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To Alan Turing



Preface

Alan Turing pioneered many research areas from artificial intelligence to com-
putability, from cryptography to heuristics and from Fabonacci phyllotaxis to
pattern formation. He had worked in many prestigious institutions, including Cam-
bridge University, Princeton University, National Physical Laboratory, and Manch-
ester University. 2012 is the Alan Turing year — a centenary celebration of the life
and work of Alan Turing.

In 1945, Turing was recruited to the National Physical Laboratory (NPL), UK
where he set out his design for the Automatic Computing Engine (ACE). During
this time, he lived at High Street, Hampton, Richmond upon Thames where a blue
plaque is still visible on that street. In an NPL report on Intelligent machinery in
1948, he outlined his innovative ideas of machine intelligence and learning, neural
networks and evolutionary algorithms. This little known report had in fact inspired
a wide range of research areas.

Nowadays at the information age, it is hard to imagine how the world would
be without computers and the Internet, in addition to many other crucial things.
Without Turing’s work, especially the “Turing Machine” concept at the heart of
every computer and microchip today, so many things on which we are so dependent
would not be possible. No wonder there are a series of important events worldwide
this year to celebrate the life and work, the far-reaching legacy of Alan Turing.
For example, one of the most prestigious journal Nature edited a special collection
Turing at 100: Legacy of a Universal Mind in February this year. Meanwhile, the
Turing Centenary Conference: How the World Computes will be held at Cambridge
University coincides with the 100th Birthday of Alan Turing.

To celebrate Turing’s legacy and to follow the footsteps of this brilliant mind,
we take this golden opportunity in the 2012 Turing year to review the latest de-
velopments in areas of artificial intelligence, evolutionary computation and meta-
heuristics, and all these areas can be traced back to Turing’s pioneer work. The
responses to our call of celebration were overwhelming, we have received a huge
number of high quality contributions. As the limitation of the space of this book,
we have to choose over two dozen papers whiling leaving many high-quality papers
not included in this book. We tried to main a balance in topics coverage, relevance
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to Turing’s work, and state of the art. Among our contributors to this book, many
are world-leading experts in their areas. Their reviews and contributions not only
provide a timely snapshot of the state-of-art developments, but also provide inspira-
tion for young researchers to carry out potentially ground-breaking research in these
active, diverse research areas.

Unintentionally following the footsteps of Alan Turing, I was fortunate enough,
a few years ago, to move from Cambridge University to join National Physical Lab-
oratory to work as a Senior Research Scientist at Mathematics and Scientific Com-
puting where Alan Turing had worked. Turing has been one of major influences
on my research concerning metaheuristics and pattern formation. When I watched
many BBC natural world programmes, I have always been trying to look for in-
spiration from nature to design new metaheuristic algorithms. Over the last few
years, I had managed to realize such dreams by developing bat algorithm, cuckoo
search, and firefly algorithms, which start to attract attention in the communities of
optimization, computational intelligence and engineering. Without Turing’s work
on heuristics, it would almost be impossible to develop these new metaheuristics.
Furthermore, loosely speaking, artificial intelligence also largely concerns the core
algorithms to mimic intelligent behaviour, unless a true Turing test can be passed in
the future, truly intelligent algorithms may still be a long way to go. However, on
the other hand, evolutionary algorithms and metaheuristics have become an impor-
tant part of so-called ‘smart algorithms’ and computational intelligence. They have
started to permeate into many areas including artificial intelligence. Therefore, it
is appropriate that we combine artificial intelligence, evolutionary computation and
metaheuristics in one book and dedicate this book to Alan Turing.

During the peer-review process, many experts have carried out independent re-
view of contributions. I would like to thank their help: Alma Garcia-Almanza,
Ravindra Babu Tallamraju, Tamiru Alemu, Elena Benderskaya, Dalila Boughaci,
Meftah Boudjelal, Larry Bull, Susmita Bandyopadhyay, Erik Cuevas, Amy Ding,
Yue Deng, Janice Glasgow, Loreto Gonzalez-Hernandez, Yacine Laalaoui, Keyur
Rana, Felipe Trujillo-Romero, Ricardo Sousa, Flvio Vieira, Abderrahmane Nitaj,
Shahid Qamar, Vasyl Ustimenko, and Roman Yampolskiy. Special thanks to Ri-
cardo Sousa and Vasyl Ustimenko who helped most in the review process.

I would like to thank our editors, Drs Thomas Ditzinger and Holger Schaepe, and
staff at Springer for their help and professionalism. Last but not least, I thank my
family for the help and support.

Xin-She Yang, 2012
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Turing Test as a Defining Feature
of AI-Completeness

Roman V. Yampolskiy

Abstract. The paper contributes to the development of the theory of Al-
Completeness by formalizing the notion of AI-Complete, C-Complete and
Al-Hard problems. The intended goal is to provide a classification of problems in
the field of Artificial General Intelligence. We prove Turing Test to be an instance
of an AI-Complete problem and further show certain Al problems to be
Al-Complete or Al-Hard via polynomial time reductions. Finally, the paper sug-
gests some directions for future work on the theory of AI-Completeness.

Keywords: AI-Complete, Al-Easy, Al-Hard, Human Oracle.

1 Introduction

Since its inception in the 1950s the field of Artificial Intelligence has produced
some unparalleled accomplishments while at the same time failing to formalize
the problem space it is concerned with. This paper proposes to address this short-
coming by extends on the work in [56] and contributing to the theory of Al-
Completeness, a formalism designed to do for the field of Al what notion of
NP-Completeness did for computer science in general. It is our belief that such
formalization will allow for even faster progress in solving remaining problems in
humankind’s conquest to build an intelligent machine.

According to the encyclopedia Wikipedia the term “Al-Complete” was pro-
posed by Fanya Montalvo in the 1980s [54]. A somewhat general definition of the
term included in the 1991 Jargon File [37] states:

“Al-Complete: [MIT, Stanford, by analogy with “NP-complete'] adj. Used to de-
scribe problems or subproblems in Al, to indicate that the solution presupposes a
solution to the “strong Al problem’' (that is, the synthesis of a human-level intelli-
gence). A problem that is AI-complete is, in other words, just too hard. Examples

Roman V. Yampolskiy

Computer Engineering and Computer Science, DC 215,
University of Louisville, KY 40292

e-mail: roman.yampolskiy@louisville.edu

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 3-7]
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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of Al-complete problems are “The Vision Problem', building a system that can see
as well as a human, and “The Natural Language Problem', building a system that
can understand and speak a natural language as well as a human. These may ap-
pear to be modular, but all attempts so far (1991) to solve them have foundered on
the amount of context information and “intelligence' they seem to require.”

As such, the term “Al-Complete” (or sometimes Al-Hard) has been a part of
the field for many years and has been frequently brought up to express difficulty
of a specific problem investigated by researchers (see [31, 26, 15, 36, 6, 20, 32,
33, 10, 27, 28, 29, 16, 23, 55]). This informal use further encouraged similar con-
cepts to be developed in other areas of science: Biometric-Completeness [36],
ASR-Complete [30]. While recently numerous attempts to formalize what it
means to say that a problem is “Al-Complete” have been published [2, 41, 11]
even before such formalization attempts systems which relied on humans to solve
problems which were perceived to be AI-Complete were utilized:

¢ AntiCaptcha systems use humans to break CAPTCHA security protocol [2,
58, 59, 63] either by directly hiring cheap workers in developing countries [5]
or by rewarding correctly solved CAPTCHAs with presentation of porno-
graphic images [52].

e  Chinese Room philosophical argument by John Searle shows that including a
human as a part of a computational system may actually reduce its perceived
capabilities such as understanding and consciousness [40].

e Content Development online projects such as Encyclopedias (Wikipedia,
Conservapedia), Libraries (Project Gutenberg, Video collections (YouTube)
and Open Source Software (SourceForge) all rely on contributions from
people for content production and quality assurance.

e Cyphermint a check cashing system relies on human workers to compare a
snapshot of a person trying to perform a financial transaction to a picture of a
person who initially enrolled with the system. Resulting accuracy outperforms
any biometric system and is almost completely spoof proof (see cypher-
mint.com for more info).

e Data Tagging systems entice user into providing meta-data for images, sound
or video files. A popular approach involves developing an online game which
as a byproduct of participation produces a large amount of accurately labeled
data [1].

e Distributed Proofreaders employs a number of human volunteers to elimi-
nate errors in books created by relying on Optical Character Recognition
process. (see pgdp.net for more info).

e Interactive Evolutionary Computation algorithms use humans in place of a
fitness function to make judgments regarding difficult to formalize concept
such as esthetic beauty or taste [47].

e Mechanical Turk is an Amazon.com’s attempt at creating Artificial Intelli-
gence. Humans are paid varying amounts for solving problems which are be-
lieved to be beyond current abilities of Al programs (see mturk.com for more
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info). The general idea behind the Turk has a broad appeal and the researchers
are currently attempting to bring it to the masses via the Generalized Task
Markets (GTM) [42, 19, 18, 21].

e Spam Prevention is easy to accomplish by having humans vote on emails
they receive as spam or not. If a certain threshold is reached a particular piece
of email could be said to be spam with a high degree of accuracy [13].

Recent work has attempted to formalize the intuitive notion of AI-Completeness.
In particular three such endowers are worth reviewing [56]:

In 2003 Ahn et al. [2] attempted to formalize the notion of an Al-Problem and
the concept of Al-Hardness in the context of computer security. An Al-Problem
was defined as a triple: “P = (S, D, f), where S is a set of problem instances, D
is a probability distribution over the problem set S, and f : S = {0; 1}* answers
the instances. Let & € (0; 1]. We require that for an & > 0 fraction of the humans
H, Pry p [H(x) = f(x)] > &... An Al problem P is said to be (3,T)-solved if there
exists a program A, running in time at most T on any input from S, such that
Pry b [A(X)=f(x)]=8. (A is said to be a (3,T) solution to P.) P is said to be a
(8,T)-hard Al problem if no current program is a (3,7) solution to P, and the Al
community agrees it is hard to find such a solution.” It is interesting to observe
that the proposed definition is in terms of democratic consensus by the Al com-
munity. If researchers say the problem is hard, it must be so. Also, time to solve
the problem is not taken into account. The definition simply requires that some
humans be able to solve the problem [2].

In 2007 Shahaf and Amir [41] have published their work on the Theory of Al-
Completeness. Their paper presents the concept of the Human-Assisted Turing
Machine and formalizes the notion of different Human Oracles (see Section on
Human Oracles for technical details). Main contribution of the paper comes in the
form of a method for classifying problems in terms of human-versus-machine ef-
fort required to find a solution. For some common problems such as Natural Lan-
guage Understanding (NLU) the paper proposes a method of reductions allowing
conversion from NLU to the problem of Speech Understanding via Text-To-
Speech software.

In 2010 Demasi et al. [11] presented their work on problem classification for
Artificial General Intelligence (AGI). The proposed framework groups the prob-
lem space into three sectors:

e Non AGI-Bound: Problems that are of no interest to AGI researchers.

e AGI-Bound: Problems that require human level intelligence to be
solved.

e AGI-Hard: Problems that are at least as hard as any AGI Bound
problem.

The paper also formalizes the notion of Human Oracles and provides a number of
definitions regarding their properties and valid operations.
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2 The Theory of AI-Completeness

From people with mental disabilities to geniuses human minds are cognitively diverse
and it is well known that different people exhibit different mental abilities. We define a
notion of a Human Oracle (HO) function capable of computing any function computa-
ble by the union of all human minds. In other words any cognitive ability of any hu-
man being is repeatable by our HO. To make our Human Oracle easier to understand
we provide the following illustration of the Human function:

String Human (String input) {
.\/.\/ U\ =

return output; }

Fig. 1 Human oracle: Humang. — a union of minds

Such a function would be easy to integrate with any modern programming lan-
guage and would require that the input to the function be provided as a single
string of length N and the function would return a string of length M. No specific
encoding is specified for the content of strings N or M and so they could be either
binary representations of data or English language phrases both being computa-
tionally equivalent. As necessary the human function could call regular TM func-
tions to help in processing of data. For example, a simple computer program
which would display the input string as a picture to make human comprehension
easier could be executed. Humans could be assumed to be cooperating perhaps
because of a reward. Alternatively, one can construct a Human function which in-
stead of the union of all minds computes the average decision of all human minds
on a problem encoded by the input string as the number of such minds goes to in-
finity. To avoid any confusion we propose naming the first HO Humang,, and the
second HO Humanyerge. Problems in the Al domain tend to have a large degree
of ambiguity in terms of acceptable correct answers. Depending on the problem at
hand the simplistic notion of an average answer could be replaced with an aggre-
gate answer as defined in the Wisdom of Crowds approach [46]. Both functions
could be formalized as Human-Assisted Turing Machines [41].

Human function is an easy to understand and use generalization of the Human
Oracle. One can perceive it as a way to connect and exchange information with a
real human sitting at a computer terminal. While easy to intuitively understand,
such description is not sufficiently formal. Shahaf et al. have formalized the notion
of Human Oracle as an HTM [41]. In their model a human is an oracle machine
that can decide a set of languages L; in constant time: H S{L;| L; € ) *}. If time
complexity is taken into account answering a question might take a non-constant
time: H S{<L;, fi>1L;C Y*, f; : N — N} there f; is the time-complexity function
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for language L;, meaning the human can decide if x € L; in f; (Ixl) time. In order to
realistically address capabilities of individual humans a probabilistic oracle was
also presented which provided correct answers with probability p: H S{<L;, p;> |
L; € >*, 0<p;<1}. Finally the notion of reward is introduced into the model to
capture humans improved performance on “paid” tasks: H S{<L;, u;> | L; S Y *, u;
: N — N} where u;is the utility function [41].

2.1 Definitions

Definition 1: A problem C is AI-Complete if it has two properties:

1. Ttisin the set of Al problems (Human Oracle solvable).
2. Any Al problem can be converted into C by some polynomial time
algorithm.

Definition 2: AI-Hard: A problem H is Al-Hard if and only if there is an Al-
Complete problem C that is polynomial time Turing-reducible to H.

Definition 3: AI-Easy: The complexity class Al-easy is the set of problems that
are solvable in polynomial time by a deterministic Turing machine with an oracle
for some Al problem. In other words, a problem X is Al-easy if and only if there
exists some Al problem Y such that X is polynomial-time Turing reducible to Y.
This means that given an oracle for Y, there exists an algorithm that solves X in
polynomial time.

Figure 2 illustrates relationship between different Al complexity classes. Right
side illustrates the situation if it is ever proven that Al-problems = AI-Complete
problems. Left side shows the converse.

AT Problems # Al-Complete, Al-Problems = AT-Complete

Fig. 2 Relationship between Al complexity classes
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2.2 Turing Test as the First AI-Complete Problem

In this section we will show that a Turing Test [50] problem is AI-Complete. First
we need to establish that Turing Test is indeed an Al problem (HO solvable). This
trivially follows from the definition of the test itself. The test measures if a hu-
man-like performance is demonstrated by the test taker and Human Oracles are de-
fined to produce human level performance. While both “human” and “intelligence
test” are intuitively understood terms we have already shown that Human Oracles
could be expressed in strictly formal terms. The Turing Test itself also could be
formalized as an interactive proof [45, 8, 44].

Second requirement for a problem to be proven to be AI-Complete is that any other
Al problem should be convertible into an instance of the problem under consideration
in polynomial time via Turing reduction. Therefore we need to show how any problem
solvable by the Human function could be encoded as an instance of a Turing Test. For
any HO-solvable problem i we have a String input which encodes the problem and a
String output which encodes the solution. By taking the input as a question to be used
in the TT and output as an answer to be expected while administering a TT we can see
how any HO-solvable problem could be reduced in polynomial time to an instance of a
Turing Test. Clearly the described process is in polynomial time and by similar algo-
rithm any Al problem could be reduced to TT. It is even theoretically possible to con-
struct a complete TT which utilizes all other problems solvable by HO by generating
one question from each such problem.

2.3 Reducing Other Problems to TT

Having shown a first problem (Turing Test) to be AI-Complete the next step is to
see if any other well-known Al-problems are also Al-complete. This is an effort
similar to the work of Richard Carp who has shown some 21 problems to be NP-
Complete in his 1972 paper and by doing so started a new field of Computational
Complexity [22]. According to the Encyclopedia of Artificial Intelligence [43]
published in 1992 the following problems are all believed to be AI-Complete and
so will constitute primary targets for our effort of proving formal Al-
Completeness on them [43]:

e Natural Language Understanding — “Encyclopedic knowledge is required
to understand natural language. Therefore, a complete Natural Language sys-
tem will also be a complete Intelligent system.”

e Problem Solving — “Since any area investigated by Al researchers may be
seen as consisting of problems to be solved, all of Al may be seen as involv-
ing Problem Solving and Search”.

e Knowledge Representation and Reasoning — “...the intended use is to use
explicitly stored knowledge to produce additional explicit knowledge. This is
what reasoning is. Together Knowledge representation and Reasoning can be
seen to be both necessary and sufficient for producing general intelligence — it
is another Al-complete area.”
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e Vision or Image Understanding — “If we take “interpreting” broadly
enough, it is clear that general intelligence may be needed to do this interpre-
tation, and that correct interpretation implies general intelligence, so this is
another Al-complete area.”

Now that Turing Test has been proven to be AI-Complete we have an additional
way of showing other problems to be AI-Complete. We can either show that a
problem is both in the set of Al problems and all other Al problem can be con-
verted into it by some polynomial time algorithm or we can reduce any instance of
Turing Test problem (or any other already proven to be AI-Complete problem) to
an instance of a problem we are trying to show to be AI-Complete. This second
approach seems to be particularly powerful. The general heuristic of our approach
is to see if all information which encodes the question which could be asked dur-
ing administering of a Turing Test could be encoded as an instance of a problem
in question and likewise if any potential solution to that problem would constitute
an answer to the relevant Turing Test question. Under this heuristic it is easy to
see that for example Chess is not AI-Complete as only limited information can be
encoded as a starting position on a standard size chess board. Not surprisingly
Chess has been one of the greatest successes of Al and currently Chess playing
programs dominate all human players including world champions.

Question Answering (QA) [17, 38] is a sub-problem in Natural Language
Processing. Answering question at a level of a human is something HOs are par-
ticularly good at based on their definition. Consequently QA is an Al-Problem
which is one of the two requirements for showing it to be AI-Complete. Having
access to an Oracle capable of solving QA allows us to solve TT via a simple re-
duction. For any statement S presented during administration of TT transform said
statement into a question for the QA Oracle. The answers produced by the Oracle
can be used as replies in the TT allowing the program to pass the Turing Test. It is
important to note that access to the QA oracle is sufficient to pass the Turing Test
only if questions are not restricted to stand alone queries, but could contain infor-
mation from previous questions. Otherwise the problem is readily solvable even
by today’s machines such as IBM’s Watson which showed a remarkable perfor-
mance against human Jeopardy champions [35].

Speech Understanding (SU) [4] is another sub-problem in Natural Language
Processing. Understanding Speech at a level of a human is something HOs are
particularly good at based on their definition. Consequently SU is an AI-Problem
which is one of the two requirements for showing it to be AI-Complete. Having
access to an Oracle capable of solving SU allows us to solve QA via a simple re-
duction. We can reduce QA to SU by utilizing any Text-to-Speech software [49,
9] which is both fast and accurate. This reduction effectively transforms written
questions into the spoken ones making it possible to solve every instance of QA
by referring to the SU oracle.

2.4 Other Probably AI-Complete Problems

Figure 3 shows the relationship via reductions between problems shown to be Al-
Complete in this paper. We hope that our work will challenge the AI community
to prove other important problems as either belonging or not belonging to that
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class. While the following problems have not been explicitly shown to be Al-
Complete, they are strong candidates for such classification and are also problems
of great practical importance making their classification a worthy endower. If a
problem has been explicitly conjectured to be AI-Complete in a published paper
we include a source of such speculation: Dreaming [38], Commonsense Planning
[41], Foreign Policy [26], Problem Solving [43], Judging a Turing Test [41],
Common Sense Knowledge [3], Speech Understanding [41], Knowledge Repre-
sentation and Reasoning [43], Word Sense Disambiguation [10, 32], Machine
Translation [54], Ubiquitous Computing [23], Change Management for Biomedi-
cal Ontologies [33], Natural Language Understanding [43], Software Brittleness
[54], Vision or Image Understanding [43].

D

QA

»

<

»

Fig. 3 Reductions from the first NP-Complete problem

2.5 I AI-Hard Problem: Programming

We define the problem of Programming as taking a natural language description
of a program and producing a source code which then compiled on some readily
available hardware/software produces a computer program which satisfies all im-
plicit and explicit requirements provided in the natural language description of the
programming problem assignment. Simple examples of Programming are typical
assignments given to students in computer science classes. Ex. “Write a program
to play Tic-Tac-Toe.” with successful students writing source code which if cor-
rectly compiled allows the grader to engage the computer in an instance of that
game. Many requirements of such assignment remain implicit such as that re-
sponse time of the computer should be less than a minute. Such implicit require-
ments are usually easily inferred by students who have access to culture instilled
common sense. As of this writing no program is capable of solving Programming
outside of strictly restricted domains.

Having access to an Oracle capable of solving Programming allows us to solve
TT via a simple reduction. For any statement S presented during TT transform said
statement into a programming assignment of the form: “Write a program which
would respond to S with a statement indistinguishable from a statement provided
by an average human” (A full transcript of the TT may also be provided for
disambiguation purposes). Applied to the set of all possible TT statements this
procedure clearly allows us to pass TT, however Programming itself is not in



Turing Test as a Defining Feature of AI-Completeness 11

Al-Problems as there are many instances of Programming which are not solvable
by Human Oracles. For example “Write a program to pass Turing Test” is not
known to be an Al-Problem under the proposed definition. Consequently, Pro-
gramming is an Al-Hard problem.

3 Beyond AI-Completeness

The human oracle function presented in this paper assumes that the human being
behind it has some assistance from the computer in order to process certain human
unfriendly data formats. For example a binary string representing a video is com-
pletely impossible for a human being to interpret but could easily be played by a
computer program in the intended format making it possible for a human to solve
a video understanding related AI-Complete problem. It is obvious that a human
being provided with access to a computer (perhaps with Internet connection) is a
more powerful intelligence compared to an unenhanced in such a way human.
Consequently it is important to limit help from a computer to a human worker in-
side a human Oracle function to assistance in the domain of input/output conver-
sion but not beyond as the resulting function would be both AI-Complete and
“Computer Complete”.

Universal Intelligence

2

Human Intelligence

Artificial Intelligence Animal Intelligence

Fig. 4 Venn diagram for four different types of intelligence

Figure 4 utilizes a Venn diagram to illustrate subdivisions of problem space pro-
duced by different types of intelligent computational devices. Region 1 represents
what is known as a Universal Intelligence [25] or a Super Intelligence [24, 61, 57, 60]
a computational agent which outperforms all other intelligent agents over all possible
environments. Region 2 is the standard unenhanced Human level intelligence of the
type capable of passing a Turing Test, but at the same time incapable of computation
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involving large numbers or significant amount of memorization. Region 3 is what is
currently possible to accomplish via the state-of-the-art Al programs. Finally Region 4
represents an abstract view of animal intelligence. Al intelligence researchers strive to
produce Universal Intelligence and it is certainly likely to happen given recent trends
in both hardware and software developments and theoretical underpinning of the
Church/Turing Thesis [51]. It is also likely that if we are able to enhance human minds
with additional memory and port those to a higher speed hardware we will essentially
obtain a Universal Intelligence [39].

While the Universal Intelligence incorporates abilities of all the lower intelligences
it is interesting to observe that Human, Al and Animal intelligences have many inter-
esting regions of intersection [62]. For example animal minds are as good as human
minds at visual understanding of natural scenes. Regions 5, 6, and 7 illustrate common
problem spaces between two different types of intelligent agents. Region 8 represents
common problem solving abilities of humans, computers and animals. Understanding
such regions of commonality may help us to better separate involved computational
classes which are represented by abilities of a specific computational agent minus the
commonalities with a computational agent with which we are trying to draw a distinc-
tion. For example CAPTCHA [2] type tests rely on inability of computers to perform
certain pattern recognition tasks with the same level of accuracy as humans to separate
Al agents from Human agents. Alternatively a test could be devised to tell humans not
armed with calculators from Als by looking at the upper level of ability. Such a test
should be easy to defeat once an effort is made to compile and formalize limitations
and biases of the human mind.

It is also interesting to consider the problem solving abilities of hybrid agents. We
have already noted that a human being equipped with a computer is a lot more capable
compared to an unaided person. Some recent research in Brain Computer Interfaces
[53] provides a potential path for future developments in the area. Just as interestingly
combining pattern recognition abilities of animals with symbol processing abilities of
Al could produce a computational agent with a large domain of human like abilities
(see work on RoboRats [48] on monkey controlled robots [34]). It is very likely that in
the near future the different types of intelligent agents will combine to even greater ex-
tent. While such work is under way we believe that it may be useful to introduce some
additional terminology into the field of problem classification. For the complete space
of problems we propose that the computational agents which are capable of solving a
specific subset of such problems get to represent the set in question. Therefore we pro-
pose additional terms: “Computer-Complete” and “Animal-Complete” to represent
computational classes solvable by such agents. It is understood that just like humans
differ in their abilities so do animal and computers. Aggregation and averaging utilized
in our human function could be similarly applied to definition of respective oracles. As
research progresses common names may be needed for different combinations of re-
gions from Figure 4 illustrating such concepts as Human-Al hybrid or Animal-Robot
hybrid.

Certain aspects of human cognition do not map well onto the space of problems
which have seen a lot of success in the Al research field. Internal states of human
mind such as consciousness (stream of), self-awareness, understanding, emotions
(love, hate), feelings (pain, pleasure), etc. are not currently addressable by our me-
thods. Our current state-of-the-art technologies are not sufficient to unambiguously
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measure or detect such internal states and consequently even their existence is not un-
iversally accepted. Many scientists propose ignoring such internal states or claim they
are nothing but a byproduct of flawed self-analysis. Such scientists want us to restrict
science only to measurable behavioral actions, however since all persons have access
to internal states of at least one thinking machine interest in trying to investigate in-
ternal states of human mind is unlikely to vanish.

While we were able to present a formal theory of AI-Completeness based on
the concept of Human Oracles the theory is not strong enough to address problems
involving internal states of mind. In fact one of the fundamental arguments against
our ability to implement understanding in a system which is based on symbol
manipulation, Searle’s Chinese Room thought experiment, itself relies on a gene-
ralized concept of a human as a part of a computational cycle. It seems that the
current Turing/Von Neumann architecture is incapable of dealing with the set of
problems which are related to internal states of human mind. Perhaps a new type
of computational architecture will be developed in the future capable of mimick-
ing such internal states. It is likely that it will be inspired by a better understanding
of human biology and cognitive science. Research on creating Artificial Con-
sciousness (AC) is attracting a lot of attention at least in terms of number of AC
papers published.

As a part of our ongoing effort to classify Al related problems we propose a
new category specifically devoted to problems of reproducing internal states of a
human mind in artificial ways. We call this group of problems Consciousness-
Complete or C-Complete for short. An oracle capable of solving C-Complete
problems would be fundamentally different from the Oracle Machines proposed
by Turing. C-Oracles would take input in the same way as their standard counter-
parts but would not produce any symbolic output. The result of their work would
be a novel internal state of the oracle, which may become accessible to us if the
new type of hardware discussed above is developed.

Just like SAT was shown to be the first NP-Complete problem and Turing Test
to be the first AI-Complete problem we suspect that Consciousness will be shown
to be the first C-Complete problem with all other internal-state related problems
being reducible to it. Which of the other internal state problems are also
C-Complete is beyond the scope of this preliminary work. Even with no con-
sciousness-capable hardware available at the moment of this writing the theory of
C-Completeness is still a useful tool as it allows for formal classification of clas-
sical problems in the field of Artificial Intelligence into two very important cate-
gories: potentially solvable (with current technology) and unsolvable (with current
technology). Since the only information available about Human Oracles is their
output and not internal states they are fundamentally different from C-Oracles
creating two disjoint sets of problems.

History of AI research is full of unwarranted claims of anticipated break-
throughs and conversely overestimations regarding difficulty of some problems.
Viewed through the prism of our AI-Complete/C-Complete theories history of Al
starts to make sense. Solutions for problems which we classify as AI-Complete
have been subject to continues steady improvement while those falling in the
realm of C-Completeness have effectively seen zero progress (Computer Pain [7,
12], Artificial Consciousness [40, 14], etc.). To proceed science needs to better
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understand what is the difference between a feeling and a though is. Feeling pain
and knowing about pain are certainly not the same internal states. We are hopeful
that the future research in this area will bring some long awaited answers.

4 Conclusions

Progress in the field of artificial intelligence requires access to well defined prob-
lems of measurable complexity. The theory of AI-Completeness aims to provide a
base for such formalization. Showing certain problems to be AI-Complete/-Hard
is useful for developing novel ways of telling computers from humans. Also, any
problem shown to be AI-Complete would be a great alternative way of testing an
artificial intelligent agent to see if it attained human level intelligence [41].
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Artificial Intelligence Evolved from Random
Behaviour: Departure from the State of the Art

Wiestaw Pietruszkiewicz and Akira Imada

Abstract. Since John McCarthy at MIT coined the term artificial intelligence in
1956 aiming to make a machine have a human-like intelligence in a visible future,
we have had lots of discussions whether it is possible in a true sense, and lots of
intelligent machines have been reported. Nowadays, the term is ubiquitous in our
community. In this chapter we discuss how those proposed machine intelligences are
actually intelligent. Starting with how we define intelligence, how can we measure
it, how those measurements really represent intelligence and so on, by surveying
the Legg and Hutter’s seminal paper on formal definition of machine intelligence,
we name a few others, taking a brief look at our own too. We also consider a mod-
ern interpretation of the Turing test originally proposed in 1950. Then we argue a
benchmark to test how an application is intelligent by means of an algorithm for
stock market investment as an example. Finally we take a consideration of how we
can achieve a human intelligence in a real sense in a real visible future, including an
analysis of IT changes stimulating artificial intelligence development.

1 Introduction

The main mission of this chapter is to evaluate artificial intelligence (Al) by explor-
ing definitions of intelligence and different approaches so far proposed, as well as
its resemblance to natural intelligence. In our opinion, the term of intelligence is too
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often incorrectly assigned to the simple methods of data processing, thus devaluing
the notion of AL

Al is a Holy Grail for many researchers and for the past half of century it was
assumed that humans will be able to create a machine—based resemblance of in-
telligence. For many years it has been tried by creating sophisticated algorithms,
which were supposed to imitate natural processes of intelligence, being formed into
arbitrary equations. Unfortunately, none of these research succeeded in something
we could consider to be a form of real human-like machine intelligence. However,
in the latest years yet another idea to realize Al emerged. It aims at the creation of
biologically inspired evolving processes, where simple random—driven algorithms,
very often using multiple instances, might be thought to bring us closer to the real
artificial intelligence. Hence, we would like to compare these two different ideas of
Al and explain their assumptions, applications, advantages and disadvantages.

Finally, we would like to highlight the directions of future development of Al by
explaining how new findings in science, improvement of algorithms, and stimula-
tion’s in software and hardware industries will lead us to further Al development.

2 Artificial Intelligence vs. Natural Intelligence

An excellent survey of this topic by Legg and Hutter[38] gives us a comprehensive
bird’s-eye view on what is intelligence, how can it be measured, and so on. We now
take a brief look at it in the following three subsections.

2.1 Definition of Human Intelligence

What usually reminds us of, when we say human intelligence, might be IQ test.
Standard IQ tests measure levels in various cognitive abilities such as reasoning,
association, spatial recognition, pattern identification etc. Statistical correlation of
these abilities is called g-factor, meaning a factor of general intelligence, coined
by Charles Spearman[68]. In a situation in schools indeed, this g-factor is quite a
good estimation. ”She is more intelligent than he is,” implies “’she has higher g value
than he has.” However, we also say "He is very intelligent,” for a football player, a
conductor of a symphony orchestra, a chef in a restaurant, etc. Hence a standard 1Q
test does not represent a general intelligence.

Legg and Hutter [38]] collected tens of definitions of human intelligence. Let us
quote just one, among others, by Nicer et al. [47].

Individuals differ from one another in their ability to understand complex ideas, to
adapt effectively to the environment, to learn from experience, to engage in various
forms of reasoning, to overcome obstacles by taking thought.

2.2 Informal Definitions of Machine Intelligence

As informal definitions of machine intelligence, Legg and Hutter quote from
Albus[3]:
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Ability of a system to act appropriately in an uncertain environment, where appropriate
action is that which increases the probability of success, and success is the achievement
of behavioural subgoals that support the system’s ultimate goal.

to which Legg and Hutter added, "This is especially similar to ours.” (In the next
subsection, we can see how similar it is.) Or, from Gudwin[23]:

Intelligent systems are expected to work, and work well, in many different environ-
ments. Their property of intelligence allows them to maximize the probability of suc-
cess even if full knowledge of the situation is not available. Functioning of intelligent
systems cannot be considered separately from the environment and the concrete situa-
tion including the goal.

Further, from Poole [56]]:

An intelligent agent does what is appropriate for its circumstances and its goal, it is
flexible to changing environments and changing goals, it learns from experience, and
it makes appropriate choices given perceptual limitations and finite computation.

2.3 Formal Definitions of Machine Intelligence

Legg and Hutter wrote, “One perspective among psychologists is ... that in-
telligence is the ability to deal with complexity. ... if we could formally define and
measure the complexity of test problems using complexity theory we could construct
a formal test of intelligence. The possibility of doing this was perhaps first suggested
by Chaitin. ... Essentially this is the approach that we have taken.” In fact, Chaitin
suggested a possibility of defining a machine intelligence exploiting Godel’s
complexity theory, writing ”Develop formal definitions of intelligence and mea-
sures of its various components; apply information theory and complexity theory to
AL’ as one of his directions for future research.

2.3.1 Legg and Hutter’s Universal Intelligence of an Agent

Now let us see Legg and Hutter’s formal definition a little more in detail, since all
other formal definitions mentioned in this section are based on this definition by
Legg and Hutter more or less.

We now summarize it by paraphrasing their paper. Legg and Hutter start with an
informal definition of intelligence:

An ability to achieve goals in a wide range of environments.

An agent behaves in an environment with a goal. A behaviour starts with an ob-
servation o1, then receives an information of how-good-or-bad-is-current-situation,
which is called a reward, 71, and make an action a;. Repeating this procedure creates
a sequence,

017r1a102r2020313a3 "+ * (D
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called a history. Now let’s define an agent 7. The agent takes the current history as
input and decides the next action as output. Thus agent 7 is formally represented as
a probability measure of next action given a history before the action. For example,

n(azloyriaioar) (2)

is a probability measure of the 2nd action of the agent. Further, environment { is
defined as the probability of o7y given the current history

0151a10212a2 * ** O Tk—10k—1, 3)

that is,
W(ogreloiriaiooras - - - ox_1ri—1ax_1). 4)

If we have a multiple paths to the goal, the simplest one should be preferred, which
is sometimes called the principle of Occam’s razor. Then, the formal measure of
success of an agent 7 under the environment ( denoted as VZf is defined as the
expected value of the sum of rewards that is:

Vi=E(Y ri). S)
i=1

Then the measure of the complexity of environments should be expressed. For the
purpose, let’s recall that the Kolmogorov complexity of a binary string x is defined
as the length of the shortest program that computes x. That is,

K(x) = min{1(p)|U (p) = x}. ©)

where p is a binary string which we call a program, /(p) is the length of this string
in bits, and U is a prefix universal Turing machine.

We express U; as a binary string by a simple encoding algorithm. Then, the com-
plexity of y; is K(u;). To formalize above mentioned Occam’s razor we use this in
the form of probability distribution 2~ X(#)_ Let E be the space of all environments
under consideration. Thus, the expected performance of agent & with respect to the
universal distribution 2-X(®) over the space of all environments E is:

y(m) = “%E 2 KWy, 7

In other words, weighted sum of the formal measure of success in all environ-
ments where the weight is determined by the Kolmogorov complexity of each
environment.

We now recall the starting informal definition: ’an ability to achieve goals in a
wide range of environments.” In the above equation, 'the agent’s ability to achieve’
is represented by VT, and ’a wide range of environments,” by E — all well defined
environment in which reward can be summed. Occam’s razor is given by the factor
2-K(1) Thus the authors called this the universal intelligence of agent 7.
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It is concluded that ”Essentially, an agent’s universal intelligence is a weighted
sum of its performance over the space of all environments. Thus, we could randomly
generate programs that describe environmental probability measures and then test
the agent’s performance against each of these environments. After sampling suffi-
ciently many environments the agent’s approximate universal intelligence would be
computed by weighting its score in each environment according to the complexity of
the environment as given by the length of its program. Finally, the formal definition
places no limits on the internal workings of the agent. Thus, we can apply the def-
inition to any system that is able to receive and generate information with view to
achieving goals.”

2.3.2 Other Formal Definitions of Machine Intelligence

Legg and Hutter survey Smith’s proposal [66] as ”another complexity based formal
definition of intelligence that appeared recently in an unpublished report.” It uses
polynomial time reentrant algorithm called problem generator which uses random
bits and spits out an infinite sequence of output bitstrings called problem and also
spits out a second bitstring called the secret answer. It also uses algorithm called
solution checker which reads the problem and secret answer spit out by the problem
generator. Thus the entity under test which allowed to see problem and solve it, is
tested by the solution checker. Author wrote, ”Both Hutter’s and this development
exhibit some striking similarities, but we had both different attitudes and different
terminology and in some cases investigated different topics or reached differing
conclusions.”

Recently, Hernandez-Orallo and Dowe also proposed a modified version of Legg
and Hutter’s measure [31]]. Much more recently, Hibbard proposed yet another ap-
proach to define and measure machine intelligence in which intelligence
measure is defined in both Turing machine and finite state machine models. This is
also principally based on Legg and Hutter’s definition. We will return to this model
by Hibbard more in detail in later section.

3 A Thought on Artificial Intelligence So-Far-Proposed

We have had a plenty of propositions each of which claims a realization of machine
intelligence more or less. Hence, despite Legg and Hutter [38] wrote ”Intelligence is
not simply the ability to perform well at a narrowly defined task,” we are sometimes
curious to know whether those machine intelligences reported so far, which are not
universal at all but very domain-specific though, are really intelligent or not, or if
so, how intelligent. From this perspective, we want to try to remove summation
over different environment form their formal definition of intelligence. That is, we
measure the intelligence of agent  for the specific task  simply by Vlf .

In addition, some of what they call an intelligent machine may indeed per-
form the given task much more efficiently, effectively, or precisely than human,
while we human are not usually very efficient, effective nor precise, but rather
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spontaneous, flexible, unpredictable, or even erroneous sometime. When we ad-
dress a human-like intelligence, we expect somewhat of a different behaviour even
when we come across a same situation again than the one as we behaved before, not
exactly the same one as before. We don’t necessarily expect artificial intelligence to
be as efficient, but sometimes expect its flexibility, spontaneity, or unpredictability.
Frosini wrote ... contradiction can be seen as a virtue rather than as a de-
fect. Furthermore, the constant presence of inconsistencies in our thoughts leads us
to the following natural question: is contradiction accidental or is it the necessary
companion of intelligence?” Or, as we will mention in a later section "Intelligence
might be well demonstrated by concealing it,” which Michie described in [44]] about
Turing’s suggestion of machine’s deliberate mistakes encouraged in order for the
machine to pass the Turing test [72]]. From this view point, we want to add:

Performance should be different more or less than previous one even when the agent
comes across the same situation as before,

to the Legg and Hutter’s informal definition. Note that the above mentioned measure
of intelligence Vi does not reflect such a flexibility of human intelligence, but only
an efficiency. Therefore, a reformalization of Legg and Hutter’s formal definition
will be quite a new challenging task, which we have not yet succeeded. The other
question is, can we evolve a huge population of random binary string, assuming
they can represent 7, eventually into an intelligent one with fitness being such an
intelligence measure?

4 Artificial Intelligence Evolved from Randomness

Our natural intelligence is a result of a tremendously long time of evolution starting
with just a tiny simple mechanism which gave just random movements. Then why
not trying a creation of artificial intelligence by an evolution from randomness?

4.1 Machiavellian Intelligence

Machiavellian intelligence (see, e.g., [8]]), named after Niccolo Machiavelli - me-
dieval Italian politician, is an intelligence which enables individuals to pursue par-
ticular goals by means of social manipulation. Miller [43] wrote, "Machiavellian
intelligence evolves because it lets primates predict and manipulate each other’s
behaviour,” and went on “predictive capacities tend to select for unpredictability in
counter-strategies, ... For example, prey animals often evolve 'protean’ (adaptively
unpredictable) evasion behaviour to foil the predictive pursuit tactics used by their
predators,” and concluded “sexual selection through mate choice results in adapta-
tions like bird song, whale song, and courtship dances, which could have elaborated
primate social proteanism into human creative intelligence.”

This model in which protean behaviour - being unpredictable to evade predator -
assumed to be the origin of human intelligence might give us a good motivation to
simulate predator-prey games as a meaningful step, not just a toy example.
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4.2 Hibbard’s Formal Definition Revisited

In this subsection we want to revisit the formal definition of machine intelligence
by Hibbard [33]]. One reason is, he employed a predator and prey model. The other
is, both the agent and environment are represented by finite state machine, which
will give us a very appropriate method to simulate the pursuit and evasion game.
We now take a brief look at how Hibbard defined a machine intelligence.

In the process of defining a formal definition of machine intelligence, Hibbard
modelled predictors and evaders as finite state machines as a more realistic models
than Turing machine.

An evader e has a state set S,, an initial state /,, and a mapping

M,=BxS,— S, xB, (8)

where B is a binary alphabet.
Similarly for predictor p, state set S, initial state I,,, and mapping

M,=BxS,—S,xB 9)

are specified. Evader e creates a finite binary sequence xx,x3 - - -, and predictor p
creates also a finite binary sequence y;y,ys3---. A pair of evader e and predictor p
interacts where e produces the sequence according to

Xnt1 = e(Y1Y23 "+ Yn), (10)
and p produces the sequence according to

Yn+1 :p(x1x2x3"'xn>- (11)

Then predictor p wins round n+ 1 if y, 1| = x,,1 and evader e wins if y, 1 # X;11.

4.3 Avidian

Recently, a self-replicating synthetic life was artificially created as a world’s first
synthetic form of life. They inserted synthetic DNA into Mycoplasma capricolum
cells and found those cells had grown into colonies .

Much earlier, in 1990’s, we had a digital version of this experiment in computer,
called Avidian. Inspired by Ray’s Tierra [58]], a population of self-replicating com-
puter programs, called digital organisms, in a computational environment in which
the population evolves as the organisms replicate, mutate and compete for resources
in the environment [[1}, 2} [52]]. Instructions that made up digital organisms are
designed to be robust to mutations so that any program will be syntactically legal
when mutated [48]]. The world is a discrete two-dimensional grid of cells in which
at most one organism may occupy. The genome is a circular list of program instruc-
tions that resemble assembly language, that runs in a virtual central processing unit.
When an organism replicates, its offspring is placed into a random grid cell, and
either the offspring and previously occupied organism survives in the cell. Thus, the
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organisms compete for the limited set of grid cells, and organisms that are able to
replicate more quickly will more likely to have a greater proportion of descendants
within the population.

Under this circumstance, Grabowski tried to model gradient following behaviour
of E. coli [24]]. Grabowski made the other experiments expecting an evolution of
simple intelligence and found digital organisms evolved to exploit memory 22].

5 A Modern Interpretation of Turing Test

In 1950, Turing posed a question ”Can machines think?” and proposed a test
which is now called Turing Test. Turing test is a test if a computer can pass then we
should grant it is intelligent thereby, or equivalently, a test to see if a computer can
cheat a human via a chat with teletype that it is a human. It was originally proposed
as the Imitation game, in which a man and a woman are in two separate rooms and
communicate with an interviewet] outside only via a teletype, and the interviewer
should identify which is the man by asking a series of questions. The man tries to
make the interviewer believe he is the woman while the woman tries to make the
interviewer believe she is woman. Later the man is replaced by a machine. If the
interviewer cannot tell the machine from the person, then it passes the test and we
can say machine is intelligent. Note that the test only gives us a sufficient condition
for intelligence. We now briefly see a chronicle of reflections on the Turing Test.

5.1 During 50 Years Since the Proposal

Not a few discussions - some positive, some negative - have taken place since Turing
proposed the test [72]]. Let’s name a few.

Gunderson [26]] asked ”Can rocks imitate?” by showing a modified Turing’s imi-
tation game as follows. A man and a woman are in a room. There is a small opening
at the bottom of the wall through which the interviewer can place his toe. The inter-
viewer must determine which of the two in the room is the woman just by observing
the way in which his toe is stepped on. Then a rock given an electric eye is replaced
with the man in the room, and the rock can put itself softly on the interviewer’s toe
placed in the opening of the wall. Even if the rock plays this toe-stepping game very
well it would not be acceptable that the rock imitates.

Gunderson pose another scenario also in [26]. A vacuum cleaner salesman visited
a house and recommended a housewife to buy his vacuum cleaner claiming this is
‘all purpose’ by demonstrating how it can suck up bits of dust. The housewife asked,
”What else? Isn’t it all-purpose? What about bits of paper or straw or mud? I thought
sucking up bits of dust was an example of what it does.” The salesman failed to show
more than one example of what it does.” Gunderson thought that the term “thinking”
in the Turing test is used to represent more than one capability.

! In Turing’s original paper the term “interrogator” was used instead of “interviewer.”
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Yet another argument to pose a doubt for Turing Test is the Seagull Test by French
[16]. One day in an isolate island, where the only flying animals known to the in-
habitants are seagulls, two resident philosophers discuss what flying is all about.
After arguing about a pebble tossed from the beach into the ocean, clouds in the
sky, balloons, kite, and penguins, one asked the other to assume someone invented
a machine that can fly. And they hit upon a test with two 3-D radars one of which
tracks a seagull the other tracks the putative flying machine. They concluded the
machine will be said to have passed the seagull test for flight if both philosophers
are indefinitely unable to distinguish the seagull from the machine.

Purtill denied the Turing’s imitation game as a piece of science fiction. Hayes
and Ford criticized the Turing Test even as harmful for artificial intelligence to
be developed.

Probably one of the most famous criticism is the Chinese Room argument [[65]]
posed by John Searl, philosopher, which conclusively asserts that it is impossible for
computers to understand language or think. Suppose now a person who knows only
English has a computer program that enables an intelligent conversation in written
Chinese by manipulating symbol strings with syntactic rules without understand-
ing semantics, or like a perfect version of Weizenbaum’s ELIZA [[74], if any. Searl
called it Chinese subsystem. Then the interviewer outside the room sends a ques-
tion in Chinese. The people in the room can pass the Turing Test for understanding
Chinese while he does not understand any word of Chinese. Similarly the program
would not understand the conversation either. Searl wrote, ”Whereas the English
subsystem knows that ”"hamburgers” refers to hamburgers, the Chinese subsystem
knows only that ”squiggle squiggle” is followed by ”squoggle squoggle.”

Harnad also doubted the Turing Test as Simulating Simulation and claimed that
what is important is not a simulation but an implementation [27)]. He denied Searl’s
claim too. He insisted on removing the wall between the both ends of the teletype
link from the interviewer to the machine to be tested. He wrote, ”... mental seman-
tics must be grounded” [27)], which implies the meanings in mind should be de-
rived from interactions with environment. He went on, "It is like a learning Chinese
only with a Chinese-Chinese dictionary, and the trip through the dictionary would
amount to a merry-go-round, passing endlessly from one meaningless symbol to an-
other; never coming to a halt on what anything meant.” Thus he extended the Turing
test to what he called Total Turing Test in which target machine is a robot with sen-
sorimotors. In this robotic upgrade of the Turing Test the interviewer can visually
assessed the machine to be tested, instead of with just a verbal communication via
teletype.

In addition to the above mentioned Harnad’s Total Turing Test, some researchers
also proposed new tests by modifying the original Turing Test such as Harnad’s yet
another Total Total Turing Test [29], Schweizer’s Truly Total Turing Test [64] or
Watt’s Inverted Turing Test [73]]. These are sometimes abbreviated to TTT, TTTT,
TRTTT, and ITT, respectively, besides TT to the Turing Test. It might be interest-
ing to see a series of severe discussions after Harnad’s refute. For example, Searl’s
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rebuff and the response by Harnad [28]], or other arguments such as Bringsjorcﬂ vs.
Harna(ﬁ As for a story from TT to TTT and TTTT, see a review by Fetzer [14].
For a more exhaustive survey on Turing Test, see, e.g., Saygin et al. [62], or French
[17]. As a survey positive for the original Turing Test proposed by Turing himself,
it might be interesting to read a witty essay recently written by LaCurts [36].

5.1.1 Loebner Prize

We have a contest organized by Hugh Loebner who will pledge $100,000 to the
program that succeeds in passing the Turing Test if appeare(ﬂ The contest started
in 1990. Four human judges sit at computer terminals with which the judges can
talk both to the program and to the human who tries to mimic computer. Both are in
another room and after, say, 5 minutes the judge must decide which is the person and
which is the computer. The first computer program that judges cannot tell which is
which will be given the award, and then this competition will end. Although a minor
award is given every year to the program which responds in most human-like way,
as of 2011 the contest has not ended yet, and the contest in 2012 will be held at
Bletchley Park, UK.

5.2 An Easy Way to Cheat Human?

One of the easiest ways to make the interviewer believe that the machine is a human,
might be a deliberate mistake from time to time pretending not to be too precise to
be a human. Turing wrote in [72]]:

It is claimed that the interrogator could distinguish the machine from the man simply
by setting them a number of problems in arithmetic. The machine would be unmasked
because of its deadly accuracy. The reply to this is simple. The machine (programmed
for playing the game) would not attempt to give the right answers to the arithmetic
problems. It would deliberately introduce mistakes in a manner calculated to confuse
the interrogator.

5.3 Turing Test These Days

It had been a long time dream to create a machine which can play chess like human.
See, e.g., the book about an eighteen-century chess-playing machine by Standage
[69]]. The real chess match between a human world champion and a computer - the
then world champion Garry Kasparov vs. IBM’s Deep Blue - was held in 1996. In a
six-game match Deep Blue won one game, tied two, and lost three. Deep Blue was
defeated. The next year, Deep Blue again challenged Kasparov also in a six-game
match. Kasparov had won the 1st game, lost the 2nd, tied 3rd, 4th and 5th, then lost

2 http://philpapers.org/rec/BRIPAT
3 http://www.archipel.ugam.ca/144/2/r-brings.htm
4 http://www.loebner.net/Prizef/loebner-prize.html
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the 6tIE. Thus, finally Deep Blue beat the world champion. Now we know, however,
that the Deep Blue won by a brute force rather than with an intelligent strategy.

Turing wrote the first chess computer program, which was called the paper ma-
chine because it was before computers even existed. Precedent of his 1950 version,
the game was with a mathematician A who operates the paper machine, and two
chess player B and C. C plays chess with either A or B both of whom are in the
separate room, and C should guess whether he is playing with human or the paper
machine [[71]].

Now it might be easy to imagine a scenario in which A is IBM.’s Deep Blue, B
is Kasparov, and C is the current world chess champion. The Deep Blue would be
sure to pass the test. See also comments by Crol on Deep Blue vs. Kasparov.

In mid February in 2011, IBM’s room size supercomputer called Watson chal-
lenged ’Jeopardy’ - America’s favourite quiz show on TV. In Jeopardy, normally three
human contestants fight to answer questions over various topics, with penalties for the
wrong answer. The questions are like “Who is the 19th-century painter whose name
means police officer?” or “What is the city in US whose largest airport is named for
a World War II hero; and its second largest for a World War 11 battle.”ﬁ.

The contest was held over three days with Watson being one of the three contes-
tant and the other two being the ex-champions of Jeopardy - Ken Jennings and Brad
Rutter. As Watson cannot see or hear, questions were shown as a text file at the same
moment when they were revealed to the two human contestants. By the end of the
third day, Watson got $77,147 while Jennings got $24,000 and Rutter $21,600. Wat-
son beat the two human ex-champions. If we set up an appropriate scenario, Watson
could pass the Turing Test.

Turing Test is, to simply put, a test to know whether computer can fool human
that ’T am a human not a computer!” Nowadays we have a very practical program
called CAPTCHA in order to prove 'I’'m not a computer but a human.” Actually it
stands for ’Completely Automated Public Turing Test to tell Computers and Hu-
mans Apart.” This is an acronym based on the English word ’capture.” This is some-
times called a reverse Turing Test. CAPTCHA is exploited by computer with a target
being human while Turing test is supposed to be exploited by human with a target
being a computer. Nowadays, the original Turing Test is not only of theoretical in-
terest but also as practical as CAPTCHA[. For example, a poker playing robot must
cheat a web casino site to play there as human. Actually Hingston [34] proposed a
new test as follows:

Suppose you are playing an interactive video game with some entity. Could you tell,
solely from the conduct of the game, whether the other entity was a human player or a
bot? If not, then the bot is deemed to have passed the test.

3 See, e.g., "Human-computer chess matches” From Wikipedia.
http://en.wikipedia.org/wiki/Human-computer_chess_matches

6 This is from the article in New York Times by John Markoff entitled ”Creating Artificial
Intelligence Based on the Real Thing” on 17 February 2011.

7 Weak CAPTCHAs are possible to be broken by machines using OCR mechanisms. There-
fore, creators of CAPTCHAs introduce noise and blurred or distorted text to make this
task harder.


http://en.wikipedia.org/wiki/Human-computer_chess_matches
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6 Biologically Inspired Artificial Intelligence

The creation of man—made intelligent systems or units has two distinctive parts. The
first one is a traditional approach, assuming that the secrets of intelligence could be
revealed, converted to sets of equations and later programmed. While the second ap-
proach, inspired by biology, assumes that the self—adaptive capabilities of flexible
structures will allow to adapt themselves to selected problems and to find expected
solutions. In this way we don’t have to find exact formulas defining behaviour of in-
telligent system in particular situation, instead giving them a chance to find solution
by a partially random behaviour. The term biologically inspired artificial intelli-
gence relate to a wide range of Al algorithms introduced as resemblances of natural
processes observed in biological environment. The main groups of Bio—AlI include
algorithms and systems such as [13]:

e neural — being networks or circuits of information processing units being resem-
blances of biological neurons, interconnected in organised structures, cooperat-
ing in complex information processing tasks. Information flows from one node
(or a layer) to another one, being transformed by operations done by previously
passed neurons.

e cellular — assuming that multicellular structure will have capabilities unexpected
from the isolated units, and this is not a simple effect of scaling—up,

e collective — synergistic interaction of individuals, is done for a common good,
e.g. to find food or a better route. In this variant, collective systems (artificial as
well as natural ones) perform as one superorganism, more qualified than the sum
of its parts’ qualifications.

e immune — as living creatures are threatened by pathogens, being external ex-
ploiters, they developed protecting immune systems. In their artificial version
they protect against external attacks, internal faults and to be used in various in-
formation processing tasks perceived from the perspective of system protection.

e evolutionary — where the best (fitted to environment) individuals have a chance
to survive and have more offspring. The genes of next generations contain infor-
mation from their parent, partially modified by a random process of mutation.
However, there exists a difference between natural and artificial evolution. In na-
ture, evolution create a vast diversity of creatures (at a certain moment becoming
different species), while artificial evolution helps us to produce population satis-
fying our predefined problems. Therefore, the overall aim of artificial evolution is
more similar to e.g. dog breeding, than a random natural process with unexpected
outcomes, giving species special abilities helping them to survive.

This chapter focuses on the evolutionary systems, providing a simple benchmark
to evaluate their performance in comparison to human intelligence and fully ran-
dom process. More information about these kinds of algorithm and their usage can
be found in [13]], [43], [12], or [6]]. It must be noted that important difference
between the traditional and bio—inspired Al, is the number of elements involved in
these processes. The traditional Al usually involves small number of elements (often
even one), where each element is expected to perform as good as it could be done.
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The bio—inspired Al is built over a large number of elements, where only a subset
of them will provide meaningful results. This is an exact situation found in nature,
where redundancy and large populations are typical, and the progress of populations
development is being driven by small subsets of best individuals.

7 A Benchmark to Evaluate Artificial Intelligence

In his book ”A Random Walk Down Wall Street,” Malkiel wrote “a blindfolded
monkey throwing darts at a newspaper’s financial pages could select a portfolio
that would do just as well as one carefully selected by experts” [41]]. Can we evolve
this random strategy to an intelligent strategy? For example, Lipinski proposed a
decision support system for stock market trading, which is based on an evolution
strategy algorithm applied to construct an efficient stock market trading expert [40)].
This is just one among many such proposals. Then those strategies can be called
intelligent? Or they pass the Turing Test?

In this section we would like to investigate the evolutionary algorithms applied
for a problem of financial investments — done in form of stock portfolio, creating an
optimal structure of financial assets. This is a very well-known task with detailed
description presented in many books and papers (to find more about its financial
meaning see, e.g. or [13]]). These factors caused that portfolio selection was
a subject of many research, including experiments performed different evolution-
ary algorithms, including genetic ones. Among many papers about this area we can
mention [50], [67], [7], [21] or [4]. Another important factor that caused we de-
cided to use this task as a benchmark for natural and artificial intelligence compar-
ison is the algorithmic characteristics of portfolio selection. Finally, in the financial
practice, an optimal selection of portfolio is a very significant task of financial in-
vestment. Therefore, we will examine the relation for natural intelligence of stock
investors and evolutionary intelligence.

The most fundamental and widely used approach to optimal selection of finan-
cial assets constituting portfolio is the MPT (Modern Portfolio Theory) introduced
by Harry Markowitz [42]. In language of mathematics selection of best (optimal)
portfolio is a task involving an analysis of expected portfolio efficiency and risk.
The most common measure of efficiency is expected return:

E(Rp) = Y Wi (Ri), (12)
i
where: R), is the return of portfolio, R; is the return on asset i and w; is the weight of

assets.
The standard measure of risk is portfolio volatility calculated as the standard

deviation of return:
82 = \/ZZwiw,«S,-sjpiﬁ (13)
i

where: §; is the standard deviation of returns for i assets and p;; is correlation coef-
ficient of returns for i and j assets.
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Fig. 1 The schema of risk—efficiency map for portfolio selection

To briefly explain the meaning of this task, let’s analyse Figure[ll As we can no-
tice it contains a plane, where X-axis denotes risk and Y-efficiency (both measured
according to the rules introduced above). This chart is called a risk—efficiency map,
as it provides comparable information about these two parameters. Contrary to the
incorrect common opinion, we cannot find an optimal portfolio by searching for one
with greatest efficiency or minimal risk, as looking for global extrema will cause ir-
rational selection. This problem requires us to analyse both of these parameters.
Indeed, in the two most common scenarios, portfolio optimality is understood as an
extreme value of risk or efficiency for portfolios having particular efficiency or risk
(accordingly). There exists an efficient frontier for this selection, being a subset of
portfolios, each with the highest efficiency for fixed risk or the lowest risk for fixed
efficiency.

To examine evolutionary (genetic algorithms) approach to portfolio selection, we
have decided to compare three types of portfolios:

e Portfolios of two financial investment funds — we consider them to be the out-
comes of natural intelligence, as they are created by financial experts managing
these funds.

e Randomly generated portfolios — randomly distributed are the worst—case sce-
nario, as if portfolio construction is a knowledge requiring task, random selection
should give significantly worse results.

e Portfolios generated using genetic algorithms — an evolutionary simple approach,
where randomness is driven by algorithm of selection allowing the best portfolios
in one generation to be potentially improved in following generations.
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The analysis was done for Warsaw Stock Exchange during year 2010, being a quite
stable year for WSE (and other markets), as a few previous years were very nervous
for stock markets around the world. Thus, they cannot be expected to provide simple
and easily understandable evaluation for computational methods of intelligence, as
well as for human knowledge.

We investigated three scenarios:

1. minimal risk portfolio — where we minimise risk value for portfolios with effi-
ciency equal to a certain value,

2. maximal efficiency portfolio — where we maximize efficiency value for portfolios
with a certain risk,

3. minimal risk—to—efficiency ratio portfolio — where the average risk per unit of
efficiency should be minimal.

In all cases, we have assumed that the all weights of assets in portfolio sum to one
i.e., >,; w; = 1 and the short—selling is not allowed i.e., w; > 0. The genetic algorithms
were used in a variant with roulette-wheel selection (for explanation see [[12]]), and
real-valued N chromosomes used in fitness function (N was a number of stocks)
representing weights of particular stocks in portfolio. The fitness function was
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selected to match expected optimality of portfolio (minimal risk, maximal efficiency
or minimal risk—to—efficiency).

We have performed two stages of experiments for two investment funds (denoted
as Fund A and Fund B) oriented on investing in WSE—-noted stocks, by examining
their portfolios, more precisely subsets WSE stocks (small parts of portfolios was
invested on other markets or in bonds). The results of these experiments can be
found in Figures 2l and Bl Both Figures contain four subfigures presenting analysis
done for 5, 10, 20 and all stocks. They contain frontiers, random portfolios (grey
areas) and genetic portfolios.

Analysing these Figures, we have made observations for:

e Funds — being not so optimal as it was expected in terms of MPT. However, we
do not want to criticise human experts as their selection might have been a result
of analysis beyond MPT theory.

e Random portfolios — random selection of portfolios, as it was expected, resulted
in mean results. Interesting observation is that with increasing number of stocks,
random areas were more distant from efficient frontier and it could mean that
optimal selection is harder to perform (small changes in the weights of portfolio
result in its suboptimality).

o Risk-efficiency map o Risk-efficiency map

0.0025| 0.0025

0.0020| Best relative-
0.0020]

Best€fficiency-portfolio
0.0015 =

. 0.0015 Best relative-pgyffolio
oBstglsk-portiafio

efficiency
efficiency

o—FundB
0-0010F gt risk-porffofio
0.0005

0.0005|
0.0000|

—0.0005| 0.0000
~-0. DOB -0.
.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0:000 0.002 0.004 0.006 0.008 0.010 0.012
risk rish
(a) Fund B - 5 stocks (b) Fund B — 10 stocks
o Risk-efficiency map o Risk-efficiency map
0.005 0.005
0.004 0.004]
oy o)
2 0.003 2 0.003|
£ £
5 5
0.002 Best effidiency-por 0.002
Best efficiency-portfolio
Best relative-portfolio o—Fde PPy e
0.001 Best risk-porffolio 0.001 Best relative-psifoo— une
Best risk-portfolio
o 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 o 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035
ris| risk.
(c) Fund B - 20 stocks (d) Fund B — all stocks

Fig. 3 [} [0} [©) and [(d]



Artificial Intelligence Evolved from Random Behaviour 35

e Genetic portfolios — achieved better (according to the MPT theory) results for
all three scenarios in both cases (Fund A and B). However, we have observed
their weak spots too, i.e. a number of adjustable parameters and core algorithm —
both to be selected and tuned by human operator, and larger demand on computer
resources. This last problem, in the context of processing limits, will be discussed
in the following section and we must remember about significant risk of sub—
optimality for classic optimisation algorithms. The partially positive influence of
random component in the optimisation of complex functions was discussed in

(53].

8 To Aim a Real Human-Like Machine Intelligence

In this section we will discuss ideas, research and technological changes influencing
further development of artificial intelligence. Together with reorientation of Al on
bio-inspired algorithms they might cause that the term of machine intelligence will
become more realistic.

8.1 Huge Number of Neurons—From Emulation to Simulation

Recently, IBM’s researchers unveiled a project called SyNAPSE (Systems of Neu-
romorphic Adaptive Plastic Scalable Electronics) in which experimental computer
chips which emulate the brain was awarded 21 million US dollars from the Defense
Advanced Research Projects Agency (DARPA). Currently prototype contains 256
neurons and 262,144 programmable synapses and 65,536 synapses for learninﬁ.

On the other hand, simulating brain by a program, instead of emulating brain by
hardware, also has attracted, and still attracts, researchers. One such idea is evolving
artificial neural networks. Direct encoding of artificial neural networks, where struc-
ture and/or all the synaptic strengths are directly encoded to genes, is not practical
because it is computationally very expensive, and as such, lots of indirect encod-
ing methods have been proposed. Hypercube-based Neuroevolution of Augmenting
Topologies (HyperNEAT) [70] is one of them. Infact Gauci wrote, "Although
HyperNEAT generates ANNs with millions of connections, such ANNs can run in
real time on most modern hardware. Using a 2.0GHz processor, an eight million
connection networks takes on average 3.2 minutes to create, but only 0.09 seconds
to process a single trial.” Clune [L1]] applied it to design a neural network that con-
trols a quadruple leg robot.

Although once Frederic Jelinek, a pioneer in speech recognition, put it in the
debates with the linguists, “airplanes don’t flap their wings to fly like birds’ﬁ,
the most likely candidate of artificial intelligence might employ real biologically

8 This is from the article in New York Times by Steve Lohr entitled “Creating Artificial
Intelligence Based on the Real Thing” on 6 December 2011.

9 This is from the article “Computer scientist of Czech-Jewish origin Jelinek dies in USA,”
in The Prague Daily Monitor on 27 September 2010,
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plausible artificial neurons to think like human brain. An example would be, evolv-
ing trillions of spiking neurons with a fitness of how intelligent, assuming we have
a good measure of machine intelligence mentioned in the previous section. Let us
quote Sandberg and Bostrom’s paper “Whole Brain Emulation: A Roadmap” [60].
"The so far (2006) largest simulation of a full Hodgkin Huxley neuron network
was performed on the IBM Watson Research Blue Gene supercomputer using the
simulator SPLIT. It was a model of cortical minicolumns, consisting of 22 million
6-compartment neurons with 11 billion synapses, with spatial delays corresponding
to a 16 cm? cortex surface and a simulation length of one second real time. Most
of the computational load was due to the synapses, each holding 3 state variables.
The overall nominal computational capacity used was 11.5 TFLOPS, giving 0.5
MFLOPS per neuron or 1045 FLOPS per synapse. Simulating one second of neural
activity took 5,942 sec. The simulation showed linear scaling in performance with
the number of processors up to 4,096 but began to show some (23%) overhead for
8,192 processors.” See also Cattell and Parkers paper [9] on this topic.

8.2 Toward Real AI by Parallelism

From computational point of view, when we compare the processing power of hu-
man brain with the power of machines the main differences relate to:

e power — computers are more powerful in specific tasks, allowing them to perform
faster calculation or analysis of structured data, while the power of total human
brain is still exceeding its machine counterpart (see [46]) and cause that we are
able to see, hear or speak (not to mention about thinking).

e parallelism — in this case human brain is parallel biological computer, while ma-
chines are much more sequential.

Therefore, it is expected that increased parallelism will be a significant factor in-
fluencing further development of Al. As we can notice, the most of currently intro-
duced or investigated Al algorithms is based on multiple instances of simple mech-
anisms (including neural systems or swarm intelligence) comparing to sophisticated
algorithms typical for the traditional approach to Al. As we — researchers — haven’t
succeeded in reimplementing the nature using machine—based tools (algorithms and
programming languages) we should aim at creation of self—adaptive resemblance of
nature (brain) in large scale and expect that process of evolution will also work in
this case.

However, considering further increase of computational power of machine—based
intelligence, we think that the next obstacle we should overcome is the processing
limits related to all computer system. As it was stated by Pietruszkiewicz (see [33]]
- for other factors important in Al applications see [54]]) they relate to: algorithms,
software, hardware and even human operators. These limits can be eased by many
means, especially by increased parallelism, available in different forms including:
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e Multi-core processors — is possible to implement fully parallel data processing
on a single—chip machines and deploy task parallelism in systems. Furthermore,
the current versions of processors available on market compete with number of
cores, as increase of power of a single-cores is limited by quantum effects@;

e GPU-enabled processing — allows us to deploy cost and energy effective GPU
(Graphical Processing Unit) cards to problems where parallel data processing
significantly reduced time of processing — described as GPGPUs applications
(General Purpose Graphical Processing Unit). The power of even mid-range
GPU cards, being multi—core RISC processors, is at a few rank over power of
CPUs. The processing based on GPU fits very well to algorithms of Al, where
tasks could be divided into interdependent parts, e.g. neural networks, evolu-
tionary algorithms or swarm intelligence. The success of these systems could
not have been achieved without supporting software technologies, like CUDA
or OpenCL (see [61]] or [63]), allowing one to easily build and deploy GPGPU
applications;

e Distributed processing — transforming computers in network into metacomput-
ers, where the clusters of distributed or co—located machines could be used in
various tasks offering their resources. This solution also could not succeed with-
out appropriate software technologies allowing developers to build distributed
systems over software layers responsible for management of distributed systems
(e.g. controlling them and performing tasks management). One of the most pop-
ular distributed data processing technologies is Apache Hadoop (see [37]) and
its application to intelligent problems led to the development of Apache Mahout,
build over Hadoop to perform data mining tasks (for more information about
Mabhout see [51]).

Therefore, as we can see all people involved in IT industry — researchers, developers,
IT companies — are oriented onto increased availability of parallelism in computer
systems at level of processor, machine or networks. Due to this observation and pre-
liminary research done for Al using these technologies, we claim that this approach
has a great potential to bring us closer to . To conclude — an urban expression dumb
as a bag of hammers has a special meaning for AI. Human brain being also “a bag
of neurons”, where a single neuron is not as bright as we could expect, is still the
greatest intelligent system we could observe. Maybe a large number of parallel neu-
rons will bring the man—made machines to this biological excellence. Additionally,
this approach suits very well to the idea of bio—inspired Al, including evolutionary
intelligence.

9 Conclusions

In this chapter we have analysed the most popular or influencing definitions of in-
telligence for natural and man—made systems. We have investigated two different

10 The quantum computers for many years are considered to have a great potential and are
expected to cause a technological revolution. However, they are still in a research stage,
far from maturity and being market—ready.
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approaches to artificial intelligence, the traditional and evolutionary one. Both of
these approaches have many theories, methods and implementations and they were
introduced and discussed herein.

To examine behaviour of evolutionary intelligence and compare it with natural
intelligence we have performed an evaluating experiment. The introduced bench-
mark, being an Al-based solution to one of the most popular financial problems
— resulted in evolutionary intelligence outperformed results of human experts. Ad-
ditionally, it revealed the difference between the popular theory (which should be
taken into account by investors) and business practice.

The last part of this chapter contained an analysis of technological changes that
could support further development of intelligent systems. In our opinion one of
significant technological changes taking place, with a great potential for Al is a
move towards parallelism in both — hardware and software.

In our final words, we would like to point that we are aware, that in the near future
researchers community will still be discussing the definition of Al and what should
be considered as a man—made fully intelligent system. However, we shouldn’t forget
that people behaviour involving knowledge and intelligence is not always as bright
and clever as we expect. In situation where the genetic algorithms performed better
than financial experts, which group should be consider to be intelligent? Or maybe
we should start to think about Al in the same way we think about some people
with great minds, allowing them to deal with complex tasks much better than with
daily routines. Who will perform better at the Turing test — the Rain Man or a well
designed chat-bot?
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Turing: Then, Now and Still Key

Kieran Greer

Abstract. This paper looks at Turing’s postulations about Artificial Intelligence in
his paper ‘Computing Machinery and Intelligence’, published in 1950. It notes
how accurate they were and how relevant they still are today. This paper notes the
arguments and mechanisms that he suggested and tries to expand on them further.
The paper however is mostly about describing the essential ingredients for
building an intelligent model and the problems related with that. The discussion
includes recent work by the author himself, who adds his own thoughts on the
matter that come from a purely technical investigation into the problem. These are
personal and quite speculative, but provide an interesting insight into the
mechanisms that might be used for building an intelligent system.

Keywords: Artificial Intelligence, Intelligence Modelling, Alan Turing.

1 Introduction

The idea of artificial intelligence has been around since the 1950’s at least. Alan
Turing and others have been attributed as the founders of the science and Turing
as the father of Al, but a definition of what it represents is still not clear. Turing
defined it through the imitation game, where a human and a machine are asked the
same set of questions. If the interrogator cannot tell which is the human and which
is the machine, then the machine is considered to be intelligent. This is really the
ultimate test for an intelligent system, where it acts almost exactly as a human
would. Most people would recognise that if a machine can perform more
simplistic, but still intelligent acts, then it is considered to have intelligence. There
are now many different variations and definitions of what a single intelligent act
might be, which is probably why a concise definition is so difficult. It probably
requires however that the machine can do something by itself, without being told
exactly how to do it first. This paper considers Turing’s ‘Computing Machinery
and Intelligence’ paper [22], which is one of the first to write about artificial
intelligence. It looks at the postulations made in that and describes how relevant
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they still are today. While the problem of what artificial intelligence is and what it
requires has now been defined much more formally, we are still not much further
on at achieving it in a real sense. Many smaller advances have been made however
and are covered in many texts about the topic.

Turing stated that a computer using a ticker tape as the information source, if
programmed properly, would be able to solve any problem. This was described as
the Turing machine, which is able simply to manipulate symbols on a strip of tape
according to a set of rules. This can be used to simulate the logic of any computer
algorithm, because a computer process is eventually broken down into simplistic
on/off commands. This could be represented by a hole or not in the tape, for
example. Turing meant that if a problem can be described in terms of a computer
algorithm, then the computer can perform that task. The computer does not have
any difficulty performing the most complex of calculations, but it does not know
how to write the algorithm telling it how to do them in the first place. That
requires intelligence. Neurons in an animal brain are also by nature very simple
components. They switch on, or fire, when the input that they receive exceeds a
certain threshold. This does not appear to require any inherent intelligence either
and looks more like a purely mechanical process. The problem is that it is still not
known how to use this sort of entity to realise a truly intelligent system.

The brain is made up of billions of these neurons [24]. If a single neuron has
zero intelligence, then some thousands of them together also have zero
intelligence; but we know that intelligence is made up of the collective activity of
a large number of neurons, all firing together. One key factor is the granularity of
the patterns that they form. The patterns are made up of so many neurons that a
slight change in an input stimulus could lead to noticeable changes in the patterns
that are produced and therefore in the output signals that they create. Different
patterns can then be interpreted by the brain as something different. The brain
creates electrical signals, causing changes in some internal state that might be felt.
If the brain can recognise these different feelings or reactions, to small pattern
changes, they could also be remembered and linked, to form different memories.
Is this the essence of what intelligence is? Is it the ability to recognise these
differences in a coherent and consistent way? The fact that a stimulus is involved
is probably not a surprise. The electrical signals would excite and the brain would
probably register this in some way. What might be surprising is how important a
role it plays, but this theory appears to be a part of the mainstream research
interest. The paper [23] discusses it and describes the difficulties with measuring
stimulus-driven responses, or modelling the neural circuits produced by them. If
we assume that individual neurons are not intelligent by themselves, then we have
the following problems and requirements for realising an intelligent machine:

1. The formation of the brain structure could be driven mainly by stimuli — sight,
sound, taste, touch, smell, for example. The brain tries to remember and
repeat the ones that it finds favourable, or unfavourable.

2. If the neurons have no intelligence, then at least one other layer that can
interpret what the firing neurons signal is required. A layer called the
neocortex [8] is already known to perform more intelligent processing. The
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neocortex is a thin layer above the main brain body. It contains most of the
intelligent components, including memory and is the driving force behind
intelligent activity.

3. If external stimuli control everything about how the brain forms then
environmental factors are too critical and so this more intelligent and
independent layer is very important.

4. With a largely unintelligent main brain body, notions about the sub-conscious
are also possible.

The following questions also arise:

—_—

Is the brain formation driven by the stimulus or by the more intelligent layer?

2. Does the more intelligent layer simply interpret different signals, or can it
have an influence over their creation and activation?

3. Is there a process of reading and re-organising existing patterns, which would
indicate a controlling and therefore intelligent process? Does the main brain
body form certain patterns that are read by other layer(s) that then form other
patterns, etc., until the refinement forms into comprehensible intelligence?

4. The problem is then the act of thinking itself. Without any particular external
stimulus, we still think about things. So the stimulus can also be generated
internally. Can a stimulus result be learnt and remembered? What sort of
stimulus would allow a person to learn mathematics, for example?

5. Memory plays a key part in retrieving already stored patterns, but how do we

think over them and change them in an intelligent way? Memory must also

accommodate the processes to do that.

The rest of this paper is organised as follows: Section 2 gives an introductory
overview of the human brain neuron and its artificial equivalent. Section 3 lists
certain requirements for an intelligent system. Section 4 then lists general
mechanisms or processes for finding a solution to these. Section 5 describes some
work by the author that is related to an intelligent system, while section 6 gives
some conclusions on what has been written about. Turing’s postulations are noted
in places throughout the paper, but the paper is more of a summary on general
conditions for artificial intelligence. The conclusions section however lists the
postulations in detail and notes how important they still are.

2 Simplified Model of the Human Brain

This section does not try to describe the brain structure completely, or in detail,
but instead will attempt to show the similarities between the biological and the
simulated neuronal processing unit. The Introduction has already described how
intelligence is realised through the collective activities of these neurons, firing in
response to sensory input. The paper [23] notes that while responses to sensory
input can account for something such as vision, the majority of brain activity is
generated internally and is silent. The brain therefore also needs to be able to
produce its own activity, in the absence of external input. We therefore need to be
able to think constructively.
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The most obvious way to try and realise intelligence in a machine is by copying
the most intelligent thing that we know of, which is the human brain. If we can
figure out how that works and reproduce it in a machine, then we will have
artificial intelligence. There has been quite a lot of work carried out looking at
natural processes and then trying to copy them in machines. They can be called
‘bio-inspired’ and the idea is that if nature has worked out how to do something
well, then it probably cannot be beaten and so we should try to copy it in some
way. Often however the goal is not to copy it exactly, but to try to understand the
underlying process that is happening and then try to implement that in a machine
in some way ([5], section 1.2, for example). Computer chess, however, is a classic
example of how different the result can be. Computers can now play the game of
chess as well as any human and the computer programs were built around the
fundamental principles of how we play the game. The machine evaluates each
position and searches logically through sequences of moves to find the best
possible reply in any position. However, while humans evaluate tens of positions
before making a move, the best computer program can evaluate thousands or more
of positions to achieve the same result. The assumption must be that the computer
does not understand the problem in the same way that the human player does and
therefore needs to evaluate many more positions to come to the same conclusion.

The basic computational unit in the brain is the neuron. A neuron has inputs
called dendrites, a cell body and an output called an axon. An animal or human
neuron can be modelled as in Figure 1. The dendrites send incoming signals into
the cell body of the neuron that can be of varying strength. A stronger input signal
will trigger the neuron’s own output signal more. When the accumulative value of
these signals exceeds a certain threshold value, the neuron fires by sending out its
own signal through the axon. This output signal can then act as an input signal to
other neurons, and so on.

Dendrites
Cell Body

Axon

Fig. 1 Example of a human neuron

The signals are electrical and sent by neurotransmitters to other brain areas.
They are created by chemical reactions that cause a diffusion of positive and
negative ions. The positively charged ions create the electrical signal and a firing
spiking event. This spiking event is also called depolarization, and is followed by
a refractory period, during which the neuron is unable to fire. This could be
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important, because after a cell fires, it cannot then fire again, through feedback for
example, before a period of time has elapsed. This could help to prevent cycling,
for example. As written about in [21]:

‘Although the models which have been proposed to explain the structure of the
brain and the nervous system of some animals are different in many respects, there
is a general consensus that the essence of the operation of neural ensembles is
"control through communication". Animal nervous systems are composed of
thousands or millions of interconnected cells. Each one of them is a very complex
arrangement which deals with incoming signals in many different ways. However,
neurons are rather slow when compared to electronic logic gates. These can
achieve switching times of a few nanoseconds, whereas neurons need several
milliseconds to react to a stimulus. Nevertheless, the brain is capable of solving
problems that no digital computer can yet efficiently deal with. Massive and
herarchical networking of the brain seems to be the fundamental precondition for
the emergence of consciousness and complex behaviour.’

Neural networks are the technology that most closely map to the human brain.
They are the original attempt to build a machine that behaves in the same way.
The inspiration for neural networks comes from the fact that although current
computers are capable of vast calculations at speeds far in excess of the human
brain, there are still some operations (such as speech, vision and common-sense
reasoning) that current Al systems have trouble with. It is thought that the
structure of the human brain may be better suited to these tasks than a traditional
computing system and a neural network is an attempt to take advantage of this
structure. There are many texts on neural networks, for example, [7] or [21]. In [7]
the definition of a neural network is given as:

‘A neural network is an interconnected assembly of simple processing
elements, units or nodes, whose functionality is loosely based on the animal
neuron. The processing ability of the network is stored in the interunit connection
strengths, or weights, obtained by a process of adaption to, or learning from, a set
of training patterns.’

Figure 2 shows a model that has been used with artificial neural networks, with
the areas related to a real neuron in brackets. This shows a number of inputs (X, to
X,) that are weighted (w; to w,) and summed, before being passed through a
threshold function. If the total sum is larger than the threshold, the neuron will
‘fire’, or send an output signal. If it is less, then the neuron will not fire. This is an
example of a perceptron, which is one of the earliest artificial neuronal models,
based on McCulloch and Pitts [16]. It is described here to show how similar in
nature it is to the real neuron. Neural network models, also known as connectionist
models, consist of a large number of these simple processing elements, all
operating in parallel. A large number of weighted connections between the
elements then encode the knowledge of the network. The problem to be solved is
also distributed across all of the processing elements, where it is broken down into
much simpler functions. A learning algorithm is then used to adjust the weight
values until the neural network has correctly learned the global function.
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Fig. 2 Example of an artificial neuron

Neural networks can be used in different ways. They are very good for pattern
recognition and therefore can be used simply as statistical classifiers in engineering
fields. They can perform certain classification tasks better than other alternatives. As
part of a model for intelligence however, they also map closely to the human brain,
although the main statistical process of weight reinforcement is still too simplistic to
model the real neuron properly [7]. A global function is therefore created from the
combined results of simpler functions, each representing a single processing unit.
These units can also be placed in layers that result in more complex representations, as
the input/output flows through each one. An example of a 3-layer feedforward neural
network is shown in Figure 3. Each element in one layer sends its output to every
element in the next layer. All inputs to any element are weighted, summed together
and then passed through an activation function to produce the output for that element.
The nodes in the hidden layers may represent complex features that are discovered by
the learning algorithm of the network. It is generally not known beforehand exactly
what the hidden layers represent and so neural network researchers tend to characterise
them in terms of their statistical properties, rather than in terms of symbolic meaning.

output layer

hidden layer

input layer

X1 X2 X3

Fig. 3 Feedforward neural network
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A neural network must be trained before it can be used. This is done by
presenting it with data that it then tries to repeat, but in a general way. The
learning process can also be supervised or unsupervised. In a supervised training
methodology, input values are fed into the network and the resulting output values
are measured. These actual output values should match a desired set of output
values that are also specified as part of the training dataset. The errors, or
differences, between the desired and the actual output values are then fed back
through the network, to adjust the weight values at each node. Adjusting the
weight values for each node will then change the output value that the node
produces. This will then change the actual output values of the neural network,
until they are found to be correct. After the network has been trained to recognise
a training set of patterns, it is tested with a different set of test patterns. If it can
also successfully classify the test set, then the network is considered to have been
properly trained. The test set would be different to the training set and so they can
only be correctly classified if the network has learned to generalise over the
different patterns, rather than rote learning the training dataset. This generalisation
has in effect allowed the network to learn the function that maps the data input
values to the data output values for the type of problem being specified.

Unsupervised learning means that there is not a definite set of output values
that must be matched, when in that case, the output error can be measured.
Instead, the network continues to learn and adjust its values until it settles on a
stable state. The network starts with some sort of hypothesis, or set of values,
when neighbouring nodes then compete in their activities through mutual
interactions, to best match the input data. Errors in the matching process update
weight values, until a more stable state is reached. This causes the individual
nodes to adapt into specific detectors of different signal patterns. Supervised
learning therefore allows a neural network to recognise known patterns, while
unsupervised allows it to find unknown patterns in the data. The process could be
looked at as trying to minimise the error in the whole system (the neural network),
or trying to realise a more stable state. When the output becomes accurate enough,
the error is minimised and further corrections are not required.

While neural networks are not particularly intelligent; their highly distributed
design with relatively simple individual components, makes them an enduringly
attractive model for trying to mimic intelligence and several variations of the
original model have since been developed. Feedforward neural networks [25] are
more often associated with supervised learning, while self-organising ones [14]
are more often associated with unsupervised learning. The distributed model has
also been extended with other types of component, into systems such as agent-
based [13] or autonomous [12] ones. With these, each individual component can
be more complex. It can have its own internal reasoning engine and make
decisions for itself. The overall nature of the system however is still to realise
more complex behaviours or activities through distributed communication and
cooperation. The reason being that the problem itself is too complex to be
modelled in its entirety and so lots of simpler components are required to try to
work the problem out through adaption and cooperation. So these systems already
model more complex components as the individual entities and the idea of seeing
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the ‘big’ in the ‘small’ is also a part of nature. If a single neuron can be considered
as an individual entity that produces an output, why not see a collection of neurons
firing together also as an individual entity that produces an output? Then the
model becomes much more complex, but still based on the same set of
components.

3 A List of Requirements for Intelligence

This section lists a set of functionality that an intelligent system is thought to
require. If you were going to build an intelligent system, it would need to include
probably most of the following items. Although we know what the brain is made
of physically, there are also a number of general functional requirements for what
we understand intelligence to be. These are really what have been worked on over
the years in Al and so the key functionality of intelligence is now well defined.
Computer systems that are built can range from single complex components to a
number of highly distributed and more simplistic ones. These can simply react to
an input and perform some sort of statistical update, or have internal knowledge
and be able to make decisions. The centralised approaches are more closely
associated with knowledge-based methods, that is, methods that use existing
knowledge. Distributed approaches are more closely associated with experience-
based methods, that is, methods that require feedback or experience from use, to
update related values. A centralised approach would include a knowledge-base or
rule-based expert system [19], for example. A distributed approach would include
a neural network ([7], [16], [21] or [25]) or agent-based system [13], for example.
This paper deals more with the distributed options as they model the real brain
more closely; however the different approaches are used to build different types of
system and so cannot be compared directly in that respect. Either type has
advantages and disadvantages. If you are asking a system to model a well
understood problem based on certain criteria, you require a single knowledgeable
system that can apply its knowledge to your problem. If you are asking a system to
model a less well understood problem, you might require several distributed
entities that can interact in different ways, to play out as yet unforeseen scenarios.
Relatively simple entities can be shown to exhibit more intelligent behaviour
collectively, where they can use cooperation to compete with a more
knowledgeable and centralised system. A centralised system can store a large
amount of knowledge and apply that to any particular problem. The whole system
and its’ functionality is in one place, and probably well-defined and understood.
With a distributed system, each individual component can be much simpler, where
the nature of this allows for easier cooperation between those entities.
Unfortunately however, communications between large numbers of simpler
entities can become just as complicated as a single system performing more
complex operations on its own. Because a complex problem is naturally broken
down into simpler ones as part of the problem-solving process, a distributed
system is not that different to a centralised one when solving the same problem.
The distributed system is possibly modelled in a more modular way, which allows
each component to behave in a more independent way. This is particularly useful
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if the operation of the system is not fully understood. In that case, the basic
elements or entities of the problem can be modelled individually and then allowed
to interact with each other, in the hope that they can find a suitable solution. The
distributed system is also by nature more stochastic and will therefore be able to
perform actions that are not predictable but are based on the current dynamic state
of the system. It is more flexible in that respect.

Systems can also use search processes that evaluate incomplete or partial
information. The expectation is to find a better solution, by obtaining a more
complete picture through many smaller but related evaluations. Computer chess,
for example, uses search processes to evaluate single positions based on imperfect
evaluations. Because so many positions are evaluated however, it is able to build
up a relatively reliable picture of the whole situation through these incomplete
evaluations. The computer programmer would not be able to tell the system
exactly what positions to evaluate, which is down to the search process itself. So
this lack of knowledge is compensated for by many more evaluations and
interactions that simply reveal more information from what was present in the
original problem specification. The human would be expected to ‘know’ what the
computer ‘finds’ through its search, although, even this is an abstract idea. The
human knows more because he/she can access other information, through a
different search process. Therefore, if looking at the whole search process as a
single entity, they might not be so different after all. Search methods are ideal for
a computer that can perform many calculations per second, but the whole process
appears to lack something for modelling the human brain exactly. For these
individual entities, the level of any real intelligence is still only at the entity level
itself. The system probably needs some sense of itself as a whole to have
intelligence at that level as well. This is the point of any stimulus feedback, to
create the sense of whole from the collection of firing neurons.

Learning is also essential for intelligence. If a system cannot learn, then it is
probably not intelligent. As described in the context of neural networks in section 2, it
needs to be able to change internal settings through feedback. Through the
manipulation and use of knowledge and rules, different types of learning process have
been identified. They are also recognised as being intelligent because they perform an
act that has not been directly specified beforehand. For example, a system can be
asked to retrieve a certain value from a database. It can access the database and
retrieve the value, but this is not intelligent. With the addition of rules, the system can
then derive information or knowledge that has not been specified directly. For
example, if one assertion is the fact that John bought a shirt and another assertion is the
fact that all shirts are red, then by deduction it is known that John bought a red shirt.
This involves the easiest method of directly traversing rules or facts that are linked, to
find an answer that is not stated explicitly. Slightly more complicated would then be; if
one assertion is the fact that John only buys red things and another assertion is the fact
that John bought a shirt, also by deduction, it is known that the shirt is red. This is
slightly more complicated, because there is no rule directly stating that the shirt is red
and so a reasoning process that knows how to combine knowledge is required to come
to this conclusion. The conclusion is still known to be 100% true, however. The most
complicated then is induction, which actually creates something new out of what is
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already known. For example, if we know that John has only bought red things so far
and the system is asked to buy John a coloured shirt; induction would suggest that the
system should buy a red shirt. Note that that these learning processes have evolved out
of knowledge-based approaches. Distributed systems also have learning capabilities
but these are less transparent and often involve statistical processes updating numerical
values. A neural network, for example, is sometimes described as a black box, because
the weight values that it creates and uses would not be useful in any other context and
would not be understood by a human.

For a distributed system to be able to properly describe itself, any patterns that
are saved will eventually need to be mapped to a symbolic system at some level
and then into a language or something similar, for communication. This is the
‘physical symbol system hypothesis’ attributed to Newell and Simon [18]. They
noted that symbols lie at the root of intelligent action. A symbol recognises one
particular entity as being different from another one and also assigns a ‘tag’ to that
entity for identification purposes. The conscious reasoning process that we know
about is at this symbolic level. Another important feature that the brain might have
could be very fine comparison and/or measuring capabilities. It can possibly
compare these entities or symbols very accurately and measure the level of
difference; especially if they are aggregations of patterns. In a general sense,
intelligence can require the following:

e There is a clear distinction between a system that is ‘intelligent’ and one that
is able simply to repeat what it has been told.

e It is relatively easy for a computer to learn and memorise information, if it is
presented in a formal way. The program can also traverse the information
again relatively easily, to execute any rules or actions as required. So the
problem is in inferring new information from what is known, or generalising
what is known to create something new.

e This probably requires the system to be able to deal with uncertainty or
unpredictability at some level. Or to look at this in a different way, it requires
the system to be able to predict [8]. Hawkins argues that prediction, along
with memory, are the core components of intelligence, where his conclusions
were based on studying the biological brain.

e Prediction includes comparisons and measuring differences. This requires
using deduction, inference, induction, learning and reasoning to derive new
information, or come to new conclusions from what was previously known.

e Factors such as being flexible, dynamic and able to adapt are also essential,
where a learning process is required to enable these.

e Memory is also very important, when we can then start to think in terms of
knowledge.

e While the stimulus with feedback (statistical or experience-based) approaches can
be used to build up the ‘structure’ to store intelligence, knowledge (knowledge-
based) is still required to properly ‘understand’ it. It might then be correct to state
that intelligence is required to properly manipulate the knowledge.

e Rules are possibly linked pieces of related knowledge that have been worked
out and found to be consistent or useful.
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4 General Mechanisms and Processes for Building a Solution

The previous section has given one description of two general approaches that can
be used to define intelligence. Experience-based approaches are required for
learning and are often associated with distributed and statistical processes. They
would also be associated with the lower levels of intelligence here — more at the
pattern level. Knowledge-based approaches are then required for understanding
and are associated more with centralised and formal methods. They would also be
associated with the higher levels of intelligence here — more at the symbolic level.
These two approaches also help to define how we go about building an intelligent
system. One approach is to give the machine known intelligence and study how it
uses that. The other is to ask the machine to form any sort of intelligence by itself.
The first approach is more knowledge-based and relies on existing information,
rules and scripts, which define situations or scenarios that the machine must then
use in an intelligent way. These control in a pre-determined way, how the system
works. Because of that, the machine can be given a more complex algorithm to
process the information with. The task is to measure how it can generalise that
knowledge, or create new knowledge, from what is presented to it. This approach
is useful and can be used today to build practical systems. Information is
represented at the symbolic level and can therefore be understood by a human, but
the process can only get so far. The underlying intelligent mechanisms are not
fully understood as they are pre-defined and so the system can only operate at the
level of the information that it has been presented with. There are however
learning processes, such as already described, to either create new knowledge or
infer something that is not specified directly. So new knowledge can be created,
but its domain is restricted, as is the level of real understanding.

The second approach is the modelling of the brain more closely, in a highly
distributed way, with more simplistic components. The system is not allowed any
(or only minimal) existing knowledge and the task is to measure what sort of
knowledge it can form by itself — simple or complex. The system starts with no
real structure or rule-set and creates these out of the experience and learning. A
neural network, for example, is closer to this approach. The result is something
that creates its own intelligence, or is able to develop consistent patterns from
apparently more chaotic looking information. This approach, by itself, is not quite
as useful for building practical systems, but it is just as important for modelling
real intelligence. If the mechanisms for enabling a system to create its own
patterns can be understood, then this will help with processing at the higher
symbolic levels as well. The system must have intelligence to be able to create
these patterns and if it starts with close to zero existing knowledge, then it has
created this intelligence for itself. If the underlying knowledge has been created
internally, then the hope would be that there is a better understanding of what it is
and therefore the knowledge can be used in a more flexible way.

The ideas of tacit or explicit knowledge also address this [10]. Explicit
knowledge is knowledge that can be codified, or represented in a format that can
be understood by a machine. This would include a formal definition or
representation of the knowledge. Tacit knowledge is knowledge held in the minds
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of humans that cannot be easily codified and stored on a computer. This
knowledge has a personal quality created more from experience and often, this
sort of knowledge is key. If a computer is allowed to generate its own knowledge,
then the exact nature of it might not be completely transparent, when it can be
compared more closely to tacit knowledge. For example, a chair can be described
to a computer as having 4 legs, a seat and a back. We can generalise this to
recognise chairs with many different shapes and forms, but we would not be able
to codify those differences completely for a computer. We use our tacit knowledge
to recognise the different chair shapes, sometimes based on context and this is
what is missing from the programmed computer.

So to summarise, before you can reason about a concept, you have to
understand what the concept is and before you can understand what it is you have
to be able to distinguish it from a different one. There are still problems with this
first step - for a system to autonomously learn unknown patterns or concepts for
itself. Knowledge-based approaches pass over this problem, by defining these
already. This point was also written about by Turing, where the following example
might explain the problem:

Scenario 1:

Person (shows a tree picture): this is a tree.

Computer: OK.

Person: can you describe the object that I just showed to you?

Computer (accesses its database): a tree is a large woody perennial plant with a
distinct trunk giving rise to branches or leaves at some distance from the
ground.

Person: (shows a different tree picture): what is this?

Computer: I don’t know.

Scenario 2:

Computer (after looking at lots of pictures): that looks like Object A.

Person: can you describe the object?

Computer (using own knowledge): it has a long rectangular part, smaller ones
extending from that and then pointy circular objects at the end of those.

Person (shows a different tree picture): what is this?

Computer: that also looks like Object A.

If building an intelligent system, some or all of the following probably need to be
part of a final model:

e To derive or induce new information, the system must be autonomous. At the
lowest level, it must be able to form new knowledge or concepts by itself.

e To generate understanding, it must also be able to properly link the correct
knowledge or concept parts together, so that a thinking process can follow the
correct path of information.

e Pattern recognition/comparisons and the accurate measuring of differences is
also critical, to allow the system to tell different entities apart.
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Symbolic reasoning is also necessary, requiring different layers of abstraction.
The role of a stimulus by itself should not be underestimated, as our emotions,
feelings and therefore preferences are controlled by that. Turing’s paper notes
that intelligence is not just a logical calculation, but also something such as
the question ‘what do you think of Picasso?’

e Rules are required. This is higher-level knowledge that links individual pieces
in a constructive way. A reasoning process can create rules, where
favourable/unfavourable feedback can determine the links.

e Intelligent conclusions can be at an individual level or at a societal level and
influenced by knowledge of other rules or responses, etc. For example, I feel
good if I eat all of the ice cream, but then everybody else is angry and so I get
a bad response overall. The rule — do not eat all of the ice cream. To
emphasise the point that rules are not rigid entities that everybody obeys in
the same way, Turing wrote about ‘laws of behaviour’ as well as rules that
should always be obeyed.

e Therefore, feedback is also required, as part of a learning process. Turing also
emphasised this, in particular, through the example of teaching a computer
more like educating a child. In that example, through evolutionary learning
processes, the system is eventually able to realise some level of intelligence
for itself.

e Existing knowledge is also allowed, through logical propositions (Turing), for
example.

At the moment, it is not practical to try to model the brain exactly, with thousands
or more neurons, all firing together. It is therefore difficult to reproduce the exact
conditions under which the brain works. Because of this, adding some existing
knowledge or intelligence to help the system to understand is probably required,
with results then measured against what the system can do with that. Scripts can
be used to help. Alternatively, much more simple processes could possibly be
learned at a neuronal level, simply to see how they work. The brain eventually
needs to be able to reason in a symbolic way, creating more complex concepts
from linking simpler ones. Memory is the place where the learned concepts are
stored and time is probably also a key element, as it allows us to form the logical
associations between entities more easily. Turing described this in terms of
discrete-state machines. A problem he notes with the machine is the fact that it ‘is’
discrete. A more fuzzy system might do better. The machine is made of exactly
defined states and concepts, but the brain would require overlapping and
generalisations of these. Certain entities belong to more than one thing and as
a result also represent more than one thing (context). Turing argued that where
one machine fails, another might succeed, so combining these into a single
machine should do both equally well. He also writes about a continuous rather
than a discrete machine. Note however that state machines work at the symbolic
level.
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5 Related Work

As this paper is about Turing’s work specifically, a more detailed summary of the
history of Artificial Intelligence does not seem appropriate. The author however
will take the opportunity to note his own cognitive model. There are many texts on
artificial intelligence systems and technologies. The first place to look would be a
general textbook on artificial intelligence itself, for example [20]. This section
describes a cognitive, or intelligent, model that the author is currently working on
[31[4][5]. It was developed from trying to optimise a network for information
retrieval, when it became clear that more cognitive processes were also possible.
The model structure is based mostly on feedback, or ‘stigmergy’ [2][15] and is
also highly distributed. It is therefore in the spirit of modelling a real brain, where
a diagram of the model is shown in Figure 4. One key difference with this model
is the fact that it can process information as patterns, but at a symbolic level.
Instead of the neural network, or cognitive model, being described as a black box
or in terms of statistics; the internal workings of the model can be understood by a
human user through its symbolic representations. This allows for more human-like
reasoning processes to be performed. Since the paper [18], this has been noted as
one of the goals of Al

Higher-level
concepts

Low-level
Reasoning

Retrieved « link Information
Information w Retrieval

Fig. 4 Cognitive Model with three levels of complexity [5]

This model contains three different levels of intelligence. The first or lowest
level allows for basic information retrieval that is optimised through dynamic
links. The linking mechanism works by linking nodes that are associated with
each other through the use of the system. While it is based on the stigmergic
process of linking through experience, this could also be called Hebbian [9].
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Stigmergy is a very simple way of allowing components to organise themselves
based on reactions to their environment. As it works through feedback, the
individual components require very little intelligence or knowledge themselves.
They are only required, for example, to increase the strength of a link when
stimulated. A major advantage of stigmergy, or related methods, is its flexibility —
the link will be reinforced in the same way, regardless of what the stimulus source
is, making it generic. The knowledge or information being added to a network
may not be known beforehand and so the organisation needs to be as flexible as
possible. Hebb was able to study this type of behaviour in the human brain. He
noticed that when an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A's efficiency, as one of the cells firing
B, is increased. This is often paraphrased as ‘Neurons that fire together wire
together.” and is commonly referred to as Hebb’s Law, with the linking
mechanism called Hebbian. The main difference between these is the fact that
stigmergy results from inputs between external and possibly independent sources,
while Hebbs law results from inputs between internal and probably dependent
sources. Ants for example, behaving independently of each other, can collectively
perform complex tasks through stigmergic processes. The linking of the neurons
in the human brain is more of an internal and related process.

The second level in the model performs simplistic aggregation or averaging
operations over linked nodes. The idea being that nodes have been linked through
intelligent feedback and therefore averaging over those links should be better than
averaging over every random answer. The third level is more cognitive. It tries to
realise more complex concepts autonomously, or independently, by linking
together associated individual concepts. These links form new and distinct entities,
and are not just for optimisation purposes. It also attempts to then link the more
complex entities, so that a form of thinking can occur. One cluster of linked nodes,
when realised, might trigger another cluster and so on. As this flows through
different concepts, the network begins to realise things for itself and performs a
certain level of thinking.

The first level has been tested extensively and shown to perform a good
optimisation of the network. Test results ranged from a 30% reduction in search
with almost no loss in the quality of answer, to possibly 80-90% reduction in the
search, with maybe 5-10% loss in the quality of answer. The second level has been
tested less but also shown to work. As would be expected, averaging over the
linked sources only should produce a better total than averaging over all possible
answers; because the nodes are linked through a process that tries to maximize the
link value. The third level is the current area of research interest and some
promising results have been achieved [3]. The problem is that a certain amount of
randomness must be accommodated for, where the system would not be given the
information exactly, but needs to perform some level of guess work. Statistical
processes allow it to filter out the less likely connections and to keep the more
likely ones. Two new-looking clustering algorithms [3] have been developed.
These are important because they can be used as part of an autonomous system
and they can also allow for a certain amount of noisy input - 10-20% already.
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They are also very lightweight and so are suitable for unsupervised online
processing. It is these clustering processes that have led to the conclusion that a
neural network architecture should be the direction for further research.

While not the original intention, this model does map loosely onto the
structures that have been described. The middle layer can produce aggregated
values that might be compared to the stimuli produced from aggregated patterns.
The top layer can then receive or recognise different configurations of these and
process them accordingly, similar to what the neocortex would do. So while only
individual concepts and clusters of individual concepts have been considered so
far, groups of aggregations might also be considered. The arrows between the
levels represent a direction of increasing intelligence. It is likely that
communication between these levels would flow in both directions. The idea of a
trigger has not been worked out fully yet. It is probably related to a memory
component and also a set of values or conditions under which one concept group
would trigger or activate another one. In this sense, the path description associated
with the linking process could be relevant. A path of concept types with related
values can be associated with any link between two nodes.

The option of presenting scripts to the system has also been looked at. This is
relatively easy to do and the system can learn the script and therefore know what a
rule or a trigger should be. It is then only a matter of traversing this knowledge
again to activate a trigger. So the problem would be to try and determine if the
system can create its own rules or triggers that are not part of the original script, or
if it can create the script triggers when some of the information is missing. The
figure also shows an ontology or rule-base that can be used to present existing
knowledge to the system. This is valid, because we also receive certain
information in that form and are not expected to realise everything empirically. So
research into the top, more intelligent, level has only started, but the results appear
promising. One or two new-looking discoveries have been made that should help
to overcome certain stumbling blocks of the past. Other work related to these ideas
could include [1], [6] or [17], for example.

6 Conclusions

These conclusions include some of the author’s own opinions, based on his
limited knowledge of the real brain, but consistent with what has already been
written. An attractive feature of assigning such importance to state changes, or
stimulus changes, is that the individual neurons do not then require real
intelligence themselves, or at least, the intelligence mechanism is now understood
to be the state change that we can better understand. So the intelligence is linked
to the collective chemical reactions that occur and also possibly to the very nature
of a human. State changes would excite cells, which could drive our quest for new
knowledge. If our state is changed in a favourable way, it makes us feel better.
The brain might feel this sort of thing, even on its own. Fortunately, these
reactions can also be made autonomously and so we do not have to rely
completely on our environment. Then internally, the memory or some other brain
area, knows the favourable/unfavourable reactions and tries to re-create them
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again, probably resulting in further feedback to itself. If different patterns then get
linked through these reactions, even if this has not been a part of reality, the
memory can still store the result to be used again. I like to think about ‘A’, but you
like to think about ‘B’, for example.

The ability of the brain to make accurate comparisons is also critical, as has
been written about before ([8], for example). It might be important for realising
mathematical or complex operations through the feedback of results. This is
probably how maths started, with somebody noticing that two piles of stones were
twice as large as one pile of stones. For example, a human has worked out that two
times one (stone) is twice the size of a single one (stone). The brain understands
what ‘one’ is, at some symbolic level, and can easily associate and compare two of
these symbols. This would then need to be abstracted for larger calculations, once
the general understanding had been learnt. The author has also wondered why
something such a driving a car is a skill that almost anybody can do, when you
consider the accuracy level that is required. Almost without thinking, we do not
crash into the car in-front, but measure and control our distances very easily.

So a very general rule is learned and then applied in many different scenarios.
Possibly, objects from memory can be retrieved and applied to a learned rule, with
feedback determining the result (see also [6], for example). Compare this to nouns
and verbs in our language. Positive or recognised feedback would reinforce some
association, while negative or no feedback would not register a result. An
explanation of how a brain-like system can learn mathematics mainly through a
stimulus process would go a long way to allowing us to model the real brain. The
question might be — how much does a ‘eureka’ moment play in our ability to work
things out. The following is also interesting for suggesting a largely mechanical
process for the main brain engine: If the main brain body is purely mechanical,
then it might even fire when damaged, without any consideration for the person,
resulting in a painful stimulus when the damaged part is entered or interpreted. If
damaged areas do fire and are not shut down or avoided, then does this suggest an
unintelligent process? Why would the brain intentionally hurt itself, unless it did
not know that it was doing so? Some sort of controlled process must be involved
in the brain construction however, which suggests some level of controlling
intelligence. The problem is really how the brain structure is created from this
mysterious and controlling process. For a mechanical answer, the stimulus again
offers a solution. The brain links are mechanically stimulated to grow or link in a
certain manner, through the feedback that is most strongly felt.

Turing noted a lot of the problems that are still relevant today. Modelling as a
state machine looks appropriate as it may be internal state changes that allow us to
tell differences, resulting in intelligence. A time element is also associated with
state machines. The author would suggest however that starting with a state
machine is not best, but rather, the final product would be more like one. The
declaration that if the problem can be described in terms of an algorithm, then it
can be run on a computer, is also true. This means that if we ever figure out in a
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technical sense how intelligence works, it is likely that it will be transferred to a
machine at a later date. Turing noted the skin-of-an-onion scenario, with layers of
intelligence. The formation of patterns and then the refactoring of these into new
and probably more singular ones, is essential for the formation of a symbolic level
and reasoning. He also notes the importance of the other senses. While this is
obvious, they are the key sources of our initial stimuli and therefore essential in
the creation of our intelligence. The idea of trying to make people more intelligent
through external false stimuli however, will hopefully be consigned to the waste
bin.

Turing also noted that it is not practical to teach a machine in a way that the
human knows and understands every step of the internal learning process. If
considering state changes, the machine will make changes that the human would
not know about or be able to predict. This is consistent with a learning, and
therefore evolutionary process, but it means that the process must give a certain
level of autonomy to the machine itself and cannot be controlled completely. The
statement that a machine can only do what we tell it to is still largely true.
Processes can be changed through evolution and learning, but the overall domain
of their influence remains what the machine has been told. Turing argued to inject
an idea into what is already known, to disturb it and allow it to ripple through the
existing knowledge, in the hope of influencing or changing something. He also
argued for a random element. Instead of a computer always following its
instructions exactly; as part of the learning process, why not allow it to perform
non-standard random acts from time to time, just so that it can receive different
feedback to learn from? The problem then moves into the area of complex
adaptive systems [11], with stochastic or random elements and the human teacher
will definitely not be able to control that process completely.

So Turing’s ‘Computing Machinery and Intelligence’ paper is still relevant and
important today. While he wrote in a general sense, research since has been able to
define the problem much more formally, but the basic premises are still the same.
There have been successes in one area or another, but a comprehensive solution
for intelligence has not yet been realised. It might be incorrect however to think
that just because a machine is mechanical, it can never realise true intelligence.
One other question would be - just how mechanical are our own brains? Turing
also wrote about the theological argument against machines ever realising true
intelligence, but was strongly against it. The idea that our intelligence could be
based largely on stimuli is probably not an attractive one in that respect. Religious
beliefs, for example, suggest that we should stay away from certain stimuli, but
internal ones would possibly be OK. It is also the case that a machine cannot feel
in the same way as a human and therefore, it would be difficult to model this sort
of process properly in a machine. Only a ‘living’ organism could then have
intelligence. This would be a key stumbling block to modelling intelligence
properly - the feedback and evaluation mechanisms are still not real enough, but
the correct algorithm simply needs to be found.
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Imitation Programming Unorganised Machines

Larry Bull

Abstract. In 1948 Alan Turing presented a general representation scheme by
which to achieve artificial intelligence — his unorganised machines. Further, at the
same time as also suggesting that natural evolution may provide inspiration for
search, he noted that mechanisms inspired by the cultural aspects of learning may
prove useful. This chapter presents results from an investigation into using
Turing’s dynamical network representation designed by a new imitation-based,
i.e., cultural, approach. Moreover, the original synchronous and an asynchronous
form of unorganised machines are considered, along with their implementation in
memristive hardware.

1 Introduction

Cultural learning is learning either directly or indirectly from others and imitation
is a fundamental form of such adaptation. Dawkins [13] has highlighted the
similarity between the copying of behaviours through imitation and the
propagation of innate behaviours through genetics within populations. That is, he
suggests information passed between individuals through imitation is both
selected for by the copier and subject to copy errors, and hence an evolutionary
process is at work - consequently presenting the cultural equivalent to the gene,
the so-called meme. The term “memetic” has already been somewhat inaccurately
adopted by a class of search algorithms which combine evolution with individual
learning, although a few exceptions include imitation (e.g., [50]). Some previous
work has explored the use of imitation (or imitation-like) processes as a general
approach to computational intelligence however, including within reinforcement
learning (e.g., [34]) and supervised learning (e.g., [6]). The imitation of humans
by machines has been used to design robot controllers (e.g., [7]) and computer
game agents (e.g., [17]). Other culture-inspired schemes include the use of
artifacts (e.g., [22]) or the use of stored information to guide the production of
new evolutionary generations, as in Cultural Algorithms [35]. This chapter
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explores a new form of imitation computation and applies it to the design of
(simple) dynamical networks consisting of uniform components, both of which are
drawn from an internal report by Alan Turing.

In 1948 Alan Turing produced a paper entitled “Intelligent Machinery” in which he
highlighted cultural learning as a possible inspiration for techniques by which to
program machines (finally published as [43]). In the same paper, Turing also presented
a formalism he termed “unorganised machines” by which to represent intelligence
within computers. These consisted of two types: A-type unorganised machines, which
were composed of two-input NAND gates connected into disorganised networks
(Figure 1, left); and, B-type unorganised machines which included an extra triplet of
NAND gates on the arcs between the NAND gates of A-type machines by which to
affect their behaviour in a supervised learning-like scheme through the constant
application of appropriate extra inputs to the network (Figure 1, right). In both cases,
each NAND gate node updates in parallel on a discrete time step with the output from
each node arriving at the input of the node(s) on each connection for the next time
step. The structure of unorganised machines is therefore very much like a simple
artificial neural network with recurrent connections and hence it is perhaps surprising
that Turing made no reference to McCulloch and Pitts’ [27] prior seminal paper on
networks of binary-thresholded nodes. However, Turing’s scheme extended
McCulloch and Pitts’ work in that he also considered the training of such networks
with his B-type architecture. This has led to their also being known as “Turing’s
connectionism” (e.g., [12]). Moreover, as Teuscher [41] has highlighted, Turing’s
unorganised machines are (discrete) nonlinear dynamical systems and therefore have
the potential to exhibit complex behaviour despite their construction from simple
elements.

Fig. 1 A-type unorganised machine consisting of four two-input NAND gates (left). B-type
unorganised machine (right) consisting of four two-input NAND gates. Each connecting arc
contains a three NAND gate “interference” mechanism so that external inputs such as S1
and S2 can be applied to affect overall behaviour, i.e., a form of supervised learning.
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The memory-resistor or “memristor” identified experimentally by Widrow [48]
and theoretically by Chua [11] has become the focus of significant attention after
the fabrication of nanoscale devices by Stanley et al. through sandwiching
Titanium Dioxide between two platinum wires (e.g., see [S1] for details). Two of
the anticipated applications of this fourth fundamental circuit element are non-
volatile memory and neuromorphic architectures, the latter almost exclusively as
synapse analogues in conjunction with standard Complementary Metal Oxide
Semiconductor (CMOS) neurons. Borghetti et al. [8] have recently described how
their aforementioned memristors can be used for Boolean logic operations. In
particular, they demonstrate how two-input material implication (IMP) can be
implemented using two memristors and a load resistor, further showing how this
enables the implementation of two-input NAND. Given the simple structure of A-
type unorganised machines from these universal gates, the current work aims to
explore the potential of imitation computation to design them for direct
implementation in memristive hardware, e.g., to produce low-energy, embedded
intelligence.

2 Background

2.1 Discrete Dynamical Systems

Around the same time as Turing was working on artificial intelligence in the
1940’s, John von Neumann, together with Stanislaw Ulam, developed the regular
lattice-based discrete dynamical systems known as Cellular Automata (CA) [45].
CAs are discrete dynamical systems which exist on a graph of restricted
connectivity but with potentially any logical function at each node, whereas
unorganised machines exist on a graph of potentially any connectivity topology
but with a restricted logical function at each node. Traditionally, each cell
calculates its next state depending upon its current state and the states of its closest
neighbours. Packard [31] was the first to use a computational intelligence
technique to design CAs such that they exhibit a given emergent global behaviour,
using evolutionary computation. Following Packard, Mitchell et al. (e.g., [29])
have investigated the use of a Genetic Algorithm (GA) [20] to learn the rules of
uniform one-dimensional, binary CAs. As in Packard’s work, the GA produces the
entries in the update table used by each cell, candidate solutions being evaluated
with regard to their degree of success for the given task — density and
synchronization. Andre et al. [3] repeated Mitchell et al.’s work evolving the tree-
based LISP S-expressions of Genetic Programming (GP) [25] to identify the
update rules. They report similar results. Sipper [37] presented a non-uniform, or
heterogeneous, approach to evolving CAs. Each cell of a one- or two-dimensional
CA is also viewed as a GA population member, mating only with its lattice
neighbours and receiving an individual fitness. He showed an increase in
performance over Mitchell et al.’s work by exploiting the potential for spatial
heterogeneity in the tasks. The approach was also implemented on a
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Field-Programmable Gate Array (FPGA) and, perhaps most significantly, the
inherent fault-tolerance of such discrete dynamical systems was explored. That is,
it appears the behaviour of such systems gives them robustness to certain types of
fault without extra mechanisms. This finding partially motivates the current study.

Another early investigation into discrete dynamical networks was that by
Kauffman (e.g., see [23] for an overview) with his “Random Boolean Networks”
(RBN). An RBN typically consists of a network of N nodes, each performing one
of the possible Boolean functions with K inputs from other nodes in the network,
all updating synchronously. As such, RBN may be viewed as a generalization of
A-type unorganised machines (since they only contain NAND gates, with K=2).
Again, such discrete dynamical systems are known to display an inherent
robustness to faults - with low K (see [2] for related results with such regulatory
network models in general). RBN have recently been evolved for (ensemble)
computation [33].

2.2 Graph-Based Representations

A number of representations have been presented by which to enable the design of
computer programs and circuits. Most relevant to the representation to be explored
in this chapter is the relatively small amount of prior work on arbitrary graph-
based representations. Significantly, Fogel et al. (e.g., [15]) were the first to
evolve graph-based (sequential) programs with their use of finite state machines —
Evolutionary Programming (EP). Angeline et al. [5] used a version of Fogel et
al.’s approach to design highly recurrent artificial neural networks. Teller and
Veloso’s [40] “neural programming” (NP) uses a directed graph of connected
nodes, each with functionality defined in the standard GP way, with recursive
connections included. Here each node executes in synchronous parallelism for
some number of cycles before an output node’s value is taken. Luke and Spector
[26] presented an indirect, or cellular, encoding scheme by which to produce
graphs, as had been used to design artificial neural networks (e.g., [18]), an
approach used to design both unorganised machines [41] and automata networks
[9]. Poli has presented a scheme wherein nodes are connected in a graph which is
placed over a two-dimensional grid. Later, recurrent artificial neural networks
were designed such that the nodes were synchronously parallel and variants exist
in which some nodes can update more frequently than others (see [32] for an
overview). Miller (e.g., [28]) has presented a restricted graph-based representation
scheme originally designed to consider the hardware implementation of the
evolved program wherein a two-dimensional grid of sequentially (feed forward)
updating, connected logic blocks is produced. The implementation of arbitrary
graphs onto FPGAs has also been considered [44]. It can be noted that Schmidt
and Lipson [36] have demonstrated a number of benefits from graph encodings in
general over traditional trees, such as reduced bloat and increased computational
efficiency.
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2.3 Unorganised Machines

“The machine is made up from a rather large number N of similar units. Each unit
has two input terminals, and has an output terminal which can be connected to
input terminals of (0 or more) other units. We may imagine that for each integer r,
1 <r <N, two numbers i(r) and j(r) are chosen at random from 1..N and that we
connect the inputs of unit r to the outputs of units i(r) and j(r). All of the units are
connected to a central synchronising unit from which synchronising pulses are
emitted at more or less equal intervals of time. The times when these pulses arrive
will be called ‘moments’. Each unit is capable of having two states at each
moment. These states may be called 0 and 1. The state is determined by the rule
that the states of the units from the input leads come are to be taken at the
previous moment, multiplied together and then subtracted from 1. ”

Turing, Intelligent Machinery 1948

A-type unorganised machines have a finite number of possible states and they are
deterministic, hence such networks eventually fall into a basin of attraction.
Turing was aware that his A-type unorganised machines would have periodic
behaviour and he stated that since they represent “about the simplest model of a
nervous system with a random arrangement of neurons” it would be “of very great
interest to find out something about their behaviour” [43]. Figure 2 shows the
fraction of nodes which change state per update cycle for 100 randomly created
networks, each started from a random initial configuration, for various numbers of
nodes N. As can be seen, the time taken to equilibrium is typically around 15
cycles, with all nodes in the larger case changing state on each cycle thereafter,
i.e., oscillating. For the smaller networks, some nodes remain unchanging at
equilibrium on average; with smaller networks, the probability of nodes being
isolated is sufficient that the basin of attraction contains a degree of node stasis.

Previously, Teuscher [41] has explored the use of evolutionary computing to
design both A-type and B-type unorganised machines together with new variants
of the latter. In his simplest encoding, an A-type machine is represented by a
string of N pairs of integers, each integer representing the node number within the
network from which that NAND gate node receives an input. Turing [43] did not
explicitly demonstrate how inputs and outputs were to be determined for A-type
unorganised machines. Teuscher [41] used / input nodes for I possible inputs, each
of which receive the external input only and are then connected to any of the
nodes within the network as usual connections. That is, they are not NAND nodes.
He then allows for O outputs from a pre-defined position within the network. Thus
his scheme departs slightly from Turing’s for B-type unorganised machines since
Turing there showed input NAND nodes receiving the external input (Figure 1).
Teuscher uses his own scheme for all of his work on unorganised machines, which
may be viewed as directly analogous to specifying the source of inputs via a
terminal set in traditional tree-based GP. The significance of this difference has
briefly been explored, with Turing’s input scheme shown to be robust [10] — it is
used here.
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Teuscher [41] used a GA to design A-type unorganised machines for bitstream
regeneration tasks and simple pattern classification. In the former case, the size of
the networks, i.e., the number of nodes, was increased by one after every 30,000
generations until a solution was found. That is, an epochal approach was exploited
to tackle the issue of not knowing how complex an A-type unorganised machine
will need to be for a given task. Or a fixed, predefined size was used. A culture-
based approach is used to design A-type here, in a way which allows their
complexity to emerge during learning.
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Fig. 2 Showing the average fraction of two-input NAND gate nodes which change state per
update cycle of random A-type unorganised machines with various numbers of nodes N.

3 Imitation Programming: Cultural Search

“Further research into intelligence of machinery will probably be very greatly
concerned with ‘searches’ .... We may perhaps call such searches ‘intellectual
searches’. They might very briefly be defined as ‘searches carried out by brains
for combinations with particular properties’ ... It may be of interest to mention
two other kinds of search in this connection. There is the genetical or evolutionary
search by which a combination of genes is looked for, the criterion being survival
value. .... The remaining form of search is what I should like to call the ‘cultural
search’ ... the search for new techniques must be regarded as carried out by the
human community as a whole.”

Turing, Intelligent Machinery 1948

The basic principle of imitation computation is that individuals alter themselves
based upon another individual(s), typically with some error in the process.
Individuals are not replaced with the descendants of other individuals as in
evolutionary search; individuals persist through time, altering their solutions via
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imitation. Thus imitation may be cast as a directed stochastic search process,
thereby combining aspects of both recombination and mutation used in
evolutionary computation.

Imitation Programming (IP) [10] is such a population-based stochastic search
process which, as will be shown, can be competitive with related evolutionary
search:

BEGIN
INITIALISE population with random candidate solutions
EVALUATE each candidate
REPEAT UNTIL (TERMINATION CONDITION) DO
FOR each candidate solution DO
SELECT candidate(s) to imitate
CHOOSE component(s) to imitate
COPY the chosen component(s) with ERROR
EVALUATE new solution
REPLACE IF (UPDATE CONDITION) candidate with new solution
oD
oD
END

For A-type design, IP utilizes a variable-length representation of pairs of
integers defining node inputs, each with an accompanying single bit defining the
node’s start state, together with three imitation operators: copy a node connection,
copy a node start state, and change size through copying. In this chapter, each
operator can occur with or without error, with equal probability, such that an
individual performs one of the six during the imitation process as follows:

To copy a node connection, a randomly chosen node has one of its randomly
chosen connections set to the same value as the corresponding node and its same
connection in the individual it is imitating. When an error occurs, the connection
is set to the next or previous node (equal probability, bounded by solution size).
Imitation can also copy the start state for a randomly chosen node from the
corresponding node, or do it with error (bit flip here). Size is altered by adding or
deleting nodes and depends upon whether the two individuals are the same size. If
the individual being imitated is larger than the copier, the connections and node
start state of the first extra node are copied to the imitator, a randomly chosen
node being connected to it. If the individual being imitated is smaller than the
copied, the last added node is cut from the imitator and all connections to it re-
assigned. If the two individuals are the same size, either event can occur (with
equal probability). Node addition adds a randomly chosen node from the
individual being imitated onto the end of the copier and it is randomly connected
into the network. The operation can also occur with errors such that copied
connections are either incremented or decremented. For a problem with a given
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number of binary inputs / and a given number of binary outputs O, the node
deletion operator has no effect if the parent consists of only O + I nodes. The extra
two inputs are constant True and False lines. Similarly, there is a maximum size
(100) defined beyond which the growth operator has no effect.

In this chapter, similar to Differential Evolution [39], each individual in the
population P creates one variant of itself and it is adopted if better per iteration.
Other schemes are, of course, possible, e.g., Particle Swarm Optimization (PSO)
[24] always accepts new solutions but then also “imitates” from the given
individual’s best ever solution per learning cycle. This aspect of the approach, like
many others, is open to future investigation. In the case of ties, the solution with
the fewest number of nodes is kept to reduce size, otherwise the decision is
random. The individual to imitate is chosen using a roulette-wheel scheme based
on proportional solution utility, i.e., the traditional reproduction selection scheme
used in GAs. Again, other schemes, such as the spatial networks of PSO, could be
used. In this form IP may perhaps be seen as combining ideas from memetics with
Evolutionary Programming.

4 Experimentation

A simple version of the multiplexer task is used initially in this paper since they
can be used to build many other logic circuits, including larger multiplexers.
These Boolean functions are defined for binary strings of length [ = x + 2" under
which the x bits index into the remaining 2" bits, returning the value of the indexed
bit. The correct response to an input results in a quality increment of 1, with all
possible 2’ binary inputs being presented per evaluation.

Upon each presentation of an input, each node in an unorganised machine has
its state set to its specified start state. The input is applied to the first connection of
each corresponding / input node. The unorganised machine is then executed for T
cycles, where T is typically chosen to enable the machine to reach an attractor.
The value on the output node(s) is then taken as the response. It can be noted that
Teuscher [41] used the average output node(s) state value over the T cycles to
determine the response, again the significance (or not) of this difference is not
explored here.

All results presented are the average of 20 runs, with a population/society of
p=20 and 7=15. Experience found giving initial random solutions N = O+[+30
nodes was useful across all the problems explored here, i.e., with the other
parameter/algorithmic settings described.

Figure 3 (left) shows the performance of the approach on the 6-bit (x=2)
multiplexer problem. Optimal performance (64) is obtained around 5,000
iterations and solutions are eventually two or three nodes smaller than at
initialization.
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A multiplexer has multiple inputs and a single output. The demultiplexer has
multiple inputs and multiple outputs. Figure 3 (right) shows performance of the
same algorithm for an x=2 demultiplexer, i.e., one with three inputs and four
outputs. Again, quality was determined by feeding each of the possible inputs into
the A-type machine. It can be seen that optimal performance (8) is reached around
7,000 iterations and solutions are typically around ten nodes smaller than at
initialization. Figure 4 shows performance on x=3 variants of the two tasks with
the same parameters, again optimality is found and solutions alter their size during
learning. Similar results have been found with other well-known logic tasks, such
as parity functions and adders (not shown).
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Fig. 3 Performance on multiplexer (left) and demultiplexer (right).

5 Asynchrony

Turing’s unorganized machines were originally described as updating
synchronously in discrete time steps. However, there is no reason why this should
be the case and there may be significant benefits from relaxing such a constraint.
Asynchronous forms of CA (e.g., [30]) and RBN (e.g., [16]) have been explored
wherein it is often suggested that asynchrony is a more realistic underlying
assumption for many natural and artificial systems. Asynchronous logic devices
are also known to have the potential to consume less power and dissipate less heat
[46], which may be exploitable during efforts towards hardware implementations
of such systems. Asynchronous logic is also known to have the potential for
improved fault tolerance, particularly through delay insensitive schemes (e.g.,
[14]). This may also prove beneficial for direct hardware implementations. See
Thomson et al. [42] for evolving asynchronous hardware.
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Asynchronous CAs have also been evolved (e.g., [38]). Asynchrony is here
implemented as a randomly chosen node (with replacement) being updated on a
given cycle, with as many updates per overall network update cycle as there are
nodes in the network before an equivalent cycle to one in the synchronous case is
said to have occurred. Figure 5 shows the fraction of nodes which change state per
update cycle for 100 randomly created networks, each started from a random
initial configuration, for various numbers of nodes N. As can be seen, the time
taken to equilibrium is again typically around 15 cycles, with around 10% of
nodes changing state on each cycle thereafter, i.e., significantly different behavior
to that seen for the synchronous case shown in Figure 2. For the smaller networks
(N=5, N=50), there is some slight variance in this behaviour.
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Fig. 4 Performance on larger multiplexer (left) and demultiplexer (right).

Figure 6 shows the performance of the imitation algorithm with the asynchronous
unorganized machines for the x=2 multiplexer and demultiplexer tasks. The same
parameters as before were used in each case. As can be seen, the multiplexer task
appears significantly harder, on average IP fails to solve the task on every run with
the parameters used, compared to consistent optimality after 5,000 iterations in the
synchronous node case (Figure 3). Performance was not significantly improved in the
time allowed through a variety of minor parameter alterations tried (not shown). It
takes around 150,000 iterations to solve the demultiplexer, again a statistically
significant decrease in performance over the synchronous case (T-test, p<0.05).
Moreover, the use of asynchronous node updating has altered the topology of the
graphs evolved with more nodes (T-test, p<0.05) being exploited. This is perhaps to
be expected since redundancy, e.g., through sub-circuit duplication, presumably
provides robustness to exact updating order during computation. Similar relative
performance was found on the x=3 versions (not shown).
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Fig. 5 Showing the average fraction of two-input NAND gate nodes which change state per
update cycle of random asynchronous A-type unorganised machines with various V.

ASYNCHMUX ASYNCH DMUX
T T T T T T T 40 T T T T T T T T
0-6 Best Q. g
-0 Mean Length \““9————«7———4»*—
G- Mean Qual 4 ¢
- — 4 - .
1
r 5 Best Qual
= I &€ Mean Length

0 fﬁa/—a—/—a——*?—’ﬂ—’_ 0k 50 MeanQual. |

Ll e 10~ -

L L l
0 e+ 2405 RetS 4405 SeHlls 0 S0000 le05 1.5e405 ZeHlls 256405 Retls
Ireration Iteration

Fig. 6 Performance on multiplexer (left) and demultiplexer (right) of asynchronous system.

6 A Comparison with Evolution

These initial results therefore indicate that unorganized machines are amenable to
(open-ended) design using the imitation algorithm presented. As noted above, one
of the earliest forms of evolutionary computation used a graph-based
representation — Fogel et al.’s [15] Evolutionary Programming. EP traditionally
utilizes five mutation operators to design finite state machines. In this chapter EP
has been used with the same representation of pairs of integers, defining node
inputs, each with an accompanying single bit defining the node’s start state, as
above. Similarly, with equal probability, an individual either has: a new NAND
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node added, with random connectivity; the last added node removed, and those
connections to it randomly re-assigned; a randomly chosen connection to a
randomly chosen node is randomly re-assigned; or, a randomly chosen node has
its start state flipped. The same minimum and maximum solution size limits are
maintained as before. The (UL + W) selection scheme of EP is also used: each
individual in the parent population (u) creates one randomly mutated offspring
(W) and the fittest 1 individuals form the next generation of parents. In the case of
ties, the individual with the fewest number of nodes is kept to reduce bloat,
otherwise the decision is random. Fogel et al. used a penalty function to curtail
solution complexity, reducing fitness by 1% of size. All other parameters were the
same as used above.
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Fig. 7 Performance on multiplexer (left) and demultiplexer (right) by EP (synchronous).

Figure 7 (left) shows the performance of the EP-Atype system on the 6-bit
(x=2) multiplexer problem. Optimal performance (64) is obtained around 200,000
generations and after an initial period of very slight growth, solutions are
eventually no bigger than at initialization. Figure 7 (right) shows that optimal
performance (8) in the equivalent demultiplexer is reached around 400,000
generations and solutions are typically five or six nodes smaller than at
initialization. Hence these results are statistically significantly (T-test, p<0.05)
slower and bigger than those seen above with the imitation algorithm. The same
was found to be true for the asynchronous update scheme, where the multiplexer
was again unsolved (not shown). The larger variants were not explored.

The imitation algorithm described can be viewed as a parallel hill-climber,
simultaneously updating a number of solutions, in contrast to the traditional global
replacement scheme used in evolutionary computation (hybrids are also possible,
e.g., [4]). It is therefore of interest whether the imitation process aids performance
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in comparison to using random alterations to individuals, under the same selection
process. Results (not shown) indicate that no statistically significant difference is
seen from using imitation over purely random alterations on the demultiplexer
task (T-test, p>0.05), but an improvement is seen on the multiplexer task through
imitation (T-test, p<0.05). With asynchronous updating imitation is better on the
demultiplexer (T-test, p<0.05) but not the multiplexer (T-test, p>0.05). Of course,
all algorithms are parameter sensitive to some degree: the parameters used here
were simply chosen since they typically enabled optimal performance with the
basic schemes, both evolution and imitation, on all tasks used, over the allotted
time. Future work is needed to explore parameter sensitivity, along with the
aforementioned role of selecting who to imitate, multiple imitations per iteration,
etc.

7 Towards Memristive Hardware

7.1 Implication A-Types

Memristors are the fourth fundamental circuit element, joining the capacitor,
inductor and resistor [11]. A memristor can be formally defined as a passive two-
terminal electronic device that is described by the non-linear relation between the
device terminal voltage, v, terminal current, i (which is related to the charge g
transferred onto the device), and magnetic flux, ¢: v = M(q)i or i = W(¢@)v. The
memristance (M) and memductance (W) properties are both nonlinear functions:
M(q) = dg(q) ! dq and W(¢) = dq(¢)/dg.

As noted above, Borghetti et al. [8] have presented a scheme by which
memristors can be used as switches to implement Boolean logic. They use two
memristors to realise material implication (IMP), a much-forgotten function
originally highlighted in [47]. Borghetti et al. [8] then construct two-input NAND,
using two IMP gates in serial from three memristors and a constant False signal as
follows:

The reader is referred to their paper for full circuit and voltage details. Hence
anything computable can therefore be implemented using memristors this way, in
principle. However, Turing’s A-types can be seen as a low-level representation
scheme which can be mapped directly onto memristive hardware due to its use of
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two-input NAND gates. For example, the two dynamical logic circuits designed in
Figure 3 would require, typically, ~35x3 and ~25x3 memristors for a multiplexer
or demultiplexer respectively.

As well as the stated potential advantages gained by use of asynchronous logic
in CMOS highlighted in Section 5, asynchrony may also prove useful with
memristors as new forms of the device emerge, e.g., providing a global clock may
prove non-trivial — only local synchrony would be needed at each node for NAND
gates. Moreover, given their non-volatile nature, energy savings may be achieved
by forms of power “pulsing” across the device: the results in Section 5 indicate IP
can be used to design networks able to work with random order updating.

As noted, Borghetti et al. [8] have implemented material implication as the
basic logic function within memristive hardware, using two per IMP gate. The
same experiments were repeated using IMP at each node, as opposed to NAND as
Turing specified. Figure 8 shows the comparative performance on the
synchronous updating version (Figure 3), with constant True and False lines added
to the problem inputs since the latter proved important to Borghetti et al.’s design.
As can be seen, use of IMP means it takes longer to discover an optimal solution
in both cases (T-test, P<0.05). However, when optimality is reached, the size of
the A-type is smaller in terms of the nodes used with IMP (T-test, p<0.05). This
implies IP does not simply construct NAND gates from two IMP gates. Moreover,
given only two memristors are needed per gate, the equivalent networks are more
efficient when direct hardware implementation is considered (T-test, p<0.05). The
same general result has been found for k=3 versions (not shown). Figure 9 shows
the same results from using asynchronous updating.
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Fig. 8 Performance on multiplexer (left) and demultiplexer (right) using IMP nodes.
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Fig. 9 Performance on multiplexer (left) and demultiplexer (right) using IMP nodes with
asynchronous updating.

7.2 Synapse

As noted above, one of the largest areas of current interest in memristors is their
use as hardware implementations of synapse within neuromorphic hardware (e.g.,
[1]). The first known example of such work was undertaken by Widrow [48] with
his “memistor” within a hardware implementation of his seminal Adaline neural
network [49]. A memistor was used to store the current weight setting of each
neuron input and created by the electro-plating of a pencil lead with copper; the
conductance of the memistor is varied by varying the amount of copper plating on
the lead at any time.

Given their temporally dynamic nature, a very simple approximation of a single
memristive element has been included within A-types along with the logic gate
nodes. These may be seen as synapse-like but, in keeping with A-types, less
prescriptive in placement. This is done using the Widrow-Hoff delta rule in the
form of single-input nodes. Of course, the actual non-linear behaviour of a given
memristive device depends upon the substrate in which it is fabricated (e.g., see
[21] for related discussion). Here the resistive state (M) of a node is maintained
using the running average of previous inputs to the node: M «— M + B ( current
input — M ). If M < 0.5, the state of the node is equal to the current input, and it is
logical ‘0’ otherwise. Hence the resistive behaviour of the node varies based upon
the temporal sequence of inputs it receives. A learning rate () of 0.2 is used here
and the imitation process is altered to include the potential copying of node type,
with and without error. Nodes have a 50% chance of being either logic gates or
single memristors at initialization.
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Figure 10 shows example results on one of the logic tasks, using synchronous
updating. As can be seen, compared to the results shown above, the additional
single memristive nodes appear to make the design problem harder as it takes
longer to find optimality. This was true in all cases (T-test, p<0.05). However, the
resulting A-types contain fewer nodes in all versions tried (T-test, p<0.05). Again,
given only one memristor is needed in the new type of nodes, the equivalent
circuits are more efficient when hardware implementation is considered (T-test,
p=<0.05). For example, for the x=2 demultiplexer shown, the average percentage of
single memristor nodes is ~40% at optimality for NAND nodes. Similar relative
performance was found on the x=3 and asynchronous versions (not shown).
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Fig. 10 Performance on demultiplexer using NAND (left) and IMP nodes (right) augmented
with single memristor nodes.

8 Conclusions

This paper has examined a form of imitation computation inspired by a report
written by Turing in 1948 and used it to design a simple dynamical network
representation introduced in the same report. It has also considered an
asynchronous form of the representation. Current work is exploring ways by
which to improve the performance of the imitation algorithm for the design of
these and other systems. The degree of inherent fault-tolerance of the simple
networks due to their dynamical nature is also being explored (e.g., following
[23][37]), as is their implementation within memristive hardware.
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Towards Machine Equivalent Consciousness

Amy Wenxuan Ding

Abstract. Alan Turing’s fundamental inquiry asking “Can Machines think?” has
given rise to a wide variety of contrasting approaches to building intelligent ma-
chines. Thinking requires that a computer must know what it processes and form
conscious about meaningful concepts based on which subjective mental activities
(e.g. seeing, knowing, learning, judging, evaluating, deciding, reasoning, etc.) can
be carried on. However, a modern computer runs trillions of operations per
second and is capable of performing complex computation, but still lack self-
awareness—a basic element for thinking. So, how can a machine gain conscious
awareness from bits of electronic signals it processes? This article explores
whether generating self-awareness is possible through a mechanical procedure.
Specifically, we examine patterns of human perception to identify a) what happens
in the course of receiving external information and what the outputs that each
sense produces are; b) how such outputs are bound into a meaningful concept; and
c) the nature of self-awareness. Our research suggests that conscious awareness is
a perceived pattern of physical energy. We show that the process of gaining
awareness can be simulated and mechanized.

Keywords: Foundation of Artificial Intelligence, Machine Thinking, Computa-
tional Intelligence, Machine Awareness.

1 Introduction

Alan Turing's seminal influence on artificial intelligence, including his fundamen-
tal inquiry asking “Can Machines Think?” and his formulation of the Turing Test,
has given rise to a wide variety of contrasting approaches to building intelligent
machines. The question of the embodiment of intelligent computation is critically
related to the problems that surround the very character of mental activities. In his
essay, “Computing Machinery and Intelligence,” Turing [1] laid out several ideas
for constructing a thinking machine. Decades later, it is striking how applicable
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his advice remains for the development of an intelligent computer. At the heart of
Turing’s guidelines is the assertion that certain functions of the mind or brain can
be explained in purely mechanical terms, which implies that a machine can mimic
the behavior of a human or behave in ways that would be called intelligent if a
human were engaging in them.

The term “intelligence” in mind study is defined as (1) the act of understanding,
(2) the ability to understand or learn or deal with new or trying situations, and (3)
the ability to apply knowledge to manipulate one’s environment to think abstractly
as measured by objective criteria [2]. According to Turing Award winner Fei-
genbaum [3], intelligence means human thinking. In Merriam-Webster dictionary,
the term “thinking” refers to the action of using one’s mind to produce thoughts.
Asking a person to think implies that the person must be conscious first and then
control his/her mind to produce thoughts. Thus, having conscious awareness is a
necessary condition before one can have his/her mind engaged in the process of
thought. Similarly, in his list of challenges for achieving human-level intelli-
gence, Turing Award winner Raj Reddy says “When a computer can read a chap-
ter in a book and answer the questions at the end of the chapter, we will have
arrived at a significant milestone --- reaching Human Level Intelligence” [4]. If a
computer can read a text, it implies that the computer must know what it is doing
(i.e., it is reading) first, and then understand what it read. This indicates gaining
conscious awareness is a critical and necessary condition before a machine can
reach human level intelligence.

Equipped with fast processing chips and complex algorithms, modern comput-
ers can run trillions of operations per second and are capable of performing many
complex mathematical computations ranging from playing chase against human
players to decoding DNA sequence for gene expression analysis. However, the
computer does not know what it processes, nor can it recognize the meaning of its
programs. For a very simple calculation such as 1 + 1, a computer can provide a
correct answer immediately, but unfortunately it is unaware of what 1 + 1 is.

Human brain has evolved a mechanism to sense and recognize sensory information
in the environment and transmit this information to the brain where it is processed to
form a quale and generate awareness, a conscious state reflecting the perceived exter-
nal world and providing raw materials for thoughtful judgment. Analogously, a com-
puter is designed to receive sensory information from input devices and process the
information with various algorithms to form a model of its environment. An appropri-
ate reaction is then calculated. Fig. 1 sketches the similarity of information processing
between humans and a machine. They both have input devices that receive external
information and transform it into a sequence of electronic signals. Through analyzing
these electronic signals, they both can make decisions about what is out there and
acting in response. So both humans and intelligent computer systems (i.e., equipped
with knowledge base and various learning algorithms) display a capacity to interact
with and respond to events in the surrounding world.

The most remarkable differences, however, are in the behaviors that brains
and computers produce. In processing those electronic signals, humans can gain
awareness and obtain consciousness of what they are doing. These electronic
signals move to the central nervous system and brain cortex, where a quale rises
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out of firing, electrical activity, synaptic activity in the brain, specifically, (1) a
concept of “knowing” about the occurrence of a stimulus forms, (2) a difference in
excitation occurs, and (3) a difference emerges on which discriminatory behavior
can be established. However, facing the same sensory inputs, a computer is una-
ble to self-generate a quale. Because of this, a computer is not conscious and una-
ware of what it processes. Furthermore, when the input information is new to the
machine and if the machine’s knowledge base does not have the same or related
knowledge about the input information, the machine does not know how to
process it. At best the machine saves it as a new record in its database. In contrast,
humans can conduct creative thinking to establish a new concept, design a name
for such a new thing, and generate a subjective understanding. Why can’t a ma-
chine obtain a quale and gain self-awareness, like human brain, from bits of elec-
tronic signals it processed? A machine is not a live creature, but this article
explores whether generating self-awareness is possible through a mechanical pro-
cedure. Specifically, we explore this question by examining patterns of human
perception to identify the nature of awareness and consciousness. These conspi-
cuous differences reflect fundamental differences in the internal form of informa-
tion and operations on it, which is what we need to understand. We then show
how such awareness can be captured and mechanized. Because humans have
physical (computational) and mental (cognitive) limitations, mechanization of
human mental work would overcome such drawbacks.

2 Patterns of Human Perceptions

Our brains help individuals and species to survive and prosper in the world, mean-
ing that they produce beneficial action. They do it by predicting events in the
world, including consequences of their own actions. The brain's computing is
designed for interaction.

Sight, hearing, taste, smell, and touch are the five basic human senses through
which we obtain perceptual knowledge of the external world. Each of the senses
has a specialized function which receives and responds to specific external or
internal stimuli. Such an operation is termed as Sensation stage, representing a
process of receiving and responding to stimuli. In their own way brains learn to
model their interaction with the world. They convert and integrate sensory signals
and motor commands into common internal form, a kind of “code,” and employ
learning mechanisms that are shared by different sensory modalities. Now we
would like to know what happens to each sense during the process of receiving
stimuli, what type of information each sense produces to the next stage Perception
for further processing, and how brains find meaning of what they sense.

Stage Perception constitutes acts of recognition and interpretation of sensory
stimuli from Sensation, and its output produces a result that causes the central
nerve system in the brain to become aware of what has happened and what is
presented. Hence, Sensation and Perception are the first two parts of one conti-
nuous process (see Fig. 1).
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Fig. 1 Human vs. Machine: Process of cognition from sensation to rational acts

2.1 Sensation of Sight

The human eye is designed such that light waves fall on the retina, where two basic
types of light-sensitive receptor cells rods and cones are activated (see Fig. 2). The
interaction between a photon of light and the retina causes photochemical substances
in the rods and cones to go through isomerization, thus energy carried then becomes
electronic impulses, appearing in electroretinograms. The rods or cones excite the
bipolar cells, which in turn excite the ganglion cells. After the ganglion cells are ex-
cited, the electrical signals travel over the optic nerve to the optic chiasm. Through a
series of transmissions, as the signal is transmitted to the upper layer of cortex, the
information from both eyes mixes to create a binocular vision.

Therefore, any object in the environment or an outside signal perceived by a vi-
sion system can be considered light waves with energy. Energy carried by these
light waves are then extracted and converted into electronic signals through
Sensation stage.
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Fig. 2 Sensation of sight: Extracting energy carried in light waves into electronic signals

2.2 Sensation of Hearing

Sounds wave pass down the auditory canal of the outer ear and strike the eardrum
causing it to vibrate [5]. These vibrations are transmitted across the middle ear by
three tiny, linked bones, the ossicles which magnify the amplitude of the vibra-
tions. Vibrations of the innermost ossicle, the stirrup, are transmitted through a
flexible membrane, the oval window, to the cochlea of the inner ear. The cochlea
is filled with a special fluid called endolymph which contains high concentration
of potassium (K*) ions. Vibrations of endolumph cause vibration of the basilar
membrane, this moves an array of stereocilia at the tips of the hair cells against the
tectorical membrane and opens potassium channels in them. The influx of K* from
the endolymph depolarizes the hair cells, which are the actual vibration receptors,
as shown in Fig. 3.

Depolarization of the hair cell causes the release of a neurotransmitter at its
basal surface and the initiation of nerve impulses in a sensory neuron that syn-
apses with it. Therefore, an auditory message as energy comes down to patterns of
impulses in the auditory cortex and the function in the Sensation stage is to sense
the frequency of these energy changes and convert them into electronic signals.

2.3 Sensation of Smell

Three percent of our genes are used to code for the different odorant receptors on
the membrane of the olfactory receptor cells. So we can recognize and remember
about 10,000 different odors. Research has shown that each olfactory receptor cell
possesses only one type of odorant receptor and each odorant receptor can detect
several different odorants [6].
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Fig. 3 Sensation of Hearing: Converting sound energy into electronic signals

Each odorant receptor consists of a chain of amino acids that is anchored into
the cell membrane. The chain creates a binding pocket where the odorant can at-
tach. When an odor in the air passes through the olfactory bulb, the carried odo-
rant molecules dissolve in the olfactory mucus and attach to one or several odorant
receptors from a whole array of odorant receptors. When that happens, each odo-
rant receptor first activates a G protein to which it is coupled. The G protein then
activates an enzyme which catalyzes the conversion of ATP (adenosine triphos-
phate — a major energy currency of the cell, providing the energy for most of the
energy-consuming activities of the cell) to the cAMP (cyclic AMP). This messen-
ger molecule activates ion channels leading to the creation of nerve impulses.
These impulses are then transmitted directly to distinct micro domains, glomeruli,
in the olfactory bulb. Receptor cells carrying the same type of receptor send their
nerve processes to the same glomerulus. From these micro domains in the olfacto-
ry bulb the information is relayed further along the olfactory nerve to the brain,
where the information from several olfactory receptors is combined, forming a
pattern. Accordingly, a particular odor is determined.

Therefore, smell depends on odorant receptors that respond to airborne chemi-
cals. In the Sensation stage, through chemical reaction with the odorant molecule,
the odor message is transformed into nerve impulses, electronic signals as shown
in Fig. 4.

2.4 Sensation of Taste

We detect taste with taste receptor cells which are clustered in taste buds. Each
taste bud has a pore that opens out to the surface of the tongue enabling specific
chemical components in the food taken into the mouth to reach the taste receptors
inside. Taste occurs when specific proteins in the food bind to receptors on the
taste buds. These taste cells specialize primarily in processing one of the five ma-
jor taste groups: sweet, sour, salty, bitter, and umami.
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As shown in Fig. 5, a taste receptor allows specific ions to enter directly into
the cell when chemical components of food have salty or sour flavor (i.e., sodium
ions for salty substances, and protons for sour substances). This depolarization
allows calcium ions (Ca™) to enter, the influx of Ca* triggers the release of the
neurotransmitter, nerve impulse is thus generated. With bitter, sweet, or umami
flavor, the substance in the food binds to the receptor which activates the coupled
G proteins. Such activation triggers activation of ATP and formation of cAMP,
leading to the creation of nerve impulses. This mechanism is similar to that used
by our odor receptors. Thus, in the Sensation stage, taste buds respond to dis-
solved chemical molecules and ions in the food and transform them into biochem-
ical energy, appeared in electronic signals.
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2.5 Sensation of Touch

We have ability to sense objects and feel temperature through touch. The skin is
the main organ of the sense of touch. As shown in Fig. 6, our skin consists of two
complex layers, each with its own function. Uppermost is the epidermis which
contains the cells responsible for skin color. Below the epidermis is the dermis
where thermoreceptors and mechanoreceptors reside. Four kinds of touch sensa-
tions can be detected: cold, heat, contact, and pain. Of which, cold and heat are
detected by thermoreceptors, and contact and pain are sensed by mechanorecep-
tors. Each of these receptors is connected to a sensory neuron. When changes in
temperature occur, it activates thermoreceptors to open to let in both calcium and
sodium ions. The influx of calcium ion or sodium ion reduces the resting potential
at that spot on the cell. If the potential is reduced to the threshold voltage, nerve
impulses are generated in the cell. In addition, when a mechanical pressure is
applied to the skin, it triggers a generator potential in mechanically-gated sodium
channels in the sensory neuron attached to each receptor. If the generator potential
reaches threshold (degree of pressure), a volley of nerve impulses are triggered.
Thus, touch receptors respond to external stimuli by opening either mechanically-
gated or voltage-gated sodium channels. Such an opening leads to the creation of
nerve impulses.
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Fig. 6 Sensation of Touch: Generating waves of the nerve impulse

As we can see, when external information is presented, each of five senses
transforms what it receives into electronic signals through different ways.
Among these, taste and smell complete such transformation through certain chem-
ical reactions. The senses of sight, hearing and touch belong to the physical senses
because their sensory cells are not initiated by chemical reaction, instead, they
detect physical entities such as photons, mechanical vibrations and pressure, air
pressure waves and temperature to generate nerve impulses. As illustrated in Fig.
7, the array of mechanical, optical, and chemical properties that define touch,
hearing, vision, smell, or taste can be represented by bits of electronic activity that
only vary in two parameters, time and space.
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3 A Comparison between Human and Machine Perceptions

Having understood that external information has been transformed into a sequence
of electronic signals at the stage of Sensation, we now return to the machine side
of Fig. 1. The input devices of the machine also transform an external message
into electronic signals. These electronic signals are the recording representation of
the received message, and they do not carry any information on machine’s reac-
tion. In contrast, electronic signals from human Sensation stage carry the changing
pattern of energies resulting from activities of corresponding sense cells. Different
cells react differently when activated. The produced nerve impulse exhibits certain
characteristics representing physiological properties and metabolic state of cells
involved. These characteristics are incorporated along with the message signal and
together they are transmitted to the central nerve system, where they are coupled
with corresponding specific nerve cells and coded by specific genes. The specifici-
ty in the information flow from each stage process is thereby maintained, thus the
brain is aware of what it processes and can identify what the signal represents as
well as where it is from. For example, a person feels pain in a finger and can
quickly discriminate the pain as shape and location of the pain area.

As shown in Fig. 1, the next stage is the Perception stage, in which electronic
signals from the Sensation stage are further processed. If the Sensation stage refers
to the immediate result of stimulation of sensory receptors in the eyes, ears, nose,
tongue, or skin, Perception is the process or act of recognition and interpretation
of sensory stimuli. Its output produces a result that causes the central nerve system
in the brain to become aware of what is presented. For the machine, the Percep-
tion stage is achieved by computing models. These models are designed with
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specific goals on how to handle sensory stimuli, and the outputs of the models
appear as a sequence of Os and 1s.

When output from the Perception stage arrives, it provides information that the
brain is able to determine what the sense organ receives. This is a stage of aware-
ness, indicating a state of being aware of something due to external stimuli. At this
stage, perceptual knowledge of what is presented is established, and consciousness
is formed. Therefore, awareness is a foundation upon which consciousness can be
generated. Without awareness, one cannot gain consciousness about the target
object. Awareness varies in its sensory quality and intensity. The former measures
the extent to which a person can discriminate an outside stimulus and the latter
indicates the strength of a stimulus signal. For instance, a person sees a red box
and can determine whether the red is bright; another person feels pain in a finger
and can discriminate that pain as sharp.

The Awareness stage provides raw materials for the brain to produce rational
knowledge. This procedure involves various subjective activities such as thinking,
learning, reason, judgement, etc.

However, for the machine, the Awareness stage is performed by programmed
rules (Fig. 1). The machine executes programs and produces results indicating
what the sensory stimuli are. As we have mentioned earlier, electronic signals
produced in each stage of machine cognition do not carry information about pro-
cessors’ own physical state in dealing with external messages. The specificity in
the information flow from each stage is thereby nor maintained. Thus the machine
is unable to be aware of which processor has processed those signals and what it
processes. Therefore, machine’s self-awareness is not established at this stage.

On the other hand, in human cognition, signals recording the activity of in-
volved nerve fibers at a specific locus are transmitted together with the message
signal to the brain. The specificity in the information flow is thereby maintained
and self-awareness is formed. So far, biological models of the brain have inspired
many research efforts in building intelligent machines. An interesting question is
whether self-awareness can be described in mechanical processes.

4 Awareness as Perceived Pattern of Physical Energy Changes

In fact, outside world itself represents a pattern of physical energies that directly
affect our body receptors. For instance, the visual environment provides a chang-
ing pattern of radiant energies that act on the retina. A sound is a changing pattern
of vibrations transmitted to auditory receptors. An odor in the environment acti-
vates an odorant receptor in the nose where the energy of binding of odor to this
receptor is transduced into electronic activity, which then travels down to brain
cortex to active a subset of points in brain space such that the quality of an odor is
defined. Empirical observations and existing evidence from neurophysiology sug-
gest that any momentary quality of awareness involves the activity of nerve fibers
at a specific locus in the material brain [7- 9]. That is, human brains can get qua-
litative differences in structure or function when they receive nerve impulses
and can feel the corresponding energy changes, which enables them to react
appropriately.
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Awareness thus reflects a reaction of human bodies. Specifically, the receptors
under the body’s surface react to various forms of energies in its external and in-
ternal environments. The next question is whether one’s awareness can be cap-
tured. We now use human olfactory and visual perception as two examples (i.e.,
one represents a chemical sense, the other a physical sense) to illustrate how Sen-
sation (stage 1) and Perception (stage 2) of Fig. 1 are captured and mechanized
such that bits of electronic activity are bound into a meaningful concept, where
awareness is achieved.

Example 1 — A Simple Visual Perception. Suppose we draw two rectangles ver-
tically on a big sheet of gray paper. Each rectangle uses a different color, as shown
in Fig. 8 (left panel): gray and red. We can show this graph to one reader. Suppose
that the visual optical flow moves from left to right when this reader views the
graph in Fig. 8. A person with normal color vision (i.e., without color blindness)
perceives one rectangles in red, and can discriminate this color but cannot discern
the gray box on the gray background. This example indicates that a person with
normal (color) vision is able to perceive color changes. That is, people have diffe-
rential sensitivities to color changes. For simplicity, if we assume there is no other
noisy signal to interfere with our observation in viewing these rectangles, the per-
ception processes in viewing the gray and red rectangles can be illustrated in (a)
and (b) — the right panel of Fig. 8, respectively. The horizontal axis in both (a) and
(b) represents the duration of receiving visual signals (i.e., moving to view each
rectangle from left to right), whereas the vertical axis indicates the intensity of a
perceived visual signal. The unit for the vertical axis is Lux, commonly used in
photometry as a measure of the intensity of light, such that wavelengths are
weighted according to the luminosity function, a standardized model of human
brightness perceptions. The unit for the horizontal (V) axis can be any
conventional time unit, such as a second, minute, hour, or day.

Fig. 8a indicates that a gray spectrum signal is observed, denoted as L = f (G)
(where f is some function, and G represents the energy of a gray wave). However,
the reader cannot distinguish whether this gray spectrum signal comes from the
gray background of the paper or a gray rectangle. If the reader is unaware of the
existence of the gray rectangle in advance, the gray rectangle is actually invisible.
If we replace the gray rectangle with a red one, the visual system perceives two
different color spectrum signals: gray and red (one from gray paper, and one from
the red rectangle), with different wavelengths, denoted L = f (G) and L = f (R),
respectively. Through a series of physical and chemical reactions with energy
transformation, the nerve system perceives energy changes in the difference be-
tween the two stimuli, gray and red.

How can such Sensation, Perception and Awareness be rendered observable?
An analogous operation using calculus can provide a good answer. The basic prin-
ciple is simple: to see a change in the energy of each color, we take the first deriv-
ative of the signal curves obtained in both (a) and (b) of Fig. 8 with respect to the
corresponding gray and red energy signals. The results (indicating Sensation)
displayed in Fig. 9 a and b. Note that when a gray rectangle appears on gray paper,
all information received is the wavelength of gray (i.e., gray signal from both the
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background and the rectangle). Thus, the receptors cannot sense any change in
neural energy, as shown in Fig. 9a. When a red rectangle is placed on a gray pa-
per, the two different wavelengths representing gray and red are perceived. Be-
cause of the background gray paper, nerve receptors would not sense any energy
change when receiving a gray signal again but would have a noticeable neural
activity when receiving a red stimulus. Fig. 9b reflects such effects.

To see and capture this noticeable difference—a term we use to represent an
average point at which the viewer just perceives a difference between two stimuli,
such as gray and red—we take the derivative from the results obtained in Fig. 9.
This calculation produces Fig. 10, which shows how to capture different portions
of the visible spectrum. The magnitude of the noticeable difference also is meas-
ured by Lux (i.e., the intensity of light which represents the density/strength of its
energy). Fig. 10a reflects that the gray rectangle displayed on gray paper is invisi-
ble, whereas Fig.10b shows that the left and right edges of the red rectangle on the
gray paper can be extracted, given our assumption that the visual optical flow
moves from left to right when viewing Fig. 8 on the gray paper.

This example suggests that (1) a noticeable difference cannot be perceived and
captured when the stimuli received are the same, (2) a noticeable difference occurs
at the point that energy changes exist, and (3) the noticeable difference garners
attention and awareness. Before we discuss example 2, we re-examine Turing’s
idea for building a machine with self-awareness.
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5 Turing’s Ideas for Building a Machine with Self-awareness

In his 1936 paper, Turing proposed an abstract machine that could perform com-
puting procedures on the basis of its state transitions [10]. The machine would

possess a finite set of internal states {qo, qys s qn} , SO at any given moment, it
must be in exactly one of these states. Then a two-way, potentially infinite tape is
divided into squares. The finite set of tape symbols, S,,S,,--,S , represents the

alphabet of the machine, and at every moment, each square of the tape is occupied
by at most one symbol. The reading head, at any given time, stands over some
square of the tape. If at time t, the reading head scans a square containing a sym-

bol §, and the machine is in the internal state g ; » the determined action of the
machine leads it to do one of four things: (1) erase the symbol S, and print a new
symbol S > (2) move left one square; (3) move right one square; or (4) stop. In

cases (1)—(3), the machine enters a new internal state ¢, and is ready to act again

at time t + 1. These first three actions also can be represented by quadruples—(1)



Towards Machine Equivalent Consciousness 97

q;5:5:9,.( q;S,Lq,,or (3) q;S,Rq,—in which the first two symbols indi-
cate the present internal state and scanned symbol; the third symbol is the action
of the machine (print S » move left, or move right); and the fourth symbol re-

veals the internal state of the machine after the action has been performed. In such
a Turing machine, no two quadruples have the same first two symbols.
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Fig. 10 Energy changes causing awareness (the Perception stage)

An analysis of the structure of the three kinds of quadruples reveals that they
share the same format: the machine’s current internal state, instruction, action, and
the machine’s updated state. The second symbol, “instruction,” reflects what the
reading head scans in a square of type. If we reconceive of the reading head as a
sensor, and the type symbols as external signals, the second symbol of each
quadruple indicates the procedure the machine uses to perceive external signals.
The third symbol then would be the reaction of the machine to a perception of an
external signal, and the fourth quadruple is the machine’s internal state change
after its reaction. With this new format for each quadruple, we can describe the
machine’s current internal state, the function of sensing external signals, the
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reaction generated after the perception of signals, and the internal state after the
reaction. At any moment, a Turing machine is aware of changes to its internal
states and can generate corresponding reactions using perceived information.
Thus, a computer system can be designed to exhibit this property such that, by
considering the configuration of the entities that constitute the system, it could
generate self-awareness by computing the transitions that change the state of the
system.

We now look at example 2- simulating olfactory mechanism. As shown in
Fig. 4, the sense of smell goes through the following four steps before an odor is
recognized in the brain cortex [6].

Step 1: binding and generating nerve impulse. Because each olfactory receptor
cell possesses only one type of odorant receptor, binding (or coupling)
occurs when an odorant molecule dissolves and the released energy ac-
tives a specific type of odorant receptor to open an ion channel.

Step 2: signal transmission from the activated odorant receptor to the microre-
gions (glomeruli) in the olfactory bulb. There are some 2,000
well-defined glomeruli, which is about twice as the types of olfactory
receptor cells.

Step 3: signal transmission from a specific glomeruli to its contact in the next
level of never cells, the mitral cells. Each mitral cell is activated only
by one glomerulus, and the specificity in the information flow from
each step is thereby maintained.

Step 4: the mitral cells send the information to several defined micro regions in
the brain cortex via long nerve path.

In the brain cortex, the information from one or several types of odorant receptors
is formed (or combined into) a pattern characteristic for each odor. This is inter-
preted and leads to the conscious experience of a recognizable odor.

Mechanization of olfactory mechanism can be realized using some electronic
circuits consisting of inductors (L) and capacitors (C). In electrical engineering
field, LC circuits are used either for generating signals at a particular frequency, or
picking out a signal at a particular frequency from many more complex ones. As
we have shown in previous sections, outside world itself represents a pattern of
physical energies that directly interact with our body receptors. Human sensation
and perception procedures are actually the process of energy exchanges between
environment (inside and outside) and various receptors. Awareness is thereby a
perceived pattern of physical energy. Thus we see, hear, smell, feel, and taste the
world.
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When an odorant dissolves, the released energy can be expressed as a specific
signal with a particular frequency. One type of odor corresponds to one particular
frequency and we can use a LC circuit to simulate the binding procedure of a spe-
cific odorant (see Fig. 11). We use capacitors as odorant receptors which pick out
a specific odorant at a particular frequency.

We know that the inductive impedance X, = jwL, = j(27 )L, and the
1 ] . 1
capacitive impedance X . = = J ==

J

. .2

jaC, i Qr f)C, QrCy)f
where j= +/—1, and f represents signal frequency. Therefore, X , increases as

frequency increases while X . decreases with increase in frequency.

=>

Signal 1 ' , -

R —
Odorant
th) X is fired and lets odorlesstasteless air pass

Receptor
=

Signal 2 —T—f T —
G protein l ?
—IG__ goto step 2

(&) &n Odorant binds to a receptor () XC is activated when cougled with sn odorant
Fig. 11 The Simulation of binding odorant

Similarly, Steps 2 — 4 can be simulated using several mutual inductance circuits as
shown in Fig. 12.
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6 Differences in Drawing Inference between Humans and
Machines

Stage 4 in Fig. 1 represents activities related to generating rational knowledge.
These activities include learning, thinking, judgment, reason, etc. On machine
side, tons of research has been conducted on issues related to Stage 4. For exam-
ple, some focus on the development of different types of machine learning me-
thods, others explore the construction of different types of knowledge bases as
well as knowledge mining rules, and some others investigate different logic rea-
soning theories. The common goal of these researches is to have the machine
establish intelligence. Indeed, we expect the output from Stage 4 exhibit an intel-
ligent behavior, like a human.

When a machine is trained to have domain specific knowledge X, a key crite-
rion used in evaluating the machine’s performance is to check if it can correctly
solve a problem that is in X domain or classify a new problem Z to X correctly. It
is expected that the correct rate of such performance can reach 100%, or the high-
er the better.

Note that the machine follows program which are rules. Suppose that we have a
rule for a machine: “If you see an X then do Y”. Then whenever the machine
reads an X, it certainly works on Y. If every time the machine follows this rule
correctly, we would say that the machine has a 100% correct rate in performing
this rule. However, such a situation, if used in human setting, may not always be
true. The following example shows behavioral difference in drawing inference
between humans and machines.
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6.1 An Unfixable Difference in Drawing Inference

To protect students in a school zone from being hit by cars, the city of West Van-
couver in British Columbia has adopted a novel approach to encourage drivers to
slow down: an image with an optical illusion effect painted on the street (See im-
age at http://www.theworld.org/2010/09/canada-speed-bump-optical-illusion/). The 42-
inch image first appears as a blurred mark on the road. As drivers approach, the
elongated image appears three-dimensional, turning into a little girl chasing a ball
into the street. This shift should alarm drivers sufficiently that they pay more at-
tention and slow down when passing through the school zone. However, critics
suggest the optical illusion itself could contribute to accident probabilities if driv-
ers come suddenly to a halt or swerve to avoid what their brains perceive as an
actual person.

For our purposes, the key question is whether a robot, equipped with a camera
and visual image processing functions, can perceive that the image is a three-
dimensional effect. The image itself is two-dimension, the robot would follow
predefined rules to process, and therefore the robot would likely consider it such.
So why do humans believe it is three-dimensional?

Human perception processes enable people to distinguish “figure” from “back-
ground” by capturing depth information. To draw a three-dimensional object or
create spatial information in a two-dimensional plane or map, artists tend to draw
surfaces of the object in an inclined position, such that lines perpendicular to the
plane become points, lines parallel to the plane have true length, and lines inclined
to the plane are foreshortened [11]. This method produces a third dimension, per-
pendicular to the plane, in an effect referred to as 2.5D (two-and-a-half dimen-
sional). A two-dimensional object drawn on a 2.5D plane at an angle to the
observer generates pseudo-depth information (distance to the observer) and the
illusion of depth along the forward (Z) axis. For example, if a cube is drawn on

3-dimensional coordinates as shown in Fig. 13b, it must have ad =bc=bc .
However, if the same size of the cube is drawn on 2.5-dimensional coordinates

(see Fig. 13a), from an observer‘s view, one would conclude ad =bc # bc .

Here, to present the depth information, line b'C' is shorter than line bc . There-
fore, though the 2.5D representation remains effectively two-dimensional, it al-
lows for depth perception; 2.5D also can produce stereoscopic effects in human
visual perception. Hence, the example of “a little girl chasing a ball into the street”
can produce an optical illusion effect that helps human drivers capture pseudo-
depth information as they approach the image. However, as drivers come even
closer to the image, their depth perception disappears, and they recognize the
2-dimensional image on the ground. The limits of a 2.5D image result from the
discontinuities in the parts of its image along the forward axis [12]. Thus the pro-
duced pseudo-distance to the observer gradually reduces to a point as drivers close
in on the image.
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However, if a 2.5D image were processed by a robot, its image processing
technology would examine the characteristics of the image pixels and correctly
classify it as a two-dimensional plane image. Thus, is there a way for a machine to
generate depth perception, as human beings do?

6.2 A Fixable Difference

A 2.5D image cannot cause a machine to generate depth perception, however, when
confronted with a solid three-dimensional object on the street, the robot is capable of
capturing depth information, as human beings do. Considering a situation in which
both a human and a robot must perform the action of walking down stairs. When a
person walks down the stairs, he or she generally looks down along the stairways,
recognizes the depth that exists between two steps, and moves this distance vertically
for each step he or she takes. Similarly, to make correct judgment, a robot must deter-
mine that (1) stairs are connected, and (2) there is a particular depth between two con-
nected steps. To do so, a robot needs to recognize the surface orientation of the stairs
and then generate depth perception, regardless of whether the surface is sooth or
rough. Here we present a very simple approach for machines to perform these tasks.

We know that the visual ability of humans and other animals is the result of the
complex interaction of light, eyes, and brain. We can see because light from an
object moves through space and reaches our eyes. Once light reaches our eyes,
signals are sent to our brain, and our brain deciphers the information to detect the
appearance, location, and movement of the objects we see. Without light, there
would be no sight.
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Following this principle, we present a novel depth-sensing imaging system,
composed of a single camera and a laser beam generator, along with a planar mir-
ror that rotates about the light beam, as illustrated in Fig. 14. Equipped with this
system, a robot can scan an object with a revolving light beam to identify the
orientation of every visible surface and obtain depth perception. This action mim-
ics human eyeball rotation as a means to see an object. Rotating the mirror can
change the straight light beam into a cylinder, divergent conical, or convergent
taper light beam. If the generated light meets an object, it produces a bright ring
on the object’s surface, and the bright ring is observed by a camera. Analyzing
the captured light ring, the robot can calculate the surface orientation of the ob-
served object and the distance between its current location and the object, then
determine spatial stereo information.

Fig. 14 A single-camera object orientation and depth estimation system

As in Fig.14, suppose that H is a mirror and point A is the camera, which also
indicates the location of the light beam projector. The light beam projects on the
target object to form an ellipse. Line SAO represents the camera’s focal axis,
which coincides with the axis of the light beam. We employ the following nota-
tions:

= Line BC is the major axis of the elliptical light ring,
=  Point D is the middle point of BC,

* y, and Y, are angles between the axis SAO and line AC and line AB,

respectively,

= fis the focal length of the camera and is known,

= Ris a given parameter representing the distance between the mirror H
and the camera, and

= Point K represents an arbitrary point on the edge of the ellipse.
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Depending on the types of light beam produced (i.e., cylinder, divergent conical or
convergent taper), the robot would perform the following calculations to deter-
mine the surface orientation of the observed object

1. Compute ¢, the angle between the surface of the object and the
axis of light beam.

2. Compute L, , the distance between the camera and point D.

3. Evaluate distance between the camera and any point K on the surface
of the object, L, .

If the type of beam is a cylinder (where 8 = 45°, ¢ =45"), then

L1 1
o=ctg” [-(—————)1 4))
2 1gy, 18y,
R 1 1
L =—(—+—), 2)
2 18y, 18y,
R
L = , 3)
18y,

such that Y, = tg_l(%) LW, = tg_l(aTb) ,and W, = tg_l(%) . In addition,

ac, ab, and ak can be measured from the camera image, representing projections
on the same camera image of the segments DB, DC, and DK.

If the type of beam produced is a divergent conical beam (where 45" <8 <

90°, ¢ =26-90"), then

o = Ctg_l[ tgl/ll_tng ]’ (4)
2igyiigy, —1gP(1gy, +18y,)
L - Rctgotgp 1 N 1 ) . and ™
2 18y, —189 18y, —18¢
Rctg@-tg¢@
L = (6)

siny, —cosy, -1g¢9

If the object has a small visible surface, using these two types of light beams
would mean that the ring of light formed on the surface is beyond the boundary of

the object surface. Therefore, the robot adjusts the angle @ of the rotated mirror,
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such that @ < 45°. When the mirror revolves around the center axis, it can create
a convergent taper light beam. Thus Equations (1)—-(3) become Equations (7)—(9),
respectively:

o= ctg—l[ tgl/II_tgl/IZ ], (7)
2gytgy, +1gp(1gy, +1gy,)
L - Rctg¢-tg¢( 1 N 1 ) . and ®
2 gy, +1gp 1y, +1g¢
Rcted-t
L = ctgf-18¢ ©

siny, +cosy, -tg¢ '

Now we examine how the models above can help a robot perceive depth informa-
tion. By projecting the light beam onto an object, a surface of sufficient size
allows an elliptical or circular bright line to form. If the object is not large enough,
the light ring formed on the surface goes beyond the boundary of the surface, so
part of the projected figure falls on the first surface, and the other part is located
on the second surface, as in Fig. 15.

Comparing the shape formed on one surface with that on two connected surfac-
es, if an edge appears between two connected surfaces, the bright ring formed on
the edge differs from that formed on one plane (Fig. 15a). Examining the camera
image, if the shape appears as in Fig. 15b, then one edge must exist at the intersec-
tion of the two semi-circles. That is, if the camera picture reveals a circular arc
that connects with an elliptical arc to become a closed curve, then the robot can
conclude that one edge of the target object is located where the two arcs meet. If
the closed curve opens or the endpoints of the two arcs do not meet, then one ver-
tical step exists.

So, projecting a light beam onto stairways for example leads to a large circular
ring that forms on the edge of the top of surface; a smaller circular ring appears on
the bottom surface (Fig. 15c). If, in the camera image, a larger semi-circle instead
connects with a smaller semi-circle, then there is a vertical step at the intersection
in the object (Fig. 15d).

If the camera image shows that two straight lines link from the ends of a small
arc to the ends of a larger arc, it implies there is a dip in the target object (see Figs
15e and 15f).

The method discussed here offers several advantages. First, the approach is
simple and can produce results immediately. Second, the evaluation equations
only use common mathematics and basic light principles, such that they minimize
the complex computing procedure used by most current digital image processing
technology [13]. Third, compared with conventional stereo systems that rely on
two cameras, this method needs only one camera to obtain the depth estimate,
which can improve accuracy and avoid the matching ambiguity problems that are
common with the use of two cameras to simulate binocular vision.
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Though a machine cannot perceive a 3-dimensional effect when observing the
image of a girl chasing a ball on the street (i.e. the example in Section 6.1), the
machine’s computational intelligence is capable of making a correct judgment: the
image is 2-dimensional. If cars were equipped with such computational systems,
they would help drivers avoid a sudden halt due to human perceived optical illu-
sion effect. If this is the case, the original purpose of using optical illusion effect
as speed bump would not be achieved. Therefore, a machine with computational
intelligence should be seen as a cognitive prosthesis to amplify, rather than re-
place, human abilities.

New developments in neuroscience and cognitive science have provided in-
sights on how to design human-level intelligent machines. For example, theory of
human attention can inspire our new thoughts on designing computation visual
system, and models of human speech pattern recognition help build auditory
sense. Following the similar principles on how human brain works, MIT’s
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artificial intelligent Lab has built several humanoid robots [14, 15, 16]. Though
those systems may not be closely tied to any of the five senses that we have dis-
cussed earlier, they are some initial steps towards artificial cognition.

7 Conclusion

Alan Turing [1] stated that “... I believe that at the end of the century ... one will
be able to speak of machines thinking without expecting to be contradicted.” A
computational system with thinking capability requires the system be aware of and
understand what it processes. How can a machine achieve self-awareness and
form consciousness from bits of electronic signals it processes? If we know how
the brain produces consciousness, we may be able to design an artificial conscious
machine. In this paper, we examine working procedure of human senses to figure
out 1) what happens in the course of receiving external information and what the
outputs that each sense produces are, 2) how such outputs are bound into a mea-
ningful concept in the brain. We present a four-stage model to illustrate process of
cognition from Sensation to Rational Acts. Using this model, we compare similari-
ty and difference between human being and machines in each cognition stage. Our
goal is to understand how conscious awareness is formed and whether human
awareness can be captured and mechanized. Our research suggests that awareness
is a perceived pattern of physical energy. Mechanization of molecular logic of
sensation and perception may be a possible way to realize artificial conscious
machine with equivalent human level awareness.
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Abstract. Operations Research (OR) and Artificial Intelligence (Al) disciplines have
been playing major roles on the design of new intelligent systems. Recently, different
contributions from both fields have been made on the models design for problems
with multi-criteria. The credit scoring problem is an example of that. In this problem,
one evaluates how unlikely a client will default with his payments. Client profiles are
evaluated, being their results expressed in terms of an ordinal score scale (Excelent >
Good - Fair > Poor). Intelligent systems have then to take in consideration different
criteria such as payment history, mortgages, wages among others in order to commit
their outcome. To achieve this goal, researchers have been delving models capable
to render these multiple criteria encompassed on ordinal data.

The literature presents a myriad of different methods either on OR or Al fields for
the multi-criteria models. However, a description of ordinal data methods on these
two major disciplines and their relations has not been thoroughly conducted yet. It is
key for further research to identify the developments made and the present state of the
existing methods. It is also important to ascertain current achievements and what the
requirements are to attain intelligent systems capable to capture relationships from
data. In this chapter one will describe techniques presented for over more than five
decades on OR and Al disciplines applied to multi-criteria ordinal problems.
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1 Introduction

Learning multicriteria (MC) models from data has recently gathered a substantial
attention. Such trend has its reasons in the diverse set of applications which can be
found in management [IE ], financial [|Zl| ] and medical [|a m] fields, to
name a few. Consequently, the very diversity of the multicriteria learning research
topics led to a discussion and proposals in several different fields. Decision analysis,
machine learning and statistics/econometrics are some of them. Hence, a rich termi-
nology can be found due to this diverse fields of study. Sorting, ranking, dominance,
among others, are some of the many names referring to multicriteria methods. Even
though mostly all share the same fundamental principles, it is on the methods as-
sumptions that most differences occur. Nevertheless, methods for learning ordinal
data have been recently seen as a generalisation of some multicriteria techniques [@].

The importance of ordinal data is clear. Nowadays, industry tries to cope with
current technological advancements and towards profit maximisation. Hence, more
and more personalised products and services are being commercialised to a wider
audience. Problems like credit scoring where the system evaluates the capability
of one default his debts , , ] by grading a customer credit profile in the
scale Excelent - Good ~ Fair = Poor, movies suggestion [@], breast cancer di-
agnosis (171, or gene analysis through the analysis of hyperactivity on certain pro-
teins , ], are some examples of ordinal problems where data is structured
by a “natural” order. As a result, new and robust computational methods capable
to unravel reasoning’s behind ones decisions also led to new theoretical develop-
ments. Regarding to these developments two major disciplines lead the research:
Operations Research (OR) and Acrtificial Intelligence (AI).

In this chapter it is presented a literature review over different areas that deal with
ordinal data, in general, to the extent of what it is known nowadays. Section 2 starts
by providing the terminology that will be used. Section 3] will focus on methods
on the operations research side whereas techniques in the artificial intelligence field
will be described in Section[dl Section[3will be concerned mainly about aggregation
models, fuzzy and rough set theory, and evolutionary algorithms approaches. Sec-
tion@lwill be dedicated to inductive learning, a very large and important topic within
AL In this section different existing works in the literature will be identified as well
as feature selection approaches (Section [4.1l) and performance assessment metrics
(Section[4.2). As remainder of this chapter, in Section[3l one will draw a summary
of what has been achieved until now and what still poses as open problems.

2 Terminology and Concepts

Learning multicriteria (MC) on ordinal data has a strong connection with OR and
Al ]. Albeit being conceptually different topics, there is an intrinsic connection
among them. OR comprises several different areas of study such as decision anal-
ysis, mathematical programming among others. Whereas, Al can be described as
being composed by machine learning, pattern recognition, data mining (119] etc.
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Fig. 1 Illustration of the different fields that overlap with operations research and artificial
intelligence.

Within each area there are concepts borrowed from one another. For instance, ma-
chine learning vastly uses techniques from mathematical programming and statistics
since its early days [IE, ] (Fig.[Mldepicts some of these relations). How these top-
ics interact with each other is not within the scope of this chapter. It is the purpose
of Fig.[Mlto illustrate the broad aspects of the area in study. Its usage is so broad that
a full coverage is not possible. However, it is interesting to know how MC meth-
ods have been used in data analysis to represent knowledge. Such is done in order
to understand reasoning’s behind decisions [@], outcome prediction [IE, @], in
mimicking behaviours [90] and planning [@, ].

Even though MC methods have been thoroughly studied, not much effort has
been employed on the particular case where data is presented in a “natural” order.
Let us consider the credit score problem. A bank assigns a score of Excellent to a
client given his wage, good payment history in previous mortgages and the number
of credits at the time of the evaluation. The score assessment is clearly rendered
over the different criteria: Wage, payment history, among others. Ideally, one wants
to find the best function that can capture all this information in order to output the
expected outcome.

Definition 1 (Classification on Ordinal Data Problems[@, , @, @, ]).
Classifying on ordinal data problems consists on finding the best mapping
f:RY = {Cy,...,Ck} of a given pattern, x € R? C X, to a finite set of classes,
where Cg = ... = Cj.

Pattern x is also referred as instance, example or alternative. Moreover, x can be
represented in a vector fashion where each entry is identified as a feature, attribute
or criterion, i.e., x = {x1,...,x4}. A dataset is a tuple consisted of N patterns and its
target classes (or outcomes), D = {x(i) , y(i) }f\’: , and -, the order relation on the set
of classes.

Literature usually differentiates attribute and criterion ]. Consequently, the
problem in analysis can be substantially different. In an ordinal data problem as the
credit scoring, an alternative (to which client a loan should be granted) is charac-
terised by several criteria, each one representing a level of importance to the de-
cision maker (DM) (the bank). Here, criteria is used instead of attribute being the
former more adequate for the ordinal problem 151,135].
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The usage of the term ranking is also common in the MC field. However, such
term is usually mentioned to other subjects aside classification.

Definition 2 (Ranking [IE, ]). A ranking problem consists on finding the best
mapping f : R4 — {Ry,..., R} of a given pattern, x € R C X, to a finite set of
ranks, where Ry = ... >= Ry is not pre-defined.

There are subtle differences between the two problems. Whereas in classification the
order between classes is already defined and all patterns have to be assigned into at
most one class, in ranking such does not hold. Think for instance on the Google™
or Yahoo™ search engines. When entering a search query, the result can vary from
user to user for the same query. The search engine will look on its database and
rank the results according to, for instance, user search history. Ranking approaches
however go beyond the subject of this chapter.

Depending on the problem, criteria can also represent a magnitude of importance
or unimportance, a ratio, among others. This can generate datasets where order may
not be explicitly represented. Different works tackled the ordinal problem assuming
that data were monotone, i.e., where both criteria and classes were assumed to be
ordered [IE, , ]. Nevertheless, recent works argue that monotonicity constraint
cannot be verified despite being however perfect representatives of an ordinal prob-
lem [@, @]. The following synthetic datasets depict some of those claims. To each
point in Fig. Dal was assigned a class y from the set {1,2,3,4,5}, according to

= i 1by—1 < 10(x; —0.5 —-05)+¢e <b
" elBag {7 Ot < 10 TOS 0 e <)

(b07b17b23b37b47b5) = (—w7—l’—01’025717+oo)

D

where € ~ N(0;0.125%) simulates the possible existence of error in the assignment
of the true class to x. Data in Fig. 2Blis uniformly distributed in the unit-circle, with

1.0 Syntheticl 1.0 Syntheticll
0.9
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0.6
0.0
0.4
~0.5
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Fig. 2 Two synthetic ordinal dataset where the monotonicity property at input data does not
hold.
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the class y being assigned according to the radius of the point: y = [\/ x% er%—‘.

These synthetic datasets are examples where order cannot be captured directly in
the input space, but in an implicit feature space.

Hence, the following question can be posed: How to capture order? Many models
have been proposed towards this goal. But before answering that question, first a
brief description of the most commonly used models is required. The following
concepts will allow a better understanding of the most recent techniques discussed
along this chapter.

Starting by the OR domain, a classic multicriteria decision analysis (MCDA)
approach is done by the representation of a specific aggregation model. Aggregation
models are performed by aggregating different value or utility functions in order to
be expressed by a single criterion. One aggregation model that we can think of a, for
instance, the mean: ; 2;1-:1 x;. The use of utility vs. value depends upon the problem.
Whereas, utility functions are used in stochastic problems, value function are used
in deterministic ones [92]]. In brief, an aggregation model is a function U : R — R,
that maps criteria of the DM onto outcomes 192]. Utility functions are widely used,
where the one presented in Equation (@) is an example of several other aggregation
models. It has the advantage of considering both qualitative and quantitative criteria.
The simplest additive case of an utility function is defined as follows:

d
Ulx) = Y uj(x;) )

j=1

where U € [0, 1]. For the interested reader Siskos (115] presents a good description
of these methods.

Fuzzy set theory is another topic with increasing interest on the scientific commu-
nity. Its usage is not restricted only to the MCDA problem being however strongly
defended thanks to its capability to handle uncertainty 150, 163]. In general, fuzzy
set theory presents a fundamental principle which describes a special type of sets
which have degrees of membership through simple logical operators. Such can be
described by any mapping function u(x) : RY — [0,1]. Fig.3h) consists of a valid
representation for a given membership function. Moreover, it can represent knowl-
edgein a if ... then way in a similar way to decision trees (DTs) [69] which will be
described shortly.

In much of the works currently present in the literature, fuzzy set theory usually
appears along with rough sets. The latter field is however slightly different from the
former. Rough Set theory not just handle uncertainty, but also incomplete informa-
tion which can be present on data (65]. Even though new approaches on utility ad-
ditive functions (UTA—UTilites Additives ]) already tackle this problem, it has
also been stated that rough and fuzzy set theory are complementary because of deal-
ing with different kinds of uncertainty [@]. It was initially proposed by Pawlak [@]
with the objective to provide a mathematical formulation of the concept of approxi-
mated (rough) equality of sets in a given space. In the rough set theory it is assumed
that to every object there is an associated amount of information that describes it.
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Fig. 3 Fuzzy and Rough Set concept illustrations: (a) An example of a membership function
that defines a possible economic class problem in a fuzzy set approach; (b) Lower and Upper
approximations of a given set which represent the domain knowledge;

This refers to the view that knowledge has a granular structure , @, , @].
Therefore, an important characteristic of rough sets theory is the identification of
consistent data and assigning them into lower and upper approximations of sets—
see Fig.[Bb).

More on the Al domain, in general, one tries to obtain valid generalisation rules,
classifier, from data. Once a classifier has been designed, one has to assess its
performance by estimating the error of the classifier for unseen examples. Clas-
sification error is expressed as a misclassification error defined by a “true misclas-
sification rate” (here denoted as R*(d)). d(x) is the learner model with input data x.
Breiman [|E] defines this function as:

Definition 3 (Accuracy Estimation ]). Take (x,y), x € X, y €Y, 10 be a new
sample from the probability distribution P(A, j); i.e.,
o PlxeA,y=j)=P(A4,))
e (x,y) is independent of D.
Then define
R(d) =P(d(x) #y) 3)

But how can R*(d) be estimated? There are many approaches. One that this work
will use is the cross-validation approach. Dataset D is randomly divided in subsets,
with the same size as possible, e.g., Dy,...,Dy. Foreachv,v=1,...,V, alearning
method is applied to the sample D — D,, resulting in the d”(x) model.

1 Vv
RCV(d) _ v ZRtS(dV) (4)
v=1

where R is defined as

RE@) = oY 5@ ) ©

Y (xi,y:)€Dy
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Fig. 4 k-NN and DT methods. (a) A test pattern (illustrated as a star) composed by two
features checks for, in this example, two closest labelled patterns in order to determine its
own class; (b) Prediction over the whole feature domain for an 2-NN on the training data
shown in (a); (c) A DT discriminates the feature space by rectangles; (d) A sample of the
decision tree for (c).

where N, ~ N/V and F any function which penalises each errofl. One can now
analyse the different learning methods for ordinal data.

k-Nearest Neighbour (k-NN) is a simple method that interestingly has not been
explored enough in the MCDA setting until very recently. It consists of a non-
parametric method with the main objective to estimate the density function from
sample patterns [@]. It extends the local region around a data point x until the
k" nearest neighbour is found. The most represented class in the k-closest cases
defines the predicted class. Fig. [@a-b) illustrates such procedure. DTs are another
method that captured some interest for tackling MCDA problems, specially on the
OR domain. DTs classify a pattern through a sequence of questions where the next
question depends on the answer to the previous one. These trees are constructed as
logical expressions as is illustrated in Fig. [dk-d). This ability generates a powerful
data analysis tool capable to obtain interpretable results [38]. Nodes are consecu-
tively split where a stop-splitting rule is required that controls the growth of the
tree.

Neuron Networks are another kind of learning models. Multi-Layer Perceptron
(MLP) is the most commonly used. A MLP is a layered structure consisting of
nodes or units (called neurons) and one-way connections or links between the nodes
of successive layers, such as the structure of Fig. [Bh). The first layer is called the
input layer, the last layer is the output layer, while the ones in the middle are called
the hidden layers. Input layer of neurons is only a vector where all data are in-
troduced triggering the learning process. Data propagates through the network in
a forward direction, on a layer-by-layer basis. Layers are constituted by several
neurons which commonly have non-linear and differentiable activation functions.
Support Vector Machines (SVM) are another popular learning mechanism. In its
simple form, SVMs uses a linear separating hyperplane to create a binary classifier

U'The Iy_; loss function is the most commonly used one, i. e., F(a,b) = I(a # b) being I
the identity function.
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Fig. 5 MLP and SVM methods: (a) Example of a MLP. This MLP is composed by 2 hidden
layers, one input and output layer; (b) A two dimensional dataset is augmented to a higher
feature space.

with a maximal margin. In cases where data cannot be linearly separable, data are
transformed to a higher dimension than the original feature space—see Fig. [3b).
Such is done by choosing a given kernel function, representing the inner product
in some implicit higher dimension space. Formally, a kernel function is defined
by k(x,x') = ¢(x)T ¢(x). This transformation (¢) can be achieved by several non-
linear mappings: e.g., polynomial, sigmoidal and radial basis functions. However,
in a multiclass problem the usage of a binary SVM classifier can be limited. In order
to improve this some heuristics and new formulations were proposed as an exten-
sion to the binary classification problem. Some of them encompass the OVO (One-
Versus-One), OVA (One-Versus-All), DDAG (Decision Directed Acyclic Graph),
single optimisation formulation, among others. Basically, OVO consists on the de-
sign of K(K-1)/2 binary classifiers where one class is discriminated against another.
Similarly, and as the name suggests, OVA consists on the design of K binary classi-
fiers where one class is compared against the others. Likewise the former heuristic,
DAG, follow a similar procedure. The major difference is that prediction is made
in a graph path manner where each node corresponds to a given binary classifier. In
a completely different scenario, there are also techniques that try to define a single
optimisation problem to solve the multiclass problem on SVMs.

This Section provided some key concepts regarding techniques for learning from
data. Knowing that still much more has to be covered, the interested reader is ad-
vised to OR and Al textbooks [@ @ , @ , @] for more information. Next
Sections will describe different methods using some of the aforementioned method-
ologies for learning multicriteria models on ordinal data problems.

3 Multicriteria Decision Analysis

Multicriteria decision analysis (MCDA) is an important field within OR. It helped
researchers to devise new approaches in order to analyse and interpret human’s rea-
soning. Specifically, when handling several usually conflicting criteria towards an
outcome. Such methods are generally composed by five phases depicted in Fig.[6l
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This Section will review multicriteria decision methods for ordinal data prob-
lems. Alternative formulation and criteria selection is usually defined by a set of
experts or DMs [@ @] and can depend on the problem in analysis. On the other
hand, a given importance (weight) can be defined to each criterion whether through
subjective or objective methods. After every criteria being considered, the analysis
takes place. In general, MCDA tries to learn about users preferences encompassed
in the different criteria considered. One key aspect of such methods is that they do
not rely on any statistical assumptions ]. Such highly contrasts with the topic
which will be reviewed in Section [l These two views can mark great differences
on both topics, but as one shall see, there are points of connection between these
two fields. In doing so, one can identify a trend towards filling the gap between OR
and Al on MCDA. Finally, all criteria which were considered are then aggregated
in order to define a plausible outcome.

It is important to stress that this work is mostly concerned with ordinal data.
Hence, not all topics within MCDA can be covered in this Section. The interested

reader is referred to [@, @, , ] for more information.

3.1 MCDA Methods

From Fig. [6l one can define methodologies which follow the whole process. An-
alytic Hierarchy Process (AHP) is one of such kind of frameworks ]. After
having the problem analysed and criteria selected, usually performed by an expert
(or DM), it considers through an hierarchical approach each criteria ]. However,
recent reviews have argued that AHP results may not be the most desirable ones

64]. Mentioning that there is no clear evidence that AHP provides its users with their
“best” decision [62]], or in more detail, identifying the limitations in each step on the
process [@]. Even though the Analytic Network Process (ANP) was introduced as a
generalisation over AHP (a feedback network capable to adjust weights) [@, ],
few work has been done for the ordinal case.

ELECTRE [35,107] and PROMETHEE [33, 37, 43] are two well known meth-
ods that, like AHP, can consist at most by the five steps illustrated in Fig. l63]. Both
techniques arose from the foundations of the outranking relation theory (ORT) [@].
In simple words, it consists of checking the outranking relation among instances
which permits to conclude whether an instance x(?) outranks instance x(¢). Mean-
ing, that instance x(P) will be better for the DM than x(9). This is achieved if there
are enough statements to confirm (concordance) or to refute that (discordance). The
two aforementioned methods require some preferential information which has to
be defined by the DM. However, it may be difficult for the DM to understand the
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meaning of the preferences l61]. To overcome this, different improvements over the
methods have been conducted. One of them was through the usage of evolutionary
algorithms.

Evolutionary algorithms (EAs) came in a way to reproduce Darwin’s theory of
the survival of the fittest. EAs are also referred as populational meta-heuristics
meaning that they work on the population space of solutions [13]. EAs generally
encompasses on three major steps: 1) Gather a set of solutions; 2) Select a possible
subset of candidates on that set of solutions and allow them to reproduce. Reproduc-
tion consists mainly on creating new solutions from the selected ones by crossover
and mutation operators; 3) Finally, the process is repeated for the set of new solu-
tions until a stopping criteria is achieved. Swiki in ,[117] introduced an elitist
evolutionary agent] system to solve multicriteria optimisation problems. By trying
to reproduce biological mechanisms, an elitist group is introduced in the evolution-
ary architecture proposal. The final solution identified by the elitist group would
indicate the desirable one which will dominate other possible solutions identified
by other groups. Some hybrid approaches are also present in the literature 132, 42].
In [42] an outranking combined with an EA was proposed thanks to an indiffer-
ence measure. Since preference modelling is cumbersome, authors used a popula-
tion based meta-heuristic to generate the best solutions. An agent would then decide
the best one. An approach proposed by Doumpos [@] comprehends the usage of
concordance and discordance measures into a credibility index of an outranking
method. This will assess the outranking relation among several alternatives. Since
incomparable relations can occur, an EA is used to infer the parameters of the out-
ranking method.

In a complete different setting, constraint programming tries to explore all pos-
sible combination of solutions thoroughly. Despite this being highly computational
expensive, Junker in led, l67] argues that an interactive approach has its advantages
over state of the art techniques. It is also claimed that current existing methods do
not express a clear explanation of the reason for one alternative being more prefer-
able than another. In other words, a performance of 98% does not express which
option is the best based on the original preferences. Using a special utility function
to define preferences order in l67] a lexicographic optimal scheme is applied. Since
lexicographic approach establish some ranking over the preferences order 41,671,
authors also permute the order of alternatives search. Bouveret ] explores the
idea in which characterises good solutions where multiple criteria have to be han-
dled through the use of lexicographic algorithms.

Other methods incorporate cooperative algorithms which take part in the learn-
ing process from diverse sources of information and by different decision criteria
[@, 71l Methods with such properties are named Dominance-based Set
Approach (DRSA) [@] which deal with the problem of multicriteria classification
using maximum likelihood estimation. The problem is then solved by an optimal ob-
ject reassignment algorithm. In [71] a stochastic DRSA approach is introduced. The

2 In a simple way, an agent is a solution vector generated by some sub-optimal learning
method.
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rationale behind this method is to assess object class probability from an interval of
classes.

Rough set theory is another field that one can count with when tackling MCDA.
One interesting aspect is that rough set have the ability to produce a model of rule
induction similar to data mining, knowledge discovery and machine learning 1501.
In [50] authors extend the fuzzy set theory to rough sets theory in order to avoid
as much as possible meaningless transformation of information. Rule induction is
made through decision rules induced from dominance-based rough approximations
of preference-ordered decision classes ].

Let us now analyse in more depth contributions made to each node in the multi-
criteria methods process.

Criteria Weighting

Criteria weighting can be considered one of the most important steps for the deci-
sion maker. Once it weights the importance of each criterion, acting as a trade-off
between criteria [61] that will be considered in the decision process, subtle changes
can produce different outcome ].

Methods for weighting criteria encompass equal weights, rank-order and hybrid
approaches where after some considerations from the DM, weighting can be per-
formed by a subjective or objective method (136, [137]. Equal weights (w; = 1/d)
is not valuable once relative importance among the criteria is ignored. Remains
rank-order weighting approaches and their derivations to overcome these limita-
tions. Another issue is that when dealing with uncertainty or incomplete infor-
mation in any decision problem, the DM may not be reliable to define her/his
preferences accurately. One way to handle this type of information is to repre-
sent preferences by a suitable distribution using stochastic multicriteria acceptability
analysis (SMAA) methods. Several methods have been proposed in the literature—
e.g. [@, @, , ] to name a few. SMAA-O proposed in [@] was an extension
of SMAA works , ] applied to ordinal (and cardinal) criteria. The problem
is that, in the authors approach, an ordered criteria cannot be used directly in MC
model. Therefore, it is assumed that exists a cardinal measure that corresponds to
the known ordinal criteria and by considering consistent mappings between ordinal
and cardinal scales, they randomly simulate such mapping through Monte Carlo it-
erations. Or in other words, ordinal data is converted into stochastic cardinal data by
simulating consistent mappings between ordinal and cardinal scales that preserve
the given labels. In SMAA literature review work of Tervonen (1271 they claim that
such simulations are not necessary since cardinal values can be interpreted directly.

Criteria Analysis

To the best of our knowledge, one of the first works in criteria analysis was proposed
by Herstein [@] where an axiomatic approach was carried. A set of mathematical
axioms was presented in this work to measure preferences order. Maccheroni in
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his work [85] explores the possibility where DM does not know for certain her/his
preferences being therefore unable to rationalise her/his choices.

As previously mentioned, in the outranking approaches inconsistencies may arise
when the preferences which are learned by given instances cannot be expressed
through a model. Belacel in l6] proposes a construction of partial indifference in-
dexes comparing pairs of preferences according to some criteria, aggregating them
according to a concordance and non-discordance concept. Mousseau in [@ sug-
gest to discard contradictory information from the preferences through an iterative
aggregation-disaggregation scheme.

A number of variants of UTA [[115] have been proposed in the literature over the
last two decades and many works have been published concerned to this subject I8,
, @ , m]. One related to ordinal problem was proposed in ]. In this
work, additive functions are used discriminating the preferences being evaluated
from those that are not. Trying to go through a more natural way to human thinking
over their outcomes or goals, some methods also based on utility functions have
recently been proposed (88-190]. In this method, the authors developed a model
to express logic of preferences in order to determine which of two outcomes is
preferable.

Aggregation

As mentioned, aggregation models are one of the most studied methods within mul-
ticriteria decision analysis. For instance, in our credit scoring problem a model has
to be designed to aggregate wage, payments history, age among others so that it can
express the credit score profile of a given client. However, this approach implies that
those functions have to be, among others, monotone [@]. Most important of all, the
aggregation model has to be able to evince the importance of a criterion (done in
the criteria analysis step), but also the interaction and compensation effects between
criteria (done in the weighting step) [@]. Meaning that one has to design a model
such that it can assign weights to a subset of possible criteria in order to capture
these relations [@ ].

As one saw until now, multicriteria methods encompass a variety of different
approaches. Many of them address this problem through classification techniques
using some sort of aggregation model ,]. Afterwards, restrictions are then de-
fined to the problem in question. However, despite the existence of the myriad of
techniques, many pass through the definition of some objective function which can
be delved through mathematical programming approaches. In [m] a multi-group
hierarchical discrimination (M.H.DIS) method is defined. An error minimisation
and clear group discrimination utility function is presented. Then, a two optimisa-
tion stages are conducted to avoid high computational complexity of MIP problems
with many binary variables. An extension of this work is presented in ] where the
estimation of the additive utility functions in aforementioned work is accomplished
through mathematical programming techniques. Two linear and one mixed-integer
programs are used in M.H.DIS to estimate optimally the utility functions.
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Unsupervised approaches such as the k-means algorithm or agglomerative hi-
erarchical clustering (AHC) can also be used. The latter performs a hierarchical
clustering where given individual clusters it can merge or split clusters until a stop-
ping criteria is achieved. Given the utility matrix, authors employ clustering algo-
rithms to form groups of alternatives (e.g., customers) with closely related prefer-
ences [@ @]. However, in this phase little or no usage of the ordered criteria is
explored.

4 Inductive Learning Algorithms

Inductive learning describes a very powerful field of research where machine learn-
ing (ML) lies. In ML one tries to obtain valid generalisation rules from data instead
of the deductive learning approaches where one is already presented with a formal-
isation of the world and constructs (deducts) reasonable conclusions that cover our
initial assumptions. Being also referred as a technique that learns by example (in-
stances), it has been another thoroughly studied field which is composed by two
main research topics: Regression and classification. A schematic of such problems
and some real world scenarios are depicted in Fig. [l

Classification
= Binary Nominal
R r ion Outdoor Elements
egressio Has Cancer? Beach, Bird, Tree, Sea, Sky
Univariate Tes, No Fruits
dict: Is a Fact? Apple, Grapefruit, Melon, Peach
Predict: . True, False
- Stock Market Value Variation Ordinal
- Ratio Population Grom{th Temperature
in general, problems with one Hot>Warms>Mild-Cold
response variable Credit Scorin
= = Excellont:- Good> Fair-Poor
Multivariate
Predict: Multi-Label
- Public Transportation Usage Ratio and Automobile Fellings
Selling Volumes [Happy, Glad, Excited], [Sad,
- Population Growth Ratio and Unemployment Depressed]
in general, problems with more than one response variable

Fig. 7 Inductive Learning encompasses on two major research topics: Regression and
classification. Both thrives on finding the best function that explains our data. The former
renders the reasoning’s on a continuous domain whereas the latter on a discrete (finite) do-
main. Each one is divided in other subtopics being their thoroughly analysis more appropriate
for other textbooks [@, 34, @] and here depicted just for context.

Learning mechanisms that solve ordinal problems have been tackled with both
regression and classification strategies. Albeit being fundamentally different, both
ordinal regression and ordinal classification methods have thrived among the scien-
tific community, e.g., [@ @ @ @ @ @ , @], to name a few. The first
works that tried to solve the classification of ordinal data were based on gener-
alised linear models, as the cumulative model [Iﬁ]. Tutz ] presents a generic
formulation for semi-parametric models extending the additive models [@]. In the
machine learning community, Frank&Hall ] have introduced a simple process
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which permits to explore information order in classification problems, using con-
ventional binary classifiers as can be depicted in Fig.[8 In [@] it is applied the
minimal structural risk principle ] to derive a learning algorithm based in pairs
of points.

Another way to learn ordering relation is by using classical algorithms of classifi-
cation or regression and mapping the results into an ordinal scale. Kramer et al. (721
investigate the use of a learning algorithm for regression tasks—more specifically,
a regression tree learner—to solve ordinal classification problems. In this case each
class needs to be mapped to a numeric value. Kramer et al. [Iﬂ] compare several
different methods for doing this. However, if the class attribute represents a truly or-
dinal quantity—which, by definition, cannot be represented as a number in a mean-
ingful way—there is no principled way of devising an appropriate mapping and
this procedure is necessarily ad hoc. Harrington @ argues that these type of ap-
proaches have many drawbacks as 1) makes regression learners sensitive to rank
representation than their ordering and 2) since classification algorithms ignore rank
order treating them as classes, it will be required more training data. Consequently,
Harrington [@] presents a perceptron algorithm where its goal it to find a percep-
tron weight vector w which successfully projects all the instances into the k classes
subintervals defined by some thresholds.

Moreover, existing methods incurring ordinal regression approaches fit data in
general by a single rule defined by parts through K-1 thresholds (133]. This has a
drawback since a mapping is required to convert ranks into real values or vice-versa.
Hence, determining this mapping function is in general very difficult and makes re-
gression learners more sensitive to rank value than their pairwise ordering. Some
of the aforementioned drawbacks were avoided in Shashua and Levin [113] work
where a generalised formulation of Support Vector Machines (SVMs) applied to or-
dinal data was proposed. However, such models can be too complex. Cardoso in (18]
proposed a reduction technique to solve data ordinal problem classification using
only one binary classifier. Following this idea, Lin et al. [@] explored the potential
of solving ordinal problems through binary classification methods whereas Cheng
et al. in [21] presented an adaptation of the Neural Networks (NN) towards ordinal
problems. In [27] an order relation is incorporated among classes by imposing an
unimodal distribution. This fundamental principle allowed to delve simpler Neural
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Fig. 8 Schematic of the proposal presented by Frank&Hall in ]. Firstly it is performed a
transformation of a K-class problem to a K — 1 binary class problem. The training of the i""
classifier involves the transformation of the K ordinal class into a binary one where the i"”
discriminator is obtained by separating the classes C1,...,C; and C;y1,...,Ck. The i class
represents the test C, > C;.
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Networks (NNs) classifiers. The same rationale was instantiated to SVMs in [@]
through the all-at-once strategy by solving a multiclass ordinal problem through
a single optimisation process. Sun et al. in ] proposed a Kernel Discriminant
Analysis (KDA) for ordinal data. Even though authors argued that finding an opti-
mal projection would result in better reasonable results, in doing so one would loose
its relation to the original features. Hence, in the case of need for interpretable re-
sults, through the usage of such methods, one would be unable to understand the
reason of the outcome given specific features.

Metric learning is research subject that recently has been gaining increasingly
attention, specially in the machine learning communlty b ]. The per-
formance of all machine learning algorithms depends critically on the metric that is
used over the input space. Some learning algorithms, such as K-means and k-nearest
neighbours, require a metric that will reflect important relationships between each
classes in data and will allow to discriminate instances belonging to one class from
others ]. Ouyang [@, ] explored this subject in the ordinal problem. In [@]
by assuming that closer instances in the input space should translate an order of rela-
tion, a metric distance is learn so that pairs of instances are closer than the remainder
pairs. However, class label is discarded in this approach.

Other approaches M, ] consisted on probabilistic approaches based in
Gaussian processes to learn models for the ordinal problem. In 143] a collaborative
approach is delved towards better, not only in accuracy, but also in a context of
collaborative preference learning.

Regarding decision trees (DTs) for ordinal data, some works consider problems
that are monotone, i.e., all attributes have ordered domains. Meaning, if x, z are data
points such that x<z(x <z for each criteria i) then their classes should satisf
the condition f(x) < f(z), where f(.) is the labeling function. Potharst [@«Iﬁf
proposes a method that induces a binary decision tree from a monotone dataset.
Other methods were also proposed for non-monotone datasets (the most likely sce-
nario in the presence of noise) where the resulting tree may be non-monotone. In
this scenario, a fuzzy operator was used instead of a entropy function for perfor-
mance measurement [30]. Works on k-nearest neighbour for ordinal data seems
even scarcer. Besides the well-known adaptation of using the median as labelling
rule instead of mode for the k labels, literature only presents a modified version
of the standard k-NN for the construction of monotone classifiers from data [@]
Again, this work continues to be limited by the assumption of monotonocity in the
input data. In general, the monotone constraint was overcame in [@, ]. Argu-
ing that ordinality could not be captured directly from the input space, but from the
feature space, authors explored a re-labelling approach on the output decision space
through a postprocessing optimisation procedure.

From the works until now revised, one has encountered several methods that
make use of different procedures from operations research field, and other
proposals design their learning models so that multicriteria can be rendered in the
learning phase. In this setting, multicriteria assessment is simply performed over a
set of diverse unattached reasoning’s which renders the desirable outcomes with-
out a clear understanding of which criteria contributed most. To overcome this,
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De Smet et al. [118] developed a k-means clustering algorithm in a multicriteria
decision analysis perspective.

In this section we have reviewed several learning approaches for the resolution
of the ordinal problem. In the end, it is obvious how increasingly this subject has
been studied. The reasons can be due to the awareness of its transversal usability in
a set of diverse applications. However, due to the background of many researchers,
many have tried to solve this problem through regression, classification and ranking
methodologies. The work of Furnkranz et al. , ] despite using a pairwise ap-
proach, compared ranking and classification principles in their proposals. As final
remark, one must note how vastly such methods can be employed such it has been
explored by Van Belle et al. ,[131)]. In these works, different approaches have
been delved towards ranking, ordinal and survival analysis problems. Even though
authors performed strict assumptions on data to develop their models, such as mono-
tone data, it still is a good example of the importance of this topic in the inductive
learning field.

4.1 Feature Selection Algorithms on Ordinal Data

Nowadays, it is relatively easy to solve problems with millions of instances, each of
them with a reasonable number of features. However, it is common to have access
to datasets with significantly higher number of features than instances leading to
the well known problem of the curse of dimensionality. Feature selection (FS) tech-
niques provide the means to overcome this issue by identifying the most valuable
features so that good and simple class discrimination models can be obtained. Fur-
thermore, a noise reduced dataset can be achieved since these methods can “clean”
data from features with noise [@].

There are three types of feature selection algorithms: Filter, wrapper and em-
bedded. The former is independent of the classifier being usually done before the
learning phase. Wrapper algorithms iteratively select subset of features and assess
the learning models performance to determine how useful that set of features are
whereas embedded algorithms select automatically features during the model con-
struction [34,106]. Fig. 9l succinctly depicts the three approaches.
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Fig. 9 Three different standard approaches for feature selection: (left) depicts the filter fea-
ture selection (FS) approach done before the model design (MD); (centre) the wrapper is
consisted on an iterative approach where features are removed step by step until a desirable
performance of the model is achieved; and (right) embedded method is designed jointly with
the learning model algorithm.
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Feature selection on ordinal data is a relatively young topic. In 184] a 2 statis-
tic method is used to discretize numeric features as a way to select features. Even
though the method proposed by Liu [@] was identified as being limited to a first-
order feature-class correlation (i.e., are linearly correlated), such should not be seen
as a drawback. Once highly complex learning machines could easily cope with the
data complexity and infer a linear relation with the features and classes, or more
precisely, perform overfitting on data (112, [121]. Nevertheless, Last et al in [79]
proposed an information-theoretic method for feature selection by performing a dis-
cretization over the features in order to minimise classes entropy. Even though or-
dinal data can contain only discrete features fitting well to this technique, there are
datasets with continuous features (see for instance [ﬂ]). In such scenarios, applying
a discretization technique can lead to loss of accuracy in the model design. Despite
being mentioned the capability to handle ordinal data, no experiment has been con-
ducted, neither their methods were designed for this type of problems. Through a
completely different approach, Xia et al. ] presents a recursive approach to ex-
tract features where it learns consecutively new rules from instances represented by
the new features.

Other techniques in the ordinal context have been referred to Baccianella et al
in [EI, ]. Using only the filter approach for feature selection, authors used several
measures to identify feature relevance through the minimisation of the instances
variance over all classes, similarity, information gain and negative correlation ac-
cording to the class label, specifically developed for ordinal problems. Finally, Sousa
etal. ] explored a concept introduced by Rodriguez et al. [@] where they tackle
the FS problem in one-step process through quadratic programming as represented
in Equation (@). The quadratic term (Q in Equation (&)) would capture the redun-
dancy whereas the linear term (F in Equation (6)) would capture the relevance.

rr;in{;(la)xthaF’x} (6)

Here « is the trade-off between relevance and redundancy which can be empirically
defined. In order to capture the ordinal relation on data in this setting, authors chosen
the Minimum Spanning Trees (MST) as the linear term (F') to assess the increase
of complexity when a subset of features is removed. However, one of the issues
identified in this approach concerns to the fact that authors did not take advantage
of the ordinal information that could be explicitly included on data (quadratic term).

4.2 Performance Measures

After considering the advantages and disadvantages, goals achieved and open issues
of the techniques presented in previous sections, the discussion of how to measure
the performance of such techniques has not been debated much.

Usually, a learning process consists in two main phases: A cross-validation phase
and an estimation of the model performance (& represented in Equation (@) on a
real-world scenario (also known as the testing phase). In both situations, one has to
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analyse the performance of a model given certain parametrization and its behaviour
in a non controllable environment, respectively. Herein, the question that one obvi-
ously poses is: How much did the model err? Or, how much the prediction differs
from the real outcome? Given certain assumptions of models design, it is clear, as
we will shortly show, that the metric chosen for this task is crucial.

It is interesting to see that in contrast to the plethora of existing methods con-
cerning multicriteria learning, only recently we witnessed some concerns to this
issue [20, , ], disregarding advances performance made on the broader field
of machine learning [@]. Knowing that “no free lunch” theorems state that there
is not an algorithm that can be superior on all problems in regard to classification
accuracy ], the assessment of an appropriate learning method given a specific
problem is desirable [@].

For classification problems, MER (Misclassification Error Rate) is currently one
of the most used measures. Its widely use make it a de facto standard when compar-
ing different learning algorithms by just counting the misclassifications occurred. In
other problems domains, it is usual to penalise the misclassifications by weighting
them by the magnitude of the error to avoid uneven results. When such happens,
MAE (Mean Absolute Error) and MSE (Mean Squared Error) measures are usu-
ally the most appropriate choices. Summing, the performance of a classifier can be
assessed in a dataset D through

1
N

Y @) 5@ ¥ (s —5@),

xeD xeD

respectively, where g(.) corresponds to the number assigned to a class, N = card(D),
and Gy and @x are the true and estimated classes. However, this assignment is arbi-
trary and the numbers chosen to represent the existing classes will evidently influ-
ence the performance measurement given by MAE or MSE. A clear improvement
on these measures would be to define them directly from the confusion matrix CM
(a table with the true class in rows and the predicted class in columns, with each en-
try n,. representing the number of instances from the r—th class predicted as being
from c—th class):

1 K K 1 K K
MAE = | 3 ¥ nelr—c|  MSE= | 3 ¥ npe(r—c)’

r=1c=1 r=1c=1

where K is the number of classes. We will always assume that the ordering of the
columns and rows of the CM is the same as the ordering of the classes. This pro-
cedure makes MAE and MSE independent of the numbers or labels chosen to rep-
resent the classes. To a certain degree, these two measures are better than MER
because they take values which increase with the absolute differences between ‘true’
and ‘predicted’ class numbers and so the misclassifications are not taken as equally
costly.

In order to avoid the influence of the numbers chosen to represent the classes
on the performance assessment, it has been argued that one should only look at
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the order relation between ‘true’ and ‘predicted’ class numbers. The use of Spear-
man’s rank correlation coefficient, R, and specially Kendall’s tau-b, 7, is a step
in that direction [@, ]. For instance, in order to compute Ry, we start by defin-
ing two rank vectors of length N which are associated with the variables g(C) and

g(€). There will be many examples in the dataset with common values for those
variables; for these cases average ranks are used. If p and g represent the two rank
>(pi—P)(4i—q)
VE(Pi—p)?E(ai-7)?
dependent on the values chosen for the ranks representing the classes and so it is
not completely appropriate to measure the performance of ordinal data classifiers.
More importantly, Ry looses information about the absolute value of the classes.
Kendall’s coefficient 75, has been advocated as a better measure for ordinal variables
because it is independent of the values used to represent classes [@]. Its robustness
is achieved by working directly on the set of pairs corresponding to different obser-
vations. However, there are limitations: By working only with the relative order of
elements, it loses information about the absolute prediction for a given observation.

Other attempts have considered the analysis of the learner behaviour on a ROC
(Receiver Operating Characteristic) curve or its equivalent, AUC (Area Under
Curve). Despite empirical evidences of AUC providing more desirable properties
when compared to accuracy [@] only recently this topic was not only re-proposed
but also new evidences of its advantages were shown [@]. In this work, AUC is
demonstrated as an objective measure for selecting the best learning model, but, and
most important, refers to the need of developing better measures for learner design
and performance assessment [@]. In this line of research, in ] it is compared
different ROC measurements. However, and despite the assumptions made, ROC
derived measures that assess a ranking for different performance do not quantify
the performance achieved by a learner %@]. Such analysis, although with different
purposes, has been conducted by (7 using Cohen’s kappa statistic.

On the other way, the discussion was revamped by Baccianella et al [@] through
an analysis of different derivations of MSE and MAE metrics for ordinal problems.
This work is key since it debates two main issues incurred on the performance mea-
surement of learners for this type of classification problems: Imbalanced classes
and classes with equal penalisation costs. In order to avoid the former problematic,
a derivation from MAE is presented by averaging the deviations per class.

vectors, then Ry = . As we can see, Spearman’s coefficient is still

1E 1

M
MAEY = %>
1118(61)

In the same line, the coefficient r;,, was recently introduced, taking into account the
expected high number of ties in the values to be compared [27]. In fact, the variables
€ and € are two special ordinal variables. Because there are usually very few classes
compared to the number of observations, these variables will take many tied values
(most of them, in fact). Nevertheless, r;,, is sufficiently general and, if there are no
tied values, it can still be applied as it is. Like 7, i,y assumes that the only thing
that matters is the order relation between such values, which is the same as the order

18(€:) —g(€))]
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relation between the classes. This coefficient takes values in [—1,1], in contrary
to MAE (and MSE) which are upper-unbounded. The latter can be identified as
a limitation. Another observation is that it is fair to compare MAE results in two
different applications with a different number of observations, N, since MAE is
properly normalised by N. However, if the applications involve a different number
of classes, K, it is not clear how to compare the performance obtained in the two
settings.

In ﬁﬁ] a different approach was taken. Even though the adaptation of the MAE
and MER to a confusion matrix form surpasses standard forms, there are still is-
sues regarding these metrics. Some of the vicissitudes as mentioned in [20] encom-
pass: Equally misclassification costs, metrics unable to evaluate example dependent
costs [14] or metrics more proper to ranking problems. Having Cardoso and Sousa
identified some key advantages of using the CM form, and given the merit of both
MAE and MER fundamental principles, they proposed a new one that takes advan-
tage of all as a single optimisation problem. This new metric chooses pairs of obser-
vations from the CM that do not contradict the relative order given by the classifier
and the true relative class order which minimise the cost of a global optimisation
procedure. The choice is done in a way that minimises the deviation of the pairs to
the main diagonal while maximising the entries values in the path that cross the CM.
This was formalised as

Z(r,c) Epatn e

OCh =min3 1 - +B Y nelr—c"p, (D

1
N+ (ZV('?C) n’?C|r7C|y) X (r.c)Epath

where the minimisation is performed over all possible paths from (1,1) to (K,K). y
and 8 were defined based upon empirical experiments.

Other techniques can also go through data generators methodologies where one
can control the statistical properties herein aiding in the learners benchmark [47].
More importantly, techniques capable to manipulate Bayes error rate can foster new
lines of research where fair learners comparison [ﬂ] and the development of new
ones can take place.

In [20] it is raised a question that interesting enough has not been debated
since [@] in the ordinal context. As one knows, the usage of such metrics in the
design of classifiers can be done on two distinct situations. A first use is ‘externally’
to the classifier, using the metric to select the best parametrization of the classifier
(usually when performing a cross-validation procedure). A second possibility is to
embed the new metric in the classifier design, adapting the internal objective func-
tion of the classifier, replacing loss functions based on standard measures by a loss
function based on the proposed measure. For instance, the standard loss function
of a neural network based on the square of the error or on cross-entropy could be
replaced by an error evaluated by an appropriate metric [@]. Lee [@] accomplished
such for the design of ordinal trees, but since then few works have addressed this
subject in the ordinal context.
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It is interesting that only recently we saw a significant growth of the awareness
of this topic importance. Even though some works have already tackled this issue,
all lack on concretely assessing the performance of a given ordinal learning model.
Until now, new metrics have been designed and compared against MAE followed by
some reasoning. The problem resides how close a metric is in expressing accuracy.
Different prosaically strategies can pass through the definition of prior costs for each
class [@] or, when using a given set of different metrics, a meta-metric to assess the
performance of metrics should be in place as suggested by Cardoso [@].

5 Conclusion

Multicriteria (MC) has been studied for over more than five decades where recent
years presented interesting developments. Aside novel methodologies, a trend to-
wards the generalisation of this problem was identified where at the same time a
new light was shed over this topic thanks to a niche of applications. In this chapter
a thoroughly review was conducted on two major disciplines: Operations research
(OR) and artificial intelligence (AI).

MCDA has a strong connection with OR community. Fuzzy Set theory research
community was one that rapidly proposed new models towards these problems.
Their capability to handle uncertainty can be identified as an asset in these mod-
els. Even though in other research fields MC is giving its first steps, a new trend
is appearing as a number of different studies are taking place. On the other hand,
evolutionary approaches are still on the very beginning regarding ordinal problems.
It also has been claimed that some approaches do not cope well with many criteria
or do not capture correctly every rationale taken by the decision maker.

In the AT domain, it was described that albeit the myriad of techniques, some do
not totally incorporate or effectively use the additional information of order in the
classifier construction. Others have a higher complexity to be useful in real prob-
lems or require specific optimisation algorithms during the classifier construction.
Also, it was identified that is still common the usage of regression approaches to
solve the ordinal data problem. Notwithstanding, some improvements have been
achieved. Simplifications have been introduced through the usage of a standard bi-
nary classification techniques and fundamental principles towards the ordinal data
problem. Such theories have proved to be valuable in the design of simpler classi-
fiers and when not possible, in the design of posterior rules to impose ordinality.
Another question that has recently been tackled concerns about finding good met-
rics for measuring learners performance. We reviewed many adaptations of standard
metrics and new ones that optimise different criteria of the learner behaviour.

In the end, and in spite of much of what has been achieved, a fair comparison
between methods of both fields is still lacking. It was also clear that MC is very rich
in terms of nomenclature. Having identified what has been achieved and current
open issues, it is expected that this study leads to future technical developments and
topic convergence.
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Diophantine and Lattice Cryptanalysis
of the RSA Cryptosystem

Abderrahmane Nitaj

Abstract. The RSA cryptosystem, invented in 1977 is the most popular public cryp-
tosystem for electronic commerce. Its three inventors Rivest, Shamir and Adleman
received the Year 2002 Turing Award, the equivalent Nobel Prize in Computer Sci-
ence. RSA offers both encryption and digital signatures and is deployed in many
commercial systems. The security of RSA is based on the assumption that factoring
large integers is difficult. However, most successful attacks on RSA are not based
on factoring. Rather, they exploit additional information that may be encoded in the
parameters of RSA and in the particular way in which RSA is used. In this chap-
ter, we give a survey of the mathematics of the RSA cryptosystem focussing on the
cryptanalysis of RSA using a variety of diophantine methods and lattice-reduction
based techniques.

Keywords: RSA, Lattice reduction, Continued fractions, Factorization, Copper-
smith’s method.

1 Introduction

The work done by Alan Turing brought computer science and cryptography into the
modern world. Then, within a few decades, cryptography has evolved from a branch
of mathematics into a self-contained field of science. Basically, there are two types
of cryptography: symmetric-key cryptography and public-key cryptography. The
concept of the public-key cryptography was proposed by Diffie and Hellman [9]
in 1976. Since then, a number of public-key cryptosystems have been proposed to
realize the notion of public-key cryptosystems. The RSA public-key cryptosystem
was invented by Rivest, Shamir, and Adleman in 1977. These days the RSA
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system is the best known and most widely accepted public key cryptosystem. RSA
is most commonly used for providing privacy and ensuring authenticity of digital
data. It is used in several operating systems, like Microsoft, Apple and Sun. It is also
used for securing web traffic, e-mail and smart cards. Hence, many practical issues
have been considered when implementing RSA in order to reduce the encryption or
the execution decryption time. Despite more than three decades of intensive research
on the RSA cryptosystem, no devastating attacks on it have been found so far. The
main attacks on RSA include elementary attacks on the modulus, low private and
public exponent attacks, timing attacks, partial key exposure attacks and are based
mostly on lattice reduction methods. There are many papers describing all major
known cryptanalytic attacks and defenses of the RSA cryptosystem and its variants
(see for instance [4]], [13]], [24]).

The mathematical operations in RSA depend on three parameters, the modulus
N = pqg which is the product of two large primes p and g, the public exponent e and
the private exponent d, related by the congruence ed =1 (mod (p—1)(¢—1)). The
encryption and decryption in RSA require taking heavy exponential multiplications
modulus the large integer N = pq. To reduce the encryption time, one may wish to
use a small public exponent e. On the other hand, to reduce the decryption time,
one may also be tempted to use a short secret exponent d. The choice of a small
d is especially interesting when the device performing secret operations has limited
power. In 1990, Wiener presented an attack on RSA with short secret exponent,
called continued fraction attack. He used Diophantine approximations to show that
if d < N%23, then it easy to recover d, p and ¢ making RSA totally insecure.

In 1996, Coppersmith [8] introduced two methods for finding small roots of poly-
nomial equations using lattice reduction, one for the univariate modular case and
another one for the bivariate case over the integers. His method is based on lattice-
reduction techniques. Since then, many cryptanalytic applications have been based
on these methods, for example the factorization of N = pg knowing a fraction of
the most significant bits on each factor. Another well-known example is the crypt-
analysis of RSA with small private key. In 1999, based on the seminal work of
Coppersmith, Boneh and Durfee [3]] presented an attack on RSA which recovers p
and ¢ if d < N02%2,

In this chapter, we present the diophantine and the lattice techniques used in
the cryptanalysis of RSA as well as the most powerful attacks on RSA using these
techniques. The first part is devoted to the diophantine approximations and their
applications to RSA, namely some generalizations of Wiener’s method. The sec-
ond part presents the lattice-reduction methods and related attacks on RSA. The
third part presents some attacks combining the diophantine approximations and the
lattice-reduction techniques.

2 The RSA Cryptosystem

We review the basic RSA public key system. We describe five constituent algo-
rithms: key generation, encryption, decryption, signature and signature verification.
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The key generation algorithm takes a security parameter k as input. The algorithm
generates two (k/2)-bit primes, p and ¢, and sets N = pq. Popular parameters are
k = 1024 and k = 2048. The large number N is called the RSA modulus and the
number ¢(N) = (p — 1)(g — 1) is the Euler totient function. Next, the algorithm
picks some value e satisfying gcd(e,¢(N)) = 1 and computes d such that ed = 1
(mod ¢(N)) and d < ¢(N). The pair (N, e) is called the public key and (N,d) is
the private key. The value e is called the public exponent while d is the private ex-
ponent. To encrypt a message using an RSA public key (N, e), one first transforms
the message to obtain a positive integer M with M < N. The encrypted text is then
computed as C = M¢ (mod N). To decrypt an encrypted message C using the pri-
vate key (N,d), one simply computes M = C? (mod N). An encrypted message C
can be digitally signed by applying the decryption operation S = C? (mod N). The
digital signature can then be verified by applying the encryption operation C = S$¢
(mod N). To show that the decrypting function inverts the encryption function,
rewrite ed = 1 (mod ¢(N)) as an equation ed = 1 + k¢ (N) for some positive in-
teger k. A well known of Euler (see e.g. [10], Theorem 72) says that MOW) =1
(mod N) if ged(M,N) = 1. Hence
C¢ =M = MW = pp. ko) =y (M¢(N))k =M (mod N).

Below we describe in detail the initial schemes of the RSA Cryptosystem.

e RSA Key Generation
INPUT: The bitsize k of the modulus.
OUTPUT: A public key (N, e) and a private key (N, d).

Generate two large random and distinct (k/2)-bit primes p and g.
Compute N = pgand ¢(N) = (p—1)(¢—1).

Choose a random integer e such that 3 < e < ¢(N) and ged(e,¢(N)) = 1.
Compute the unique integer d such that | <e < ¢(N)anded =1 (mod ¢ (N)).
Return the public key (N, e) and the private key (N,d).

Nk L=

e RSA Encryption
INPUT: The public key (N, e) and the plaintext m.
OUTPUT: The ciphertext C.

1. Represent the message m as an integer M with | <M <N — 1.
2. Compute C = M° (mod N).
3. Return the ciphertext C.

e RSA Decryption
INPUT: The private key (N,d) and the the ciphertext C.
OUTPUT: The message m.

1. Compute M =C¢ (mod N).
2. Transform the number M to the message m.
3. Return the message m.
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3 Diophantine Approximations

The theory of Diophantine approximations, named after Diophantus of Alexandria,
deals with the approximation of real numbers by rational numbers. This can be
achieved by continued fractions. Continued fractions have many properties and ap-
plications in Number Theory and cryptographic problems. They are used to find
good Diophantine approximations to rational and irrational numbers, to solve dio-
phantine equations and to build attacks on some instances of RSA. In this section,
we examine the basic properties of continued fractions.

Definition 1 (Continued Fraction Expansion). A continued fraction is an expres-
sion of the form

aop+
a+
.
am+

1

where ag is an integer and a,, are positive integers for n > 1. The a, are called the
partial quotients of the continued fraction.

It is clear that every finite continued fraction defines a rational number. Conversely,
every real number x # 0 can be expanded as a finite or infinite continued fraction by
the continued fraction algorithm as follows. Let | x| denote the greatest integer less
than or equal to x. Let xg = x and ag = |xo|. Then, for i > 0, define

1
Xi+1 = s Qi1 = X ]
Xi —dad;

The procedure terminates only if a; = x; for some i > 0, that is if x is a rational
number.

The continued fraction of a rational number x = § with gcd(a,b) = 1 can be
computed by the Euclidean Algorithm in time &'(logd). Set ry = a and r; = b. For
i >0, divide r; by riy1:

ri=airip1 +rig2,  0<rip <rig.

This process stops when r,,.» = 0 for some m > 0.

In 1990, Wiener proposed an attack on RSA with modulus N and small
private exponent d. The attack is based on the convergents of the continued fraction
expansion of .

Definition 2 (Convergent). For 0 < n < m, the nth convergent of the continued
fraction [ag, a1, - ,an) is [ag,ar, - ,an].

For each n > 0, we define

p—2=0, p1=1 pa=anps-1+pn-a,
g2=1, g 1=0, gn=anqn 1+qn 2
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It is well known that the nth convergent of the continued fraction expansion satisfies

[ag,ay,- - ,an) = 5 ". More generally, there are various results satisfied by the con-

vergents of a continued fraction. We need only the following result on Diophantine
approximations (for more general information see [10] and [[7])).

Theorem 1. Let x be a real positive number. If a and b are positive integers such
that ged(a,b) = 1 and
=yl
x—
b 2b%’
then § is one of the convergents of the continued fraction expansion of x.

4 Diophantine Approximations Cryptanalysis of RSA

In this section, we describe four attacks on RSA using Diophantine approximations.

4.1 Wiener’s Attack on RSA

A well-known attack on RSA with low secret-exponent d was given by Wiener [23]]
in 1990. Wiener showed that using continued fractions, one can efficiently recover

the secret exponent d from the public key (N, e) as long as d < éN i For N = Pq
with ¢ < p < 2q, we present below Wiener’s attack on RSA which works for the

bound d < \/66‘/2N + which is slightly better than Wiener’s bound since \/66\/2 >

L+0.15.
We will use the following useful simple lemma.

Lemma 1. Let N = pg be an RSA modulus with g < p < 2q. Then

2 3v2
\g\/N<q<\/N<p<\/2\/N and 2VN<p+g< \2/\/N.

Proof. Suppose g < p < 2q. Multiplying by g, we get ¢*> < N < 2¢*>. Hence
\éz VN < g < /N. Using p = 1;’, we get /N < p < v/2y/N. This proves the first

assertion. To prove the second one, observe that (p +¢q)> = (p — q)* +4N > 4N,
which gives p +¢ > 2+/N. On the other hand, we have

(P+9)P’=(p—q)*+4N < (\/2\/N— \/2\/N) L4N= 31\7.

Hence p+¢ < * \2/2 V/N. This terminates the proof. O

Theorem 2 (Wiener). Let N = pg be an RSA modulus with g < p < 2q. Let e <

: : . V62 51
®(N) be a public exponent and d be the corresponding private key. Ifd < ¥ [V "N+,
then, we can find the factorization of N in time polynomial in 1ogN.
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Proof. We rewrite the equation ed —k(N+1—p—¢q) =1 as ed —kN =1 —
k(p+gq—1). Dividing by Nd, we get

e k’_ [1—k(p+q—1)| 0

Kkl _kprg—1)
N d Nd Nd

Since e < ¢(N), then k = f&; < ¢%) < d. Hence (@) gives

e k p+q—1<p+q
N d N N

Using Lemmal[] this implies

2 .

e k‘ 3g2N%:3\/2N1

N d N 2
Suppose that d < \/66‘/2N i , then
W2, 1 1
N2
2 NS
and consequently
e k - 1
N d 2d?°

Hence Theorem [Tl gives 5 as a convergent of the continued fraction expansion of §,.

Since the continued fraction algorithm is polynomial time in log N, this terminates
the proof. O

4.2 de Weger’s Generalization of Wiener’s Attack

In 2002, de Weger proposed a generalization of Wiener’s attack on RSA. de

3
Weger extended Wiener’s bound ‘/66‘/2N ftod< | ;Vfﬂ which is equivalent with
Wiener’s bound for the standard RSA, that is for |p —gq| = € (N 2 ) We describe

below the attack of de Weger.

Theorem 3 (de Weger). Let N = pg be an RSA modulus with g < p < 2q and p —
q= NB. Lete < ¢ (N) be a public exponent and d < NO be the corresponding private
key. If § < i — B, then, we can find the factorization of N in time polynomial in1og N.

Proof. We transform the equationed —k(N+1—p—¢g)=1to

edfk(N+172\/N) - lfk(p+q—2\/N).
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Dividing by (N+ 11— 2\/N) d and using p + ¢ > 2+/N as proved in Lemmal[Il we
get

e k| [1—k(p+q—2VN)| k(p+q—2VN)

N+1-2yN d|~ (N+1-2UN)d ~ (N+1-2VN)d’ @

Consider the terms of the right side of (Z)). We have N+ 1 — 2v/N > ;N for N > 12.
Using Lemmal[Il we get

(p+q)*—4N _ (p—q)?

+g—2VN= .
P p+q+2VN 4/N

Since e < ¢(N), then k = ef&; < ¢%) < d. Consequently, the inequality ) gives

(r—q)*
e k| _k ayv _(p—q)f
- < < .
N+1-2¢yN d| d N ~ 2NVYN

In order to apply Theorem[I] a sufficient condition is

(p—q)? _ !
ONvV/N — 2d%

3
or equivalently d < | gqu‘ Using d < N® and |p — g| = NP, the condition is fulfilled

e
Ni1-2yn b
find s among the convergents. This proves the theorem. O

if § < Z — B. Hence we can use the continued fraction expansion of 0

4.3 Another Generalization of Wiener’s Attack

Let N = pg be an RSA modulus with g < p < 2q. We present in this section an attack
on RSA with a public exponent e satisfying an equationex— (N+1—ap—bq)y =1
where } is an unknown approximation of Z (see for more details). Notice that
when a = b = 1, the equation reduces to ed — k(N +1— p—q) = 1 which is the
main RSA key equation. We first define the notion of approximation.

Definition 3. Let N = pg be an RSA modulus with ¢ < p < 2¢ and a and b be
positive integers. We say that j is an approximation of Z ifa= [};ﬂ where [x] is
the closest integer to the real number x.

A key role in the attack is played by the following lemma.

Lemma 2. Let N = pq be an RSA modulus with g < p < 2q. Let |, be an unknown
approximation of ¢ where a is not a multiple of q. Suppose we know the integer
ap + bq. Then we can find the factorization of N.
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Proof. Suppose we know S = ap + bg where j is an unknown approximation of Z.
We have

S? = (ap +bq)* = (ap — bq)* +4abN. 3)

Since, by definition, a = [};ﬂ , then ‘a — }Z] ‘ < é Combining with Lemmal[ll we get

1 V2
—bq| < < N.
lap—bgl < p< SV
It follows that (ap — bg)? < ;N . Hence, from (@) we derive

2 2
S ap—b. 1
0< —ab——(p 9 <

4N 4N 8

This implies that ab is the integer part of f,z\, that is ab = Ui,J . Then (@) gives

SZ
_bgl=/s2—4 N.
lap =] \/S {4NJ

Combining with ap + bg = S, we get

%<S+\/S24HHN) if ap—bg>0,
;(s\/szﬂffdzv) if ap—bq<0.

Since a is not a multiple of g, we then obtain p by computing ged(ap,N). O

ap =

Theorem 4. Let N = pq be an RSA modulus with q < p < 2q. Let |, be an unknown
approximation of g and e be a public exponent satisfying an equation ex— (N+1 —

ap —bq)y =1 with N

2(ap+bq)

Then N can be factored in time polynomial in logN.

xy <

Proof. Rewrite the equation ex — (N+1—ap —bg)y=1asex—Ny=1—(ap+
bg — 1)y and divide by Nx. We get

‘ e y‘ _ [I=(ap+bg—1)y| _ (ap+bg—1)y _ (ap+bq)y
N x Nx Nx Nx
Suppose xy < z(apN+bq)’ then (@7 ;v’fq)y < 2,1r2 . Hence, by Theorem[T] ? is a convergent

of the continued fraction expansion of },. Since ged(x,y) = 1, this gives x and y.
Next, we use x and y to transform the equation ex— (N+ 1 —ap —bqg)y =1 to
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ap+bg=N+1— "’x;] , where the right hand side is completely known. Hence,
using Lemma[2] we find the factorization of N in polynomial time. O

In Section[7.4] we will present an attack on RSA when the public exponent e satisfies
the same equation ex — (N + 1 —ap — bq)y = 1 using lattice reduction methods.

4.4 Nassr et al. Generalization of Wiener’s Attack

Let N = pg be an RSA modulus with ¢ < p < 2¢. Suppose we know an approxima-
tion pg of p with [p — po| < éN ®. In 2008, Nassr et al. [19] presented a continued

fraction attack on RSA with a private exponent satisfying d < N B
Theorem 5. Let N = pg be an RSA modulus with g < p < 2q. Suppose we know
an approximation po of p with |p — po| < éNO‘. Let e be a public exponent. If the

1—
corresponding private exponent d satisfies d < N 2%, then N can be factored in time
polynomial in logN.

Proof. Setc= 21; Suppose we know pg > /N and o such that |p — po| < cN*. Then

po—cN* < p < po+cN%. By lemmal[ll we should also suppose /N < pg— cN%
and pg+ cN® < /2¢/N. Using g = ZZ, we get

N cu< N
po+eNe ST py—ene

It follows that

N
po+

N
—cN* < p+qg<po+ +cN?.
Po+cN® Po—

Define P as the mean value

po+cN® * po—cN* 2N2e
Then
1 N N cN'te
—P|< — 2cN% ) = N*.
Ip+4q | 2<p()CNO‘ p0+CNO‘+ ¢ > p%,CZNZa_Fc

Since pg — cN* > +/N, then py+ cN®* > /N and p} — ¢*N*>* > N. Hence

1+o 1+o

cN cN
|P+£]—P|<p%_cN2a+cN°‘< N +cN% =2¢N?.

Rewrite the key equation ed —k¢(N) =l ased —k(N+1—P)=1+k(P—p—q).
We divide by (N + 1 — P)d and get
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e k| _ [1+k(P=p—q)
N+1-P d|  (N+1-P)d
1 +k|P—p—q
(N+1—P)d
_ (1+KIP-p—g
= (N+1-P)d
Since k = ‘;‘1&; < d, then 1+ k < d. Combining this with |p+ g — P| < 2cN%, we
get
e k - 2cN*
N+1—-P d| N+1-P

By Lemmal[ll we have P < 3\2/2 V/N. Then, for N > 14, we get

32 1
N+1-P>N+1-— \2/ \/N>2N.

This implies that |\, {_p — Z < 4cN%~!. In order to apply Theorem [Il we must

have 4cN*~! < |, This is fulfilled if

where we used ¢ = 2];. Usingd =N 5, a sufficient condition is 6 < ]Ea. Then s is

a convergent of ,, ¢ . Using k and d, we get the factorization of N in polynomial
g N+1—P g g poly
time. O

. . 1 . .
Notice that when or = é the bound is d < N+ as expected in Wiener’s attack (The-
orem[2).

5 Lattices

The most powerful attacks on RSA are based on techniques that use lattice basis
reduction algorithms, such as the LLL algorithm. Invented by Lenstra, Lenstra and
Lovasz in 1982, LLL is a polynomial time algorithm for lattice basis reduction
with many applications in cryptography. A typical example of the powers of the
LLL algorithm is the following problem.

Small Roots of a Modular Polynomial Problem: Given a composite N with un-
known factorization and a polynomial f(x) of degree d, find all small solutions x
to the polynomial equation f(x) =0 (mod N).
In his seminal work, Coppersmith [8] solved this problem in 1996 for solutions x
satisfying |xo| < N i using the LLL algorithm.

In this section, we give the mathematical background on lattices and the LLL
algorithm for basis reduction. We start by giving a formal definition of a lattice.
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Definition 4 (Lattice). Let n < m be two positive integers and by,--- ,b, € IR be
n linearly independent vectors. A lattice . spanned by {b,- - ,b,} is the set of all
integer linear combinations of by, - - -, b,, thatis

f—{ixib,- |X,’€Z}.

i=1

The set (b;...,b,) is called a lattice basis for .Z. The lattice dimension is

dim(.¥) = n.

In general, a basis for .Z is any set of independent vectors that generates .. Any
two bases for a lattice . are related by a matrix having integer coefficients and
determinant equal to £ 1. Hence, all the bases have the same Gramian determinant
dety<; j<n <b,-7bj> where <bi,bj> denotes the scalar product of vectors b;, b;. The
determinant of the lattice is then

det(L) = ( det <bi,bj>>%

1<i,j<n

Let v =Y, x;b; be a vector of .. We define the Euclidean norm of v as

p\ 2
2
||v||—<2x,-> :
i=1

Given a basis (b ...,b,) of the lattice ., the Gram-Schmidt process gives an or-
thogonal set (b} ...,bj;). The determinant of the lattice is then det(.Z) = [T, ||67]|-
The Gram-Schmidt procedure starts with b} = b, and then for i > 2,

. ) T (bi,b7) .
i>2, bj=bi—Y pijbj, where ;= v 5) for 1<j<i.
j=1 AR
Note that (b7 ..., b}) is not a basis of the lattice .Z. Since every nontrivial lattice has
infinitely many bases, some bases are better than others. The most important quality
measure is the length of the basis vectors. For arbitrary lattices, the problem of com-
puting a shortest vector is known to be NP-hard under randomized reductions [
However, in many applications, the LLL algorithm computes in polynomial time a
reduced basis with nice properties.

Definition 5 (LLL Reduction). Let B = (by,...,b,) be a basis for a lattice .Z and
let B* = (b7,...,b};) be the associated Gram-Schmidt orthogonal basis. Let

<bl7bj>

B )

for 1<j<i.

The basis B is said to be LLL reduced if it satisfies the following two conditions:
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1
il < 5. for 1<j<i<n,

3 * * * .
4||bi7] 1P <116} + pigabiy | for 1<i<n.

Below we give useful inequalities satisfied by an LLL reduced basis derived from
the LLL reduction definition (for a proof see e.g. [17]], [Z]], [18])).

Theorem 6. Let £ be a lattice of dimension n. Let B = (by,...,b,) be an LLL
reduced basis and let B* = {b], ..., b};} be the associated Gram-Schmidt orthogonal
basis. Then

n(n—i)
1]l < [lball < ... < [[bi] < 2904150 (det(:2)) i1 for 1<i<n.

6 Small Solution of Polynomial Equations

In this section, we present some applications of lattices in finding small roots to
polynomial equations. We provide some very useful theorems that will make the
analysis of RSA much easier to follow. This includes the seminal work of Cop-
persmith [8]] for finding small roots of univariate modular polynomial equations, the
recently proposed method of Herrmann and May [[12] for solving the bivariate linear
modular equation, and the small inverse problem introduced by Boneh and Durfee
in [3]. The main idea behind these methods is to transform a modular polynomial
equation to an equation over the integers. We need the following definition.

Definition 6. Given a polynomial f(xi,...,x,) = ¥ _; @i,..i,X'" ---x™ and real
positive numbers Xi,...,X,, we define the Euclidean norm of the polynomial
f(Xix1,..., Xux,) by

1
‘ N2 2
||f<x1x1,...,xnxn>||=< Y (@niXit - Xi) ) :

i1 ,eensin

6.1 Howgrave-Graham’s Theorem

To transform a modular polynomial equation A(x,...,x,) =0 (mod B) into a poly-
nomial equation A(xy,...,x,) = 0 over the integers, a sufficient condition is given by
the following theorem by Howgrave-Graham [[14] who reformulated Coppersmith’s
ideas of finding modular roots.

Theorem 7 (Howgrave-Graham). Let h(xy,...,x,) € Z[x,...,x,] be a polyno-
mial with at most @ monomials. Suppose that h()c(lo)7 . 7x510)) =0 (mod B) where
] < X, [ < X and ([h(Xaxr, - X)) | < B Then (e x”) =0
holds over the integers.

Proof. Let h(xi,...,x4) = Xai,,._ ;x| ...x with @ monomials. We have
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Suppose |x(<)0)| <Xi,..., |x£lo)| < X,. Then

0 0 j i
‘h(xﬁ ) ))‘ <Yy XX )
For (a,b) € IR?, the Cauchy-Schwarz inequality states that
2
b <Y aly b}
Zak k >~ Zakz k-
k k k
Using this with @ = 1 and by, = ail,...,inxlil ...X,i", we get
i i\ 2 i i\
(Z|ainaXi - xe) < XX (a0 X' i)
= o||h(Xix1, ..., Xx0)|1%,
which gives
S lan, o Xi e X < Vol h(Xix,. .. X)) (5)

Now, suppose that || (X x1, ..., Xux,)|| < fw. Then combining @) and @), we get

’h(xgo), ... 7x;0))’ < 2 ail,_,_,inxf‘ .. .X,l;”

< Vol lh(Xixi,. .., X.x,)|| < B.

Hence if h(x§0)7...,x£,0)) =0 (mod B), then h(xgo),...7x,(10)) = 0 holds over the
integers. O

6.2 Coppersmith’s Theorem

In 1996, Coppersmith described very clever techniques to find small modular
roots of univariate polynomials and small integer roots of bivariate polynomials.
The idea behind Coppersmith’s method for finding a small root of a polynomial f
is to reduce this problem to finding the same small root of a polynomial 4 over the
integers. We present a generalization of Coppersmith’s result for univariate modular
polynomial equations as given by May in 2003.

Theorem 8. Let N be an integer of unknown factorization, which has a divisor b >
NB. Let f, (x) be a monic univariate polynomial of degree d and € > 0. Then we can
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BZ
find all solutions xq for the equation f,(x) =0 (mod b) such that |xo| < YN'a ~€ in
polynomial time.

Proof. We fix two integers m, ¢ and define a set of univariate polynomials g; ;(x) by
8ij(0) =X (fo(x))/N" 7, j=0,...,m, 0<i<r—1.

Since f;(xg) =0 (mod b), then (f;(x9))/N"™/ =0 (mod b™). This means that all
polynomials g; ;(x) share the root xo modulo N”'. Hence, any integer linear combi-
nation /(x) of the polynomials g; ;(x) also has the root xy modulo N". The goal is to
find a polynomial i(x) satisfying the conditions of Howgrave-Graham’s Theorem[7]
and then solve h(x) over the integers. Notice that the degrees of the polynomials
gi,j(Xx) satisfy

0< degi’jgiJ(Xx) <dm+t—1.

Let n > (m+ 1)d — 1. We consider the lattice .Z generated by a basis matrix
whose rows are the coefficient vectors of g; j(Xx) for j =0,...,m and 0 <i <
d — 1, completed with the polynomials r;, = x* for (m +1)d <k <n—1. We
get a triangular matrix as illustrated in Fig. 1 where [; is the unit matrix of size
(n—(m+1)d+1)x (n—(m+1)d+1).

Lox odr o di o GEd=1dm o (mt)d=1 =]

g0 N

21.0 N"X
2 '] 0 Nmyd—1

. * * * .

g0, ¢ * e * ... Nm=ixdi
Sd-1j * * - * * . Nmeix (D)=
Som K F e ko x . xdm
Sd—1m * F * * * T« x(meDd-1

() i

Fig. 1 Coppersmith’s matrix of the polynomials g; j(Xx) and ri(x) in the basis (1,... ,x"_l)

The determinant of the lattice . is det(.Z) = N 2mlm+1)dx 3n(n=1) where n >
(m—+1)d — 1 is the dimension of .Z. Applying Theorem [f] with i = 1, we get an
LLL-reduced basis with a small vector (x) satisfying

|h(Xx)|| < 240D (det(.Z))n = 230D N2mimtDdy 3 (i=1),
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Moreover, we have h(xp) = 0 (mod b)". If ||h(Xx)|| < }\J/n then Howgrave-

Graham’s result[7 applies and we can find x by solving /(x) = 0 over the integers.

A sufficient condition is then
11 1 1, b"
24 (n=1)  pgumlmt1)d x5 (n=1) -
vn'

which implies
m(m+1)d om 1

X <2 2.N_ ao-1) .piip a1,
Since b > NP, this holds if

1 1 (2np—(m+1)d)m
X < 272 n n-1.N n(n—1)

Consider the term 2" ;((n"i;)d)m as a function of m. We obtain a lower bound by
substituting m = 2n§ d_d, namely
2 _HR\2 2
op— (i D B @-2B) B
nn—1) —d 4n (n—-1)d — d

d _ (d-2B)?

where € = | ; (n—1)d ‘ It follows that a sufficient condition for X is that

1 1328
X<22nn1Nd

) Lo .. B _ )
Since 272n n-1 > % for n > 7, the condition reduces to X < éN 4 ~¢_which con-
cludes the proof. O

From the previous theorem, we deduce the following result where the term € is
canceled.

Theorem 9 (Coppersmith). Let N be an integer of unknown factorization. Let b >
NP be a divisor of N and f,, (x) be a univariate, monic polynomial of degree d. Let

cn be a function that is upper-bounded by a polynomial in 1ogN. Then we can find
2

all solutions x for the equation f,(x) =0 (mod b) such that |xy| < CNNﬁd in time
polynomial in (logN,d).

Proof. With the parameter choice we get

_ 1
gflogN’
1 s 1 s 1 g _ 1 1 s
Nda €= NaiN€&= NdiN leN= Nd
2 2 2 4

1 . . .
where weused N logV = ; . Hence, Theorem[8limplies that one can find all solutions

2
xp of the equation f;(x) =0 (mod b) such that |xg| < iN Bd in time polynomial
in (logN,d). To find all solutions x( of the equation f,(x) =0 (mod b) such that
2 2 2
|xo| < enN / , we consider the 4cy different intervals in | —cyN ¢ ,cNN ¢ , each
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. p? ; .
of size iN < and centered at x; = —cy + 2’;{1 for i > 0. In each interval, we can
apply Theorem[§] with the polynomial f},(x — x;) and get all solutions. O

6.3 Herrmann and May’s Theorem for Bivariate Modular Linear
Equations

In 2008, Herrmann and May proposed a method for solving the bivariate modu-
lar linear equation f(x,y) = ax+by+c=0 (mod p) where p is an unknown divisor
of N. We review below the method. The method relies on the following standard as-
sumption in order to extract the solution (xp,yo) efficiently.

Assumption 1. Let hy(xy,...,%,),...,hn(X1,...,%,) € Z|x1,...,xn] be the polyno-
mials that are found by Coppersmith’s algorithm. Then the ideal generated by the
polynomial equations hy(x1,...,x,) =0, ,hy(x1,...,x,) = 0 has dimension zero.
Equivalently, the resultant computations of the h; yield nonzero polynomials.

Theorem 10 (Herrmann-May). Let € > 0 and let N be a sufficiently large com-
posite integer of unknown factorization with a divisor p > NB. Furthermore, let
f(x,y) € Z[x,y] be a linear polynomial in two variables. Then, one can find all so-
lutions (xo,yo) of the equation f(x,y) =0 (mod p) with |xo| < NY and |yo| < N®
if

y+8<3B-2+2(1-B) —¢.

The time complexity of the algorithm is polynomial in log N and ‘l,

Proof. Suppose f(x,y) = ax+by+c=0 (mod p). Multiplying by a~! (mod N),
we get f(x,y) =x+b'y+ ¢ =0 (mod p). Thus, we can assume that f(x,y) = x+
by +c. To find a solution (xg, o), the basic idea consists in finding two polynomials
hi(x,y) and hy(x,y) such that & (xo,y0) = h1(x0,¥0) = 0 holds over the integers.
Then the resultant of 4 (x,y) and hy(x,y) will reveal the root (xg,yo). To do so, we
generate a collection of polynomials g ;(x,y) as

gri(x,y) =y flx,y)k Nmax{e=kO}

for 0 <k <m, 0 <i<m—k and integer parameters ¢t < m that will be specified
later. Observe that the polynomials gi ;(x,y) share the common root (xo,yo) modulo
pkmax{t=kO0} > pf The ordering for the polynomials is as follows. If k < I, then
gri < gj- It k=1and i< j, then gi; < gx ;. On the other hand, each polynomial
8k,i(x,y) is ordered in the monomials x'yk. The ordering for the monomials x'y* is
as follows. If i < j, then x'y* < x/y!. If i = j and k < I, then x'y* < x'y/. Let X and ¥
be positive integers. Gathering the coefficients of the polynomials g ;(Xx,Yy), we
obtain a matrix as illustrated in Fig. 2.

Let .Z be the lattice of row vectors from the coefficients of the polynomials
8k.i(Xx,Yy) in the basis <xkyi>0§k§m70§i§m_k. The dimension of .Z is
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1y x xle—] ox e xnyl—l e
g0 N
80,m N'y™
g]70 * ... * NZ_IX
* .
8lm—1 * * % . Nf—lXYln—l
&0 Kk ... X x L. * X!
8tom—t K ok * * cooox oL Xtymt
* P * Do .
gm0 ¥ ok kL. * co kL * XM

Fig. 2 Herrmann-May’s matrix of the polynomials g ;(Xx,Yy) in the basis

<xrys>0<r<m 0<s<m—r

3

(m—|—2)(m+1).

n=>) (m+1-i)= 5

0

From the triangular matrix of the lattice, we can easily compute the determinant
det(.Z) = XY N*N where

Sy = ii(ﬂﬂ-l—i): m(m+16)(m—|—2)7

noi o m(mA4-1)(m4-2)

Syzzzj: 6 ’

i=0j=0
SN_g)(ti)(m+1i)_ t(t+l)(3én+47t)'

We want to find two polynomials with short coefficients that contain all small roots
over the integer. Applying Theorem[6] with i = 2, we find two polynomials hy (x,y)
and £, (x,y) such that

I (X, Yy)|| < [l (Xx Yy) || < 274 (det(2) /1.

To apply Howgrave-Graham’s Theorem[7] for i1 (Xx,Yy) and hy(Xx,Yy) with B =
p', a sufficient condition is that

!
n/4 1/(n=1) p
2"4(det(.2)) <
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Put X = N” and ¥ = N%. We have n = (m+2)2(m+]) and det(.Z) = X YNV =
NSx(1+8)+sN Then the condition transforms to

m=+2)(m=+1 2(y+06)sx+2sn Bt
(m+ )3( * )N m(m+3) < N .

- \/ (m+2)(m+1)
2

Define £ > 0 such that

~ (m+2)(m+1)
B Sy
\/ (m+2)(m+1)
2
Then, the condition simplifies to
2 o 2
(y+0)sx+ 25y <Bi—a.
m(m—+3)
Neglecting the & term and using s, = m<m+16) (m+2) and sy = '<t+1)<36m+4_t), we get
m(m~+1)(m+2 tit+1)Bm+4—t
( 3 )(}/+5)+ (r4+1)( )<m(m+3)[3t.

3 3

Define 0 < 7 < 1 by t = tm. Then, the condition becomes
(m+1)(m+2)(y+6)+1(mt+1)(3m+4 —mt) < 3m(m+3)B7,

which leads to

3m(m+3)Br—t(mt+1)(3m+4—m7)
(m+1)(m+2)
(t2—1-6B)7 2(202-371-3B+1)7
m+1 B m-+2 '

Y+6 <
= (?-371+3B) 7+

The term (3 + 7> —37) T is optimal for the value T =1 — /1 — B. Hence, the
bound reduces to

}/+5<3/32+2(1/3)3+39ﬁ+(;ﬁ+13)\/1ﬁ

128 -6+ (6—10B8)y/1-B
+ .
m—+2

Now, consider the last two fractions. We have

3-9B+(7B-3)\/1-B 12B—-6+(6—108)\/1-B
m+1 + m—+2

N_3(1—B)(1—\/1—B)

m—+1
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Hence }/+5<3ﬁ—2+2(1—ﬁ)3—e, where € > > 0. Observe

that this leads to m > i ﬁ)(le Vi ﬁ) — 1. The algorithm’s complexity depends
mainly on the complexity of the LLL algorithm which is polynomial in the lattice
dimension and the lattice coefficients. Recall that the dimension of our lattice is

= <m+2)2(’"+1) =0 (mz) and that the lattice coefficients are bounded by Y"'N' <
N™t% and have bitsize & (mlog(N)). Consequently, the running time of the method
is polynomial in log(N) and 1/¢. O

3(1-8)(1-v/1-B)
m+1

6.4 The Small Inverse Problem

In 1999, Boneh and Durfee introduced the so called small inverse problem. Let A,
B, X and Y be fixed positive integers. The problem is to find all solutions (xo,yo) for
the equation x(A+y) =1 (mod B), with |xo| < X and |yo| < Y. The method makes
use of Coppersmith’s technique and is generalized in the following theorem.

Theorem 11. Let B be a positive integer. Consider the polynomial f(x,y) = ag+
ayx+xy. Let X =B%, Y = BB If f(x,y) =0 (mod B) with |xo| < X and |yo| <Y
and

1.2
6<1+31373\//32+3/37

then we can we find two polynomials hy, hy such that hy(xo,y0) = ha(x0,y0) =0
and, under Assumptiorl] we can extract xq, Yo in time polynomial in logN.

Proof. We use the extended strategy of Jochemsz and May [16] for finding small
modular roots. Let m and ¢ be given positive integers. For 0 < k < m, define the set

I T i1yi2
Mk: U {leyler] ‘xl]ylz Cfm and X yk Cfmk}7
0<j<t (xy)

where o0 C f means that o is a monomial of f. For 0 < k < m, we obtain
x“yi2 eM, foriy=k,....m and i =k,...,ij+t.
For 0 < k < m, define the polynomials

o _ xiyh2 kKpm—k  with <2 € MM
gt],tz,k<x7y)* (xy)kf<x7y) Wit x'y- e k\ k+1-

For 0 < k < m, these polynomials reduce to

i wk(6,y) = XK f ey BT k<iy <m,
ik (6)) = V2K F ey B R k1 <y <k,

For each tuple (i1,i2,k), we have g; ;, «(x0,y0) = 0 (mod B™). Hence, we can
search for a small norm integer linear combination of the polynomials g;, ;, x(Xx,Yy)
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and apply Howgrave’s Theorem[7] These polynomials are found using lattice basis
reduction. Consider the lattice .Z generated by the basis matrix whose rows are
the coefficient vectors of g;, ;, x(Xx,Yy) in the basis (x”y’2). The ordering of the

monomials is as follows. If ir < i, then x'1y?2 < 1 yilz. If ip = i, and i; < {}, then
xiyi2 < X1 yilz. We obtain a triangular matrix M of the form

My

x x x % M,
where M is a triangular square matrix corresponding to the polynomials g;, i«
(Xx,Yy) and g, x(Xx,Yy) as given in Fig. 3.

xkyk xk+1yk L xmyk xkyk+1 L xkyk+t
Skkk B’”*kaYk
8k+1,kk BrkxkHIy
Smkk Bm*kX'”Yk
gk,kJrl,k Bmkakyk#»l
gk.,k-H.k Bmkakyk#»t

Fig. 3 Diagonal part of the matrix of the polynomials g; xx(Xx,Yy), k < i < m and
gk7,~2’k(Xx., Yy), k+1< i < k+t.

For 0 < m, we have rank(My) = m — k+1+1 and det(My) = By | X}, Y;'; where

spi = (m—k)rank(My) = (m—k)(m —k+1+1).

" k 1—k
sx,kztk+2i=tk+(m+ )+ ).

i=k 2
k+t
t+2k+ 1)t
b= (m—k D+ Y i=(m—kt Dk (T
i=k+1 2
Hence, the dimension of the lattice .Z is
m m
n=dim(ZL) =Y rank(M) = > (m—k+1+1)
k=0 k=0

_ (mA1)(m+2t+2)
2 )
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and its determinant is det(.¢’) = B°X*Y* = [T}, det(My). We get easily

B m(m+1)(2m+3t+4) 1 1
s = ZSBk— 6 =4 —|—2mt—|—o( 3,
m(m+1)2m+3t+4 l 1
sfosxkf )<6 ) =, +2mt+0( 3,
(m+1)(m? +3tm+2m+ 3t>+3¢)
Sy = zsyk: 6
k=0

SR N S SO S 3

= ¢ +2m t+2mt +o(m’).
Applying Theorem[6] with i = 2, the LLL algorithm outputs two short polynomials
hi(x,y) and hy(x,y) satisfying

n 1
11 Ce, V) (|2 (x, )| < 24 det(Z) v

Since i (x,y) = hy(x,y) =0 (mod B™), then, in order to apply Howgrave-Graham’s

theorem[7] a sufficient condition is 24 det(.Z) nl < B" which transforms to

\/ )
_n(n—1)
2

det(z)< ™ . -B"D,
n 4

Since det(¥) = BSX*Y* with X = B%, Y =BP, we get

n(n—1)

Bs+5s,\-+ﬁsy < .Bm(n—l). (6)

n(n—1)
-2
n—1
o

On the other hand, ignoring the low terms in s, s, and s, and using m(n—1) =
Ym® +mPt +o(m?), we get

Notice that 2 = B~ % for some small constant & > 0 which can be ignored.

2426 1+6
S+6Sx+ﬁsy: +6+ﬁm3+ +2+ﬁ 2t+§mt

and the condition (&) can be rewritten as

2426 1+ 1
+ 6 +ﬁm3+ +2+ﬁ 2t—|—§mt < 2m —|—mt
or equivalently

—1+2 -1
+66+l}m2+ +26+[3mt+§t2<0.
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1-5-8

Optimizing with respect to 7, we get forz = g m
)
24p (=38%+(6+2B)6+B*+2B—3) <0.

Hence, we must have =382+ (6 +2)8 + > +2B —3 <0, thatis § < 1+ } 8 —
§\/ B2+ 3. Under this condition, the polynomials /; (x,y) and hy(x,y) share the
solution (xp,yp) which can be obtained by extracting the roots of the resultant poly-
nomial over the integers. This terminates the proof. a

7 Lattice-Reduction Cryptanalysis of RSA

A number of lattice attacks on RSA Cryptosystem are motivated by the LLL al-
gorithm and Coppersmith’s techniques for solving polynomial equations. In this
section we consider some attacks on RSA that are related to lattice methods
(see [4]], and the references therein for detailed information).

7.1 Factoring the RSA Modulus with Partial Knowledge of p

In [8]], Coppersmith presented a method which enables us to factor the modulus
N = pq in time polynomial in its bitsize provided that we know half of the bits of
p. The original method is based in small roots of bivariate polynomial equations.
We present a variant which is based on univariate modular polynomial equations
(see [[13] and [[18]]). We begin by the most significant bits of p case.

Theorem 12. Let N = pq be an RSA modulus with p > q. Furthermore, let k be an
(unknown) integer that is not a multiple of q. Suppose we know an approximation
P of kp such that |kp — p| < N4. Then we can find the factorization of N in time
polynomial in logN.

Proof. Write xo = kp — p and f,(x) = p+x. Then f,(xo) = kp =0 (mod p) with
p>N 2. We can then apply Coppersmith’s theorem@Qwithd =1, § = ; andcy =1

and get the root x( since |xp| < N4. Hence kp = xo+ p and ged(kp,N) = p since
k#£0 (mod q). O

We can obtain a similar result for the case where we know the less significant bits
of p.

Theorem 13. Let N = pqg be an RSA modulus with p > q. Let k be an (unknown)
integer that is not a multiple of q. Suppose we know M and po such that kp =

po (mod M) with M > kpN_Jt. Then we can find the factorization of N in time
polynomial in 1ogN.

Proof. Write xo = klp;/lpo and f,(x) = Mx+ po. Then f,(xo) = kp =0 (mod p).
Suppose M > kpN~ 4. Then
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kp — k
_kp—po _kp

1
< N4,
M M

X0
We can then apply Coppersmith’s theoremPwithd =1, B = é and cy = 1 and get
the root xy. Hence p can be found by ged(kp,N) = p where kp = Mxo + po. a

7.2 Factoring the RSA Modulus with Small Prime Difference

Let N = pg be an RSA modulus with g < p < 2¢g and small prime difference p — g <

Ni.In [22], de Weger showed how to factor N using Fermat’s method of factoring.
We present below an alternate method based on Coppersmith’s technique.

Theorem 14. Let N = pq be an RSA modulus with g < p <2q. If p—q < Nﬁlt, then
we can find the factorization of N in time polynomial in 1ogN.

Proof. Suppose g < p<2gand p—g< N4 Then, using Lemmal[ll we get
VN < p<q+N+ <VN+Ni.

Hence 0 < p— /N < N i and by Theorem this leads to the factorization
of N. a

7.3 Boneh and Durfee’s Class of Weak Keys

In 1999, Boneh and Durfee[3] introduced the small inverse problem and presented a
substantial improvement over Wiener’s bound. Their attack can recover the primes
P, ¢ in polynomial time provided that d < N°2°2, Their result is based on Copper-
smith’s technique for finding small solutions to modular polynomial equations. We
present a weaker result which is valid for d < N%-284,

Theorem 15. Let N = pg be an RSA modulus with g < p < 2q. Let ¢ < ¢(N) be a
public exponent and d be the corresponding private exponent. If d < N34, then,
under Assumption[l) we can find the factorization of N in time polynomial in 1ogN.

Proof. Starting with the equation ed —k¢(N) =1, we getk(N+1—p—gq)+1=ed
which leads to the modular equation x(A+y)+1=0 (mod e), where A = N + 1.
This is an inverse problem with the solution (k,—p — g). Suppose ¢ < ¢(N) is of

the same order of magnitude as N, that is e ~ N. If d < N, we get k = ‘;‘1&; <

¢‘E%) < d < N%. On the other hand, since ¢ < p < 2¢, then p+¢g= 0 (N; ) Using
Theorem [[1] with B=¢ and 8 = é we can solve the equation x(A+y) +1=0

(mod e), with |x| < X = N% and |y| < ¥ = NP provided that
1 2 7 1
5<1+3I3f3\/l32+3[3:6—3\/7%0.284.

Using p +¢g =y, we can get p and ¢ easily. This terminates the proof. a
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7.4 Another Generalization of Wiener’s Attack on RSA

Suppose e satisfies an equation ex — (N + 1 —ap — bg) = 1 where Z is an unknown
approximation of Z. We recall that this means that a = [I;q} (where [x] denotes the
closest integer to the real number x). In Section 43l we presented an attack, based
on continued fractions that enables us to find the factorization of N if xy < 2(ap1\-,- by
We present below an alternate attack based on the small inverse problem.

Theorem 16. Let N = pq be an RSA modulus with g < p < 2q. Let ; be an unknown
approximation of Z and e be a public exponent satisfying an equation ex— (N+1 —

ap_b‘])y: 1 with |)7| < ed and |ap—|—bq| < e;JrOC. If

7 01 1
— 402+ 1
§< 0 3\/oc +160+7,

then N can be factored in time polynomial in 1ogN.

Proof. We rewrite the equation ex — (N + 1 —ap — bg)y = 1 as an inverse equation
(N+1+42)y+1=0 (mod e), where z = —ap —bq. Let Y = ¢® and Z = ¢P. We
have to find y and z such that (N+1+4z)y+1=0 (mod e) with |y| <Y and || < Z.
Using Theorem [[1l with B = ¢ and 8 = é + a, we can solve the equation y(N +
1+2)+1=0 (mode), with |[y| <Y = e? and |z| < Z = ¢P provided that § <
1+3B— %\/ﬁ2+B.USingB =1+, we get

7 1 1
— Vaar+1 .
§< + 0 3\/oc +1600+7

With z = —ap — bq, we find p using the same technique as in Theorem[dl O

7.5 Least Significant Bits of d Known

In [3], Blomer and May presented an attack on RSA with a private exponent d for
which the least significant bits are known.

Theorem 17 (Blomer-May). Let N = pg be an RSA modulus with g < p <2q. Let e
be a public exponent with e = N* and o < ; Let d be the secret exponent satisfying
ed —k¢(N) = 1. If we know dy and M such that d = dy (mod M) and M = N2+ote
for € > 0, then the factorization of N can be found in polynomial time.

Proof. Suppose we know dy and M such that d = dy (mod M). Then d = Mx + dy
where xj is the unknown part of d. Since ed — k¢(N) = 1, then eMxo + edy — k(N +
1—p—q)=1and eMxo+k(p+q—1)+edy— 1 =kN. This gives us a bivari-
ate linear polynomial equation eMx+y+edy—1 =0 (mod N), with the solution
x=xpandy=yo=k(p+qg—1).LetM — N2+%+€ We have d = Mxy+dy <N, then



Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 163

X0 < AA; —N2-%€ Wethenset X = N2~ %€ for o < é On the other hand, we have
k=l < e < ¢—N* Hence yo=k(p+q—1) < N2T% We set Y = N2+

o) > o(N)
and apply Theorem[IQwith B =1, |xo| < X and |yo| < Y. We find a solution (xo,yo)

if

1 1 ;
2—a—£+2+a<3[372+2(17ﬁ)2}

which is satisfied for € > 0. Using xy and yg, we compute d = Mx( + dy and, since
eMxo+yo+edy— 1 = kN, we get

1,

_ eMxo+yo+edy—1
= N .

k

Plugging in the key equation ed — k¢ (N) = 1, we obtain ¢ (N) = edk_ ! which leads

to the factorization of N. O

7.6 The ®-Hiding Assumption

The @-Hiding Assumption states that it is computationally untractable to decide
whether a given small prime e divides ¢(N) where N is a composite integer with
unknown factorization. The @-Hiding Assumption has been introduced by Cachin,
Micali and Stadler [6] and has found various applications in cryptography. We
present a solution of the @-Hiding Assumption when the composite integer is an
RSA modulus N = pqg or an RSA multi-prime N = p; paps3.

Theorem 18. Let N = pq be an RSA modulus with q < p and e be a prime integer.
Ife >N 4]1“, then the ®@-Hiding Assumption is solvable in polynomial time.

Proof. If e is prime and divides ¢(N) = (p — 1)(¢ — 1), then e divides (p — 1) or
(¢ —1). Suppose e divides p — 1. Then there exist a positive integer xy such that

exp = p— 1 which implies exo+1=0 (mod p).If e > N4+€ then using LemmalIl
we get

X0 = <5 < =N+,

for some small €’. Hence, using Coppersmith’s Theorem [§] with § = ; and 0 =1,
we can find x¢ and then solve the @-Hiding Assumption. O

For a multi-prime RSA modulus of the form N = pgr, the @-Hiding Assumption
assumes that deciding whether a prime e is a divisor of p — 1 and ¢ — 1 or not is hard.
For a general multi-prime RSA modulus N = p; ... p,, see Herrmann’s work [11]].
Theorem 19. Let N = pqr be a multi-prime RSA modulus with r < g < p and e
be a prime integer. If e > N 5_2%3, then the ®-Hiding Assumption is solvable in
polynomial time.

Proof. Lete=N®%. Suppose e dividesp—1andg—1.Thenex+1=pandey+1=¢
for some positive integers x and y satisfying x,y < f < N2, Multiplying and
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expanding the equations, we get e’xy +e(x+y) + 1 = pg, with pg > N 3. To apply
Theorem [0 with the equation e’u+ev+1=0 (mod pq), where u = xy < N' 2%,
v=x+y= IN2~®% =N —@+€ 3 sufficient condition is that

1
172a+27a<3[372+2(lf[3)3

where f3 = % This gives the condition o > %f 2%3, and consequently
V3

1 2
e>N2" 27, O

8 Diophantine and Lattice Cryptanalysis of RSA

In this section we present two attacks on RSA that combine continued fractions and
Coppersmith’s lattice based technique.

8.1 Blomer and May'’s Class of Weak Keys

We consider the class of public keys (N, ¢) satisfying an equation ex —y¢(N) = z. In
2004, Blomer and May [2] showed that using such exponents makes RSA insecure

if N=pgwithp—g= ¢N'? for some constant 0 < ¢ <1and

3
1 N) N —
0<x< \/d)() ) and |z < p—4q -ex.
3 e p—gq

1

P(N)N 4

We reformulate this attack in the following result where the primes p and g can be
unbalanced.

Theorem 20. Let (N, e) be an RSA public key tuple with N = pq and g < p. Suppose
that e satisfies an equation ex — y@(N) = z with gcd(x,y) = 1 and

1
N (p—q)N+y
xy < and |z < .
4(p+q) & 3(p+q)

Then N can be factored in polynomial time.

Proof. Rewrite ex—y¢(N)=zasex—yN =z—y(p+q—1).Then

_y‘ _lz=ylp+g=DI _ el +y(p+q-1)
. < :

Nx Nx @

‘ e
N

1
Suppose ged(x,y) = 1 and 7] < (p;(ZK\Sy then |z| < N'iy. Hence

1 1
lz| +(p+q+1)y| <Niy+(p+q+1)y=(Nés+p+q+1)y<2(p+q)y.



Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 165

Plugging in (@), we get |f — '] < Z(I;V?I)y. Now, assume that xy < 4(p’\_'~_q). Then

z(ﬁq)y < L, which implies | {, — 7| < ,!,. Then, by Theorem[I] ? is a convergent

of the continued fraction of § . Using x and y, define

U=N+1-"“, V:\/|U2—4N|.
y

Transforming the equation ex— (p — 1)(¢ — 1)y=zinto p+ ¢ — (N+ 1— ey") =1,
we get
ex 2l _ (p—q)N !
lp+q-U|l=|p+q— |N+1— =" < < N4, (8)
y y  3(p+a)
Now, we have
((p—q)* = V| = |(p—q)*— |U*—4N]||
< |(p—q)*—U*+4N]|
= |(p+4q)* - U7
Dividing by p — g +V, we get
(P+a?=U? _|p+q-Ul(p+q+U
IpquV|§| | _| I ), 9)

p—q+V p—q+V

Observe that (8) implies p+ g+ U < 2(p+q) +Ni < 3(p+¢)- On the other hand,
we have p — g +V > p — q. Plugging in (9), we get

3(p+q)(p — q)N4

prqp—q N

lp—q-V|<
Combining this with (&), we deduce

‘pUJrV‘_‘erqU p—q V

n <|pta_U| |P—q
2 2 2 2 2|~

VI Nt
2 2 '

2 2

Hence UJZFV is an approximation of p up to an error term of at most N 4. Then
Coppersmith’s Theorem[I2] will find p in polynomial time and the factorization of
N follows. O

8.2 Another Class of Weak Keys

Let N = pg be an RSA modulus with ¢ < p < 2¢g and e be a public exponent.
Suppose e satisfies an equation ex — (N — up — v)y = z. We present below an attack
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on RSA with such exponents when the unknown parameters x, u, v, y and z are
suitably small.

Theorem 21. Let N = pg be an RSA modulus with g < p < 2q. Let e be a public
exponent satisfying an equation ex — (N —up — v)y = z with ged(x,y) = 1 and

N

1
xy < < N4.
IS dup v

and |z| <l|up+vly and |v—

]
Then N can be factored in polynomial time.

Proof. We rewrite the equation ex— (N —up —v)y =z as ex— Ny =z— (up +v)y
and divide by Nx. We get

’e 7y‘ _ |z (up+v)y| _ [zl +|up +vly
N «x Nx - Nx ’
If we suppose |z| < |up +v then

2Jup+vly 1 e Y 1 ; ; ; Y
Ny < ,po- Hence | N~ x| < ,2» Which implies, by Theorem [ that L isa

convergent of the continued fraction expansion of 5. Using x and y in the equa-

e y 2up+vly . N
v, we get |N — x| < e . Next, if xy < Hup-+o]?

1
< N4, then

tion ex — (N —up — v)y = z, we get up:Nfey"Jrf;fv. If ‘vfi

i . L .
‘up —N+ ix < N4.Hence N — ix is an approximation of up up to an additive term

at most N4. Using Coppersmith’s technique of Theorem[I2] this leads to the factor-
ization of N. o

9 Conclusion

In this study, we have examined the RSA cryptosystem, the most widely deployed
public-key cryptosystem. We have also studied various cryptanalytic attacks on RSA
and presented the main algebraic tools to follow the attacks. Specifically, we con-
tributed the following to the field of the RSA cryptosystem study:

e We described the main schemes of RSA, namely key generation, encryption and
decryption.

e We provided a detailed survey of the mathematical algebraic tools that are used
in the principal attacks on RSA. This includes continued fractions and Diophan-
tine approximations, the basic theory of lattices and the LLL algorithm for basis
reduction as well as the theory of finding small solutions of modular polynomial
equations.

e We presented new attacks on RSA and revisited various old ones that are based
on Diophantine approximations, lattice reduction and Coppersmith’s techniques
for solving modular polynomial equations.
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The effectiveness of the proposed attacks is optimized for instances of RSA with
small private exponents or public exponents satisfying some specific equations.
These results illustrate once again the fact that the crypto-designer should be very
cautious when using RSA with such secret exponents.
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Artificial Intelligence Methods in Early
Childhood Education

Jim Prentzas

Abstract. Educational technology constitutes an important aspect in modern edu-
cation providing unique learning experiences to students and improving their
learning. Technological resources (especially computers) have been integrated in
education for decades. However, integration of educational technology in early
childhood education is a more recent trend compared to the other levels of educa-
tion. This fact creates the need to develop, apply and study application of re-
sources and methodologies specifically addressed to young children. Artificial
Intelligence approaches have been incorporated to educational technology re-
sources providing improved interaction to learners. In this paper, Artificial Intelli-
gence methods exploited in the context of early childhood educational technology
are surveyed. The discussion mainly concerns computer-based learning systems
incorporating intelligent methods (e.g., Intelligent Tutoring and Adaptive Educa-
tional Hypermedia Systems) and educational robots addressed to early childhood.
To the best of the author’s knowledge, such issues have not been thoroughly
discussed till now in literature.

1 Introduction

Alan Turing is considered among the researchers that laid the foundations of Arti-
ficial Intelligence (AI). He was the one who proposed the Turing test as the means
of defining the intelligence of a machine [56]. According to Turing, a machine
is considered intelligent if it is able to interact with a human without the human
realizing that he/she is interacting with a machine.

Artificial Intelligence methods have been applied in various domains. An inter-
esting field for Artificial Intelligence is educational technology. In fact, Artificial
Intelligence methods have been applied in educational technology for some dec-
ades. Educational technology is a broad term. It involves technological resources
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and methodologies employed in an educational context in order to satisfy specific
educational needs [48]. Educational technology usually places emphasis on the
most modern resources without overlooking useful resources that are not quite re-
cent. The main purpose is to provide students and teachers benefits compared to
methods not employing technology. Integrating educational technology into an
educational environment can be a challenge. The integration process should take
into consideration issues that need to be dealt with in a specific class of students.
Technology may assist in handling specific educational problems or may provide
the infrastructure for activities that could not have been carried out with
non-technological means [48].

There are several reasons for employing educational technology [48]. Educa-
tional technology may provide students the motives to learn as their attention is at-
tracted and they are encouraged to take part in creative activities. With the use of
technology, unique features are incorporated into the educational environment
such as multimedia-based interaction and visualization of problem solving
process. Technology also supports pedagogical approaches such as collaborative
learning and constructivism. Educational technology acquaints students with re-
sources and principles necessary to all members of the Information Society. Last
but not least, technology may provide the means to connect schools with their
communities [36].

Computer-based learning is a significant aspect in educational technology.
Computers have been used in education since the 1950s as they may be exploited
in several ways by students and teachers working individually and in groups.
However, educational technology usually involves a combination of resources be-
sides computers in order to exploit the corresponding characteristics and the ad-
vantages offered by each type of resource. This is especially the case in early
childhood education. Popular types of technological resources used in early child-
hood education besides computers are interactive whiteboards and programmable
toys. Game consoles and robots may also become popular in early childhood
education.

Artificial Intelligence methods have been applied in computer-based learning in
order to provide enhanced learning experiences. Traditional Computer-Assisted
Instruction (CAI) systems are based on shallow representation of teaching domain,
learner data and pedagogical methods [59]. It is difficult for them to adjust effec-
tively the learning process as they provide limited ways of adaptation and learner
evaluation. Intelligent Educational Systems (IESs) [6], [10], [43] are computer-
based systems incorporating intelligence. Intelligent Educational Systems incor-
porate Artificial Intelligence techniques and mechanisms. The goal is to model
learners as well as knowledge regarding the teaching subject and tailor learning
experience to learner needs [43]. Main types of Intelligent Educational Systems
are Intelligent Tutoring Systems (ITSs) and Adaptive Educational Hypermedia
Systems (AEHSs) using intelligent methods.

Intelligent robots constitute a popular paradigm of Artificial Intelligence me-
thods in education besides (computer-based) Intelligent Educational Systems. The
characteristics of educational robots provide advantages compared to computer-
based learning systems. Educational robots are autonomous, mobile and come in
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different forms. They may express emotions and respond dynamically to human
interactions. Robots offer unique interaction experiences resulting in the creation
of bonds with young children. As results of certain studies have shown, young
children may treat robots more like peers rather than machines or toys.

In this paper, Artificial Intelligence methods exploited in the context of early
childhood educational technology are surveyed. The discussion involves on the
one hand, Intelligent Tutoring and Adaptive Educational Hypermedia Systems and
on the other hand, robots addressed to early childhood. To the best of the author’s
knowledge, such a survey has not been presented till now in literature.

This paper is organized as follows. Section 2 covers general issues concerning
educational technology in early childhood, Intelligent Tutoring and Adaptive Edu-
cational Hypermedia Systems as well as robots. This discussion serves as back-
ground knowledge for the following sections. Section 3 summarizes approaches
using Intelligent Tutoring and Adaptive Educational Hypermedia Systems in early
childhood education. Section 4 presents representative approaches integrating
robots in early childhood education. Finally, Section 5 concludes.

2 Background

This section discusses general issues concerning early childhood educational tech-
nology, Intelligent Educational Systems and intelligent educational robots for
young children. Each issue is discussed in a corresponding section.

2.1 Educational Technology in Early Childhood: General Issues

Early childhood education curriculum covers several aspects such as language,
science, mathematics, arts and special education [53], [25], [47]. Early childhood
education involves both teacher-directed and student-centered activities putting
emphasis on collaboration, constructivism and interdisciplinary tasks. Students in-
teract with resources available in classroom during structured and non-structured
activities [46]. Game-based learning possesses an important role as it promotes
collaboration and creativity in an appealing way for young children.

Various educational technology resources can be used in early childhood. The
term ‘educational technology’ in early childhood education is used in a broad
sense covering a combination of several types of resources such as computers, in-
teractive whiteboards, digital photo cameras, digital video cameras, scanners, pro-
grammable toys, game consoles, robots and various types of software [53], [25],
[47]. Several of these resources are available (or can be accessed) at home as well
(e.g., computers, cameras, free software, open source software and Web-based ac-
tivities). This gives parents the opportunity to acquaint themselves with their
children’s educational tools and take part in their children’s learning [46].

A significant aspect is the recording of data concerning classroom and home
activities. Devices such as digital photo cameras, video cameras, webcameras, mi-
crophones and scanners may be employed by teachers, students and student par-
ents for such purposes [47]. The recorded data provides valuable information as it
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incorporates the views of teachers, students and student parents. Robots may also
record data concerning classroom and home activities. Data concerning children’s
work on an interactive whiteboard may be also saved. Interactive whiteboards are
popular in early childhood as they constitute large interactive screens facilitating
collaborative work. Whiteboard functionality is available using fingers and mark-
ers and this gives pleasure to young children [47]. Through the whiteboard, child-
ren interact with software installed on a connected computer without having to
work in front of a computer screen. Programmable toys are also popular in early
childhood as they introduce young children to control technology. Children
become accustomed to inputting, storing and executing instruction sequences.
Programmable toys assist children in developing mathematical language, compre-
hending concepts involving numbers, direction and measurement of movements in
space [53], [25], [47]. Results have shown that young children may independently
use aforementioned devices in individual and collaborative activities [47].

There is a variety of available software tools addressed to early childhood stu-
dents. Such software tools are based on multimedia as multimedia items are
appealing to young children and often incorporate game-based learning. Time-
efficiency is a feature required by software addressed to young children. Available
tools involve aspects such as computer literacy, digital painting, math, science
and language. Certain tools (e.g., GCompris, Tux Paint, Drawing for Children,
Kid Pix, Tux Typing, TuxMath and Kidspiration) have gained popularity through-
out the world. Table 1 outlines some of the most popular tools as well as their
functionality.

Table 1 Certain popular software tools addressed to young children

GCompris Free educational software suite with more than a hundred
activities regarding every curriculum aspect.

Kidspiration Problem solving and conceptual understanding in every
curriculum aspect through visual learning

TuxMath Game-based math activities

Tux Typing Enhances typing and spelling

Tux Paint, Drawing for Digital painting tools

Children and Kid Pix

The aforementioned tools require installation on a computer. An important por-
tion of these tools are freely available enabling installation on any computer.
There are also several Web-based activities (e.g., Java applets and Flash anima-
tions) addressed to young children and most of them can be accessed without re-
striction. Virtual Learning Environments may be also used [47], [46].

Early childhood teachers are required to employ various multimedia-based
tools. With such tools, teachers may perform tasks such as the following: (a) re-
cording of data involving classroom activities, celebrations and outings, (b)
processing of recorded data, (c) creation of educational content and (d) authoring
of educational applications. Image, audio, video processing and animation tools
are used to create and process multimedia items whereas multimedia authoring
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tools may be used to create multimedia applications for young children. E-
portfolio tools are also used to collect and manage students’ achievements through
time. Assessment in early childhood is frequently based on e-portfolios. Asyn-
chronous and synchronous forms of communication may be exploited by teachers
to establish a link between home and school [47], [46], [36].

Digital games constitute amusing means of learning in early childhood. As
game-based learning is an integral part of the curriculum, digital games in early
childhood may yield significant results. In [42] it is argued that most aspects can
be taught more effectively through digital game-based learning. Turing realized
the value of digital games. He worked with a colleague to program a chess game
for a computer. Programming of the game was completed but there were no time-
efficient computers during that period for executing the game. In Wikipedia’s ar-
ticle concerning Turing, it is reported that he simulated the computer in order to
play the programmed chess game against two human adversaries.

2.2 Intelligent Educational Systems

An Intelligent Educational System (IES) is an e-learning system personalizing in-
struction to learner’s needs [6], [10], [43], [23]. The main purpose is to provide (or
guide the learner in accessing) the most suitable learning activities to meet learner
goals. This is achieved with the incorporation of Artificial Intelligence methods
used to model learner characteristics and knowledge regarding the teaching sub-
ject. An IES mainly consists of the following components: user (or student) mod-
el, domain knowledge, pedagogical module and user interface. The user model
records learner data. Domain knowledge contains learning content and relevant in-
formation facilitating content retrieval. The pedagogical module provides know-
ledge used to tailor instruction based on user model data. In certain cases, the IES
may also include the expert model used to represent expert knowledge in the do-
main. Intelligent Tutoring Systems (ITSs) and Adaptive Educational Hypermedia
Systems (AEHSs) using intelligent methods are the most representative types of
IESs.

Intelligent Tutoring Systems take into consideration learner characteristics
(e.g., knowledge level) and customize accordingly presentation of learning activi-
ties [41], [59], [58]. ITSs traditionally lay emphasis on Artificial Intelligence tech-
niques to achieve their tasks. An ITS should be able to perform tutoring tasks such
as selecting and sequencing of presented learning items, analysis of learner res-
ponses to presented items and determining when assistance is needed and how to
provide it [41], [43].

Adaptive Educational Hypermedia Systems are specifically developed for
hypertext environments, such as the Web. They use techniques from Adaptive
Hypermedia to enable a guided navigation to user-adapted educational pages.
Main services offered are adaptive presentation of learning content and adaptive
navigation by adapting page hyperlinks [8], [9], [40]. Compared to ITSs, they of-
fer greater sense of freedom to learners as they provide them guidance to identify
the most suitable learning activities matching their needs. In ITSs, selection and
sequencing of learning items is performed by system mechanisms. AEHSs also
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dynamically construct or adapt educational pages whereas in ITSs educational
page contents are typically static [40]. However, it should be mentioned that sev-
eral Web-Based Intelligent Educational Systems combine ITS and AEHS technol-
ogies to provide more effective learning activities [10].

Knowledge representation and reasoning is an important issue in IESs. Usually
a combination of Artificial Intelligence methods is required to achieve all online
and offline tasks [23]. Artificial Intelligence methods typically used are structured
and relational schemes, rule-based reasoning, case-based reasoning, neural net-
works, Bayesian networks, fuzzy methods, genetic algorithms [43]. Structured and
relational schemes are used to represent structural and relational knowledge useful
in domain knowledge representation [8]. Rules are used in several pedagogical
tasks [24]. Neural networks are used to perform classification and clustering tasks
involving online learning process and offline analysis of accumulated data [11].
Fuzzy methods enable representation of vagueness and uncertainty useful in user
modeling [14]. Case-based reasoning provides empirical experience useful in in-
structional tasks [12]. Genetic algorithms may be used in offline tasks concerning
optimization of system modules and in online tasks such as sequencing of learning
content items [35]. Hybrid knowledge representation formalisms integrating two
or more formalisms may also be employed such as neuro-symbolic rules [45],
[22], [44] and neuro-fuzzy approaches [40].

Prior the advent of the Web, IESs were implemented as standalone systems.
Nowadays for the implementation of IESs Web-based technologies are frequently
employed since learning contents are usually presented to learners through a Web
browser. In fact, various programming languages and tools may be used. For in-
stance, Java and XML were used to implement the system presented in [11] and
Active Server Pages (ASP) were used to implement the system in [40]. A useful
tool for implementing Web-based IESs is Jess, a Java based expert systems shell
which is free for educational use [17]. Jess was used for instance to implement the
runtime parts of the expert systems in [24] and [35]. Agent-based approaches have
also proven useful in the implementation of IESs.

Tools may be also used for the offline construction of the IES knowledge bases.
Quite frequently, the contents of the knowledge bases (e.g., rules, neural net-
works) are produced from available datasets. In such cases, tools such as the free
software Weka [20] which includes a collection of machine learning algorithms
are useful. Matlab also includes a tool for the construction of neural networks. For
the construction of hybrid knowledge bases, specialized tools may be required
(e.g., [21]).

Databases are also required to store data concerning the user model, domain
knowledge, pedagogical module and expert knowledge. In educational applica-
tions and especially those involving young children, time-efficiency in data sto-
rage and retrieval is a requirement. Obviously various RDBMSs can be used for
this purpose. For instance, in SHAIEx [3], [4], [16] MySQL was used whereas in
INSPIRE [40] SQL Server.

In contrast to other types of learners, IES learning content addressed to young
children should be based on multimedia rather than on text. This involves all types
of IES activities (e.g., presentation of content, interactive activities such as exer-
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cises). For instance, in a multiple choice exercise the alternative choices presented
to learners should be multimedia items such as images, sounds, animations or vid-
eo instead of mere text. Virtual agents as in [14] and [57] could prove useful in
IESs. Obviously, an IES addressed to young learners requires more time and effort
for its implementation compared to an IES addressed to older learners. In fact,
several phases may be required for the design and implementation of an IES to ca-
ter for young children’s needs and preferences [16].

2.3 Intelligent Educational Robots for Young Children

A number of research efforts have been presented that involve integration of intel-
ligent robots in early childhood contexts. The presented research approaches most-
ly involve robots integrated in a classroom or clinical setting. Robots may be ex-
ploited at homes as well. There are also general research efforts concerning robot-
child interaction in any type of setting such as approaches regarding methods for
recording and analyzing interaction data. Interesting approaches addressed to
children with special needs have also been presented.

In classroom settings, robots are mainly used for edutainment purposes. Child-
ren may learn about, from and with robots [54]. Children learn about robots as
they constitute a technology that according to certain predictions will be available
in most homes in the near future. Robots may act as teaching assistants providing
learning and social activities. Children may also learn with robots since after long
term child-robot interaction, children may regard robots as peers [54], [55]. Long
term child-robot interaction raises an important issue. The issue is whether the
child will retain interest in interacting with the robot or not. In the initial period
that robots are introduced to childhood settings, it is very likely that children will
be very interested in the newly introduced technological resource. Afterwards, as
children become accustomed with the introduced robots, their interest may de-
cline. Therefore, robot designers as well as robot content and service providers
should incorporate characteristics ensuring a dynamic and rich child-robot interac-
tion.

Robots may record data (e.g., images, videos) concerning children they interact
with. Such data may be incorporated in children’s e-portfolios maintained by
teachers. They could be exploited by teachers for assessment purposes, to record
children’s development, to show them to student parents during their face-to-face
meetings or to make them available to parents through Internet-based technolo-
gies. Specialized intelligent technologies may assist the robot in acquiring quality
data [60] and in recognizing/classifying children faces. Children in cooperation
with their teachers and parents could maintain recorded data (e.g., data concerning
free playtime activities) using a customized Web-based environment [46], [47].
Robots may send data recorded in classrooms to parents through the Internet as in
[28] so that they may obtain information concerning their children’s activities in
classroom. Obviously robots at home could also be used to record data involving
children’s activities and to make it available to teachers and classmates. Therefore,
robots could be exploited to connect homes with schools.
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Robotic technology can be useful in special education. Young children with
special needs require modified teaching methods and environments and the tech-
nological assistance of robots could prove to be beneficial. Promising results have
been published concerning young children who are blind [7], with mobility im-
pairments [2] and with autism [19], [51].

In a clinical setting, robots could be useful in several roles. They could provide
therapy assistance and enable disability detection. Robots may generally record
data concerning children that would have been otherwise difficult, impossible or
time-consuming for clinicians or therapists to record with alternative means [51].

In the following, the functionality of certain robots addressed to early child-
hood is summarized. In Section 4, research results concerning the specific robots
are presented.

The robot iRobiQ is a small robot weighing 7 kg [52]. It was designed and de-
veloped by Yujin Robot Co. Ltd. in Korea. It is useful for human-robot interaction
involving gestures and expression of emotions. It has two arms and LCD based
eye units which can be coupled together with the LED in the mouth region to ex-
press facial emotions. Its head contains a camera for visual interaction. Its soft-
ware runs on an internal computer providing voice and vision capabilities. Voice
capabilities include voice recognition, name call recognition, sound source recog-
nition, detection and response to clapping sounds and voice synthesis [52]. Its vi-
sion capabilities include face detection, face, object and gesture recognition.
Touch sensors in different parts of the robot’s body facilitate interaction with hu-
mans. In iRobiQ’s body there is also a touch screen LCD display providing a mul-
timedia-based interface to various functionalities. It moves using wheels under its
feet and is capable of self-navigation avoiding obstacles. It may connect to servers
through networks in order to deliver available contents and services.

Sponge Robot [13] is a small humanoid robot developed for playful interaction.
It is based on the Robovie-X platform developed at ATR Robotics and Vstone
Co., Japan. Its height is 37cm and its weight is 1.4 kg. The robot’s shape is thus
similar to that of a human baby. Humans may easily lift it up and play with it.
Among its features are thirteen (13) degrees of freedom that is, two degrees of
freedom in each arm, four in each leg and one in its head.

Porongbot is a small-sized robot designed for young children by KT robotics in
Korea. It is intended to provide affectionate and emotional edutainment to young
children [32]. It can wag its two ears, turn its head and move using wheels under
its feet. To receive input from children, the robot has an LCD touch screen, touch
sensors, microphones and buttons. The colors of Porongbot’s head, ears and feet
may change. It can also make sounds and display output on the LCD screen. Po-
rongbot connects to a server to download edutainment content.

PaPeRo is a robot developed by NEC Corporation. It is a small-sized robot and
its height is similar to that of young children. PaPeRo has been designed for inte-
raction with children and teachers in classrooms. PaPeRo has eye cameras used to
obtain image and movie data involving children and the classroom. Such data in-
clude children’s facial expressions since the robot’s height enables the eye camera
to be in the same level with children’s faces. It obtains instructions via touch con-
trol and text messages sent by remote users through the Internet. It may also send
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data to remote users in a proper form. In [28], parents use cellular phones to send
PaPeRo instructions and receive data regarding children.

Kibo is a humanoid robot introduced in [31]. It weighs 7 kg and its height is
approximately 0.5 m. Kibo has been designed for entertainment purposes. It may
walk and dance with twenty-two (22) joints. It may recognize human gestures and
voice and respond accordingly. It may also recognize human facial expressions
and generate its own face expression with moving eyebrows and lips. To respond
to events in real time, the robot incorporates distributed processing units. There
are also computers outside the robot communicating with the robot’s internal units
via wireless LAN.

In [19], two humanoid robots (i.e. Troy and Trevor) are developed to assist in
autism therapy in therapy settings. Both of them satisfy defined requirements for
autism therapy. They are semi-autonomous and the therapist uses a specially de-
signed interface to control them. Sequences of actions may be programmed and
made available to therapists. They may move objects with their arms. Troy is an
upper-body robot roughly the size of a four year-old child. It has two arms with
some degrees of freedom, a large base to hold it still and a computer screen for its
face. The computer screen enables the therapist to change the robot’s face. Trevor
is created using LEGO Mindstorms. It has a face and hands and is about the size
of a human toddler.

Tito is a socially interactive robot emulating a humanoid shape and approx-
imately 60 cm tall [37]. It is teleoperated using wireless remote control and is de-
signed to help children with autism. It moves using wheels. Its head and arms may
also move. It may generate vocal requests and incorporate pre-programmed beha-
vior sequences.

Roball is a mobile robotic toy in which the robot is encapsulated inside a sphere
[37], [49]. It is addressed to toddlers. Roball is therefore capable to move in an
environment filled with various obstacles such as toys and other objects. Roball
satisfies requirements concerning child-robot interaction since it is small, light, in-
expensive, its fragile parts are protected inside the shell, interaction is simple and
safe and most children previously know how to interact with spherical objects
such as balls. Roball is also useful for children with autism due to its simplicity,
inexistence of distracting features and ability to perform child-robot communica-
tion by touch.

QRIO is a humanoid robot with a size smaller than toddlers and has been de-
veloped by Sony after years of research. It is autonomous and able to perform a
range of tasks such as real-time human imitation, audio and visual recognition of
humans, dialogues in many ways, walking, running, jumping, dancing, singing,
playing soccer and learning [54]. It incorporates three CPUs. Moreover, remote
computers may be exploited as remote brains using its embedded wireless LAN
system. Research results have been presented showing that young children inte-
racting with it regard it as a peer [54], [55].

Table 2 summarizes the characteristics of the specific robots.
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Table 2 Characteristics of robots used in early childhood settings

Robot Name Developer Use
iRobiQ Yujin Robot Co. Interaction involving gestures and expression of
Ltd. emotions, content downloading

Sponge Robot  [13] Humans may lift it up and play with it

Porongbot KT robotics Affectionate and emotional edutainment, content
downloading

PaPeRo NEC Corporation Interacts with children, teachers, parents, receives
instructions and submits data through networks

Kibo [31] Entertainment

Troy and Trevor [19] Autism therapy

Tito [37] Designed to help children with autism

Roball [491, [37] Addressed to toddlers, moves in environments filled with
obstacles

QRIO Sony Designed to interact as children’s peer

3 Case Studies of Integrating IESs in Early Childhood Settings

In this section, specific case studies concerning integration of IESs in early child-
hood settings are outlined. Some of them concern children with special needs [57],
[18], [15]. Section 3.1 presents an outline of the relevant approaches whereas Sec-
tion 3.2 discusses the derived conclusions.

3.1 Outline of IES Approaches in Early Childhood

In [29] an adaptive mobile learning approach for kindergarten mathematics is pre-
sented. Learners were six-year-old children. Mobile learning (m-learning) has
become important the last decade due to the popularity of mobile devices and ad-
vances in wireless infrastructure that enable ubiquitous access to learning services.
The specific approach presents a geometry learning game for handheld devices
(e.g., PDAs) with a touch screen. The PDAs were Compaq iPaq PocketPCs. It is
easier for young children to use devices with a touch screen than computers with a
mouse. The PDAs were wirelessly connected to a Web server. The game provides
simple adaptation to user behavior and the positive results demonstrate that a more
complex behavior could provide additional benefits.

SHAIEX is an adaptive hypermedia system for foreign language learning in ear-
ly childhood. The system is addressed to three- to six-year-old children. Design
and implementation aspects have been presented in a series of publications [3],
[4], [16]. The overall development of SHAIEx was carefully designed to include
six phases so that specific early age language learning needs and preferences are
catered for [16]. The phases involved a preliminary study of the adaptive system,
development of hypermedia learning content, study of language learners’ profiles,
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definition of an adapted interface, integration of the system in an education envi-
ronment and system evaluation. The content and context adapt to the levels of the
European Portfolio of Languages. The study of language learners’ profiles demon-
strated the crucial importance of color, images and sound. Tests also showed that
learner comprehension improved in case a suitable pet friend or interactive mascot
was employed in the presented topics. Children were asked to choose and color
their favorite characters. SHAIEx supports adaptive presentation and adaptive na-
vigation. Adaptation is based on aspects such as language, activity difficulty, age,
learning style and knowledge level. In contrast to usual AEHSSs, the content pre-
sented by SHAIEx is multimedia-based to accommodate the needs of young child-
ren. The pedagogic domain consists of didactic units such as ‘hello’, ‘the body’,
‘home’, ‘the family’, ‘toys’, ‘food’ and ‘school’. The activities for each unit con-
cern presentation, interaction, evaluation and review. Games were also incorpo-
rated in the system involving aspects such as object selection, counting, matching,
coloring and body identification. Rules are employed to decide the next task to
perform. The system architecture is Web-based. The learner accesses the activities
with a Web browser. The user interface is implemented with Adobe Flash. The
system functionality is executed on an Apache Tomcat Server. Java Servlets are
executed to provide adaptation. The server side also includes a MySQL database
storing the user model, the pedagogic domain, tasks and rules.

SHAIEX has also been used to teach English vocabulary to young Iranian child-
ren [1]. Forty (40) six- to seven-year-old children that had no prior knowledge of
English participated in the study. Twenty of them were taught using SHAIEx and
the rest of them with traditional teaching methods. The study lasted forty-five (45)
days and consisted of three 90 minute sessions per week. Results on subsequent
vocabulary tests showed that children using SHAIEx had a higher mean score in
tests compared to the other children. This indicates the success of SHAIEx. The
study also showed that children using SHAIEX learned in a much more entertain-
ing and amusing way than the rest of the children.

In [57] IESs using animated and conversational pedagogical agents for indivi-
dualized tutoring or therapy are presented. The agents are used to teach reading
and to conduct speech therapy. They are able to talk and listen to users providing
real-time feedback. They are intended to behave more or less like sensitive and ef-
fective teachers or therapists. The systems were developed with the assistance of
experts and were deemed as very believable and helpful by users. The user inte-
racts with the systems via mouse clicks, keystrokes or speech. The systems adapt
to the user skill level and behavior. Virtual speech therapy systems for four inde-
pendent treatments concerning Parkinson’s Disease and aphasia were developed.
Furthermore, virtual tutors for reading instruction, reading assessment and assis-
tive services were developed. By integrating such virtual tutors in kindergartens,
improvements in letter and word recognition were reported. The systems are de-
signed to be deployed on the Web. Rules were used to represent the learning
process and expert knowledge. The architecture consists of application, communi-
cation and common components. Application components were designed in
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collaboration with experts and include application interface and data (e.g., rules,
user data and media objects). The communication components involve perceptive
and generative system capabilities (e.g., character animation, automatic speech
recognition and reading tracking). The common components are written in Java
and connect application and communication components.

In [18], LODE, a logic-based web tool for deaf children is presented. LODE
was the first e-learning system in the context of deaf children literacy intervention
to address global reasoning on whole e-stories. It is difficult for deaf children to
read and write due to the fact that they are not stimulated by continuous oral
communication. A specific aspect requiring intervention in young age is the diffi-
culty in comprehending global reasoning such as temporal reasoning between ver-
bal language episodes. LODE employs constraint programming [5] to perform
automated temporal reasoning and assist children in inferring correct temporal re-
lations in stories. The system provides famous children e-stories. A child chooses
an available story and also responds to relevant reasoning exercises regarding
comprehension and production. The difficulty and challenge inherent in presented
exercises varies according to the corresponding portion of the story and the child’s
previous interaction results with the system. In comprehension exercises,
(in)consistent temporal relations connecting story events are constructed with the
assistance of the automated reasoner and the child has to select the consistent ones
with the story. In production exercises, children are asked to compose sentences
from scattered sentence units involving the story. The composed sentences de-
scribe a temporal relation consistent with the story and LODE provides sugges-
tions to correct sentences with grammatical errors or temporal inconsistencies.
LODE employs visual learning strategies using cartoons and images to assist
children in story narration and exercises. Textual and spatial visualization tech-
niques in which images represent events are used. In textual visualization, images
are connected with an arc labeled with a temporal relation. In spatial visualization,
the spatial position of images along the timeline signifies their temporal relation.

In [15] an Adaptive Braille writing Tutor (ABT) is enhanced by incorporating
ITS methodologies. The Braille language enables literacy for the visually im-
paired. Learning to write Braille is difficult as it requires many hours of tedious
work. Difficulties in the case of young children increase due to required physical
and mental exertion as well as delayed feedback on written text compared to
sighted students. ABT was developed at Carnegie Mellon University
(http://www.techbridgeworld.org) and uses audio feedback to provide guided
practice for young children learning to write Braille. In ABT, an electronic slate
and stylus monitor student’s writing and transmit data in real-time to a computer
linked via a USB cable. Each letter is represented as a combination of six dots of
the Braille cell. Software based on received data produces immediate audio feed-
back to the student. ABT is implemented in C++. The proposed ITS for incorpora-
tion in ABT consists of the five usual components of ITSs. Domain knowledge
contains the right combination cell dots for each letter. The pedagogical module
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includes two types of individualized instructions: meta-strategies involving the
overall teaching process and instructional strategies involving teaching methods
for a particular concept. The expert model represents expert knowledge in writing
a specific alphabet. The user interface is primarily based on audio feedback de-
pending on student characteristics such as age, culture and level of progress. Rec-
orded teacher voice and synthetic voice is used as feedback for very young and
older children respectively. Sounds encouraging student are used when progress is
recorded. The student model is based on the stereotype approach which performs
classification to a small number of classes based on student input. It is reported
that the plans were to implement the designed ITS.

In [30] the notion of sharing behaviors generated by game users is described.
Designers of games may provide mechanisms to users for the construction of be-
haviors without programming. Game users could share behaviors constructed by
them, play with them or against them. The research considers educational games
for preschoolers and sports games. The research is based on the author’s previous
research on MindFarm Al technology that enables behavior construction by teach-
ing. Behaviors are easy to construct, transferrable and reusable. The study on edu-
cational games involves Animal Class, a pre-school game in which users play the
role of teachers by teaching virtual pets (e.g., octopuses) conceptual structures
concerning their curriculum (e.g., geometric shapes). Virtual pets may be used in
different competitions. Even six-year-old children found it easy to teach virtual
characters. Competition of their characters against their friends’ characters was an
interesting aspect of the approach. Children were interested in watching their
constructed characters in other games.

Table 3 outlines key points of the aforementioned approaches.

3.2 Discussion of Derived Results

The specific approaches cover different aspects in early childhood education and
thus it is difficult to compare them. However it is interesting to point out certain
useful conclusions.

The approach presented in [29] demonstrates that portable handheld devices
with touch screens can be convenient for children to use in order to access e-
learning content and services wirelessly. Such an approach could become more in-
teresting with the advent of new generations of portable devices such as tablet
PCs. Robots with a touch screen (e.g., iRobiQ) could also be used for this purpose.

An important aspect in IESs integrated in early childhood involves digital
game-based learning. The importance of digital game-based learning was briefly
discussed in Section 2.1. Most of the presented approaches incorporate (to a cer-
tain degree) the aspect of learning games. The approach discussed in [29] involves
geometry learning games to present mathematical concepts to young children in
an amusing way. SHAIEX incorporates various games that in practice were found
effective in teaching young children [1]. The approach presented in [30] focuses
specifically in games and goes a step forward compared to the other approaches as
it involves children teaching virtual characters and sharing them.
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Table 3 Key points of case studies integrating IESs in early childhood

Case Study Key Points

Adaptive mlearning for  Easier for young children to use devices with a touch screen than
kindergarten mathematics,computers with a mouse. The positive results demonstrate that a
6-year-old learners [29] more complex behavior could provide additional benefits.

SHAIEX, a multimedia- Several design and implementation phases. Supports adaptive pres-
based AEHS, for foreign entation and adaptive navigation. It is multimedia-based and
language learning [3], [4], incorporates games.

(16]

SHAIEXx teaches English SHAIEx games contributed in improved results of children in
vocabulary to Iranian vocabulary tests. SHAIEx digital games are more entertaining and
children [1] educative compared to other teaching methods.

IESs using conversational Agents teach reading and conduct speech therapy providing real-
pedagogical agents [57] time feedback. Improvements in letter and word recognition
reported.

A logic-based web tool  Assists deaf children’s temporal reasoning in e-stories concerning
for deaf children [18] verbal language episodes

ITS in an Adaptive BrailleEnhancement of ABT with individualized instructions, quite helpful
writing Tutor [15] in developing countries

Sharing of user-generated Children easily teach virtual pets. Virtual pets may take part in dif-
behaviors in games [30] ferent competitions, compete friends’ pets, take part in other games.

Collaborative learning is considered important in early childhood education.
Most IESs usually do not focus on collaborative learning. It could be mentioned
that the approach presented in [30] incorporates collaborative learning. Collabora-
tive games could thus be one way of incorporating collaborative learning activities
in IESs addressed to young children.

Children with special needs usually require early intervention to enhance their
skills. IESs such as the ones presented in [57], [18] and [15] could play an impor-
tant role in this context. More IESs covering additional needs could be imple-
mented as well. For instance, no results concerning the use of IESs in the learning
of children with autism have been presented till now. On the contrary, robots have
proven useful to children with autism.

Animated and conversational pedagogical agents could prove fruitful in early
childhood education as shown in [57]. Virtual agents could constitute the counter-
part of robots. More approaches concerning virtual agents could be tested in the
future.

Long term evaluation of the presented approaches and comparison with con-
ventional teaching methods are also required. It would be also interesting to obtain
evaluation results from young children in different countries as in the case of
SHAIEXx.

Young children and teachers could also use interactive whiteboards to access
IES services. Such an approach has not been presented till now. Touch screens of
robots connected to networks could provide an alternative means of accessing IES
services.
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It should be mentioned that none of the presented approaches involves student
parents that is, the presented approaches were not employed to link classroom and
home activities. Parents would probably be interested to try out certain of the IES
services (such as games).

E-learning systems addressed to young children usually consist of interdiscipli-
nary activities. The presented IESs mostly involve language (e.g., SHAIEx, [15],
[18] and [57]) and mathematics (e.g., [29]). Mathematic activities (e.g., counting)
are also incorporated in certain SHAIEx games. Science is a domain for which in-
teresting e-learning systems have been developed. In the presented IESs, science
aspects are covered in interdisciplinary activities such as in games incorporated in
SHAIEx and in [30]. Obviously, more IES activities concerning science and
mathematics could be developed.

For obvious reasons, the IESs addressed to young children are based on multi-
media technologies. Web-based technologies were also employed in certain of the
approaches such as SHAIEx and the approaches presented in [29], [18] and [57].
Web-based IESs may be also accessed by children and parents at home.

Finally, an interesting aspect is that not many IESs addressed to early childhood
have been developed till now. This means that early childhood education could
become a domain in which fruitful results could be produced by IES researchers
and developers.

4 Case Studies of Robot Integration in Early Childhood
Settings

In this section, specific case studies concerning integration of robots in early
childhood settings are outlined. The case studies are presented in the following
four sections. Section 4.1 presents approaches integrating robots in typical early
childhood classrooms. Section 4.2 discusses approaches involving young children
with special needs. Section 4.3 outlines general approaches concerning robots and
young children. Section 4.4 discusses derived conclusions.

4.1 Approaches Integrating Robots in Typical Early Childhood
Classrooms

In [27] results of using intelligent robot iRobiQ in early childhood education are
presented. The robot was used as teaching assistant for 111 five-year-old children
attending two kindergartens and two childcare centers. Children interacted with
the robot for about one hour everyday over a period of about two weeks during
spring 2009. Children and teachers were interviewed to record their experiences
with the robot. The results showed that educational robots may possess contents
and functions that promote socio-emotional interactions among children and ro-
bots. The indications show that such content and functions should be developed
for educational purposes. Robots seem to be more effective when they are in class-
rooms, close to children and used by individuals rather than by groups.
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In [52] iRobiQ provided educational services mainly in the domain of language
teaching for kindergarten children. The approach puts emphasis on the concept of
ubiquitous network robot that is, a robot combining the advantages of ubiquitous
network technologies and mobile characteristics of robots. Through network tech-
nologies contents and services developed for the robot may be downloaded from
servers and exploited in various contexts. Different types of services that may be
developed for the robot include basic services (e.g., photo, video database infor-
mation), information services (e.g., news, weather and cooking information), edu-
cation services and entertainment services (e.g., karaoke, games, media player).
Education services addressed to early childhood education involve storytelling,
sing alone, phrase and word train. The results of exploiting the robot in classroom
were very positive. They showed that a robot with bi-directional interaction such
as iRobiQ improves young children’s linguistic abilities especially in aspects such
as story making, story understanding and word recognition. Children’s degree of
active and adaptive behavior increased. Children also interacted with the robot
with increasing familiarity (e.g., they spoke to and touched the robot).

In [28] the robot PaPeRo is exploited to provide asynchronous network-based
communication among parents, nursery teachers and children. In this approach,
the notion of remote control of a robot for remote collaboration is explored to ena-
ble collaboration of parents, teachers and children at times suitable for each other.
Synchronous communication may not be always a suitable medium to link parents
with teachers and children as they may have different daily schedules [28]. In the
specific approach, parents use cellular phone text messaging as a communication
tool since this form of communication is convenient. The overall architecture in-
cludes a platform to link the robot to parents’ cellular phones through conversion
of text messages to action commands or conversion of data acquired by the robot
to text messages. Parents may send a message indicating a request or even a de-
sired action their child should perform with the robot. The message is received by
the robot. The teacher at a suitable time triggers the robot to follow the parent’s
instructions (e.g., play with the children). The robot’s cameras acquire image and
movie data concerning the children (e.g., facial expressions during activities). The
teacher at an appropriate time triggers the robot to send the requested data to par-
ents’ cellular phones in a proper form (e.g., movie file links). Therefore, a two-
way communication is established through the robot. On the one hand, parents
send messages and requests concerning teachers and children. On the other hand,
teachers send data concerning children’s activities in classroom. The approach
was evaluated in two nursery facilities each involving six young children and their
parents. In each facility, trials were executed for about two hours on selected days.
Questionnaire results from parents indicated their positive responses to the trials.

The approach presented in [28] could be integrated with an active recognition
photography system (ARPS) for child-care robots such as the one presented in
[60]. ARPS was implemented based on intelligent technologies for network-based
robots connected to servers. It can be used to provide quality photographs of child-
ren at classrooms to their parents. ARPS consists of photo evaluation and photo
classification modules. The photo evaluation module evaluates picture quality
based on detected face features. The photo evaluation module may be also used to
control a robot to adjust its posture so that only quality pictures of children faces
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are taken. The photo classification module recognizes and classifies faces in pic-
tures using stored face pictures. Taken pictures are stored in databases and for fac-
es not recognized the teacher supplies the students’ info. The approach was
evaluated for two months in a nursery with thirty-two (32) children from three to
four years old. The network-based robots acting as teacher assistants employed
were AnyRobot I and II developed in Samsung Electronics. These robots were
remotely controlled with devices such as remote computers and PDAs.

In [26] a study concerning the daily use of iRobiQ from kindergarten students
during their free playtime is presented. Observation sessions were conducted for
twenty-three (23) children from the three-year old class and for twenty (20) child-
ren from the four-year old class. The involved time period lasted three months i.e.
from December 2008 till February 2009. Preparatory activities were carried out
before the robots were introduced. Furthermore, robot zones and utilization rules
were established. Therefore, when robots were introduced, children and teachers
were adequately prepared for effective and safe interaction as well as creation of
close relationship. Teachers may be stressed when young children are given free
access to classroom resources such as cameras, interactive whiteboards, computers
and robots. They are concerned about accidents, damages or malfunctions. Also
the price of certain resources may be expensive. Experiences of children’s use of
robots and other resources have shown that with appropriate preparation and in-
structions, children are able to independently and safely exploit robots and various
other types of resources. Robot activities were accepted by children as readily as
any other new activity. Throughout the three months, no changes were recorded in
the utilization time and frequency of robots meaning that children remained inter-
ested in robots during a long period. Children interacted with the robots in small
groups but usually in pairs due to the small size of the robot and its LCD screen.
The roles that children assumed while interacting with the robots were similar to
roles assumed in other play activities (e.g., principal user, assistant user and ob-
server). Age and gender did not influence the children’s interaction with robots. A
general conclusion is that in order to effectively exploit characteristics of robots
such as mobility and automaticity during their interaction with children, appropri-
ate robot stimuli and contents need to be developed.

In [31] preliminary results concerning introduction of the humanoid robot Kibo
to a kindergarten during a robot show are presented. The experiments were based
on Kibo’s characteristics such as choreography, gesture recognition, facial recog-
nition and expression as well as voice recognition. Four robots were used demon-
strating synchronized motion. The teacher started to communicate with the robots
using a microphone. During the conversation, the teacher asked the robots to begin
choreography along music. The robots followed voice instructions in a synchro-
nized manner. They also reacted to teacher postures and facial expressions and al-
so synchronized their lips and facial expressions.

In [34] an approach to a robot personalized to student traits is presented. The
approach combines robot and ITS technologies. It uses visual and vocal data con-
cerning a student to adapt contents provided by a robot according to the student’s
needs. Robot sensors enabling to a certain degree tasks such as voice recognition,
face recognition, recording of facial expressions and body motions can be ex-
ploited to evaluate learning process. According to the evaluation based on human-
robot interaction, the proper contents are selected. The overall architecture is
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network-based. Besides the robot, it consists of a main server containing robot
learning contents and an agent server. The agent server receives student profiles
from the robot which are stored in a database. Based on student information, it ac-
quires proper learning content from the main server and submits it to the robot.
The robot uses the received content in the learning process with the student and
obtains interaction data submitted afterwards to the agent server in order to per-
form student learning evaluation.

In [61] the results of a study concerning the relevancy of computer utilization
by young children to their use of education robots are presented. Such a correla-
tion could be considered possible due to the fact that robots usually have an LCD
screen presenting e-learning content just like computers. The study involved three
early childhood classes of three-, four- and five-year-old children. When the study
was conducted, the iRobiQ robot had been used in these three classes for about
eight months. Three classes were studied to identify relationship between comput-
er and robot utilization according to age. Results showed that although computer
utilization skills differed according to the age of students, there was no difference
in robot use at any age. This implies that it is easier for younger children to inte-
ract with robots compared to computers. Furthermore, children’s traits in using
computers were not related with the corresponding traits in using robots. More
specifically, computer utilization frequency and capability were not correlated to
robot utilization. It seems that robot characteristics such as mobility, gestures,
sounds, facial expressions, vocal and visual recognition overcome certain comput-
er limitations.

In [55] results of an extensive study involving socialization between toddlers
and robots are presented. The study involved 18- to 24-month-old toddlers and the
robot QRIO. There were forty-five (45) hourly sessions spanning five months rec-
orded with video cameras. The videos were studied and analyzed for two years.
The young age of children enabled researchers to focus on social interaction not
much dependent on speech. In addition, children at such a young age do not have
preconceived notions of robots. The study consisted of three phases. During the
first and third phase, the robot used its full behavioral repertoire while interacting
with children. During the second phase, the robot was programmed to produce in-
teresting but predictable behaviors. During the first and third phase, the quality of
interaction between toddlers and robot was high. During the second phase, the
quality of interaction declined meaning that toddlers preferred interacting with the
robot when it exhibited its entire behavior repertoire. The children did not lose in-
terest in the robot throughout the prolonged time period of five months. Moreover,
the children’s haptic behavior towards the robot progressively changed and re-
sembled behavior towards a peer. The children’s social and care-taking behavior
towards the robot was very different compared to their behavior towards control
toys used throughout the sessions. The results ultimately showed that the robot
was close to autonomously bond and socialize with young children for significant
time periods.

QRIO can also be used for dance interaction with toddlers in a classroom envi-
ronment [54]. In fact, QRIO supports various dance interaction technologies from
non-autonomous choreographed dance to autonomous one. Two modes are sup-
ported for the autonomous dance technologies: activeness and passiveness. In the
passive mode, QRIO reacts to the outside motion to provide motion imitation with
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the partner. In the active mode, QRIO spontaneously moves to maximize the in-
formation for the presence of a reactive partner. Activeness is based on contingen-
cy detection formulated by Bayesian inference. In real-time dance interactions, the
robot is also able to include emotion expressions. Facial expressions and whole
body gestures can be used to express emotions. Among others, neural networks
and reinforcement mechanisms are employed for this task.

Table 4 summarizes results derived from the aforementioned approaches.

Table 4 Summary of approaches integrating robots in typical classrooms

Case Study Key Points

iRobiQ as teaching assistant, 111 five- Robots seem to be more effective when in class-

year-old children in two kindergartens and rooms, close to children and used by individuals.

two childcare centers, two-week study [27]

iRobiQ for language teaching in a kinder- Children’s linguistic abilities improved especially in

garten [52] aspects such as story making, story understanding
and word recognition.

PaPeRo in two nursery facilities, 12 Robot provides asynchronous network-based
children and their parents [28] communication among parents, nursery teachers and
children.

Active recognition photography system,  Photo evaluation and classification, provision of
AnyRobot I and II in a nursery with 32 quality photographs of children at classrooms to
children from three to four years old, parents.

two-month study [60]

iRobiQ, 23 three-year-old children, 20 four- Children remained interested in robots during a long

year-old children, three-month study [26] period. Children usually interacted with robots in
small groups but usually in pairs, roles similar to
those assumed in other play activities.

Kibo introduced to a kindergarten during a Four robots demonstrated synchronized motion

show [31] and facial expressions, followed teacher’s voice
instructions and reacted to teacher’s postures and
facial expressions.

Robot personalized to student traits [34] ~ Student’s visual and vocal data used to adapt
contents provided by a robot according to student’s
needs, network-based architecture.

iRobiQ in three early childhood classes of There is no relationship between computer and robot
three-, four- and five-year-old children, utilization.
eight-month study [61]

QRIO, 18- to 24-month-old toddlers, video Throughout the 5 months, children retained interest

camera recording, five-month study [55]  in the robot. The robot was close to autonomously
bond and socialize with young children for signifi-
cant time periods.

QRIO, dance interaction with toddlers in a Robot supports dance interaction technologies

classroom environment [54] ranging from non-autonomous choreographed dance
to autonomous one. Robot expresses emotions during
dancing.
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4.2 Robots and Young Children with Special Needs

In [2] an approach to train toddlers seated on mobile robots to steer using force-
feedback joystick is presented. The main purpose of the approach is to train
infants with special needs that display limited independent walking. Mobility im-
pairments limit the typical development of a child hindering exploration and social
contacts and thus negatively affecting life quality. The hardware in the experiment
setup consisted of a mobile robot, sensors and a force-feedback joystick. The
study involved toddlers that on average were thirty months old. Separate driving
experiments were performed for ten typically developing toddlers as well as two
toddlers with special needs. The two toddlers with special needs were a two-year-
old with spina bifida and a three-year-old with cerebral palsy. The first child had
good control of hand movement lacking the ability to walk and balance himself
whereas the second child had decreased control of hand movement and coordina-
tion. The results were positive for all groups of toddlers. More specifically, the
toddlers with special needs were able to learn to make turns and follow lines after
five non-consecutive days of training. The learnt behavior was displayed several
days after training and also in different configuration and location.

In [19] requirements for robots in autism therapy and preliminary trial results in
a clinical setting are presented. The purpose of the defined requirements for robots
and user interfaces are to provide guidelines in developing robots that will effec-
tively assist child autism therapists. Robot design requirements defined concern
functionality and appearance, safety and autonomy. Each type of robot exhibits
different characteristics, advantages and disadvantages and thus robot design re-
quirements enable a robot to perform desired therapist activities. As far as auton-
omy is concerned, it should be mentioned that therapists need to have certain
control on the robot and so autonomy to a certain degree is desired. The user inter-
face should be friendly to therapists, responsive, flexible and controlled with a
(preferably small) handheld device. The researchers built two humanoid robots
(i.e. Troy and Trevor) that satisfied the defined requirements. They present prelim-
inary trial results for Troy. Troy has been tested with two typically developing
children, a four-year-old boy and a three-year-old girl. Results concerning the
children’s social interaction with Troy and the clinician were positive. Promising
preliminary results involving two children with autism are also presented. The two
children showed interest in Troy and a higher degree of interaction with the the-
rapist compared to sessions without Troy.

In [37] socially interactive mobile robots are presented such as Tito and Roball.
For instance, Tito was used in trials conducted by a psycho-educator with four
five-year-old children with autism. Tito records and stores the timing between its
interactions with a child. Preliminary results show that Tito becomes an incentive
for the child.

In [51] issues concerning the use of social robots to diagnose, treat and under-
stand autism are discussed. The discussion is based on three years of integration
and immersion with a clinical research group at the Yale Child Study Center
which performs diagnostic evaluations of children for autism. A person with aut-
ism is characterized by social and communicative impairments. Diagnosis is based
on a child’s social skills such as eye-to-eye gaze, facial expression, body posture
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and gestures. There have been various studies showing that a robot motivates and
engages children. However, an argument of the research is that when interacting
with robots, persons with autism may not display a behavior such as the one ex-
pected by typical persons. This aspect should be studied and taken into considera-
tion. For instance, a pilot study involving typical and autistic preschool children’s
interactions with ESRA, a simple robot generating facial expressions, was carried
out. Children reactions to two robot conditions (i.e. a contingent and a non-
contingent condition) were studied. Typical children were attentive to the robot
only in the contingent condition whereas children with autism responded with at-
tentiveness to both robot conditions. The research also introduces quantitative, ob-
jective metrics of social response to handle autistic diagnosis problems. Metrics
concern passive and interactive observations. Passive sensing can be performed by
social robots and relevant metrics involve detection of gaze direction, position
tracking and vocal prosody. Socially interactive robots with certain autonomy
provide the opportunity to effectively obtain information concerning children’s
social behavior. A clinician could possibly obtain relevant information in similar
quality and quantity only with extensive work.

In [7] a robotic dog was used for pre-orientation and interaction of toddlers and
preschoolers who are blind. The robot used was a modified Sony Aibo to suit inte-
raction with the blind. The results showed that very young children who were
blind were able to operate the robot. A difficult task in robot operation for persons
who are blind concerns connection and disconnection of the recharger. The use of
distinctive texture solved this problem. Very young children who were blind due
to their interaction with the robot became more active, excited and engaged into
playful learning activities. The results show that robots can be used in an educa-
tion environment at least as assistants for people with disabilities. For people with
low vision, language and text presentation is important. In this context, robots can
also act as human-computer interface enhancing accessibility. In a constrained en-
vironment, robots could be used in autonomous vehicles for individual transport of
people who are blind and restricted to a wheel chair.

In [33] a robot-assisted observation system for children with autism was devel-
oped. The system was developed for a specialized kindergarten for developmen-
tally disabled children. The system consists of six pet robots, a handheld device
(e.g., PDA) used to input data concerning observations, video cameras with mi-
crophones to record data and a remote server to maintain a database with recorded
data. Experiments were conducted three times per week for three months. Child-
ren with autism interacted with the robots and recorded data was transmitted to the
database. The system provides efficient information processing and facilitates data
analysis (e.g., statistical graphs are produced). Further data analysis facilities
could be provided but the successful trial in the kindergarten demonstrated that the
observation system is useful for education environments.

Table 5 summarizes results derived from the aforementioned approaches.

4.3 General Approaches Concerning Robots and Young Children

In [32] scenario-based behavior design concerning a network-based robot is ex-
plored. The robot used in the research is Porongbot. Scenario-based design was



190 J. Prentzas

used to extract basic scenarios and detailed scenarios concerning robot behaviors
and user responses during human-robot interaction. Appropriate tasks (e.g., turn
on/off, play with) for the derived scenarios were also defined. Behaviors were eva-
luated via computer simulation according to three parameters: sociability (i.e. ro-
bot’s easiness in generating dialogues), activity (i.e. how intense robot movements
are) and agreeableness (i.e. how kindly the robot behaves). Robot behaviors
should be diverse, understandable, appropriate to current situations and coherent
with personality profile. Scenarios were implemented in the form of scripts and a
behavior selection model was implemented. The approach was implemented and
evaluated through a simulator.

Table S Summary of approaches involving robots and children with special needs

Case Study Key Points

Training of toddlers that display limited Toddlers seated on mobile robots are trained to steer
independent walking, tested with a two- andusing force-feedback joystick. The learnt behavior
a three-year-old child [2] was displayed several days after training and also

in different configuration and location.

Troy and Trevor in autism therapy, Troy =~ Two children with autism showed interest in Troy
tested with two children with autism [19]  and a higher degree of social interaction with the the-
rapist compared to sessions without Troy.

Tito, four five-year-old children with Preliminary results show that Tito becomes an incen-
autism [37] tive for the child.

Social robots used to diagnose, treat and  Introduction of quantitative, objective metrics of

understand autism [51] social response to handle autistic diagnosis problems.
Socially interactive robots with certain autonomy
may effectively obtain information concerning child-
ren’s social behavior.

Robotic dog for pre-orientation and interac- Very young children who were blind were able to
tion of children who are blind [7] operate the robot and became more active, excited
and engaged into playful learning activities.

Robot-assisted observation system for The system provides efficient information processing
children with autism in a specialized and facilitates data analysis.

kindergarten, experiments conducted for

three months [33]

In [50] requirements and specific tools for extended human-robot interactions
with children as subjects are presented. More specifically, special recording and
analysis tools are required. The study of human-robot interaction may become so-
phisticated and in the specific research the focus was on extended interaction se-
quences. There are multiple recording devices (e.g., sensors, cameras) producing
data (e.g., facial expressions) from multiple viewpoints. The time scale of events
varies and certain behaviors (e.g., changes in eye gaze) may occur within seconds.
All data needs to be time-synchronized to constitute a consistent source for analy-
sis. Furthermore, the large amount of (audio and video) data produced needs to be
automatically annotated. Manual annotation would be too time-consuming and
certain important details from the multiple sources may be missed. Therefore,
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tools based on computer vision algorithms that would automate detection and do-
cumentation of behaviors are required. The researchers mention solutions they
have developed for recording and analysis. For recording, they present a scalable
system based on seven cameras and microphones in which audio and video data is
automatically synchronized and timestamped. A technique with appropriate con-
trol interface was developed enabling robot control by a concealed human opera-
tor so that the person interacting with the robot believes it is totally autonomous.
Two analysis tools are presented. One analysis tool processes video data to pro-
vide annotations involving head pose and eye gaze. The other tool provides a
framework for combination of visual data so that it can be explored by other ap-
plications and tools across a common timeline. The presented tools were used to
record and analyze interactions of four- to eight-year-old children with a robot.
Such tools are necessary to robot designers, teachers and therapists. For teachers
specifically the need for such tools is twofold. On the one hand, teachers need to
study and evaluate educational technology used in classroom. On the other hand,
analyzed recorded data could be used in educating teachers to new practices [38].

In [13] full-body gesture recognition for interaction with a small robot (i.e.
Sponge Robot) is investigated. An aspect that had not been considered prior this
research concerned full-body gestures that is, gestures affecting the whole body of
the robot (i.e. position and orientation). A small and light humanoid robot needs to
recognize such gestures because people will pick it up and interact playfully with
it by hugging, shaking and moving it around. A robot should be able to respond to
such interaction to create bonds with humans it interacts with. The specific re-
search identifies corresponding gestures and presents a system for their recogni-
tion. Data to identify gestures was collected at a research institute and a university
from participants interacting playfully with the robot. Video recording was used to
record more than a thousand gesture instances. An intelligent system based on
Support Vector Machines was developed to learn from the collected data and per-
form gesture recognition. It should be mentioned that certain gestures have a
stronger effect than others whereas certain gestures are interpreted in different
ways.

Detailed results concerning Roball are presented in [49]. In this work, require-
ments concerning child-robot interaction are defined. Roball satisfies such re-
quirements. An adaptive algorithm was developed for adapting Roball’s behavior
to the received interaction so that children’s communication with the robot is rein-
forced. For instance, according to the interaction it is receiving, the robot may
simply wander, avoid obstacles, make noises, produce speech or go faster. Roball
was used to study toddler-robot interactions. Roball’s characteristics attracted the
interest of young children and demonstrated that locomotion capabilities are re-
quired in child environments. Trials with young children were conducted in the
lab and in typical environments for children. A trial was also conducted at a high
school.

In [39] a humanoid robot was developed that dances in real-time with sponta-
neous and dynamic movements in synchronism to music. It was the first approach
in which a robot dynamically danced in correspondence to music rhythm. The
overall framework consists of two main modules: a music analysis and a robot
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control module. The music analysis module is based on Marsyas, an open source
software framework for audio analysis and synthesis emphasizing to music sig-
nals. This module perceives music rhythm. The robot control module reacts to
rhythm data sent by the aforementioned module and to sensor data to promote dy-
namic dance movements. The researchers mention that their future plans involve
the issue of multi-robot dance that is, the synchronization of multiple dancing
robots.

Table 6 summarizes key points of general approaches concerning young child-
ren and robots.

Table 6 Summary of general approaches involving robots and young children

Case Study Key Points

Porongbot, scenario-based design [32] Scenarios concerning diverse, understandable, ap-
propriate and coherent robot behaviors were de-
signed, implemented and evaluated through a simula-

tor.
Tools for extended human-robot Tools and algorithms for scalable recording,
interactions, used to record and analyze synchronization, automatic annotation of interaction
interactions of four- to eight-year-old data.

children with a robot [50]

Sponge Robot, gesture recognition [13] Full-body gesture recognition for small and light
robots.

Roball [49] Requirements concerning child-robot interaction are
defined. An adaptive algorithm was developed for
adapting Roball’s behavior.

Real-time robot dancing [39] Real-time robot synchronization to music rhythm.
Dynamic dance movements achieved based on music
analysis and sensor data.

4.4 Discussion

A general comment that can be made concerning robots in early childhood settings
is that several approaches have been presented employing different types of ro-
bots. A direct comparison among the approaches is difficult to be made but certain
issues can be pointed out.

A requirement to assess the effectiveness of integrating robots in early child-
hood education concerns evaluation of the results. Long term interaction of young
children with robots could highlight advantages and limitations of robotic technol-
ogy. Some of the surveyed approaches involved long term child-robot interaction.
Such were the approaches presented in [26] and [61] that involved integration of
iRobiQ in classroom activities for a time period of three and eight months respec-
tively. Furthermore, in [55] it is mentioned that children interacted with QRIO for
five months, ARPS was used for two months [60] and in [33] experiments con-
cerning the presented observation system were conducted for three months. In cer-
tain approaches, the total duration of interaction was brief. For instance, in [31]
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robots were introduced to a kindergarten during a show. There are also approaches
for which the total duration of interaction is not mentioned.

For evaluation purposes, data regarding child-robot interaction needs to be re-
corded and extensively analyzed by teachers and experts in robotic technology. A
set of video cameras and microphones are necessary for recording data. Handheld
devices such as PDAs or tablet PCs could be useful for inputting observation data
perhaps to a database hosted on a remote server [33]. Analysis of recorded video
and photo data concerning child-robot interaction is explicitly mentioned in cer-
tain approaches (e.g., [55], [13], [60]). The most extensive analysis of recorded
video data seems to involve young children’s interaction with QRIO [55]. Chil-
dren interacted with QRIO for five months but analysis of recorded data was car-
ried out for two years. Moreover, in [13] it is mentioned that more than a thousand
gesture instances were recorded in video. As the study of child-robot interaction
may turn out to be a time-consuming and sophisticated process, special recording
and analysis tools are required such as the ones presented in [50]. Useful ideas in
this context could also be found in the observation system described in [33]. A
system such as ARPS could also be used in this process to evaluate and classify
photos [60].

Closer correlation of robot-assisted learning with early childhood education
curriculum is also necessary. In [31] it is mentioned that iRobiQ was successful in
improving children’s linguistic abilities in specific aspects. Children’s communi-
cation skills were also enhanced with robots especially in the case of children with
special needs. Research on other aspects such as mathematics and science is also
required.

Several of the approaches explicitly mention testing in classroom environ-
ments. Such approaches were for instance the ones presented in [27], [52], [28],
[60], [26], [34], [61], [55], [54], [31], [33] and [49]. Certain of these approaches
such as the ones presented in [27], [28], [26] and [61] explicitly mention testing in
different classes and/or different facilities. Such evaluation results would be useful
for the generalization of the reached conclusions.

As mentioned in Section 2, educational technology in early childhood usually
involves a combination of technological resources. Most of the approaches do not
describe how a combination of robots and other technological resources (e.g.,
computers, interactive whiteboards, programmable toys) were effective in enhanc-
ing different learning aspects. This is a missing point in most of the surveyed ap-
proaches. Combination of robots with other technological resources is presented in
approaches involving observation, recording and analysis (e.g., [33], [50]).

Some type of robot and computer functionality combination is described in cer-
tain approaches. More specifically, computer functionality is provided to learners
through robots. This could be an interesting research direction. Robots connected
to networks such as iRobiQ, Porongbot and the one presented in [34] could pro-
vide contents and services hosted in remote computers to students. Moreover,
robots with a touch screen provide to a certain degree similar functionality to
computers as they are able to display software applications and receive inputs
from students. For there reasons, the research presented in [61] explored the
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relevancy of computer and robot utilization by young children. An analysis com-
paring the effectiveness of computers and robots in enhancing young children’s
learning would be interesting.

A further comment that can be made is that more approaches concerning inte-
gration of robots in early childhood settings have been presented compared to the
approaches discussing integration of (computer-based) IESs in corresponding en-
vironments. It seems that more researchers are working in the field of robotics in
early childhood. Furthermore, even very young children may interact with robots
whereas with IESs this could be more difficult. An interesting approach with diffi-
culties in its implementation could be the combination of robotic and (computer-
based) IES technologies as in [34].

An interesting aspect involves the form and size of robots that have been inte-
grated in early childhood settings. The size of the robots is small so that young and
very young children may find it appealing to interact with them. Most of the ro-
bots have some type of humanoid form. Such robots are iRobiQ, Sponge Robot,
PaPeRo, Kibo, Troy, Trevor, Tito and QRIO. Troy was used in autism therapy and
differs from other humanoid robots as it has a computer screen for its face. Robots
in the form of pets have also been used in early childhood (e.g., [7]). Roball is
quite different from robots described in the other surveyed approaches as it is en-
capsulated within a sphere. Roball signifies that different robot forms than the
‘usual’ ones may be explored. Requirements concerning learners and learning en-
vironment need to be carefully studied when implementing robots. Children with
special needs may impose different requirements from robots as their reactions
may differ from other children. Roball and Sponge Robot are robots that young
children are able to lift up. Specifically, Sponge Robot has been developed for
playful interaction when lifted up and differs from other robots in this context.

Certain robots were developed especially for children with special needs. Such
robots are described in [2], [19], [37], [51], [7] and [33]. Some of these robots in
spite of being developed for children with special needs were also tested with typ-
ical children (e.g., [2], [19], [51]) to record differences in children’s reactions.
There are no explicit reports concerning interaction of certain robots such as
QRIO, iRobiQ, Sponge Robot, Porongbot, PaPeRo and Kibo with children having
special needs. In [49] it is mentioned that Roball satisfies requirements of children
with autism.

The surveyed approaches concern young children with a variety of ages.
Certain approaches concern very young children. More specifically:

e In [55] QRIO interacted with 18- to 24- month-old toddlers, in [2] the study in-
volved toddlers that were on average thirty months old (i.e. two to three years
old), in [7] the robotic dog interacted with very young children.

e iRobiQ in [26] and [61] and Troy in [19] interacted with three- and four- year-
old children. This was also the case for the study in [60] involving ARPS also
concerned three-year-old children.

e In [26] and [61] iRobiQ interacted with four-year-old children and in [19] Troy
was tested with a four-year-old child. ARPS in [60] involved four-year-old
(besides three-year-old) children.
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e The approach in [28] was evaluated in nursery facilities thus it probably in-
volved children under five.

e In [27] and [61] iRobiQ interacted with five-year-old children and so did Tito
in [37].

e In [31], [52] and [33] Kibo, iRobiQ and the robot-assisted observation system
respectively were used in a kindergarten and thus the specific research probably
involved children who were at least five years old.

e In [50] interactions of four- to eight-year-old children with a robot were re-
corded and analyzed.

In total, it can be mentioned that approaches presented in [55], [2], [7], [26], [61],
[19], [60] and [50] were tested with children under five. The approaches presented
in [27], [61], [37], [31], [52], [33] and [50] were tested with children who were at
least five years old. Certain approaches (e.g., [50], [61]) were tested with children
under five as well as with children who were at least five years old. Roball in [49]
was also successfully tested in a high school setting. Perhaps certain robots dis-
cussed in the surveyed approaches could also be used in elementary schools.

5 Conclusions

This paper discusses issues regarding application of Artificial Intelligence me-
thods in early childhood education. The discussion involves Intelligent Education-
al Systems (i.e. Intelligent Tutoring and Adaptive Educational Hypermedia
Systems) and robots. Such a discussion is useful to Artificial Intelligence re-
searchers and practitioners, educational technology researchers and practitioners,
teachers, undergraduate and postgraduate students.

Research work in early childhood educational technology is not yet as exten-
sive as in other levels of education. Approaches surveyed in this paper demon-
strate that fruitful results may be produced by incorporating Artificial Intelligence
methods in early childhood education. Results have shown that children are moti-
vated in taking part in learning and social activities and remain interested in the
technological resource even in long term interaction. Approaches enhancing lite-
racy of children with special needs have also been successful. An important aspect
is that learning goals are achieved.
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Recursively Generated Evolutionary Turing
Machines and Evolutionary Automata

Mark Burgin and Eugene Eberbach’

Abstract. One of the roots of evolutionary computation was the idea of Turing
about unorganized machines. The goal of this paper is the development of founda-
tions for evolutionary computations, connecting Turing’s ideas and the contempo-
rary state of art in evolutionary computations. The theory of computation is based
on mathematical models of computing automata, such as Turing machines or finite
automata. In a similar way, the theory of evolutionary computation is based on
mathematical models of evolutionary computing automata, such as evolutionary
Turing machines or evolutionary finite automata. The goal of the chapter is to
study computability in the context of the theory of evolutionary computation and
genetic algorithms. We use basic models of evolutionary computation, such as dif-
ferent types of evolutionary machines, evolutionary automata and evolutionary al-
gorithms, for exploration of the computing and accepting power of various kinds
of evolutionary automata. However, we consider not only how evolutionary auto-
mata compute but also how they are generated because a rigorous study of
construction techniques for computational systems is an urgent demand of infor-
mation processing technology. Generation schemas for evolutionary automata are
studied and applied to computability problems.

1 Introduction

Alan Turing was one of the founders of theoretical computer science. His basic
model of computation, which is now called Turing machine, is the most popular
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in computer science. He also had many other ideas. In particular, Turing (1948)
proposed to use what is now called genetic algorithms in his unorganized ma-
chines. Turing while at Cambridge proposed his automatic machines (now known
as Turing machines) and choice machines. In 1939 he defended his Ph.D. on
oracle machines under Alonzo Church supervision at Princeton. During World
War 1I, Turing’s top secret work was on Colossus st electronic computer to
break Enigma code. After the end of the war Turing joined the National Physical
Laboratory in 1945 to work on the Automatic Computing Engine (ACE) under the
supervision of Sir Charles Darvin (the grandson of the founder of the theory of
evolution). Before leaving for Manchester in 1948, Turing produced a final report
on ACE which can be viewed as a blueprint for the future field of evolutionary
computation. Titled Intelligent Machinery (Turing 1948), this report was left un-
published until 1968, because Darwin, his boss, considered it to be a “schoolboy
essay" not suitable for publication.

In this report, among other futuristic ideas, including robots taking country
walks, Turing proposed new models of computation, which he called unorganized
machines (u-machines). There were two types of u-machines, those based on
Boolean networks and those based on finite state machines. Turing took his inspi-
ration from the working of the human cortex, and its ability for self-adaptation.

e A-type and B-fype u-machines were Boolean networks made up of a fixed
number of two-input NAND gates (neurons) and synchronized by global clock.
While in A-type u-machines the connections between neurons were fixed, B-
type u-machines had modifiable switch type interconnections. Starting from the
initial random configuration and applying a kind of genetic algorithm, B-type
u-machines were supposed to learn which of their connections should be on and
which off.

e P-fype u-machines were tapeless Turing Machines reduced to their Finite State
Machine control, with an incomplete transition table, and two input lines for
interaction: the pleasure and the pain signals. For configurations with missing
transitions, the tentative transition to another state could be reinforced by
“pleasure” input from the environment, or cancelled in the presence of “pain”.

In his B-type u-machines, Turing pioneered two areas at the same time: neural
networks and evolutionary computation (more precisely, evolutionary artificial
neural networks EANNs), while his P-type u-machines represent reinforcement
learning. However, this work had no impact on these fields, due to the unfortunate
combination of Turing's death and the twenty-year delay in publication (for more
details see Teuscher 2002, Eberbach et al 2004).

Turing was convinced that his B-type u-machine can simulate his Universal
Turing Machine, though he never provided a formal proof. In order to simulate
the infinite tape of a Turing Machine, a u-machine with an infinite number of neu-
rons would be needed. This is due to the discrete nature of the neurons, which
were based on two input Boolean NAND gates. By contrast, two real-valued neu-
rons are sufficient to model a Turing Machine.

B-type u-machines were defined to have a finite number of neurons, and it is
not clear whether Turing was aware that infinitely many neurons were needed for
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the simulation. This inconsistency would certainly have been uncovered when
working on the formal proof. But perhaps Turing was aware of it, and expected to
have no problems extending his definitions to the infinite case.

In any case, these ideas became one of the roots of evolutionary computation in
general and evolutionary computation theory, in particular.

It is necessary to state that evolutionary computation is also rooted in ideas of
John von Neumann, who sought to model one of the most basic life's processes —
reproduction - by designing self-reproducing automata, which were later called
cellular automata. At the Hixon Symposium in 1948, von Neumann discussed the
idea of self-replicating machines, which operated in a very simple environment,
had uniform components, each of which was a finite automaton organized in a
two-dimensional array (von Neumann 1951). For the building blocks for physical
realization of self-replicating machines, he proposed using computer chips. Ma-
thematical theory of self-replicating machines was published in von (Neumann,
1966). Later Codd (1968), Banks (1971) and Langton (1984) simplified the con-
struction of von Neumann. Note that evolution of cellular automata naturally lead
to cellular programming being one of subareas of evolutionary computation.

The third root was experiments and exploration that involved what is now
called artificial life, evolutionary robotics and evolutionary simulation and
optimization, which were pioneered by Barricelli (1954), Friedman (1956), Box
(1957), Fraser (1957), Friedberg, R. M. (1958) and Friedberg, Dunham and North
(1959).

Now the main area of evolutionary computation applications are: (1) search
methods that work well heuristically but don’t need exponential time; (2) simula-
tions of populations to see what patterns emerge over time; and (3) comparisons
of policies by using simulations to assess their effects. To achieve these goals four
main approaches are used: Genetic Algorithms (Holland 1975), Genetic Pro-
gramming (Koza 1992; 1994; 1999), Evolution Strategies (Rechenberg 1973) and
Evolutionary Programming (Fogel et al 1966). Additional approaches include Ant
Colony Optimization ACO, also known as Ant Colony Systems (ACS) developed
by Jim Kennedy and Russell Eberhart in 1995 (Kennedy and Eberhart 1995; Ken-
nedy et al. 2001; Dorigo and Stuetzle 2004), Particle Swarm Optimization (ACO),
also known as Ant Colony Systems (ACS) developed by Marco Dorigo and his
coauthors in 1997 (Bonabeau et al 1999), co-evolution (Michalewicz and Fogel
2004), Artificial Immune Systems (Mo 2009), evolutionary robotics (Friedman
1956), Evolutionary Artificial Neural Networks (EANNSs) (Yao 1999), evolvable
hardware, behavior engineering, evolutionary multiobjective optimization, Artifi-
cial Life (Barricelli 1954), Classifier Systems, DNA-Based Computing and some
fields of bioinformatics (Back et al 1997). Note that some scientists question
whether GP deserves to be counted as one of four main areas of evolutionary
computation, because it has been proposed much later than GA, ES and EP, and
John Koza introduced originally GP as a special case of GAs on tree structures.

Applications of evolutionary computation are vast and diverse. They include
solutions of intractable (hard and NP-complete) optimization problems, machine
learning, data mining, neural network training, robotics, control, electronic circuit
design, games, economics, network design, pattern recognition, genome and
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protein analysis, DNA-based computing, evolvable hardware and many others. It
is also necessary to mention an increased interest in applications of to the prob-
lems of robotics in general and to such areas as robot shaping and behavior engi-
neering in particular (cf., for example, (Nolfi 1994; Dorigo and Colombetti 1997;
Dozier 2001; Katagami and Yamada 2001)). For instance, having some schemas
of robot behaviors, a population of candidate behaviors is evolved by an evolutio-
nary computation to find a behavior that optimizes a pre-specified fitness func-
tion. Practical results in behavior engineering, however, show that although
evolutionary technique has proved useful and effective in many cases, the devel-
opment of a precise evaluation (fitness) function and finding an optimal behavior
is often difficult, while theoretical results disclose that in some cases it is imposs-
ible to build a precise fitness function and find an optimal behavior.

However, in spite of a diversity of useful applications, evolutionary computa-
tion theory is still very young and incomplete (Fogel 2001; Michalewicz 1996;
Kennedy et al 2001; Michalewicz and Fogel 2004). Studied in evolutionary com-
putation theoretical topics include convergence in the limit (elitist selection, Mi-
chalewicz's contractive mapping GAs, (1+1)-ES), convergence rate (Rechenberg's
1/5 rule), the Building Block analysis (Schema Theorems for GA and GP), best
variation operators (No Free Lunch Theorem). However, these authors do not in-
troduce automaton models — rather they apply high-quality mathematical appara-
tus to existing process models, such as Markov chains, etc. They also cover only
some aspects of evolutionary computation like convergence or convergence rate.
At the same time, very little has been known about expressiveness or computa-
tional power of evolutionary computation and its scalability. In other words, evo-
lutionary computation is not treated as a distinct and complete area with its own
distinct model situated in the context of general computational models. This
means that in spite of intensive usage of mathematical techniques, evolutionary
computation lacks theoretical foundations. As a result, many properties of evolu-
tionary processes could not be precisely studied or even found by researchers.
Conventional computation has many models. One of the most popular is Turing
Machine. In contrast to this, until recently evolutionary computation did not have
a theoretical model able to represent practice in this domain.

As a result, many properties of evolutionary computation processes and results
could not be precisely evaluated, studied or even found by researchers. Only re-
cently a rigorous mathematical foundations of evolutionary computation has been
created (Eberbach 2005; Burgin and Eberbach 2008; 2009; 2009a) although they
provide only the beginning of a rigorous mathematical theory of evolutionary
computations. In this theory, evolutionary automata play the role similar to the
role of Turing machines, finite automata and other mathematical models in the
general theory of computation.

Our approach is aimed at providing more rigorous foundations for evolutionary
computation. It is based on evolutionary Turing machine (ETM) model (Eberbach
2005; Burgin and Eberbach 2007), grid automata (Burgin 2003a; 2003b) and
super-recursive algorithms (Burgin 2003; 2005). This approach provides flexible
tools for estimating convergence and expressiveness of evolutionary processes
and algorithms, as well as for developing efficient evolutionary algorithm
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architectures for solving problems in science and technology. Using these tools,
we were able to prove that to reach an optimum in a general case, an algorithmic
evolutionary processes requires, in general, an infinite number of steps. This goes
beyond classical recursive algorithms and Turing Machines. The first constructed
versions of our model, sequential evolutionary Turing machine (Eberbach 2005)
and weighted evolutionary Turing machine (Burgin and Eberbach 2007a, and
Eberbach and Burgin 2007b), provide a generic theoretical model for evolutionary
computation in the case of mono-evolution when a single agent performs evolu-
tion of generations and a single solution for one individual is designated to
represent the whole population. An evolutionary Turing machine is an extension
of the conventional Turing machine, which goes beyond the Turing machine and
belongs to the class of super-recursive algorithms (Burgin 2005).

To build efficient models of cooperating and competing agents, sequential evo-
lutionary Turing machines and weighted evolutionary Turing machines were
extended by building several new types of more powerful evolutionary Turing
machines: parallel and parallel weighted evolutionary Turing machines (Burgin
and Eberbach 2006; 2007, and Eberbach and Burgin 2007a). This made possible
to naturally estimate convergence for interacting agents as instances of multiob-
jective optimization.

In (Eberbach and Burgin 2007), several types of self-constructing evolutionary
Turing machine models are introduced, reflecting self-evolution of evolutionary
machines. These new models allow one to study evolution of solutions and evolu-
tionary algorithms at the same time. The goal is to figure out what can be gained
by adding “evolution of evolution”. We found that self-constructive abilities al-
low one to essentially increase efficiency of evolutionary processes. However,
these abilities do not increase expressiveness of recursive evolutionary algorithms
and evolutionary computation in general. To achieve higher expressiveness, it is
necessary to use more powerful algorithms, such as inductive Turing machines
(Burgin 1999; 2003; 2005) and limit Turing machines (Burgin 1993; 2005).

However, evolutionary Turing machines form only one class in a big diversity
of evolutionary finite automata introduced and studied in (Burgin and Eberbach
2009; 2009a; Eberbach and Burgin 2009). This, more general model of evolutio-
nary computation, was used to explore universality of basic evolutionary finite au-
tomata (Burgin and Eberbach 2009) and expressiveness of evolutionary finite
automata (Burgin and Eberbach 2009a; 2010).

In this chapter, we develop a general approach to evolutionary processes in the
computational context, build mathematical models of systems functioning of
which is based on evolutionary processes and study properties of such systems.
To achieve this goal, this chapter is organized as follows. In section 2, we intro-
duce and study the main concept of the mathematical theory of evolutionary ma-
chines and processes — basic evolutionary machines, special cases of which are
evolutionary Turing machines, evolutionary inductive Turing machines, evolutio-
nary limit Turing machines, evolutionary pushdown automata and evolutionary
finite automata. In Section 3, we describe and study functioning of basic evolutio-
nary machines. In section 4, we describe and study construction (generation) of
basic evolutionary machines. Section 5 contains conclusions and problems to be
solved in the future.
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2 Basic Evolutionary Machines

Evolutionary computations are artificial intelligence processes based on the
theory of natural selection and evolution. Evolutionary computations are directed
by evolutionary algorithms. In technical terms, an evolutionary algorithm is a
probabilistic beam hill climbing search algorithm directed by the chosen fitness
function. It means that the beam (population size) maintains multiple search
points, hill climbing implies that only a current search point from the search tree
is remembered and used for optimization (going to the top of the hill), and the
termination condition very often is set to the optimum of the fitness function.

Let X be the representation space, also called the optimization space, for spe-
cies (systems) used in the process of optimization and a fitness function f: X — R

is chosen.

Definition 2.1. A generic evolutionary algorithm (EA) E can be represented as the
collection E = (X, X[0], F, f, s, v, R) and described in the form of the functional
equation (recurrence relation) R working in a simple iterative loop in discrete time
t, defining generations X[f] , 1 =0, 1, 2, 3, ... (Fogel 1995, Michalewicz and Fogel
2004, Fogel 2001):

X[t+1] = s (v (X[1])),

where

— arepresentation space X; (e.g., X consists of fixed binary strings for genet-
ic algorithms (GAs), of Finite State Machine descriptions for evolutionary
programming (EP), of parse trees for genetic programming (GP), of vec-
tors of real numbers for evolution strategies (ES));

—  selection operators s; (e.g., truncation, proportional selection or tourna-
ment),i=12,3,...;

— variation operators v; (e.g., mutation, crossover or some combination of
mutations and crossover), i=1,2,3, ... ;

— a fitness function f: X — R, which typically takes values in the domain of
nonnegative real numbers and is extended to the subsets of the set X by the
following rule

if Y € X, then f(Y) = max {fix);xe Y}

— atermination or search condition (goal of evolution) C;

—  X[0] is an initial population;

— X[t] € X is the population produced on the (n-1)-th stage of the evolutio-
nary algorithm (EA) A;

— F c X is the set of final populations satisfying the termination condition
(goal of evolution).

Often the termination condition of an evolutionary algorithm is given as a subset F
of the representation space X. Computation halts when an element from F is ob-
tained. Another form of a termination condition is optimum (maximum or mini-
mum) of the fitness function f(x) , which is extended to the fitness function f(X[¢])
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of the best individual in the population X[t] € F, where f(x) typically takes values
in the domain of nonnegative real numbers. Computation, for example, halts when
a maximum of the fitness function f(x) is obtained. In many cases, it is impossible
to achieve or verify this optimum. Thus, another termination condition is used
(e.g., the maximum number of generations or the lack of progress through several
generations).

Dynamics of the evolutionary algorithm A is described in the form of the func-
tional equation (recurrence relation) working in a simple iterative loop with parts
of the space X called generations in discrete time ¢ = 0,1,2,3,... (Fogel 1995, Mi-
chalewicz and Fogel 2004, Fogel 2001):

X[t+1] = s (v (X[t]))

This functional equation describes how the evolutionary algorithm A taking the
generation X[f] < X produces the generation X[t + 1] < X. An initial population
X[0] < X is given as the input of the evolutionary algorithm. Selection is based on
the fitness function f(x), which is often extended from elements of X to subsets of
X, giving the best value on the elements in this subset as its value for this subset.

Definition 2.1 is applicable to all typical evolutionary algorithms, including
GA, EP, ES, GP. It is possible to use it to describe other emerging subareas like
ant colony optimization, or particle swarm optimization. Of course, it is possible
to think and implement more complex variants of evolutionary algorithms.

Evolutionary algorithms evolve population of solutions X, but they may be the
subject of self-adaptation (like in ES) as well. For sure, evolution in nature is not
static, the rate of evolution fluctuates, their variation operators are subject to slow
or fast changes, and its goal (if it exists at all) can be a subject of modifications as
well.

Formally, an evolutionary algorithm looking for the optimum of the fitness
function violates some classical requirements of recursive algorithms. If its termi-
nation condition is set to the optimum of the fitness function, it may not terminate
after a finite number of steps. To fit it to the conventional algorithmic approach,
an artificial (or somebody can call it pragmatic) stop criterion has had to be added
(cf., for example, (Michalewicz 1996; Koza 1992)). To remain recursive, i.e., to
give some result after a finite number of steps, the evolutionary algorithm has to
reach the set F of final populations satisfying the termination condition after a fi-
nite number of generations or to halt when no visible progress is observable.
Usually this is a too restrictive condition, and naturally, in a general case, evolu-
tionary algorithms form a special class of super-recursive algorithms (Burgin
2005).

Now, we define a formal algorithmic model of evolutionary computation - an
evolutionary automaton also called an evolutionary machine.

Let K be a class of automata.

Definition 2.2. A basic evolutionary K-machine (BEM), also called basic evolu-
tionary K-automaton, is a (possibly infinite) sequence E = {E[t]; t =0, 1,2, 3, ... }
of automata E[f] from K each working on the population X[7] (r =0, 1, 2, 3, ...)
where:
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— the automaton E[f] called a component, or more exactly, a level automaton,
of E represents (encodes) a one-level evolutionary algorithm that works
with the generation X[7] of the population by applying the variation opera-
tors v and selection operator s;

— the first generation X[0] is given as input to E and is processed by the au-
tomaton E[0], which generates/produces the first generation X[0] as its
output, which goes to the automaton E[1];

— forallr=1, 2,3, .., the generation X[t + 1] is obtained by applying the
variation operator v and selection operator s to the generation X[f] and
these operations are performed by the automaton E[f], which receives X[7]
as its input;

— the goal of the BEM F is to build a population Z satisfying the search
condition.

The desirable search condition is the optimum of the fitness performance measure
fix[f]) of the best individual from the population X[7]. There are different modes of
the BEM functioning and different termination strategies. When the search condi-
tion is satisfied, then working in the recursive mode, the BEM E halts (7 stops to
be incremented), otherwise a new input population X[¢ + 1] is generated by E[¢].
In the inductive mode, it is not necessary to halt to give the result (cf. (Burgin
2005)).When the search condition is satisfied and E is working in the inductive
mode, the BEM E stabilizes (the population X[7] stops changing), otherwise a new
input population X[7 + 1] is generated by E[7].

We denote the class of all basic evolutionary machines with level automata
from K by BEAK.

An important property of living systems is their ability to change in the process
of functioning. To reflect this property, we introduce reconfigurable evolutionary
K-machines. This model of evolutionary computation is rooted in reflexive Turing
machines introduced as a generic model for programs (algorithms) that change
(improve) themselves while they are working (Burgin 1992), reconfigurable soft-
ware (Ito et al 2003) and reconfigurable and transformable computers (Thornburg
and Casselman 1994; Chow et al 1995; Casselman et al 1995).

Definition 2.3. A basic reconfigurable evolutionary K-machine (BRCEM) is a
basic evolutionary K-machine E = {E[t]; t =0, 1, 2, 3, ... } in which it is possible
to change (transform) the automata E[f] in the process of computation.

A new direction in computer technology is based on the idea of a recofigurable
computer (Hauck and DeHon 2008). In contrast to conventional computers, a
recofigurable computer computes a function by configuring functional units and
wiring them up in space. This allows, for example, parallel computation of specif-
ic, configured operations. A recofigurable computer can be easily and quickly
modified from a remote location to upgrade its performance or even to perform a
completely different function. As a result of such advantages, reconfigurable
computers serve as powerful tools for many applications, such as research and de-
velopment tools for sophisticated electronic systems or verification on electronic
designs.
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The concept of reconfigurable computing has existed since the 1960s, when
Gerald Estrin proposed the concept of a computer made of a standard processor
and an array of “reconfigurable” hardware. The mission of the main processor was
to control the behavior of the reconfigurable hardware (Estrin 1960) . The latter
would then be tailored to perform specific tasks, such as image processing or
pattern matching. Once the task was done, the hardware could be adjusted to do
some other task. This resulted in a hybrid computer structure combining the
flexibility of software with the speed of hardware. When suggested, this idea was
far ahead of its time in needed electronic technology. That is why only in the
eighties and nineties, different researchers proposed various reconfigurable
architectures developed in industry and academia, such as Matrix, Elixent, PACT
XPP, Silicon Hive, Montium, Pleiades, Morphosys, and PiCoGA (Hauck and
DeHon 2008). These designs were feasible due to the constant progress of silicon
technology that let complex designs be implemented on one chip. The world's first
commercial reconfigurable computer, the Algotronix CHS2X4, was completed in
1991 (Hartenstein 2001).

An important class of evolutionary machines is evolutionary finite automata
(Burgin and Eberbach 2009a).

Definition 2.4. An evolutionary finite automaton (EFA) is an evolutionary ma-
chine E in which all automata E[] are finite automata G[f] each working on the
population X[7] in generations =0, 1, 2, 3, ...

We denote the class of all evolutionary finite automata by EFA.

It is possible to consider deterministic finite automata, which form the class
DFA, and nondeterministic finite automata, which form the class NFA. This gives
us two classes of evolutionary finite automata: EDFA of all deterministic evolu-
tionary finite automata and ENFA of all nondeterministic evolutionary finite au-
tomata.

Note that it is also possible to consider reconfigurable evolutionary finite auto-
mata.

Evolutionary Turing machines (Eberbach 2005; Burgin and Eberbach 2008) are
another important class of evolutionary machines.

Definition 2.5. An evolutionary Turing machine (ETM) E = {TM[¢];t=0, 1, 2, 3,
...} is an evolutionary machine E in which all automata E[f] are Turing machines
TM[f] each working on population X[f] in generations t =0, 1, 2, 3, ...

Turing machines TM[¢] as components of the ETM E perform multiple compu-
tations in the sense of (Burgin 1983).

Note that it is also possible to consider reconfigurable evolutionary Turing ma-
chines.

Variation and selection operators are recursive to allow problem computation
on Turing machines. So, it is natural to assume that the same Turing machine
computes values of the fitness function f. This brings us to the concepts of
weighted Turing machines and weighted evolutionary Turing machines, which
were introduced and studied in (Burgin and Eberbach 2008).
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Note that it is possible to define also the class of evolutionary pushdown auto-
mata EPDA and evolutionary linearly bounded automata ELBA as evolutionary
extensions of pushdown automata and linearly bounded automata, respectively.

Definition 2.6. A weighted Turing machine (T, f) computes a pair (x, f{x)) where x
is a word in the alphabet of T and f(x) is the value of the evaluation function f of
the machine (7, f).

Examples of weighted Turing machines are fuzzy Turing machines (Wieder-
mann 2004), which are theoretical model for fuzzy algorithms (Zadeh 1968; Zheru
Chi et al 1996).

Another example of weighted Turing machines in particular and weighted algo-
rithms in general are Turing machines that compute recursive real numbers and
recursive real-valued functions (Rice 1951; Freund 1983).

Weighted algorithms find applications in many areas (cf., for example, (Jili, et
al, 2000) for chemistry or (Arya, et al, 2001) for planar point location).

It is necessary to remark that only in some cases it is easy to compute values of
the fitness function f. Examples of such situations are such fitness functions as the
length of a program or the number of parts in some simple system. However, in
many other cases, computation of the values of the fitness function f can be based
on a complex algorithm and demand many operations. For instance, when the op-
timized species are programs and the fitness function f is time necessary to
achieve the program goal, then computation of the values of the fitness function f
can demand functioning or simulation of programs generated in the evolutionary
process. We encounter similar situations when optimized species are computer
chips or parts of plane or cars. In this case, computation of the values of the fitness
function finvolves simulation.

Weighted computation realized by weighted Turing machines allows us to ex-
tend the formal algorithmic model of evolutionary computation taking the class of
all weighted Turing machines as K and defining a weighted evolutionary Turing
machine as a basic evolutionary K-machine or basic evolutionary K-automaton.

Definition 2.7. A basic weighted evolutionary Turing machine (WETM) E =
{TM[r]; t =0, 1, 2, 3, ... } is a series of (possibly infinite) weighted Turing ma-
chines TM[#] each working on population X[#] in generations ¢ = 0, 1, 2, 3, ...
where:

— each 9[7] transition function (rules) of the weighted Turing machine TM[¢]
represents (encodes) an evolutionary algorithm that works with the popula-
tion X[7], and evolved in generations 0, 1, 2, ... , 1;

— only generation X[0] is given in advance, and any other generation depends
on its predecessor only, i.e., the outcome of the generation r =0, 1, 2, 3, ...
is the generation X[t + 1] obtained by applying the recursive variation v
and selection s operators working on generation X[#] and computing the
fitness function f for the generation X[ + 1];

—  the goal (or halting) state of WETM E is a population X[¢] satisfying the
termination condition;
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— when the termination condition is satisfied, then the WETM E halts (¢
stops to be incremented), otherwise a new input population X[z + 1] is gen-
erated by TM[z + 1].

The desirable termination condition usually is the optimum of the fitness perfor-
mance measure f{x[¢]) of the best individual from the population X[¢].

In general, because the fitness function can be the subject of evolution as well,
evolution is potentially an infinite process. Changing the transition function 8[#] of
the Turing machines can be thought as some kind of evolvable hardware, or as-
suming fixed hardware, we can think about reprogrammable evolutionary algo-
rithms. Mathematical models of Turing machines in which the transition function
d[f] changes while the machine performs computation are reflexive Turing ma-
chines (Burgin 1992).

We do not consider here such ETM that change transition functions d[¢] and/or
memory of the Turing machines TM[#] or/and fitness functions. We study these
machines in another work. Note that the memory of conventional Turing machines
and inductive Turing machines consists of n-dimensional tapes (usually n is equal
to one) and is not changing in computational processes. Turing machines and in-
ductive Turing machines with structured memory allow one to change this memo-
ry in the process of computation (Burgin 2005). This feature of machines can es-
sentially improve their efficiency.

One more class of evolutionary K-machines are basic evolutionary inductive
Turing machines introduced and studied in (Burgin and Eberbach 2009; 2009a).

Definition 2.8. A basic evolutionary inductive Turing machine (EITM) EI =
{ITM[f]; t =0, 1, 2,...} is an evolutionary machine E in which all level automata
E[z] are inductive Turing machines ITM[f] (Burgin 2005) each working on the
population X[7] in generations =0, 1, 2, ...

Simple inductive Turing machines are abstract automata (models of algorithms)
closest to Turing machines. The difference between simple inductive Turing ma-
chines and Turing machines is that a Turing machine always gives the final result
after a finite number of steps and after this it stops the process of computation or,
at least, the machine informs when the result is obtained. There are different ways
to inform that the final result is obtained. For instance, it is possible to have a spe-
cial symbol in the output alphabet. This symbol is used only to indicate that what
is in the output tape is the final result. Thus, when a Turing machine comes to a
final state, it repeats the output with this special symbol, indicating that this is the
final result. Another way to inform that the final result is obtained is to halt after
obtaining this result. It is always possible to assume that after obtaining the final
result, the Turing machine stops (cf., for example, (Hopcroft et al 2001)). When
starting with some input x, a Turing machine never comes to a final state, it does
not give its final result for this input.

In a similar way, inductive Turing machines give the final result after a finite
number of steps. However, in contrast to Turing machines, inductive Turing ma-
chines do not always stop the process of computation or inform when the final re-
sult is obtained. In some cases, they do this, while in other cases they continue
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their computation and give the final result. Namely, when the content of the output
tape of a simple inductive Turing machine forever stops changing, it is the final
result.

Definition 2.9. An evolutionary inductive Turing machine (EITM) EI = {ITM[1]; ¢
=0, 1, 2, ...} has order n if all inductive Turing machines ITM[f] have order less
than or equal to »n and at least, one inductive Turing machine ITM[¢] has order n.

We remind (cf. (Burgin 2005)) that inductive Turing machines with recursive
memory are called inductive Turing machines of the first order. The memory E is
called n-inductive if its structure is constructed by an inductive Turing machine of
the order n. Inductive Turing machines with n-inductive memory are called induc-
tive Turing machines of the order n + 1.

We denote the class of all evolutionary inductive Turing machines of the order
n by EITM,, .

Note that it is also possible to consider weighted evolutionary inductive Turing
machines and reconfigurable evolutionary inductive Turing machines.

Remark 2.1. It is often assumed that variation and selection operators are recur-
sive to ensure that all computing steps of machines ITM[¢] are recursive. Other-
wise, we go beyond inductive Turing machines of the first order (Burgin 2005).
However, it is possible to release this restriction to allow nonrecursive steps and
solutions.

Taking limit Turing machines (Burgin 2005) as the class K, we obtain one
more class of evolutionary K-machines called basic evolutionary limit Turing ma-
chines.

Definition 2.10. A basic evolutionary limit Turing machine (ELTM) EI =
{LTM[f]; t =0, 1, 2,...} is an evolutionary machine E in which all automata E[f]
are limit Turing machines LTM[¢] [2] each working on the population X[7] in gen-
erations t=0, 1, 2,...

When the search condition is satisfied, then the ELTM EI stabilizes (the popu-
lation X[#] stops changing), otherwise a new input population X[# + 1] is generated
by LTM[«].

Similar to inductive Turing machines, limit Turing machines with recursive
memory are called inductive Turing machines of the first order (cf. (Burgin,
2005). Limit Turing machines with n-inductive memory are called inductive Tur-
ing machines of the order n + 1.

Definition 2.11. An evolutionary limit Turing machine (ELTM) EI = {LTM|z]; ¢ =
0, 1, 2, ...} has order n if all limit Turing machines LTM[¢] have order less than or
equal to n and at least, one limit Turing machine LTM[¢] has order .

We denote the class of all evolutionary limit Turing machines of the order n by
ELTM, .

Note that it is also possible to consider weighted evolutionary limit Turing ma-
chines and reconfigurable evolutionary limit Turing machines.

Let us obtain some initial properties of basic evolutionary machines.
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Lemma 2.1. If K ¢ H, then BEAK c BEAH.
Lemma 2.2. If K = H U G, then BEAH U BEAG c BEAK.
Lemma 2.3. If K = H N G, then BEAK ¢ BEAH N BEAG.

Basic evolutionary K-machines from BEAK are called unrestricted because se-
quences of the level automata and the mode of the evolutionary machines func-
tioning are arbitrary.

At the same time, it is possible to consider only basic evolutionary K-machines
from BEAK in which sequences of the level automata have some definite type Q.
Such machines are called Q-formed basic evolutionary K-machines and their class
is denoted by BEAK?.

As abstract automata are represented by words, their sequences are also
represented by sequences of words. Thus, it is possible to assume that Q is a class
(type) of sequences of words.

We consider here the following key classes of sequences:

—_—

. The class FS of all finite sequences.

. The class PS of all periodic sequences.

3. The class APS of all almost periodic sequences, i.e., sequences that consist of
two parts: the finite sequence at the beginning (called the “head”) and a period-
ic sequence (called the “tail”) that goes after the first part.

4. The class DS of all decidable sequences, i.e., sequences such that for any se-
quence / and any automaton A from K, it is possible to find whether A belongs
to the sequence / or does not belong.

5. The class SDS of all semidecidable sequences, i.e., sequences such that for any
sequence / and any automaton A from K, it is possible to find whether A be-
longs to the sequence /.

6. The class RES of all recursively enumerable sequences with respect to some
enumeration v of the class K, where a sequence [/ is recursively enumerable
when there is a recursive algorithm C (e.g., a Turing machine) such that deter-
mines (computes numbers of elements from the sequence /.

7. The class of all inductively enumerable sequences with respect to some enume-

ration v of the class K, where a sequence [ is inductively enumerable when

there is an inductively algorithm C (e.g., an inductive Turing machine) such
that determines (computes numbers of elements from the sequence /.

[\

Note that in a general case, evolutionary automata cannot be codified by (finite)
words, while this condition is essential for many results in this paper. That is why
we consider classes of evolutionary automata that can be codified by finite words,
such as bounded, periodic and almost periodic evolutionary automata.

Thus, when the type Q contains all finite sequences, we have bounded basic
evolutionary K-machines.

Definition 2.12. a) An evolutionary machine (evolutionary automaton) E = {E[t];
t=0,1,2,3,..,n-1}is called an n-level bounded evolutionary machine (auto-
maton) or an FS-formed basic evolutionary machine.
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b) The number n of levels is called the length of the evolutionary machine (evo-
lutionary automaton) E.

Basic bounded evolutionary K-machines are studied in (Burgin and Eberbach
2010) for such classes K as finite automata, push down automata, Turing ma-
chines, inductive Turing machines and limit Turing machines.

Here are some results describing properties of basic bounded evolutionary K-
machines.

As we know from the theory of automata and computation, it is proved that dif-
ferent automata or different classes of automata are equivalent. However there are
different kinds of equivalence. Here we consider two of them: functional equiva-
lence and linguistic equivalence.

Definition 2.13 (Burgin 2010). a) Two automata (machines) A and B are function-
ally equivalent if given the same input, they give the same output.

b) Two classes of automata A and B are functionally equivalent if for any au-
tomaton from A, there is a functionally equivalent automaton from B and vice
versa.

For instance, it is proved that deterministic and nondeterministic Turing ma-
chines are functionally equivalent (Hopcroft et al 2001). Similar results are proved
for evolutionary machines. An example of such result is given below.

Theorem 2.1 (Burgin and Eberbach 2010). For any n-level evolutionary finite au-
tomaton E, there is a finite automaton Ay functionally equivalent to E.
One more important type of automata equivalence is linguistic equivalence.

Definition 2.14 (Burgin 2010). a) Two automata (machines) A and B are linguisti-
cally equivalent if they accept (generate) the same language, i.e., L(A) = L(B).

b) Two classes of automata A and B are linguistically equivalent if they accept
(generate) the same class of languages.

For instance, it is proved that deterministic and nondeterministic finite automa-
ta are linguistically equivalent (cf., for example, (Hopcroft et al 2001)). Similar re-
sults are proved for evolutionary automata. An example of such result is given
below.

Corollary 2.1 (Burgin and Eberbach 2010). For any n-level evolutionary finite au-
tomaton E, there is a finite automaton A linguistically equivalent to E.

Proof directly follows from Theorem 2.1 because as it is proved in (Burgin
2010), functional equivalence implies linguistic equivalence.

When the type Q contains all periodic sequences, we have periodic basic evolu-
tionary K-machines.

Definition 2.15. a) An evolutionary machine (evolutionary automaton) E is called
periodic or an PS-formed basic evolutionary machine if the sequence E = {E[t]; ¢
=0,1, 2,3, ...} of automata E[¢] from K is either finite or periodic, i.e., there is a
finite initial segment of this sequence such that the whole sequence is formed by
infinite repetition of this segment.

b) The repeating sequence is called the automaton period of the evolutionary
machine E and the number of automata in the period is called the numerical pe-
riod, or simply, period, of the automaton period of the evolutionary machine E.
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Periodic basic evolutionary K-machines are studied in (Burgin and Eberbach
2010) for such classes K as finite automata, pushdown automata, Turing ma-
chines, inductive Turing machines and limit Turing machines.

Lemma 2.3. If an evolutionary K-machine K = {K[f]; r =0, 1, 2, 3, ... k} is func-
tionally equivalent to an evolutionary K-machine H = {H[f]; t =0, 1, 2, 3, ... k}
and an evolutionary K-machine G = {G[f]; t = 0, 1, 2, 3, ... k} is functionally
equivalent to an evolutionary K-machine F = {F[f]; t = 0, 1, 2, 3, ... k}, then the
evolutionary K-machine V = K - G = { K[0], K[1], K[2], ... , K[k], G[0], G[1],
GJ2¢], ... } is functionally equivalent to the evolutionary K-machine W=H - F = {
H[O], H[1], H[2], ..., H[k], FIOI, F[1], F[21], ... }.

It means that functional equivalence is closed with respect to the sequential
composition of evolutionary machines.

As functional equivalence is stronger than linguistic equivalence (Burgin,
2010), we obtain the following result.

Corollary 2.2. If an evolutionary K-machine K = {K[t]; t =0, 1, 2, 3, ... k} is lin-
guistically equivalent to an evolutionary K-machine H = {H[7]; t =0, 1, 2, 3, ... k}
and an evolutionary K-machine G = {Gl[¢]; t = 0, 1, 2, 3, ... k} is linguistically
equivalent to an evolutionary K-machine F = {F[f]; t =0, 1, 2, 3, ... k}, then the
evolutionary K-machine V = K - G = { K[0], K[1], K[2], ... , K[k], G[O], G[1],
GJ21], ... } is linguistically equivalent to the evolutionary K-machine W=H - F =
{ H[O], H[1], H[2], ... , H[k], F[O], F[1], F[21], ... }.

It means that linguistic equivalence is also closed with respect to the sequential
composition of evolutionary machines.

Here are some results describing properties of basic periodic evolutionary K-
machines.

Theorem 2.2 (Burgin and Eberbach 2010). Any periodic evolutionary finite au-
tomaton F with the period k > 1 is functionally equivalent to a periodic evolutio-
nary finite automaton E with the period 1.

Corollary 2.1 (Burgin and Eberbach 2010). Any periodic evolutionary finite au-
tomaton E is functionally equivalent to a one-dimensional one-way cellular auto-
maton.

Proof directly follows from Theorem 2.2 because any periodic evolutionary
finite automaton with the period 1 is a one-dimensional one-way cellular
automaton.

It is proved that functional equivalence is stronger than linguistic equivalence
(Burgin, 2010). This allows us to obtain the following results.

Corollary 2.2. Any periodic evolutionary finite automaton F with the period k > 1
is linguistically equivalent to a periodic evolutionary finite automaton E with the
period 1.

Corollary 2.3. Any periodic evolutionary finite automaton E is linguistically
equivalent to a one-dimensional one-way cellular automaton.
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When the type Q contains all almost periodic sequences, i.e., sequences that
consist of two parts: the finite sequence at the beginning and a periodic sequence,
we have almost periodic basic evolutionary K-machines.

Definition 2.16. a) An evolutionary machine (evolutionary automaton) E is called
almost periodic or an PS-formed basic evolutionary machine if the sequence E =
{E[f]; t =0, 1, 2, 3, ...} of automata E[f] from K consists of two parts: the finite
sequence at the beginning (called the “head”) and a periodic sequence (called the
“tail”), which goes after the first part and is formed by infinite repetition of its ini-
tial finite segment. Each of these parts may be empty.

b) The repeating sequence is called the automaton period of the evolutionary
machine E and the number of automata in the period is called the numerical pe-
riod, or simply, period, of the automaton period of the evolutionary machine E.

Theorem 2.3. Any almost periodic evolutionary finite automaton F' with the pe-
riod k > 1 is functionally equivalent to an almost periodic evolutionary finite au-
tomaton E with the period 1 and the head with length 1.

Proof. Let us consider an arbitrary almost periodic evolutionary finite automa-
ton E = {E[f];t=0, 1, 2, 3, ...}. By Definition 2.14, the sequence {E[f]; =0, 1, 2,
3, ...} of finite automata E[f] consists of two parts: the head H = {E[¢]; t =0, 1, 2,
3,...k}andthe tail T={E[f]; t=k+ 1,k+2,k+ 3, ..}. By Definition 3.1, H is an
n-level evolutionary finite automaton.

Asthe head H= {E[t];t=0, 1, 2, 3, ..., k} is finite, by Corollary 2.1, the evolu-
tionary machine H is functionally equivalent to a finite automaton Ay .

The tail T = {E[t]; t =k + 1, k + 2, k + 3, ...} is either finite or periodic, i.e.,
there is a finite initial segment of this sequence such that the whole sequence is
formed by infinite repetition of this segment. When the sequence {E[f]; r=k + 1, k
+ 2,k + 3, ...} of automata E[¢f] from K is finite, then by Corollary 2.1, the evolu-
tionary machine 7 is functionally equivalent to a finite automaton Ar. By Defini-
tion 4.1, Ay is a periodic evolutionary finite automaton with the period 1. By
Lemma 2.3, the evolutionary automaton E is functionally equivalent to the evolu-
tionary automaton Ey = { E[0] = Ay, E[1] = A7 }. It is possible to consider Ay as
the head and Ay as the tail of the automaton Ef. As the length of A is equal to 1
and the length of A is equal to 1, in this case, theorem is proved.

Now let us assume that the tail 7= {E[t]; t =k + 1, k+ 2, k + 3, ...} of the au-
tomaton E is infinite. As it is a periodic evolutionary machine, by Theorem 2.2,
there is a periodic evolutionary finite automaton E; = {E{f]; =0, 1, 2, 3, ...} with
the period 1, i.e., Ef{t] = A for all t =0, 1, 2, 3, ..., which is functionally equiva-
lent to 7. Thus, evolutionary machine E is functionally equivalent to the almost
periodic evolutionary finite automaton B = { B[0] = Ay, B[1] = A, B[2] =A, B[3] =
A, ...} of where automata B[f] coincide with A for all =1, 2, 3, .... Thus, B is an
almost periodic evolutionary finite automaton with the period 1 and the head with
length 1.

Theorem is proved.

As functional equivalence is stronger than linguistic equivalence (Burgin,
2010), we obtain the following result.
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Corollary 2.4. Any almost periodic evolutionary finite automaton F' with the pe-
riod k > 1 is linguistically equivalent to an almost periodic evolutionary finite au-
tomaton E with the period 1 and the head with length 1.

3 Computations by Evolutionary Machines

Another condition on evolutionary machines determines their type and mode of
functioning or computation. According to the theory of algorithms and computa-
tion, there are three basic types of automaton functioning (Burgin 2005; 2010):

Computing type of functioning is when the automaton receives an input
and gives an output. Automata working in the computing manner are called
transducers.

Accepting type of functioning is when the automaton receives an input and ei-
ther accepts this input or does not accept it. Automata working only in the accept-
ing manner are called acceptors.

Generating type of functioning is when the automaton does not receive an input
but gives an output. Automata working only in the generating manner are called
generators.

Note that acceptors can also give some output although their result is either ac-
ceptance or rejection, i.e., the result and output are not the same for acceptors. Be-
sides, this shows that a transducer can work in the accepting manner.

There are also three additional types of automaton functioning (Burgin 2010):
decidability, semidecidability and semi-codecidability.

Evolutionary machines consist of components called level automata. This
means that there are local and global modes of evolutionary machines functioning,
i.e., functioning of each level automaton in the evolutionary machine goes accord-
ing to the local mode, while functioning of the whole evolutionary machine goes
according to the global mode

When all automata in a class K are transducers or generators, they give output.
In a general case, this output consists of two parts: transaction output and terminal
output.

Definition 3.1. Transaction output of the level automaton E[f] is the generation
X[t], which is transmitted to the next level automaton E[r + 1].

This means that the transaction output always remains in the evolutionary ma-
chine, providing interaction of the components.

Definition 3.2. Terminal output of the level automaton E[¢] is given for some ex-
ternal system, e.g., for the user.

For instance, the level automaton E[¢] can inform the user about the maximal or
minimal value of the fitness function f{x) for the generation X[7], i.e., the optimum
of the fitness performance measure f{x[7]) of the best individual from the popula-
tion X[z].

Note that to work in the computing manner, an evolutionary machine has to
give some terminal outputs.

At first, let us we consider the following global accepting modes of evolutio-
nary automaton functioning.



218 M. Burgin and E. Eberbach

1. The existential mode is characterized by the rule: An evolutionary automaton
E accepts the generation X[0], e.g., in the form of a word w, given to the level
automaton E[0] as input if and only if there is a level automaton E[z] that ac-
cepts the generation X[t - 1] (which can be also in the form of a word) pro-
duced by the level automaton E[z - 1].

2. The coexistential mode is characterized by the rule: An evolutionary automa-
ton E rejects the generation X[0], e.g., in the form of a word w, given to the
level automaton E[0] as input if and only if there is a level automaton E[¢] that
rejects the generation X[ - 1] (which can be also in the form of a word) pro-
duced by the level automaton E[z - 1].

3. The universal mode is characterized by the rule: An evolutionary automaton E
accepts the generation X[0], e.g., in the form of a word w, given to the level au-
tomaton E[0] as input if and only if all level automata E[f] accept the corres-
ponding generation X[7 - 1] (which can be also in the form of a word) produced
by the level automaton E[f - 1].

4. The couniversal mode is characterized by the rule: An evolutionary automaton
E rejects the generation X[0], e.g., in the form of a word w, given to the level
automaton E[0] as input if and only if all level automata E[¢] reject the corres-
ponding generation X[7 - 1] (which can be also in the form of a word) produced
by the level automaton E[z - 1].

5. The infinitary mode is characterized by the rule: An evolutionary automaton E
accepts the generation X[0] given to the level automaton E[0] as input if and
only if there are infinitely many level automata E[f] each of which accepts the
generation X[ - 1] produced by the level automaton E[z - 1].

6. The cofinitary mode is characterized by the rule: An evolutionary automaton £
accepts the generation X[0] given to the level automaton E[0] as input if and
only if almost all, i.e., all but a finite number of, level automata E[¢] accept the
corresponding generation X[¢ - 1] (which can be also in the form of a word)
produced by the level automaton E[f - 1].

7. The n-ary mode is characterized by the rule: An evolutionary automaton E ac-
cepts the generation X[0] given to the level automaton E[0] as input if and only
if the level automaton E[n] accepts the generation X[7 - 1] produced by the lev-
el automaton E[7 - 1].

8. The complete n-ary mode is characterized by the rule: An evolutionary auto-
maton E accepts the generation X[0] given to the level automaton E[0] as input
if and only if each level automaton E[r] accepts the generation X[f - 1] pro-
duced by the level automaton E[z - 1] forall=0, 1,2, ..., 1.

9. The componential mode when the input is accepted by parts is characterized by
the rule: An evolutionary automaton E accepts the generation X[0], e.g., in the
form of a word w, given to the level automaton E[0] as input if and only if the
generation X[0], e.g., in the form of a word w, consists of parts X, , X; , X5,
..., X, e.g., the word w is equal to wyw, ... wy, and each level automaton E[7]
accepts the corresponding part X, (the word w,) where =0, 1, 2, ... , k.

Let us consider how different modes of functioning influence properties of evolu-
tionary automata and what relations between evolutionary automata they induce.
At first, we reflect on automata working in the accepting mode.
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Definition 3.3 (Burgin 2005). An automaton B is dual to an automaton A if A ac-
cepts a word w if and only if the automaton B rejects w.

For finite automata, duality is characterized linguistically as properties of finite
automata (cf., for example, (Hopcroft et al 2001)) show.

Let us take two finite automata A and B.

Proposition 3.1. The automaton B is dual to the automaton A if and only if L(B) is
equal to the complement CL(A) of the language L(A).

The same result is true for any total automaton, i.e., for an automaton that al-
ways either accepts a word or rejects it.

Proposition 3.2. An automaton B is dual to a total automaton A if and only if L(B)
is equal to the complement CL(A) of the language L(A).

Note that while the dual automaton is uniquely up to the linguistic equivalence
determined in the domain of finite automata, in a general case, for example, for
Turing machines, this not true, i.e., one Turing machine can have many dual Tur-
ing machines. However, in some cases, uniqueness may be true for Turing ma-
chines and more powerful automata.

Proposition 3.3. If A is a total automaton, then its dual automaton is uniquely de-
fined up to the linguistic (functional) equivalence.

Corollary 3.1. If A is a total Turing machine, then its dual Turing machine is uni-
quely defined up to the linguistic equivalence.

Corollary 3.2. If A is a total inductive Turing machine, then its dual inductive
Turing machine is uniquely defined up to the linguistic equivalence.

Corollary 3.3. If A is a total evolutionary finite automaton, then its dual evolutio-
nary finite automaton is uniquely defined up to the linguistic equivalence.

Corollary 3.4. If A is a total evolutionary Turing machine, then its dual evolutio-
nary Turing machine is uniquely defined up to the linguistic equivalence.

Corollary 3.5. If A is a total evolutionary inductive Turing machine, then its dual
evolutionary inductive Turing machine is uniquely defined up to the linguistic
equivalence.

Proposition 3.4. a) An evolutionary machine E working in the global couniversal
accepting mode is dual to the machine £ working in the global universal accepting
mode.
b) An evolutionary machine E working in the global coexistential accepting
mode is dual to the machine E working in the global existential accepting mode.
This result shows that there is a duality between different modes of functioning.
Proposition 3.3 implies the following result..

Proposition 3.5. If an automaton A is total, an automaton B dual to A and an au-
tomaton C dual to B, then the automaton C is functionally and linguistically
equivalent to the automaton A.

We remind that the acceptance language L,..(A) of an automaton A is the set of
all words accepted by A.
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Proposition 3.6. If an evolutionary machine E works either in the global universal
accepting mode or in the infinitary mode or in the cofinitary mode and all its level
automata work in the local accepting mode, then the language L...(E) of E is emp-
ty when at least one of its components does not accept the empty word or it con-
sists only of the empty word.

Indeed, any automaton E[f] with # > 1 does not receive any input or what is
equivalent, receives only the empty word € as its input. Thus, assuming that E
works in the global universal accepting mode, when all automata E[f] accept €, we
have L,..(E) = {€} by the definition of the global universal accepting mode. When
at least one automaton E[¢] does not accept €, we have L,..(E) = & by the same de-
finition.

The same is true when E works in the infinitary mode or in the cofinitary mode.
Proposition 3.7. If an evolutionary machine E works in the global existential ac-
cepting mode and all its level automata work in the local accepting mode, then
there are two possibilities for the language L,..(E) of E: 1) L,..(E) coincides with
the language L,..(E[0]) of E[0] when either E[0] accepts the empty word or all
components E[f] do not accept the empty word;

2) L,..(E) is of the union of the language L,..(E[0]) of its first component E[0]
and the empty word.

Indeed, any automaton E[f] with # > 1 does not receive any input or what is
equivalent, receives only the empty word € as its input. Thus, when all automata
E[t] accept €, we have L,..(E) = L,..(E[0]) by the definition of the global existen-
tial accepting mode.

When all automata E[f] do not accept €, we have L,..(E) = L,..(E[0]) by the
same definition.

When at least one automaton E[f] with 7 > 1 accepts € but E[0] does not accept
€, we have L,..(E) = L,.(E[0]) U{e}by the definition of the global existential ac-
cepting mode.

Proposition 3.7 is proved.

Proposition 3.7 implies the following result.

Corollary 3.6. If an evolutionary machine E works in the global existential ac-
cepting mode, all its level automata work in the local accepting mode and its first
component accepts the empty word, then E is linguistically equivalent to its first
component.

Proposition 3.8. For any n-level evolutionary finite automaton E, complete n-ary
and universal accepting modes give the same results.

This result shows that there is functional equivalence between different modes
of functioning.

Corollary 3.7. The class of all n-level evolutionary finite automata that work in
the complete n-ary accepting mode is linguistically equivalent to the class of all n-
level evolutionary finite automata that work in the universal accepting mode.

In some cases, the structure of an automaton is not correlated with its mode of
functioning.
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Proposition 3.9. The language of an n-level evolutionary finite automaton E =
{E[O] , E[1], E[2], E[3], ..., E[n - 1] } that works in the infinitary accepting
mode is empty.

In some modes of functioning, the structure of an automaton does not influence
the final result.

Proposition 3.10. The language of an n-level evolutionary finite automaton E that
works in the cofinitary accepting mode contains all words in the alphabet of the
automata from K.

In some cases, the evolutionary structure of an automaton does not increase its
power.

Proposition 3.11. The language of an n-level evolutionary finite automaton E that
works in the k-ary mode (k < n) is regular.

Corollary 3.8. The class of all n-level evolutionary finite automata that work in
the n-ary accepting mode is equivalent to the class of all accepting finite automata.

Proposition 3.12. The class of all languages of evolutionary finite automata that
work in the n-ary accepting mode coincides with the class of all regular languages.

Corollary 3.9. The class of all evolutionary finite automata that work in the n-ary
accepting mode is linguistically equivalent to the class of all accepting finite au-
tomata.

Proposition 3.13. For any 1-level evolutionary finite automaton E, 1-ary, com-
plete n-ary for any n > 0, existential and universal accepting modes produce the
same results.

This result shows that there is functional equivalence between different modes
of functioning.

Corollary 3.10. The classes of all 1-level evolutionary finite automata that work
in the complete n-ary accepting mode, of all 1-level evolutionary finite automata
that work in the universal accepting mode, of all 1-level evolutionary finite auto-
mata that work in the existential accepting mode and of all finite automata are lin-
guistically equivalent.

Let us assume that all generations are represented by words in some alphabet.

Proposition 3.14. An n-level evolutionary finite automaton E = {E[0] , E[1], E[2]
, E[3], ..., E[n - 1] } that works in the componential accepting mode is linguisti-
cally equivalent to the sequential composition of the automata E[0] , E[1] , E[2],
E[3],..,En-1].

Corollary 3.11. The class of all evolutionary finite automata that work in the
componential accepting mode is linguistically equivalent to the class of all finite
automata.

Let us also consider global computing modes of basic evolutionary automaton
functioning.
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1. The finite-state mode: any computation is going by state transition where states
belong to a fixed finite set.

2. The bounded mode: the number of steps of all computations is bounded by the
same number.

3. The terminal or finite mode: the number of steps in any computation is finite.

4. The inductive mode: the computation goes into one direction, i.e., without re-
versions, and if for some ¢, the generation X[#] stops changing, i.e., X[f] = X[q]
for all g > ¢, then X[#] is the result of computation.

5. The limit mode: the computation goes into one direction and the result of com-
putation is the limit of the generations X[7].

6. The componential mode when the input is accepted by parts is characterized
by the rule:

An evolutionary automaton E accepts the generation X[0], e.g., in the form of a
word w, given to the level automaton E[0] as input if and only if the generation
X[0], e.g., in the form of a word w, consists of parts X, , X; , X, ..., Xi , e.g., the
word w is equal to wyw, ... wy, and each level automaton E[f] accepts the corres-
ponding part X, (the word w,) where =0, 1,2, ... , k.

Proposition 3.15. If an evolutionary machine E works in the global computing
mode, while all its level automata work in the local accepting mode, then E does
not give output and its language is empty.

This result shows that in some modes of functioning, the structure of an auto-
maton does not influence the final result.

Proposition 3.16. An evolutionary K-machine E that works in the bounded by n
computing mode is functionally equivalent to an n-level evolutionary K-machine
H={H|[0], H[1], H[2],H[3],..,H[n-1] }.

Let us assume that all generations are represented by words in some alphabet.

Proposition 3.17. An n-level evolutionary finite automaton E = {E[0] , E[1], E[2]
, E[3], ..., E[n - 1] } that works in the componential computing mode is function-
ally equivalent to the sequential composition of the automata E[0] , E[1] , E[2] ,
E[3],..,E[n-1].

Corollary 3.12. The class of all evolutionary finite automata that work in the
componential computing mode is functionally equivalent to the class of all finite
automata.

It is proved that functional equivalence is stronger than linguistic equivalence
(Burgin, 2010). This allows us to obtain the following results.

Corollary 3.13. An n-level evolutionary finite automaton E = {E[0] , E[1] , E[2],
E[3], ..., E[n - 1] } that works in the componential mode is linguistically equiva-
lent to the sequential composition of the automata E[0] , E[1] , E[2] , E[3], ...,
E[n-1].

Corollary 3.14. The class of all evolutionary finite automata that work in the
componential mode is linguistically equivalent to the class of all finite automata.
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4 Construction of Evolutionary Machines

Our approach to generation or construction of evolutionary machines is based on
the concept of a reflexive Turing machine suggested as a generic model for soft-
ware and hardware that change (improve) themselves while they are working
(Burgin 1992). This model was developed to test the conjecture of Kleene that an
algorithm that changes (improves) itself while working can have higher computa-
tional/decision power that Turing machines (Kleene 1960). In (Burgin 1992), it is
proved that a Turing machine can simulate any reflexive Turing machine. This
disproved the Kleene conjecture and gave more evidence in support of the
Church-Turing Thesis, although at that time it was known that the Church-Turing
Thesis in its strong form (equating all possible computations with Turing ma-
chines) is invalid (Burgin 1987). In (Eberbach 1993) and (Eberbach 1994) self-
modifying algorithms have been studied in the context of a Calculus of
Self-modifying Algorithms (CSA).

There are different forms of evolutionary machine construction/generation,
which are classified here according to their construction/generation procedure:

1. Local static independent construction (generation) of a basic evolutionary K-
machine E = {E[f]; t =0, 1, 2, ... } is performed by the level automata E[t] so
that E[f] constructs E[t + 1] and the result does not depend on the input to E[f]
and on the previous level automata E[k].

2. Local static sequential construction (generation) of a basic evolutionary K-
machine £ = {E[f]; t =0, 1, 2, ...} is performed by the level automata E[¢] so
that E[f] constructs E[t + 1] and the result does not depend on the input to E[f]
but may depend on the previous level automata E[k].

3. Local dynamic independent construction (generation) of a basic evolutionary
K-machine E = {E[t]; t =0, 1, 2, ... } is performed by the level automata E[t] so
that E[t] constructs E[t + 1] and the result does not on the previous level auto-
mata E[k] but may depend on the input to E[t].

4. Local dynamic sequential construction (generation) of a basic evolutionary K-
machine E = {E[f]; t =0, 1, 2, ... } is performed by the level automata E[t] so
that E[f] constructs E[¢ + 1] and the result depends on the input to E[f] and on
the previous level automata E[k].

5. Global static construction (generation) of a basic evolutionary K-machine E =
{E[f]; t =0, 1, 2, ... } is performed by a separate automaton C so that it con-
structs E and then FE starts working.

6. Global dynamic construction (generation) of a basic evolutionary K-machine £
={E[f]; t =0, 1, 2, ... } is performed by a separate automaton C so that con-
struction of E depends on the first input X[0].

7. Global hyperdynamic construction (generation) of a basic evolutionary K-
machine E = {E[f]; t =0, 1, 2, ... } is performed by a separate automaton C so
that construction of E depends on each input X[z].

Evolutionary machines can be constructed by people, by automata (devices) and in
the process of interaction of people with automata. Here we consider construction
that is controlled by definite rules, i.e., by an algorithm. Such a construction can
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be realized by some automata and it is possible to formalize this process by the
following mathematical schema.

Let us consider two classes of automata K and H, a sort of word sequences Q,
and a mode U of functioning/computation. These parameters determine the follow-
ing types of evolutionary machines:

Unconstrained p-evolutionary K-machines EAK,,
Q-formed p-evolutionary K-machines EAKuQ
H-generated p-evolutionary K-machines HEAK,
Self-constructing p-evolutionary K-machines SCEAK

Let K and G be two classes of automata.

Lemma 4.1. If K c G, then EAK, c EAG,. , EAK,? c EAG,?, HEAK, c
HEAG, and SCEAK, c SCEAG, .
Let Q and P be two classes of word sequences.

Lemma 4.2. If Q c P, then EAKHQ c EAGHQ, HEAK, ¢ HEAG, and SCEAK,
c SCEAG,, .
Let H and F be two classes of automata.

Lemma 4.3. If H c F, then HEAK,, ¢ FEAG,.
This shows that construction of evolutionary automata is a monotone operation.

Theorem 4.1. SCEAK, = KEAK,, .
This shows that construction of evolutionary automata by automata that belong
to the basic class K coincides with self-construction.

Definition 4.1. An evolutionary machine (evolutionary automaton) E is called re-
cursively generated if all (descriptions of the) automata E[f] from the sequence E
={E[t];t=0,1, 2,3, ..} of automata E[f] are generated (formed) by a recursive
algorithm/automaton, e.g., by a Turing machine.

Periodic evolutionary machines are special cases of recursively generated evo-
lutionary machines.

Proposition 4.1. Any periodic evolutionary finite state-transition machine is
equivalent to some recursively generated evolutionary finitely specified state-
transition machine.

Proposition 4.2. Any recursively generated evolutionary inductive Turing ma-
chine has the first order.

Recursively generated evolutionary machines are special cases of self-
constructing evolutionary machine (SBETM) E = { TMg ; TM[¢];t=0,1,2,3, ... }
with a basic constructor.

Definition 4.2. A self-constructing evolutionary machine (SBETM) also called a
self-constructing evolutionary automaton E = { Ax ; E[t]; t=0,1,2,3, ... } witha
basic constructor is a system that consists of a constructing automaton Ag called
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the basic constructor of E and a virtual series of (possibly infinite) automata E[¢]
each working on population X[f] in generations t = 0, 1, 2, 3, ... in the perfor-
mance cycle ¢ where in each cycle ¢ of performance, the automaton Ay constructs
the next automaton E[f + 1] from the descriptions of the automaton E[z], f(x[¢]) and
some parameters of X[7] and each automaton E[f] represents an evolutionary algo-
rithm that works with the population X[¢], and evolved in generations O, 1, 2, ... , t.

As we see, a single automaton Ag — constructor is responsible for evolution of
an evolutionary algorithm. Evolutionary algorithms are embedded in “hardware”
of a series of automata E[z].

In this context, self-constructing evolutionary Turing machines (SBETM) with
a basic constructor introduced form an important class of recursively generated
evolutionary machines.

Definition 4.3. A self-constructing evolutionary Turing machine (SBETM) E =
{TMg ; TM[¢]; t =0, 1, 2, 3, ... } with a basic constructor is a recursively generat-
ed evolutionary machine in which the basic constructor is a Turing machine TM ,
which constructs a (possibly infinite) series of Turing machines TM[¢] each work-
ing on population X[7] in generations =0, 1, 2, 3, ... in the performance cycle ¢.

As we see, a single Turing Machine TMg — constructor is responsible for evolu-
tion of an evolutionary algorithm. Evolutionary algorithms are embedded in
“hardware” of a series of Turing Machines TM[].

Proposition 4.3. Any periodic evolutionary Turing machine is functionally equiv-
alent to some self-constructing evolutionary Turing machine.

Theorem 4.2. For any Turing machine 7, there is a recursively generated evolu-
tionary finite automaton Az that simulates 7" working in the recursive mode.

This result shows that it is possible to use evolutionary construction for simu-
lating more powerful automata by less powerful ones.

Theorem 4.3. For any inductive Turing machine M, there is a recursively generat-
ed evolutionary finite automaton A,, that simulates M working in the inductive
mode.

The inverse result to Theorem 4.2 is also true.

Theorem 4.4. For any recursively generated evolutionary Turing machine E, there
is a Turing machine T that simulates £ working in the recursive mode.

Corollary 4.1. For any recursively generated evolutionary finite automaton E,
there is a deterministic Turing machine 7 that simulates E working in the recur-
sive mode.

Corollary 4.2. The following classes of automata are functionally equivalent:
1) the class DT of all deterministic Turing machines;
2) the class RGET of all recursively generated evolutionary Turing machines.

Corollary 4.3. Recursively generated evolutionary finite automata generate
(accept) all recursively enumerable languages and only such languages.
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Corollary 4.4. Recursively generated evolutionary Turing machines working in
the recursive mode generate (accept) all recursively enumerable languages and
only such languages.

5 Conclusion

We started our chapter with a description of Turing’s unorganized machines that
were supposed to work under the control of some kind of genetic algorithms (note
that Turing never formally defined a genetic algorithm or evolutionary computa-
tion). This was our inspiration. However, our evolutionary machines are closely
related to conventional Turing machines, as well as to the subsequent definitions
of genetic algorithms from 1960-80s. This means that level automata of evolutio-
nary machines are finite automata, pushdown automata or Turing machines rather
than more primitive NAND logic gates of u-machines. Additionally, most of
computability theory has been based on Turing a-machines, whereas Turing
u-machines were almost forgotten. We have introduced several classes of
evolutionary machines, such as bounded, periodic and recursively generated evo-
lutionary machines, and studied relations between these classes, giving an inter-
pretation of how modern u-machines could be formalized and how rich their
computations and types are. Of course, we will never know whether Turing would
accept our definitions of evolutionary automata and formalization of evolutionary
computation.

In addition, it is possible to introduce other classes of evolutionary automata,
for example, evolutionary pushdown automata, evolutionary timed automata or
evolutionary context-free grammars, and to study relations between known
classes of conventional automata and newly introduced classes of evolutionary
automata.

The reader may and should ask the question what is the importance and applica-
tions of the evolutionary machine subclasses introduced in this paper. Do these
subclasses somehow allow us to understand better evolutionary computation, its
power and limits? The current practice of evolutionary computation is captured by
bounded evolutionary machines, where the process of evolution stops after a finite
number of generations, or if we do not observe sufficiently long any changes in so-
Iutions. On the other hand, periodic evolutionary machines allow researchers and
engineers to capture some infinite processes, e.g., a search for a global fitness op-
timum that is a desired goal of evolutionary computation. In fact, the bulk of evolu-
tionary algorithms used currently is static, corresponding to periodic evolutionary
machines with the period 1 (Theorem 4.1. explains why in theory to consider peri-
odic evolutionary machines with period 1 is sufficient). Thus the majority of evolu-
tionary algorithms studied currently are bounded and periodic with the period 1.

Structure of periodic evolutionary machines with period 1 is static because all
components of this machine are the same. When period of a periodic evolutionary
machine is larger than 1, then some limited structural dynamics exists and we ob-
tain more flexibility organizing evolutionary processes.

Recursively generated evolutionary machines represent constructive dynamics
of evolutionary driving forces and mechanisms. Such evolutionary machines form
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the most general class, giving means to describe properly the process of self-
evolution. Of course, the self-evolution is still not sufficiently studied or used
phenomenon, and most researchers use rather static evolutionary algorithms in
their approaches. In the limited form, self-evolution found a wide acceptance in
evolution strategies to speed up the process of search. The future of recursively
generated evolutionary machines, seems to be in the study of evolvable hardware,
and in expanding the venue of evolutionary computation from universal computa-
bility to a wider concept — universal constructability. This means evolutionary ro-
botics should be another area where recursively generated evolutionary machines
would be useful for future study and applications.

Research presented in this paper is only the first step in this direction. There are
open problems solution of which is important for the development of foundations
of evolutionary computations. For instance, Corollary 4.2 implies that there is an
inductive Turing machine M such that no evolutionary Turing machine that works
in the global recursive mode can model M. At the same time, we know (cf., for
example, (Burgin 2005)) that machines that work in the inductive mode are often
more powerful than machines that work in the recursive mode.

Problem 1. Can an inductive Turing machine of the first order simulate an arbi-
trary recursively generated evolutionary inductive Turing machine?

Problem 2. Can an inductive Turing machine of the first order simulate an arbi-
trary periodic evolutionary inductive Turing machine?

We have described here classes of languages generated or accepted by bounded
evolutionary finite automata (cf. Section 2), by recursively generated evolutionary
finite automata (Corollary 4.3) and by recursively generated evolutionary Turing
machines (Corollary 4.4).

Problem 3. What class of languages is generated/accepted by periodic evolutio-
nary finite automata?

Problem 4. What class of languages is generated/accepted by recursively generat-
ed evolutionary inductive Turing machines?

References

Arya, S., Malamatos, T., Mount, D.M.: A simple entropy-based algorithm for planar point
location. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 262—
268 (2001)

Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation.
Oxford University Press, Oxford (1997)

Banks, E.: Information Processing and Transmission in Cellular Automata. PhD thesis.
MIT, Department of Mechanical Engineering (1971)

Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press (1999)

Box, G.E.P.: Evolutionary operation: A method for increasing industrial productivity. Appl.
Statistics VI, 81-101 (1957)

Burgin, M.: Multiple computations and Kolmogorov complexity for such processes. Notic-
es of the Academy of Sciences of the USSR 27(2), (269(4)), 793-797 (1983) (translated
from Russian)



228 M. Burgin and E. Eberbach

Burgin, M.: Reflexive Calculi and Logic of Expert Systems. In: Creative Processes Model-
ing by Means of Knowledge Bases, Sofia, pp. 139-160 (1992)

Burgin, M.: Universal limit Turing machines. Notices of the Russian Academy of
Sciences 325(4), 654—658 (1993) (translated from Russian 46(1), 79-83 (1993))

Burgin, M.: Super-recursive Algorithms as a Tool for High Performance Computing. In:
Proc. of the High Performance Computing Symposium, San Diego, pp. 224-228 (1999)

Burgin, M.: Nonlinear Phenomena in Spaces of Algorithms. International Journal of Com-
puter Mathematics 80(12), 1449-1476 (2003)

Burgin, M.: From Neural networks to Grid Automata. In: Proceedings of the IASTED In-
ternational Conference "Modeling and Simulation”, pp. 307-312. Palm Springs, Cali-
fornia (2003a)

Burgin, M.: Cluster Computers and Grid Automata. In: Proceedings of the ISCA 17th In-
ternational Conference “Computers and their Applications”. International Society for
Computers and their Applications, Honolulu, Hawaii, pp. 106-109 (2003b)

Burgin, M.: Superrecursive Algorithms. Springer, New York (2005)

Burgin, M.: Measuring Power of Algorithms, Computer Programs, and Information Auto-
mata. Nova Science Publishers, New York (2010)

Burgin, M., Eberbach, E.: Cooperative Combinatorial Optimization: Evolutionary Compu-
tation Case Study. BioSystems 91(1), 34-50 (2008)

Burgin, M., Eberbach, E.: Universality for Turing Machines, Inductive Turing Machines
and Evolutionary Algorithms. Fundamenta Informaticae 91(1), 53-77 (2009)

Burgin, M., Eberbach, E.: On Foundations of Evolutionary Computation: An Evolutionary
Automata Approach. In: Mo, H. (ed.) Handbook of Research on Artificial Immune Sys-
tems and Natural Computing: Applying Complex Adaptive Technologies, pp. 342-360.
IGI Global, Hershey (2009a)

Burgin, M., Eberbach, E.: Bounded and Periodic Evolutionary Machines. In: Proc. 2010 Con-
gress on Evolutionary Computation (CEC 2010), Barcelona, Spain, pp. 1379-1386 (2010)
Casselman, S., Thornburg, M., Schewel, J.: Hardware Object Programming on the EVCI -
a Reconfigurable Computer. In: FPGAs for Rapid Board Development & Reconfigura-

ble Computing (Photonics East 1995) (1995)

Chow, H.A., Alnuweiri, H., Casselman, S.: FPGA-Based Transformable Computers for
Fast Digital Signal Processing. In: 3rd Canadian Workshop on Field-Programmable De-
vices (FPD 1995), pp. 25-31 (1995)

Codd, E.F.: Cellular Automata. Academic Press, New York (1968)

Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behavior Engineering. MIT
Press, Cambridge (1997)

Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

Dozier, G.: Evolving robot behavior via interactive evolutionary computation: from real-
world to simulation. In: Proceedings of the 2001 ACM Symposium on Applied Compu-
ting, Las Vegas, Nevada, pp. 340-344 (2001)

Eberbach, E.: Neural Networks and Adaptive Expert Systems in the CSA Approach. Intern.
Journal of Intelligent Systems, Special Issue on Artificial Neural Networks 8(4), 569—
602 (1993)

Eberbach, E.: SEMAL: A Cost Language Based on the Calculus of Self-modifiable Algo-
rithms. Intern. Journal of Software Engineering and Knowledge Engineering 4(3), 391-
408 (1994)

Eberbach, E., Goldin, D., Wegner, P.: Turing’s Ideas and Models of Computation. In:
Teuscher, C. (ed.) Alan Turing: Life and Legacy of a Great Thinker, pp. 159-194.
Springer (2004)



Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 229

Eberbach, E.: Toward a theory of evolutionary computation. BioSystems 82, 1-19 (2005)

Eberbach, E., Burgin, M.: Evolution of Evolution: Self-constructing Evolutionary Turing
Machine Case Study. In: Proc. 2007 Congress on Evolutionary Computation, CEC 2007,
Singapore, pp. 4599-4604 (2007)

Eberbach, E., Burgin, M.: Theoretical Framework for Cooperation and Competition in Evo-
lutionary Computation. In: Proc. 2nd Intern. Conf. on Software and Data Technologies,
ICSOFT 2007, Barcelona, Spain, July 22-25, vol. PL/DPS/KE/MUSE, pp. 229-234
(2007a)

Eberbach, E., Burgin, M.: Evolutionary Automata as Foundation of Evolutionary Computa-
tion: Larry Fogel Was Right. In: Proc. 2009 Congress on Evolutionary Computation,
CEC 2009, Trondheim, pp. 2149-2156 (2009)

Estrin, G.: Organization of Computer Systems-The Fixed Plus Variable Structure Comput-
er. In: Proc. Western Joint Computer Conf., Western Joint Computer Conference, New
York, pp. 33-40 (1960)

Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelli-
gence. IEEE Press (1995)

Fogel, D.B.: An Introduction to Evolutionary Computation. In: Tutorial, Congress on Evo-
lutionary Computation (CEC 2001), Seoul, Korea (2001)

Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolu-
tions. John Wiley, New York (1966)

Fraser, A.S.: Simulation of genetic systems by automatic digital computers. Australian
Journal of Biological Sciences 10, 484—491 (1957)

Freund, R.: Real functions and numbers defined by Turing machines. Theoretical Computer
Science 23(3), 287-304 (1983)

Friedberg, R.M.: A learning machine. IBM J. 2, 2-13 (1958)

Friedberg, R.M., Dunham, B., North, J.H.: A learning machine: Part II. IBM J. 3, 282-287
(1959)

Friedman, G.J.: Selective feedback computers for engineering synthesis and nervous system
analogy. Master’s thesis, UCLA (1956)

Hartenstein, R.: A decade of reconfigurable computing: a visionary retrospective. In: Nebel,
W., Jerraya, A. (eds.) Proceedings of the Conference on Design, Automation and Test in
Europe (DATE 2001), Munich, Germany, pp. 642-649. IEEE Press, Piscataway (2001)

Hauck, S., DeHon, A.: Reconfigurable Computing: The Theory and Practice of FPGA-
Based Computing. Morgan Kaufman (2008)

He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary
algorithms. Nat. Comput. 3, 21-25 (2004)

Holland, J.H.: Adapatation in Natural and Artificial Systems, 2nd edn. Univ. of Michigan
Press, MIT Press, Ann Arbor (1975)

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, Boston (2001)

Ito, T., Ono, K., Ichikawa, M., Okuyama, Y., Kuroda, K.: Reconfigurable Instruction-Level
Parallel Processor Architecture. In: Omondi, A.R., Sedukhin, S.G. (eds.) ACSAC 2003.
LNCS, vol. 2823, pp. 208-220. Springer, Heidelberg (2003)

JiJi, R.D., Andersson, G.G., Booksh, K.S.: Application of PARAFAC for calibration with
excitation—emission matrix fluorescence spectra of three classes of environmental pollu-
tants. J. Chemometrics 14, 171-185 (2000)

Katagami, D., Yamada, S.: Interactive Evolutionary Computation for Real Robot from
Viewpoint of Observation. Joho Shori Gakkai Kenkyu Hokoku (97), 19-24 (2001)



230 M. Burgin and E. Eberbach

Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proc. of the 1995 IEEE Int.
Conf. on Neral Networks, pp. 1942-1948 (1995)

Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann (2001)

Kleene, S.C.: Mathematical logic: constructive and non-constructive operations. In: Pro-
ceedings of the International Congress of Mathematicians, 1958, pp. 137-153. Cam-
bridge University Press, New York (1960)

Koza, J.: Genetic Programming I, I, ITIl. MIT Press (1992, 1994, 1999)

Langton, C.G.: Self-Reproduction in Cellular Automata. Physica D: Nonlinear Phenome-
na 10(1-2), 135-144 (1984)

Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn.
Springer (1996)

Michalewicz, Z., Fogel, D.B.: How to Solve It: Moderrn Heuristics, 2nd edn. Springer
(2004)

Mo, H. (ed.): Handbook of Research on Artificial Immune Systems and Natural Compu-
ting: Applying Complex Adaptive Technologies. IGI Global, Hershey (2009)

Nolfi, S., Floreano, D., Miglino, O., Mondada, F.: How to Evolve Autonomous Robots:
Different Approaches in Evolutionary Robotics. In: Proceedings of the Fourth Interna-
tional Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV),
pp. 190-197 (1994)

Rechenberg, 1.: Evolutionstrategie: Optimierung technischer Systeme nach Prinizipien der
biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart (1973)

Rice, H.G.: Recursive Real Numbers. In: Proceedings of the AMS, vol. 5, pp. 784-791
(1951)

Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural
Networks: Special Issue on EC 5(1), 96-101 (1994)

Teuscher, C.: Turing’s Connectionism: An Investigation of Neural Network Architectures.
Springer-Verlag (2002)

Thornburg, M., Casselman, S.: Transformable Computers. In: International Parallel
Processing Symposium (IPPS 1994), pp. 674-679 (1994)

Trakhtenbrot, B.A., Barzdin, J.M.: Finite automata: behavior and synthesis. North-Holland,
Amsterdam (1973)

Turing, A.: Intelligent Machinery. In: Collected Works of A.M. Turing: Mechanical Intelli-
gence. Elsevier Science (1992)

von Neumann, J.: The general and logical theory of automata. In: Cerebral Mechanisms in
Behavior, The Hixon Symposium, pp. 1-31. Willey, New York (1951)

von Neumann, J.: Theory of Self-Reproducing Automata. In: Burks, A.-W. (ed.) 1949 Uni-
versity of Illinois Lectures on the Theory and Organization of Complicated Automata.
University of Illinois Press, Urbana (1966)

Wiedermann, J.: Characterizing the super-Turing computing power and efficiency of clas-
sical fuzzy Turing machines. Theoretical Computer Science 317(1-3), 61-69 (2004)

Wolpert, D.H., Macready, W.G.: No free lunch theorem for optimization. IEEE Trans.
Evol. Comput. 1(1), 67-82 (1997)

Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423-1447
(1999)

Zadeh, L.A.: Fuzzy algorithms. Information and Control 12, 94-102 (1968)

Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and
Pattern Recognition. In: Advances in Fuzzy Systems - Applications and Theory, vol. 10
(1996)



On Dynamical Systems of Large Girth
or Cycle Indicator and Their
Applications to