of threshold
or sigmoidal units. Based on dynamic event-driven processing, they open up new
horizons for developing models with an exponential capacity of memorizing and a
strong ability to fast adaptation. Moreover, SNNs add a new dimension, the temporal
axis, to the representation capacity and the processing abilities of neural networks.
In this chapter, we present how SNN can be applied with efficacy in image cluster-
ing, segmentation and edge detection. Results obtained confirm the validity of the
approach.

1 Introduction

There are many artificial neural networks that can be successfully used in image
processing tasks, the most prominent of them are networks, commonly known by
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now as Spiking Neural Networks (SNN) [1]. Highly inspired from natural comput-
ing in the brain and recent advances in neuroscience, they derive their strength and
interest from an accurate modeling of synaptic interactions between neurons, taking
into account the time of spike firing. SNNs overcome the computational power of
neural networks made of threshold or sigmoidal units [2].

The use of spiking neurons promises high relevance for biological systems and,
furthermore, might be more flexible for computer vision applications [3]. Wu et
al. [4] proposed hierarchical spiking neural networks to process visual stimuli, in
which multiple overlapped objects are represented by different orientation bars.
Their model segments images and binds their pixels to form shapes of objects using
local excitatory lateral connections. Girau et al. [5] had implemented integrate-and-
fire neurons to the standard LEGION (Local Excitatory Global Inhibitory Oscillator
Network) architecture to segment grey-level images. In order to segment images,
the LEGION model groups oscillators that receive their input from similar features
in an image. Oscillators group together by synchronization of their phase thanks to
excitatory connections, and they get desynchronized from other groups of oscilla-
tors by means of global inhibition. Buhmann et al. [6] proposed a network of leaky
integrate-and-fire neurons to segment gray-scale images. The network architecture
with local competition between neurons that encode segment assignments of image
blocks is motivated by an histogram clustering approach to image segmentation.
Rowcliffe et al. [7] had developed an algorithm to produce self-organisation of a
purely excitatory network of Integrate-and-Fire neurons. Pixels from an image are
used as scalar inputs for the network, and segmented as the oscillating neurons are
clustered into synchronised groups.

In this chapter, a spiking neural network is used to cluster images, segment
images and detect edges with Hebbian based winner-take-all learning. We seek,
through a series of experiments carried out, the best parameters of the SNN network
to have a good segmentation and a fine detection of contours.

The chapter is organized as follows: in first Section, related works are presented
within the literature of spiking neural network (SNNs). Second Section is the central
part of the chapter and is devoted to the description of the architecture of a spiking
neural network with multiple delay connections, the encoding mechanism for con-
verting the real valued inputs into time vectors and the learning rule. The results
and discussions of the experimental activity are reported in the third Section. Last
Section concludes.

2 Overview of Spiking Neuron Networks

Spiking neural networks (SNNs) are a class of ANNs that are increasingly receiving
the attention as both a computationally powerful and biologically plausible mode
of computation [8], [9]. SNNs model the precise time of the spikes fired by a neu-
ron, as opposed to the conventional neural networks which model only the average
firing rate of the neurons. It is proved that the neurons that convey information by
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individual spike times are computationally more powerful than the neurons with
sigmoidal activation functions [10].

2.1 Artificial Neuron Generations

Wolfgang Maass [11] delineates past and current artificial neural network research
into three generations and makes the following observations.

The first generation is based on the McCulloch-Pitts neuron (also known as a
perceptron or a threshold-gate) as the basic computation unit. Models of the first
generation, such as the multi-layer perceptron, use digital input and output, usu-
ally binary or bipolar. Any Boolean function can be computed by some multi-layer
perceptron with a single hidden layer.

The second generation is based on computation units (neurons) that use an activa-
tion function of a continuous set of possible output values. Commonly, these activa-
tion functions are the sigmoid, or the hyperbolic tangent. Second generation neural
networks, like first generation networks, can compute arbitrary boolean functions
(after using a threshold). Second generation networks can compute certain boolean
functions with fewer neurons than first generation neurons. Also, second generation
networks with one hidden layer can approximate any continuous, analog function
arbitrarily well. Important to many implementations is the fact that second genera-
tion networks support learning algorithms based on gradient descent, such as error
back-propagation.

The third generation of artificial neural networks is based on spiking neurons, or
integrate and fire neurons. These neurons use recent insights from neurophysiology,
specifically the use of temporal coding to pass information between neurons. These
networks, like those of the second generation, can approximate continuous functions
arbitrarily well, but with temporally encoded inputs and outputs [11], [12]. Further,
there are function that require fewer neurons in a pulsed neural net to approximate
than would be needed in a second generation network [11].

All three of these generations are simplifications of what is known about the
physiology of biological neurons but the third generation is the model with the high-
est fidelity.

2.2 Spiking Neuron Networks Architecture

The network architecture consists in a feedforward network of spiking neurons with
multiple delayed synaptic terminals (Fig. 1.a). The neurons in the network generate
action potentials, or spikes, when the internal neuron state variable, called ”mem-
brane potential”, crosses a threshold ϑ . The relationship between input spikes and
the internal state variable is described by the Spike Response Model (SRM), as in-
troduced by Gerstner [9]. Depending on the choice of suitable spike-response func-
tions, one can adapt this model to reflect the dynamics of a large variety of different
spiking neurons.
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Fig. 1 (a) Spiking neural network architecture; (b) Multiple synapses transmitting multiple
spikes.

Formally, a neuron j, having a set Γj of immediate predecessors (pre-synaptic
neurons), receives a set of spikes with firing times ti, i ∈Γj. Any neuron generates at
most one spike during the simulation interval, and fires when the internal state vari-
able reaches a threshold ϑ . The dynamics of the internal state variable x j(t) are de-
termined by the impinging spikes, whose impact is described by the spike-response
function ε(t) modeling a simple α-function weighted by the synaptic efficacy wi j:

x j(t) = ∑
i∈Γj

m

∑
k=1

wk
i jε(t − ti − dk) (1)

The height of the post-synaptic potential (PSP) is modulated by the synaptic weight
wi j to obtain the effective post-synaptic potential (PSP).

ε(t) a spike-response function shaping a PSP and τ models the membrane poten-
tial decay time constant that determines the rise and decay time of the PSP. Figure
2 illustrates and equation (2) represents one of the most popular mathematical spike
response models.

x j(t) = ∑
i∈Γj

m

∑
k=1

wk
i jε(t − ti − dk) (2)

In the network as introduced in [13], an individual connection consists in a fixed
number of m synaptic terminals, where each terminal serves as a sub-connection
that is associated with a different delay and weight (Fig. 1.b). The delay dk of a
synaptic terminal k is defined by the difference between the firing time of the pre-
synaptic neuron, and the time the post-synaptic potential starts rising.

We describe a presynaptic spike at a synaptic terminal k as a PSP of standard
height with delay dk. The unweighted contribution of a single synaptic terminal to
the state variable is then given by:

yk
i (t) = ε(t − ti − dk) (3)
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Fig. 2 Spike response Function, Postsynaptic Potential is Excitatory (EPSP),τ = 8.

The time ti is the firing time of pre-synaptic neuron i, and dk the delay associated
with the synaptic terminal k.

Extending equation Eq.1 to include multiple synapses per connection and insert-
ing equation (Eq.3), the state variable x j of neuron j receiving input from all neurons
i can then be described as the weighted sum of the pre-synaptic contributions:

x j(t) = ∑
i∈Γj

m

∑
k=1

wk
i jy

k
i (t) (4)

Where wk
i j denotes the weight associated with synaptic terminal k. The firing time

t j of neuron j is determined as the first time when the state variable crosses the
threshold ϑ : x j(t) ≥ ϑ . Thus, the firing time t j is a non-linear function of the state
variable x j : t j = t j(x j).

2.3 Neural Coding Schemes

The spiking model is fundamentally different than previous generations of artifi-
cial neurons. Most importantly, the information passed by spikes can only be that
of the relative timing between them. Thus the passing of useful information across
a spiking net requires conversion from other forms (typically analog) to temporal
data. The first question that arises when dealing with spiking neurons is how neu-
rons encode information in their spike trains. Basically, there are three different
coding methods: rate coding, temporal coding and population coding (see [14] for
reviews).
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2.3.1 Rate Coding

Rate coding is a traditional coding scheme, assuming that most, if not all, infor-
mation about the stimulus is contained in the firing rate of the neuron. Because
the sequence of action potentials generated by a given stimulus varies from trial to
trial, neuronal responses are typically treated statistically or probabilistically. They
may be characterized by firing rates, rather than as specific spike sequences. Con-
sequently, rate coding is inefficient but highly robust with respect to the Inter-Spike
Interval Noise (ISI Noise) [15].

2.3.2 Temporal Coding

When precise spike timing or high-frequency firing-rate fluctuations are found to
carry information, the neural code is often identified as a temporal code [16]. A
number of studies have found that the temporal resolution of the neural code is on a
millisecond time scale, indicating that precise spike timing is a significant element
in neural coding [17], [18]. Temporal codes employ those features of the spiking
activity that cannot be described by the firing rate. The temporal structure of a spike
train or firing rate evoked by a stimulus is determined both by the dynamics of
the stimulus and by the nature of the neural encoding process. Stimuli that change
rapidly tend to generate precisely timed spikes and rapidly changing firing rates no
matter what neural coding strategy is being used. Temporal coding refers to tem-
poral precision in the response that does not arise solely from the dynamics of the
stimulus, but that nevertheless relates to properties of the stimulus. The interplay be-
tween stimulus and encoding dynamics makes the identification of a temporal code
difficult.

2.3.3 Population Coding

Population coding is a method to represent stimuli by using the joint activities of
a number of neurons. In population coding, each neuron has a distribution of re-
sponses over some set of inputs, and the responses of many neurons may be com-
bined to determine some value about the inputs. From the theoretical point of view,
population coding is one of a few mathematically well-formulated problems in
neuroscience. It grasps the essential features of neural coding and yet, is simple
enough for theoretic analysis [17]. Experimental studies have revealed that this cod-
ing paradigm is widely used in the sensor and motor areas of the brain.

3 Spiking Neuron Networks for Clustering, Segmentation and
Edge Detection

However, before building a SNN, we have to explore three important issues: in-
formation coding, learning method and network architecture for each operation of
image processing. After that we will use the SNN to cluster images, segment images
and detect edges.
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In order to simplify the model, we assume that before a neuron generates a spike,
it has been at its resting state for a sufficiently long time such that the back propa-
gation action potential is negligible. Also, in one learning cycle, each neuron fires
only once.

In this section, we will review how to encode real input data temporally, the
architecture and learning of spiking neural networks.

3.1 Information Coding

Spike timing encoding is the process of transforming measurements of sensory in-
puts into a spike train representation, which is the form of input a spiking neuron can
handle. Thus the multidimensional raw data, which consists of real values, needs to
be mapped into a temporal space before being fed to the network.

Bohte et al. [19], proposed the population coding method that encodes an input
variable using multiple overlapping Gaussian Receptive Fields (RF). Gaussian RF
are used to generate firing times from real values. The range of the data is first
calculated, and then each input feature is encoded with a population of neurons that
cover the whole data range. For a range [IMax..IMin] of a variable, which is also called
the coding interval, a set of m Gaussian RF neurons are used. The center Ci and the
width σi of each RF neuron i are determined by the following equations:

Ci = Imin +

(
2i− 3

2

)(
Imax − Imin

m− 2

)
(5)

σi =
1
γ

Imax − Imin

m− 2
(6)

Where m is number of receptive fields in each population and a value of 1.5 is used
for the variable γ .

While converting the activation values of RF into firing times, a threshold ϑ
has been imposed on the activation value. A receptive field that gives an activation
value less than this threshold will be marked as not-firing and the corresponding
input neuron will not contribute to the post-synaptic potential.

An illustration of this encoding scheme is shown in Figure 3, which shows the
firing times resulting from the encoding of the real value 0.3 using six RF. In this
example, assuming that the time unit is millisecond, the value 0.3 was encoded with
six neurons by delaying the firing of neurons 1 (5.564ms), 2 (1.287ms), 3 (0.250ms),
4 (3.783ms) and 5 (7.741ms). Neuron 6 does not fire at all, since the delay is above
threshold 9ms and stand in the no firing zone.

3.2 Spiking Neuron Networks for Unsupervised Learning Method

Our goal is that after learning, the spiking neural network can do clustering, segmen-
tation and edge detection by using the firing time of postsynaptic neurons associated
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Fig. 3 Coding of a real value, and its corresponding firing time.

with each input pattern. The approach presented here implements the Hebbian rein-
forcement learning method through a winner-take-all algorithm [20], [21].

For unsupervised learning, a Winner-Takes-All learning rule modifies the weights
between the input neurons and the neuron first to fire in the output layer using a
time-variant of Hebbian learning: if the start of a PSP at a synapse slightly precedes
a spike in the output neuron, the weight of this synapse is increased, as it had signif-
icant influence on the spike-time via a relatively large contribution to the membrane
potential. Earlier and later synapses are decreased in weight, reflecting their lesser
impact on the output neuron’s spike time. The synaptic weights should be randomly
initialized. When an input pattern is presented to the network, neurons are expected
to fire. The first neuron to fire is called the winner of the competitive process. Only
the weights of the winner neuron are updated using a Hebbian learning rule L(Δ t).

In a clustering task, the learning process consists mainly of adapting the time
delays, so that each output neuron represents an RBF center. This goal is achieved
using a learning function (Fig.4), which is defined as a function of the time interval
Δ ti j between the firing times ti and t j. This function controls the learning process by
updating the weights based on this time difference, as shown in equation (7), where
Δwi j is the amount by which the weights wi j are increased or decreased and η is the
learning rate.

Δwk
i j = ηL(Δ ti j) (7)

The learning function is a Gaussian curve defined by the equation (8). It reinforces
the synapse between neurons i and j if Δ ti j < 0, and depresses the synapse if Δ ti j > 0
(Gerstner, 2002, Leibold,2001).

L(Δ t) = (1+ b)e
(Δt−c)2

2(k−1) − b (8)
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with
k = 1− ν2

2ln b
1+b

where: L(.) is the learning function; η is the learning rate; ν determines the width of
the learning window; Δ t is the difference between the arriving of the spike and the
fire of neuron j; b determines the negative update given to a neuron; c fixes the peak
of the learning function; wk

i j is the increase of the kth connection between neurons
i and j. The weights are limited to the range 0 to wmax, the maximum value that a
weight can take.

Fig. 4 Gaussian learning function with b =0.2 c=-2.3 and ϑ = 5.

It is important to remark that this system is extremely sensible to the b parameter,
since a range from 0 to -0.3 leads to completely different dynamics in the learning
process. When the synaptic weight sum is stable (b=-0.007), the firing time tends to
evolute only according to the competitive learning process [23].

3.3 SNN Architecture for Clustering, Segmentation and Edge
Detection

3.3.1 SNN Architecture for Clustering Images

The model for a spiking neuron which we use in the following is the spike response
model with short term memory. Here we consider a network of such spiking archi-
tecture in a fully connected feedforward with connections implemented as multiple
delayed synaptic terminals (Fig. 5).

The network consists in an input layer, a hidden layer, and an output layer. The
first layer is composed of three inputs neurons (RGB values) of pixels. Each node
in the hidden layer has a localized activation φn = φ(‖X −Cn‖,σn) where φn(.) is
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Fig. 5 Network topology for clustering and Segmentation images.

a radial basis function (RBF) localized around Cn with the degree of localization
parameterized by σn. Choosing φ(Z,σ) = exp Z2

2σ 2 gives the Gaussian RBF. This
layer transforms real values to temporal values.

Instead of a single synapse, with its specific delay and weight, this synapse model
consists of many sub-synapses, each one with its own weight and delay dk, as shown
in Fig.1.b. The use of multiple synapses enables an adequate delay selection using
the learning. For each multiple synapse connecting neuron i to neuron j, with s
subsynapses, the resulting PSP is given by equation (1). The total contribution of all
presynaptic neurons is then given by equation (4). The neuron model implemented
is the SRM0 (Gerstner, 2002), with a strictly excitatory PSP. The delays dk are fixed
for all sub-synapse k, varying from zero in 1ms fixed intervals. ε(t) modeling a
simple α-function.

3.3.2 SNN Architecture for Cell Segmentation

In this section, before introducing the architecture used, we give a quick review of
cellular segmentation methods.

Image analysis in the field of cancer screening is a significant tool for cytopathol-
ogy [24]. Two principal reasons can be highlighted. First, the quantitative analysis
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of shape and structure of nuclei coming from microscopic color images brings to
the pathologist valuable information for diagnosis assistance. Second, the quantity
of information that the pathologist must deal with is large, in particular when the
number of cancer screening increases. That is why; a segmentation scheme for mi-
croscopic cellular imaging must be efficient for reliable analysis.

Many cellular segmentation methods have been presented. They include water-
shed [25], region-based [26] and threshold-based methods [27]. Application of ac-
tive contour has been widely investigated for cell segmentation (Karlosson, 2003).
Cells stained with Papanicolaou international staining make it possible to classify
the color pixels among three classes [29]: background, cytoplasm or nucleus. How-
ever, this classification cannot be perfect. Indeed, a fraction on nuclei pixels have
the same color then cytoplasm pixels because of the variability of the nuclei accord-
ing to the type of the cells and to the chromatin distribution. Moreover, for some
cytopathologies, the mucus present in the background has the same color as some
cells (cytoplasm and nucleus).

For cell segmentation, The network architecture consists in a fully connected
feedforward network of spiking neurons with connections implemented as multiple
delayed synaptic terminals. We consider two different topologies for unsupervised
and supervised learning. For unsupervised learning, the SNN performs its learning
directly on the pixels of the image to classify. For unsupervised learning, a reference
data set of pixels from different images is used for learning. In both topologies
depicted in Fig. 6(a) and Fig. 6(b), the network consists in an input layer, a hidden
layer, and an output layer. The first layer is composed of RGB values of pixels. Each
node in the hidden layer has a localized activation φn = φ(‖X−Cn‖,σn) where φn(.)
is a radial basis function (RBF) localized around Cn with the degree of localization
parameterized by σn. Choosing φ(Z,σ) = exp Z2

2σ 2 gives the Gaussian RBF. This
layer transforms the RGB values of pixels in first layer to temporal values. Third
layer consist in class outputs (cell background, cytoplasm and nuclei).

The network architecture consists in a fully connected feedforward network of
spiking neurons with connections implemented as multiple delayed synaptic termi-
nals. We consider two different topologies for unsupervised and supervised learning.
For unsupervised learning, the SNN performs its learning directly on the pixels of
the image to classify. For unsupervised learning, a reference data set of pixels from
different images is used for learning. In both topologies depicted in Figure 6(a) and
Figure 6(b), the network consists of an input layer, a hidden layer, and an output
layer. The first layer is composed of RGB values of pixels. Each node in the hidden
layer has a localized activation n where n (.) is a radial basis function (RBF) local-
ized around cn with the degree of localization parameterized by n. Choosing z gives
the Gaussian RBF. This layer transforms the RGB values of pixels in first layer to
temporal values. Third layer consist in class outputs (cell background, cytoplasm
and nuclei).
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(a)

(b)

Fig. 6 (a) Network topology for unsupervised training; (b) Network topology for supervised
training.

3.3.3 SNN Architecture for Edge Detection

First image of a microscopic cell is segmented with spiking neural network. Once
the segmentation done, we will record the activity of each output neuron which
gives for each input pixel an output binary 1 if the neuron is active or 0 if the neuron
is inactive. The result of binary matrices activation of output neurons can be rep-
resented by binary images containing the edges detected by these neurons for each
class. Fusion is then made to have the final edges by superimposing the resulting
images (Figure 7).
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Fig. 7 SNN edge network topology.

4 Experimental Results and Discussion

4.1 Clustering Images

Based on the work in [30], several experiments are carried out by changing the
number of synapses, the number of receptive fields and the size of training corpus
to select the best network parameters on a set of 50 images taken from the Berke-
ley database (Martin, 2001). The best architecture for a mean quadratic error of
87.352+−[28.747,39.319] has the following parameters:

Table 1 Best parameter of the SNN.

Receptive
field

Subsynapse Threshold
ϑ

Training set η τ υ b c

8 12 9 20% 0.0025 3 5 -0.007 -2.3

To compare the result of clustering with others models, we had used the neural
network SOM and Kmeans. The clustering image with Kmeans is shown in Figure
8.a, with SOM neural network is shown below in Figure 8.b and with spiking neural
networks in Figure 8.c.

Evaluation Methods

To see if clustering is close to the original image, an error metric is needed. The
error between the original image and the quantized image is generally used. For
this evaluation we had used the Peak Signal Noise Ratio (PSNR), the Mean Square
Error (MSE), the Mean Absolute Error (MAE) and Normalized Color Difference
(NCD) are therefore considered to evaluate the clustering. Table 2 summarizes the
evaluation obtained for each resulting image in Figure 8.



538 B. Meftah et al.

(a) (b)

(c)

Fig. 8 (a) Clustering image with Kmeans (b) Clustering image with SOM (c) Clustering
image with SNN.

Table 2 Clustering evaluation (best rates bold faced).

clustering with Kmeans clustering with SOM clustering with SNN
PSNR 51.283 62.574 65.404
MSE 385.37 124.596 93.845
MAE 16.643 7.960 7.841
NCD 0.152 0.110 0.083
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4.2 Cell Segmentation

For the considered class of microscopic images, a microscopy expert has to choose
judicious images that well describe the whole segmentation problem (a ground
truth). This ground truth database can be used for the learning step and also as a
reference segmentation to evaluate the relevance of an automatic segmentation. In
the sequel, we will consider a publicly available database [32] of 8 microscopic im-
ages of bronchial tumors (752 x 574 pixels). The pixels of these images have to be
classified into one of the three following classes background, cell cytoplasm and
cell nucleus. Figures 9.a and 9.b shows a microscopic color image and its ground
truth. Pixel dataset has been split to produce training, validation and test sets.

(a) (b)

Fig. 9 (a) Original image; (b) Ground truth.

Images in Figure 10 show segmentation results with our segmentation scheme
for the parameter of Table 1 in comparison with the expert segmentation. It is worth
to note that the mucus present in all images is correctly identified as background
[33].

Evaluation Methods

To evaluate our approach, we use several classification rates. These classifications
rates are expressed as follows:

R0 =
Number o f pixels well classi f ied
Number o f pixels o f the image

(9)

R1 =
Number o f nuclei pixels well classi f ied
Number o f nuclei pixels o f the image

(10)
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Fig. 10 Cell microscopic images (First row); expert segmentation (Second row); segmenta-
tion produced by unsupervised training (Third row) and segmentation produced by supervised
training (Fourth row).
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R2 =
Number o f background pixels well classi f ied
Number o f background pixels o f the image

(11)

R3 =
R1 +R2

2
(12)

Results in Table 3 show that SNN with supervised training has the best classification
accuracies as compared to SNN with unsupervised training.

Table 3 Classification rates (best rates bold faced).

SNN with unsupervised train-
ing

SNN with supervised training

R0 89.07% 94.27%
R1 69.57% 80.37%
R2 94.55% 99.06%
R3 82.06% 89.71%

Table 4 presents a comparison of the classification accuracies obtained by Meurie
et al. [32] for different classifiers as well as with our SNN supervised training. Our
approach clearly outperforms all these state-of-the-art methods.

Table 4 Segmentation rates and comparison with Meurie et al. approaches [32], with best
rates bold faced.

Classifier R1

SVM 72.2%
Bayes 74.6%
K-means 74.4%
MLP 73%
Fisher 1 72.3%
KNN 70%
Supervised SNN 80.37%

4.3 Edge Detection

The result of edge detection and a comparison with other methods of edge detection
is obtained in Figure 11.
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(a) (b)

(c) (d)

Fig. 11 (a) Edge detection with Prewitt (b) Edge detection with morphology black top hat
(c) Edge detection with Canny (d) Edge detection with SNN.

5 Conclusion

In this chapter, we have applied a Spiking Neural Network (SNN) Model for im-
age clustering, segmentation and edge detection. To use a SNN for these problems,
we have addressed the issue of parameter selection. We have focused our study on
the keys parameters: network architecture (number of subsynapses, receptive fields,
output neurons) and learning parameters (training step, size of the training data base,
peak of the learning function). These parameters are set up for each specific image
problem problems. Results have shown that a careful setting of parameters is re-
quired to obtain efficient results. Future works will concern the application of this
works to video processing.



Image Processing with Spiking Neuron Networks 543

References

1. Ghosh-Dastidar, S., Adeli, H.: Third generation neural networks: Spiking neural net-
works. In: Yu, W., Sanchez, E.N. (eds.) Advances in Computational Intelligence. AISC,
vol. 61, pp. 167–178. Springer, Heidelberg (2009)

2. Paugam-Moisy, H., Bohte, S.M.: Computing with Spiking Neuron Networks. In: Kok,
J., Heskes, T. (eds.) Handbook of Natural Computing. Springer, Heidelberg (2009)

3. Thorpe, S. J., Delorme, A., VanRullen, R. : Spike-based strategies for rapid processing.
Neural Networkss 14(6-7), 715–726 (2001)

4. Wu, Q.X., McGinnity, M., Maguire, L.P., Belatreche, A., Glackin, B.: Processing visual
stimuli using hierarchical spiking neural networks. Neurocomputing 71(10-12), 2055–
2068 (2008)

5. Girau, B., Torres-Huitzil, C.: FPGA implementation of an integrate-and-fire LEGION
model for image segmentation. In: European Symposium on Artificial Neural Networks,
ESANN 2006, pp. 173–178 (2006)

6. Buhmann, J., Lange, T., Ramacher, U.: Image Segmentation by Networks of Spiking
Neurons. Neural Computation 17(5), 1010–1031 (2005)

7. Rowcliffe, P., Feng, J., Buxton, H.: Clustering within Integrate-and-Fire Neurons for
Image Segmentation. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415,
pp. 69–74. Springer, Heidelberg (2002)

8. Maass, W.: On the relevance neural networks. MIT Press, London (2001)
9. Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press (2002)

10. Gerstner, W., Kistler, W.: Mathematical formulations of Hebbian learning. Biological
Cybernetics 87, 404–415 (2002)

11. Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network
Models. Neural Networks 10(9), 1659–1671 (1997)

12. Maass, W.: Computing with spiking neurons. In: Maass, W., Bishop, C.M. (eds.) Pulsed
Neural Networks, MIT Press, Cambridge (1999)

13. NatschlNager, T., Ruf, B.: Spatial and temporal pattern analysis via spiking neurons.
Network: Comp. Neural Systems 9(3), 319–332 (1998)

14. Averbeck, B., Latham, P., Pouget, A.: Neural correlations, population coding and com-
putation. Nature Reviews Neuroscience 7, 358–366 (2006)

15. Stein, R., Gossen, E., Jones, K.: Neuronal variability: noise or part of the signal? Nature
Reviews Neuroscience 6, 389–397 (2005)

16. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems. The MIT Press, Cambridge (2001)

17. Butts, D.A., Weng, C., Jin, J., Yeh, C., Lesica, N.A., Alonso, J.M., Stanley, G.B.: Tem-
poral precision in the neural code and the timescales of natural vision. Nature 449, 92–95
(2007)

18. Bohte, S.M.: The Evidence for Neural Information Processing with Precise Spike-times:
A Survey. Natural Computing 3(2), 195–206 (2004)

19. Bohte, S.M., La Poutre, H., Kok, J.N.: Unsupervised clustering with spiking neurons by
sparse temporal coding and Multi-Layer RBF Networks. IEEE Transactions on Neural
Networks 13(2), 426–435 (2002)

20. Oster, M., Liu, S.C.: A winner-take-all spiking network with spiking inputs. In: Proceed-
ings of the 11th IEEE International Conference on Electronics, Circuits and Systems
(ICECS 2004), vol. 11, pp. 203–206 (2004)

21. Gupta, A., Long, L.N.: Hebbian learning with winner take all for spiking neural net-
works. In: IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1189–
1195 (2009)



544 B. Meftah et al.

22. Leibold, C., Hemmen, J.L.: Temporal receptive fields, spikes, and Hebbian delay selec-
tion. Neural Networks 14(6-7), 805–813 (2001)

23. da Silva Simões, A., Costa, A.H.R.: A Learning Function for Parameter Reduction in
Spiking Neural Networks with Radial Basis Function. In: Zaverucha, G., da Costa, A.L.
(eds.) SBIA 2008. LNCS (LNAI), vol. 5249, pp. 227–236. Springer, Heidelberg (2008)

24. Knesek, E.A.: Roche image analysis system. Acta Cytologica 40(1), 60–66 (1996)
25. Lezoray, O., Cardot, H.: Cooperation of pixel classification schemes and color water-

shed: a Study for Microscopical Images. IEEE Transactions on Images Processing 11(7),
738–789 (2002)

26. Mouroutis, T., Roberts, S.J., Bharath, A.A.: Robust cell nuclei segmentation using sta-
tistical modeling. BioImaging 6, 79–91 (1998)

27. Wu, H.S., Barba, J., Gil, J.: Iterative thresholding for segmentation of cells from noisy
images. J. Microsc. 197, 296–304 (2000)
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Circle Detection on Images Using Learning
Automata

Erik Cuevas, Fernando Wario, Daniel Zaldivar,
and Marco Pérez-Cisneros

Abstract. The outcome of Turing’s seminal work, originally proposed as a simple
operational definition of intelligence, delivered several computer applications for
solving complex engineering problems such as object detection and pattern recog-
nition. Among such issues, circle detection over digital images has received con-
siderable attention from the computer vision community over the last few years.
This chapter presents an algorithm for the automatic detection of circular shapes
from complicated and noisy images with no consideration of conventional Hough
transform principles. The proposed algorithm is based on Learning Automata (LA)
which is a probabilistic optimization method that explores an unknown random en-
vironment by progressively improving the performance via a reinforcement signal.
The approach uses the encoding of three non-collinear points as a candidate circle
over the edge image. A reinforcement signal indicates if such candidate circles are
actually present in the edge map. Guided by the values of such reinforcement signal,
the probability set of the encoded candidate circles is modified through the LA algo-
rithm so that they can fit to the actual circles on the edge map. Experimental results
over several complex synthetic and natural images have validated the efficiency of
the proposed technique regarding accuracy, speed and robustness.

1 Introduction

In 1936, the English mathematician Alan Turing published a ground-breaking paper
entitled: “On computable numbers, with an application to the Entscheidungsprob-
lem” [23]. In the paper, Turing introduced the notion of an abstract model of compu-
tation as an idealization of practices and capabilities of a human computer, that is, a
person who follows a precisely laid down and reliable procedure to derive numerical
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values (i.e., outputs) bearing a specified relation to the initial data (inputs). This ab-
stract model has been known as the Turing machine. The outcome of such seminal
work delivered several new computer paradigms for solving different engineering
problems such as object detection and pattern recognition. Such tasks have been
strongly influenced by Turing’s legacy as their methods are conceived as iterative
procedures.

On the other hand, the problem of detecting circular features holds paramount
importance for image analysis, in particular for industrial applications such as auto-
matic inspection of manufactured products and components, aided vectorization of
drawings, target detection, etc. [9]. Circular Hough transform [15] is arguably the
most common technique for circle detection on digital images. A typical Hough-
based approach employs an edge detector to infer locations and radii values. Averag-
ing, filtering and histogramming of the transformed space are subsequently applied.
The approach demands a large storage space as 3-D cells to store operational pa-
rameters (x, y, r), seriously constraining the overall performance to low processing
speeds. In Hough Transform methods, circle’s parameters are poorly defined under
noisy conditions [1] yielding a longer processing time which constrains their appli-
cation. In order to overcome such problems, researchers have proposed new Hough
transform-based (HT) approaches such as the probabilistic HT [20], the randomized
HT (RHT) [26] and the fuzzy HT (FHT) [10]. In [13], Lu and Tan proposed a novel
approach based on RHT called Iterative Randomized HT (IRHT) that achieves bet-
ter results on complex images and noisy environments. Such implementations apply
iteratively the RHT to a given region of interest which has been previously defined
from the latest estimation of ellipse/circle parameters.

Alternatively to the Hough Transform, the shape recognition problem in com-
puter vision has also been handled with optimization methods. In particular, Genetic
Algorithms (GA) have recently been used for important shape detection tasks. For
instance, Roth and Levine have proposed the use of GA for extracting geometrical
primitives [18]. Lutton et al. have developed an improvement of the aforementioned
method [14] while Yao et al. have proposed a multi-population GA to detect ellipses
[27]. In [28], GA have been used for template matching despite the available pattern
has been modified by an unknown affine transformation. Ayala-Ramirez et al. have
presented a GA based circle detector in [2] which is able to detect multiple circles
on real images but failing frequently on imperfect circles.

This paper assumes the circle detection problem as an optimization algorithm
and develops an alternative approach based on Learning Automata (LA) [12, 4, 22].
LA is an adaptive decision making method that operates at an unknown random
environment while progressively improving its performance via a learning process.
A probability density function is defined over the parameter space where each pa-
rameter (or parameters in case of a multidimensional problem) represents an action
which is applied to a random environment. The corresponding response from the
environment, which is also known as reinforcement signal, is used by the automata
to update the probability density function at each stage in order to select its next
action. The procedure continues until an optimal action is defined.
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The main motivation behind the use of LA refers to its abilities as global op-
timizer for multimodal surfaces. Optimization techniques based on Learning Au-
tomata (LA) fall into the random search class. The distinguishing characteristic of
automata-based learning is that the searching for the optimal parameter vector is per-
formed within the space of probability distributions which has been defined over the
parameter space rather than over the parameter space itself [16]. Therefore LA has
been employed to solve different sorts of engineering problems, for instance, pat-
tern recognition [19], adaptive control [29], signal processing [11], power systems
[25] and computer vision [7]. Other interesting applications for multimodal com-
plex function optimization based on the LA have been proposed in [11, 21, 30, 3],
yet showing that their performance is comparable to (GA) [30].

This paper presents an algorithm for the automatic detection of circular shapes
from complicated and noisy images with no consideration of conventional Hough
transform principles. The proposed algorithm LA requires the probability of three
encoded non-collinear edge points as candidate circles (actions). A reinforcement
signal indicates if such candidate circles are actually present in the edge-only im-
age. Guided by the values of such performance evaluation function, the probability
set of the encoded candidate circles is modified using the LA algorithm so that they
can fit into the actual circles (optimal action) in the edge map. The approach gener-
ates a sub-pixel circle detector which can effectively identify circles in real images
despite circular objects exhibiting a significant occluded portion. Experimental ev-
idence shows its effectiveness for detecting circles under different conditions. A
comparison to other state-of-the-art methods such as the GA algorithm [2] and the
Iterative Randomized Hough Transform approach (IRHT) [13] on multiple images
has demonstrated the improved performance of the proposed method.

The paper is organized as follows: Section 2 provides a brief outline of LA theory
while Section 3 presents the LA-based circle detector. In section 4 a new approach
for the detection of multiple circles using heuristic algorithms is presented. Section 5
shows the results of applying the LA algorithm for circle recognition under several
image conditions and section 6 presents a performance comparison between the
proposed method and other relevant techniques reported in the literature. Finally
Section 7 discusses on some relevant conclusions.

2 Learning Automata

Learning Automata (LA) is a finite state machine that operates in an unknown
stochastic environment and progressively improves its performance through a learn-
ing process. LA features two characteristics: first, the action choice is based on
a probability distribution over the action-set and second, such probability distri-
bution is updated at each instant according to the reinforcement feedback from
the environment. Traditionally, the action-set is always considered to be finite.
Figure 1 shows the typical LA system architecture. Let B = {b1,b2, ...,bn},n <
∞, be the set of actions available. At each instant k, the automaton selects ran-
domly an action b(k) ∈ B based on its current internal probability distribution
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P(k) = {p1(k), p2(k), ..., pn(k)},k = 0,1, .... (Here, pi(k) = Prob[b(k) = bi] and
∑n

i=1 pi(k) = 1,∀k). After applying such action to the environment, a reinforce-
ment signal β (k) ∈ R ⊆ [0,1] is provided through the evaluation function, where
R is the set of all possible reactions. A reinforcement signal holding a higher value
is considered as a more desirable response. Let di denote the expected value of
β (k)i f b(k) = bi. Then di is known as the reward probability associated with ac-
tion bi. Let dm = maxi{di}, then the action bm is called the optimal action. If the
identity of the optimal action is not time-varying, then the environment is said
to be stationary. Otherwise, it is said to be non-stationary. The LA aims to iden-
tify the optimal action without any knowledge of the reward probabilities. This is
achieved through the learning algorithm that updates the internal probability distri-
bution P(k) to P(k+1) at each instant k, by considering the most recent interaction
with the environment. In general the internal probability distribution P(k) is up-
dated through a process in which the actions that achieve desirable performance are
reinforced via an increased probability while those not-performing actions are pe-
nalized or left unchanged depending on the particular learning rule which has been
employed. The procedure is repeated until the optimal action boptimal is found. From
an optimization-like perspective, the action with the highest probability (optimal ac-
tion) corresponds to the global minimum as it is demonstrated by rigorous proofs of
convergence available in [16] and [17].

The operation of a LA during iteration consists of two basic functions: (a) Proba-
bility Updating: based on the environmental response to the selected action β (b(k)),
the automaton modifies the probability distribution P(k) over the set of actions to
P(k+ 1), then, the automaton selects a new action. (b) Action Selection: according
to the new probability distribution P(k+1), the automaton selects a new action bnew

that is applied to the environment. A learning algorithm is said to be ε − optimal if
given any ε > 0, it is possible to choose a set of parameters for the learning algo-
rithm such that the probability will greater than 1− ε
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Lim in fk→∞ poptimal(k)> 1− ε.

From the definition above, it is easily seen that ε−optimality is achieved if and only
if Lim in fk→∞E[β (k)]> doptimal −ε . Thus, the objective of the learning scheme is to
maximize the expected value of the reinforcement received from the environment.
Hence, an equivalent way of characterizing the goal of an automata algorithm is as
follows:

maximize f (P) = E[β (k)|P(k) = P]

There is a wide variety of reported learning algorithms that are proven to be ε −
optimal. One of the most widely used is the linear reward/inaction (LRI) scheme
[21]. Considering an automaton B with n different actions, br represents the action
r of a set of n possible actions. As a response to an action br, at a time step k, the
probability updating process from P(k) to P(k+ 1) is calculated as follows:

pr(k+ 1) = pr(k)+θ ·β (br) · (1− pr(k))

pq(k+ 1) = pq(k)−θ ·β (br)·q (k), i f q �= r (1)

With θ being a learning rate and 0 < θ < 1, β (·)[0,1] the reinforcement signal
whose value β (·) = 1 indicates the maximum reward and β (·) = 0 signals a null
reward considering r,q ∈ 1, ,n. Using the LRI scheme, the probability of successful
actions will increase until they become close to unity. The action selection phase
is achieved as follows: first, an uniformly distributed pseudo-random number z is
generated in the range [0,1], then, in order to select the next action bl ∈ (b1,b2, ,bn)
to be entered to the system and considering the present probability density function
to be P(k+ 1), the following sum should be done:

l

∑
h=1

ph(k+ 1)> z (2)

Therefore, the chosen action bl triggers the environment which responds through
feedback β (bl) and continues the loop. As stop criteria, the LA algorithm is con-
straint to a cycle number that is usually half of the number of actions considered
by the automaton. Once the cycle number has been reached, the action holding the
best probability value is taken as the solution boptimal . In order to solve multidi-
mensional problems, the learning automata can also become connected to a parallel
setup (see Figure 1(b)). Each automaton operates with a simple parameter while its
concatenation allows working within a multidimensional space. There is no inter-
automata communication as the only joining path is through the environment. In [2],
it is shown how discrete stochastic learning automata can be used to determine the
global optimum for problems with multi-modal surfaces.



550 E. Cuevas et al.

3 Circle Detection Using LA

3.1 Data Preprocessing

In order to apply the LA circle detector, candidate images must be pre-processed
in advance by the Canny algorithm which is one of the standard edge detector
algorithms that delivers single-pixel edge-only images. Once the image has been
pre-processed by the Canny algorithm, the (xi,yi) coordinates for each edge pixel
pi are stored inside the edge vector Pt = {p1, p2, , pNt}, with Nt being the total
number of edge pixels.Following the RHT technique in [2], only a representative
percentage of edge points (about 5%) are considered for building the new vector
array Pt = {p1, p2, , pNp}, where Np is the number of edge pixels randomly selected
from Pt .

3.2 Action Representation

In the context of this problem, each of the automata’s actions will represent a cir-
cle candidate laying on the image. In order to generate only plausible solutions,
each action Ci (circle candidate) will be constructed taking into consideration three
edge points previously stored inside the vector P. Such pixels must be grouped as-
suming that they are connected through the circle’s contour. Therefore, the circle
Ci = {pi1 , pi2 , pi3} passing over such points may be considered as a potential so-
lution for the detection problem. Considering the configuration of the edge points
shown by Figure 2, the circle center (x0,y0) and the radius r of Ci can be character-
ized as follows:

(x− x0)
2 +(y− y0)

2 = r2 (3)

Where x0 and y0 are computed through the following equations:

x0 =
det(A)

4((xi2 − xi1)(yi3 − yi1)− (xi3 − xi1)(yi2 − yi1))

y0 =
det(B)

4((xi2 − xi1)(yi3 − yi1)− (xi3 − xi1)(yi2 − yi1))
(4)

With det(A) and det(B) representing determinants of matrices A and B respectively,
considering:

A =

⎡⎣ x2
i2
+ y2

i2
− (x2

i1
+ y2

i1
) 2 · (yi2 + yi1)

x2
i3
+ y2

i3
− (x2

i1
+ y2

i1
) 2 · (yi3 + yi1)

⎤⎦

B =

⎡⎣ 2 · (xi2 − xi1) x2
i2
+ y2

i2
− (x2

i1
+ y2

i1
)

2 · (xi3 − xi1) x2
i3
+ y2

i3
− (x2

i1
+ y2

i1
)

⎤⎦ (5)
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The radius r can therefore be calculated using:

r =
√
(x0 − xd)2 +(y0 − yd)2 (6)

where d ∈ {i1, i2, i3}, and (xd ,yd) are the coordinates of any of the three selected
points which define the action Cd . Figure 2 illustrates main parameters defined by
Equations 3-6. The shaping parameters for the circle, [x0,y0,r] can be represented
as a transformation T of the edge vector indexes i1, i2 and i3.

[x0,y0,r] = T (i1, i2, i3) (7) 
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Fig. 2 Circle candidate (action) formed from the combination of points pi1 , pi2 and pi3

The total number of actions nall is generated considering all feasible combina-
tions of Pt . After calculating the circle parameters [x0,y0,r] using equation 7, only
the actions whose radii fall into a determined range are considered. The allowed
range is defined to be 8 < r < max(I(columns)/2, I(rows)/2) where I(columns)
and I(rows) represent the maximum number of columns and rows inside the im-
age, respectively. Moreover, every candidate circle is considered only once, i.e. if
a group of pixels yields the parameters of a circle that has been already generated,
it will not be considered. Hence, the final number of actions nc, represents the re-
sulting solution set. The LA solution is based on tracking the probability evolution
for each circle candidate, also known as actions, as they are modified according to
their actual affinity. Such affinity is computed using an objective function which
determines if a circle candidate is actually present inside the image. Once the pre-
defined number of cycles has been reached, the circle candidate showing the highest
probability value is assumed as a circle actually present in the image. Although the
HT based methods for circle detection also use three edge points to cast one vote
for a potential circular shape in the parameter space, they require huge amounts of
memory and longer computational times to reach a sub-pixel resolution. On the con-
trary, the LA method employs an objective function yielding improvement at each
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generation step, discriminating among non-plausible circles and avoiding unneces-
sary testing of certain image points. However, both methods require a compulsory
evidence-collecting step for future iterations.

3.3 Performance Evaluation Function β (·)
In order to model the environment’s reaction to the application of an action Ci, the
circumference coordinates of the circle candidate Ci are calculated as a virtual shape
which must be validated, i.e. verified if it really exists in the edge image. The cir-
cumference coordinates are grouped within the test set Si = {s1,s2, ,sNs}, with NS

representing the number of points over which the existence of an edge point, cor-
responding to Ci, should be verified. The test Si is generated by the midpoint circle
algorithm (MCA) [24] which is an algorithm to determine the required points for
drawing a circle. MCA requires as inputs only the radius r and the center point
(x0,y0) considering only the first octant over the circle equation: x2 + y2 = r2. The
MCA aims to calculate the required points Si in order to represent a circle candidate.
It draws a curve starting at point (r,0) and proceeds upwards-left by using integer
additions and subtractions. Although the algorithm is considered as the quickest
providing a sub-pixel precision, it does not considers the actual image dimensions;
therefore it is important to assure that points lying outside the image are not consid-
ered in Si. The reinforcement signal β (Ci) represents the matching error produced
between the pixels Si of the circle candidate Ci (action) and the pixels that actually
exists in the edge-only image, yielding:

β (Ci) =
∑NS

h=1 E(Sh)

NS
(8)

Where E(sh) is a function that verifies the pixel existence in sh, being sh ∈ Si and
NS the number of pixels lying over the perimeter and corresponding to Ci, currently
under testing. Hence the function E(sh) is defined as:

E(sh) =

{
1, if the pixels sh is an edge point

0, otherwise
(9)

A value of β (Ci) near to unity implies a better response from the “circularity” op-
erator. Figure 3 shows the procedure to evaluate a candidate action Ci with its rep-
resentation as a virtual shape Si. Figure 3(a) shows the original edge map, while
Figure 3(b) presents the virtual shape Si representing the action Ci = {pi1 , pi2 , pi3}.
In Figure 3(c), the virtual shape Si is compared to the original image, point by point,
in order to find coincidences between virtual and edge points. The action has been
built from points pi1 , pi2 and pi3 which are shown in Figure 3(a). The virtual shape
Si, which is obtained by MCA, gathers 56 points (NS = 56) with only 18 of them ex-
isting in both images (shown as blue points plus red points in Figure 3) and yielding:
∑NS

h=1 E(sh) = 18, therefore β (Ci)≈ 0.33. The LA algorithm is set to a pre-selected
cycle limit that is usually chosen to half the number of actions (nc/2) that form



Circle Detection on Images Using Learning Automata 553

(a) (b)

(c)

Fig. 3 Environment reaction to an action Ci: The image shown by (a) presents the original
edge image while (b) portraits the virtual Si corresponding to Ci. The image in (c) shows
coincidences between both images through blue or red pixels while the virtual shape is also
depicted in green.

the automaton. There are two cases to obtain a solution (optimal action), either if
one action (circle candidate) generates a value of β (·) greater than a pre-established
limit or taking the highest probability action at the end of the learning process.

3.4 LA Implementation

The procedure of the LA circle detector can be summarized in the followings steps.

1. Apply the Canny filter to the original image.
2. Select 5% of the edge pixels to build the P vector and generate nall considering

all feasible combinations.
3. Generate nc by calculating [x0,y0,r] = T (i1, i2, i3) from nall , and selecting only

actions which are either the scope or are not repeated.
4. Set iteration k = 0.
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5. Initialize P(k) = p1(k), p2(k), . . . , pn(k) to a uniform distribution, i.e. all ele-
ments of the vectors are set to (1/nc).

6. Repeat while k < (nc/2).
7. Select a new action Cv ∈ (C1,C2, . . . ,Cnc) to test, by generating a random z

between 1 and 0, and considering the area under the probability density function
as ∑v

h=1 ph(k)> z.
8. Evaluate the performance (environment reaction) calculating β (Cv) (Eq.8).
9. Update the automaton’s internal probability distribution P(k) =

{p1(k), p2(k), . . . , pn(k)} using Eq. 1.
10. Increase k, and jump to step 7.
11. After k > (nc/2), the solution Coptimal is represented by the element (circle)

showing the highest probability within vector P(k).

Figure 4 shows one of the results produced by the LA algorithm. The image in Fig-
ure 4(a) is considered as an input, a noisy image with a resolution of 200× 200
pixels which contains one imperfect circle. The best found circle, which is shown
in Figure 4(b), is obtained after 100 iterations. In the experiment, the required de-
tection time is 0.1 seconds. Figure 4(c) presents the action’s probability distribution
evolution P(k) across the 100 epochs; it is easy to identify the action with the highest
probability as it is represented by the highest peak.

4 The Multiple Circle Detection Procedure

The circle detection method in [2, 8] has been commonly employed for detecting
multiple circles, finding one circle at a time. However, the method proposed in this
chapter is capable to detect singles or multiples circles through only one optimiza-
tion procedure. In our approach, the set of encoded candidate circles are evolved
using the LA, as it is guided by the values of a matching function (reinforcement
signal). The best circle candidate can thus be fitted into an actual circle within the
edge-only image. The actual meaning of the best circle candidate refers to the action
holding the highest value according to the probability distribution. In order to detect
remaining circles, the algorithm analyses the probability distribution as it aims to
find a significant local minima. In order to find the local minima, the probability
distribution is arranged into a descending order. The idea is to explore action by ac-
tion, identifying those representing an actual circle in the image. As several actions
can be represented by the same circle, a distinctiveness factor Esdi [6] is required
to measure the mismatch between two given circles (actions). This distinctiveness
factor is defined as follows:

Esdi = ‖xA − xB‖+ ‖yA− yB‖+ ‖rA− rB‖ (10)

Being, (xA,yA) and rA the central coordinates and radius of the circle CA respec-
tively, while (xB,yB), rB are the corresponding parameters of the circle CB. A thresh-
old value Esth is also calculated to decide whether two circles must be considered
different or not. Esth is calculated as:
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(a) (b)

(c)

Fig. 4 The evolution of the probability parameters during the circle detection process: (a)
shows the original image while (b) depicts the detected circle as an overlay. Image in (c)
shows the parameter evolution that yields the probability density.

Esth =
rmax − rmin

s
(11)

Where [rmin,rmax] is the feasible radii’s range and s is a sensitivity parameter. By
setting a high s value, the case of two circles with quite similar parameters would
be considered different. On the other hand, a smaller value for s would consider
them as similar circles. After the probability distribution is obtained and arranged,
the highest value Prhigh is assigned to the first circle. Then, by exploring the remain-
ing values, other circles are detected through some discrimination criteria which are
depicted by Equations 9 and 10. This procedure is repeated until the action’s prob-
ability reaches a minimum threshold Prth. According to such threshold, the values
above Prth represent the actions (circles) that are considered as significant; mean-
while all values below such threshold are considered false circles and they are not
contained in the image. After several experiments the value of Prth has been set to
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Prhigh/10. The multiple circle detection procedure can be summarized in the fol-
lowing steps:

1. The parameter of sensitivity s is set in order to define Esth .
2. The actions (circles candidates) are organized into a descending order by consid-

ering their probabilities values.
3. The action with the highest probability Prhigh is identified as the first circle C1.
4. The distinctiveness factor Esdi of circle Cm (action m) with the next highest prob-

ability is evaluated with respect to Cm−1. If Esdi > Esth , then it is considered as a
new circle, otherwise, the next action is evaluated.

5. The step 4 is repeated until the probability of the current action to be evaluated
reaches the threshold value Prhigh/10.

(a) (b)

(c) (d)

Fig. 5 The multiple circle detection process: (a) shows details on the final probability distri-
bution, (b) presents thirty actions with highest probabilities as they are sorted into descending
order. (c) The edge-map image and (d) the detected circles.

Figure 5 shows the process which has been described for the detection of multiple
circles. Figure 5(a) shows a detail of the final probability distribution including the
action with the highest probability. As it is described above, the actions are sorted
into descending order according to the probability value which is achieved during
the learning process. Figure 5b shows the first thirty actions. The circles detected as
result of the analysis of the probability distribution are shown in Figure 5(d).



Circle Detection on Images Using Learning Automata 557

5 Experimental Results

In order to evaluate the performance of the proposed LA circle detector, several
experimental tests have been carefully implemented; the results of such experiments
are presented as follows:

1. Circle localization.
2. Shape discrimination.
3. Multiple circle localization.
4. Circular approximation.
5. Occluded circles and arc detection.
6. Complex cases.

Table 1 presents the parameter set for the LA implementation which has been exper-
imentally determined and kept for all test images through all experiments. All the
experiments are performed on a Pentium IV 2.5 GHz computer under C language
programming with all images being preprocessed by the standard Canny edge-
detector from the image-processing toolbox for MATLAB R2008a.

Table 1 LA circle detector parameters

Kmax θ

nc/2 0.003

5.1 Circle Localization

Synthetic images

The experimental setup includes the use of twenty binary synthetic images of 200×
200 pixels. Each image represents an edge map, with white pixels being considered
as edge pixels, meanwhile black pixels are considered as background as they can be
processed directly by the circle detection algorithm. Each image has been generated
drawing only one imperfect circle (ellipse shape) which has been randomly located.
All images have been contaminated by adding white pixels in random locations
as to increase the complexity in the detection process. Such addition will increase
the number of false actions in the LA and complicate the evaluation process. The
experiment aims to detect the center of the circle position (x,y) and its radius (r),
allowing only 100 epochs for each test image. For all the cases, the algorithm is able
to detect best circle parameters despite the noise influence. The detection is robust
to translation and scale keeping a reasonably low elapsed time (typically under 0.1
s).Figure 6 shows the results of the circle detection acting over a synthetic image.
Figure 6(a) corresponds to the original image while Figure 6(b) shows the detected
circle as an overlay.



558 E. Cuevas et al.

(a) (b)

Fig. 6 Circle detection and the evolution of the probability parameters. (a) Original image.
(b) The detected circle is shown as an overlay.

Natural images

The experiment tests the LA circle detector’s performance upon real-life images.
Twenty five images of 640× 480 pixels are used on the test. All images have been
captured by using digital camera under 8-bit color format. Each natural scene in-
cludes a circular shape among other objects. All images are preprocessed using the
Canny edge detection algorithm and then fed into the LA-based detector. Figure 7
shows a particular case from 25 test images. After evaluating 300 times the objective
function, the evolution of the probability distribution is shown by Figure 7(c). Real-
life images rarely contain perfect circles so the detection algorithm approximates the
circle that better adapts to the imperfect circle within a noisy image. Such circle cor-
responds to the smallest error from the objective function β (·). Detection results have
been statistically analyzed for comparison purposes. For instance, the detection algo-
rithm is executed 100 times on the same image (Figure 7), yielding same parameters
x0 = 231, y0 = 301 and r = 149. This indicates that the proposed LA algorithm is
able to converge to a minimum solution from the objective function β (·).

5.2 Circle Discrimination Test

Synthetic images

This section discusses on the algorithm’s ability to detect circles despite the image
featuring any other shape. Five synthetic images of 540×300 pixels are considered
in the experiment. Just as it happens in the experiments from section 5.1, all images
at this section have been contaminated with impulsive noise aiming formulating the
edge map that is usually obtained from a noisy image. Figure 8(a) shows one of the
images used during the experiment: a synthetic image containing different shapes
including an overlapped circle. Figure 8(b) presents the detected circle which has
been marked by a red overlay. It is important to notice that the algorithm would tend
to identify most relevant circular-like shapes on the image.
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(a) (b)

(c)

Fig. 7 Circle detection and the evolution of the probability parameters for a natural image.
(a) Original image. (b) The detected circle is shown as an overlay, (c) parameter evolution
yielding the probability density graph.

(a) (b)

Fig. 8 A sample of synthetic image containing a variety of shapes. (a) sample input (b) the
detected circle.
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Natural images

The experiment is repeated considering real-life images. Figure 9 shows an exam-
ple that contains one circular shape among others. Its corresponding edge map is
depicted in Figure 9(b), although more than one circle may be shown in the image.
The algorithm will only detect the one that falls into its range of interest.

5.3 Multiple Circle Detection

The LA circle detector is also capable of detecting several circles embedded into the
same image. The approach is applied over the edge-only image until the first circle
is detected, i.e. the Coptimal circle holding the maximum probability value is located.
That shape is thus masked (i.e. eliminated) on the primary edge-only image. Then,
the LA circle detector operates again over the modified image. The procedure is
repeated as many times as necessary until the β (·) value of the action with the high-
est probability reaches a minimum predefined threshold Mth (typically 0.1). Figure
10(d) shows a natural image containing several overlaid detected circles. For this
case, the algorithm searches for the best circular shapes (greater than Mth). Figure
10(c) depicts the edge image after applying the Canny algorithm just before it is fed
into the LA algorithm.

(a) (b)

Fig. 9 Natural image with a variety of shapes: (a) the original image with an overlay for the
detected circle and (b) the corresponding edge map

5.4 Circular Approximation

In this approach, the circle detection process is considered to be similar to an op-
timization problem, assuming that it is feasible to approximate other circular-like
shapes by means of concatenating circles. The LA method detects several circular
patterns which show the highest probability. They can be subsequently reshaped into
a more complex geometry.

Figure 11 shows the approximation over several shapes by means of the circle
concatenation. In particular Figure 11(b) shows the circular approximation of a
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partial circular shape and Figure 11(d) presents the circular approximation for an
ellipse. For both cases, three circles are used to approximate the original shape.

5.5 Occluded Circles and Arc Detection

The LA circle detector algorithm is also able to detect occluded or imperfect circles
as well as partially defined shapes such as arc segments. The LA algorithm achieves
the shape matching according to the probability value pi(k) which represents a score
value for a given shape candidate. Figure 12 shows an example on arcs detection.

A typical heuristic-based circle detector usually masks up previously detected
circles, losing valuable information. In contrast, the proposed method records the
available circle’s information during the evaluation process. Such fact enables the al-
gorithm to detect figures that would not be detectable under different circumstances.
Figure 13 shows an example of this situation, where three circular figures (two of
them occluded) are detected.
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Fig. 10 Multiple circle detection on natural images: (a) the final probability distribution, (b)
thirty actions showing the highest probability in descending order. (c) The edge-map image
and (d) its correspondent detected circles as an overlay.
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5.6 Complex Cases

In order to test the robustness of the LA algorithm, a particular set of images has
been prepared. In addition to at least one circular figure, all the images in the set in-
clude other added shapes as well as impulsive noise, considering both as distracters.
Figure 14 presents the results after applying the LA method to one image from the
image set.Such synthetic image represents the edge map of a complex image; it can
be observed nine different geometrical shapes, among four circles with two sharing
their center coordinates.Yet, the algorithm is capable to detect the all circles in the
image. Figure 15 shows the analysis of another image; Figure 15(a) corresponds to
the original image that has been fed into the LA algorithm. The image contains six
shapes with three semi-circular patterns. The first circle (top-left on the image) is a
quasi-perfect shape while the second (down-right in the image) is an occluded cir-
cle. The last circular form has been hand-drawn at the top-right area. Figure 15(b)
shows the image after the circle detection process has been applied.

(a) (b)

(c) (d)

Fig. 11 Approximating several shapes by means of circle concatenation: (a)-(c)original im-
ages, (b)-(d) their circle approximation
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(a) (b)

Fig. 12 Occluded circles and arc detection: (a) Original synthetic image with two arcs, (b)
its circle detection

(a) (b)

(c) (d)

Fig. 13 Multiple occluded circles detection: (a) the final probability distribution, (b) the thirty
actions showing the highest probability in descending order. (c) The edge-map image and (d)
its correspondent overlaid of detected circles.



564 E. Cuevas et al.

(a) (b)

Fig. 14 Circle detection over images with added shapes (distracters) and noise: (a) original
image with nine shapes, (b) detection of four circles (overlaid)

(a) (b)

Fig. 15 Circle detection on images containing different shapes (distracters): (a) original im-
age including six shapes, (b) detection of three imperfect circles

6 Performance Comparison

In order to enhance the algorithm discussion, the LA algorithm performance is com-
pared to other two approaches over a set of different images. First the IRHT [10] that
is mainly a deterministic approach whose method can be summarized as an iterative
application of the RHT. Second is the GA [2] circle detector which is represents a
heuristic approach which aims to find the parameters defining a circle in the image
by means of the GA evolution.

6.1 Parametric Setup

The GA follows the design described in Ayala-Ramirez et al. [2], with a population
size of 70, the crossover probability of 0.55, the mutation probability of 0.10 and
number of elite individuals equal to 2. The roulette wheel selection and the 1-point
crossover are both applied. The parameter setup and the fitness function follow the
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configuration suggested in [2]. For the IRHT algorithm, all parameter values are
defined as suggested in [10], with its most important parameters being grouped into
the vector Δc which defines the desired set of enlargements for the circle/ellipse
parameters that are to be built as a new region of interest. At this comparison, Δc

is considered as Δc = [0.5 ·σx 0.5 ·σx 0.5 ·σa 0.5 ·σb 0], making the algorithm less
sensitive to noisy images. The LA parameters are presented in Table 1.

6.2 Error Score and Succes Rate

Images rarely contain perfectly-shaped circles. Therefore, in order to test accuracy,
the results are compared to ground-truth circles which are manually detected over
the original edge-map. The parameters (xtrue,ytrue,rtrue) of the ground-truth circle
are computed by using Equations 2 to 2, considering three circumference points
from the manually detected circle. If the centre and the radius for such circle are
defined as (xD,yD) and rD, then an error score can be computed as follows:

ES = η · (‖xA − xB‖+ ‖yA− yB‖)+ μ · ‖rA − rB‖ (12)

The first term represents the shift of the centre of the detected circle as it is com-
pared to the benchmark circle. The second term accounts for the difference between
their radii. η and μ are two weights which are chosen to agree the required accu-
racy as η = 0.05 and μ = 0.1. Such choice ensures that the radii length difference
would be strongly weighted in comparison to the difference of central circular po-
sitions between the manually detected and the machine-detected circles. In case ES

is less than 1, the algorithm gets a success; otherwise it has failed on detecting the
edge-circle. Notice that for η = 0.05 and μ = 0.1, it yields ES < 1 which accounts
for a maximal tolerated difference on radius length of 10 pixels, whereas the maxi-
mum mismatch for the centre location can be up to 20 pixels. In general, the success
rate (SR) can thus be defined as the percentage of reaching success after a certain
number of trials. Figure 16 shows three synthetic images and their results after pro-
cessing fromthe GA-based algorithm [2], the IRHT [13] and the proposed approach.
Figure 16 presents the experimental resultsfor the same three algorithms consider-
ing real-life images. The results are averaged over 65 independent runs for each
algorithm. Table 2 shows the averaged execution time, the success rate in percent-
age and the averaged error score (ES) following Equation 12 for all three algorithms
over six test images shown by Figures 16 and 17. The best entries are bold-cased in
Table 2. A close inspection reveals that the proposed method is able to achieve the
highest success rate and the smallest error, still requiring less computational time
for most cases.
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(a) (b) (c) 

Original images 

   
GA-based algorithm 

  
 

IRHT 

  
LA 

  
 

 
 Fig. 16 Synthetic images and their detected circles following the application of the GA-based

algorithm, the IRHT method and the proposed LA algorithm
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(a) (b) (c) 
Original images 

   
GA-based algorithm 

   
IRHT 

   
LA 

   
 
 Fig. 17 Real-life images and their detected circles for the GA-based algorithm, the IRHT

method and the proposed LA algorithm

7 Conclusions

This paper has presented an algorithm for the automatic detection of circular shapes
from complicated and noisy images with no consideration of the conventional Hough
transform principles. The detection process is considered to be similar to an opti-
mization problem. The proposed algorithm is based on Learning Automata (LA)
which uses the probability of the three encoded non-collinear edge points as candi-
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date circles (actions) within an edge-only image. A reinforcement signal (matching
function) indicates if such candidate circles are actually present in the edge image.
Guided by the values of such performance evaluation function, the probability set of
the encoded candidate circles are evolved using the LA algorithm so that they can fit
into the actual circles (optimal action) in the edge map. Classical Hough Transform
methods for circle detection use three edge points to cast a vote for the potential cir-
cular shape in the parameter space. However, they require huge amounts of memory
and longer computational times to obtain a sub-pixel resolution. Moreover, the ex-
act parameter set for a detected circle after applying HT frequently does not match
the quantized parameter set, rarely finding the exact parameter set for a circle in the
image [5]. In our approach, the detected circles are directly obtained from Equations
3 to 6, still reaching sub-pixel accuracy. In order to test the circle detection perfor-
mance, speed and accuracy have been compared. A score function (see Equation
10) has been proposed to measure the accuracy yielding an effective evaluation of
the mismatch between a manually-determined and a machine-detected circle. More-
over, the experimental evidence has demonstrated that the LA method outperforms
both the GA (as described in [2]) and the IRHT (as described in [13]) within a
statistically significant framework. Table 2 also indicates that the LA method can
yield better results on complicated and noisy images in comparison to the GA and
the IRHT methods. However, this paper does not aim to beat all the circle detector
methods proposed earlier, but to show that the LA algorithm can effectively serve
as an attractive method to successfully extract multiple circular shapes.
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Decision Incorporation in
Meta-heuristics to Cope with Decision
Scheduling Problems

Yacine Laalaoui and R.B. Ahmad

Abstract. The halting problem is one of the most important Turing’s dis-
coveries. It is a decision problem and it consists of reporting whether a given
program P with some input data would stop or run forever. This problem was
proved by Turing to be undecidable. This means that the relevant algorithm
to solve this problem doesn’t exist. In this paper, we will show the application
of this problem when the program P is a meta-heuristic technique and the
input data is a decision scheduling problem. Further, we will also describe an
efficient technique to solve the halting problem in this application case.

Keywords: the halting problem, meta-heuristics, decision scheduling prob-
lems, steady-state.

1 Introduction

Decision problems in computing theory are problems in which the expected
output for a given program is either ”yes” (success) or ”no” (failure). Ex-
amples of such problem include Satisfiability problem (SAT), Scheduling
problems, Graph Coloring problem, Halting problem,...etc. In artificial in-
telligence point of view, existing algorithms that solve decision problems are
either Complete or Incomplete. Complete algorithms would never run for
ever thanks to their ability to report failure if a feasible solution doesn’t exist
in the state-space. Further, Complete algorithm are able to find an existing
feasible solution in the state-space. In contrast, Incomplete algorithms are un-
able 1) to provide the guarantee to find an existing feasible solution and 2) to
report a failure if a feasible solution doesn’t exist in the state-space. If a fea-
sible solution has been found by an Incomplete algorithm, then the problem
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instance is solvable and the resulting output is ”yes”; otherwise, there is noth-
ing to say about the input problem instance and the corresponding program
would run forever if not ended by the user. Examples of Incomplete algo-
rithms include meta-heuristic techniques such as Simulated Annealing (SA),
Ant Colony Optimization (ACO) and Tabu Search (TS). Those techniques
are often running along finite time (finite number of iterations) and space to
carry out either a reachable feasible solution or nothing to report about the
input problem instance. If a meta-heuristic technique has run along an infi-
nite number of iterations and no feasible solution has been reached yet, then
the decision whether the corresponding program would stop is intractable
because of the Incompleteness nature of meta-heuristic techniques.

The main aim of this chapter is to tackle the halting problem when the
input problem instance is a decision scheduling problem and the running
program is a treeless Incomplete algorithm such as meta-heuristic techniques
(Fig.1). We will describe the steady-state test which is a decision test to
be incorporated into meta-heuristic techniques. Then, we will see that this
decision test is a Necessary Condition for the non-schedulability of the input
problem instance if the used algorithm is Incomplete. The new test aims to
replace the maximum number of iterations to report failure. This is a new
way to know something about programs that run infinitely which should be
stopped once the steady-state has been reached.

2 The Halting Problem

It is well known in computing theory that everything Computable can be
computed by Turing Machine (TM) or one of its equivalent model such as
computer programs (algorithms) and λ-calculus expressions. But the prob-
lem is that not everything is computable. In other words, if an algorithm to
perform a given task exists, then this task is said Computable and the corre-
sponding problem to this algorithm is said Solvable. Furthermore, if there is
a possibility to construct a physical machine to execute this task, then this
machine is said deterministic [1].

In fact, a TM has some inputs to execute and carry out some outputs.
Without loss of generality, a TM has an arbitrary inputs and arbitrary out-
puts. But, how long a TM takes time to complete its task and returning a
success or failure ? If there is a success, then TM halts. Otherwise, TM will
continue the execution perhaps infinitely since we don’t know anything about
the computation. This problem is well known under the name The Halting
Problem which is one of the most important Turing’s discoveries[2]. It is de-
fined as follows : given a program P as a model of a TM and a set of inputs to
this program. If P returns outputs, then P doesn’t loop infinitely. Otherwise,
there is nothing to say about P since either it loops infinitely or we didn’t
wait enough to see the outputs. This problem has been proved by Turing to



Decision Incorporation in Meta-heuristics to Cope 573

(a) halting problem components (b) meta-heuristics for decision
scheduling problems

Fig. 1 Application of the halting problem in case of meta-heuristics for decision
scheduling problems

be Undecidable[2]. This means that the relevant algorithm to decide whether
a given program P finishes or continues to run forever doesn’t exist.

3 Decision Scheduling Problems

3.1 Overview

Scheduling problems constitutes a very hot research field in computer science
domain. They range from simple operation research to complex artificial in-
telligence problems [3]. Simple scheduling problems have in general a poly-
nomial time complexity while difficult problems have exponential complexity
and they are in general NP-Hard problems[4]. What ever the scheduling prob-
lem, there is a set of jobs to be scheduled on a specific architecture (a single
or multiple processing elements). Furthermore, a scheduling problem is ei-
ther an optimization or a decision problem. In optimization problems, the
scheduling algorithm is looking for the best scoring solution according to a
given objective function. In decision problems, the scheduling algorithm is
targeting an acceptable scoring solution which is not necessary the one with
best existing score.

Existing scheduling algorithms are either on-line or off-line. On-line algo-
rithms doesn’t have any prior knowledge about jobs arrival. In contrast, in
off-line algorithms the whole set of jobs to be scheduled is known in advance
and there is no more arriving jobs during the scheduling process. Of course,
the applicability of both types of algorithms depends on the industrial needs.
It is worth to note that recently, there are many works to combine those types
together trying to take benefits from both sides [5]. Moreover, scheduling al-
gorithms are either preemptive or non-preemptive. A preemptive scheduler
may allow each job to run the first time not until completion and what re-
mains of the corresponding processing units would be resumed later until
completion. This means that each preempted job may take the Processing
Element (PE) several times to complete its execution.



574 Y. Laalaoui and R.B. Ahmad

3.2 Problem Formulation

Consider the decision scheduling problem P for an input job set J = { J1,
J2, ...,Jn }. Each job Ji has its first release date r(Ji), its computation time
C(Ji). The input set is expected to be scheduled on a specific architecture
e.g. a single PE system non-preemptively by an off-line scheduling algorithm
A [6]. Let start(J) be the start time of the job J i.e., the instant of taking
the PE, which is greater than or equal to its release date. Let end(J) be the
end time for the job J which is the instant of yielding the PE to another job
including the idle job.

Since the problem P is a decision problem, then the output of the schedul-
ing algorithm A is either ”yes” or ”no”. The scheduling algorithm A reports
”yes” if a feasible schedule is found. A schedule S is said feasible if f(S) ≤ k
(resp. ≥) is satisfied where f(S) is the objective function and k is an initially
specified threshold [7]. The job set is said schedulable if there exists a feasible
schedule S. Therefore, the only way to answer ”yes” for a given decision
scheduling problem P is to find at least one feasible schedule S.

The function f can be the maximum lateness, the makespan, the total
tardiness,...etc. In the remainder of this chapter, we will use the maximum
lateness as the objective function and k equal to 0 to represent decision job
scheduling problems. To this end, each job from the input set has one more
timing parameter called the deadline which is a time given to each job to
finish its execution. The lateness of each job J is the difference between its
end time and deadline. The objective function is the maximum value from all
obtained latenesses. If the objective function f is less than or equal to 0, then
all jobs have finished the execution before their corresponding deadlines.

Basically, there is only one difference between the most of existing ob-
jective functions which is the relationship of the function either to each job
individually or to the complete solution. For example, the total tardiness
is related to whole solution while the maximum lateness is related to each
job. Such difference between the objective functions would make the dif-
ference between problem solvers nature. In Artificial Intelligence literature,
the problem to find a solution with a desired criteria to answer ”yes” (resp.
”no”) is a Constraint Satisfaction Problem (CSP) [16] since a solution that
doesn’t satisfy the objective function would not be accepted. To solve a CSP
problem, one can use either complete-and-repair or backtracking techniques
[17][18]. In complete-and-repair techniques, the problem solver generates a
complete solution with many constraints’ violations and proceeds for possible
repairs until finding a solution with zero constraint violation. In backtrack-
ing techniques, there is only one repair instead of multiple repairs. Further,
backtracking solvers extend each partial solution gradually until finding a
complete solution with zero violation. If the extension leads to one con-
straint violation, then the problem solver stops the extension trying to retract
one of the previous partial solutions. Both techniques work on possible



Decision Incorporation in Meta-heuristics to Cope 575

permutations of jobs along repeated process until finding a solution with
no constraint violation.

To limit the focus of this chapter to the decision problem, we assume that
all jobs are ready for selection at the beginning of the search. This would mean
that all jobs are selected independently 1 from each others. Nevertheless, the
extension to dependent jobs is possible with just separating two sub-sets of
jobs Jready and J where the former is the set of jobs currently independent
and the latter set contains jobs which are not yet ready for selection. The
set Jready would be updated along the search process and dependent jobs are
selected according to their precedence orders.

4 Meta-heuristics and Decision Problems

Meta-heuristics, which are treeless Incomplete algorithms, attempt to build
and improve a solution which is not feasible (Fig. 2). Meta-heuristics have
been used widely in both pathfinding and CSP problems. Since, the most of
existing problems are NP-Hard, there was a need of reducing the exponential
costs (time and space) to reasonable values by using meta-heuristics. One
well known drawback of meta-heuristics is that the Completeness property
is sacrificed and no meta-heuristic algorithm is Complete.

Algorithm A;
Inputs : a problem instance;

a threshold k to bound the objective function;
Outputs : ”yes” with a feasible solution or ”no” with failure;
Begin
(01) Do.
(02) Build-and-Improve-a-solution
(03) While(a feasible solution is not found)

AND (MAX NUMBER OF ITERATIONS IS NOT EXCEEDED ))
End.

Fig. 2 Generic algorithm of meta-heuristic techniques designed to solve decision
problems.

To the best of our knowledge, all heuristic and meta-heuristic algorithms
are using only the number of iterations, once exceeded, to carry out failure if
no feasible solution has been found yet. The desired solution could exist so far
or maybe after few iterations which is unknown a priori but the Incomplete
algorithm is not able to reach it. In other words, there is no built-in test to
be used instead of the maximum number of iterations to decide about the
feasibility of the problem instance.

1 We mean by dependency the non-existence of precedence relationships between
jobs.
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4.1 Simulated Annealing

Simulated Annealing (SA) meta-heuristic is inspired from the annealing
process in metallurgy [8]. This physical process involves a repeated heat-
ing/cooling of a given material in order to increase the size of its crystal and
reduce its defects. The heat causes the atoms to move from their initial posi-
tions to other states with higher energy. Then, the slow cooling allows them
to take different positions with lower energy than the initial one.

By analogy, a trial in the SA algorithm corresponds to an action of heating
and cooling the material in the annealing process and it represents the current
solution. A solution of each trial is controlled by the desired solution quality
(represents as a function value) and a global parameter T called temperature.
The quality of a solution is domain dependent and it corresponds to the
internal energy E to be minimized. Along the SA trials, T is decreasing until
an acceptable solution is found.

The SA algorithm starts with an initial complete solution s0 and attempts
to improve it along repeated iterations. At each iterations, there are many
candidate solutions. The SA algorithm decides whether to move to a new
solution s′ or to stay in the current one s probabilistically . Such decision has
to make sure that the next solution should be with lower energy E than the
previous one. In other words, if this move leads to a better solution, then it
is always executed. Otherwise, the next solution is chosen probabilistically .

4.2 Ant Colony Optimization

The Ant Colony Optimization (ACO) meta-heuristic is inspired from behav-
ior of natural ants. In ACO approaches, a colony of m ants is used. Each ant
has to build its solution which is supposed to be with an improved quality
compared to the solution generated by the preceding ant. Iteratively, this
process is repeated until obtaining a solution with an acceptable quality [9].
Ants, when moving between states of the search space, are using a decision
rule to select the next move. This rule is based on the quantity of pheromone
present on the edge leading to the next state. This rule is using also a heuristic
information related to the considered problem in order to guide the search
toward better solutions. The major problem of ant colonies is the stagna-
tion situation and they can converge to sub-optimal paths on which much
pheromone is concentrated. An alternative decision is called sometimes to
avoid this problem where the next move is selected using probabilities and
random variables. ACO is a global framework for many ant-based algorithms
such as Ant-Q, Ant Colony System (ACS) [9],...etc. Each ACO algorithm is
a constructive approach where many ants (a colony) are competing to find a
desired solution over repeated iterations.
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4.3 Tabu Search

Tabu Search (TS) is a meta-heuristic technique that enhances local search
techniques [12]. TS uses some memory space to avoid repeated visits of the
same solutions in the state-space. TS is considered as one variant from SA
meta-heuristic. A simple implementation of the sacrificed memory is a list
which is called tabu list. For each solution s, TS determines the set of neigh-
borhoods s′ for possible moving to one potential solution. The process is re-
peated iteratively along many iterations until reaching an acceptable solution
or some other criteria has been satisfied. TS is considered as an improvement-
based approach since it starts with one random solution and it attempts to
perform some improvements.

It is worth to mention that our main reason to choose ACO, SA and
TS meta-heuristics in our study is to represent both classes of algorithms
that deal with generic decision problems : backtracking (or constructive) and
complete-and-repair techniques. We did our implementation so that ACO
represents constructive2 techniques with only one constraint violation at the
end of each partial solution while SA and TS represent complete-and-repair
techniques.

Further, the other reason is to observe the number of detected preemptions
by both classes which is used in the decision to halt the program.Complete-and-
repair techniques often detect more preemptions than constructive techniques
aswewill see in the next sections. The detection of great number of preemptions
means waiting longer times to decide about stopping the programwhile a small
number leads to wait shorter times.

5 Decision with the Steady-State

5.1 Overview

The decision with the steady-state is proposed the first time in [10] to increase
the success rate of the ACO meta-heuristic in preemptive context. This test
exploits the gap between preemptive and non-preemptive schedulers. The idea
is to detect and to postpone possible preemptions where the authors called
such process by preemption learning. As it was defined in [10], A steady-state
is the set of iterations during which no more preemption could be detected.

2 We mean by constructive, a technique that constructs a feasible solution grad-
ually from a partial to a complete one. Further, it stops the iteration when a
specified constraint (e.g. the objective function bound is exceeded) is violated.
Moreover, we did our implementation so that the search started from the scratch
after each constraint violation i.e. each ant has to start building its solution from
an empty one attempting to take another search direction during the next it-
eration avoiding the previous direction. Often, backtracking techniques doesn’t
construct a solution from scratch but retracting one from some visited solutions
by removing many jobs recently added to the current solution [17] .
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If a preemption is detected, then a non-preemptive scheduler will not perform
that preemption but just save it in a data structure called ListPrmpt. Iter-
atively more preemptions are detected and saved until no more preemptions
could be detected which corresponds to the steady-state. When the steady-
state is reached, then the non-preemptive scheduler can decide to stop the
search for feasible schedules where either it is not able to reach an existing
feasible schedule or there is no feasible schedule in the state-space.

5.2 Preemptive vs Non-preemptive Schedulers

In scheduling area, some times a job that is currently using the PE should
be stopped to assign the same PE to another urgent job. The stopped job
will be resumed later, possibly not on the same PE, when the system load
allows or its emergency becomes the highest. Job’s emergency is determined
on how the used scheduling algorithm is taking into account available timing
parameters, for example EDF selects the job with the closest deadline [11] .
A job Ji from J can be preempted at any time before its completion and it
can carry out as much as its computation time sub-jobs. A job with a single
processing unit is the atomic job and there is no possibility for its preemp-
tion. Usually preemptions are performed on-line in all existing scheduling
algorithms (run-time and pre-run-time) i.e., if the preemption is detected,
then it is performed and it will not be postponed. Some authors were talking
about preemption threshold in run-time schedulers [13] where the idea is to
disable jobs preemptions up to a given threshold priority. But, to the best of
our knowledge, only the work described in [10] is using the idea of detecting
and postponing preemptions to decide about the input job set.

5.3 Preemption Learning

Definition 1. ( job request ) : A job request Ri(t) is the fact that the
job Ji is asking to take the Processing Element at time t.

The above definition shows that each job Ji is asking to take the PE. Each
request is either satisfied of not. If a job request is satisfied, then Ji takes the
PE. Otherwise, the job Ji is said to have an outstanding request . Therefore,
each job can have many outstanding requests until getting the PE. Notice
that the scheduling algorithm selects jobs at the beginning of the search and
after the end of execution of the job currently occupying the PE.

Definition 2. ( outstanding request ) : A request Ri(t) of a job Ji is said
to have an outstanding request at time t if its occurrence at time r(Ji) has
not been satisfied at time t where t ≥ r(Ji).

The outstanding causes for a job Ji at time t can be one of the following
reasons : 1) non-preemptive selection nature of the scheduling algorithm in
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non-preemptive context or 2) Ji doesn’t have the highest priority 3 value
among all jobs present during the selection process in preemptive context.
In the remainder of this chapter we consider only the first case i.e. non-
preemptive selection.

Job selection instants in preemptive schedulers is performed when a job
has finished its execution or another job present in J has the highest priority
value. However, non-preemptive schedulers have a non-conservative decisions
and they select jobs while the set J is not empty. Needed idle times in the
latter schedulers are inserted implicitly. Possible preemptions can be detected
easily by non-preemptive schedulers by observing job’s outstanding request .

When a new job called Jj is selected to be executed on the PE after
a given job Ji currently using the PE, if Jj has an outstanding request at
time t after its release date r(Jj), then Jj may preempt Ji if its priority is
the highest. Instead of performing preemptions during selection times, each
detected preemption can be saved in a data structure called ListPrmpt to
be performed later if preemptions are allowed. Each preemption from the set
ListPrmpt is defined by the job Ji to be preempted and its new computation
time. For a job Ji, that is supposed to be preempted by another job Jj , its
new computation time is r(Jj)-start(Ji).

The process of detecting and saving possible preemptions is called Preemp-
tion Learning. This process of Learning is repeated along the search iterations
until convergence to a feasible schedule or the maximum number of iterations
is exceeded.

Fig. 3 Example of detecting preemptions.

In Fig.3, there is a sequence of execution of two jobs A and B. The job A
is released at time t equal to 1 and it has a computation time equal to 7 while
job B is released at time t equal to 3 and it has a computation time equal to
6. Fig.3 shows that job B is selected for execution after the end of the job
A. Further, the job B has an outstanding request at time t equal to 3 since
A is occupying the PE. Job B is executed after the completion of A at time
t equal to 8. In preemptive scheduling, job A may release the PE at time t

3 We mean by priority a heuristic value assigned using heuristic function according
to some timing and other heuristic parameters.



580 Y. Laalaoui and R.B. Ahmad

equal to 3 if B has the highest priority which result to the division of A into
two jobs A (filled area) and A′(unfilled area) with two different computation
times 2 and 5 respectively. Thus, job A is a new candidate to be appended
to the set ListPrmpt.

(xx) ......
(01) For each job Ji in the current solution do
(02) if (start(Ji)< r(Jj) AND end (Ji)> r(Jj)) then
(03) ListPrmpt ←− ListPrmpt ∪ {(Jj ,r(Jj)-start(Ji))}
(04) End-for
(xx) ......

Fig. 4 Learning code to be integrated into a constructive meta-heuristic technique
such as ACO. Jj is the currently selected job.

(xx) ......
(01) For each job Ji in the current solution do
(02) For each job Jj in the current solution do
(03) if (Ji �= Jj) then
(04) if (start(Ji)< r(Jj) AND end (Ji)> r(Jj))then
(05) ListPrmpt ←− ListPrmpt ∪ {(Jj ,r(Jj)-start(Ji))}
(06) End-for
(07) End-for
(xx) ......

Fig. 5 Learning code to be integrated into a complete-and-repair meta-heuristic
technique such as TS and SA.

The code shown in Fig.4 would be inserted to constructive techniques to
learn possible preemptions. This code would be inserted after selecting a job
Jj from the candidate set where the latter job would be appended to the
current solution. This means that jobs are selected one by one (according to
a selection criteria) from the candidate set and appended also one by one
to the current solution until finding a complete feasible solution or initial
constraints have been violated (the objective function f is not satisfied). If
the selected job Jj has an outstanding request , then another job Ji from
the current solution is occupying the job’s j release date r(Jj) i.e. start(Ji)<
r(Jj) and end (Ji)> r(Jj). In this case, there is one possible preemption to
be inserted into the set ListPrmpt which is defined by the job Ji and the
number of units from this job is equal to r(Jj)-start(Ji).

Similarly to the code shown in Fig.4, the code shown in Fig.5 would
be inserted to complete-and-repair techniques to learn possible preemptions.
This code would be inserted after the generation of each new solution. During
each iteration, there is a generation of at least one new solution not necessary
the best one. For example, the generation in SA and TS techniques consists of
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making some changes on the current solution to move to its neighbor. Notice
that each new solution is one possible permutation of the n input jobs. In
Genetic Algorithms (GA), there is a combination of multiple solutions by
crossovers and mutations to generate a new solution which is expected to
be with better quality. The preemption learning code takes a longer time in
complete-and-repair techniques compared to constructive technique because
there is a need to check for each job Ji from each new solution whether there is
a job Jj which is occupying the job’s Ji release date r(Ji). Straightforwardly,
the time complexity of the code show in Fig.5 is O(n2). But, it is easy to add
a condition on detecting the time window of the job Ji to stop the second
nested loop and to reduce the search time.

When a new preemption is detected, it is appended to the set ListPrmpt if
it was not appended previously. The set ListPrmpt size is increased gradually
along the search iterations. The number of detected preemptions is bounded
since the input job set is finite and each job has a fixed and finite computation
time. The total number of possible preemptions is given in the following rule
for a set J of n jobs :

" =
∑
Ji∈J

(C(Ji)− 1) = (
∑
Ji∈J

C(Ji))− n (1)

This equation is an upper bound on the number of possible preemptions along
the scheduling process. A given job Ji can be divided into a set of C(Ji)-1
sub-jobs and the total number is the sum of all jobs preemptions as it is
shown in this equation.

When the scheduling algorithm loops infinitely, then there is no feasible
schedule or the scheduling algorithm is not able to find an existing feasible
schedule due to its Incompleteness nature. For both cases, the scheduling
algorithm detects a given number of preemptions between jobs.

The learning stage is performed either from intermediate solutions or from
the best solution. In ACO, we have taken from ant’s solution which is not
necessary the best global solution. In TS, we took from each intermediate so-
lution which is not necessary the best one. When a new neighbor solution is
generated from the current best solution and if it is not in the tabu list, then
we try to find associated preemptions and all newly generated preemptions
would be appended to the set ListPrmpt if they are not within this set yet.
In SA the process is the same like in TS technique, we took from each inter-
mediate solution which is not necessary the global best one. It is worth to
note that ACO technique is a constructive technique which means that newly
generated preemptions are detected one by one after appending each job to
the current solution. Further, in constructive techniques there is a manipula-
tion of partial solution until finding a complete solution with a desired score
of the objective function. In contrast, SA and TS are improvement-based
techniques which means there is a complete solution (randomly generated
initially) to be improved along the search iterations. This means that new
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Table 1 Example of a job set.

A B C D E F

r 2 1 0 0 1 3

C 5 3 2 2 2 3

d 10 10 10 10 10 10

preemptions are detected after the generation of the intermediate complete
neighbor solutions.

Fig.6 shows the behavior of detecting preemptions by ACO, TS and SA
meta-heuristic techniques during the search for feasible schedules. Notice
that the input job set is described in Table.1 and there is no feasible non-
preemptive schedule in the state-space for this example. All curves show the
number of preemptions detected along the iteration interval [1...2000]. The
learning process starts from zero at the beginning of the search for the ACO
while in SA and TS it starts from few preemption. The cause is the nature
of those techniques where ACO is a constructive technique and both TS and
SA are improvement-based techniques. It means that in ACO, preemptions
are collected from a partial solution while in TS and SA, they are collected
from a complete solution and it is clear that the number of preemptions
in one complete solution is greater than the number of preemptions in one
partial solution. The learning process continues to detect more preemptions
until reaching the steady state. The steady-state starts at the iteration 15 for
SA with 20 preemptions. In TS, The steady-state starts at the iteration 15
with 18 preemptions. In ACO, it starts after 800 iterations during that there
are only 6 possible preemptions. Straightforwardly, no other preemptions is
detected after the steady-state.
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Fig. 6 Preemption learning along the search iterations by ACO, TS and SA meta-
heuristic techniques. In ACO, the number of iterations is 10000 with 10 ants (sub-
iterations). In SA, the initial temperature is set to 50 and the final is set to 1. In
TS, we’ve run the corresponding program along 10000 iterations.
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Definition 3. ( steady-state ) : A steady-state is the set of iterations
during that no more preemptions could be detected.

If the steady-state is reached, then no more preemptions between jobs could be
observed by the scheduling algorithm. This would mean that the scheduling
algorithm is not able to explore more regions in the state-space or there is
no feasible schedule. Therefore, it is not possible to continue the search if
the steady-state is reached. In all classical meta-heuristic algorithms, only
the maximum number of iterations once exceeded is used to decide stopping
the search and they didn’t integrate any observation technique about the
problem to be solved.

It is worth noting that the maximum number of possible preemptions is
defined by the steady-state and it can not exceed the upper bound " outlined
in above equations. The heuristic nature of the learning algorithm can result
to detect more preemptions so far. The speed of reaching the steady-state
depends particularly on the nature of the meta-heuristic and its parameter.

Lemma 1. The steady-state exists for every finite job set.

Proof: The proof of the lemma comes directly from the upper bound defined
previously ". Since each job from the input set has a limited computation
time and the total number of jobs is finite, then also the number of preemp-
tions is finite. It means that, at worst the maximum number of preemptions
would be detected by the learning process and no other preemptions could
be detected which is the case of the steady-state. �

Lemma 2. If a job set is not schedulable, then the Incomplete scheduling
algorithm loops infinitely.

Proof: Assume the converse of the lemma, the input job set is not schedulable
and the scheduling algorithms doesn’t loop infinitely. The only conditions to
stop the search are the maximum number of iterations is reached or one
feasible schedule is found which contradicts the assumption that there is no
feasible schedule. Thus, we prove the lemma. �

Theorem 1. If a job set is not schedulable, then the steady-state is reachable
when the Incomplete scheduling algorithm loops infinitely.

Proof: This theorem means that the steady-state test is just a Necessary
Condition for the non-schedulability of the input job set and its proof is
as follows. Assume the converse of the theorem, the input job set is not
schedulable and 1) the steady-state is not reachable or 2) the scheduling
algorithm doesn’t loop infinitely. If the steady-state is not reachable, then
there is a contradiction with Lemma 1. If the scheduling algorithm doesn’t
loop infinitely, then it contradicts Lemma 2. Therefore, we prove the theorem
for both cases. �
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Corollary 1. If an algorithm A is Incomplete and the steady-state is reached,
then A is not able to find an existing feasible schedule or there is no feasible
schedule in the state-space.

Proof: This corollary generalizes the result provided in the above theorem
for Incomplete algorithms in both cases : schedulable and non-schedulable
input job sets. The proof of this corollary is easy and it is by converse like
the aove theorem. Assume the converse of this theorem, A is Incomplete
and the steady-state has been reached but there is a feasible schedule in the
state-space and A is able to find it.

Since the steady-state is detected, then A loops infinitely according to the
definition of the steady-state i.e., A is not able to find an existing feasible
schedule which contradicts our assumption that A is able to find an existing
feasible schedule. �
As stated above, theorem 1. provides a necessary and not sufficient schedu-
lability test. A feasible schedule could exist but the scheduling algorithm fails
to find it due to its Incompletness nature. If the number of detected preemp-
tions remains the same along many iterations ( steady-state is reached) and
no feasible schedule is found yet, then probably there is no feasible schedule.
The setting of the number of iterations to detect the steady-state depends
on the input job set (job set size, jobs timing parameters,...etc ) and the
expected performance of the scheduling algorithm in terms of time either it
should give the answer within a short or a long time.

5.4 Search Iterations Sampling and Decision Points

To implement the steady-state idea, the infinite 4 search iterations should be
divided into infinite samples where each sample is defined with a finite number
of iterations. It is supposed that all samples have the same pre-specified fixed
size5. We call each sample by sample-interval.

At the end of each sample-interval, the problem solver observeswhat happen
during iterations of this sample in order to take the decision to continue/stop
the search. In other words, the steady-state test ( decision points ) is based on
observing the variation of ListPrmpt’s size at the end of each sample-interval
(Fig.7). If this size is not increased during the last sample-interval, then there
is a possibility that the steady-stated is entered and probably6 it is the time to
stop the search.

4 Now, it is supposed that the scheduling algorithm is running for unbound number
of iterations and the only way to stop the search process is either a feasible
schedule has been found or the steady-state has been reached.

5 The reason to take the size of all samples as a fixed value is just to simplify
the study and a deeper analysis in case of variable size would be one possible
direction in our future researches.

6 Probably in the sense that we didn’t wait enough to detect more preemptions.
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Fig. 7 test points along the search iterations

The pseudo-code shown in Fig.8 is the implementation of the steady-state
decision test. This code is expected to be inserted into a meta-heuristic tech-
nique pseudo code. For example, the latter pseudo-code (Fig.8 ) together
with the preemption learning pseudo-code (Fig.4 and Fig.5 ) can be in-
serted between steps 02 and 03 in the pseudo-code described in Fig.2. The
new pseudo-code is shown in Fig.9. The pseudo-code shown in Fig.8 is in-
dependent since its unique input is the solution of the current iteration from
which there is a learning of preemptions and testing whether the steady-state
has been reached or not yet. In Fig.8, the variable iter is the iterations’
counter and prev size is set initially to 0 to keep the previous size of the set
ListPrmpt. The control test in step 01 performs a modulo arithmetic opera-
tion between the iteration counter (iter) and the size of the sample-interval
to check whether the end of the sample-interval is reached or not yet.

(xx) ......
(xx) // if test point is reached
(01) if ( (iter%sample interval size) == 0)then
(02) if ( prev size == size(ListPrmpt) )then
(03) the steady-state has been reached, stop the search.
(04) else
(05) prev size ←− size(ListPrmpt)
(06) end-if.
(xx) ......

Fig. 8 steady-state detection code. iter is the iterations’ counter.
sample interval size is the size of the sample-interval which is an initially
specified parameter.

When the size of the sample-interval is smaller, then the decision time
about the schedulability of the input job set is shorter. In this case, there
is a risk of skipping potential feasible schedules that require more iterations.
When the size of the sample-interval is longer, then the decision about the
schedulability of the job set would take a long time and more chances are
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Algorithm A;
Inputs : a problem instance;

size of the sample-interval ;
a threshold k to bound the objective function;

Outputs : ”yes” with a feasible solution or ”no” with failure;
Begin
(01) Do.
(02) Build-and-Improve-a-solution
(03) Preemption-learning
(04) Testing the steady-state
(05) While( (a feasible solution is not found)

AND ( STEADY-STATE IS NOT REACHED ) )
End.

Fig. 9 A new generic algorithm of meta-heuristic techniques designed to solve
decision scheduling problems.

given to the scheduling algorithm to find existing feasible schedules. This
issue is discussed in the next section.

5.5 Experimental Study

Overview. The aim of the current experimental study is to show the impact
of the sample-interval sizes to detect the steady-state and to decide about the
schedulability of the input job sets. As stated above, we have implemented
three meta-heuristics ACO, TS and SA while input data is generated ran-
domly. It is worth to note that a more efficient implementations for all used
techniques ACO, SA and TS can exists. But, we remind the reader about
the main aim of the current work which is the description of the new built-in
decision test to be integrated to existing Incomplete techniques namely meta-
heuristics. The new test will replace the maximum number of iterations which
is non-informative and unknown a priori to stop the search when the desired
solution doesn’t exist in the state-space.

It is worth to mention that along our experimental section we are talking
about the number of rejections (or rejection rate) of implemented techniques.
Notice that, an efficient technique is the one with the lowest rejection rate of
input job sets. This would mean that the number of skipped feasible schedules
for an efficient technique should be as small as possible.

Experimental Setup. The used data-set contains 100 random job sets and
their characteristics are depicted in Table.3 (see Appendix). The exact num-
ber of schedulable job sets (number of ”yes”) is unknown for us because the
data-set is random and the problem of checking the schedulability of a job
set needs using exact techniques such as Depth-First-Search (DFS) which is
time limited since the problem is NP-HARD. We will show results of what we
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have obtained using ACO, TS and SA. The maximum number of schedulable
job sets is 67 which is found by SA technique while the minimum number is
66 found by ACO and TS. All reported results are taken from only one trail
for all used techniques since results provided after many trials are often close.

The size of the sample-interval is set to the following values : 5, 10, 20, 30,
50, 100, 300, 500 and 800 iterations and results (number of NO ) are taken
for each value. We have set the maximum number of iterations for 15000
and 30000 for all techniques ACO, TS and SA. Of course, when the steady-
state decision test is incorporated into a meta-heuristic, then the number of
iterations to say ”NO” ( stop the search ) would not be known in advance
since it depends on the used technique’s behavior to explore the state-space
and to reach the steady-state.

Overall Behavior. The histograms shown in Fig.10 report results of two
trials of running ACO, TS and SA. The first trial is after 15000 and the
second one is after 30000 iterations as the maximum number of iterations.
These histograms show how many rejections after the maximum number
of iterations and not after the steady-state. Depicted results give an idea
about the global behavior of used techniques in terms of the number of times
the steady-state test has been used during our experimental study. These
results are taken when the sample-interval size is set to the maximum i.e.
800 iterations.

Straightforwardly, only two histograms are shown after both cases 15000
and 30000 iterations. The missing histograms corresponds to the technique
which has used only the steady-state test to stop the search. It is the ACO
technique with red color in the figure. All rejected job sets by ACO were
rejected after reaching the steady-state and not after reaching the maximum
number of iterations.

The rejection rate for both SA and TS is going down when the maximum
number of iterations is increased. This means that both techniques need more
iterations to reach the steady-state. The rejection rate for SA is higher than
TS for both cases. This is so because it is known that SA is more efficient
than TS in state-space exploration i.e. SA needs more iterations to reach
desired solutions.

The next section discusses the detail when the sample-interval size is set
to values less than 800 iterations for all techniques.

Behavior When the Maximum Number of Iterations Is Set to
15000. The histograms shown in Fig.11 reports results of one trial of run-
ning ACO, TS and SA after 15000 as the maximum number of iterations.
These histograms show how many rejections after the maximum number of
iterations and after the steady-state for different sizes of the sample-interval
: 5, 10,...,800 iterations.

Straightforwardly, only two histograms are shown for all settings of the
sample-interval size. The ACO meta-heuristic is missing in this figure which
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Fig. 10 Rejections after the maximum number of iterations : 15000 and 30000
when the sample-interval size is set to 800 iterations.

means that the steady-state test has been used for all sample-interval settings.
Of course, if the steady-state has been used for all rejections when the sample-
interval size setting 800, then surely it would be also used for all rejections
when the sample-interval size is set to values lesser than 800 iterations.

The SA technique starts to use the maximum number of iterations to stop
the search at 100 iterations of the sample-interval size while the TS starts
after 300 iterations. After 100 iterations, the SA rejects more job sets than TS
using the maximum number of iterations. Again, this is due to the efficiency
of SA in exploring the state-space and it needs more iterations to reach the
steady-state.

After 100 iterations, both SA and TS rejection rates are going up when
the sample-interval size is increased. Obviously, there is a need to take more
time in exploring the search-space and detecting more preemptions for the
steady-state decision.

Graphs in Fig.12(a) shows the rejection rate after different sizes of the
sample-interval. Reported results in this figure include both types of rejection
: after reaching the maximum number of iterations and after reaching the
steady-state. The histograms shown in Fig.11 gives the reader an idea about
plotted data in Fig.12(a) i.e. how many job sets were rejected using the
maximum number of iterations instead of the steady-state.

Notice that for all used techniques, the rejection number would not be
above 66 because the number of job sets successfully scheduled using the
plain heuristic EDF is 34 sets as it is shown in Table.3 unless there is a
problem in implementing used meta-heuristics ACO, TS and SA . Recall
that the minimum setting size for the sample-interval is 5 iterations for all
techniques which should give much better results than EDF.
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Fig. 11 Number of rejections after the maximum number of iterations 15000 for
different sizes of the sample-interval.

In Fig.12(a),when the sample-interval ’s size is less than 10 iterations, then
around 55% job sets are rejected. When the sample-interval ’s size is above
800 iterations, then the rejection rate is less than 38%. When the size of the
sample-interval is set to 5 iterations, then there are 53, 53 and 55 by ACO,
SA and TS respectively. When the size of the sample-interval is set to 800
iterations, then there are 34, 34 and 37 by ACO, TS and SA respectively. The
maximum number of rejections is obtained by TS, 55 job sets were rejected
during the sample-interval size set to 5 iterations. The minimum number of
rejection is 34 job sets which was obtained by both ACO and TS when the
sample-interval size set to 800 iterations.

One more important remark about the graph shown in Fig.12(a), all the
graphs are almost straight after the sample-interval size equal to 100 until
800 iterations i.e. results are very close for all algorithms ACO, SA and TS.
The number of rejections after 100 is almost the same number after 800
iterations. The maxium number of rejected job set is 37 while the minimum
is 34 between 100 and 800 iterations. This would mean that there is no need
to perform more than 100 iterations (for the sample-interval) to halt the
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program and reporting failure. This is a very good sign for the usefulness of
the steady-state test since the rejection time when sample-interval size is set
100 is shorter than the rejection time when the sample-interval size is set to
800 in all algorithms Fig.12(c).

SA technique has the highest rejection rate when the sample-interval size
is set to the maximum (800 iterations) (Fig.12(a)). It is well known that
SA is a very efficient technique in terms of state-space exploration but it is
slow technique in problem solving. The desired solution (answering ”yes” )
would be reached but after a very long time. The steady-state (answering
”no” ) would also be reached but after a very long time as it is shown in
Fig.12(b). The latter figure shows that SA has the highest number of rejected
job sets using the maximum number of iterations which would mean that the
steady-state is not reached yet after the maximum number of iterations 15000.
Fig.12(b) shows the average time to reject job sets where SA and TS have
the longest time with a close results.

As we have seen in this experiment, SA is more efficient than ACO since
the former technique has the lowest rejection rate. Nevertheless, ACO could
also increase its efficiency but after increasing the sample-interval size above
800 iterations ( the size at which ACO has reached its lowest rejection rate).
When the sample-interval is set to 1200 iterations and the ACO is run for
30000 iterations, the resulting number of rejections is the same to the previous
result 34. The ACO is able to schedule only 66 job sets out of 100.

But, how to determine the sample-interval size so that no feasible schedule
would be skipped ?

From the above experiments, it is not obvious to determine the size of the
sample-interval a priori.

Firstly, it depends on the search technique behavior in exploring the state-
space. 100 iteration was quite enough to use 7 in the ACO technique while
800 iterations was not enough to detect the steady-state in SA and TS tech-
niques. What we can say is that constructive techniques such as ACO detect
lesser preemptions than complete-and-repair techniques such as SA and TS.
Therefore, settings of the sample-interval size to detect the steady-state is
related to the class of the used technique either constructive or complete-
and-repair. As we have seen above, there are unnecessary permutations of
jobs during the search process in complete-and-repair techniques which need
larger sizes of the sample-interval. In contrast, in constructive techniques the
same partial solution is gradually extended until finding a complete feasible
schedule i.e., there are lesser permutations between jobs during the search
process which would result to tighter sizes of the sample-interval.

Then, it depends also on the job set size. In the general case, a set with a
small number of jobs would be easy to decide compared to a job set with a
great number of jobs as it is depicted in graphs of Fig.13. In this figure, for
all algorithms ACO, TS and SA, the time to decide (saying ”NO”) about the

7 In the sense that all decisions are made using the steady-state test and not the
maximum number of iterations.
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Fig. 12 Number of rejections and the average rejection time after different sizes
of the sample-interval

schedulability of the input job set is increased according to that job set size.
Notice that the times reported in Fig.13 are taken when the sample-interval
size was set to the greatest value (800 iterations). Therefore, if the size of
the input job set is small and the size of the sample-interval is large, then
reporting failure would not take a long time.

Recall that there are 100 job sets in our data set with the minimum number
of jobs equal to 9 while the maximum is 263 jobs. The average size is 82 jobs
per set as it is described in Table.3. The maximum value 800 iterations for
the sample-interval is 10 times larger than the average size of the job set and
almost 4 times larger than the largest job set size.

The value 800 iterations was quit enough to all techniques to achieve a close
rejection rates 33, 32 and 34 for SA, TS and ACO respectively. But recall also
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Fig. 13 Time to report ”NO” vs job set size when sample-interval is set to 800.

that, for complete-and-repair techniques many job sets were rejected using
the maximum number of iterations in which more time (iterations) is needed
to reach the steady-state which is not the case for the constructive technique
ACO.

In conclusion of this section, if someone has set the sample-interval size to
great values, then the time to reject job sets would be long. But, it is very
informative compared to use the maximum number of iterations to reject the
input job set. Further, the risk of skipping potential feasible solutions would
be decreased. The fact of a technique takes a long time to report failure is
not related to the steady-state decision test since many techniques take a
very long time to explore the search space such as SA as we have seen in our
experimental study. Further, users of SA technique are often familiar with
the long time that this technique takes to report good results.

6 Complexity Study

One of the most important issues is the complexity of solving the halting
problem if the running program is a meta-heuristic technique and the in-
put problem instance is a decision scheduling problem and both time and
space complexities are required. Table.2 shows both time and space com-
plexities for both classes of algorithms constructive and complete-and-repair
techniques. In fact the time and space complexities refer to the extra steps
that we have added so that we can decide using the steady-state technique
(steps 03 and 04 in Fig.9 ). They didn’t refer to the complexity of the meta-
heuristic itself.

In the following, we prove complexity results shown in Table.2.
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Table 2 Time and space complexities.

Time complexity Space complexity

Constructive techniques O(k ∗ n) O(
n∑

i=1

(Ci− 1) )

Complete-and-repair techniques O(k ∗ n2 ) O(

n∑

i=1

(Ci− 1) )

Lemma 3. The space complexity to detect the steady-state for both construc-

tive and complete-and-reapir techniques is O(

n∑
i=1

(Ci − 1).

Proof: This lemma means that the space to decide stopping the search is
linear according to the jobs’ computation times. The proof of this lemma is
easy and it comes directly from the definition of the steady-state and the size
of the set ListPrmpt.

Since the number of jobs n is finite, since the jobs’ computation times are

also finite, thus

n∑
i=1

(Ci − 1) is also finite. �

Since the division of jobs is not allowed i.e., preemptions are not performed,
the real size of the set ListPrmpt would be much lesser than the maximum
size.

Lemma 4. The time complexity to detect the steady-state for constructive
techniques is O(k ∗ n).
Proof: The proof of this lemma is also by converse and it comes from the
algorithm shown in Fig.4 and the size of the set ListPrmpt.

Assume that the whole time to check the steady-state is infinite i.e. k ∗ n
is unbounded.

It is clear from Fig.4 that the algorithm runs for O(n). It is also clear that
the set ListPrmpt would be checked many times which is unknown a priori.
Let k be the number of times of checking the set ListPrmpt. if k is finite,
then also k ∗ n is finite since n is finite. Let’s prove that k is finite.

The algorithm would stop when the steady-state has been reached. This
would mean no more preemptions would be detected. Since the algorithm
is Incomplete, then it is able to visit a limited region in the state-space.
Thus, it is able to detect a finite number of possible solutions (feasible and
non-feasible). Since, the number of detected solutions is finite, then the num-
ber of detected preemptions is also finite which coincides with steady-state.
Therefore, the time to reach the steady-state is finite since it corresponds
to the number of detected solutions. Since the detection time is finite, then
the number of needed sample-intervals is also finite which means that k is
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finite. Therefore, k ∗ n is finite which contradicts our assumption that k ∗ n
is unbounded and we prove the lemma. �

Lemma 5. The time complexity to detect the steady-state for complete-and-
repair techniques is O(k ∗ n2).

Proof: The proof of this lemma is similar to the proof of the previous lemma.
It is by converse and it comes from the algorithm shown in Fig.5 and the
size of the set ListPrmpt.

7 Applicability of the Steady-State

The work described in this chapter is a separate technique to be integrated
into an existing meta-heuristic technique to avoid infinite looping for either
a target solution doesn’t exist or the used meta-heuristic is not able to reach
the target solution. It is an application of the Turing halting problem when
the running program is an Incomplete meta-heuristic technique and the in-
put problem instance is a decision scheduling problem. It is worth to mention
that the notion of preemption is related to all scheduling problems either pre-
emptive or non-preemptive. Therefore the steady-state is a practical common
test for all decision scheduling problems. But, it depends on the input job set
timing parameters particularly the computation time and the used algorithm
nature.

7.1 Job Set Characteristics

The steady-state decision test is useful when jobs of the input set have their
computation times greater than 1 which is the atomic job’s computation
time. If all jobs’ computation times are single units, then no preemption
could be detected. In real-life scheduling problems, this case could not happen
since problem instances are often with random parameters. Furthermore, the
schedulibilty of such problem instances is studied theoretically and analytic
conditions were developed [26]. Moreover, such problem instances are often
easy to solve using polynomial time and space complexities[26][7].

7.2 Treeless Algorithms

Search algorithms are either tree or treeless techniques. If an algorithm is
a tree search technique, then there is a tree data structure stored in RAM
during the search process. In contrast, a treeless algorithm doesn’t use a
tree during the search process. Examples of treeless algorithms include meta-
heuristic techniques. Tree algorithms can easily decide about the existence
of a desired solution in the state-space thanks to the tree data structure.
This kind of algorithms terminates even when there is no solution in the
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state-space. This property is related to the use of trees when searching for
feasible solutions. The role of the search tree is to keep track of visited regions
in the state-space. For example, DFS keeps only one branch in memory and
it traverses the spanning tree from left to right until reaching the most right
branch. The termination of DFS would be detected if the stack ( the current
branch ) is empty. Further, the most of existing tree algorithms are Complete
i.e. they have : 1) the ability to find an existing feasible solution and 2) the
ability to report failure if the feasible solution doesn’t exist in the state-space.

To the best of our knowledge, all treeless algorithms didn’t incorporate
the decision test whatever the input problem instance (second Completeness
property). Further, all treeless algorithms, which exist in the literature, are
unable to reach an existing feasible solutions all the times (first Completeness
property). the target solution would not exist in the state-space but the
treeless algorithm would not be able to report failure and it would loop
infinitely.

Therefore, the steady-state idea would be applied to all algorithms wherein
the tree data structure is not used when searching for feasible solutions either
the algorithm has a proof of convergence to an existing feasible solution 8 or
not . The steady-state is designed to replace the tree data structure so that
the decision about the existence of feasible schedules would be made. As
shown before, the size of the sacrificed RAM space grows linearly (instead of
exponentially in tree algorithms) according to the number of jobs and their
corresponding computation times. Furthermore, the implementation of the
steady-state is much easier than implementing trees in tree algorithms where
complex data structure are required in the latter techniques.

7.3 Automatic Parameter Settings in Meta-heuristics

Why we should know whether a meta-heuristic program would eventually
halt or not for a given inputs ( problem instance ) ?

It is worth to note that one of the reasons to fail in finding an existing
feasible solution in meta-heuristic techniques is the numerical parameters set-
tings. Such settings are related to the input problem instance. A good setting
to one problem instance, doesn’t mean that it is also a good setting for an-
other problem instance[20][19][21]. It is well known that the best parameters
setting is not known in advance (before the run of the algorithm). The user
may run its meta-heuristic for several times to fix the best settings. For each
run, the meta-heuristic program is halted using the maximum number of

8 To the best of our knowledge, a treeless algorithm with a convergence proof
to an existing feasible solution doesn’t exist in CSP area. The only existing
treeless algorithm is Learning-Real-Time-A* (LRTA*) [24][25] which is designed
to solve pathfinding problems. Further, LRTA* is Complete in state-space with
a reachable target and if the target state is not reachable, then LRTA* loops
infinitely without any ability to report failure.
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iterations or forced by hand before exceeding the maximum number of itera-
tions. Then, the user tries to set some numerical parameters to other values
by hand and he runs again the program. The desired solution may exist so
far, but for both cases (using the maximum number of iterations or forcing
the program to halt) the program can easily fail to find that solution since
the user didn’t wait enough. The process of setting/halting is often repeated
several times until finding good settings or the code may be changed if those
tentatives didn’t lead to desired results.

So, the challenge remains in when to assign individual values to specific pa-
rameters during the run of the used meta-heuristic. To the best of our knowl-
edge, all existing self-adaptation techniques that deal with this problem are
either instance-based tuning [19] or algorithm-based tuning [21]. None of the
those techniques is informative about the time to decide tuning parameters.

The steady-state could be very useful in automatic numerical parame-
ters setting in meta-heuristic techniques. Instead of halting the program and
changing manually numerical parameters, the steady-state could be used to
decide updating previous settings since they are not leading to desired solu-
tions. Once the steady-state has been reached, then it is the time to change
the current settings and the detection of possible preemptions should be
started from the beginning trying to find some desired solutions or to reach
the steady-state again using the new settings.

The following figure (Fig.14 ) shows the new algorithm of meta-heuristic
integrating automatic parameters settings using the steady-state technique.
The new algorithm inputs’ are intervals for some numerical parameters which
would be tried. The new outputs are either a desired solution or a failure with
best numerical parameters that give close results to the target solution. The

Algorithm A;
Inputs : a problem instance;

a threshold k to bound the objective function;
a set of intervals for some numerical parameters;

Outputs : ”yes” with a feasible solution or ”no” with failure;
report even the best parameters settings.

Begin
(01) Do.
(02) Do.
(03) Build-and-Improve-a-solution
(04) Preemption-learning
(05) Testing the steady-state
(06) While( (a feasible solution is not found)

AND ( STEADY-STATE IS NOT REACHED ) )
(07) record the best settings of numerical parameters
(08) While(a feasible solution is not found) AND ( all intervals are not exceeded ) )
End.

Fig. 14 A new generic algorithm of meta-heuristic techniques designed to solve
decision scheduling problems with automatic parameter settings.
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algorithm would be halted once the set of all intervals are exceeded if the
desired solution is not found.

8 Conclusion

The halting problem is one of the most important Turing’s discoveries. It is
a decision problem and it consists of reporting whether a given program P
with some input data would stop or run forever. This problem was proved by
Turing to be undecidable. This means that the relevant algorithm to solve this
problem doesn’t exist. In this chapter, we have seen the application of this
problem when the program P is a meta-heuristic technique and the input
data is a decision scheduling problem. Further, we have also described an
efficient technique to solve the halting problem in this application case.

The technique described in this chapter, to solve the halting problem in
specific application case, is based on the steady-state detection idea [10]. As
we have seen, this technique is an enhancement, to decide not to search, in
Incomplete algorithms namely meta-heuristic techniques Ant Conloy Opti-
mization, Tabu Search, Simulated Annealing and specific heuristics such as
the one proposed in [14] [15].

Although the steady-state provides a Necessary Condition for non-
schedulability of the input job set for Incomplete algorithms namely
meta-heuristics, what ever the case, there is no feasible schedule or the used
algorithm is not able to find it, the used algorithm is running forever and it
must be stopped.

The potential use of the technique described in this chapter include treeless
algorithms as we have seen earlier. Treeless algorithms, for example meta-
heuristics, are techniques with no tree data structure construction during the
search process. We believe that if there is no tree (or another data structure)
that keeps track of visited regions in the state-space, then the decision pro-
cess is not possible unless the input problem instance is easy to solve. The
steady-state idea aims to integrate the decision property in meta-heuristic
techniques.

The potential use of the technique described in this chapter includes also
automatic parameter settings in meta-heuristics which is one of the challeng-
ing problems in contemporary search and optimization field. The difficulty
lies in determining the time to decide changing parameters to specific values.
The steady-state idea provides an effective informative decision to do such a
task as discussed above.
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Appendix

Data-set Characteristics

Table.3 shows the most important data-set characteristics used in this chap-
ter. The number of job sets is 100. The maximum number of jobs per set
is 263 and the minimum number is 9 jobs. The average number of jobs is
82. The maximum system load9 is 1.10 and the minimum load is 0.00018.
The set of used periods is : 10, 22, 30, 48, 132, 285, 336 and 425 where all
other timing parameters (release date, computation time and deadline) are
derived from those periods. Please, refer to [22] for further details about the
generation of random datasets. The average load is 0.30. EDF sched in the
last column of the table reports the number of job sets schedulable using the
plain heuristic Earliest Deadline First (EDF) (with a linear time and space
complexities). It has been added to our study to show how many job sets are
easy to solve.

Table 3 Datasets characteristics.

#job-sets Min#jobs Max#jobs Avg#jobs MinLoad MaxLoad AvgLoad EDF sched

100 9 263 82 0.00018 1.10 0.30 34
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Evolutionary Models for Agent-Based
Complex Behavior Modeling

Zengchang Qin, Yingsai Dong, and Tao Wan

Abstract. In this chapter, the essentials of genetic algorithm (GA) following
the footsteps of Turing are introduced. We introduce the connection between
Turing’s early ideas of organized machines and modern evolutionary compu-
tation. We mainly discuss the GA applications to adaptive complex system
modeling. We study the agent-based market where collective behaviors are re-
garded as aggregations of individual behaviors. A complex collective behavior
can be decomposed into aggregations of several groups agents following differ-
ent game theoretic strategies. Complexity emerges from the collaboration and
competition of these agents. The parameters governing agent behaviors can
be optimized by GA to predict future collective behaviors based on history
data. GA can also be used in designing market mechanisms by optimizing
agent behavior parameters to obtain the most efficient market. Experimental
results show the effectiveness of both models. Using evolutionary models may
help us to gain some more insights in understanding the complex adaptive
systems.

1 Introduction

Alan Turing (1912-1954) is a legend. He is a profound mathematician, logician
and esteemed as the father of computer science. He is also a patriotic wartime
codebreaker and, tragically, a victim of prejudice - being prosecuted by the
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police because of his “illegal” homosexuality, that directly leads his suicide
at the age of 41. This has been remembered by us and also recorded in
his memorial statue plaque, situated in the Sackville Park in Manchester,
England [42]. His legendary contributions founded the modern computing
and the indirectly create the machine I am using to type and compile this
chapter - a MacBook with 2.4 GHz Intel Core 2 Duo and 3 GB 1067 MHz
DDR3. These terms can remind us the path of computing revolutions and
those ingenious minds following his footsteps.

Like other geniuses in history, his contributions are not limited to one or
two fields. He conceived of the modern computer by introducing Turing ma-
chines in 1935, pioneered the field later called Artificial Intelligence (A.I.)
by proposing the famous Turing test [38] as a way of determining whether a
machine can think 1. During World War II, Turing’s work in code-breaking
was regarded by historians short-ended the war in two years. His 1950 paper
Computing Machinery and Intelligence [38] gave a fresh approach to the tra-
ditional mind-body problem, by relating it to the mathematical concept of
computability he himself had introduced in his paper On computable num-
bers, with an application to the Entscheidungsproblem. It has a deep influence
not only in mathematics and computer science, but also becomes one of the
most frequently cited work in modern philosophical literature [44]. In this
paper, Turing considers the question “Can machines think?” Since both the
terms “think” and “machine” can’t be defined in clear and satisfying way,
Turing suggests we “replace the question by another, which is closely related
to it and is expressed in relatively unambiguous words.” Under this scenario,
a hypothetical computing prototype called Turing machine is proposed.

A Turing machine is a device that manipulates symbols on a strip of infinite
tape according to a table of rules. In modern terms, the table of behavior of a
Turing machine is equivalent to a computer program. It goes beyond Charles
Babbage’s unprogrammable mechanical computer [45]. The Turing machine is
not intended as a practical computing technology, but rather as a conceptual
device representing a computing machine. Despite its simplicity, a Turing
machine can be adapted to simulate the logic of any computer algorithm, and
is particularly useful in explaining the functions of a CPU inside a modern
computer. It helps computer scientists understand the limits of mechanical
computation [44]. His work on Turing machines and Computing Machinery
and Intelligence can be regarded as the foundation of computer science and
of the artificial intelligence. But It is not widely realized that Turing was
probably the first person to consider to construct systems which could modify
their own programs. By the expression of ‘genetical or evolutionary search’, he
also anticipated the ‘genetic algorithms’ which since the late 1980s have been

1 Whether a machine can think has been a controversial topic. For example, John
Searle proposed a thought experiment called the “Chinese room”, which holds
that a program cannot give a computer a “mind” or “understanding”, regardless
of how intelligently it may make it behave [46].
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developed as a less closely structured approach to self-modifying programs
[8].

In this chapter, we will revisit Turing’s idea on unorganized machines and
how it will contribute to the current connectionism. Following his footsteps,
we introduce the modern genetic algorithms and their applications in study-
ing collective behaviors in complex adaptive systems. During the last years
of his life, Turing also pioneered the field of artificial life. He was trying to
simulate a chemical mechanism by which the genes of a fertilized egg cell
may determine the anatomical structure of the resulting animal or plant [7].
In this chapter, we are studying a similar but much simpler process of how
observable collective behaviors are influenced by consisting individual deter-
ministic behaviors. We are also hoping to find the answer of how patterns
emerge from the complex adaptive systems like financial markets.

This chapter is structured as follows: Section 2 gives a historical intro-
duction on Turing’s idea on unorganized machines, which is related to the
modern genetic algorithms. Section 3 gives a general introduction on the ge-
netic algorithms. Two novel applications of GAs to the complex adaptive
systems (agent-based virtual market models) with detailed empirical evalu-
ation results are introduced in Section 4 and 5, respectively. At the end, we
summarize this field of research and discuss its research potentials worthing
further investigations.

2 Turing’s Unorganized Machines

Throughout his remarkable career in his short life, Turing had no great in-
terest in publicizing his ideas (possibly because of his Bletchley Park2 expe-
rience). Consequently, important aspects of his work have been neglected or
forgotten over the years. In an unpublished report in 1948, he first gave a
prophetic manifesto of the field of artificial intelligence. This work is unpub-
lished until 1968, 14 years after Turings death, for which we learn that Turing
not only set out the fundamentals of connectionism but also brilliantly intro-
duced many of the concepts that were later to become central to AI, these
ideas have been rediscovered or reinvented to develop into the fields of neural
networks, evolutionary computation and artificial life [6, 7, 8].

2.1 Turing’s Idea of Neural Computation

In this unpublished report, Turing proposed so-called unorganized machines
(u-machines). Two types of u-machines are discussed. The first were A-type
machines, which are essentially randomly connected networks of logic gates.

2 Bletchley Park is located in Buckinghamshire, England, currently houses the
National Museum of Computing. During World War II, Bletchley Park was the
site of the United Kingdom’s main decryption base, where Turing was working
in secret before moving to Hub 8.
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Table 1 The NAND operation given two inputs and one output.

Input 1 Input 2 Output ← (Input 1 NAND Input 2)

0 0 1
0 1 1
1 0 1
1 1 0

Specifically, every node (or neuron in Turing’s conceptual cortex model) has
two inputs and any number of outputs with two states representing by 0 or
1. The output of a neuron is a simple logical function of its two inputs. Every
neuron in the network executes the same logical operation of “not and” (or
NAND): the output is 1 if either of the inputs is 0. If both inputs are 1, then
the output is 0 (Table 1). Fig. 1 illustrates a network of A-type machines.
The state transition matrix given node assignment at the time T is shown in
Table 2.

The second type u-machines were called the B-type machines, which could
be created by taking an A-type machine and replacing every inter-node con-
nection with a structure called a connection modifier -which itself is made
from A-type nodes. The purpose of the connection modifiers were to allow the
B-type machine to undergo “appropriate interference, mimicking education”
in order to organize the behavior of the network to perform useful work. Tur-
ing took his inspiration from how human cortex works and its self-adaptive
ability [9].

Actually, Turing theorized that “the cortex of an infant is an unorganized
machine, which can be organized by suitable interfering training.” Initially a

Fig. 1 An example of A-type machine with 5 inter-connected nodes. The graph is
modified from [37]. State transition matrix is shown in Table 2.
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Table 2 State transition of the network of A-type machines shown in Fig. 1 from
time T to T + 7. For example, N1(T + 1) = N2(T ) NAND N3(T ) = 1 NAND
0 = 1.

Node T T + 1 T + 2 T + 3 T + 4 T + 5 T + 6 T + 7 . . .

N1 1 1 0 0 1 0 1 0 . . .
N2 1 1 1 0 1 0 1 0 . . .
N3 0 1 1 1 1 1 1 1 . . .
N4 0 1 0 1 0 1 0 1 . . .
N5 1 0 1 0 1 0 1 0 . . .

network that is to be trained contains random inter-neural connections, and
the modifiers on these connections are also set randomly. Unwanted connec-
tions are destroyed by switching their attached modifiers to interrupt mode.
The output of the neuron immediately upstream of the modifier no longer
finds its way along the connection to the neuron on the downstream end.
Conversely, switching the setting of the modifier on an initially interrupted
connection to the other mode to create a new connection [6]. From the mod-
ern A.I. point of view, Turing’s unorganized machines were in fact very early
examples of randomly-connected, binary neural networks, and Turing claimed
that these were the simplest possible model of the nervous system.

One thing that makes the field so exciting is the way people studying the
human brain work with people who are trying to build artificial intelligence.
On the one hand, brainlike structures such as artificial neural networks hav-
ing the ability to change their responses according to their success or failure
(that is, to “learn”) are surprisingly good at some tasks, ranging from face
recognition to flood prediction. Such learning mechanism of “tuning parame-
ters” or “tuning structures of networks” brought a revolutionary technology
of machine learning, which has becomes arguably the most successful branch
of A.I.

2.2 Turing’s Idea of Genetic Algorithms

Changing the settings of the connection modifiers in a B-type network
changes its topological structure and functions. Turing had realized that the
B-type machines could be very complex when the number of nodes in the net-
work was large. In any moderately sized network there will be a very large
number of possible patterns of modifier settings, only a tiny fraction of which
will be useful. Any attempt to find best setting patterns of the network by
exhaustively searching all possibilities, becomes intractable as the number of
nodes increases. Turing himself mentioned a method which is believed to be
the most promising for solving the B-type training problem; that of a genetic
algorithm (GA), or as Turing called it before the term GA was coined, a
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Table 3 Structure of a network can be coded by 0 and 1 to represent the connec-
tions of nodes. The following table represents the network in Fig. 1.

Input N1 N2 N3 N4 N5

Node

N1 0 1 1 0 0

N2 0 0 1 0 1

N3 0 0 0 1 1

N4 0 0 1 1 0

N5 0 1 0 0 1

genetical search. Based on the original idea of Turing, Webster and Fleming
replicate the network designing by GAs [40].

To illustrate this idea, we use the following example. The network struc-
ture can be coded into a table of 0s and 1s by considering the input-output
relations. Table 3 shows a 5× 5 matrix used to represent the network shown
in Fig. 1. Modifier for direct connection between nodes is represented by 1,
otherwise, it is 0. E.g.:

N1 ← Input(N2 = 1, N3 = 1)

indicate that the input nodes for N1 are N2 and N3. Given a network of 5
nodes, any possbile structure of the network can be uniquely defined by a 5×5
matrix S. For each predefined S, we have a corresponding state transition
matrix given the initial condition. If we know the state transition matrix A
and a set of possible structure S = {S1, S2, . . . , SK}. Which is the most likely
structure Si ∈ S given A? Since the number of possible network structure
grows exponentially with the number nodes. How can we adaptively learn
such a structure, is the problem we can solve by genetic algorithms today.

For example, we would create a population of randomly connected B-
type networks and test each in turn to calculate a score based on the given
transition matrix. For each node, if the generated state value is identical to
the given training data, we will add one to the score. The final score for
the network would the sum of scores across the whole networks in T steps.
These scores would become the fitness measures of the individual networks
and dictate their number of offspring through biased genetic selection. The
most fit networks would be disproportionately over-represented in the next
generation, while those poorer scoring networks would be under-represented
or drop out of the population altogether. If this test-and-reproduce cycle is
repeated for many generations individual networks will become better to fit
the training data until eventually a network will be created which gains a
perfect score. This idea of genetic search of Turing is one of the earliest ideas
in the field of evolutionary computation [19].
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3 Genetic Algorithms

A genetic algorithm (GA) is a search heuristic that mimics the process of
natural evolution. It belongs to a general field of metaheuristics for designing
computational methods to optimize a problem by iteratively trying to im-
prove a candidate solution regard to a given measure of quality [24]. A GA
can be used to generate solutions to optimization problems using techniques
inspired by natural evolution, such as inheritance, crossover and mutation.

3.1 Brief History of Genetic Algorithm

The development of genetic algorithms has its roots in work done in the 1950s
by biologists using computers to simulate natural genetic systems [21]. John
Holland created the genetic algorithm field. In the cybernetics writing of the
1940s and 1950s there are several, usually fairly vague, mentions of the use of
artificial evolution. In an interview, Holland claimed that he has been focus
his attention on adaptive systems. Fisher’s book On the Genetical Theory of
Natural Selection had a great influence on him as his starting point for the
genetic algorithm [19]. He claimed that:

“Computer programming was already second nature to me by that time, so
once I saw his mathematical work it was pretty clear immediately that it
was programmable ... ... I began to think of selection in relation to solving
problems as well as the straight biological side of it. In fact, by the time I
was doing the final writing up of my thesis I had already gone heavily in the
direction of thinking about genetics and adaptive systems. ”

Holland’s interest was in machine intelligence, and he and his students devel-
oped and applied the capabilities of genetic algorithms to artificial systems.
He laid the groundwork for applications to artificial systems with his publi-
cations on adaptive systems theory [17]. Holland’s systems were self-adaptive
in that they could make adjustments based on their interaction with the
environment over time.

Beginning in the 1960s Holland’s students routinely used selection,
crossover, and mutation in their applications. Several of Holland’s students
made significant contributions to the genetic algorithm field. The term “ge-
netic algorithm” was used first by Bagley in [2], which utilized genetic algo-
rithms to find parameter sets in evaluation functions for playing the game
of Hexapawn, that is a chess game played on a 3 × 3 chessboard in which
each player starts with three pawns. In 1975, K.A. DeJong finished his Ph.D.
dissertation under Holland’s supervision [10]. In his work, a few classical com-
plex function optimization problems were studied by using GA, in which two
import metrics for GAs were devised, one to measure the convergence of the
algorithm, the other to measure the ongoing performance. David E. Goldberg,
another of Hollands students, has concentrated on engineering applications
of genetic algorithms. His volume published in 1989, Genetic Algorithms in
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Search, Optimization, and Machine Learning, is one of the most influential
books on genetic algorithms [15]. It has been widely used as a textbook of
GAs across all over the world. A more comprehensive history note of the
genetic algorithm can be found in [21].

3.2 Essentials of Genetic Algorithm

There are a few good textbooks and tutorials for introducing the genetic
algorithm [15, 27]. In this chapter, we are not going to talk about the technical
details and the variants of GA. Instead, we give short introduction on the
basic ideas of GA. By solving a problem using a genetic algorithm, you must
represent a solution to your problem as a chromosome (or genome). Each
chromosome can be interpreted into a particular assignment of variables. For
example, if the values for the variable x was a number in range of 0 ∼ 256;
then an eight-bit binary number was thus an obvious way of representing it.
In this example, suppose the fitness function f(x) of the problem is the sine
function, because the nature of the sine function places the optimal value of
x = 128, where f(x) = 1. The binary representation of 128 is 10000000; the
representation of 127 is 01111111. Thus, the smallest change in fitness value
can require a change of every bit in the representation. Binary encoding of
chromosome is the most common type of coding, mainly because first works
in GA used this type of encoding [10].

The genetic algorithm then creates a population of solutions and applies
genetic operators such as mutation and crossover to evolve the solutions in
order to find the best one(s). In using a GA, usually we need to consider the
following three most important aspects. (1) definition of the fitness function,
(2) definition and implementation of the genetic representation for construct-
ing the search space and (3) definition and implementation of the genetic
operators. Once these three have been well defined, the generic genetic al-
gorithm should work fairly well. Beyond that you can try many different
variations to improve performance or computational efficiency (e.g., parallel
GAs).

Fitness Function. A fitness function is a particular type of objective func-
tion that is used to measure how close a given design solution is to achieving
the set aims. The fitness function basically determines which possible solu-
tions get passed on into the next generation of solutions (after genetic op-
erations). This is usually done by analyzing the chromosome, which encodes
a particular candidate solution to the problem you are trying to solve. The
fitness function will look at a pool of chromosomes and make some qualita-
tive assessment, returning a fitness value for that solution. The rest of the
genetic algorithm will discard any solutions with a “poor” fitness value and
accept any with a “good” fitness value. Two main classes of fitness functions
exist: one where the fitness function does not change, as in optimizing a fixed
function or testing with a fixed set of test cases; and one where the fitness
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function is mutable, as in niche differentiation or co-evolving the set of test
cases [21].

Search Space. If we are solving some problems, we are usually looking for
some solutions, which will be the best among others. The space of all feasible
solutions (it means objects among those the desired solution is) is called
search space, also state space. Each point in the search space (in chromosome
coding) represent one feasible solution. Genetic algorithms are about search
in this space to find the best chromosome(s) guided by the heuristics of
maximizing the fitness function. The chromosome with highest fitness has
the highest probability to be selected for genetic operations or directly pass
into the next generation.

Genetic Operations. The most important operator in GA is crossover,
based on the metaphor of sexual combination and reproduction inspired by
the real biological life which are extremely widespread throughout both the
animal and plant kingdoms. Crossover is a term for the recombination of
genetic information during sexual reproduction. In practice, after we have
decided what encoding we will use, crossover selects genes from parent chro-
mosomes and creates a new offspring. The offsprings have equal probabilities
of receiving any gene from either parent, as the parents chromosomes are
combined randomly. The simplest way is to choose randomly some crossover
point and everything before this point copy from a first parent and then
everything after this point copy from the second parent.

In GAs, mutation is the stochastic flipping of bits in chromosome that
occurs in each generation. It is always with a very low mutation rate (e.g.,
with a probability of something like 0.001 ∼ 0.05). This is to prevent falling
all solutions in population into a local optimum of solved problem. Mutation
changes randomly to generate new offspring. For binary encoding we can
switch a few randomly chosen bits from 1 to 0 or from 0 to 1. As a matter
of fact, mutation is not an especially important operator in GA. It is usually
set at a very low rate, and sometimes can be omitted.

4 Evolutionary Collective Behavior Decomposition

Collective intelligence is a shared or group intelligence that emerges from
the collaboration and competition of many individuals and appears in con-
sensus decision making of agents. Collective behaviors can be modeled by
agent-based games where each individual agent follows its own local rules.
Agent-based models (ABM) [41] of complex adaptive systems (CAS) provide
invaluable insight into the highly non-trivial collective behavior of a popula-
tion of competing agents. These systems are universal and researchers aim to
model the systems where involving agents are with similar capability com-
peting for a limited resource. Agents may share global information and learn
from past experience.
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In this section, we will introduce an evolutionary approach to study the
relationship between micro-level behaviors and macro-level behaviors. A com-
plex collective behavior is assumed to be generated by aggregation of several
groups of agents following different strategies. The strategy of agents is mod-
eled by some simple games because of limited information available for the
agents. Genetic algorithms are used to obtain the optimal collective behavior
decomposition model based on history data. The trained model will be used
for collective behavior prediction.

4.1 Complex Adaptive Systems and Pattern
Formation

Extensive research in econophysics [26] has been done on agent-based ex-
perimental games from the perspective of interdisciplinary disciplines such
as physics, mathematics and complexity science. For example, Sysi-Aho pro-
posed a genetic algorithm based adaptation mechanisms within the frame-
work of the minority game, and found that the adaptation mechanism leads
the market system fastest and nearest to maximum utility or efficiency [30].
Gou [16] studied how the change of mixture of agents in the mixed-game
model can affect the change of average winnings of agents and local volatili-
ties of the artificial stock market.

Unfortunately, fewer research focus on exploring macro-level collective be-
havior prediction by understanding the emergent properties of macro-level be-
havior from micro-level behaviors. We can rarely see that agent-based models
were put into practice of real market predictions, e.g. predicting fluctuation of
the stock prices. In this chapter, we assume that the collective data are gen-
erated from the combination of micro-behaviors of variant groups of agents
employing different strategies. We then model and estimate the resource-
constrained environment parameters to maximize the approximation of the
system outputs to the real-world test data.

In his last years, Turing has focus his interests on patter formation, to
understand the orderly outcomes of self-organization. Especially in biology,
pattern formation refers to the generation of complex organizations of cell
fates in space and time. However, our problem of collective behavior decom-
position is sort of reverse version of the pattern formation. The patterns of
individual agents are lost through behavior aggregation. We hope to redis-
cover these lost patterns by studying the micro-level and macro-level rela-
tions. Fig. 2 gives an example of aggregated collective behavior generated by
a group of agents playing the minority game [3]. It is obvious to see that the
observable collective behaviors are random and no patterns can be directly
detected. However, this messy behavior is mostly generated by deterministic
individual behaviors. More details are available in the next section.
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Fig. 2 A sample of random collective behavior, which is generated by a group of
agents playing the minority game with fixed strategies.

4.2 Agent Behavior Modeling with Minority Game

Agent-based experimental games have attracted much attention in different
research areas, such as psychology [35], economics [13, 36] and financial mar-
ket modeling [12, 20, 32]. Among these agent-based models, minority game
(MG) [3] is an important model in which an odd number N of agents suc-
cessively compete to be in the minority side. This model can be regarded as
a simplified version of EI Farol Bar Problem [1], in which a number of peo-
ple decide weekly whether go to the EI Farol bar to enjoy live music in the
risk of staying in a crowd place or stay at home. As a new tool for learning
complex adaptive systems, the minority game has been applied to variety ar-
eas especially in financial market modeling [12, 20, 32]. In real-life scenarios,
some agents make random decisions and some groups employ similar strate-
gies. The complexity of marketing world is embodied in existence of varieties
types of agents using strategies based on their own rules.

Formally, the minority game consists of N (an odd number) agents, at time
t (t = 1, . . . , T ), each agent need to take an action ai(t) for i = 1, · · · , N , to
attend room A or B.

ai(t) =

{
A Agent i choose room A
B Agent i choose room B

(1)

At each round t, agents belonging to the minority group win. The winning
outcome can be represented by a binary function w(t). If A is the minority
side, i.e. the number of agents choosing Room A is no greater than (N−1)/2,
we define the winning outcome w(t) = 0; otherwise, w(t) = 1.
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w(t) =

{
0 if:

∑N
i=1 Δ(ai(t) = A) ≤ N−1

2
1 otherwise

(2)

where Δ(α) is the truth function:

Δ(α) =

{
0 α is false
1 α is true

(3)

We assume that agents make choices based on the most recent m winning
outcomes h(t), which is called memory and m is called the length of memory.

h(t) = [w(t −m), . . . , w(t − 2), w(t− 1)] (4)

Given the outcome w(t) at the moment t, agent i may keep a record ri(t)
that tells whether it has won the game or not.

ri(t) =

{
Win Agent i wins at time t
Loss Agent i loses at time t

(5)

Table 4 One sample strategy for an agent in the minority game with m = 4.

h(t) 0000 0001 0010 0011 0100 0101 0110 0111

S(h(t)) A A B B B A B B

h(t) 1000 1001 1010 1011 1100 1101 1110 1111

S(h(t)) B A A A A B B B

In minority game, we usually assume that each agent’s reaction based on
the previous data is governed by a “strategy” [3]. Each strategy is based
on the past m-bit memory which are described as a binary sequence. Every
possible m-bit memory are mapped in correspond to a prediction of choosing
room A or B in the next round. Therefore, there are 22

m

possible strategies in
the strategy space. Agents employing the same strategy will be categorized as
one strategy group. Given the memory h(t), the choice for the agent i guided
by the strategy S is denoted by S(h(t)). The value of m is usually set by a
number less than 6 in practical experiments as people tend to use short-term
memory rather than a long-term memory in making a 0-1 decision.

Table 4 shows one possible strategy withm = 4. For example, h(t) = [0010]
represents that if the agent who choose B in the latest three time steps win,
the next round (at time t) choice for this agent will be S([0010]) = B. A
strategy can be regarded as a particular set of decisions on the permutations
of previous winning outcomes. The decision process of minority game can be
schematically illustrated in the Fig. 3. We assume each agent has its own
strategy, at each time step, the agent will take action based on previous m
outcomes of the system. The winning of this round by applying the minority
rule will be broadcast to the system.
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Fig. 3 For a given time step: the strategy maps the last four winning groups
(m = 4) into the agent decision. Solid thick lines mimic how the information flows
in the system: the N agents take the last m numbers ( 1101 in this case) from the
sequence of winning groups and perform an action accordingly. The N actions (A
or B) are transformed into the next winning group (0 in this case) through the
minority rule. This information is shared with the agents for their own feedback
and becomes the next number in the sequence of winning outcomes. This figure is
modified from a similar one in [28].

4.3 Behavior Learning with Genetic Algorithms

In the previous research, Li et al. [23] designed an intelligent agent that uses
machine learning method to learn the patterns of other agents with complete
information, i.e. the information who went to which room in which round
of the game is available to the public (i.e. ri(t) and w(t) for t = 0, . . . , T
and i = 1, . . . , n). Fig. 4 is the performance of the intelligent agent using a
probabilistic estimation tree [33]. As we can see from the figure, the predictive
power of this agent is significantly better than the random guessing which
means that it can capture the patterns very well from a seemingly random
and messy collective information shown in Fig. 2.

However, the complete information is not a realistic assumption. In most
cases, we can only obtain the collective data w(t). Ma et al. first proposed
a framework that assumes this sort macro-level behavior can be decomposed
into the micro-level behaviors of several strategy groups in the minority game.
A Genetic Algorithm [15] can be used to estimate the parameters of the de-
composition. We assume that N agents are divided into a number of strategy
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Fig. 4 The performance of the intelligent agent which can learn the behaviors of
others with the complete information.

groups. One group of agents is random agents, and several groups of agents
have fixed strategies of their own. However, we have no idea how many agents
in each group and what strategies this group of agents employ. We only know
the history of winning outcomes w(t) and an educated guessed maximum
group number K. We use a vector of parameters to represent the number of
agents in each group and the strategy they use, a GA can be used to optimize
these parameters in order to obtain the most similar history of winning out-
come sequence. Since the parameters are independent to each other and the
problem is with a large parameter space, using a stochastic search algorithm
such as GA is a way for finding the most suitable parameters.

Given the winning outcomes w(t) and a guessed maximum number of
groups using fixed strategies K, the agents can be divided into K+1 groups:

{Gr, G1, . . . , GK}

where group Gr is the group of random agents and Gk for k = 1, . . . ,K
employs the strategy Sk. We use the following parameters to define one MG:
the percentage of random agents Pr, percentage of agents with one certain
fixed strategy PSk

where Sk is the strategy for the group. Therefore, we can
construct a chromosome x consisting of the following parameters.

x = [Pr, PS1 , S1, . . . , PSK , SK ]

The fitness function calculation of f(x) is illustrated in Fig. 5. At time t of
the game, in order to evaluate one chromosome xj (j = 1, . . . , J where J is
the population size in the GA), we run the MG with the parameter setting
given by xj to obtain the history of winning outcomes yj(t). Comparing y(t)
with the actual sequence w(t): for t runs from 1 to a specified time T , once
yj(t) = w(t), we add 1 to f(xj). Formally:
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f(xj(t)) ←
{
f(xj(t)) + 1 if: yj(t) = w(t)
f(xj(t)) otherwise

(6)

At each time t, the best chromosome x∗(t) is selected from the pool:

x∗(t) = argmax
j

f(xj(t)) for j = 1, . . . , J

Given the best chromosome x∗(t), its parameters can give the best possible
complete information scenario so that we can use machine learning algo-
rithms to predict each agent’s behavior and make final decision based on
these predictions [23, 25].

1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 ……………………………………..1 0 0 1 0 1 1 1 0 0 0 1Xj(t)

Proportion of Random Agents
Proportion of Agents Using Strategy 1

Strategy 1
Proportion of Agents Using Strategy 2

Strategy 2

Proportion of Agents Using Strategy K
Strategy K

  0 1 0 0 0 0 1 1 0    …… 1 0 1 1MG Winning Outcomes Yj(t)

  0 0 1 1 0 1 1 0 0    …… 0 0 0 1Actural Winning Outcomes W(t)

   +1                 +1       +1      +1      ……….       +1      +1F(xj(t)) = 

Fig. 5 The process for calculating the fitness function for a chromosome at time t.
A chromosome is consisted by numbers of agents in each group and the strategies of
this group. For each chromosome xj , we can obtain a sequence of winning outcomes
yj(t) by running the MGs based on the given parameters. The fitness function is
calculated based on the comparisons between yj(t) and the actual sequence of
winning outcomes w(t).

4.4 Modeling with Mixed-Games

The evolutionary collective behavior decomposition is a general framework
for studying the micro-level and macro-level relations. In order to obtain a
better approximation of the collective behaviors in the real-world market,
Gou [16] modifies the MG model and proposes the ‘mixed-game model’, in
which agents are divided into two groups: each group has different memory
length, Group GN plays minority game with the same strategy, while Group
GJ plays majority game with the same strategy. Comparing to the MG, the
most significant part of mixed-game is that it has an additional group of
“trend chasers”, therefore be more realistic to simulate a real-world case,
e.g., financial market, social networks and etc.
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Technically, all agents in GN choose the best strategy with which they can
predict the minority side most correctly, while all agents in GJ choose the
best strategy with which they can predict the majority side most correctly.
N1 represents the number of agents in GN and N2 represents the number
of agents in GJ . We use m1 and m2, respectively, to describe the memory
length of these two groups of agents. As each agent’s reaction is based on

a strategy corresponding a response to past memories, there are 22
(m1)

and

22
(m2)

possible strategies for GN or GJ , respectively. We assume the com-
pleteness of marketing world is embodied in existence of variant groups of
agents using their own strategies. Therefore, we improve the mixed-game of
Gou [16] by dividing the agents into three diverse types of agents: agents who
make random decisions (denoted by GR), agents of Group GN (playing the
minority game) with different strategies, agents of Group GJ (playing the
majority game) with different strategies. Fig. 6 illustrates that the collective
behavior is a combination of choices from the above three types of agents.
Given history sequence h(t), we can use GA to explore all possible combina-
tions of subgroups or compositions of the market, then use this information
to make better choices.

All Agents

Group Gn with 
Strategy Sn,Kn

Group GJ with 
Strategy SJ,1

Group Gn with 
Strategy Sn,1

Group GR 
Random Agents

Group GJ with 
Strategy SJ,1

Number of agents in room A

0    1    1    0    0    0    1    0    1    0  

Fig. 6 The generative process for collective data. All agents can be divided into
KN + KJ + 1 groups where agents in the same subgroups act identically based on
the strategy they follow. The collective data can be regarded as an aggregation of
all agents’ actions.
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Given the history winning outcomes w(t), the expected maximum number
of subgroups using fixed strategies in GN is KN , and the expected maximum
number of subgroups using fixed strategies in GJ is KJ . Thus agents can be
divided into KN +KJ + 1 groups:

{GR, G(S1
N ), G(S2

N ), . . . , G(SKN

N ), G(S1
J ), G(S2

J ), . . . , G(SKJ

J )}

where GR represents the group of random agents, G(Si
N ) (for i = 1, . . . ,KN)

represents the subgroup agents holding strategy Si
N in Group GN (the group

playing minority game). G(Sk
J ) (for k = 1, . . . ,KJ) represents the subgroup

agents holding strategy Sk
J in Group GJ .

The chromosome for genetic algorithms x is encoded with the following
parameters:

x = [PR, P (S1
N ), S1

N , . . . , P (SKN

N ), SKN

N , P (S1
J), S

1
J , . . . , P (SKJ

J ), SKJ

J ]

• PR : the percentage of random agents among all agents (i.e. PR = |GR|
N )

• P (Si
N ): the percentage of the number of agents in the minority game sub-

group i (i ∈ [1, 2, . . . ,KN ]) with the fixed strategy Si
N (i.e. P (Si

N ) =
|G(Si

N)|
N ).

• Si
N : Binary coding of the minority game strategy Si

N .
• P (Sk

J): the percentage of the number of agents in the majority game sub-
group k (k ∈ [1, 2, . . . ,KJ ]) with the fixed strategy Sk

J (i.e. P (Sk
J) =

|G(Sk
J)|

N ).
• Sk

J : Binary coding of the majority game strategy Sk
J .

This evolutionary mixed-game learning model was first proposed by Du et
al. [11] and some empirical results to verify its effectiveness in the real-world
applications will be given in the next section.

4.5 Experimental Studies

The general framework is referred to evolutionary game learning (EGL) and
the micro-level behavior of agent can be modeled by either minority game,
mixed-game or other game theory models. The model with the mixed game
is referred to as evolutionary mixed-game learning (EMGL) and the model
with the minority game is evolutionary minority game learning (ENGL). In
the following experiments, We tested these two models on the U.S.Dollar-
RMB (Chinese Renminbi) exchange rate3. For each trading day t, suppose
the opening price is Vb and the closing price is Vf , the fluctuation of price
can be transferred to w(t) as follows:

w(t) =

{
1 if: Vb < Vf

0 otherwise
(7)

3 Data obtained from: http://bbs.jjxj.org/thread-69632-1-7.html
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EMGL(6−3)#1. The Exchange Rate of RMB against U. S. Dollar

Fig. 7 Performance of the ENGL model and the EMGL model with different
memory lengths on the USD-RMB exchange rate. Each curve is plotted on the
mean accuracy with plus and minus the standard deviation.

By correctly predicting w(t) using the learning model, we can capture the
ups and downs of the market prices though we are not trying to predict the
exact price at this stage.

In the following experiments we set KN = KJ = 20. Since almost all
agents play with history memories of 6 or less in a typical MG, and mN

is usually larger than mJ when using mixed-game model to simulate real
market [16], we set mN = 4, 5, 6 and mJ = 3 to establish three configuration
of EMGL models. For example, EMGL(6-3) represents mN = 6, mJ = 3. We
set K = 20 and m = 3 for the ENGL model. As for the GA, we set population
size J = 50, crossover rate Pc = 0.8, mutation rate Pm = 0.05. We run the
whole experiments for 30 times to reduce the influences of randomness in
GAs.

From the USD-RMB experiment shown in Figure 7, we can see both EMGL
(starred curve) and ENGL (dotted curve) can predict with high accuracy
(the mean accuracy is up to 58.6% for ENGL and 63.8% for EMGL (4-
3)), indicating a strong existing pattern captured by the new models. In
general, almost all results of ENGL and EMGL are statistically better than
the random guess (the mean is around 50% with a small variance) plotted
at the bottom. Du et al. tested the EMGL and ENGL models on 13 Chinese
stocks. The experimental results show that both models perform significantly
better than the random guess [11].
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5 Evolutionary Market Mechanism Designs

In the last section, we investigated the collective behavior decomposition in
agent-based market and introduced an evolutionary learning framework of
modeling agent behavior by game theory models. We use the new model
to predict the collective behaviors by learning from the history data. The
collective behavior of the market is assumed to be the aggregation of individ-
ual behaviors. In the simple minority game and mixed-game modeling, the
behavior of agents are governed by a set of parameters and make decisions
independently. This is not a realistic assumption, as we know, the interaction
between agents are the key issue for why the system is so unpredictable and
complex. In this section, we will mainly consider the interactions between
agents and how should they operate under the rules of market - the market
mechanism.

The market mechanism design is an important topic in computational eco-
nomics and finance for resolving multi-agent allocation problems [22]. In this
section, we review relevant background of trading agents, and market designs
by evolutionary computing methods. In particular, a genetic algorithm can
be used to design auction mechanisms in order to automatically generate a
desired market mechanism for markets populated with trading agents.

Equilibrium Quantity

E
q.

 P
ri

ce

Price

Quantity

Supply CurveDemand Curve

E

Fig. 8 An schematic illustration of a supply-demand schedule, where the intersec-
tion E is the equilibrium.

5.1 Market Mechanism

In every classical economic model, demand and supply always play promi-
nent roles. Supply is used to describe the quantity of a good or service that a
household or firm would like to sell at a particular price. Demand is used to
describe the quantity of a good or service that a household or firm chooses
to buy at a given price. For a buyer, with increasing of quantity of the com-
modity, he will be inclined to bid a lower price to make a purchase, but with



620 Z. Qin, Y. Dong, and T. Wan

the less quantity of commodity, he has to increase his bid price. Because buy-
ers want to make purchases at lower prices so that the demand curve slopes
downward. For sellers, if the commodity is at a higher price, they will be in-
clined to sell as many as they can, that keeps the supply curve slope upward.
The intersection of the supply curve and demand curves is called the equi-
librium, and the corresponding price and quantity are called, respectively,
the equilibrium price and the equilibrium quantity (Fig. 8). In case of prices
beyond the equilibrium, the market will self-correct them to the equilibrium
by an “invisible hand” according to Adam Smith. At an equilibrium price,
consumers get precisely the quantity of the good they are willing to buy at
that price, and sellers sell out the quantity they are willing to sell at that
price. Neither of them has any incentive to change. In a competitive market,
the price actually paid and received in the market will tend to the equilibrium
price. This is called the law of supply and demand [29].

In economics and game theory, interactions of traders consist of two com-
ponents: a protocol and a strategy. Protocol defines the valid behavior of
traders during the interaction. It is set by the marketplace owner and should
be known publicly for all the participants. Strategy is privately designed by
each agent to achieve their negotiation objectives within a protocol. In the
previous section, the minority game model was used for modeling the agent
strategy. In this section, we will put our focus on the protocol. Moreover,
the effectiveness of the strategy is very much dependent on the protocol: an
optimal strategy for one protocol may perform very badly for other protocols.
In a marketplace, the protocol is an“auction”. It is the market mechanism by
which buyers and sellers interact in this marketplace. Strategy is the adap-
tive behavior or “intelligence” of traders such as the ZIP agents’ [4] updating
rules that will be discussed later.

There are many types of auctions. English Auction (EA), sellers keep silent
and buyers quote increasing bid-prices, and the buyer with highest bid is al-
lowed to buy; Dutch Flower Auction (DFA), buyers keep silent and sellers
quote decreasing offer-prices and the seller with lowest offer is allowed to
sell. In other auctions such as the Vickery or second-price sealed-bid auction,
sealed bids are submitted and the highest bidder is allowed to buy, but at the
price of the second highest bid. EA and DFA are also called single sided auc-
tions because either buyers or sellers are active but not both. The Continuous
Double Auction (CDA), one the most popular of all auctions, allows buyers
and sellers to continuously update their bids/offers at any time in the trad-
ing period. The bids/offers are quoted simultaneously and asynchronously by
buyers/sellers. At any time the sellers/buyers are free to accept the quoted
bids/offers [32].

In 1950s, Smith [36] demonstrated that markets consisting of small num-
bers of traders could still exhibit equilibration to values predictable from
classical microeconomic theory. In a given supply-demand schedule with n
transactions between ‘sellers’ and ‘buyers’, the coefficient of convergence α
(0 ≤ α ≤ 1)is introduced to measure the deviation of transaction prices from
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the theoretical market equilibrium price p0 [36]. α is calculated at the end
based on transaction prices pi for i = 1, · · · , n. The coefficient of convergence
is defined as follows:

α = 100 · δ0/p0 (8)

where

δ0 =

√√√√ 1

n

n∑
i=1

(pi − p0)2 (9)

The E-market discussed in this chapter as well as in [5] and [32] is based on
Smith’s experiment and the α measure is used to evaluate the convergence
of the market.

5.2 Agent Strategy Modeling

Zero-intelligence (ZI) agents were initially proposed to explore the relation-
ship between limited rationality, market institutions and the general equi-
libration of markets to the competitive equilibrium [12]. The fundamental
discovery is that within the classical double auction (CDA) market only the
weakest elements of rationality is needed to exhibit high allocative efficiency
and price convergence in a competitive market. This convergence is later
proved as a statistical must but not an emergent behavior. Zero intelligence
plus (ZIP) agents, proposed by Cliff [4] as an augmented version of ZI agents
use a simple machine learning algorithm to adapt their behavior for maxi-
mizing their own utility function.

Each ZIP trader i is given a private secret limit price, λi, which for a seller is
the price below which it must not sell and for a buyer is the price above which
it must not buy (based on Smith’s experiment). The pseudo-code of the ZIP
agent’s strategy is shown in Alg. 1. If a ZIP trader completes a transaction
at its λi price then it generates zero utility, where utility for traders means
the profit for the sellers or saving for the buyers. Each ZIP trader i maintains
a time-varying profit margin μi(t) and generates quote-prices pi(t) at time t
according to

pi(t) = λi(1 + μi(t)) (10)

pi(t) = λi(1 − μi(t)) (11)

for sellers and for buyers, respectively. Trader i is given an initial value μi(0)
(when t = 0) which is subsequently adapted over time using a simple machine
learning technique known as the Widrow-Hoff (W-H) rule which is well used
in gradient optimization and back-propagation neural networks. The W-H
rule has a “learning rate” βi that governs the speed of convergence between
trader i’s quote price pi(t) and the trader’s idealized target price τi(t) which is
determined by a stochastic function of last quote price with two small random
absolute perturbations: Ai(t) and Ri(t). Ai(t) is generated uniformly from
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the interval [0, Ca] denoted by U [0, Ca] for sellers and U [−Ca, 0] for buyers.
For sellers, Ri(t) is generated from

Ri(t) ∼ U [1, 1 + Cr]

and for buyers
Ri(t) ∼ U [1− Cr, 1]

Ca and Cr are called system constants. To smooth over noise in the learning,
there is an additional “momentum” γi for each trader (momentum is also
used in back propagation neural networks.

For each ZIP agent i, its adaptation is governed by three real-valued pa-
rameters: learning rate βi, momentum γi and initial profit margin μi(0). Be-
cause of the randomness and the uncertainty involved in trading, a trader’s
values for these parameters are assigned at initialization, using uniform dis-
tributions: for all traders, βi, γi and μi(0) are sampled from:

β ∼ U(βmin, βmin + βΔ)

γi ∼ U(γmin, γmin + γΔ)

μi(0) ∼ U(μmin, μmin + μΔ)

Hence, to initialize an entire ZIP trader market it is necessary to specify
values for the six market-initialization parameters βmin,βΔ, γmin, γΔ, μmin,
μΔ plus the other two system constants Ca and Cr. Clearly, any particular
choice of values for these eight parameters can be represented as a vector:

V = [βmin, βΔ, γmin, γΔ, μmin, μΔ, Ca, Cr] ∈ R8

which corresponds to a single point in the 8-dimensional space of possible
parameter values. A Genetic Algorithm can be used to explore this space for
parameter optimization. The degree of price convergence to the equilibrium
price can be used as the fitness function.

5.3 Evolutionary Optimization

Market mechanism design addresses the problem of designing an auction in
which the agents’ interaction generates a desirable macro-scale outcome, by
assuming the trading agents are self-interested. A desired market can be sim-
ply considered as the one with least transaction price variance to the equilib-
rium price determined by the market’s supply-demand schedule. Therefore,
the fitness function for each individual can be calculated by monitoring price
convergence in a series of n CDA market experiments, measured by weight-
ing Smith’s α measurement on the given supply-demand schedules. If each
experiment lasted k “days”, the score of experiment number e is:
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S(Vi, e) =
1

k

k∑
d=1

wdα(d) (12)

where α(d) is the value of α and wd is the weight on the day d. According
to the experiments in [5], all experiments last for 6 days and we place a
greater emphasis on the early days of trading. The weights are set as follows:
w1 = 1.75, w2 = 1.50, w3 = 1.25 and w4, w5 and w6 are all equal to 1.00. The
fitness of the genotype Vi is evaluated by the mean score of n experiments:

F (Vi) =
1

n

n∑
e=1

S(Vi, e) (13)

Where n = 50 the performance of trading experiments are fairly stable based
on empirical work in [34]. The lower fitness a market has, the sooner the
market approaches to the equilibrium and the smaller price variance the
market has. GAs were used for optimizing the parameters for ZIP agents and
showed that evolved parameter settings via GAs perform significantly better
than “educated guessing” in CDA [4].

Now consider the case when we implement CDA. At time t, either a seller
or a buyer will be selected to quote, which means that sellers and buyers have
a fifty-fifty chance to quote. We use Qs to denote the probability of the event
that a seller offers. Then in CDA, Qs = 0.5. For English Auction Qs = 0 and
Dutch Flower Auction Qs = 1; which means, sellers cannot quote and sellers
are always able to quote, respectively. The inventive step introduced in [5]
was to consider the Qs with values of 0.0, 0.5 and 1.0 not as three distinct
market mechanisms, but rather as the two endpoints and the midpoint on
a continuum referred as a continuous auction space. For other values, e.g.,
Qs = 0.1, it can be interpreted as follows: on the average, for every ten
quotes, there will be only one from sellers while 9 are from buyers. This also
means, for a particular significant time t, the probability of a seller being
the quoting trader is 0.1. The fact is, this kind of auction is never found in
human-designed markets. However, no one knows whether this kind of hybrid
mechanism in which Qs �= 0, 0.5 or 1.0 is preferable to human-designed ones.
This motivates us to use a GA to explore with additional dimension Qs

ranging from 0 to 1 giving us the following genotype based on the old one by
adding a new dimension Qs:

[βmin, βΔ, γmin, γΔ, μmin, μΔ, Ca, Cr, Qs] ∈ R9

According to the experiments in [5], the hybrid mechanisms are found to be
the optimal auctions in 2 of the 4 given schedules.

Although the case of Qs = 0.5 is an exact approximation to the CDA
in the real-world, the fact that a trader will accept a quote whenever the
quoting price satisfies his expected price. For the two single sided extreme
cases of Qs = 0.0 and Qs = 1.0, this model is not an exact analogue of the
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EA and DFA. Qin and Kovacs [34] proposed a more realistic auction space.
All the following experiments are conducted in this realistic auction space.
More detailed are available in [34].

5.4 Trading with Heterogeneous Agents in CDA

Smith’s experiment [36] qualitatively indicated that the relationship of the
supply-demand schedule has an impact way in which transaction prices ap-
proached the equilibrium, even with a small number of participants. This
experiment has been conducted by using ZI [12] and ZIP agents [5], re-
spectively. Here we will consider the case of using a mixture of the same
number of ZI and ZIP agents, which are referred to as heterogeneous agents
experiments.

Algorithm 1. Pseudocode for updating rules of ZIP traders

For Sellers: ;
if the last shout was accepted at price q then

any seller si for which pi ≤ q should raise its profit margin;
else

if the last shout was a bid then
any active seller si for which pi ≥ q should lower its margin

else
if the last shout was an offer then

any active seller si for which pi ≥ q should lower its margin

For Buyers: ;
if the last shout was accepted at price q then

any buyer bi for which pi ≥ q should raise its profit margin;
else

if (the last shout was an offer then
(any active buyer bi for which pi ≤ q should lower its margin)

else
if the last shout was a bid then

any active buyer bi for which pi ≤ q should lower its margin

For all agents, the distribution of limit price determines the supply and
demand curves for the experiment and their intersection indicates the theo-
retical equilibrium price and quantity. In the simulation of real marketplaces,
we assume that each significant event (quoting, making deal or not making
deal etc.) always occurs at a unique time. In the CDA market, at time t, an
active trader (seller or buyer) i is chosen randomly to quote a price pi(t) to
become the “current quote q(t)”, where the active traders are ones who still
have utility (goods or money) for deals. Next, all traders on the contra side
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(i.e. all buyers j if i is a seller, or all sellers j if i is a buyer) compare q(t)
to their current quote price pj(t) and if the quotes cross (i.e. if pj(t) ≤ q(t)
for sellers or pj(t) ≥ q(t) for buyers) then the trader j is able to accept. If
no traders are able to accept, the quote is regarded as “ignored”. For ZIP
traders, either the current quote is accepted or ignored and the traders up-
date their profit margins μ(t) using the W-H rule. For example, suppose the
last quote is an offer and was accepted at price q then any sellers for which
their price is less than q should raise their profit margin with learning rate of
βi. The details about the updating rules for ZIP agents can be found in [4]
(See Alg. 1). For ZI traders, the previous transaction prices and the status
of the last offer do not have cause any influence on their further actions (ZI
traders are not intelligent, they only quote prices randomly).

5.5 Experimental Studies

In this section, we conduct a series of experiments of evolutionary designs of
market mechanism based on heterogeneous agents where ZI and ZIP agents
have the approximately same number. The auction space model is the one
proposed in [34]. All experiments are based on four given supply-demand
schedules: SD1, SD2, SD3 and SD4 (see Fig. 9). There are 22 trading agents
in the experiments, 11 sellers and 11 buyers, each of them is initialized with
one unit of goods and their limit prices are distributed as supply and de-
mand curves show. The vertical axis represents price and the equilibrium
price is 2.00 for all these 4 given schedules. Each schedule of supply and de-
mand curves is stepped. This is because the commodity is dealt in indivisible
discrete units, and there are only a small number of units available in the
market. Thus, supply and demand in this simple market differs appreciably
from the smoothly sloping curves of an idealized market. These are the same
schedules have also been used in previous studies [4, 5, 31, 34, 32] for the
convenience of comparison studies.

Fig. 10 shows the performance of the three groups of agents: ZI only, ZIP
only and the heterogenous mixture of of ZI and ZIP. It is obvious that the ZIP
only group has the minimum variance (α value) because the learning ability of
the ZIP agents. ZI agents are the most naive agents without learning ability,
the α value for this group is no doubt the largest of the 3. The right-hand
side figure of Fig. 10 shows the performance of the heterogeneous agents
under different auctions: EA, DFA and CDA. Though the differences are not
statistically different, we can still see the CDA gives the best performance in
these three human-designed auctions.

In the market evolution experiments, a simple GA is used to minimize
the fitness value (see equation 13) given 25 independent runs of trading ex-
periments. Population size is 20 and each parameter is coded with 8 bits,
crossover rate is a constant with the value of 0.7 and mutation rate is 0.015.
Elitism strategy is applied which means that the fittest individual in each
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Fig. 9 Supply-demand schedules for experiments: SD1, SD2 (upper) and SD3, SD4
(bottom).
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and the mixture of the same number of ZI and ZIP. Right: given a population
of heterogenous agents, the comparisons of α value under different auctions: EA
(Qs = 0), DFA(Qs = 1) and CDA (Qs = 0.5).
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Fig. 11 The comparisons of evolutionary trials of Qs for ZIP (dot lines) and het-
erogeneous agents (solid lines) on schedules SD1 to SD4 through 600 generations.

generation is logged. We run 600 generations in a single experiment. How-
ever, one of the drawbacks of GA is that it cannot be guaranteed the global
optimum. Thus we gain formal simplicity at the cost of computation. We run
the entire process of evolution many times independently and reduce the ef-
fect of randomness as time goes by, to encourage convergence. The results of
Qs represented here are based on 25 independent runs of the GA on the given
4 supply-demand schedules and the average results with standard deviation
through generation 600 are shown in Fig. 11.

As we can see from the figures, although Qs values converges to real-world
auctions in 3 of the 4 given schedules, we still found a hybrid auction in
SD4. Comparing the ZIP agents in the old auction space and the new auc-
tion space, the only difference is SD3. Both in the old auction [4] and new
auction space [34, 32] with ZIP agents, there were hybrid auctions found by
GAs. Cliff [5] presented a result of using only ZI agents given SD3 and the
hybrid auction was found. However, the Qs values for these hybrid auctions
are different: Qs = 0.39 for experiments with ZI agents only, Qs = 0.16 for
ZIP agents in the old auction space and Qs = 0.23 for ZIP agents in the new
auction space [34]. Here in the experiment with heterogeneous agents which
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are a mixture of ZI and ZIP agents, the optimal auction is CDA but not a
hybrid one. We believe that the optimal auction for a market is related to
the supply-demand schedule given. So far, we just demonstrated with empir-
ical studies due to the complexity of such problems. The theoretic relations
among hybrid auction, supply-demand schedule, the number of agents and
other factors are considered as a future work. However, we demonstrated
that given a particular supply-demand schedule, we can use some machine
learning technology to find the optimal auction for such a market.

6 The End

Turing died from cyanide poisoning, possibly by his own hand. On June 8,
1954, shortly before what would have been his 42nd birthday, he was found
dead in his bedroom. The logo of Apple computer is often erroneously referred
to as a tribute to Alan Turing, with the bite mark a reference to his method
of suicide. It is not true though even Steve Jobs hopes it were [43]. He had
left a large pile of handwritten notes. Decades later this fascinating material
is still not fully understood.

In this chapter, we follow Turing’s footstep and recognize his early ideas
in neural networks and evolutionary computation thanks to Copeland and
his colleagues [6, 7, 8]. We interpret his ideas of genetic algorithm by a novel
example based on Webster and Fleming’s work [40]. The essentials of ge-
netic algorithm are summarized following after a brief history of the GA.
We introduced two novel evolutionary models in agent-based computational
economics. Both models use GAs to optimize the agent behavior to obtain
the wanted market dynamics. The first model studies the collective behavior
decomposition which is to estimate individual agent’s strategies (or behav-
iors) from the random macro-level information. The second model uses GAs
to optimize both agents’ strategies and the protocol between them (mar-
ket mechanism) in order to obtain the most efficient market. Both models’
performance are testified by experimental studies to show the effectiveness.

2012 is the year we celebrate Turing’s 100 birthday and his contributions
that has led us to the new era of computing and information technology.
We have witnessed the development of computer science and its impact on
our life. The research presented in this chapter is relatively new. Following
Turing’s footsteps, we shall see a bright future of using computation to un-
derstand the economics, psychology, sociology and other complex adaptive
systems.
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Abstract. Artificial Intelligence (AI) is a prominent field within Computer Sci-
ence whose main goal is automatic problem solving. Some of the foundations of
this area were established by Alan M. Turing in his two seminal papers about ma-
chine intelligence [39] and [40]. Machine Learning (ML) is an important branch
within the AI field which currently is on an intensive stage of development due to
its wide range of applications. In particular, ML techniques have recently gained
recognition in finance, since they are capable to produce useful models. However,
the difficulty, and even the impossibility, to interpret these models, has limited the
use of ML techniques in some problems where the interpretability is an important
issue. Bankruptcy prediction for banks is a task which demands understandability
of the solution. Furthermore, the analysis of the features (input variables), to cre-
ate prediction models, provides better knowledge about the conditions which may
trigger bank defaults. The selection of meaningful features before executing the
learning process is beneficial since it reduces the dimensionality of the data by de-
creasing the size of the hypothesis space. As a result, a compact representation is
obtained which is easier to interpret . The main contributions of this work are: first,
the use of the evolutionary technique called Multi-Population Evolving Decision
Rules MP-EDR to determine the relevance of some features from Federal Deposit
Insurance Corporation (FDIC) data to predict bank bankruptcy. The second contri-
bution is the representation of the features’ relevance by means of a network which
has been built by using the rules and conditions produced by MP-EDR. Such rep-
resentation is useful to disentangle the relationships between features in the model,
this representation is aided by metrics which are used to measure the relevance of
such features.
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1 Introduction

Since the last global financial crisis in 2007-2008 and the never ending story of the
European debt crisis, banks are at the center of the regulators agenda and the devel-
opment of accurate and transparent tools for micro-prudential purposes is becoming
an unavoidable and urgent duty. For that reason, it is important to have reliable tech-
niques to detect early signals when a bank is near to the default. This would allow
financial authorities to take preventive actions in order to stop contagion to other
financial institutions.

Consequently, these recent crises and the failure of some classical models in eco-
nomics and finance to predict, prevent or even handle them has open the oportunity
for alternative approaches including AI and ML. Moreover, despite the fact that the
AI field has had some contributions in the past in economics and finance, nowadays
it is possible to find many successful and sophisticated ML applications in various
disciplines in economics and finance. In fact, the use of high frequency trading (al-
gorithmic trading which does not depend on human supervision) was in the news
recently during the flash crash that the stock markets in the United States experi-
enced on May 6, 2010.

As it was previously mentioned, some of the most important goals in AI and ML
are automatic problem solving and to mimic “intelligent” human behaviour. In his
two seminal papers, [39] and [40], Alan Turing expresed his views on “machinery
intelligence” and first described the Turing test for intelligence. Additionally, the
work of another pioneer in AI and recipient of the Turing Award, Herbert Simon in-
troduced the concept of bounded rationality, [34], [35], [36], [37] which challenges
fundamental aspects in economic sciences. Currently, the use of autonomous “in-
telligent” economic agents has gained some acceptance although there is still more
progress to be made.

Within the range of AI techniques used in economics and finance Evolutionary
Algorithms occupy an important place due to its flexibility and performance. As
an example, evolutionary computation techniques (Genetic Algorithms and Genetic
Programming) have been used to create forecasting models which present competi-
tive behaviour in comparison with other ML and some statistical techniques. One of
the best known evolutionary techniques is Genetic Programming (GP), created by
John Koza [22] which the author has pushed to the limits of invention.

Genetic programming can be defined as is done in [22] as a domain-independent
problem solving approach in which programs are evolved to solve, or approximately
solve, problems. John Koza has been intensively using its “invention machine” to
create anthenas, circuits and lens and getting human-competitive patents from its
genetic programming generated inventions.

Nevertheless, GP alone is not turing complete, meaning that it is not powerfull
enought to recognize all possible algorithms [38]. It is necessary to combine GP
with a technique known as indexed memory (see [38]) it is possible to get a Turing
complete language. This fact has enormous implications because it basically means
that it is possible to evolve any algorithm by using genetic programming and indexed
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memory. Another related work is [44] in which the authors by using a recurrent
network consistent of trees are able to make GP Turing complete.

The artificial intelligence is used to identify useful patterns capable to recognize
the occurrence of a specific event by learning from a set of examples. The resul-
tant patterns are used to predict the occurrence of a similar situation. It is by no
means trivial to find the correct model to predict bankruptcy and despite all the well
established theory, there is room for improvement and machine intelligence comes
as an important alternative for sophisticated financial problems. Artificial Neural
Networks are the perfect example of competent ML techniques which are seen as
black boxes by the practitioners. On the other hand, GAs and GP have been used in
the past in bankruptcy prediction mainly due to its performance but not enougth at-
tention has been given to properties which we consider crucial: interpretability and
transparency of the generated models.

The transparency of a forecasting model allows us to analyze in detail the in-
teractions of the input features1 to construct predictive rules. Thus the model can
provide significant information that can help to create a regulatory frame by under-
standing which conditions, events or situations can trigger an undesirable situation.
In this context, it is worth mentioning that Breiman et al. [2] pointed out that the
main goals of classification are 1) to generate an accurate classification model able
to predict unseen cases and 2) discover the predictive structure of the problem. The
last goal includes providing an understanding of the variables and conditions that
control or are involved in the event.

There are many factors that impact the success of a machine learning classifier
and undoubtedly the quality of the training data set affects the result. When the input
contains irrelevant or redundant data or this is noisy and unreliable the classifier
performance declines and the result could be imprecise and more complex. Since the
good quality of the input data is an essential requirement for a successful induction
algorithm, the selection of relevant features has become an important research field
in the Machine Learning and Data Mining area [25].

In this paper a GP based technique is used for bankruptcy prediction because
of the advantages that this technique provides: its proved performance in this spe-
cific task, its flexibility and its transparency which can be directly translated into
interpretability of the resulting models.

This work presents an approach to select features, by using the GP based Multi-
Population Evolving Decision Rules (MP-EDR) approach [9] as learning induction
algorithm. Furthermore, a relevance graph representation for the input features is
introduced, its objective is to express the relationship between features as well as
the usefulness of these attributes. We propose to create an undirected graph whose
vertexes represent each feature in the data set, the vertexes are connected by edges
that denote the relationship of the features to form conditions (patterns).

The rest of this work is organized as follows: section 2 provides a brief literature
review about feature selection, next the section 3 describes the Multi-Population
EDR approach; whereas section 4 introduces the index to measure features’ rel-

1 In this work, the terms ”variable” and ”feature” are used as synonyms.
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evance. Section 5 introduces the graph of usefulness, which is the graph approach
proposed in this work to estimate feature relevance. Finally, the experimental results
and conclusions are described in sections 6 and 7.

2 Feature Selection

The beginning of a successful induction algorithm is a good quality data set, this
involves the selection of relevant attributes capable to provide important information
to create a model. The lack of relevant attributes to gather patters make impossible
to generate a model. On the other hand, when a data set contains more variables
than the needed, there is the risk that the resulting model would be more complex
than it is necessary by the inclusion of useless information. Other inconvenient is
that the processing time to create the model may increase importantly. There exists
techniques, such as the eigen vectors that try to reduce the number of input variables
by means of eliminating the variables that are correlated and for that reason these
do not contribute with new information, this technique is very useful since it helps
to identify redundant information, however, it is not capable to determine if the
information provided by the feature has predictive power. There exists some ML
techniques whose objective is to create new features to train a classifier with the
aim to improve the prediction, the new features are generated by using a set of input
variables. Some of those works have shown improvement in the accuracy; however,
the introduction of constructed features hides the original variables and this makes
difficult the understandability of the model.

Since the good quality of the input data is an essential requirement for a success-
ful induction algorithm, the selection of relevant features has become an important
research field in the Machine Learning and Data Mining areas [25]. The proce-
dure of feature selection is mainly composed by the analysis of features, also called
variables, with the purpose of eliminating those with little or no predictive infor-
mation [19]. The motivation for feature selection involves constructing simpler and
more comprehensible models, improving the performance of the classifier by using
a data set composed by just meaningful features [28]. The relevance of this topic
has motivated the publication of several works in journals and conference proceed-
ings, offering several approaches to address this challenge. Even several books have
been entirely dedicated to this task, this is the case of [27],[14],[26], [17],[32]. Since
the feature selection has become a necessary prerequisite to create a model, many
approaches has been proposed to solve different kind of problems such as to create
credit scoring model [30], text categorization [47], [46], [6], image recognition [41],
financial time series forecasting [3] and many other applications.

A relevant work in the feature selection field is the article presented by John
et al [18], the authors divided the feature selection techniques in wrapper and fil-
ter approach. The wrapper approach is aided by a learning algorithm to evaluate
the usefulness of the features. To be more precise, the learning algorithm per-
forms a search to get a subset of meaningful features, where the algorithm itself
is part of the evaluation function. The wrapped approach has been aided by many
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algorithms such as Genetic Programming [23], Evolutionary Algorithms [19],[41],
[16], [45], ID3 [18], C4.5 [18],[33], Support Vector Machines [3],[43], neural net-
work (multi-layer perceptron with back-propagation), logistic regression, and k-
nearest-neighbours [30], ough sets and particle swarm optimization [42], decision
trees and Naive-Bayes [20] among many others. On the other hand, a filter approach
estimates the feature utility according to heuristics based on general characteristics
of the data. According to Mark [15] in the majority of the cases the wrapper ap-
proach is able to produce a better feature subsets but its performance is slower than
a filter approach [15]. The approach proposed in this paper is a wrapper technique
and this is aided by an evolutionary approach, which is called Multi-population
Evolving Decision Rules.

To consult a more extended literature review about feature selection, the inter-
ested reader is referred to the following sources: for readers who prefer to study the
pioneer works in this research area it is recommended the survey presented by Dash
and Liu [4]. That work provides an overview of many existing techniques from the
1970’s to 1997, the authors recognize four basic procedures of a typical feature se-
lection method, and classifies the different existing methods in terms of generation
procedures and evaluation functions. Guyon and Elisseeff [13] provide a survey re-
view from 1997, when relevant papers as Blum and Langley [1] and Kohavi and
John [20], were published in the special issue Selection of Relevant Features and
Examples in Machine Learning. Additionally, the authors provide a more precise
definition of the objective function, feature construction, feature ranking, multivari-
ate feature selection, efficient search methods, and feature validity assessment meth-
ods. Liu and Yu [29] present a survey about existing feature selection algorithms for
classification and clustering, groups and compares different algorithms with a cate-
gorizing framework based on search strategies, evaluation criteria, and data mining
tasks and provide guidelines to choose an algorithm to select features. Finally to
consult the state of the art works the reader is referred to [28].

3 Multi-Population EDR Approach

In a previous work [7] an evolutionary technique called Evolving Decision Rules
(EDR) was applied to gather patterns from the Federal Deposit Insurance Corpora-
tion (FDIC) data. The objective of that work was to induce a set of comprehensible
rules that were capable to predict bank bankruptcy. This approach is able to gener-
ated fully interpretable models by showing decision rules that are composed by the
input variables. The rules were analyzed to discover the utility of the input features
by using an index of relevance which integrated the number of appearances in the
decision rules as well as the performance of these. A qualitative test was carried out
in order to find out the impact of that attributes. The following example shows a
couple of decision rules generated by the EDR approach.
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IF (NCA2 > CUS3 and NOI < 0.155 and ROE < 0.553) THEN Bankruptcy
IF (ROE4 < NCA5 and NOI6 < 0.643 and NCA > -0.414) THEN Bankruptcy

The previous decision rules were created by the EDR approach with the aim of
detecting early signals of bank bankruptcy. As can be observed the features are
composed by finantial radios, thus, the format of the obtained model made possible
to detect risky situations when the mentioned financial indicators are getting close
to the thresholds in the decision rules. Such scenario may indicate the warning of a
undesirable situation.

In a later work the Multipopulation-EDR (MP-EDR) approach was introduced,
the contribution of that work was to integrate the knowledge from several executions
of the EDR approach. MP-EDR keeps the understandability of the result, addition-
ally this performs a deep search in the space solution helping to avoid the deception
problem, it means to fall in a local optima.

The present work introduces a graph representation for the input features whose
objective is to express the relationship between features as well as the usefulness of
these attributes. The main motivation of this work is to provide information about
the input features in order to indentify the predictive power of those. This infor-
mation is very important since the variable selection helps to improve the classifier
performance by removing meaningless data that may cause bias and overfitting.

The feature selection that is proposed in this work, is performed by using a wrap-
per approach. It means that an inductive learning algoritm will be used to identify
the useful attributes. The MP-EDR approach has been selected as the learning algo-
rithm because of the following reasons:

• MP-EDR provides a fully understandable model. The transparency of the solu-
tion is really important since the analysis of the model is used to determine the
predictive power for each variable

• MP-EDR integrates the information of several runs, this characteristic helps to
diminish the bias and suboptimal solutions.

Since one of the purposes of this chapter is to be a self-contained work, let us briefly
describe the EDR and MP-EDR approaches, for that reason some common defini-
tions are given for a better understanding.

Definition 1. A Repository R is a colleccion of decision rules that represent a model.

Definition 2. A decision rule ri is a pattern and this is formed by conjunction of
conditions, where the conditions can be the comparison of two variables or the com-
parison of a variable and a threshold.

Definition 3. A hard condition is the equation that compares two variables, for ex-
ample: var1 < var2 .

2 Non-current assets plus other real estate owned to assets.
3 Cash plus US treasury and government.
4 Return on equity.
5 Non-current assets plus other real estate owned to assets.
6 Net operating income to assets.
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Definition 4. A flexible condition is the equation between a variable and a threshold,
for instance var1 < 0.8

Definition 5. A condition ci is similar to ck if both conditions are flexible and these
compare the same variable or feature using the same operator ”<”, ”>”, for example
the conditions ci = {var1 > .82} and ck = {var1 > .76} are similar

Definition 6. A decision rule ri is called a hard rule, when this is entirely composed
by hard conditions

Definition 7. A decision rule ri is a flexible rule, if this contains at least one flexible
condition

3.0.1 Evolving Decision Rules Method Description

Evolving Decision Rules [11],[10] is an evolutionary technique based on GP [21].
The main objective of the EDR approach is to generate and evolve a set of under-
standable rules to classify a single class, in this case the event of bankruptcy. The
final results is a repository R of decision rules , which is a model expressed in terms
of the input variables or attributes. Different classifications can be obtained by us-
ing different subsets of rules from R, those subsets are conformed by rules whose
precision reaches a specific threshold. It is fear to say that many Genetic Programs
are not able to produce fully understandable soluctions due to the presence of in-
trons [31] which is unused code, this problem is known as bloat [24]. Since EDR
is aidded by a simplication process this approach is able to create understandable
solutions avoiding the bloat problem. Let us briefly describe the main steps of the
Evolving Decision Rules approach.

Step 1: Creation of a initial population of random decision trees (individuals).
Step 2: Extraction of rules from the decision trees
Step 3: Rule simplification, the sucessful rules are simplified by removing redun-

dant7 and vacuous8 conditions.
Step 4: Integration of successful rules into the repository.
Step 5: Creation of a new population by using the successful individuals in the

previous generation and applying the mutation and hill-climbing operators. The
process is repeated from Step 2 until the algorithm has reached the maximum
number of generations.

Step 6: Testing EDR approach. The evaluation is performed by using sub-
collections of rules grouped by precision, generating a set of classifications.

The final result is a repository of rules which are expressed in terms of the input fea-
tures (see the example in figure 1). If all conditions in the decision rule are satisfied
it indicates that a bank bankruptcy may occur. A more detailed description about the

7 Redundant conditions are those which are repeated or report the same event, e.g., R1 =
var1 > 0.5 and var1 > 0.7, thus the first condition is redundant.

8 Vacuous conditions refers to those that regardless its values are always satisfied, as a in-
stance.
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r1 = {var1 > var2 and var3 > .06} p(r1) = .86
R = r2 = {var3 > var2 and var3 > var4} p(r2) = .78

r3 = {var4 > var1 and var4 > .65} p(r3) = .76
r4 = {var3 > var7 and var2 > .89 and var3 > .56} p(r4) = .66

Fig. 1 Example of a set decision rules

EDR process is provided in the algorithm 1. Let us describe the EDR procedure by
using an easy example.

For each generation of the evolutionary process the population is composed by
a set of decision trees, all of them are decomposed in decision rules, thus, a tree
can be expressed as Tk = rk1,rk2, ...rkn. The rules whose precision is bigger than a
predefined threshold will be simplified. Lets rk be a decision rule whose precision
is bigger than the minimum required and this is composed as follows: rk= {var4 >
var1 and var4 > .75 and var4 > .56}. Then rk is analysed in order to remove the
redundant conditions, for that reason the rule rk is simplified as: rk ={var4 > var1

and var4 > .75}. As can be noticed the condition var4 > .75 includes the condition
var4 > .56, for that reason the latest was eliminated.

Once the rule has been simplied, we look for a similar rule in R, lets the repository
R be composed by the rules in figure 1. As can be noticed r3 is similar to rk, if the
latest performs better then r3 will be replaced by rk. On the other hand, if there is
not a rule similar to rk, then rk will be included in the repository. Finally if rk is a
hard rule and there is not an equal rule, then rk will be added to R. The addition of
new patterns is limited by the maximum number of rules in R, when this threshold
has been achieved the new rule is included by replacing the worst rule in R when
the performance of the latest is outperformed by rk.

3.0.2 Multi-Population Evolving Decision Rules Method Description

The objective of the Multi-Population Evolving Decision Rules (MP-EDR) is to
gather patterns from independent executions of the EDR approach in order to create
a Multi-Population repository of rules. The MP-EDR approach gathers rules from a
set of repositories R1,R2...Rn and forms a new repository of rules, which is called
Multi-Population Repository Rmp. In this way MP-EDR summarizes the knowledge
acquired by the previous solutions. This technique helps to increase the diversity
and to tackle the deception or premature convergence, which occurs when a popula-
tion converges to a global suboptimal solution. The main steps of MP-EDR are the
following:

Step 1: Creation of n repositories of decision rules |R|n. The EDR method is ex-
ecuted n times, since EDR is a stochastic method this is capable to generate n
different repositores of rules.

Step 2: Initialization of the first multi-population repository Rmp by introducing
the rules in R1.
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Algorithm 1: EvolvingDecisionRules()

P a population of decision trees t1, t2, ...
n the number of decision trees in P
R ={ri} a repository of decision rules ri ∀i = 1,2, ..
m the maximum number of rules in the Repository
NumGenerations the number of Generations in the evolutionary proccess
Tmin the minimum precision threshold1

input :
output : Repository

begin2

/* Creates an initial population of random decision trees */3

P ← a set of n random decision trees4

/* Repeat until the number of generations is reached*/5

for j=1 to NumGenerations do6

/* Analizes every decision tree tk ∈ P */7

for each tk ∈ P do8

tk ← the k-esim decision tree in P9

/* extracts the decision rules from tk */10

{rki}← the set of decision rules in tk11

/* Evaluates each rki to determine if this can enter into R */12

for each rki ∈ tk do13

if precision(rki)> Tmin then14

if (rki is a hard rule and rki /∈ R) or (rki is a flexible rule and not ∃15

rβ ∈ R such as rβ is similar to rki) then
nR ← the number of rules in R16

if nR < m then17

R = R∪ rki18

else19

/* R has reached the maximum number of rules, thus the20

worst rule will be replaced by rki*/
rworst ← the lowest ranked rule in R21

if precision(rki)> precision(rworst) then22

R = R− rworst23

R = R∪ rki24

else25

if (∃ rβ ∈ R such as rβ is similar to rki) and26

precision(rβ )< precision(rki) then
R = R− rβ27

R = R∪ rki28

return R29

end30
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Step 3: Integration of new rules into the repository. For each repository Rk where
k = 2,3, ..n and for each rule rki ∈ Rk, The rule rki is compared with the existing
rules in the repository Rmp. If rki represents a different pattern this is integrated
into Rmp. If there is a rule rmpi ∈ Rmp which is similar to rule rki and rki perfor-
mances better than the existing rule, then rmpi is replaced by rki.

Step 4: Testing EDR. Once the evolutionary process has finished, EDR is tested
by using another data set. It is evaluated by using sub-collections of rules from
the repository, those rules are grouped according to their precision

A more detailed description about the MP-EDR approach is provided in [9].

R1 ©
Simplifies the rules ↙

Rmp ©←− Identifies new patterns ←− R2 ©
Evaluate the new patterns ↖

...
Integrates the new sucessful rules Rn ©

Fig. 2 The Multi-population Repository R gathers rules from repositories of rules that were
created by independent evolutionary processes

4 Index to Measure the Features Relevance

To determine the predictive power of each feature in the data set, a metric to measure
the relevance of these features is proposed, the objective is to measure the frequency
and the impact of each variable in the sucessful decision rules.

Lets:
ri be a decision rule
R be a repository of rules created by MP-EDR

such as R = {ri} where i = 1,2...m
m be the maximum number of rules in R
n be the number of features in the data set
p(ri) be the precision of rule ri

Dβ be a resampled data set from D0 where β = 1,2..s
s be the number of resampled data sets
vari be the i-esim variable (feature)
Variables be the set of variables such as Variables = {vari}∀i = 1..n
A be a nxn matrix that is composed by the elements ai j

where i, j = 1,2...n
ai j be an element of the matrix A such as

ai j =
∑m

k=1 f (i, j,k)
m

(1)
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f (i, j,k) =

⎧⎪⎨⎪⎩
p(rk) if vari and var j ∈ rk,where rk ∈ R

0 Otherwise

(2)

For each data set Dβ there is a MP-Repository Rβ and then there is a matrix Aβ .
Lets call A′ the matrix for the data set Dβ whose elements are described as a′i j and
these are calculated as follows:

a′i, j =
1
s

s

∑
β=1

aβ
i, j where aβ

i, j ∈ Aβ (3)

The matrix A′ registers all the edges or relationships between features, thus the graph
of A′ = {a′i, j} shows all the edges and vertices that have been used at least once for
one rule. Section 5 describes the procedure to represent the matrix A′ as a graph.
Thus the index to measure the performance of the variables is described as follows:

Index(vari) =
n

∑
j=1

a′i, j (4)

Additionally let us describe other measure that will be used to analyse the perfor-
mance of each feature. Lets A′′ be the matrix whose elements a′′i, j are defined as
follows:

a′′i, j =

⎧⎪⎨⎪⎩
a′i, j if ∏∀β aβ

i j > 0 where aβ
i j ∈ Aβ

0 Otherwise

The matrix A′′ registers just the edges between features that have been present in
all the repositories of rules Rβ . The graph of A′′ (see section Section 5) displays the
edges and vertices which have been used in all the MP-Repositories.

5 Graph of Features Approach

To measure the relevance of the features in the data set we propose to create an
undirected graph whose vertexes represent each feature in the data set. The vertexes
are connected by edges that denote the relationship of the features to form conditions
(patterns) that should be capable to represent a model of the data set. The objective
of assigning values to the edges is to detect the main relationships between the
different variables and to measure their performance. Let us introduce the following
definitions that are used to assign values to the edges.

Definition 8. Let be Variables = {vari} the set of variables (features) in the data
set.

Definition 9. Let be V = {vi} the set of vertexes that represents each of the variables
in Variables, thus there is a vertex in the graph for each variable vari.
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Definition 10. Let rk be a decision rule, such as rk={ck1∧ck2...∧ckn}, and let pk be
the precision of rk.

Definition 11. if ck j is a hard condition such as varx > vary then there is an edge
vx,vy, and its value is increased by pk.

Definition 12. if ck j is a flexible condition such as varx > threshold, then, there is a
loop in the vertex vx and its value is increased by pk.

As it was mentioned previously each feature is represented by a vertex, it means
that the graph will be composed by n vertexes where n in the number of features.
Since the edges represent the relationship between variables, these may or not exists,
thus, the graph will be formed by at most nxn edges including the loops. Using the
definitions 2 and 3 the edges of the type vx,vy ∀ x �=y represent the hard conditions
while the loops represent just the flexible conditions. Thus, the value of the edge
vx,vy indicates how often this combination of variables has been used in the model
to form a decision rule. The precision of the decision rule has been incorporated into
the formula in order to take into account the performance of the rule. The algorithm
1 shows the pseudo-code for assigning values to the edges and loops.

The matrix A′ (see previous section) registers the connections between the differ-
ent variables and the self-connections (loops), the latest are registered in the diago-
nal of the matrix.

6 Experimental Section

The objective of this section is to test our approach in order to show its efficiency, our
method has been illustrated for selecting rules to predict bank failure. An analysis is
carried on in order to test our findings. Finally, the most successful decision rules,
which were generated by using just the relevant features, are shown.

The data set to train and test our approach is composed of financial ratios, these
are listed in Table 1. The data comes from the Federal Deposit Insurance Corpo-
ration (FDIC) and it was kindly provided by the Centre for Computational Finance
and Economic Agents (CCFEA), University of Essex. The parameters for running
the EDR and the MP-EDR approaches are described in table 2. This work uses the
same parameter values than [8],[9] since these have showed to be sucessful.

6.1 Experiment Description

The purpose of the experiment is to select, from a group of features, the most suit-
able variables to create a model to forecast bank failure. We devote substantial time
to this task because removing irrelevant features from the data set helps to avoid
confusion and noise trying to integrate no-relevant information into the model. Ad-
ditionally the reduction of variables simplifies the model and speeds the creation of
the classifier.
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Algorithm 2: GetEdgeValue()

m the number of rules in the Repository
n the number of feature (variables) in the data set
Repository ={ri} a repository of decision rules ri ∀i = 1,2, ..
Variables = {var j} the variables in the data set
v j the i-esim vertex ∀ j = 1,2...n
Edge jk a matrix that registers the values of the edge between v j and vk
cik the k−esim condition ∈ ri1

input : List Repository, List Variables
output : List

begin2

n ← Number of variables3

for each var j ∈Variables do4

v j ← var j5

/*Initializes the matrix */6

for j=1 to n do7

for k=1 to n do8

Edge jk ← 09

for each ri ∈ Repository do10

for each cik ∈ ri do11

begin12

if cik is a hard condition then13

a ← first variable number in cik14

b ← second variable number in cik15

Edgeba ← Edgeba +Precision(ri)16

else17

a ← variable number in cik18

b ← a19

Edgeab ← Edgeab +Precision(ri)20

end21

return Edge jk22

end23

To determine the predictive power of each variable an index is used to measure
the relevance of each feature (see section 4), after that, this information will be
plotted in an indirected graph (see section 5) with the aim to visualize the activity
and relationships of the features. The intention is to find useful patterns that help us
to discrimate relevant features. Finally, an analysis is carried on in order to validate
our findings, the steps of this experiment are listed belong.

1 A data set D0 was randomly re-sampling ten times to create ten different data
sets D1,D2,...D10, this technique is well known as bootstrapping [5]

2 Given that, the intention is to use MP-EDR method in order to integrate the
information from several executions, the EDR approach was performed ten times
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per each data set D j where j = 1,2..10. In total EDR was performed 100 times
producing the same number of rules’ repositories, let us call them R jk where j
indicates the number of the data set and k the number of the execution.

3 A MP-Repository R j was generated by using the repositories created in the
previous step. Thus, a MP-Repository is generated by using the set of repositories
R jk trained by D j.

4 Every MP- repository Ri is mapped into a matrix using the algorithm 1.
5 The index to measure the relevance of each feature is calculated by applying the

procedure in section 4.
6 The matrixes A′ and A′′, which are calculated by using the set of matrixes A =

{Ai}, are plotted as graphs (see section 5).
7 An analysis of the indexes and graphs is carried on in order to determine the

non relevant features.
8 To test our approach an analysis is performed by removing from the result the

non-relevant features and measuring their impact.

Table 1 List of variables, financial indicators

Number Description Short name

1 Net interest margin NIM
2 Non-interest income to earning assets NII
3 Non-interest expense to earning assets NIX
4 Net operating income to assets NOI
5 Return on assets ROA
6 Return on equity ROE
7 Efficiency ratio ER
8 Non-current assets plus other real estate NCA

owned to assets
9 Cash plus US treasury and government CUS

10 Equity capital to assets EC
11 Core capital leverage ratio CR

Table 2 Parameters used for running EDR and MP-EDR

Parameter name Value

Population size 500
Number of generations 50
Initialization method Growth
Crossover Rate 0.8
Mutation Rate 0.05
Type of selection Tournament (size 2)
Control bloat growing Tarpeian method
Evaluate rules varying precision .02
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The results of the experiment are presented in the following figures and tables:
The matrixes A′ and A′′ are displayed in figures 3 and 5 respectively, while the
graphs for the mentioned matrixes are shown in figures 4 and 6. The index for each
feature has been presented and ranked in table 3. The next section analyses the re-
sults obtained in the experiment in order to determine the relavance of each features.

6.2 Observations

As can be seen, table 3 presents the index for measuring the relevance of each
feature, the index integrates the frequency and the performance of the variable by
analysing the set of repositories of rules |R j|. The highest value denotes that this
variable has been used constantely and the decision rules produced by this fea-
ture performs well. However, once the index has been calculated, could be dif-
ficult to determine which index is low and which is high. By just analysing the
values in table 3 the average is 0.37 and the values that are lower than this are
var1,var2,var5,var7,var9 and var11. Notice that the column called degree, in table
3, describes the number of connections with other vertexes.

Figure 4 shows the graph created by plotting A′, this graph presents the edges
that were observed in the multi-population Repositories R j, as well as the values for
each edge including the loops. As can be observed the vertex v1,v2,v7 and v11 are not
connected with any other vertex in the graph. It means that these are not combined
with other variables in order to form conditions. While variables v3,v4,v5,v6 and v9

are connected with two other vertex. The features v8 and v10 are connected with the
same variables v3,v4,v5, v6 and v8.

Figure 6 shows the graph for matrix A′′, this exposes just the edges that
were persistent in the ten multi-population repositories. As it was expected the
edges with the lowest values were removed v4,v10, v5,v8,v5,v10 and v9,v10,.
As can be observed, some loops have been removed from the graph, these are
v2,v5,v7,v8,v9,v10 and v11. In our understanding none of the features used in this
work are correlated with the result (indication of default or not) for that reason we
believe that flexible conditions (for example v1 > .30) could be sucessful because
these overfit the data. As can be observed from graph 6, the vertexes v1,v2,v5,v7

and v11 are isolated, furthermore the index of those variables are the lowest ranked
from table 3. By analysing the graph 6 and table 3 these suggest that the isolated
variables should be removed, since these are not connected and their indexes are
vey low. As can be noticed, the index of v9 is also low but higher than the indexes
of the mentioned variables. Since v9 is connected in the graph this will be consid-
ered a relevant feature. Finally, based on the previous analysis the variables that are
relevant for the model are v3,v4,v6,v8,v9 and v10, notice that more than the half
part of the variables was discriminated, the removed variables were v1,v2,v5,v7

and v11.
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Table 3 Features ranking according to the index

Feature Ranking Index Degree

var1 7 0.07 1
var2 10 0.05 1
var3 5 0.46 3
var4 1 1.06 3
var5 8 0.05 3
var6 3 0.65 3
var7 11 0.03 1
var8 2 1.03 6
var9 6 0.18 3
var10 4 0.49 6
var11 9 0.05 1

6.3 Analysis to Test the Approach

The objective of this section is to carry on an analysis in order to test the effec-
tiveness of our approach. The idea is to measure the performance of the resulting
repositories of rules by first removing the features that has been classified as mean-
ingless and after removing the relevant features. The results are compared against
the performance of the original repositories. In order to perform our study lets:

n be the number of features in the data set
f1 be a feature that according to the index is ranked in the i-place, for

example f1 = v4 and f6 = v9 (see table 3)
Fi be the set of features such as Fi = { fi, fi+1, ... fn}∀i ≤ n
R−Fi be the MP-Repository R by removing the rules whose conditions use at

least a feature in Fi

A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 .07 0 0 0 0 0 0 0 0 0 0
v2 0 .05 0 0 0 0 0 0 0 0 0
v3 0 0 .17 0 0 0 0 .15 0 .14 0
v4 0 0 0 .59 0 0 0 .39 0 .07 0
v5 0 0 0 0 .03 0 0 .01 0 .01 0
v6 0 0 0 0 0 .24 0 .28 0 .13 0
v7 0 0 0 0 0 0 .03 0 0 0 0
v8 0 0 .15 .39 .01 .28 0 .10 .10 0 0
v9 0 0 0 0 0 0 0 .10 .01 .07 0
v10 0 0 .14 .07 .01 .13 0 0 .07 .07 0
v11 0 0 0 0 0 0 0 0 0 0 .05

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 3 Matrix A′ registers all the edges or relationships between features, thus the graph of
A′ = {a′i, j} shows all the edges and vertices that have been used at least once time
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Fig. 4 Graph of matrix A′, each vertex represents a feature and the edges represent the con-
nections between variables that were used for the sucessful decision rules. This graph shows
all the connections between variables that were used by the rules in the MP-Repositories Ri

The analysis is composed by the following steps:

1.- The features are ranking based on their performance by using the index in
section 4.

2.- The performance for each MP-repository Ri that was generated for each data
set Di, is measured by using the Area Under the ROC9 Curve (AUC).

3.- The AUC and the number of rules for each repository Ri−Fn−w ∀i = 1,2, ..10
and w = 0,1..n− 1 are calculated. As can be seen, the features which are ranked
in the places n−w are removed from Ri. Table 6 indicates the features that have
been removed for each measure.

The resultant AUC and the number of rules for each data set are shown in tables 4
and 5. The graph 8 shows the values of the AUC for each data set by reducing the
features. Figure 9 displays the number of rules when the set of featues is reduced.
Finally the averaged values for the AUC and the number of rules are described in
table 6.

9 ROC -Receiver Operating Characteristic [12].
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A′′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 .07 0 0 0 0 0 0 0 0 0 0
v2 0 0 0 0 0 0 0 0 0 0 0
v3 0 0 .17 0 0 0 0 .15 0 .14 0
v4 0 0 0 .59 0 0 0 .39 0 0 0
v5 0 0 0 0 0 0 0 0 0 0 0
v6 0 0 0 0 0 .24 0 .28 0 .13 0
v7 0 0 0 0 0 0 0 0 0 0 0
v8 0 0 .15 .39 0 .28 0 0 .10 0 0
v9 0 0 0 0 0 0 0 .10 0 0 0
v10 0 0 .14 0 0 .13 0 0 0 0 0
v11 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 5 The matrix A′′ registers the connections between variables, which are represented by
the edges, that were persistent in all the repositories of rules.

v1

v2

v3
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v7
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v11

.15
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.39 →
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.17
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.10

Fig. 6 Graph of matrix A′′, this shows the variables’ connections that were persistent in all
the MP-Repositories

As can be noticed from table 6, this table has been divided horizontally in or-
der to separate the features that according to our approach are relevant. As it can
be observed, after removing the non-relevant features the AUC has not decreased
importantly, since the average AUC for Ri is 0.9228 and the average AUC after re-
moving the features v7,v2,v11,v5 and v1 is 0.9215 (a reduction of .14%), it means that
the remotion of those features does not affect the performance of Ri. In contrast, the
number of rules in the repository decreased from 50 to 36.4, in other words it de-
creased 27%. It is shown that the remotion of 5 features from the 11 does not affect
the performance of Ri, however since the number of decision rules in the repository
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v3
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v6

v8

v9
v10

Fig. 7 The graph presents the variables and connections that according to our analysis are
relevant for the model
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Fig. 8 The values for the AUC for each data set D0,D1...D10, when the set of features is
reduced

is reduced in 27% the prediction model is benefited because it has been simplified.
However, it is still questionable if features v9 and v3 are relevant or not, because the
removal of these causes a decrease in the AUC of 0.4% and 1.6% respectively. How-
ever, the reduction of rules is considerable to 30.6 and 10.1. It can be concluded that
variables v8,v4 and v6 are the most relevant features, since these are able to identify
the 0.897 of the positive cases by just using the following rules:
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IF {ROE¡NCA and NOI < 0.3410} THEN bankruptcy
IF {NOI < 1.6495 and NCA > 0.3430} THEN bankruptcy
IF {NOI < 0.3577 and ROE < -0.458 and NCA > -2.609} THEN bankruptcy
IF {NOI < NCA and NCA > 0.5729} THEN bankruptcy
IF (ROE<NCA and NOI < 0.3896 and ROE < 1.2759) THEN bankruptcy

R R −F10 R −F8 R −F6 R −F4 R −F2 −−
0

10

20

30

40

50
Number of rules after reducing features

Fig. 9 The number of rules for each data set D0,D1...D10, when the set of features is reduced

Table 4 AUC by Reducing features, data sets D1,D2...D5

Removed AUC Num AUC Num AUC Num AUC Num AUC Num
Variable D1 Rules D2 Rules D3 Rules D4 Rules D5 Rules

R .852 50 .946 50 .96 50 .937 50 .956 50
R−F11 .852 50 .946 50 .96 48 .937 49 .956 47
R−F10 .852 47 .946 50 .96 44 .937 45 .956 43
R−F9 .852 44 .946 50 .96 41 .937 43 .955 39
R−F8 .852 42 .948 49 .95 39 .932 39 .954 33
R−F7 .852 40 .949 46 .95 37 .932 38 .946 28
R−F6 .836 36 .939 41 .94 30 .932 37 .947 22

R−F5 .798 6 .88 2 .94 12 .934 12 .947 13
R−F4 .797 4 .88 1 .93 5 .934 7 .946 8
R−F3 .735 1 .5 0 .88 2 .809 1 .906 5
R−F2 .5 0 .5 0 .5 0 .5 0 .5 0
R−F1 .5 0 .5 0 .5 0 .5 0 .5 0
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Table 5 AUC by Reducing features, data sets D6,D7...D10

Removed AUC Num AUC Num AUC Num AUC Num AUC Num
Variable D6 Rules D7 Rules D8 Rules D9 Rules D10 Rules

R .903 50 .939 50 .882 50 .896 50 .957 50
R−F11 .903 50 .939 49 .882 47 .896 49 .957 45
R−F10 .903 50 .939 47 .882 44 .891 46 .961 43
R−F9 .903 50 .939 43 .882 38 .892 41 .961 41
R−F8 .906 47 .938 40 .882 37 .892 39 .961 37
R−F7 .906 46 .938 35 .889 21 .892 37 .961 36
R−F6 .908 44 .918 26 .909 10 .887 31 .961 29

R−F5 .897 6 .912 12 .909 8 .876 16 .927 14
R−F4 .898 4 .911 8 .863 5 .874 8 .937 10
R−F3 .826 2 .831 1 .5 0 .797 2 .886 3
R−F2 .5 0 .5 0 .5 0 .5 0 .5 0
R−F1 .5 0 .5 0 .5 0 .5 0 .5 0

Table 6 Average AUC and number of rules by reducing features from the R

Repository of rules by removing those rules which AUC Num
contain the non relevant feature Average Average

Ri Ri 0.9228 50.0
Ri−F11 Ri −v7 0.9228 48.4
Ri−F10 Ri −v7,v2 0.9227 45.9
Ri−F9 Ri −v7,v2,v11 0.9227 43.0
Ri−F8 Ri −v7,v2,v11,v5 0.9215 40.2
Ri−F7 Ri −v7,v2,v11,v5,v1 0.9215 36.4
Ri−F6 Ri −v7,v2,v11,v5,v1,v9 0.9177 30.6

Ri−F5 Ri −v7,v2,v11,v5,v1,v9,v3 0.9023 10.1
Ri−F4 Ri −v7,v2,v11,v5,v1,v9,v3,v10 0.8970 6.0
Ri−F3 Ri −v7,v2,v11,v5,v1,v9,v3,v10,v6 0.7670 1.7
Ri−F2 Ri −v7,v2,v11,v5,v1,v9,v3,v10,v6,v8 0.500 0
Ri−F1 Ri −v7,v2,v11,v5,v1,v9,v3,v10,v6,v8,v4 0.500 0

7 Conclusions

There are many prediction problems that demand the understandability of the so-
lution since the analysis of the conditions that are involved in the model provides
knowledge about the scenarios that may trigger the event to predict. A good selec-
tion of relevant features to train a machine learning classifier is beneficial since it
reduces the dimensionality of the data set by decreasing the size of the hypothesis
space. Obviously the result is a more compact representation which can be inter-
preted easier. Furthermore, removing irrelevant features from the data set helps to
avoid confusion and noise trying to integrate no-relevant information into the model.
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This work has presented a wrapped technique to select meaningful features by
using MP-EDR, this approach can produce understandable models, which are ca-
pable to describe, in terms of the features, the conditions that may induce the event
to predict. Besides, MP-EDR is a machine learning techique that can integrates the
information from several executions, it helps to tackle the deception and the bias.

We proposed two important contributions: first, the use of the MP-EDR approach
to determine the relevance of a set of data to predict bank bankruptcy. The second
contribution is the implementation of a graph to represent the features’ relevance,
this graph is built by using the rules and conditions produced by MP-EDR. From
experimental results it was shown that an analysis based on an index of relevance
could be sucessfully aided by the graph proposed in this work. The graphs expose
the relationship between variables that were found by MP-EDR. Additionally the
graph is used to show the features’ relatioships that persist along several executions.
The infomation provided by the graphs are useful to estudy the main relationships
of features in the data set.

The sort of information use here consists mainly on financial ratios but the tech-
nique is by no means limited to such type of information. In this sense, feature
selection takes a more important role because if many more features are used to
perform this task, then, it is important to select in a first round meaninful features to
constrain the search space explosion. By using GP to predict bankruptcy, this work
pushes AI techniques into areas in which more statistical techniques dominate. This
is also a contribution as we put on the table a technique which is not only competent
in performance terms but is also flexible, powerfull and transparent.
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Neural Network Based Approaches for Network
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Abstract. In this chapter, we review some learning strategies for neural networks
such as MLP (Multilayer Perceptron), RBF (Radial Basis Function) and Recurrent
Networks applied to computer network traffic prediction. That is, the considered
neural networks and training algorithms are used to predict the traffic volume of
a computer network. Some methods of improving the prediction performance of
neural networks are also considered such as application of Wavelet Transform. We
discuss about using the Wavelet Transform in supervised training of neural net-
works by decomposing the traffic process into approximation and detail processes.
We present some results involving the application of the Orthogonal Least Squares
(OLS) algorithm in RBF networks for traffic prediction. Regarding the Recurrent
neural networks, we verify their traffic prediction performance when trained with
the Extended Kalman Filter (EKF) and the RTRL (Real Time Recurrent Learning).
Real network traffic traces are used in the simulations in order to verify the predic-
tion performance of the neural network algorithms.
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1 Introduction

This chapter describes some neural network based approaches to model and predict
the traffic intensities of communication networks. The prediction is carried out by
mapping previous and future values of a time series.

When modeling a signal, we try to imitate the behavior of the system that gen-
erates it, in general without knowledge of its operating mechanisms. The modeling
purpose can be predictive or only for characterization. By modeling a time series, we
try to learn more about or to predict the corresponding system behavior. Among the
techniques used to find the relation between values of a time series we can mention:
adaptive filtering, artificial neural networks, etc. The system that generates the time
series can be deterministic or stochastic. In the specific case of computer networks,
there is a random amount of generated data. Even network traffic being stochastic,
neural networks can make a mapping between values of the traffic data in different
time instants.

In order to achieve high utilization of resources in a computer network and for
better decision making, traffic prediction must be as accurate as possible. Unfortu-
nately, the prediction accuracy deteriorates with increasing range, or the prediction
horizon. A certain time interval is needed by the control actions of the commu-
nications network. The factors that may affect the traffic prediction can be: traffic
characteristics, measurement interval, time scale of prediction, traffic aggregation
(multiplexing), sampling (smoothing), etc.

The MLP (Multilayer Perceptron) and RBF (Radial Basis Function) neural net-
works compose the backbone of the neural networks with supervised learning. Neu-
ral networks can be used in complex nonlinear decision-making and to approxi-
mate the data generating mechanism of certain systems. The RBF neural network
in particular has been successfully applied in nonlinear time series prediction [11],
[34],[9].

This chapter focuses on the application of neural networks to model the behavior
of computer network traffic as well as to predict its future behavior in order to pro-
vide mechanisms for traffic control. That is, the problem considered in this chapter
is to predict the next value of a time series corresponding to Internet and Ethernet
network traffic.

Most of the prediction success of neural networks is in the prediction of station-
ary signals. Since real signals are not only nonlinear but also non-stationary, it is
necessary to develop predictors that takes into account these characteristics. It was
verified the ability of neural networks with one hidden neuron layer to approximate
any continuous function [16]. The RBF neural network, which has this capability,
has a training that can be seen as an interpolation and be solved by matrix inversion.
However, with this approach, numerical problems can be found. In order to avoid
these problems, we suggest to apply the OLS (Orthogonal Least Squares) algorithm
to the RBF training. The OLS algorithm has been used in various applications such
as automatic control [12], fuzzy neural networks [25] and other applications.

Most existing prediction methods perform a global analysis of the data. Such
methods lead to loss of details (underfitting) or the inclusion of noise (overfitting).
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It would be interesting to take into account, when predicting the signal, the predic-
tion of its details at each scale. The decomposition of the process in its detail and
approximation processes can be carried out by using the Wavelet Transform. This
topic is also covered in this chapter.

Neural networks trained with on batch algorithms such as the backpropagation
require a cyclical presentation of all training set to converge. This feature is not de-
sired for adaptive processing where the input data vectors are obtained in sequence.

As the RTRL (Real Time Recurrent Learning) is incremental, it is not necessary
to train with all data already received, but only with the new information. Therefore,
with the increase of data received by the system there is no expansion of the learning
time and no additional storage. The present work shows that it is possible learning
real-time traffic by different neural networks responsible for specific input patterns,
making the system robust to large changes that may occur in the traffic data of a
computer network.

In the present chapter, we show that it is possible to adaptively learn real-time
traffic by recurrent neural networks, being robust to large changes that may occur in
the traffic data of a computer network. In order to validate the algorithms we used
real traffic traces from Bellcore1 that present self-similar and multifractal character-
istics [50].

2 Wiener Filters

One of the starting points for the great advance on Neural Networks is the theory of
linear adaptive filters, which paved the way for the study of multilayer perceptrons
with nonlinear neurons.

Let x be the input signal and w the weight vector of a filter such as that of Fig. 1.
The Wiener-Hopf equations determine the optimal solution for the weights, so that
the output of the network of Fig. 1 is close to the desired.

Fig. 1 Wiener Filter

In this sense, we want to determine w such that function ε = 1
2 E[e2] be minimal,

where e is equal to the estimation error, the difference between the desired process

1http://www.acm.org/sigcomm/ITA/

http://www.acm.org/sigcomm/ITA/
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value and the estimate, given by e= d−y. Filters whose weights satisfy this criterion
are known as Wiener filters [22].

The optimal set of weights wok can be determined by equations (1), (2), and (3),
the Wiener-Hopf equations:

p

∑
j=1

wokrx( j,k) = rxd(k) k = 1,2, ..., p (1)

rx( j,k) = E[x jxk] j,k = 1,2, ..., p (2)

rxd(k) = E[xkd] k = 1,2, ..., p (3)

One way to solve the equation (1) and avoid a matrix inversion is to use the conju-
gate gradient method[19]. According to this method, in each iteration the weights
are updated by the following equations:

Δwk(n) =−η
dε(n)

dwk(n)
k = 1,2, ..., p (4)

wk(n+ 1) = wk(n)+Δwk(n) (5)

Once dε(n)
dwk(n)

= ∑p
j=1 wjrx( j,k)− rxd(k) , we can redefine the conjugate gradient

method in terms of the correlation functions:

wk(n+ 1) = wk(n)+η

[
p

∑
j=1

wjrx( j,k)− rxd(k)Δwk(n)

]
(6)

3 Linear and Nonlinear Prediction

Let x(n) = [x(n),x(n− 1), ...,x(t −L− 1)]T . An one-step prediction of the process
x(n) can be written as [57]:

x̂(n+ 1) = F [x(n)] = F[x(n),x(n− 1), ...,x(n−L− 1)]T (7)

where F is the function that represents the dynamics of the system. This method
justified by Takens and used for systems without noise is adopted in several areas
[45].

According to equation (7), we can express the predicted value as a function of
previous values. We say that the prediction is linear if the function F can be de-
scribed as a linear combination of past samples. In the 40‘s, Wiener began to apply
the theory of linear prediction in various situations. The root mean square error of
the prediction can be minimized using Wiener filters [22], but the process must be
wide-sense stationary. Linear prediction models are simple and easy to implement.
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Rewriting equation (7), we have:

x(n) =
p

∑
n=1

w(n)x(k− n)+ e(k) (8)

This equation defines the AR (autoregressive) type of stochastic processes where a
future value of the time series can be obtained from the weighted sum of past values
of a series plus instantaneous errors [30]. Using Wiener filters for calculating the
optimal coefficients w0, the estimated future values of the series are:

x̂(n) =
p

∑
k=1

w0(n)x(n− k) (9)

In the nonlinear prediction, the input-output mapping is richer than in linear predic-
tion, which consists of a simple hyperplane. In the nonlinear autoregressive model
we have:

y(n) = G(y(k− 1),y(k− 2), ...,y(k− p))+ e(k) (10)

where G is a nonlinear function.
For a stationary signal x(n), the minimization of the mean squared prediction

errors corresponds to predict the average of x(n) given some past samples:

x̂(n) = E[x(n) | x(n− 1), ...,x(n− p)] (11)

A more general model that provides a plausible description for different types of
signals is the NARMA (Nonlinear Autoregressive Moving Average) model [7]. The
NARMA model uses a more general function incorporating past errors:

x̂(n) = F [x(n− 1), ...,x(n− p);e(t− 1), ...,e(t − p)] (12)

Thus, more information is available to the model to improve predictions.
The neural network community still has often used the NAR model (Nonlin-

ear Autoregressive) embedded in feedforward networks such as the MLP, which
presents great capabilities, but does not contain all information about the past. In
[15], it is shown that a NARMA network, whose outputs are fed back to the input,
is a special case of a general fully connected network. However, Aussem says that
fully connected networks provide a better approximation [5]. This is the reason of
various studies in recurrent networks. Therefore, in this chapter, we also present a
study on recurrent networks whose parameters are adaptively adjusted.

4 Least Mean Square (LMS) Algorithm and the Adaline Neural
Network

The LMS(Least Mean Square) algorithm is also known as delta rule, Widrow-Hoff
rule and stochastic gradient algorithm [8]. The Adaline (Adaptive Linear Element)
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neural network can be considered an adaptive linear system that responds to changes
while running. It is used in pattern classification, echo cancellation, control and
signal processing systems [8]. It uses the LMS to update the neural weights. The
neuron outputs consists of a limiter whose value is 1 when the output of the adder is
positive and -1 (or zero) when negative (Fig. 4). Thus, the Adaline neural network
can solve only linearly separable problems.

Fig. 2 Perceptron

The LMS algorithm can be used to train the neural network depicted in Fig. 2,
that is, to adaptively adjust its weights. The LMS is able to work in a non-stationary
environment by using correlation function estimations in equation (1) as the follow-
ing:

r̂x( j,k;n) = x j(n)xk(n) (13)

r̂dx(k;n) = xk(n)d(n) (14)

Inserting the above equations into equation (6), we have:

ŵk(n+ 1) = ŵk(n)+η

[
x j(n)xk(n)−

p

∑
j=1

ŵ j(n)x j(n)xk(n)

]
(15)

ŵk(n+ 1) = ŵk(n)+ηxk[d(n)− y(n)] (16)

y(n) =
p

∑
j=0

ŵ j(n)x j(n) (17)

The LMS algorithm minimizes instantaneous estimates of a cost (error) function.
Due to this reason, it is not necessary to store more than the present information
(the filter weights). In summary, the algorithm consists of the initialization of the
weights, the use of equation (17) for obtaining the network output and (16) for
updating the weights (Fig. 3).
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Fig. 3 Adjust of weights -
Adaline Neural Network

5 Multilayer Perceptron and the Backpropagation Algorithm

The MLP neural network (Multilayer Perceptron) is a generalization of the one-
layer perceptron. It is the most widely used neural network in various applications
such as character recognition, forecasting stock exchange, signature verification,
medical diagnosis, etc. It consists of an input layer, hidden layers and an output
layer, and, of course, neurons (Figs. 5 and 6). One of the algorithms applied to the
MLP neural network training is the backpropagation algorithm, that can be viewed
as a generalization of the LMS algorithm.

According to Cybenko, theoretically a continuous function can be implemented
(learned) by a neural network with one hidden layer, and two hidden layers allow

Fig. 4 Adaline neural net-
work

Fig. 5 Multilayer neural
network
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Fig. 6 Neuron as part of multilayer neural network

the approximation of any function [16]. Single layer networks, i.e., without hidden
layers, only solve linearly separable problems. The hidden layers nodes act as fea-
ture detectors, they generate an internal encoding of the input patterns to produce
the desired outputs. It should be remembered that the last layer has a precise idea
of the network error, while others have estimates of the error. The number of nodes
in the hidden layers depends on factors such as the complexity of the function to be
learned, the number of training pairs and data noise.

From an operational view, the online training (pattern by pattern) requires less
storage and can be used in real time neural network applications, with constant
updating of the weights. On the other hand, the on-batch training (by a pattern pre-
sentation cycle) can provide a more accurate estimate of the gradient vector, despite
being slower method.

In summary, the error backpropagation algorithm in its online mode can be de-
scribed as:

1. Initialization: Choose random numbers with uniform distribution for the weights
and the neural network threshold terms;

2. Progressive Computing (forward): Assuming [x(n),d(n)] as the training pairs,
we compute the neuronal activations. The internal activation of a neuron j in
layer L is:

v(L)j (n) =
P

∑
i=0

wL
ji(n)y

(L−1)
i (n) (18)

The output of neuron j is calculated using a nonlinear differentiable function,
which may be the sigmoid (Fig. 7):

y(L)j (n) =
1

1+ exp(−v(L)j (n))
(19)

The outputs of the neurons are used to calculate the error: e j(n) = d j(n)−y j(n).
3. Computing backwards: Calculate the local gradients δs, backpropagating layer

by layer:



Neural Network Based Approaches for Network Traffic Prediction 665

Fig. 7 Sigmoid function

- Neuron j at output layer O:

δ (O)
j (n) = e(O)

j (n)s j(n)[1− s j(n)] (20)

- Neuron j at hidden layer L:

δ (L)
j (n) = y(L)j (n)[1− y(L)j (n)]∑

k

δ (L+1)
k (n)w(L+1)

k j (n) (21)

in which y(L)j (n) = s j(n). Then, update the weights by the equation:

w(L)
ji (n+ 1) = w(L)

ji (n)+ δ (L)
j (n)y(L−1)

j (n) (22)

4. Repeat from step 1 until the mean square error reaches an acceptable value, or
after N cycles.

The training by error backpropagation performs a stochastic gradient descent al-
gorithm in the weight space while updating the synaptic weights pattern by pattern,
ensuring that the network takes the way on the error surface toward the error reduc-
tion. The backpropagation algorithm has the risk of converging to a local minimum.
However, for a quadratic error surface, the convergence to a global minimum is
guaranteed.

The more a neural network can accurately estimate the future output of the sys-
tem, the greater is its ability to generalize, i.e., it has a good method of nonlinear
interpolation of the input data. However, when overtrained, the network can get spe-
cialized for the training set and degrade its ability to generalize. The generalization
is influenced by the size and efficiency of the training set, the network architecture
and the complexity of the problem in question.
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6 Radial Basis Function (RBF) Neural Network

The RBF neural network is a multilayer network with one layer of input nodes (sen-
sory nodes), a layer of hidden nodes and one output layer. RBF networks with more
than one intermediate layer have also been proposed [23]. In this neural network,
the activation of a node is a function of the distance between input vectors and their
weights. The transfer functions between the input layer and hidden layer are non-
linear and those connecting the hidden layer to output layer are linear. Therefore,
the input-output mapping performed by RBF is obtained by a nonlinear transfor-
mation followed by a linear one. In the output layer, the adjustable parameters are
the weights of a linear combination. These parameters can be determined using
the least squares method. The RBF networks build local approximations for input-
output mappings, leading to a fast learning and reduced sensitivity to the order of
data presentation in the training set.

Let P be an integer number and assuming P < N (where N = training set size),
the output of the RBF neural network shown in Fig. 8 is given by:

y =
P

∑
k=0

wkϕ(x, tk)+w0 (23)

where tk represents the vector of centers of radial basis functions.
By using regularization for training this neural network the cost function εR to be

minimized is given by:

εR =
N

∑
i=1

(di − f (xi))
2 +

P

∑
j=1

λ jw
2
j (24)

Notice that d = [d1,d2, ...,dN ]
T is the desired response vector, w =

[w0,w1,w2, ...,wP]
T is the weight vector of the RBF neural network, λ j is the

regularization parameter and f (xi) is the output of the neural network to an input
vector xi .

The neural network, according to these equations, has P nodes in the hidden layer.
In its training, the radial basis functions center locations tk are found.

The Gaussian function is generally chosen as the radial basis function, that is:

ϕ(x, tk) = exp

(
− 1

σ2
k

‖x− tk‖2
)

k = 1,2,3, ...,P (25)

where σk represents the radial function width and tk is its center. However, theoret-
ical investigations and practical results suggest that the choice of the nonlinearity is
not crucial to the RBF neural network performance [35].

y =
P

∑
k=0

wkexp

(
− 1

σ2
k

‖x− tk‖2
)
+w0 (26)
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Fig. 8 RBF neural network

Let Φ be the interpolation matrix, whose size is Nx(P+1), where N is the num-
ber of training examples and P is the number of radial basis functions, given by:

Φ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 ϕ(x1, t1) ϕ(x1, t2) · · · ϕ(x1, tP)
1 ϕ(x2, t1) ϕ(x2, t2) · · · ϕ(x2, tP)
...

...
...

. . .
...

...
...

...
. . .

...
1 ϕ(xN , t1) ϕ(xN , t2) · · · ϕ(xN , tP)

⎤⎥⎥⎥⎥⎥⎥⎦ (27)

In matrix terms, the weight vector that minimizes the cost function εR (equation 24)
is [21]:

w = (ΦT ×Φ+Q)−1ΦT ×d (28)

where:

Q =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λP

⎤⎥⎥⎥⎦ (29)

The number of nodes in the intermediate layer can be defined as being equal to
the number of input patterns, so each center is located on an input vector and the
RBF network accurately maps the input vector to the output. However, the exact
interpolation can be undesirable especially when there is noise in the input data.
It can cause overfitting, in which a good generalization of the neural network is
not achieved, i.e., the network does not extrapolate well for new input data. That is
one reason to use a number of centers less than the number of input patterns. The
regularization also discourages the neural network to overfit the training set [56].
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The RBF network performance sensitively depends on the chosen centers. The
bad conditioning occurs due to the choice of close centers. The ROLS algorithm
can be used for selecting a set of centers from some candidates and avoid bad con-
ditioning problems, in addition provides a smaller number of centers for the neural
network.

6.1 Regularized Orthogonal Least Squares (ROLS) Algorithm

The learning of MLP neural networks is based on nonlinear optimization techniques
and may have local minima problems. Other optimization techniques such as ge-
netic algorithms, while being able to find a global minimum, may require extensive
computation.

The direct selection is a nonlinear algorithm that searches in a discrete space of
sets a subset with the lowest prediction error. It starts with an empty subset and
adds, in each iteration, a basis function (center) that reduces the sum of squared
errors, until some criterion is reached.

The orthogonal least squares algorithm reduces the computational complexity of
direct selection. It consists of a Gram-Schmidt orthogonalization that ensures that
each new column to be added in the design matrix will be perpendicular to all other
columns.

The ROLS is based on the optimal solution for the weights (equation 28), that we
rewrite as:

w = (HT ×H+λ H)−1HT ×d (30)

where H is called design matrix:

H =

⎡⎢⎢⎢⎣
h1(x1) h2(x1) · · · hm(x1)
h1(x2) h2(x2) · · · hm(x2)

...
...

. . .
...

h1(xp) h2(xp) · · · hm(xp)

⎤⎥⎥⎥⎦ (31)

This matrix is factored into Hm = H̃mUm, where H̃m has mutually orthogonal
columns and Um is an upper triangular matrix.

Let Z be a matrix whose columns
{

z f
}M

f−1 correspond to M possible candidates:

Z = [z1 z2 · · · zM] (32)

At each step m, a vector z̃i is added in the orthogonalized design matrix H̃m =
[H̃m−1z̃i] given by:

z̃ f = z f −
m

∑
j=1

zT
f h̃ j

h̃T
j h̃ j

h̃ j (33)
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such that leads to greater reduction in mean squared error and maximizes the equa-
tion:

εrm − εrm+1 =
(dT z̃ f )

2

λ + z̃T
f z̃ f

(34)

The orthogonalized weight vector is calculated by the following equation:

w̃m =
dT h̃ j

λ + h̃T
j h̃ j

(35)

and then the regular weight vector as:

wm = U−1
m w̃m (36)

which uses the upper triangular matrix Um, given by:

Um =

[
Um−1 (H̃T

m−1H̃m−1)
−1H̃T

m−1z f

0T
m−1 1

]
(37)

In order to calculate the regularization parameter λ value, we need the projection
matrix P:

P̃m+1 = Ip −
m

∑
j=1

h̃ jh̃T
j

λ + h̃T
j h̃ j

(38)

The regularization parameter is optimized at each addition of a new center and is
chosen based on the GCV (Generalised Cross Validation) minimization [28]. A new
value for λ is calculated after each center selection using the prior λ . The equation
for updating of the regularization parameter value is given by:

λ =

[
dtrace(P̃m)

dλ

]
(dT P̃2

md)

trace(P̃m)w̃T
m(H̃T

mH̃m +λ Im)−1w̃m
(39)

where the starting value of the parameter is zero.
The decision to interrupt the addition of basis functions can be done by monitor-

ing some selection criterion; we use the BIC (Bayesian Information Criteria) [28]:

σ2
BIC =

n+(ln(n)− 1)γ
n− γ

dT P2d
n

(40)

where γ = n− trace(P)T . When this criterion stops decreasing and begins to in-
crease, the addition of radial basis functions is interrupted.
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6.2 Wavelet Transform

In this section, we give a brief resume of the wavelet transform theory in order to fur-
ther discuss about its application in the RBF neural network learning. The wavelet
transform provides a multiresolution representation of the signal, with the idea to
analyze the signal at different scales. A function ϕ that satisfies the admissibility
condition [14] is a wavelet function. In order to satisfy the admissibility condition,
the mother wavelet function ϕ has compact support, i.e., has no spectral components
out of a range of frequencies and is oscillatory. By dilations and translations of the
mother wavelet function ϕ the following family of functions is obtained:

ϕs,t(u) = |s|−p ϕ
(

u− t
s

)
(41)

where p ≥ 0, s is the dilation parameter and s ∈R, and t is the translation parameter.
The Continuous Wavelet Transform (CWT) of a function f (t) is mathematically
defined as:

W (s, t) =
∫ +∞

−∞
f (u)ϕs,t(u)du = 〈 f ,ϕs,t 〉 (42)

The discrete transform is obtained by the temporal and scale discretization of the
continuous transform. Thus, we have a countable set of functions using a dyadic
discretization in which s = 2m, t = 2nmt0 and m,n ∈ Z:

ϕm,n(u) = |2|−m
2 ϕ(2−mu− n) (43)

The discrete wavelet expansion coefficients are:

cm,n = 〈 f ,ϕm,n〉 (44)

The set ϕm,n forms a L2(R) orthonormal basis, the space of functions where R is the
real numbers set and whose functions have finite energy [18]. Therefore, a function
f can be reconstructed as follows:

f = ∑
m,n

cm,nϕ∗
m,n (45)

Consider a function Φ ∈ L2(R) called scaling function, such that the family of func-
tions:

φ j,k(u) = |2|− j
2 φ(2− ju− k) j,k ∈ Z (46)

is orthonormal basis of the subspace Vj called scale-space and composed of func-
tions whose details are in the 2 j scale. We can represent a function f ∈ L2(R) by
orthogonal projection in Vj:

PV j( f ) = ∑
k

〈
f ,φ j,k

〉
φ j,k (47)
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When j decreases, the Φ j,k width decreases, increasing, thereby, the resolution fre-
quency. The details that appear on the 2 j scale are present on the 2 j−1 scale. Thus,
we have:

Vj ⊂Vj−1 (48)

The space Vj−1 is obtained by adding all the L2(R) functions with frequencies in
the range [a j,a j−1]. We denote this space as Wj, which is generated by a wavelet
orthonormal basis

{
ϕ j,kk ∈ Z

}
.

Finally, the representation of a signal f in the Vj−1 scale is:

PV−1 j( f ) = ∑
k

〈
f ,φ j,k

〉
φ j,k +∑

k

〈
f ,ϕ j,k

〉
ϕ j,k (49)

6.3 RBF Neural Network and Wavelets: Simulations and Results

The wavelet transform can be used to improve the prediction performance of RBF
neural networks by decomposing the signal in processes corresponding to approxi-
mations and details at various scales. In our simulations, for each process obtained
from the wavelet decomposition, an RBF neural network is responsible for pro-
viding a one-step prediction of the process. The sum of these predictions can be
considered the prediction of the original time series.

The time series used in this section were taken from measurements of the traffic
intensities at Bellcore (Bell Communications Research). The files BC-pOct89 e BC-
Oct89Ext traffic traces can be found at http://www.acm.org/sigcomm/ITA/
and have been used in several studies [48][47].

Fig. 9 Scale decomposition
of the original signal

In order to evaluate the prediction performance, we used the normalized mean
squared error (NMSE) given by:

http://www.acm.org/sigcomm/ITA/
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NMSE =
1

σ2 p

p

∑
k=1

[y(k)− ŷ(k)]2 (50)

where y(k) is the real value of the traffic process, σ2 is its variance over the pre-
diction interval, ŷ(k) is the predicted value and p is the number of test samples.
Consider the wavelet decomposition of a signal f (x) to a scale, for example at j = 3
(Fig. 9). The signal reconstruction at that scale is obtained, the approximation 3,
which is a smoothed version of the original signal, with less detail. If we add the de-
tails at 3, 2 and 1 scales to the approximation 3, the original signal is reconstructed.
That is, the signal f (x) can be written as:

f (x) = PV3( f (x))+
3

∑
j=1

PW j( f (x)) (51)

This equation provides a formula for reconstructing the original process, taking into
account the time series decomposition to the scale 3. Once equation (51) is additive,
we can likewise add predictions in order to obtain the prediction of the original
traffic process.

In this section, we use RBF neural networks to predict the Bc-Octext traffic trace
with five input elements and optimized for each series (Fig. 10). The neural networks
were trained with 1000 training examples from Bc-Octext series and other 1000
points from the same series were used as test. We obtained the following mean
squared errors and the chosen number of centers:

• Approximation 3: NMSE = 0.1645 and centers = 4;
• Detail 3: NMSE = 0.2480 and centers = 19;
• Detail 2: NMSE = 0.3275 and centers = 38;
• Detail 1: NMSE = 0.5727 and centers = 17.

Fig. 10 RBF neural networks optimized by predictions sum

Figure 11 shows the BIC (Bayesian Information Criteria) values in terms of the
number of centers for the Bc-Octext traffic trace approximation 3[3]. Once the val-
ues BIC maintain almost constant with four selected centers, four centers are cho-
sen. We obtained a NMSE equals to 0.2068 for the prediction of 1000 samples of
the Bc-Octext traffic trace.
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Fig. 11 BIC decay in terms of additional centers in the RBF neural network training for the
approximation of the signal at scale 3

The Bc-Octint traffic trace presents a statistical jump around the 1100 time instant
and, thus, causes a more difficult prediction by neural networks. The simulation for
the Bc-Octint series used 30 normalized elements for the input vector with 900 train-
ing points and 800 test points, getting a 0.1331 NMSE by the signal decomposition
to the scale 3.

The applied technique reached that result due to, among other things, the RBF
network ability to predict abrupt changes that comes with the less details approxi-
mations of the signal.

Comparing the prediction performance of other neural networks, a significant
reduction in the NMSE prediction can be observed (Table 1). For the MLP neural
network applied for predicting the Bc-Octext series, we used the points from 1 to
800 for training, the 801 to 1000 samples for validation and from 1001 to 2000 for
prediction testing, and for the Bc-Octint traffic trace the points from 1001 to 1700
for testing. With the FIR MLP network the same number of training and testing
points as the RBF network were used.

Table 1 NMSE of Neural Networks

NMSE
Serie MLP FIR RBF+OLS RBF+OLS+Wavelets

MLP
Bc-Octext 0.4037 0.4260 0.3962 0.2068
Bc-Octint 1.21 0.7408 0.5092 0.1331
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Keeping the same number of input elements to the neural network, the Bc-Octint
series prediction was simulated decomposing the traffic process into different levels
of detail processes (Table 2).

Table 2 NMSE from experiments 1, 2, 3 e 4

NMSE
Approx1 Det1 Det2 Det3 Det4 NMSE

Exp1 0.2301 0.6058 - - - 0.2552
Exp2 0.0875 0.6058 0.3262 - - 0.1657
Exp3 0.0294 0.6058 0.3262 0.1896 - 0.1331
Exp4 0.0185 0.6058 0.3262 0.1896 0.1896 0.1319

We can observe in Table 2 that by considering details at more scales the NMSE
decreases until a minimum value that the RBF network can not outperform.

7 Recurrent Neural Networks

Artificial neural networks have been applied in the prediction and identification of
time series [17][38]. When neural networks are used for adaptive processing tasks,
the most general architecture is a recurrent neural network (that is, a neural network
whose output of some units is fed back as an input to some others). The unit out-
puts of recurrent networks are generally allowed to take any real value in a given
interval. The growing interest in recurrent neural network is also due to its temporal
processing and its capacity to implement adaptive memories [6].

Next, we describe the recurrent neural network type that we considered in this
chapter and in the traffic prediction performance evaluations.

Consider a recurrent neural network consisting of N neurons with M external in-
put elements, x(n) the input vector Mx1 in the time instant n, and y(n+1) the output
vector Nx1 in the time instant n+ 1. We define the vector u(n) as a concatenation
of two vectors x(n) and y(n). If i ∈ A then ui(n) = xi(n) , if i ∈ B then ui(n) = yi(n),
where A is the external input set and B is the output set. The considered recurrent
neural network has two layers: a processing layer and input-output concatenation
layer (Fig. 12). The neural network is completely connected with MN direct con-
nections, N2 feedback connections and z−1 is an unit delay applied to the output
vector. We denote as W, the weight matrix with N(M+N) dimension.

Let v j(n) be the j neuron internal activity in the time instant n for j ∈ B given by:

v j(n) = ∑
i∈A∪B

wji(n)ui(n) (52)

where wji represent synaptic weigths. The j neuron output at the next instant is
given by:
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y j(n+ 1) = ϕ(v j(n)) (53)

Equations (52) and (53) describe the system dynamics where the function ϕ is as-
sumed to be a linear ramp function.

Fig. 12 Recurrent Neural Network

7.1 Real Time Recurrent Learning (RTRL) Algorithm

In this chapter, we evaluate the prediction performance of the neural network de-
scribed in the last section trained by two different algorithms: the RTRL (Real
Time Recurrent Learning) and the Kalman algorithm. We describe in this section
the first algorithm, i.e., the real time recurrent learning (RTRL) algorithm proposed
by Williams and Zipser in 1989 for recurrent networks [54].

Let d j(n) be the desired response for the neuron j at time n and C be the set
of visible output neurons. We can define a time-varying error as e j(n) = d j(n)−
y j(n) if j ∈C. Defining an instantaneous sum of squared errors at time n as ε(n) =
1
2 ∑ j∈C e2

n(n), we must minimize the cost function εtotal = ∑n ε(n). To this end, it is
used an approximation of the gradient descent method: ∇wεtotal = ∑n ∇wε(n). For a
particular weight wkl(n), we have:

dε(n)
dwkl(n)

=− ∑
j∈C

e j(n)
dy j(n)
dwkl(n)

(54)

Using (52) and (53), we obtain [21]:

dy j(n+ 1)
dwkl(n)

= ϕ ′(v j(n))

[
−∑

i∈B
wji(n)

dyi(n)
dwkl(n)

+ δklul(n)

]
(55)
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Rewriting this equation using a triple-indexed variable, we get the following:

π j
kl(n) =

dy j(n)

dwkl(n)
(56)

π j
kl(n+ 1) = ϕ ′(v j(n))

[
−∑

i∈B

wji(n)π j
kl(n)+ δklul(n)

]
(57)

As Δwkl(n) = −η dε(n)
dwkl(n)

= η ∑ j∈C e j(n)π j
kl(n) , the synaptic weights are updated

according to the following equation:

wkl(n+ 1) = wkl(n)+Δwkl(n) (58)

7.2 An Extended Kalman Filter (EKF) Based Training Algorithm

The Kalman filter consists of some equations that provide an efficient and recursive
computation for the solution of the least squares method [58].

The Extended Kalman Filter (EKF) is a modification of the Linear Kalman Filter
that can handle nonlinear dynamics and nonlinear measurement equations. The EKF
is an optimal estimator that recursively combines noisy data with a model of the
system dynamics.

The extended Kalman filter (EKF) can be used as a real time algorithm for re-
current neural network weight determination. In this case, the real time learning is
considered a filtering problem. Once the neural network is a nonlinear structure,
the extended Kalman filter is more adequate to train neural networks than the tradi-
cional Kalman filter. Roughly speaking, the extended Kalman filter ‘linearizes’ the
nonlinear part of the system and it uses the original Kalman filter in this linearized
model.

The EKF algorithm was initially applied in the MLP neural network training
by Singhal and Wu [43]. They showed that the EKF algorithm converges faster
than the backpropagation algorithm and sometimes, when the backpropagation fails,
the EKF (Extended Kalman Filter) converges for a good solution. Puskorius and
Feldcamp applied the Kalman algorithm in the recurrent neural network training
[37]. Williamns trained recurrent neural networks through the Extended Kalman
Filter [53].

We address this training with a different state vector formulation. First, we present
the equations of the Extended Kalman Filter used in this work. The extended Kalman
filter estimates the vector sate y(n) at time instant n of a nonlinear system described
by the following equations:

y(n) = hn(x(n))+ r(n) (59)

x(n+ 1) = fn(x(n))+q(n) (60)
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where x(n+1) is the measure vector, r(n) represents the system noise and q(n) the
measure error.

Let x̂(n\n−1) be an ‘a priori’ estimate of the system state at time instant n given
the knowledge of the measures until time instant n−1 and x̂(n\n) be ‘a posteriori’
estimate of the system state at time instant n given the knowledge of the measures
until time instant n. The nonlinear functions h and f can be written according to the
Taylor expansion as:

hn(x(n)) = hn(x̂(n \ n− 1))+Hn(n)(x(n)− x̂(n \ n− 1))+ ... (61)

fn(x(n)) = fn(x̂(n \ n))+Fn(n+ 1,n)(x(n)− x̂(n \ n))+ ... (62)

where the Jacobian matrixes Fn(n+ 1,n) and Hn(n) are given by, respectively:

Fn(n+ 1,n) =
d fn(x̂(n \ n))

dx
(63)

Hn(n) =
dhn(x̂(n \ n− 1))

dx
(64)

Then, we can rewrite equations (59) and (60) as:

y(n) = Hn(n)x(n)+u(n)+ r(n) (65)

x(n+ 1) = Fn(n+ 1,n)x(n)+ v(n)+q(n) (66)

where:

u(n) = hn(x̂(n \ n− 1))−Hn(n)x̂(n \ n− 1) (67)

v(n) = fn(x̂(n \ n))−Fn(n+ 1,n)x̂(n \ n) (68)

The derivatives corresponding to equations (63) and (64) are computed in each iter-
ation, resulting in the following algorithm:

Algorithm 1: Extended Kalman Algorithm

Kalman Gain computing:

K(n) =
P(n \ n− 1)HT

n (n)
Hn(n)P(n \ n− 1)HT

n (n)+R(n)
(69)

Measure update equations:

x̂(n \ n) = x̂(n \ n− 1)+K(n)[y(n)− hn(x̂(n \ n− 1))] (70)

P(n \ n) = (I−K(n)Hn(n))P(n \ n− 1) (71)
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Temporal update equations:

x̂(n+ 1 \ n) = fn(x̂(n \ n)) (72)

P(n+ 1 \ n)= Fn(n+ 1,n)P(n \ n)FT
n (n+ 1,n)+Q(n) (73)

Now, we turn to the Extended Kalman Filter based neural training. Let d(n) be the
desired output vector of size sx1. Our aim is to find the w(n) neural weights (system
states) such that the difference among the neural network output and the desired be
minimum in terms of quadratic error. The equations that govern the recurrent neural
network operation are:

d(n) = hn(w(n),u(n))+ r(n) (74)

w(n+ 1) = w(n) (75)

where d(n) is viewed as the measurement vector, r(n) is the error measurement
vector and the nonlinear function hn describes the relationship among the input u(n)
and the weights w(n). The EKF algorithm can be applied for the training of the
presented recurrent neural network through the following equations:

Algorithm 2: Extended Kalman based Training Algorithm

Measurement Update Equations:

K(n) =
P(n \ n− 1)HT

n (n)
Hn(n)P(n \ n− 1)HT

n (n)+R(n)
(76)

ŵ(n \ n) = ŵ(n \ n− 1)+K(n)[d(n)− hn(ŵ(n \ n− 1),u(n))] (77)

P(n \ n) = (I−K(n)Hn(n))P(n \ n− 1) (78)

Temporal Update Equations:

ŵ(n+ 1 \ n)= ŵ(n \ n) (79)

P(n+ 1 \ n)= P(n \ n) (80)

where:

Hn(n) =
dhn(ŵ(n),u(n))

dw
(81)

and hn(·) = [h1,h2, ...,hs] are the s neural network outputs, R(n) is the measure-
ment error covariance matrix, P is the state error covariance matrix, ŵ(n) is a state
estimate (weights) and K(n) is known as Kalman gain [20].
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7.3 Recurrent Neural Networks: Simulations and Results

Traffic prediction can be used to control traffic flows, since the prediction errors
obtained with real-time training algorithms are comparable to those of on-batch
training with MLP or RBF neural networks [49][51].

Adaptively updating the neural network weights, we can better track processes
such as the Bc-Octext traffic trace (Fig. 13), which shows abrupt changes. Besides,
recurrent neural networks are able to map points in the future based on present
samples.

In order to evaluate the prediction performance of the considered recurrent net-
works we again used the normalized mean squared error (NMSE) given by:

NMSE =
1

σ2 p

p

∑
n=1

[y(n)− ŷ(n)]2 (82)

where y(n) is the series real value, ŷ(n) is the predicted value, σ2 is the variance of
the real sequence over the prediction duration interval and p is the number of test
samples.

The traffic traces used in the simulations were: Bc-Octext whose time scale cho-
sen was 1 min with 2046 points and Bc-Octint series with 1759 points and 1s time
scale. Different parts of the same traffic trace are used in training and prediction of
the neural network.

For the Bc-Octint traffic trace, the one-step prediction NMSE from the instant 801
to 1701 was 0.3850, using two neurons, with five input elements equal to 5 instants
in sequence of the traffic and learning rate 0.1 (Table 3).

For the Bc-Octext traffic trace, we also used two neurons, one input and learning
rate equals to 0.2.

Fig. 13 One-step ahead prediction by the EKF based Recurrent Neural Network (solid line)
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We obtained a prediction NMSE of 0.3946 for the points from 1000 to 2000.

Table 3 Neural network prediction NMSE

NMSE
RTRL EKF

Bc-Octext series 0.3946 0.3972
Bc-Octint series 0.3850 0.3398

Table 4 NMSE of Neural Networks

NMSE
Series MLP FIR RBF+ RBF+OLS+ RTRL EKF

MLP OLS Wavelets
Bc-Octext 0.4037 0.4260 0.3962 0.2068 0.3946 0.3972
Bc-Octint 1.21 0.7408 0.5092 0.1331 0.3850 0.3398

8 Conclusions

Throughout this chapter we described some methods and algorithms for predicting
traffic traces using neural networks. These algorithms are used to model systems in
several areas of mathematics, physics, engineering among others. For the telecom-
munication area, they can be powerful tools for network traffic analysis.

The MLP neural network (Multilayer Perceptron) is the most used neural net-
work. However, the interest in recurrent neural network is also great due to its tem-
poral processing and its ability to implement adaptive memories. Another neural
network used for traffic prediction is the RBF neural network, whose layer that uses
radial basis functions transforms a non-linearly separable input set in a linearly sep-
arable set, grouping input data into clusters. The output layer ‘classifies’ the patterns
received from the previous layer. Thus, the RBF neural network finds existing pat-
terns in traffic data.

Besides verifying the RBF prediction efficiency, we showed that the Wavelet
Transform and the decomposition of the traffic process in different scales provide
a significant improvement in the prediction performance of the RBF network. The
combined RBF and Wavelet decomposition is an efficient tool for modeling and
predicting the behavior of complex systems, being also stable and independent of
the initial choice of the weights. It was observed that the static mapping between
present traffic sample and future points may not be able to handle large statistic
variations of the signal. However, the analysis of the scale and the detail levels
incorporates more information in the modeling of real time series non-stationarity.
This method also provides an opportunity to use different neural networks, even of
different types, in the modeling of the processes that compose the original traffic
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trace. Thus, the limit of the process predictability [42] can be reached including
RBF neural networks in the prediction, increasing the computational cost.

With the real-time training of recurrent neural networks it is aimed, besides to
reduce the data training, to update the weights of the neural network in order to deal
with possible statistics variations of the traffic, for which neural networks with ’on
batch’ training could not be prepared.

The RTRL and the EKF based training algorithms are fast and provide excel-
lent modeling performance for small recurrent neural network, i.e, neural networks
possessing a few number of neurons.

Table 4 summarizes the results of simulations with the neural networks. The re-
sults show that the presented neural networks are efficient for predicting network
traffic. We reveal that RBF neural network can outperform the MLP network in the
traffic prediction task and that the application of Wavelet transform can decrease the
prediction error of the neural networks. In fact, the RBF+OLS+Wavelets approach
presented smaller NMSEs among the other neural networks for the traffic traces.
Notice that the MLP neural Network with on-batch training, even though widely
used, achieved the highest NMSEs. We also observed that the RTRL and EKF based
Recurrent Neural Network can provide similar results to the RBF network without
Wavelet decomposition. Besides, these algorithms are adaptive and can be applied
to real time traffic predictions. If an improvement in prediction performance of these
recurrent neural networks is desired, the wavelet decomposition can be applied.
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8. de Pádua Braga, A., de Leon, F., de Carvalho, A., Ludermir, T.B.: Fundamentos de Redes
Neurais Artificiais. DCC/IM, COPPE/Sistemas NCE/UFRJ, Rio de Janeiro (1998)

9. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive net-
works. Complex Systems 2, 321–355 (1988)

10. Carpenter, G.A., Grossberg, S.: Adaptive Resonance Theory, 2nd edn. The Handbook of
Brain Theory and Neural Networks. MIT Press (2003)

11. Chen, S.: Orthogonal least square learning algorithm for radial basis function networks.
IEEE Transactions on Neural Networks 2(2), 335–356 (1989)



682 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves
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Application of Bat Algorithm
and Fuzzy Systems to Model Exergy
Changes in a Gas Turbine

A.L. Tamiru and F.M. Hashim

Abstract. Exergy analysis plays a major role in thermal systems. Using ex-
ergy, apart from finding components for a potential for further improvement,
fault detection and diagnosis, performance optimization, and environmen-
tal impact assessment can be conducted. This chapter addresses the use of
fuzzy systems for modeling exergy destructions in the main components of
an industrial gas turbine. The details include: (i) system description and the
challenges in developing first principle models, (ii) thermodynamic models
for part load and full load operating conditions, (iii) model identification
technique that uses fuzzy systems and a meta-heuristic nature inspired algo-
rithm called Bat Algorithm, (iv) validation graphs for semi-empirical models,
and (v) validation test for fuzzy models. In the validation of the fuzzy model,
the inputs to the model are considered the same as the inputs as experienced
by the gas turbine generator. The comparison tests between actual data and
prediction demonstrate how promising the combined method is as compared
to separate use of the fuzzy systems trained by a heuristic approach.

1 Introduction

With the current high cost of energy, avoiding waste is as important as search-
ing for a new alternative. For the old systems, energy saving is being done
by retrofitting techniques after conducting some optimization based on pinch
analysis or exergy method. For new systems, continuous studies are being
carried out on the energy conversion devices to come up with new ideas to
better utilize the available energy. While the first law of thermodynamics is
common in the bookkeeping of energy, it is the second law of thermodynamics
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which is more popular in identifying processes with a potential for further im-
provement. The second law deals with exergy, which is the maximum useful
energy that can be obtained from a system at a given state and in a known
environment. Exergy method was applied for thermal system optimization
[1, 2], and fault diagnosis [3, 4].

Exergy analysis involves calculation of enthalpy and entropy changes in the
system [5]. For part load analysis, it also requires design point calculations. At
each state point, properties of the working fluid need to be estimated taking
into account stagnation temperatures and pressures. All in all, given the fact
that simulation of gas turbines also demand performance maps for the main
components (axial compressor, combustion chamber, turbine, gearbox and
generator), it is fair to say that the off-design point calculation for a number
of state points is quite involved. If the purpose of the model is for online
application, which is true in case of fault detection and diagnosis, the delay
due to model simulation is a concern.

Artificial neural networks and fuzzy systems are known to provide alter-
native or surrogate models. As shown in [6, 7, 8], an Artificial Neural Net-
work (ANN) with a single hidden layer is good enough to approximate any
nonlinear function to a reasonable accuracy. In fuzzy systems, set of fuzzy
rules are used to capture input-output relations [9]. As compared to ANN,
fuzzy models are transparent. They are also flexible to accommodate quali-
tative information. Once trained, simulation of either ANN or fuzzy model
is equivalent to function evaluation, which is the required characteristic to
overcome the drawback in the online simulation of first principle models. The
fast execution in the fuzzy models is an attractive feature not only for fault
detection and diagnosis, but also for design optimization, and environmental
load assessment.

Das and Nanda [10] used ANN to capture the relationships between
Reynolds number, transverse pitch and fanning friction factor. The purpose
of the ANN model was to conduct exergy analysis on a regenerator bed. Com-
bining ANN model with Leveque analogy, they demonstrated the possibility
of calculating heat transfer coefficient from pressure drop data, which was
latter used in the exergy analysis. The ANNs were designed on the bases of
sigmoid functions and back propagation learning algorithm. Recently, Yoru
et al. [11] showed the use of ANNs to exergy modeling in thermal systems
that included gas turbines, and cogeneration. In this case as well, the ANN
models were constructed with sigmoid activation functions while the train-
ing was done by back-propagation technique. They compared the predicted
results against the prediction from a thermodynamic model. Fuzzy systems
are widely used for model identification [9], controller design [12], fault detec-
tion and diagnosis [13], and pattern classification. However, to the author’s
knowledge, there is no work related to exergy.

A fuzzy model intended for function approximation can be trained us-
ing clustering followed by least squares, back-propagation or nature-inspired
global optimization algorithms. Since developing an optimum model also
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involves optimization of the model structure, a combination of methods
preferably with the global optimization algorithm as the main part is mostly
used. The use of global optimization algorithm, while it is free of derivatives
of the overall model, helps to avoid the parameter estimation process from
being trapped at the local minimum.

There are several nature-inspired and metaheuristic optimization algo-
rithms that can be used to train a nonlinear model. In [14], timeline of the
main algorithms is discussed. Among the recent algorithms include, pho-
tosynthetic algorithm[15], bacterial foraging[16], firefly algorithm[17], cuckoo
search[18], cat swarm optimization[19], biogeography-based optimization[20],
bat algorithm[21], glowworm swarm optimization [22], ant colony algorithm
[23], bee colony-inspired algorithm[24], monkey search[25], hunting search[26],
big bang-big crunch[27], charged system search[28], imperialist competitive
algorithm[29], intelligent water drop algorithm[30], catalytic search algorithm
[31], and artificial chemical reaction optimization algorithm[32]. These al-
gorithms have in common successive generation of candidate solutions and
selection of the best in terms of predefined fitness function.

The main purpose of this chapter is to develop models for exergy changes
in the components of a gas turbine generator applying fuzzy systems and bat
algorithm. Bat algorithm is a recently proposed global optimization algorithm
only tested using general benchmark problems. Testing of the algorithm in
thermal systems modeling is a good step in bringing the method to the atten-
tion of mechanical and chemical engineers. Since exergy is not a measurable
variable, a thermodynamic model is included so as to generate appropriate
training and validation data.

2 Methodology

2.1 System Configuration

The gas turbine that is modelled is part of a Cogeneration and Cooling Plant
(CCP) or trigeneration plant. A CCP generates electricity, steam and chilled
water utilizing a single source of energy that could be either from natural
gas or liquid fuel. In the cogeneration section, comprised of a Gas Turbine
Generator (GTG) and a Heat Recovery Steam Generator (HRSG), the pri-
mary energy is used to generate electricity and convert boiler feed water to
steam. In the district cooling, the chilled water required for space cooling is
thermally processed utilizing the steam from the HRSG. To cope with instant
power and steam demand, the gas turbine is controlled by modulating the air
entering the compressor and the amount of fuel admitted to the combustion
chamber. Variable Inlet Guide Vanes (VIGVs) are used to control the air flow
rates.

In the GTG, the air compressor (AC) increases total pressure of the atmo-
spheric air sucked into the system. The high pressure air is then mixed with
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the fuel and burnt in the combustion chamber (CC). Expansion of the high
temperature gas through the gas turbine (TU) results in rotational power
sufficient enough to run the compressor, the load acting on the generator,
and the auxiliary systems connected to the GTG shaft. Fig. 1 shows the
schematic diagram for a gas turbine driven CCP.

Fig. 1 Gas Turbine Driven Cogeneration and Cooling Plant

Challanges in Developing First Principle Model. Gas turbines are
known for their fast starting characteristics and flexibility to accomodate
variable loads. The use of variable geometry compressor and turbine also
make them ideal for cogeneration applications. As compared to diesel engines,
they are also featured by low lubrication cost. However, while the occurance of
major failures is rare, there is a general consensus that they posses relatively
high maintenance cost [33]. Their performance can drop caused by fouling,
erosion, corrosion and even change in environmental conditions. Since they
normally have high energy throughouts, a 1% drop in effeciency could mean
high economic loss. Due to this reason and the penalities related to execessive
greenhouse gas emissions, their performance have to be monitored regularly
to make sure that the operating points are as envisaged at the design stage.

Performance of the GTG relies on efficiency of each component along the
gas path. Details about each componentmay be provided by the manufacturer.
However, for proprietary reasons, it rarelyhappens so. If the gas turbine is a used
one, true in the present work, the following information are commonlymissing:

– The GTG is equipped with VIGVs and Variable Stator Vanes (VSVs) con-
nected to a hydraulic driving mechanism. Changing the position of VIGVs
and VSVs affects working fluid direction and hence the performance of the
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system. In developing a high fidelity model, the dimensions of driving links
and blade geometry need to be known.

– The GTG may be using natural gas as fuel. The composition of the gas
is described as CxHyOz with the value of x, y, and z varying depending
upon the well location. Since heating value and combustion products rely
on these values, they need be available for accurate modeling.

– One of the auxiliary systems in a gas turbine is the air system. The air sys-
tem provides air for cooling hot section of the gas turbine and for driving
some of the actuators in the control loop. Some of the air is also used at the
bearing chambers to air tight the labyrinth seals. The air is tapped at an op-
timum location on the air compressor. Performance of the GTG is affected
by the amount of air used for cooling. Again, full piping and instrumentation
diagram and amount of flow at the design point is not available.

– As the working fluid flows through different section of the GTG, pressure
loss is inevitable. Pressure loss affects the engine performance. Off-design
simulation requires knowing duct pressure loss at the design point. Similar
to the other cases, these values are hardly available.

– Operation of the gas turbine in high load regions are controlled based on
feedback signals for the shaft speed, and temperature at the inlet or second
stage of the gas turbine, respectively. Since the turbine is expected to sup-
port the load while providing high temperature exhaust gas to the HSRG,
a minimum value signal selector is used as part of the main controller. All
controller gains, time constants, delays, and offsets are not readly available
making dynamic simulation a difficult task.

Design point data, some of them obtained by calculation applying mass and
energy conservation equations, are shown in Table 1. These data are used
for normalizing the training and validation data. The Distributed Control
System (DCS) for the GTG allows online monitoring of fuel flow rate, VIGV
position, compressor discharge pressure, and electric power output. These
parameters will be used as reference to validate the thermodynamic model
presented in the next section. The thermodynamic model would be used to
generate data suitable for fuzzy model training and validation.

Table 1 Design Point Data for the Gas Turbine Generator

Parameter Symbol Units Value

Electric Power Ẇele kW 4917
Compressor Discharge Pressure P2 kPa 1177
Fuel Flow Rate ṁf kg.sec−1 0.3167
Lower Heating Value LHV kJ.kg−1 47939

VIGV Position θ̇VIGV − 100

Exergy Destruction in the Compressor İAC kJ.kg−1 356.9

Exergy Destruction in the Combustion Chamber İCC kJ.kg−1 3104.3

Exergy Destruction in the Turbine İTU kJ.kg−1 1148.5
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2.2 First Principle Model

Overview. For the gas turbine model to be applicable, it has to describe
real characteristic of the gas turbine accurately. To this end, all the factors
that affect behaviour of the gas turbine have to be included in the models.
This, not only, has to include proper empirical equations representing part
load performance maps of the components but also properties of the work-
ing fluid at the actual operating pressure and temperature[34]. In developing
the governing equations for the whole gas turbine, mass and energy conser-
vation equations are applied assuming a control volume surrounding each
component and considering Steady State Steady Flow (SSSF) condition. The
conservation equations are as follows:

∑
ṁin =

∑
ṁout (1)

Q̇+
∑

ṁin

(
h+

V 2

2
+ gz

)
=
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ṁout
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)
out

+ Ẇ (2)

Where, ṁ is the mass flow rate; h is the specific enthalpy; Q̇ and Ẇ are rate
of heat exchange and power, respectively. In SSSF devices, the kinetic energy
V 2

2 and potential enegy gz terms are assumed negligible.

Gas Turbine Component Models. The components of a gas turbine gen-
erator are designed and manufactured separately. Their characteristics when
they are assembled and simulated alone are different due to the influence of
adjacent systems. In assembling the components, efforts are usually made
to make sure that the components are matched in terms of mass flow rates,
momentum change and energy changes. In this section, models are presented
for each component.

Compressor. The compressor is a variable geometry, multi-stage, axial flow
design. Its characterisics changes with the change in the position of the VIGVs
and the first three stages of the VSVs. The reason behind having this kind of
design is to avoid compressor surge and stall during starting and shut-down.
The design also plays a critical role in keeping the exhaust gas tempera-
ture constant. Complete characterization over all operating regions, there-
fore, requires consideration of the effect of variable geometry. For a known
inlet properties of the working fluid, the temperature Tout, pressure Pout and
power ẆAC at the outlet of the compressor, respectively, are calculated by

Tout = Tin +

(
Tin

ηAC

)[
π

(
γair−1

γair

)

AC − 1

]
. (3)
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Pout = PinπAC . (4)

ẆAC = ṁair (hout − hin) . (5)

Efficiency ηAC and pressure ratio πAC are functions of the mass flow rate
through the compressor and rotational speed N of the compressor shaft. For
a new compressor and fixed geometry design, the performace map in the
form of graphs or look-up table may be provided by the manufacturer. For a
variable geometry compressor, it is not common to prepare such a graph for
the characteristics changes in reponse to the VIGV and VSV positions. In
many cases, the performance map may not be available at all for proprietary
reasons. If the gas turbine is a reconditioned engine operated for thousands
of hours, it is highly likely that the current performance map is different
from the one envisaged during design or right after reconditioning. In such
conditions, it is necessary that the maps be generated based on realities on
the groud.

There are many suggested methods to find approximate maps that can
be considered as a substitute for the missing characteristics. One such ap-
proach is to assume that the normalized pressure ratios and mass flow rate
are directly proportional [35]. The second approach is to assume linear and
quadratic models for the pressure ratio and isentropic efficiency, respectively,
while assuming mass fow rate and VIGV position as inputs [36, 37]. The
third method is to apply scaling method followed by calculation of correction
factors to account for the effect of VIGV and VSV positions [38, 39]. In cases
where geometric data is available, either stage-stacking [40] or blade element
method [41] can be applied.

With the intent to include machine performance deterioration with time,
the following set of equations are applied to characterize the compressor over
the whole operating region:

Pout

Pout,d
=

⎧⎨⎩ a11

(
Ẇele

Ẇele,d

)
+ a12 if

(
Ẇele

Ẇele,d

)
≤ 0.5 and θVIGV = 1

a21θVIGV + a22 if
(

Ẇele

Ẇele,d

)
> 0.5

(6)

ηAC

ηAC,d
=

⎧⎨⎩ 1− b11

(
1− Pout

Pout,d

)2

if
(

Ẇele

Ẇele,d

)
≤ 0.5 and θVIGV = 1

1− b12 (1− θVIGV)
2 if

(
Ẇele

Ẇele,d

)
> 0.5

(7)

In (6) and (7), Pout,d, ηAC,d and Ẇele,d represent design point value of com-
pressor discharge pressure, isentropic efficiency of the compressor, and electric
power output at the generator terminal, respectively. Validation of the two
equations are demonstrated in the result and discussion section.

Combustion Chamber. The gas turbine is equipped with six annular combus-
tors. In the combustor, the compressed air is mixed with fuel and burned.
The governing equation for the combustion process is defined by
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CxHyOz + λ
(
x+

y

2
− z

)
(O2 + 3.773N2)

→ aCO2 + bH2O+ cO2 + dCO+ eN2 . . . (8)

Where, λ is the excess air coefficient.
The temperature at the outlet of the combustion chambers can be esti-

mated using a combustion chart [42] or iterative method [34]. Regardless
of the method applied, the energy conservation equation characterizing the
combustion process is a function of LHV of the fuel, fuel to air ratio (FAR),
and combustion efficiency ηCC. In terms of enthalpies h(i) and mass fractions
ni, it can be written as(∑

i

nih
(i)

)
reactant

+ ηCCLHV =

(∑
i

nih
(i)

)
product

(9)

For the combustor, two parameters need to be calculated prior to estimating
the exhaust gas temperature. The first parameter is the combustor efficiency
ηCC. Adapting the procedure mentioned in [34], the efficiency could be ob-
tained from (10) after calculating the combustor loading that is given by
(11).

ηCC =

6∑
i=1

θi−1λ
i−1
CC (10)

λCC =
ṁ

V P 1.8
in 10(0.00145(Tin−400))

(11)

Where, ṁ is the mass flow rate inside the combustor, V is volume of the
combustor, Pin and Tin are the pressure and temperature, respectivly, at the
inlet to the combustor. The volume can be determined from design point data
[34]. At part load, efficiency of the combustion chamber is approximated by
(10). Interested readers on alternative empirical models related to combustion
efficiency are referred to the discussion in [43].

The pressure at the outlet of the combustion chamber is calculated taking
into account the pressure loss due to the chamber resisting air flow, and high
level of turbulence required for combustion and heat addition[42]. The model
equation is

Pout = Pin −ΔPCC (12)

ΔPCC

Pin
=

(
ṁCC

√
RinTin

Pin

)2 [
K1 +K2

(
Tout

Tin
− 1

)]
(13)

Where, K1 and K2 are constants for the cold loss and hot loss, respectively,
in the combustor.



Application of Bat Algorithm and Fuzzy Systems 693

Turbine. The turbine is a three-stage design with the first two stages cooled
by compressed air bleed at the last stage of the compressor. Use of the com-
pressed air for cooling affects the gas turbine performance. In addition to
the additional work lost to compress the cooling air, mixing of the cooling air
with the combustion gas in the main stream causes pressure loss, which would
be reflected negatively in the power output from the system. The methods
used in this work treat each stages separately allowing the consideration of
enthalpy changes due to mixing. The stagnation temperature at the outlet of
i-th stage is calculated by

T
(i)
out = T

(i)
in + T

(i)
in η

(i)
TU

⎡⎢⎣1−(
1

π
(i)
TU

) (γg−1)
γg

⎤⎥⎦ (14)

Where, γg is ratio of specific heats. The power output from the turbine is the
sum of power outputs from each stage.

ẆTU =
∑
i

ṁi

(
h
(i)
out − h

(i)
in

)
(15)

In (14), the efficiency η
(i)
TU and pressure ratio π

(i)
TU have to be known a prior.

These values are normaly given in terms of lookup tables or maps describing
the turbine behaviour under part load conditions. Similar to the case stated
for axial compressors, the performance map is not available. In 1951, Ain-
ley and Mathieson [44] proposed a method that uses geometric data. The
same method is being used until recently in performance analysis of gas tur-
bines using fluids other than combustion gases [45]. The simplest approaches,
however, are one-dimensional nozzle equation [46], Stodola ellipse equation
[41], and considering the turbine stages as choked with the corresponding
efficiency set equal to a constant value. In the present work, scaling method
[47] that demands relatively little information at design point is considered.

Scaling Method. For a compressor, there are three available performance
calculation techniques: scaling method[47], stage-stacking method [40], and
blade element method [41, 48]. Among the three methods, scaling method
is the easiest. But the inherent simplicity has the drawback of demanding a
suitable reference map [49]. Besides, it is not suitable for studying variable
geometry compressors from the point of view of understanding the stage in-
teraction inside the compressor. Scaling method is good if the interest of the
analyst is to understand the compressor as a black box. This is true for the
case of fixed geometry compressors. Scaling method overlooks compressibility
effect. Modified versions of the scaling method have been suggested recently
[50, 51]. The main idea in the scaling method is that performance map of a
compressor can be generated if the design conditions are known. The basic
equations for the scaling method are
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(
π − 1

πdesign − 1

)
=

(
π − 1

πdesign − 1

)
map

(16)

(
ṁ

ṁdesign

)
=

(
ṁ

ṁdesign

)
map

(17)

(
η

ηdesign

)
=

(
η

ηdesign

)
map

(18)

Where, πdesign, ṁdesign and ηdesign are design point pressure ratio, mass flow
rate, and efficiency, respectively.

Cooling. One of the auxiliary systems in a gas turbine is the air system. The
purpose of the air system is to provide cooling air to the hot sections, bearing
chamber, and controller circuits. The air required for cooling and other pur-
poses are extracted at a certain location in the compressor with the condition
that the pressure is sufficient enough to overcome the losses in the cooling
air flow path and the static pressure at the sink point is higher than the sur-
rounding static pressure. The amount of air extracted from the compressor
affects the performance of the system. For this reason, some assumptions need
to be made at the design point calculations. Referring to the values given in
[34], for turbine disc cooling and rim sealing a quantity of 0.5% per disc face
is assumed. For bearing chamber sealing, around 0.02kg.sec−1 per chamber is
used. In addition to the two flows, a separate flow is required for cooling first
stage stators. The amount for cooling the first stage stator vanes and rotor
blades is technology dependent. Hence, for a given stator exit temperature,
the percent of cooling air required may be read from the chart provided in
the same reference. After the design calculation is performed, the flows for
off-design operations are calculated assuming that the cooling air flows at the
deign point are choked.

Gear and Generator Efficiencies. The true power output at the generator
terminal is a function of gear and generator efficiencies. High speed of the
turbine shaft is reduced to the synchronous speed using epicyclic gears. At
part load, the gear efficieny varies with the lubrication performance. It may
also change due to bearing loss and gear mesh losses. The generator experi-
ences iron and copper losses. The copper loss varies with the load as it is a
function of the voltage on the stators. In the present work, the models pro-
posed by Haglind [52] are considered, which assume that gear and generator
efficiencies are functions of the load.

ηgb =
ξwηgb,d

ξwηgb,d + (1− ηgb,d)
(19)

ηgb =
ξwηge,d

ξwηge,d + ξ∗w (1− ηge,d)
(20)
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Where, ξw is the rated power; ηgb,d and ηge,d are gearbox and generator
efficiencies, respectively, at the design point. The value of ξ∗w is calculated by

ξ∗w = (1− ν) + νξ2w (21)

Where the constant ν is taken as 0.34.

Duct Pressure Loss. The gas turbine is partly composed of ducts at multiple
locations. The pressure loss in the ducts affects the overall performance at
part load condition. The equation employed for off-design simulation is as
follows [53]. (

Pout−Pin

Pin

)
(

ṁin

√
Tin

Pin

)2 =

(
Pout−Pin

Pin

)
d(

ṁin

√
Tin

Pin

)2

d

(22)

Equation (22) was used in [54, 55].

Second Law Analysis. Components of gas turbines are often considered
as steady state steady flow energy systems. For a control volume enclosing
an SSSF device, the rate of exergy change is related to mass, heat and work.
For steady state condition, the exergy entering the component is equal to the
exergy leaving plus the exergy destroyed. For transient operation, the general
equation for rate of exergy change in the control volume is given by:

Ψ̇in +
∑
S

Q̇S

(
1− T0

TS

)
+ Ẇ − Ψ̇out + İ =

dΨ

dt
. (23)

Where, Ψ̇in =
∑

ṁiψi ; Ψ̇out =
∑

ṁjψj ; ṁ is the mass flow rate; ψ̇ is rate of
exergy associatedwith the flow stream, which is the sum of physical exergy and
chemical exergy; Q̇S is the rate of heat transfer from a source at temperature
TS ; Ẇ is the rate of work done; İ is the rate of exergy destruction. Assuming
constant specific heats, physical exergy of the flow stream at the inlet or outlet
of a component is related to temperature and pressure through (24).

Ψ̇ph = ṁCpT0

[(
Tin

T0
− 1

)
− ln

(
Tin

T0

)]
+ ṁRT0 ln

(
Pin

P0

)
. (24)

Where, R is the gas constant; T0 and P0 are temperature and pressure at the
reference condition, respectively; Tin and Pin are temperature and pressure
at the inlet to the control volume, respectively. Equations (23) and (24) are
applied to each component of the gas turbine. Table 2 provides the rate
of exergy destruction equations for each component. The properties of air
and exhaust gas are calculated using empirical equations taken from [34]. To
correct for the quality of fuel, a constant of 0.913 was considered from [5].
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Table 2 Rate of Exergy Destruction Equations for the Main Components in the
GTG

Component Equation

Multi-Stage Axial Air Compressor İAC=ẆAC − ṁair (ψ2 − ψ1)

Annular Combustors İCC=ṁfψf − ṁCC[(1 + FAR)ψ4 − ψ3]

Multi-Stage Axial Turbine İTU=ṁair (ψ3 − ψ7) − ẆTU

Exhaust Duct İED=ṁexh (ψ7 − ψatm)

Solution Method. Two steps are required to successfully simulate the ther-
modynamic model. The first is design point analysis, where the missing pa-
rameters and performance maps are estimated from partially known overall
performance specification and general design criteria taken from literature
[34, 53]. In the second part, calculations of working fluid properties and en-
ergy changes accross each component are performed. Regardless of which step
we are in, the following compatibility conditions need to be satisfied.

ẆTU − ẆAC − Ẇload = 0 (25)

The flowchart for estimating design point variables is shown in Fig. 2. The
inputs to the algorithm are nominal power output, LHV, pressure ratio, gen-
erator efficieny, gearbox efficiency, number of stages in the compressor and
turbine, heat rate (HR), exhaust gas flow rate ṁexh, and temperature and
pressure at the inlet to the compressor. The fuel flow rate ṁf is related to
HR and electric poweroutput through (26).

ṁf =
Ẇele · HR

LHV
(26)

The parameters estimated by iteration are isentropic efficiencies, cooling air
flow rate ṁco, and duct pressure loss. At each state point, variation of specific
heat with temperture is considered. Once the design point parameters are
estimated, scaling method is applied to generate the performance maps for
the turbine stages. In the off-design simulation, the load on the generator and
the set point temperature at the inlet to the third stage of the gas turbine
T5 are considered known. Mass flow rate of air and mass flow rate of fuel
are varied until the errors in the estimation of the electric power output and
temperature T5 are below the allowable limit. The flowchart demonstrating
the calculation sequence is shown in Fig. 3.

2.3 Model Identification

In a situation where the description of a system by first principle models is
difficult attributed to missing design data or the configuration of the system
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Fig. 2 Flowchart for Design Point Calculation

being complex – leading to expensive modelling – data based models are
considered. The general equation, in state space form, of a data based model
for i-th Multiple Input Single Output (MISO) system can be stated as

x(i) (k + 1) = Φx(i) (k) + Γu(i) (k) + d(i) (k) (27)

y(i) (k) = G
(
x(i) (k) , θ(i)

)
+ ε(i) (k) (28)

Where, x(i) (k) ∈ IRnx is the state vector; u(i) (k) ∈ IRnu is the input vector;
y(i) (k) ∈ IRny is the output vector; d(i) (k) ∈ IRnd is vector of unmeasured
disturbance; ε(i) (k) ∈ IRny is zero mean Gaussian white noise; θ(i) is vector
of model parameters; G (.) represents the nonlinear function that relates the
states with the output. The matricesΦ and Γ are obtained by parameterizing
the input signals using the classical approach or orthogonal basis functions. In
nonlinear system identification, the model in (28) can be well approximated
by a fuzzy model [9].

Fuzzy Systems and Fuzzy Model. Fuzzy systems allow the description
of concepts or ideas with approximate reasoning. They have been applied
in classification and control system design problems. The basic idea in the
fuzzy systems is the description of input-output relationships by sets of if-then
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Fig. 3 Flowchart for Off-Design Point Simulation

rules. In the premise part of the rule, fuzzy membership functions are used
to map the crisp signal into a form suitable for applying fuzzy operators. The
common membership functions include triangular, trapizoidal, logistic, and
Gaussian membership functions. In the consequent part of a rule, the outcome
is calculated using relational operators or input-output functions. The result
from a fuzzy model is an aggregate, in a certain way, of the activation levels
from all rules. The general structure of a fuzzy model involves a knowledge
base, fuzzification, inferencing and defuzzification steps. For details regarding
fuzzy operators, readers are referred to the books by [12, 56].

In the present work, the model defined by (28) is replaced by Takagi Sugeno
Kang (TSK) model. In a TSK fuzzy model, fuzzy membership functions and
if-then rules are used to capture the nonlinear relationship between input and
output data. First, the Membership Functions (MF) are estimated. As docu-
mented in [9, 12, 13], clustering techniques canbe applied to decide on the shape
and location ofMFs.Using theMFs, each input is fuzzified and aggregate values
are calculated for each rule. A prediction for the current output ismade by com-
bining the results from each rule. Linear equations are used in the consequent
part of the rules. For a MISO system, the l-th rule in a TSK model is given by
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Rl : if x1 (k) is Al,1and · · · and xnx (k) is Al,nx then zl = ψ
T
l (k)θl (29)

Where, xi (k) ∈ IR is the state; Al,i is the fuzzy set; ψl ∈ IRnx+1 is the
regression vector; θl ∈ IRnx+1 is vector of local linear model parameters;
zl ∈ IR is the rule output. The model output is given by (30).

y (k) =

nl∑
l=1

ϕl (k) .zl (k) (30)

Where the expression for ϕl (k) is

ϕl (k) =
αl (k)∑nl
l=1 αl (k)

(31)

In (31), ϕl (k) is the normalized activation level for l-th rule. It is worth

noting that
∑nl

l=1 αl (k) = 1. The number of fuzzy rules decides the value of
αl (k). Assuming Gaussian membership functions, αl (k) is calculated as

αl (k) = exp

[
−1

2

nx∑
i=1

(
xi − cl,i
σl,i

)2
]

=

nx∏
i=1

Al,i (32)

Where, cl,i and σl,i are center and width of the membership function, re-
spectively. With the input and output data, and fuzzy membership functions
known, the model parameters are estimated by minimizing the optimization
problem stated in (33).

θ̂ = argmin
1

Nd

Nd∑
k=1

[y (k)− ŷ (k)]
2

(33)

In the case where the MFs are predetermined applying clustering method
or global optimization algorithms, θ̂ is limited to the consequent parame-
ters solely. As such, the solution to (33) can be determind assuming Global
Least Squares (GLS) [12] or Weighted Least Squares (WLS) [9]. If GLS is
considered, the optimum solution is

θ̂ =
(
MTM

)−1
MTy (34)

Where, M = [M1M2 . . .Mnl]; Ml = ϕl.R;

ϕl = diag (ϕl (1) , ϕl (2) , . . . , ϕl (k) , . . . , ϕl (Nd))
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with R ∈ IRNd×(nx+1), and Rk = [1, x1(k), x2(k), . . . , xnx(k)]
T
. If WLS is

assumed, the corresponding optimum solution for l-th local linear model is
given by

θ̂l =
(
RTQlR

)−1
RTQly (35)

Where,Ql = ϕ
T
l ϕl. In the present work, implementation of (35) is done using

Local Linear Model Tree (LOLIMOT) algorithm [9]. In order to evaluate
performance of a trained fuzzy model, the Root Mean Squared Error (RMSE)
and Akak′s Information Criterion (AIC) are applied.

RMSE =

[
1

Nd

Nd∑
k=1

[y (k)− ŷ (k)]
2

]1/2

(36)

AIC = Nd ln

[
1

Nd

Nd∑
k=1

[
ε(k, θ̂)

]2]
+ 2nθ (37)

Where, nθ = (nx + 1) is the number of model parameters; ŷ (k) is the pre-

dicted output; ε(k, θ̂) = y (k)− ŷ (k).

Calculation of Model Confidence Interval. One important part of model
identification is the calculation of model uncertainity for a given confidence
level. Since the gas turbine operating point is affected by load on the generator
and change in environmental conditions, the confidence interval has to evolve
with the dynamics of the system. This kind of consideration is specifically
important to fault detection and diagnosis system design.

Assuming that θ∗ and J(θ̂) represent true value of model parameters and

first derivative of G(x (k) , θ̂) with respect to θ̂, respectively, it can be shown
that for a confidence level of (1 − α), the confidence interval (CI) for a new
prediction is is given by

CI(k) = ±tα/2,Nd−nθ
σ̂ref

[
1 + Jk(θ̂)

THo(θ̂)Jk(θ̂)
]1/2

(38)

In (38), the subscript o stands for training data; Ho(θ̂) = Jo(θ̂)
−1Jo(θ̂);

tα/2,Nd−nθ
is the percentage value of t-distribution that leaves a probability

of α/2 in the upper tail and (1 − α/2) in the lower tail; (Nd − nθ) is the
degree of freedom. The unbiased estimate for σ̂ref is

σ̂2
ref =

1

Nd − nθ

Nd∑
k=1

[
ε(k, θ̂)

]2
(39)

Bat Algorithm(BA). BA is a meta-heuristic nature inspired algorithm for
the first time developed by Yang [21] at Cambridge University. Among all
bats, microbats use echolocation to distinguish their prey, avoid obstacles,
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and identify their roosting crevices in the dark. The BA is formulated ideal-
izing bats characteristics in hunting their prey. The pseudo code as developed
by Yang [21] is shown below.

Bat Algorithm:

Objective function f(s), s = [s1 ... sd]

Initialize the bat population si(i = 1, 2, ..., n) and vi

Define pulse frequency fi at si

Initialize pulse rates ri and the loudness Ai

while (t < Max number of iterations)

Generate new solutions by adjusting frequency,

and updating velocities and locations

if (rand > ri)

Select a solution among the best solutions

Generate a local solution around the selected best solution

end if

Generate a new solution by flying randomly

if (rand < Ai & f(si) < f(s))

Accept the new solutions

Increase ri and reduce Ai

end if

Rank the bats and find the current best solution

end while

Postprocess results and visualization

The main updating equations in BA are as follows:

fi = fmin + (fmax − fmin)β (40)

v
(p)
i = v

(p−1)
i +

(
s
(p)
i − s∗

)
fi (41)

s
(p)
i = s

(p−1)
i + v

(p)
i (42)

Where, β ∈ [0, 1] is a random number; fmin and fmax are minimum and
maximum,respectively, of emitted pulse; s∗ is current global best position;fi,

v
(p)
i and s

(p)
i are frequency, velocity and position, respectively, of i-th bat at

p-th generation. During initialization, the value of fi is randomly selected
from [fmin, fmax]. Once the current global best is identified, a local search is
performed based on (43).

snew = sold + ε.A(p) (43)

Where, ε is a random number drawn from [−1, 1]; A(p) is average loudness
at p-th generation.

Loudness and Pulse Emission. As the search for the best solution proceeds,
the loudness A(p) decreases while the pulse emission r(p) increases. This, in
fact, reflects the true behaviour of bats reducing loudness and increasing
pulse rate as they approach the prey. Updating equations related to impoved
solutions are formulated as



702 A.L. Tamiru and F.M. Hashim

A
(p+1)
i = α.A

(p)
i (44)

r
(p+1)
i = r

(0)
i [1− exp (−γ.p)] (45)

The values of α and γ in (44) and (45), respectively, are constants. Each can
be assumed equal to 0.9 [21]. BA was found superior to genetic algorithm and
particle swarmoptimization [21].Theoriginal bat algorithmwasapplied to solve
multiobjective optimization problems [57] and to train neural network models
[58]. Inspired by the original bat algorithm, Tsai et al.[59] recently proposed
what is called evolved bat algorithm (EBA). In the EBA, bat’s movement and
random generation of a bat position are governed by (46) and (47).

s
(p)
i = s

(p−1)
i +D (46)

s
(p)
i,random = β.

(
s ∗ −s

(p)
i

)
(47)

Where, β is considered an element of [0, 1] while D is assumed equal to
0.17T with T randomly drawn from [−1, 1] . The algorithm was tested using
Rosenbrocks function, Griewanks function, and Rastrigins function[21]. It
was claimed to have outperformed the original BA.

In the present work, the intention is to consider bats in groups, which make
the algorithm a bit different from the original design. Besides, the updating
equations are selected according to an additional optimization parameter
called elite fraction ξe . After sorting the fitness value for the local best
performing bats in descending order, if the group identification index i is
less than or equal to ξe, (48) and (49) are used for updating the current bat
location.

V
(p+1)
ij = V

(p)
ij + fij ×

(
S
(p)
lb,i − S

(p)
gb

)
. (48)

S
(p+1)
ij = S

(p)
lb,ij +V

(p+1)
ij . (49)

Where, S
(p)
lb,i is the local best or best in the i-th group; S

(p)
gb is the global best

corresponding to p-th generation. If ξe < i ≤ 2 × ξe , then the inverse of

golden ratio ψ =

(
1+

√
(5)

)

2 is applied to decide on the size of the displacement
to be added to the old location. That is,

S
(p+1)
ij = S

(p)
ij +

1

ψ
×

(
S
(p)
gb,ij − S

(p)
ij

)
. (50)

If i > 2ξe, then the bats with weak performance are totally replaced by new
bats. The equation for this purpose is

S
(p+1)
ij = rand((nθ, 1) (51)

Where, nθ is the number of model parameters to be estimated. The pseudo
code for the BA algorithm with the addition of grouping and elite fraction is
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stated as follows. The elite fraction is applied after sorting the fitness values
for all bats in a generation in descending order. Accordingly, well performing
bats are put first while the weakest are left in the bottom. The BA combined
with the grouping concept is applied to train the fuzzy models. Note that the
values of loudness and pulse rate are assumed constant.

Group based BA Algorithm:

Objective function f(s), s= [s1 ... sn]

% Initialize BA parameters

Loudness A, pulse rate r, elite fraction, number of bats in

a group, number of groups, minimum frequency fmin, and

maximum frequency fmax

% Initialize iteration parameters

Error goal, Maximum number of epoch

% Generate Initial Position & Velocities for each bat

% Run the BA algorithm

while (t < Maximum number of epoch)

if t=1

Evaluate the objective function for each bat position

Identify the local best

Sort the bats based on their performance

Identify the global best

Move all bats to the better locations

Number of elite = number of bats in a group X elite fraction

while (i < number of groups)

while (j < number of bats in i-th group)

if (i < Number of elite)

Update velocity and locations

if (rand > ri)

Generate a local solution

end

elseif (Number of elite < i & i < 2 X Number of elite)

Use inverse of Golden ratio and update the location

elseif (i > 2 X Number of elite)

Replace the current location by a random location

end

end while

end while

else

Evaluate the objective function for each bat position

Identify the local best

Identify the global best

Choose global best comparing current vs recent past

Choose local best comparing current vs recent past

Move all bats to the better locations

end

end while
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3 Result and Discussion

3.1 Validation of First Principle Model

This section presents application of the methods discussed thus far to an
actual gas turbine generator. The gas turbine is part of a cogeneration and
cooling plant providing electricity and chilled water to the academic buildings
of Universiti Teknologi PETRONAS, Malaysia. To begin the validation, part
of the design point data is extracted from overall performance map provided
by the gas turbine manufacturer. The GTG is specified as Taurus 60S-7301. It
is designed and manufactured by Solar Turbine Inc.. The specification at sea
level states that, the GTG was originally designed for 5.2MW. After recon-
ditioning, however, the certified test data shows a rated capacity of 4916MW
corresponding to a natural gas fuel having LHV of 47938 kJ.kg−1. At the
rated load, gearbox and generator efficiencies are stated as 0.982 and 0.964,
respectively. Pressure ratio of the axial compressor, turbine exit tempera-
ture, exhaust flow, and turbine exit temperature are all read from overall
performance map. The number of stages in the compressor and turbine are
eleven and three, respectively. The design of the combustor is annular type.
Six combustors are used to feed enough exhaust gas to the turbine stages.

Since cooling air flow rate distributions, duct pressure loss, and component
efficiencies are not known, assumptions are made relying on data from gen-
erally accepted literature while suitability of the selected values are decided
according to mass and energy conservation equations. The main calculation
step follows the flowchart discussed in the preceeding section (cf. Fig. 2).
Varying isentropic efficiencies of the compressor and turbine, duct pressure
loss, and cooling air flow rates, the relative error between actual and calcu-
lated values of rated power at the generator terminal is minimized. An error
goal of εmax=1e-3 is assumed to terminate the calculation loop. The resuting
estimated values for the missing data is shown in Table 3.

Fig. 4 and Fig. 5 show the models developed for the variable geometry
compressor over the whole operating region. The models are governed by (6).
For a reasonable approximation of the actual data, the coefficients need to be
a11 = 0.19995, a12 = 0.7769, a21 = 0.7114, and a22 = 0.3479. After repeated
run, the selected values for b11 and b12 are 0.5 and 8e-5, respectively. In fact,
the same values are used by Higlind [52].

From the optimized result, the compressor appeared to have a mass flow
rate of 21.0324 kg.sec−1 and pressure ratio of 11.615 while the turbine is
featured by exhaust gas flow rate of 21.349 kg.sec−1 and a pressure ratio of
10.8. Once turbine stage pressure ratio, mass flow rate, and efficiency are
known, performance maps are created applying the scaling method. As a
reference, a turbine map from [60] is chosen for its design point pressure
ratio is close to the pressure ratio of the Solar Turbine. The maps resulted
from applying the scaling method are shown in Fig.6 and Fig.7.
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Table 3 Estimated Design Point Data for the Gas Turbine Components

Parameter Unit Value

Compressor Efficiency 1 0.8551
Combustor Efficiency 1 0.98
Combustor Volume m3 0.3468
Turbine Stage Efficiency 1 0.899

Stage-1 kg.sec−1 20.38
Turbine Mas Flow Rate Stage-2 kg.sec−1 20.49

Stage-3 kg.sec−1 20.59

Turbine Statge Pressure Ratio 1 2.21
Cooling Air kg.sec−1 0.4270
Air Control Systems kg.sec−1 0.1052
Air for Bearing Chambers kg.sec−1 0.5468
Inlet Duct Pressure Loss % 0.5
Compressor Exit Diffuser Loss % 2
Combustion Chamber Pressure Loss % 2

Fig. 4 Normalized Pressure Ratio Versus Rated Power: load ≥ 0.5
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Fig. 5 Normalized Pressure Ratio Versus VIGV Position: load ≥ 0.5

Fig. 6 Stage Performance Map for Turbine: Normalized Efficiency Versus Normal-
ized Pressure Ratio
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Fig. 7 Stage Performance Map for Turbine: Normalized mass flow rate Versus
Normalized Pressure Ratio

For the part load operation, the validation was done considering compres-
sor discharge pressure P2, fuel flow rate ṁf , temperature T5, and electric

power output at the generator terminal Ẇele. Fig.8 shows the first three pa-
rameters versus power Ẇele. Note that the graphs are presented in normalized
form. The data listed in Table 1 are used for normalizing each parameter be-
tween zero and one. As can be seen from the graphs, the predicted result
closely matches the actual data.

In the first operating region, i.e. for relative load less than 0.5, the tem-
perature T5 increases with load. This is expected because the GTG in this
region is operating in load control only. So as to meet the load requirement,
the fuel flow rate increases gradually with the load. However, the compres-
sor VIGV is at fully open position and the VSVs are all at their respective
design stagger angles that make the air flow rate almost constant. The nor-
malized pressure also increases with lower slope. This is quite strange for a
compressor whose shaft speed is constant and VIGV at fully open position.
One may argue that this may be due to the existence of bleed air from the
compressor. In our case, there is no strong evidence that supports the use of
bleed air during part load. The document provided by the manufacturer only
mentions the use of the bleed valve during start-up and shut-down. After
many simulation tests, excluding bleed air during part load operation, the
algorithm had no troubles in convergence if the actual pressure ratio is used
to match the temperature T5 and electric power output. The resulting air
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Fig. 8 Predicted performance for the Gas Turbine Generator (lines: model, marks:
real data)

mass flow rate in this region also appears to remain almost constant. In light
of satisfying the three conditions, it can be said that the assumption on bleed
air during low load operation is convincing.

For load greater than 50% of rated load, the GTG runs under temperature
and load control. In fact this region is also called SoLoNOx regiondue lowgreen-
house gas emission. Near to 50% load, the VIGV starts to close gradually while
the setting for temperature T5 is increased to 667 ◦C. This is visible in the vali-
dation graphs shown in Fig.8. Themonitored data is collected every 10 seconds.
Because the rate of opening of the VIGV and ramping up of T5 setting in the
transition region is faster than 10 seconds, it was not possible to acquire data
for validation purpose. The temperature control is based on the feedback signal
from temperature at the inlet to the 3rd stage of the gas turbine. The pressure
ratio and fuel flow rate increases with increase in electric power output while
the temperatureT5 is almost constant. In the SoLoNOx region, the hot exhaust
gas is used to run the heat recovery steam generator where steam is generated.
Hence, the high temperature in the exhaust gas is reasonable. Finally, the ther-
modynamic models validated in the current section are used to generate data
that can be used to train and validate fuzzy models. This is presented in the
next section.

The semi-empirical model was also used to predict air mass flow rate and
NOx emission. These parameters were not available for measurement. As can
be seen from Fig. 9, the air flow rate is almost constant in the less than 50%
rated load region. This is acceptable for the VIGV is fully open and the shaft
speed is constant. In the SoLoNOx region, the air flow rate increases with the
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load. NOx emission increases with temperature and pressure, which is well
indicated in the graph.

3.2 Validation of Fuzzy Models

In order to demonstrate the application of the fuzzy method and the bat
algorithm to a gas turbine generator, fuzzy TSK models are developed for the
exergy changes in the main components of the GTG. The approach is to use
BA in three different ways: (i) LOLIMOT-BA, where LOLIMOT algorithm
is first applied to train the fuzzy model while BA is used to further tune the
spread term σl,i(l = 1, . . . , nl; i = 1, 2, . . . , nx); (ii) BA-GLS, where BA is
used to optimize the shape and location of the fuzzy membership functions
while GLS is employed to find optimum values for the parameters in the local
linear models; (iii) BA-WLS, BA still used for adjusting the membership
functions but the parameters in the local linear models are estimated by
weighted least squares.

The input-output data used for model training are shown in Fig.10 to
Fig.12. VIGV position and fuel flow rate are considered as inputs. In fact the
two parameters are true manipulated inputs to the gas turbine generator.
The graphs in Fig.10 are obtained from GTG data acquisition system while
the exergy graphs are results of simulating the thermodynamic model for the
same inputs. VIGV percentage opening various in the range of 40 to 75 %
while the fuel flow rate changes in the range of 0.2kg.sec−1 to 0.28kg.sec−1.

Fig. 9 Predicted Air Mass Flow Rate and NOx Emission
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A maximum of 75% in the VIGV position is due to the load demand that
does not go beyond 4.2MW. Note that the data used for model training and
validation is for electric loads higher than 50% of nominal generating capacity.
This region is selected for many of the parameters in this region change with
the electrical load and enviromental conditions.

Initialization of the LOLIMOT algorithm involves only the parameter Δ,
which controls the fraction of cut on the distance between two adjacent cen-
ters. The spread term for a particular membership function is defined as the
product of Δ and the distance between two adjacent centers. In the present
work, the value of Δ is assumed 1/3 regardless of the membership function
location. Initialization of BA algorithm, however, needs setting of suitable
values for maximum error tolerance, number of bats, sound loudness, pulse
rate, frequency range, and maximum number of generations or iterations.
Since the present work uses the group based BA, three more parameters
need to be provided. These include number of groups, number of bats in a
group, and elite fraction. The values assumed for training the fuzzy models
are listed in Table 4. The same set of numbers are applied if BA is involved
in the calculation.

In the first attempt, LOLIMOT alone is used to train fuzzy TSK mod-
els for exergy changes in the air compressor İAC , combustion chamber İCC

, gas turbine İTU , and exhaust duct İED . The values of RMSE and AIC
corresponding to each model are summarized in Table 5. As can be seen, all
the models are featured by lower values of RMSE and AIC. The number of
fuzzy rules for the combustion chamber, turbine, and exhaust duct appeared
in the range of 4 to 6. The values of RMSE and AIC related to the validation
data are also listed in Table 6. In this case as well, the parameters demon-
strated higher performance. Relatively lower values of RMSE and AIC in
the air compressor model could be attributed to the higher number of rules
in the fuzzy model. Fig.13 and Fig.14 show plots of the validation graphs
for exergy changes in the combustion chamber and gas turbine, respectively.
The same graphs depict modelling error and confidence interval for 95% con-
fidence level. In both cases, the modeling error was found lower than 0.01
indicating good accuracy of the models. The cause for exergy destruction in
the combustion chamber is the pressure drop, flow turbulence and irreversible
combustion. Normally, it increases with the GTG load. Among the three com-
ponents in the system, the exergy destruction in the combustion chamber is
the highest. In the air compressor, the cause for exergy destruction could be
related to off-design point performance, fouling and erosion.

In the second test, the models from LOLIMOT algorithm were further
optimized by BA. RMSE and AIC values have improved. However, perfor-
mance parameters for the validaion data show poor accuracy as compared
to LOLIMOT only based model. In fact this is what happens when there is
over fitting.
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Fig. 10 Training Data: (a) VIGV position, and (b) Fuel Flow Rate

Fig. 11 Training Data for Exergy Destruction in (a)Air Compressor, and (b) Com-
bustion Chamber
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Table 4 Optimization Parameters assumed for BA

Parameter Symbol Value

Sound Loudness A 0.25
Pulse Rate r 0.5
Minimum Frequency fmin 0.0
Maximum Frequency fmax 20
Number of Groups ng 10
Number of Bats in a Group nb 5
Elite Fraction ξe 1/3
Maximum Numer of Generation Nmax 20
Maximum Error Tolerance εmax 1e-4

Fig. 12 Training Data for Exergy Destruction in (a) Gas Turbine, and (b) Exhaust
Duct

In the third test, BA-GLS is used. Instead of running the algorithm using
the number of rules estimated in the first test, different number of rules in
the range of 2 to 15 were tested. The optimum found in terms of RMSE and
AIC were 5, 5, 2, and 4 for İAC, İCC, İTU, and İED, respectively. The values
of RMSE and AIC for the training data are presented in Table 5 while the
correspond result for validation test is depicted in Table 6. For the training
data, BA-GLS resulted in better performance as compared to LOLIMOT and
LOLIMOT-BA methods. The number of fuzzy rules are reduced. However,
the prediction performance for the validation data is relatively poor.
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Table 5 Fuzzy Model Structure and Performance: Training Data

LOLIMOT LOLIMOT-BA BA-GLS BA-WLS

Parameter nl RMSE AIC RMSE AIC RMSE AIC RMSE AIC

İAC 15 9.2625e-5 -17.4839 9.2625e-5 -17.5139 5.5745e-5 18.5494 0.0011 -12.6355

İCC 6 0.0048 -9.6567 0.0047 -9.7054 0.0045 -9.7961 0.0045 -9.7641

İTU 4 0.0060 -9.2025 0.006 -9.2209 0.0060 -9.2108 0.0061 -9.1951

İED 5 0.0109 -8.0039 0.0108 -8.0281 0.0106 -8.0744 0.0107 -8.0261

Table 6 Fuzzy Model Structure and Performance: Test Data

LOLIMOT LOLIMOT-BA BA-GLS BA-WLS

Parameter nl RMSE AIC RMSE AIC RMSE AIC RMSE AIC

İAC 15 1.23e-4 -16.9160 1.2337e-4 16.9402 8.9932e-5 17.5927 9.8368e-4 -12.8082

İCC 6 0.0045 -9.7923 0.0067 -8.9937 0.0067 -8.9916 0.0044 -9.8031

İTU 4 0.0061 -9.1722 0.00663 -9.1320 0.0063 -9.1177 0.0063 -9.1025

İED 5 0.0106 -8.0665 0.0102 -8.1413 0.0119 -7.8457 0.0108 -8.0381

Fig. 13 Validation Graph for Gas Turbine: (a) Normalized Exergy Destruction,
and (b) Prediction Error
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Fig. 14 Validation Graph for Combustion Chamber: (a) Normalized Exergy De-
struction, and (b) Prediction Error

Fig. 15 Surface Plots for Exergy Destruction: (a) Air Compressor, (b) Combustion
Chamber, (c) Turbine, and (d) Exhaust Duct
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The last test is made by using BA-WLS algorithm. Similar to the case for
BA-GLS, optimum number of rules for each models is estimated running the
optimization algorithm for number of rules in the range of 2 to 15. The opt-
mum number of rules were found 5, 4, 2, and 3 for İAC, İCC, İTU, and İED,
respectively. As compared to BA-GLS models, the number of rules for the
combustion chamber and exhaust duct are reduced by one. For each model,
the values of RMSE and AIC appeared better than the previous models. Sur-
face plots for the final model are shown in Fig.15. This graphs are generated
simulating the fuzzy models in the working region.

Summary. In this chapter, apart from developing and validating a thermo-
dynamic model, group based BA is implemented to train fuzzy TSK models
for exergy changes in the gas turbine generator. From the training and vali-
dation result, it can be seen that BA is a powerful tool for nonlinear model
identification. BA combined with GLS and WLS is potentially more poweful
than LOLIMOT algorithm, which is partly a heuristic approach. The deve-
olped fuzzy models are easy to use for generating enough data required to
creat surface plots for the exergy changes, which otherwise could have been
tedious had it been the thermodynamic model implemented for the same
purpose.

In the group based BA, candidate solutions are generated in two steps. In
the first step, objective function values for each group are sorted in descending
order and the bat with the lowest objective value is selected. Repeating the
same procedure, this time among bats best in their respective groups, the
global best performing bat is selected. In the second step, once the local
best bat locations are sorted according to objective function values, the total
number of bats is divided into elite and non-elite groups. For those in the
elit group, new locations are generated by adjusting frequencies, loudness,
and pulse emission rate. For the non-elite groups, bat location update is
done either using the golden ratio or assuming random location generator.
The proposed approach is seen as a good contribution that could play more
important role in the use of a combination of optimization algorithms. It is
also helpful for solving huge problems using parallel computing technique.

There are other training methods in the identification of fuzzy TSK mod-
els. Among them are, Adaptive Neuro-Fuzzy Inference Systems (ANFIS)[56],
Fuzzy clustering combined with least squares [12], heaurstic approaches [9],
back-propagation, and using evolutionary algorithms [13]. This work suggests
that more work need to be done to expose how powerful it is as compared to
these algorithms.

As suggested by Yang [21], many varities of BAs can be created by includ-
ing models for directional echolocation and Doppler effect. Therefore, this is
another area that should be explored to a greater detail and in the context
of nonlinear model identification. The current work, however, confirms that
the existing BA by itself is good enough for modeling exergy changes as ac-
curacy is not an issue. Accuracy becomes very important if the model is to
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be used, for example, in control system design. In that case, the sensitivity
of BA needs to be tested against signals with high noise to signal ratio.

In the mechanical engineering area, there are also problems including op-
timization of cogeneration plant [2], reliability redundancy allocation [61],
machining parameter selection [62], and optimization of machine loading in
flexible manufacturing systems [63]. Therefore, to benefit the most of BA,
the authors believe that, it has to be tested in these areas as well.
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A KBRL Inference Metaheuristic  
with Applications 

Laurentiu Bucur, Adina Florea, and Catalin Chera* 

Abstract. In this chapter we propose an inference metaheuristic for Kernel-Based 
Reinforcement Learning (KBRL) agents – agents that operate in a continuous-state 
MDP. The metaheuristic is proposed in the simplified case of greedy policy RL 
agents with no receding horizon which perform online learning in an environment 
where feedback is generated by an ergodic and stationary source. We  
propose two inference strategies: isotropic discrete choice and anisotropic optimiza-
tion, the former focused on speed and the latter focused on generalization capability. 
We cast the problem of classification as a RL problem and test the proposed meta-
heuristic in two experiments: an image recognition experiment on the Yale Faces 
database and a synthetic data set experiment. We propose a set of inference filters 
which increase the vigilance of the agent and show that they can prevent the agent 
from taking erroneous actions in an unknown environment. Two parallel inference 
algorithms are tested and illustrated in a cluster and GPU implementation. 

Keywords: Kernel Based Reinforcement Learning, Minimum Embedding Dimen-
sion, Chaos Theory, Parallel Algorithms, GPU, Cluster. 

1   Introduction 

In this chapter we propose a novel kernel-based inference metaheuristic for rein-
forcement learning (RL) agents operating in a continuous-state MDP. The meta-
heuristic is proposed in the simplified case of greedy policy RL agents with no 
receding horizon which perform online learning in an environment where feed-
back is generated by an ergodic and stationary source. The metaheuristic is ex-
tended for parallel implementation on a cluster and GPU architecture, together 
with extensive experimentations and demonstrations. The contributions of this 
chapter are summarized as follows: 
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• An improved Kernel Based Reinforcement Learning inference metaheuristic is 
proposed. The metaheuristic focuses on solving the problem of kernel parame-
ter function selection during the inference process of a KBRL agent. More  
specifically, we focus on the optimization of the Gaussian kernel parameters 
during the estimation of the reward function in continuous-state Markov Deci-
sion Processes.  
o Two inference strategies are proposed: isotropic discrete choice and ani-

sotropic optimization. The former is designed for speed and the latter  
designed for a more thorough exploration of the space of possible hypo-
theses at inference time. 

• We then propose a set of Quality of Inference filters (together referred to as 
QoINF) which are used to improve the decision making process of the agent. 

• After the inference metaheuristic is introduced and augmented with QoINF 
filters, we perform online KBRL learning and classification experiments, to 
prove the performance, general applicability and scalability of the proposed in-
ference metaheuristic. The applications are: 
o A synthetic data experiment that proves the ability of the anisotropic op-

timization strategy to detect relevant features at inference time, and the 
superiority over the isotropic discrete choice strategy for the correct clas-
sification of binary labeled data. 

o An image recognition experiment in which we re-cast the problem of 
classification as a reinforcement learning problem and prove that the infe-
rence algorithm together with the proposed QoINF inference filters is able 
to achieve 100% recognition accuracy on the Original Yale Faces Data-
base and 80% on the Extended Yale Faces Database. 

• Two parallel algorithms are proposed (Parallel1 and Parallel2) for the isotrop-
ic discrete choice inference strategy. The Parallel1 algorithm is tested in an 
image recognition experiment for the Yale Faces Databases, which we cast as a 
classification problem in a 4860-dimensional continuous-state MDP.  We im-
prove on the complexity of the Parallel1 algorithm and propose the Parallel2 
isotropic discrete choice algorithm, which is an order of magnitude faster. We 
prove that Parallel2 can be executed on a more suitable architecture – the 
NVIDIA GeForce GPU, using the OpenCL programming model [2]. We show 
that the partial execution of the proposed KBRL inference metaheuristic’s first 
strategy- the isotropic discrete choice strategy is possible in a GPGPU (General 
Purpose GPU) implementation, and that it can achieve real time face recogni-
tion performance, given enough capabilities in the GPU. Finally, we illustrate 
the application of the Parallel2 algorithm in the FCINT Computer Vision  
System which currently under development. We conclude that the proposed 
metaheuristic can be applied to computer vision applications and we outline  
directions for future work. 
 
This chapter is structured as follows: Section 2 presents a brief introduction on 
Kernel-Based Reinforcement Learning. Section 3 introduces the proposed me-
taheuristic and the two proposed inference strategies. In Section 4 the inference 
strategies are tested and illustrated on a synthetic data example. The advantage 
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of using the anisotropic optimization inference strategy over using the first pro-
posed inference strategy (isotropic discrete choice) is outlined. In Section 5 we 
introduce a set of inference filters, together referred to as QoINF (Quality of In-
ference) filters which supplement the inference process of the agent. They can 
lead to improved cumulative reward from the reinforcement agent’s environ-
ment and help the agent avoid accumulate negative feedback by adding three 
vigilance criteria. Section 6 contains a complexity analysis of the proposed in-
ference metaheuristic and presents two parallel algorithms which implement the 
isotropic discrete choice strategy: Parallel1 and Parallel2, designed for execu-
tion in HPC architectures. Section 7 outlines the advantages and disadvantages 
of the proposed inference strategies. Section 8 illustrates the applicability and 
performance of the KBRL inference metaheuristic for the problem of image 
recognition on the Yale Faces Databases. Section 9 shows the performance of 
the Parallel2 algorithm which is an improvement over the Parallel1 algorithm. 
We show that the Parallel2 algorithm can achieve real time image recognition 
performance on an NVIDIA GPU processor as well as on a single core CPU 
implementation. We provide experimental results obtained in the FCINT Com-
puter Vision System [3] which uses the proposed Parallel2 inference algo-
rithm. Section 10 concludes the chapter and suggests directions of future work. 

2   Kernel-Based Reinforcement Learning 

2.1   Markov Decision Processes and Reinforcement Learning 

A Markov Decision Process is defined as the tuple <S,A,T,R> consisting of: 

- a finite state space S 
- a finite action space A 
- a transition function T:S x A x S R 
- a reward function R: S x A  R 

From a state s∈S an action a∈A produces reward R(s,a) and the system transitions 
to another state s’ with probability T(s,a,s’). 

Reinforcement Learning agents often involve planning by computing a policy 
π : SA that maximizes future cumulative rewards  

An optimal policy satisfies: 

π(s)= argmaxa Q(s,a)                                        (1) 

where Q:S x A R,  

Q(s,a) = R(s,a) + γ ∑ , ,                            (2) 

where V(s) is the maximum cumulative expected reward in state s, 

V(s) = maxa Q(s,a)                                          (3) 
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In this contribution we assume a simplified version of (2) where the second term 
of the right hand side of the equation is 0, the RL agent being only reactive in its 
behaviour. 

2.2   Kernel-Based Reinforcement Learning 

Kernel-Based Reinforcement Learning (KBRL) [4], [5], [6] extends the choice of 
optimal policies (1) in continuous state MDPs.  KBRL methods approximate the 
value functions directly from a set of historical outcomes. 

Let S ⊆ RD be a D-dimensional state space of a continuous-state Markov Deci-
sion Process <S,A,T,R> and s1,…,sN be a sequence of states sampled from S. At 
each state i, we have an executed action ai, observed reward ri and successor state 
s’i. 

Ormoneit and Sen [4] define the approximate Bellman equations for all s∈S 
and a∈A. Considering S has a distance metric d : , , ∑ φ .

σ
γ|                      (4) 

where: 

 = maxa ,  
σ is a bandwidth parameter 
φ is a nonnegative weighting function. 

Jong and Stone [5] extend the kernel-based approximations to the transition and 
reward functions based on the same principles used by Ormoneit and Sen [4]. 
They define the transition function and reward function approximations as: :  , , , φ ,0                                 (5) 

:   , , ∑ φ ,|                   (6) 

where 

  , ∑ φ ,|                       (7) 

is a normalization factor. 

3   A Novel Inference Metaheuristic  

We consider a simplified model of a Reinforcement Learning agent that uses a 
simple greedy approach [7] in a MDP, namely: 
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π(s)= argmaxa  ,                                             (8) 

using the experience s1,…, sN, associated actions a1…,aN and rewards r1,…rN. 
The model proposed by Jong and Stone [5] offers flexibility in the choice of the 

metric d, parameter σ and the weighting function φ. 
The contribution of our research - the proposed inference metaheuristic - focus-

es on optimizing the shape of the isotropic and anisotropic Gaussian kernels as 
weighting functions in (6) and (7). 

For each observation si (i=1..N) and any s∈S we focus on the Gaussian Kernel 
[8]: 

─  The isotropic Gaussian kernel : ,
πσ

exp || ||
σ

                            (9) 

─ The anisotropic Gaussian kernel with diagonal covariance matrix: 

                             , | πΣ| exp Σ  (10) 

where: 

                                                Σ
σ 00 σ

 (11) 

and σ ,… σ  are the bandwidths for each direction i, i=1..D 
Our proposed metaheuristic is: 

                                           π(s,a) = argmaxa,σ σ ,  (12) 

It extends (8) also to optimizing the shape of a Gaussian kernel function K at infe-
rence time. In (12)  σ=(σ1,... σD) is the kernel bandwidth parameter vector, which 
defines σ ,  using an anisotropic kernel of the form (10), for a D-dimensional 
problem and a number of observations as: 

σ , , ∑ K s, s|                             (13) 

where (7) becomes, for a given σ :  

                                                   , ∑ K s, s|  (14) 

In general the choice of a specific kernel function K is problematic and problem spe-
cific [9], and the choice of the kernel function parameters in general involves the use 
of an optimization procedure. In this case, the choice of the kernel function parame-
ters (11) relates to the choice of the kernel parameter vector σ. A small choice of σ 
values leads to very low generalization capability, while too large σ can lead to high 
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variance (error) in the approximation of the true unknown reward function R : S x 
A  R. 

The difficulty in choosing the optimal solution of kernel parameters σ1,…σD 
which maximize (12) arises from the fact that (13) is not guaranteed to be a con-
vex function with respect to σ1,…σD. This problem in general has been shown to 
be intractable. 

Our proposed metaheuristic consists of two simple strategies for optimizing 
(12) at inference time. Both strategies involve a finite, polynomial time optimiza-
tion approximation of the general continuous-function optimization problem (12) 
over σ=(σ1,…σD)  and discrete over the action a : 

• The isotropic discrete choice strategy: chooses the optimal isotropic kernel 
vector σ=(σ1,…σD) with σ1=…=σD= σCandidate by maximizing  (12) over all 
possible  (σCandidate,a) ∈ Candidateσ x A. 

• The anisotropic optimization strategy involves a higher complexity optimiza-
tion algorithm for (12) . At each step of the optimization procedure uses every 
pair (σCandidate,a) ∈ Candidateσ x A as the initial condition for optimization, by 
setting σ1=…=σD= σCandidate. Assuming linear independence among the 
σ1,…σD, it performs a D-dimensional hill climbing optimization of (12) over 
the variables σ1,…σD in a limit number of iterations max_iterations, by updat-

ing the variables σ σ

σ ,
σ2
σ ,2σ  (i=1..D) and choosing the value of a for 

which the highest local maximum of (12) is achieved  
 

Given a variation interval [σmin, σmax] and a positive integer σSTEPS, both strategies 
generates a uniformly spaced set of values for σ: 

Candidateσ  φ 
sigmaStep= (σmax – σmin)/(σSTEPS - 1) 

for i=0.. σSTEPS-1 

 crtσ = σmin + i* sigmaStep 

 Candidateσ  Candidateσ ∪ { crtσ } 

3.1   The Isotropic Discrete Choice Strategy  

For a given s∈S the inference strategy selects the kernel function Kσ(.,s) such as: 

                           π(s,a) = argmaxa,σ∈Candidate σ σ ,  (15) 

where   σ ,  is (13) defined for a particular choice of σ in the kernel (10). 
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The advantage of this strategy is speed. The complexity of the inference (12) is 
O(σSTEPS * Card(A)). The disadvantage is that the strategy does not guarantee the 
optimal choice of the kernel function parameters  which maximize (12).  

The isotropic discrete choice inference strategy algorithm follows. 
 

ISOTROPIC_DISCRETE_CHOICE 

Input: State s∈S, S⊆RD 
    Action set A 
Output: best action a from state s 

1. for each candidate σ
Candidate

 ∈ Candidateσ 

    1.1 set σ
1 
= σ

2 
= …σ

D 
= σ 

    1.2 for each a∈A 
    1.2.1 Calculate (13) using an isotropic kernel     

          with kernel parameter σ
1
 … σ

D
 = σ

Candidate 

    1.2.2 Maximize (12) with respect to a if  

          (a,(σ
1
..σ

D
))are better than the current optimum 

2.  Store the best local optimum of (σ
1
..σ

D
)  

    over all possible a∈A and initial conditions σ
i
  ∈  

    Candidateσ which maximizes (12). 

return:  

- the action a∈A for which the local maximum in step 1.2 is 
the best local optimum achieved by the search. 

- the number of matches in the agent’s memory for (12) 
which corresponds to the optimal choice of a and (σ

1..
 σ

D
) 

- the win rate and win/loss ratio in the optimal estimate 
(13)(see Section 5) 

3.2   Anisotropic Optimization  

Using the same candidate set generation as in the isotropic discrete choice strate-
gy, the anisotropic optimization inference strategy uses every candidate σCandidate  
∈ Candidateσ, as the initial condition for a D-dimensional optimization problem 
of (13) using a gradient ascent procedure. 
This strategy chooses the highest local optimum of (13) that maximizes (12) over 
all possible candidate actions.  
 

ANISOTROPIC_OPTIMIZATION 

Input: State s∈S, S⊆RD 
    Action set A 
Output: best action a from state s 

1. for each candidate σ∈ Candidateσ 
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   1.1 set σ1 = σ2 = …σD = σ 
   1.2 for each a∈A 
       1.2.1 Ref = Calculate (13) using an isotropic  

          kernel with kernel parameter σ 
       1.2.2 Calculate the partial 1st order and 2nd or 
             der derivatives of (13) with respect to  

    σ1 = σ2 = …σD : 
    for each i=1..D 

       1.2.2.a Calculate σ ,
σ

 

       1.2.2.b Calculate σ ,
σ

 

         1.2.3 Update σ1 = σ2 = …σD  (hill climbing): 
     for each i=1..D 

σ σ η

σ ,
σ2
σ ,2σ      

      1.2.4 Store the best local maximum of (13) if a  
   higher (12) is achieved in 1.2.3  

2. Store the best optimum of (12) over all possibl ea∈A  
 and initial conditions σCandidate  ∈ Candidateσ which 
 maximize (13). 

return:  

- the action a∈A for which the optimum estimate of 
(12) is obtained by the search. 

- the number of matches in the agent’s memory in (13) 
which  corresponds to the optimal choice of a and (σ1 
… σD) 

- the win rate and win/loss ratio in the optimal es-
timate (13)(see Section 5) 

The advantages of this strategy are: 

─ an anisotropic kernel selection which produces a greater or equal maximum 
value 
(12) relative to the discrete choice strategy. 

─ Usually higher accuracy, as will be shown in the next section. 

The disadvantages are: 

─ an increased complexity of the inference  algorithm : O(σSTEPS * Card(A) * 
KMAX) where KMAX is an upper bound on the number of iterations in step 1.2.3. 
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─ as with all gradient-based approaches convergence to a global optimum for an 
arbitrary continuous differentiable function is not guaranteed. 

4   Inference Strategy Comparison. A Synthetic Data Example 

In this section the comparative advantage of using the anisotropic optimization 
strategy over the isotropic discrete choice strategy is shown using a synthetic data 
set. 

For the purpose of this scenario,  let us consider a 2-class (1/0) classification 
problem, with samples generated according to the model in Table 1. 

Table 1 Conditional probability distribution for a 2 class synthetic sample generator 

X1 X2 X3 X4 Class label Y 
1 ? 0 ? 1 
0 0 ? ? 0 

The generating source is described by the conditional probability distribution:  

• P(y=1|(x1=1,x3=0)) =1  
• P(y=0|(x1=0,x2=0))=1  
• ? marks features irrelevant to the class in column 5 

The training and test sets sampled from the model are listed in Tables 2 and 3 
using 5 samples in each set. The aim of the experiment is to test the classification 
accuracy of the proposed inference metaheuristic (20) using the two inference 
strategies, and show the superiority of the anisotropic optimization strategy. 

Table 2 Training data 

Sample # X1 X2 X3 X4 Class label Y 
1 1 0.5 0 1 1 
2 1 0.55 0 0 1 
3 1 0 0 0.5 1 
4 1 1 0 1 1 
5 1 1 0 0 1 
6 0 0 1 0.5 0 
7 0 0 0 0 0 
8 0 0 0.5 0 0 
9 0 0 0.5 1 0 
10 0 0 0 0.5 0 
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Table 3 Test data 

Test # X1 X2 X3 X4 Class label Y 
1 0 0 0 0 0 
2 1 3 0 4 1 
3 1 -1 0 3 1 
4 0 0 3 3 0 
5 0 0 -1 0 0 
6 1 0.3 0 0.6 1 
7 1 0.4 0 0.4 1 
8 0 0 5 5 0 

The σ values in the Observations column in Table 4 list the anisotropic kernel 
parameters for each input variable. The values correspond to the choice of σ  
parameters which maximizes the estimated reward according to the proposed me-
taheuristic (12). 

Table 4 Tests results 

Test # 
Isotropic 
Discrete 
Choice 

Observations Anisotropic 
Optimization 

Observations 

1 PASS 100% confidence PASS 
100% confidence, 
σ=(0.00001, 0.00001, 
5007,943) 

2 FAIL 
50% confidence 
level 

PASS 
100% confidence, 
σ=(0.00001,875, 
0.00001, 25358) 

3 FAIL 
50% confidence 
level 

PASS 
100% confidence, 
σ=(0.00001, 17021, 
0.00001,4933) 

4 FAIL 
50% confidence 
level 

PASS 
100% confidence, 
σ=(0.00001, 
0.00001,12082,16244) 

5 FAIL 
50% confidence 
level 

PASS 
100% confidence, 
σ=(0.00001, 
0.00001,17483,1708) 

6 FAIL 
50% confidence 
level 

PASS 
100% confidence, 
σ=(0.00001, 70233, 
0.00001,15028) 

7 FAIL 
50% confidence 
level 

PASS 
100% confidence, 
σ=(0.00001, 
0.00001,3704,4545) 

8 FAIL 
50% confidence 
level 

PASS 
100% confidence, 
σ=(0.00001, 
0.00001,5714,4793) 
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Each row in Table 4 corresponds to a test sample in Table 3.  

• For samples in Table 3 which correspond to the 0 class, the σ values in Table 4 
corresponding to the third and fourth input dimensions are large, which means 
that during inference the Gaussian kernel’s equivalent fuzzy inference rule dis-
cards X3 and X4 from the decision making process, while X1 and X2 have small 
corresponding σ values, which means X1=0 and X2=0 provide high pointwise 
mutual information for class 0. 

• For samples in Table 3 which correspond to the 1 class, the same reasoning can 
be applied: the σ values in Table  4 corresponding to the second and fourth in-
put dimensions are large, which means the equivalent fuzzy inference rule dis-
cards X2 and X4 from the decision making process, while X1 and X3 have small 
corresponding σ values, which means X1=1 and X3=0 provide high point wise 
mutual information for class 1. 

The above observations suggest that in this experiment the anisotropic optimiza-
tion inference strategy is able to detect the generative model in Table 1 that de-
fines the conditional probability distribution of the two classes. 

As a result, from Table 4 it can be seen that the anisotropic optimization infe-
rence strategy achieves 100% accuracy and outperforms the isotropic discrete 
choice strategy. This can be explained by: 

• the asymmetric distribution of the mutual information of the input features 
relative to the class label, as discussed above 

• inability of the isotropic kernel to generalize for an asymmetric distribution of 
mutual information. As a result, even though it proves superior in speed, the 
anisotropic discrete choice strategy issues predictions with only 50% confi-
dence levels. As will be shown later, this strategy can be very successful in the 
image recognition problem, where mutual information is more uniformly scat-
tered across input variables in a high dimensional input space (a 2D image) 

5   Quality of Inference (QoINF) Filters   

The inference metaheuristic proposed in the previous section and the results of [4], 
[5], [6] do not address the statistical support behind the choice of the optimal ac-
tion a during the inference process. By statistical support we understand the num-
ber of terms s1, ….sK in the summation (13) which, for a particular state s,  satisfy 
K(s,si)≥εmachine in a finite-precision floating point CPU with representation preci-
sion εmachine. This corresponds to the number of examples inside the hypersphere 
K(s,.)≥εmachine for isotropic Gaussian kernels (9) and for elliptic (anisotropic) 
Gaussian kernels of the form (10).  

Following these considerations, we propose three inference filters that can be 
used in the estimation of (12) and (13). The purpose of the inference filters is to 
eliminate the candidate actions a in (12) which do not meet certain minimum per-
formance criteria in the summation (13) that correspond to the candidate action a 
during the inference process. 
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NOTE: We assert that the agent may receive both positive and negative feedback 
from its environment with probability greater than 0, as R(s,a): S x A  R 

Following the above assertion, we propose three inference filters; together re-
ferred to as QoINF (Quality of Inference) filters: 

• MinSupport filter: The best action a chosen in (12) and the highest summation 
(13) must have behind  it a minimum  number of occurrences apriori stored in 
the agent’s memory, which match the current state s according to a chosen ker-
nel function K (see discussion above). In terms of matching states in the sum-
mation (13), this means: 

                       Card { si | K(s,si)≥εmachine} ≥ minSupport (16) 

where minSupport ∈ N is a user-defined threshold 

• MinWinRate filter: The best action a chosen in (12) and the optimal summa-
tion (13) should guarantee a minimum success probability Prob(  , >0) >= 
minProb for all patterns matching the current state s by K(s,si)≥εmachine. In 
terms of matching states, this means: 

                           Prob(ri | K(s,si) )≥εmachine} ≥ minProb (17) 

where minProb ∈ [0,1] is a user-defined threshold 

• MinProfitFactor filter:  If the reward function is asymmetric in the sense that 
there exists at least one state s ∈S and a pair (ai,aj) ∈ A x A such that R(s,ai) 
R(s,aj)<0 and R(s,ai) ≠ |R(s,aj)|, the agent may need to use an alternative candi-
date to the MinWinRate filter, which takes into account the possible asymmetry 
of the reward function. Specifically, during the inference processes (12) and the 
iterations over (13) the agent may discard candidate actions for which the esti-
mated Profit Factor is less than a minimum threshold minPF. 

We introduce the Profit Factor (PF) function as: 
PF : S x A  R 

, ∑ | , , , ε∑ | || , , , ε
,    0      (18) 

The MinProfitFactor criterion, when applied to a given state s, candidate action a 
and kernel function K is to accept a candidate action a in (12) and (13) if: 

                                            PF(s,a) ≥ minPF  (19) 

where minPF is a positive user-defined threshold. 
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6   Parallel  Inference Extensions for High Performance 
Computing 

In this section we reiterate the basic form of the metaheuristic, perform a complex-
ity analysis of both inference strategies in the context of using the anisotropic 
Gaussian kernel and we include two parallel algorithms for the isotropic discrete 
choice strategy, parallel extensions for the anisotropic optimization strategy being 
a future research directions. 

6.1   The KBRL Metaheuristic and the Anisotropic Gaussian 
Kernel 

Given a continuous-state MDP with a D-dimensional state (problem) space S: 

The metaheuristic focuses on the problem of calculating the optimal greedy policy: 

                           π(s,a) = argmaxa,σ∈Candidate σ σ ,  (20) 

by maximizing the expected reward: 

                               σ , , ∑ ,|  (21) 

where: , ∑ ,|                                        (22) 

for each state s, given a general Gaussian kernel function K of the form: 

                        , | πΣ|  Σ  (23) 

where, for a given set of parameters σ = (σ1, … σD), assuming an orthogonal 
covariance matrix the columns of which are aligned to the basis vectors of the 
input space: 

Σ
σ

σ
                                              (24) 

Complexity Analysis 
Assuming an orthogonal covariance matrix of the form (24), from the model pro-
posed it can be seen the computational complexity of: 

• Evaluating the value of the anisotropic kernel (10) is O(D), where D is the 
number of dimensions of vectors s and si 

• Evaluating (22) is O(D*N) where N is the number of examples (si, ai, ri)i=1..N 
stored in the agent’s memory. 

• Evaluating (20) is O(D*N*Card(A)*Card(Candidateσ)) for the isotropic dis-
crete choice strategy, where: 
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o Card(A) is the number of possible actions of the agent given an action set A 
o Card(Candidateσ) = σSTEPS – an integer specifying the number of candi-

date isotropic values for the elements of the vector σ used in (20) (see 
Subsection 3.1 for the isotropic discrete choice algorithm) 

• The anisotropic optimization strategy for (20) is O(Card(Candidateσ) 
*MAX_Iterations*N*D2*Card(A)), as the strategy can be summarized as  
follows: 

o For each candidate σ    //O(Card(Candidateσ)) 

 Set initial conditions and optimize up to MAX_Iterations over all poss-
ible candidate actions in set A  //O(MaxIterations)*N*D2*Card(A) 
o For each candidate action a, at each iteration:  //Card(A) 

• evaluate (12) in O(N*D) steps  //O(N*D) 

• For each dimension i=1..D:  //O(D) 

• Calculate the first derivative of (13) with respect to σi, i=1..D 
//O(N*D) 

• Also evaluate the second derivative using a second evaluation 
of (13) //O(N*D)  

o Loop for a maximum number of Max_iterations for hill climbing 
//Polynomial bound that makes the algorithm tractable, as the gener-
al approach for optimizing (12) is not tractable for any reward  
function. 

6.2   Parallel Algorithms 

This section presents two parallel algorithms for the isotropic discrete choice 
strategy.  

Parallel 1 

Input: State s∈S, S⊆RD 
       Action set A 
       MinSupport,MinWinRate,MinPF: QoINF filters  
                                    threshold values 
Output: best action a from state s 

1.for each candidate σ∈ Candidateσ 
  fork(); 

     1.1 set σ1 = σ2 = .. σD = σ 
     1.2 for each a∈A 
      1.2.1 Calculate (21) using an isotropic kernel  

    with kernel parameter σ 
      1.2.2 Maximize (20) with respect to a if (21)  

            based on (a,(σ1 .. σD)) is greater than the  
   current optimum. 
join(); 
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2. Maximize (20) over all σ∈ Candidateσ and actions a∈A 
3. Store the best optimum (a,(σ1 .. σD)) of step 1.2,  

   measured over all possible a∈A and initial conditions  

   σi ∈ Candidateσ which maximizes (20) that satisfies  
   the QoINF filter threshold values (See section 5 for a  
   complete description of the Quality of Inference  
   Filters). 

return:   

- the action a∈A for which the local maximum in 
step 1.2 is the best       

- optimum value of (20) achieved by the search. 

- the number of matches (non-zero terms) in the 
highest summation (21) which achieves the optimal 
value for (20).  

- the win rate and win/loss ratio in the optimal 
estimate (21) (see Section 5 for a complete de-
scription of the Quality of Inference filters) 

Parallel2 – We propose an improved variant of the Parallel1 algorithm, which we 
currently use and are developing in the FCINT Computer Vision System for real 
time image classification tasks. 

We assert that the calculation of (21) for each action a ∈ A involves the calcula-
tion of terms of the form K(s,si) for a given isotropic Gaussian kernel function (9), 
with σ as the kernel parameter. 

This implies that in steps 1.2 and 1.2.1 expressions of the form (21): 

σ , 1, K s, s|  

are calculated for each action a∈A using terms of the Gaussian kernel (9): , 12πσ exp | |2σ  

At each iteration of the 1.2 step of the Parallel1 algorithm, the same N constant 

terms of form Σ  are calculated in (23) and used in (21) 

for a given σ, where N is the number of samples in the KBRL agent memory. For 
the isotropic kernel, this multiplication has the simplified form: 

                                          
σ

 (25) 
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The complexity of the Parallel1 algorithm can be reduced if we pre-calculate all 
the terms of the form (25) before Step 1.2 of the algorithm and use the precalcu-
lated values in the loop 1.2 of the Parallel1 algorithm when evaluating (21). 

The proposed Parallel2 algorithm is similar with the Parallel1 algorithm but of-
fers a reduced complexity due to this precalculation, by computing: 

• Squared Inner Product Array: 

                                                   (26) 

is an N dimensional array of squared inner products between the current state s 
and each state si (i=1..N) in the KBRL agent memory 

• Pre-calculated Kernel Function Matrix: 

                      σ
…

σ   (27) 

where CandidateSigmas = Card(Candidateσ) 

The significance of the pre-calculated Kernel Function Matrix M is : 

o Column j of matrix M contains all the precalculated  kernel function ar-
guments of the form (25) between the current observable state s and all 
the N records in the KBRL agent memory, scaled by the j-th candidate σ 
in the set Candidateσ, according to each element in the right-hand side of 
(27) 

o Element M(i,j) is the evaluation of (25) between the current observable 
state s and  the i-th sample in the agent memory, using the j-th parameter 
σ in the set Candidateσ. 

The dimension of the matrix M is N x CandidateSigmas where N is the 
number of records (si,ai,ri)i=1..N in the KBRL agent memory and CandidateSig-
mas = Card(Candidateσ) 

Parallel 2 

Input: State s∈S, S⊆RD 
       Action set A 
       MinSupport,MinWinRate,MinPF: QoINF filters  
                                    threshold values 
Output: best action a from state s 

1. Calculate DotP as specified in (26), in paral-
lel 

2. Pre-calculate the Kernel Function Matrix M us-
ing (27) 

3. for each candidate σ∈ Candidateσ 
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     3.1 set σ1 = σ2 = …σD = σ 
     3.2 for each a∈A calculate (21) using the  

 precalculated values in the matrix M          
     3.2 Maximize (20) with respect to a if (21) for  

 (a,(σ1..σD)) achieves a higher value 

4. loop step 3 over all σ∈ Candidateσ and actions 
a∈A 

5. Store the best values of a and (σ1 .. σD) which 
maximize (20) 

return:   

- the action a∈A for which the local maximum in 
step 1.2 is the best       

- optimum value of (20) achieved by the search. 

- the number of matches (non-zero terms) in the 
highest summation (21) which achieves the optimal 
value for (20).  

- the win rate and win/loss ratio in the optimal 
estimate (21) (see Section 5 for a complete de-
scription of the Quality of Inference filters) 

Complexity Analysis: 
The calculation of the inner product array DotP (26) has a complexity of O(N*D), 
where N is the number of records in the KBRL agent memory and D is the dimen-
sionality of the state space S of the underlying  Markkov Decision Process (MDP). 
This is the most computationally intensive step of the algorithm that can be ex-
ecuted on a parallel architecture. 

• The calculation of (2) takes N x Card (Candidateσ) steps and  has  a complexity 
of O(N), due to the fact that Candidateσ is a constant and user predefined set of 
σ parameters. 

• Step 3 of the algorithm has Card(Candidateσ ) iterations  
o Step 3.1 of the algorithm has O(D) = O(1) complexity 
o Step 3.2 of the algorithm has Card(A) steps. At each step the evaluation 

of (21) takes O(N) steps because terms in (21) are only scaled versions of 
elements in the DotP array, therefore the complexity of 3.2 is O(N) 

o Step 3.3 has complexity O(1) 
The complexity of step 3 is O(Card(Candidateσ )*N) = O(N) from step 3.2 

From the complexity analysis we conclude the complexity of the Parallel2 algo-
rithm is O(N*D), the complexity of step 1 of the algorithm.  
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7   Advantages and Disadvantages of the Proposed Metaheuristic 

The advantages of the proposed inference metaheuristic can be summarized as 
follows: 

─ the method solves the problem of kernel function selection for KBRL agents 
─ the isotropic discrete choice strategy proposes a fast linear search procedure for  

inference 
─  the anisotropic optimization strategy is introduced to provide superior quality 

of inference in the case of arbitrary conditional probability distributions. In 
practice this translates in the metaheuristic’s ability to discard irrelevant fea-
tures of the continuous state space S during decision making. An experimental 
study in  Section 4 illustrates this advantage. 

─  The proposed inference strategies can be easily implemented and executed on 
HPC architectures with one and two hierarchical levels. 

The disadvantages of the metaheuristic can be summarized as: 

─ the isotropic discrete choice strategy provides a lower performance compared 
to the  anisotropic discrete choice 

─ the anisotropic discrete choice is suited for fairly low dimensional problems, 
due to its  computational complexity that we focus on reducing in future work. 

8   KBRL Image Recognition Experiments 

In the following sections (8 and 9) we illustrate the applicability of the proposed 
KBRL inference metaheuristic to the problem of image recognition, using the 
isotropic discrete choice strategy.  First we cast the problem of classification in the 
context of reinforcement learning. Then we test the Parallel1 implementation of 
the Istotropic discrete choice strategy to classify the images in the Original and 
Extended Yale Faces Databases. In the experiments we perform online classifica-
tion on a test set comprising of 15 different classes (Original Yale Faces Database) 
and 39 classes (The Extended Yale Faces Database) respectively, using an 
OpenMPI implementation of the Parallel1 algorithm. The experiments show the 
ability of the inference metaheuristic to correctly classify the subjects in the image 
databases. We then focus on the performance of the Parallel2 algorithm to classi-
fying images in real time and illustrate our preliminary tests on the FCINT Com-
puter Vision System. 

8.1   Purpose 

The purpose of this section is to illustrate the applicability of the proposed KBRL 
inference metaheuristic to the problem of image recognition on the Yale Faces 
Databases (Original and Extended). 

Considering a set S={(xi,yi)}i=1..m of labeled images xi, xi ∈ RN (i=1..m) with 
labels yi from a finite alphabet A⊂R, the problem of using the proposed inference 
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metaheuristic described in Section 3 is to classify each input example xi by cor-
rectly choosing a label (action ) ai ∈ A such that ai = yi. 

8.2   Data 

The Original Yale Faces Database  
The original Yale Faces Databases A [10] contains 165 grayscale images in GIF 
format of 15 individuals. There are 11 images per subject, one per different facial 
expression or configuration: center-light, w/glasses, happy, left-light, w/no 
glasses, normal, right-light, sad, sleepy, surprised, and wink.  

The original GIF images were converted to 256 Bitmap (.BMP) format and 
scaled to 1/16 their original size (25% width and height stretch), such that the 
resulting images were reduced to 80 x 61 pixels in size.  Each image was con-
verted to a 4860 dimensional training sample. The assigned label was the number 
identifying the subject in the image. For this classification problem, the alphabet 
of labels is A= {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} corresponding to each indi-
vidual in the pictures.  

For each individual, half of the images were stored in a training set (83 sam-
ples) and half were stored in a test set (82 samples) 

 

Fig. 1 Sample images from the Original Yale Faces Database 

The Extended Yale Faces Database 
The Extended Yale Faces Database [11] (size 76 MB) contains 2414 images in 
PGM format for 39 subjects. There are an average 64 pictures for each subject 
under different illumination conditions: intensity (ambient and specular light) and 
direction (specular light), the database providing more variability in the sampling 
of the images of the subjects compared to the original Yale Faces Database. For 
this experiment the original cropped images were converted to 256 Bitmap 
(.BMP) format and scaled to 53 x 61 pixels in size, establishing a 3233-
dimensional classification problem.  

For each subject, half of the images were stored in a training set and half were 
stored in the test set. The images were equally split between the two sets by pre-
serving an equal balance of illumination conditions. 

Figure 2 illustrates sample illumination conditions for a set of subject photos 
from the Extended Yale Faces Database. For each subject, the images were 
equally partitioned into test and training sets. 
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Fig. 2 Sample illumination conditions in the Extended Yale Faces Database 

 

Fig. 3. Sample subject images from the Extended Yale Faces Database 

Figure 3 shows image samples for 28 distinct subjects in the Extended Yale Faces 
Database. 

Casting Classification as a Reinforcement Learning Problem 
The classification problem is equivalent to a reinforcement learning problem by 
properly defining the environment reward as a function of the form: 
R: S x A R , 1,1,                                               (28) 

Under this assumption, the agent performing the classification uses a simple gree-
dy policy: , ,                                           (29) 

where x is a test image and a corresponds to the hypothesis that the label of x is a 
For this experiment, we used the metaheuristic (20) proposed in section 3 with 

the isotropic discrete choice strategy. 

8.3   Experimental Procedure 

The images were split into two sets: 

• TRAIN – 83 images / TEST – 82 images for the Original Yale Faces Database 
• TRAIN – 1209 images / TEST – 1205 images for the Extended Yale Faces 

Database 

We ran two image recognition experiments using the Parallel1 inference algo-
rithm, one for each image database, on the UPB NCIT cluster [1].  
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Each experiment consisted of two passes (two-fold cross-validation): 

• Pass 1: Using TRAIN as the initial training set, label the images in the TEST 
set 

• Pass 2: Using TEST as the initial training set, label the images in the TRAIN 
set 

For each image database the classification accuracy was measured as follows: 

─ Parallel1 was run with the number of worker cores equal to σsteps = 80 in both 
Pass 1 and Pass 2 

─ The total number of classifications passing a minimal QoINF filter was counted 
in each pass, together with the number classifications 

─ Based on the total number of classifications passing the QoINF filter and on the 
number of correct ones, the classification accuracy was measured for each pass 
as a percentage 

─ The combined accuracy for the entire experiment (image database) was meas-
ured 

A table is shown for each image data base with the accuracy in each pass as well 
as the combined accuracy. 

For each pass the following procedure was used: 

─ In an initial training stage, all the samples in the training set were stored with 
their corresponding labels in the KBRL agent’s memory in the root (master) 
MPI process.  

─ Online classification and learning was performed for the images in the test 
set: 

o for each image x in the test set: 
 Classify the image using the Parallel1 algorithm using the Iso-

tropic 
Discrete Choice strategy, as shown in Subsection 6.2 

 Add x to the KBRL agent memory on all nodes (online learning) 
 Count the inference if it passes QoINF filter  

The complete data sets, implementation and simulation results for the OpenMPI 
implementation of the Parallel1 algorithm are available at [12]. 

In all passes of both experiments, the Parallel1 inference algorithm was tested 
with the following parameters: 

o σmin = 0.0001 
o σmax = 100 
o σsteps = 80 
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The set A of possible actions (classes) of the MDP of the KBRL agent was set to: 

o A = {1,2,..,15} for the Original Yale Faces Database and  
o A= {1,2…,40} for the Extended Yale Faces Database 

─ QoINF filters: The WinPercentage(1) and MinSupport(1)  inference filters 
were applied with the threshold parameter set to 100%,and 1 respectively such 
that only 100% confidence classifications were considered with at least one 
memory match, i.e classifications were only considered accurate if confidence 
was 100% for at least one image match. 

8.4   Classification Results of the Isotropic Discrete Choice in 
Parallel1 Implementation  

The Original Yale Faces Database.  

The classification results of the KBRL agent can be summarized as follows: 

• Pass 1 result: From a total of 82 samples, 40 inferences passed the QoINF infe-
rence filters with a recognition accuracy of 100%. The rest of the samples were 
not recognized due to the high dimensionality of the data (4860 inputs), data 
sparsity (less those 200 samples) and a rather large difference between the im-
ages presented and the samples stored in memory. 

• Pass 2 results: From a total of 83 samples, 42 inferences passed the inference 
filters with a recognition accuracy of 100%. The rest of the samples were not 
recognized for the same reasons as in pass 1. 

• Overall the Parallel1 inference algorithm achieved  100% classification accu-
racy on the Original Yale Faces Database 

Table 5 Parallel1 accuracy analysis – The Original Yale Faces Database 

Pass 1 total classifi-
cations 

Pass 1 correct classifications Pass 1 accuracy 

40 40 100% 
Pass 2 total classifi-
cations 

Pass 2 correct classifications Pass 2 accuracy 

42 42 100% 
Total classifications Total correct classifications Overall accuracy 

82 82 100% 
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The Extended Yale Faces Database  

The image recognition results of the KBRL agent on the Extended Yale Faces 
database can be summarized as follows: 

─ Pass 1 result: From a total of 1127 samples, 923 image classifications (infe-
rences) passed the QoINF inference filters with a recognition accuracy of 
81.89%. The rest of the samples were not recognized due to the high dimensio-
nality of the data and a rather large difference between the illumination condi-
tions for the images in the training set compared to the test set images. 

─ Pass 2 results: From a total of 1118 samples, 887 inferences passed the infe-
rence filters with a recognition accuracy of 79.33%. The rest of the samples 
were not recognized for the same reasons as in pass 1. 

Overall the Parallel1 inference algorithm achieved 80.6% classification accuracy 
on the original Yale Faces Database 

Table 6 Parallel1 accuracy analysis – The Extended Yale Faces Database 

Pass 1 total classifica-
tions 

Pass 1 correct classifications Pass 1 accuracy 

1127 923 81.89% 
Pass 2 total classifica-
tions 

Pass 2 correct classifications Pass 2 accuracy 

1118 887 79.33% 
Total classifications Total correct classifications Overall accuracy 
2245 1810 80.6% 

9   The Parallel2 Algorithm and the FCINT Computer Vision 
System 

In this section we describe the use of the Parallel2 algorithm introduced in Sub-
section 6.2 in a real time image classification application. 

To this aim, we have developed the experimental FCINT Computer Vision Sys-
tem [13] illustrated in figure 4, which is currently being developed around the 
Parallel2 algorithm. The final purpose of the system is to identify the inhabitants 
of a building using facial features, an implementation in a GPU and classification 
in the features subspace using the Parallel2 algorithm. 

More specifically, we present the Parallel2 algorithm’s average image classifi-
cation time in a parallel implementation on an NVIDIA GeForce 210 GPU using 
OpenCL and we compare the execution times to the implementation on a single 
CPU core, using various training set (KBRL agent memory) sizes.  
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Fig. 4 The FCINT Computer Vision System – identification of a number of people in a 
room (image classification using the Parallel2 algorithm) 

9.1   Parallel2 and the FCINT Computer Vision System  

In the FCINT Computer Vision System (figure 4) we have developed a GPU im-
plementation of the Parallel2 algorithm which was described in Subsection 6.2. 

In our implementation, the calculation of the DotP array which is the most com-
putationally intensive task was tested on both the NVidia GeForce 210 GPU and 
on the CPU in our analysis. 

More specifically, in step 1 of the Parallel2 algorithm: 

○ For each gray scale image linearized as a 8100 vector (figure 4 – 
right) the squared dot product between the grayscale images and 
each sample stored in the KBRL agent memory is executed in paral-
lel on the GPU using the OpenCL programming model [2]. This is 
the first step of the Parallel2 algorithm, as shown above. This is the 
most computationally intensive task which we considered demands 
parallelization. (see Subsection 6.2 for the complexity analysis of 
the Parallel2 algorithm).  

○ The squared dot products are used by the main CPU for image clas-
sification in the rest of the algorithm, as steps 2-5 require linear 
complexity O(N) in the number of samples stored in the agent’s 
memory (see Subsection 6.2 for the complexity analysis). 
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Below we include the listing of the squared dot product GPU kernel function 
which executes the calculation of the DotP array step 1 of the Parallel2 algorithm. 
The kernel function is executed by each scalar processor on the GPU. 

__kernel void dotproduct( __global float *state, __global 
float *arrayMatrix, __global float *DotP, int nRe-
cords,int probDimension  ) 

{  
    int id=get_global_id(0); 
    int i=0;\nint j=id*probDimension; 
    float dotProduct=0; 
 for(i=0;i<probDimension;i++){ 
   dotProduct=dotProduct+(arrayMatrix[j+i]-   
 state[i])*(arrayMatrix[j+i]-state[i]);}; 
 dest[id] = dotProduct*(-0.5); 
}; 

The kernel function dot product is called in step 1 of the Parallel2 algorithm with 
the following parameters:  

○ state : a 8100 dimensional array containing the grayscale encoding 
of the current image viewport for which classification is performed 

○ arrayMatrix: an N x 8100 array with the grayscale image encodings 
of all the previous N  90 x 90 pixels image viewports encodings 
stored in the agent memory 

DotP – an N dimensional array with the squared dot product calculated by the 
GPU kernel 

Technologies used in the FCINT Computer Vision System: 

• We used the AForge.NET library for video frame capturing from any installed 
videocamera  

• We used the OpenCV (Open Computer Vision) Library for face detection in 
each frame analyzed. For speed improvements, we applied the algorithm fol-
lowed by classification every 5 frames. 

• Up to 4 candidate face regions were converted individually to grayscale  
and each was stretched in a 90 x 90 pixel image (an example is illustrated in 
figure 4) 

• For each captured grayscale candidate face image, we applied the Parallel2 
classification algorithm on the raw grayscale data (8100 dimensional real 
vector) as follows, in two separate timing experiments, which are summarized 
in Table 7: 
─ Experiment 1: Implementation of step 1 of the algorithm using the OpenCL 

toolkit provided in the NVIDIA GPU Computing SDK  4.0 - C++ Managed, 
and implementation of steps 2..5 using C# on the main CPU (single thread). 
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In this implementation, the use of the CPU in step 1 was only deemed neces-
sary if no OpenCL support was detected in the system (for our experiments 
this was not the case, but the mechanism is implemented in software). 

─ Experiment 2: full implementation in C# (CPU only, single core). In this 
case step 1of the algorithm was also executed on the CPU to measure the 
single core execution times of the Parallel2 algorithm (Table 7 column 3) 

9.2   Execution Benchmarks 

We have performed live image classification tests in a room using the Parallel2 
algorithm in the FCINT Computer Vision System. We used the OpenCL pro-
gramming model [2] in the NVIDIA GPU Computing SDK 4.0 [14]. The hard-
ware used is an NVIDIA GeForce 210 GPU [15] , with the following technical 
specifications: 

• CUDA Cores: 16 
• Graphics / Processor Clock: 589 MHz/ 1402 MHz 
• 512 MB , 64 bit memory interface, 8 GB/sec memory bandwidth 

Real time image tests were performed for image viewports consisting of 90 x 90 
grayscale pictures of the faces detected by the OpenCV Haar classifiers [16]. The 
Parallel2 algorithm performance was tested for various KBRL agent memory 
loads (Table 7). In the table we included sample execution times of the algorithm 
on the NVIDIA GPU implementation, in column 2.  Column 3 of Table 7 contains 
the execution (image classification) times of the Parallel2 algorithm on the single 
core CPU implementation, as a basis for comparison. 

The GPU implementation was tested against the following Intel-based architec-
ture configuration: Intel (R) Xeon(R) CPU 5120 @ 1.86GHz quad core, 4 GB of 
RAM, Windows 7 64 bits. 

Table 7 Parallel2 sample image classification times - the NVIDIA GeForce 210 GPU and 
single core CPU as a function of number of samples in the agent memory 

Images in the KBRL 
agent memory (num-
ber of MDP samples) 

Image classification 
time (ms) – NVIDIA 
GeForce 210 GPU 

Image classification 
time (ms) 

INTEL  
4 1 2 
100 4 4 
200 9 9 
1000 44 43 
2000 90 87 
4000 159 152 
6000 210 195 
8000 276 262 
10000 367 349 
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Figure 5 illustrates the comparative results of the GPU and single core CPU 
implementations. From our experiments the image classification performance of 
the Parallel2 algorithm attained on the GeForce 210 GPU is comparable in terms 
of execution speed with the image classification time obtained on the INTEL 
CPU. 

 

Fig. 5 Parallel2 image classification time as a function of the number of images in the 
KBRL agent memory 

9.3   Lessons Learned  

In this section we briefly described an experimental implementation of the Paral-
lel2 algorithm in the FCINT Computer Vision System which is currently under 
development. In this application, the KBRL inference metaheuristic has been 
tested and shown to work in a GPU implementation using the OpenCL program-
ming model [2] to the fast squared dot product step in the Parallel2 inference algo-
rithm used for image classification. 

In our current implementation we used the OpenCL library [2] for the parallel 
computation of the DotP array in step 1.1 of the Parallel2 algorithm. The imple-
mentation was tested on an NVIDIA GeForce 210 GPU against a single core CPU 
base run. Execution timing analysis shows that the performance of the GeForce 
210 implementation is comparable to the single core implementation of the Paral-
lel2 algorithm, due to the technical capabilities of the GPU. To achieve a higher 
performance (lower classification time), and more powerful GPU boards are 
needed for experimentation. Nevertheless, acceptable average image classification 
times of 90 ms can be achieved even with a GeForce 210 GPU at a memory load 
of 2000 images (Table 7). 
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10   Conclusions and Future Work 

10.1   Conclusions 

In this chapter we proposed a novel inference metaheuristic for reactive KBRL 
(Kernel-Based Reinforcement Learning) agents. The purpose of this contribution 
is to solve the kernel function parameter selection problem during the inference 
process of a KBRL agent operating in a continuous-state Markov Decision 
Process (MDP), using a polynomial time approximation algorithm, and to propose 
parallel implementations that achieve good accuracy and real time classification 
performance. For the proposed inference metaheuristic we suggest with two poly-
nomial time inference strategies: isotropic discrete choice and anisotropic optimi-
zation. We prove that the latter, even though more complex than the former, can 
isolate class-specific relevant features. This is illustrated using a synthetic data 
example.  Subsequent experiments focus on the isotropic discrete choice strategy, 
anisotropic optimization extensions being a future research direction. The infe-
rence metaheuristic is supplemented with a set of inference filters, together  
referred to as Quality of Inference (QoINF filters). The filters impose a set of con-
straints on the inference process and can lead to improved cumulative reward and 
increased accuracy from the reinforcement agent’s environment, preventing the 
agent from accumulatine excessive negative feedback in an unknown environ-
ment. 

The chapter includes two parallel inference algorithms for the isotropic discrete 
choice and provides extensive experimental results. The proposed algorithms are 
parallel variants of the isotropic discrete choice strategy: Parallel1 , tested on the 
UPB NCIT cluster and an optimized version for the GPU: Parallel2. We conclude 
that  the proposed inference metaheuristic is scalable both in cluster and GPU 
architectures and that the isotropic discrete choice strategy can provide accurate 
classifications (80%-100% accuracy) on the Yale Faces Databases (Original and 
Extended). The experimental results obtained in the FCINT Computer Vision 
system suggest that the Parallel2 algorithm, in an NVIDIA GPU implementation, 
can achieve near real time image classification performance. Finally we conclude 
that the Parallel2 algorithm is well suited for a GPGPU (General Purpose GPU) 
implementation. 

10.2   Future Work 

Future research directions will focus on imposing certain assumptions on the re-
ward function so that the inference process is tractable and using evolutionary 
computation in a GPU architecture implementation for the choice of kernel func-
tion, to enable partially obscured object recognition in images in real time. 

We envisage extending the Parallel2 algorithm for a parallel implementation of 
the anisotropic optimization strategy.  
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Multi-objective Simulated Annealing Algorithm 
for Partner Selection in Virtual Enterprises* 

Hisham M. Abdelsalam and Amany M. Mohamed 

Abstract. Virtual Enterprise (VE) is a temporary alliance of autonomous enter-
prises formed to act together to share skills or core competencies and resources in 
order to respond to a market opportunity. The success of VE strongly depends on 
its composition, so partner selection can be considered as the most important prob-
lem in VE. This paper presents and solves a model for the partner selection prob-
lem in VEs that considers two main evaluation criteria; project completion time 
and total cost. To do so, the paper uses a multi-objective algorithm, namely Pareto 
Simulated Annealing (PSA). Results showed improved performance of PSA com-
pared to the Tabu Search algorithm used in a recent study. 

Keywords: Virtual Enterprises, Partner Selection, Pareto Simulated Annealing, 
multi-objective optimization. 

1   Introduction 

With the rapidly developing information technologies and the continuous exacer-
bation of competitiveness in global manufacturing area, Virtual Enterprises are 
becoming most advanced and efficient approach to meet the market’s require-
ments of high quality, low cost, customer satisfaction, and quick responsiveness 
[1, 2]. VE is one of the most promising paradigms for the future enterprises [3]. 
And it’s important is increasing in quite different contexts such as manufacturing, 
healthcare, tourism, transportation and others [4]. VE is an alliance of separate 
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enterprises (that function autonomously), interconnected, customer oriented, and 
acting together to share skills or core competencies and resources in order to 
respond to market opportunity [5]. The collaboration among these enterprises is 
supported by computer networks. 

The typical life cycle of VE has four stages: creation, operation, evolution, and 
dissolution. The selection of partners (Partner Selection as named in the literature) 
is one of the most important problem in the creation and operation in VE. Partner 
selection is a difficult task and involves important decision making because it 
includes many factors: quality, cost, trust, delivery time, geographical limitations, 
communication skills, etc. However, the key factors to be addressed are cost and 
time [5]. 

In literature, qualitative analysis methods are commonly used to deal with the 
partner selection problem. Nevertheless, quantitative analysis methods for partner 
selection are still a challenge to VEs. Consequently, it is important to formulate 
mathematical models and to propose optimization methods for decision making on 
partner selection when a VE is to be established [6]. 

In 1996, Talluri and Baker proposed a two-phase mathematical programming 
approach for the partner selection in designing a VE where the factors of cost, 
time and distance were considered [7].  Wu et al. [8] established a cost-
minimizing model of virtual enterprise partner selection in Agile Manufacturing, 
and gave the solution of graph theory. A virtual enterprise partner selection model 
based on time constraints of minimize the cost was proposed and solved with a 
two-phase algorithm in [9]. Su et al [10] built model of virtual en-terprise partner 
selection and used an improved genetic algorithm to solve. A model of operational 
costs based on production and transportation cost minimization of virtual 
enterprise partner selection was presneted solved with the heuristic tabu search 
algorithm in [11].  In 2003, Ip et al., built model of virtual enterprise partner 
selection on the failure rate of sub-projects and minimize the loss of working time 
rate, and used real-parameter genetic algorithm (RGA) [12]. 

Researches established a virtual enterprise partner selection model of minimize 
the cost of the project, and gives Genetic Algorithm (GA) and branch & bound 
(B&B) algorithm [13]. In 2006, Zeng et al., proved that the partner selection 
problem with a due date constraint in a VE is a NP-complete problem, and a 
nonlinear integer programming model for this problem was established [14]. In 
2009, Yan et al., Established virtual enterprises partner selection model of 
minimizing the total cost and completing time and apply discrete particle swarm 
optimization algorithm (DPSO) to solve it [15]. 

Most of researches concentrate on time as a constraint in the virtual enterprises 
partner selection models, but a few of researches considered it in the objective 
function. In 2001, May and Carter have shown  in their case study of  "a virtual 
team working in the European automotive industry" that utilization of virtual en-
terprises which make them get benefits as better quality, lower costs and time re-
duction to market (from 20 to 50%).  Yet, most of researches concentrate on time 
as a constraint in the virtual enterprises partner selection models, but a few of re-
searches considered it in the objective functions. 
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This research proposes a model and a solution approach to the partner selection 
problem considering two main evaluation criteria: project completion time and 
project total cost. This multi-objective problem is solved by Pareto Simulated 
Annealing (PSA) algorithm. Section 2 provides a background on the topics related 
to the optimization method used in this chapter; multi-objective optimization, and 
Pareto Simulated Annealing. Section 3 presents the problem at hand and outlines 
its context along with the used mathematical model. Solution algorithm is 
provided in Section 4 followed by an illustrative example in section 5 and 
comparison to the Tabu Search algorithm. Concluding remarks and future research 
direction are given in Section 6. 

2   Background 

2.1   Multi-objective Optimization  

A general multi-objective optimization problem can be formulated in the follow-
ing manner. Given an n-dimensional solutions space  of decision variables 
tor , … , , it is required to find a vector  that satisfies a given set of 
criteria depending on  objective functions , … , .the solu-
tion space  is restricted by a series of constraints, such as   for 1, … , , and bounds on the decision variables [17]. 

Consider a decision-maker who wishes to optimize more than one objective and 
wants to find a solution that guarantee the optimal values for all objectives togeth-
er. But in real-life problems, objectives under consideration conflict with each 
other. So, if we focus on optimizing the solution with respect to a single objective 
frequently results in unacceptable results with respect to the other objectives. For 
that reason, a perfect multi-objective solution that simultaneously optimizes each 
objective function is almost impossible. A sensible solution to a multi-objective 
problem is to explore a set of solutions, each of which satisfies the objectives at an 
acceptable level without being dominated by any other solution [18].  

The concept of Pareto dominance (Pareto optimum) was proposed by Vilfredo 
Pareto in 1896. This concept has been widely used to establish superiority be-
tween solutions in multi-objective optimization [19]. 

Marler and Arora sum up the multi-objective optimization area within the fol-
lowing definitions [20]: 

• Pareto dominance: consider minimization problem, a feasible solution  is said 
to dominate feasible solution   , if  _  for  1, … ,  and  _  for at least one objective function [18].  

• Weak dominance: A solution   is said to weakly dominate a solution     if  is better than   in at least one objective and is as good as   
in all other objectives. 
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• Pareto optimal solution: A solution is said to be Pareto optimal if it is not dom-
inated by any other solution in the solution space. 

• Pareto optimal set: The set of all feasible non-dominated solution in  and the 
corresponding objective function values in the objective space is called the Pa-
reto front. 

2.2   Multi- objective Simulated Annealing 

In 1953, Metropolis’s paper brought attention to the idea of simulated annealing 
[28]. In this paper, the algorithm simulated the cooling of material in a heat bath. 
This process is known as annealing. The structural properties of the solid depend 
on the rate of cooling, if you heat a solid past melting point and then cool it. If the 
cooling process of the liquid was slow, large crystals will be formed.  Neverthe-
less, if the cooling process of the liquid was quick the crystals will contain imper-
fections.  

The material in Metropolis’s algorithm simulated as a system of particles.  The 
algorithm simulates the cooling process by lowering the temperature of the system 
gradually until it converges to a steady, frozen state.  

The process can be described as follows. First, to solid melts the temperature of 
the heat bath is increased to a maximum value. Therefore, all particles of the solid 
arrange themselves randomly. Afterwards, to arrange the particles in structured 
lattice with minimum energy the temperature is carefully decreased until the par-
ticles of the melted solid reach in the ground state of the solid. The physical an-
nealing process can be simulated by computer programs using Monte Carlo tech-
niques proposed in [28]. Given an actual state  of the solid with energy , a 
perturbation mechanism is applied to generate a new state , which transforms 
the current state into the next state by a small distortion. The state   is ac-
cepted as the current state if the energy difference  ΔE E E  is less or 

equal to zero. The state   is accepted with probability exp , , where T de-

notes the temperature of the heat bath and   the Boltzmann constant [21].  
In 1982, the idea of the Metropolis algorithm was taken by Kirkpatrick and ap-

plied it to optimization problems. In this context, the simulated annealing is used 
to search for feasible solutions and converge to an optimal solution.  As the tem-
perature drops, the probability of accepting deteriorated solutions decreases. The 
decreasing probability for accepting deteriorations is controlled by a scheme 
called a cooling schedule. To freely explore the solution space in the beginning of 
an optimization process and to fully exploit the most promising region in the solu-
tion space, a cooling schedule starts at a high temperature and decreases toward 
zero as the search progresses. 

Pareto Simulated Annealing  
In 1992, Serafini proposed multiple objective version of simulated annealing. The 
method uses the standard scheme of single objective simulated annealing. The 
outcome of the algorithm is the set of potentially Pareto-optimal solutions  
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containing all the solutions not dominated by any other solution generated by the 
algorithm. Serafini considered a number of acceptance rules, defining acceptance 
probability of new neighborhood solutions. 

In 1999, Ulungu et al. proposed a method called multi-objective simulated an-
nealing (MOSA). They also used multiple objective acceptance rules. MOSA uses 
a number of predefined weight vectors. Each of the vectors is associated with an 
independent annealing process. 

In this study, we used Pareto simulated annealing (PSA). PSA is a multiple ob-
jective meta-heuristic that uses the same concept of single objective simulated  
annealing. PSA differs from the single objective simulated annealing in two main 
issues: (1) instead of using just one solution; PSA uses a set of generated 
tions ; and (2) the way of which the probability for accepting new neighborhood 
solutions is calculated. 

For each, generating solution Y there is a new generated solution . The prob-
ability (P) of accepting  is equal to one, if   dominates Y. Otherwise: 

, , , Λ min 1, exp /  

where  is the change in the objective function values of objective j 
for solutions  and ,  is the number of objectives,  is the annealing tempera-
ture, and Λ  is the weighting vector Λ , , … , for solution .  

The weighting vector Λ is used to assure dispersion of the generating solutions 
over the whole . If the weight associated with a given objective is high, the 
probability of accepting the new solution that decrease the value on this objective 
is low and the probability of improving the value of this objective is high. For a 
given solution ∈ , in order to increase the probability of moving away from its 
closest neighbor in  denoted by  the weights are changed. 

This is obtained by increasing the weights of the objectives with a factor of 
( 0 and is a constant close to 1) on which  is better than  and decreasing 

the weights of the objective with a factor of 1/  on which  is worse than . The 
flowchart of a PSA algorithm is shown in fig. 1. 

 During the all iterations of PSA, the non dominated solution is preserved in a 
set called Pareto set (PS). If the solution  dominates its preceding solution Y in 
the generated set,  is checked for Pareto dominance among solutions in PS.  is added to PS if it is non-dominated. All solutions originally in  that are 
dominated by  are removed from . 

The PSA process is stopped when stop conditions are fulfilled. Several com-
monly used stop conditions include: (1) predetermined number of solutions (i.e., 
iterations) is generated and evaluated and (2) the accepting ratio of solutions falls 
below a threshold. When PSA stops, the non-dominated set  contains solutions 
that form the approximated Pareto front [22]. 
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Fig. 1 Flowchart of PSA 
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3   Problem Description  

3.1   Context  

Assume a set of companies capable of performing activities, providing a finite 
amount of resources and these resources are available over specific intervals of 
time. One of these companies is responsible for formation process of the virtual 
enterprises (this company can be considered as the decision maker). Companies 
have predefined relationships that will determine how these companies will con-
nect with each other.  

At a certain point of time, projects are created. Each project has a set of activi-
ties that demands a specific amount of resources, have to be performed within a 
given time interval and have a number of precedence relationships. The problem 
framework is shown in Fig. 2. 

The aim of this study is to obtain the optimal group of partner enterprises for all 
projects in order to minimize the total cost and completion time of the projects. 
The main constraints are time windows and the minimum amount of resources  
required. 

 

 

Fig. 2 Problem Framework 

3.2   Objectives and Constraints  

At a certain point of time, give a set of companies (VEs) and a list of candidate 
projects, it is required to obtain the optimal group of companies that perform all 
activities of candidate projects. 
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The problem is a multi-objective problem with two main objectives: 

• Minimizing the project’s total cost 
• Minimizing the project’s total time. For each solution, we try to fit the set of 

companies that can execute the projects in minimum time. This can occur when 
the company allows the activity to start working in its earliest start time or soon 
as possible from it 

 

The problem constraints are: 

1. Time Window constraint (if company contracted to perform an activity the time 
interval of its resources are available fits the ‘time window’ of activity). 

2. Ensure that if company contracted to perform an activity in a specific time, it 
provides the quantity of resource that the activity is required. 

3. The project completion time must be less than the project deadline. 
4. Total cost of project activities cannot be larger than the global budget of the 

project. 
5. Ensure that the precedence relationships between activities are achieved. For 

two activity ‘A’ and ‘B’ with a precedence relation, execution of activity ‘B’ 
can only begin after execution of activity ‘A’. 

3.3   Model Formulation 

Indices.  

 = 1, … , T Time periods 
 = 1, … , E Companies 
 = 1, … , P Projects 

Parameters.  

 : Project completion time 
: Deadline of project  
: budget of project  

: set of candidates for performing activity  
: available quantity of resources of candidate  in period  ,  : Interval time in which candidate  is available  

 : set of activities in project  
 : processing time of activity  of project  ,  : Time window to perform activity  of project  

 : cost for performing activity  by candidate   
 : quantity of resources needed to perform activity  of project   

Decision Variables 
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Objective function, to minimize  

 , 
         ∈  

Subject to the following constraints 
 

          ∈  

          ∈ , ∈  

          , ∈ ,     ∈  

          ∈ , ∈  

          ∈ , ∈            ∈ , ∈  

4   Solution Algorithm  

4.1   Solution Representation  

A solution is represented in a vector consists of two rows. The first row represents 
the name of activities in each project and the second row represents the companies 
ID associated with each project activity. 

Solution length is the total sum of the number of activities in each project we 
have. For example, if we have two projects one of them has five activities and the 
other has four activities, the solution length will be nine.  

Fig. 3 shows the solution representation. From this representation, Act1 can be 
performed by company 20 and Act2 can be performed by company 5 etc.  
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Act 1 Act 2 Act3 …… Act n Act1 Act 2 Ac3 ……. Act m
20 5 15 10 50 25 100 80

 

Fig. 3 Solution Representation 

4.2   Generating an Initial Solution  

A heuristic is used to generate the initial feasible solution. For each activity, we 
have a list of companies that are able to execute it (resources that the activity 
needs are available in each company in the list). First of all, for each project, find 
the sequence of project’s activities that satisfies the precedence constraint and then 
to generate the group of companies that will be able to execute this project follow 
the following steps: 

• For the first activity, find the list of companies that are able to execute it. 
• Select randomly a company and ensure that the company satisfies all con-

straints of time interval and the quantity of resource of this activity. If the se-
lected company does not satisfy the constraints, select another one randomly 
until finding the company that satisfies constraints. 

• Schedule the activity by determining the actual start time and the earliest finish 
time. 

• Update the available time interval of the resource activity by cutting the time 
window of the activity form it and update the available company’s resource 
amount by decreasing the amount of activity’s resource amount from it.  

• Repeat the pervious steps for the remaining activities in the project until finding 
the feasible group of companies. 

Finally, repeat the pervious heuristic to generate a feasible set of random  
solutions. 

4.3   Time Calculation 

To calculate the completion time of each project in the solution (VE configura-
tion); apply the following steps for each project activity: 

• If the activity has no inputs, based on the available time of the activity resource 
in the proposed enterprise, find the available interval that the activity can start 
in it and then calculate its finish time.  

• If the activity has inputs, the actual start time will be the maximum finish time 
of all its inputs. Based on the actual start time, find the available interval that 
the activity can start on it and then calculate its finish time. 

• Repeat the pervious steps until execute the all activities. 

The project completion time will be the finish time of the last activity in the 
project. 
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4.4   Generating a New Solution   

From the literature, there are a many methods to generate a new solution from the 
current one.  Pairwise exchange “Select two elements from the solution configura-
tion and swap the values of it”, insert move “Select an element from the solution 
configuration and remove it from its position and insert it into the position before 
or after the second selected cell”, 2-opt “Select two elements from the solution 
configuration and reverse the order of them”, and tails swap “Select two elements 
from the solution configuration and exchange the tails” [23- 27]. 

In our problem, the pervious types of methods do not work because each activi-
ty has a list of companies that can execute it. We want to guarantee that when we 
exchange (swap) the company of a specific activity, we select another company 
that can execute it also; consequently, we apply a different move that proposed in 
[4]. In this paper, the move will be slightly different; the total number of compa-
nies that will be changed equal to the total number of projects in the solution. 

To generate a new solution, we will change the selected company in the current 
solution with a company outside the solution (from the list of companies). For ex-
ample, if we have two projects in the solution we will generate the new solution 
by changing two companies by selecting activity randomly and then select the 
company ID randomly. 

Because of the problem is constraint problem, we will first check the feasibility 
of the new solution. If the new solution is feasible, the current solution will be re-
placed by the new solution. 

Example 
Assume that the company list of two activities as follows: 

 
D G 
3 1 
4 10
20 15
5 6 

 
And the current solution as follows: 
 

A B C D E F G 
4 3 10 20 1 5 6 

 
If we select randomly activities “D” and “G”, the new solution may be as fol-

lows: 
 

A B C D E F G 
4 3 10 5 1 5 15 
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4.5   Feasibility  

The solution will be unfeasible solution if: (1) at least one project violates the 
problem constraints or (2) at least one enterprise of the proposed enterprises can’t 
execute the activity in its available time window and with its amount of resources. 
This research only accepts feasible solution. 

4.6   Stopping Criterion 

The algorithm will be terminated when it reach the stopping temperature. 

5   Illustrative Example 

This example presents a case in which we have two projects and a network com-
posed of 50 companies. By applying the pervious algorithm, we want to find the 
optimal group of companies that can execute the projects in acceptable level of 
time and cost. The proposed algorithm is coded in Visual Basic for Application 
(VBA) on Excel. 

5.1   Input Data  

Each project is decomposed into six activities. Each activity demands a specific 
amount of resource in a specific time interval. The data of each project includes 
the following fields [Activities name (Act_name), Precedent activities 
(P_activities), Duration, Earliest Start time (ES), Latest Finish time (LF), Re-
source ID (R_ID), Quantity of resource (Q_R)]. Projects data are presented in ta-
ble 1(a) and (b).  Project 1 can start immediately and has to be completed before 
day 165. Project 2 can start on day 10 and has to be completed before day 234. For 
project 1 activity A, B, and C has no inputs; activity “D” will start when activity 
“A” finished and the same issue for activities “E” and “F”. Activity “A” need to 
400 unit of resource from the resource that it’s ID is “7” to be completed in 36 
day.  

The data of each company includes the following fields [Company ID (C_ID), 
Set of activities that the company can execute (Act_execute), cost of executing ac-
tivities (Cost), ID of available resources (RID_available), Quantity of available re-
source (RQ_available), and Available time interval of resources 
(RTime_available)]. A sample of 20 companies is presented in appendix A. Com-
pany 1 can execute the activities G, F, C, J, and K and the cost is 90, 80, 60, 100, 
and 105 respectively. The available resources in the company are 5 resources 4, 8, 
3, 6, and 9, and the available quantity is 1000, 900, 700, 800, and 600; these re-
sources available in a specific intervals of time. For resources 4, 8, 3, 6, and 9, the 
available time intervals are [0, 400], [10, 500], [10, 300], [0, 400] and [25, 500] 
respectively. 
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Table 1(a)  Projects data [4] 

Project 1 

A
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D
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E
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L
F

 

R
_ 

ID
 

Q
_R

 

A - 36 0 106 7 400 

B - 62 0 97 8 604 

C - 67 0 122 3 528 

D A 16 36 122 5 275 

E B 25 62 122 4 368 

F C, E, D 43 87 165 8 304 

Table 1(b)  Projects data [4] 

Project 2 
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G - 99 10 159 4 362 

H - 56 10 202 2 206 

I - 30 10 202 9 135 

J G 41 109 201 6 116 

L G 44 109 201 8 221 

K H, I, L, J 32 153 234 9 282 

Table 2 Algorithm Parameters 

Parameter Value 

Initial Temperature  200 

Stopping Temperature 1 

Cooling rate 0.98 

Maximum solution number of acceptance 30 

Maximum solution number of rejection  30 

Pareto set size 7 

5.2   Results 

To initialize the feasible initial solution, for each activity, find the list of compa-
nies that have the resources which activity need and select randomly one of them. 
Check if the selected company has the quantity of resource that activity need in its 
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available interval time. If not, randomly select another one; stop this process when 
finding a feasible company that satisfies the all constraints. For example, from the 
sample of the companies’ data, the list of companies that can perform activity “A” 
are company 2, 8, 4, 10, 11, 32, 28, 30, 34, 44, and 50. Example of initial feasible 
solution is presented in table 3.  

Table 3 Example of Initial Feasible Solution 

A B C D E F G H I J L K 

32 27 50 49 27 29 1 28 34 42 28 34 

The schedule of the initial solution is presented in table 4. 

Table 4 Schedule of initial solution 

Activity ID Start Time Finish Time 

Project 1 

A 80 116 

B 48 110 

C 100 167 

D 116 132 

E 110 135 

F 167 210 

Project2 

G 10 109 

H 100 156 

I 25 55 

J 109 150 

L 109 153 

K 156 188 

Each project will be scheduled to calculate the completion time of it. For each 
activity, find the available start time that is suitable to the available interval time 
of required resource. For example, the earliest start time of activity "A" in project 
1 is 0 but actually the activity will start in day 80; because the available start time 
for the resource "7" is 80. The finish time of the activity is 116 (80 + 36). If the 
activity has inputs, the actual start time will be the maximum finish time of all its 
inputs. For example, activity "F" has inputs C, E, and D and according to the 
schedule these inputs will finished in 167, 135, and 123 respectively, so activity 
"F" will start in day 167. The completion time of the project will be the finish time 
of the last activity in the project, consequently the completion time of project 1 
and project 2 is the finish time of activities "F" and "K" which is 210 and 188 re-
spectively. And the total time of the initial solution is 398 (210 + 188).   
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After using the algorithm parameters (as presented table 2) and applying PSA, 
we have obtained 7 non-dominated solutions. Table 5(a) and (b) shows a sample 
of these solutions. In this table, each row contains the companies assigned to the 
project activities. For example, solution VE1 for project 1 includes companies 2, 
33, 46, 37, 3, and 35 respectively for activities A, B, C, D, E, and F. And figure 4 
shows the Pareto front solutions. Fig. 4 shows the objective function values of 
time and cost of each solution during the iterations, and shows the non-dominated 
solutions (Pareto Front). As we can see, the non-dominated solutions are the set of 
solutions in the left side of the graph, and it strongly dominated the other  
solutions. 

Fig. 5 shows the Pareto Front progress during iterations. In the beginning of the 
iterations, the solutions in the Pareto set have largest value of time and cost.  Dur-
ing the iteration the solutions in Pareto set have better values and the solutions 
values get closer to each other until they form the Pareto front as shown in fig. 5 
(x), (y), (z), and (aa). 

Table 5(a) Non-dominated solutions  

 Project 1 

A B C D E F 

VE1 2 33 46 37 3 35 

VE2 13 33 35 31 17 29 

VE3 2 33 46 37 3 35 

VE4 15 17 6 37 23 29 

Table 5(b)  Non-dominated solutions  

 Project 2 

G H I J L K 

VE1 15 8 46 43 12 31 

VE2 15 48 26 29 25 1 

VE3 15 8 46 43 12 31 

VE4 3 22 46 46 18 19 
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Fig. 5 (continued) 
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illustrative example presented earlier and setting were made to have both algo-
rithm reaches a certain number of solutions’ evaluation (7800 evaluations). To 
measures were taken for this comparison; (1) CPU time, and (2) converge of Pare-
to fronts [29]. Assume two Pareto fronts A and B, the converge C A, B  of the two 
Pareto fronts maps the ordered pair A, B  to the interval [0, 1]: 

C A, B | b ∈ B| a ∈ A: a b ||B|  

where |B| means the number of solutions in set B. C A, B  gives the fraction of B 
dominated by A. C A, B 1 means that all individuals in B are dominated by A. 
The opposite C A, B 0 represents the situation that no individual in B is domi-
nated by A [29]. 

Applying the pervious concept on the case at hand resulted in C TS, SA  = 0.51 
and C SA, TS  = 0.82 indicating that the effectiveness of SA is much better than 
that of TS. On the other hand, the CPU time (in minutes) - shown in Table 6 - 
shows that the efficiency of SA is also higher than that of the TS.  It should be 
noted, however, that the computation time is relatively high for both algorithm be-
cause of the use of VBA.  

Table 6 CPU time (minutes) 

TS  SA  

Min 15.95 Min 4.56

Average 20.49 Average 5.99

Max 28.43 Max 8.03

7   Conclusion   

In this study, an approach based on Pareto Simulated Annealing is used to solve 
the problem of partner selection in virtual enterprises. Partner selection is the most 
important problem in virtual enterprises, and it has attracted much research atten-
tion in recent times. Most of researches concentrate on time as a constraint in the 
virtual enterprises partner selection models, but a few of researches considered it 
in the objective function. And because of the importance of cost and quick respon-
siveness to the market’s opportunity, we considered two main evaluation criteria: 
completion time and cost. An illustrative example demonstrates that the used algo-
rithm have better performance in solving the problem. Future work will study the 
proposed approach on Research and Development projects and investigate the in-
fluence of different values of the Simulated Annealing parameters. 
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Appendix A: Companies Data 

Company ID Act_execute G F C J K 

1 Cost ($ 1000’s) 90 80 60 100 105 

 RID_available 4 8 3 6 9 

 RQ_available 1000 900 700 800 600 

 RTime_available [0, 400] [10, 500] [10, 300] [0, 400] [25, 500] 

       

Company ID Act_execute D A K L B 

2 Cost ($ 1000’s) 110 109 80 99 120 
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 RID_available 5 7 9 8  

 RQ_available 1000 900 700 800  

 RTime_available [0, 300] [10, 400] [60, 500] [20, 500]  

       

Company ID Act_execute H A C E L 

8 Cost ($ 1000’s) 102 96 90 107 95 

 RID_available 2 7 3 4 8 

 RQ_available 1000 900 700 800 600 

 RTime_available [0, 500] [10, 400] [10, 300] [70, 400] [70, 500] 

       

Company ID Act_execute H A B G  

4 Cost ($ 1000’s) 116 103 119 50  

 RID_available 2 7 8 4  

 RQ_available 1000 900 700 800  

 RTime_available [0, 500] [0, 400] [50, 500] [50, 400]  

       

Company ID Act_execute D A B J  

10 Cost ($ 1000’s) 90 105 115 98  

 RID_available 5 7 8 6  

 RQ_available 1000 900 700 800  

 RTime_available [40, 300] [50, 400] [40, 500] [40, 400]  

       

Company ID Act_execute G F E A  

11 Cost ($ 1000’s) 100 75 117 111  

 RID_available 4 8 7   

 RQ_available 1000 900 700   

 RTime_available [10, 300] [80, 500] [0, 400]   

       

Company ID Act_execute I E L   

45 Cost ($ 1000’s) 102 120 78   

 RID_available 9 4 8   

 RQ_available 1000 900 700   

 RTime_available [250, 500] [90, 400] [62, 500]   

       

Company ID Act_execute F C E   

35 Cost ($ 1000’s) 45 63 110   
 

 
 

RID_available 
 

8 
 

3 
 

4 
 

 
 

 

 RQ_available 1000 900 700   

 RTime_available [110, 500] [50, 300] [15, 400]   
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Company ID Act_execute H I J D  

22 Cost ($ 1000’s) 102 111 78 101  

 RID_available 2 9 6 5  

 RQ_available 1000 900 700 800  

 RTime_available [90, 500] [58, 500] [80, 400] [56, 300]  

       

Company ID Act_execute D A E   

32 Cost ($ 1000’s) 82 98 112   

 RID_available 5 7 4   

 RQ_available 1000 900 700   

 RTime_available [0, 300] [80, 400] [80, 400]   

       

Company ID Act_execute F B E K  

27 Cost ($ 1000’s) 74 99 126 79  

 RID_available 8 4 9   

 RQ_available 1000 900 700   

 RTime_available [48, 500] [65, 400] [70, 500]   

       

Company ID Act_execute A K L H  

28 Cost ($ 1000’s) 80 95 101 99  

 RID_available 7 9 8 2  

 RQ_available 1000 900 700 800  

 RTime_available [200, 400] [250, 500] [78, 500] [100, 500]  

       

Company ID Act_execute F J H G  

29 Cost ($ 1000’s) 63 54 96 85  

 RID_available 8 6 2 4  

 RQ_available 1000 900 700 800  

 RTime_available [49, 500] [20, 400] [105, 500] [90, 400]  

       

Company ID Act_execute G C B A  

30 Cost ($ 1000’s) 75 71 103 89  

 RID_available 4 3 8 7  

 RQ_available 1000 900 700 800  

 RTime_available [0, 400] [70, 300] [150, 500] [25, 400]  

Company ID Act_execute A K I L  

34 Cost ($ 1000’s) 99 85 96 105  

 RID_available 7 9 8   

 RQ_available 1000 900 700   
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 RTime_available [10, 400] [25, 500] [19, 500]   

       

Company ID Act_execute C I J   

42 Cost ($ 1000’s) 86 103 73   

 RID_available 3 9 6   

 RQ_available 1000 900 700   

 RTime_available [90, 300] [58, 500] [70, 400]   

       

Company ID Act_execute A B H   

44 Cost ($ 1000’s) 101 104 107   

 RID_available 7 8 2   

 RQ_available 1000 900 700   

 RTime_available [105, 400] [20, 500] [80, 500]   

       

Company ID Act_execute D B L   

49 Cost ($ 1000’s) 92 122 97   

 RID_available 5 8    

 RQ_available 1000 900    

 RTime_available [87, 300] [86, 500]    

       

Company ID Act_execute K J H   

48 Cost ($ 1000’s) 101 61 95   

 RID_available 9 6 2   

 RQ_available 1000 900 700   

 RTime_available [30, 500] [250, 400] [70, 500]   

       

Company ID Act_execute A C I E  

50 Cost ($ 1000’s) 120 67 130 130  

 RID_available 7 3 9 4  

 RQ_available 1000 900 700 800  

 RTime_available [0, 400] [100, 300] [300, 500] [78, 400]  
 

 



Metaheuristic Approaches for the Winner
Determination Problem in Combinatorial
Auction

Dalila Boughaci

Abstract. Many problems in combinatorial optimization are NP-Hard. This has
forced researchers to explore meta-heuristic techniques for dealing with this class
of complex problems and finding an acceptable solution in reasonable time.

In this chapter, we are interested in the winner determination problem (WDP) in
combinatorial auction (CA). CA is an auction that allocates a set of many goods to
bidders in the presence of substitutes and complements. The winner determination
problem is a complex problem. It is the problem of finding winning bids that max-
imize the auctioneers revenue under the constraint that each good can be allocated
to at most one bidder.

This chapter presents a computational experience regarding four well-known
meta-heuristics (stochastic local search, tabu search, genetic algorithms and memetic
algorithms) for solving the winner determination problem (WDP). The purpose of
this study is to evaluatethe performance of each one of the different techniques
to solve the WDP in combinatorial auctions. The different methods are evaluated
on various benchmark problems, and compared with the hybrid simulated anneal-
ing (SAGII) and Casanova. The computational experiments show that in general
the metaheuristic approaches provide competitive results and find good quality
solutions.

1 Introduction

The combinatorial auction is a type of auctions in which agents (bidders) can place
bids on combinations of items (goods), called packages, rather than just individual
items.

The combinatorial auctions have been used in solving resource and task alloca-
tion problems in multi-agents system [7, 23]. They play an important role in various
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domains such as economics, game theory and the sale of spectrum licenses in Amer-
ica’s Federal Communications Commissions (FCC)1 auctions.

In this chapter, we are interested in the optimal winner determination problem
(WDP) in combinatorial auctions. Given a set of bundles bids, the winner determi-
nation problem is to decide which of the bids to accept.

The winner determination problem is a complex problem and it is equivalent to
a weighted set packing problem which is NP−Complete [24, 8]. The problem can
be stated as follows:

Let us consider a set of m items, M= {1, 2 . . . m} to be auctioned and a set of n
bids, B= {B1,B2 . . .Bn}. A bid B j is a tuple < S j,Pj > where S j is a set of items, and
Pj is the price of B j (Pj ) 0). Further, consider a matrix Am×n having m rows and n
columns where Ai j = 1 iff the item i belongs to S j, Ai j = 0, otherwise. Finally the
decision variables are defined as follows: x j = 1 iff the bid B j is accepted (a winning
bid), and x j = 0 otherwise (a losing bid).

The W DP can be modeled as the following integer program:

Maximize
n

∑
j=1

Pj.x j (1)

Under the constraints :
n

∑
j=1

Ai jx j ≤ 1 i ∈ {1 . . .m} (2)

x j ∈ {0,1} (3)

The objective function (1) maximizes the auctioneer’s revenue which computed as
the sum of prices of the winning bids. The constraints (2) mean that the item can
be allocated to at most one bidder. The inequality (Ai jx j ≤ 1) allows that some item
could be left uncovered. This is due to the free disposal assumption.

This chapter presents, at first, two single-oriented metaheuristics called stochastic
local and tabu search respectively for the WDP. Then, two well-known population-
oriented metaheuristics which are genetic algorithms and memetic algorithms for
the WDP are detailled. The four metaheuristics approaches have been implemented
and tested on machine for solving WDP hard benchmarks.

The rest of the chapter is organized as follows. Section 3 gives an overview of
some related works. Section 4 presents the four metaheuristic approaches for the
WDP which are the stochastic local search, the tabu search, the genetic algorithms
and the Memetic algorithms. Experimental results are reported in section 5. Finally,
section 6 concludes the work.

2 Review of Related Work

The WDP is the problem of finding winning bids that maximize the auctioneer’s
revenue under the constraint that each item can be allocated to at most one bidder
[21, 29, 28].

1 http://wireless.fcc.gov/auctions.
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Several methods have been proposed to solve the winner determination problem
[28]. These methods can be divided into two main categories: exact and inexact
methods.

• The exact algorithms, given enough time, permit to find an optimal solution
and prove its optimality. The well-known exact algorithms for the WDP are
based on Branch-and-Bound [28, 25, 26]. Among them, we cite Branch-on-
Items (BoI) [25], Branch on Bids (BoB) [27], and Combinatorial Auctions
BoB (CABoB)[26]. These methods can find reasonable optimal allocation with
hundreds of items. The CASS (Combinatorial Auction Structural Search) is a
Branch-and-Bound algorithm for the WDP proposed by Fujishima et al. [8].
Leyton- Brown et al. [20, 19] proposed CAMUS (Combinatorial Auctions
Multi-Unit Search) which is a new version of the CASS for determining the opti-
mal set of bids in general multi-unit combinatorial auctions. Rothkopf et al. [24]
used a dynamic programming approach. Andersson et al. [1] proposed another
exact algorithm based on integer programming. Holland and O’sullivan used con-
straint programming to solve a particular Vickrey combinatorial auction [14].

• The inexact methods, given enough time, may find optimal solutions, but they
cannot be used to prove the optimality of any solution they find. In general, the
inexact methods are based on heuristics or metaheuristics and they are helpful for
finding model of very large instances. The current well-known inexact algorithms
for the WDP are: Hybrid Simulated Annealing SAGII [12, 13], Casanova [15],
stochastic local search [5, 3] and memetic algorithms[4].

3 Metaheuristic Approaches for the WDP

In this section, we present the principles of both the single-oriented metaheuristics
(stochastic local search and tabu search) and the population-oriented metaheuristics
(genetic algorithms and memetic algorithms) that we have proposed to solve the
winner determination problem. All the four methods use the same solution repre-
sentation, a conflict graph and the same evaluation function. The main background
of the different approaches is given in the following.

3.1 The Solution Representation

A solution for the WDP is a collection of winning bids. We have used an allocation
V (a vector with a variable length) where each of whose components Vi receives the
winning bid number.

3.2 The Random Key Encoding

To generate a feasible solution for the WDP, we have used the Random Key Encod-
ing (RK) mechanism [2] that operates as follows: we generate n real numbers se-
quenced by an r order where n is the number of bids and the r order is a permutation
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of keys values. To generate an allocation, first we select the bid having the highest
order value to include in the allocation. Secondly, the bid having the second-highest
order value is accepted if it does not conflict with with accepted bid currently in
the allocation, otherwise it is discarded. The process is repeated until having exam-
ined the n bids. We obtain a subset of bids that can be a feasible solution to the WDP.

Example: Consider a set of four items {1, 2, 3, 4 } to be auctioned and five bids
{ B1,B2,B3,B4,B5 }. Each bid Bi = (Si,Pi) specifies which price Pi the bidder is
prepared to pay for the corresponding bundle of items Si.

We consider the following five bids:

• B1=({1, 2, 4 }, 120.25)
• B2=({1, 2, 3}, 300)
• B3=({3, 4}, 200.10)
• B4=({2, 3}, 200)
• B5=({3}, 100.10)

To generate a feasible solution for this example, we follow these steps:

• Since we have five bids, we generated five real numbers sequenced by an r order.
For example, r= {0.85, 0.65, 0.60, 0.38, 0.70}.
The first bid to be accepted is the bid B1, because it has the highest order value
(0.85). The current allocation receives the bid B1, thus V= {B1}.

• The bid having the second highest order value is B5. The Bid B5 can be added to
the allocation V because there is no conflict with the bids in V when it is added,
thus V= {B1,B5}.

• The bid having the third highest order value, B2 is discarded because it conflicts
with the bids in V . They share some items.

• The bids B3 and B4 having the lowest order value are discarded because they
conflict with the bids in V . They share some items.

We obtain the allocation V = {B1,B5} that can be one of the solution for the WDP.
The overall price is the sum of prices of the winning bids {B1,B5} which equals to
120.25+ 100.10 = 220.35.

3.3 The Conflict Graph

The conflict graph is a tool which we have used to ensure feasibility of allocations
during the search process. The vertices of the conflict graph represent the bids and
edges connect bids that cannot be accepted together. This graph permits to detect
directly the conflict bids that share an item.
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3.4 The Evaluation Function

The objective function F measures the quality of a solution V . The F(V ) value is
the overall price of the winning bids of the allocation V = {B1,B2, . . . ,BL}.

F(V ) =
L

∑
i=1

Price(Bi) =
L

∑
i=1

Pi (4)

where L is the number of the elements of the allocation V .

3.5 The SLS for the WDP

The stochastic local search [5] starts with an initial allocation V generated randomly
according to the random key encoding. Then, it performs a certain number of local
steps that consists in selecting a bid to be added in the current allocation V and in
removing all conflicting bids that can be occurred in the current allocation. At each
step, the bid to be accepted is selected according to one of the two following criteria:

1. The first criterion (step1 of Algorithm 1) consists in choosing the bid in a random
way with a fixed probability wp > 0.

2. The second criterion (step2) consists in choosing the best bid (the one maximiz-
ing the auctioneer’s revenue when it is selected) to be accepted.

The process is repeated for a certain number of iterations called maxiter fixed em-
pirically.

The SLS algorithm is sketched in Algorithm 1.

Algorithm 1: The SLS method.
Require: a WDP formula, an allocation V , maxiter, wp
Ensure: an improved allocation V
1: for I = 1 to maxiter do
2: r ⇐ random number between 0 and 1;
3: if r ≺ wp then
4: bid = pick a random bid (*Step 1)
5: else
6: bid = pick a best bid; (*Step 2)
7: end if
8: V = V with bid included into it;
9: Based on the conflict graph, remove from V any conflicting bids;

10: end for
11: return the best allocation found.

3.6 The TS for the WDP

Tabu search (TS) is a search method which has been applied for large combinatorial
optimization problems. Given the search space, the method attempts to find a global
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minimum state. It is a general meta-heuristic that has been proposed by Fred Glover
[10, 11]. The tabu search method for the WDP [5]combines two main strategies of
intensification and diversification.

• The intensification step starts with a random initial allocation. Then, the best
neighbor allocation is selected to be the candidat solution for the next itera-
tion. To generate neighbor allocations, two moves are used: On-Bid and On-
Item moves. A move is an operator used to generate neighborhood solutions. The
move operator consists in selecting a best bid from the current unsatisfied bids to
be included into the current allocation to obtain new ones.

– The On-Bid move: we define the state space as a set of unsatisfied bids which
are not in the current allocation. These bids are considered admissible and can
be included into the current allocation. The best bid in the current state space
is selected to be added into the current allocation and any conflicting bids in
the allocation are removed. The best bid is the one that maximizes the overall
price when it is added to the allocation.

– The On-Item move: we define the state space as a set of items which are not
covered by the bids in the current allocation. Then the best bid covering such
items is selected to be added to the current allocation. We note here that, at
each iteration, from the set of admissible bids (if not empty), one bid among
those when included into the allocation yield maximal increase in the overall
price, is selected to be included into the current allocation.

The move is done if it is the best and if it is not tabu. Once a bid is selected and
added into the allocation, it receives the tabu status so its index is saved in the
tabu list and the algorithm is not allowed to visit it again for a given number of λ
iterations called ”tabu tenure”. It is removed from this list after λ iterations. This
mechanism permits to avoid local optima. However, when a Tabu move applied
to a current allocation gives a better solution; we accept this move in spite of its
Tabu status by aspiration criterion.

• The diversification step added into the tabu search process permits to explore
new regions. Such strategy permits to avoid a search stagnation. More precisely,
to obtain a neighbor solution, we apply in this step a diversification strategy that
consists in selecting a random unsatisfied bid to be included into the current best
allocation. This process is repeated for n consecutive steps where n is the number
of bids. The diversification step is called if there are no improvements during d
iterations.

The tabu search process is repeated for a certain number of iterations fixed by an
empirical study.

3.6.1 The Tabu Search Outline for the WDP

The TS algorithm is sketched in Algorithm 2.
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Algorithm 2: The Tabu search for the WDP.
Require: A WDP formula, a collection V , maxiter, d, λ
Ensure: An improved allocation V
1: T L is the tabu list, initially empty: T L = φ ;
2: Generate an arbitrary feasible allocation V
3: Create the conflict graph
4: Evaluate F(V), V ∗= V , F∗ = F ;
5: iter = 1;
6: while iter , maxiter do
7: Generate neighbor allocations using the move operators;
8: Select the best move;
9: Ignore the tabu status by aspiration criterion if such move generates a best solution;

10: Made the best move by adding the selected bid into V ;
11: Based on the conflict graph, remove any conflicting bids in V ;
12: Insert the best move in the T L;
13: Evaluate F(V);
14: if F � F∗ then
15: V ∗ = V; F∗ = F; iter best= iter;
16: end if
17: if iter- iter best ) d then
18: Diversification step.
19: end if
20: Iter = Iter+1;
21: end while
22: return the best allocation found.

3.7 The Genetic Algorithm for the WDP

Genetic algorithms [9] are an evolutionary meta-heuristic that have been used for
solving difficult problems. They have been applied to complex optimization prob-
lems with remarkable success in some cases. Their behavior mimics the process of
natural evolution. A population initially made of candidate solutions representing
individuals improves towards another population of individuals with higher qual-
ity along a process repeating a finite number of times, sequentially reproduction
between individuals, and mutation of chromosomes and selection of better individ-
uals. The goal is to create a very fit individual.

The genetic algorithm operates as follows. From a population of points (parents),
the algorithm constructs a new population (children) in combining several parents
and applying some random modifications (mutation). The selection phase chooses
the best points among parents and children to produce the next population for the
next iteration. Usually, the genetic algorithms converges, ie, the population has the
tendency to lose its diversity, so it loses its efficacy; it is why the convergence is often
used like stop criteria. However, the premature convergence of genetic algorithms
is an inherent characteristic that makes them incapable of searching numerous so-
lutions of the problem domain why it is frequent to stop searching after a certain
number of generations.
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The overall GA algorithm for the WDP is sketched in Algorithm 3.

Algorithm 3: The Genetic Algorithm for the WDP.
Require: an instance of WDP.
Ensure: an allocation of bids that maximizes the auctioneer’s revenue
1: Create the conflict graph
2: Generate randomly an initial population P according to the RK
3: While (the maximum number of generations is not reached and the optimal solution is

not found) do Begin
4: Repeat
5: Select two individuals;
6: Generate at random a number Rc from [0, 100];
7: If (Rc ¿ crossover rate) then apply the crossover;
8: Generate at random Rm from [0, 100];
9: While (Rm ¡ mutation rate do Begin

10: Choose at random a chromosome from the individual obtained by the cross over and flip
it;

11: Generate at random Rm from [0, 100];
12: End ;
13: Evaluate the new individual;
14: End repeat;
15: Replace the bad individuals of the population by the fittest new ones.
16: End;
17: return the best individual solution found.

3.8 The Memetic Algorithm for the WDP

The memetic algorithms, as Moscato claimed in [22], can be viewed as ”a marriage
between a population-based global technique and a local search made by each of the
individuals. They are a special kind of genetic algorithms with a local hill climbing”.

Like genetic algorithms, memetic algorithms are population-based approaches.
Basically, they combine local search methods with crossover operators. Therefore,
some researchers have viewed them as hybrid genetic algorithms, others known
them as parallel genetic algorithms or genetic local search [17, 18, 6].

The memetic algorithm for the winner determination problem (MA) [4] is a
population-based approach. The method incorporates the same Random Key en-
coding and the same conflict graph mechanisms already used by the SLS and TS
methods. The MA method uses a novel selection strategy based on fitness and qual-
ity criteria and applies a crossover operator to create new trial individuals which are
enhanced by using the stochastic local search (SLS) component.

The proposed memetic algorithm for the WDP starts with an initial population
P of individuals created randomly according to the random key encoding (RK). It
then selects a collection C of individuals of size |C| 2 from the current population in
order to participate in the reproduction phase.

2 |C| is the cardinality of the collection C.
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The collection C contains, on one hand, |C1| highest-fitness individuals, that are
selected from the population P according to their fitness value. On the other hand,
|C2| other individuals from P−C1 are added to the collection C to complete it. The
individuals of C2 are called diverse individuals since they are the most distant from
the individuals in C. The diversity of an individual is measured by a similarity func-
tion that computes the number of the same genes between two individuals. The novel
strategy of selection helps the algorithms to maintain at each generation a good and
diversified population which lead to a good compromise between intensification and
diversification. The size of the collection C, |C|= |C1|+ |C2|, is fixed by an empirical
study.

After selecting a set of good and diverse individuals, the reproduction phase
starts. Once two parents have been selected, their chromosomes are combined and
a new individual is generated. In order to locate solutions more effectively, the mu-
tation phase is replaced by a stochastic local search.

The new individuals are added in the current collection of individuals according
to both their fitness and diversity values. That is, a new individual is added to the
best solutions of C1 and the worst one is removed when the new individual improves
the quality of the current collection C. Otherwise, if the new individual improves the
diversity of the current collection C, then the individual in the collection having a
big similarity value is replaced by the new one.

The memetic process is repeated a finite number of generations fixed by an em-
pirical study.

3.8.1 The Similarity Measure

The similarity measure is used to compute the number of the same genes between
two individuals. This function is used to choose a collection of diverse individuals
that will participate in the reproduction phase. It is clear that an individual that has
a small similarity value to another individuals already in the current collection will
contribute to the diversity of the collection.

Given the similarity measure Sm(X ,Y ) between two individuals X and Y , the
similarity value SmC(X) of a given individual X to a set of individuals C can be
calculated by:

SmC(X) = maxY∈C Sm(X ,Y)

To compute the diversity value of a solution X to the collection C requires calcu-
lating C similarity values which is computationally expensive. This is one of the
reasons why the new selection strategy is more effective when applied to a small
collection of individuals.

Examples:

1. The similarity value between X = (B2,B3) and Y = (B3,B1,B4,B5) (Sm(X ,Y))
is equal to 1.

2. The similarity value between X = (B1,B2) and the set of the two individuals
|C| ={ Y, Z }. Y = (B3,B1,B4,B5) and Z = (B3,B2,B1) is equal to 2, i.e., the
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maximum between Sm(X ,Y ) and Sm(X ,Z) values. Sm(X ,Y) is equal to 1.
Sm(X ,Z) is equal to 2.

3.8.2 The Selection Strategy

At each generation, a collection of individuals is chosen to produce a new individ-
uals for the next generation. The selection strategy is based on both diverse and
quality criteria. The collection of individuals is selected as following.

1. First, from the current population P we choose a set of C1 highest-fitness indi-
viduals.

2. Second, for each individual V from the rest of the population P−C1, we calculate
its similarity value to the current collection C.

3. from P−C1 we select a certain number of |C2| diverse individuals having small
similarity values to complete the collection C.

Globally, we obtain a collection C of C1 highest-fitness individuals and C2 diverse
individuals.

3.8.3 The Crossover Operator

The proposed crossover operator takes two individuals called parents and produces
a new individual called a child. From the first parent to the end of the second par-
ent, the operator decides which parent will contribute gene value to the child; all
conflicting bids are discarded as shown in Algorithm 4.

Algorithm 4: The crossover operator.
Require: two parents Parent1 and Parent2
Ensure: A child, Child
1: Child ⇐ φ
2: for each gene from the beginning of Parent1 to the end of the Parent2 do
3: if (there is no conflict ) then
4: Child ⇐ Child with a gene value included into it
5: end if
6: end for
7: return the individual Child.

3.8.4 The MA Algorithm for the WDP

The overall algorithm for the WDP is sketched in Algorithm 5.
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Algorithm 5: The Memetic Algorithm for the WDP.
Require: an instance of WDP.
Ensure: an allocation of bids that maximizes the auctioneer’s revenue
1: Create the conflict graph
2: Generate randomly an initial population P according to the RK
3: Select a list of candidate individuals C from P using the new selection strategy
4: while (the maximum number of generations is not reached) do
5: repeat
6: Select two individuals from C
7: Apply the crossover to obtain a new individual V
8: Apply SLS on V
9: if (V improves the quality of C) then

10: Add V to the C1 best individuals
11: Remove from C the worst one
12: else if (V improves the diversity of C) then
13: Add V to the C2 diverse individuals
14: Remove from C the less diversified one
15: end if
16: until (All the parent combinations are examined)
17: end while
18: return the best individual solution found.

4 Computational Experiments

This section is dedicated to the experimental studies. The C programming language
is used to implement the different proposed algorithms for the WDP. We run the
program on a Pentium- IV 2.8 GHz, 1GB of RAM.

First, we compared the four approaches (SLS, TS, GA and MA) for solving the
WDP. The four methods used the random key encoding (RK) mechanism and the
conflict graph.

The GA uses a standard selection strategy, the specific crossover operator the
same one used in MA and a mutation operator without local search. The standard
selection strategy of the GA is a fitness-based process. The mutation operator con-
sists in selecting a random bid to be included in the individual.

Then, a comparative study with some well-known algorithms of the state of the
art the WDP that are Casanova [15]and SAGII[13] is done.

4.1 Benchmarks

The different algorithms were implemented and tested on various benchmark
problems[16]. The data set includes 500 instances and it is available at the Zhuyi’s
home page3. These instances can be divided into 5 different groups of problems
where each group contains 100 instances given as following where m is the number
of items and n is the number of bids.

3 (http;//logistics.ust.hk/ zhuyi/instance.zip)
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• From in101 to in200: m=500, n=1000
• From in201 to in300: m=1000, n=1000
• From in401 to in 500: m=1000, n=500
• From in501 to in 600: m=1000, n=1500
• From in601 to in 700: m=1500, n=1500

4.2 Parameters Tuning

The adjustment of parameters of the proposed algorithms is fixed by an experimental
study. We conducted several experiments to evaluate the performance of the differ-
ent approaches. The fixed values are those for which a good compromise between
the quality of the solution obtained by the algorithm and the running time of the
algorithm is found.

• The SLS parameters are: the maximum number of iterations (maxiter) is fixed to
10000 and wp is fixed to 0.3.

• The TS parameters are: the maximum number of iterations (maxiter) is fixed to
25000, the ”tabu tenure” (λ ) to 40 and the d parameter to 40.

• The GA parameters are fixed by an empirical study as follows: maxgen =100,
popsize=25, crossover rate =0.6 and a mutation rate=0.1.

• The MA parameters are: a collection of C(5,7) , a population of 300 individ-
uals, a number of 100 generations and 300 iterations of local search , and the
probability wp is fixed empirically to 0.3.

4.3 A Comparison between SLS, TS, GA and MA

Tables 1 to 5 depict the results of SLS, TS, GA and MA algorithms on some realistic
test sets where sol corresponds to the solution found by the algorithm and time is
the running time of the algorithm in second.

Table 1 GA, MA,SLS and TS on some REL-1000-500 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in101 336.90 42100.71 129.62 67101.93 23.51 66170.61 57.86 66170.61
in102 432.76 39641.22 132.18 67797.61 23.89 65466.95 63.43 64716.31
in103 338.89 43376.54 133.34 66350.99 24.79 66350.99 128.68 66350.99
in104 376.37 42790.65 135.14 64618.41 22.92 67268.71 120.56 62524.23
in105 331.31 40841.21 153.96 66376.83 22.92 67268.71 120.56 62524.23
in106 385.43 41770.07 140.96 65481.64 22.37 63479.26 129.42 64591.70
in107 379.15 38781.82 146.40 66245.70 23.18 66245.70 128.51 63972.62
in108 337.35 43881.51 161.03 74588.51 24.01 71505.66 119.84 68776.34
in109 336.89 42001.62 144.71 62492.66 22.20 61751.22 80.98 64343.07
in110 320.84 38632.49 149.01 65171.19 23.25 64083.64 115.31 60275.66
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Table 2 GA, MA,SLS and TS on some REL-1000-1000 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in201 697.65 56640.60 98.26 77499.82 697.65 56640.60 98.26 77499.82
in202 693.14 59029.76 106.68 90464.19 693.14 59029.76 106.68 90464.19
in203 562.29 59476.80 102.28 86239.21 562.29 59476.80 102.28 86239.21
in204 732.71 57671.10 97.40 81969.046 732.71 57671.10 97.40 81969.046
in205 573.98 59915.07 91.26 82469.19 573.98 59915.07 91.26 82469.19
in206 627.01 58674.13 93.99 86881.42 627.01 58674.13 93.99 86881.42
in207 667.75 60383.29 100.90 91033.51 667.75 60383.29 100.90 91033.51
in208 646.34 63052.38 101.29 83667.76 646.34 63052.38 101.29 83667.76
in209 655.09 59333.98 96.42 81966.65 655.09 59333.98 96.42 81966.65
in210 547.09 64762.35 97.78 85079.98 547.09 64762.35 97.78 85079.98

Table 3 GA, MA,SLS and TS on some REL 500-1000 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in401 1193.89 56437.68 37.07 72948.07 5.67 72948.07 44.14 68485.81
in402 1272.06 56637.00 37.20 71454.78 5.79 71454.78 23.57 72820.03
in403 1299.01 57024.78 38.81 74843.96 6.01 74843.96 34.15 74843.96
in404 1088.39 61123.14 38.78 78761.68 6.12 78761.68 16.85 73385.62
in405 1030.96 58852.75 39.29 72674.25 6.04 72674.25 15.90 72674.25
in406 1318.40 58714.53 38.09 71791.03 5.87 71791.03 37.12 71791.03
in407 1021.79 58239.19 40.95 73935.28 6.35 73278.66 15.57 71578.48
in408 1348.82 59185.08 39.07 72580.04 5.95 72580.04 27.37 70144.19
in409 1342.28 54950.59 36.28 68724.53 5.48 67177.35 25.48 67177.35
in410 1005.54 59764.76 41.90 71791.57 6.37 71791.57 14.01 72791.68

Table 4 MA, GA, SLS and TS on some REL-1500-1000 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in501 1624.84 64961.36 107.82 79132.03 15.62 77140.72 98.71 82216.35
in502 1707.18 56954.75 108.71 80340.76 15.98 78574.26 120.82 74127.61
in503 1450.79 59161.13 114.15 83277.71 15.99 79554.65 114.11 77005.81
in504 1662.53 59691.51 116.11 81903.02 16.48 81903.02 155.54 81903.02

Table 5 GA, MA,SLS and TS on some REL-1500-1500 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in601 1489.40 73665.13 110.62 99044.32 15.54 96255.53 100.76 97473.85
in602 1810.56 76006.38 114.18 98164.23 15.71 95328.21 155.34 93873.31
in603 1685.07 71585.28 110.71 94126.96 15.48 94126.96 137.95 92568.61
in604 1627.37 71958.50 110.60 103568.86 15.59 103568.86 96.70 92869.78
in605 1634.68 71348.06 122.40 102404.76 17.36 98799.71 175.14 95787.59
in606 1656.29 72505.09 107.79 104346.07 15.60 104346.07 334.12 104346.07
in607 1625.37 72162.60 113.26 105869.44 15.89 100417.40 267.79 98674.39
in608 1625.46 76189.79 109.15 95671.77 15.26 95671.77 95.62 91554.61
in609 1581.18 71664.87 111.12 98566.94 16.76 98566.94 103.10 96652.44
in610 1572.06 72393.14 120.17 102468.60 17.57 99975.09 146.03 99975.09
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The numerical results show that the genetic algorithm (GA) usually fails to find
a good solution to the WDP problems for all the checked instances. The MA always
outperforms the GA in both solution quality and efficiency.

The MA, SLS and TS find good quality solutions for almost all the benchmarks
efficiently. It can be seen that SLS is the fastest algorithm. However, for the REL
500-1000 class, TS outperforms SLS in term of solutions quality.

4.4 Further Comparisons

4.4.1 A Comparison between SLS, Casanova and Tabu Search

Table 6 shows the numerical results where the column μ corresponds to the arith-
metic average solution of the 100 instances in each group and the column time
corresponds to the average time in second.

Table 6 Casanova vs. SLS vs. TS

Test set #ins Casanova SLS TS
time μ time μ time μ

REL-500-1000 100 119.46 37053.78 22.35 64216.14 91,07 65286,94
REL-1000-500 100 57.74 51248.79 5.91 72206.07 25,84 71985,34
REL-1000-1000 100 111.42 51990.91 14.19 82120.31 104,30 81633,63
REL-1000-1500 100 168.24 56406.74 14.97 79065.08 223,37 77931,41
REL-1500-1500 100 165.92 65661.03 16.47 98877.07 175,68 97824,64

From the numerical results, we can see that SLS performs better than Casanova.
It finds better solutions in shorter time. The difference between SLS and Casanova
is even greater. Table 6 shows good performances of the SLS in solving the WDP
compared to TS. It improves slightly TS. SLS and TS are definitely better than
Casanova that fails to find good solutions for all the instances.

4.4.2 A Comparison between MA, SAGII and SLS

Table 7 summarizes the results found by MA, SAGII and SLS methods for the 500
instances of the 5 groups. The column μ corresponds to the arithmetic average rev-
enue of the 100 instances in each group and the column time gives the average time
in second.

The results of Table 7 show a slight performance in favor of the MA. The differ-
ence between MA and SAGII is not greater despite of the sophisticate Branch and
Bound and the pre-processing

According to the results, the MA algorithm compares well with the SAGII which
produces quite similar results in terms of the solution quality.

On the other hand, the stochastic local search SLS and MA are comparable but
MA remains efficient on the checked instances. This is due to a good combination
between the crossover operator and the stochastic local search.
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Table 7 Comparison between MA, SAGII and SLS

Test set #ins MA SAGII SLS
time μ time μ time μ

REL-500-1000 100 159.30 66544.93 38.06 64922.02 22.3519 64216.14
REL-1000-500 100 38.30 73562.89 24.46 73922.10 5.9187 72206.07
REL-1000-1000 100 96.37 84199.99 45.37 83728.34 14.1957 82120.31
REL-1000-1500 100 105.66 80173.42 68.82 82651.49 14.9745 79065.08
REL-1500-1500 100 113.31 101035.52 91.78 101739.64 16.476 98877.07

5 Conclusion

A combinatorial auction (CA) is an auction that allocates a set of many goods to
bidders in the presence of substitutes and complements. In this chapter, genetic al-
gorithm, memetic algorithm, stochastic local search and tabu search metaheuristic
methods are studied for solving the winner determination problem (WDP) in com-
binatorial auctions.

All the methods are implemented and evaluated on several benchmark problems
with various sizes, and compared with SGAII and Casanova. The experimental re-
sults are very encouraging. Both local search and evolutionary metaheuristic provide
competitive results and find solutions of a higher quality.

To improve our algorithm on quality, new features will be integrated into the
proposed algorithm such as the combination of the MA, SLS and a Branch-and-
Bound exact method. Our purpose is to conceive a hyperheuristic method able to
search good quality solutions.

References

1. Anderson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction
winner determination. In: Proceedings of 4th International Conference on Multi-Agent
Systems, pp. 39–46. IEEE Computer Society Press (July 2000)

2. Bean, J.C.: Genetics and random keys for sequencing and optimization. ORSA Journal
of Computing 6(2), 154–160 (1994)

3. Boughaci, D., Benhamou, B., Drias, H.: Local Search Methods for the Optimal Winner
Determination Problem in Combinatorial Auctions. J. Math. Model. Algorithms 9(2),
165–180 (2010)

4. Boughaci, D., Benhamou, B., Drias, H.: A memetic algorithm for the optimal winner
determination problem. Soft Computing 13(8-9), 905–917 (2009)

5. Boughaci, D., Benhamou, B., Drias, H.: Stochastic Local Search for the Optimal Win-
ner Determination Problem in Combinatorial Auctions. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 593–597. Springer, Heidelberg (2008)

6. Boughaci, D., Drias, H., Benhamou, B.: Solving MAX-SAT problems using a Memetic
Evolutionary Meta-Heuristic. In: Proceedings of the IEEE International conference on
Cybernetics and Intelligent Systems, CIS 2004, pp. 480–484 (December 2004)



790 D. Boughaci

7. Collins, J., Sundareswara, R., Gini, M., Mobasher, B.: Bid Selection Strategies for
Multi-Agent Contracting in the Presence of Scheduling Constraints. In: Moukas, A.,
Ygge, F., Sierra, C. (eds.) Agent Mediated Electronic Commerce II. LNCS, vol. 1788,
pp. 113–130. Springer, Heidelberg (2000)

8. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complexity of
combinatorial auctions: optimal and approximate approaches. In: Sixteenth International
Joint Conference on Artificial Intelligence, pp. 48–53 (1999)

9. Goldberg, D.E.: Genetic Algorithms in search Optimization and Machine Learning.
Addison-Wesley, Wokingham (1989)

10. Glover, F.: Future paths for integer programming and links to Artificial intelligence. Op-
erational Search 31 (1986)

11. Glover, F.: “Tabu search”: Part I. ORSA, Journal on Computing (1989)
12. Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a brokering set packing prob-

lem. In: Proceedings of Eighth International Symposium on Artificial Intelligence and
Mathematics, pp. 10–14 (2004)

13. Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a bidding problem. Computers
and Operations Research 33(8), 2179–2188 (2006)

14. Holland, A., O’sullivan, B.: Towards Fast Vickrey Pricing using Constraint Program-
ming. Artificial Intelligence Review 21(3-4), 335–352 (2004)

15. Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local search.
In: Proceedings of the 17th National Conference on Artificial Intelligence, pp. 22–29
(2000)

16. Lau, H.C., Goh, Y.G.: An intelligent brokering system to support multi-agent web-based
4th-party logistics. In: Proceedings of the 14th International Conference on Tools with
Artificial Intelligence, pp. 54–61 (2002)

17. Ishibuchi, H., Narukawa, K.: Some issues on the implementation of local search in evo-
lutionary multiobjective optimization. In: Deb, K., et al. (eds.) GECCO 2004, Part I.
LNCS, vol. 3102, pp. 1246–1258. Springer, Heidelberg (2004)

18. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search
in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans-
actions on Evolutionary Computation 7(2), 204–223 (2003)

19. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combi-
natorial auction algorithms. In: ACM Conference on Electronic Commerce, pp. 66–76
(2000)

20. Leyton-Brown, K., Tennenholtz, M., Shoham, Y.: An Algorithm for Multi-Unit Combi-
natorial Auctions. In: Proceedings of the 17th National Conference on Artificial Intelli-
gence, Austin, Games 2000, Bilbao and ISMP 2000, Atlanta (2000)

21. McAfee, R., McMillan, P.J.: Auctions and bidding. Journal of Economic Literature 25,
699–738 (1987)

22. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts:
Towards Memetic Algorithms. In: Caltech Concurrent Computation Program, C3P Re-
port 826 (1989)

23. Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proceedings of ACM
Conference on Electronic Commerce (EC 2000), pp. 1–12. ACM SIGecom, ACM Press,
Minneapolis (2000)

24. Rothkopf, M.H., Pekee, A., Ronald, M.: Computationally manageable combinatorial
auctions. Management Science 44(8), 1131–1147 (1998)

25. Sandholm, T.: Algorithms for Optimal Winner Determination in Combinatorial Auc-
tions. Artificial Intelligence 135(1-2), 1–54 (1999)



Metaheuristics Approaches for the WDP in CA 791

26. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABoB: a fast optimal algorithm for com-
binatorial auctions. In: Proceedings of the International Joint Conferences on Artificial
Intelligence, pp. 1102–1108 (2001)

27. Sandholm, T., Suri, S.: Improved Optimal Algorithm for Combinatorial Auctions and
Generalizations. In: Proceedings of the 17th National Conference on Artificial Intelli-
gence, pp. 90–97 (2000)

28. Sandholm, T.: Optimal Winner Determination Algorithms. In: Cramton, P., et al. (eds.)
Combinatorial Auctions. MIT Press (2006)

29. de Vries, S., Vohra, R.: Combinatorial auctions a survey. INFORMS Journal of Comput-
ing 15, 284–309 (2003)



Author Index

Abdelsalam, Hisham M. 751
Ahmad, R.B. 571
Alexandrova-Kabadjova, Biliana 633
Arin, Arif 435

Bandyopadhyay, Susmita 477
Benderskaya, Elena N. 319
Benyettou, Abdelkader 525
Bhattacharya, Ranjan 477
Boughaci, Dalila 775
Bucur, Laurentiu 721
Bull, Larry 63
Burgin, Mark 201

Cardoso, Jaime S. 109
Chaturvedi, Soni 525
Chera, Catalin 721
Chiari, Isabella 287
Costa, Victor Hugo Teles 657
Cuevas, Erik 545

da Costa, Joaquim F. Pinto 109
Dai, Qionghai 345
De Gasperis, Giovanni 287
Deng, Yue 345
Ding, Amy Wenxuan 83
Dong, Yingsai 601

Eberbach, Eugene 201

Florea, Adina 721
Florio, Niva 287

Garcia-Almanza, Alma Lilia 633
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