

Studies in Computational Intelligence 427

Editor-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/7092

Xin-She Yang (Ed.)

Artificial Intelligence,
Evolutionary Computing
and Metaheuristics

In the Footsteps of Alan Turing

ABC

Editor
Xin-She Yang
National Physical Laboratory
Mathematics and Scientific Computing
Teddington
UK

ISSN 1860-949X e-ISSN 1860-9503
ISBN 978-3-642-29693-2 e-ISBN 978-3-642-29694-9
DOI 10.1007/978-3-642-29694-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012936118

c© Springer-Verlag Berlin Heidelberg 201
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

3

To Alan Turing

Preface

Alan Turing pioneered many research areas from artificial intelligence to com-
putability, from cryptography to heuristics and from Fabonacci phyllotaxis to
pattern formation. He had worked in many prestigious institutions, including Cam-
bridge University, Princeton University, National Physical Laboratory, and Manch-
ester University. 2012 is the Alan Turing year – a centenary celebration of the life
and work of Alan Turing.

In 1945, Turing was recruited to the National Physical Laboratory (NPL), UK
where he set out his design for the Automatic Computing Engine (ACE). During
this time, he lived at High Street, Hampton, Richmond upon Thames where a blue
plaque is still visible on that street. In an NPL report on Intelligent machinery in
1948, he outlined his innovative ideas of machine intelligence and learning, neural
networks and evolutionary algorithms. This little known report had in fact inspired
a wide range of research areas.

Nowadays at the information age, it is hard to imagine how the world would
be without computers and the Internet, in addition to many other crucial things.
Without Turing’s work, especially the “Turing Machine” concept at the heart of
every computer and microchip today, so many things on which we are so dependent
would not be possible. No wonder there are a series of important events worldwide
this year to celebrate the life and work, the far-reaching legacy of Alan Turing.
For example, one of the most prestigious journal Nature edited a special collection
Turing at 100: Legacy of a Universal Mind in February this year. Meanwhile, the
Turing Centenary Conference: How the World Computes will be held at Cambridge
University coincides with the 100th Birthday of Alan Turing.

To celebrate Turing’s legacy and to follow the footsteps of this brilliant mind,
we take this golden opportunity in the 2012 Turing year to review the latest de-
velopments in areas of artificial intelligence, evolutionary computation and meta-
heuristics, and all these areas can be traced back to Turing’s pioneer work. The
responses to our call of celebration were overwhelming, we have received a huge
number of high quality contributions. As the limitation of the space of this book,
we have to choose over two dozen papers whiling leaving many high-quality papers
not included in this book. We tried to main a balance in topics coverage, relevance

VIII Preface

to Turing’s work, and state of the art. Among our contributors to this book, many
are world-leading experts in their areas. Their reviews and contributions not only
provide a timely snapshot of the state-of-art developments, but also provide inspira-
tion for young researchers to carry out potentially ground-breaking research in these
active, diverse research areas.

Unintentionally following the footsteps of Alan Turing, I was fortunate enough,
a few years ago, to move from Cambridge University to join National Physical Lab-
oratory to work as a Senior Research Scientist at Mathematics and Scientific Com-
puting where Alan Turing had worked. Turing has been one of major influences
on my research concerning metaheuristics and pattern formation. When I watched
many BBC natural world programmes, I have always been trying to look for in-
spiration from nature to design new metaheuristic algorithms. Over the last few
years, I had managed to realize such dreams by developing bat algorithm, cuckoo
search, and firefly algorithms, which start to attract attention in the communities of
optimization, computational intelligence and engineering. Without Turing’s work
on heuristics, it would almost be impossible to develop these new metaheuristics.
Furthermore, loosely speaking, artificial intelligence also largely concerns the core
algorithms to mimic intelligent behaviour, unless a true Turing test can be passed in
the future, truly intelligent algorithms may still be a long way to go. However, on
the other hand, evolutionary algorithms and metaheuristics have become an impor-
tant part of so-called ‘smart algorithms’ and computational intelligence. They have
started to permeate into many areas including artificial intelligence. Therefore, it
is appropriate that we combine artificial intelligence, evolutionary computation and
metaheuristics in one book and dedicate this book to Alan Turing.

During the peer-review process, many experts have carried out independent re-
view of contributions. I would like to thank their help: Alma Garcia-Almanza,
Ravindra Babu Tallamraju, Tamiru Alemu, Elena Benderskaya, Dalila Boughaci,
Meftah Boudjelal, Larry Bull, Susmita Bandyopadhyay, Erik Cuevas, Amy Ding,
Yue Deng, Janice Glasgow, Loreto Gonzalez-Hernandez, Yacine Laalaoui, Keyur
Rana, Felipe Trujillo-Romero, Ricardo Sousa, Flvio Vieira, Abderrahmane Nitaj,
Shahid Qamar, Vasyl Ustimenko, and Roman Yampolskiy. Special thanks to Ri-
cardo Sousa and Vasyl Ustimenko who helped most in the review process.

I would like to thank our editors, Drs Thomas Ditzinger and Holger Schaepe, and
staff at Springer for their help and professionalism. Last but not least, I thank my
family for the help and support.

Xin-She Yang, 2012

Contents

Part I: Artificial Intelligence and Cryptography

Turing Test as a Defining Feature of AI-Completeness 3
Roman V. Yampolskiy

Artificial Intelligence Evolved from Random Behaviour: Departure
from the State of the Art . 19
Wiesław Pietruszkiewicz, Akira Imada

Turing: Then, Now and Still Key . 43
Kieran Greer

Imitation Programming Unorganised Machines . 63
Larry Bull

Towards Machine Equivalent Consciousness . 83
Amy Wenxuan Ding

Multicriteria Models for Learning Ordinal Data: A Literature
Review . 109
Ricardo Sousa, Iryna Yevseyeva, Joaquim F. Pinto da Costa,
Jaime S. Cardoso

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 139
Abderrahmane Nitaj

Artificial Intelligence Methods in Early Childhood Education 169
Jim Prentzas

Recursively Generated Evolutionary Turing Machines and
Evolutionary Automata . 201
Mark Burgin, Eugene Eberbach

X Contents

On Dynamical Systems of Large Girth or Cycle Indicator and Their
Applications to Multivariate Cryptography . 231
Vasyl Ustimenko, Urszula Romańczuk

On Extremal Graph Theory, Explicit Algebraic Constructions of
Extremal Graphs and Corresponding Turing Encryption Machines 257
Vasyl Ustimenko, Urszula Romańczuk

AIML Knowledge Base Construction from Text Corpora 287
Giovanni De Gasperis, Isabella Chiari, Niva Florio

Multidisciplinary Trends in Modern Artificial Intelligence:
Turing’s Way . 319
Elena N. Benderskaya, Sofya V. Zhukova

An Overview of Computational Sparse Models and Their Applications
in Artificial Intelligence . 345
Yue Deng, Qionghai Dai, Zengke Zhang

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations
for Constructing Mixed Covering Arrays . 371
Loreto Gonzalez-Hernandez, Jose Torres-Jimenez, Nelson Rangel-Valdez

Part II: Evolutionary Computation and Metaheuristics

Metaheuristic Optimization: Nature-Inspired Algorithms and
Applications . 405
Xin-She Yang

Bat Algorithm and Cuckoo Search: A Tutorial . 421
Xin-She Yang

Memory and Learning in Metaheuristics . 435
Arif Arin, Ghaith Rabadi

On Some Aspects of Nature-Based Algorithms to Solve
Multi-Objective Problems . 477
Susmita Bandyopadhyay, Ranjan Bhattacharya

Image Processing with Spiking Neuron Networks . 525
Boudjelal Meftah, Olivier Lézoray, Soni Chaturvedi, Aleefia A. Khurshid,
Abdelkader Benyettou

Circle Detection on Images Using Learning Automata 545
Erik Cuevas, Fernando Wario, Daniel Zaldivar, Marco Pérez-Cisneros

Decision Incorporation in Meta-heuristics to Cope with Decision
Scheduling Problems . 571
Yacine Laalaoui, R.B. Ahmad

Contents XI

Evolutionary Models for Agent-Based Complex Behavior Modeling 601
Zengchang Qin, Yingsai Dong, Tao Wan

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach
to Improve Understandability . 633
Alma Lilia Garcia-Almanza, Biliana Alexandrova-Kabadjova,
Serafin Martinez-Jaramillo

Neural Network Based Approaches for Network Traffic Prediction 657
Flávio Henrique Teles Vieira, Victor Hugo Teles Costa,
Bruno Henrique Pereira Gonçalves

Application of Bat Algorithm and Fuzzy Systems to Model Exergy
Changes in a Gas Turbine . 685
A.L. Tamiru, F.M. Hashim

A KBRL Inference Metaheuristic with Applications 721
Laurentiu Bucur, Adina Florea, Catalin Chera

Multi-objective Simulated Annealing Algorithm for Partner Selection
in Virtual Enterprises . 751
Hisham M. Abdelsalam, Amany M. Mohamed

Metaheuristic Approaches for the Winner Determination Problem in
Combinatorial Auction . 775
Dalila Boughaci

Author Index . 793

List of Contributors

Editor:

Xin-She Yang
Mathematics and Scientific Computing, National Physical Laboratory, Teddington
TW11 0LW, UK
E-mail: xin-she.yang@npl.co.uk

Contributors:

Hisham M. Abdelsalam
Operations Research and Decision Support Department, Faculty of Computers and
Information, Cairo University, Cairo, Egypt
E-mail: h.abdelsalam@fci-cu.edu.eg

Biliana Alexandrova-Kabadjova
Av. 5 de Mayo No. 1, Col. Centro, Banco de México, Mexico
E-mail: balexandrova@banxico.org.mx

Arif Arin
Old Dominion University, Dept. of Engineering Management & Systems
Engineering, 241 Kaufman Hall, Norfolk, VA 23529, USA
E-mail: arifarin@yahoo.com

R. Badlishah Ahmad
Computer and Communication School, UniMAP, Kangar, Perlis, Malaysia

Susmita Bandyopadhyay
Department of Production Engineering, Jadavpur University, Raja S. C. Mallick
Road, Kolkata, West Bengal, 700032 India
E-mail: bandyopadhyaysusmita2011@gmail.com

XIV List of Contributors

Elena N. Benderskaya
St. Petersburg State Polytechnical University, Faculty of Computer Science,
St. Petersburg, Politechnicheskaya 21, 194021 Russia
E-mail: helen.bend@gmail.com

Abdelkader Benyettou
Laboratoire Signal Image et Parole, Université Mohamed Boudiaf, Oran, Algérie

Ranjan Bhattacharya
Department of Production Engineering, Jadavpur University, Raja S.C. Mallick
Road, Kolkata, West Bengal, 700032 India
E-mail: rbhattacharya@production.jdvu.ac.in

Dalila Boughaci
USTHB, BP 32 El-Alia, Beb-Ezzouar, 16111 Algiers
E-mail: dalila info@yahoo.fr

Laurentiu Bucur
POLITEHNICA University of Bucharest, Department of Computer Science and
Engineering, Splaiul Independenei nr. 313, 060042, Bucharest, Romania
E-mail: laur.bucur@gmail.com

Larry Bull
Department of Computer Science & Creative Technologies, The University of the
West of England, Frenchay, BRISTOL BS16 1QY, UK
E-mail: Larry.bull@uwe.ac.uk

Mark Burgin
Department of Mathematics, University of California, 405 Hilgard Avenue,
Los Angeles, CA 90095, USA

Jaime S. Cardoso
INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378, 4200 - 465 Porto,
Portugal
E-mail: jaime.cardoso@inescporto.pt

Soni Chaturvedi
Priyadarshini Institute of Engineering and Technology, Nagpur Maharashtra, India

Catalin Chera
POLITEHNICA University of Bucharest, Department of Computer Science and
Engineering, Splaiul Independenei nr. 313, 060042, Bucharest, Romania

List of Contributors XV

Isabella Chiari
Dipartimento di Scienze documentarie, linguistico-filologiche e geografiche,
Università degli Studi di Roma “La Sapienza”, Roma, Italy
E-mail: isabella.chiari@uniroma1.it

Joaquim F. Pinto da Costa
CMUP, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre
1021/1055, 4169 - 007, Porto, Portugal
E-mail: jpcosta@fc.up.pt

Victor Hugo Teles Costa
School of Electrical and Computer Engineering (EEEC) of the Federal University
of Goiás (UFG), Av. Universitria, 1488, Quadra 86, Bloco A, 3opiso. CEP:
74.605-010. Setor Leste Universitário. Goiânia, Goiás, Brazil

Erik Cuevas
Universidad de Guadalajara, Av. Revolución 1500, Col. Olı́mpica, Mexico
E-mail: erik.cuevas@cucei.udg.mx

Qionghai Dai
Department of Automation, Tsinghua Nationality Lab for information science and
technology (TNList), Tsinghua University, Beijing 100084, China
E-mail: qhdai@tsinghua.edu.cn

Yue Deng
Department of Automation, Tsinghua Nationality Lab for information science and
technology (TNList), Tsinghua University, Beijing, 100084, China
E-mail: dengyue08@mails.tsinghua.edu.cn

Amy Wenxuan Ding
Indiana University, PO Box 5355, Bloomington, IN 47407, USA
E-mail: dingcmu@yahoo.com

Yingsai Dong
37 Xueyuan Road, Beihang University Haidian District, Beijing, 100191, China

Eugene Eberbach
Department of Engineering and Science, Rensselaer Polytechnic Institute,
275 Windsor Street, Hartford, CT 06120, USA
E-mail: eberbe@rpi.edu

Adina Florea
POLITEHNICA University of Bucharest, Department of Computer Science and
Engineering, Splaiul Independenei nr. 313, 060042, Bucharest, Romania

XVI List of Contributors

Niva Florio
Dipartimento di Ingegneria e Scienze dell’Informazione, Matematica,
Università degli Studi dell’Aquila, L’Aquila, Italy
E-mail: niva.florio@univaq.it

Bruno Henrique Pereira Gonçalves
School of Electrical and Computer Engineering (EEEC) of the Federal University
of Goiás (UFG), Av. Universitria, 1488, Quadra 86, Bloco A, 3opiso. CEP:
74.605-010. Setor Leste Universitário. Goiânia, Goiás, Brazil

Alma Lilia Garcia-Almanza
Av. 5 de Mayo No. 1, Col. Centro, Banco de México, Mexico
E-mail: algarcia@banxico.org.mx

Giovanni De Gasperis
Dipartimento di Ingegneria e Scienze dell’Informazione, Matematica,
Università degli Studi dell’Aquila, L’Aquila, Italy
E-mail: giovanni.degasperis@univaq.it

Loreto Gonzalez-Hernandez
CINVESTAV-Tamaulipas, Km. 5.5 Carretera Cd. Victoria-Soto la Marina, 87130,
Cd. Victoria Tamps., Mexico
E-mail: agonzalez@tamps.cinvestav.mx

Kieran Greer
Distributed Computing Systems, 48 Salisbury Court, Belfast BT7 1DD, Co.
Antrim, UK
E-mail: kieran.greer@ntlworld.com

Fakhruldin Bin Mohd Hashim
Department of Mechanical Engineering, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Malaysia
E-mail: fakhruldin mhashim@petronas.com.my

Akira Imada
Intelligent Information Technologies Department, Brest State Technical University,
Moskowskaja Street, 267, Brest 224017, Belarus
E-mail: akira-i@brest-state-tech-univ.org

Aleefia A.Khurshid
Priyadarshini Institute of Engineering and Technology, Nagpur Maharashtra, India

List of Contributors XVII

Yacine Laalaoui
Computer and Communication School, UniMAP, Kangar, Perlis, Malaysia
E-mail: yacine.laalaoui@gmail.com

Olivier Lézoray
Université de Caen Basse-Normandie, GREYC UMR CNRS 6072, 6 Bd. Maréchal
Juin, F-14050, Caen, France

Serafin Martinez-Jaramillo
Av. 5 de Mayo No. 1, Col. Centro, Banco de México, Mexico
E-mail: smartin@banxico.org.mx

Boudjelal Meftah
Equipe EDTEC, Université de Mascara, Mascara, Algérie
E-mail: meftahb@yahoo.fr

Amany M. Mohamed
Decision Support and Future Studies Center, Faculty of Computer and Information,
Cairo University, Cairo, Egypt

Abderrahmane Nitaj
Laboratoire de Mathématiques Nicolas Oresme, Université de Caen, B.P. 5186,
14032 Caen Cedex, France
E-mail: abderrahmane.nitaj@unicaen.fr

Jim Prentzas
Democritus University of Thrace, School of Education Sciences,
Department of Education Sciences in Pre-School Age, Laboratory of Informatics,
68100 Nea Chili, Alexandroupolis, Greece
E-mail: dprentza@psed.duth.gr

Marco Pérez-Cisneros
Universidad de Guadalajara, Av. Revolución 1500, Col. Olı́mpica, Mexico

Dr Wiesław Pietruszkiewicz
Faculty of Computer Science and Information Technology West Pomeranian
University of Technology in Szczecin, ul. Żołnierska 49, 71-210 Szczecin, Poland
E-mail: wieslaw@pietruszkiewicz.com

Ghaith Rabadi
Old Dominion University, Dept. of Engineering Management & Systems
Engineering, 241 Kaufman Hall, Norfolk, VA 23529, USA
E-mail: grabadi@odu.edu

XVIII List of Contributors

Urszula Romańczuk
Institute of Telecommunications and Global Information Space, Kiev, National
Academy of Science of Ukraine, Chokolovsky Boulevard 13, Kiev, Ukraine

Zengchang Qin
37 Xueyuan Road, Beihang University Haidian District, Beijing, 100191, China
E-mail: zengchang.qin@gmail.com

Nelson Rangel-Valdez
Universidad Politécnica de Victoria, Km. 5.5 Carretera Cd. Victoria-Soto la Marina,
87138, Cd. Victoria Tamps., Mexico
E-mail: nrangelv@upv.edu.mx

Ricardo Jorge Gamelas de Sousa
INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378 4200 - 465 Porto
Portugal
E-mail: rjgsousa@gmail.com

A.L. Tamiru
Department of Mechanical Engineering, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Malaysia

Jose Torres-Jimenez
CINVESTAV-Tamaulipas, Km. 5.5 Carretera Cd. Victoria-Soto la Marina, 87130,
Cd. Victoria Tamps., Mexico
E-mail: jtj@cinvestav.mx

Vasyl Ustimenko
Maria Curie-Skłodowska University in Lublin, Pl. Marii Curie-Skłodowskiej 5,
Lublin, Poland
E-mail: vasyl@hektor.umcs.lublin.pl

Flávio Henrique Teles Vieira
School of Electrical and Computer Engineering (EEEC) of the Federal University
of Goiás (UFG), Av. Universitria, 1488, Quadra 86, Bloco A, 3opiso.
CEP: 74.605-010. Setor Leste Universitário. Goiânia, Goiás, Brazil
E-mail: flavio@eee.ufg.br

Tao Wan
37 Xueyuan Road, Beihang University Haidian District, Beijing, 100191, China

Fernando Wario
Universidad de Guadalajara, Av. Revolución 1500, Col. Olı́mpica, Mexico

List of Contributors XIX

Roman V. Yampolskiy
Computer Engineering and Computer Science, DC 215, University of Louisville,
KY 40292, USA
E-mail: roman.yampolskiy@louisville.edu

Xin-She Yang
Mathematics and Scientific Computing, National Physical Laboratory,
Teddington TW11 0LW, UK
E-mail: xin-she.yang@npl.co.uk

Iryna Yevseyeva
Computer Science and Communication Research Center, Polytechnic Institute of
Leiria, Edifı́cio Sede, Rua General Norton de Matos, Apartado 4133, 2411-901
Leiria, Portugal
E-mail: iryna.yevseyeva@gmail.com

Daniel Zaldivar
Universidad de Guadalajara, Av. Revolución 1500, Col. Olı́mpica, Mexico

Zengke Zhang
Department of Automation, Tsinghua Nationality Lab for information science and
technology (TNList), Tsinghua University, Beijing 100084, China
E-mail: zzk@tsinghua.edu.cn

Sofya V. Zhukova
St. Petersburg State University, Graduate School of Management, St. Petersburg
Volkhovsky Per. 3, Russia 199004
E-mail: sophya.zhukova@gmail.com

Part I
Artificial Intelligence

and Cryptography

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 3–17.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

Turing Test as a Defining Feature
of AI-Completeness

Roman V. Yampolskiy*

Abstract. The paper contributes to the development of the theory of AI-
Completeness by formalizing the notion of AI-Complete, C-Complete and
AI-Hard problems. The intended goal is to provide a classification of problems in
the field of Artificial General Intelligence. We prove Turing Test to be an instance
of an AI-Complete problem and further show certain AI problems to be
AI-Complete or AI-Hard via polynomial time reductions. Finally, the paper sug-
gests some directions for future work on the theory of AI-Completeness.

Keywords: AI-Complete, AI-Easy, AI-Hard, Human Oracle.

1 Introduction

Since its inception in the 1950s the field of Artificial Intelligence has produced
some unparalleled accomplishments while at the same time failing to formalize
the problem space it is concerned with. This paper proposes to address this short-
coming by extends on the work in [56] and contributing to the theory of AI-
Completeness, a formalism designed to do for the field of AI what notion of
NP-Completeness did for computer science in general. It is our belief that such
formalization will allow for even faster progress in solving remaining problems in
humankind’s conquest to build an intelligent machine.

According to the encyclopedia Wikipedia the term “AI-Complete” was pro-
posed by Fanya Montalvo in the 1980s [54]. A somewhat general definition of the
term included in the 1991 Jargon File [37] states:

“AI-Complete: [MIT, Stanford, by analogy with `NP-complete'] adj. Used to de-
scribe problems or subproblems in AI, to indicate that the solution presupposes a
solution to the `strong AI problem' (that is, the synthesis of a human-level intelli-
gence). A problem that is AI-complete is, in other words, just too hard. Examples

Roman V. Yampolskiy
Computer Engineering and Computer Science, DC 215,
University of Louisville, KY 40292
e-mail: roman.yampolskiy@louisville.edu

3

4 R.V. Yampolskiy

of AI-complete problems are `The Vision Problem', building a system that can see
as well as a human, and `The Natural Language Problem', building a system that
can understand and speak a natural language as well as a human. These may ap-
pear to be modular, but all attempts so far (1991) to solve them have foundered on
the amount of context information and `intelligence' they seem to require.”

As such, the term “AI-Complete” (or sometimes AI-Hard) has been a part of
the field for many years and has been frequently brought up to express difficulty
of a specific problem investigated by researchers (see [31, 26, 15, 36, 6, 20, 32,
33, 10, 27, 28, 29, 16, 23, 55]). This informal use further encouraged similar con-
cepts to be developed in other areas of science: Biometric-Completeness [36],
ASR-Complete [30]. While recently numerous attempts to formalize what it
means to say that a problem is “AI-Complete” have been published [2, 41, 11]
even before such formalization attempts systems which relied on humans to solve
problems which were perceived to be AI-Complete were utilized:

• AntiCaptcha systems use humans to break CAPTCHA security protocol [2,

58, 59, 63] either by directly hiring cheap workers in developing countries [5]
or by rewarding correctly solved CAPTCHAs with presentation of porno-
graphic images [52].

• Chinese Room philosophical argument by John Searle shows that including a
human as a part of a computational system may actually reduce its perceived
capabilities such as understanding and consciousness [40].

• Content Development online projects such as Encyclopedias (Wikipedia,
Conservapedia), Libraries (Project Gutenberg, Video collections (YouTube)
and Open Source Software (SourceForge) all rely on contributions from
people for content production and quality assurance.

• Cyphermint a check cashing system relies on human workers to compare a
snapshot of a person trying to perform a financial transaction to a picture of a
person who initially enrolled with the system. Resulting accuracy outperforms
any biometric system and is almost completely spoof proof (see cypher-
mint.com for more info).

• Data Tagging systems entice user into providing meta-data for images, sound
or video files. A popular approach involves developing an online game which
as a byproduct of participation produces a large amount of accurately labeled
data [1].

• Distributed Proofreaders employs a number of human volunteers to elimi-
nate errors in books created by relying on Optical Character Recognition
process. (see pgdp.net for more info).

• Interactive Evolutionary Computation algorithms use humans in place of a
fitness function to make judgments regarding difficult to formalize concept
such as esthetic beauty or taste [47].

• Mechanical Turk is an Amazon.com’s attempt at creating Artificial Intelli-
gence. Humans are paid varying amounts for solving problems which are be-
lieved to be beyond current abilities of AI programs (see mturk.com for more

Turing Test as a Defining Feature of AI-Completeness 5

info). The general idea behind the Turk has a broad appeal and the researchers
are currently attempting to bring it to the masses via the Generalized Task
Markets (GTM) [42, 19, 18, 21].

• Spam Prevention is easy to accomplish by having humans vote on emails
they receive as spam or not. If a certain threshold is reached a particular piece
of email could be said to be spam with a high degree of accuracy [13].

Recent work has attempted to formalize the intuitive notion of AI-Completeness.
In particular three such endowers are worth reviewing [56]:

In 2003 Ahn et al. [2] attempted to formalize the notion of an AI-Problem and
the concept of AI-Hardness in the context of computer security. An AI-Problem
was defined as a triple: “ , , , where S is a set of problem instances, D
is a probability distribution over the problem set S, and f : S {0; 1}* answers
the instances. Let δ ∈ (0; 1]. We require that for an > 0 fraction of the humans
H, PrxD [H(x) = f(x)] > δ… An AI problem is said to be (δ,)-solved if there
exists a program A, running in time at most on any input from S, such that
PrxD,r [Ar(x)=f(x)] δ. (A is said to be a (δ,) solution to .) is said to be a
(δ,)-hard AI problem if no current program is a (δ,) solution to , and the AI
community agrees it is hard to find such a solution.” It is interesting to observe
that the proposed definition is in terms of democratic consensus by the AI com-
munity. If researchers say the problem is hard, it must be so. Also, time to solve
the problem is not taken into account. The definition simply requires that some
humans be able to solve the problem [2].

In 2007 Shahaf and Amir [41] have published their work on the Theory of AI-
Completeness. Their paper presents the concept of the Human-Assisted Turing
Machine and formalizes the notion of different Human Oracles (see Section on
Human Oracles for technical details). Main contribution of the paper comes in the
form of a method for classifying problems in terms of human-versus-machine ef-
fort required to find a solution. For some common problems such as Natural Lan-
guage Understanding (NLU) the paper proposes a method of reductions allowing
conversion from NLU to the problem of Speech Understanding via Text-To-
Speech software.

In 2010 Demasi et al. [11] presented their work on problem classification for
Artificial General Intelligence (AGI). The proposed framework groups the prob-
lem space into three sectors:

• Non AGI-Bound: Problems that are of no interest to AGI researchers.
• AGI-Bound: Problems that require human level intelligence to be

solved.
• AGI-Hard: Problems that are at least as hard as any AGI Bound

problem.

The paper also formalizes the notion of Human Oracles and provides a number of
definitions regarding their properties and valid operations.

6 R.V. Yampolskiy

2 The Theory of AI-Completeness

From people with mental disabilities to geniuses human minds are cognitively diverse
and it is well known that different people exhibit different mental abilities. We define a
notion of a Human Oracle (HO) function capable of computing any function computa-
ble by the union of all human minds. In other words any cognitive ability of any hu-
man being is repeatable by our HO. To make our Human Oracle easier to understand
we provide the following illustration of the Human function:

String Human (String input) {

 \/ \/ \/ ••• \/
return output; }

Fig. 1 Human oracle: HumanBest – a union of minds

Such a function would be easy to integrate with any modern programming lan-
guage and would require that the input to the function be provided as a single
string of length N and the function would return a string of length M. No specific
encoding is specified for the content of strings N or M and so they could be either
binary representations of data or English language phrases both being computa-
tionally equivalent. As necessary the human function could call regular TM func-
tions to help in processing of data. For example, a simple computer program
which would display the input string as a picture to make human comprehension
easier could be executed. Humans could be assumed to be cooperating perhaps
because of a reward. Alternatively, one can construct a Human function which in-
stead of the union of all minds computes the average decision of all human minds
on a problem encoded by the input string as the number of such minds goes to in-
finity. To avoid any confusion we propose naming the first HO HumanBest and the
second HO HumanAverage. Problems in the AI domain tend to have a large degree
of ambiguity in terms of acceptable correct answers. Depending on the problem at
hand the simplistic notion of an average answer could be replaced with an aggre-
gate answer as defined in the Wisdom of Crowds approach [46]. Both functions
could be formalized as Human-Assisted Turing Machines [41].

Human function is an easy to understand and use generalization of the Human
Oracle. One can perceive it as a way to connect and exchange information with a
real human sitting at a computer terminal. While easy to intuitively understand,
such description is not sufficiently formal. Shahaf et al. have formalized the notion
of Human Oracle as an HTM [41]. In their model a human is an oracle machine
that can decide a set of languages Li in constant time: H ⊆{Li | Li ⊆ ∑*}. If time
complexity is taken into account answering a question might take a non-constant
time: H ⊆{<Li , fi> | Li ⊆ ∑*, fi : } there fi is the time-complexity function

Turing Test as a Defining Feature of AI-Completeness 7

for language Li, meaning the human can decide if x ∈ Li in fi (|x|) time. In order to
realistically address capabilities of individual humans a probabilistic oracle was
also presented which provided correct answers with probability p: H ⊆{<Li , pi> |
Li ⊆ ∑*, 0 ≤ pi ≤ 1}. Finally the notion of reward is introduced into the model to
capture humans improved performance on “paid” tasks: H ⊆{<Li , ui> | Li ⊆ ∑*, ui
: } where ui is the utility function [41].

2.1 Definitions

Definition 1: A problem C is AI-Complete if it has two properties:

1. It is in the set of AI problems (Human Oracle solvable).
2. Any AI problem can be converted into C by some polynomial time

algorithm.

Definition 2: AI-Hard: A problem H is AI-Hard if and only if there is an AI-
Complete problem C that is polynomial time Turing-reducible to H.

Definition 3: AI-Easy: The complexity class AI-easy is the set of problems that
are solvable in polynomial time by a deterministic Turing machine with an oracle
for some AI problem. In other words, a problem X is AI-easy if and only if there
exists some AI problem Y such that X is polynomial-time Turing reducible to Y.
This means that given an oracle for Y, there exists an algorithm that solves X in
polynomial time.

Figure 2 illustrates relationship between different AI complexity classes. Right
side illustrates the situation if it is ever proven that AI-problems = AI-Complete
problems. Left side shows the converse.

Fig. 2 Relationship between AI complexity classes

8 R.V. Yampolskiy

2.2 Turing Test as the First AI-Complete Problem

In this section we will show that a Turing Test [50] problem is AI-Complete. First
we need to establish that Turing Test is indeed an AI problem (HO solvable). This
trivially follows from the definition of the test itself. The test measures if a hu-
man-like performance is demonstrated by the test taker and Human Oracles are de-
fined to produce human level performance. While both “human” and “intelligence
test” are intuitively understood terms we have already shown that Human Oracles
could be expressed in strictly formal terms. The Turing Test itself also could be
formalized as an interactive proof [45, 8, 44].

Second requirement for a problem to be proven to be AI-Complete is that any other
AI problem should be convertible into an instance of the problem under consideration
in polynomial time via Turing reduction. Therefore we need to show how any problem
solvable by the Human function could be encoded as an instance of a Turing Test. For
any HO-solvable problem h we have a String input which encodes the problem and a
String output which encodes the solution. By taking the input as a question to be used
in the TT and output as an answer to be expected while administering a TT we can see
how any HO-solvable problem could be reduced in polynomial time to an instance of a
Turing Test. Clearly the described process is in polynomial time and by similar algo-
rithm any AI problem could be reduced to TT. It is even theoretically possible to con-
struct a complete TT which utilizes all other problems solvable by HO by generating
one question from each such problem.

2.3 Reducing Other Problems to TT

Having shown a first problem (Turing Test) to be AI-Complete the next step is to
see if any other well-known AI-problems are also AI-complete. This is an effort
similar to the work of Richard Carp who has shown some 21 problems to be NP-
Complete in his 1972 paper and by doing so started a new field of Computational
Complexity [22]. According to the Encyclopedia of Artificial Intelligence [43]
published in 1992 the following problems are all believed to be AI-Complete and
so will constitute primary targets for our effort of proving formal AI-
Completeness on them [43]:

• Natural Language Understanding – “Encyclopedic knowledge is required
to understand natural language. Therefore, a complete Natural Language sys-
tem will also be a complete Intelligent system.”

• Problem Solving – “Since any area investigated by AI researchers may be
seen as consisting of problems to be solved, all of AI may be seen as involv-
ing Problem Solving and Search”.

• Knowledge Representation and Reasoning – “…the intended use is to use
explicitly stored knowledge to produce additional explicit knowledge. This is
what reasoning is. Together Knowledge representation and Reasoning can be
seen to be both necessary and sufficient for producing general intelligence – it
is another AI-complete area.”

Turing Test as a Defining Feature of AI-Completeness 9

• Vision or Image Understanding – “If we take “interpreting” broadly
enough, it is clear that general intelligence may be needed to do this interpre-
tation, and that correct interpretation implies general intelligence, so this is
another AI-complete area.”

Now that Turing Test has been proven to be AI-Complete we have an additional
way of showing other problems to be AI-Complete. We can either show that a
problem is both in the set of AI problems and all other AI problem can be con-
verted into it by some polynomial time algorithm or we can reduce any instance of
Turing Test problem (or any other already proven to be AI-Complete problem) to
an instance of a problem we are trying to show to be AI-Complete. This second
approach seems to be particularly powerful. The general heuristic of our approach
is to see if all information which encodes the question which could be asked dur-
ing administering of a Turing Test could be encoded as an instance of a problem
in question and likewise if any potential solution to that problem would constitute
an answer to the relevant Turing Test question. Under this heuristic it is easy to
see that for example Chess is not AI-Complete as only limited information can be
encoded as a starting position on a standard size chess board. Not surprisingly
Chess has been one of the greatest successes of AI and currently Chess playing
programs dominate all human players including world champions.

Question Answering (QA) [17, 38] is a sub-problem in Natural Language
Processing. Answering question at a level of a human is something HOs are par-
ticularly good at based on their definition. Consequently QA is an AI-Problem
which is one of the two requirements for showing it to be AI-Complete. Having
access to an Oracle capable of solving QA allows us to solve TT via a simple re-
duction. For any statement S presented during administration of TT transform said
statement into a question for the QA Oracle. The answers produced by the Oracle
can be used as replies in the TT allowing the program to pass the Turing Test. It is
important to note that access to the QA oracle is sufficient to pass the Turing Test
only if questions are not restricted to stand alone queries, but could contain infor-
mation from previous questions. Otherwise the problem is readily solvable even
by today’s machines such as IBM’s Watson which showed a remarkable perfor-
mance against human Jeopardy champions [35].

Speech Understanding (SU) [4] is another sub-problem in Natural Language
Processing. Understanding Speech at a level of a human is something HOs are
particularly good at based on their definition. Consequently SU is an AI-Problem
which is one of the two requirements for showing it to be AI-Complete. Having
access to an Oracle capable of solving SU allows us to solve QA via a simple re-
duction. We can reduce QA to SU by utilizing any Text-to-Speech software [49,
9] which is both fast and accurate. This reduction effectively transforms written
questions into the spoken ones making it possible to solve every instance of QA
by referring to the SU oracle.

2.4 Other Probably AI-Complete Problems

Figure 3 shows the relationship via reductions between problems shown to be AI-
Complete in this paper. We hope that our work will challenge the AI community
to prove other important problems as either belonging or not belonging to that

10 R.V. Yampolskiy

class. While the following problems have not been explicitly shown to be AI-
Complete, they are strong candidates for such classification and are also problems
of great practical importance making their classification a worthy endower. If a
problem has been explicitly conjectured to be AI-Complete in a published paper
we include a source of such speculation: Dreaming [38], Commonsense Planning
[41], Foreign Policy [26], Problem Solving [43], Judging a Turing Test [41],
Common Sense Knowledge [3], Speech Understanding [41], Knowledge Repre-
sentation and Reasoning [43], Word Sense Disambiguation [10, 32], Machine
Translation [54], Ubiquitous Computing [23], Change Management for Biomedi-
cal Ontologies [33], Natural Language Understanding [43], Software Brittleness
[54], Vision or Image Understanding [43].

Fig. 3 Reductions from the first NP-Complete problem

2.5 1st AI-Hard Problem: Programming

We define the problem of Programming as taking a natural language description
of a program and producing a source code which then compiled on some readily
available hardware/software produces a computer program which satisfies all im-
plicit and explicit requirements provided in the natural language description of the
programming problem assignment. Simple examples of Programming are typical
assignments given to students in computer science classes. Ex. “Write a program
to play Tic-Tac-Toe.” with successful students writing source code which if cor-
rectly compiled allows the grader to engage the computer in an instance of that
game. Many requirements of such assignment remain implicit such as that re-
sponse time of the computer should be less than a minute. Such implicit require-
ments are usually easily inferred by students who have access to culture instilled
common sense. As of this writing no program is capable of solving Programming
outside of strictly restricted domains.

Having access to an Oracle capable of solving Programming allows us to solve
TT via a simple reduction. For any statement S presented during TT transform said
statement into a programming assignment of the form: “Write a program which
would respond to S with a statement indistinguishable from a statement provided
by an average human” (A full transcript of the TT may also be provided for
disambiguation purposes). Applied to the set of all possible TT statements this
procedure clearly allows us to pass TT, however Programming itself is not in

Turing Test as a Defining Feature of AI-Completeness 11

AI-Problems as there are many instances of Programming which are not solvable
by Human Oracles. For example “Write a program to pass Turing Test” is not
known to be an AI-Problem under the proposed definition. Consequently, Pro-
gramming is an AI-Hard problem.

3 Beyond AI-Completeness

The human oracle function presented in this paper assumes that the human being
behind it has some assistance from the computer in order to process certain human
unfriendly data formats. For example a binary string representing a video is com-
pletely impossible for a human being to interpret but could easily be played by a
computer program in the intended format making it possible for a human to solve
a video understanding related AI-Complete problem. It is obvious that a human
being provided with access to a computer (perhaps with Internet connection) is a
more powerful intelligence compared to an unenhanced in such a way human.
Consequently it is important to limit help from a computer to a human worker in-
side a human Oracle function to assistance in the domain of input/output conver-
sion but not beyond as the resulting function would be both AI-Complete and
“Computer Complete”.

Fig. 4 Venn diagram for four different types of intelligence

Figure 4 utilizes a Venn diagram to illustrate subdivisions of problem space pro-
duced by different types of intelligent computational devices. Region 1 represents
what is known as a Universal Intelligence [25] or a Super Intelligence [24, 61, 57, 60]
a computational agent which outperforms all other intelligent agents over all possible
environments. Region 2 is the standard unenhanced Human level intelligence of the
type capable of passing a Turing Test, but at the same time incapable of computation

12 R.V. Yampolskiy

involving large numbers or significant amount of memorization. Region 3 is what is
currently possible to accomplish via the state-of-the-art AI programs. Finally Region 4
represents an abstract view of animal intelligence. AI intelligence researchers strive to
produce Universal Intelligence and it is certainly likely to happen given recent trends
in both hardware and software developments and theoretical underpinning of the
Church/Turing Thesis [51]. It is also likely that if we are able to enhance human minds
with additional memory and port those to a higher speed hardware we will essentially
obtain a Universal Intelligence [39].

While the Universal Intelligence incorporates abilities of all the lower intelligences
it is interesting to observe that Human, AI and Animal intelligences have many inter-
esting regions of intersection [62]. For example animal minds are as good as human
minds at visual understanding of natural scenes. Regions 5, 6, and 7 illustrate common
problem spaces between two different types of intelligent agents. Region 8 represents
common problem solving abilities of humans, computers and animals. Understanding
such regions of commonality may help us to better separate involved computational
classes which are represented by abilities of a specific computational agent minus the
commonalities with a computational agent with which we are trying to draw a distinc-
tion. For example CAPTCHA [2] type tests rely on inability of computers to perform
certain pattern recognition tasks with the same level of accuracy as humans to separate
AI agents from Human agents. Alternatively a test could be devised to tell humans not
armed with calculators from AIs by looking at the upper level of ability. Such a test
should be easy to defeat once an effort is made to compile and formalize limitations
and biases of the human mind.

It is also interesting to consider the problem solving abilities of hybrid agents. We
have already noted that a human being equipped with a computer is a lot more capable
compared to an unaided person. Some recent research in Brain Computer Interfaces
[53] provides a potential path for future developments in the area. Just as interestingly
combining pattern recognition abilities of animals with symbol processing abilities of
AI could produce a computational agent with a large domain of human like abilities
(see work on RoboRats [48] on monkey controlled robots [34]). It is very likely that in
the near future the different types of intelligent agents will combine to even greater ex-
tent. While such work is under way we believe that it may be useful to introduce some
additional terminology into the field of problem classification. For the complete space
of problems we propose that the computational agents which are capable of solving a
specific subset of such problems get to represent the set in question. Therefore we pro-
pose additional terms: “Computer-Complete” and “Animal-Complete” to represent
computational classes solvable by such agents. It is understood that just like humans
differ in their abilities so do animal and computers. Aggregation and averaging utilized
in our human function could be similarly applied to definition of respective oracles. As
research progresses common names may be needed for different combinations of re-
gions from Figure 4 illustrating such concepts as Human-AI hybrid or Animal-Robot
hybrid.

Certain aspects of human cognition do not map well onto the space of problems
which have seen a lot of success in the AI research field. Internal states of human
mind such as consciousness (stream of), self-awareness, understanding, emotions
(love, hate), feelings (pain, pleasure), etc. are not currently addressable by our me-
thods. Our current state-of-the-art technologies are not sufficient to unambiguously

Turing Test as a Defining Feature of AI-Completeness 13

measure or detect such internal states and consequently even their existence is not un-
iversally accepted. Many scientists propose ignoring such internal states or claim they
are nothing but a byproduct of flawed self-analysis. Such scientists want us to restrict
science only to measurable behavioral actions, however since all persons have access
to internal states of at least one thinking machine interest in trying to investigate in-
ternal states of human mind is unlikely to vanish.

While we were able to present a formal theory of AI-Completeness based on
the concept of Human Oracles the theory is not strong enough to address problems
involving internal states of mind. In fact one of the fundamental arguments against
our ability to implement understanding in a system which is based on symbol
manipulation, Searle’s Chinese Room thought experiment, itself relies on a gene-
ralized concept of a human as a part of a computational cycle. It seems that the
current Turing/Von Neumann architecture is incapable of dealing with the set of
problems which are related to internal states of human mind. Perhaps a new type
of computational architecture will be developed in the future capable of mimick-
ing such internal states. It is likely that it will be inspired by a better understanding
of human biology and cognitive science. Research on creating Artificial Con-
sciousness (AC) is attracting a lot of attention at least in terms of number of AC
papers published.

As a part of our ongoing effort to classify AI related problems we propose a
new category specifically devoted to problems of reproducing internal states of a
human mind in artificial ways. We call this group of problems Consciousness-
Complete or C-Complete for short. An oracle capable of solving C-Complete
problems would be fundamentally different from the Oracle Machines proposed
by Turing. C-Oracles would take input in the same way as their standard counter-
parts but would not produce any symbolic output. The result of their work would
be a novel internal state of the oracle, which may become accessible to us if the
new type of hardware discussed above is developed.

Just like SAT was shown to be the first NP-Complete problem and Turing Test
to be the first AI-Complete problem we suspect that Consciousness will be shown
to be the first C-Complete problem with all other internal-state related problems
being reducible to it. Which of the other internal state problems are also
C-Complete is beyond the scope of this preliminary work. Even with no con-
sciousness-capable hardware available at the moment of this writing the theory of
C-Completeness is still a useful tool as it allows for formal classification of clas-
sical problems in the field of Artificial Intelligence into two very important cate-
gories: potentially solvable (with current technology) and unsolvable (with current
technology). Since the only information available about Human Oracles is their
output and not internal states they are fundamentally different from C-Oracles
creating two disjoint sets of problems.

History of AI research is full of unwarranted claims of anticipated break-
throughs and conversely overestimations regarding difficulty of some problems.
Viewed through the prism of our AI-Complete/C-Complete theories history of AI
starts to make sense. Solutions for problems which we classify as AI-Complete
have been subject to continues steady improvement while those falling in the
realm of C-Completeness have effectively seen zero progress (Computer Pain [7,
12], Artificial Consciousness [40, 14], etc.). To proceed science needs to better

14 R.V. Yampolskiy

understand what is the difference between a feeling and a though is. Feeling pain
and knowing about pain are certainly not the same internal states. We are hopeful
that the future research in this area will bring some long awaited answers.

4 Conclusions

Progress in the field of artificial intelligence requires access to well defined prob-
lems of measurable complexity. The theory of AI-Completeness aims to provide a
base for such formalization. Showing certain problems to be AI-Complete/-Hard
is useful for developing novel ways of telling computers from humans. Also, any
problem shown to be AI-Complete would be a great alternative way of testing an
artificial intelligent agent to see if it attained human level intelligence [41].

References

[1] Ahn, L.V.: Games With A Purpose. IEEE Computer Magazine, 96–98 (June 2006)
[2] Ahn, L.V., Blum, M., Hopper, N., Langford, J.: CAPTCHA: Using Hard AI Problems

for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311.
Springer, Heidelberg (2003)

[3] Andrich, C., Novosel, L., Hrnkas, B.: Common Sense Knowledge, Exercise Paper -
Information Search and Retrieval (2009),
http://www.iicm.tu-graz.ac.at/cguetl/courses/isr/
uearchive/uews2009/Ue06-CommonSenseKnowledge.pdf

[4] Anusuya, M.A., Katti, S.K.: Speech Recognition by Machine: A Review. Internation-
al Journal of Computer Science and Information Security (IJCSIS) 6(3), 181–205
(2009)

[5] Bajaj, V.: Spammers Pay Others to Answer Security Tests. The New York Times
(April 25, 2010)

[6] Bergmair, R.: Natural Language Steganography and an “AI-complete” Security Pri-
mitive. In: 21st Chaos Communication Congress, Berlin (December 2004)

[7] Bishop, M.: Why Computers Can’t Feel Pain. Minds and Machines 19(4), 507–516
(2009)

[8] Bradford, P.G., Wollowski, M.: A formalization of the Turing Test. SIGART Bulle-
tin 6(4), 3–10 (1995)

[9] Chan, T.-Y.: Using a Text-to-Speech Synthesizer to Generate a Reverse Turing Test.
In: 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2003), p. 226 (2003)

[10] Chen, J., Liu, J., Yu, W., Wu, P.: Combining Lexical Stability and Improved Lexical
Chain for Unsupervised Word Sense Disambiguation. In: Second International Sym-
posium on Knowledge Acquisition and Modeling (KAM 2009), Wuhan, November
30, pp. 430–432 (2009)

[11] Demasi, P., Szwarcfiter, J.L., Cruz, A.J.O.: A Theoretical Framework to Formalize
AGI-Hard Problems. In: The Third Conference on Artificial General Intelligence,
Lugano, Switzerland, March 5-8 (2010)

[12] Dennett, D.C.: Why You Can’t Make a Computer That Feels Pain. Synthese 38(3),
415–456 (1978)

Turing Test as a Defining Feature of AI-Completeness 15

[13] Dimmock, N., Maddison, I.: Peer-to-peer collaborative spam detection. Crossroads
11(2) (December 2004)

[14] Dreyfus, H.L.: What computers can’t do; A critique of artificial reason. Harper &
Row (1972)

[15] Gentry, C., Ramzan, Z., Stubblebine, S.: Secure distributed human computation. In:
6th ACM Conference on Electronic Commerce, pp. 155–164 (2005)

[16] Hendler, J.: We’ve Come a Long Way, Maybe IEEE Intelligent Systems 23(5), 2–
3 (2008)

[17] Hirschman, L., Gaizauskas, R.: Natural Language Question Answering. The View
from Here. Natural Language Engineering 7(4), 275–300 (2001)

[18] Horvitz, E.: Reflections on Challenges and Promises of Mixed-Initiative Interaction.
AI Magazine-Special Issue on Mixed-Initiative Assistants 28(2) (2007)

[19] Horvitz, E., Paek, T.: Complementary Computing: Policies for Transferring Callers
from Dialog Systems to Human Receptionists. User Modeling and User Adapted Inte-
raction 17(1), 159–182 (2007)

[20] Ide, N., Véronis, J.: Introduction to the special issue on word sense disambiguation:
the state of the art. Computational Linguistics 24(1), 1–40 (1998)

[21] Kapoor, A., Tan, D., Shenoy, P., Horvitz, E.: Complementary Computing for Visual
Tasks: Meshing Computer Vision with Human Visual Processing. In: IEEE Interna-
tional Conference on Automatic Face and Gesture Recognition (2008)

[22] Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher,
J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, NY (1972)

[23] Leahu, L., Sengers, P., Mateas, M.: Interactionist AI and the promise of ubicomp, or,
how to put your box in the world without putting the world in your box. In: Tenth In-
ternational Conference on Ubiquitous Computing, Seoul, South Korea, September 21-
24, pp. 1–10 (2008)

[24] Legg, S.: Machine Super Intelligence. PhD Thesis, University of Lugano (June 2008),
http://www.vetta.org/documents/
Machine_Super_Intelligence.pdf

[25] Legg, S., Hutter, M.: Universal Intelligence: A Definition of Machine Intelligence.
Minds and Machines 17(4), 391–444 (2007)

[26] Mallery, J.C.: Thinking About Foreign Policy: Finding an Appropriate Role for Arti-
ficially Intelligent Computers. Annual Meeting of the International Studies Associa-
tion. St. Louis, MO (1988)

[27] Mcintire, J.P., Havig, P.R., Mcintire, L.K.: Ideas on authenticating humanness in col-
laborative systems using AI-hard problems in perception and cognition. In: IEEE Na-
tional Aerospace & Electronics Conference, Dayton, OH, July 21-23, pp. 50–55
(2009)

[28] Mcintire, J.P., Mcintire, L.K., Havig, P.R.: A variety of automated turing tests for
network security: Using AI-hard problems in perception and cognition to ensure se-
cure collaborations. In: International Symposium on Collaborative Technologies and
Systems (CTS 2009), Baltimore, MD, May 18-22, pp. 155–162 (2009)

[29] Mert, E., Dalkilic, C.: Word sense disambiguation for Turkish. In: 24th International
Symposium on Computer and Information Sciences (ISCIS 2009), Guzelyurt, Sep-
tember 14-16, pp. 205–210 (2009)

16 R.V. Yampolskiy

[30] Morgan, N., Baron, D., Bhagat, S., Carvey, H., Dhillon, R., Edwards, J., Gelbart, D.,
Janin, A., Krupski, A., Peskin, B., Pfau, T., Shriberg, E., Stolcke, A., Wooters, C.:
Meetings about meetings: research at ICSI on speech in multiparty conversations. In:
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2003), April 6-10 (2003)

[31] Mueller, E.T.: Daydreaming and Computation. Ph.D. Dissertation, University of Cali-
fornia, Los Angeles, p. 302 (March 1987)

[32] Navigli, R., Velardi, P.: Structural Semantic Interconnections: A Knowledge-Based
Approach to Word Sense Disambiguation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27(7), 1075–1086 (2005)

[33] Nejad, A.S.: A Framework for Analyzing Changes in Health Care Lexicons and No-
menclatures. PhD dissertation. Concordia University, Quebec, Canada (April 2010)

[34] Nicolelis, M.A.L., Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach,
M., Chapin, J.K., Kim, J.: Real-time prediction of hand trajectory by ensembles of
cortical neurons in primates. Nature 408(6810), 361 (2000)

[35] Pepitone, J.: IBM’s Jeopardy supercomputer beats humans in practice bout, CNNMo-
ney, http://money.cnn.com/2011/01/13/
technology/ibm_jeopardy_watson (retrieved on January 13, 2011)

[36] Phillips, P.J., Beveridge, J.R.: An introduction to biometric-completeness: The equi-
valence of matching and quality. In: IEEE 3rd International Conference on Biome-
trics: Theory, Applications, and Systems (BTAS 2009), Washington, DC, September
28-30, pp. 1–5 (2009)

[37] Raymond, E.S.: Jargon File Version 2.8.1 (March 22, 1991),
http://catb.org/esr/jargon/oldversions/jarg282.txt

[38] Salloum, W.: A Question Answering System based on Conceptual Graph Formalism.
In: The 2nd International Symposium on Knowledge Acquisition and Modeling
(KAM 2009), China, November 30 (2009)

[39] Sandberg, A., Boström, N.: Whole Brain Emulation: A Roadmap, Future of Humani-
ty Institute, Oxford University. Technical Report #2008-3 (2008),
http://www.fhi.ox.ac.uk/Reports/2008-3.pdf

[40] Searle, J.: Minds, Brains and Programs. Behavioral and Brain Sciences 3(3), 417–457
(1980)

[41] Shahaf, D., Amir, E.: Towards a theory of AI completeness. In: 8th International
Symposium on Logical Formalizations of Commonsense Reasoning (Commonsense
2007), California, March 26-28 (2007)

[42] Shahaf, D., Horvitz, E.: Generalized Task Markets for Human and Machine Compu-
tation. In: Twenty-Fourth AAAI Conference on Artificial Intelligence, Atlanta, GA
(July 2010)

[43] Shapiro, S.C.: Artificial Intelligence. In: Shapiro, S.C. (ed.) Encyclopedia of Artificial
Intelligence, pp. 54–57. John Wiley, New York (1992)

[44] Shieber, S.M.: Does the Turing Test demonstrate intelligence or not. In: Twenty-First
National Conference on Artificial Intelligence (AAAI 2006), Boston, MA, July 16-20
(2006)

[45] Shieber, S.M.: The Turing Test as Interactive Proof. Nous 41(4), 686–713 (2007)
[46] Surowiecki, J.: The Wisdom of Crowds: Why the Many Are Smarter Than the Few

and How Collective Wisdom Shapes Business, Economies, Societies and Nations,
Little, Brown (2004)

[47] Takagi, H.: Interactive Evolutionary Computation: Fusion of the Capacities of EC
Optimization and Human Evaluation. Proc. of the IEEE 89(9), 1275–1296 (2001)

Turing Test as a Defining Feature of AI-Completeness 17

[48] Talwar, S.K., Xu, S., Hawley, E.S., Weiss, S.A., Moxon, K.A., Chapin, J.K.: Beha-
vioural neuroscience: Rat navigation guided by remote control. Nature 417, 37–38
(2002)

[49] Taylor, P., Black, A.: Speech synthesis by phonological structure matching. In: Eu-
rospeech 1999, Budapest, Hungary, pp. 1531–1534 (1999)

[50] Turing, A.: Computing Machinery and Intelligence. Mind 59(236), 433–460 (1950)
[51] Turing, A.M.: On Computable Numbers, with an Application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society 42, 230–265 (1936)
[52] Vaas, L.: Striptease Used to Recruit Help in Cracking Sites. PC Magazine (December

1, 2007)
[53] Vidal, J.: Toward direct brain-computer communication. Annual Review of Biophys-

ics and Bioengineering 2, 157–180 (1973)
[54] Wikipedia, AI-Complete,

http://en.wikipedia.org/wiki/AI-complete
(retrieved January 7, 2011)

[55] Yampolskiy, R.V.: AI-Complete CAPTCHAs as Zero Knowledge Proofs of Access
to an Artificially Intelligent System. ISRN Artificial Intelligence, 271878 (2011)

[56] Yampolskiy, R.V.: AI-Complete, AI-Hard, or AI-Easy – Classification of Problems
in AI. In: The 23rd Midwest Artificial Intelligence and Cognitive Science Confe-
rence, Cincinnati, OH, USA, April 21-22 (2012)

[57] Yampolskiy, R.V.: Artificial Intelligence Safety Engineering: Why Machine Ethics is
a Wrong Approach. In: Philosophy and Theory of Artificial Intelligence (PT-AI
2011), Thessaloniki, Greece, October 3-4 (2011)

[58] Yampolskiy, R.V.: Embedded CAPTCHA for Online Poker. In: 20th Annual CSE
Graduate Conference (Grad.-Conf. 2007), Buffalo, NY (2007)

[59] Yampolskiy, R.V.: Graphical CAPTCHA embedded in cards. In: Western New York
Image Processing Workshop (WNYIPW), IEEE Signal Processing Society, Rochester
(2007)

[60] Yampolskiy, R.V.: Leakproofing Singularity - Artificial Intelligence Confinement
Problem. Journal of Consciousness Studies (JCS) 19(1-2) (2012)

[61] Yampolskiy, R.V.: What to Do with the Singularity Paradox? In: Philosophy and
Theory of Artificial Intelligence (PT-AI 2011), Thessaloniki, Greece, October 3-4
(2011)

[62] Yampolskiy, R.V., Fox, J.: Artificial Intelligence and the Human Mental Model. In:
Eden, A., Moor, J., Soraker, J., Steinhart, E. (eds.) In the Singularity Hypothesis: a
Scientific and Philosophical Assessment. Springer (2012)

[63] Yampolskiy, R.V., Govindaraju, V.: Embedded Non-Interactive Continuous Bot De-
tection. ACM Computers in Entertainment 5(4), 1–11 (2007)

Artificial Intelligence Evolved from Random
Behaviour: Departure from the State of the Art

Wiesław Pietruszkiewicz and Akira Imada

Abstract. Since John McCarthy at MIT coined the term artificial intelligence in
1956 aiming to make a machine have a human-like intelligence in a visible future,
we have had lots of discussions whether it is possible in a true sense, and lots of
intelligent machines have been reported. Nowadays, the term is ubiquitous in our
community. In this chapter we discuss how those proposed machine intelligences are
actually intelligent. Starting with how we define intelligence, how can we measure
it, how those measurements really represent intelligence and so on, by surveying
the Legg and Hutter’s seminal paper on formal definition of machine intelligence,
we name a few others, taking a brief look at our own too. We also consider a mod-
ern interpretation of the Turing test originally proposed in 1950. Then we argue a
benchmark to test how an application is intelligent by means of an algorithm for
stock market investment as an example. Finally we take a consideration of how we
can achieve a human intelligence in a real sense in a real visible future, including an
analysis of IT changes stimulating artificial intelligence development.

1 Introduction

The main mission of this chapter is to evaluate artificial intelligence (AI) by explor-
ing definitions of intelligence and different approaches so far proposed, as well as
its resemblance to natural intelligence. In our opinion, the term of intelligence is too

Wiesław Pietruszkiewicz
Faculty of Computer Science and Information Technology, West Pomeranian University of
Technology in Szczecin, ul. Żołnierska 49, 71-210 Szczecin, Poland
e-mail: wieslaw@pietruszkiewicz.com
web: http://www.pietruszkiewicz.com

Akira Imada
Intelligent Information Technologies Department, Brest State Technical University,
Moskowskaja Street 267, Brest 224017, Belarus
e-mail: akira-i@brest-state-tech-univ.org
web: http://neuro.bstu.by/ai/akira.html

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 19–41.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

wieslaw@pietruszkiewicz.com
http://www.pietruszkiewicz.com
akira-i@brest-state-tech-univ.org
http://neuro.bstu.by/ai/akira.html

20 W. Pietruszkiewicz and A. Imada

often incorrectly assigned to the simple methods of data processing, thus devaluing
the notion of AI.

AI is a Holy Grail for many researchers and for the past half of century it was
assumed that humans will be able to create a machine–based resemblance of in-
telligence. For many years it has been tried by creating sophisticated algorithms,
which were supposed to imitate natural processes of intelligence, being formed into
arbitrary equations. Unfortunately, none of these research succeeded in something
we could consider to be a form of real human–like machine intelligence. However,
in the latest years yet another idea to realize AI emerged. It aims at the creation of
biologically inspired evolving processes, where simple random–driven algorithms,
very often using multiple instances, might be thought to bring us closer to the real
artificial intelligence. Hence, we would like to compare these two different ideas of
AI and explain their assumptions, applications, advantages and disadvantages.

Finally, we would like to highlight the directions of future development of AI by
explaining how new findings in science, improvement of algorithms, and stimula-
tion’s in software and hardware industries will lead us to further AI development.

2 Artificial Intelligence vs. Natural Intelligence

An excellent survey of this topic by Legg and Hutter[38] gives us a comprehensive
bird’s-eye view on what is intelligence, how can it be measured, and so on. We now
take a brief look at it in the following three subsections.

2.1 Definition of Human Intelligence

What usually reminds us of, when we say human intelligence, might be IQ test.
Standard IQ tests measure levels in various cognitive abilities such as reasoning,
association, spatial recognition, pattern identification etc. Statistical correlation of
these abilities is called g-factor, meaning a factor of general intelligence, coined
by Charles Spearman[68]. In a situation in schools indeed, this g-factor is quite a
good estimation. ”She is more intelligent than he is,” implies ”she has higher g value
than he has.” However, we also say ”He is very intelligent,” for a football player, a
conductor of a symphony orchestra, a chef in a restaurant, etc. Hence a standard IQ
test does not represent a general intelligence.

Legg and Hutter [38] collected tens of definitions of human intelligence. Let us
quote just one, among others, by Nicer et al. [47].

Individuals differ from one another in their ability to understand complex ideas, to
adapt effectively to the environment, to learn from experience, to engage in various
forms of reasoning, to overcome obstacles by taking thought.

2.2 Informal Definitions of Machine Intelligence

As informal definitions of machine intelligence, Legg and Hutter quote from
Albus[3]:

Artificial Intelligence Evolved from Random Behaviour 21

Ability of a system to act appropriately in an uncertain environment, where appropriate
action is that which increases the probability of success, and success is the achievement
of behavioural subgoals that support the system’s ultimate goal.

to which Legg and Hutter added, ”This is especially similar to ours.” (In the next
subsection, we can see how similar it is.) Or, from Gudwin[25]:

Intelligent systems are expected to work, and work well, in many different environ-
ments. Their property of intelligence allows them to maximize the probability of suc-
cess even if full knowledge of the situation is not available. Functioning of intelligent
systems cannot be considered separately from the environment and the concrete situa-
tion including the goal.

Further, from Poole [56]:

An intelligent agent does what is appropriate for its circumstances and its goal, it is
flexible to changing environments and changing goals, it learns from experience, and
it makes appropriate choices given perceptual limitations and finite computation.

2.3 Formal Definitions of Machine Intelligence

Legg and Hutter [38] wrote, ”One perspective among psychologists is ... that in-
telligence is the ability to deal with complexity. ... if we could formally define and
measure the complexity of test problems using complexity theory we could construct
a formal test of intelligence. The possibility of doing this was perhaps first suggested
by Chaitin. ... Essentially this is the approach that we have taken.” In fact, Chaitin
[10] suggested a possibility of defining a machine intelligence exploiting Gödel’s
complexity theory, writing ”Develop formal definitions of intelligence and mea-
sures of its various components; apply information theory and complexity theory to
AI,” as one of his directions for future research.

2.3.1 Legg and Hutter’s Universal Intelligence of an Agent

Now let us see Legg and Hutter’s formal definition a little more in detail, since all
other formal definitions mentioned in this section are based on this definition by
Legg and Hutter more or less.

We now summarize it by paraphrasing their paper. Legg and Hutter start with an
informal definition of intelligence:

An ability to achieve goals in a wide range of environments.

An agent behaves in an environment with a goal. A behaviour starts with an ob-
servation o1, then receives an information of how-good-or-bad-is-current-situation,
which is called a reward, r1, and make an action a1. Repeating this procedure creates
a sequence,

o1r1a1o2r2a2o3r3a3 · · · , (1)

22 W. Pietruszkiewicz and A. Imada

called a history. Now let’s define an agent π . The agent takes the current history as
input and decides the next action as output. Thus agent π is formally represented as
a probability measure of next action given a history before the action. For example,

π(a2|o1r1a1o2r2) (2)

is a probability measure of the 2nd action of the agent. Further, environment μ is
defined as the probability of okrk given the current history

o1r1a1o2r2a2 · · ·ok−1rk−1ak−1, (3)

that is,
μ(okrk|o1r1a1o2r2a2 · · ·ok−1rk−1ak−1). (4)

If we have a multiple paths to the goal, the simplest one should be preferred, which
is sometimes called the principle of Occam’s razor. Then, the formal measure of
success of an agent π under the environment μ denoted as V π

μ is defined as the
expected value of the sum of rewards that is:

V π
μ = E(

∞

∑
i=1

ri). (5)

Then the measure of the complexity of environments should be expressed. For the
purpose, let’s recall that the Kolmogorov complexity of a binary string x is defined
as the length of the shortest program that computes x. That is,

K(x) = min
p
{l(p)|U(p) = x}, (6)

where p is a binary string which we call a program, l(p) is the length of this string
in bits, and U is a prefix universal Turing machine.

We express μi as a binary string by a simple encoding algorithm. Then, the com-
plexity of μi is K(μi). To formalize above mentioned Occam’s razor we use this in
the form of probability distribution 2−K(μ). Let E be the space of all environments
under consideration. Thus, the expected performance of agent π with respect to the
universal distribution 2−K(μ) over the space of all environments E is:

γ(π) = ∑
μ∈E

2−K(μ) ·V π
μ . (7)

In other words, weighted sum of the formal measure of success in all environ-
ments where the weight is determined by the Kolmogorov complexity of each
environment.

We now recall the starting informal definition: ’an ability to achieve goals in a
wide range of environments.’ In the above equation, ’the agent’s ability to achieve’
is represented by V π

μ , and ’a wide range of environments,’ by E – all well defined
environment in which reward can be summed. Occam’s razor is given by the factor
2−K(μ). Thus the authors called this the universal intelligence of agent π .

Artificial Intelligence Evolved from Random Behaviour 23

It is concluded that ”Essentially, an agent’s universal intelligence is a weighted
sum of its performance over the space of all environments. Thus, we could randomly
generate programs that describe environmental probability measures and then test
the agent’s performance against each of these environments. After sampling suffi-
ciently many environments the agent’s approximate universal intelligence would be
computed by weighting its score in each environment according to the complexity of
the environment as given by the length of its program. Finally, the formal definition
places no limits on the internal workings of the agent. Thus, we can apply the def-
inition to any system that is able to receive and generate information with view to
achieving goals.”

2.3.2 Other Formal Definitions of Machine Intelligence

Legg and Hutter survey Smith’s proposal [66] as ”another complexity based formal
definition of intelligence that appeared recently in an unpublished report.” It uses
polynomial time reentrant algorithm called problem generator which uses random
bits and spits out an infinite sequence of output bitstrings called problem and also
spits out a second bitstring called the secret answer. It also uses algorithm called
solution checker which reads the problem and secret answer spit out by the problem
generator. Thus the entity under test which allowed to see problem and solve it, is
tested by the solution checker. Author wrote, ”Both Hutter’s and this development
exhibit some striking similarities, but we had both different attitudes and different
terminology and in some cases investigated different topics or reached differing
conclusions.”

Recently, Hernandez-Orallo and Dowe also proposed a modified version of Legg
and Hutter’s measure [31]. Much more recently, Hibbard proposed yet another ap-
proach to define and measure machine intelligence [32, 33] in which intelligence
measure is defined in both Turing machine and finite state machine models. This is
also principally based on Legg and Hutter’s definition. We will return to this model
by Hibbard more in detail in later section.

3 A Thought on Artificial Intelligence So-Far-Proposed

We have had a plenty of propositions each of which claims a realization of machine
intelligence more or less. Hence, despite Legg and Hutter [38] wrote ”Intelligence is
not simply the ability to perform well at a narrowly defined task,” we are sometimes
curious to know whether those machine intelligences reported so far, which are not
universal at all but very domain-specific though, are really intelligent or not, or if
so, how intelligent. From this perspective, we want to try to remove summation
over different environment form their formal definition of intelligence. That is, we
measure the intelligence of agent π for the specific task μ simply by V π

μ .
In addition, some of what they call an intelligent machine may indeed per-

form the given task much more efficiently, effectively, or precisely than human,
while we human are not usually very efficient, effective nor precise, but rather

24 W. Pietruszkiewicz and A. Imada

spontaneous, flexible, unpredictable, or even erroneous sometime. When we ad-
dress a human-like intelligence, we expect somewhat of a different behaviour even
when we come across a same situation again than the one as we behaved before, not
exactly the same one as before. We don’t necessarily expect artificial intelligence to
be as efficient, but sometimes expect its flexibility, spontaneity, or unpredictability.
Frosini [18] wrote ”... contradiction can be seen as a virtue rather than as a de-
fect. Furthermore, the constant presence of inconsistencies in our thoughts leads us
to the following natural question: is contradiction accidental or is it the necessary
companion of intelligence?” Or, as we will mention in a later section ”Intelligence
might be well demonstrated by concealing it,” which Michie described in [44] about
Turing’s suggestion of machine’s deliberate mistakes encouraged in order for the
machine to pass the Turing test [72]. From this view point, we want to add:

Performance should be different more or less than previous one even when the agent
comes across the same situation as before,

to the Legg and Hutter’s informal definition. Note that the above mentioned measure
of intelligence V π

μ does not reflect such a flexibility of human intelligence, but only
an efficiency. Therefore, a reformalization of Legg and Hutter’s formal definition
will be quite a new challenging task, which we have not yet succeeded. The other
question is, can we evolve a huge population of random binary string, assuming
they can represent π , eventually into an intelligent one with fitness being such an
intelligence measure?

4 Artificial Intelligence Evolved from Randomness

Our natural intelligence is a result of a tremendously long time of evolution starting
with just a tiny simple mechanism which gave just random movements. Then why
not trying a creation of artificial intelligence by an evolution from randomness?

4.1 Machiavellian Intelligence

Machiavellian intelligence (see, e.g., [8]), named after Niccolo Machiavelli - me-
dieval Italian politician, is an intelligence which enables individuals to pursue par-
ticular goals by means of social manipulation. Miller [45] wrote, ”Machiavellian
intelligence evolves because it lets primates predict and manipulate each other’s
behaviour,” and went on ”predictive capacities tend to select for unpredictability in
counter-strategies, ... For example, prey animals often evolve ’protean’ (adaptively
unpredictable) evasion behaviour to foil the predictive pursuit tactics used by their
predators,” and concluded ”sexual selection through mate choice results in adapta-
tions like bird song, whale song, and courtship dances, which could have elaborated
primate social proteanism into human creative intelligence.”

This model in which protean behaviour - being unpredictable to evade predator -
assumed to be the origin of human intelligence might give us a good motivation to
simulate predator-prey games as a meaningful step, not just a toy example.

Artificial Intelligence Evolved from Random Behaviour 25

4.2 Hibbard’s Formal Definition Revisited

In this subsection we want to revisit the formal definition of machine intelligence
by Hibbard [33]. One reason is, he employed a predator and prey model. The other
is, both the agent and environment are represented by finite state machine, which
will give us a very appropriate method to simulate the pursuit and evasion game.
We now take a brief look at how Hibbard defined a machine intelligence.

In the process of defining a formal definition of machine intelligence, Hibbard
modelled predictors and evaders as finite state machines as a more realistic models
than Turing machine.

An evader e has a state set Se, an initial state Ie, and a mapping

Me = B× Se → Se ×B, (8)

where B is a binary alphabet.
Similarly for predictor p, state set Sp, initial state Ip, and mapping

Mp = B× Sp → Sp ×B (9)

are specified. Evader e creates a finite binary sequence x1x2x3 · · ·, and predictor p
creates also a finite binary sequence y1y2y3 · · ·. A pair of evader e and predictor p
interacts where e produces the sequence according to

xn+1 = e(y1y2y3 · · ·yn), (10)

and p produces the sequence according to

yn+1 = p(x1x2x3 · · ·xn). (11)

Then predictor p wins round n+1 if yn+1 = xn+1 and evader e wins if yn+1 �= xn+1.

4.3 Avidian

Recently, a self-replicating synthetic life was artificially created as a world’s first
synthetic form of life. They inserted synthetic DNA into Mycoplasma capricolum
cells and found those cells had grown into colonies [20].

Much earlier, in 1990’s, we had a digital version of this experiment in computer,
called Avidian. Inspired by Ray’s Tierra [58], a population of self-replicating com-
puter programs, called digital organisms, in a computational environment in which
the population evolves as the organisms replicate, mutate and compete for resources
in the environment [1, 2, 39, 49, 52]. Instructions that made up digital organisms are
designed to be robust to mutations so that any program will be syntactically legal
when mutated [48]. The world is a discrete two-dimensional grid of cells in which
at most one organism may occupy. The genome is a circular list of program instruc-
tions that resemble assembly language, that runs in a virtual central processing unit.
When an organism replicates, its offspring is placed into a random grid cell, and
either the offspring and previously occupied organism survives in the cell. Thus, the

26 W. Pietruszkiewicz and A. Imada

organisms compete for the limited set of grid cells, and organisms that are able to
replicate more quickly will more likely to have a greater proportion of descendants
within the population.

Under this circumstance, Grabowski tried to model gradient following behaviour
of E. coli [24]. Grabowski made the other experiments expecting an evolution of
simple intelligence and found digital organisms evolved to exploit memory [23, 22].

5 A Modern Interpretation of Turing Test

In 1950, Turing [72] posed a question ”Can machines think?” and proposed a test
which is now called Turing Test. Turing test is a test if a computer can pass then we
should grant it is intelligent thereby, or equivalently, a test to see if a computer can
cheat a human via a chat with teletype that it is a human. It was originally proposed
as the Imitation game, in which a man and a woman are in two separate rooms and
communicate with an interviewer1 outside only via a teletype, and the interviewer
should identify which is the man by asking a series of questions. The man tries to
make the interviewer believe he is the woman while the woman tries to make the
interviewer believe she is woman. Later the man is replaced by a machine. If the
interviewer cannot tell the machine from the person, then it passes the test and we
can say machine is intelligent. Note that the test only gives us a sufficient condition
for intelligence. We now briefly see a chronicle of reflections on the Turing Test.

5.1 During 50 Years Since the Proposal

Not a few discussions - some positive, some negative - have taken place since Turing
proposed the test [72]. Let’s name a few.

Gunderson [26] asked ”Can rocks imitate?” by showing a modified Turing’s imi-
tation game as follows. A man and a woman are in a room. There is a small opening
at the bottom of the wall through which the interviewer can place his toe. The inter-
viewer must determine which of the two in the room is the woman just by observing
the way in which his toe is stepped on. Then a rock given an electric eye is replaced
with the man in the room, and the rock can put itself softly on the interviewer’s toe
placed in the opening of the wall. Even if the rock plays this toe-stepping game very
well it would not be acceptable that the rock imitates.

Gunderson pose another scenario also in [26]. A vacuum cleaner salesman visited
a house and recommended a housewife to buy his vacuum cleaner claiming this is
’all purpose’ by demonstrating how it can suck up bits of dust. The housewife asked,
”What else? Isn’t it all-purpose? What about bits of paper or straw or mud? I thought
sucking up bits of dust was an example of what it does.” The salesman failed to show
more than one example of what it does.” Gunderson thought that the term ”thinking”
in the Turing test is used to represent more than one capability.

1 In Turing’s original paper the term ”interrogator” was used instead of ”interviewer.”

Artificial Intelligence Evolved from Random Behaviour 27

Yet another argument to pose a doubt for Turing Test is the Seagull Test by French
[16]. One day in an isolate island, where the only flying animals known to the in-
habitants are seagulls, two resident philosophers discuss what flying is all about.
After arguing about a pebble tossed from the beach into the ocean, clouds in the
sky, balloons, kite, and penguins, one asked the other to assume someone invented
a machine that can fly. And they hit upon a test with two 3-D radars one of which
tracks a seagull the other tracks the putative flying machine. They concluded the
machine will be said to have passed the seagull test for flight if both philosophers
are indefinitely unable to distinguish the seagull from the machine.

Purtill [57] denied the Turing’s imitation game as a piece of science fiction. Hayes
and Ford [30] criticized the Turing Test even as harmful for artificial intelligence to
be developed.

Probably one of the most famous criticism is the Chinese Room argument [65]
posed by John Searl, philosopher, which conclusively asserts that it is impossible for
computers to understand language or think. Suppose now a person who knows only
English has a computer program that enables an intelligent conversation in written
Chinese by manipulating symbol strings with syntactic rules without understand-
ing semantics, or like a perfect version of Weizenbaum’s ELIZA [74], if any. Searl
called it Chinese subsystem. Then the interviewer outside the room sends a ques-
tion in Chinese. The people in the room can pass the Turing Test for understanding
Chinese while he does not understand any word of Chinese. Similarly the program
would not understand the conversation either. Searl wrote, ”Whereas the English
subsystem knows that ”hamburgers” refers to hamburgers, the Chinese subsystem
knows only that ”squiggle squiggle” is followed by ”squoggle squoggle.”

Harnad also doubted the Turing Test as Simulating Simulation and claimed that
what is important is not a simulation but an implementation [27]. He denied Searl’s
claim too. He insisted on removing the wall between the both ends of the teletype
link from the interviewer to the machine to be tested. He wrote, ”... mental seman-
tics must be grounded” [27], which implies the meanings in mind should be de-
rived from interactions with environment. He went on, ”It is like a learning Chinese
only with a Chinese-Chinese dictionary, and the trip through the dictionary would
amount to a merry-go-round, passing endlessly from one meaningless symbol to an-
other, never coming to a halt on what anything meant.” Thus he extended the Turing
test to what he called Total Turing Test in which target machine is a robot with sen-
sorimotors. In this robotic upgrade of the Turing Test the interviewer can visually
assessed the machine to be tested, instead of with just a verbal communication via
teletype.

In addition to the above mentioned Harnad’s Total Turing Test, some researchers
also proposed new tests by modifying the original Turing Test such as Harnad’s yet
another Total Total Turing Test [29], Schweizer’s Truly Total Turing Test [64] or
Watt’s Inverted Turing Test [73]. These are sometimes abbreviated to TTT, TTTT,
TRTTT, and ITT, respectively, besides TT to the Turing Test. It might be interest-
ing to see a series of severe discussions after Harnad’s refute. For example, Searl’s

28 W. Pietruszkiewicz and A. Imada

rebuff and the response by Harnad [28], or other arguments such as Bringsjord2 vs.
Harnad3. As for a story from TT to TTT and TTTT, see a review by Fetzer [14].
For a more exhaustive survey on Turing Test, see, e.g., Saygin et al. [62], or French
[17]. As a survey positive for the original Turing Test proposed by Turing himself,
it might be interesting to read a witty essay recently written by LaCurts [36].

5.1.1 Loebner Prize

We have a contest organized by Hugh Loebner who will pledge $100,000 to the
program that succeeds in passing the Turing Test if appeared4. The contest started
in 1990. Four human judges sit at computer terminals with which the judges can
talk both to the program and to the human who tries to mimic computer. Both are in
another room and after, say, 5 minutes the judge must decide which is the person and
which is the computer. The first computer program that judges cannot tell which is
which will be given the award, and then this competition will end. Although a minor
award is given every year to the program which responds in most human-like way,
as of 2011 the contest has not ended yet, and the contest in 2012 will be held at
Bletchley Park, UK.

5.2 An Easy Way to Cheat Human?

One of the easiest ways to make the interviewer believe that the machine is a human,
might be a deliberate mistake from time to time pretending not to be too precise to
be a human. Turing wrote in [72]:

It is claimed that the interrogator could distinguish the machine from the man simply
by setting them a number of problems in arithmetic. The machine would be unmasked
because of its deadly accuracy. The reply to this is simple. The machine (programmed
for playing the game) would not attempt to give the right answers to the arithmetic
problems. It would deliberately introduce mistakes in a manner calculated to confuse
the interrogator.

5.3 Turing Test These Days

It had been a long time dream to create a machine which can play chess like human.
See, e.g., the book about an eighteen-century chess-playing machine by Standage
[69]. The real chess match between a human world champion and a computer - the
then world champion Garry Kasparov vs. IBM’s Deep Blue - was held in 1996. In a
six-game match Deep Blue won one game, tied two, and lost three. Deep Blue was
defeated. The next year, Deep Blue again challenged Kasparov also in a six-game
match. Kasparov had won the 1st game, lost the 2nd, tied 3rd, 4th and 5th, then lost

2 http://philpapers.org/rec/BRIPAI
3 http://www.archipel.uqam.ca/144/2/r-brings.htm
4 http://www.loebner.net/Prizef/loebner-prize.html

http://philpapers.org/rec/BRIPAI
http://www.archipel.uqam.ca/144/2/r-brings.htm
http://www.loebner.net/Prizef/loebner-prize.html

Artificial Intelligence Evolved from Random Behaviour 29

the 6th5. Thus, finally Deep Blue beat the world champion. Now we know, however,
that the Deep Blue won by a brute force rather than with an intelligent strategy.

Turing wrote the first chess computer program, which was called the paper ma-
chine because it was before computers even existed. Precedent of his 1950 version,
the game was with a mathematician A who operates the paper machine, and two
chess player B and C. C plays chess with either A or B both of whom are in the
separate room, and C should guess whether he is playing with human or the paper
machine [71].

Now it might be easy to imagine a scenario in which A is IBM.’s Deep Blue, B
is Kasparov, and C is the current world chess champion. The Deep Blue would be
sure to pass the test. See also comments by Crol [35] on Deep Blue vs. Kasparov.

In mid February in 2011, IBM’s room size supercomputer called Watson chal-
lenged ’Jeopardy’ - America’s favourite quiz show on TV. In Jeopardy, normally three
human contestants fight to answer questions over various topics, with penalties for the
wrong answer. The questions are like “Who is the 19th-century painter whose name
means police officer?” or “What is the city in US whose largest airport is named for
a World War II hero; and its second largest for a World War II battle.” 6.

The contest was held over three days with Watson being one of the three contes-
tant and the other two being the ex-champions of Jeopardy - Ken Jennings and Brad
Rutter. As Watson cannot see or hear, questions were shown as a text file at the same
moment when they were revealed to the two human contestants. By the end of the
third day, Watson got $77,147 while Jennings got $24,000 and Rutter $21,600. Wat-
son beat the two human ex-champions. If we set up an appropriate scenario, Watson
could pass the Turing Test.

Turing Test is, to simply put, a test to know whether computer can fool human
that ’I am a human not a computer!’ Nowadays we have a very practical program
called CAPTCHA in order to prove ’I’m not a computer but a human.’ Actually it
stands for ’Completely Automated Public Turing Test to tell Computers and Hu-
mans Apart.’ This is an acronym based on the English word ’capture.’ This is some-
times called a reverse Turing Test. CAPTCHA is exploited by computer with a target
being human while Turing test is supposed to be exploited by human with a target
being a computer. Nowadays, the original Turing Test is not only of theoretical in-
terest but also as practical as CAPTCHA7. For example, a poker playing robot must
cheat a web casino site to play there as human. Actually Hingston [34] proposed a
new test as follows:

Suppose you are playing an interactive video game with some entity. Could you tell,
solely from the conduct of the game, whether the other entity was a human player or a
bot? If not, then the bot is deemed to have passed the test.

5 See, e.g., ”Human-computer chess matches” From Wikipedia.
http://en.wikipedia.org/wiki/Human-computer_chess_matches

6 This is from the article in New York Times by John Markoff entitled ”Creating Artificial
Intelligence Based on the Real Thing” on 17 February 2011.

7 Weak CAPTCHAs are possible to be broken by machines using OCR mechanisms. There-
fore, creators of CAPTCHAs introduce noise and blurred or distorted text to make this
task harder.

http://en.wikipedia.org/wiki/Human-computer_chess_matches

30 W. Pietruszkiewicz and A. Imada

6 Biologically Inspired Artificial Intelligence

The creation of man–made intelligent systems or units has two distinctive parts. The
first one is a traditional approach, assuming that the secrets of intelligence could be
revealed, converted to sets of equations and later programmed. While the second ap-
proach, inspired by biology, assumes that the self–adaptive capabilities of flexible
structures will allow to adapt themselves to selected problems and to find expected
solutions. In this way we don’t have to find exact formulas defining behaviour of in-
telligent system in particular situation, instead giving them a chance to find solution
by a partially random behaviour. The term biologically inspired artificial intelli-
gence relate to a wide range of AI algorithms introduced as resemblances of natural
processes observed in biological environment. The main groups of Bio–AI include
algorithms and systems such as [15]:

• neural – being networks or circuits of information processing units being resem-
blances of biological neurons, interconnected in organised structures, cooperat-
ing in complex information processing tasks. Information flows from one node
(or a layer) to another one, being transformed by operations done by previously
passed neurons.

• cellular – assuming that multicellular structure will have capabilities unexpected
from the isolated units, and this is not a simple effect of scaling–up,

• collective – synergistic interaction of individuals, is done for a common good,
e.g. to find food or a better route. In this variant, collective systems (artificial as
well as natural ones) perform as one superorganism, more qualified than the sum
of its parts’ qualifications.

• immune – as living creatures are threatened by pathogens, being external ex-
ploiters, they developed protecting immune systems. In their artificial version
they protect against external attacks, internal faults and to be used in various in-
formation processing tasks perceived from the perspective of system protection.

• evolutionary – where the best (fitted to environment) individuals have a chance
to survive and have more offspring. The genes of next generations contain infor-
mation from their parent, partially modified by a random process of mutation.
However, there exists a difference between natural and artificial evolution. In na-
ture, evolution create a vast diversity of creatures (at a certain moment becoming
different species), while artificial evolution helps us to produce population satis-
fying our predefined problems. Therefore, the overall aim of artificial evolution is
more similar to e.g. dog breeding, than a random natural process with unexpected
outcomes, giving species special abilities helping them to survive.

This chapter focuses on the evolutionary systems, providing a simple benchmark
to evaluate their performance in comparison to human intelligence and fully ran-
dom process. More information about these kinds of algorithm and their usage can
be found in [15], [43], [12], [5] or [6]. It must be noted that important difference
between the traditional and bio–inspired AI, is the number of elements involved in
these processes. The traditional AI usually involves small number of elements (often
even one), where each element is expected to perform as good as it could be done.

Artificial Intelligence Evolved from Random Behaviour 31

The bio–inspired AI is built over a large number of elements, where only a subset
of them will provide meaningful results. This is an exact situation found in nature,
where redundancy and large populations are typical, and the progress of populations
development is being driven by small subsets of best individuals.

7 A Benchmark to Evaluate Artificial Intelligence

In his book ”A Random Walk Down Wall Street,” Malkiel wrote ”a blindfolded
monkey throwing darts at a newspaper’s financial pages could select a portfolio
that would do just as well as one carefully selected by experts” [41]. Can we evolve
this random strategy to an intelligent strategy? For example, Lipinski proposed a
decision support system for stock market trading, which is based on an evolution
strategy algorithm applied to construct an efficient stock market trading expert [40].
This is just one among many such proposals. Then those strategies can be called
intelligent? Or they pass the Turing Test?

In this section we would like to investigate the evolutionary algorithms applied
for a problem of financial investments – done in form of stock portfolio, creating an
optimal structure of financial assets. This is a very well–known task with detailed
description presented in many books and papers (to find more about its financial
meaning see, e.g. [59] or [13]). These factors caused that portfolio selection was
a subject of many research, including experiments performed different evolution-
ary algorithms, including genetic ones. Among many papers about this area we can
mention [50], [67], [7], [21] or [4]. Another important factor that caused we de-
cided to use this task as a benchmark for natural and artificial intelligence compar-
ison is the algorithmic characteristics of portfolio selection. Finally, in the financial
practice, an optimal selection of portfolio is a very significant task of financial in-
vestment. Therefore, we will examine the relation for natural intelligence of stock
investors and evolutionary intelligence.

The most fundamental and widely used approach to optimal selection of finan-
cial assets constituting portfolio is the MPT (Modern Portfolio Theory) introduced
by Harry Markowitz [42]. In language of mathematics selection of best (optimal)
portfolio is a task involving an analysis of expected portfolio efficiency and risk.
The most common measure of efficiency is expected return:

E (Rp) =∑
i

wiE (Ri) , (12)

where: Rp is the return of portfolio, Ri is the return on asset i and wi is the weight of
assets.

The standard measure of risk is portfolio volatility calculated as the standard
deviation of return:

δ 2
p =

√
∑

i
∑

j
wiwjδiδ jρi j, (13)

where: δi is the standard deviation of returns for i assets and ρi j is correlation coef-
ficient of returns for i and j assets.

32 W. Pietruszkiewicz and A. Imada

Fig. 1 The schema of risk–efficiency map for portfolio selection

To briefly explain the meaning of this task, let’s analyse Figure 1. As we can no-
tice it contains a plane, where X-axis denotes risk and Y -efficiency (both measured
according to the rules introduced above). This chart is called a risk–efficiency map,
as it provides comparable information about these two parameters. Contrary to the
incorrect common opinion, we cannot find an optimal portfolio by searching for one
with greatest efficiency or minimal risk, as looking for global extrema will cause ir-
rational selection. This problem requires us to analyse both of these parameters.
Indeed, in the two most common scenarios, portfolio optimality is understood as an
extreme value of risk or efficiency for portfolios having particular efficiency or risk
(accordingly). There exists an efficient frontier for this selection, being a subset of
portfolios, each with the highest efficiency for fixed risk or the lowest risk for fixed
efficiency.

To examine evolutionary (genetic algorithms) approach to portfolio selection, we
have decided to compare three types of portfolios:

• Portfolios of two financial investment funds – we consider them to be the out-
comes of natural intelligence, as they are created by financial experts managing
these funds.

• Randomly generated portfolios – randomly distributed are the worst–case sce-
nario, as if portfolio construction is a knowledge requiring task, random selection
should give significantly worse results.

• Portfolios generated using genetic algorithms – an evolutionary simple approach,
where randomness is driven by algorithm of selection allowing the best portfolios
in one generation to be potentially improved in following generations.

Artificial Intelligence Evolved from Random Behaviour 33

The analysis was done for Warsaw Stock Exchange during year 2010, being a quite
stable year for WSE (and other markets), as a few previous years were very nervous
for stock markets around the world. Thus, they cannot be expected to provide simple
and easily understandable evaluation for computational methods of intelligence, as
well as for human knowledge.

We investigated three scenarios:

1. minimal risk portfolio – where we minimise risk value for portfolios with effi-
ciency equal to a certain value,

2. maximal efficiency portfolio – where we maximize efficiency value for portfolios
with a certain risk,

3. minimal risk–to–efficiency ratio portfolio – where the average risk per unit of
efficiency should be minimal.

In all cases, we have assumed that the all weights of assets in portfolio sum to one
i.e., ∑i wi = 1 and the short–selling is not allowed i.e., wi ≥ 0. The genetic algorithms
were used in a variant with roulette-wheel selection (for explanation see [12]), and
real–valued N chromosomes used in fitness function (N was a number of stocks)
representing weights of particular stocks in portfolio. The fitness function was

(a) Fund A – 5 stocks (b) Fund A – 10 stocks

(c) Fund A – 20 stocks (d) Fund A – all stocks

Fig. 2 (a), (b), (c) and (d)

34 W. Pietruszkiewicz and A. Imada

selected to match expected optimality of portfolio (minimal risk, maximal efficiency
or minimal risk–to–efficiency).

We have performed two stages of experiments for two investment funds (denoted
as Fund A and Fund B) oriented on investing in WSE–noted stocks, by examining
their portfolios, more precisely subsets WSE stocks (small parts of portfolios was
invested on other markets or in bonds). The results of these experiments can be
found in Figures 2 and 3. Both Figures contain four subfigures presenting analysis
done for 5, 10, 20 and all stocks. They contain frontiers, random portfolios (grey
areas) and genetic portfolios.

Analysing these Figures, we have made observations for:

• Funds – being not so optimal as it was expected in terms of MPT. However, we
do not want to criticise human experts as their selection might have been a result
of analysis beyond MPT theory.

• Random portfolios – random selection of portfolios, as it was expected, resulted
in mean results. Interesting observation is that with increasing number of stocks,
random areas were more distant from efficient frontier and it could mean that
optimal selection is harder to perform (small changes in the weights of portfolio
result in its suboptimality).

(a) Fund B – 5 stocks (b) Fund B – 10 stocks

(c) Fund B – 20 stocks (d) Fund B – all stocks

Fig. 3 (a), (b), (c) and (d)

Artificial Intelligence Evolved from Random Behaviour 35

• Genetic portfolios – achieved better (according to the MPT theory) results for
all three scenarios in both cases (Fund A and B). However, we have observed
their weak spots too, i.e. a number of adjustable parameters and core algorithm –
both to be selected and tuned by human operator, and larger demand on computer
resources. This last problem, in the context of processing limits, will be discussed
in the following section and we must remember about significant risk of sub–
optimality for classic optimisation algorithms. The partially positive influence of
random component in the optimisation of complex functions was discussed in
[55].

8 To Aim a Real Human-Like Machine Intelligence

In this section we will discuss ideas, research and technological changes influencing
further development of artificial intelligence. Together with reorientation of AI on
bio-inspired algorithms they might cause that the term of machine intelligence will
become more realistic.

8.1 Huge Number of Neurons–From Emulation to Simulation

Recently, IBM’s researchers unveiled a project called SyNAPSE (Systems of Neu-
romorphic Adaptive Plastic Scalable Electronics) in which experimental computer
chips which emulate the brain was awarded 21 million US dollars from the Defense
Advanced Research Projects Agency (DARPA). Currently prototype contains 256
neurons and 262,144 programmable synapses and 65,536 synapses for learning8.

On the other hand, simulating brain by a program, instead of emulating brain by
hardware, also has attracted, and still attracts, researchers. One such idea is evolving
artificial neural networks. Direct encoding of artificial neural networks, where struc-
ture and/or all the synaptic strengths are directly encoded to genes, is not practical
because it is computationally very expensive, and as such, lots of indirect encod-
ing methods have been proposed. Hypercube-based Neuroevolution of Augmenting
Topologies (HyperNEAT) [70] is one of them. Infact Gauci [19] wrote, ”Although
HyperNEAT generates ANNs with millions of connections, such ANNs can run in
real time on most modern hardware. Using a 2.0GHz processor, an eight million
connection networks takes on average 3.2 minutes to create, but only 0.09 seconds
to process a single trial.” Clune [11] applied it to design a neural network that con-
trols a quadruple leg robot.

Although once Frederic Jelinek, a pioneer in speech recognition, put it in the
debates with the linguists, ”airplanes don’t flap their wings to fly like birds”9,
the most likely candidate of artificial intelligence might employ real biologically

8 This is from the article in New York Times by Steve Lohr entitled ”Creating Artificial
Intelligence Based on the Real Thing” on 6 December 2011.

9 This is from the article ”Computer scientist of Czech-Jewish origin Jelinek dies in USA,”
in The Prague Daily Monitor on 27 September 2010,

36 W. Pietruszkiewicz and A. Imada

plausible artificial neurons to think like human brain. An example would be, evolv-
ing trillions of spiking neurons with a fitness of how intelligent, assuming we have
a good measure of machine intelligence mentioned in the previous section. Let us
quote Sandberg and Bostrom’s paper ”Whole Brain Emulation: A Roadmap” [60].
”The so far (2006) largest simulation of a full Hodgkin Huxley neuron network
was performed on the IBM Watson Research Blue Gene supercomputer using the
simulator SPLIT. It was a model of cortical minicolumns, consisting of 22 million
6-compartment neurons with 11 billion synapses, with spatial delays corresponding
to a 16 cm2 cortex surface and a simulation length of one second real time. Most
of the computational load was due to the synapses, each holding 3 state variables.
The overall nominal computational capacity used was 11.5 TFLOPS, giving 0.5
MFLOPS per neuron or 1045 FLOPS per synapse. Simulating one second of neural
activity took 5,942 sec. The simulation showed linear scaling in performance with
the number of processors up to 4,096 but began to show some (23%) overhead for
8,192 processors.” See also Cattell and Parkers paper [9] on this topic.

8.2 Toward Real AI by Parallelism

From computational point of view, when we compare the processing power of hu-
man brain with the power of machines the main differences relate to:

• power – computers are more powerful in specific tasks, allowing them to perform
faster calculation or analysis of structured data, while the power of total human
brain is still exceeding its machine counterpart (see [46]) and cause that we are
able to see, hear or speak (not to mention about thinking).

• parallelism – in this case human brain is parallel biological computer, while ma-
chines are much more sequential.

Therefore, it is expected that increased parallelism will be a significant factor in-
fluencing further development of AI. As we can notice, the most of currently intro-
duced or investigated AI algorithms is based on multiple instances of simple mech-
anisms (including neural systems or swarm intelligence) comparing to sophisticated
algorithms typical for the traditional approach to AI. As we – researchers – haven’t
succeeded in reimplementing the nature using machine–based tools (algorithms and
programming languages) we should aim at creation of self–adaptive resemblance of
nature (brain) in large scale and expect that process of evolution will also work in
this case.

However, considering further increase of computational power of machine–based
intelligence, we think that the next obstacle we should overcome is the processing
limits related to all computer system. As it was stated by Pietruszkiewicz (see [53]
- for other factors important in AI applications see [54]) they relate to: algorithms,
software, hardware and even human operators. These limits can be eased by many
means, especially by increased parallelism, available in different forms including:

Artificial Intelligence Evolved from Random Behaviour 37

• Multi-core processors – is possible to implement fully parallel data processing
on a single–chip machines and deploy task parallelism in systems. Furthermore,
the current versions of processors available on market compete with number of
cores, as increase of power of a single-cores is limited by quantum effects10;

• GPU-enabled processing – allows us to deploy cost and energy effective GPU
(Graphical Processing Unit) cards to problems where parallel data processing
significantly reduced time of processing – described as GPGPUs applications
(General Purpose Graphical Processing Unit). The power of even mid–range
GPU cards, being multi–core RISC processors, is at a few rank over power of
CPUs. The processing based on GPU fits very well to algorithms of AI, where
tasks could be divided into interdependent parts, e.g. neural networks, evolu-
tionary algorithms or swarm intelligence. The success of these systems could
not have been achieved without supporting software technologies, like CUDA
or OpenCL (see [61] or [63]), allowing one to easily build and deploy GPGPU
applications;

• Distributed processing – transforming computers in network into metacomput-
ers, where the clusters of distributed or co–located machines could be used in
various tasks offering their resources. This solution also could not succeed with-
out appropriate software technologies allowing developers to build distributed
systems over software layers responsible for management of distributed systems
(e.g. controlling them and performing tasks management). One of the most pop-
ular distributed data processing technologies is Apache Hadoop (see [37]) and
its application to intelligent problems led to the development of Apache Mahout,
build over Hadoop to perform data mining tasks (for more information about
Mahout see [51]).

Therefore, as we can see all people involved in IT industry – researchers, developers,
IT companies – are oriented onto increased availability of parallelism in computer
systems at level of processor, machine or networks. Due to this observation and pre-
liminary research done for AI using these technologies, we claim that this approach
has a great potential to bring us closer to . To conclude – an urban expression dumb
as a bag of hammers has a special meaning for AI. Human brain being also “a bag
of neurons”, where a single neuron is not as bright as we could expect, is still the
greatest intelligent system we could observe. Maybe a large number of parallel neu-
rons will bring the man–made machines to this biological excellence. Additionally,
this approach suits very well to the idea of bio–inspired AI, including evolutionary
intelligence.

9 Conclusions

In this chapter we have analysed the most popular or influencing definitions of in-
telligence for natural and man–made systems. We have investigated two different

10 The quantum computers for many years are considered to have a great potential and are
expected to cause a technological revolution. However, they are still in a research stage,
far from maturity and being market–ready.

38 W. Pietruszkiewicz and A. Imada

approaches to artificial intelligence, the traditional and evolutionary one. Both of
these approaches have many theories, methods and implementations and they were
introduced and discussed herein.

To examine behaviour of evolutionary intelligence and compare it with natural
intelligence we have performed an evaluating experiment. The introduced bench-
mark, being an AI–based solution to one of the most popular financial problems
– resulted in evolutionary intelligence outperformed results of human experts. Ad-
ditionally, it revealed the difference between the popular theory (which should be
taken into account by investors) and business practice.

The last part of this chapter contained an analysis of technological changes that
could support further development of intelligent systems. In our opinion one of
significant technological changes taking place, with a great potential for AI, is a
move towards parallelism in both – hardware and software.

In our final words, we would like to point that we are aware, that in the near future
researchers community will still be discussing the definition of AI and what should
be considered as a man–made fully intelligent system. However, we shouldn’t forget
that people behaviour involving knowledge and intelligence is not always as bright
and clever as we expect. In situation where the genetic algorithms performed better
than financial experts, which group should be consider to be intelligent? Or maybe
we should start to think about AI in the same way we think about some people
with great minds, allowing them to deal with complex tasks much better than with
daily routines. Who will perform better at the Turing test – the Rain Man or a well
designed chat–bot?

References

1. Adami, C., Brown, C.T.: Evolutionary learning in the 2d artificial life systems avida. In:
Proceedings of Artificial Life, vol. IV, pp. 377–381. MIT Press (1994)

2. Adami, C., Ofria, C.A., Collier, T.C.: Evolution of biological complexity. Proceedings of
the National Academy of Science 97, 4463–4468 (2000)

3. Albus, J.S.: Outline for a theory of intelligence. IEEE Transactions Systems, Man and
Cybernetics 21(3), 473–509 (1991)

4. Anagnostopoulos, K.P., Mamanis, G.: The mean variance cardinality constrained portfo-
lio optimization problem: An experimental evaluation of five multiobjective evolutionary
algorithms. Expert Systems with Applications 38(11), 14208–14217 (2011),
http://www.sciencedirect.com/science/
article/pii/S0957417411007603, doi:10.1016/j.eswa.2011.04.233

5. Back, T., Fogel, D., Michalewicz, Z. (eds.): Evolutionary Computation 1: Basic Algo-
rithms and Operators. Taylor & Francis (2000)

6. Back, T., Fogel, D., Michalewicz, Z. (eds.): Evolutionary Computation 2: Advanced Al-
gorithms and Operations. Taylor & Francis (2000)

7. Bermúdez, J., Segura, J., Vercher, E.: A multi-objective genetic algorithm for cardinality
constrained fuzzy portfolio selection. Fuzzy Sets and Systems 188(1), 16–26 (2012),
http://www.sciencedirect.com/science/
article/pii/S0165011411002387, doi:10.1016/j.fss.2011.05.013

8. Byrne, R.W., Whiten, A.: Machiavellian intelligence: Social expertise and the evolution
of intellect in monkeys, apes and humans. Clarendon Press, Oxford (1988)

http://www.sciencedirect.com/science/article/pii/S0957417411007603
http://www.sciencedirect.com/science/article/pii/S0957417411007603
http://www.sciencedirect.com/science/article/pii/S0165011411002387
http://www.sciencedirect.com/science/article/pii/S0165011411002387

Artificial Intelligence Evolved from Random Behaviour 39

9. Cattell, R., Parker, A.: Challenges for brain emulation: Why is building a brain so
difficult? (2011),
http://synapticlink.org/Brain%20Emulation%20Challenges.pdf

10. Chaitin, G.J.: Godel’s theorem and information. Theoretical Physics 21(12), 941–954
(1982)

11. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped
gaits with the hyperneat generative encoding. In: Proceedings of Congress on Evolution-
ary Computation, pp. 2764–2771 (2009)

12. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2007)
13. Fabozzi, F.J., Peterson, P.P.: Financial Management and Analysis. John Wiley & Sons

(2003)
14. Fetzer, J.H.: Minds and machines: Behaviorism, dualism and beyond. Stanford Elec-

tronic Humanities Review 4(2) (1995)
15. Floreano, D., Mattiussi, C.: Bio–Inspired Artificial Intelligence: Theories, Methods, and

Technologies. MIT Press (2008)
16. French, R.M.: Subcognition and the limits of the turing test. Mind 99, 53–65 (1990)
17. French, R.M.: The turing test: The first fifty years. Trends in Cognitive Sciences 4(3),

115–121 (2000)
18. Frosini, P.: Does intelligence imply contradiction? Cognitive Systems Research 10(4),

297–315 (2009)
19. Gauch, J., Stanley, K.: Generating large-scale neural networks through discovering ge-

ometric regularities. In: Proceedings of the Conference on Genetic and Evolutionary
Computation, pp. 997–1004 (2007)

20. Gibson, D.G.: His 23 colleagues: Creation of a bacterial cell controlled by a chemically
synthesized. Science 329(5987), 52–54 (2010)

21. Gorgulho, A., Neves, R., Horta, N.: Applying a GA kernel on optimizing technical
analysis rules for stock picking and portfolio composition. Expert Systems with Appli-
cations 38(11), 14,072–14,085 (2011), http://www.sciencedirect.com/
science/article/pii/S0957417411007433,
doi:10.1016/j.eswa.2011.04.216

22. Grabowski, L.M., Bryson, D.M., Dyer, F.C., Ofria, C., Pennock, R.T.: Early evolution of
memory usage in digital organisms. In: Proceedings of the International Conference on
Artificial Life, pp. 224–231 (2010)

23. Grabowski, L.M., Bryson, D.M., Dyer, F.C., Pennock, R.T., Ofria, C.: Clever creatures:
Case studies of evolved digital organisms. In: Proceedings of the European Conference
on Artificial Life, pp. 276–283 (2011)

24. Grabowski, L.M., Elsberry, W.R., Ofriam, C., Pennock, R.T.: On the evolution of motility
and intelligent tactic response. In: Proceedings of Genetic and Evolutionary Computation
Conference, pp. 209–216 (2008)

25. Gudwin, R.R.: Evaluating intelligence: A computational semiotics perspective. In: IEEE
International Conference on Systems, Man and Cybernetics, pp. 2080–2085 (2000)

26. Gunderson, K.: The imitation game. Mind 73, 234–245 (1964)
27. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)
28. Harnad, S.: Grounding symbols in the analog world with neural nets. Think (Special

Issue on Connectionism versus Symbolism) 2, 68–73 (1993)
29. Harnad, S.: Turing indistinguishability and the blind watchmaker. Evolving Conscious-

ness Amsterdam, pp. 3–18 (2002)
30. Hayes, P., Ford, K.: Turing test considered harmful. In: Proceedings of the International

Joint Conference on Artificial Intelligence, vol. 1, pp. 972–977 (1995)

http://synapticlink.org/Brain%20Emulation%20Challenges.pdf
http://www.sciencedirect.com/science/article/pii/S0957417411007433
http://www.sciencedirect.com/science/article/pii/S0957417411007433

40 W. Pietruszkiewicz and A. Imada

31. Hernandez-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime
intelligence test. Artificial Intelligence 178(18), 1508–1539 (2010)

32. Hibbard, B.: Bias and no free lunch in formal measures of intelligence. In: Artificial
General Intelligence, vol. 1, pp. 54–61 (2009)

33. Hibbard, B.: Measuring Agent Intelligence via Hierarchies of Environments. In: Schmid-
huber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 303–308.
Springer, Heidelberg (2011)

34. Hingston, P.: A turing test for computer game bots. IEEE Transactions on Computational
Intelligence and AI in Games 1(3), 169–186 (2009)

35. Krol, M.: Have we witnessed a real-life turing test? Computer 32(3), 27–30 (1999)
36. LaCurts, K.: Criticisms of the turing test and why you should ignore (most of) them.

Official Blog of MIT’s Course: Philosophy and Theoretical Computer Science (2011)
37. Lam, C.: Hadoop in Action. Manning Publications (2010)
38. Legg, S., Hutter, M.: A collection of definitions of intelligence. Advances in artificial

general intelligence: Concepts, architectures and algorithms. Frontiers in Artificial Intel-
ligence and Applications 157, 17–24 (2007)

39. Lenski, R.E., Ofria, C., Pennock, R.T., Adami, C.: The evolutionary origin of complex
features. Nature 423, 139–144 (2003)

40. Lipinski, P.: Evolutionary Decision Support System for Stock Market Trading. In:
Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253,
pp. 405–409. Springer, Heidelberg (2008)

41. Malkiel, B.G.: A Random Walk Down Wall Street: The Time-Tested Strategy for Suc-
cessful Investing. W. W. Norton & Company, New York (2007)

42. Markowitz, H.M.: Portfolio selection. The Journal of Finance 7(1), 77–91 (1952)
43. Melanie, M.: An Introduction to Genetic Algorithms. MIT Press (1999)
44. Michie, D.: Turing’s test and conscious thought. Artificial Intelligence 60, 1–22 (1993)
45. Miller, G.F.: Protean primates: The evolution of adaptive unpredictability in competition

and courtship. In: Machiavellian Intelligence II: Extensions and Evaluations, pp. 312–
340 (1997)

46. Moravec, H.: When will computer hardware match the human brain? Journal of Evolu-
tion and Technology 1 (1998)

47. Neisser, U., Boodoo, G., Bouchard, T.J., Boykin, A.W., Brody, N., Ceci, S.J., Halpern,
D.F., Loehlin, J.C., Perloff, R., Sternberg, R.J., Urbina, S.: Intelligence: Knowns and
unknowns. American Psychologist 51(2), 77–101 (1996)

48. Ofria, C., Adami, C., Collier, T.C.: Design of evolvable computer languages. IEEE Trans-
actions in Evolutionary Computation 17, 528–532 (2002)

49. Ofria, C., Bryson, D.M., Wilke, C.D.: Avida: A Software Platform for Research in Com-
putational Evolutionary Biology. In: Artificial Life Models in Software. Advances in
Artificial Life, 2nd edn., pp. 3–36 (2009)

50. Oh, K.J., Kim, T.Y., Min, S.: Using genetic algorithm to support portfolio optimization
for index fund management. Expert Systems with Applications 28(2), 371–379 (2005),
http://www.sciencedirect.com/science/
article/pii/S0957417404001356, doi:10.1016/j.eswa.2004.10.014

51. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in Action. Manning Publications
(2011)

52. Pennock, R.T.: Models, simulations, instantiations, and evidence: the case of digital evo-
lution. Experimental and Theoretical Artificial Intelligence 19(1), 29–42 (2007)

53. Pietruszkiewicz, W.: Practical Evaluation, Issues and Enhancements of Applied Data
Mining. In: Abd Manaf, A., Zeki, A., Zamani, M., Chuprat, S., El-Qawasmeh, E. (eds.)
ICIEIS 2011. CCIS, vol. 252, pp. 717–731. Springer, Heidelberg (2011),
http://www.springerlink.com/content/h077486038250q07/

http://www.sciencedirect.com/science/article/pii/S0957417404001356
http://www.sciencedirect.com/science/article/pii/S0957417404001356
http://www.springerlink.com/content/h077486038250q07/

Artificial Intelligence Evolved from Random Behaviour 41

54. Pietruszkiewicz, W., Dzega, D.: The Large Scale Artificial Intelligence Applications –
An Analysis of AI-Supported Estimation of OS Software Projects. In: Konstantopoulos,
S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010.
LNCS(LNAI), vol. 6040, pp. 223–232. Springer, Heidelberg (2010)

55. Pietruszkiewicz, W., Twardochleb, M., Roszkowski, M.: Hybrid approach to support-
ing decision making processes in companies. Control and Cybernetics 40(1), 125–143
(2011)

56. Poole, D., Mackworth, A., Goebel, R.: Computational intelligence: A logical approach.
Oxford University Press (1998)

57. Purtill, R.L.: Beating the imitation game. Mind 80, 290–294 (1971)
58. Ray, T.S.: An approach to the synthesis of life. Santa Fe Institute Studies in the Science

of Complexity X, 371–408 (1992)
59. Reilly, F.K., Brown, K.C.: Investment Analysis and Portfolio Management. South-

Western College Pub. (2008)
60. Sandberg, A., Bostrom, N.: Whole brain emulation: A roadmap. Tech. rep., Future of

Humanity Institute, Oxford University (2008)
61. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU

Programming. Pearson (2010)
62. Saygini, A.P., Cicekliz, I., Aknan, V.: Turing test: 50 years later. Minds and Machines 10,

463–518 (2000)
63. Scarpino, M.: OpenCL in Action: How to Accelerate Graphics and Computations. Man-

ning Publications (2011)
64. Schweizer, P.: The truly total turing test. Minds & Machines 8, 263–272 (1998)
65. Searle, J.R.: Minds, brains and programs. Behavioral and Brain Sciences 3, 417–424

(1980)
66. Smith, W.D.: Mathematical definition of intelligence (and consequences) (2006),

http://math.temple.edu/wds/homepage/works.html
67. Soleimani, H., Golmakani, H.R., Salimi, M.H.: Markowitz–based portfolio selection

with minimum transaction lots, cardinality constraints and regarding sector capi-
talization using genetic algorithm. Expert Systems with Applications 36(3, Part 1),
5058–5063 (2009), http://www.sciencedirect.com/
science/article/pii/S095741740800328X,
doi:10.1016/j.eswa.2008.06.007

68. Spearman, C.E.: The abilities of man, their nature and measurement. Macmillan (1927)
69. Standage, T.: The Turk: The life and Times of the famous eighteenth-century chess-

playing machine. Walker & Company (2002)
70. Stanley, K.O., Ambrosio, D.B., Gauci, J.: A hypercube-based indirect encoding for

evolving large-scale neural networks. Artificial Life, 185–212 (2009)
71. Turing, A.M.: Intelligent machinery (1948)
72. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)
73. Watt, S.: Naive psychology and the inverted turing test (1996)
74. Weizenbaum, J.: Eliza: A computer program for the study of natural language commu-

nication between men and machines. Communications of the ACM 9, 36–45 (1966)

http://math.temple.edu/wds/homepage/works.html
http://www.sciencedirect.com/science/article/pii/S095741740800328X
http://www.sciencedirect.com/science/article/pii/S095741740800328X

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 43–62.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

Turing: Then, Now and Still Key

Kieran Greer*

Abstract. This paper looks at Turing’s postulations about Artificial Intelligence in
his paper ‘Computing Machinery and Intelligence’, published in 1950. It notes
how accurate they were and how relevant they still are today. This paper notes the
arguments and mechanisms that he suggested and tries to expand on them further.
The paper however is mostly about describing the essential ingredients for
building an intelligent model and the problems related with that. The discussion
includes recent work by the author himself, who adds his own thoughts on the
matter that come from a purely technical investigation into the problem. These are
personal and quite speculative, but provide an interesting insight into the
mechanisms that might be used for building an intelligent system.

Keywords: Artificial Intelligence, Intelligence Modelling, Alan Turing.

1 Introduction

The idea of artificial intelligence has been around since the 1950’s at least. Alan
Turing and others have been attributed as the founders of the science and Turing
as the father of AI, but a definition of what it represents is still not clear. Turing
defined it through the imitation game, where a human and a machine are asked the
same set of questions. If the interrogator cannot tell which is the human and which
is the machine, then the machine is considered to be intelligent. This is really the
ultimate test for an intelligent system, where it acts almost exactly as a human
would. Most people would recognise that if a machine can perform more
simplistic, but still intelligent acts, then it is considered to have intelligence. There
are now many different variations and definitions of what a single intelligent act
might be, which is probably why a concise definition is so difficult. It probably
requires however that the machine can do something by itself, without being told
exactly how to do it first. This paper considers Turing’s ‘Computing Machinery
and Intelligence’ paper [22], which is one of the first to write about artificial
intelligence. It looks at the postulations made in that and describes how relevant

Kieran Greer
Distributed Computing Systems, UK
e-mail: kgreer@distributedcomputingsystems.co.uk

3

44 K. Greer

they still are today. While the problem of what artificial intelligence is and what it
requires has now been defined much more formally, we are still not much further
on at achieving it in a real sense. Many smaller advances have been made however
and are covered in many texts about the topic.

Turing stated that a computer using a ticker tape as the information source, if
programmed properly, would be able to solve any problem. This was described as
the Turing machine, which is able simply to manipulate symbols on a strip of tape
according to a set of rules. This can be used to simulate the logic of any computer
algorithm, because a computer process is eventually broken down into simplistic
on/off commands. This could be represented by a hole or not in the tape, for
example. Turing meant that if a problem can be described in terms of a computer
algorithm, then the computer can perform that task. The computer does not have
any difficulty performing the most complex of calculations, but it does not know
how to write the algorithm telling it how to do them in the first place. That
requires intelligence. Neurons in an animal brain are also by nature very simple
components. They switch on, or fire, when the input that they receive exceeds a
certain threshold. This does not appear to require any inherent intelligence either
and looks more like a purely mechanical process. The problem is that it is still not
known how to use this sort of entity to realise a truly intelligent system.

The brain is made up of billions of these neurons [24]. If a single neuron has
zero intelligence, then some thousands of them together also have zero
intelligence; but we know that intelligence is made up of the collective activity of
a large number of neurons, all firing together. One key factor is the granularity of
the patterns that they form. The patterns are made up of so many neurons that a
slight change in an input stimulus could lead to noticeable changes in the patterns
that are produced and therefore in the output signals that they create. Different
patterns can then be interpreted by the brain as something different. The brain
creates electrical signals, causing changes in some internal state that might be felt.
If the brain can recognise these different feelings or reactions, to small pattern
changes, they could also be remembered and linked, to form different memories.
Is this the essence of what intelligence is? Is it the ability to recognise these
differences in a coherent and consistent way? The fact that a stimulus is involved
is probably not a surprise. The electrical signals would excite and the brain would
probably register this in some way. What might be surprising is how important a
role it plays, but this theory appears to be a part of the mainstream research
interest. The paper [23] discusses it and describes the difficulties with measuring
stimulus-driven responses, or modelling the neural circuits produced by them. If
we assume that individual neurons are not intelligent by themselves, then we have
the following problems and requirements for realising an intelligent machine:

1. The formation of the brain structure could be driven mainly by stimuli – sight,

sound, taste, touch, smell, for example. The brain tries to remember and
repeat the ones that it finds favourable, or unfavourable.

2. If the neurons have no intelligence, then at least one other layer that can
interpret what the firing neurons signal is required. A layer called the
neocortex [8] is already known to perform more intelligent processing. The

Turing: Then, Now and Still Key 45

neocortex is a thin layer above the main brain body. It contains most of the
intelligent components, including memory and is the driving force behind
intelligent activity.

3. If external stimuli control everything about how the brain forms then
environmental factors are too critical and so this more intelligent and
independent layer is very important.

4. With a largely unintelligent main brain body, notions about the sub-conscious
are also possible.

The following questions also arise:

1. Is the brain formation driven by the stimulus or by the more intelligent layer?
2. Does the more intelligent layer simply interpret different signals, or can it

have an influence over their creation and activation?
3. Is there a process of reading and re-organising existing patterns, which would

indicate a controlling and therefore intelligent process? Does the main brain
body form certain patterns that are read by other layer(s) that then form other
patterns, etc., until the refinement forms into comprehensible intelligence?

4. The problem is then the act of thinking itself. Without any particular external
stimulus, we still think about things. So the stimulus can also be generated
internally. Can a stimulus result be learnt and remembered? What sort of
stimulus would allow a person to learn mathematics, for example?

5. Memory plays a key part in retrieving already stored patterns, but how do we
think over them and change them in an intelligent way? Memory must also
accommodate the processes to do that.

The rest of this paper is organised as follows: Section 2 gives an introductory
overview of the human brain neuron and its artificial equivalent. Section 3 lists
certain requirements for an intelligent system. Section 4 then lists general
mechanisms or processes for finding a solution to these. Section 5 describes some
work by the author that is related to an intelligent system, while section 6 gives
some conclusions on what has been written about. Turing’s postulations are noted
in places throughout the paper, but the paper is more of a summary on general
conditions for artificial intelligence. The conclusions section however lists the
postulations in detail and notes how important they still are.

2 Simplified Model of the Human Brain

This section does not try to describe the brain structure completely, or in detail,
but instead will attempt to show the similarities between the biological and the
simulated neuronal processing unit. The Introduction has already described how
intelligence is realised through the collective activities of these neurons, firing in
response to sensory input. The paper [23] notes that while responses to sensory
input can account for something such as vision, the majority of brain activity is
generated internally and is silent. The brain therefore also needs to be able to
produce its own activity, in the absence of external input. We therefore need to be
able to think constructively.

46

The most obvious way
the most intelligent thing
figure out how that wor
artificial intelligence. Th
natural processes and the
‘bio-inspired’ and the ide
well, then it probably can
way. Often however the g
underlying process that is
in some way ([5], section
example of how different
chess as well as any hum
fundamental principles o
position and searches lo
possible reply in any pos
before making a move, th
of positions to achieve the
does not understand the p
therefore needs to evaluat

The basic computation
called dendrites, a cell bo
neuron can be modelled
the cell body of the neuro
will trigger the neuron’s o
these signals exceeds a ce
own signal through the ax
other neurons, and so on.

Fig. 1 Example of a human n

The signals are electri
They are created by che
negative ions. The positiv
spiking event. This spikin
a refractory period, duri

K. Gre

 to try and realise intelligence in a machine is by copyin
g that we know of, which is the human brain. If we ca
rks and reproduce it in a machine, then we will hav
ere has been quite a lot of work carried out looking

en trying to copy them in machines. They can be calle
ea is that if nature has worked out how to do somethin
nnot be beaten and so we should try to copy it in som
goal is not to copy it exactly, but to try to understand th
s happening and then try to implement that in a machin
1.2, for example). Computer chess, however, is a class

t the result can be. Computers can now play the game o
man and the computer programs were built around th

of how we play the game. The machine evaluates eac
ogically through sequences of moves to find the be
ition. However, while humans evaluate tens of position

he best computer program can evaluate thousands or mor
e same result. The assumption must be that the compute

problem in the same way that the human player does an
te many more positions to come to the same conclusion.
nal unit in the brain is the neuron. A neuron has inpu
ody and an output called an axon. An animal or huma
as in Figure 1. The dendrites send incoming signals int

on that can be of varying strength. A stronger input sign
own output signal more. When the accumulative value o
ertain threshold value, the neuron fires by sending out i
xon. This output signal can then act as an input signal t

neuron

ical and sent by neurotransmitters to other brain area
emical reactions that cause a diffusion of positive an
vely charged ions create the electrical signal and a firin
ng event is also called depolarization, and is followed b
ng which the neuron is unable to fire. This could b

eer

ng
an
ve
at
ed
ng
me
he
ne
ic
of
he
ch
est
ns
re
er
nd

uts
an
to

nal
of
its
to

as.
nd
ng
by
be

Turing: Then, Now and Still Key 47

important, because after a cell fires, it cannot then fire again, through feedback for
example, before a period of time has elapsed. This could help to prevent cycling,
for example. As written about in [21]:

‘Although the models which have been proposed to explain the structure of the
brain and the nervous system of some animals are different in many respects, there
is a general consensus that the essence of the operation of neural ensembles is
"control through communication". Animal nervous systems are composed of
thousands or millions of interconnected cells. Each one of them is a very complex
arrangement which deals with incoming signals in many different ways. However,
neurons are rather slow when compared to electronic logic gates. These can
achieve switching times of a few nanoseconds, whereas neurons need several
milliseconds to react to a stimulus. Nevertheless, the brain is capable of solving
problems that no digital computer can yet efficiently deal with. Massive and
herarchical networking of the brain seems to be the fundamental precondition for
the emergence of consciousness and complex behaviour.’

Neural networks are the technology that most closely map to the human brain.
They are the original attempt to build a machine that behaves in the same way.
The inspiration for neural networks comes from the fact that although current
computers are capable of vast calculations at speeds far in excess of the human
brain, there are still some operations (such as speech, vision and common-sense
reasoning) that current AI systems have trouble with. It is thought that the
structure of the human brain may be better suited to these tasks than a traditional
computing system and a neural network is an attempt to take advantage of this
structure. There are many texts on neural networks, for example, [7] or [21]. In [7]
the definition of a neural network is given as:

 ‘A neural network is an interconnected assembly of simple processing
elements, units or nodes, whose functionality is loosely based on the animal
neuron. The processing ability of the network is stored in the interunit connection
strengths, or weights, obtained by a process of adaption to, or learning from, a set
of training patterns.’

Figure 2 shows a model that has been used with artificial neural networks, with
the areas related to a real neuron in brackets. This shows a number of inputs (X1 to
Xn) that are weighted (w1 to wn) and summed, before being passed through a
threshold function. If the total sum is larger than the threshold, the neuron will
‘fire’, or send an output signal. If it is less, then the neuron will not fire. This is an
example of a perceptron, which is one of the earliest artificial neuronal models,
based on McCulloch and Pitts [16]. It is described here to show how similar in
nature it is to the real neuron. Neural network models, also known as connectionist
models, consist of a large number of these simple processing elements, all
operating in parallel. A large number of weighted connections between the
elements then encode the knowledge of the network. The problem to be solved is
also distributed across all of the processing elements, where it is broken down into
much simpler functions. A learning algorithm is then used to adjust the weight
values until the neural network has correctly learned the global function.

48

Fig. 2 Example of an artifici

Neural networks can b
recognition and therefore
fields. They can perform c
part of a model for intellig
although the main statistic
model the real neuron pro
combined results of simp
These units can also be pla
the input/output flows thro
network is shown in Figur
element in the next layer.
and then passed through an
The nodes in the hidden la
the learning algorithm of t
what the hidden layers repr
them in terms of their statis

Fig. 3 Feedforward neural ne

K. Gre

al neuron

be used in different ways. They are very good for patter
can be used simply as statistical classifiers in engineerin

certain classification tasks better than other alternatives. A
gence however, they also map closely to the human brai

cal process of weight reinforcement is still too simplistic
operly [7]. A global function is therefore created from th
pler functions, each representing a single processing un
aced in layers that result in more complex representations, a
ough each one. An example of a 3-layer feedforward neur
re 3. Each element in one layer sends its output to ever
All inputs to any element are weighted, summed togeth

n activation function to produce the output for that elemen
ayers may represent complex features that are discovered b
the network. It is generally not known beforehand exact
resent and so neural network researchers tend to characteri
stical properties, rather than in terms of symbolic meaning.

etwork

eer

rn
ng
As
in,
to
he

nit.
as
ral
ry

her
nt.
by
tly
se

Turing: Then, Now and Still Key 49

A neural network must be trained before it can be used. This is done by
presenting it with data that it then tries to repeat, but in a general way. The
learning process can also be supervised or unsupervised. In a supervised training
methodology, input values are fed into the network and the resulting output values
are measured. These actual output values should match a desired set of output
values that are also specified as part of the training dataset. The errors, or
differences, between the desired and the actual output values are then fed back
through the network, to adjust the weight values at each node. Adjusting the
weight values for each node will then change the output value that the node
produces. This will then change the actual output values of the neural network,
until they are found to be correct. After the network has been trained to recognise
a training set of patterns, it is tested with a different set of test patterns. If it can
also successfully classify the test set, then the network is considered to have been
properly trained. The test set would be different to the training set and so they can
only be correctly classified if the network has learned to generalise over the
different patterns, rather than rote learning the training dataset. This generalisation
has in effect allowed the network to learn the function that maps the data input
values to the data output values for the type of problem being specified.

Unsupervised learning means that there is not a definite set of output values
that must be matched, when in that case, the output error can be measured.
Instead, the network continues to learn and adjust its values until it settles on a
stable state. The network starts with some sort of hypothesis, or set of values,
when neighbouring nodes then compete in their activities through mutual
interactions, to best match the input data. Errors in the matching process update
weight values, until a more stable state is reached. This causes the individual
nodes to adapt into specific detectors of different signal patterns. Supervised
learning therefore allows a neural network to recognise known patterns, while
unsupervised allows it to find unknown patterns in the data. The process could be
looked at as trying to minimise the error in the whole system (the neural network),
or trying to realise a more stable state. When the output becomes accurate enough,
the error is minimised and further corrections are not required.

While neural networks are not particularly intelligent; their highly distributed
design with relatively simple individual components, makes them an enduringly
attractive model for trying to mimic intelligence and several variations of the
original model have since been developed. Feedforward neural networks [25] are
more often associated with supervised learning, while self-organising ones [14]
are more often associated with unsupervised learning. The distributed model has
also been extended with other types of component, into systems such as agent-
based [13] or autonomous [12] ones. With these, each individual component can
be more complex. It can have its own internal reasoning engine and make
decisions for itself. The overall nature of the system however is still to realise
more complex behaviours or activities through distributed communication and
cooperation. The reason being that the problem itself is too complex to be
modelled in its entirety and so lots of simpler components are required to try to
work the problem out through adaption and cooperation. So these systems already
model more complex components as the individual entities and the idea of seeing

50 K. Greer

the ‘big’ in the ‘small’ is also a part of nature. If a single neuron can be considered
as an individual entity that produces an output, why not see a collection of neurons
firing together also as an individual entity that produces an output? Then the
model becomes much more complex, but still based on the same set of
components.

3 A List of Requirements for Intelligence

This section lists a set of functionality that an intelligent system is thought to
require. If you were going to build an intelligent system, it would need to include
probably most of the following items. Although we know what the brain is made
of physically, there are also a number of general functional requirements for what
we understand intelligence to be. These are really what have been worked on over
the years in AI and so the key functionality of intelligence is now well defined.
Computer systems that are built can range from single complex components to a
number of highly distributed and more simplistic ones. These can simply react to
an input and perform some sort of statistical update, or have internal knowledge
and be able to make decisions. The centralised approaches are more closely
associated with knowledge-based methods, that is, methods that use existing
knowledge. Distributed approaches are more closely associated with experience-
based methods, that is, methods that require feedback or experience from use, to
update related values. A centralised approach would include a knowledge-base or
rule-based expert system [19], for example. A distributed approach would include
a neural network ([7], [16], [21] or [25]) or agent-based system [13], for example.
This paper deals more with the distributed options as they model the real brain
more closely; however the different approaches are used to build different types of
system and so cannot be compared directly in that respect. Either type has
advantages and disadvantages. If you are asking a system to model a well
understood problem based on certain criteria, you require a single knowledgeable
system that can apply its knowledge to your problem. If you are asking a system to
model a less well understood problem, you might require several distributed
entities that can interact in different ways, to play out as yet unforeseen scenarios.

Relatively simple entities can be shown to exhibit more intelligent behaviour
collectively, where they can use cooperation to compete with a more
knowledgeable and centralised system. A centralised system can store a large
amount of knowledge and apply that to any particular problem. The whole system
and its’ functionality is in one place, and probably well-defined and understood.
With a distributed system, each individual component can be much simpler, where
the nature of this allows for easier cooperation between those entities.
Unfortunately however, communications between large numbers of simpler
entities can become just as complicated as a single system performing more
complex operations on its own. Because a complex problem is naturally broken
down into simpler ones as part of the problem-solving process, a distributed
system is not that different to a centralised one when solving the same problem.
The distributed system is possibly modelled in a more modular way, which allows
each component to behave in a more independent way. This is particularly useful

Turing: Then, Now and Still Key 51

if the operation of the system is not fully understood. In that case, the basic
elements or entities of the problem can be modelled individually and then allowed
to interact with each other, in the hope that they can find a suitable solution. The
distributed system is also by nature more stochastic and will therefore be able to
perform actions that are not predictable but are based on the current dynamic state
of the system. It is more flexible in that respect.

Systems can also use search processes that evaluate incomplete or partial
information. The expectation is to find a better solution, by obtaining a more
complete picture through many smaller but related evaluations. Computer chess,
for example, uses search processes to evaluate single positions based on imperfect
evaluations. Because so many positions are evaluated however, it is able to build
up a relatively reliable picture of the whole situation through these incomplete
evaluations. The computer programmer would not be able to tell the system
exactly what positions to evaluate, which is down to the search process itself. So
this lack of knowledge is compensated for by many more evaluations and
interactions that simply reveal more information from what was present in the
original problem specification. The human would be expected to ‘know’ what the
computer ‘finds’ through its search, although, even this is an abstract idea. The
human knows more because he/she can access other information, through a
different search process. Therefore, if looking at the whole search process as a
single entity, they might not be so different after all. Search methods are ideal for
a computer that can perform many calculations per second, but the whole process
appears to lack something for modelling the human brain exactly. For these
individual entities, the level of any real intelligence is still only at the entity level
itself. The system probably needs some sense of itself as a whole to have
intelligence at that level as well. This is the point of any stimulus feedback, to
create the sense of whole from the collection of firing neurons.

Learning is also essential for intelligence. If a system cannot learn, then it is
probably not intelligent. As described in the context of neural networks in section 2, it
needs to be able to change internal settings through feedback. Through the
manipulation and use of knowledge and rules, different types of learning process have
been identified. They are also recognised as being intelligent because they perform an
act that has not been directly specified beforehand. For example, a system can be
asked to retrieve a certain value from a database. It can access the database and
retrieve the value, but this is not intelligent. With the addition of rules, the system can
then derive information or knowledge that has not been specified directly. For
example, if one assertion is the fact that John bought a shirt and another assertion is the
fact that all shirts are red, then by deduction it is known that John bought a red shirt.
This involves the easiest method of directly traversing rules or facts that are linked, to
find an answer that is not stated explicitly. Slightly more complicated would then be; if
one assertion is the fact that John only buys red things and another assertion is the fact
that John bought a shirt, also by deduction, it is known that the shirt is red. This is
slightly more complicated, because there is no rule directly stating that the shirt is red
and so a reasoning process that knows how to combine knowledge is required to come
to this conclusion. The conclusion is still known to be 100% true, however. The most
complicated then is induction, which actually creates something new out of what is

52 K. Greer

already known. For example, if we know that John has only bought red things so far
and the system is asked to buy John a coloured shirt; induction would suggest that the
system should buy a red shirt. Note that that these learning processes have evolved out
of knowledge-based approaches. Distributed systems also have learning capabilities
but these are less transparent and often involve statistical processes updating numerical
values. A neural network, for example, is sometimes described as a black box, because
the weight values that it creates and uses would not be useful in any other context and
would not be understood by a human.

For a distributed system to be able to properly describe itself, any patterns that
are saved will eventually need to be mapped to a symbolic system at some level
and then into a language or something similar, for communication. This is the
‘physical symbol system hypothesis’ attributed to Newell and Simon [18]. They
noted that symbols lie at the root of intelligent action. A symbol recognises one
particular entity as being different from another one and also assigns a ‘tag’ to that
entity for identification purposes. The conscious reasoning process that we know
about is at this symbolic level. Another important feature that the brain might have
could be very fine comparison and/or measuring capabilities. It can possibly
compare these entities or symbols very accurately and measure the level of
difference; especially if they are aggregations of patterns. In a general sense,
intelligence can require the following:

• There is a clear distinction between a system that is ‘intelligent’ and one that

is able simply to repeat what it has been told.
• It is relatively easy for a computer to learn and memorise information, if it is

presented in a formal way. The program can also traverse the information
again relatively easily, to execute any rules or actions as required. So the
problem is in inferring new information from what is known, or generalising
what is known to create something new.

• This probably requires the system to be able to deal with uncertainty or
unpredictability at some level. Or to look at this in a different way, it requires
the system to be able to predict [8]. Hawkins argues that prediction, along
with memory, are the core components of intelligence, where his conclusions
were based on studying the biological brain.

• Prediction includes comparisons and measuring differences. This requires
using deduction, inference, induction, learning and reasoning to derive new
information, or come to new conclusions from what was previously known.

• Factors such as being flexible, dynamic and able to adapt are also essential,
where a learning process is required to enable these.

• Memory is also very important, when we can then start to think in terms of
knowledge.

• While the stimulus with feedback (statistical or experience-based) approaches can
be used to build up the ‘structure’ to store intelligence, knowledge (knowledge-
based) is still required to properly ‘understand’ it. It might then be correct to state
that intelligence is required to properly manipulate the knowledge.

• Rules are possibly linked pieces of related knowledge that have been worked
out and found to be consistent or useful.

Turing: Then, Now and Still Key 53

4 General Mechanisms and Processes for Building a Solution

The previous section has given one description of two general approaches that can
be used to define intelligence. Experience-based approaches are required for
learning and are often associated with distributed and statistical processes. They
would also be associated with the lower levels of intelligence here – more at the
pattern level. Knowledge-based approaches are then required for understanding
and are associated more with centralised and formal methods. They would also be
associated with the higher levels of intelligence here – more at the symbolic level.
These two approaches also help to define how we go about building an intelligent
system. One approach is to give the machine known intelligence and study how it
uses that. The other is to ask the machine to form any sort of intelligence by itself.
The first approach is more knowledge-based and relies on existing information,
rules and scripts, which define situations or scenarios that the machine must then
use in an intelligent way. These control in a pre-determined way, how the system
works. Because of that, the machine can be given a more complex algorithm to
process the information with. The task is to measure how it can generalise that
knowledge, or create new knowledge, from what is presented to it. This approach
is useful and can be used today to build practical systems. Information is
represented at the symbolic level and can therefore be understood by a human, but
the process can only get so far. The underlying intelligent mechanisms are not
fully understood as they are pre-defined and so the system can only operate at the
level of the information that it has been presented with. There are however
learning processes, such as already described, to either create new knowledge or
infer something that is not specified directly. So new knowledge can be created,
but its domain is restricted, as is the level of real understanding.

The second approach is the modelling of the brain more closely, in a highly
distributed way, with more simplistic components. The system is not allowed any
(or only minimal) existing knowledge and the task is to measure what sort of
knowledge it can form by itself – simple or complex. The system starts with no
real structure or rule-set and creates these out of the experience and learning. A
neural network, for example, is closer to this approach. The result is something
that creates its own intelligence, or is able to develop consistent patterns from
apparently more chaotic looking information. This approach, by itself, is not quite
as useful for building practical systems, but it is just as important for modelling
real intelligence. If the mechanisms for enabling a system to create its own
patterns can be understood, then this will help with processing at the higher
symbolic levels as well. The system must have intelligence to be able to create
these patterns and if it starts with close to zero existing knowledge, then it has
created this intelligence for itself. If the underlying knowledge has been created
internally, then the hope would be that there is a better understanding of what it is
and therefore the knowledge can be used in a more flexible way.

The ideas of tacit or explicit knowledge also address this [10]. Explicit
knowledge is knowledge that can be codified, or represented in a format that can
be understood by a machine. This would include a formal definition or
representation of the knowledge. Tacit knowledge is knowledge held in the minds

54 K. Greer

of humans that cannot be easily codified and stored on a computer. This
knowledge has a personal quality created more from experience and often, this
sort of knowledge is key. If a computer is allowed to generate its own knowledge,
then the exact nature of it might not be completely transparent, when it can be
compared more closely to tacit knowledge. For example, a chair can be described
to a computer as having 4 legs, a seat and a back. We can generalise this to
recognise chairs with many different shapes and forms, but we would not be able
to codify those differences completely for a computer. We use our tacit knowledge
to recognise the different chair shapes, sometimes based on context and this is
what is missing from the programmed computer.

So to summarise, before you can reason about a concept, you have to
understand what the concept is and before you can understand what it is you have
to be able to distinguish it from a different one. There are still problems with this
first step - for a system to autonomously learn unknown patterns or concepts for
itself. Knowledge-based approaches pass over this problem, by defining these
already. This point was also written about by Turing, where the following example
might explain the problem:

Scenario 1:
Person (shows a tree picture): this is a tree.
Computer: OK.
Person: can you describe the object that I just showed to you?
Computer (accesses its database): a tree is a large woody perennial plant with a
distinct trunk giving rise to branches or leaves at some distance from the
ground.
Person: (shows a different tree picture): what is this?
Computer: I don’t know.

Scenario 2:
Computer (after looking at lots of pictures): that looks like Object A.
Person: can you describe the object?
Computer (using own knowledge): it has a long rectangular part, smaller ones

extending from that and then pointy circular objects at the end of those.
Person (shows a different tree picture): what is this?
Computer: that also looks like Object A.

If building an intelligent system, some or all of the following probably need to be
part of a final model:

• To derive or induce new information, the system must be autonomous. At the
lowest level, it must be able to form new knowledge or concepts by itself.

• To generate understanding, it must also be able to properly link the correct
knowledge or concept parts together, so that a thinking process can follow the
correct path of information.

• Pattern recognition/comparisons and the accurate measuring of differences is
also critical, to allow the system to tell different entities apart.

Turing: Then, Now and Still Key 55

• Symbolic reasoning is also necessary, requiring different layers of abstraction.
• The role of a stimulus by itself should not be underestimated, as our emotions,

feelings and therefore preferences are controlled by that. Turing’s paper notes
that intelligence is not just a logical calculation, but also something such as
the question ‘what do you think of Picasso?’

• Rules are required. This is higher-level knowledge that links individual pieces
in a constructive way. A reasoning process can create rules, where
favourable/unfavourable feedback can determine the links.

• Intelligent conclusions can be at an individual level or at a societal level and
influenced by knowledge of other rules or responses, etc. For example, I feel
good if I eat all of the ice cream, but then everybody else is angry and so I get
a bad response overall. The rule – do not eat all of the ice cream. To
emphasise the point that rules are not rigid entities that everybody obeys in
the same way, Turing wrote about ‘laws of behaviour’ as well as rules that
should always be obeyed.

• Therefore, feedback is also required, as part of a learning process. Turing also
emphasised this, in particular, through the example of teaching a computer
more like educating a child. In that example, through evolutionary learning
processes, the system is eventually able to realise some level of intelligence
for itself.

• Existing knowledge is also allowed, through logical propositions (Turing), for
example.

At the moment, it is not practical to try to model the brain exactly, with thousands
or more neurons, all firing together. It is therefore difficult to reproduce the exact
conditions under which the brain works. Because of this, adding some existing
knowledge or intelligence to help the system to understand is probably required,
with results then measured against what the system can do with that. Scripts can
be used to help. Alternatively, much more simple processes could possibly be
learned at a neuronal level, simply to see how they work. The brain eventually
needs to be able to reason in a symbolic way, creating more complex concepts
from linking simpler ones. Memory is the place where the learned concepts are
stored and time is probably also a key element, as it allows us to form the logical
associations between entities more easily. Turing described this in terms of
discrete-state machines. A problem he notes with the machine is the fact that it ‘is’
discrete. A more fuzzy system might do better. The machine is made of exactly
defined states and concepts, but the brain would require overlapping and
generalisations of these. Certain entities belong to more than one thing and as
a result also represent more than one thing (context). Turing argued that where
one machine fails, another might succeed, so combining these into a single
machine should do both equally well. He also writes about a continuous rather
than a discrete machine. Note however that state machines work at the symbolic
level.

56 K. Greer

5 Related Work

As this paper is about Turing’s work specifically, a more detailed summary of the
history of Artificial Intelligence does not seem appropriate. The author however
will take the opportunity to note his own cognitive model. There are many texts on
artificial intelligence systems and technologies. The first place to look would be a
general textbook on artificial intelligence itself, for example [20]. This section
describes a cognitive, or intelligent, model that the author is currently working on
[3][4][5]. It was developed from trying to optimise a network for information
retrieval, when it became clear that more cognitive processes were also possible.
The model structure is based mostly on feedback, or ‘stigmergy’ [2][15] and is
also highly distributed. It is therefore in the spirit of modelling a real brain, where
a diagram of the model is shown in Figure 4. One key difference with this model
is the fact that it can process information as patterns, but at a symbolic level.
Instead of the neural network, or cognitive model, being described as a black box
or in terms of statistics; the internal workings of the model can be understood by a
human user through its symbolic representations. This allows for more human-like
reasoning processes to be performed. Since the paper [18], this has been noted as
one of the goals of AI.

Fig. 4 Cognitive Model with three levels of complexity [5]

This model contains three different levels of intelligence. The first or lowest
level allows for basic information retrieval that is optimised through dynamic
links. The linking mechanism works by linking nodes that are associated with
each other through the use of the system. While it is based on the stigmergic
process of linking through experience, this could also be called Hebbian [9].

link

trigger

average

chain

Low-level
Reasoning

Retrieved
Information

Ontologies
/ Rules

Higher-level
concepts

Information
Retrieval

Turing: Then, Now and Still Key 57

Stigmergy is a very simple way of allowing components to organise themselves
based on reactions to their environment. As it works through feedback, the
individual components require very little intelligence or knowledge themselves.
They are only required, for example, to increase the strength of a link when
stimulated. A major advantage of stigmergy, or related methods, is its flexibility –
the link will be reinforced in the same way, regardless of what the stimulus source
is, making it generic. The knowledge or information being added to a network
may not be known beforehand and so the organisation needs to be as flexible as
possible. Hebb was able to study this type of behaviour in the human brain. He
noticed that when an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A's efficiency, as one of the cells firing
B, is increased. This is often paraphrased as ‘Neurons that fire together wire
together.’ and is commonly referred to as Hebb’s Law, with the linking
mechanism called Hebbian. The main difference between these is the fact that
stigmergy results from inputs between external and possibly independent sources,
while Hebbs law results from inputs between internal and probably dependent
sources. Ants for example, behaving independently of each other, can collectively
perform complex tasks through stigmergic processes. The linking of the neurons
in the human brain is more of an internal and related process.

The second level in the model performs simplistic aggregation or averaging
operations over linked nodes. The idea being that nodes have been linked through
intelligent feedback and therefore averaging over those links should be better than
averaging over every random answer. The third level is more cognitive. It tries to
realise more complex concepts autonomously, or independently, by linking
together associated individual concepts. These links form new and distinct entities,
and are not just for optimisation purposes. It also attempts to then link the more
complex entities, so that a form of thinking can occur. One cluster of linked nodes,
when realised, might trigger another cluster and so on. As this flows through
different concepts, the network begins to realise things for itself and performs a
certain level of thinking.

The first level has been tested extensively and shown to perform a good
optimisation of the network. Test results ranged from a 30% reduction in search
with almost no loss in the quality of answer, to possibly 80-90% reduction in the
search, with maybe 5-10% loss in the quality of answer. The second level has been
tested less but also shown to work. As would be expected, averaging over the
linked sources only should produce a better total than averaging over all possible
answers; because the nodes are linked through a process that tries to maximize the
link value. The third level is the current area of research interest and some
promising results have been achieved [3]. The problem is that a certain amount of
randomness must be accommodated for, where the system would not be given the
information exactly, but needs to perform some level of guess work. Statistical
processes allow it to filter out the less likely connections and to keep the more
likely ones. Two new-looking clustering algorithms [3] have been developed.
These are important because they can be used as part of an autonomous system
and they can also allow for a certain amount of noisy input - 10-20% already.

58 K. Greer

They are also very lightweight and so are suitable for unsupervised online
processing. It is these clustering processes that have led to the conclusion that a
neural network architecture should be the direction for further research.

While not the original intention, this model does map loosely onto the
structures that have been described. The middle layer can produce aggregated
values that might be compared to the stimuli produced from aggregated patterns.
The top layer can then receive or recognise different configurations of these and
process them accordingly, similar to what the neocortex would do. So while only
individual concepts and clusters of individual concepts have been considered so
far, groups of aggregations might also be considered. The arrows between the
levels represent a direction of increasing intelligence. It is likely that
communication between these levels would flow in both directions. The idea of a
trigger has not been worked out fully yet. It is probably related to a memory
component and also a set of values or conditions under which one concept group
would trigger or activate another one. In this sense, the path description associated
with the linking process could be relevant. A path of concept types with related
values can be associated with any link between two nodes.

The option of presenting scripts to the system has also been looked at. This is
relatively easy to do and the system can learn the script and therefore know what a
rule or a trigger should be. It is then only a matter of traversing this knowledge
again to activate a trigger. So the problem would be to try and determine if the
system can create its own rules or triggers that are not part of the original script, or
if it can create the script triggers when some of the information is missing. The
figure also shows an ontology or rule-base that can be used to present existing
knowledge to the system. This is valid, because we also receive certain
information in that form and are not expected to realise everything empirically. So
research into the top, more intelligent, level has only started, but the results appear
promising. One or two new-looking discoveries have been made that should help
to overcome certain stumbling blocks of the past. Other work related to these ideas
could include [1], [6] or [17], for example.

6 Conclusions

These conclusions include some of the author’s own opinions, based on his
limited knowledge of the real brain, but consistent with what has already been
written. An attractive feature of assigning such importance to state changes, or
stimulus changes, is that the individual neurons do not then require real
intelligence themselves, or at least, the intelligence mechanism is now understood
to be the state change that we can better understand. So the intelligence is linked
to the collective chemical reactions that occur and also possibly to the very nature
of a human. State changes would excite cells, which could drive our quest for new
knowledge. If our state is changed in a favourable way, it makes us feel better.
The brain might feel this sort of thing, even on its own. Fortunately, these
reactions can also be made autonomously and so we do not have to rely
completely on our environment. Then internally, the memory or some other brain
area, knows the favourable/unfavourable reactions and tries to re-create them

Turing: Then, Now and Still Key 59

again, probably resulting in further feedback to itself. If different patterns then get
linked through these reactions, even if this has not been a part of reality, the
memory can still store the result to be used again. I like to think about ‘A’, but you
like to think about ‘B’, for example.

The ability of the brain to make accurate comparisons is also critical, as has
been written about before ([8], for example). It might be important for realising
mathematical or complex operations through the feedback of results. This is
probably how maths started, with somebody noticing that two piles of stones were
twice as large as one pile of stones. For example, a human has worked out that two
times one (stone) is twice the size of a single one (stone). The brain understands
what ‘one’ is, at some symbolic level, and can easily associate and compare two of
these symbols. This would then need to be abstracted for larger calculations, once
the general understanding had been learnt. The author has also wondered why
something such a driving a car is a skill that almost anybody can do, when you
consider the accuracy level that is required. Almost without thinking, we do not
crash into the car in-front, but measure and control our distances very easily.

So a very general rule is learned and then applied in many different scenarios.
Possibly, objects from memory can be retrieved and applied to a learned rule, with
feedback determining the result (see also [6], for example). Compare this to nouns
and verbs in our language. Positive or recognised feedback would reinforce some
association, while negative or no feedback would not register a result. An
explanation of how a brain-like system can learn mathematics mainly through a
stimulus process would go a long way to allowing us to model the real brain. The
question might be – how much does a ‘eureka’ moment play in our ability to work
things out. The following is also interesting for suggesting a largely mechanical
process for the main brain engine: If the main brain body is purely mechanical,
then it might even fire when damaged, without any consideration for the person,
resulting in a painful stimulus when the damaged part is entered or interpreted. If
damaged areas do fire and are not shut down or avoided, then does this suggest an
unintelligent process? Why would the brain intentionally hurt itself, unless it did
not know that it was doing so? Some sort of controlled process must be involved
in the brain construction however, which suggests some level of controlling
intelligence. The problem is really how the brain structure is created from this
mysterious and controlling process. For a mechanical answer, the stimulus again
offers a solution. The brain links are mechanically stimulated to grow or link in a
certain manner, through the feedback that is most strongly felt.

Turing noted a lot of the problems that are still relevant today. Modelling as a
state machine looks appropriate as it may be internal state changes that allow us to
tell differences, resulting in intelligence. A time element is also associated with
state machines. The author would suggest however that starting with a state
machine is not best, but rather, the final product would be more like one. The
declaration that if the problem can be described in terms of an algorithm, then it
can be run on a computer, is also true. This means that if we ever figure out in a

60 K. Greer

technical sense how intelligence works, it is likely that it will be transferred to a
machine at a later date. Turing noted the skin-of-an-onion scenario, with layers of
intelligence. The formation of patterns and then the refactoring of these into new
and probably more singular ones, is essential for the formation of a symbolic level
and reasoning. He also notes the importance of the other senses. While this is
obvious, they are the key sources of our initial stimuli and therefore essential in
the creation of our intelligence. The idea of trying to make people more intelligent
through external false stimuli however, will hopefully be consigned to the waste
bin.

Turing also noted that it is not practical to teach a machine in a way that the
human knows and understands every step of the internal learning process. If
considering state changes, the machine will make changes that the human would
not know about or be able to predict. This is consistent with a learning, and
therefore evolutionary process, but it means that the process must give a certain
level of autonomy to the machine itself and cannot be controlled completely. The
statement that a machine can only do what we tell it to is still largely true.
Processes can be changed through evolution and learning, but the overall domain
of their influence remains what the machine has been told. Turing argued to inject
an idea into what is already known, to disturb it and allow it to ripple through the
existing knowledge, in the hope of influencing or changing something. He also
argued for a random element. Instead of a computer always following its
instructions exactly; as part of the learning process, why not allow it to perform
non-standard random acts from time to time, just so that it can receive different
feedback to learn from? The problem then moves into the area of complex
adaptive systems [11], with stochastic or random elements and the human teacher
will definitely not be able to control that process completely.

So Turing’s ‘Computing Machinery and Intelligence’ paper is still relevant and
important today. While he wrote in a general sense, research since has been able to
define the problem much more formally, but the basic premises are still the same.
There have been successes in one area or another, but a comprehensive solution
for intelligence has not yet been realised. It might be incorrect however to think
that just because a machine is mechanical, it can never realise true intelligence.
One other question would be - just how mechanical are our own brains? Turing
also wrote about the theological argument against machines ever realising true
intelligence, but was strongly against it. The idea that our intelligence could be
based largely on stimuli is probably not an attractive one in that respect. Religious
beliefs, for example, suggest that we should stay away from certain stimuli, but
internal ones would possibly be OK. It is also the case that a machine cannot feel
in the same way as a human and therefore, it would be difficult to model this sort
of process properly in a machine. Only a ‘living’ organism could then have
intelligence. This would be a key stumbling block to modelling intelligence
properly - the feedback and evaluation mechanisms are still not real enough, but
the correct algorithm simply needs to be found.

Turing: Then, Now and Still Key 61

References

[1] Fu, L.: Knowledge Discovery based on Neural Networks. Communications of the
ACM 42(11), 47–50 (1999)

[2] Grassé, P.P.: La reconstruction dun id et les coordinations internidividuelles chez
Bellicositermes natalensis et Cubitermes sp. La théorie de la Stigmergie: Essais
d’Interprétation du Comportment des Termites Constructeurs, Insectes Sociaux 6, 41–
84 (1959)

[3] Greer, K.: Symbolic Neural Networks for Clustering Higher-Level Concepts. NAUN
International Journal of Computers 5(3), 378–386 (2011); extended version of the
WSEAS/EUROPMENT International Conference on Computers and Computing
(ICCC 2011)

[4] Greer, K.: A Cognitive Model for Learning and Reasoning over Arbitrary Concepts.
In: The 2nd International Symposium on Knowledge Acquisition and Modeling
(KAM 2009), Wuhan, China, November 30 – December 1, pp. 253–256 (2009)

[5] Greer, K.: Thinking Networks – the Large and Small of it: Autonomic and Reasoning
Processes for Information Networks (2008) ISBN: 1440433275,
http://LuLu.com, http://books.google.com

[6] Grossberg, S., Carpenter, G.A., Ersoy, B.: Brain Categorization: Learning, Attention,
and Consciousness. In: Proceedings of Intemational Joint Conference on Neural
Networks, Montreal, Canada, July 31 - August 4, pp. 1609–1614 (2005)

[7] Gurney, K.: An Introduction To Neural Networks. Taylor and Francis (1997),
http://books.google.com

[8] Hawkins, J., Blakeslee, S.: On Intelligence. Times Books (2004)
[9] Hebb, D.O.: The Organisation of Behaviour (1994)

[10] Hildreth, P.J., Kimble, C.: The duality of knowledge. Information Research 8(1),
paper no. 142 (2002),
http://InformationR.net/ir/8-1/paper142.html

[11] Holland, J.: Hidden Order: How Adaptation Builds Complexity. Perseus, Reading
(1995)

[12] IBM. An Architectural Blueprint for Autonomic Computing. IBM and Autonomic
Computing (2003)

[13] Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117,
277–296 (2000)

[14] Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480
(1990) ISSN: 0018-9219

[15] Mano, J.-P., Bourjot, C., Lopardo, G., Glize, P.: Bio-inspired Mechanisms for
Artificial Self-organised Systems. Informatica 30, 55–62 (2006)

[16] McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

[17] Minsky, M.: Logical vs. Analogical, or Symbolic vs. Connectionist, or Neat vs.
Scruffy. In: Winston, P.H. (ed.) Artificial Intelligence at MIT, Expanding Frontiers,
vol. 1. MIT Press (1990); Reprinted in AI Magazine (Summer 1991)

[18] Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search.
Communications of the ACM 19(3), 113–126 (1976)

[19] Nikolopoulos, C.: Expert Systems: Introduction to First and Second Generation and
Hybrid Knowledge Based Systems. Marcel Dekker, Inc., New York (1997)
ISBN:0824799275

62 K. Greer

[20] Rich, E., Knight, K.: Artificial Intelligence. McGraw Hill, Inc. (1991)
[21] Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Berlin (1996),

http://books.google.com
[22] Turing, A.: Computing Machinery and Intelligence. Mind LIX (236), 433–460 (1950)

ISSN 0026-4423
[23] Vogels, T.P., Kanaka Rajan, K., Abbott, L.F.: Neural Network Dynamics. Annu. Rev.

Neurosci. 28, 357–376 (2005)
[24] Weisbuch, G.: The Complex Adaptive Systems Approach to Biology. Evolution and

Cognition 5(1), 1–11 (1999)
[25] Widrow, B., Lehr, M.: 30 Years of adaptive neural networks: perceptron. Proc. IEEE

Madaline and Backpropagation 78(9), 1415–1442 (1990)

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 63–81.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

Imitation Programming Unorganised Machines

Larry Bull*

Abstract. In 1948 Alan Turing presented a general representation scheme by
which to achieve artificial intelligence – his unorganised machines. Further, at the
same time as also suggesting that natural evolution may provide inspiration for
search, he noted that mechanisms inspired by the cultural aspects of learning may
prove useful. This chapter presents results from an investigation into using
Turing’s dynamical network representation designed by a new imitation-based,
i.e., cultural, approach. Moreover, the original synchronous and an asynchronous
form of unorganised machines are considered, along with their implementation in
memristive hardware.

1 Introduction

Cultural learning is learning either directly or indirectly from others and imitation
is a fundamental form of such adaptation. Dawkins [13] has highlighted the
similarity between the copying of behaviours through imitation and the
propagation of innate behaviours through genetics within populations. That is, he
suggests information passed between individuals through imitation is both
selected for by the copier and subject to copy errors, and hence an evolutionary
process is at work - consequently presenting the cultural equivalent to the gene,
the so-called meme. The term “memetic” has already been somewhat inaccurately
adopted by a class of search algorithms which combine evolution with individual
learning, although a few exceptions include imitation (e.g., [50]). Some previous
work has explored the use of imitation (or imitation-like) processes as a general
approach to computational intelligence however, including within reinforcement
learning (e.g., [34]) and supervised learning (e.g., [6]). The imitation of humans
by machines has been used to design robot controllers (e.g., [7]) and computer
game agents (e.g., [17]). Other culture-inspired schemes include the use of
artifacts (e.g., [22]) or the use of stored information to guide the production of
new evolutionary generations, as in Cultural Algorithms [35]. This chapter

Larry Bull
Department of Computer Science & Creative Technologies
University of the West of England, Bristol BS16 1QY, U.K
e-mail: Larry.bull@uwe.ac.uk

3

64 L. Bull

explores a new form of imitation computation and applies it to the design of
(simple) dynamical networks consisting of uniform components, both of which are
drawn from an internal report by Alan Turing.

In 1948 Alan Turing produced a paper entitled “Intelligent Machinery” in which he
highlighted cultural learning as a possible inspiration for techniques by which to
program machines (finally published as [43]). In the same paper, Turing also presented
a formalism he termed “unorganised machines” by which to represent intelligence
within computers. These consisted of two types: A-type unorganised machines, which
were composed of two-input NAND gates connected into disorganised networks
(Figure 1, left); and, B-type unorganised machines which included an extra triplet of
NAND gates on the arcs between the NAND gates of A-type machines by which to
affect their behaviour in a supervised learning-like scheme through the constant
application of appropriate extra inputs to the network (Figure 1, right). In both cases,
each NAND gate node updates in parallel on a discrete time step with the output from
each node arriving at the input of the node(s) on each connection for the next time
step. The structure of unorganised machines is therefore very much like a simple
artificial neural network with recurrent connections and hence it is perhaps surprising
that Turing made no reference to McCulloch and Pitts’ [27] prior seminal paper on
networks of binary-thresholded nodes. However, Turing’s scheme extended
McCulloch and Pitts’ work in that he also considered the training of such networks
with his B-type architecture. This has led to their also being known as “Turing’s
connectionism” (e.g., [12]). Moreover, as Teuscher [41] has highlighted, Turing’s
unorganised machines are (discrete) nonlinear dynamical systems and therefore have
the potential to exhibit complex behaviour despite their construction from simple
elements.

Fig. 1 A-type unorganised machine consisting of four two-input NAND gates (left). B-type
unorganised machine (right) consisting of four two-input NAND gates. Each connecting arc
contains a three NAND gate “interference” mechanism so that external inputs such as S1
and S2 can be applied to affect overall behaviour, i.e., a form of supervised learning.

Imitation Programming Unorganised Machines 65

The memory-resistor or “memristor” identified experimentally by Widrow [48]
and theoretically by Chua [11] has become the focus of significant attention after
the fabrication of nanoscale devices by Stanley et al. through sandwiching
Titanium Dioxide between two platinum wires (e.g., see [51] for details). Two of
the anticipated applications of this fourth fundamental circuit element are non-
volatile memory and neuromorphic architectures, the latter almost exclusively as
synapse analogues in conjunction with standard Complementary Metal Oxide
Semiconductor (CMOS) neurons. Borghetti et al. [8] have recently described how
their aforementioned memristors can be used for Boolean logic operations. In
particular, they demonstrate how two-input material implication (IMP) can be
implemented using two memristors and a load resistor, further showing how this
enables the implementation of two-input NAND. Given the simple structure of A-
type unorganised machines from these universal gates, the current work aims to
explore the potential of imitation computation to design them for direct
implementation in memristive hardware, e.g., to produce low-energy, embedded
intelligence.

2 Background

2.1 Discrete Dynamical Systems

Around the same time as Turing was working on artificial intelligence in the
1940’s, John von Neumann, together with Stanislaw Ulam, developed the regular
lattice-based discrete dynamical systems known as Cellular Automata (CA) [45].
CAs are discrete dynamical systems which exist on a graph of restricted
connectivity but with potentially any logical function at each node, whereas
unorganised machines exist on a graph of potentially any connectivity topology
but with a restricted logical function at each node. Traditionally, each cell
calculates its next state depending upon its current state and the states of its closest
neighbours. Packard [31] was the first to use a computational intelligence
technique to design CAs such that they exhibit a given emergent global behaviour,
using evolutionary computation. Following Packard, Mitchell et al. (e.g., [29])
have investigated the use of a Genetic Algorithm (GA) [20] to learn the rules of
uniform one-dimensional, binary CAs. As in Packard’s work, the GA produces the
entries in the update table used by each cell, candidate solutions being evaluated
with regard to their degree of success for the given task — density and
synchronization. Andre et al. [3] repeated Mitchell et al.’s work evolving the tree-
based LISP S-expressions of Genetic Programming (GP) [25] to identify the
update rules. They report similar results. Sipper [37] presented a non-uniform, or
heterogeneous, approach to evolving CAs. Each cell of a one- or two-dimensional
CA is also viewed as a GA population member, mating only with its lattice
neighbours and receiving an individual fitness. He showed an increase in
performance over Mitchell et al.’s work by exploiting the potential for spatial
heterogeneity in the tasks. The approach was also implemented on a

66 L. Bull

Field-Programmable Gate Array (FPGA) and, perhaps most significantly, the
inherent fault-tolerance of such discrete dynamical systems was explored. That is,
it appears the behaviour of such systems gives them robustness to certain types of
fault without extra mechanisms. This finding partially motivates the current study.

Another early investigation into discrete dynamical networks was that by
Kauffman (e.g., see [23] for an overview) with his “Random Boolean Networks”
(RBN). An RBN typically consists of a network of N nodes, each performing one
of the possible Boolean functions with K inputs from other nodes in the network,
all updating synchronously. As such, RBN may be viewed as a generalization of
A-type unorganised machines (since they only contain NAND gates, with K=2).
Again, such discrete dynamical systems are known to display an inherent
robustness to faults - with low K (see [2] for related results with such regulatory
network models in general). RBN have recently been evolved for (ensemble)
computation [33].

2.2 Graph-Based Representations

A number of representations have been presented by which to enable the design of
computer programs and circuits. Most relevant to the representation to be explored
in this chapter is the relatively small amount of prior work on arbitrary graph-
based representations. Significantly, Fogel et al. (e.g., [15]) were the first to
evolve graph-based (sequential) programs with their use of finite state machines –
Evolutionary Programming (EP). Angeline et al. [5] used a version of Fogel et
al.’s approach to design highly recurrent artificial neural networks. Teller and
Veloso’s [40] “neural programming” (NP) uses a directed graph of connected
nodes, each with functionality defined in the standard GP way, with recursive
connections included. Here each node executes in synchronous parallelism for
some number of cycles before an output node’s value is taken. Luke and Spector
[26] presented an indirect, or cellular, encoding scheme by which to produce
graphs, as had been used to design artificial neural networks (e.g., [18]), an
approach used to design both unorganised machines [41] and automata networks
[9]. Poli has presented a scheme wherein nodes are connected in a graph which is
placed over a two-dimensional grid. Later, recurrent artificial neural networks
were designed such that the nodes were synchronously parallel and variants exist
in which some nodes can update more frequently than others (see [32] for an
overview). Miller (e.g., [28]) has presented a restricted graph-based representation
scheme originally designed to consider the hardware implementation of the
evolved program wherein a two-dimensional grid of sequentially (feed forward)
updating, connected logic blocks is produced. The implementation of arbitrary
graphs onto FPGAs has also been considered [44]. It can be noted that Schmidt
and Lipson [36] have demonstrated a number of benefits from graph encodings in
general over traditional trees, such as reduced bloat and increased computational
efficiency.

Imitation Programming Unorganised Machines 67

2.3 Unorganised Machines

“The machine is made up from a rather large number N of similar units. Each unit
has two input terminals, and has an output terminal which can be connected to
input terminals of (0 or more) other units. We may imagine that for each integer r,
1 ≤ r ≤ N, two numbers i(r) and j(r) are chosen at random from 1..N and that we
connect the inputs of unit r to the outputs of units i(r) and j(r). All of the units are
connected to a central synchronising unit from which synchronising pulses are
emitted at more or less equal intervals of time. The times when these pulses arrive
will be called ‘moments’. Each unit is capable of having two states at each
moment. These states may be called 0 and 1. The state is determined by the rule
that the states of the units from the input leads come are to be taken at the
previous moment, multiplied together and then subtracted from 1. ”

Turing, Intelligent Machinery 1948

A-type unorganised machines have a finite number of possible states and they are
deterministic, hence such networks eventually fall into a basin of attraction.
Turing was aware that his A-type unorganised machines would have periodic
behaviour and he stated that since they represent “about the simplest model of a
nervous system with a random arrangement of neurons” it would be “of very great
interest to find out something about their behaviour” [43]. Figure 2 shows the
fraction of nodes which change state per update cycle for 100 randomly created
networks, each started from a random initial configuration, for various numbers of
nodes N. As can be seen, the time taken to equilibrium is typically around 15
cycles, with all nodes in the larger case changing state on each cycle thereafter,
i.e., oscillating. For the smaller networks, some nodes remain unchanging at
equilibrium on average; with smaller networks, the probability of nodes being
isolated is sufficient that the basin of attraction contains a degree of node stasis.

Previously, Teuscher [41] has explored the use of evolutionary computing to
design both A-type and B-type unorganised machines together with new variants
of the latter. In his simplest encoding, an A-type machine is represented by a
string of N pairs of integers, each integer representing the node number within the
network from which that NAND gate node receives an input. Turing [43] did not
explicitly demonstrate how inputs and outputs were to be determined for A-type
unorganised machines. Teuscher [41] used I input nodes for I possible inputs, each
of which receive the external input only and are then connected to any of the
nodes within the network as usual connections. That is, they are not NAND nodes.
He then allows for O outputs from a pre-defined position within the network. Thus
his scheme departs slightly from Turing’s for B-type unorganised machines since
Turing there showed input NAND nodes receiving the external input (Figure 1).
Teuscher uses his own scheme for all of his work on unorganised machines, which
may be viewed as directly analogous to specifying the source of inputs via a
terminal set in traditional tree-based GP. The significance of this difference has
briefly been explored, with Turing’s input scheme shown to be robust [10] – it is
used here.

68 L. Bull

Teuscher [41] used a GA to design A-type unorganised machines for bitstream
regeneration tasks and simple pattern classification. In the former case, the size of
the networks, i.e., the number of nodes, was increased by one after every 30,000
generations until a solution was found. That is, an epochal approach was exploited
to tackle the issue of not knowing how complex an A-type unorganised machine
will need to be for a given task. Or a fixed, predefined size was used. A culture-
based approach is used to design A-type here, in a way which allows their
complexity to emerge during learning.

Fig. 2 Showing the average fraction of two-input NAND gate nodes which change state per
update cycle of random A-type unorganised machines with various numbers of nodes N.

3 Imitation Programming: Cultural Search

“Further research into intelligence of machinery will probably be very greatly
concerned with ‘searches’ …. We may perhaps call such searches ‘intellectual
searches’. They might very briefly be defined as ‘searches carried out by brains
for combinations with particular properties’ … It may be of interest to mention
two other kinds of search in this connection. There is the genetical or evolutionary
search by which a combination of genes is looked for, the criterion being survival
value. …. The remaining form of search is what I should like to call the ‘cultural
search’ … the search for new techniques must be regarded as carried out by the
human community as a whole.”

 Turing, Intelligent Machinery 1948

The basic principle of imitation computation is that individuals alter themselves
based upon another individual(s), typically with some error in the process.
Individuals are not replaced with the descendants of other individuals as in
evolutionary search; individuals persist through time, altering their solutions via

Imitation Programming Unorganised Machines 69

imitation. Thus imitation may be cast as a directed stochastic search process,
thereby combining aspects of both recombination and mutation used in
evolutionary computation.

Imitation Programming (IP) [10] is such a population-based stochastic search
process which, as will be shown, can be competitive with related evolutionary
search:

BEGIN
INITIALISE population with random candidate solutions
EVALUATE each candidate
REPEAT UNTIL (TERMINATION CONDITION) DO

FOR each candidate solution DO
SELECT candidate(s) to imitate
CHOOSE component(s) to imitate
COPY the chosen component(s) with ERROR
EVALUATE new solution
REPLACE IF (UPDATE CONDITION) candidate with new solution

OD
OD
END

For A-type design, IP utilizes a variable-length representation of pairs of

integers defining node inputs, each with an accompanying single bit defining the
node’s start state, together with three imitation operators: copy a node connection,
copy a node start state, and change size through copying. In this chapter, each
operator can occur with or without error, with equal probability, such that an
individual performs one of the six during the imitation process as follows:

To copy a node connection, a randomly chosen node has one of its randomly
chosen connections set to the same value as the corresponding node and its same
connection in the individual it is imitating. When an error occurs, the connection
is set to the next or previous node (equal probability, bounded by solution size).
Imitation can also copy the start state for a randomly chosen node from the
corresponding node, or do it with error (bit flip here). Size is altered by adding or
deleting nodes and depends upon whether the two individuals are the same size. If
the individual being imitated is larger than the copier, the connections and node
start state of the first extra node are copied to the imitator, a randomly chosen
node being connected to it. If the individual being imitated is smaller than the
copied, the last added node is cut from the imitator and all connections to it re-
assigned. If the two individuals are the same size, either event can occur (with
equal probability). Node addition adds a randomly chosen node from the
individual being imitated onto the end of the copier and it is randomly connected
into the network. The operation can also occur with errors such that copied
connections are either incremented or decremented. For a problem with a given

70 L. Bull

number of binary inputs I and a given number of binary outputs O, the node
deletion operator has no effect if the parent consists of only O + I nodes. The extra
two inputs are constant True and False lines. Similarly, there is a maximum size
(100) defined beyond which the growth operator has no effect.

In this chapter, similar to Differential Evolution [39], each individual in the
population P creates one variant of itself and it is adopted if better per iteration.
Other schemes are, of course, possible, e.g., Particle Swarm Optimization (PSO)
[24] always accepts new solutions but then also “imitates” from the given
individual’s best ever solution per learning cycle. This aspect of the approach, like
many others, is open to future investigation. In the case of ties, the solution with
the fewest number of nodes is kept to reduce size, otherwise the decision is
random. The individual to imitate is chosen using a roulette-wheel scheme based
on proportional solution utility, i.e., the traditional reproduction selection scheme
used in GAs. Again, other schemes, such as the spatial networks of PSO, could be
used. In this form IP may perhaps be seen as combining ideas from memetics with
Evolutionary Programming.

4 Experimentation

A simple version of the multiplexer task is used initially in this paper since they
can be used to build many other logic circuits, including larger multiplexers.
These Boolean functions are defined for binary strings of length l = x + 2x under
which the x bits index into the remaining 2x bits, returning the value of the indexed
bit. The correct response to an input results in a quality increment of 1, with all
possible 2l binary inputs being presented per evaluation.

Upon each presentation of an input, each node in an unorganised machine has
its state set to its specified start state. The input is applied to the first connection of
each corresponding I input node. The unorganised machine is then executed for T
cycles, where T is typically chosen to enable the machine to reach an attractor.
The value on the output node(s) is then taken as the response. It can be noted that
Teuscher [41] used the average output node(s) state value over the T cycles to
determine the response, again the significance (or not) of this difference is not
explored here.

All results presented are the average of 20 runs, with a population/society of
μ=20 and T=15. Experience found giving initial random solutions N = O+I+30
nodes was useful across all the problems explored here, i.e., with the other
parameter/algorithmic settings described.

Figure 3 (left) shows the performance of the approach on the 6-bit (x=2)
multiplexer problem. Optimal performance (64) is obtained around 5,000
iterations and solutions are eventually two or three nodes smaller than at
initialization.

Imitation Programming Unorganised Machines 71

A multiplexer has multiple inputs and a single output. The demultiplexer has
multiple inputs and multiple outputs. Figure 3 (right) shows performance of the
same algorithm for an x=2 demultiplexer, i.e., one with three inputs and four
outputs. Again, quality was determined by feeding each of the possible inputs into
the A-type machine. It can be seen that optimal performance (8) is reached around
7,000 iterations and solutions are typically around ten nodes smaller than at
initialization. Figure 4 shows performance on x=3 variants of the two tasks with
the same parameters, again optimality is found and solutions alter their size during
learning. Similar results have been found with other well-known logic tasks, such
as parity functions and adders (not shown).

Fig. 3 Performance on multiplexer (left) and demultiplexer (right).

5 Asynchrony

Turing’s unorganized machines were originally described as updating
synchronously in discrete time steps. However, there is no reason why this should
be the case and there may be significant benefits from relaxing such a constraint.
Asynchronous forms of CA (e.g., [30]) and RBN (e.g., [16]) have been explored
wherein it is often suggested that asynchrony is a more realistic underlying
assumption for many natural and artificial systems. Asynchronous logic devices
are also known to have the potential to consume less power and dissipate less heat
[46], which may be exploitable during efforts towards hardware implementations
of such systems. Asynchronous logic is also known to have the potential for
improved fault tolerance, particularly through delay insensitive schemes (e.g.,
[14]). This may also prove beneficial for direct hardware implementations. See
Thomson et al. [42] for evolving asynchronous hardware.

72 L. Bull

Asynchronous CAs have also been evolved (e.g., [38]). Asynchrony is here
implemented as a randomly chosen node (with replacement) being updated on a
given cycle, with as many updates per overall network update cycle as there are
nodes in the network before an equivalent cycle to one in the synchronous case is
said to have occurred. Figure 5 shows the fraction of nodes which change state per
update cycle for 100 randomly created networks, each started from a random
initial configuration, for various numbers of nodes N. As can be seen, the time
taken to equilibrium is again typically around 15 cycles, with around 10% of
nodes changing state on each cycle thereafter, i.e., significantly different behavior
to that seen for the synchronous case shown in Figure 2. For the smaller networks
(N=5, N=50), there is some slight variance in this behaviour.

Fig. 4 Performance on larger multiplexer (left) and demultiplexer (right).

Figure 6 shows the performance of the imitation algorithm with the asynchronous
unorganized machines for the x=2 multiplexer and demultiplexer tasks. The same
parameters as before were used in each case. As can be seen, the multiplexer task
appears significantly harder, on average IP fails to solve the task on every run with
the parameters used, compared to consistent optimality after 5,000 iterations in the
synchronous node case (Figure 3). Performance was not significantly improved in the
time allowed through a variety of minor parameter alterations tried (not shown). It
takes around 150,000 iterations to solve the demultiplexer, again a statistically
significant decrease in performance over the synchronous case (T-test, p≤0.05).
Moreover, the use of asynchronous node updating has altered the topology of the
graphs evolved with more nodes (T-test, p≤0.05) being exploited. This is perhaps to
be expected since redundancy, e.g., through sub-circuit duplication, presumably
provides robustness to exact updating order during computation. Similar relative
performance was found on the x=3 versions (not shown).

Imitation Programming Unorganised Machines 73

Fig. 5 Showing the average fraction of two-input NAND gate nodes which change state per
update cycle of random asynchronous A-type unorganised machines with various N.

Fig. 6 Performance on multiplexer (left) and demultiplexer (right) of asynchronous system.

6 A Comparison with Evolution

These initial results therefore indicate that unorganized machines are amenable to
(open-ended) design using the imitation algorithm presented. As noted above, one
of the earliest forms of evolutionary computation used a graph-based
representation – Fogel et al.’s [15] Evolutionary Programming. EP traditionally
utilizes five mutation operators to design finite state machines. In this chapter EP
has been used with the same representation of pairs of integers, defining node
inputs, each with an accompanying single bit defining the node’s start state, as
above. Similarly, with equal probability, an individual either has: a new NAND

74 L. Bull

node added, with random connectivity; the last added node removed, and those
connections to it randomly re-assigned; a randomly chosen connection to a
randomly chosen node is randomly re-assigned; or, a randomly chosen node has
its start state flipped. The same minimum and maximum solution size limits are
maintained as before. The (μ + μ’) selection scheme of EP is also used: each
individual in the parent population (μ) creates one randomly mutated offspring
(μ’) and the fittest μ individuals form the next generation of parents. In the case of
ties, the individual with the fewest number of nodes is kept to reduce bloat,
otherwise the decision is random. Fogel et al. used a penalty function to curtail
solution complexity, reducing fitness by 1% of size. All other parameters were the
same as used above.

Fig. 7 Performance on multiplexer (left) and demultiplexer (right) by EP (synchronous).

Figure 7 (left) shows the performance of the EP-Atype system on the 6-bit
(x=2) multiplexer problem. Optimal performance (64) is obtained around 200,000
generations and after an initial period of very slight growth, solutions are
eventually no bigger than at initialization. Figure 7 (right) shows that optimal
performance (8) in the equivalent demultiplexer is reached around 400,000
generations and solutions are typically five or six nodes smaller than at
initialization. Hence these results are statistically significantly (T-test, p≤0.05)
slower and bigger than those seen above with the imitation algorithm. The same
was found to be true for the asynchronous update scheme, where the multiplexer
was again unsolved (not shown). The larger variants were not explored.

The imitation algorithm described can be viewed as a parallel hill-climber,
simultaneously updating a number of solutions, in contrast to the traditional global
replacement scheme used in evolutionary computation (hybrids are also possible,
e.g., [4]). It is therefore of interest whether the imitation process aids performance

Imitation Programming Unorganised Machines 75

in comparison to using random alterations to individuals, under the same selection
process. Results (not shown) indicate that no statistically significant difference is
seen from using imitation over purely random alterations on the demultiplexer
task (T-test, p>0.05), but an improvement is seen on the multiplexer task through
imitation (T-test, p≤0.05). With asynchronous updating imitation is better on the
demultiplexer (T-test, p≤0.05) but not the multiplexer (T-test, p>0.05). Of course,
all algorithms are parameter sensitive to some degree: the parameters used here
were simply chosen since they typically enabled optimal performance with the
basic schemes, both evolution and imitation, on all tasks used, over the allotted
time. Future work is needed to explore parameter sensitivity, along with the
aforementioned role of selecting who to imitate, multiple imitations per iteration,
etc.

7 Towards Memristive Hardware

7.1 Implication A-Types

Memristors are the fourth fundamental circuit element, joining the capacitor,
inductor and resistor [11]. A memristor can be formally defined as a passive two-
terminal electronic device that is described by the non-linear relation between the
device terminal voltage, v, terminal current, i (which is related to the charge q
transferred onto the device), and magnetic flux, ϕ: v = M(q)i or i = W(ϕ) v. The
memristance (M) and memductance (W) properties are both nonlinear functions:
M(q) = dϕ(q) / dq and W(ϕ) = dq(ϕ)/dϕ.

As noted above, Borghetti et al. [8] have presented a scheme by which
memristors can be used as switches to implement Boolean logic. They use two
memristors to realise material implication (IMP), a much-forgotten function
originally highlighted in [47]. Borghetti et al. [8] then construct two-input NAND,
using two IMP gates in serial from three memristors and a constant False signal as
follows:

The reader is referred to their paper for full circuit and voltage details. Hence
anything computable can therefore be implemented using memristors this way, in
principle. However, Turing’s A-types can be seen as a low-level representation
scheme which can be mapped directly onto memristive hardware due to its use of

76 L. Bull

two-input NAND gates. For example, the two dynamical logic circuits designed in
Figure 3 would require, typically, ~35x3 and ~25x3 memristors for a multiplexer
or demultiplexer respectively.

As well as the stated potential advantages gained by use of asynchronous logic
in CMOS highlighted in Section 5, asynchrony may also prove useful with
memristors as new forms of the device emerge, e.g., providing a global clock may
prove non-trivial – only local synchrony would be needed at each node for NAND
gates. Moreover, given their non-volatile nature, energy savings may be achieved
by forms of power “pulsing” across the device: the results in Section 5 indicate IP
can be used to design networks able to work with random order updating.

As noted, Borghetti et al. [8] have implemented material implication as the
basic logic function within memristive hardware, using two per IMP gate. The
same experiments were repeated using IMP at each node, as opposed to NAND as
Turing specified. Figure 8 shows the comparative performance on the
synchronous updating version (Figure 3), with constant True and False lines added
to the problem inputs since the latter proved important to Borghetti et al.’s design.
As can be seen, use of IMP means it takes longer to discover an optimal solution
in both cases (T-test, P≤0.05). However, when optimality is reached, the size of
the A-type is smaller in terms of the nodes used with IMP (T-test, p≤0.05). This
implies IP does not simply construct NAND gates from two IMP gates. Moreover,
given only two memristors are needed per gate, the equivalent networks are more
efficient when direct hardware implementation is considered (T-test, p≤0.05). The
same general result has been found for k=3 versions (not shown). Figure 9 shows
the same results from using asynchronous updating.

Fig. 8 Performance on multiplexer (left) and demultiplexer (right) using IMP nodes.

Imitation Programming Unorganised Machines 77

Fig. 9 Performance on multiplexer (left) and demultiplexer (right) using IMP nodes with
asynchronous updating.

7.2 Synapse

As noted above, one of the largest areas of current interest in memristors is their
use as hardware implementations of synapse within neuromorphic hardware (e.g.,
[1]). The first known example of such work was undertaken by Widrow [48] with
his “memistor” within a hardware implementation of his seminal Adaline neural
network [49]. A memistor was used to store the current weight setting of each
neuron input and created by the electro-plating of a pencil lead with copper; the
conductance of the memistor is varied by varying the amount of copper plating on
the lead at any time.

Given their temporally dynamic nature, a very simple approximation of a single
memristive element has been included within A-types along with the logic gate
nodes. These may be seen as synapse-like but, in keeping with A-types, less
prescriptive in placement. This is done using the Widrow-Hoff delta rule in the
form of single-input nodes. Of course, the actual non-linear behaviour of a given
memristive device depends upon the substrate in which it is fabricated (e.g., see
[21] for related discussion). Here the resistive state (M) of a node is maintained
using the running average of previous inputs to the node: M ← M + β (current
input – M). If M ≤ 0.5, the state of the node is equal to the current input, and it is
logical ‘0’ otherwise. Hence the resistive behaviour of the node varies based upon
the temporal sequence of inputs it receives. A learning rate (β) of 0.2 is used here
and the imitation process is altered to include the potential copying of node type,
with and without error. Nodes have a 50% chance of being either logic gates or
single memristors at initialization.

78 L. Bull

Figure 10 shows example results on one of the logic tasks, using synchronous
updating. As can be seen, compared to the results shown above, the additional
single memristive nodes appear to make the design problem harder as it takes
longer to find optimality. This was true in all cases (T-test, p≤0.05). However, the
resulting A-types contain fewer nodes in all versions tried (T-test, p≤0.05). Again,
given only one memristor is needed in the new type of nodes, the equivalent
circuits are more efficient when hardware implementation is considered (T-test,
p≤0.05). For example, for the x=2 demultiplexer shown, the average percentage of
single memristor nodes is ~40% at optimality for NAND nodes. Similar relative
performance was found on the x=3 and asynchronous versions (not shown).

Fig. 10 Performance on demultiplexer using NAND (left) and IMP nodes (right) augmented
with single memristor nodes.

8 Conclusions

This paper has examined a form of imitation computation inspired by a report
written by Turing in 1948 and used it to design a simple dynamical network
representation introduced in the same report. It has also considered an
asynchronous form of the representation. Current work is exploring ways by
which to improve the performance of the imitation algorithm for the design of
these and other systems. The degree of inherent fault-tolerance of the simple
networks due to their dynamical nature is also being explored (e.g., following
[23][37]), as is their implementation within memristive hardware.

Acknowledgement. This work was partially supported by EPSRC Grant no.
EP/H014381/1.

Imitation Programming Unorganised Machines 79

References

1. Afifi, A., Ayatollahi, A., Raissi, F.: STDP implementation using memristive
nanodevice in CMOS-Nano neuromorphic networks. IEICE Electronics Express 6(3),
148–153 (2009)

2. Aldana, M., Cluzel, P.: A natural class of robust networks. PNAS 100(15), 8710–8714
(2003)

3. Andre, D., Koza, J.R., Bennett, F.H., Keane, M.: Genetic Programming III. MIT
(1999)

4. Angeline, P.: Evolutionary Optimization vs Particle Swarm Optimization. In: Porto,
V.W., et al. (eds.) Proceedings of Evolutionary Programming 7, pp. 601–610. Springer
(1998)

5. Angeline, P., Saunders, G., Pollock, J.: An Evolutionary Algorithm that Constructs
Recurrent Neural Networks. IEEE Transactions on Neural Networks 5, 54–65 (1994)

6. Atkeson, C., Schaal, S.: Robot learning from demonstration. In: Proceedings of the
Fourteenth International Conference on Machine Learning, pp. 12–20. Morgan
Kaufmann (1997)

7. Billard, A., Dautenhahn, K.: Experiments in Learning by Imitation - Grounding and
Use of Communication in Robotic Agents. Adaptive Behavior 7(3/4), 415–438 (1999)

8. Borghetti, J., Snider, G., Kuekes, P., Yang, J., Stewart, D., Williams, R.S.:
‘Memristive’ switches enable ‘stateful’ logic operations via material implication.
Nature 464, 873–876 (2010)

9. Brave, S.: Evolving Deterministic Finite Automata using Cellular Encoding. In: Koza,
J.R., et al. (eds.) Procs of the First Ann. Conf. on Genetic Programming, pp. 39–44.
MIT Press (1996)

10. Bull, L.: Using Genetical and Cultural Search to Design Unorganised Machines.
Evolutionary Intelligence 5(1), 23–34 (2012)

11. Chua, L.O.: Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18,
507–519 (1971)

12. Copeland, J.: The Essential Turing. Oxford (2004)
13. Dawkins, R.: The Selfish Gene. Oxford (1976)
14. Di, J., Lala, P.: Cellular Array-based Delay Insensitive Asynchronous Circuits Design

and Test for Nanocomputing Systems. Journal of Electronic Testing 23, 175–192
(2007)

15. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through A Simulation of
Evolution. In: Maxfield, M., et al. (eds.) Biophysics and Cybernetic Systems:
Proceedings of the 2nd Cybernetic Sciences Symposium, pp. 131–155. Spartan Books
(1965)

16. Gershenson, C.: Classification of Random Boolean Networks. In: Standish, R.K.,
Bedau, M., Abbass, H. (eds.) Artificial Life VIII, pp. 1–8. MIT Press (2002)

17. Gorman, B., Humphreys, M.: Towards Integrated Imitation of Strategic Planning and
Motion Modeling in Interactive Computer Games. Computers in Entertainment 4(4)
(2006)

18. Gruau, F., Whitley, D.: Adding Learning to the Cellular Development Process.
Evolutionary Computation 1(3), 213–233 (1993)

19. Hassdijk, E., Vogt, P., Eiben, A.: Social Learning in Population-based Adaptive
Systems. In: Procs of the 2008 IEEE Congress on Evolutionary Computation. IEEE
Press (2008)

80 L. Bull

20. Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. of Mich. Press
(1975)

21. Howard, D., Gale, E., Bull, L., de Lacy Costello, B., Adamatzky, A.: Evolving Spiking
Networks with Variable Memristor Synapses. In: GECCO-2011: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1275–1282. ACM Press
(2011)

22. Hutchins, E., Hazelhurst, B.: Learning in the Cultural Process. In: Langton, C.G., et al.
(eds.) Artificial Life II, pp. 689–706. Addison Wesley (1990)

23. Kauffman, S.A.: The Origins of Order. Oxford (1993)
24. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE

International Conference on Neural Networks, pp. 1942–1948. IEEE Press (1995)
25. Koza, J.R.: Genetic Programming. MIT Press (1992)
26. Luke, S., Spector, L.: Evolving Graphs and Networks with Edge Encoding:

Preliminary Report. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic
Programming 1996 Conference, Stanford University, pp. 117–124 (1996)

27. McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous
Activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

28. Miller, J.: An Empirical Study of the Efficiency of Learning Boolean Functions using a
Cartesian Genetic Programming Approach. In: Banzhaf, W., Daida, J., Eiben, A.E.,
Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference – GECCO 1999, pp. 1135–1142. Morgan
Kaufmann (1999)

29. Mitchell, M., Hraber, P., Crutchfield, J.: Revisiting the Edge of Chaos: Evolving
Cellular Automata to Perform Computations. Complex Systems 7, 83–130 (1993)

30. Nakamura, K.: Asynchronous Cellular Automata and their Computational Ability.
Systems, Computers, Controls 5(5), 58–66 (1974)

31. Packard, N.: Adaptation Toward the Edge of Chaos. In: Kelso, J., Mandell, A.,
Shlesinger, M. (eds.) Dynamic Patterns in Complex Systems, pp. 293–301. World
Scientific (1988)

32. Poli, R.: Parallel Distributed Genetic Programming. In: Corne, D., Dorigo, M., Glover,
F. (eds.) New Ideas in Optimisation, pp. 403–431. McGraw-Hill (1999)

33. Preen, R., Bull, L.: Discrete Dynamical Genetic Programming in XCS. In: GECCO
2009: Proceedings of the Genetic and Evolutionary Computation Conference. ACM
Press (2009)

34. Price, B., Boutilier, C.: Implicit Imitation in Multiagent Reinforcement learning. In:
Procs of Sixteenth Intl Conference on Machine Learning, pp. 325–334. Morgan
Kaufmann (1999)

35. Reynolds, R.: An Introduction to Cultural Algorithms. In: Sebald, Fogel, D. (eds.)
Procs of 3rd Ann. Conf. on Evolutionary Programming, pp. 131–139. World Scientific
(1994)

36. Schmidt, M., Lipson, H.: Comparison of Tree and Graph Encodings as Function of
Problem Complexity. In: Proceedings of the Genetic and Evolutionary Computation
Conference – GECCO 2007, pp. 1674–1679. ACM Press (2007)

37. Sipper, M.: Evolution of Parallel Cellular Machines. Springer (1997)
38. Sipper, M., Tomassini, M., Capcarrere, S.: Evolving Asynchronous and Scalable Non-

uniform Cellular Automata. In: Proceedings of the Third International Conference on
Artificial Neural Networks and Genetic Algorithms, pp. 66–70. Springer (1997)

Imitation Programming Unorganised Machines 81

39. Storn, R., Price, K.: Differential Evolution - a Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–
359 (1997)

40. Teller, A., Veloso, M.: Neural Programming and an Internal Reinforcement Policy. In:
Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1996 Conference,
Stanford University, pp. 186–192 (1996)

41. Teuscher, C.: Turing’s Connectionism. Springer (2002)
42. Thompson, A., Harvey, I., Husbands, P.: Unconstrained Evolution and Hard

Consequences. In: Sanchez, E., Tomassini, M. (eds.) Proceedings of First International
Conference on Evolvable Hardware Towards Evolvable Hardware. Springer (1996)

43. Turing, A.: Intelligent Machinery. In: Evans, C.R., Robertson, A. (eds.) Key Papers:
Cybernetics, pp. 91–102. Butterworths (1968)

44. Upegui, A., Sanchez, E.: Evolving Hardware with Self-reconfigurable connectivity in
Xilinx FPGAs. In: Proceedings of the first NASA/ESA Conference on Adaptive
Hardware and Systems, pp. 153–162. IEEE Press (2006)

45. von Neumann, J.: The Theory of Self-Reproducing Automata. University of Illinois
(1966)

46. Werner, T., Akella, V.: Asynchronous Processor Survey. Comput. 30(11), 67–76
(1997)

47. Whitehead, A.N., Russell, B.: Principia Mathematica, vol. I, p. 7. Cambridge
University Press (1910)

48. Widrow, B.: An adaptive ADALINE neuron using chemical Memistors. Stanford
Electronics Laboratories Technical Report 1553-2 (1960)

49. Widrow, B., Hoff, M.E.: Adaptive Switching Circuits. In: 1960 IRE WESCON
Convention Record, IRE pp. 96–104 (1960)

50. Wyatt, D., Bull, L.: A Memetic Learning Classifier System for Describing Continuous-
Valued Problem Spaces. In: Krasnagor, N., Hart, W., Smith, J. (eds.) Recent Advances
in Memetic Algorithms, pp. 355–396. Springer (2004)

51. Yang, J.J., et al.: Memristive Switching Mechanism for Metal/Oxide/Metal
Nanodevices. Nature Nanotechnology 3, 429–433 (2008)

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 83–108.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

Towards Machine Equivalent Consciousness

Amy Wenxuan Ding*

Abstract. Alan Turing’s fundamental inquiry asking “Can Machines think?” has
given rise to a wide variety of contrasting approaches to building intelligent ma-
chines. Thinking requires that a computer must know what it processes and form
conscious about meaningful concepts based on which subjective mental activities
(e.g. seeing, knowing, learning, judging, evaluating, deciding, reasoning, etc.) can
be carried on. However, a modern computer runs trillions of operations per
second and is capable of performing complex computation, but still lack self-
awareness—a basic element for thinking. So, how can a machine gain conscious
awareness from bits of electronic signals it processes? This article explores
whether generating self-awareness is possible through a mechanical procedure.
Specifically, we examine patterns of human perception to identify a) what happens
in the course of receiving external information and what the outputs that each
sense produces are; b) how such outputs are bound into a meaningful concept; and
c) the nature of self-awareness. Our research suggests that conscious awareness is
a perceived pattern of physical energy. We show that the process of gaining
awareness can be simulated and mechanized.

Keywords: Foundation of Artificial Intelligence, Machine Thinking, Computa-
tional Intelligence, Machine Awareness.

1 Introduction

Alan Turing's seminal influence on artificial intelligence, including his fundamen-
tal inquiry asking “Can Machines Think?” and his formulation of the Turing Test,
has given rise to a wide variety of contrasting approaches to building intelligent
machines. The question of the embodiment of intelligent computation is critically
related to the problems that surround the very character of mental activities. In his
essay, “Computing Machinery and Intelligence,” Turing [1] laid out several ideas
for constructing a thinking machine. Decades later, it is striking how applicable

Amy Wenxuan Ding
Indiana University
PO Box 5355, Bloomington, IN 47407, USA
e-mail: dingcmu@yahoo.com

3

84 A.W. Ding

his advice remains for the development of an intelligent computer. At the heart of
Turing’s guidelines is the assertion that certain functions of the mind or brain can
be explained in purely mechanical terms, which implies that a machine can mimic
the behavior of a human or behave in ways that would be called intelligent if a
human were engaging in them.

The term “intelligence” in mind study is defined as (1) the act of understanding,
(2) the ability to understand or learn or deal with new or trying situations, and (3)
the ability to apply knowledge to manipulate one’s environment to think abstractly
as measured by objective criteria [2]. According to Turing Award winner Fei-
genbaum [3], intelligence means human thinking. In Merriam-Webster dictionary,
the term “thinking” refers to the action of using one’s mind to produce thoughts.
Asking a person to think implies that the person must be conscious first and then
control his/her mind to produce thoughts. Thus, having conscious awareness is a
necessary condition before one can have his/her mind engaged in the process of
thought. Similarly, in his list of challenges for achieving human-level intelli-
gence, Turing Award winner Raj Reddy says “When a computer can read a chap-
ter in a book and answer the questions at the end of the chapter, we will have
arrived at a significant milestone --- reaching Human Level Intelligence” [4]. If a
computer can read a text, it implies that the computer must know what it is doing
(i.e., it is reading) first, and then understand what it read. This indicates gaining
conscious awareness is a critical and necessary condition before a machine can
reach human level intelligence.

Equipped with fast processing chips and complex algorithms, modern comput-
ers can run trillions of operations per second and are capable of performing many
complex mathematical computations ranging from playing chase against human
players to decoding DNA sequence for gene expression analysis. However, the
computer does not know what it processes, nor can it recognize the meaning of its
programs. For a very simple calculation such as 1 + 1, a computer can provide a
correct answer immediately, but unfortunately it is unaware of what 1 + 1 is.

Human brain has evolved a mechanism to sense and recognize sensory information
in the environment and transmit this information to the brain where it is processed to
form a quale and generate awareness, a conscious state reflecting the perceived exter-
nal world and providing raw materials for thoughtful judgment. Analogously, a com-
puter is designed to receive sensory information from input devices and process the
information with various algorithms to form a model of its environment. An appropri-
ate reaction is then calculated. Fig. 1 sketches the similarity of information processing
between humans and a machine. They both have input devices that receive external
information and transform it into a sequence of electronic signals. Through analyzing
these electronic signals, they both can make decisions about what is out there and
acting in response. So both humans and intelligent computer systems (i.e., equipped
with knowledge base and various learning algorithms) display a capacity to interact
with and respond to events in the surrounding world.

The most remarkable differences, however, are in the behaviors that brains
and computers produce. In processing those electronic signals, humans can gain
awareness and obtain consciousness of what they are doing. These electronic
signals move to the central nervous system and brain cortex, where a quale rises

Towards Machine Equivalent Consciousness 85

out of firing, electrical activity, synaptic activity in the brain, specifically, (1) a
concept of “knowing” about the occurrence of a stimulus forms, (2) a difference in
excitation occurs, and (3) a difference emerges on which discriminatory behavior
can be established. However, facing the same sensory inputs, a computer is una-
ble to self-generate a quale. Because of this, a computer is not conscious and una-
ware of what it processes. Furthermore, when the input information is new to the
machine and if the machine’s knowledge base does not have the same or related
knowledge about the input information, the machine does not know how to
process it. At best the machine saves it as a new record in its database. In contrast,
humans can conduct creative thinking to establish a new concept, design a name
for such a new thing, and generate a subjective understanding. Why can’t a ma-
chine obtain a quale and gain self-awareness, like human brain, from bits of elec-
tronic signals it processed? A machine is not a live creature, but this article
explores whether generating self-awareness is possible through a mechanical pro-
cedure. Specifically, we explore this question by examining patterns of human
perception to identify the nature of awareness and consciousness. These conspi-
cuous differences reflect fundamental differences in the internal form of informa-
tion and operations on it, which is what we need to understand. We then show
how such awareness can be captured and mechanized. Because humans have
physical (computational) and mental (cognitive) limitations, mechanization of
human mental work would overcome such drawbacks.

2 Patterns of Human Perceptions

Our brains help individuals and species to survive and prosper in the world, mean-
ing that they produce beneficial action. They do it by predicting events in the
world, including consequences of their own actions. The brain's computing is
designed for interaction.

Sight, hearing, taste, smell, and touch are the five basic human senses through
which we obtain perceptual knowledge of the external world. Each of the senses
has a specialized function which receives and responds to specific external or
internal stimuli. Such an operation is termed as Sensation stage, representing a
process of receiving and responding to stimuli. In their own way brains learn to
model their interaction with the world. They convert and integrate sensory signals
and motor commands into common internal form, a kind of “code,” and employ
learning mechanisms that are shared by different sensory modalities. Now we
would like to know what happens to each sense during the process of receiving
stimuli, what type of information each sense produces to the next stage Perception
for further processing, and how brains find meaning of what they sense.

Stage Perception constitutes acts of recognition and interpretation of sensory
stimuli from Sensation, and its output produces a result that causes the central
nerve system in the brain to become aware of what has happened and what is
presented. Hence, Sensation and Perception are the first two parts of one conti-
nuous process (see Fig. 1).

86 A.W. Ding

Signals (External world)

Sensation

Perception

Awareness

Draw inference

Humans Machine

Actions

Signals (External world)

Actions

Action Calculation

Input devices
(sensors)

Models

Electronic signals

Sequences of 0s and 1s

Draw inference based
on programmed rules

Electronic signals

Energy change

Act under the state
of consciousness

Unconscious
processes

Act under the state
of unconsciousness

Gain consciousness

Sight
Hearing
Smell
Taste
Touch

Stage 1

Stage 2

Stage 3

Stage 4

Fig. 1 Human vs. Machine: Process of cognition from sensation to rational acts

2.1 Sensation of Sight

The human eye is designed such that light waves fall on the retina, where two basic
types of light-sensitive receptor cells rods and cones are activated (see Fig. 2). The
interaction between a photon of light and the retina causes photochemical substances
in the rods and cones to go through isomerization, thus energy carried then becomes
electronic impulses, appearing in electroretinograms. The rods or cones excite the
bipolar cells, which in turn excite the ganglion cells. After the ganglion cells are ex-
cited, the electrical signals travel over the optic nerve to the optic chiasm. Through a
series of transmissions, as the signal is transmitted to the upper layer of cortex, the
information from both eyes mixes to create a binocular vision.

Therefore, any object in the environment or an outside signal perceived by a vi-
sion system can be considered light waves with energy. Energy carried by these
light waves are then extracted and converted into electronic signals through
Sensation stage.

Towards Machine Equivalent Consciousness 87

Fig. 2 Sensation of sight: Extracting energy carried in light waves into electronic signals

2.2 Sensation of Hearing

Sounds wave pass down the auditory canal of the outer ear and strike the eardrum
causing it to vibrate [5]. These vibrations are transmitted across the middle ear by
three tiny, linked bones, the ossicles which magnify the amplitude of the vibra-
tions. Vibrations of the innermost ossicle, the stirrup, are transmitted through a
flexible membrane, the oval window, to the cochlea of the inner ear. The cochlea
is filled with a special fluid called endolymph which contains high concentration
of potassium (K+) ions. Vibrations of endolumph cause vibration of the basilar
membrane, this moves an array of stereocilia at the tips of the hair cells against the
tectorical membrane and opens potassium channels in them. The influx of K+ from
the endolymph depolarizes the hair cells, which are the actual vibration receptors,
as shown in Fig. 3.

Depolarization of the hair cell causes the release of a neurotransmitter at its
basal surface and the initiation of nerve impulses in a sensory neuron that syn-
apses with it. Therefore, an auditory message as energy comes down to patterns of
impulses in the auditory cortex and the function in the Sensation stage is to sense
the frequency of these energy changes and convert them into electronic signals.

2.3 Sensation of Smell

Three percent of our genes are used to code for the different odorant receptors on
the membrane of the olfactory receptor cells. So we can recognize and remember
about 10,000 different odors. Research has shown that each olfactory receptor cell
possesses only one type of odorant receptor and each odorant receptor can detect
several different odorants [6].

88 A.W. Ding

Fig. 3 Sensation of Hearing: Converting sound energy into electronic signals

Each odorant receptor consists of a chain of amino acids that is anchored into
the cell membrane. The chain creates a binding pocket where the odorant can at-
tach. When an odor in the air passes through the olfactory bulb, the carried odo-
rant molecules dissolve in the olfactory mucus and attach to one or several odorant
receptors from a whole array of odorant receptors. When that happens, each odo-
rant receptor first activates a G protein to which it is coupled. The G protein then
activates an enzyme which catalyzes the conversion of ATP (adenosine triphos-
phate – a major energy currency of the cell, providing the energy for most of the
energy-consuming activities of the cell) to the cAMP (cyclic AMP). This messen-
ger molecule activates ion channels leading to the creation of nerve impulses.
These impulses are then transmitted directly to distinct micro domains, glomeruli,
in the olfactory bulb. Receptor cells carrying the same type of receptor send their
nerve processes to the same glomerulus. From these micro domains in the olfacto-
ry bulb the information is relayed further along the olfactory nerve to the brain,
where the information from several olfactory receptors is combined, forming a
pattern. Accordingly, a particular odor is determined.

Therefore, smell depends on odorant receptors that respond to airborne chemi-
cals. In the Sensation stage, through chemical reaction with the odorant molecule,
the odor message is transformed into nerve impulses, electronic signals as shown
in Fig. 4.

2.4 Sensation of Taste

We detect taste with taste receptor cells which are clustered in taste buds. Each
taste bud has a pore that opens out to the surface of the tongue enabling specific
chemical components in the food taken into the mouth to reach the taste receptors
inside. Taste occurs when specific proteins in the food bind to receptors on the
taste buds. These taste cells specialize primarily in processing one of the five ma-
jor taste groups: sweet, sour, salty, bitter, and umami.

Towards Machine Equivalent Consciousness 89

Fig. 4 Sensation of Smell: Binding of the ordorant leads to the generation of nerve impulses

As shown in Fig. 5, a taste receptor allows specific ions to enter directly into
the cell when chemical components of food have salty or sour flavor (i.e., sodium
ions for salty substances, and protons for sour substances). This depolarization
allows calcium ions (Ca2+) to enter, the influx of Ca2+ triggers the release of the
neurotransmitter, nerve impulse is thus generated. With bitter, sweet, or umami
flavor, the substance in the food binds to the receptor which activates the coupled
G proteins. Such activation triggers activation of ATP and formation of cAMP,
leading to the creation of nerve impulses. This mechanism is similar to that used
by our odor receptors. Thus, in the Sensation stage, taste buds respond to dis-
solved chemical molecules and ions in the food and transform them into biochem-
ical energy, appeared in electronic signals.

90 A.W. Ding

Fig. 5 Sensation of Taste: Releasing never impulses through dissolving chemical molecules

2.5 Sensation of Touch

We have ability to sense objects and feel temperature through touch. The skin is
the main organ of the sense of touch. As shown in Fig. 6, our skin consists of two
complex layers, each with its own function. Uppermost is the epidermis which
contains the cells responsible for skin color. Below the epidermis is the dermis
where thermoreceptors and mechanoreceptors reside. Four kinds of touch sensa-
tions can be detected: cold, heat, contact, and pain. Of which, cold and heat are
detected by thermoreceptors, and contact and pain are sensed by mechanorecep-
tors. Each of these receptors is connected to a sensory neuron. When changes in
temperature occur, it activates thermoreceptors to open to let in both calcium and
sodium ions. The influx of calcium ion or sodium ion reduces the resting potential
at that spot on the cell. If the potential is reduced to the threshold voltage, nerve
impulses are generated in the cell. In addition, when a mechanical pressure is
applied to the skin, it triggers a generator potential in mechanically-gated sodium
channels in the sensory neuron attached to each receptor. If the generator potential
reaches threshold (degree of pressure), a volley of nerve impulses are triggered.
Thus, touch receptors respond to external stimuli by opening either mechanically-
gated or voltage-gated sodium channels. Such an opening leads to the creation of
nerve impulses.

Towards Machine Equivalent Consciousness 91

Fig. 6 Sensation of Touch: Generating waves of the nerve impulse

As we can see, when external information is presented, each of five senses
transforms what it receives into electronic signals through different ways.
Among these, taste and smell complete such transformation through certain chem-
ical reactions. The senses of sight, hearing and touch belong to the physical senses
because their sensory cells are not initiated by chemical reaction, instead, they
detect physical entities such as photons, mechanical vibrations and pressure, air
pressure waves and temperature to generate nerve impulses. As illustrated in Fig.
7, the array of mechanical, optical, and chemical properties that define touch,
hearing, vision, smell, or taste can be represented by bits of electronic activity that
only vary in two parameters, time and space.

92 A.W. Ding

Fig. 7 A Physical–Chemical Sense: Abstract form

3 A Comparison between Human and Machine Perceptions

Having understood that external information has been transformed into a sequence
of electronic signals at the stage of Sensation, we now return to the machine side
of Fig. 1. The input devices of the machine also transform an external message
into electronic signals. These electronic signals are the recording representation of
the received message, and they do not carry any information on machine’s reac-
tion. In contrast, electronic signals from human Sensation stage carry the changing
pattern of energies resulting from activities of corresponding sense cells. Different
cells react differently when activated. The produced nerve impulse exhibits certain
characteristics representing physiological properties and metabolic state of cells
involved. These characteristics are incorporated along with the message signal and
together they are transmitted to the central nerve system, where they are coupled
with corresponding specific nerve cells and coded by specific genes. The specifici-
ty in the information flow from each stage process is thereby maintained, thus the
brain is aware of what it processes and can identify what the signal represents as
well as where it is from. For example, a person feels pain in a finger and can
quickly discriminate the pain as shape and location of the pain area.

As shown in Fig. 1, the next stage is the Perception stage, in which electronic
signals from the Sensation stage are further processed. If the Sensation stage refers
to the immediate result of stimulation of sensory receptors in the eyes, ears, nose,
tongue, or skin, Perception is the process or act of recognition and interpretation
of sensory stimuli. Its output produces a result that causes the central nerve system
in the brain to become aware of what is presented. For the machine, the Percep-
tion stage is achieved by computing models. These models are designed with

Objects

or
environment

Chemicals

Sensory

organisms
(body)

After a series of complex
physical and chemical

 reactions

Transform to

Varieties of
energy signals
(nerve system)

Brain
cortex

 …

Sound waves

Pressure

Light waves

Towards Machine Equivalent Consciousness 93

specific goals on how to handle sensory stimuli, and the outputs of the models
appear as a sequence of 0s and 1s.

When output from the Perception stage arrives, it provides information that the
brain is able to determine what the sense organ receives. This is a stage of aware-
ness, indicating a state of being aware of something due to external stimuli. At this
stage, perceptual knowledge of what is presented is established, and consciousness
is formed. Therefore, awareness is a foundation upon which consciousness can be
generated. Without awareness, one cannot gain consciousness about the target
object. Awareness varies in its sensory quality and intensity. The former measures
the extent to which a person can discriminate an outside stimulus and the latter
indicates the strength of a stimulus signal. For instance, a person sees a red box
and can determine whether the red is bright; another person feels pain in a finger
and can discriminate that pain as sharp.

The Awareness stage provides raw materials for the brain to produce rational
knowledge. This procedure involves various subjective activities such as thinking,
learning, reason, judgement, etc.

However, for the machine, the Awareness stage is performed by programmed
rules (Fig. 1). The machine executes programs and produces results indicating
what the sensory stimuli are. As we have mentioned earlier, electronic signals
produced in each stage of machine cognition do not carry information about pro-
cessors’ own physical state in dealing with external messages. The specificity in
the information flow from each stage is thereby not maintained. Thus the machine
is unable to be aware of which processor has processed those signals and what it
processes. Therefore, machine’s self-awareness is not established at this stage.

On the other hand, in human cognition, signals recording the activity of in-
volved nerve fibers at a specific locus are transmitted together with the message
signal to the brain. The specificity in the information flow is thereby maintained
and self-awareness is formed. So far, biological models of the brain have inspired
many research efforts in building intelligent machines. An interesting question is
whether self-awareness can be described in mechanical processes.

4 Awareness as Perceived Pattern of Physical Energy Changes

In fact, outside world itself represents a pattern of physical energies that directly
affect our body receptors. For instance, the visual environment provides a chang-
ing pattern of radiant energies that act on the retina. A sound is a changing pattern
of vibrations transmitted to auditory receptors. An odor in the environment acti-
vates an odorant receptor in the nose where the energy of binding of odor to this
receptor is transduced into electronic activity, which then travels down to brain
cortex to active a subset of points in brain space such that the quality of an odor is
defined. Empirical observations and existing evidence from neurophysiology sug-
gest that any momentary quality of awareness involves the activity of nerve fibers
at a specific locus in the material brain [7- 9]. That is, human brains can get qua-
litative differences in structure or function when they receive nerve impulses
and can feel the corresponding energy changes, which enables them to react
appropriately.

94 A.W. Ding

Awareness thus reflects a reaction of human bodies. Specifically, the receptors
under the body’s surface react to various forms of energies in its external and in-
ternal environments. The next question is whether one’s awareness can be cap-
tured. We now use human olfactory and visual perception as two examples (i.e.,
one represents a chemical sense, the other a physical sense) to illustrate how Sen-
sation (stage 1) and Perception (stage 2) of Fig. 1 are captured and mechanized
such that bits of electronic activity are bound into a meaningful concept, where
awareness is achieved.

Example 1 – A Simple Visual Perception. Suppose we draw two rectangles ver-
tically on a big sheet of gray paper. Each rectangle uses a different color, as shown
in Fig. 8 (left panel): gray and red. We can show this graph to one reader. Suppose
that the visual optical flow moves from left to right when this reader views the
graph in Fig. 8. A person with normal color vision (i.e., without color blindness)
perceives one rectangles in red, and can discriminate this color but cannot discern
the gray box on the gray background. This example indicates that a person with
normal (color) vision is able to perceive color changes. That is, people have diffe-
rential sensitivities to color changes. For simplicity, if we assume there is no other
noisy signal to interfere with our observation in viewing these rectangles, the per-
ception processes in viewing the gray and red rectangles can be illustrated in (a)
and (b) – the right panel of Fig. 8, respectively. The horizontal axis in both (a) and
(b) represents the duration of receiving visual signals (i.e., moving to view each
rectangle from left to right), whereas the vertical axis indicates the intensity of a
perceived visual signal. The unit for the vertical axis is Lux, commonly used in
photometry as a measure of the intensity of light, such that wavelengths are
weighted according to the luminosity function, a standardized model of human
brightness perceptions. The unit for the horizontal (V) axis can be any
conventional time unit, such as a second, minute, hour, or day.

Fig. 8a indicates that a gray spectrum signal is observed, denoted as L = f (G)
(where f is some function, and G represents the energy of a gray wave). However,
the reader cannot distinguish whether this gray spectrum signal comes from the
gray background of the paper or a gray rectangle. If the reader is unaware of the
existence of the gray rectangle in advance, the gray rectangle is actually invisible.
If we replace the gray rectangle with a red one, the visual system perceives two
different color spectrum signals: gray and red (one from gray paper, and one from
the red rectangle), with different wavelengths, denoted L = f (G) and L = f (R),
respectively. Through a series of physical and chemical reactions with energy
transformation, the nerve system perceives energy changes in the difference be-
tween the two stimuli, gray and red.

How can such Sensation, Perception and Awareness be rendered observable?
An analogous operation using calculus can provide a good answer. The basic prin-
ciple is simple: to see a change in the energy of each color, we take the first deriv-
ative of the signal curves obtained in both (a) and (b) of Fig. 8 with respect to the
corresponding gray and red energy signals. The results (indicating Sensation)
displayed in Fig. 9 a and b. Note that when a gray rectangle appears on gray paper,
all information received is the wavelength of gray (i.e., gray signal from both the

Towards Machine Equivalent Consciousness 95

Fig. 8 Mechanism of Object Detection

background and the rectangle). Thus, the receptors cannot sense any change in
neural energy, as shown in Fig. 9a. When a red rectangle is placed on a gray pa-
per, the two different wavelengths representing gray and red are perceived. Be-
cause of the background gray paper, nerve receptors would not sense any energy
change when receiving a gray signal again but would have a noticeable neural
activity when receiving a red stimulus. Fig. 9b reflects such effects.

To see and capture this noticeable difference—a term we use to represent an
average point at which the viewer just perceives a difference between two stimuli,
such as gray and red—we take the derivative from the results obtained in Fig. 9.
This calculation produces Fig. 10, which shows how to capture different portions
of the visible spectrum. The magnitude of the noticeable difference also is meas-
ured by Lux (i.e., the intensity of light which represents the density/strength of its
energy). Fig. 10a reflects that the gray rectangle displayed on gray paper is invisi-
ble, whereas Fig.10b shows that the left and right edges of the red rectangle on the
gray paper can be extracted, given our assumption that the visual optical flow
moves from left to right when viewing Fig. 8 on the gray paper.

This example suggests that (1) a noticeable difference cannot be perceived and
captured when the stimuli received are the same, (2) a noticeable difference occurs
at the point that energy changes exist, and (3) the noticeable difference garners
attention and awareness. Before we discuss example 2, we re-examine Turing’s
idea for building a machine with self-awareness.

96 A.W. Ding

Fig. 9 Sensing energy changes (the Sensation stage)

5 Turing’s Ideas for Building a Machine with Self-awareness

In his 1936 paper, Turing proposed an abstract machine that could perform com-
puting procedures on the basis of its state transitions [10]. The machine would

possess a finite set of internal states 0 1{ , , , }nq q q , so at any given moment, it

must be in exactly one of these states. Then a two-way, potentially infinite tape is

divided into squares. The finite set of tape symbols, 0 1, , , nS S S , represents the

alphabet of the machine, and at every moment, each square of the tape is occupied
by at most one symbol. The reading head, at any given time, stands over some
square of the tape. If at time t, the reading head scans a square containing a sym-

bol iS and the machine is in the internal state jq , the determined action of the

machine leads it to do one of four things: (1) erase the symbol iS and print a new

symbol kS ; (2) move left one square; (3) move right one square; or (4) stop. In

cases (1)–(3), the machine enters a new internal state rq and is ready to act again

at time t + 1. These first three actions also can be represented by quadruples—(1)

Towards Machine Equivalent Consciousness 97

j i k rq S S q , (2) j i rq S Lq , or (3) j i rq S Rq —in which the first two symbols indi-

cate the present internal state and scanned symbol; the third symbol is the action

of the machine (print kS , move left, or move right); and the fourth symbol re-

veals the internal state of the machine after the action has been performed. In such
a Turing machine, no two quadruples have the same first two symbols.

Fig. 10 Energy changes causing awareness (the Perception stage)

An analysis of the structure of the three kinds of quadruples reveals that they
share the same format: the machine’s current internal state, instruction, action, and
the machine’s updated state. The second symbol, “instruction,” reflects what the
reading head scans in a square of type. If we reconceive of the reading head as a
sensor, and the type symbols as external signals, the second symbol of each
quadruple indicates the procedure the machine uses to perceive external signals.
The third symbol then would be the reaction of the machine to a perception of an
external signal, and the fourth quadruple is the machine’s internal state change
after its reaction. With this new format for each quadruple, we can describe the
machine’s current internal state, the function of sensing external signals, the

98 A.W. Ding

reaction generated after the perception of signals, and the internal state after the
reaction. At any moment, a Turing machine is aware of changes to its internal
states and can generate corresponding reactions using perceived information.
Thus, a computer system can be designed to exhibit this property such that, by
considering the configuration of the entities that constitute the system, it could
generate self-awareness by computing the transitions that change the state of the
system.

We now look at example 2– simulating olfactory mechanism. As shown in
Fig. 4, the sense of smell goes through the following four steps before an odor is
recognized in the brain cortex [6].

Step 1: binding and generating nerve impulse. Because each olfactory receptor
cell possesses only one type of odorant receptor, binding (or coupling)
occurs when an odorant molecule dissolves and the released energy ac-
tives a specific type of odorant receptor to open an ion channel.

Step 2: signal transmission from the activated odorant receptor to the microre-
gions (glomeruli) in the olfactory bulb. There are some 2,000
well-defined glomeruli, which is about twice as the types of olfactory
receptor cells.

Step 3: signal transmission from a specific glomeruli to its contact in the next
level of never cells, the mitral cells. Each mitral cell is activated only
by one glomerulus, and the specificity in the information flow from
each step is thereby maintained.

Step 4: the mitral cells send the information to several defined micro regions in
the brain cortex via long nerve path.

In the brain cortex, the information from one or several types of odorant receptors
is formed (or combined into) a pattern characteristic for each odor. This is inter-
preted and leads to the conscious experience of a recognizable odor.

Mechanization of olfactory mechanism can be realized using some electronic
circuits consisting of inductors (L) and capacitors (C). In electrical engineering
field, LC circuits are used either for generating signals at a particular frequency, or
picking out a signal at a particular frequency from many more complex ones. As
we have shown in previous sections, outside world itself represents a pattern of
physical energies that directly interact with our body receptors. Human sensation
and perception procedures are actually the process of energy exchanges between
environment (inside and outside) and various receptors. Awareness is thereby a
perceived pattern of physical energy. Thus we see, hear, smell, feel, and taste the
world.

Towards Machine Equivalent Consciousness 99

When an odorant dissolves, the released energy can be expressed as a specific
signal with a particular frequency. One type of odor corresponds to one particular
frequency and we can use a LC circuit to simulate the binding procedure of a spe-
cific odorant (see Fig. 11). We use capacitors as odorant receptors which pick out
a specific odorant at a particular frequency.

We know that the inductive impedance LX = 00)2(LfjLj πω = and the

capacitive impedance cX =
0

1

Cjω
 =

fC
j

Cfj

j

)2(

1

)2(00
2 ππ

−= ,

where j = 1− , and f represents signal frequency. Therefore, LX increases as

frequency increases while cX decreases with increase in frequency.

Fig. 11 The Simulation of binding odorant

Similarly, Steps 2 – 4 can be simulated using several mutual inductance circuits as
shown in Fig. 12.

100 A.W. Ding

Fig. 12 Passing signals and determining the type of an odorant

6 Differences in Drawing Inference between Humans and
Machines

Stage 4 in Fig. 1 represents activities related to generating rational knowledge.
These activities include learning, thinking, judgment, reason, etc. On machine
side, tons of research has been conducted on issues related to Stage 4. For exam-
ple, some focus on the development of different types of machine learning me-
thods, others explore the construction of different types of knowledge bases as
well as knowledge mining rules, and some others investigate different logic rea-
soning theories. The common goal of these researches is to have the machine
establish intelligence. Indeed, we expect the output from Stage 4 exhibit an intel-
ligent behavior, like a human.

When a machine is trained to have domain specific knowledge X, a key crite-
rion used in evaluating the machine’s performance is to check if it can correctly
solve a problem that is in X domain or classify a new problem Z to X correctly. It
is expected that the correct rate of such performance can reach 100%, or the high-
er the better.

Note that the machine follows program which are rules. Suppose that we have a
rule for a machine: “If you see an X then do Y”. Then whenever the machine
reads an X, it certainly works on Y. If every time the machine follows this rule
correctly, we would say that the machine has a 100% correct rate in performing
this rule. However, such a situation, if used in human setting, may not always be
true. The following example shows behavioral difference in drawing inference
between humans and machines.

Towards Machine Equivalent Consciousness 101

6.1 An Unfixable Difference in Drawing Inference

To protect students in a school zone from being hit by cars, the city of West Van-
couver in British Columbia has adopted a novel approach to encourage drivers to
slow down: an image with an optical illusion effect painted on the street (See im-
age at http://www.theworld.org/2010/09/canada-speed-bump-optical-illusion/). The 42-
inch image first appears as a blurred mark on the road. As drivers approach, the
elongated image appears three-dimensional, turning into a little girl chasing a ball
into the street. This shift should alarm drivers sufficiently that they pay more at-
tention and slow down when passing through the school zone. However, critics
suggest the optical illusion itself could contribute to accident probabilities if driv-
ers come suddenly to a halt or swerve to avoid what their brains perceive as an
actual person.

For our purposes, the key question is whether a robot, equipped with a camera
and visual image processing functions, can perceive that the image is a three-
dimensional effect. The image itself is two-dimension, the robot would follow
predefined rules to process, and therefore the robot would likely consider it such.
So why do humans believe it is three-dimensional?

Human perception processes enable people to distinguish “figure” from “back-
ground” by capturing depth information. To draw a three-dimensional object or
create spatial information in a two-dimensional plane or map, artists tend to draw
surfaces of the object in an inclined position, such that lines perpendicular to the
plane become points, lines parallel to the plane have true length, and lines inclined
to the plane are foreshortened [11]. This method produces a third dimension, per-
pendicular to the plane, in an effect referred to as 2.5D (two-and-a-half dimen-
sional). A two-dimensional object drawn on a 2.5D plane at an angle to the
observer generates pseudo-depth information (distance to the observer) and the
illusion of depth along the forward (Z) axis. For example, if a cube is drawn on

3-dimensional coordinates as shown in Fig. 13b, it must have ' 'ad bc b c= = .
However, if the same size of the cube is drawn on 2.5-dimensional coordinates

(see Fig. 13a), from an observer‘s view, one would conclude ' 'ad bc b c= ≠ .

Here, to present the depth information, line ' 'b c is shorter than line bc . There-
fore, though the 2.5D representation remains effectively two-dimensional, it al-
lows for depth perception; 2.5D also can produce stereoscopic effects in human
visual perception. Hence, the example of “a little girl chasing a ball into the street”
can produce an optical illusion effect that helps human drivers capture pseudo-
depth information as they approach the image. However, as drivers come even
closer to the image, their depth perception disappears, and they recognize the
2-dimensional image on the ground. The limits of a 2.5D image result from the
discontinuities in the parts of its image along the forward axis [12]. Thus the pro-
duced pseudo-distance to the observer gradually reduces to a point as drivers close
in on the image.

102 A.W. Ding

Fig. 13 A graph in 2.5D and 3D representation

However, if a 2.5D image were processed by a robot, its image processing
technology would examine the characteristics of the image pixels and correctly
classify it as a two-dimensional plane image. Thus, is there a way for a machine to
generate depth perception, as human beings do?

6.2 A Fixable Difference

A 2.5D image cannot cause a machine to generate depth perception, however, when
confronted with a solid three-dimensional object on the street, the robot is capable of
capturing depth information, as human beings do. Considering a situation in which
both a human and a robot must perform the action of walking down stairs. When a
person walks down the stairs, he or she generally looks down along the stairways,
recognizes the depth that exists between two steps, and moves this distance vertically
for each step he or she takes. Similarly, to make correct judgment, a robot must deter-
mine that (1) stairs are connected, and (2) there is a particular depth between two con-
nected steps. To do so, a robot needs to recognize the surface orientation of the stairs
and then generate depth perception, regardless of whether the surface is sooth or
rough. Here we present a very simple approach for machines to perform these tasks.

We know that the visual ability of humans and other animals is the result of the
complex interaction of light, eyes, and brain. We can see because light from an
object moves through space and reaches our eyes. Once light reaches our eyes,
signals are sent to our brain, and our brain deciphers the information to detect the
appearance, location, and movement of the objects we see. Without light, there
would be no sight.

Towards Machine Equivalent Consciousness 103

Following this principle, we present a novel depth-sensing imaging system,
composed of a single camera and a laser beam generator, along with a planar mir-
ror that rotates about the light beam, as illustrated in Fig. 14. Equipped with this
system, a robot can scan an object with a revolving light beam to identify the
orientation of every visible surface and obtain depth perception. This action mim-
ics human eyeball rotation as a means to see an object. Rotating the mirror can
change the straight light beam into a cylinder, divergent conical, or convergent
taper light beam. If the generated light meets an object, it produces a bright ring
on the object’s surface, and the bright ring is observed by a camera. Analyzing
the captured light ring, the robot can calculate the surface orientation of the ob-
served object and the distance between its current location and the object, then
determine spatial stereo information.

Fig. 14 A single-camera object orientation and depth estimation system

As in Fig.14, suppose that H is a mirror and point A is the camera, which also
indicates the location of the light beam projector. The light beam projects on the
target object to form an ellipse. Line SAO represents the camera’s focal axis,
which coincides with the axis of the light beam. We employ the following nota-
tions:

 Line BC is the major axis of the elliptical light ring,
 Point D is the middle point of BC,

 1 2and ψ ψ are angles between the axis SAO and line AC and line AB,

respectively,
 f is the focal length of the camera and is known,
 R is a given parameter representing the distance between the mirror H

and the camera, and
 Point K represents an arbitrary point on the edge of the ellipse.

104 A.W. Ding

Depending on the types of light beam produced (i.e., cylinder, divergent conical or
convergent taper), the robot would perform the following calculations to deter-
mine the surface orientation of the observed object

1. Compute α , the angle between the surface of the object and the
axis of light beam.

2. Compute 1L , the distance between the camera and point D.

3. Evaluate distance between the camera and any point K on the surface

of the object, kL .

If the type of beam is a cylinder (where θ = 45 , 45φ =), then

α = 1ctg − [
2 1

1 1 1
()

2 tg tgψ ψ
−], (1)

1L =
1 2

1 1
()

2

R

tg tgψ ψ
+ , (2)

kL =
k

R

tgψ
, (3)

such that 1
1 ()

ac
tg

f
ψ −= , 1

2 ()
ab

tg
f

ψ −= , and 1()k

ak
tg

f
ψ −= . In addition,

ac, ab, and ak can be measured from the camera image, representing projections
on the same camera image of the segments DB, DC, and DK.

If the type of beam produced is a divergent conical beam (where 45 <θ <

90 , 2 90φ θ= −), then

α = 1ctg − [1 2

1 2 1 22 ()

tg tg

tg tg tg tg tg

ψ ψ
ψ ψ φ ψ ψ

−
− +

], (4)

1L =
1 2

1 1
()

2

Rctg tg

tg tg tg tg

φ φ
ψ φ ψ φ

+
− −

, and (5)

kL =
sin cosk k

Rctg tg

tg

φ φ
ψ ψ φ

⋅
− ⋅

. (6)

If the object has a small visible surface, using these two types of light beams
would mean that the ring of light formed on the surface is beyond the boundary of
the object surface. Therefore, the robot adjusts the angle θ of the rotated mirror,

Towards Machine Equivalent Consciousness 105

such that 45θ < . When the mirror revolves around the center axis, it can create
a convergent taper light beam. Thus Equations (1)–(3) become Equations (7)–(9),
respectively:

α = 1ctg − [1 2

1 2 1 22 ()

tg tg

tg tg tg tg tg

ψ ψ
ψ ψ φ ψ ψ

−
+ +

], (7)

1L =
1 2

1 1
()

2

Rctg tg

tg tg tg tg

φ φ
ψ φ ψ φ

⋅ +
+ +

, and (8)

kL =
sin cosk k

Rctg tg

tg

φ φ
ψ ψ φ

⋅
+ ⋅

. (9)

Now we examine how the models above can help a robot perceive depth informa-
tion. By projecting the light beam onto an object, a surface of sufficient size
allows an elliptical or circular bright line to form. If the object is not large enough,
the light ring formed on the surface goes beyond the boundary of the surface, so
part of the projected figure falls on the first surface, and the other part is located
on the second surface, as in Fig. 15.

Comparing the shape formed on one surface with that on two connected surfac-
es, if an edge appears between two connected surfaces, the bright ring formed on
the edge differs from that formed on one plane (Fig. 15a). Examining the camera
image, if the shape appears as in Fig. 15b, then one edge must exist at the intersec-
tion of the two semi-circles. That is, if the camera picture reveals a circular arc
that connects with an elliptical arc to become a closed curve, then the robot can
conclude that one edge of the target object is located where the two arcs meet. If
the closed curve opens or the endpoints of the two arcs do not meet, then one ver-
tical step exists.

So, projecting a light beam onto stairways for example leads to a large circular
ring that forms on the edge of the top of surface; a smaller circular ring appears on
the bottom surface (Fig. 15c). If, in the camera image, a larger semi-circle instead
connects with a smaller semi-circle, then there is a vertical step at the intersection
in the object (Fig. 15d).

If the camera image shows that two straight lines link from the ends of a small
arc to the ends of a larger arc, it implies there is a dip in the target object (see Figs
15e and 15f).

The method discussed here offers several advantages. First, the approach is
simple and can produce results immediately. Second, the evaluation equations
only use common mathematics and basic light principles, such that they minimize
the complex computing procedure used by most current digital image processing
technology [13]. Third, compared with conventional stereo systems that rely on
two cameras, this method needs only one camera to obtain the depth estimate,
which can improve accuracy and avoid the matching ambiguity problems that are
common with the use of two cameras to simulate binocular vision.

106 A.W. Ding

Fig. 15 Finding edges from the shapes of light rings

Though a machine cannot perceive a 3-dimensional effect when observing the
image of a girl chasing a ball on the street (i.e. the example in Section 6.1), the
machine’s computational intelligence is capable of making a correct judgment: the
image is 2-dimensional. If cars were equipped with such computational systems,
they would help drivers avoid a sudden halt due to human perceived optical illu-
sion effect. If this is the case, the original purpose of using optical illusion effect
as speed bump would not be achieved. Therefore, a machine with computational
intelligence should be seen as a cognitive prosthesis to amplify, rather than re-
place, human abilities.

New developments in neuroscience and cognitive science have provided in-
sights on how to design human-level intelligent machines. For example, theory of
human attention can inspire our new thoughts on designing computation visual
system, and models of human speech pattern recognition help build auditory
sense. Following the similar principles on how human brain works, MIT’s

Towards Machine Equivalent Consciousness 107

artificial intelligent Lab has built several humanoid robots [14, 15, 16]. Though
those systems may not be closely tied to any of the five senses that we have dis-
cussed earlier, they are some initial steps towards artificial cognition.

7 Conclusion

Alan Turing [1] stated that “… I believe that at the end of the century … one will
be able to speak of machines thinking without expecting to be contradicted.” A
computational system with thinking capability requires the system be aware of and
understand what it processes. How can a machine achieve self-awareness and
form consciousness from bits of electronic signals it processes? If we know how
the brain produces consciousness, we may be able to design an artificial conscious
machine. In this paper, we examine working procedure of human senses to figure
out 1) what happens in the course of receiving external information and what the
outputs that each sense produces are, 2) how such outputs are bound into a mea-
ningful concept in the brain. We present a four-stage model to illustrate process of
cognition from Sensation to Rational Acts. Using this model, we compare similari-
ty and difference between human being and machines in each cognition stage. Our
goal is to understand how conscious awareness is formed and whether human
awareness can be captured and mechanized. Our research suggests that awareness
is a perceived pattern of physical energy. Mechanization of molecular logic of
sensation and perception may be a possible way to realize artificial conscious
machine with equivalent human level awareness.

References

1. Turing, A.M.: Computing machinery and intelligence. Mind LIX(236), 433–460
(1950)

2. Merriam-Webster Dictionary
3. Feigenbaum, E.A.: Some challenges and grand challenges for computational intelli-

gence. Journal of the ACM 50(1), 37–40 (2003)
4. Reddy, R.: Three open problems in AI. Journal of the ACM 50(1), 83–86 (2003)
5. Beament, J.: How we hear music. Boydell Press, Rochester (2003)
6. Buck, L., Axel, R.: A novel multigene family encode odorant receptors: A molecular

basis for odor recognition. Cell 65(1), 175–187 (1991)
7. Boring, E.G.: Dimensions of consciousness. Appleton-Century-Crofts, New York

(1933)
8. Clare, L., Halligan, P.: Pathologies of awareness: Bridging the gap between theory and

practice. Journal of Neuropsychological Rehabilitation (August 2006)
9. Landauer, R.: Information is physical. Physics Today 44, 23–29 (1991)

10. Turing, A.M.: On computable numbers, with an application to the entscheidung-
sproblem. Proceedings of London Mathematical Society 42, 230–265 (1936)

11. Liu, C.H., Chaudhuri, A.: Representing the 3/4 view effect in face recognition. Cogni-
tion 83(1), 31–48 (2002)

108 A.W. Ding

12. Watt, R.J., Rogers, B.J.: Human vision and cognitive science. In: Baddeley, A., Bern-
sen, N.O. (eds.) Cognitive Psychology Research Directions in Cog-nitive Science: Eu-
ropean Perspectives, vol. 1, pp. 10–12. Lawrence Erlbaum Associates, East Sussex
(1989)

13. Park, J.M., Lu, Y.: Edge detection in grayscale, color, and range images. In: Wah,
B.W. (ed.) Encyclopedia of Computer Science and Engineering (2008),
doi:10.1002/9780470050118.ecse603

14. Brooks, R.A., Breazeal, C., Marjanovic, M., Scassellati, B., Williamson, M.M.: The
Cog Project: Building a Humanoid Robot. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS
(LNAI), vol. 1562, pp. 52–87. Springer, Heidelberg (1999)

15. Brooks, R., Breazeal, C., Irie, R., Kemp, C.C., Marjanovic, M., Scassellati, B., Wil-
liamson, M.: Alternative essences of intelligence. In: Proceedings of the American As-
sociation of Artificial Intelligence (1998)

16. Scassellati, B.: Theory of mind for a humanoid robot. In: First IEEE/RSJ International
Conference on Humanoid Robotics (September 2000)

Multicriteria Models for Learning Ordinal
Data: A Literature Review

Ricardo Sousa, Iryna Yevseyeva, Joaquim F. Pinto da Costa,
and Jaime S. Cardoso

Abstract. Operations Research (OR) and Artificial Intelligence (AI) disciplines have
been playing major roles on the design of new intelligent systems. Recently, different
contributions from both fields have been made on the models design for problems
with multi-criteria. The credit scoring problem is an example of that. In this problem,
one evaluates how unlikely a client will default with his payments. Client profiles are
evaluated, being their results expressed in terms of an ordinal score scale (Excelent �
Good �Fair �Poor). Intelligent systems have then to take in consideration different
criteria such as payment history, mortgages, wages among others in order to commit
their outcome. To achieve this goal, researchers have been delving models capable
to render these multiple criteria encompassed on ordinal data.

The literature presents a myriad of different methods either on OR or AI fields for
the multi-criteria models. However, a description of ordinal data methods on these
two major disciplines and their relations has not been thoroughly conducted yet. It is
key for further research to identify the developments made and the present state of the
existing methods. It is also important to ascertain current achievements and what the
requirements are to attain intelligent systems capable to capture relationships from
data. In this chapter one will describe techniques presented for over more than five
decades on OR and AI disciplines applied to multi-criteria ordinal problems.

Ricardo Sousa · Jaime S. Cardoso
INESC TEC (formerly INESC Porto), Faculdade de Engenharia, Universidade do Porto
Porto, Portugal
e-mail: {rsousa,jaime.cardoso}@inescporto.pt

Iryna Yevseyeva
Computer Science and Communication Research Center, Polytechnic Institute of Leiria
Leiria, Portugal
e-mail: iryna.yevseyeva@gmail.com

Joaquim F. Pinto da Costa
CMUP, Faculdade de Ciências da Universidade do Porto
Porto, Portugal
e-mail: jpcosta@fc.up.pt

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 109–138.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{rsousa,jaime.cardoso}@inescporto.pt
iryna.yevseyeva@gmail.com
jpcosta@fc.up.pt

110 R. Sousa et al.

1 Introduction

Learning multicriteria (MC) models from data has recently gathered a substantial
attention. Such trend has its reasons in the diverse set of applications which can be
found in management [76, 105], financial [31, 33] and medical [6, 125] fields, to
name a few. Consequently, the very diversity of the multicriteria learning research
topics led to a discussion and proposals in several different fields. Decision analysis,
machine learning and statistics/econometrics are some of them. Hence, a rich termi-
nology can be found due to this diverse fields of study. Sorting, ranking, dominance,
among others, are some of the many names referring to multicriteria methods. Even
though mostly all share the same fundamental principles, it is on the methods as-
sumptions that most differences occur. Nevertheless, methods for learning ordinal
data have been recently seen as a generalisation of some multicriteria techniques [2].

The importance of ordinal data is clear. Nowadays, industry tries to cope with
current technological advancements and towards profit maximisation. Hence, more
and more personalised products and services are being commercialised to a wider
audience. Problems like credit scoring where the system evaluates the capability
of one default his debts [31, 33, 141] by grading a customer credit profile in the
scale Excelent � Good � Fair � Poor, movies suggestion [28], breast cancer di-
agnosis [17], or gene analysis through the analysis of hyperactivity on certain pro-
teins [102, 103], are some examples of ordinal problems where data is structured
by a “natural” order. As a result, new and robust computational methods capable
to unravel reasoning’s behind ones decisions also led to new theoretical develop-
ments. Regarding to these developments two major disciplines lead the research:
Operations Research (OR) and Artificial Intelligence (AI).

In this chapter it is presented a literature review over different areas that deal with
ordinal data, in general, to the extent of what it is known nowadays. Section 2 starts
by providing the terminology that will be used. Section 3 will focus on methods
on the operations research side whereas techniques in the artificial intelligence field
will be described in Section 4. Section 3 will be concerned mainly about aggregation
models, fuzzy and rough set theory, and evolutionary algorithms approaches. Sec-
tion 4 will be dedicated to inductive learning, a very large and important topic within
AI. In this section different existing works in the literature will be identified as well
as feature selection approaches (Section 4.1) and performance assessment metrics
(Section 4.2). As remainder of this chapter, in Section 5, one will draw a summary
of what has been achieved until now and what still poses as open problems.

2 Terminology and Concepts

Learning multicriteria (MC) on ordinal data has a strong connection with OR and
AI [146]. Albeit being conceptually different topics, there is an intrinsic connection
among them. OR comprises several different areas of study such as decision anal-
ysis, mathematical programming among others. Whereas, AI can be described as
being composed by machine learning, pattern recognition, data mining [119] etc.

Multicriteria Models for Learning Ordinal Data: A Literature Review 111

���������

��������	

���		�����

���	�
�
���
�
�

�����

�����
����

�����

����������
��������

�������

�
������

����
�	���

���	��������
�������
�

��
����
�
�������
� �����

��� ���
������

���

��� ���

������

����
��

���������� �������

� �

��������
�	���

�� �

��� ��
�����
������� �

�

���������������

���������	

���		����������

���������	
���

��

������
�

����

���		�����

�
�������
�

��
�
����

���
������

�����

����
�
����
� ���

���
��

Fig. 1 Illustration of the different fields that overlap with operations research and artificial
intelligence.

Within each area there are concepts borrowed from one another. For instance, ma-
chine learning vastly uses techniques from mathematical programming and statistics
since its early days [45, 132] (Fig. 1 depicts some of these relations). How these top-
ics interact with each other is not within the scope of this chapter. It is the purpose
of Fig. 1 to illustrate the broad aspects of the area in study. Its usage is so broad that
a full coverage is not possible. However, it is interesting to know how MC meth-
ods have been used in data analysis to represent knowledge. Such is done in order
to understand reasoning’s behind decisions [94], outcome prediction [26, 36], in
mimicking behaviours [90] and planning [68, 105].

Even though MC methods have been thoroughly studied, not much effort has
been employed on the particular case where data is presented in a “natural” order.
Let us consider the credit score problem. A bank assigns a score of Excellent to a
client given his wage, good payment history in previous mortgages and the number
of credits at the time of the evaluation. The score assessment is clearly rendered
over the different criteria: Wage, payment history, among others. Ideally, one wants
to find the best function that can capture all this information in order to output the
expected outcome.

Definition 1 (Classification on Ordinal Data Problems[16, 18, 91, 93, 146]).
Classifying on ordinal data problems consists on finding the best mapping
f : Rd → {C1, . . . ,CK} of a given pattern, xxx ∈ Rd ⊂ X, to a finite set of classes,
where CK � . . .� C1.

Pattern xxx is also referred as instance, example or alternative. Moreover, xxx can be
represented in a vector fashion where each entry is identified as a feature, attribute
or criterion, i.e., xxx = {x1, . . . ,xd}. A dataset is a tuple consisted of N patterns and its
target classes (or outcomes), D= {xxx(i),y(i)}N

i=1 and �, the order relation on the set
of classes.

Literature usually differentiates attribute and criterion [51]. Consequently, the
problem in analysis can be substantially different. In an ordinal data problem as the
credit scoring, an alternative (to which client a loan should be granted) is charac-
terised by several criteria, each one representing a level of importance to the de-
cision maker (DM) (the bank). Here, criteria is used instead of attribute being the
former more adequate for the ordinal problem [51, 135].

112 R. Sousa et al.

The usage of the term ranking is also common in the MC field. However, such
term is usually mentioned to other subjects aside classification.

Definition 2 (Ranking [16, 25]). A ranking problem consists on finding the best
mapping f : Rd → {R1, . . . ,RL} of a given pattern, xxx ∈ Rd ⊂ X, to a finite set of
ranks, where RL � . . .� R1 is not pre-defined.

There are subtle differences between the two problems. Whereas in classification the
order between classes is already defined and all patterns have to be assigned into at
most one class, in ranking such does not hold. Think for instance on the GoogleTM

or YahooTM search engines. When entering a search query, the result can vary from
user to user for the same query. The search engine will look on its database and
rank the results according to, for instance, user search history. Ranking approaches
however go beyond the subject of this chapter.

Depending on the problem, criteria can also represent a magnitude of importance
or unimportance, a ratio, among others. This can generate datasets where order may
not be explicitly represented. Different works tackled the ordinal problem assuming
that data were monotone, i.e., where both criteria and classes were assumed to be
ordered [10, 39, 101]. Nevertheless, recent works argue that monotonicity constraint
cannot be verified despite being however perfect representatives of an ordinal prob-
lem [18, 56]. The following synthetic datasets depict some of those claims. To each
point in Fig. 2a was assigned a class y from the set {1,2,3,4,5}, according to

y = min
r∈{1,2,3,4,5}

{r : br−1 < 10(x1 − 0.5)(x2 − 0.5)+ ε < br}

(b0,b1,b2,b3,b4,b5) = (−∞,−1,−0.1,0.25,1,+∞)
(1)

where ε ∼ N(0;0.1252) simulates the possible existence of error in the assignment
of the true class to xxx. Data in Fig. 2b is uniformly distributed in the unit-circle, with

(a) (b)

Fig. 2 Two synthetic ordinal dataset where the monotonicity property at input data does not
hold.

Multicriteria Models for Learning Ordinal Data: A Literature Review 113

the class y being assigned according to the radius of the point: y =
⌈√

x2
1 + x2

2

⌉
.

These synthetic datasets are examples where order cannot be captured directly in
the input space, but in an implicit feature space.

Hence, the following question can be posed: How to capture order? Many models
have been proposed towards this goal. But before answering that question, first a
brief description of the most commonly used models is required. The following
concepts will allow a better understanding of the most recent techniques discussed
along this chapter.

Starting by the OR domain, a classic multicriteria decision analysis (MCDA)
approach is done by the representation of a specific aggregation model. Aggregation
models are performed by aggregating different value or utility functions in order to
be expressed by a single criterion. One aggregation model that we can think of a, for
instance, the mean: 1

d ∑d
j=1 x j. The use of utility vs. value depends upon the problem.

Whereas, utility functions are used in stochastic problems, value function are used
in deterministic ones [92]. In brief, an aggregation model is a function U : Rd →R,
that maps criteria of the DM onto outcomes [92]. Utility functions are widely used,
where the one presented in Equation (2) is an example of several other aggregation
models. It has the advantage of considering both qualitative and quantitative criteria.
The simplest additive case of an utility function is defined as follows:

U(xxx) =
d

∑
j=1

u j(x j) (2)

where U ∈ [0,1]. For the interested reader Siskos [115] presents a good description
of these methods.

Fuzzy set theory is another topic with increasing interest on the scientific commu-
nity. Its usage is not restricted only to the MCDA problem being however strongly
defended thanks to its capability to handle uncertainty [50, 65]. In general, fuzzy
set theory presents a fundamental principle which describes a special type of sets
which have degrees of membership through simple logical operators. Such can be
described by any mapping function μ(xxx) : Rd → [0,1]. Fig. 3a) consists of a valid
representation for a given membership function. Moreover, it can represent knowl-
edge in a if . . . then way in a similar way to decision trees (DTs) [69] which will be
described shortly.

In much of the works currently present in the literature, fuzzy set theory usually
appears along with rough sets. The latter field is however slightly different from the
former. Rough Set theory not just handle uncertainty, but also incomplete informa-
tion which can be present on data [65]. Even though new approaches on utility ad-
ditive functions (UTA—UTilitès Additives [115]) already tackle this problem, it has
also been stated that rough and fuzzy set theory are complementary because of deal-
ing with different kinds of uncertainty [50]. It was initially proposed by Pawlak [97]
with the objective to provide a mathematical formulation of the concept of approxi-
mated (rough) equality of sets in a given space. In the rough set theory it is assumed
that to every object there is an associated amount of information that describes it.

114 R. Sousa et al.

�
��

��
��
�	

���

��� ����

	

�������

���������������������

(a)

�����
������	
��	�

�����
������	
��	�

������������	�
��������

(b)

Fig. 3 Fuzzy and Rough Set concept illustrations: (a) An example of a membership function
that defines a possible economic class problem in a fuzzy set approach; (b) Lower and Upper
approximations of a given set which represent the domain knowledge;

This refers to the view that knowledge has a granular structure [1, 50, 51, 98].
Therefore, an important characteristic of rough sets theory is the identification of
consistent data and assigning them into lower and upper approximations of sets—
see Fig. 3b).

More on the AI domain, in general, one tries to obtain valid generalisation rules,
classifier, from data. Once a classifier has been designed, one has to assess its
performance by estimating the error of the classifier for unseen examples. Clas-
sification error is expressed as a misclassification error defined by a “true misclas-
sification rate” (here denoted as R∗(d)). d(xxx) is the learner model with input data xxx.
Breiman [15] defines this function as:

Definition 3 (Accuracy Estimation [15]). Take (xxx,y), xxx ∈ X, y ∈ Y, to be a new
sample from the probability distribution P(A, j); i.e.,

• P(xxx ∈ A,y = j) = P(A, j).
• (xxx,y) is independent of D.

Then define
R∗(d) = P(d(xxx) �= y) (3)

But how can R∗(d) be estimated? There are many approaches. One that this work
will use is the cross-validation approach. Dataset D is randomly divided in subsets,
with the same size as possible, e.g., D1, . . . ,DV . For each v, v = 1, . . . ,V , a learning
method is applied to the sample D−Dv, resulting in the dv(xxx) model.

Rcv(d) =
1
V

V

∑
v=1

Rts(dv) (4)

where Rts is defined as

Rts(dv) =
1

Nv
∑

(xxxi,yi)∈Dv

F(dv(xxxi),yi) (5)

Multicriteria Models for Learning Ordinal Data: A Literature Review 115

�

(a) (b) (c)

�
�
�
�

�
�
�
�

�
�
�
�

����

����

���	�

���	�

(d)

Fig. 4 k-NN and DT methods. (a) A test pattern (illustrated as a star) composed by two
features checks for, in this example, two closest labelled patterns in order to determine its
own class; (b) Prediction over the whole feature domain for an 2-NN on the training data
shown in (a); (c) A DT discriminates the feature space by rectangles; (d) A sample of the
decision tree for (c).

where Nv
 N/V and F any function which penalises each error1. One can now
analyse the different learning methods for ordinal data.

k-Nearest Neighbour (k-NN) is a simple method that interestingly has not been
explored enough in the MCDA setting until very recently. It consists of a non-
parametric method with the main objective to estimate the density function from
sample patterns [38]. It extends the local region around a data point xxx until the
kth nearest neighbour is found. The most represented class in the k-closest cases
defines the predicted class. Fig. 4a-b) illustrates such procedure. DTs are another
method that captured some interest for tackling MCDA problems, specially on the
OR domain. DTs classify a pattern through a sequence of questions where the next
question depends on the answer to the previous one. These trees are constructed as
logical expressions as is illustrated in Fig. 4c-d). This ability generates a powerful
data analysis tool capable to obtain interpretable results [38]. Nodes are consecu-
tively split where a stop-splitting rule is required that controls the growth of the
tree.

Neuron Networks are another kind of learning models. Multi-Layer Perceptron
(MLP) is the most commonly used. A MLP is a layered structure consisting of
nodes or units (called neurons) and one-way connections or links between the nodes
of successive layers, such as the structure of Fig. 5a). The first layer is called the
input layer, the last layer is the output layer, while the ones in the middle are called
the hidden layers. Input layer of neurons is only a vector where all data are in-
troduced triggering the learning process. Data propagates through the network in
a forward direction, on a layer-by-layer basis. Layers are constituted by several
neurons which commonly have non-linear and differentiable activation functions.
Support Vector Machines (SVM) are another popular learning mechanism. In its
simple form, SVMs uses a linear separating hyperplane to create a binary classifier

1 The l0−1 loss function is the most commonly used one, i. e., F(a,b) = I(a �= b) being I
the identity function.

116 R. Sousa et al.

��

��

��

��

�����
���	

��
������	�
���	

������
���	

�	���������	�
���	

� �	
�

� �	
�

� �	
�

� �	
�

� �	
�

� �	
�

� �	
�

� �	
�

� �	
�

� �	
�

� �	
�

������
������
����

(a)

������

�	
����
�	��	����

�	
������	��	����

�
�
��
��

��		��
����
���

(b)

Fig. 5 MLP and SVM methods: (a) Example of a MLP. This MLP is composed by 2 hidden
layers, one input and output layer; (b) A two dimensional dataset is augmented to a higher
feature space.

with a maximal margin. In cases where data cannot be linearly separable, data are
transformed to a higher dimension than the original feature space—see Fig. 5b).
Such is done by choosing a given kernel function, representing the inner product
in some implicit higher dimension space. Formally, a kernel function is defined
by k(xxx,xxx′) = φ(xxx)T φ(xxx′). This transformation (φ) can be achieved by several non-
linear mappings: e.g., polynomial, sigmoidal and radial basis functions. However,
in a multiclass problem the usage of a binary SVM classifier can be limited. In order
to improve this some heuristics and new formulations were proposed as an exten-
sion to the binary classification problem. Some of them encompass the OVO (One-
Versus-One), OVA (One-Versus-All), DDAG (Decision Directed Acyclic Graph),
single optimisation formulation, among others. Basically, OVO consists on the de-
sign of K(K-1)/2 binary classifiers where one class is discriminated against another.
Similarly, and as the name suggests, OVA consists on the design of K binary classi-
fiers where one class is compared against the others. Likewise the former heuristic,
DAG, follow a similar procedure. The major difference is that prediction is made
in a graph path manner where each node corresponds to a given binary classifier. In
a completely different scenario, there are also techniques that try to define a single
optimisation problem to solve the multiclass problem on SVMs.

This Section provided some key concepts regarding techniques for learning from
data. Knowing that still much more has to be covered, the interested reader is ad-
vised to OR and AI textbooks [9, 38, 55, 65, 82, 108] for more information. Next
Sections will describe different methods using some of the aforementioned method-
ologies for learning multicriteria models on ordinal data problems.

3 Multicriteria Decision Analysis

Multicriteria decision analysis (MCDA) is an important field within OR. It helped
researchers to devise new approaches in order to analyse and interpret human’s rea-
soning. Specifically, when handling several usually conflicting criteria towards an
outcome. Such methods are generally composed by five phases depicted in Fig. 6.

Multicriteria Models for Learning Ordinal Data: A Literature Review 117

��������	
��
�������	�

��	���	��
������	�

��	���	��
��	���	��

��	���	��
������	�

��������	�

Fig. 6 Common Diagram of MCDA Methods [130, 137].

This Section will review multicriteria decision methods for ordinal data prob-
lems. Alternative formulation and criteria selection is usually defined by a set of
experts or DMs [130, 137] and can depend on the problem in analysis. On the other
hand, a given importance (weight) can be defined to each criterion whether through
subjective or objective methods. After every criteria being considered, the analysis
takes place. In general, MCDA tries to learn about users preferences encompassed
in the different criteria considered. One key aspect of such methods is that they do
not rely on any statistical assumptions [145]. Such highly contrasts with the topic
which will be reviewed in Section 4. These two views can mark great differences
on both topics, but as one shall see, there are points of connection between these
two fields. In doing so, one can identify a trend towards filling the gap between OR
and AI on MCDA. Finally, all criteria which were considered are then aggregated
in order to define a plausible outcome.

It is important to stress that this work is mostly concerned with ordinal data.
Hence, not all topics within MCDA can be covered in this Section. The interested
reader is referred to [44, 58, 126, 147] for more information.

3.1 MCDA Methods

From Fig. 6, one can define methodologies which follow the whole process. An-
alytic Hierarchy Process (AHP) is one of such kind of frameworks [109]. After
having the problem analysed and criteria selected, usually performed by an expert
(or DM), it considers through an hierarchical approach each criteria [109]. However,
recent reviews have argued that AHP results may not be the most desirable ones [62–
64]. Mentioning that there is no clear evidence that AHP provides its users with their
“best” decision [62], or in more detail, identifying the limitations in each step on the
process [63]. Even though the Analytic Network Process (ANP) was introduced as a
generalisation over AHP (a feedback network capable to adjust weights) [64, 110],
few work has been done for the ordinal case.

ELECTRE [35, 107] and PROMETHEE [35, 37, 43] are two well known meth-
ods that, like AHP, can consist at most by the five steps illustrated in Fig. 6 [63]. Both
techniques arose from the foundations of the outranking relation theory (ORT) [35].
In simple words, it consists of checking the outranking relation among instances
which permits to conclude whether an instance xxx(p) outranks instance xxx(q). Mean-
ing, that instance xxx(p) will be better for the DM than xxx(q). This is achieved if there
are enough statements to confirm (concordance) or to refute that (discordance). The
two aforementioned methods require some preferential information which has to
be defined by the DM. However, it may be difficult for the DM to understand the

118 R. Sousa et al.

meaning of the preferences [61]. To overcome this, different improvements over the
methods have been conducted. One of them was through the usage of evolutionary
algorithms.

Evolutionary algorithms (EAs) came in a way to reproduce Darwin’s theory of
the survival of the fittest. EAs are also referred as populational meta-heuristics
meaning that they work on the population space of solutions [13]. EAs generally
encompasses on three major steps: 1) Gather a set of solutions; 2) Select a possible
subset of candidates on that set of solutions and allow them to reproduce. Reproduc-
tion consists mainly on creating new solutions from the selected ones by crossover
and mutation operators; 3) Finally, the process is repeated for the set of new solu-
tions until a stopping criteria is achieved. Swiki in [116, 117] introduced an elitist
evolutionary agent2 system to solve multicriteria optimisation problems. By trying
to reproduce biological mechanisms, an elitist group is introduced in the evolution-
ary architecture proposal. The final solution identified by the elitist group would
indicate the desirable one which will dominate other possible solutions identified
by other groups. Some hybrid approaches are also present in the literature [32, 42].
In [42] an outranking combined with an EA was proposed thanks to an indiffer-
ence measure. Since preference modelling is cumbersome, authors used a popula-
tion based meta-heuristic to generate the best solutions. An agent would then decide
the best one. An approach proposed by Doumpos [32] comprehends the usage of
concordance and discordance measures into a credibility index of an outranking
method. This will assess the outranking relation among several alternatives. Since
incomparable relations can occur, an EA is used to infer the parameters of the out-
ranking method.

In a complete different setting, constraint programming tries to explore all pos-
sible combination of solutions thoroughly. Despite this being highly computational
expensive, Junker in [66, 67] argues that an interactive approach has its advantages
over state of the art techniques. It is also claimed that current existing methods do
not express a clear explanation of the reason for one alternative being more prefer-
able than another. In other words, a performance of 98% does not express which
option is the best based on the original preferences. Using a special utility function
to define preferences order in [67] a lexicographic optimal scheme is applied. Since
lexicographic approach establish some ranking over the preferences order [41, 67],
authors also permute the order of alternatives search. Bouveret [11] explores the
idea in which characterises good solutions where multiple criteria have to be han-
dled through the use of lexicographic algorithms.

Other methods incorporate cooperative algorithms which take part in the learn-
ing process from diverse sources of information and by different decision criteria
[29, 71]. Methods with such properties are named Dominance-based Set
Approach (DRSA) [29] which deal with the problem of multicriteria classification
using maximum likelihood estimation. The problem is then solved by an optimal ob-
ject reassignment algorithm. In [71] a stochastic DRSA approach is introduced. The

2 In a simple way, an agent is a solution vector generated by some sub-optimal learning
method.

Multicriteria Models for Learning Ordinal Data: A Literature Review 119

rationale behind this method is to assess object class probability from an interval of
classes.

Rough set theory is another field that one can count with when tackling MCDA.
One interesting aspect is that rough set have the ability to produce a model of rule
induction similar to data mining, knowledge discovery and machine learning [50].
In [50] authors extend the fuzzy set theory to rough sets theory in order to avoid
as much as possible meaningless transformation of information. Rule induction is
made through decision rules induced from dominance-based rough approximations
of preference-ordered decision classes [51].

Let us now analyse in more depth contributions made to each node in the multi-
criteria methods process.

Criteria Weighting

Criteria weighting can be considered one of the most important steps for the deci-
sion maker. Once it weights the importance of each criterion, acting as a trade-off
between criteria [61] that will be considered in the decision process, subtle changes
can produce different outcome [136].

Methods for weighting criteria encompass equal weights, rank-order and hybrid
approaches where after some considerations from the DM, weighting can be per-
formed by a subjective or objective method [136, 137]. Equal weights (wj = 1/d)
is not valuable once relative importance among the criteria is ignored. Remains
rank-order weighting approaches and their derivations to overcome these limita-
tions. Another issue is that when dealing with uncertainty or incomplete infor-
mation in any decision problem, the DM may not be reliable to define her/his
preferences accurately. One way to handle this type of information is to repre-
sent preferences by a suitable distribution using stochastic multicriteria acceptability
analysis (SMAA) methods. Several methods have been proposed in the literature—
e.g. [40, 74, 75, 128] to name a few. SMAA-O proposed in [74] was an extension
of SMAA works [127, 128] applied to ordinal (and cardinal) criteria. The problem
is that, in the authors approach, an ordered criteria cannot be used directly in MC
model. Therefore, it is assumed that exists a cardinal measure that corresponds to
the known ordinal criteria and by considering consistent mappings between ordinal
and cardinal scales, they randomly simulate such mapping through Monte Carlo it-
erations. Or in other words, ordinal data is converted into stochastic cardinal data by
simulating consistent mappings between ordinal and cardinal scales that preserve
the given labels. In SMAA literature review work of Tervonen [127] they claim that
such simulations are not necessary since cardinal values can be interpreted directly.

Criteria Analysis

To the best of our knowledge, one of the first works in criteria analysis was proposed
by Herstein [57] where an axiomatic approach was carried. A set of mathematical
axioms was presented in this work to measure preferences order. Maccheroni in

120 R. Sousa et al.

his work [85] explores the possibility where DM does not know for certain her/his
preferences being therefore unable to rationalise her/his choices.

As previously mentioned, in the outranking approaches inconsistencies may arise
when the preferences which are learned by given instances cannot be expressed
through a model. Belacel in [6] proposes a construction of partial indifference in-
dexes comparing pairs of preferences according to some criteria, aggregating them
according to a concordance and non-discordance concept. Mousseau in [93] sug-
gest to discard contradictory information from the preferences through an iterative
aggregation-disaggregation scheme.

A number of variants of UTA [115] have been proposed in the literature over the
last two decades and many works have been published concerned to this subject [8,
52, 54, 73, 146]. One related to ordinal problem was proposed in [145]. In this
work, additive functions are used discriminating the preferences being evaluated
from those that are not. Trying to go through a more natural way to human thinking
over their outcomes or goals, some methods also based on utility functions have
recently been proposed [88–90]. In this method, the authors developed a model
to express logic of preferences in order to determine which of two outcomes is
preferable.

Aggregation

As mentioned, aggregation models are one of the most studied methods within mul-
ticriteria decision analysis. For instance, in our credit scoring problem a model has
to be designed to aggregate wage, payments history, age among others so that it can
express the credit score profile of a given client. However, this approach implies that
those functions have to be, among others, monotone [86]. Most important of all, the
aggregation model has to be able to evince the importance of a criterion (done in
the criteria analysis step), but also the interaction and compensation effects between
criteria (done in the weighting step) [60]. Meaning that one has to design a model
such that it can assign weights to a subset of possible criteria in order to capture
these relations [60, 123].

As one saw until now, multicriteria methods encompass a variety of different
approaches. Many of them address this problem through classification techniques
using some sort of aggregation model [36, 44]. Afterwards, restrictions are then de-
fined to the problem in question. However, despite the existence of the myriad of
techniques, many pass through the definition of some objective function which can
be delved through mathematical programming approaches. In [145] a multi-group
hierarchical discrimination (M.H.DIS) method is defined. An error minimisation
and clear group discrimination utility function is presented. Then, a two optimisa-
tion stages are conducted to avoid high computational complexity of MIP problems
with many binary variables. An extension of this work is presented in [31] where the
estimation of the additive utility functions in aforementioned work is accomplished
through mathematical programming techniques. Two linear and one mixed-integer
programs are used in M.H.DIS to estimate optimally the utility functions.

Multicriteria Models for Learning Ordinal Data: A Literature Review 121

Unsupervised approaches such as the k-means algorithm or agglomerative hi-
erarchical clustering (AHC) can also be used. The latter performs a hierarchical
clustering where given individual clusters it can merge or split clusters until a stop-
ping criteria is achieved. Given the utility matrix, authors employ clustering algo-
rithms to form groups of alternatives (e.g., customers) with closely related prefer-
ences [77, 78]. However, in this phase little or no usage of the ordered criteria is
explored.

4 Inductive Learning Algorithms

Inductive learning describes a very powerful field of research where machine learn-
ing (ML) lies. In ML one tries to obtain valid generalisation rules from data instead
of the deductive learning approaches where one is already presented with a formal-
isation of the world and constructs (deducts) reasonable conclusions that cover our
initial assumptions. Being also referred as a technique that learns by example (in-
stances), it has been another thoroughly studied field which is composed by two
main research topics: Regression and classification. A schematic of such problems
and some real world scenarios are depicted in Fig. 7.

��������	�		
�����

�������

	
��������

�
��
��	��

���
��
���

���
�� �������
��
����������	�	���

��������
���	
�����������
������
��������
���
����������������

�����
�

�	��	�
���	

�	���� ������

�����
�

�
���!�
����

"	��	�����
#���
��
�	

������
��
�	

$�	����%
���������
���� ����
�����
��!���������������
�"��
���#���
����
�$��%��"��������

��������&
�$��

$�	����%
����$����	
����
������'�#��!�����������%�$����
������#� ���%��
�������������
�"���!�������'��%����%���
���#���
����
�$��%��"����%�
����������
��������&
�$��

�����&	
'	�
�	������
()����������*+�����,��(����
-��
�����,

Fig. 7 Inductive Learning encompasses on two major research topics: Regression and
classi f ication. Both thrives on finding the best function that explains our data. The former
renders the reasoning’s on a continuous domain whereas the latter on a discrete (finite) do-
main. Each one is divided in other subtopics being their thoroughly analysis more appropriate
for other textbooks [9, 38, 55] and here depicted just for context.

Learning mechanisms that solve ordinal problems have been tackled with both
regression and classification strategies. Albeit being fundamentally different, both
ordinal regression and ordinal classification methods have thrived among the scien-
tific community, e.g., [18, 26, 46, 56, 72, 87, 113, 120], to name a few. The first
works that tried to solve the classification of ordinal data were based on gener-
alised linear models, as the cumulative model [87]. Tutz [129] presents a generic
formulation for semi-parametric models extending the additive models [54]. In the
machine learning community, Frank&Hall [46] have introduced a simple process

122 R. Sousa et al.

which permits to explore information order in classification problems, using con-
ventional binary classifiers as can be depicted in Fig. 8. In [56] it is applied the
minimal structural risk principle [132] to derive a learning algorithm based in pairs
of points.

Another way to learn ordering relation is by using classical algorithms of classifi-
cation or regression and mapping the results into an ordinal scale. Kramer et al. [72]
investigate the use of a learning algorithm for regression tasks—more specifically,
a regression tree learner—to solve ordinal classification problems. In this case each
class needs to be mapped to a numeric value. Kramer et al. [72] compare several
different methods for doing this. However, if the class attribute represents a truly or-
dinal quantity—which, by definition, cannot be represented as a number in a mean-
ingful way—there is no principled way of devising an appropriate mapping and
this procedure is necessarily ad hoc. Harrington [53] argues that these type of ap-
proaches have many drawbacks as 1) makes regression learners sensitive to rank
representation than their ordering and 2) since classification algorithms ignore rank
order treating them as classes, it will be required more training data. Consequently,
Harrington [53] presents a perceptron algorithm where its goal it to find a percep-
tron weight vector www which successfully projects all the instances into the k classes
subintervals defined by some thresholds.

Moreover, existing methods incurring ordinal regression approaches fit data in
general by a single rule defined by parts through K-1 thresholds [133]. This has a
drawback since a mapping is required to convert ranks into real values or vice-versa.
Hence, determining this mapping function is in general very difficult and makes re-
gression learners more sensitive to rank value than their pairwise ordering. Some
of the aforementioned drawbacks were avoided in Shashua and Levin [113] work
where a generalised formulation of Support Vector Machines (SVMs) applied to or-
dinal data was proposed. However, such models can be too complex. Cardoso in [18]
proposed a reduction technique to solve data ordinal problem classification using
only one binary classifier. Following this idea, Lin et al. [83] explored the potential
of solving ordinal problems through binary classification methods whereas Cheng
et al. in [21] presented an adaptation of the Neural Networks (NN) towards ordinal
problems. In [27] an order relation is incorporated among classes by imposing an
unimodal distribution. This fundamental principle allowed to delve simpler Neural

���

Fig. 8 Schematic of the proposal presented by Frank&Hall in [46]. Firstly it is performed a
transformation of a K-class problem to a K −1 binary class problem. The training of the ith

classifier involves the transformation of the K ordinal class into a binary one where the ith

discriminator is obtained by separating the classes C1, . . . ,Ci and Ci+1, . . . ,Ck. The ith class
represents the test Cx > Ci.

Multicriteria Models for Learning Ordinal Data: A Literature Review 123

Networks (NNs) classifiers. The same rationale was instantiated to SVMs in [26]
through the all-at-once strategy by solving a multiclass ordinal problem through
a single optimisation process. Sun et al. in [124] proposed a Kernel Discriminant
Analysis (KDA) for ordinal data. Even though authors argued that finding an opti-
mal projection would result in better reasonable results, in doing so one would loose
its relation to the original features. Hence, in the case of need for interpretable re-
sults, through the usage of such methods, one would be unable to understand the
reason of the outcome given specific features.

Metric learning is research subject that recently has been gaining increasingly
attention, specially in the machine learning community [138, 142, 144]. The per-
formance of all machine learning algorithms depends critically on the metric that is
used over the input space. Some learning algorithms, such as K-means and k-nearest
neighbours, require a metric that will reflect important relationships between each
classes in data and will allow to discriminate instances belonging to one class from
others [104]. Ouyang [96, 111] explored this subject in the ordinal problem. In [96]
by assuming that closer instances in the input space should translate an order of rela-
tion, a metric distance is learn so that pairs of instances are closer than the remainder
pairs. However, class label is discarded in this approach.

Other approaches [22–24, 143] consisted on probabilistic approaches based in
Gaussian processes to learn models for the ordinal problem. In [143] a collaborative
approach is delved towards better, not only in accuracy, but also in a context of
collaborative preference learning.

Regarding decision trees (DTs) for ordinal data, some works consider problems
that are monotone, i.e., all attributes have ordered domains. Meaning, if xxx,zzz are data
points such that xxx ≤ zzz (xi ≤ zi for each criteria i) then their classes should satisfy
the condition f̂ (xxx) ≤ f̂ (zzz), where f̂ (.) is the labeling function. Potharst [99–101]
proposes a method that induces a binary decision tree from a monotone dataset.
Other methods were also proposed for non-monotone datasets (the most likely sce-
nario in the presence of noise) where the resulting tree may be non-monotone. In
this scenario, a fuzzy operator was used instead of a entropy function for perfor-
mance measurement [30]. Works on k-nearest neighbour for ordinal data seems
even scarcer. Besides the well-known adaptation of using the median as labelling
rule instead of mode for the k labels, literature only presents a modified version
of the standard k-NN for the construction of monotone classifiers from data [39].
Again, this work continues to be limited by the assumption of monotonocity in the
input data. In general, the monotone constraint was overcame in [19, 120]. Argu-
ing that ordinality could not be captured directly from the input space, but from the
feature space, authors explored a re-labelling approach on the output decision space
through a postprocessing optimisation procedure.

From the works until now revised, one has encountered several methods that
make use of different procedures from operations research field, and other
proposals design their learning models so that multicriteria can be rendered in the
learning phase. In this setting, multicriteria assessment is simply performed over a
set of diverse unattached reasoning’s which renders the desirable outcomes with-
out a clear understanding of which criteria contributed most. To overcome this,

124 R. Sousa et al.

De Smet et al. [118] developed a k-means clustering algorithm in a multicriteria
decision analysis perspective.

In this section we have reviewed several learning approaches for the resolution
of the ordinal problem. In the end, it is obvious how increasingly this subject has
been studied. The reasons can be due to the awareness of its transversal usability in
a set of diverse applications. However, due to the background of many researchers,
many have tried to solve this problem through regression, classification and ranking
methodologies. The work of Furnkranz et al. [48, 49] despite using a pairwise ap-
proach, compared ranking and classification principles in their proposals. As final
remark, one must note how vastly such methods can be employed such it has been
explored by Van Belle et al. [114, 131]. In these works, different approaches have
been delved towards ranking, ordinal and survival analysis problems. Even though
authors performed strict assumptions on data to develop their models, such as mono-
tone data, it still is a good example of the importance of this topic in the inductive
learning field.

4.1 Feature Selection Algorithms on Ordinal Data

Nowadays, it is relatively easy to solve problems with millions of instances, each of
them with a reasonable number of features. However, it is common to have access
to datasets with significantly higher number of features than instances leading to
the well known problem of the curse of dimensionality. Feature selection (FS) tech-
niques provide the means to overcome this issue by identifying the most valuable
features so that good and simple class discrimination models can be obtained. Fur-
thermore, a noise reduced dataset can be achieved since these methods can “clean”
data from features with noise [34].

There are three types of feature selection algorithms: Filter, wrapper and em-
bedded. The former is independent of the classifier being usually done before the
learning phase. Wrapper algorithms iteratively select subset of features and assess
the learning models performance to determine how useful that set of features are
whereas embedded algorithms select automatically features during the model con-
struction [34, 106]. Fig. 9 succinctly depicts the three approaches.

�� �� �� �� ������������� ��

Fig. 9 Three different standard approaches for feature selection: (left) depicts the f ilter fea-
ture selection (FS) approach done before the model design (MD); (centre) the wrapper is
consisted on an iterative approach where features are removed step by step until a desirable
performance of the model is achieved; and (right) embedded method is designed jointly with
the learning model algorithm.

Multicriteria Models for Learning Ordinal Data: A Literature Review 125

Feature selection on ordinal data is a relatively young topic. In [84] a χ2 statis-
tic method is used to discretize numeric features as a way to select features. Even
though the method proposed by Liu [84] was identified as being limited to a first-
order feature-class correlation (i.e., are linearly correlated), such should not be seen
as a drawback. Once highly complex learning machines could easily cope with the
data complexity and infer a linear relation with the features and classes, or more
precisely, perform overfitting on data [112, 121]. Nevertheless, Last et al in [79]
proposed an information-theoretic method for feature selection by performing a dis-
cretization over the features in order to minimise classes entropy. Even though or-
dinal data can contain only discrete features fitting well to this technique, there are
datasets with continuous features (see for instance [17]). In such scenarios, applying
a discretization technique can lead to loss of accuracy in the model design. Despite
being mentioned the capability to handle ordinal data, no experiment has been con-
ducted, neither their methods were designed for this type of problems. Through a
completely different approach, Xia et al. [140] presents a recursive approach to ex-
tract features where it learns consecutively new rules from instances represented by
the new features.

Other techniques in the ordinal context have been referred to Baccianella et al
in [4, 5]. Using only the filter approach for feature selection, authors used several
measures to identify feature relevance through the minimisation of the instances
variance over all classes, similarity, information gain and negative correlation ac-
cording to the class label, specifically developed for ordinal problems. Finally, Sousa
et al.[121] explored a concept introduced by Rodriguez et al. [106] where they tackle
the FS problem in one-step process through quadratic programming as represented
in Equation (6). The quadratic term (Q in Equation (6)) would capture the redun-
dancy whereas the linear term (F in Equation (6)) would capture the relevance.

min
xxx

{
1
2
(1−α)xxxtQxxx−αFtxxx

}
(6)

Here α is the trade-off between relevance and redundancy which can be empirically
defined. In order to capture the ordinal relation on data in this setting, authors chosen
the Minimum Spanning Trees (MST) as the linear term (F) to assess the increase
of complexity when a subset of features is removed. However, one of the issues
identified in this approach concerns to the fact that authors did not take advantage
of the ordinal information that could be explicitly included on data (quadratic term).

4.2 Performance Measures

After considering the advantages and disadvantages, goals achieved and open issues
of the techniques presented in previous sections, the discussion of how to measure
the performance of such techniques has not been debated much.

Usually, a learning process consists in two main phases: A cross-validation phase
and an estimation of the model performance (F represented in Equation (5)) on a
real-world scenario (also known as the testing phase). In both situations, one has to

126 R. Sousa et al.

analyse the performance of a model given certain parametrization and its behaviour
in a non controllable environment, respectively. Herein, the question that one obvi-
ously poses is: How much did the model err? Or, how much the prediction differs
from the real outcome? Given certain assumptions of models design, it is clear, as
we will shortly show, that the metric chosen for this task is crucial.

It is interesting to see that in contrast to the plethora of existing methods con-
cerning multicriteria learning, only recently we witnessed some concerns to this
issue [20, 47, 81], disregarding advances performance made on the broader field
of machine learning [80]. Knowing that “no free lunch” theorems state that there
is not an algorithm that can be superior on all problems in regard to classification
accuracy [139], the assessment of an appropriate learning method given a specific
problem is desirable [80].

For classification problems, MER (Misclassification Error Rate) is currently one
of the most used measures. Its widely use make it a de facto standard when compar-
ing different learning algorithms by just counting the misclassifications occurred. In
other problems domains, it is usual to penalise the misclassifications by weighting
them by the magnitude of the error to avoid uneven results. When such happens,
MAE (Mean Absolute Error) and MSE (Mean Squared Error) measures are usu-
ally the most appropriate choices. Summing, the performance of a classifier can be
assessed in a dataset D through

1
N ∑

xxx∈D
|g(Cxxx)− g(Ĉxxx)| 1

N ∑
xxx∈D

(
g(Cxxx)− g(Ĉxxx)

)2
,

respectively, where g(.) corresponds to the number assigned to a class, N = card(D),
and Cxxx and Ĉxxx are the true and estimated classes. However, this assignment is arbi-
trary and the numbers chosen to represent the existing classes will evidently influ-
ence the performance measurement given by MAE or MSE. A clear improvement
on these measures would be to define them directly from the confusion matrix CM
(a table with the true class in rows and the predicted class in columns, with each en-
try nr,c representing the number of instances from the r−th class predicted as being
from c−th class):

MAE =
1
N

K

∑
r=1

K

∑
c=1

nr,c|r− c| MSE =
1
N

K

∑
r=1

K

∑
c=1

nr,c(r− c)2

where K is the number of classes. We will always assume that the ordering of the
columns and rows of the CM is the same as the ordering of the classes. This pro-
cedure makes MAE and MSE independent of the numbers or labels chosen to rep-
resent the classes. To a certain degree, these two measures are better than MER
because they take values which increase with the absolute differences between ‘true’
and ‘predicted’ class numbers and so the misclassifications are not taken as equally
costly.

In order to avoid the influence of the numbers chosen to represent the classes
on the performance assessment, it has been argued that one should only look at

Multicriteria Models for Learning Ordinal Data: A Literature Review 127

the order relation between ‘true’ and ‘predicted’ class numbers. The use of Spear-
man’s rank correlation coefficient, Rs, and specially Kendall’s tau-b, τb, is a step
in that direction [70, 122]. For instance, in order to compute Rs, we start by defin-
ing two rank vectors of length N which are associated with the variables g(C) and
g(Ĉ). There will be many examples in the dataset with common values for those
variables; for these cases average ranks are used. If ppp and qqq represent the two rank
vectors, then Rs =

∑(pi− p̄)(qi−q̄)√
∑(pi− p̄)2 ∑(qi−q̄)2

. As we can see, Spearman’s coefficient is still

dependent on the values chosen for the ranks representing the classes and so it is
not completely appropriate to measure the performance of ordinal data classifiers.
More importantly, Rs looses information about the absolute value of the classes.
Kendall’s coefficient τb has been advocated as a better measure for ordinal variables
because it is independent of the values used to represent classes [70]. Its robustness
is achieved by working directly on the set of pairs corresponding to different obser-
vations. However, there are limitations: By working only with the relative order of
elements, it loses information about the absolute prediction for a given observation.

Other attempts have considered the analysis of the learner behaviour on a ROC
(Receiver Operating Characteristic) curve or its equivalent, AUC (Area Under
Curve). Despite empirical evidences of AUC providing more desirable properties
when compared to accuracy [12] only recently this topic was not only re-proposed
but also new evidences of its advantages were shown [59]. In this work, AUC is
demonstrated as an objective measure for selecting the best learning model, but, and
most important, refers to the need of developing better measures for learner design
and performance assessment [59]. In this line of research, in [134] it is compared
different ROC measurements. However, and despite the assumptions made, ROC
derived measures that assess a ranking for different performance do not quantify
the performance achieved by a learner [133]. Such analysis, although with different
purposes, has been conducted by [7] using Cohen’s kappa statistic.

On the other way, the discussion was revamped by Baccianella et al [3] through
an analysis of different derivations of MSE and MAE metrics for ordinal problems.
This work is key since it debates two main issues incurred on the performance mea-
surement of learners for this type of classification problems: Imbalanced classes
and classes with equal penalisation costs. In order to avoid the former problematic,
a derivation from MAE is presented by averaging the deviations per class.

MAEM =
1
K

K

∑
i=1

1

g(Ĉi)
|g(Ci)− g(Ĉi)|

In the same line, the coefficient rint was recently introduced, taking into account the
expected high number of ties in the values to be compared [27]. In fact, the variables
C and Ĉ are two special ordinal variables. Because there are usually very few classes
compared to the number of observations, these variables will take many tied values
(most of them, in fact). Nevertheless, rint is sufficiently general and, if there are no
tied values, it can still be applied as it is. Like τb, rint assumes that the only thing
that matters is the order relation between such values, which is the same as the order

128 R. Sousa et al.

relation between the classes. This coefficient takes values in [−1,1], in contrary
to MAE (and MSE) which are upper-unbounded. The latter can be identified as
a limitation. Another observation is that it is fair to compare MAE results in two
different applications with a different number of observations, N, since MAE is
properly normalised by N. However, if the applications involve a different number
of classes, K, it is not clear how to compare the performance obtained in the two
settings.

In [20] a different approach was taken. Even though the adaptation of the MAE
and MER to a confusion matrix form surpasses standard forms, there are still is-
sues regarding these metrics. Some of the vicissitudes as mentioned in [20] encom-
pass: Equally misclassification costs, metrics unable to evaluate example dependent
costs [14] or metrics more proper to ranking problems. Having Cardoso and Sousa
identified some key advantages of using the CM form, and given the merit of both
MAE and MER fundamental principles, they proposed a new one that takes advan-
tage of all as a single optimisation problem. This new metric chooses pairs of obser-
vations from the CM that do not contradict the relative order given by the classifier
and the true relative class order which minimise the cost of a global optimisation
procedure. The choice is done in a way that minimises the deviation of the pairs to
the main diagonal while maximising the entries values in the path that cross the CM.
This was formalised as

OCγ
β = min

{
1− ∑(r,c)∈path nr,c

N +
(
∑∀(r,c) nr,c|r− c|γ)1/γ + β ∑

(r,c)∈path

nr,c|r− c|γ
}
, (7)

where the minimisation is performed over all possible paths from (1,1) to (K,K). γ
and β were defined based upon empirical experiments.

Other techniques can also go through data generators methodologies where one
can control the statistical properties herein aiding in the learners benchmark [47].
More importantly, techniques capable to manipulate Bayes error rate can foster new
lines of research where fair learners comparison [7] and the development of new
ones can take place.

In [20] it is raised a question that interesting enough has not been debated
since [81] in the ordinal context. As one knows, the usage of such metrics in the
design of classifiers can be done on two distinct situations. A first use is ‘externally’
to the classifier, using the metric to select the best parametrization of the classifier
(usually when performing a cross-validation procedure). A second possibility is to
embed the new metric in the classifier design, adapting the internal objective func-
tion of the classifier, replacing loss functions based on standard measures by a loss
function based on the proposed measure. For instance, the standard loss function
of a neural network based on the square of the error or on cross-entropy could be
replaced by an error evaluated by an appropriate metric [59]. Lee [81] accomplished
such for the design of ordinal trees, but since then few works have addressed this
subject in the ordinal context.

Multicriteria Models for Learning Ordinal Data: A Literature Review 129

It is interesting that only recently we saw a significant growth of the awareness
of this topic importance. Even though some works have already tackled this issue,
all lack on concretely assessing the performance of a given ordinal learning model.
Until now, new metrics have been designed and compared against MAE followed by
some reasoning. The problem resides how close a metric is in expressing accuracy.
Different prosaically strategies can pass through the definition of prior costs for each
class [95] or, when using a given set of different metrics, a meta-metric to assess the
performance of metrics should be in place as suggested by Cardoso [20].

5 Conclusion

Multicriteria (MC) has been studied for over more than five decades where recent
years presented interesting developments. Aside novel methodologies, a trend to-
wards the generalisation of this problem was identified where at the same time a
new light was shed over this topic thanks to a niche of applications. In this chapter
a thoroughly review was conducted on two major disciplines: Operations research
(OR) and artificial intelligence (AI).

MCDA has a strong connection with OR community. Fuzzy Set theory research
community was one that rapidly proposed new models towards these problems.
Their capability to handle uncertainty can be identified as an asset in these mod-
els. Even though in other research fields MC is giving its first steps, a new trend
is appearing as a number of different studies are taking place. On the other hand,
evolutionary approaches are still on the very beginning regarding ordinal problems.
It also has been claimed that some approaches do not cope well with many criteria
or do not capture correctly every rationale taken by the decision maker.

In the AI domain, it was described that albeit the myriad of techniques, some do
not totally incorporate or effectively use the additional information of order in the
classifier construction. Others have a higher complexity to be useful in real prob-
lems or require specific optimisation algorithms during the classifier construction.
Also, it was identified that is still common the usage of regression approaches to
solve the ordinal data problem. Notwithstanding, some improvements have been
achieved. Simplifications have been introduced through the usage of a standard bi-
nary classification techniques and fundamental principles towards the ordinal data
problem. Such theories have proved to be valuable in the design of simpler classi-
fiers and when not possible, in the design of posterior rules to impose ordinality.
Another question that has recently been tackled concerns about finding good met-
rics for measuring learners performance. We reviewed many adaptations of standard
metrics and new ones that optimise different criteria of the learner behaviour.

In the end, and in spite of much of what has been achieved, a fair comparison
between methods of both fields is still lacking. It was also clear that MC is very rich
in terms of nomenclature. Having identified what has been achieved and current
open issues, it is expected that this study leads to future technical developments and
topic convergence.

130 R. Sousa et al.

Acknowledgements. This work was also partially funded by Fundação para a Ciência e a
Tecnologia (FCT) - Portugal through project PTDC/SAU-ENB/114951/2009. The first author
would also like to acknowledge Ana Rebelo from INESC TEC, Faculdade de Engenharia
da Universidade do Porto for uncountable worthily provided comments and also Professor
Doctor Guilherme Barreto from Universidade Federal do Ceará for encouraging support.

References

1. Abraham, A., Abraham, A., Falcn, R., Bello, R.: Rough Set Theory: A True Landmark
in Data Analysis. Springer Publishing Company, Incorporated (2009)

2. Angilella, S., Greco, S., Matarazzo, B.: Non-additive robust ordinal regression: A mul-
tiple criteria decision model based on the choquet integral. European Journal of Opera-
tional Research 201(1), 277–288 (2010), doi:10.1016/j.ejor.2009.02.023

3. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In:
Proceedings of the Ninth International Conference on Intelligent Systems Design and
Applications, pp. 283–287 (2009)

4. Baccianella, S., Esuli, A., Sebastiani, F.: Feature selection for ordinal regression. In:
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010, pp.
1748–1754. ACM Press, New York (2010), doi:10.1145/1774088.1774461

5. Baccianella, S., Esuli, A., Sebastiani, F.: Selecting features for ordinal text classifica-
tion. In: IIR, pp. 13–14 (2010)

6. Belacel, N.: Multicriteria assignment method PROAFTN: Methodology and medi-
cal application. European Journal of Operational Research 125(1), 175–183 (2000),
doi:10.1016/S0377-2217(99)00192-7

7. Ben-David, A.: A lot of randomness is hiding in accuracy. Engineering Applications of
Artificial Intelligence 20(7), 875–885 (2007), doi:10.1016/j.engappai.2007.01.001

8. Beuthe, M., Scannella, G.: Comparative analysis of UTA multicriteria methods. Eu-
ropean Journal of Operational Research 130(2), 246–262 (2001), doi:10.1016/S0377-
2217(00)00042-4

9. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and
Statistics), 1st edn. (2006); Corr., 2nd printing edn. Springer (2007)

10. Blaszczynski, J., Greco, S., Slowinski, R., Szelg, M.: Monotonic variable consistency
rough set approaches. International Journal of Approximate Reasoning 50(7), 979–999
(2009), doi:10.1016/j.ijar.2009.02.011; Special Section on Graphical Models and Infor-
mation Retrieval

11. Bouveret, S., Lemaı̂tre, M.: Computing leximin-optimal solutions in constraint net-
works. Artificial Intelligence 173(2), 343–364 (2009), doi:10.1016/j.artint.2008.10.010

12. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997), doi:10.1016/S0031-
3203(96)00142-2

13. Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multiobjective Optimization:
Interactive and Evolutionary Approaches. Springer, Heidelberg (2008)

14. Brefeld, U., Geibel, P., Wysotzki, F.: Support Vector Machines with Example Depen-
dent Costs. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML
2003. LNCS (LNAI), vol. 2837, pp. 23–34. Springer, Heidelberg (2003)

15. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.: Classification and Regression Trees.
Chapman & Hall (1998)

Multicriteria Models for Learning Ordinal Data: A Literature Review 131

16. Cao-Van, K., De Baets, B.: Consistent Representation of Rankings. In: de Swart, H.,
Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI. LNCS, vol. 2929, pp. 107–
123. Springer, Heidelberg (2003)

17. Cardoso, J.S., Cardoso, M.J.: Towards an intelligent medical system for the aes-
thetic evaluation of breast cancer conservative treatment. Artificial Intelligence in
Medicine 40, 115–126 (2007)

18. Cardoso, J.S., da Costa, J.F.P.: Learning to classify ordinal data: the data replication
method. Journal of Machine Learning Research 8, 1393–1429 (2007)

19. Cardoso, J.S., Sousa, R.: Classification models with global constraints for ordinal data.
In: Proceedings of The Ninth International Conference on Machine Learning and Ap-
plications, ICMLA (2010)

20. Cardoso, J.S., Sousa, R.: Measuring the Performance of Ordinal Classification. Inter-
national Journal of Pattern Recognition and Artificial Intelligence (2011)

21. Cheng, J., Wang, Z., Pollastri, G.: A neural network approach to ordinal regres-
sion. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008
(IEEE World Congress on Computational Intelligence), pp. 1279–1284 (2008),
doi:10.1109/IJCNN.2008.4633963

22. Chu, W., Ghahramani, Z.: Gaussian Processes for Ordinal Regression. J. Mach. Learn.
Res. 6, 1019–1041 (2005)

23. Chu, W., Ghahramani, Z.: Preference learning with Gaussian processes. In: ICML 2005:
Proceedings of the 22nd International Conference on Machine Learning, pp. 137–144.
ACM, New York (2005), doi:10.1145/1102351.1102369

24. Chu, W., Sindhwani, V., Ghahramani, Z., Keerthi, S.S.: Relational Learning with Gaus-
sian Processes. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural In-
formation Processing Systems 19, pp. 289–296. MIT Press, Cambridge (2007)

25. Cossock, D., Zhang, T.: Subset Ranking Using Regression. In: Lugosi, G., Simon,
H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 605–619. Springer, Heidelberg
(2006), doi:10.1007/11776420 44

26. da Costa, J.F.P., Sousa, R., Cardoso, J.S.: An all-at-once unimodal svm approach for or-
dinal classification. In: Proceedings of The Ninth International Conference on Machine
Learning and Applications, ICMLA (2010)

27. da Costa, J.F.P., Alonso, H., Cardoso, J.S.: The unimodal model for the classification of
ordinal data. Neural Networks 21(1), 78–91 (2008)

28. Delannay, N., Verleysen, M.: Collaborative filtering with interlaced generalized linear
models. Neurocomputing 71(7-9), 1300–1310 (2008),
doi http://dx.doi.org/10.1016/j.neucom.2007.12.021

29. Dembczyński, K., Greco, S., Kotłowski, W., Słowiński, R.: Statistical Model for Rough
Set Approach to Multicriteria Classification. In: Kok, J.N., Koronacki, J., Lopez de
Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS
(LNAI), vol. 4702, pp. 164–175. Springer, Heidelberg (2007)

30. Dombi, J., Zsiros, A.: Learning multicriteria classification models from examples De-
cision rules in continuous space. European Journal of Operational Research 160(3),
663–675 (2005), doi:10.1016/j.ejor.2003.10.006; Decision Analysis and Artificial In-
telligence

31. Doumpos, M., Kosmidou, K., Baourakis, G., Zopounidis, C.: Credit risk assessment
using a multicriteria hierarchical discrimination approach: A comparative analysis. Eu-
ropean Journal of Operational Research 138(2), 392–412 (2002), doi:10.1016/S0377-
2217(01)00254-5

http://dx.doi.org/10.1016/j.neucom.2007.12.021

132 R. Sousa et al.

32. Doumpos, M., Marinakis, Y., Marinaki, M., Zopounidis, C.: An evolutionary approach
to construction of outranking models for multicriteria classification: The case of the
electretri method. European Journal of Operational Research 199(2), 496–505 (2009),
doi:10.1016/j.ejor.2008.11.035

33. Doumpos, M., Pasiouras, F.: Developing and testing models for replicating credit rat-
ings: A multicriteria approach. Computational Economics 25, 327–341 (2005)

34. Doumpos, M., Salappa, A.: Feature selection algorithms in classification problems: an
experimental evaluation. In: Proceedings of the 4th WSEAS International Conference
on Artificial Intelligence, Knowledge Engineering Data Bases, pp. 36:1–36:6. World
Scientific and Engineering Academy and Society, WSEAS (2005)

35. Doumpos, M., Zopounidis, C.: Multicriteria Decision Aid Classification Methods.
Kluwer Academic Publishers, Dordrecht (2002)

36. Doumpos, M., Zopounidis, C.: A multicriteria classification approach based on pair-
wise comparisons. European Journal of Operational Research 158(2), 378–389 (2004),
doi:10.1016/j.ejor.2003.06.011; Methodological Foundations of Multi-Criteria Deci-
sion Making

37. Doumpos, M., Zopounidis, C.: A multicriteria decision support system for bank rating.
Decision Support Systems 50(1), 55–63 (2010), doi:10.1016/j.dss.2010.07.002

38. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience
(2001)

39. Duivesteijn, W., Feelders, A.: Nearest Neighbour Classification with Monotonicity
Constraints. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008,
Part I. LNCS (LNAI), vol. 5211, pp. 301–316. Springer, Heidelberg (2008)

40. Durbach, I.N.: The use of the SMAA acceptability index in descriptive decision
analysis. European Journal of Operational Research 193(3), 1229–1237 (2009),
doi:10.1016/j.ejor.2008.05.021

41. Ehrgott, M.: Multicriteria optimization. Lecture Notes in Economics and Mathematical
Systems. Springer (2000)

42. Fernandez, E., Navarro, J., Bernal, S.: Multicriteria sorting using a valued indifference
relation under a preference disaggregation paradigm. European Journal of Operational
Research 198(2), 602–609 (2009), doi:10.1016/j.ejor.2008.09.020

43. Figueira, J., Greco, S., Ehrogott, M., Brans, J.P., Mareschal, B.: Promethee methods.
In: Multiple Criteria Decision Analysis: State of the Art Surveys. International Series
in Operations Research & Management Science, vol. 78, pp. 163–186. Springer, New
York (2005), doi:10.1007/0-387-23081-5 5

44. Figueira, J., Greco, S., Ehrogott, M., Siskos, Y., Grigoroudis, E., Matsatsinis, N.: Uta
methods. In: Hillier, F.S. (ed.) Multiple Criteria Decision Analysis: State of the Art
Surveys. International Series in Operations Research & Management Science, vol. 78,
pp. 297–334. Springer, New York (2005), doi:10.1007/0-387-23081-5 8

45. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics 7, 179–188 (1936)

46. Frank, E., Hall, M.: A Simple Approach to Ordinal Classification. In: Flach, P.A., De
Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidel-
berg (2001)

47. Frasch, J.V., Lodwich, A., Shafait, F., Breuel, T.M.: A Bayes-true data generator for
evaluation of supervised and unsupervised learning methods. Pattern Recognition Let-
ters 32(11), 1523–1531 (2011), doi:10.1016/j.patrec.2011.04.010

Multicriteria Models for Learning Ordinal Data: A Literature Review 133

48. Fürnkranz, J., Hüllermeier, E.: Pairwise Preference Learning and Ranking. In: Proceed-
ings of the 14th European Conference on Machine Learning, pp. 145–156. Springer
(2003)

49. Fürnkranz, J., Hüllermeier, E.: Pairwise preference learning and ranking. Tech. rep.,
Austrian Research Institute for Artificial Intelligence, Wien, Austria (2003)

50. Greco, S., Inuiguchi, M., Slowinski, R.: Fuzzy rough sets and multiple-premise gradual
decision rules. International Journal of Approximate Reasoning 41(2), 179–211 (2006),
doi:10.1016/j.ijar.2005.06.014; Advances in Fuzzy Sets and Rough Sets

51. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision
analysis. European Journal of Operational Research 129(1), 1–47 (2001),
doi:10.1016/S0377-2217(00)00167-3

52. Greco, S., Mousseau, V., Slowinski, R.: Ordinal regression revisited: Multiple criteria
ranking using a set of additive value functions. European Journal of Operational Re-
search 191(2), 416–436 (2008), doi:10.1016/j.ejor.2007.08.013

53. Harrington, E.F.: Online Ranking/Collaborative Filtering Using the Perceptron Algo-
rithm. In: Proceedings of the 20th International Conference on Machine Learning, pp.
250–257 (2003)

54. Hastie, T., Tibshirani, R.: Generalized Additive Models. Statistical Science 1, 297–318
(1986)

55. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall (2008)
56. Herbrich, R., Graepel, T., Obermayer, K.: Regression Models for Ordinal Data: A Ma-

chine Learning Approach. Tech. rep. (1999)
57. Herstein, I.N., Milnor, J.: An axiomatic approach to measurable utility. Economet-

rica 21(2), 291–297 (1953)
58. Hillier, F.S., Lieberman, G.J., Hillier, F., Lieberman, G.: MP Introduction to Operations

Research. McGraw-Hill Science/Engineering/Math (2004)
59. Huang, J., Ling, C.: Using auc and accuracy in evaluating learning algorithms. IEEE

Transactions on Knowledge and Data Engineering 17(3), 299–310 (2005),
doi:10.1109/TKDE.2005.50

60. Huédé, F., Grabisch, M., Labreuche, C., Savéant, P.: Integration and propagation of a
multi-criteria decision making model in constraint programming. Journal of Heuris-
tics 12(4-5), 329–346 (2006), doi:10.1007/s10732-006-8075-2

61. Iryna, Y.: Solving classification problems with multicriteria decision aiding approaches
(2007)

62. Ishizaka, A., Balkenborg, D., Kaplan, T.: Does ahp help us make a choice? an experi-
mental evaluation. JORS 62(10), 1801–1812 (2011), doi:10.1057/jors.2010.158

63. Ishizaka, A., Labib, A.: Analytic hierarchy process and expert choice: Benefits and
limitations. OR Insight 22(4), 201–220 (2009), doi:10.1057/ori.2009.10

64. Ishizaka, A., Labib, A.: Review of the main developments in the analytic hier-
archy process. Expert Systems with Applications 38(11), 14,336–14,345 (2011),
doi:10.1016/j.eswa.2011.04.143

65. Jensen, R., Shen, Q.: Computational intelligence and feature selection: Rough and fuzzy
approaches (2008)

66. Junker, U.: Preference-based search and multi-criteria optimization. Annals of Opera-
tions Research 130(1), 75–115 (2004)

67. Junker, U.: Preference-based problem solving for constraint programming, pp. 109–126
(2008), doi:10.1007/978-3-540-89812-2 8

134 R. Sousa et al.

68. Kangas, J., Kurttila, M., Kajanus, M., Kangas, A.: Evaluating the management strate-
gies of a forestland estate–the s-o-s approach. J. Environ. Manage. 69(4), 349–358
(2003), doi:10.1016/j.jenvman.2003.09.010

69. Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Net-
works, and Fuzzy Logic Models. MIT Press, Cambridge (2001)

70. Kendall, M.: A new measure of rank correlation. Biometrika 30, 81–89 (1938)
71. Kotlowski, W., Dembczynski, K., Greco, S., Slowinski, R.: Stochastic dominance-based

rough set model for ordinal classification. Information Sciences 178(21), 4019–4037
(2008)

72. Kramer, S., Widmer, G., Pfahringer, B., de Groeve, M.: Prediction of Ordinal Classes
Using Regression Trees. Fundam. Inf. 47(1-2), 1–13 (2001)

73. Köksalan, M., Özpeynirci, S.B.: An interactive sorting method for additive utility func-
tions. Computers & Operations Research 36(9), 2565–2572 (2009),
doi:10.1016/j.cor.2008.11.006

74. Lahdelma, R., Miettinen, K., Salminen, P.: Ordinal criteria in stochastic multicriteria
acceptability analysis (smaa). European Journal of Operational Research 147(1), 117–
127 (2003), doi:10.1016/S0377-2217(02)00267-9

75. Lahdelma, R., Salminen, P.: Prospect theory and stochastic multicriteria acceptability
analysis (SMAA). Omega 37(5), 961–971 (2009), doi:10.1016/j.omega.2008.09.001

76. Lahdelma, R., Salminen, P., Hokkanen, J.: Locating a waste treatment facility by using
stochastic multicriteria acceptability analysis with ordinal criteria. European Journal of
Operational Research 142(2), 345–356 (2002), doi:10.1016/S0377-2217(01)00303-4

77. Lakiotaki, K., Delias, P., Sakkalis, V., Matsatsinis, N.: User profiling based on multi-
criteria analysis: the role of utility functions. Operational Research 9, 3–16 (2009),
doi:10.1007/s12351-008-0024-4

78. Lakiotaki, K., Matsatsinis, N., Tsoukiàs, A.: Multicriteria user modeling in recom-
mender systems. IEEE Intelligent Systems 26(2), 64–76 (2011),
doi:10.1109/MIS.2011.33

79. Last, M., Kandel, A., Maimon, O.: Information-theoretic algorithm for feature selec-
tion. Pattern Recognition Letters 22(6-7), 799–811 (2001),
doi:10.1016/S0167-8655(01)00019-8

80. Lavesson, N., Davidsson, P.: Evaluating learning algorithms and classifiers. Int. J. Intell.
Inf. Database Syst. 1, 37–52 (2007), doi:10.1504/IJIIDS.2007.013284

81. Lee, J., Liu, D.Z.: Induction of ordinal decision trees. In: Proceedings of the Interna-
tional Conference on Machine Learning and Cybernetics, vol. 4, pp. 2220–2224 (2002)

82. Lee, K.H.: First Course On Fuzzy Theory And Applications. Springer (2004)
83. Lin, H.T., Li, L.: Combining ordinal preferences by boosting. In: Proceedings

ECML/PKDD 2009 Workshop on Preference Learning, pp. 69–83 (2009)
84. Liu, H., Setiono, R.: Feature selection via discretization. IEEE Transactions on Knowl-

edge and Data Engineering 9(4), 642–645 (1997), doi:10.1109/69.617056
85. Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the

variational representation of preferences. Econometrica 74(6), 1447–1498 (2006)
86. Marichal, J.L.: Aggregation Operators for Multicriteria Decision Aid. Ph.D. thesis, In-

stitute of Mathematics, University of Liège, Liège, Belgium (1998)
87. McCullagh, P.: Regression Models for Ordinal Data. Journal of the Royal Statistical

Society 42(2), 109–142 (1980)
88. McGeachie, M.: Msc.utility functions for ceteris paribus preferences. Master’s thesis,

Department of Electrical Engineering and Computer Science, MIT (2002)

Multicriteria Models for Learning Ordinal Data: A Literature Review 135

89. McGeachie, M., Doyle, J.: Efficient utility functions for ceteris paribus preferences.
In: Eighteenth National Conference on Artificial Intelligence, pp. 279–284. American
Association for Artificial Intelligence, Menlo Park (2002)

90. McGeachie, M., Doyle, J.: Utility functions for ceteris paribus preferences. Computa-
tional Intelligence 20(2), 158–217 (2002)

91. Meyer, P., Roubens, M.: Choice, Ranking and Sorting in Fuzzy Multiple Criteria De-
cision Aid. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision
Analysis: State of the Art Surveys, pp. 471–506. Springer, Boston (2005)

92. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Opera-
tions Research and Management Science, vol. 12. Kluwer Academic Publishers, Dor-
drecht (1999)

93. Mousseau, V., Figueira, J., Naux, J.P.: Using assignment examples to infer weights
for Electretri method: Some experimental results. European Journal of Operational Re-
search 130(2), 263–275 (2001), doi:10.1016/S0377-2217(00)00041-2

94. Olafsson, S., Li, X., Wu, S.: Operations research and data mining. European Journal of
Operational Research 187(3), 1429–1448 (2008), doi:10.1016/j.ejor.2006.09.023

95. Oliveira, H.P., Magalhaes, A., Cardoso, M.J., Cardoso, J.S.: An accurate and inter-
pretable model for bcct. core. In: Proceedings of the 32nd Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society, pp. 6158–6161 (2010)

96. Ouyang, H., Gray, A.: Learning dissimilarities by ranking: from sdp to qp. In: Interna-
tional Conference on Machine Learning, pp. 728–735 (2008),
doi:10.1145/1390156.1390248

97. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-
ences 11(5), 341–356 (1982)

98. Pawlak, Z.: Rough set approach to knowledge-based decision support. European Jour-
nal of Operational Research 99(1), 48–57 (1997), doi:10.1016/S0377-2217(96)00382-7

99. Potharst, R., Bioch, J.C.: A decision tree algorithm for ordinal classification. In: Ad-
vances in Intelligent Data Analysis, pp. 187–198 (1999)

100. Potharst, R., Bioch, J.C.: Decision trees for ordinal classification. Intelligent Data Anal-
ysis 4(2), 97–111 (2000)

101. Potharst, R., Feelders, A.J.: Classification trees for problems with monotonicity con-
straints. SIGKDD Explorations Newsletter 4(1), 1–10 (2002),
doi: http://doi.acm.org/10.1145/568574.568577

102. Presson, A., Yoon, N., Bagryanova, L., Mah, V., Alavi, M., Maresh, E., Rajasekaran, A.,
Goodglick, L., Chia, D., Horvath, S.: Protein expression based multimarker analysis of
breast cancer samples. BMC Cancer 11(1), 230 (2011), doi:10.1186/1471-2407-11-230

103. Pyon, Y.S., Li, J.: Identifying gene signatures from cancer progression data using or-
dinal analysis. In: IEEE International Conference on Bioinformatics and Biomedicine,
BIBM 2009, pp. 136–141 (2009), doi:10.1109/BIBM.2009.18

104. Rebelo, A., Tkaczuk, J., Sousa, R., Cardoso, J.: Metric learning for music symbol recog-
nition (2011)

105. Rietveld, P., Ouwersloot, H.: Ordinal data in multicriteria decision making: a stochastic
dominance approach to siting nuclear power plants. European Journal of Operational
Research 56(2), 249–262 (1992)

106. Rodriguez-Lujan, I., Huerta, R., Elkan, C., Cruz, C.S.: Quadratic programming feature
selection. Journal of Machine Learning Research 11, 1491–1516 (2010)

107. Roy, B.: The outranking approach and the foundations of electre methods. Theory and
Decision 31, 49–73 (1991), doi:10.1007/BF00134132

http://doi.acm.org/10.1145/568574.568577

136 R. Sousa et al.

108. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Educa-
tion (2003)

109. Saaty, T.L.: How to make a decision: The analytic hierarchy process. European Journal
of Operational Research 48(1), 9–26 (1990), doi:10.1016/0377-2217(90)90057-I

110. Saaty, T.L., Vargas, L.G., Saaty, T.L., Vargas, L.G.: The seven pillars of the analytic
hierarchy process. In: Models, Methods, Concepts & Applications of the Analytic Hi-
erarchy Process. International Series in Operations Research & Management Science,
vol. 34, pp. 27–46. Springer, US (2001), doi:10.1007/978-1-4615-1665-1 2

111. Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In:
NIPS. MIT Press (2004)

112. Seth, S., Prı́ncipe, J.C.: Variable Selection: A Statistical Dependence Perspective. In:
Proceeding of the Ninth International Conference on Machine Learning and Applica-
tions, pp. 931–936 (2010)

113. Shashua, A., Levin, A.: Ranking with large margin principle: Two approaches (2003)
114. Shen, L., Joshi, A.: Ranking and Reranking with Perceptron. Machine Learning 60,

73–96 (2005)
115. Siskos, Y., Grigoroudis, E., Matsatsinis, N.: Uta methods. In: Figueira, J., Greco, S.,

Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp.
297–344. Springer, Boston (2005)

116. Siwik, L., Natanek, S.: Elitist evolutionary multi-agent system in solving noisy multi-
objective optimization problems. In: IEEE Congress on Evolutionary Computation,
CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 3319–3326
(2008)

117. Siwik, L., Natanek, S.: Solving constrained multi-criteria optimization tasks using Eli-
tist Evolutionary Multi-Agent System. In: IEEE Congress on Evolutionary Computa-
tion, CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 3358–3365
(2008)

118. Smet, Y.D., Guzmán, L.M.: Towards multicriteria clustering: An extension of the k-
means algorithm. European Journal of Operational Research 158(2), 390–398 (2004),
doi:10.1016/j.ejor.2003.06.012; Methodological Foundations of Multi-Criteria Deci-
sion Making

119. Chakrabarti, S., Ester, M., Fayyad, U., Gehrke, J., Han, J., Morishita, S., Piatetsky-
Shapiro, G., Wang, W.: Data mining curriculum: a proposal, Version 1.0 (2006),
www.kdd.org/curriculum/CURMay06.pdf (retrieved February 27, 2012)

120. Sousa, R., Cardoso, J.S.: Ensemble of Decision Trees with Global Constraints for Ordi-
nal Classification. In: 11th International Conference on Intelligent Systems Design and
Applications (ISDA 2011), Cordoba, Spain, Spain (2011)

121. Sousa, R., Oliveira, H.P., Cardoso, J.S.: Feature selection with complexity measure
in a quadratic programming setting. In: Proceedings of Iberian Conference on Pattern
Recognition and Image Analysis (IbPRIA), pp. 524–531 (2011)

122. Spearman, C.: The proof and measurement of association between two things. Ameri-
can Journal of Psychology 15, 72–101 (1904)

123. Sridhar, P., Madni, A., Jamshidi, M.: Multi-criteria decision making in sensor networks.
IEEE Instrumentation Measurement Magazine 11(1), 24–29 (2008), doi:10.1109/IM-
M.2008.4449011

124. Sun, B.Y., Li, J., Wu, D., Zhang, X.M., Li, W.B.: Kernel discriminant learning for ordi-
nal regression. IEEE Transactions on Knowledge and Data Engineering 22(6), 906–910
(2010), doi:10.1109/TKDE.2009.170

www.kdd.org/curriculum/CURMay06.pdf

Multicriteria Models for Learning Ordinal Data: A Literature Review 137

125. Tagliafico, A., Tagliafico, G., Tosto, S., Chiesa, F., Martinoli, C., Derchi, L.E., Cal-
abrese, M.: Mammographic density estimation: Comparison among bi-rads categories,
a semi-automated software and a fully automated one. The Breast 18(1), 35–40 (2009)

126. Taha, H.A.: Operations Research: An Introduction, 8th edn. Prentice-Hall, Inc., Upper
Saddle River (2006)

127. Tervonen, T., Figueira, J.R.: A survey on stochastic multicriteria acceptability
analysis methods. Journal of Multi-Criteria Decision Analysis 15, 1–14 (2008),
doi:10.1002/mcda.407

128. Tervonen, T., Lahdelma, R.: Implementing stochastic multicriteria acceptability
analysis. European Journal of Operational Research 178(2), 500–513 (2007),
doi:10.1016/j.ejor.2005.12.037

129. Tutz, G.: Generalized Semiparametrically Structured Ordinal Models. Biometrics 59,
263–273 (2003)

130. Ustinovichius, L., Zavadskas, E.K., Podvezko, V.: The application of a quantitative
multiple criteria decision making (mcdm-1) approach to the analysis of investments
in construction. Control and Cybernetics 36 (2007)

131. van Vanya, B., Kristiaan, P., Suykens Johan, A.K., van Sabine, H.: Learning transfor-
mation models for ranking and survival analysis. Journal of Machine Learning Re-
search 12, 819–862 (2011)

132. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)
133. Waegeman, W., Baets, B.D., Boullart, L.: Roc analysis in ordinal regression learning.

Pattern Recognition Letters 29(1), 1–9 (2008), doi:10.1016/j.patrec.2007.07.019
134. Waegeman, W., De Baets, B., Boullart, L.: A comparison of different ROC measures

for ordinal regression. In: Proceedings of the CML 2006 Workshop on ROC Analysis
in Machine Learning (2006)

135. Waegeman, W., de Baets, B., Boullart, L.: Kernel-based learning methods for prefer-
ence aggregation. 4OR: A Quarterly Journal of Operations Research 7, 169–189 (2009),
doi:10.1007/s10288-008-0085-5

136. Wang, J.J., Jing, Y.Y., Zhang, C.F.: Weighting methodologies in multi-criteria eval-
uations of combined heat and power systems. International Journal of Energy Re-
search 33(12), 1023–1039 (2009), doi:10.1002/er.1527

137. Wang, J.J., Jing, Y.Y., Zhang, C.F., Zhao, J.H.: Review on multi-criteria decision anal-
ysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Re-
views 13(9), 2263–2278 (2009), doi:10.1016/j.rser.2009.06.021

138. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neigh-
bor classification. Journal of Machine Learning Research 10, 207–244 (2009)

139. Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: Proc. 6th Online
World Conference on Soft Computing in Industrial Applications, pp. 25–42 (2001)

140. Xia, F., Tao, Q., Wang, J., Zhang, W.: Recursive Feature Extraction for Ordinal Regres-
sion. In: International Joint Conference on Neural Networks, IJCNN 2007, pp. 78–83
(2007)

141. Xu, X., Zhou, C., Wang, Z.: Credit scoring algorithm based on link analysis ranking
with support vector machine. Expert Syst. Appl. 36, 2625–2632 (2009),
doi:10.1016/j.eswa.2008.01.024

142. Yang, L., Jin, R.: Distance metric learning: A comprehensive survey. Tech. rep., De-
partment of Computer Science and Engineering, Michigan State University (2006)

143. Yu, S., Yu, K., Tresp, V., Kriegel, H.P.: Collaborative ordinal regression. In: Proceedings
of the 23rd International Conference on Machine Learning, ICML 2006, pp. 1089–
1096. ACM, New York (2007), doi:10.1145/1143844.1143981

138 R. Sousa et al.

144. Zhang, Z., Kwok, J.T., Yeung, D.Y.: Parametric distance metric learning with label
information. In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence, pp. 1450–1452. Morgan Kaufmann Publishers Inc., San Francisco (2003)

145. Zopounidis, C., Doumpos, M.: Building additive utilities for multi-group hierarchical
discrimination: The M.H.DIS method. Optimization Methods and Software 14(3), 219–
240 (2000), doi:10.1080/10556780008805801

146. Zopounidis, C., Doumpos, M.: Multicriteria classification and sorting methods: A lit-
erature review. European Journal of Operational Research 138(2), 229–246 (2002),
doi:10.1016/S0377-2217(01)00243-0

147. Zopounidis, C., Pardalos, P.M.: Handbook of multicriteria analysis. Applied Optimiza-
tion 103. Springer, Berlin (2010), doi:10.1007/978-3-540-92828-7

Diophantine and Lattice Cryptanalysis
of the RSA Cryptosystem

Abderrahmane Nitaj

Abstract. The RSA cryptosystem, invented in 1977 is the most popular public cryp-
tosystem for electronic commerce. Its three inventors Rivest, Shamir and Adleman
received the Year 2002 Turing Award, the equivalent Nobel Prize in Computer Sci-
ence. RSA offers both encryption and digital signatures and is deployed in many
commercial systems. The security of RSA is based on the assumption that factoring
large integers is difficult. However, most successful attacks on RSA are not based
on factoring. Rather, they exploit additional information that may be encoded in the
parameters of RSA and in the particular way in which RSA is used. In this chap-
ter, we give a survey of the mathematics of the RSA cryptosystem focussing on the
cryptanalysis of RSA using a variety of diophantine methods and lattice-reduction
based techniques.

Keywords: RSA, Lattice reduction, Continued fractions, Factorization, Copper-
smith’s method.

1 Introduction

The work done by Alan Turing brought computer science and cryptography into the
modern world. Then, within a few decades, cryptography has evolved from a branch
of mathematics into a self-contained field of science. Basically, there are two types
of cryptography: symmetric-key cryptography and public-key cryptography. The
concept of the public-key cryptography was proposed by Diffie and Hellman [9]
in 1976. Since then, a number of public-key cryptosystems have been proposed to
realize the notion of public-key cryptosystems. The RSA public-key cryptosystem
was invented by Rivest, Shamir, and Adleman [21] in 1977. These days the RSA

Abderrahmane Nitaj
Laboratoire de Mathématiques Nicolas Oresme, Université de Caen,
14032 Caen Cedex, France
e-mail: abderrahmane.nitaj@unicaen.fr

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 139–168.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

abderrahmane.nitaj@unicaen.fr

140 A. Nitaj

system is the best known and most widely accepted public key cryptosystem. RSA
is most commonly used for providing privacy and ensuring authenticity of digital
data. It is used in several operating systems, like Microsoft, Apple and Sun. It is also
used for securing web traffic, e-mail and smart cards. Hence, many practical issues
have been considered when implementing RSA in order to reduce the encryption or
the execution decryption time. Despite more than three decades of intensive research
on the RSA cryptosystem, no devastating attacks on it have been found so far. The
main attacks on RSA include elementary attacks on the modulus, low private and
public exponent attacks, timing attacks, partial key exposure attacks and are based
mostly on lattice reduction methods. There are many papers describing all major
known cryptanalytic attacks and defenses of the RSA cryptosystem and its variants
(see for instance [4], [13], [24]).

The mathematical operations in RSA depend on three parameters, the modulus
N = pq which is the product of two large primes p and q, the public exponent e and
the private exponent d, related by the congruence ed ≡ 1 (mod (p−1)(q−1)). The
encryption and decryption in RSA require taking heavy exponential multiplications
modulus the large integer N = pq. To reduce the encryption time, one may wish to
use a small public exponent e. On the other hand, to reduce the decryption time,
one may also be tempted to use a short secret exponent d. The choice of a small
d is especially interesting when the device performing secret operations has limited
power. In 1990, Wiener [23] presented an attack on RSA with short secret exponent,
called continued fraction attack. He used Diophantine approximations to show that
if d < N0.25, then it easy to recover d, p and q making RSA totally insecure.

In 1996, Coppersmith [8] introduced two methods for finding small roots of poly-
nomial equations using lattice reduction, one for the univariate modular case and
another one for the bivariate case over the integers. His method is based on lattice-
reduction techniques. Since then, many cryptanalytic applications have been based
on these methods, for example the factorization of N = pq knowing a fraction of
the most significant bits on each factor. Another well-known example is the crypt-
analysis of RSA with small private key. In 1999, based on the seminal work of
Coppersmith, Boneh and Durfee [5] presented an attack on RSA which recovers p
and q if d < N0.292.

In this chapter, we present the diophantine and the lattice techniques used in
the cryptanalysis of RSA as well as the most powerful attacks on RSA using these
techniques. The first part is devoted to the diophantine approximations and their
applications to RSA, namely some generalizations of Wiener’s method. The sec-
ond part presents the lattice-reduction methods and related attacks on RSA. The
third part presents some attacks combining the diophantine approximations and the
lattice-reduction techniques.

2 The RSA Cryptosystem

We review the basic RSA public key system. We describe five constituent algo-
rithms: key generation, encryption, decryption, signature and signature verification.

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 141

The key generation algorithm takes a security parameter k as input. The algorithm
generates two (k/2)-bit primes, p and q, and sets N = pq. Popular parameters are
k = 1024 and k = 2048. The large number N is called the RSA modulus and the
number φ(N) = (p − 1)(q− 1) is the Euler totient function. Next, the algorithm
picks some value e satisfying gcd(e,φ(N)) = 1 and computes d such that ed ≡ 1
(mod φ(N)) and d < φ(N). The pair (N,e) is called the public key and (N,d) is
the private key. The value e is called the public exponent while d is the private ex-
ponent. To encrypt a message using an RSA public key (N,e), one first transforms
the message to obtain a positive integer M with M < N. The encrypted text is then
computed as C ≡ Me (mod N). To decrypt an encrypted message C using the pri-
vate key (N,d), one simply computes M ≡Cd (mod N). An encrypted message C
can be digitally signed by applying the decryption operation S ≡Cd (mod N). The
digital signature can then be verified by applying the encryption operation C ≡ Se

(mod N). To show that the decrypting function inverts the encryption function,
rewrite ed ≡ 1 (mod φ(N)) as an equation ed = 1+ kφ(N) for some positive in-
teger k. A well known of Euler (see e.g. [10], Theorem 72) says that Mφ(N) ≡ 1
(mod N) if gcd(M,N) = 1. Hence

Ce ≡ Med ≡ M1+kφ(N) ≡ M ·Mkφ(N) ≡ M ·
(

Mφ(N)
)k ≡ M (mod N).

Below we describe in detail the initial schemes of the RSA Cryptosystem.

• RSA Key Generation
INPUT: The bitsize k of the modulus.
OUTPUT: A public key (N,e) and a private key (N,d).

1. Generate two large random and distinct (k/2)-bit primes p and q.
2. Compute N = pq and φ(N) = (p− 1)(q− 1).
3. Choose a random integer e such that 3 ≤ e < φ(N) and gcd(e,φ(N)) = 1.
4. Compute the unique integer d such that 1≤ e< φ(N) and ed ≡ 1 (mod φ(N)).
5. Return the public key (N,e) and the private key (N,d).

• RSA Encryption
INPUT: The public key (N,e) and the plaintext m.
OUTPUT: The ciphertext C.

1. Represent the message m as an integer M with 1 ≤ M ≤ N − 1.
2. Compute C ≡ Me (mod N).
3. Return the ciphertext C.

• RSA Decryption
INPUT: The private key (N,d) and the the ciphertext C.
OUTPUT: The message m.

1. Compute M ≡Cd (mod N).
2. Transform the number M to the message m.
3. Return the message m.

142 A. Nitaj

3 Diophantine Approximations

The theory of Diophantine approximations, named after Diophantus of Alexandria,
deals with the approximation of real numbers by rational numbers. This can be
achieved by continued fractions. Continued fractions have many properties and ap-
plications in Number Theory and cryptographic problems. They are used to find
good Diophantine approximations to rational and irrational numbers, to solve dio-
phantine equations and to build attacks on some instances of RSA. In this section,
we examine the basic properties of continued fractions.

Definition 1 (Continued Fraction Expansion). A continued fraction is an expres-
sion of the form

a0 +
1

a1 +
1

. . . +
1

am +
. . .

= [a0,a1, . . . ,am, . . .],

where a0 is an integer and an are positive integers for n ≥ 1. The an are called the
partial quotients of the continued fraction.

It is clear that every finite continued fraction defines a rational number. Conversely,
every real number x �= 0 can be expanded as a finite or infinite continued fraction by
the continued fraction algorithm as follows. Let �x� denote the greatest integer less
than or equal to x. Let x0 = x and a0 = �x0�. Then, for i ≥ 0, define

xi+1 =
1

xi − ai
, ai+1 = �xi+1�.

The procedure terminates only if ai = xi for some i ≥ 0, that is if x is a rational
number.

The continued fraction of a rational number x = a
b with gcd(a,b) = 1 can be

computed by the Euclidean Algorithm in time O(logb). Set r0 = a and r1 = b. For
i ≥ 0, divide ri by ri+1:

ri = airi+1 + ri+2, 0 ≤ ri+2 < ri+1.

This process stops when rm+2 = 0 for some m ≥ 0.
In 1990, Wiener [23] proposed an attack on RSA with modulus N and small

private exponent d. The attack is based on the convergents of the continued fraction
expansion of e

N .

Definition 2 (Convergent). For 0 ≤ n ≤ m, the nth convergent of the continued
fraction [a0,a1, · · · ,am] is [a0,a1, · · · ,an].

For each n ≥ 0, we define

p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2.

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 143

It is well known that the nth convergent of the continued fraction expansion satisfies
[a0,a1, · · · ,an] =

pn
qn

. More generally, there are various results satisfied by the con-
vergents of a continued fraction. We need only the following result on Diophantine
approximations (for more general information see [10] and [7]).

Theorem 1. Let x be a real positive number. If a and b are positive integers such
that gcd(a,b) = 1 and ∣∣∣x− a

b

∣∣∣< 1
2b2 ,

then a
b is one of the convergents of the continued fraction expansion of x.

4 Diophantine Approximations Cryptanalysis of RSA

In this section, we describe four attacks on RSA using Diophantine approximations.

4.1 Wiener’s Attack on RSA

A well-known attack on RSA with low secret-exponent d was given by Wiener [23]
in 1990. Wiener showed that using continued fractions, one can efficiently recover
the secret exponent d from the public key (N,e) as long as d < 1

3 N
1
4 . For N = pq

with q < p < 2q, we present below Wiener’s attack on RSA which works for the

bound d <

√
6
√

2
6 N

1
4 which is slightly better than Wiener’s bound since

√
6
√

2
6 ≥

1
3 + 0.15.

We will use the following useful simple lemma.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then

√
2

2

√
N < q <

√
N < p <

√
2
√

N and 2
√

N < p+ q <
3
√

2
2

√
N.

Proof. Suppose q < p < 2q. Multiplying by q, we get q2 < N < 2q2. Hence√
2

2

√
N < q <

√
N. Using p = N

q , we get
√

N < p <
√

2
√

N. This proves the first

assertion. To prove the second one, observe that (p+ q)2 = (p− q)2 + 4N > 4N,
which gives p+ q > 2

√
N. On the other hand, we have

(p+ q)2 = (p− q)2 + 4N <

(√
2
√

N −
√

2
2

√
N

)2

+ 4N =
9
2

N.

Hence p+ q < 3
√

2
2

√
N. This terminates the proof. ��

Theorem 2 (Wiener). Let N = pq be an RSA modulus with q < p < 2q. Let e <

φ(N) be a public exponent and d be the corresponding private key. If d <

√
6
√

2
6 N

1
4 ,

then, we can find the factorization of N in time polynomial in logN.

144 A. Nitaj

Proof. We rewrite the equation ed − k(N + 1 − p − q) = 1 as ed − kN = 1 −
k (p+ q− 1). Dividing by Nd, we get∣∣∣∣ e

N
− k

d

∣∣∣∣= |1− k (p+ q− 1)|
Nd

<
k (p+ q− 1)

Nd
. (1)

Since e < φ(N), then k = ed−1
φ(N) <

ed
φ(N) < d. Hence (1) gives∣∣∣∣ e

N
− k

d

∣∣∣∣ < p+ q− 1
N

<
p+ q

N
.

Using Lemma 1, this implies∣∣∣∣ e
N
− k

d

∣∣∣∣< 3
√

2
2 N

1
2

N
=

3
√

2
2

N− 1
2 .

Suppose that d <

√
6
√

2
6 N

1
4 , then

3
√

2
2

N− 1
2 <

1
2d2 ,

and consequently ∣∣∣∣ e
N
− k

d

∣∣∣∣< 1
2d2 .

Hence Theorem 1 gives k
d as a convergent of the continued fraction expansion of e

N .
Since the continued fraction algorithm is polynomial time in logN, this terminates
the proof. ��

4.2 de Weger’s Generalization of Wiener’s Attack

In 2002, de Weger [22] proposed a generalization of Wiener’s attack on RSA. de

Weger extended Wiener’s bound
√

6
√

2
6 N

1
4 to d < N

3
4

|p−q| which is equivalent with

Wiener’s bound for the standard RSA, that is for |p− q| = O
(

N
1
2

)
. We describe

below the attack of de Weger.

Theorem 3 (de Weger). Let N = pq be an RSA modulus with q < p < 2q and p−
q=Nβ . Let e< φ(N) be a public exponent and d <Nδ be the corresponding private
key. If δ < 3

4 −β , then, we can find the factorization of N in time polynomial in logN.

Proof. We transform the equation ed− k(N + 1− p− q)= 1 to

ed− k
(

N + 1− 2
√

N
)
= 1− k

(
p+ q− 2

√
N
)
.

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 145

Dividing by
(
N + 1− 2

√
N
)

d and using p+ q > 2
√

N as proved in Lemma 1, we
get ∣∣∣∣ e

N + 1− 2
√

N
− k

d

∣∣∣∣=
∣∣1− k

(
p+ q− 2

√
N
)∣∣(

N + 1− 2
√

N
)

d
<

k
(

p+ q− 2
√

N
)(

N + 1− 2
√

N
)

d
. (2)

Consider the terms of the right side of (2). We have N +1−2
√

N > 1
2 N for N ≥ 12.

Using Lemma 1, we get

p+ q− 2
√

N =
(p+ q)2 − 4N

p+ q+ 2
√

N
<

(p− q)2

4
√

N
.

Since e < φ(N), then k = ed−1
φ(N) <

ed
φ(N) < d. Consequently, the inequality (2) gives

∣∣∣∣ e

N + 1− 2
√

N
− k

d

∣∣∣∣< k
d
·
(p−q)2

4
√

N
1
2 N

<
(p− q)2

2N
√

N
.

In order to apply Theorem 1, a sufficient condition is

(p− q)2

2N
√

N
<

1
2d2 ,

or equivalently d < N
3
4

|p−q| . Using d < Nδ and |p−q|= Nβ , the condition is fulfilled

if δ < 3
4 − β . Hence we can use the continued fraction expansion of e

N+1−2
√

N
to

find k
d among the convergents. This proves the theorem. ��

4.3 Another Generalization of Wiener’s Attack

Let N = pq be an RSA modulus with q< p< 2q. We present in this section an attack
on RSA with a public exponent e satisfying an equation ex−(N+1−ap−bq)y= 1
where a

b is an unknown approximation of q
p (see [20] for more details). Notice that

when a = b = 1, the equation reduces to ed − k(N + 1− p− q) = 1 which is the
main RSA key equation. We first define the notion of approximation.

Definition 3. Let N = pq be an RSA modulus with q < p < 2q and a and b be

positive integers. We say that a
b is an approximation of q

p if a =
[

bq
p

]
where [x] is

the closest integer to the real number x.

A key role in the attack is played by the following lemma.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Let a
b be an unknown

approximation of q
p where a is not a multiple of q. Suppose we know the integer

ap+ bq. Then we can find the factorization of N.

146 A. Nitaj

Proof. Suppose we know S = ap+ bq where a
b is an unknown approximation of q

p .
We have

S2 = (ap+ bq)2 = (ap− bq)2+ 4abN. (3)

Since, by definition, a =
[

bq
p

]
, then

∣∣∣a− bq
p

∣∣∣≤ 1
2 . Combining with Lemma 1, we get

|ap− bq| ≤ 1
2

p <

√
2

2

√
N.

It follows that (ap− bq)2 < 1
2 N. Hence, from (3) we derive

0 <
S2

4N
− ab =

(ap− bq)2

4N
<

1
8
.

This implies that ab is the integer part of S2

4N , that is ab =
⌊

S2

4N

⌋
. Then (3) gives

|ap− bq|=
√

S2 − 4

⌊
S2

4N

⌋
N.

Combining with ap+ bq= S, we get

ap =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

(
S+

√
S2 − 4

⌊
S2

4N

⌋
N

)
if ap− bq> 0,

1
2

(
S−

√
S2 − 4

⌊
S2

4N

⌋
N

)
if ap− bq< 0.

Since a is not a multiple of q, we then obtain p by computing gcd(ap,N). ��
Theorem 4. Let N = pq be an RSA modulus with q < p < 2q. Let a

b be an unknown
approximation of q

p and e be a public exponent satisfying an equation ex− (N+1−
ap− bq)y= 1 with

xy <
N

2(ap+ bq)
.

Then N can be factored in time polynomial in logN.

Proof. Rewrite the equation ex− (N + 1− ap− bq)y = 1 as ex−Ny = 1− (ap+
bq− 1)y and divide by Nx. We get∣∣∣ e

N
− y

x

∣∣∣= |1− (ap+ bq−1)y|
Nx

<
(ap+ bq− 1)y

Nx
<

(ap+ bq)y
Nx

.

Suppose xy < N
2(ap+bq) , then (ap+bq)y

Nx < 1
2x2 . Hence, by Theorem 1, y

x is a convergent

of the continued fraction expansion of e
N . Since gcd(x,y) = 1, this gives x and y.

Next, we use x and y to transform the equation ex − (N + 1 − ap− bq)y = 1 to

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 147

ap+ bq = N + 1− ex−1
y , where the right hand side is completely known. Hence,

using Lemma 2, we find the factorization of N in polynomial time. ��
In Section 7.4, we will present an attack on RSA when the public exponent e satisfies
the same equation ex− (N + 1− ap− bq)y= 1 using lattice reduction methods.

4.4 Nassr et al. Generalization of Wiener’s Attack

Let N = pq be an RSA modulus with q < p < 2q. Suppose we know an approxima-
tion p0 of p with |p− p0| < 1

8 Nα . In 2008, Nassr et al. [19] presented a continued

fraction attack on RSA with a private exponent satisfying d < N
1−α

2 .

Theorem 5. Let N = pq be an RSA modulus with q < p < 2q. Suppose we know
an approximation p0 of p with |p− p0| < 1

8 Nα . Let e be a public exponent. If the

corresponding private exponent d satisfies d <N
1−α

2 , then N can be factored in time
polynomial in logN.

Proof. Set c= 1
8 . Suppose we know p0 >

√
N and α such that |p− p0|< cNα . Then

p0 − cNα < p < p0 + cNα . By lemma 1, we should also suppose
√

N < p0 − cNα

and p0 + cNα <
√

2
√

N. Using q = N
p , we get

N
p0 + cNα < q <

N
p0 − cNα .

It follows that

p0 +
N

p0 + cNα − cNα < p+ q < p0 +
N

p0 − cNα + cNα .

Define P as the mean value

P =
1
2

(
2p0 +

N
p0 + cNα +

N
p0 − cNα

)
= p0 +

N p0

p2
0 − c2N2α .

Then

|p+ q−P|< 1
2

(
N

p0 − cNα − N
p0 + cNα + 2cNα

)
=

cN1+α

p2
0 − c2N2α + cNα .

Since p0 − cNα >
√

N, then p0 + cNα >
√

N and p2
0 − c2N2α > N. Hence

|p+ q−P|< cN1+α

p2
0 − cN2α + cNα <

cN1+α

N
+ cNα = 2cNα .

Rewrite the key equation ed− kφ(N) = 1 as ed− k(N + 1−P) = 1+ k(P− p− q).
We divide by (N + 1−P)d and get

148 A. Nitaj∣∣∣∣ e
N + 1−P

− k
d

∣∣∣∣ = |1+ k(P− p− q)|
(N + 1−P)d

<
1+ k|P− p− q|
(N + 1−P)d

≤ (1+ k)|P− p− q|
(N + 1−P)d

.

Since k = ed−1
φ(N)

< d, then 1+ k ≤ d. Combining this with |p+ q−P|< 2cNα , we
get ∣∣∣∣ e

N + 1−P
− k

d

∣∣∣∣< 2cNα

N + 1−P
.

By Lemma 1, we have P < 3
√

2
2

√
N. Then, for N ≥ 14, we get

N + 1−P> N + 1− 3
√

2
2

√
N >

1
2

N.

This implies that
∣∣ e

N+1−P − k
d

∣∣ < 4cNα−1. In order to apply Theorem 1, we must

have 4cNα−1 < 1
2d2 . This is fulfilled if

d <
1√
8c

N
1−α

2 = N
1−α

2 ,

where we used c = 1
8 . Using d = Nδ , a sufficient condition is δ < 1−α

2 . Then k
d is

a convergent of e
N+1−P . Using k and d, we get the factorization of N in polynomial

time. ��
Notice that when α = 1

2 , the bound is d < N
1
4 as expected in Wiener’s attack (The-

orem 2).

5 Lattices

The most powerful attacks on RSA are based on techniques that use lattice basis
reduction algorithms, such as the LLL algorithm. Invented by Lenstra, Lenstra and
Lovász [17] in 1982, LLL is a polynomial time algorithm for lattice basis reduction
with many applications in cryptography. A typical example of the powers of the
LLL algorithm is the following problem.

Small Roots of a Modular Polynomial Problem: Given a composite N with un-
known factorization and a polynomial f (x) of degree d, find all small solutions x0

to the polynomial equation f (x) ≡ 0 (mod N).

In his seminal work, Coppersmith [8] solved this problem in 1996 for solutions x0

satisfying |x0|< N
1
d using the LLL algorithm.

In this section, we give the mathematical background on lattices and the LLL
algorithm for basis reduction. We start by giving a formal definition of a lattice.

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 149

Definition 4 (Lattice). Let n ≤ m be two positive integers and b1, · · · ,bn ∈ IRm be
n linearly independent vectors. A lattice L spanned by {b1, · · · ,bn} is the set of all
integer linear combinations of b1, · · · ,bn, that is

L =

{
n

∑
i=1

xibi | xi ∈ ZZ

}
.

The set 〈b1 . . . ,bn〉 is called a lattice basis for L . The lattice dimension is
dim(L) = n.

In general, a basis for L is any set of independent vectors that generates L . Any
two bases for a lattice L are related by a matrix having integer coefficients and
determinant equal to ±1. Hence, all the bases have the same Gramian determinant
det1≤i, j≤n

〈
bi,b j

〉
where

〈
bi,b j

〉
denotes the scalar product of vectors bi, b j. The

determinant of the lattice is then

det(L) =

(
det

1≤i, j≤n

〈
bi,b j

〉) 1
2

.

Let v = ∑n
i=1 xibi be a vector of L . We define the Euclidean norm of v as

‖v‖=
(

n

∑
i=1

x2
i

) 1
2

.

Given a basis 〈b1 . . . ,bn〉 of the lattice L , the Gram-Schmidt process gives an or-
thogonal set 〈b∗1 . . . ,b∗n〉. The determinant of the lattice is then det(L) = ∏n

i=1 ‖b∗i ‖.
The Gram-Schmidt procedure starts with b∗1 = b1, and then for i ≥ 2,

i ≥ 2, b∗i = bi −
i−1

∑
j=1

μi, jb
∗
j , where μi, j =

〈bi,b∗j〉
〈b∗j ,b∗j〉

for 1 ≤ j < i.

Note that 〈b∗1 . . . ,b∗n〉 is not a basis of the lattice L . Since every nontrivial lattice has
infinitely many bases, some bases are better than others. The most important quality
measure is the length of the basis vectors. For arbitrary lattices, the problem of com-
puting a shortest vector is known to be NP-hard under randomized reductions [1].
However, in many applications, the LLL algorithm computes in polynomial time a
reduced basis with nice properties.

Definition 5 (LLL Reduction). Let B = 〈b1, . . . ,bn〉 be a basis for a lattice L and
let B∗ = 〈b∗1, . . . ,b∗n〉 be the associated Gram-Schmidt orthogonal basis. Let

μi, j =
〈bi,b∗j〉
〈b∗j ,b∗j〉

for 1 ≤ j < i.

The basis B is said to be LLL reduced if it satisfies the following two conditions:

150 A. Nitaj

|μi, j| ≤ 1
2
, for 1 ≤ j < i ≤ n,

3
4
‖b∗i−1‖2 ≤ ‖b∗i + μi,i−1b∗i−1‖2 for 1 < i ≤ n.

Below we give useful inequalities satisfied by an LLL reduced basis derived from
the LLL reduction definition (for a proof see e.g. [17], [7], [18]).

Theorem 6. Let L be a lattice of dimension n. Let B = 〈b1, . . . ,bn〉 be an LLL
reduced basis and let B∗ = {b∗1, . . . ,b

∗
n} be the associated Gram-Schmidt orthogonal

basis. Then

‖b1‖ ≤ ‖b2‖ ≤ . . .≤ ‖bi‖ ≤ 2
n(n−i)

4(n+1−i) (det(L))
1

n+i−1 for 1 ≤ i ≤ n.

6 Small Solution of Polynomial Equations

In this section, we present some applications of lattices in finding small roots to
polynomial equations. We provide some very useful theorems that will make the
analysis of RSA much easier to follow. This includes the seminal work of Cop-
persmith [8] for finding small roots of univariate modular polynomial equations, the
recently proposed method of Herrmann and May [12] for solving the bivariate linear
modular equation, and the small inverse problem introduced by Boneh and Durfee
in [5]. The main idea behind these methods is to transform a modular polynomial
equation to an equation over the integers. We need the following definition.

Definition 6. Given a polynomial f (x1, . . . ,xn) = ∑i1,...,in ai1,...,inxi1 · · ·xin and real
positive numbers X1, . . . ,Xn, we define the Euclidean norm of the polynomial
f (X1x1, . . . ,Xnxn) by

‖ f (X1x1, . . . ,Xnxn)‖=
(

∑
i1,...,in

(
ai1,...,inX i1

1 · · ·Xin
n

)2
) 1

2

.

6.1 Howgrave-Graham’s Theorem

To transform a modular polynomial equation h(x1, . . . ,xn)≡ 0 (mod B) into a poly-
nomial equation h(x1, . . . ,xn) = 0 over the integers, a sufficient condition is given by
the following theorem by Howgrave-Graham [14] who reformulated Coppersmith’s
ideas of finding modular roots.

Theorem 7 (Howgrave-Graham). Let h(x1, . . . ,xn) ∈ ZZ[x1, . . . ,xn] be a polyno-

mial with at most ω monomials. Suppose that h(x(0)1 , . . . ,x(0)n) ≡ 0 (mod B) where

|x(0)0 |< X1, . . . , |x(0)n |< Xn and ‖h(X1x1, . . . ,Xnxn)‖< B√
ω . Then h(x(0)1 , . . . ,x(0)n) = 0

holds over the integers.

Proof. Let h(x1, . . . ,xn) = ∑ai1,...,inxi1
1 . . .xin

n with ω monomials. We have

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 151

∣∣∣h(x(0)1 , . . . ,x(0)n)
∣∣∣ = ∣∣∣∣∑ai1,...,in

(
x(0)1

)i1
. . .

(
x(0)n

)in
∣∣∣∣

≤ ∑
∣∣∣∣ai1,...,in

(
x(0)1

)i1
. . .

(
x(0)n

)in
∣∣∣∣ .

Suppose |x(0)0 |< X1, . . . , |x(0)n |< Xn. Then∣∣∣h(x(0)1 , . . . ,x(0)n)
∣∣∣< ∑

∣∣∣ai1,...,inX i1
1 . . .Xin

n

∣∣∣ . (4)

For (a,b) ∈ IR2, the Cauchy-Schwarz inequality states that(
∑
k

akbk

)2

≤ ∑
k

a2
k ∑

k

b2
k .

Using this with ak = 1 and bk = ai1,...,inX i1
1 . . .Xin

n , we get(
∑

∣∣∣ai1,...,inX i1
1 . . .Xin

n

∣∣∣)2 ≤ ∑12 ∑
(

ai1,...,inX i1
1 . . .Xin

n

)2

= ω‖h(X1x1, . . . ,Xnxn)‖2,

which gives

∑
∣∣∣ai1,...,in X i1

1 . . .Xin
n

∣∣∣≤√
ω‖h(X1x1, . . . ,Xnxn)‖. (5)

Now, suppose that ‖h(X1x1, . . . ,Xnxn)‖< B√
ω . Then combining (4) and (5), we get∣∣∣h(x(0)1 , . . . ,x(0)n)

∣∣∣< ∑
∣∣∣ai1,...,inX i1

1 . . .Xin
n

∣∣∣<√
ω‖h(X1x1, . . . ,Xnxn)‖< B.

Hence if h(x(0)1 , . . . ,x(0)n) ≡ 0 (mod B), then h(x(0)1 , . . . ,x(0)n) = 0 holds over the
integers. ��

6.2 Coppersmith’s Theorem

In 1996, Coppersmith [8] described very clever techniques to find small modular
roots of univariate polynomials and small integer roots of bivariate polynomials.
The idea behind Coppersmith’s method for finding a small root of a polynomial f
is to reduce this problem to finding the same small root of a polynomial h over the
integers. We present a generalization of Coppersmith’s result for univariate modular
polynomial equations as given by May [18] in 2003.

Theorem 8. Let N be an integer of unknown factorization, which has a divisor b >
Nβ . Let fb(x) be a monic univariate polynomial of degree d and ε > 0. Then we can

152 A. Nitaj

find all solutions x0 for the equation fb(x)≡ 0 (mod b) such that |x0|< 1
2 N

β2

d −ε in
polynomial time.

Proof. We fix two integers m, t and define a set of univariate polynomials gi, j(x) by

gi, j(x) = xi(fb(x))
jNm− j , j = 0, . . . ,m, 0 ≤ i ≤ t − 1.

Since fb(x0) ≡ 0 (mod b), then (fb(x0))
jNm− j ≡ 0 (mod bm). This means that all

polynomials gi, j(x) share the root x0 modulo Nm. Hence, any integer linear combi-
nation h(x) of the polynomials gi, j(x) also has the root x0 modulo Nm. The goal is to
find a polynomial h(x) satisfying the conditions of Howgrave-Graham’s Theorem 7
and then solve h(x) over the integers. Notice that the degrees of the polynomials
gi, j(Xx) satisfy

0 ≤ degi, j gi, j(Xx)≤ dm+ t− 1.

Let n ≥ (m + 1)d − 1. We consider the lattice L generated by a basis matrix
whose rows are the coefficient vectors of gi, j(Xx) for j = 0, . . . ,m and 0 ≤ i ≤
d − 1, completed with the polynomials rk = xk for (m + 1)d ≤ k ≤ n − 1. We
get a triangular matrix as illustrated in Fig. 1 where Ik is the unit matrix of size
(n− (m+ 1)d+ 1)× (n− (m+ 1)d+ 1).

1 x . . . xd−1 . . . xd j . . . x(j+1)d−1 . . . xdm . . . x(m+1)d−1 . . .xn−1

g0,0 Nm

g1,0 NmX

.

.

.

.
.
.

gd−1,0 NmXd−1

.

.

. ∗ ∗ . . . ∗
.
.
.

g0, j ∗ ∗ . . . ∗ . . . Nm− jXd j

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

. . . .

.
.
.

gd−1, j ∗ ∗ . . . ∗ . . . ∗ . . . Nm− jX(d+1) j−1

.

.

. ∗ ∗ . . . ∗ . . . ∗ . . . ∗
.
.
.

g0,m ∗ ∗ . . . ∗ . . . ∗ . . . ∗ . . . Xdm

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

. . . .

.

.

.

.

.

. . . .

.
.
.

gd−1,m ∗ ∗ · · · ∗ . . . ∗ . . . ∗
.
.
. ∗ . . . X(m+1)d−1

(rk) Ik

Fig. 1 Coppersmith’s matrix of the polynomials gi, j(Xx) and rk(x) in the basis
(
1, . . . ,xn−1

)
The determinant of the lattice L is det(L) = N

1
2 m(m+1)dX

1
2 n(n−1) where n ≥

(m+ 1)d − 1 is the dimension of L . Applying Theorem 6 with i = 1, we get an
LLL-reduced basis with a small vector h(x) satisfying

‖h(Xx)‖ ≤ 2
1
4 (n−1)(det(L))

1
n = 2

1
4 (n−1)N

1
2n m(m+1)dX

1
2 (n−1).

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 153

Moreover, we have h(x0) ≡ 0 (mod b)m. If ‖h(Xx)‖ ≤ bm√
n , then Howgrave-

Graham’s result 7 applies and we can find x0 by solving h(x) = 0 over the integers.
A sufficient condition is then

2
1
4 (n−1) ·N 1

2n m(m+1)d ·X 1
2 (n−1) <

bm
√

n
,

which implies

X < 2−
1
2 ·N−m(m+1)d

n(n−1) ·b 2m
n−1 n−

1
n−1 .

Since b ≥ Nβ , this holds if

X < 2−
1
2 ·n− 1

n−1 ·N
(2nβ−(m+1)d)m

n(n−1) .

Consider the term (2nβ−(m+1)d)m
n(n−1) as a function of m. We obtain a lower bound by

substituting m = 2nβ−d
2d , namely

(2nβ − (m+ 1)d)m
n(n− 1)

≥ β 2

d
− d

4n
+

(d − 2β)2

(n− 1)d
≥ β 2

d
− ε,

where ε =
∣∣∣ d

4n − (d−2β)2

(n−1)d

∣∣∣. It follows that a sufficient condition for X is that

X ≤ 2−
1
2 ·n− 1

n−1 ·N β2

d −ε .

Since 2−
1
2 n−

1
n−1 > 1

2 for n ≥ 7, the condition reduces to X < 1
2 N

β2

d −ε , which con-
cludes the proof. ��
From the previous theorem, we deduce the following result where the term ε is
canceled.

Theorem 9 (Coppersmith). Let N be an integer of unknown factorization. Let b ≥
Nβ be a divisor of N and fb(x) be a univariate, monic polynomial of degree d. Let
cN be a function that is upper-bounded by a polynomial in logN. Then we can find

all solutions x0 for the equation fb(x) ≡ 0 (mod b) such that |x0|< cNN
β2

d in time
polynomial in (logN,d).

Proof. With the parameter choice ε = 1
logN , we get

1
2

N
β2

d −ε =
1
2

N
β2

d N−ε =
1
2

N
β2

d N− 1
logN =

1
4

N
β2

d

where we used N− 1
logN = 1

2 . Hence, Theorem 8 implies that one can find all solutions

x0 of the equation fb(x) ≡ 0 (mod b) such that |x0| < 1
4 N

β2

d in time polynomial
in (logN,d). To find all solutions x0 of the equation fb(x) ≡ 0 (mod b) such that

|x0| < cNN
β2

d , we consider the 4cN different intervals in

[
−cNN

β2

d ,cNN
β2

d

]
, each

154 A. Nitaj

of size 1
4 N

β2

d and centered at xi = −cN + 2i+1
8 for i ≥ 0. In each interval, we can

apply Theorem 8 with the polynomial fb(x− xi) and get all solutions. ��

6.3 Herrmann and May’s Theorem for Bivariate Modular Linear
Equations

In 2008, Herrmann and May [12] proposed a method for solving the bivariate modu-
lar linear equation f (x,y) = ax+by+c≡ 0 (mod p) where p is an unknown divisor
of N. We review below the method. The method relies on the following standard as-
sumption in order to extract the solution (x0,y0) efficiently.

Assumption 1. Let h1(x1, . . . ,xn), . . . ,hn(x1, . . . ,xn) ∈ ZZ[x1, . . . ,xn] be the polyno-
mials that are found by Coppersmith’s algorithm. Then the ideal generated by the
polynomial equations h1(x1, . . . ,xn) = 0, · · · ,hn(x1, . . . ,xn) = 0 has dimension zero.
Equivalently, the resultant computations of the hi yield nonzero polynomials.

Theorem 10 (Herrmann-May). Let ε > 0 and let N be a sufficiently large com-
posite integer of unknown factorization with a divisor p > Nβ . Furthermore, let
f (x,y) ∈ ZZ[x,y] be a linear polynomial in two variables. Then, one can find all so-
lutions (x0,y0) of the equation f (x,y) ≡ 0 (mod p) with |x0| < Nγ and |y0| < Nδ

if

γ + δ ≤ 3β − 2+ 2(1−β)
3
2 − ε.

The time complexity of the algorithm is polynomial in logN and 1
ε .

Proof. Suppose f (x,y) = ax+ by+ c ≡ 0 (mod p). Multiplying by a−1 (mod N),
we get f (x,y) = x+ b′y+ c′ ≡ 0 (mod p). Thus, we can assume that f (x,y) = x+
by+c. To find a solution (x0,y0), the basic idea consists in finding two polynomials
h1(x,y) and h2(x,y) such that h1(x0,y0) = h1(x0,y0) = 0 holds over the integers.
Then the resultant of h1(x,y) and h2(x,y) will reveal the root (x0,y0). To do so, we
generate a collection of polynomials gk,i(x,y) as

gk,i(x,y) = yi · f (x,y)k ·Nmax{t−k,0}

for 0 ≤ k ≤ m, 0 ≤ i ≤ m− k and integer parameters t < m that will be specified
later. Observe that the polynomials gk,i(x,y) share the common root (x0,y0) modulo
pk+max{t−k,0} ≥ pt . The ordering for the polynomials is as follows. If k < l, then
gk,i < gl, j. If k = l and i < j, then gk,i < gk, j. On the other hand, each polynomial
gk,i(x,y) is ordered in the monomials xiyk. The ordering for the monomials xiyk is
as follows. If i < j, then xiyk < x jyl . If i = j and k < l, then xiyk < xiyl . Let X and Y
be positive integers. Gathering the coefficients of the polynomials gk,i(Xx,Y y), we
obtain a matrix as illustrated in Fig. 2.

Let L be the lattice of row vectors from the coefficients of the polynomials
gk,i(Xx,Y y) in the basis 〈xkyi〉0≤k≤m,0≤i≤m−k. The dimension of L is

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 155

1 · · · ym x · · · xym−1 . . . xt · · · xtym−t · · · xm

g0,0 Nt

...
. . .

g0,m NtY m

g1,0 ∗ . . . ∗ Nt−1X
... ∗ · · · ∗ . . .

g1,m−1 ∗ · · · ∗ ∗ . . . Nt−1XY m−1

... ∗
... ∗ ∗

... ∗ . . .
gt,0 ∗ . . . ∗ ∗ . . . ∗ . . . Xt

...
...

...
...

. . .
gt,m−t ∗ · · · ∗ ∗ . . . ∗ . . . ∗ . . . XtY m−t

... ∗
... ∗ ∗

... ∗
... ∗

... ∗ . . .
gm,0 ∗ · · · ∗ ∗ . . . ∗ . . . ∗ . . . ∗ . . . Xm

Fig. 2 Herrmann-May’s matrix of the polynomials gk,i(Xx,Y y) in the basis
〈xrys〉0≤r≤m,0≤s≤m−r

n =
m

∑
i=0

(m+ 1− i) =
(m+ 2)(m+ 1)

2
.

From the triangular matrix of the lattice, we can easily compute the determinant
det(L) = XsxY syNsN where

sx =
m

∑
i=0

i(m+ 1− i) =
m(m+ 1)(m+ 2)

6
,

sy =
m

∑
i=0

m−i

∑
j=0

j =
m(m+ 1)(m+ 2)

6
,

sN =
t

∑
i=0

(t − i)(m+ 1− i) =
t(t + 1)(3m+ 4− t)

6
.

We want to find two polynomials with short coefficients that contain all small roots
over the integer. Applying Theorem 6 with i = 2, we find two polynomials h1(x,y)
and h2(x,y) such that

‖h1(Xx,Y y)‖ ≤ ‖h2(Xx,Yy)‖ ≤ 2n/4(det(L))1/(n−1).

To apply Howgrave-Graham’s Theorem 7 for h1(Xx,Yy) and h2(Xx,Yy) with B =
pt , a sufficient condition is that

2n/4(det(L))1/(n−1) ≤ pt
√

n
.

156 A. Nitaj

Put X = Nγ and Y = Nδ . We have n = (m+2)(m+1)
2 and det(L) = XsxY syNsN =

Nsx(γ+δ)+sN . Then the condition transforms to

2
(m+2)(m+1)

8 N
2(γ+δ)sx+2sN

m(m+3) ≤ Nβ t√
(m+2)(m+1)

2

.

Define ε1 > 0 such that

2−
(m+2)(m+1)

8√
(m+2)(m+1)

2

= N−ε1 .

Then, the condition simplifies to

2(γ + δ)sx + 2sN

m(m+ 3)
≤ β t − ε1.

Neglecting the ε1 term and using sx =
m(m+1)(m+2)

6 and sN = t(t+1)(3m+4−t)
6 , we get

m(m+ 1)(m+ 2)
3

(γ + δ)+
t(t + 1)(3m+ 4− t)

3
< m(m+ 3)β t.

Define 0 < τ < 1 by t = τm. Then, the condition becomes

(m+ 1)(m+ 2)(γ + δ)+ τ(mτ + 1)(3m+ 4−mτ)< 3m(m+ 3)β τ,

which leads to

γ + δ <
3m(m+ 3)β τ− τ(mτ + 1)(3m+ 4−mτ)

(m+ 1)(m+ 2)

=
(
τ2 − 3τ + 3β

)
τ +

(
τ2 − 1− 6β

)
τ

m+ 1
− 2

(
2τ2 − 3τ − 3β + 1

)
τ

m+ 2
.

The term
(
3β + τ2 − 3τ

)
τ is optimal for the value τ = 1 −√

1−β . Hence, the
bound reduces to

γ + δ < 3β − 2+ 2(1−β)
3
2 +

3− 9β +(7β − 3)
√

1−β
m+ 1

+
12β − 6+(6− 10β)

√
1−β

m+ 2
.

Now, consider the last two fractions. We have

3− 9β +(7β − 3)
√

1−β
m+ 1

+
12β − 6+(6− 10β)

√
1−β

m+ 2

≈−
3(1−β)

(
1−√

1−β
)

m+ 1
.

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 157

Hence γ + δ < 3β − 2+ 2(1−β)
3
2 − ε, where ε ≥ 3(1−β)

(
1−
√

1−β
)

m+1 > 0. Observe

that this leads to m ≥ 3(1−β)
(

1−
√

1−β
)

ε − 1. The algorithm’s complexity depends
mainly on the complexity of the LLL algorithm which is polynomial in the lattice
dimension and the lattice coefficients. Recall that the dimension of our lattice is
n = (m+2)(m+1)

2 = O
(
m2

)
and that the lattice coefficients are bounded by Y mNt ≤

Nm+τm and have bitsize O(m log(N)). Consequently, the running time of the method
is polynomial in log(N) and 1/ε . ��

6.4 The Small Inverse Problem

In 1999, Boneh and Durfee introduced the so called small inverse problem. Let A,
B, X and Y be fixed positive integers. The problem is to find all solutions (x0,y0) for
the equation x(A+ y)≡ 1 (mod B), with |x0|< X and |y0|<Y . The method makes
use of Coppersmith’s technique and is generalized in the following theorem.

Theorem 11. Let B be a positive integer. Consider the polynomial f (x,y) = a0 +
a1x+ xy. Let X = Bδ , Y = Bβ . If f (x,y) ≡ 0 (mod B) with |x0| < X and |y0| < Y
and

δ < 1+
1
3

β − 2
3

√
β 2 + 3β ,

then we can we find two polynomials h1, h2 such that h1(x0,y0) = h2(x0,y0) = 0
and, under Assumption1, we can extract x0, y0 in time polynomial in logN.

Proof. We use the extended strategy of Jochemsz and May [16] for finding small
modular roots. Let m and t be given positive integers. For 0 ≤ k ≤ m, define the set

Mk =
⋃

0≤ j≤t

{
xi1yi2+ j

∣∣∣ xi1 yi2 ⊂ f m and
xi1 yi2

(xy)k ⊂ f m−k
}
,

where α ⊂ f means that α is a monomial of f . For 0 ≤ k ≤ m, we obtain

xi1 yi2 ∈ Mk for i1 = k, . . . ,m and i2 = k, . . . , i1 + t.

For 0 ≤ k ≤ m, define the polynomials

gi1,i2,k(x,y) =
xi1 yi2

(xy)k f (x,y)kBm−k with xi1yi2 ∈ Mk
∖

Mk+1.

For 0 ≤ k ≤ m, these polynomials reduce to

gi1,k,k(x,y) = xi1−k f (x,y)kBm−k, k ≤ i1 ≤ m,

gk,i2,k(x,y) = yi2−k f (x,y)kBm−k, k+ 1 ≤ i2 ≤ k+ t, .

For each tuple (i1, i2,k), we have gi1,i2,k(x0,y0) ≡ 0 (mod Bm). Hence, we can
search for a small norm integer linear combination of the polynomials gii,i2,k(Xx,Y y)

158 A. Nitaj

and apply Howgrave’s Theorem 7. These polynomials are found using lattice basis
reduction. Consider the lattice L generated by the basis matrix whose rows are
the coefficient vectors of gi1,i2,k(Xx,Y y) in the basis

(
xi1 yi2

)
. The ordering of the

monomials is as follows. If i2 < i′2, then xi1yi2 < xi′1 yi′2 . If i2 = i′2 and i1 < i′1, then
xi1yi2 < xi′1yi′2 . We obtain a triangular matrix M of the form

M(L) =

⎡⎢⎢⎢⎢⎢⎢⎣

M0

∗ . . .
∗ ∗ Mk
...

...
...

. . .
∗ ∗ ∗ ∗ Mm

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Mk is a triangular square matrix corresponding to the polynomials gi1,k,k

(Xx,Y y) and gk,i2,k(Xx,Yy) as given in Fig. 3.

xkyk xk+1yk . . . xmyk xkyk+1 . . . xkyk+t

gk,k,k Bm−kXkY k

gk+1,k,k Bm−kXk+1Y k

...
. . .

gm,k,k Bm−kXmY k

gk,k+1,k Bm−kXkY k+1

...
. . .

gk,k+t,k Bm−kXkY k+t

Fig. 3 Diagonal part of the matrix of the polynomials gi1,k,k(Xx,Y y), k ≤ i1 ≤ m and
gk,i2,k(Xx,Y y), k+1 ≤ i2 ≤ k+ t.

For 0 ≤ m, we have rank(Mk) = m− k+ 1+ t and det(Mk) = Bs
B,kXs

x,kY
s
y,k where

sB,k = (m− k)rank(Mk) = (m− k)(m− k+ 1+ t).

sx,k = tk+
m

∑
i=k

i = tk+
(m+ k)(m+ 1− k)

2
.

sy,k = (m− k+ 1)k+
k+t

∑
i=k+1

i = (m− k+ 1)k+
(t + 2k+ 1)t

2
.

Hence, the dimension of the lattice L is

n = dim(L) =
m

∑
k=0

rank(Mk) =
m

∑
k=0

(m− k+ 1+ t)

=
(m+ 1)(m+ 2t+ 2)

2
,

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 159

and its determinant is det(L) = BsXsxY sy = ∏m
k=0 det(Mk). We get easily

s =
m

∑
k=0

sB,k =
m(m+ 1)(2m+ 3t+ 4)

6
=

1
3

m3 +
1
2

m2t + o(m3),

sx =
m

∑
k=0

sx,k =
m(m+ 1)(2m+ 3t+ 4)

6
=

1
3

m3 +
1
2

m2t + o(m3),

sy =
m

∑
k=0

sy,k =
(m+ 1)(m2 + 3tm+ 2m+ 3t2+ 3t)

6

=
1
6

m3 +
1
2

m2t +
1
2

mt2 + o(m3).

Applying Theorem 6 with i = 2, the LLL algorithm outputs two short polynomials
h1(x,y) and h2(x,y) satisfying

‖h1(x,y)‖,‖h2(x,y)‖ ≤ 2
n
4 det(L)

1
n−1

Since h1(x,y)≡ h2(x,y)≡ 0 (mod Bm), then, in order to apply Howgrave-Graham’s

theorem 7, a sufficient condition is 2
n
4 det(L)

1
n−1 ≤ Bm√

n , which transforms to

det(L)≤ 2−
n(n−1)

2

n
n−1

4

·Bm(n−1).

Since det(L) = BsXsxY sy with X = Bδ , Y = Bβ , we get

Bs+δ sx+β sy ≤ 2−
n(n−1)

2

n n−1
2

·Bm(n−1). (6)

Notice that 2−
n(n−1)

2

n n−1
2

= B−ε1 for some small constant ε1 > 0 which can be ignored.

On the other hand, ignoring the low terms in s, sx and sy and using m(n− 1) =
1
2 m3 +m2t + o(m3), we get

s+ δ sx +β sy =
2+ 2δ +β

6
m3 +

1+ δ +β
2

m2t +
β
2

mt2,

and the condition (6) can be rewritten as

2+ 2δ +β
6

m3 +
1+ δ +β

2
m2t +

β
2

mt2 <
1
2

m3 +m2t,

or equivalently

−1+ 2δ +β
6

m2 +
−1+ δ +β

2
mt +

β
2

t2 < 0.

160 A. Nitaj

Optimizing with respect to t, we get for t = 1−δ−β
2β m

m2

24β
(−3δ 2 +(6+ 2β)δ +β 2 + 2β − 3

)
< 0.

Hence, we must have −3δ 2 +(6+ 2β)δ +β 2 + 2β − 3 < 0, that is δ < 1+ 1
3 β −

2
3

√
β 2 + 3β . Under this condition, the polynomials h1(x,y) and h2(x,y) share the

solution (x0,y0) which can be obtained by extracting the roots of the resultant poly-
nomial over the integers. This terminates the proof. ��

7 Lattice-Reduction Cryptanalysis of RSA

A number of lattice attacks on RSA Cryptosystem are motivated by the LLL al-
gorithm and Coppersmith’s techniques for solving polynomial equations. In this
section we consider some attacks on RSA that are related to lattice methods
(see [4], [13] and the references therein for detailed information).

7.1 Factoring the RSA Modulus with Partial Knowledge of p

In [8], Coppersmith presented a method which enables us to factor the modulus
N = pq in time polynomial in its bitsize provided that we know half of the bits of
p. The original method is based in small roots of bivariate polynomial equations.
We present a variant which is based on univariate modular polynomial equations
(see [15] and [18]). We begin by the most significant bits of p case.

Theorem 12. Let N = pq be an RSA modulus with p > q. Furthermore, let k be an
(unknown) integer that is not a multiple of q. Suppose we know an approximation
p̃ of kp such that |kp− p̃| < N

1
4 . Then we can find the factorization of N in time

polynomial in logN.

Proof. Write x0 = kp− p̃ and fp(x) = p̃+ x. Then fp(x0) = kp ≡ 0 (mod p) with

p > N
1
2 . We can then apply Coppersmith’s theorem 9 with d = 1, β = 1

2 and cN = 1

and get the root x0 since |x0| < N
1
4 . Hence kp = x0 + p̃ and gcd(kp,N) = p since

k �≡ 0 (mod q). ��
We can obtain a similar result for the case where we know the less significant bits
of p.

Theorem 13. Let N = pq be an RSA modulus with p > q. Let k be an (unknown)
integer that is not a multiple of q. Suppose we know M and p0 such that kp ≡
p0 (mod M) with M > kpN− 1

4 . Then we can find the factorization of N in time
polynomial in logN.

Proof. Write x0 = kp−p0
M and fp(x) = Mx+ p0. Then fp(x0) = kp ≡ 0 (mod p).

Suppose M > kpN− 1
4 . Then

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 161

x0 =
kp− p0

M
<

kp
M

< N
1
4 .

We can then apply Coppersmith’s theorem 9 with d = 1, β = 1
2 and cN = 1 and get

the root x0. Hence p can be found by gcd(kp,N) = p where kp = Mx0+ p0. ��

7.2 Factoring the RSA Modulus with Small Prime Difference

Let N = pq be an RSA modulus with q< p < 2q and small prime difference p−q<

N
1
4 . In [22], de Weger showed how to factor N using Fermat’s method of factoring.

We present below an alternate method based on Coppersmith’s technique.

Theorem 14. Let N = pq be an RSA modulus with q < p < 2q. If p− q < N
1
4 , then

we can find the factorization of N in time polynomial in logN.

Proof. Suppose q < p < 2q and p− q < N
1
4 . Then, using Lemma 1, we get

√
N < p < q+N

1
4 <

√
N +N

1
4 .

Hence 0 < p −√
N < N

1
4 and by Theorem 12, this leads to the factorization

of N. ��

7.3 Boneh and Durfee’s Class of Weak Keys

In 1999, Boneh and Durfee[5] introduced the small inverse problem and presented a
substantial improvement over Wiener’s bound. Their attack can recover the primes
p, q in polynomial time provided that d < N0.292. Their result is based on Copper-
smith’s technique for finding small solutions to modular polynomial equations. We
present a weaker result which is valid for d < N0.284.

Theorem 15. Let N = pq be an RSA modulus with q < p < 2q. Let e < φ(N) be a
public exponent and d be the corresponding private exponent. If d < N0.284, then,
under Assumption 1, we can find the factorization of N in time polynomial in logN.

Proof. Starting with the equation ed−kφ(N) = 1, we get k(N +1− p−q)+1= ed
which leads to the modular equation x(A+ y)+ 1 ≡ 0 (mod e), where A = N + 1.
This is an inverse problem with the solution (k,−p− q). Suppose e < φ(N) is of
the same order of magnitude as N, that is e ≈ N. If d < Nδ , we get k = ed−1

φ(N)
<

ed
φ(N) < d < Nδ . On the other hand, since q < p < 2q, then p+ q = O

(
N

1
2

)
. Using

Theorem 11 with B = e and β = 1
2 , we can solve the equation x(A+ y) + 1 ≡ 0

(mod e), with |x|< X = Nδ and |y|< Y = Nβ provided that

δ < 1+
1
3

β − 2
3

√
β 2 + 3β =

7
6
− 1

3

√
7 ≈ 0.284.

Using p+ q = y, we can get p and q easily. This terminates the proof. ��

162 A. Nitaj

7.4 Another Generalization of Wiener’s Attack on RSA

Suppose e satisfies an equation ex− (N + 1− ap− bq)= 1 where a
b is an unknown

approximation of q
p . We recall that this means that a =

[
bq
p

]
(where [x] denotes the

closest integer to the real number x). In Section 4.3, we presented an attack, based
on continued fractions that enables us to find the factorization of N if xy < N

2(ap+bq) .
We present below an alternate attack based on the small inverse problem.

Theorem 16. Let N = pq be an RSA modulus with q< p< 2q. Let a
b be an unknown

approximation of q
p and e be a public exponent satisfying an equation ex− (N+1−

ap− bq)y= 1 with |y|< eδ and |ap+ bq|< e
1
2+α . If

δ <
7
6
+

1
3

α − 1
3

√
4α2 + 16α + 7,

then N can be factored in time polynomial in logN.

Proof. We rewrite the equation ex− (N + 1− ap− bq)y= 1 as an inverse equation
(N + 1+ z)y+ 1 ≡ 0 (mod e), where z = −ap− bq. Let Y = eδ and Z = eβ . We
have to find y and z such that (N+1+ z)y+1≡ 0 (mod e) with |y|<Y and |z|< Z.
Using Theorem 11 with B = e and β = 1

2 +α , we can solve the equation y(N +

1+ z) + 1 ≡ 0 (mod e), with |y| < Y = eδ and |z| < Z = eβ provided that δ <

1+ 1
3 β − 2

3

√
β 2 +β . Using β = 1

2 +α , we get

δ <
7
6
+

1
3

α − 1
3

√
4α2 + 16α + 7.

With z =−ap− bq, we find p using the same technique as in Theorem 4. ��

7.5 Least Significant Bits of d Known

In [3], Blömer and May presented an attack on RSA with a private exponent d for
which the least significant bits are known.

Theorem 17 (Blömer-May). Let N = pq be an RSA modulus with q < p < 2q. Let e
be a public exponent with e =Nα and α < 1

2 . Let d be the secret exponent satisfying

ed−kφ(N) = 1. If we know d0 and M such that d ≡ d0 (mod M) and M = N
1
2+α+ε

for ε > 0, then the factorization of N can be found in polynomial time.

Proof. Suppose we know d0 and M such that d ≡ d0 (mod M). Then d = Mx0 +d0

where x0 is the unknown part of d. Since ed− kφ(N) = 1, then eMx0 + ed0− k(N+
1− p− q) = 1 and eMx0 + k(p+ q− 1) + ed0 − 1 = kN. This gives us a bivari-
ate linear polynomial equation eMx+ y+ ed0 − 1 ≡ 0 (mod N), with the solution

x= x0 and y= y0 = k(p+q−1). Let M =N
1
2+α+ε . We have d =Mx0+d0 <N, then

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 163

x0 <
N
M =N

1
2−α−ε . We then set X = N

1
2−α−ε for α < 1

2 . On the other hand, we have

k = ed−1
φ(N) <

ed
φ(N) < e = Nα . Hence y0 = k(p+ q− 1) < N

1
2+α . We set Y = N

1
2+α

and apply Theorem 10 with β = 1, |x0|< X and |y0|<Y . We find a solution (x0,y0)
if

1
2
−α − ε +

1
2
+α < 3β − 2+ 2(1−β)

3
2 = 1,

which is satisfied for ε > 0. Using x0 and y0, we compute d = Mx0 + d0 and, since
eMx0 + y0 + ed0 − 1 = kN, we get

k =
eMx0 + y0 + ed0 − 1

N
.

Plugging in the key equation ed − kφ(N) = 1, we obtain φ(N) = ed−1
k which leads

to the factorization of N. ��

7.6 The Φ-Hiding Assumption

The Φ-Hiding Assumption states that it is computationally untractable to decide
whether a given small prime e divides φ(N) where N is a composite integer with
unknown factorization. The Φ-Hiding Assumption has been introduced by Cachin,
Micali and Stadler [6] and has found various applications in cryptography. We
present a solution of the Φ-Hiding Assumption when the composite integer is an
RSA modulus N = pq or an RSA multi-prime N = p1 p2 p3.

Theorem 18. Let N = pq be an RSA modulus with q < p and e be a prime integer.
If e > N

1
4+ε , then the Φ-Hiding Assumption is solvable in polynomial time.

Proof. If e is prime and divides φ(N) = (p− 1)(q− 1), then e divides (p− 1) or
(q− 1). Suppose e divides p− 1. Then there exist a positive integer x0 such that

ex0 = p−1 which implies ex0 +1 ≡ 0 (mod p). If e > N
1
4+ε , then using Lemma 1,

we get

x0 =
p− 1

e
<

p
e
<

√
2N

1
2

N
1
4+ε

= N
1
4−ε ′ ,

for some small ε ′. Hence, using Coppersmith’s Theorem 8 with β = 1
2 and δ = 1,

we can find x0 and then solve the Φ-Hiding Assumption. ��
For a multi-prime RSA modulus of the form N = pqr, the Φ-Hiding Assumption
assumes that deciding whether a prime e is a divisor of p−1 and q−1 or not is hard.
For a general multi-prime RSA modulus N = p1 . . . pn, see Herrmann’s work [11].

Theorem 19. Let N = pqr be a multi-prime RSA modulus with r < q < p and e

be a prime integer. If e > N
1
2− 2

√
3

27 , then the Φ-Hiding Assumption is solvable in
polynomial time.

Proof. Let e=Nα . Suppose e divides p−1 and q−1. Then ex+1= p and ey+1= q

for some positive integers x and y satisfying x,y < p
e < N

1
2−α . Multiplying and

164 A. Nitaj

expanding the equations, we get e2xy+ e(x+ y)+ 1 = pq, with pq > N
2
3 . To apply

Theorem 10 with the equation e2u+ ev+ 1 ≡ 0 (mod pq), where u = xy < N1−2α ,

v = x+ y = 2N
1
2−α = N

1
2−α+ε , a sufficient condition is that

1− 2α +
1
2
−α < 3β − 2+ 2(1−β)

3
2

where β = 2
3 . This gives the condition α > 1

2 − 2
√

3
27 , and consequently

e > N
1
2− 2

√
3

27 . ��

8 Diophantine and Lattice Cryptanalysis of RSA

In this section we present two attacks on RSA that combine continued fractions and
Coppersmith’s lattice based technique.

8.1 Blömer and May’s Class of Weak Keys

We consider the class of public keys (N,e) satisfying an equation ex−yφ(N) = z. In
2004, Blömer and May [2] showed that using such exponents makes RSA insecure
if N = pq with p− q = cN

1
2 for some constant 0 < c ≤ 1 and

0 ≤ x ≤ 1
3

√
φ(N)

e
N

3
4

p− q
and |z| ≤ p− q

φ(N)N
1
4

· ex.

We reformulate this attack in the following result where the primes p and q can be
unbalanced.

Theorem 20. Let (N,e) be an RSA public key tuple with N = pq and q< p. Suppose
that e satisfies an equation ex− yφ(N) = z with gcd(x,y) = 1 and

xy <
N

4(p+ q)
and |z|< (p− q)N

1
4 y

3(p+ q)
.

Then N can be factored in polynomial time.

Proof. Rewrite ex− yφ(N) = z as ex− yN = z− y(p+ q− 1). Then∣∣∣ e
N
− y

x

∣∣∣= |z− y(p+ q− 1)|
Nx

≤ |z|+ y(p+ q− 1)
Nx

. (7)

Suppose gcd(x,y) = 1 and |z|< (p−q)N
1
4 y

3(p+q) then |z|< N
1
4 y. Hence

|z|+(p+ q+ 1)y| ≤ N
1
4 y+(p+ q+ 1)y= (N

1
4 + p+ q+ 1)y< 2(p+ q)y.

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 165

Plugging in (7), we get
∣∣ e

N − y
x

∣∣ < 2(p+q)y
Nx . Now, assume that xy < N

4(p+q) . Then
2(p+q)y

Nx < 1
2x2 which implies

∣∣ e
N − y

x

∣∣ < 1
2x2 . Then, by Theorem 1, y

x is a convergent
of the continued fraction of e

N . Using x and y, define

U = N + 1− ex
y
, V =

√
|U2 − 4N|.

Transforming the equation ex− (p− 1)(q− 1)y= z into p+ q−
(

N + 1− ex
y

)
= z

y ,
we get

|p+ q−U |=
∣∣∣∣p+ q−

(
N + 1− ex

y

)∣∣∣∣= |z|
y

<
(p− q)N

1
4

3(p+ q)
< N

1
4 . (8)

Now, we have ∣∣(p− q)2 −V 2
∣∣ = ∣∣(p− q)2 − ∣∣U2 − 4N

∣∣∣∣
≤ ∣∣(p− q)2 −U2 + 4N

∣∣
=

∣∣(p+ q)2 −U2
∣∣

Dividing by p− q+V , we get

|p− q−V| ≤
∣∣(p+ q)2 −U2

∣∣
p− q+V

=
|p+ q−U |(p+ q+U)

p− q+V
. (9)

Observe that (8) implies p+q+U < 2(p+q)+N
1
4 < 3(p+q). On the other hand,

we have p− q+V > p− q. Plugging in (9), we get

|p− q−V |< 3(p+ q)(p− q)N
1
4

3(p+ q)(p− q)
= N

1
4 .

Combining this with (8), we deduce∣∣∣∣p− U +V
2

∣∣∣∣= ∣∣∣∣ p+ q
2

− U
2
+

p− q
2

− V
2

∣∣∣∣≤ ∣∣∣∣ p+ q
2

− U
2

∣∣∣∣+ ∣∣∣∣ p− q
2

− V
2

∣∣∣∣< N
1
4 .

Hence U+V
2 is an approximation of p up to an error term of at most N

1
4 . Then

Coppersmith’s Theorem 12 will find p in polynomial time and the factorization of
N follows. ��

8.2 Another Class of Weak Keys

Let N = pq be an RSA modulus with q < p < 2q and e be a public exponent.
Suppose e satisfies an equation ex− (N − up− v)y = z. We present below an attack

166 A. Nitaj

on RSA with such exponents when the unknown parameters x, u, v, y and z are
suitably small.

Theorem 21. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public
exponent satisfying an equation ex− (N − up− v)y= z with gcd(x,y) = 1 and

xy <
N

4|up+ v| and |z| ≤ |up+ v|y and

∣∣∣∣v− z
y

∣∣∣∣< N
1
4 .

Then N can be factored in polynomial time.

Proof. We rewrite the equation ex− (N − up− v)y = z as ex−Ny = z− (up+ v)y
and divide by Nx. We get∣∣∣ e

N
− y

x

∣∣∣= |z− (up+ v)y|
Nx

≤ |z|+ |up+ v|y
Nx

.

If we suppose |z| ≤ |up+ v|y, we get
∣∣ e

N − y
x

∣∣≤ 2|up+v|y
Nx . Next, if xy < N

4|up+v| , then
2|up+v|y

Nx < 1
2x2 . Hence

∣∣ e
N − y

x

∣∣ ≤ 1
2x2 , which implies, by Theorem 1, that y

x is a
convergent of the continued fraction expansion of e

N . Using x and y in the equa-

tion ex − (N − up− v)y = z, we get up = N − ex
y + z

y − v. If
∣∣∣v− z

y

∣∣∣ < N
1
4 , then∣∣∣up−N+ ex

y

∣∣∣< N
1
4 . Hence N− ex

y is an approximation of up up to an additive term

at most N
1
4 . Using Coppersmith’s technique of Theorem 12, this leads to the factor-

ization of N. ��

9 Conclusion

In this study, we have examined the RSA cryptosystem, the most widely deployed
public-key cryptosystem. We have also studied various cryptanalytic attacks on RSA
and presented the main algebraic tools to follow the attacks. Specifically, we con-
tributed the following to the field of the RSA cryptosystem study:

• We described the main schemes of RSA, namely key generation, encryption and
decryption.

• We provided a detailed survey of the mathematical algebraic tools that are used
in the principal attacks on RSA. This includes continued fractions and Diophan-
tine approximations, the basic theory of lattices and the LLL algorithm for basis
reduction as well as the theory of finding small solutions of modular polynomial
equations.

• We presented new attacks on RSA and revisited various old ones that are based
on Diophantine approximations, lattice reduction and Coppersmith’s techniques
for solving modular polynomial equations.

Diophantine and Lattice Cryptanalysis of the RSA Cryptosystem 167

The effectiveness of the proposed attacks is optimized for instances of RSA with
small private exponents or public exponents satisfying some specific equations.
These results illustrate once again the fact that the crypto-designer should be very
cautious when using RSA with such secret exponents.

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions. In:
STOC 1998, pp. 10–19 (1998)

2. Blömer, J., May, A.: A Generalized Wiener Attack on RSA. In: Bao, F., Deng, R., Zhou,
J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004)

3. Blömer, J., May, A.: New Partial Key Exposure Attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

4. Boneh, D.: Twenty years of attacks on the RSA cyptosystem. Notices of the AMS 46(2),
203–213 (1999)

5. Boneh, D., Durfee, G.: Cryptanalysis of RSA with Private Key d Less than N0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

6. Cachin, C., Micali, S., Stadler, M.A.: Computationally Private Information Retrieval
with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

7. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in
Mathematics, vol. 138. Springer (1993)

8. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vul-
nerabilities. Journal of Cryptology 10(4), 233–260

9. Diffie, W., Hellman, E.: New directions in cryptography. IEEE Transactions on Informa-
tion Theory 22(5), 644–654 (1976)

10. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford Univer-
sity Press, London

11. Herrmann, M.: Improved Cryptanalysis of the Multi-Prime φ - Hiding Assumption. In:
Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 92–99.
Springer, Heidelberg (2011)

12. Herrmann, M., May, A.: Solving Linear Equations Modulo Divisors: On Factoring Given
Any Bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 406–424.
Springer, Heidelberg (2008)

13. Hinek, M.: Cryptanalysis of RSA and Its Variants. Cryptography and Network Security
Series. Chapman, Hall/CRC, Boca Raton (2009)

14. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Revisited.
In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142.
Springer, Heidelberg (1997)

15. Howgrave-Graham, N.: Approximate Integer Common Divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

16. Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials with
New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

17. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Mathematische Annalen, vol. 261, pp. 513–534.

18. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. thesis,
Paderborn (2003),
http://www.cits.rub.de/imperia/md/content/may/paper/bp.ps

http://www.cits.rub.de/imperia/md/content/may/paper/bp.ps

168 A. Nitaj

19. Nassr, D.I., Bahig, H.M., Bhery, A., Daoud, S.S.: A new RSA vulnerability using con-
tinued fractions. In: Proceedings of AICCSA, pp. 694–701 (2008)

20. Nitaj, A.: Cryptanalysis of RSA Using the Ratio of the Primes. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 98–115. Springer, Heidelberg (2009)

21. Rivest, R., Shamir, A., Adleman, L.: A Method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2), 120–126

22. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Algebra in
Engineering, Communication and Computing 13(1), 17–28

23. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on Infor-
mation Theory 36, 553–558

24. Yan, S.Y.: Cryptanalytic Attacks on RSA. Springer (2008)

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 169–199.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

Artificial Intelligence Methods in Early
Childhood Education

Jim Prentzas*

Abstract. Educational technology constitutes an important aspect in modern edu-
cation providing unique learning experiences to students and improving their
learning. Technological resources (especially computers) have been integrated in
education for decades. However, integration of educational technology in early
childhood education is a more recent trend compared to the other levels of educa-
tion. This fact creates the need to develop, apply and study application of re-
sources and methodologies specifically addressed to young children. Artificial
Intelligence approaches have been incorporated to educational technology re-
sources providing improved interaction to learners. In this paper, Artificial Intelli-
gence methods exploited in the context of early childhood educational technology
are surveyed. The discussion mainly concerns computer-based learning systems
incorporating intelligent methods (e.g., Intelligent Tutoring and Adaptive Educa-
tional Hypermedia Systems) and educational robots addressed to early childhood.
To the best of the author’s knowledge, such issues have not been thoroughly
discussed till now in literature.

1 Introduction

Alan Turing is considered among the researchers that laid the foundations of Arti-
ficial Intelligence (AI). He was the one who proposed the Turing test as the means
of defining the intelligence of a machine [56]. According to Turing, a machine
is considered intelligent if it is able to interact with a human without the human
realizing that he/she is interacting with a machine.

Artificial Intelligence methods have been applied in various domains. An inter-
esting field for Artificial Intelligence is educational technology. In fact, Artificial
Intelligence methods have been applied in educational technology for some dec-
ades. Educational technology is a broad term. It involves technological resources

Jim Prentzas
Democritus University of Thrace, School of Education Sciences,
Department of Education Sciences in Pre-School Age, Laboratory of Informatics,
68100 Nea Chili, Alexandroupolis, Greece
e-mail: dprentza@psed.duth.gr

3

170 J. Prentzas

and methodologies employed in an educational context in order to satisfy specific
educational needs [48]. Educational technology usually places emphasis on the
most modern resources without overlooking useful resources that are not quite re-
cent. The main purpose is to provide students and teachers benefits compared to
methods not employing technology. Integrating educational technology into an
educational environment can be a challenge. The integration process should take
into consideration issues that need to be dealt with in a specific class of students.
Technology may assist in handling specific educational problems or may provide
the infrastructure for activities that could not have been carried out with
non-technological means [48].

There are several reasons for employing educational technology [48]. Educa-
tional technology may provide students the motives to learn as their attention is at-
tracted and they are encouraged to take part in creative activities. With the use of
technology, unique features are incorporated into the educational environment
such as multimedia-based interaction and visualization of problem solving
process. Technology also supports pedagogical approaches such as collaborative
learning and constructivism. Educational technology acquaints students with re-
sources and principles necessary to all members of the Information Society. Last
but not least, technology may provide the means to connect schools with their
communities [36].

Computer-based learning is a significant aspect in educational technology.
Computers have been used in education since the 1950s as they may be exploited
in several ways by students and teachers working individually and in groups.
However, educational technology usually involves a combination of resources be-
sides computers in order to exploit the corresponding characteristics and the ad-
vantages offered by each type of resource. This is especially the case in early
childhood education. Popular types of technological resources used in early child-
hood education besides computers are interactive whiteboards and programmable
toys. Game consoles and robots may also become popular in early childhood
education.

Artificial Intelligence methods have been applied in computer-based learning in
order to provide enhanced learning experiences. Traditional Computer-Assisted
Instruction (CAI) systems are based on shallow representation of teaching domain,
learner data and pedagogical methods [59]. It is difficult for them to adjust effec-
tively the learning process as they provide limited ways of adaptation and learner
evaluation. Intelligent Educational Systems (IESs) [6], [10], [43] are computer-
based systems incorporating intelligence. Intelligent Educational Systems incor-
porate Artificial Intelligence techniques and mechanisms. The goal is to model
learners as well as knowledge regarding the teaching subject and tailor learning
experience to learner needs [43]. Main types of Intelligent Educational Systems
are Intelligent Tutoring Systems (ITSs) and Adaptive Educational Hypermedia
Systems (AEHSs) using intelligent methods.

Intelligent robots constitute a popular paradigm of Artificial Intelligence me-
thods in education besides (computer-based) Intelligent Educational Systems. The
characteristics of educational robots provide advantages compared to computer-
based learning systems. Educational robots are autonomous, mobile and come in

Artificial Intelligence Methods in Early Childhood Education 171

different forms. They may express emotions and respond dynamically to human
interactions. Robots offer unique interaction experiences resulting in the creation
of bonds with young children. As results of certain studies have shown, young
children may treat robots more like peers rather than machines or toys.

In this paper, Artificial Intelligence methods exploited in the context of early
childhood educational technology are surveyed. The discussion involves on the
one hand, Intelligent Tutoring and Adaptive Educational Hypermedia Systems and
on the other hand, robots addressed to early childhood. To the best of the author’s
knowledge, such a survey has not been presented till now in literature.

This paper is organized as follows. Section 2 covers general issues concerning
educational technology in early childhood, Intelligent Tutoring and Adaptive Edu-
cational Hypermedia Systems as well as robots. This discussion serves as back-
ground knowledge for the following sections. Section 3 summarizes approaches
using Intelligent Tutoring and Adaptive Educational Hypermedia Systems in early
childhood education. Section 4 presents representative approaches integrating
robots in early childhood education. Finally, Section 5 concludes.

2 Background

This section discusses general issues concerning early childhood educational tech-
nology, Intelligent Educational Systems and intelligent educational robots for
young children. Each issue is discussed in a corresponding section.

2.1 Educational Technology in Early Childhood: General Issues

Early childhood education curriculum covers several aspects such as language,
science, mathematics, arts and special education [53], [25], [47]. Early childhood
education involves both teacher-directed and student-centered activities putting
emphasis on collaboration, constructivism and interdisciplinary tasks. Students in-
teract with resources available in classroom during structured and non-structured
activities [46]. Game-based learning possesses an important role as it promotes
collaboration and creativity in an appealing way for young children.

Various educational technology resources can be used in early childhood. The
term ‘educational technology’ in early childhood education is used in a broad
sense covering a combination of several types of resources such as computers, in-
teractive whiteboards, digital photo cameras, digital video cameras, scanners, pro-
grammable toys, game consoles, robots and various types of software [53], [25],
[47]. Several of these resources are available (or can be accessed) at home as well
(e.g., computers, cameras, free software, open source software and Web-based ac-
tivities). This gives parents the opportunity to acquaint themselves with their
children’s educational tools and take part in their children’s learning [46].

A significant aspect is the recording of data concerning classroom and home
activities. Devices such as digital photo cameras, video cameras, webcameras, mi-
crophones and scanners may be employed by teachers, students and student par-
ents for such purposes [47]. The recorded data provides valuable information as it

172 J. Prentzas

incorporates the views of teachers, students and student parents. Robots may also
record data concerning classroom and home activities. Data concerning children’s
work on an interactive whiteboard may be also saved. Interactive whiteboards are
popular in early childhood as they constitute large interactive screens facilitating
collaborative work. Whiteboard functionality is available using fingers and mark-
ers and this gives pleasure to young children [47]. Through the whiteboard, child-
ren interact with software installed on a connected computer without having to
work in front of a computer screen. Programmable toys are also popular in early
childhood as they introduce young children to control technology. Children
become accustomed to inputting, storing and executing instruction sequences.
Programmable toys assist children in developing mathematical language, compre-
hending concepts involving numbers, direction and measurement of movements in
space [53], [25], [47]. Results have shown that young children may independently
use aforementioned devices in individual and collaborative activities [47].

There is a variety of available software tools addressed to early childhood stu-
dents. Such software tools are based on multimedia as multimedia items are
appealing to young children and often incorporate game-based learning. Time-
efficiency is a feature required by software addressed to young children. Available
tools involve aspects such as computer literacy, digital painting, math, science
and language. Certain tools (e.g., GCompris, Tux Paint, Drawing for Children,
Kid Pix, Tux Typing, TuxMath and Kidspiration) have gained popularity through-
out the world. Table 1 outlines some of the most popular tools as well as their
functionality.

Table 1 Certain popular software tools addressed to young children

GCompris Free educational software suite with more than a hundred
activities regarding every curriculum aspect.

Kidspiration Problem solving and conceptual understanding in every
curriculum aspect through visual learning

TuxMath Game-based math activities

Tux Typing Enhances typing and spelling

Tux Paint, Drawing for
Children and Kid Pix

Digital painting tools

The aforementioned tools require installation on a computer. An important por-
tion of these tools are freely available enabling installation on any computer.
There are also several Web-based activities (e.g., Java applets and Flash anima-
tions) addressed to young children and most of them can be accessed without re-
striction. Virtual Learning Environments may be also used [47], [46].

Early childhood teachers are required to employ various multimedia-based
tools. With such tools, teachers may perform tasks such as the following: (a) re-
cording of data involving classroom activities, celebrations and outings, (b)
processing of recorded data, (c) creation of educational content and (d) authoring
of educational applications. Image, audio, video processing and animation tools
are used to create and process multimedia items whereas multimedia authoring

Artificial Intelligence Methods in Early Childhood Education 173

tools may be used to create multimedia applications for young children. E-
portfolio tools are also used to collect and manage students’ achievements through
time. Assessment in early childhood is frequently based on e-portfolios. Asyn-
chronous and synchronous forms of communication may be exploited by teachers
to establish a link between home and school [47], [46], [36].

Digital games constitute amusing means of learning in early childhood. As
game-based learning is an integral part of the curriculum, digital games in early
childhood may yield significant results. In [42] it is argued that most aspects can
be taught more effectively through digital game-based learning. Turing realized
the value of digital games. He worked with a colleague to program a chess game
for a computer. Programming of the game was completed but there were no time-
efficient computers during that period for executing the game. In Wikipedia’s ar-
ticle concerning Turing, it is reported that he simulated the computer in order to
play the programmed chess game against two human adversaries.

2.2 Intelligent Educational Systems

An Intelligent Educational System (IES) is an e-learning system personalizing in-
struction to learner’s needs [6], [10], [43], [23]. The main purpose is to provide (or
guide the learner in accessing) the most suitable learning activities to meet learner
goals. This is achieved with the incorporation of Artificial Intelligence methods
used to model learner characteristics and knowledge regarding the teaching sub-
ject. An IES mainly consists of the following components: user (or student) mod-
el, domain knowledge, pedagogical module and user interface. The user model
records learner data. Domain knowledge contains learning content and relevant in-
formation facilitating content retrieval. The pedagogical module provides know-
ledge used to tailor instruction based on user model data. In certain cases, the IES
may also include the expert model used to represent expert knowledge in the do-
main. Intelligent Tutoring Systems (ITSs) and Adaptive Educational Hypermedia
Systems (AEHSs) using intelligent methods are the most representative types of
IESs.

Intelligent Tutoring Systems take into consideration learner characteristics
(e.g., knowledge level) and customize accordingly presentation of learning activi-
ties [41], [59], [58]. ITSs traditionally lay emphasis on Artificial Intelligence tech-
niques to achieve their tasks. An ITS should be able to perform tutoring tasks such
as selecting and sequencing of presented learning items, analysis of learner res-
ponses to presented items and determining when assistance is needed and how to
provide it [41], [43].

Adaptive Educational Hypermedia Systems are specifically developed for
hypertext environments, such as the Web. They use techniques from Adaptive
Hypermedia to enable a guided navigation to user-adapted educational pages.
Main services offered are adaptive presentation of learning content and adaptive
navigation by adapting page hyperlinks [8], [9], [40]. Compared to ITSs, they of-
fer greater sense of freedom to learners as they provide them guidance to identify
the most suitable learning activities matching their needs. In ITSs, selection and
sequencing of learning items is performed by system mechanisms. AEHSs also

174 J. Prentzas

dynamically construct or adapt educational pages whereas in ITSs educational
page contents are typically static [40]. However, it should be mentioned that sev-
eral Web-Based Intelligent Educational Systems combine ITS and AEHS technol-
ogies to provide more effective learning activities [10].

Knowledge representation and reasoning is an important issue in IESs. Usually
a combination of Artificial Intelligence methods is required to achieve all online
and offline tasks [23]. Artificial Intelligence methods typically used are structured
and relational schemes, rule-based reasoning, case-based reasoning, neural net-
works, Bayesian networks, fuzzy methods, genetic algorithms [43]. Structured and
relational schemes are used to represent structural and relational knowledge useful
in domain knowledge representation [8]. Rules are used in several pedagogical
tasks [24]. Neural networks are used to perform classification and clustering tasks
involving online learning process and offline analysis of accumulated data [11].
Fuzzy methods enable representation of vagueness and uncertainty useful in user
modeling [14]. Case-based reasoning provides empirical experience useful in in-
structional tasks [12]. Genetic algorithms may be used in offline tasks concerning
optimization of system modules and in online tasks such as sequencing of learning
content items [35]. Hybrid knowledge representation formalisms integrating two
or more formalisms may also be employed such as neuro-symbolic rules [45],
[22], [44] and neuro-fuzzy approaches [40].

Prior the advent of the Web, IESs were implemented as standalone systems.
Nowadays for the implementation of IESs Web-based technologies are frequently
employed since learning contents are usually presented to learners through a Web
browser. In fact, various programming languages and tools may be used. For in-
stance, Java and XML were used to implement the system presented in [11] and
Active Server Pages (ASP) were used to implement the system in [40]. A useful
tool for implementing Web-based IESs is Jess, a Java based expert systems shell
which is free for educational use [17]. Jess was used for instance to implement the
runtime parts of the expert systems in [24] and [35]. Agent-based approaches have
also proven useful in the implementation of IESs.

Tools may be also used for the offline construction of the IES knowledge bases.
Quite frequently, the contents of the knowledge bases (e.g., rules, neural net-
works) are produced from available datasets. In such cases, tools such as the free
software Weka [20] which includes a collection of machine learning algorithms
are useful. Matlab also includes a tool for the construction of neural networks. For
the construction of hybrid knowledge bases, specialized tools may be required
(e.g., [21]).

Databases are also required to store data concerning the user model, domain
knowledge, pedagogical module and expert knowledge. In educational applica-
tions and especially those involving young children, time-efficiency in data sto-
rage and retrieval is a requirement. Obviously various RDBMSs can be used for
this purpose. For instance, in SHAIEx [3], [4], [16] MySQL was used whereas in
INSPIRE [40] SQL Server.

In contrast to other types of learners, IES learning content addressed to young
children should be based on multimedia rather than on text. This involves all types
of IES activities (e.g., presentation of content, interactive activities such as exer-

Artificial Intelligence Methods in Early Childhood Education 175

cises). For instance, in a multiple choice exercise the alternative choices presented
to learners should be multimedia items such as images, sounds, animations or vid-
eo instead of mere text. Virtual agents as in [14] and [57] could prove useful in
IESs. Obviously, an IES addressed to young learners requires more time and effort
for its implementation compared to an IES addressed to older learners. In fact,
several phases may be required for the design and implementation of an IES to ca-
ter for young children’s needs and preferences [16].

2.3 Intelligent Educational Robots for Young Children

A number of research efforts have been presented that involve integration of intel-
ligent robots in early childhood contexts. The presented research approaches most-
ly involve robots integrated in a classroom or clinical setting. Robots may be ex-
ploited at homes as well. There are also general research efforts concerning robot-
child interaction in any type of setting such as approaches regarding methods for
recording and analyzing interaction data. Interesting approaches addressed to
children with special needs have also been presented.

In classroom settings, robots are mainly used for edutainment purposes. Child-
ren may learn about, from and with robots [54]. Children learn about robots as
they constitute a technology that according to certain predictions will be available
in most homes in the near future. Robots may act as teaching assistants providing
learning and social activities. Children may also learn with robots since after long
term child-robot interaction, children may regard robots as peers [54], [55]. Long
term child-robot interaction raises an important issue. The issue is whether the
child will retain interest in interacting with the robot or not. In the initial period
that robots are introduced to childhood settings, it is very likely that children will
be very interested in the newly introduced technological resource. Afterwards, as
children become accustomed with the introduced robots, their interest may de-
cline. Therefore, robot designers as well as robot content and service providers
should incorporate characteristics ensuring a dynamic and rich child-robot interac-
tion.

Robots may record data (e.g., images, videos) concerning children they interact
with. Such data may be incorporated in children’s e-portfolios maintained by
teachers. They could be exploited by teachers for assessment purposes, to record
children’s development, to show them to student parents during their face-to-face
meetings or to make them available to parents through Internet-based technolo-
gies. Specialized intelligent technologies may assist the robot in acquiring quality
data [60] and in recognizing/classifying children faces. Children in cooperation
with their teachers and parents could maintain recorded data (e.g., data concerning
free playtime activities) using a customized Web-based environment [46], [47].
Robots may send data recorded in classrooms to parents through the Internet as in
[28] so that they may obtain information concerning their children’s activities in
classroom. Obviously robots at home could also be used to record data involving
children’s activities and to make it available to teachers and classmates. Therefore,
robots could be exploited to connect homes with schools.

176 J. Prentzas

Robotic technology can be useful in special education. Young children with
special needs require modified teaching methods and environments and the tech-
nological assistance of robots could prove to be beneficial. Promising results have
been published concerning young children who are blind [7], with mobility im-
pairments [2] and with autism [19], [51].

In a clinical setting, robots could be useful in several roles. They could provide
therapy assistance and enable disability detection. Robots may generally record
data concerning children that would have been otherwise difficult, impossible or
time-consuming for clinicians or therapists to record with alternative means [51].

In the following, the functionality of certain robots addressed to early child-
hood is summarized. In Section 4, research results concerning the specific robots
are presented.

The robot iRobiQ is a small robot weighing 7 kg [52]. It was designed and de-
veloped by Yujin Robot Co. Ltd. in Korea. It is useful for human-robot interaction
involving gestures and expression of emotions. It has two arms and LCD based
eye units which can be coupled together with the LED in the mouth region to ex-
press facial emotions. Its head contains a camera for visual interaction. Its soft-
ware runs on an internal computer providing voice and vision capabilities. Voice
capabilities include voice recognition, name call recognition, sound source recog-
nition, detection and response to clapping sounds and voice synthesis [52]. Its vi-
sion capabilities include face detection, face, object and gesture recognition.
Touch sensors in different parts of the robot’s body facilitate interaction with hu-
mans. In iRobiQ’s body there is also a touch screen LCD display providing a mul-
timedia-based interface to various functionalities. It moves using wheels under its
feet and is capable of self-navigation avoiding obstacles. It may connect to servers
through networks in order to deliver available contents and services.

Sponge Robot [13] is a small humanoid robot developed for playful interaction.
It is based on the Robovie-X platform developed at ATR Robotics and Vstone
Co., Japan. Its height is 37cm and its weight is 1.4 kg. The robot’s shape is thus
similar to that of a human baby. Humans may easily lift it up and play with it.
Among its features are thirteen (13) degrees of freedom that is, two degrees of
freedom in each arm, four in each leg and one in its head.

Porongbot is a small-sized robot designed for young children by KT robotics in
Korea. It is intended to provide affectionate and emotional edutainment to young
children [32]. It can wag its two ears, turn its head and move using wheels under
its feet. To receive input from children, the robot has an LCD touch screen, touch
sensors, microphones and buttons. The colors of Porongbot’s head, ears and feet
may change. It can also make sounds and display output on the LCD screen. Po-
rongbot connects to a server to download edutainment content.

PaPeRo is a robot developed by NEC Corporation. It is a small-sized robot and
its height is similar to that of young children. PaPeRo has been designed for inte-
raction with children and teachers in classrooms. PaPeRo has eye cameras used to
obtain image and movie data involving children and the classroom. Such data in-
clude children’s facial expressions since the robot’s height enables the eye camera
to be in the same level with children’s faces. It obtains instructions via touch con-
trol and text messages sent by remote users through the Internet. It may also send

Artificial Intelligence Methods in Early Childhood Education 177

data to remote users in a proper form. In [28], parents use cellular phones to send
PaPeRo instructions and receive data regarding children.

Kibo is a humanoid robot introduced in [31]. It weighs 7 kg and its height is
approximately 0.5 m. Kibo has been designed for entertainment purposes. It may
walk and dance with twenty-two (22) joints. It may recognize human gestures and
voice and respond accordingly. It may also recognize human facial expressions
and generate its own face expression with moving eyebrows and lips. To respond
to events in real time, the robot incorporates distributed processing units. There
are also computers outside the robot communicating with the robot’s internal units
via wireless LAN.

In [19], two humanoid robots (i.e. Troy and Trevor) are developed to assist in
autism therapy in therapy settings. Both of them satisfy defined requirements for
autism therapy. They are semi-autonomous and the therapist uses a specially de-
signed interface to control them. Sequences of actions may be programmed and
made available to therapists. They may move objects with their arms. Troy is an
upper-body robot roughly the size of a four year-old child. It has two arms with
some degrees of freedom, a large base to hold it still and a computer screen for its
face. The computer screen enables the therapist to change the robot’s face. Trevor
is created using LEGO Mindstorms. It has a face and hands and is about the size
of a human toddler.

Tito is a socially interactive robot emulating a humanoid shape and approx-
imately 60 cm tall [37]. It is teleoperated using wireless remote control and is de-
signed to help children with autism. It moves using wheels. Its head and arms may
also move. It may generate vocal requests and incorporate pre-programmed beha-
vior sequences.

Roball is a mobile robotic toy in which the robot is encapsulated inside a sphere
[37], [49]. It is addressed to toddlers. Roball is therefore capable to move in an
environment filled with various obstacles such as toys and other objects. Roball
satisfies requirements concerning child-robot interaction since it is small, light, in-
expensive, its fragile parts are protected inside the shell, interaction is simple and
safe and most children previously know how to interact with spherical objects
such as balls. Roball is also useful for children with autism due to its simplicity,
inexistence of distracting features and ability to perform child-robot communica-
tion by touch.

QRIO is a humanoid robot with a size smaller than toddlers and has been de-
veloped by Sony after years of research. It is autonomous and able to perform a
range of tasks such as real-time human imitation, audio and visual recognition of
humans, dialogues in many ways, walking, running, jumping, dancing, singing,
playing soccer and learning [54]. It incorporates three CPUs. Moreover, remote
computers may be exploited as remote brains using its embedded wireless LAN
system. Research results have been presented showing that young children inte-
racting with it regard it as a peer [54], [55].

Table 2 summarizes the characteristics of the specific robots.

178 J. Prentzas

Table 2 Characteristics of robots used in early childhood settings

Robot Name Developer Use

iRobiQ Yujin Robot Co.
Ltd.

Interaction involving gestures and expression of
emotions, content downloading

Sponge Robot [13] Humans may lift it up and play with it

Porongbot KT robotics Affectionate and emotional edutainment, content
downloading

PaPeRo NEC Corporation Interacts with children, teachers, parents, receives
instructions and submits data through networks

Kibo [31] Entertainment

Troy and Trevor [19] Autism therapy

Tito [37] Designed to help children with autism

Roball [49], [37] Addressed to toddlers, moves in environments filled with
obstacles

QRIO Sony Designed to interact as children’s peer

3 Case Studies of Integrating IESs in Early Childhood Settings

In this section, specific case studies concerning integration of IESs in early child-
hood settings are outlined. Some of them concern children with special needs [57],
[18], [15]. Section 3.1 presents an outline of the relevant approaches whereas Sec-
tion 3.2 discusses the derived conclusions.

3.1 Outline of IES Approaches in Early Childhood

In [29] an adaptive mobile learning approach for kindergarten mathematics is pre-
sented. Learners were six-year-old children. Mobile learning (m-learning) has
become important the last decade due to the popularity of mobile devices and ad-
vances in wireless infrastructure that enable ubiquitous access to learning services.
The specific approach presents a geometry learning game for handheld devices
(e.g., PDAs) with a touch screen. The PDAs were Compaq iPaq PocketPCs. It is
easier for young children to use devices with a touch screen than computers with a
mouse. The PDAs were wirelessly connected to a Web server. The game provides
simple adaptation to user behavior and the positive results demonstrate that a more
complex behavior could provide additional benefits.

SHAIEx is an adaptive hypermedia system for foreign language learning in ear-
ly childhood. The system is addressed to three- to six-year-old children. Design
and implementation aspects have been presented in a series of publications [3],
[4], [16]. The overall development of SHAIEx was carefully designed to include
six phases so that specific early age language learning needs and preferences are
catered for [16]. The phases involved a preliminary study of the adaptive system,
development of hypermedia learning content, study of language learners’ profiles,

Artificial Intelligence Methods in Early Childhood Education 179

definition of an adapted interface, integration of the system in an education envi-
ronment and system evaluation. The content and context adapt to the levels of the
European Portfolio of Languages. The study of language learners’ profiles demon-
strated the crucial importance of color, images and sound. Tests also showed that
learner comprehension improved in case a suitable pet friend or interactive mascot
was employed in the presented topics. Children were asked to choose and color
their favorite characters. SHAIEx supports adaptive presentation and adaptive na-
vigation. Adaptation is based on aspects such as language, activity difficulty, age,
learning style and knowledge level. In contrast to usual AEHSs, the content pre-
sented by SHAIEx is multimedia-based to accommodate the needs of young child-
ren. The pedagogic domain consists of didactic units such as ‘hello’, ‘the body’,
‘home’, ‘the family’, ‘toys’, ‘food’ and ‘school’. The activities for each unit con-
cern presentation, interaction, evaluation and review. Games were also incorpo-
rated in the system involving aspects such as object selection, counting, matching,
coloring and body identification. Rules are employed to decide the next task to
perform. The system architecture is Web-based. The learner accesses the activities
with a Web browser. The user interface is implemented with Adobe Flash. The
system functionality is executed on an Apache Tomcat Server. Java Servlets are
executed to provide adaptation. The server side also includes a MySQL database
storing the user model, the pedagogic domain, tasks and rules.

SHAIEx has also been used to teach English vocabulary to young Iranian child-
ren [1]. Forty (40) six- to seven-year-old children that had no prior knowledge of
English participated in the study. Twenty of them were taught using SHAIEx and
the rest of them with traditional teaching methods. The study lasted forty-five (45)
days and consisted of three 90 minute sessions per week. Results on subsequent
vocabulary tests showed that children using SHAIEx had a higher mean score in
tests compared to the other children. This indicates the success of SHAIEx. The
study also showed that children using SHAIEx learned in a much more entertain-
ing and amusing way than the rest of the children.

In [57] IESs using animated and conversational pedagogical agents for indivi-
dualized tutoring or therapy are presented. The agents are used to teach reading
and to conduct speech therapy. They are able to talk and listen to users providing
real-time feedback. They are intended to behave more or less like sensitive and ef-
fective teachers or therapists. The systems were developed with the assistance of
experts and were deemed as very believable and helpful by users. The user inte-
racts with the systems via mouse clicks, keystrokes or speech. The systems adapt
to the user skill level and behavior. Virtual speech therapy systems for four inde-
pendent treatments concerning Parkinson’s Disease and aphasia were developed.
Furthermore, virtual tutors for reading instruction, reading assessment and assis-
tive services were developed. By integrating such virtual tutors in kindergartens,
improvements in letter and word recognition were reported. The systems are de-
signed to be deployed on the Web. Rules were used to represent the learning
process and expert knowledge. The architecture consists of application, communi-
cation and common components. Application components were designed in

180 J. Prentzas

collaboration with experts and include application interface and data (e.g., rules,
user data and media objects). The communication components involve perceptive
and generative system capabilities (e.g., character animation, automatic speech
recognition and reading tracking). The common components are written in Java
and connect application and communication components.

In [18], LODE, a logic-based web tool for deaf children is presented. LODE
was the first e-learning system in the context of deaf children literacy intervention
to address global reasoning on whole e-stories. It is difficult for deaf children to
read and write due to the fact that they are not stimulated by continuous oral
communication. A specific aspect requiring intervention in young age is the diffi-
culty in comprehending global reasoning such as temporal reasoning between ver-
bal language episodes. LODE employs constraint programming [5] to perform
automated temporal reasoning and assist children in inferring correct temporal re-
lations in stories. The system provides famous children e-stories. A child chooses
an available story and also responds to relevant reasoning exercises regarding
comprehension and production. The difficulty and challenge inherent in presented
exercises varies according to the corresponding portion of the story and the child’s
previous interaction results with the system. In comprehension exercises,
(in)consistent temporal relations connecting story events are constructed with the
assistance of the automated reasoner and the child has to select the consistent ones
with the story. In production exercises, children are asked to compose sentences
from scattered sentence units involving the story. The composed sentences de-
scribe a temporal relation consistent with the story and LODE provides sugges-
tions to correct sentences with grammatical errors or temporal inconsistencies.
LODE employs visual learning strategies using cartoons and images to assist
children in story narration and exercises. Textual and spatial visualization tech-
niques in which images represent events are used. In textual visualization, images
are connected with an arc labeled with a temporal relation. In spatial visualization,
the spatial position of images along the timeline signifies their temporal relation.

In [15] an Adaptive Braille writing Tutor (ABT) is enhanced by incorporating
ITS methodologies. The Braille language enables literacy for the visually im-
paired. Learning to write Braille is difficult as it requires many hours of tedious
work. Difficulties in the case of young children increase due to required physical
and mental exertion as well as delayed feedback on written text compared to
sighted students. ABT was developed at Carnegie Mellon University
(http://www.techbridgeworld.org) and uses audio feedback to provide guided
practice for young children learning to write Braille. In ABT, an electronic slate
and stylus monitor student’s writing and transmit data in real-time to a computer
linked via a USB cable. Each letter is represented as a combination of six dots of
the Braille cell. Software based on received data produces immediate audio feed-
back to the student. ABT is implemented in C++. The proposed ITS for incorpora-
tion in ABT consists of the five usual components of ITSs. Domain knowledge
contains the right combination cell dots for each letter. The pedagogical module

Artificial Intelligence Methods in Early Childhood Education 181

includes two types of individualized instructions: meta-strategies involving the
overall teaching process and instructional strategies involving teaching methods
for a particular concept. The expert model represents expert knowledge in writing
a specific alphabet. The user interface is primarily based on audio feedback de-
pending on student characteristics such as age, culture and level of progress. Rec-
orded teacher voice and synthetic voice is used as feedback for very young and
older children respectively. Sounds encouraging student are used when progress is
recorded. The student model is based on the stereotype approach which performs
classification to a small number of classes based on student input. It is reported
that the plans were to implement the designed ITS.

In [30] the notion of sharing behaviors generated by game users is described.
Designers of games may provide mechanisms to users for the construction of be-
haviors without programming. Game users could share behaviors constructed by
them, play with them or against them. The research considers educational games
for preschoolers and sports games. The research is based on the author’s previous
research on MindFarm AI technology that enables behavior construction by teach-
ing. Behaviors are easy to construct, transferrable and reusable. The study on edu-
cational games involves Animal Class, a pre-school game in which users play the
role of teachers by teaching virtual pets (e.g., octopuses) conceptual structures
concerning their curriculum (e.g., geometric shapes). Virtual pets may be used in
different competitions. Even six-year-old children found it easy to teach virtual
characters. Competition of their characters against their friends’ characters was an
interesting aspect of the approach. Children were interested in watching their
constructed characters in other games.

Table 3 outlines key points of the aforementioned approaches.

3.2 Discussion of Derived Results

The specific approaches cover different aspects in early childhood education and
thus it is difficult to compare them. However it is interesting to point out certain
useful conclusions.

The approach presented in [29] demonstrates that portable handheld devices
with touch screens can be convenient for children to use in order to access e-
learning content and services wirelessly. Such an approach could become more in-
teresting with the advent of new generations of portable devices such as tablet
PCs. Robots with a touch screen (e.g., iRobiQ) could also be used for this purpose.

An important aspect in IESs integrated in early childhood involves digital
game-based learning. The importance of digital game-based learning was briefly
discussed in Section 2.1. Most of the presented approaches incorporate (to a cer-
tain degree) the aspect of learning games. The approach discussed in [29] involves
geometry learning games to present mathematical concepts to young children in
an amusing way. SHAIEx incorporates various games that in practice were found
effective in teaching young children [1]. The approach presented in [30] focuses
specifically in games and goes a step forward compared to the other approaches as
it involves children teaching virtual characters and sharing them.

182 J. Prentzas

Table 3 Key points of case studies integrating IESs in early childhood

Case Study Key Points

Adaptive mlearning for
kindergarten mathematics,
6-year-old learners [29]

Easier for young children to use devices with a touch screen than
computers with a mouse. The positive results demonstrate that a
more complex behavior could provide additional benefits.

SHAIEx, a multimedia-
based AEHS, for foreign
language learning [3], [4],
[16]

Several design and implementation phases. Supports adaptive pres-
entation and adaptive navigation. It is multimedia-based and
incorporates games.

SHAIEx teaches English
vocabulary to Iranian
children [1]

SHAIEx games contributed in improved results of children in
vocabulary tests. SHAIEx digital games are more entertaining and
educative compared to other teaching methods.

IESs using conversational
pedagogical agents [57]

Agents teach reading and conduct speech therapy providing real-
time feedback. Improvements in letter and word recognition
reported.

A logic-based web tool
for deaf children [18]

Assists deaf children’s temporal reasoning in e-stories concerning
verbal language episodes

ITS in an Adaptive Braille
writing Tutor [15]

Enhancement of ABT with individualized instructions, quite helpful
in developing countries

Sharing of user-generated
behaviors in games [30]

Children easily teach virtual pets. Virtual pets may take part in dif-
ferent competitions, compete friends’ pets, take part in other games.

Collaborative learning is considered important in early childhood education.
Most IESs usually do not focus on collaborative learning. It could be mentioned
that the approach presented in [30] incorporates collaborative learning. Collabora-
tive games could thus be one way of incorporating collaborative learning activities
in IESs addressed to young children.

Children with special needs usually require early intervention to enhance their
skills. IESs such as the ones presented in [57], [18] and [15] could play an impor-
tant role in this context. More IESs covering additional needs could be imple-
mented as well. For instance, no results concerning the use of IESs in the learning
of children with autism have been presented till now. On the contrary, robots have
proven useful to children with autism.

Animated and conversational pedagogical agents could prove fruitful in early
childhood education as shown in [57]. Virtual agents could constitute the counter-
part of robots. More approaches concerning virtual agents could be tested in the
future.

Long term evaluation of the presented approaches and comparison with con-
ventional teaching methods are also required. It would be also interesting to obtain
evaluation results from young children in different countries as in the case of
SHAIEx.

Young children and teachers could also use interactive whiteboards to access
IES services. Such an approach has not been presented till now. Touch screens of
robots connected to networks could provide an alternative means of accessing IES
services.

Artificial Intelligence Methods in Early Childhood Education 183

It should be mentioned that none of the presented approaches involves student
parents that is, the presented approaches were not employed to link classroom and
home activities. Parents would probably be interested to try out certain of the IES
services (such as games).

E-learning systems addressed to young children usually consist of interdiscipli-
nary activities. The presented IESs mostly involve language (e.g., SHAIEx, [15],
[18] and [57]) and mathematics (e.g., [29]). Mathematic activities (e.g., counting)
are also incorporated in certain SHAIEx games. Science is a domain for which in-
teresting e-learning systems have been developed. In the presented IESs, science
aspects are covered in interdisciplinary activities such as in games incorporated in
SHAIEx and in [30]. Obviously, more IES activities concerning science and
mathematics could be developed.

For obvious reasons, the IESs addressed to young children are based on multi-
media technologies. Web-based technologies were also employed in certain of the
approaches such as SHAIEx and the approaches presented in [29], [18] and [57].
Web-based IESs may be also accessed by children and parents at home.

Finally, an interesting aspect is that not many IESs addressed to early childhood
have been developed till now. This means that early childhood education could
become a domain in which fruitful results could be produced by IES researchers
and developers.

4 Case Studies of Robot Integration in Early Childhood
Settings

In this section, specific case studies concerning integration of robots in early
childhood settings are outlined. The case studies are presented in the following
four sections. Section 4.1 presents approaches integrating robots in typical early
childhood classrooms. Section 4.2 discusses approaches involving young children
with special needs. Section 4.3 outlines general approaches concerning robots and
young children. Section 4.4 discusses derived conclusions.

4.1 Approaches Integrating Robots in Typical Early Childhood
Classrooms

In [27] results of using intelligent robot iRobiQ in early childhood education are
presented. The robot was used as teaching assistant for 111 five-year-old children
attending two kindergartens and two childcare centers. Children interacted with
the robot for about one hour everyday over a period of about two weeks during
spring 2009. Children and teachers were interviewed to record their experiences
with the robot. The results showed that educational robots may possess contents
and functions that promote socio-emotional interactions among children and ro-
bots. The indications show that such content and functions should be developed
for educational purposes. Robots seem to be more effective when they are in class-
rooms, close to children and used by individuals rather than by groups.

184 J. Prentzas

In [52] iRobiQ provided educational services mainly in the domain of language
teaching for kindergarten children. The approach puts emphasis on the concept of
ubiquitous network robot that is, a robot combining the advantages of ubiquitous
network technologies and mobile characteristics of robots. Through network tech-
nologies contents and services developed for the robot may be downloaded from
servers and exploited in various contexts. Different types of services that may be
developed for the robot include basic services (e.g., photo, video database infor-
mation), information services (e.g., news, weather and cooking information), edu-
cation services and entertainment services (e.g., karaoke, games, media player).
Education services addressed to early childhood education involve storytelling,
sing alone, phrase and word train. The results of exploiting the robot in classroom
were very positive. They showed that a robot with bi-directional interaction such
as iRobiQ improves young children’s linguistic abilities especially in aspects such
as story making, story understanding and word recognition. Children’s degree of
active and adaptive behavior increased. Children also interacted with the robot
with increasing familiarity (e.g., they spoke to and touched the robot).

In [28] the robot PaPeRo is exploited to provide asynchronous network-based
communication among parents, nursery teachers and children. In this approach,
the notion of remote control of a robot for remote collaboration is explored to ena-
ble collaboration of parents, teachers and children at times suitable for each other.
Synchronous communication may not be always a suitable medium to link parents
with teachers and children as they may have different daily schedules [28]. In the
specific approach, parents use cellular phone text messaging as a communication
tool since this form of communication is convenient. The overall architecture in-
cludes a platform to link the robot to parents’ cellular phones through conversion
of text messages to action commands or conversion of data acquired by the robot
to text messages. Parents may send a message indicating a request or even a de-
sired action their child should perform with the robot. The message is received by
the robot. The teacher at a suitable time triggers the robot to follow the parent’s
instructions (e.g., play with the children). The robot’s cameras acquire image and
movie data concerning the children (e.g., facial expressions during activities). The
teacher at an appropriate time triggers the robot to send the requested data to par-
ents’ cellular phones in a proper form (e.g., movie file links). Therefore, a two-
way communication is established through the robot. On the one hand, parents
send messages and requests concerning teachers and children. On the other hand,
teachers send data concerning children’s activities in classroom. The approach
was evaluated in two nursery facilities each involving six young children and their
parents. In each facility, trials were executed for about two hours on selected days.
Questionnaire results from parents indicated their positive responses to the trials.

The approach presented in [28] could be integrated with an active recognition
photography system (ARPS) for child-care robots such as the one presented in
[60]. ARPS was implemented based on intelligent technologies for network-based
robots connected to servers. It can be used to provide quality photographs of child-
ren at classrooms to their parents. ARPS consists of photo evaluation and photo
classification modules. The photo evaluation module evaluates picture quality
based on detected face features. The photo evaluation module may be also used to
control a robot to adjust its posture so that only quality pictures of children faces

Artificial Intelligence Methods in Early Childhood Education 185

are taken. The photo classification module recognizes and classifies faces in pic-
tures using stored face pictures. Taken pictures are stored in databases and for fac-
es not recognized the teacher supplies the students’ info. The approach was
evaluated for two months in a nursery with thirty-two (32) children from three to
four years old. The network-based robots acting as teacher assistants employed
were AnyRobot I and II developed in Samsung Electronics. These robots were
remotely controlled with devices such as remote computers and PDAs.

In [26] a study concerning the daily use of iRobiQ from kindergarten students
during their free playtime is presented. Observation sessions were conducted for
twenty-three (23) children from the three-year old class and for twenty (20) child-
ren from the four-year old class. The involved time period lasted three months i.e.
from December 2008 till February 2009. Preparatory activities were carried out
before the robots were introduced. Furthermore, robot zones and utilization rules
were established. Therefore, when robots were introduced, children and teachers
were adequately prepared for effective and safe interaction as well as creation of
close relationship. Teachers may be stressed when young children are given free
access to classroom resources such as cameras, interactive whiteboards, computers
and robots. They are concerned about accidents, damages or malfunctions. Also
the price of certain resources may be expensive. Experiences of children’s use of
robots and other resources have shown that with appropriate preparation and in-
structions, children are able to independently and safely exploit robots and various
other types of resources. Robot activities were accepted by children as readily as
any other new activity. Throughout the three months, no changes were recorded in
the utilization time and frequency of robots meaning that children remained inter-
ested in robots during a long period. Children interacted with the robots in small
groups but usually in pairs due to the small size of the robot and its LCD screen.
The roles that children assumed while interacting with the robots were similar to
roles assumed in other play activities (e.g., principal user, assistant user and ob-
server). Age and gender did not influence the children’s interaction with robots. A
general conclusion is that in order to effectively exploit characteristics of robots
such as mobility and automaticity during their interaction with children, appropri-
ate robot stimuli and contents need to be developed.

In [31] preliminary results concerning introduction of the humanoid robot Kibo
to a kindergarten during a robot show are presented. The experiments were based
on Kibo’s characteristics such as choreography, gesture recognition, facial recog-
nition and expression as well as voice recognition. Four robots were used demon-
strating synchronized motion. The teacher started to communicate with the robots
using a microphone. During the conversation, the teacher asked the robots to begin
choreography along music. The robots followed voice instructions in a synchro-
nized manner. They also reacted to teacher postures and facial expressions and al-
so synchronized their lips and facial expressions.

In [34] an approach to a robot personalized to student traits is presented. The
approach combines robot and ITS technologies. It uses visual and vocal data con-
cerning a student to adapt contents provided by a robot according to the student’s
needs. Robot sensors enabling to a certain degree tasks such as voice recognition,
face recognition, recording of facial expressions and body motions can be ex-
ploited to evaluate learning process. According to the evaluation based on human-
robot interaction, the proper contents are selected. The overall architecture is

186 J. Prentzas

network-based. Besides the robot, it consists of a main server containing robot
learning contents and an agent server. The agent server receives student profiles
from the robot which are stored in a database. Based on student information, it ac-
quires proper learning content from the main server and submits it to the robot.
The robot uses the received content in the learning process with the student and
obtains interaction data submitted afterwards to the agent server in order to per-
form student learning evaluation.

In [61] the results of a study concerning the relevancy of computer utilization
by young children to their use of education robots are presented. Such a correla-
tion could be considered possible due to the fact that robots usually have an LCD
screen presenting e-learning content just like computers. The study involved three
early childhood classes of three-, four- and five-year-old children. When the study
was conducted, the iRobiQ robot had been used in these three classes for about
eight months. Three classes were studied to identify relationship between comput-
er and robot utilization according to age. Results showed that although computer
utilization skills differed according to the age of students, there was no difference
in robot use at any age. This implies that it is easier for younger children to inte-
ract with robots compared to computers. Furthermore, children’s traits in using
computers were not related with the corresponding traits in using robots. More
specifically, computer utilization frequency and capability were not correlated to
robot utilization. It seems that robot characteristics such as mobility, gestures,
sounds, facial expressions, vocal and visual recognition overcome certain comput-
er limitations.

In [55] results of an extensive study involving socialization between toddlers
and robots are presented. The study involved 18- to 24-month-old toddlers and the
robot QRIO. There were forty-five (45) hourly sessions spanning five months rec-
orded with video cameras. The videos were studied and analyzed for two years.
The young age of children enabled researchers to focus on social interaction not
much dependent on speech. In addition, children at such a young age do not have
preconceived notions of robots. The study consisted of three phases. During the
first and third phase, the robot used its full behavioral repertoire while interacting
with children. During the second phase, the robot was programmed to produce in-
teresting but predictable behaviors. During the first and third phase, the quality of
interaction between toddlers and robot was high. During the second phase, the
quality of interaction declined meaning that toddlers preferred interacting with the
robot when it exhibited its entire behavior repertoire. The children did not lose in-
terest in the robot throughout the prolonged time period of five months. Moreover,
the children’s haptic behavior towards the robot progressively changed and re-
sembled behavior towards a peer. The children’s social and care-taking behavior
towards the robot was very different compared to their behavior towards control
toys used throughout the sessions. The results ultimately showed that the robot
was close to autonomously bond and socialize with young children for significant
time periods.

QRIO can also be used for dance interaction with toddlers in a classroom envi-
ronment [54]. In fact, QRIO supports various dance interaction technologies from
non-autonomous choreographed dance to autonomous one. Two modes are sup-
ported for the autonomous dance technologies: activeness and passiveness. In the
passive mode, QRIO reacts to the outside motion to provide motion imitation with

Artificial Intelligence Methods in Early Childhood Education 187

the partner. In the active mode, QRIO spontaneously moves to maximize the in-
formation for the presence of a reactive partner. Activeness is based on contingen-
cy detection formulated by Bayesian inference. In real-time dance interactions, the
robot is also able to include emotion expressions. Facial expressions and whole
body gestures can be used to express emotions. Among others, neural networks
and reinforcement mechanisms are employed for this task.

Table 4 summarizes results derived from the aforementioned approaches.

Table 4 Summary of approaches integrating robots in typical classrooms

Case Study Key Points

iRobiQ as teaching assistant, 111 five-
year-old children in two kindergartens and
two childcare centers, two-week study [27]

Robots seem to be more effective when in class-
rooms, close to children and used by individuals.

iRobiQ for language teaching in a kinder-
garten [52]

Children’s linguistic abilities improved especially in
aspects such as story making, story understanding
and word recognition.

PaPeRo in two nursery facilities, 12
children and their parents [28]

Robot provides asynchronous network-based
communication among parents, nursery teachers and
children.

Active recognition photography system,
AnyRobot I and II in a nursery with 32
children from three to four years old,
two-month study [60]

Photo evaluation and classification, provision of
quality photographs of children at classrooms to
parents.

iRobiQ, 23 three-year-old children, 20 four-
year-old children, three-month study [26]

Children remained interested in robots during a long
period. Children usually interacted with robots in
small groups but usually in pairs, roles similar to
those assumed in other play activities.

Kibo introduced to a kindergarten during a
show [31]

Four robots demonstrated synchronized motion
and facial expressions, followed teacher’s voice
instructions and reacted to teacher’s postures and
facial expressions.

Robot personalized to student traits [34] Student’s visual and vocal data used to adapt
contents provided by a robot according to student’s
needs, network-based architecture.

iRobiQ in three early childhood classes of
three-, four- and five-year-old children,
eight-month study [61]

There is no relationship between computer and robot
utilization.

QRIO, 18- to 24-month-old toddlers, video
camera recording, five-month study [55]

Throughout the 5 months, children retained interest
in the robot. The robot was close to autonomously
bond and socialize with young children for signifi-
cant time periods.

QRIO, dance interaction with toddlers in a
classroom environment [54]

Robot supports dance interaction technologies
ranging from non-autonomous choreographed dance
to autonomous one. Robot expresses emotions during
dancing.

188 J. Prentzas

4.2 Robots and Young Children with Special Needs

In [2] an approach to train toddlers seated on mobile robots to steer using force-
feedback joystick is presented. The main purpose of the approach is to train
infants with special needs that display limited independent walking. Mobility im-
pairments limit the typical development of a child hindering exploration and social
contacts and thus negatively affecting life quality. The hardware in the experiment
setup consisted of a mobile robot, sensors and a force-feedback joystick. The
study involved toddlers that on average were thirty months old. Separate driving
experiments were performed for ten typically developing toddlers as well as two
toddlers with special needs. The two toddlers with special needs were a two-year-
old with spina bifida and a three-year-old with cerebral palsy. The first child had
good control of hand movement lacking the ability to walk and balance himself
whereas the second child had decreased control of hand movement and coordina-
tion. The results were positive for all groups of toddlers. More specifically, the
toddlers with special needs were able to learn to make turns and follow lines after
five non-consecutive days of training. The learnt behavior was displayed several
days after training and also in different configuration and location.

In [19] requirements for robots in autism therapy and preliminary trial results in
a clinical setting are presented. The purpose of the defined requirements for robots
and user interfaces are to provide guidelines in developing robots that will effec-
tively assist child autism therapists. Robot design requirements defined concern
functionality and appearance, safety and autonomy. Each type of robot exhibits
different characteristics, advantages and disadvantages and thus robot design re-
quirements enable a robot to perform desired therapist activities. As far as auton-
omy is concerned, it should be mentioned that therapists need to have certain
control on the robot and so autonomy to a certain degree is desired. The user inter-
face should be friendly to therapists, responsive, flexible and controlled with a
(preferably small) handheld device. The researchers built two humanoid robots
(i.e. Troy and Trevor) that satisfied the defined requirements. They present prelim-
inary trial results for Troy. Troy has been tested with two typically developing
children, a four-year-old boy and a three-year-old girl. Results concerning the
children’s social interaction with Troy and the clinician were positive. Promising
preliminary results involving two children with autism are also presented. The two
children showed interest in Troy and a higher degree of interaction with the the-
rapist compared to sessions without Troy.

In [37] socially interactive mobile robots are presented such as Tito and Roball.
For instance, Tito was used in trials conducted by a psycho-educator with four
five-year-old children with autism. Tito records and stores the timing between its
interactions with a child. Preliminary results show that Tito becomes an incentive
for the child.

In [51] issues concerning the use of social robots to diagnose, treat and under-
stand autism are discussed. The discussion is based on three years of integration
and immersion with a clinical research group at the Yale Child Study Center
which performs diagnostic evaluations of children for autism. A person with aut-
ism is characterized by social and communicative impairments. Diagnosis is based
on a child’s social skills such as eye-to-eye gaze, facial expression, body posture

Artificial Intelligence Methods in Early Childhood Education 189

and gestures. There have been various studies showing that a robot motivates and
engages children. However, an argument of the research is that when interacting
with robots, persons with autism may not display a behavior such as the one ex-
pected by typical persons. This aspect should be studied and taken into considera-
tion. For instance, a pilot study involving typical and autistic preschool children’s
interactions with ESRA, a simple robot generating facial expressions, was carried
out. Children reactions to two robot conditions (i.e. a contingent and a non-
contingent condition) were studied. Typical children were attentive to the robot
only in the contingent condition whereas children with autism responded with at-
tentiveness to both robot conditions. The research also introduces quantitative, ob-
jective metrics of social response to handle autistic diagnosis problems. Metrics
concern passive and interactive observations. Passive sensing can be performed by
social robots and relevant metrics involve detection of gaze direction, position
tracking and vocal prosody. Socially interactive robots with certain autonomy
provide the opportunity to effectively obtain information concerning children’s
social behavior. A clinician could possibly obtain relevant information in similar
quality and quantity only with extensive work.

In [7] a robotic dog was used for pre-orientation and interaction of toddlers and
preschoolers who are blind. The robot used was a modified Sony Aibo to suit inte-
raction with the blind. The results showed that very young children who were
blind were able to operate the robot. A difficult task in robot operation for persons
who are blind concerns connection and disconnection of the recharger. The use of
distinctive texture solved this problem. Very young children who were blind due
to their interaction with the robot became more active, excited and engaged into
playful learning activities. The results show that robots can be used in an educa-
tion environment at least as assistants for people with disabilities. For people with
low vision, language and text presentation is important. In this context, robots can
also act as human-computer interface enhancing accessibility. In a constrained en-
vironment, robots could be used in autonomous vehicles for individual transport of
people who are blind and restricted to a wheel chair.

In [33] a robot-assisted observation system for children with autism was devel-
oped. The system was developed for a specialized kindergarten for developmen-
tally disabled children. The system consists of six pet robots, a handheld device
(e.g., PDA) used to input data concerning observations, video cameras with mi-
crophones to record data and a remote server to maintain a database with recorded
data. Experiments were conducted three times per week for three months. Child-
ren with autism interacted with the robots and recorded data was transmitted to the
database. The system provides efficient information processing and facilitates data
analysis (e.g., statistical graphs are produced). Further data analysis facilities
could be provided but the successful trial in the kindergarten demonstrated that the
observation system is useful for education environments.

Table 5 summarizes results derived from the aforementioned approaches.

4.3 General Approaches Concerning Robots and Young Children

In [32] scenario-based behavior design concerning a network-based robot is ex-
plored. The robot used in the research is Porongbot. Scenario-based design was

190 J. Prentzas

used to extract basic scenarios and detailed scenarios concerning robot behaviors
and user responses during human-robot interaction. Appropriate tasks (e.g., turn
on/off, play with) for the derived scenarios were also defined. Behaviors were eva-
luated via computer simulation according to three parameters: sociability (i.e. ro-
bot’s easiness in generating dialogues), activity (i.e. how intense robot movements
are) and agreeableness (i.e. how kindly the robot behaves). Robot behaviors
should be diverse, understandable, appropriate to current situations and coherent
with personality profile. Scenarios were implemented in the form of scripts and a
behavior selection model was implemented. The approach was implemented and
evaluated through a simulator.

Table 5 Summary of approaches involving robots and children with special needs

Case Study Key Points

Training of toddlers that display limited
independent walking, tested with a two- and
a three-year-old child [2]

Toddlers seated on mobile robots are trained to steer
using force-feedback joystick. The learnt behavior
was displayed several days after training and also
in different configuration and location.

Troy and Trevor in autism therapy, Troy
tested with two children with autism [19]

Two children with autism showed interest in Troy
and a higher degree of social interaction with the the-
rapist compared to sessions without Troy.

Tito, four five-year-old children with
autism [37]

Preliminary results show that Tito becomes an incen-
tive for the child.

Social robots used to diagnose, treat and
understand autism [51]

Introduction of quantitative, objective metrics of
social response to handle autistic diagnosis problems.
Socially interactive robots with certain autonomy
may effectively obtain information concerning child-
ren’s social behavior.

Robotic dog for pre-orientation and interac-
tion of children who are blind [7]

Very young children who were blind were able to
operate the robot and became more active, excited
and engaged into playful learning activities.

Robot-assisted observation system for
children with autism in a specialized
kindergarten, experiments conducted for
three months [33]

The system provides efficient information processing
and facilitates data analysis.

In [50] requirements and specific tools for extended human-robot interactions
with children as subjects are presented. More specifically, special recording and
analysis tools are required. The study of human-robot interaction may become so-
phisticated and in the specific research the focus was on extended interaction se-
quences. There are multiple recording devices (e.g., sensors, cameras) producing
data (e.g., facial expressions) from multiple viewpoints. The time scale of events
varies and certain behaviors (e.g., changes in eye gaze) may occur within seconds.
All data needs to be time-synchronized to constitute a consistent source for analy-
sis. Furthermore, the large amount of (audio and video) data produced needs to be
automatically annotated. Manual annotation would be too time-consuming and
certain important details from the multiple sources may be missed. Therefore,

Artificial Intelligence Methods in Early Childhood Education 191

tools based on computer vision algorithms that would automate detection and do-
cumentation of behaviors are required. The researchers mention solutions they
have developed for recording and analysis. For recording, they present a scalable
system based on seven cameras and microphones in which audio and video data is
automatically synchronized and timestamped. A technique with appropriate con-
trol interface was developed enabling robot control by a concealed human opera-
tor so that the person interacting with the robot believes it is totally autonomous.
Two analysis tools are presented. One analysis tool processes video data to pro-
vide annotations involving head pose and eye gaze. The other tool provides a
framework for combination of visual data so that it can be explored by other ap-
plications and tools across a common timeline. The presented tools were used to
record and analyze interactions of four- to eight-year-old children with a robot.
Such tools are necessary to robot designers, teachers and therapists. For teachers
specifically the need for such tools is twofold. On the one hand, teachers need to
study and evaluate educational technology used in classroom. On the other hand,
analyzed recorded data could be used in educating teachers to new practices [38].

In [13] full-body gesture recognition for interaction with a small robot (i.e.
Sponge Robot) is investigated. An aspect that had not been considered prior this
research concerned full-body gestures that is, gestures affecting the whole body of
the robot (i.e. position and orientation). A small and light humanoid robot needs to
recognize such gestures because people will pick it up and interact playfully with
it by hugging, shaking and moving it around. A robot should be able to respond to
such interaction to create bonds with humans it interacts with. The specific re-
search identifies corresponding gestures and presents a system for their recogni-
tion. Data to identify gestures was collected at a research institute and a university
from participants interacting playfully with the robot. Video recording was used to
record more than a thousand gesture instances. An intelligent system based on
Support Vector Machines was developed to learn from the collected data and per-
form gesture recognition. It should be mentioned that certain gestures have a
stronger effect than others whereas certain gestures are interpreted in different
ways.

Detailed results concerning Roball are presented in [49]. In this work, require-
ments concerning child-robot interaction are defined. Roball satisfies such re-
quirements. An adaptive algorithm was developed for adapting Roball’s behavior
to the received interaction so that children’s communication with the robot is rein-
forced. For instance, according to the interaction it is receiving, the robot may
simply wander, avoid obstacles, make noises, produce speech or go faster. Roball
was used to study toddler-robot interactions. Roball’s characteristics attracted the
interest of young children and demonstrated that locomotion capabilities are re-
quired in child environments. Trials with young children were conducted in the
lab and in typical environments for children. A trial was also conducted at a high
school.

In [39] a humanoid robot was developed that dances in real-time with sponta-
neous and dynamic movements in synchronism to music. It was the first approach
in which a robot dynamically danced in correspondence to music rhythm. The
overall framework consists of two main modules: a music analysis and a robot

192 J. Prentzas

control module. The music analysis module is based on Marsyas, an open source
software framework for audio analysis and synthesis emphasizing to music sig-
nals. This module perceives music rhythm. The robot control module reacts to
rhythm data sent by the aforementioned module and to sensor data to promote dy-
namic dance movements. The researchers mention that their future plans involve
the issue of multi-robot dance that is, the synchronization of multiple dancing
robots.

Table 6 summarizes key points of general approaches concerning young child-
ren and robots.

Table 6 Summary of general approaches involving robots and young children

Case Study Key Points

Porongbot, scenario-based design [32] Scenarios concerning diverse, understandable, ap-
propriate and coherent robot behaviors were de-
signed, implemented and evaluated through a simula-
tor.

Tools for extended human-robot
interactions, used to record and analyze
interactions of four- to eight-year-old
children with a robot [50]

Tools and algorithms for scalable recording,
synchronization, automatic annotation of interaction
data.

Sponge Robot, gesture recognition [13] Full-body gesture recognition for small and light
robots.

Roball [49] Requirements concerning child-robot interaction are
defined. An adaptive algorithm was developed for
adapting Roball’s behavior.

Real-time robot dancing [39] Real-time robot synchronization to music rhythm.
Dynamic dance movements achieved based on music
analysis and sensor data.

4.4 Discussion

A general comment that can be made concerning robots in early childhood settings
is that several approaches have been presented employing different types of ro-
bots. A direct comparison among the approaches is difficult to be made but certain
issues can be pointed out.

A requirement to assess the effectiveness of integrating robots in early child-
hood education concerns evaluation of the results. Long term interaction of young
children with robots could highlight advantages and limitations of robotic technol-
ogy. Some of the surveyed approaches involved long term child-robot interaction.
Such were the approaches presented in [26] and [61] that involved integration of
iRobiQ in classroom activities for a time period of three and eight months respec-
tively. Furthermore, in [55] it is mentioned that children interacted with QRIO for
five months, ARPS was used for two months [60] and in [33] experiments con-
cerning the presented observation system were conducted for three months. In cer-
tain approaches, the total duration of interaction was brief. For instance, in [31]

Artificial Intelligence Methods in Early Childhood Education 193

robots were introduced to a kindergarten during a show. There are also approaches
for which the total duration of interaction is not mentioned.

For evaluation purposes, data regarding child-robot interaction needs to be re-
corded and extensively analyzed by teachers and experts in robotic technology. A
set of video cameras and microphones are necessary for recording data. Handheld
devices such as PDAs or tablet PCs could be useful for inputting observation data
perhaps to a database hosted on a remote server [33]. Analysis of recorded video
and photo data concerning child-robot interaction is explicitly mentioned in cer-
tain approaches (e.g., [55], [13], [60]). The most extensive analysis of recorded
video data seems to involve young children’s interaction with QRIO [55]. Chil-
dren interacted with QRIO for five months but analysis of recorded data was car-
ried out for two years. Moreover, in [13] it is mentioned that more than a thousand
gesture instances were recorded in video. As the study of child-robot interaction
may turn out to be a time-consuming and sophisticated process, special recording
and analysis tools are required such as the ones presented in [50]. Useful ideas in
this context could also be found in the observation system described in [33]. A
system such as ARPS could also be used in this process to evaluate and classify
photos [60].

Closer correlation of robot-assisted learning with early childhood education
curriculum is also necessary. In [31] it is mentioned that iRobiQ was successful in
improving children’s linguistic abilities in specific aspects. Children’s communi-
cation skills were also enhanced with robots especially in the case of children with
special needs. Research on other aspects such as mathematics and science is also
required.

Several of the approaches explicitly mention testing in classroom environ-
ments. Such approaches were for instance the ones presented in [27], [52], [28],
[60], [26], [34], [61], [55], [54], [31], [33] and [49]. Certain of these approaches
such as the ones presented in [27], [28], [26] and [61] explicitly mention testing in
different classes and/or different facilities. Such evaluation results would be useful
for the generalization of the reached conclusions.

As mentioned in Section 2, educational technology in early childhood usually
involves a combination of technological resources. Most of the approaches do not
describe how a combination of robots and other technological resources (e.g.,
computers, interactive whiteboards, programmable toys) were effective in enhanc-
ing different learning aspects. This is a missing point in most of the surveyed ap-
proaches. Combination of robots with other technological resources is presented in
approaches involving observation, recording and analysis (e.g., [33], [50]).

Some type of robot and computer functionality combination is described in cer-
tain approaches. More specifically, computer functionality is provided to learners
through robots. This could be an interesting research direction. Robots connected
to networks such as iRobiQ, Porongbot and the one presented in [34] could pro-
vide contents and services hosted in remote computers to students. Moreover,
robots with a touch screen provide to a certain degree similar functionality to
computers as they are able to display software applications and receive inputs
from students. For there reasons, the research presented in [61] explored the

194 J. Prentzas

relevancy of computer and robot utilization by young children. An analysis com-
paring the effectiveness of computers and robots in enhancing young children’s
learning would be interesting.

A further comment that can be made is that more approaches concerning inte-
gration of robots in early childhood settings have been presented compared to the
approaches discussing integration of (computer-based) IESs in corresponding en-
vironments. It seems that more researchers are working in the field of robotics in
early childhood. Furthermore, even very young children may interact with robots
whereas with IESs this could be more difficult. An interesting approach with diffi-
culties in its implementation could be the combination of robotic and (computer-
based) IES technologies as in [34].

An interesting aspect involves the form and size of robots that have been inte-
grated in early childhood settings. The size of the robots is small so that young and
very young children may find it appealing to interact with them. Most of the ro-
bots have some type of humanoid form. Such robots are iRobiQ, Sponge Robot,
PaPeRo, Kibo, Troy, Trevor, Tito and QRIO. Troy was used in autism therapy and
differs from other humanoid robots as it has a computer screen for its face. Robots
in the form of pets have also been used in early childhood (e.g., [7]). Roball is
quite different from robots described in the other surveyed approaches as it is en-
capsulated within a sphere. Roball signifies that different robot forms than the
‘usual’ ones may be explored. Requirements concerning learners and learning en-
vironment need to be carefully studied when implementing robots. Children with
special needs may impose different requirements from robots as their reactions
may differ from other children. Roball and Sponge Robot are robots that young
children are able to lift up. Specifically, Sponge Robot has been developed for
playful interaction when lifted up and differs from other robots in this context.

Certain robots were developed especially for children with special needs. Such
robots are described in [2], [19], [37], [51], [7] and [33]. Some of these robots in
spite of being developed for children with special needs were also tested with typ-
ical children (e.g., [2], [19], [51]) to record differences in children’s reactions.
There are no explicit reports concerning interaction of certain robots such as
QRIO, iRobiQ, Sponge Robot, Porongbot, PaPeRo and Kibo with children having
special needs. In [49] it is mentioned that Roball satisfies requirements of children
with autism.

The surveyed approaches concern young children with a variety of ages.
Certain approaches concern very young children. More specifically:

• In [55] QRIO interacted with 18- to 24- month-old toddlers, in [2] the study in-
volved toddlers that were on average thirty months old (i.e. two to three years
old), in [7] the robotic dog interacted with very young children.

• iRobiQ in [26] and [61] and Troy in [19] interacted with three- and four- year-
old children. This was also the case for the study in [60] involving ARPS also
concerned three-year-old children.

• In [26] and [61] iRobiQ interacted with four-year-old children and in [19] Troy
was tested with a four-year-old child. ARPS in [60] involved four-year-old
(besides three-year-old) children.

Artificial Intelligence Methods in Early Childhood Education 195

• The approach in [28] was evaluated in nursery facilities thus it probably in-
volved children under five.

• In [27] and [61] iRobiQ interacted with five-year-old children and so did Tito
in [37].

• In [31], [52] and [33] Kibo, iRobiQ and the robot-assisted observation system
respectively were used in a kindergarten and thus the specific research probably
involved children who were at least five years old.

• In [50] interactions of four- to eight-year-old children with a robot were re-
corded and analyzed.

In total, it can be mentioned that approaches presented in [55], [2], [7], [26], [61],
[19], [60] and [50] were tested with children under five. The approaches presented
in [27], [61], [37], [31], [52], [33] and [50] were tested with children who were at
least five years old. Certain approaches (e.g., [50], [61]) were tested with children
under five as well as with children who were at least five years old. Roball in [49]
was also successfully tested in a high school setting. Perhaps certain robots dis-
cussed in the surveyed approaches could also be used in elementary schools.

5 Conclusions

This paper discusses issues regarding application of Artificial Intelligence me-
thods in early childhood education. The discussion involves Intelligent Education-
al Systems (i.e. Intelligent Tutoring and Adaptive Educational Hypermedia
Systems) and robots. Such a discussion is useful to Artificial Intelligence re-
searchers and practitioners, educational technology researchers and practitioners,
teachers, undergraduate and postgraduate students.

Research work in early childhood educational technology is not yet as exten-
sive as in other levels of education. Approaches surveyed in this paper demon-
strate that fruitful results may be produced by incorporating Artificial Intelligence
methods in early childhood education. Results have shown that children are moti-
vated in taking part in learning and social activities and remain interested in the
technological resource even in long term interaction. Approaches enhancing lite-
racy of children with special needs have also been successful. An important aspect
is that learning goals are achieved.

References

1. Aghlara, L., Tamjid, N.H.: The effect of digital games on Iranian children’s vocabu-
lary retention in foreign language acquisition. Procedia – Social and Behavioral
Sciences 29, 552–560 (2011)

2. Agrawal, S.K., Chen, X., Ragonesi, C., Galloway, J.C.: Training toddlers seated on
mobile robots to steer using force-feedback joystick. IEEE Transactions on Haptics
(2012) (in press)

196 J. Prentzas

3. Agudo, J.E., Sanchez, H., Holguin, J.M., Tello, D.: Adaptive computer games for
second language learning in early childhood. In: Proceedings of the 3rd International
Online Conference on Second and Foreign Language Teaching and Research, pp. 167–
180 (2007)

4. Agudo, J.E., Sánchez, H., Rico, M.: Adaptive Learning for Very Young Learners. In:
Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 393–397.
Springer, Heidelberg (2006)

5. Apt, K.R., Wallace, M.G.: Constraint logic programming using ECLiPSe. Cambridge
University Press, Cambridge (2006)

6. Aroyo, L., Graesser, A., Johnson, L.: Guest editors’ introduction: Intelligent Educa-
tional Systems of the present and future. IEEE Intelligent Systems 22, 20–21 (2007)

7. Bartlett, B., Estivill-Castro, V., Seymon, S., Tourky, A.: Robots for pre-orientation and
interaction of toddlers and preschoolers who are blind. In: Proceedings of the Australa-
sian Conference on Robotics and Automation, paper 13. Australian Robotics and Au-
tomation Association (2003)

8. Brusilovsky, P.: Methods and techniques of Adaptive Hypermedia. User Modeling and
User-Adapted Interaction 6, 87–129 (1996)

9. Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interac-
tion 11, 87–110 (2001)

10. Brusilovsky, P., Peylo, C.: Adaptive and Intelligent Web-based educational systems.
International Journal of Artificial Intelligence in Education 13, 156–169 (2003)

11. Cabada, R.Z., Estrada, M.L.B., García, C.A.R.: EDUCA: A Web 2.0 authoring tool for
developing Adaptive and Intelligent Tutoring Systems using a Kohonen Network. Ex-
pert Systems with Applications 38, 9522–9529 (2011)

12. Cheng, P., Zhao, K., Li, Y., Xu, W.: Application of Case Based Reasoning in plane
geometry Intelligent Tutoring System. In: Proceedings of the International Conference
on Electrical and Control Engineering, pp. 4369–4373. IEEE Press, New York (2011)

13. Cooney, M.D., Becker-Asano, C., Kanda, T., Alissandrakis, A., Ishiguro, H.: Full-
body gesture recognition using inertial sensors for playful interaction with small hu-
manoid robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2276–2282. IEEE Press, New York (2010)

14. Crockett, K., Latham, A., Mclean, D., Bandar, Z., The, J.O.: On predicting learning
styles in Conversational Intelligent Tutoring Systems using fuzzy classification trees.
In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2481–
2488. IEEE Press, New York (2011)

15. El-Moughny, N.M.: Assistive computing technology for learning to write Braille. Un-
dergraduate Senior Thesis, Carnegie Mellon Qatar Campus (2008)

16. Espada, A.B.C., Garcia, M.R., Fuentes, A.C., Gomez, E.D.: Developing adaptive sys-
tems at early stages of children’s foreign language development. ReCALL 18, 45–62
(2006)

17. Friedman-Hill, E.: Jess in action: Java rule-based systems. Manning Publications,
Greenwich (2003)

18. Gennari, R., Mich, O.: E-Learning and Deaf Children: A Logic-Based Web Tool. In:
Leung, H., Li, F., Lau, R., Li, Q. (eds.) ICWL 2007. LNCS, vol. 4823, pp. 312–319.
Springer, Heidelberg (2008)

19. Giullian, N., Ricks, D., Atherton, A., Colton, M., Goodrich, M., Brinton, B.: Detailed
requirements for robots in autism therapy. In: Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, pp. 2595–2602. IEEE Press, New York
(2010)

Artificial Intelligence Methods in Early Childhood Education 197

20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explorations Newsletter 11, 10–18
(2009)

21. Hatzilygeroudis, I., Prentzas, J.: HYMES: A HYbrid Modular Expert System with ef-
ficient inference and explanation. In: Proceedings of the 8th Panhellenic Conference
on Informatics, vol. 1, pp. 422–431 (2001)

22. Hatzilygeroudis, I., Prentzas, J.: Using a hybrid rule-based approach in developing an
Intelligent Tutoring System with knowledge acquisition and update capabilities. Expert
Systems with Applications 26, 477–492 (2004)

23. Hatzilygeroudis, I., Prentzas, J.: Knowledge representation in Intelligent Educational
Systems. In: Ma, Z. (ed.) Web-Based Intelligent E-Learning Systems: Technologies
and Applications, pp. 175–192. Information Science Publishing, Hershey (2006)

24. Hatzilygeroudis, I., Koutsojannis, C., Papavlasopoulos, C., Prentzas, J.: Knowledge-
based adaptive assessment in a Web-based Intelligent Educational System. In: Pro-
ceedings of the 6th IEEE International Conference on Advanced Learning Technolo-
gies, pp. 651–655. IEEE Press, New York (2006)

25. Hayes, M., Whitebread, D.: ICT in the early years (Learning and teaching with Infor-
mation & Communications Technology). Open University Press, Maidenhead (2006)

26. Hyun, E., Yoon, H.: Characteristics of young children’s utilization of a robot during
play time: a case study. In: Proceedings of the IEEE International Symposium on Ro-
bot and Human Interactive Communication, pp. 675–680. IEEE Press, New York
(2009)

27. Hyun, E., Yoon, H., Son, S.: Relationships between user experiences and children’s
perceptions of the education robot. In: Proceedings of the 5th ACM/IEEE International
Conference on Human-Robot Interaction, pp. 199–200. IEEE Press, New York (2010)

28. Kawata, H., Takano, Y., Iwata, Y., Kanamaru, N., Shimokura, K., Fujita, Y.: Field trial
of asynchronous communication using network-based interactive child watch system
for the participation of parents in day-care activities. In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, pp. 2558–2563. IEEE Press, New
York (2008)

29. Ketamo, H.: mLearning for kindergarten’s mathematics teaching. In: Proceedings of
the IEEE International Workshop on Wireless and Mobile Technologies in Education,
pp. 167–168. IEEE Press, New York (2002)

30. Ketamo, H.: Sharing behaviors in games. In: Proceedings of the 5th European Compu-
ting Conference, WSEAS, pp. 120–125 (2011)

31. Kim, C.G., Choi, M.-T., Noh, H.J., Kim, J., Lee, S., Cho, C., Kim, M.: The develop-
ment of humanoid robot for human robot interaction. In: Proceedings of the 16th IEEE
International Conference on Robot & Human Interactive Communication, pp. 625–
630. IEEE Press, New York (2007)

32. Kim, Y.C., Kwon, H.T., Yoon, W.C., Kim, J.C.: Scenario exploration and implementa-
tion for a network-based entertainment robot. In: Proceedings of the 21st International
Symposium on Human Factors in Telecommunication (2008)

33. Kim, Y.-D., Hong, J.-W., Kang, W.-S., Baek, S.-S., Lee, H.-S., An, J.: Design of Ro-
bot Assisted Observation System for Therapy and Education of Children with Autism.
In: Ge, S.S., Li, H., Cabibihan, J.-J., Tan, Y.K. (eds.) ICSR 2010. LNCS (LNAI),
vol. 6414, pp. 222–231. Springer, Heidelberg (2010)

198 J. Prentzas

34. Ko, W.H., Lee, S.M., Nam, K.T., Shon, W.H., Ji, S.H.: Design of a personalized R-
learning system for children. In: Proceedings of the IEEE/RSJ International Confe-
rence on Intelligent Robots and Systems, pp. 3893–3898. IEEE Press, New York
(2010)

35. Koutsojannis, C., Beligiannis, G., Hatzilygeroudis, I., Papavlasopoulos, C., Prentzas,
J.: Using a hybrid AI approach for exercise difficulty level adaptation. International
Journal of Continuing Engineering Education and Life Long Learning 17, 256–272
(2007)

36. Lim, C.P., Khine, M.S.: Connecting schools to their communities: the South-East
Asian experience. In: Zajda, J., Gibbs, D. (eds.) Comparative Information Technology,
pp. 79–87. Springer, Heidelberg (2009)

37. Michaud, F., Letourneau, D., Lepage, P., Morin, Y., Gagnon, F., Giguere, P., Beaudry,
E., Brosseau, Y., Cote, C., Duquette, A., Laplante, J.-F., Legault, M.-A., Moisan, P.,
Ponchon, A., Raievsky, C., Roux, M.-A., Salter, T., Valin, J.-M., Caron, S., Masson,
P., Kabanza, F., Lauria, M.: A brochette of socially interactive robots. In: Proceedings
of the AAAI 2005 Mobile Robot Program, pp. 1733–1734. AAAI Press, Menlo Park
(2005)

38. Newhouse, C.P., Lane, J., Brown, C.: Reflecting on teaching practices using digital
video representation in teacher education. Australian Journal of Teacher Education
32(3) (2007)

39. Oliveira, J., Gouyon, F., Reis, L.P.: Towards an interactive framework for robot danc-
ing applications. In: Proceedings of the International Conference on Digital Arts, pp.
52–59 (2008)

40. Papanikolaou, K.A., Grigoriadou, M., Kornilakis, H., Magoulas, G.D.: Personalizing
the interaction in a Web-based Educational Hypermedia System: The case of
INSPIRE. User Modeling and User-Adapted Interaction 13, 213–267 (2003)

41. Polson, M.C., Richardson, J.J.: Foundations of Intelligent Tutoring Systems. Lawrence
Erlbaum Associates, Hillsdale (1988)

42. Prensky, M.: Digital game-based learning. Paragon House, St. Paul (2007)
43. Prentzas, J., Hatzilygeroudis, I.: Techniques, technologies and patents related to Intel-

ligent Educational Systems. In: Magoulas, G.D. (ed.) E-Infrastructures and Technolo-
gies for Lifelong Learning: Next Generation Environments, pp. 1–28. Information
Science Reference, Hershey (2011)

44. Prentzas, J., Hatzilygeroudis, I., Koutsojannis, K.: A Web-based ITS controlled by a
hybrid expert System. In: Proceedings of the IEEE International Conference on Ad-
vanced Learning Technologies, pp. 239–240. IEEE Press, New York (2001)

45. Prentzas, J., Hatzilygeroudis, I., Garofalakis, J.: A Web-Based Intelligent Tutoring
System Using Hybrid Rules as Its Representational Basis. In: Cerri, S.A., Gouardéres,
G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 119–128. Springer, Heidel-
berg (2002)

46. Prentzas, J., Theodosiou, T.: The role of Learning Management Systems in early
childhood education. In: Kats, Y. (ed.) Upgrading, Maintaining and Securing Learning
Management Systems: Advances and Developments. IGI Global, Hershey (in press,
2012)

47. Price, H. (ed.): The Really Useful Book of ICT in the Early Years. Routledge, New
York (2009)

48. Roblyer, M.D., Doering, A.H.: Integrating educational technology into teaching (with
MyEducationLab), 5th edn. Allyn & Bacon, Boston (2009)

Artificial Intelligence Methods in Early Childhood Education 199

49. Salter, T., Werry, I., Michaud, F.: Going into the wild in child-robot interaction stu-
dies: issues in social robotic development. Intelligent Service Robotics 1, 93–108
(2008)

50. Sarvadevabhtla, R.K., Ng-Thow-Hing, V., Okita, S.: Extended duration human-robot
interaction: tools and analysis. In: Proceedings of the 19th IEEE International Sympo-
sium on Robot and Human Interactive Communication, pp. 7–14. IEEE Press, New
York (2010)

51. Scassellati, B.: How social robots will help us to diagnose, treat, and understand aut-
ism. In: Thrun, S., Brooks, R., Durrant-Whyte, H. (eds.) Robotics Research, STAR,
vol. 28, pp. 552–563. Springer, Heidelberg (2007)

52. Shin, K.C., Kuppuswamy, N., Jung, H.C.: Network based service robot for education.
In: Proceedings of the EU-Korea Conference on Science and Technology, pp. 307–
313. Springer, Heidelberg (2008)

53. Siraj-Blatchford, J., Siraj-Blatchford, I.: A guide for developing the ICT curriculum for
early childhood education. Trentham Books, Stoke on Trent (2006)

54. Tanaka, F., Fortenberry, B., Aisaka, K., Movellan, J.R.: Plans for developing real-time
dance interaction between QRIO and toddlers in a classroom environment. In: Pro-
ceedings of the 4th IEEE International Conference on Development and Learning, pp.
142–147. IEEE Press, New York (2005)

55. Tanaka, F., Cicourel, A., Movellan, J.R.: Socialization between toddlers and robots at
an early childhood education center. PNAS 104, 17954–17958 (2007)

56. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)
57. van Vuuren, S.: Technologies that empower pedagogical agents and visions for the fu-

ture. Educational Technology 47, 4–10 (2006)
58. Woolf, B.: AI in Education. In: Shapiro, S. (ed.) Encyclopedia of Artificial Intelli-

gence, pp. 434–444. John Wiley & Sons, New York (1992)
59. Yazdani, M.: Intelligent Tutoring Systems survey. Artificial Intelligence Review 1,

43–52 (1988)
60. Yoon, J., Lee, J., Song, H.-J., Park, Y., Shim, H.-S., Lee, J.: ARPS: Active Recogni-

tion Photography System for child-care robot. In: Proceedings of the IEEE Internation-
al Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 220–
225. IEEE Press, New York (2008)

61. Yoon, H.: A relation between young children’s computer utilization and their use of
education robots. In: Proceedings of the 6th International Conference on Human-Robot
Interaction, pp. 291–292. ACM, New York (2011)

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 201–230.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

Recursively Generated Evolutionary Turing
Machines and Evolutionary Automata**

Mark Burgin and Eugene Eberbach*

Abstract. One of the roots of evolutionary computation was the idea of Turing
about unorganized machines. The goal of this paper is the development of founda-
tions for evolutionary computations, connecting Turing’s ideas and the contempo-
rary state of art in evolutionary computations. The theory of computation is based
on mathematical models of computing automata, such as Turing machines or finite
automata. In a similar way, the theory of evolutionary computation is based on
mathematical models of evolutionary computing automata, such as evolutionary
Turing machines or evolutionary finite automata. The goal of the chapter is to
study computability in the context of the theory of evolutionary computation and
genetic algorithms. We use basic models of evolutionary computation, such as dif-
ferent types of evolutionary machines, evolutionary automata and evolutionary al-
gorithms, for exploration of the computing and accepting power of various kinds
of evolutionary automata. However, we consider not only how evolutionary auto-
mata compute but also how they are generated because a rigorous study of
construction techniques for computational systems is an urgent demand of infor-
mation processing technology. Generation schemas for evolutionary automata are
studied and applied to computability problems.

1 Introduction

Alan Turing was one of the founders of theoretical computer science. His basic
model of computation, which is now called Turing machine, is the most popular

Mark Burgin
Dept. of Mathematics, University of California, 405 Hilgard Avenue,
Los Angeles, CA 90095, USA

Eugene Eberbach
Dept. of Eng. and Science, Rensselaer Polytechnic Institute, 275 Windsor Street,
Hartford, CT 06120, USA

* Corresponding author: eberbe@rpi.edu

3

202 M. Burgin and E. Eberbach

in computer science. He also had many other ideas. In particular, Turing (1948)
proposed to use what is now called genetic algorithms in his unorganized ma-
chines. Turing while at Cambridge proposed his automatic machines (now known
as Turing machines) and choice machines. In 1939 he defended his Ph.D. on
oracle machines under Alonzo Church supervision at Princeton. During World
War II, Turing’s top secret work was on Colossus 1st electronic computer to
break Enigma code. After the end of the war Turing joined the National Physical
Laboratory in 1945 to work on the Automatic Computing Engine (ACE) under the
supervision of Sir Charles Darvin (the grandson of the founder of the theory of
evolution). Before leaving for Manchester in 1948, Turing produced a final report
on ACE which can be viewed as a blueprint for the future field of evolutionary
computation. Titled Intelligent Machinery (Turing 1948), this report was left un-
published until 1968, because Darwin, his boss, considered it to be a “schoolboy
essay" not suitable for publication.

In this report, among other futuristic ideas, including robots taking country
walks, Turing proposed new models of computation, which he called unorganized
machines (u-machines). There were two types of u-machines, those based on
Boolean networks and those based on finite state machines. Turing took his inspi-
ration from the working of the human cortex, and its ability for self-adaptation.

• A-type and B-type u-machines were Boolean networks made up of a fixed
number of two-input NAND gates (neurons) and synchronized by global clock.
While in A-type u-machines the connections between neurons were fixed, B-
type u-machines had modifiable switch type interconnections. Starting from the
initial random configuration and applying a kind of genetic algorithm, B-type
u-machines were supposed to learn which of their connections should be on and
which off.

• P-type u-machines were tapeless Turing Machines reduced to their Finite State
Machine control, with an incomplete transition table, and two input lines for
interaction: the pleasure and the pain signals. For configurations with missing
transitions, the tentative transition to another state could be reinforced by
“pleasure” input from the environment, or cancelled in the presence of “pain”.

In his B-type u-machines, Turing pioneered two areas at the same time: neural
networks and evolutionary computation (more precisely, evolutionary artificial
neural networks EANNs), while his P-type u-machines represent reinforcement
learning. However, this work had no impact on these fields, due to the unfortunate
combination of Turing's death and the twenty-year delay in publication (for more
details see Teuscher 2002, Eberbach et al 2004).

Turing was convinced that his B-type u-machine can simulate his Universal
Turing Machine, though he never provided a formal proof. In order to simulate
the infinite tape of a Turing Machine, a u-machine with an infinite number of neu-
rons would be needed. This is due to the discrete nature of the neurons, which
were based on two input Boolean NAND gates. By contrast, two real-valued neu-
rons are sufficient to model a Turing Machine.

B-type u-machines were defined to have a finite number of neurons, and it is
not clear whether Turing was aware that infinitely many neurons were needed for

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 203

the simulation. This inconsistency would certainly have been uncovered when
working on the formal proof. But perhaps Turing was aware of it, and expected to
have no problems extending his definitions to the infinite case.

In any case, these ideas became one of the roots of evolutionary computation in
general and evolutionary computation theory, in particular.

It is necessary to state that evolutionary computation is also rooted in ideas of
John von Neumann, who sought to model one of the most basic life's processes –
reproduction - by designing self-reproducing automata, which were later called
cellular automata. At the Hixon Symposium in 1948, von Neumann discussed the
idea of self-replicating machines, which operated in a very simple environment,
had uniform components, each of which was a finite automaton organized in a
two-dimensional array (von Neumann 1951). For the building blocks for physical
realization of self-replicating machines, he proposed using computer chips. Ma-
thematical theory of self-replicating machines was published in von (Neumann,
1966). Later Codd (1968), Banks (1971) and Langton (1984) simplified the con-
struction of von Neumann. Note that evolution of cellular automata naturally lead
to cellular programming being one of subareas of evolutionary computation.

The third root was experiments and exploration that involved what is now
called artificial life, evolutionary robotics and evolutionary simulation and
optimization, which were pioneered by Barricelli (1954), Friedman (1956), Box
(1957), Fraser (1957), Friedberg, R. M. (1958) and Friedberg, Dunham and North
(1959).

Now the main area of evolutionary computation applications are: (1) search
methods that work well heuristically but don’t need exponential time; (2) simula-
tions of populations to see what patterns emerge over time; and (3) comparisons
of policies by using simulations to assess their effects. To achieve these goals four
main approaches are used: Genetic Algorithms (Holland 1975), Genetic Pro-
gramming (Koza 1992; 1994; 1999), Evolution Strategies (Rechenberg 1973) and
Evolutionary Programming (Fogel et al 1966). Additional approaches include Ant
Colony Optimization ACO, also known as Ant Colony Systems (ACS) developed
by Jim Kennedy and Russell Eberhart in 1995 (Kennedy and Eberhart 1995; Ken-
nedy et al. 2001; Dorigo and Stuetzle 2004), Particle Swarm Optimization (ACO),
also known as Ant Colony Systems (ACS) developed by Marco Dorigo and his
coauthors in 1997 (Bonabeau et al 1999), co-evolution (Michalewicz and Fogel
2004), Artificial Immune Systems (Mo 2009), evolutionary robotics (Friedman
1956), Evolutionary Artificial Neural Networks (EANNs) (Yao 1999), evolvable
hardware, behavior engineering, evolutionary multiobjective optimization, Artifi-
cial Life (Barricelli 1954), Classifier Systems, DNA-Based Computing and some
fields of bioinformatics (Back et al 1997). Note that some scientists question
whether GP deserves to be counted as one of four main areas of evolutionary
computation, because it has been proposed much later than GA, ES and EP, and
John Koza introduced originally GP as a special case of GAs on tree structures.

Applications of evolutionary computation are vast and diverse. They include
solutions of intractable (hard and NP-complete) optimization problems, machine
learning, data mining, neural network training, robotics, control, electronic circuit
design, games, economics, network design, pattern recognition, genome and

204 M. Burgin and E. Eberbach

protein analysis, DNA-based computing, evolvable hardware and many others. It
is also necessary to mention an increased interest in applications of to the prob-
lems of robotics in general and to such areas as robot shaping and behavior engi-
neering in particular (cf., for example, (Nolfi 1994; Dorigo and Colombetti 1997;
Dozier 2001; Katagami and Yamada 2001)). For instance, having some schemas
of robot behaviors, a population of candidate behaviors is evolved by an evolutio-
nary computation to find a behavior that optimizes a pre-specified fitness func-
tion. Practical results in behavior engineering, however, show that although
evolutionary technique has proved useful and effective in many cases, the devel-
opment of a precise evaluation (fitness) function and finding an optimal behavior
is often difficult, while theoretical results disclose that in some cases it is imposs-
ible to build a precise fitness function and find an optimal behavior.

 However, in spite of a diversity of useful applications, evolutionary computa-
tion theory is still very young and incomplete (Fogel 2001; Michalewicz 1996;
Kennedy et al 2001; Michalewicz and Fogel 2004). Studied in evolutionary com-
putation theoretical topics include convergence in the limit (elitist selection, Mi-
chalewicz's contractive mapping GAs, (1+1)-ES), convergence rate (Rechenberg's
1/5 rule), the Building Block analysis (Schema Theorems for GA and GP), best
variation operators (No Free Lunch Theorem). However, these authors do not in-
troduce automaton models – rather they apply high-quality mathematical appara-
tus to existing process models, such as Markov chains, etc. They also cover only
some aspects of evolutionary computation like convergence or convergence rate.
At the same time, very little has been known about expressiveness or computa-
tional power of evolutionary computation and its scalability. In other words, evo-
lutionary computation is not treated as a distinct and complete area with its own
distinct model situated in the context of general computational models. This
means that in spite of intensive usage of mathematical techniques, evolutionary
computation lacks theoretical foundations. As a result, many properties of evolu-
tionary processes could not be precisely studied or even found by researchers.
Conventional computation has many models. One of the most popular is Turing
Machine. In contrast to this, until recently evolutionary computation did not have
a theoretical model able to represent practice in this domain.

As a result, many properties of evolutionary computation processes and results
could not be precisely evaluated, studied or even found by researchers. Only re-
cently a rigorous mathematical foundations of evolutionary computation has been
created (Eberbach 2005; Burgin and Eberbach 2008; 2009; 2009a) although they
provide only the beginning of a rigorous mathematical theory of evolutionary
computations. In this theory, evolutionary automata play the role similar to the
role of Turing machines, finite automata and other mathematical models in the
general theory of computation.

Our approach is aimed at providing more rigorous foundations for evolutionary
computation. It is based on evolutionary Turing machine (ETM) model (Eberbach
2005; Burgin and Eberbach 2007), grid automata (Burgin 2003a; 2003b) and
super-recursive algorithms (Burgin 2003; 2005). This approach provides flexible
tools for estimating convergence and expressiveness of evolutionary processes
and algorithms, as well as for developing efficient evolutionary algorithm

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 205

architectures for solving problems in science and technology. Using these tools,
we were able to prove that to reach an optimum in a general case, an algorithmic
evolutionary processes requires, in general, an infinite number of steps. This goes
beyond classical recursive algorithms and Turing Machines. The first constructed
versions of our model, sequential evolutionary Turing machine (Eberbach 2005)
and weighted evolutionary Turing machine (Burgin and Eberbach 2007a, and
Eberbach and Burgin 2007b), provide a generic theoretical model for evolutionary
computation in the case of mono-evolution when a single agent performs evolu-
tion of generations and a single solution for one individual is designated to
represent the whole population. An evolutionary Turing machine is an extension
of the conventional Turing machine, which goes beyond the Turing machine and
belongs to the class of super-recursive algorithms (Burgin 2005).

To build efficient models of cooperating and competing agents, sequential evo-
lutionary Turing machines and weighted evolutionary Turing machines were
extended by building several new types of more powerful evolutionary Turing
machines: parallel and parallel weighted evolutionary Turing machines (Burgin
and Eberbach 2006; 2007, and Eberbach and Burgin 2007a). This made possible
to naturally estimate convergence for interacting agents as instances of multiob-
jective optimization.

In (Eberbach and Burgin 2007), several types of self-constructing evolutionary
Turing machine models are introduced, reflecting self-evolution of evolutionary
machines. These new models allow one to study evolution of solutions and evolu-
tionary algorithms at the same time. The goal is to figure out what can be gained
by adding “evolution of evolution”. We found that self-constructive abilities al-
low one to essentially increase efficiency of evolutionary processes. However,
these abilities do not increase expressiveness of recursive evolutionary algorithms
and evolutionary computation in general. To achieve higher expressiveness, it is
necessary to use more powerful algorithms, such as inductive Turing machines
(Burgin 1999; 2003; 2005) and limit Turing machines (Burgin 1993; 2005).

However, evolutionary Turing machines form only one class in a big diversity
of evolutionary finite automata introduced and studied in (Burgin and Eberbach
2009; 2009a; Eberbach and Burgin 2009). This, more general model of evolutio-
nary computation, was used to explore universality of basic evolutionary finite au-
tomata (Burgin and Eberbach 2009) and expressiveness of evolutionary finite
automata (Burgin and Eberbach 2009a; 2010).

In this chapter, we develop a general approach to evolutionary processes in the
computational context, build mathematical models of systems functioning of
which is based on evolutionary processes and study properties of such systems.
To achieve this goal, this chapter is organized as follows. In section 2, we intro-
duce and study the main concept of the mathematical theory of evolutionary ma-
chines and processes – basic evolutionary machines, special cases of which are
evolutionary Turing machines, evolutionary inductive Turing machines, evolutio-
nary limit Turing machines, evolutionary pushdown automata and evolutionary
finite automata. In Section 3, we describe and study functioning of basic evolutio-
nary machines. In section 4, we describe and study construction (generation) of
basic evolutionary machines. Section 5 contains conclusions and problems to be
solved in the future.

206 M. Burgin and E. Eberbach

2 Basic Evolutionary Machines

Evolutionary computations are artificial intelligence processes based on the
theory of natural selection and evolution. Evolutionary computations are directed
by evolutionary algorithms. In technical terms, an evolutionary algorithm is a
probabilistic beam hill climbing search algorithm directed by the chosen fitness
function. It means that the beam (population size) maintains multiple search
points, hill climbing implies that only a current search point from the search tree
is remembered and used for optimization (going to the top of the hill), and the
termination condition very often is set to the optimum of the fitness function.

Let X be the representation space, also called the optimization space, for spe-
cies (systems) used in the process of optimization and a fitness function f: X → R
is chosen.

Definition 2.1. A generic evolutionary algorithm (EA) E can be represented as the
collection E = (X, X[0], F, f, s, v, R) and described in the form of the functional
equation (recurrence relation) R working in a simple iterative loop in discrete time
t, defining generations X[t] , t = 0, 1, 2, 3, ... (Fogel 1995, Michalewicz and Fogel
2004, Fogel 2001):

 X[t+1] = s (v (X[t])),

where

– a representation space X; (e.g., X consists of fixed binary strings for genet-
ic algorithms (GAs), of Finite State Machine descriptions for evolutionary
programming (EP), of parse trees for genetic programming (GP), of vec-
tors of real numbers for evolution strategies (ES));

– selection operators si (e.g., truncation, proportional selection or tourna-
ment), i = 1,2,3,… ;

– variation operators vj (e.g., mutation, crossover or some combination of
mutations and crossover), i = 1, 2, 3, … ;

– a fitness function f: X → R, which typically takes values in the domain of
nonnegative real numbers and is extended to the subsets of the set X by the
following rule

 if Y ⊆ X, then f(Y) = max {f(x); x ∈ Y }

– a termination or search condition (goal of evolution) C;
– X[0] is an initial population;
– X[t] ⊆ X is the population produced on the (n-1)-th stage of the evolutio-

nary algorithm (EA) A;
– F ⊆ X is the set of final populations satisfying the termination condition

(goal of evolution).

Often the termination condition of an evolutionary algorithm is given as a subset F
of the representation space X. Computation halts when an element from F is ob-
tained. Another form of a termination condition is optimum (maximum or mini-
mum) of the fitness function f(x) , which is extended to the fitness function f(X[t])

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 207

of the best individual in the population X[t] ∈ F, where f(x) typically takes values
in the domain of nonnegative real numbers. Computation, for example, halts when
a maximum of the fitness function f(x) is obtained. In many cases, it is impossible
to achieve or verify this optimum. Thus, another termination condition is used
(e.g., the maximum number of generations or the lack of progress through several
generations).

Dynamics of the evolutionary algorithm A is described in the form of the func-
tional equation (recurrence relation) working in a simple iterative loop with parts
of the space X called generations in discrete time t = 0,1,2,3,... (Fogel 1995, Mi-
chalewicz and Fogel 2004, Fogel 2001):

 X[t+1] = s (v (X[t]))

This functional equation describes how the evolutionary algorithm A taking the
generation X[t] ⊆ X produces the generation X[t + 1] ⊆ X. An initial population
X[0] ⊆ X is given as the input of the evolutionary algorithm. Selection is based on
the fitness function f(x), which is often extended from elements of X to subsets of
X, giving the best value on the elements in this subset as its value for this subset.

Definition 2.1 is applicable to all typical evolutionary algorithms, including
GA, EP, ES, GP. It is possible to use it to describe other emerging subareas like
ant colony optimization, or particle swarm optimization. Of course, it is possible
to think and implement more complex variants of evolutionary algorithms.

Evolutionary algorithms evolve population of solutions X, but they may be the
subject of self-adaptation (like in ES) as well. For sure, evolution in nature is not
static, the rate of evolution fluctuates, their variation operators are subject to slow
or fast changes, and its goal (if it exists at all) can be a subject of modifications as
well.

Formally, an evolutionary algorithm looking for the optimum of the fitness
function violates some classical requirements of recursive algorithms. If its termi-
nation condition is set to the optimum of the fitness function, it may not terminate
after a finite number of steps. To fit it to the conventional algorithmic approach,
an artificial (or somebody can call it pragmatic) stop criterion has had to be added
(cf., for example, (Michalewicz 1996; Koza 1992)). To remain recursive, i.e., to
give some result after a finite number of steps, the evolutionary algorithm has to
reach the set F of final populations satisfying the termination condition after a fi-
nite number of generations or to halt when no visible progress is observable.
Usually this is a too restrictive condition, and naturally, in a general case, evolu-
tionary algorithms form a special class of super-recursive algorithms (Burgin
2005).

Now, we define a formal algorithmic model of evolutionary computation - an
evolutionary automaton also called an evolutionary machine.

Let K be a class of automata.

Definition 2.2. A basic evolutionary K-machine (BEM), also called basic evolu-
tionary K-automaton, is a (possibly infinite) sequence E = {E[t]; t = 0, 1, 2, 3, ... }
of automata E[t] from K each working on the population X[t] (t = 0, 1, 2, 3, ...)
where:

208 M. Burgin and E. Eberbach

– the automaton E[t] called a component, or more exactly, a level automaton,
of E represents (encodes) a one-level evolutionary algorithm that works
with the generation X[t] of the population by applying the variation opera-
tors v and selection operator s;

– the first generation X[0] is given as input to E and is processed by the au-
tomaton E[0], which generates/produces the first generation X[0] as its
output, which goes to the automaton E[1];

– for all t = 1, 2, 3, ... , the generation X[t + 1] is obtained by applying the
variation operator v and selection operator s to the generation X[t] and
these operations are performed by the automaton E[t], which receives X[t]
as its input;

– the goal of the BEM E is to build a population Z satisfying the search
condition.

The desirable search condition is the optimum of the fitness performance measure
f(x[t]) of the best individual from the population X[t]. There are different modes of
the BEM functioning and different termination strategies. When the search condi-
tion is satisfied, then working in the recursive mode, the BEM E halts (t stops to
be incremented), otherwise a new input population X[t + 1] is generated by E[t].
In the inductive mode, it is not necessary to halt to give the result (cf. (Burgin
2005)).When the search condition is satisfied and E is working in the inductive
mode, the BEM E stabilizes (the population X[t] stops changing), otherwise a new
input population X[t + 1] is generated by E[t].

We denote the class of all basic evolutionary machines with level automata
from K by BEAK.

An important property of living systems is their ability to change in the process
of functioning. To reflect this property, we introduce reconfigurable evolutionary
K-machines. This model of evolutionary computation is rooted in reflexive Turing
machines introduced as a generic model for programs (algorithms) that change
(improve) themselves while they are working (Burgin 1992), reconfigurable soft-
ware (Ito et al 2003) and reconfigurable and transformable computers (Thornburg
and Casselman 1994; Chow et al 1995; Casselman et al 1995).

Definition 2.3. A basic reconfigurable evolutionary K-machine (BRCEM) is a
basic evolutionary K-machine E = {E[t]; t = 0, 1, 2, 3, ... } in which it is possible
to change (transform) the automata E[t] in the process of computation.

A new direction in computer technology is based on the idea of a recofigurable
computer (Hauck and DeHon 2008). In contrast to conventional computers, a
recofigurable computer computes a function by configuring functional units and
wiring them up in space. This allows, for example, parallel computation of specif-
ic, configured operations. A recofigurable computer can be easily and quickly
modified from a remote location to upgrade its performance or even to perform a
completely different function. As a result of such advantages, reconfigurable
computers serve as powerful tools for many applications, such as research and de-
velopment tools for sophisticated electronic systems or verification on electronic
designs.

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 209

The concept of reconfigurable computing has existed since the 1960s, when
Gerald Estrin proposed the concept of a computer made of a standard processor
and an array of “reconfigurable” hardware. The mission of the main processor was
to control the behavior of the reconfigurable hardware (Estrin 1960) . The latter
would then be tailored to perform specific tasks, such as image processing or
pattern matching. Once the task was done, the hardware could be adjusted to do
some other task. This resulted in a hybrid computer structure combining the
flexibility of software with the speed of hardware. When suggested, this idea was
far ahead of its time in needed electronic technology. That is why only in the
eighties and nineties, different researchers proposed various reconfigurable
architectures developed in industry and academia, such as Matrix, Elixent, PACT
XPP, Silicon Hive, Montium, Pleiades, Morphosys, and PiCoGA (Hauck and
DeHon 2008). These designs were feasible due to the constant progress of silicon
technology that let complex designs be implemented on one chip. The world's first
commercial reconfigurable computer, the Algotronix CHS2X4, was completed in
1991 (Hartenstein 2001).

An important class of evolutionary machines is evolutionary finite automata
(Burgin and Eberbach 2009a).

Definition 2.4. An evolutionary finite automaton (EFA) is an evolutionary ma-
chine E in which all automata E[t] are finite automata G[t] each working on the
population X[t] in generations t = 0, 1, 2, 3, ...

We denote the class of all evolutionary finite automata by EFA.
It is possible to consider deterministic finite automata, which form the class

DFA, and nondeterministic finite automata, which form the class NFA. This gives
us two classes of evolutionary finite automata: EDFA of all deterministic evolu-
tionary finite automata and ENFA of all nondeterministic evolutionary finite au-
tomata.

Note that it is also possible to consider reconfigurable evolutionary finite auto-
mata.

Evolutionary Turing machines (Eberbach 2005; Burgin and Eberbach 2008) are
another important class of evolutionary machines.

Definition 2.5. An evolutionary Turing machine (ETM) E = {TM[t]; t = 0, 1, 2, 3,
...} is an evolutionary machine E in which all automata E[t] are Turing machines
TM[t] each working on population X[t] in generations t = 0, 1, 2, 3, ...

Turing machines TM[t] as components of the ETM E perform multiple compu-
tations in the sense of (Burgin 1983).

Note that it is also possible to consider reconfigurable evolutionary Turing ma-
chines.

Variation and selection operators are recursive to allow problem computation
on Turing machines. So, it is natural to assume that the same Turing machine
computes values of the fitness function f. This brings us to the concepts of
weighted Turing machines and weighted evolutionary Turing machines, which
were introduced and studied in (Burgin and Eberbach 2008).

210 M. Burgin and E. Eberbach

Note that it is possible to define also the class of evolutionary pushdown auto-
mata EPDA and evolutionary linearly bounded automata ELBA as evolutionary
extensions of pushdown automata and linearly bounded automata, respectively.

Definition 2.6. A weighted Turing machine (T, f) computes a pair (x, f(x)) where x
is a word in the alphabet of T and f(x) is the value of the evaluation function f of
the machine (T, f).

Examples of weighted Turing machines are fuzzy Turing machines (Wieder-
mann 2004), which are theoretical model for fuzzy algorithms (Zadeh 1968; Zheru
Chi et al 1996).

Another example of weighted Turing machines in particular and weighted algo-
rithms in general are Turing machines that compute recursive real numbers and
recursive real-valued functions (Rice 1951; Freund 1983).

Weighted algorithms find applications in many areas (cf., for example, (JiJi, et
al, 2000) for chemistry or (Arya, et al, 2001) for planar point location).

It is necessary to remark that only in some cases it is easy to compute values of
the fitness function f. Examples of such situations are such fitness functions as the
length of a program or the number of parts in some simple system. However, in
many other cases, computation of the values of the fitness function f can be based
on a complex algorithm and demand many operations. For instance, when the op-
timized species are programs and the fitness function f is time necessary to
achieve the program goal, then computation of the values of the fitness function f
can demand functioning or simulation of programs generated in the evolutionary
process. We encounter similar situations when optimized species are computer
chips or parts of plane or cars. In this case, computation of the values of the fitness
function f involves simulation.

Weighted computation realized by weighted Turing machines allows us to ex-
tend the formal algorithmic model of evolutionary computation taking the class of
all weighted Turing machines as K and defining a weighted evolutionary Turing
machine as a basic evolutionary K-machine or basic evolutionary K-automaton.

Definition 2.7. A basic weighted evolutionary Turing machine (WETM) E =
{TM[t]; t = 0, 1, 2, 3, ... } is a series of (possibly infinite) weighted Turing ma-
chines TM[t] each working on population X[t] in generations t = 0, 1, 2, 3, ...
where:

– each δ[t] transition function (rules) of the weighted Turing machine TM[t]
represents (encodes) an evolutionary algorithm that works with the popula-
tion X[t], and evolved in generations 0, 1, 2, ... , t;

– only generation X[0] is given in advance, and any other generation depends
on its predecessor only, i.e., the outcome of the generation t = 0, 1, 2, 3, ...
is the generation X[t + 1] obtained by applying the recursive variation v
and selection s operators working on generation X[t] and computing the
fitness function f for the generation X[t + 1];

– the goal (or halting) state of WETM E is a population X[t] satisfying the
termination condition;

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 211

– when the termination condition is satisfied, then the WETM E halts (t
stops to be incremented), otherwise a new input population X[t + 1] is gen-
erated by TM[t + 1].

The desirable termination condition usually is the optimum of the fitness perfor-
mance measure f(x[t]) of the best individual from the population X[t].

In general, because the fitness function can be the subject of evolution as well,
evolution is potentially an infinite process. Changing the transition function δ[t] of
the Turing machines can be thought as some kind of evolvable hardware, or as-
suming fixed hardware, we can think about reprogrammable evolutionary algo-
rithms. Mathematical models of Turing machines in which the transition function
δ[t] changes while the machine performs computation are reflexive Turing ma-
chines (Burgin 1992).

We do not consider here such ETM that change transition functions δ[t] and/or
memory of the Turing machines TM[t] or/and fitness functions. We study these
machines in another work. Note that the memory of conventional Turing machines
and inductive Turing machines consists of n-dimensional tapes (usually n is equal
to one) and is not changing in computational processes. Turing machines and in-
ductive Turing machines with structured memory allow one to change this memo-
ry in the process of computation (Burgin 2005). This feature of machines can es-
sentially improve their efficiency.

One more class of evolutionary K-machines are basic evolutionary inductive
Turing machines introduced and studied in (Burgin and Eberbach 2009; 2009a).

Definition 2.8. A basic evolutionary inductive Turing machine (EITM) EI =
{ITM[t]; t = 0, 1, 2,...} is an evolutionary machine E in which all level automata
E[t] are inductive Turing machines ITM[t] (Burgin 2005) each working on the
population X[t] in generations t = 0, 1, 2, ...

Simple inductive Turing machines are abstract automata (models of algorithms)
closest to Turing machines. The difference between simple inductive Turing ma-
chines and Turing machines is that a Turing machine always gives the final result
after a finite number of steps and after this it stops the process of computation or,
at least, the machine informs when the result is obtained. There are different ways
to inform that the final result is obtained. For instance, it is possible to have a spe-
cial symbol in the output alphabet. This symbol is used only to indicate that what
is in the output tape is the final result. Thus, when a Turing machine comes to a
final state, it repeats the output with this special symbol, indicating that this is the
final result. Another way to inform that the final result is obtained is to halt after
obtaining this result. It is always possible to assume that after obtaining the final
result, the Turing machine stops (cf., for example, (Hopcroft et al 2001)). When
starting with some input x, a Turing machine never comes to a final state, it does
not give its final result for this input.

In a similar way, inductive Turing machines give the final result after a finite
number of steps. However, in contrast to Turing machines, inductive Turing ma-
chines do not always stop the process of computation or inform when the final re-
sult is obtained. In some cases, they do this, while in other cases they continue

212 M. Burgin and E. Eberbach

their computation and give the final result. Namely, when the content of the output
tape of a simple inductive Turing machine forever stops changing, it is the final
result.

Definition 2.9. An evolutionary inductive Turing machine (EITM) EI = {ITM[t]; t
= 0, 1, 2, ...} has order n if all inductive Turing machines ITM[t] have order less
than or equal to n and at least, one inductive Turing machine ITM[t] has order n.

We remind (cf. (Burgin 2005)) that inductive Turing machines with recursive
memory are called inductive Turing machines of the first order. The memory E is
called n-inductive if its structure is constructed by an inductive Turing machine of
the order n. Inductive Turing machines with n-inductive memory are called induc-
tive Turing machines of the order n + 1.

We denote the class of all evolutionary inductive Turing machines of the order
n by EITMn .

Note that it is also possible to consider weighted evolutionary inductive Turing
machines and reconfigurable evolutionary inductive Turing machines.

Remark 2.1. It is often assumed that variation and selection operators are recur-
sive to ensure that all computing steps of machines ITM[t] are recursive. Other-
wise, we go beyond inductive Turing machines of the first order (Burgin 2005).
However, it is possible to release this restriction to allow nonrecursive steps and
solutions.

Taking limit Turing machines (Burgin 2005) as the class K, we obtain one
more class of evolutionary K-machines called basic evolutionary limit Turing ma-
chines.

Definition 2.10. A basic evolutionary limit Turing machine (ELTM) EI =
{LTM[t]; t = 0, 1, 2,...} is an evolutionary machine E in which all automata E[t]
are limit Turing machines LTM[t] [2] each working on the population X[t] in gen-
erations t = 0, 1, 2,...

When the search condition is satisfied, then the ELTM EI stabilizes (the popu-
lation X[t] stops changing), otherwise a new input population X[t + 1] is generated
by LTM[t].

Similar to inductive Turing machines, limit Turing machines with recursive
memory are called inductive Turing machines of the first order (cf. (Burgin,
2005). Limit Turing machines with n-inductive memory are called inductive Tur-
ing machines of the order n + 1.

Definition 2.11. An evolutionary limit Turing machine (ELTM) EI = {LTM[t]; t =
0, 1, 2, ...} has order n if all limit Turing machines LTM[t] have order less than or
equal to n and at least, one limit Turing machine LTM[t] has order n.

We denote the class of all evolutionary limit Turing machines of the order n by
ELTMn .

Note that it is also possible to consider weighted evolutionary limit Turing ma-
chines and reconfigurable evolutionary limit Turing machines.

Let us obtain some initial properties of basic evolutionary machines.

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 213

Lemma 2.1. If K ⊆ H, then BEAK ⊆ BEAH.

Lemma 2.2. If K = H ∪ G, then BEAH ∪ BEAG ⊆ BEAK.

Lemma 2.3. If K = H ∩ G, then BEAK ⊆ BEAH ∩ BEAG.

Basic evolutionary K-machines from BEAK are called unrestricted because se-
quences of the level automata and the mode of the evolutionary machines func-
tioning are arbitrary.

At the same time, it is possible to consider only basic evolutionary K-machines
from BEAK in which sequences of the level automata have some definite type Q.
Such machines are called Q-formed basic evolutionary K-machines and their class
is denoted by BEAKQ.

As abstract automata are represented by words, their sequences are also
represented by sequences of words. Thus, it is possible to assume that Q is a class
(type) of sequences of words.

We consider here the following key classes of sequences:

1. The class FS of all finite sequences.
2. The class PS of all periodic sequences.
3. The class APS of all almost periodic sequences, i.e., sequences that consist of

two parts: the finite sequence at the beginning (called the “head”) and a period-
ic sequence (called the “tail”) that goes after the first part.

4. The class DS of all decidable sequences, i.e., sequences such that for any se-
quence l and any automaton A from K, it is possible to find whether A belongs
to the sequence l or does not belong.

5. The class SDS of all semidecidable sequences, i.e., sequences such that for any
sequence l and any automaton A from K, it is possible to find whether A be-
longs to the sequence l.

6. The class RES of all recursively enumerable sequences with respect to some
enumeration ν of the class K, where a sequence l is recursively enumerable
when there is a recursive algorithm C (e.g., a Turing machine) such that deter-
mines (computes numbers of elements from the sequence l.

7. The class of all inductively enumerable sequences with respect to some enume-
ration ν of the class K, where a sequence l is inductively enumerable when
there is an inductively algorithm C (e.g., an inductive Turing machine) such
that determines (computes numbers of elements from the sequence l.

Note that in a general case, evolutionary automata cannot be codified by (finite)
words, while this condition is essential for many results in this paper. That is why
we consider classes of evolutionary automata that can be codified by finite words,
such as bounded, periodic and almost periodic evolutionary automata.

Thus, when the type Q contains all finite sequences, we have bounded basic
evolutionary K-machines.

Definition 2.12. a) An evolutionary machine (evolutionary automaton) E = {E[t];
t = 0, 1, 2, 3, ... , n - 1} is called an n-level bounded evolutionary machine (auto-
maton) or an FS-formed basic evolutionary machine.

214 M. Burgin and E. Eberbach

b) The number n of levels is called the length of the evolutionary machine (evo-
lutionary automaton) E.

Basic bounded evolutionary K-machines are studied in (Burgin and Eberbach
2010) for such classes K as finite automata, push down automata, Turing ma-
chines, inductive Turing machines and limit Turing machines.

Here are some results describing properties of basic bounded evolutionary K-
machines.

As we know from the theory of automata and computation, it is proved that dif-
ferent automata or different classes of automata are equivalent. However there are
different kinds of equivalence. Here we consider two of them: functional equiva-
lence and linguistic equivalence.

Definition 2.13 (Burgin 2010). a) Two automata (machines) A and B are function-
ally equivalent if given the same input, they give the same output.

b) Two classes of automata A and B are functionally equivalent if for any au-
tomaton from A, there is a functionally equivalent automaton from B and vice
versa.

For instance, it is proved that deterministic and nondeterministic Turing ma-
chines are functionally equivalent (Hopcroft et al 2001). Similar results are proved
for evolutionary machines. An example of such result is given below.

Theorem 2.1 (Burgin and Eberbach 2010). For any n-level evolutionary finite au-
tomaton E, there is a finite automaton AE functionally equivalent to E.

One more important type of automata equivalence is linguistic equivalence.

Definition 2.14 (Burgin 2010). a) Two automata (machines) A and B are linguisti-
cally equivalent if they accept (generate) the same language, i.e., L(A) = L(B).

b) Two classes of automata A and B are linguistically equivalent if they accept
(generate) the same class of languages.

For instance, it is proved that deterministic and nondeterministic finite automa-
ta are linguistically equivalent (cf., for example, (Hopcroft et al 2001)). Similar re-
sults are proved for evolutionary automata. An example of such result is given
below.

Corollary 2.1 (Burgin and Eberbach 2010). For any n-level evolutionary finite au-
tomaton E, there is a finite automaton AE linguistically equivalent to E.

Proof directly follows from Theorem 2.1 because as it is proved in (Burgin
2010), functional equivalence implies linguistic equivalence.

When the type Q contains all periodic sequences, we have periodic basic evolu-
tionary K-machines.

Definition 2.15. a) An evolutionary machine (evolutionary automaton) E is called
periodic or an PS-formed basic evolutionary machine if the sequence E = {E[t]; t
= 0, 1, 2, 3, ...} of automata E[t] from K is either finite or periodic, i.e., there is a
finite initial segment of this sequence such that the whole sequence is formed by
infinite repetition of this segment.

b) The repeating sequence is called the automaton period of the evolutionary
machine E and the number of automata in the period is called the numerical pe-
riod, or simply, period, of the automaton period of the evolutionary machine E.

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 215

Periodic basic evolutionary K-machines are studied in (Burgin and Eberbach
2010) for such classes K as finite automata, pushdown automata, Turing ma-
chines, inductive Turing machines and limit Turing machines.

Lemma 2.3. If an evolutionary K-machine K = {K[t]; t = 0, 1, 2, 3, ... k} is func-
tionally equivalent to an evolutionary K-machine H = {H[t]; t = 0, 1, 2, 3, ... k}
and an evolutionary K-machine G = {G[t]; t = 0, 1, 2, 3, ... k} is functionally
equivalent to an evolutionary K-machine F = {F[t]; t = 0, 1, 2, 3, ... k}, then the
evolutionary K-machine V = K ° G = { K[0], K[1], K[2], … , K[k], G[0], G[1],
G[2t], ... } is functionally equivalent to the evolutionary K-machine W = H ° F = {
H[0], H[1], H[2], … , H[k], F[0], F[1], F[2t], ... }.

It means that functional equivalence is closed with respect to the sequential
composition of evolutionary machines.

As functional equivalence is stronger than linguistic equivalence (Burgin,
2010), we obtain the following result.

Corollary 2.2. If an evolutionary K-machine K = {K[t]; t = 0, 1, 2, 3, ... k} is lin-
guistically equivalent to an evolutionary K-machine H = {H[t]; t = 0, 1, 2, 3, ... k}
and an evolutionary K-machine G = {G[t]; t = 0, 1, 2, 3, ... k} is linguistically
equivalent to an evolutionary K-machine F = {F[t]; t = 0, 1, 2, 3, ... k}, then the
evolutionary K-machine V = K ° G = { K[0], K[1], K[2], … , K[k], G[0], G[1],
G[2t], ... } is linguistically equivalent to the evolutionary K-machine W = H ° F =
{ H[0], H[1], H[2], … , H[k], F[0], F[1], F[2t], ... }.

It means that linguistic equivalence is also closed with respect to the sequential
composition of evolutionary machines.

Here are some results describing properties of basic periodic evolutionary K-
machines.

Theorem 2.2 (Burgin and Eberbach 2010). Any periodic evolutionary finite au-
tomaton F with the period k > 1 is functionally equivalent to a periodic evolutio-
nary finite automaton E with the period 1.

Corollary 2.1 (Burgin and Eberbach 2010). Any periodic evolutionary finite au-
tomaton E is functionally equivalent to a one-dimensional one-way cellular auto-
maton.

Proof directly follows from Theorem 2.2 because any periodic evolutionary
finite automaton with the period 1 is a one-dimensional one-way cellular
automaton.

It is proved that functional equivalence is stronger than linguistic equivalence
(Burgin, 2010). This allows us to obtain the following results.

Corollary 2.2. Any periodic evolutionary finite automaton F with the period k > 1
is linguistically equivalent to a periodic evolutionary finite automaton E with the
period 1.

Corollary 2.3. Any periodic evolutionary finite automaton E is linguistically
equivalent to a one-dimensional one-way cellular automaton.

216 M. Burgin and E. Eberbach

When the type Q contains all almost periodic sequences, i.e., sequences that
consist of two parts: the finite sequence at the beginning and a periodic sequence,
we have almost periodic basic evolutionary K-machines.

Definition 2.16. a) An evolutionary machine (evolutionary automaton) E is called
almost periodic or an PS-formed basic evolutionary machine if the sequence E =
{E[t]; t = 0, 1, 2, 3, ...} of automata E[t] from K consists of two parts: the finite
sequence at the beginning (called the “head”) and a periodic sequence (called the
“tail”), which goes after the first part and is formed by infinite repetition of its ini-
tial finite segment. Each of these parts may be empty.

b) The repeating sequence is called the automaton period of the evolutionary
machine E and the number of automata in the period is called the numerical pe-
riod, or simply, period, of the automaton period of the evolutionary machine E.

Theorem 2.3. Any almost periodic evolutionary finite automaton F with the pe-
riod k > 1 is functionally equivalent to an almost periodic evolutionary finite au-
tomaton E with the period 1 and the head with length 1.

 Proof. Let us consider an arbitrary almost periodic evolutionary finite automa-
ton E = {E[t]; t = 0, 1, 2, 3, ...}. By Definition 2.14, the sequence {E[t]; t = 0, 1, 2,
3, ...} of finite automata E[t] consists of two parts: the head H = {E[t]; t = 0, 1, 2,
3, ... k} and the tail T = {E[t]; t = k + 1, k + 2, k + 3, ...}. By Definition 3.1, H is an
n-level evolutionary finite automaton.

As the head H = {E[t]; t = 0, 1, 2, 3, ... , k} is finite, by Corollary 2.1, the evolu-
tionary machine H is functionally equivalent to a finite automaton AH .

The tail T = {E[t]; t = k + 1, k + 2, k + 3, ...} is either finite or periodic, i.e.,
there is a finite initial segment of this sequence such that the whole sequence is
formed by infinite repetition of this segment. When the sequence {E[t]; t = k + 1, k
+ 2, k + 3, ...} of automata E[t] from K is finite, then by Corollary 2.1, the evolu-
tionary machine T is functionally equivalent to a finite automaton AT . By Defini-
tion 4.1, AT is a periodic evolutionary finite automaton with the period 1. By
Lemma 2.3, the evolutionary automaton E is functionally equivalent to the evolu-
tionary automaton Ef = { E[0] = AH , E[1] = AT }. It is possible to consider AH as
the head and AT as the tail of the automaton Ef . As the length of AH is equal to 1
and the length of AT is equal to 1, in this case, theorem is proved.

Now let us assume that the tail T = {E[t]; t = k + 1, k + 2, k + 3, ...} of the au-
tomaton E is infinite. As it is a periodic evolutionary machine, by Theorem 2.2,
there is a periodic evolutionary finite automaton ET = {ET[t]; t = 0, 1, 2, 3, ...} with
the period 1, i.e., ET[t] = A for all t = 0, 1, 2, 3, ... , which is functionally equiva-
lent to T. Thus, evolutionary machine E is functionally equivalent to the almost
periodic evolutionary finite automaton B = { B[0] = AH , B[1] = A, B[2] = A, B[3] =
A, ...} of where automata B[t] coincide with A for all t = 1, 2, 3, Thus, B is an
almost periodic evolutionary finite automaton with the period 1 and the head with
length 1.

Theorem is proved.
As functional equivalence is stronger than linguistic equivalence (Burgin,

2010), we obtain the following result.

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 217

Corollary 2.4. Any almost periodic evolutionary finite automaton F with the pe-
riod k > 1 is linguistically equivalent to an almost periodic evolutionary finite au-
tomaton E with the period 1 and the head with length 1.

3 Computations by Evolutionary Machines

Another condition on evolutionary machines determines their type and mode of
functioning or computation. According to the theory of algorithms and computa-
tion, there are three basic types of automaton functioning (Burgin 2005; 2010):

Computing type of functioning is when the automaton receives an input
and gives an output. Automata working in the computing manner are called
transducers.

Accepting type of functioning is when the automaton receives an input and ei-
ther accepts this input or does not accept it. Automata working only in the accept-
ing manner are called acceptors.

Generating type of functioning is when the automaton does not receive an input
but gives an output. Automata working only in the generating manner are called
generators.

Note that acceptors can also give some output although their result is either ac-
ceptance or rejection, i.e., the result and output are not the same for acceptors. Be-
sides, this shows that a transducer can work in the accepting manner.

There are also three additional types of automaton functioning (Burgin 2010):
decidability, semidecidability and semi-codecidability.

Evolutionary machines consist of components called level automata. This
means that there are local and global modes of evolutionary machines functioning,
i.e., functioning of each level automaton in the evolutionary machine goes accord-
ing to the local mode, while functioning of the whole evolutionary machine goes
according to the global mode

When all automata in a class K are transducers or generators, they give output.
In a general case, this output consists of two parts: transaction output and terminal
output.

Definition 3.1. Transaction output of the level automaton E[t] is the generation
X[t], which is transmitted to the next level automaton E[t + 1].

This means that the transaction output always remains in the evolutionary ma-
chine, providing interaction of the components.

Definition 3.2. Terminal output of the level automaton E[t] is given for some ex-
ternal system, e.g., for the user.

For instance, the level automaton E[t] can inform the user about the maximal or
minimal value of the fitness function f(x) for the generation X[t], i.e., the optimum
of the fitness performance measure f(x[t]) of the best individual from the popula-
tion X[t].

Note that to work in the computing manner, an evolutionary machine has to
give some terminal outputs.

At first, let us we consider the following global accepting modes of evolutio-
nary automaton functioning.

218 M. Burgin and E. Eberbach

1. The existential mode is characterized by the rule: An evolutionary automaton
E accepts the generation X[0], e.g., in the form of a word w, given to the level
automaton E[0] as input if and only if there is a level automaton E[t] that ac-
cepts the generation X[t - 1] (which can be also in the form of a word) pro-
duced by the level automaton E[t - 1].

2. The coexistential mode is characterized by the rule: An evolutionary automa-
ton E rejects the generation X[0], e.g., in the form of a word w, given to the
level automaton E[0] as input if and only if there is a level automaton E[t] that
rejects the generation X[t - 1] (which can be also in the form of a word) pro-
duced by the level automaton E[t - 1].

3. The universal mode is characterized by the rule: An evolutionary automaton E
accepts the generation X[0], e.g., in the form of a word w, given to the level au-
tomaton E[0] as input if and only if all level automata E[t] accept the corres-
ponding generation X[t - 1] (which can be also in the form of a word) produced
by the level automaton E[t - 1].

4. The couniversal mode is characterized by the rule: An evolutionary automaton
E rejects the generation X[0], e.g., in the form of a word w, given to the level
automaton E[0] as input if and only if all level automata E[t] reject the corres-
ponding generation X[t - 1] (which can be also in the form of a word) produced
by the level automaton E[t - 1].

5. The infinitary mode is characterized by the rule: An evolutionary automaton E
accepts the generation X[0] given to the level automaton E[0] as input if and
only if there are infinitely many level automata E[t] each of which accepts the
generation X[t - 1] produced by the level automaton E[t - 1].

6. The cofinitary mode is characterized by the rule: An evolutionary automaton E
accepts the generation X[0] given to the level automaton E[0] as input if and
only if almost all, i.e., all but a finite number of, level automata E[t] accept the
corresponding generation X[t - 1] (which can be also in the form of a word)
produced by the level automaton E[t - 1].

7. The n-ary mode is characterized by the rule: An evolutionary automaton E ac-
cepts the generation X[0] given to the level automaton E[0] as input if and only
if the level automaton E[n] accepts the generation X[t - 1] produced by the lev-
el automaton E[t - 1].

8. The complete n-ary mode is characterized by the rule: An evolutionary auto-
maton E accepts the generation X[0] given to the level automaton E[0] as input
if and only if each level automaton E[t] accepts the generation X[t - 1] pro-
duced by the level automaton E[t - 1] for all = 0, 1, 2, … , t.

9. The componential mode when the input is accepted by parts is characterized by
the rule: An evolutionary automaton E accepts the generation X[0], e.g., in the
form of a word w, given to the level automaton E[0] as input if and only if the
generation X[0], e.g., in the form of a word w, consists of parts X0 , X1 , X2 ,
… , Xk , e.g., the word w is equal to w1w2 … wk , and each level automaton E[t]
accepts the corresponding part Xt (the word wt) where t = 0, 1, 2, … , k.

Let us consider how different modes of functioning influence properties of evolu-
tionary automata and what relations between evolutionary automata they induce.
At first, we reflect on automata working in the accepting mode.

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 219

Definition 3.3 (Burgin 2005). An automaton B is dual to an automaton A if A ac-
cepts a word w if and only if the automaton B rejects w.

For finite automata, duality is characterized linguistically as properties of finite
automata (cf., for example, (Hopcroft et al 2001)) show.

Let us take two finite automata A and B.

Proposition 3.1. The automaton B is dual to the automaton A if and only if L(B) is
equal to the complement CL(A) of the language L(A).

The same result is true for any total automaton, i.e., for an automaton that al-
ways either accepts a word or rejects it.

Proposition 3.2. An automaton B is dual to a total automaton A if and only if L(B)
is equal to the complement CL(A) of the language L(A).

Note that while the dual automaton is uniquely up to the linguistic equivalence
determined in the domain of finite automata, in a general case, for example, for
Turing machines, this not true, i.e., one Turing machine can have many dual Tur-
ing machines. However, in some cases, uniqueness may be true for Turing ma-
chines and more powerful automata.

Proposition 3.3. If A is a total automaton, then its dual automaton is uniquely de-
fined up to the linguistic (functional) equivalence.

Corollary 3.1. If A is a total Turing machine, then its dual Turing machine is uni-
quely defined up to the linguistic equivalence.

Corollary 3.2. If A is a total inductive Turing machine, then its dual inductive
Turing machine is uniquely defined up to the linguistic equivalence.

Corollary 3.3. If A is a total evolutionary finite automaton, then its dual evolutio-
nary finite automaton is uniquely defined up to the linguistic equivalence.

Corollary 3.4. If A is a total evolutionary Turing machine, then its dual evolutio-
nary Turing machine is uniquely defined up to the linguistic equivalence.

Corollary 3.5. If A is a total evolutionary inductive Turing machine, then its dual
evolutionary inductive Turing machine is uniquely defined up to the linguistic
equivalence.

Proposition 3.4. a) An evolutionary machine E working in the global couniversal
accepting mode is dual to the machine E working in the global universal accepting
mode.

b) An evolutionary machine E working in the global coexistential accepting
mode is dual to the machine E working in the global existential accepting mode.

This result shows that there is a duality between different modes of functioning.
Proposition 3.3 implies the following result..

Proposition 3.5. If an automaton A is total, an automaton B dual to A and an au-
tomaton C dual to B, then the automaton C is functionally and linguistically
equivalent to the automaton A.

We remind that the acceptance language Lacc(A) of an automaton A is the set of
all words accepted by A.

220 M. Burgin and E. Eberbach

Proposition 3.6. If an evolutionary machine E works either in the global universal
accepting mode or in the infinitary mode or in the cofinitary mode and all its level
automata work in the local accepting mode, then the language Lacc(E) of E is emp-
ty when at least one of its components does not accept the empty word or it con-
sists only of the empty word.

Indeed, any automaton E[t] with t > 1 does not receive any input or what is
equivalent, receives only the empty word ε as its input. Thus, assuming that E
works in the global universal accepting mode, when all automata E[t] accept ε, we
have Lacc(E) = {ε} by the definition of the global universal accepting mode. When
at least one automaton E[t] does not accept ε, we have Lacc(E) = ∅ by the same de-
finition.

The same is true when E works in the infinitary mode or in the cofinitary mode.

Proposition 3.7. If an evolutionary machine E works in the global existential ac-
cepting mode and all its level automata work in the local accepting mode, then
there are two possibilities for the language Lacc(E) of E: 1) Lacc(E) coincides with
the language Lacc(E[0]) of E[0] when either E[0] accepts the empty word or all
components E[t] do not accept the empty word;

2) Lacc(E) is of the union of the language Lacc(E[0]) of its first component E[0]
and the empty word.

Indeed, any automaton E[t] with t > 1 does not receive any input or what is
equivalent, receives only the empty word ε as its input. Thus, when all automata
E[t] accept ε, we have Lacc(E) = Lacc(E[0]) by the definition of the global existen-
tial accepting mode.

When all automata E[t] do not accept ε, we have Lacc(E) = Lacc(E[0]) by the
same definition.

When at least one automaton E[t] with t > 1 accepts ε but E[0] does not accept
ε, we have Lacc(E) = Lacc(E[0]) ∪{ε}by the definition of the global existential ac-
cepting mode.

Proposition 3.7 is proved.
Proposition 3.7 implies the following result.

Corollary 3.6. If an evolutionary machine E works in the global existential ac-
cepting mode, all its level automata work in the local accepting mode and its first
component accepts the empty word, then E is linguistically equivalent to its first
component.

Proposition 3.8. For any n-level evolutionary finite automaton E, complete n-ary
and universal accepting modes give the same results.

This result shows that there is functional equivalence between different modes
of functioning.

Corollary 3.7. The class of all n-level evolutionary finite automata that work in
the complete n-ary accepting mode is linguistically equivalent to the class of all n-
level evolutionary finite automata that work in the universal accepting mode.

In some cases, the structure of an automaton is not correlated with its mode of
functioning.

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 221

Proposition 3.9. The language of an n-level evolutionary finite automaton E =
{E[0] , E[1] , E[2] , E[3] , ... , E[n - 1] } that works in the infinitary accepting
mode is empty.

In some modes of functioning, the structure of an automaton does not influence
the final result.

Proposition 3.10. The language of an n-level evolutionary finite automaton E that
works in the cofinitary accepting mode contains all words in the alphabet of the
automata from K.

In some cases, the evolutionary structure of an automaton does not increase its
power.

Proposition 3.11. The language of an n-level evolutionary finite automaton E that
works in the k-ary mode (k ≤ n) is regular.

Corollary 3.8. The class of all n-level evolutionary finite automata that work in
the n-ary accepting mode is equivalent to the class of all accepting finite automata.

Proposition 3.12. The class of all languages of evolutionary finite automata that
work in the n-ary accepting mode coincides with the class of all regular languages.

Corollary 3.9. The class of all evolutionary finite automata that work in the n-ary
accepting mode is linguistically equivalent to the class of all accepting finite au-
tomata.

Proposition 3.13. For any 1-level evolutionary finite automaton E, 1-ary, com-
plete n-ary for any n > 0, existential and universal accepting modes produce the
same results.

This result shows that there is functional equivalence between different modes
of functioning.

Corollary 3.10. The classes of all 1-level evolutionary finite automata that work
in the complete n-ary accepting mode, of all 1-level evolutionary finite automata
that work in the universal accepting mode, of all 1-level evolutionary finite auto-
mata that work in the existential accepting mode and of all finite automata are lin-
guistically equivalent.

Let us assume that all generations are represented by words in some alphabet.

Proposition 3.14. An n-level evolutionary finite automaton E = {E[0] , E[1] , E[2]
, E[3] , ... , E[n - 1] } that works in the componential accepting mode is linguisti-
cally equivalent to the sequential composition of the automata E[0] , E[1] , E[2] ,
E[3] , ... , E[n - 1] .

Corollary 3.11. The class of all evolutionary finite automata that work in the
componential accepting mode is linguistically equivalent to the class of all finite
automata.

Let us also consider global computing modes of basic evolutionary automaton
functioning.

222 M. Burgin and E. Eberbach

1. The finite-state mode: any computation is going by state transition where states
belong to a fixed finite set.

2. The bounded mode: the number of steps of all computations is bounded by the
same number.

3. The terminal or finite mode: the number of steps in any computation is finite.
4. The inductive mode: the computation goes into one direction, i.e., without re-

versions, and if for some t, the generation X[t] stops changing, i.e., X[t] = X[q]
for all q > t, then X[t] is the result of computation.

5. The limit mode: the computation goes into one direction and the result of com-
putation is the limit of the generations X[t].

6. The componential mode when the input is accepted by parts is characterized
by the rule:

An evolutionary automaton E accepts the generation X[0], e.g., in the form of a
word w, given to the level automaton E[0] as input if and only if the generation
X[0], e.g., in the form of a word w, consists of parts X0 , X1 , X2 , … , Xk , e.g., the
word w is equal to w1w2 … wk , and each level automaton E[t] accepts the corres-
ponding part Xt (the word wt) where t = 0, 1, 2, … , k.

Proposition 3.15. If an evolutionary machine E works in the global computing
mode, while all its level automata work in the local accepting mode, then E does
not give output and its language is empty.

This result shows that in some modes of functioning, the structure of an auto-
maton does not influence the final result.

Proposition 3.16. An evolutionary K-machine E that works in the bounded by n
computing mode is functionally equivalent to an n-level evolutionary K-machine
H = {H[0] , H[1] , H[2] , H[3] , ... , H[n - 1] }.

Let us assume that all generations are represented by words in some alphabet.

Proposition 3.17. An n-level evolutionary finite automaton E = {E[0] , E[1] , E[2]
, E[3] , ... , E[n - 1] } that works in the componential computing mode is function-
ally equivalent to the sequential composition of the automata E[0] , E[1] , E[2] ,
E[3] , ... , E[n - 1] .

Corollary 3.12. The class of all evolutionary finite automata that work in the
componential computing mode is functionally equivalent to the class of all finite
automata.

It is proved that functional equivalence is stronger than linguistic equivalence
(Burgin, 2010). This allows us to obtain the following results.

Corollary 3.13. An n-level evolutionary finite automaton E = {E[0] , E[1] , E[2] ,
E[3] , ... , E[n - 1] } that works in the componential mode is linguistically equiva-
lent to the sequential composition of the automata E[0] , E[1] , E[2] , E[3] , ... ,
E[n - 1] .

Corollary 3.14. The class of all evolutionary finite automata that work in the
componential mode is linguistically equivalent to the class of all finite automata.

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 223

4 Construction of Evolutionary Machines

Our approach to generation or construction of evolutionary machines is based on
the concept of a reflexive Turing machine suggested as a generic model for soft-
ware and hardware that change (improve) themselves while they are working
(Burgin 1992). This model was developed to test the conjecture of Kleene that an
algorithm that changes (improves) itself while working can have higher computa-
tional/decision power that Turing machines (Kleene 1960). In (Burgin 1992), it is
proved that a Turing machine can simulate any reflexive Turing machine. This
disproved the Kleene conjecture and gave more evidence in support of the
Church-Turing Thesis, although at that time it was known that the Church-Turing
Thesis in its strong form (equating all possible computations with Turing ma-
chines) is invalid (Burgin 1987). In (Eberbach 1993) and (Eberbach 1994) self-
modifying algorithms have been studied in the context of a Calculus of
Self-modifying Algorithms (CSA).

There are different forms of evolutionary machine construction/generation,
which are classified here according to their construction/generation procedure:

1. Local static independent construction (generation) of a basic evolutionary K-
machine E = {E[t]; t = 0, 1, 2, ... } is performed by the level automata E[t] so
that E[t] constructs E[t + 1] and the result does not depend on the input to E[t]
and on the previous level automata E[k].

2. Local static sequential construction (generation) of a basic evolutionary K-
machine E = {E[t]; t = 0, 1, 2, ...} is performed by the level automata E[t] so
that E[t] constructs E[t + 1] and the result does not depend on the input to E[t]
but may depend on the previous level automata E[k].

3. Local dynamic independent construction (generation) of a basic evolutionary
K-machine E = {E[t]; t = 0, 1, 2, ... } is performed by the level automata E[t] so
that E[t] constructs E[t + 1] and the result does not on the previous level auto-
mata E[k] but may depend on the input to E[t].

4. Local dynamic sequential construction (generation) of a basic evolutionary K-
machine E = {E[t]; t = 0, 1, 2, ... } is performed by the level automata E[t] so
that E[t] constructs E[t + 1] and the result depends on the input to E[t] and on
the previous level automata E[k].

5. Global static construction (generation) of a basic evolutionary K-machine E =
{E[t]; t = 0, 1, 2, ... } is performed by a separate automaton C so that it con-
structs E and then E starts working.

6. Global dynamic construction (generation) of a basic evolutionary K-machine E
= {E[t]; t = 0, 1, 2, ... } is performed by a separate automaton C so that con-
struction of E depends on the first input X[0].

7. Global hyperdynamic construction (generation) of a basic evolutionary K-
machine E = {E[t]; t = 0, 1, 2, ... } is performed by a separate automaton C so
that construction of E depends on each input X[t].

Evolutionary machines can be constructed by people, by automata (devices) and in
the process of interaction of people with automata. Here we consider construction
that is controlled by definite rules, i.e., by an algorithm. Such a construction can

224 M. Burgin and E. Eberbach

be realized by some automata and it is possible to formalize this process by the
following mathematical schema.

Let us consider two classes of automata K and H, a sort of word sequences Q,
and a mode μ of functioning/computation. These parameters determine the follow-
ing types of evolutionary machines:

Unconstrained μ-evolutionary K-machines EAKμ

Q-formed μ-evolutionary K-machines EAKμ
Q

H-generated μ-evolutionary K-machines HEAKμ

Self-constructing μ-evolutionary K-machines SCEAKμ

Let K and G be two classes of automata.

Lemma 4.1. If K ⊆ G, then EAKμ ⊆ EAGμ. , EAKμ
Q ⊆ EAGμ

Q, HEAKμ ⊆
HEAGμ and SCEAKμ ⊆ SCEAGμ .

Let Q and P be two classes of word sequences.

Lemma 4.2. If Q ⊆ P, then EAKμ
Q ⊆ EAGμ

Q, HEAKμ ⊆ HEAGμ and SCEAKμ
⊆ SCEAGμ .

Let H and F be two classes of automata.

Lemma 4.3. If H ⊆ F, then HEAKμ ⊆ FEAGμ .
This shows that construction of evolutionary automata is a monotone operation.

Theorem 4.1. SCEAKμ = KEAKμ .
This shows that construction of evolutionary automata by automata that belong

to the basic class K coincides with self-construction.

Definition 4.1. An evolutionary machine (evolutionary automaton) E is called re-
cursively generated if all (descriptions of the) automata E[t] from the sequence E
= {E[t]; t = 0, 1, 2, 3, ... } of automata E[t] are generated (formed) by a recursive
algorithm/automaton, e.g., by a Turing machine.

Periodic evolutionary machines are special cases of recursively generated evo-
lutionary machines.

Proposition 4.1. Any periodic evolutionary finite state-transition machine is
equivalent to some recursively generated evolutionary finitely specified state-
transition machine.

Proposition 4.2. Any recursively generated evolutionary inductive Turing ma-
chine has the first order.

Recursively generated evolutionary machines are special cases of self-
constructing evolutionary machine (SBETM) E = { TMK ; TM[t]; t = 0, 1, 2, 3, ... }
with a basic constructor.

Definition 4.2. A self-constructing evolutionary machine (SBETM) also called a
self-constructing evolutionary automaton E = { AK ; E[t]; t = 0, 1, 2, 3, ... } with a
basic constructor is a system that consists of a constructing automaton AK called

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 225

the basic constructor of E and a virtual series of (possibly infinite) automata E[t]
each working on population X[t] in generations t = 0, 1, 2, 3, ... in the perfor-
mance cycle t where in each cycle t of performance, the automaton AK constructs
the next automaton E[t + 1] from the descriptions of the automaton E[t], f(x[t]) and
some parameters of X[t] and each automaton E[t] represents an evolutionary algo-
rithm that works with the population X[t], and evolved in generations 0, 1, 2, ... , t.

As we see, a single automaton AK – constructor is responsible for evolution of
an evolutionary algorithm. Evolutionary algorithms are embedded in “hardware”
of a series of automata E[t].

In this context, self-constructing evolutionary Turing machines (SBETM) with
a basic constructor introduced form an important class of recursively generated
evolutionary machines.

Definition 4.3. A self-constructing evolutionary Turing machine (SBETM) E =
{TMK ; TM[t]; t = 0, 1, 2, 3, ... } with a basic constructor is a recursively generat-
ed evolutionary machine in which the basic constructor is a Turing machine TMK ,
which constructs a (possibly infinite) series of Turing machines TM[t] each work-
ing on population X[t] in generations t = 0, 1, 2, 3, ... in the performance cycle t.

As we see, a single Turing Machine TMK – constructor is responsible for evolu-
tion of an evolutionary algorithm. Evolutionary algorithms are embedded in
“hardware” of a series of Turing Machines TM[t].

Proposition 4.3. Any periodic evolutionary Turing machine is functionally equiv-
alent to some self-constructing evolutionary Turing machine.

Theorem 4.2. For any Turing machine T, there is a recursively generated evolu-
tionary finite automaton AT that simulates T working in the recursive mode.

This result shows that it is possible to use evolutionary construction for simu-
lating more powerful automata by less powerful ones.

Theorem 4.3. For any inductive Turing machine M, there is a recursively generat-
ed evolutionary finite automaton AM that simulates M working in the inductive
mode.

The inverse result to Theorem 4.2 is also true.

Theorem 4.4. For any recursively generated evolutionary Turing machine E, there
is a Turing machine TE that simulates E working in the recursive mode.

Corollary 4.1. For any recursively generated evolutionary finite automaton E,
there is a deterministic Turing machine TE that simulates E working in the recur-
sive mode.

Corollary 4.2. The following classes of automata are functionally equivalent:
1) the class DT of all deterministic Turing machines;
2) the class RGET of all recursively generated evolutionary Turing machines.

Corollary 4.3. Recursively generated evolutionary finite automata generate
(accept) all recursively enumerable languages and only such languages.

226 M. Burgin and E. Eberbach

Corollary 4.4. Recursively generated evolutionary Turing machines working in
the recursive mode generate (accept) all recursively enumerable languages and
only such languages.

5 Conclusion

We started our chapter with a description of Turing’s unorganized machines that
were supposed to work under the control of some kind of genetic algorithms (note
that Turing never formally defined a genetic algorithm or evolutionary computa-
tion). This was our inspiration. However, our evolutionary machines are closely
related to conventional Turing machines, as well as to the subsequent definitions
of genetic algorithms from 1960-80s. This means that level automata of evolutio-
nary machines are finite automata, pushdown automata or Turing machines rather
than more primitive NAND logic gates of u-machines. Additionally, most of
computability theory has been based on Turing a-machines, whereas Turing
u-machines were almost forgotten. We have introduced several classes of
evolutionary machines, such as bounded, periodic and recursively generated evo-
lutionary machines, and studied relations between these classes, giving an inter-
pretation of how modern u-machines could be formalized and how rich their
computations and types are. Of course, we will never know whether Turing would
accept our definitions of evolutionary automata and formalization of evolutionary
computation.

In addition, it is possible to introduce other classes of evolutionary automata,
for example, evolutionary pushdown automata, evolutionary timed automata or
evolutionary context-free grammars, and to study relations between known
classes of conventional automata and newly introduced classes of evolutionary
automata.

The reader may and should ask the question what is the importance and applica-
tions of the evolutionary machine subclasses introduced in this paper. Do these
subclasses somehow allow us to understand better evolutionary computation, its
power and limits? The current practice of evolutionary computation is captured by
bounded evolutionary machines, where the process of evolution stops after a finite
number of generations, or if we do not observe sufficiently long any changes in so-
lutions. On the other hand, periodic evolutionary machines allow researchers and
engineers to capture some infinite processes, e.g., a search for a global fitness op-
timum that is a desired goal of evolutionary computation. In fact, the bulk of evolu-
tionary algorithms used currently is static, corresponding to periodic evolutionary
machines with the period 1 (Theorem 4.1. explains why in theory to consider peri-
odic evolutionary machines with period 1 is sufficient). Thus the majority of evolu-
tionary algorithms studied currently are bounded and periodic with the period 1.

Structure of periodic evolutionary machines with period 1 is static because all
components of this machine are the same. When period of a periodic evolutionary
machine is larger than 1, then some limited structural dynamics exists and we ob-
tain more flexibility organizing evolutionary processes.

Recursively generated evolutionary machines represent constructive dynamics
of evolutionary driving forces and mechanisms. Such evolutionary machines form

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 227

the most general class, giving means to describe properly the process of self-
evolution. Of course, the self-evolution is still not sufficiently studied or used
phenomenon, and most researchers use rather static evolutionary algorithms in
their approaches. In the limited form, self-evolution found a wide acceptance in
evolution strategies to speed up the process of search. The future of recursively
generated evolutionary machines, seems to be in the study of evolvable hardware,
and in expanding the venue of evolutionary computation from universal computa-
bility to a wider concept – universal constructability. This means evolutionary ro-
botics should be another area where recursively generated evolutionary machines
would be useful for future study and applications.

Research presented in this paper is only the first step in this direction. There are
open problems solution of which is important for the development of foundations
of evolutionary computations. For instance, Corollary 4.2 implies that there is an
inductive Turing machine M such that no evolutionary Turing machine that works
in the global recursive mode can model M. At the same time, we know (cf., for
example, (Burgin 2005)) that machines that work in the inductive mode are often
more powerful than machines that work in the recursive mode.

Problem 1. Can an inductive Turing machine of the first order simulate an arbi-
trary recursively generated evolutionary inductive Turing machine?
Problem 2. Can an inductive Turing machine of the first order simulate an arbi-
trary periodic evolutionary inductive Turing machine?

We have described here classes of languages generated or accepted by bounded
evolutionary finite automata (cf. Section 2), by recursively generated evolutionary
finite automata (Corollary 4.3) and by recursively generated evolutionary Turing
machines (Corollary 4.4).
Problem 3. What class of languages is generated/accepted by periodic evolutio-
nary finite automata?
Problem 4. What class of languages is generated/accepted by recursively generat-
ed evolutionary inductive Turing machines?

References

Arya, S., Malamatos, T., Mount, D.M.: A simple entropy-based algorithm for planar point
location. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 262–
268 (2001)

Back, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation.
Oxford University Press, Oxford (1997)

Banks, E.: Information Processing and Transmission in Cellular Automata. PhD thesis.
MIT, Department of Mechanical Engineering (1971)

Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press (1999)

Box, G.E.P.: Evolutionary operation: A method for increasing industrial productivity. Appl.
Statistics VI, 81–101 (1957)

Burgin, M.: Multiple computations and Kolmogorov complexity for such processes. Notic-
es of the Academy of Sciences of the USSR 27(2), (269(4)), 793–797 (1983) (translated
from Russian)

228 M. Burgin and E. Eberbach

Burgin, M.: Reflexive Calculi and Logic of Expert Systems. In: Creative Processes Model-
ing by Means of Knowledge Bases, Sofia, pp. 139–160 (1992)

Burgin, M.: Universal limit Turing machines. Notices of the Russian Academy of
Sciences 325(4), 654–658 (1993) (translated from Russian 46(1), 79-83 (1993))

Burgin, M.: Super-recursive Algorithms as a Tool for High Performance Computing. In:
Proc. of the High Performance Computing Symposium, San Diego, pp. 224–228 (1999)

Burgin, M.: Nonlinear Phenomena in Spaces of Algorithms. International Journal of Com-
puter Mathematics 80(12), 1449–1476 (2003)

Burgin, M.: From Neural networks to Grid Automata. In: Proceedings of the IASTED In-
ternational Conference ”Modeling and Simulation”, pp. 307–312. Palm Springs, Cali-
fornia (2003a)

Burgin, M.: Cluster Computers and Grid Automata. In: Proceedings of the ISCA 17th In-
ternational Conference “Computers and their Applications”. International Society for
Computers and their Applications, Honolulu, Hawaii, pp. 106–109 (2003b)

Burgin, M.: Superrecursive Algorithms. Springer, New York (2005)
Burgin, M.: Measuring Power of Algorithms, Computer Programs, and Information Auto-

mata. Nova Science Publishers, New York (2010)
Burgin, M., Eberbach, E.: Cooperative Combinatorial Optimization: Evolutionary Compu-

tation Case Study. BioSystems 91(1), 34–50 (2008)
Burgin, M., Eberbach, E.: Universality for Turing Machines, Inductive Turing Machines

and Evolutionary Algorithms. Fundamenta Informaticae 91(1), 53–77 (2009)
Burgin, M., Eberbach, E.: On Foundations of Evolutionary Computation: An Evolutionary

Automata Approach. In: Mo, H. (ed.) Handbook of Research on Artificial Immune Sys-
tems and Natural Computing: Applying Complex Adaptive Technologies, pp. 342–360.
IGI Global, Hershey (2009a)

Burgin, M., Eberbach, E.: Bounded and Periodic Evolutionary Machines. In: Proc. 2010 Con-
gress on Evolutionary Computation (CEC 2010), Barcelona, Spain, pp. 1379–1386 (2010)

Casselman, S., Thornburg, M., Schewel, J.: Hardware Object Programming on the EVC1 -
a Reconfigurable Computer. In: FPGAs for Rapid Board Development & Reconfigura-
ble Computing (Photonics East 1995) (1995)

Chow, H.A., Alnuweiri, H., Casselman, S.: FPGA-Based Transformable Computers for
Fast Digital Signal Processing. In: 3rd Canadian Workshop on Field-Programmable De-
vices (FPD 1995), pp. 25–31 (1995)

Codd, E.F.: Cellular Automata. Academic Press, New York (1968)
Dorigo, M., Colombetti, M.: Robot Shaping: An Experiment in Behavior Engineering. MIT

Press, Cambridge (1997)
Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Dozier, G.: Evolving robot behavior via interactive evolutionary computation: from real-

world to simulation. In: Proceedings of the 2001 ACM Symposium on Applied Compu-
ting, Las Vegas, Nevada, pp. 340–344 (2001)

Eberbach, E.: Neural Networks and Adaptive Expert Systems in the CSA Approach. Intern.
Journal of Intelligent Systems, Special Issue on Artificial Neural Networks 8(4), 569–
602 (1993)

Eberbach, E.: SEMAL: A Cost Language Based on the Calculus of Self-modifiable Algo-
rithms. Intern. Journal of Software Engineering and Knowledge Engineering 4(3), 391–
408 (1994)

Eberbach, E., Goldin, D., Wegner, P.: Turing’s Ideas and Models of Computation. In:
Teuscher, C. (ed.) Alan Turing: Life and Legacy of a Great Thinker, pp. 159–194.
Springer (2004)

Recursively Generated Evolutionary Turing Machines and Evolutionary Automata 229

Eberbach, E.: Toward a theory of evolutionary computation. BioSystems 82, 1–19 (2005)
Eberbach, E., Burgin, M.: Evolution of Evolution: Self-constructing Evolutionary Turing

Machine Case Study. In: Proc. 2007 Congress on Evolutionary Computation, CEC 2007,
Singapore, pp. 4599–4604 (2007)

Eberbach, E., Burgin, M.: Theoretical Framework for Cooperation and Competition in Evo-
lutionary Computation. In: Proc. 2nd Intern. Conf. on Software and Data Technologies,
ICSOFT 2007, Barcelona, Spain, July 22-25, vol. PL/DPS/KE/MUSE, pp. 229–234
(2007a)

Eberbach, E., Burgin, M.: Evolutionary Automata as Foundation of Evolutionary Computa-
tion: Larry Fogel Was Right. In: Proc. 2009 Congress on Evolutionary Computation,
CEC 2009, Trondheim, pp. 2149–2156 (2009)

Estrin, G.: Organization of Computer Systems-The Fixed Plus Variable Structure Comput-
er. In: Proc. Western Joint Computer Conf., Western Joint Computer Conference, New
York, pp. 33–40 (1960)

Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelli-
gence. IEEE Press (1995)

Fogel, D.B.: An Introduction to Evolutionary Computation. In: Tutorial, Congress on Evo-
lutionary Computation (CEC 2001), Seoul, Korea (2001)

Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolu-
tions. John Wiley, New York (1966)

Fraser, A.S.: Simulation of genetic systems by automatic digital computers. Australian
Journal of Biological Sciences 10, 484–491 (1957)

Freund, R.: Real functions and numbers defined by Turing machines. Theoretical Computer
Science 23(3), 287–304 (1983)

Friedberg, R.M.: A learning machine. IBM J. 2, 2–13 (1958)
Friedberg, R.M., Dunham, B., North, J.H.: A learning machine: Part II. IBM J. 3, 282–287

(1959)
Friedman, G.J.: Selective feedback computers for engineering synthesis and nervous system

analogy. Master’s thesis, UCLA (1956)
Hartenstein, R.: A decade of reconfigurable computing: a visionary retrospective. In: Nebel,

W., Jerraya, A. (eds.) Proceedings of the Conference on Design, Automation and Test in
Europe (DATE 2001), Munich, Germany, pp. 642–649. IEEE Press, Piscataway (2001)

Hauck, S., DeHon, A.: Reconfigurable Computing: The Theory and Practice of FPGA-
Based Computing. Morgan Kaufman (2008)

He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary
algorithms. Nat. Comput. 3, 21–25 (2004)

Holland, J.H.: Adapatation in Natural and Artificial Systems, 2nd edn. Univ. of Michigan
Press, MIT Press, Ann Arbor (1975)

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, Boston (2001)

Ito, T., Ono, K., Ichikawa, M., Okuyama, Y., Kuroda, K.: Reconfigurable Instruction-Level
Parallel Processor Architecture. In: Omondi, A.R., Sedukhin, S.G. (eds.) ACSAC 2003.
LNCS, vol. 2823, pp. 208–220. Springer, Heidelberg (2003)

JiJi, R.D., Andersson, G.G., Booksh, K.S.: Application of PARAFAC for calibration with
excitation–emission matrix fluorescence spectra of three classes of environmental pollu-
tants. J. Chemometrics 14, 171–185 (2000)

Katagami, D., Yamada, S.: Interactive Evolutionary Computation for Real Robot from
Viewpoint of Observation. Joho Shori Gakkai Kenkyu Hokoku (97), 19–24 (2001)

230 M. Burgin and E. Eberbach

Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proc. of the 1995 IEEE Int.
Conf. on Neral Networks, pp. 1942–1948 (1995)

Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann (2001)
Kleene, S.C.: Mathematical logic: constructive and non-constructive operations. In: Pro-

ceedings of the International Congress of Mathematicians, 1958, pp. 137–153. Cam-
bridge University Press, New York (1960)

Koza, J.: Genetic Programming I, II, III. MIT Press (1992, 1994, 1999)
Langton, C.G.: Self-Reproduction in Cellular Automata. Physica D: Nonlinear Phenome-

na 10(1-2), 135–144 (1984)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn.

Springer (1996)
Michalewicz, Z., Fogel, D.B.: How to Solve It: Moderrn Heuristics, 2nd edn. Springer

(2004)
Mo, H. (ed.): Handbook of Research on Artificial Immune Systems and Natural Compu-

ting: Applying Complex Adaptive Technologies. IGI Global, Hershey (2009)
Nolfi, S., Floreano, D., Miglino, O., Mondada, F.: How to Evolve Autonomous Robots:

Different Approaches in Evolutionary Robotics. In: Proceedings of the Fourth Interna-
tional Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV),
pp. 190–197 (1994)

Rechenberg, I.: Evolutionstrategie: Optimierung technischer Systeme nach Prinizipien der
biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart (1973)

Rice, H.G.: Recursive Real Numbers. In: Proceedings of the AMS, vol. 5, pp. 784–791
(1951)

Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural
Networks: Special Issue on EC 5(1), 96–101 (1994)

Teuscher, C.: Turing’s Connectionism: An Investigation of Neural Network Architectures.
Springer-Verlag (2002)

Thornburg, M., Casselman, S.: Transformable Computers. In: International Parallel
Processing Symposium (IPPS 1994), pp. 674–679 (1994)

Trakhtenbrot, B.A., Barzdin, J.M.: Finite automata: behavior and synthesis. North-Holland,
Amsterdam (1973)

Turing, A.: Intelligent Machinery. In: Collected Works of A.M. Turing: Mechanical Intelli-
gence. Elsevier Science (1992)

von Neumann, J.: The general and logical theory of automata. In: Cerebral Mechanisms in
Behavior, The Hixon Symposium, pp. 1–31. Willey, New York (1951)

von Neumann, J.: Theory of Self-Reproducing Automata. In: Burks, A.W. (ed.) 1949 Uni-
versity of Illinois Lectures on the Theory and Organization of Complicated Automata.
University of Illinois Press, Urbana (1966)

Wiedermann, J.: Characterizing the super-Turing computing power and efficiency of clas-
sical fuzzy Turing machines. Theoretical Computer Science 317(1-3), 61–69 (2004)

Wolpert, D.H., Macready, W.G.: No free lunch theorem for optimization. IEEE Trans.
Evol. Comput. 1(1), 67–82 (1997)

Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447
(1999)

Zadeh, L.A.: Fuzzy algorithms. Information and Control 12, 94–102 (1968)
Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and

Pattern Recognition. In: Advances in Fuzzy Systems - Applications and Theory, vol. 10
(1996)

On Dynamical Systems of Large Girth
or Cycle Indicator and Their
Applications to Multivariate
Cryptography

Vasyl Ustimenko∗ and Urszula Romańczuk�

Abstract. We are going to observe special algebraic Turing machines de-
signed for different assignments of cryptography such as classical symmetric
encryption, public key algorithms, problems of secure key exchange, devel-
opment of hash functions. The security level of related algorithms is based
on the discrete logarithm problem (DLP) in Cremona group of free module
over finite commutative ring. In the case of symbolic computations with ”suf-
ficiently large number of variables” the order of generator (base of DLP) is
impossible to evaluate and we have ”hidden discrete logarithm problem”. In
the case of subgroups of Cremona group DLP is closely connected with the
following classical difficult mathematical problems:

(1) solving the system of nonlinear polynomial equations over finite fields
and rings,

(2) problem of finding the inverse map of bijective polynomial multivariable
map.

The complexity of Discrete Logarithm Problem depends heavily from the
choice of base. Generation of good ”pseudorandom” base guarantees the high
complexity of (1) and (2) and security of algorithms based on corresponding
DLP. We will use methods of theory of special combinatorial time dependent

Vasyl Ustimenko · Urszula Romańczuk
Maria Curie-Sk�lodowska University in Lublin
Pl. Marii Curie-Sk�lodowskiej 5, Lublin, Poland
http://www.umcs.lublin.pl

Vasyl Ustimenko
Institute of Telecommunications and Global Information Space, Kiev,
National Academy of Science of Ukraine, Chokolovsky Boulevard 13, Kiev, Ukraine
http://www.itel.nas.gov.ua

� Research supported by a project ”Human - The Best Investment”. The project
is co-funded from the sources of the European Union within the European Social
Fund.

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 231–256.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

http://www.umcs.lublin.pl
http://www.itel.nas.gov.ua

232 V. Ustimenko and U. Romańczuk

dynamical systems for the construction of special Turing machines for the
generation of the nonlinear DLP bases of large (or hidden) order and small
degree.

Keywords: Symbolic computations, algebraic transformations over commu-
tative rings, Cremona groups, Cryptography, discrete logarithm problem, dy-
namical systems of large girth, dynamical systems of large cycle indicator.

1 Introduction

The common definition of the computation can be formulated in terms of
Finite Automaton (FA). Recall that FA is a finite directed graph with some
special vertices (initial states and accepting states) and colours on arrows
taken from the chosen alphabet. The principle difference of Turing machine
from finite automaton is existence of ”potentially infinite” memory defined
via ribbon on which any word in special (external) alphabet can be written.

To reformulate the concept of Turing Machine on the language of graph
theory one needs an infinite family of graphs of increasing rder instead of one
graph in the definition of Finite Automaton. The Alan Turing’s impact on
Computer Science contains the concept of modern computer [5] and theoreti-
cal foundations of artificial intelligence and remarkable examples of practical
cryptology. During the Second World War, Turing was a leading participant
in the efforts at Bletchley Park to break German ciphers. He used cryptanal-
ysis work carried out in Poland by Marian Rejewski, Jerzy Rożycki, Henryk
Zygalski from Cipher Bureau for the elaboration of several crucial insights
into breaking both the Enigma machine and the Lorenz SZ 40/42 attachment
codenamed Tunny by the British specialists (see [11], [25], [26]).

The natural question related to Turing’s heritage is: ”What kind of Tur-
ing Machine Can be effectively used in Cryptography?” or ” What class of
families of directed graphs is useful for cryptographical purposes?”.

The different areas of Mathematics (Number Theory, Mathematical Logic,
CommutativeAlgebra and etc) have interesting applications to Information Se-
curity. It is clear, that the concept of Turing Machine is universal, each crypto-
graphical algorithm can be described in terms of machine commands. Of course
the need of such interpretation is not always well motivated, different interpre-
tations of the same algorithmmay have different computational complexity.

The symbolic computations technique allow us to create a public key mode
for the encryption scheme based on special dynamical systems associated with
algebraic graphs. The definitions and examples of such dynamical systems
defined over arbitrary commutative rings were given in [48], their applications
to the cryptosystems development the reader can find in [48], [50], [52], [56]
(see also futher references in this books). We introduce stronger definitions of
special dynamical systems: dynamical systems of large girth and large cycle
indicator and their modifications (symmetric, bipartite system, etc). It allows

Dynamical Systems of Large Girth and Multivariate Cryptography 233

us to get a wider variety of key spaces based on various multiplicative subsets
of chosen commutative ring K in comparison with the approach of [48] and
[52], where the alphabet for the key space was set as Reg(K) (totality of
regular elements). Other recent results are connected with the evaluation of
the order and polynomial degree of nonlinear encryption transformation.

Notice, that the earliest applications of dynamical systems and related
chaos in cryptography were proposed by Pecora and Caroll in 1990 in [40]
and then developed by Kocarev in [21] and Parlitz in [35], using analogue sig-
nals and binary information models, respectively. One of the first important
publication in this direction belongs to Biham (see [1]).

They used both discrete and continuous chaotic dynamical systems. Ap-
plication of discrete system in cryptography was first proposed by Habutsu
in [10] and then developed by Kotulski and Szczepański in [24]. The idea sug-
gested by Habutsu assumed some internal parameter of the tent map playing
the role of secret key. Then, the message (initial condition) is transformed
by several inverse iteration of the map. Kotulski and Szczepański in [24] give
generalization of this idea, where secret key is connected with the initial con-
dition instead of parameter of the system. In continuous case the message
is encrypted by the usage of continuous, chaotic, dynamical systems. The
system is described via system of nonlinear ordinary differential equations
and its characterization like chaos, ergodicity, etc. Chaotic property ensures
sensitivity to small changes of initial conditions.

Applications of dynamical systems to cryptography currently form a very
popular direction. Research on this topic is in continuation in the USA, Rus-
sia, Switzerland, Poland, Ukraine and other countries. For instance, recently
a new approach to constructing cryptosystems based on the idea of control-
ling chaos has been developed. Introduction of secret key through the initial
condition of the discrete chaotic system was proposed. So called reflection
law models the reader can find in [9], [16], [27]. One of the latest publications
on the use of Chaos Space on [30], [31].

We concentrate on other cycle of ideas coming from Extremal Graph The-
ory and Theory of Expanding Graphs. Remarkable similarity of Random
graphs and explicit constructions of Extremal graphs and Expanders allows
to develop graph based dynamical systems.

In section 2 we introduce basic definitions of cryptography and concept of
dynamical system F (K)of large girth over finite commutative ring K. Such a
dynamical system is formed by special invertible nonlinear polynomial maps
Ft,n, t ∈ K of Kn (Cartesian power of K) into Kn. For fixed positive integer
n transformations Ft,n, t ∈ K generate a subgroup Gn of Cremona group
of bijective polynomial maps of Kn into itself such that their inverse is also
polynomial transformation. It is important that for each sequence of repre-
sentatives gn ∈ Gn the order |gn| is growing to infinity with the growth of
parameter n. For each multiplicative set Q i.e. subset of nonzero elements of
ring K, which is closed under the ring multiplication.

234 V. Ustimenko and U. Romańczuk

In fact, the definition of dynamical system of large girth is motivated
by ideas of Extremal Theory of Algebraic graphs (see [48], where weaker
requirements had been used for the definition of linguistic dynamical system,
in the case of fields definitions are equivalent).

To create theory of dynamical system of large girth on solid base we need
the statements on their existence.

The creation of ”K-theory” (similar to algebraic K-theory in algebraic
geometry) of linguistic dynamical system for each pair K, Reg(K), where
Reg(K) is a totality of regular elements of K, leads to the development of
new cryptosystems. As it was expected the speed of symmetric algorithms
over the alphabet Z2m are faster in comparison with previously developed
stream ciphers over finite fields F2m . Surprisingly orders of encryption maps
over the modulo rings growth faster than in the case of field. We realize,
that linguistic dynamical systems and their modifications can be used for
construction of families fn of bijective transformation of Kn such that the
order |fn| is growing with the growth of parameter n, but polynomial degree of
each fn is bounded by some independent constant. Such maps of good density
(large number of nonzero coefficients in front of monomial expressions) are
important for the key exchange protocols based on symbolic computations
(see subsection 2 of section 2). The theory of linguistic dynamical systems is
connected with the theory of extremal directed graphs without commutative
diagrams [50], [51], [52], [55] and [56].

Recent results on dynamical systems of large girth allow us to construct
the family of directed graphs of large girth for each pair (K, Q), where K

is a commutative ring and Q is a multiplicative set in K. They give us an
possibility to create an interesting Turing machines. An example of inter-
esting machines corresponds to pair Boolean ring B(M) = {f : M → F2}
of all characteristic functions of subsets for M = {1, 2, . . . ,m}, m ≥ 2 and
multiplicative set Qi, 1 ≤ i ≤ m consisting of all charactersitic functions
for subsets containin i ∈ M . The public transformation for this pair will be
Boolean map on the vector space B(M)n = F2

mn.
Finally, we noticed that for the generation of public rules via Turing ma-

chines corresponding to dynamical system we need appearance of distinct
maps corresponding to different strings in internal alphabet Q of restricted
length. It was the motivation of the concepts of dynamical systems of large
cycle indicator and corresponding to them families of graphs of large cycle
indicator. The theory of extremal graphs of large cycle indicator appears
very recently (see [53], [54] and next chapter of this book). We hope that
idea of dynamical systems of large cycle indicator will lead to new interesting
systems in multivariate cryptography, which can produce secure solution for
both Turing machine and Quantum computers [44].

The main task of this chapter present the results on latest developments
on the use of graph based dynamical systems in cryptography.

Dynamical Systems of Large Girth and Multivariate Cryptography 235

2 On Cryptography Basics, Cremona Group
and Dynamical Systems

2.1 Symmetric Cryptography

Assume, that an unencrypted message, plaintext , which can be image data, is
a string of bytes. It is to be transformed into an encrypted string or ciphertext ,
by means of a cryptographic algorithm and a key. The recipient has to read
the message, so encryption must be invertible.

An assumption, first codified by Kerckhoffs in the nineteenth century, is
that the algorithm is known and the security of algorithm rests entirely on
the security of the key.

Conventional wisdom holds that in order to defy easy decryption, a cryp-
tographic algorithm should produce seeming chaos, that is, ciphertext should
look and test random. In theory an eavesdropper should not be able to de-
termine any significant information from an intercepted ciphertext.

So in a case of symmetric encryption when two correspondents (with com-
mon names Alice and Bob) share the encryption algorithms together with the
key. We may think about a Turing machine with external alphabet K used
for writing ”potentially infinite plaintext” and the internal machine alpha-
bet Q for writing the secret word (the key or password). Generally speaking,
attacks to a cryptosystem fall into 2 categories: passive attacks , in which
adversary monitors the communication channel and active attacks , in which
the adversary may transmit messages to obtain information (e.g. ciphertext
of chosen plaintext).

Correspondents may achieve good resistance to passive attack with one
time pad algorithm (see [20]) for which plaintext x and the key b are vectors
from the vector space Fn

q over finite field Fq and the encryption map is x →
x + b.

An encryption algorithm in terms of commutative algebra over finite field
with some resistance to active attacks has to be a nonlinear map.

All algorithms for the symmetric encryption are divided into block ciphers
and stream ciphers. In case of block ciphers the plainspace P is partited
into blocks Bi, i = 1, 2, . . . , n of equal size restricted by some constant. The
encryption map corresponding to chosen key maps each set Bi into itself.

Stream cipher is the fast encryption algorithm which is not a block cipher.
It means, that the partition onto invariant blocks does not exist. Let us use
the language of permutation group theory for the studies of the principle
difference between block ciphers and stream ciphers. The encryption map is
a bijection (permutation) on plainspace.

We may consider the permutation group GA generated by encryption and
decryption maps for chosen algorithm A. For the construction of GA we
may use various keys from the keyspace. Two points p and p′ belong to the
same orbit, if there is a permutation π ∈ GA such that π(p) = p′. In a
case of block cipher each block is a union of some orbits. So, the size of

236 V. Ustimenko and U. Romańczuk

the orbit does not grow with the growth of the size of the plainspace, it is
bounded by the size b of block Bi. We will use the term stream cipher in case
of encryption algorithm with unbounded size for each orbit. By definition a
transitive permutation group is a subgroup of corresponding symmetric group
with exactly one orbit. The algorithm A with transitive group GA has the
following property: for arbitrary pair p and p′ there is π in GA corresponding
to some combination of keys such that π(p) = p′. We refer to such encryption
algorithm as transitive machine.

We are going to investigate further some special algebraic nonlinear Turing
encryption machines.

So, we assume, that external alphabetK is a commutative ring and internal
alphabet Q is the multiplicative set of K, i.e. the totality of nonzero ring
elements closed under multiplication in K.

The reader may keep in mind the following simple examples:

(1) Obvious example of multiplicative set is the multiplicative group F∗
q of

finite field Fq, where q is a prime power.
(2) Letus consider the ringZm corresponding to arithmeticmodulom, a ∈ Zm

is some residuemodulom. The totality of elements b ∈ Zm, which aremu-
tually prime with a, form a multiplicative setQa of the ring.

(3) The Cartesian power Fm
2 of the finite field F2 with two elements is a

Boolean ring Bm containing all functions f from the finite set M =
{1, 2, . . . ,m} into F2. Recall, that

(x1, x2, . . . , xm) + (y1, y2, . . . , ym) = (x1 + y1, x2 + y2, . . . , xm + ym)

(x1, x2, . . . , xm) · (y1, y2, . . . , ym) = (x1y1, x2y2, . . . , xmym).

We can identify ring Bm with the totality of subsets of {1, 2, . . . ,m}
with operation of symmetric difference of subsets and intersection. The
totality Qi = {y ∈ Bm|yi = 1} is an example of multiplicative subset in
Bm.

(4) If K is a general commutative ring with unity, I is some ideal of K, then
the totality of all invertible elementsmodulo I is amultiplicative set. Sym-
bol Reg(K) stands for the totality of regular elements of K, i. e. nonzero
divisors. Free module Kn is a Cartesian product of n copies of K.

(5) Symbol Reg(K) stands for the totality of regular elements of K, i. e. non
zero divisors. Set Reg(K) is a multiplicative set for each commutative
ring K.

We refer to elements t1, t2, . . . , ts, s ≥ 1 of commutative ring K as mul-
tiplicative generators, if there is a multiplicative set Q containing all ti,
i = 1, 2, . . . , s. Symbol < t1, t2, . . . , ts > stands for the minimal multiplicative
subset of K containing each multiplicative generator ti.

Recall, that a free moduleKn is simply a Cartesian product of n copies ofK.
Let us consider special generators of nonlinear maps on free modules Kn,

n = 3, 4, . . .

Dynamical Systems of Large Girth and Multivariate Cryptography 237

We refer to a family F(K) of bijective nonlinear polynomial maps Ft,n =
F (t, n,K) , n = 3, 4, . . ., t ∈ K of free module Kn into itself as dynamical
system F (K) of large girth, if the inverse map for Ft,n is a polynomial map
F ′
t,n = F ′(t, n,K) and there is an independent constant c, c > 0 such that for

each set of multiplicative generators Q of K the following conditions hold

(1) for the sequence of elements t1, t2, . . . , tk, 1 ≤ k ≤ 2cn from Q the
compositions Ft1,t2,...,tk,n = F (t1, t2, . . . , tk, n,K) of maps Ft1,n , Ft2,n,
. . . , Ftk,n have no fixed points.

(2) for eachpair of distinct sequences (t1, t2, . . . , tk) ∈ Qk and (t′1, t
′
2, . . . , t

′
s) ∈

Qs of length k < cn and s < cn and each point x from the free moduleKn

values of Ft1,t2,...,tk,n(x) and Ft′1,t
′
2,...,t

′
s,n

(x) are different.
(3) for each set of multiplicative generators {t1, t2, . . . , ts} the order of trans-

formation Ft1,t2,...,ts,n is going to infinity, when parameter n is growing.

We apply term ”time” to a regular parameter t defining map Ft,n =
F (t, n,K). We refer to F (K) as balanced dynamical systems of large girth
and denote it BF (K) if F ′

t,n = F ′(t, n,K) also form a dynamical system
F ′(K) of a large girth.

For the chosen ring K it is nice to have the constant c ”as large as is
possible” to have a wider family of polynomial maps without fixed points.

Before we consider some encryption machines corresponding to defined
above objects we formulate the statement on the existence of dynamical sys-
tems of large girth.

Theorem 1. For each commutative ring K there exists a balanced dynamical
system BF (K) of large girth with c ≥ 1/3.

We associate with the pair (F (K), Q), where F (K) is a general dynamical
system and Q is a multiplicative subset of K, the following encryption Turing
machine T (F (K), Q, τ1, τ2) depending on two sequences τ1, τ2 of chosen bi-
jective affine transformations τ1,n = τ1(n,K) and τ2,n = τ2(n,K) (polynomial
maps of Kn into itself of degree 1).

We will treat elements p = (p1, p2, . . . , pn) of Kn , n = 3, 4, . . . as po-
tentially infinite plaintext written in the alphabet K. We will choose string
t = (t1, t2, . . . , ts) of internal alphabet Q and chosen bijective affine transfor-
mations τ1,n and τ2,n (polynomial maps of Kn into itself of degree 1), these
data will form our key. Correspondents Alice and Bob will share the data and
can use the composition Fτ1,n,τ2,n,t of τ1,n, Ft1,n, Ft2,n, . . . , Fts,n and τ2,n as
encryption map.

Notice, that they can decrypt with the composition of τ−1
2n , F ′

ts,n,

F ′
ts−1,n,. . ., F

′
t1,n and τ−1

1,n. If Alice and Bob fix sequences of transformation
τ1,n and τ2,n and vary strings t1, t2, . . . , ts with parameter s from the interval
2 ≤ s < cn, then different keys will produce distinct ciphertexts from the cho-
sen plaintext p. We may assume that n is ”potentially infinite”, because our
encryption tool is a special Turing machine. Our encryption map in a case of
”short” keys has some similarity with above mentioned one time pad. Notice,

238 V. Ustimenko and U. Romańczuk

that for our the algorithm corresponding to dynamical system F (K, Q) is a
stream cipher, because the cardinality of

{Fτ1,n,τ2,n,t(p)| t = (t1, t2, . . . , ts), ti ∈ Q, i = 1, 2, . . . , s, 2 ≤ s ≤ cn}

is growing with the growth of n.
In fact, if |Q| ≥ 2 it grows exponentially with the speed |Q|O(n). The en-

cryption algorithm can be even a transitive machine. Notice, that in case of a
block cipher, size of each orbit of coresponding Turing machine is restricted
by the size of a block (constant). So our private key algorithm is a stream
cipher. Symbol T (F (K), Q) will stand for the canonical encryption Turing
machine corresponding to identical maps τ1,n, τ2,n, n = 3, 4, On theory
of dynamical systems terminology nonidentical affine maps from sequences τ1
and τ2 are used for ”desynchronisation’ of canonical machine. We also con-
sider universal canonical Turing machine UT (F (K)) and its desynchronised
version UT (F (K), τ1, τ2) obtained simply by the change of Q on K − {0} in
the definitions of T (F (K), Q) and T (F (K), Q, τ1, τ2), respectively.

Turing machine T (F (K), Q, τ1, τ2) will be transitive exactly in the case of
transitivity of T (F (K), Q) and canonical machine T (F (K), Q).

Let F∗
q stand for the multiplicative group of finite field Fq.

Theorem 2. For each finite field Fq, charFq �= 2, there exists a balanced
dynamical system F (Fq) of large girth with c ≥ 2/3 such that algorithm
T (F (Fq),Fq

∗) executes transitive encryption.

Let K be a general commutative ring with a unity and Kn is n-dimensional
free module over K. Recall, that Cremona group C(Kn) is a totality of bijec-
tive polynomial maps f of Kn into itself, such that the inverse map f−1 is
also polynomial one.

Let us consider the group GQ of all transformation produced by Turing
encryption machine T (F (K), Q) associated with the dynamical system F (K)
and multiplicative set Q. Assume, that G(Q, τ1) corresponds to Turing Ma-
chine T (F (K), Q, τ1, τ2) in the case τ2 = τ1

−1. The transformation group
G(Q, τ1) is conjugated with the group GQ generated by bijective maps Ft,n,
t ∈ Q. Notice, that groups GQ and G(Q, τ1) are similar, but their mixing
properties in terms of alphabet K may be different. For instance, the mini-
mal Hamming distance between g(p) and g(p′), where g ∈ GA, p and p′ are at
the distance 1, may depend heavily on the choice of τ1 (see [22], [57] for the
examples). Obviously, GQ is a subgroup of Cremona group C(Kn) generated
by transformations Ft,n, t ∈ Q.

We also will consider group G associated with universal Turing machine.
We will evaluate time execution and properties of Chaos corresponding to
above mentioned stream ciphers after the description of explicit construction
of corresponding dynamical systems. We also discuss the security level of such
private keys.

Dynamical Systems of Large Girth and Multivariate Cryptography 239

Let us consider some modifications of the definition of dynamical system
of large girth. Let K be a commutative ring. We refer to a pair of sequences of
bijective nonlinear polynomial maps Pt,n = P (t, n,K) and Lt,n = L(t, n,K),
n = 1, 2, . . . , t ∈ K of free module Kn into itself as bipartite dynamical
system B(K) of large girth, if the inverse maps P ′

t,n = P ′(t, n,K) and L′
t,n =

L′(t, n,K) for Pt,n and Lt,n are also polynomial maps of Kn and there is an
independent constant c, c > 0, such that for each multiplicative set Q of K
the following three conditions hold

(1) for the sequence of elements t1, t2, . . . , tk, 2 ≤ 2k ≤ 2cn from Q the
compositions of the kind

FP,t1,t2,...,t2k,n = FP (t1, t2, . . . t2k−1, t2k, n,K) =

= Pt1,n ◦ Lt2,n ◦ . . . ◦ Pt2k−1,n ◦ Lt2k,n

FL,t1,t2,...,t2k,n = FL(t1, t2, . . . t2k−1, t2k, n,K) =

= Lt1 ◦ Pt2 ◦ Lt3 ◦ Pt4 ◦ . . . ◦ Lt2k−1
◦ Pt2k

have no fixed points on Kn.
(2) for each pair of distinct sequences (t1, t2, . . . , t2k) ∈ Qk and

(t′1, t
′
2, . . . , t

′
2s) ∈ Qs of length k < cn and s < cn and each point x from

the free module Kn values of FP,t1,t2,...,t2k,n(x) and FP,t′1,t
′
2,...,t

′
2s,n

(x)
are different, FL,t1,t2,...,t2k,n(x) �= FL,t′1,t

′
2,...,t

′
2s,n

(x) .
(3) for each set ofmultiplicative generators {t1, t2, . . . , ts} the orders of trans-

formations FP,t1,t2,...,ts,n and FL,t1,t2,...,ts,n is going to infinity, when pa-
rameter n is growing.

We refer to B(K) as balanced bipartite dynamical systems of large girth and
denote it BB(K) if inverse maps P ′

t,n and L′
t,n for Pt,n and Lt,n also form a

bipartite dynamical system B′(K) of a large girth.

Theorem 3. For each commutative ring K, there exists a balanced bipartite
dynamical system BB(K) of large girth with c ≥ 2/3.

This statement is an interesting one, because of a rather large constant c for
a family of maps.

In the following two definitions of dynamical system the family of maps is
closed under the unary operation of taking the inverse.

Sequence Q = {t1, t2, . . . , tr} of K is a multiplicative difference sequence
if ti+1 + ti form multiplicative set of generators . The natural way to
form multiplicative difference set from the set of multiplicative generators
α1, α2, . . . , αr−1 is assume that t1 is arbitrary element of commutative ring,
t2 = −t1 + α1, t3 = −t2 + α2, . . ., tr = −tr−1 + αr−1.

We refer to a family F(K) of distinct bijective nonlinear polynomial maps
Ft = F (t, n,K), n = 1, 2, . . ., t ∈ K − {0} of free module Kn into itself as

240 V. Ustimenko and U. Romańczuk

symmetric dynamical system SF (K) of large girth, if the following conditions
hold

(1) for each t ∈ K there is a t′ ∈ K such that Ft′,n is the inverse map for
Ft,n, n = 2, 3,

(2) there is an independent constant c, c > 0, such that for each multiplica-
tive sequence t1, t2, . . . , tk, 1 ≤ k ≤ 2cn the composition Ft1,t2,...,tk,n of
maps Ft1,n , Ft2,n, . . . , Ftk,n acting on Kn has no fixed points.

(3) for each pair of multiplicative sequences t1, t2, . . . , tk and t′1, t
′
2, . . . , t

′
s

of length k < cn and s < cn and each point x from the free module Kn

values of Ft1,t2,...,tk,n(x) and Ft′1,t
′
2,...,t

′
s,n

(x) are different.
(4) for eachmultiplicative difference sequence t1, t2, . . . , ts the order of trans-

formation Ft1,t2,...,ts,n is going to infinity, when parameter n is growing.

Theorem 4. For each commutative ring K, there exists symmetric dynamical
system SF (K) of large girth with c ≥ 1/3, such that t′ = −t, t ∈ K.

Let K be a commutative ring K. We refer to a pair of sequences of bijective
nonlinear polynomial maps Pt = P (t, n,K) and Lt = L(t, n,K), n = 1, 2, . . .
, t ∈ K of free module Kn into itself as symmetric bipartite dynamical system
SB(K) of large girth, if

(1) the inverse map P ′
t,n = P ′(t, n,K) for Pt,n is some map of a kind Lt′,n,

t′ ∈ K and the inverse map L′
t,n = L′(t, n,K) for Lt,n is some map of a

kind Pt′,n, t
′ ∈ K

(2) there is an independent constant c, c > 0, such that

(2.1) for each multiplicative difference sequence t1, t2, . . . , t2k, 1 ≤ k ≤ 2cn
the composition FP,t1,t2,...,t2k,n = FP (t1, t2, . . . , t2k, n,K) of maps Pt1,n,
Lt2,n, Pt3,n, Lt4,n, . . . , Pt2k−1,n , Lt2k,n and the map FL,t1,t2,...,t2k,n =
FL(t1, t2, . . . , t2k, n,K) of kind

Lt1,n ◦ Pt2,n ◦ Lt3,n ◦ Pt4,n ◦ . . . ◦ Lt2k−1,n ◦ Pt2k,n

have no fixed points
(2.2) for each pair of multiplicative difference sequences t1, t2, . . . , tk and t′1,

t′2, . . . , t′s of even length k < cn and s < cn and each point x from the
free module Kn values of FP,t1,t2,...,tk,n(x) and FP,t′1,t

′
2,...,t

′
s,n

(x) (and
FL,t1,t2,...,tk,n(x) and FL,t′1,t

′
2,...,t

′
s,n

(x)) are different.
(2.3) for each pair of multiplicative difference sequences t1, t2, . . . , tk and t′1,

t′2, . . . , t
′
s of odd length k < cn and s < cn and each point x from the

free module Kn values of FP,t1,t2,...,tk−1,n◦Ptk,n(x) and FP,t′1,t
′
2,...,t

′
s−1,n

◦
Pt′s,n (and FL,t1,t2,...,tk−1,n ◦Ltk,n(x) and FL,t′1,t

′
2,...,t

′
s−1,n

◦Lt′s,n(x)) are
different.

(2.4) for each multiplicative difference sequence of kind {t1, t2, . . . , ts}, s is
even, the order of transformation FP,t1,t2,...,ts,n and FL,t1,t2,...,ts,n is go-
ing to infinity, when parameter n is growing.

Dynamical Systems of Large Girth and Multivariate Cryptography 241

Theorem 5. For each commutative ring K, there exists symmetric bipartite
dynamical system SB(K) of large girth with c ≥ 2/3 such that t′ = −t, t ∈ K.

Similarly to a case of dynamical system of large girth we can associate with
introduced above objects and multiplicative sets different Turing machines
(see the next section for the definition and geometrical interpretation).

2.2 Idea of a Asymmetry

The paper [6] by Diffie and Hellman was published in 1976. This remark-
able paper changed the shape of Cryptography, some new directions were
developed. Below are the basic definitions of Modern Cryptography.

One way function is the one to one correspondence satisfying following
requirements:

(i) there exists a polynomial algorithm for the computation of the valueF (x).
(ii) the polynomial algorithm of finding inverse map F−1 does not exist.

The conjecture on existence of one way function is open. For practical use
one may substitute requirement (ii) on weaker condition:

(ii)’ the complexity of polynomial algorithm of finding inverse map F−1 is
equivalent to solving of one NP -hard problem from the known list of
equivalent problems (see [20]).

Trapdoor function with a secret parameter K is a one to one correspondence
FK : X → Y satisfying the following 3 requirements:

(i) there exists a polynomial algorithm for the computation of the value
FK(x) for each K and x.

(ii) the polynomial algorithm of finding inverse map F−1
K for unknown K

does not exist.
(iii) there exists a polynomial algorithm for the computation of the inverse

for FK(x) with known parameter K.

Again the statement on the existence of trapdoor function has not been
proven yet.

There are examples of functions satisfying (i) and (iii) and requirement
(ii)’. The most famous one is the encryption function for RSA cipher.

The above given definitions are motivated by an idea of public key or asym-
metric cryptographical algorithm. Let us consider the way to use trapdoor
functions for the solution of new cryptographical assignments.

Alice (the holder of secret parameter K) wants safe delivery of secret mes-
sages via open communication channel. Bob (public user) does not have a
parameter K. He gets an encryption function FK(x) via open channel with-
out option to compute K. If Alice (or somebody else) sends him encrypted
plaintext FK(p), he can not decrypt and get p. Of course, the holder of K
may enjoy the property (iii) and decrypt Bob’s messages within polynomial
time. The adversary, as Bob, has no option to decrypt Bob’s messages.

242 V. Ustimenko and U. Romańczuk

Notice, that the adversary can make attacks of type (iii), because he can
compute the corresponding ciphertext for any chosen plaintext. Encryption
based on the trapdoor function (of course, in the case of its existence) has a
wonderful resistance to attacks of type (iii).

The term ”public key” is used, because Alice presents encryption function
to public (printing in telephone book, sending by internet, etc).

In the same paper Diffie and Hellman proposed the key exchange algorithm
[6]. They used the encryption function, based on Little Fermat’s Theorem,
introduced in the previous unit. Correspondents Alice and Bob establish a
primitive element b of multiplicative group of prime finite field Fp via open
communication channel. They choose positive integers nA and nB, respec-
tively.

They exchange elements hA = bnA and hB = bnB via open channel. Finally,
Alice and Bob compute common vector c as hnA

B and hnB

A , respectively. So
they can use c as a key in some symmetric encryption method.

The security of ”symbolic Diffie-Hellman algorithm” is based on the dis-
crete log problem for the cyclic multiplicative group for Fp:

Really, the adversary (Catherina) has field elements b, c1 = bnA , and c2 =
bnB . She has to solve one of the equations bx = ci, i = 1, 2. Let the adversary
get nA as a solution of the first equation. Then, she computes c as cnA

2 .
The discrete logarithm problem is on the list of NP -hard problems. So the

above mentioned protocol for the key exchange is secure, if the chosen prime
number is sufficiently large.

2.3 On the Discrete Logarithm Problem for Special
Subgroups of Cremona Group

The discrete logarithm problem (DLP) can be formally defined for any finite
group G: for given b ∈ G find the solution for the equation bx = g, where x is
unknown natural number. The classical discrete logarithm problem famous in
Numbers Theory is when the group G = Z∗

p = F∗
p i.e. the multiplicative group

of integers between 1 and p− 1 modulo p (p is prime number). Recall, that
multiplicative group F∗

p is isomorphic to additive group Zp−1, for which DLP
is equivalent to finding the solution of linear equation. This fact demonstrates,
that group theoretical DLP, in fact, depends not only on chosen abstract
finite group, but also on the ways of its representations. Both groups F∗

p and
Zp−1 are isomorphic subgroups of symmetric group Sp of order p!. They are
isomorphic, but not similar (groups are not conjugated by some permutation
from Sp). So they are distinct transformation groups.

DLP problem can be considered formally for any finite transformation
group. In fact, even the case of group Z∗

n, where n is a composite number,
acting on set Zn is not investigated properly. We can consider the following
natural generalisations of DLP for F∗

p.

Dynamical Systems of Large Girth and Multivariate Cryptography 243

1) Notice, that each permutation from Sp can be written in the form of
polynomial transformation x → f(x), f(x) ∈ Fp[x]. We can identify F∗

p with
totality of maps x → ax of degree 1, where a �= 0.

The simplest generalisation DLP can be obtained by the change of the pair
F∗
p, Sp on the pair of groups GLn(Fp) (general linear group over Fp) and sym-

metric group Spn . Recall, that GLn(Fp) consists of all bijective linear trans-
formations x → xA of the vector space Fn

p , where A is non singular quadratic
matrix with entries from Fp. Notice, that each permutation from Spn can
be written in the form x → F (x), where F (x) = (f1(x), f2(x), . . . , fn(x)),
fi(x) ∈ Fp[x1, x2, . . . , xn], i = 1, 2, . . . , n is a bijective polynomial map from
the vector space Fn

p into itself. Similarly to the case n = 1 we can identify
GLn(Fp) with totality of invertible polynomial maps x → xA of degree 1. It
is clear that GL1(Fp) = F∗

p and change of F∗
p on GLn(Fp) or Spn leads to

natural generalisation of classical DLP.
2) The second step of generalisation DLP is the change of the field Fp to

the general finite commutative ring K, vector space Fn
p into free module Kn,

symmetric group Spn into Cremona group C(Kn) .
The DLP problem for the cyclic group generated by nonlinear transforma-

tion f of order t from Cremona group C(Kn), i.e. problem of solving fy = g
is more difficult than the problem of finding g−1. If integer y is known to-
gether with t, then our equation can be written in the form f t−y = g−1

and we are computing the inverse map for g. So, in the case of subgroups of
Cremona group DLP is closely connected to the following classical difficult
mathematical problems:

(1) solving the system of nonlinear polynomial equations over finite fields
and rings.

(2) problem of finding the inverse map of bijective polynomial multivariable
map.

Let us discuss the known results of the oldest classical problem (1) of investiga-
tion of the system of nonlinear equations g(x) = b, g ∈ C(Kn), x, b ∈ Kn. This
problemhas been investigated for centuries and nowadays research on this topic
is very interesting, but actualy the complexity of the best known algorithm is
practically the same as those given by the famous Gauss elimination method.
If the degree of g is d, then the best known general algorithm has complexity
dO(n2). In the casewhen the solution space of the systemhas dimension zero and
some special restrictions on g are fulfilled the solution can be found for dO(n)

(see, survey [28]) . It is clear, that if g−1 is known, thenx = g−1(b). So, the prob-
lem (2) of finding the inverse map of bijective polynomial multivariable map is
more sophisticated. In fact, it is much harder algebraic problem in comparison
with the solving of non linear equation. Traditionally specialists use dO(n) as a
lower bound for the complexity of both problems.

The efficient general algorithm of finding g−1 is known only in the case when
g is linear map. There is an amassing gap between linearity and nonlinearity,
which can be used to guarantee the security of cryptographical tools.

244 V. Ustimenko and U. Romańczuk

Any finite abstract group can be considered as a subgroup of certain Cre-
mona group. It means that complexity of DLP depends heavily on the choice
of a base. Generation of a good ”pseudorandom” base guarantees the high
complexity of (1) and (2) and security of related proposed cryptographical
security tools.

Let us discuss some issues connected with the ”mass problem” of genera-
tion of sequences of maps fn ∈ C(Kn) such that their representatives could
be used as appropriate bases for discrete logarithm problem. Let fy

n(x) be
the iteration of fn(under the superposition operation of Cremona group) con-
ducted y-times. The discrete logarithm problem fy

n = gn has an easy solution,
if degree of fy

n is growing linearly with the growth of y (y is a ratio of degrees
bn and fn). To make DLP a difficult problem we have to assume that degree
of Fn(x) = fy

n(x), x ∈ Kn is very sophisticated function or deggn(x) is simply
bounded by some small constant. We concentrate on studies of the second
case (small degree of gn(x)). We have to care about the large order tn of fn to
make discrete logarithm problem difficult. It is nice to have the computation
of order as unfeasible, so to have ”hidden discrete logarithm problem”.

Let us refer to the family of polynomial maps fn = fn(x1, x2, . . . , xn), such
that the order |fn| is growing with n to infinity and degrees of non-identical
maps fy

n , where n and y are positive integers, restricted by a constant r
independent from n and y as a family of polynomials of large order and
stable degree.

The existence of such families of polynomials fn, with r ≥ 4 can be ob-
tained via consideration of maps f = gn ◦ τn ◦ g−1

n , where τn is an invertible
linear map of increasing order (for instance one can use famous Singer cycle,
order of which is growing exponentially with the order of n) and gn is bijec-
tive non-linear polynomial map with degree bounded by some constant s. If
the degree of gn is s ≥ 2, then with probability close to 1 the degree of fn
will be at least 4.

Let us refer to maps of kind gn ◦ τn ◦ g−1
n as pseudolinear maps of large

order and stable degree. The explicit construction of families of polynomials
of large order and very small degree is an interesting mathematical task. Of
course, the case of nonpseudolinear families is the case of special interest.
Next section is devoted to some solutions of this task with the usage of graph
based dynamical systems.

2.4 On the History of Constructive Multivariate
Cryptography

We are given a shorter version of historical remark in [41]. Multivariate
cryptography is quite popular nowadays because it can be a possible op-
tion applicable to both conventional and quantum computers (see [15]). In
multivariate cryptography the public key cryptosystems are based on the
problem of solving system of nonlinear equations which complexity we dis-

Dynamical Systems of Large Girth and Multivariate Cryptography 245

cuss above. Imai and Matsumoto (1988, see [33]) have been proposed, the
first cryptosystem (MIC) based on the map from Cremona group over the
finite field of characteristic 2. The MIC* cryptosystem was based on the idea

of hiding a monomial x2l + 1 by left and right shifts by two invertible affine
transformations (see [20]). This cryptosystem was rather efficient for imple-
mentations. Unfortunately this cryptosystem was broken by Patarin (see [36],
1995). Next year [37] J. Patarin proposed a generalization of MIC cryptosys-
tem called HFE. In attempt to improve security level of HFE the proposed
secret key computation was more sophisticated in comparison with MIC cryp-
tosystem. Unfortunately the efficient cryptanalisis for the primitive instance
of HFE was broken in 1999 (see [17]). The attack uses a simple fact that every
homogeneous quadratic multivariate polynomial has a matrix representation.
Using this representation a highly over defined system of equations can be
obtained which can be solved by a new technique called relinearization [17].
Other efficient attacks on the HFE scheme can be found in [3], [13], [4]. J.
Patarin [38] investigated whether it is possible to repair MIC with the same
kind of easy secret key computations. He designed some cryptosystems known
as Dragons with multivariate polynomials of total degree 3 or 4 in public key
(instead of 2) with enhanced security and with efficiency comparable to MIC.
In Dragon cryptosystems the public key was of mixed type of total degree 3
which is quadratic in plaintext variables and linear in ciphertext variables.
However Patarin found [38] that Dragon scheme with one hidden monomial is
insecure. A public key scheme based on the composition of tame transforma-
tion methods (TTM) was proposed in 1999 (see [34]). Next year this scheme
has been broken (see [12], where the cryptanalysis is reduced to an instance of
the Min-Rank problem that can be solved within a reasonable time. In 2004
Ding [7] proposed a perturbed variant of MIC* cryptosystem called PMI. The
PMI system attempts to increase the complexity of the secret key compu-
tations in order to increase security, using a system of r arbitrary quadratic
equations over Fq with the assumption that r << n, where n is the bitsize.
The PMI Cryptosystem was broken by Fouque, Granboulan and Stern [8].
The trick of the attack on PMI is to use differential cryptanalysis to reduce
the PMI system to the MIC* system. A cryptosystem called Medium Field
Equation [29] was proposed in 2006 but it also was broken one year later of
appearance (Ding, [14] using high order linearization equation attack.

Despite mention above sequence of unsuccessful attempts to construct se-
cure and efficient multivariable cryptosystems public key development based
on symbolic computation became a popular area of research [15]. Rather in-
formative introduction to hidden monomial cryptosystems can be found in
reference [20]. An examples of cryptosystem which are still under the investi-
gation of cryptoanalitics is [41] and cryptosystems based on special dynamical
systems, which we observe in this chapter (see the conclusion).

246 V. Ustimenko and U. Romańczuk

3 Dynamical Systems with Large Cycle Indicator,
Related Public Keys and Key Exchange Protocols

One direction for the construction of such families is the studies of special
dynamical systems of large girth, which produce maps of bounded degree.

Theorem 6. For each commutative ring K, there exists a balanced bipar-
tite dynamical system BB(K) of large girth with c ≥ 1/2, such that each
nonidentical transformation of kind FP,t1,t2,...,tl,n or FL,t1,t2,...,tl,n, where
(t1, t2, . . . , tl) ∈ Kl is a cubical map.

Theorem 7. For each commutative ring K, there exists a balanced dynam-
ical system BF (K) of large girth with c ≥ 1/4, such that each nonidentical
transformation of kind Ft1,t2,...,tl,n, where (t1, t2, . . . , tl) ∈ Kl is a cubical
map.

Theorem 8. For each commutative ring K, there exists symmetric bipartite
dynamical system SB(K) of large girth with c ≥ 1/2, such that t′ = −t, t ∈ K

and each nonidentical transformation of kind FP,t1,t2,...,tk,n or FL,t1,t2,...,tk,n,
where (t1, t2, . . . , tk) ∈ Kk is a cubical map.

Theorem 9. For each commutative ring K, there exists symmetric dynamical
system SF (K) of large girth with c ≥ 1/4, such that t′ = −t, t ∈ K and each
nonidentical transformation of kind Ft1,t2,...,tl,n, where (t1, t2, . . . , tl) ∈ Kl is
a cubical map.

The following generalisations lead to interesting examples.
Let K be a commutative ring. We refer to a sequence of nonlinear bijective

maps Ft = F (t, n,K) , n = 1, 2, . . . , t ∈ K − {0} of free module Kn as
dynamical system F (K) of large cycle indicator, if the following conditions
hold

(1) there is an independent constant c such that for each set of Q of multi-
plicative generators inK and each different pair of sequences t1, t2, . . . , tk,
ti ∈ Q, 1 ≤ k ≤ cn and t′1, t

′
2, . . . , t

′
s, t

′
i ∈ Q, 1 ≤ s ≤ cn: compositions

F1 = Ft1,t2,...,tk,n and F2 = Ft′1,t
′
2,...,t

′
s,n

of maps Ft1,n, Ft2,n, . . ., Ftk,n

and Ft′1,n, Ft′2,n, . . ., Ft′s,n are different in some point x ∈ Kn, i.e. there is
x such that F1(x) �= F2(x).

(2) for each set of multiplicative generators {t1, t2, . . . , ts} the order of trans-
formation Ft1,t2,...,ts,n is going to infinity, when parameter n is growing.

Obviously, each dynamical system of large girth is a dynamical system of
large cycle indicator. So, we have explicit constructions of such objects.

Public key. Let F (K, Q) be a dynamical system of large cycle indicator, αn

and βn are affine transformations of the free module Kn. The transformation

f = αn ◦ Ft1,t2,...,tk,n ◦ βn,

acting on the free module Kn can be written in the form of public rule

Dynamical Systems of Large Girth and Multivariate Cryptography 247

x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn),

where polynomials fi(x1, x2, . . . , xn) ∈ K[x1, x2, . . . , xn], i = 1, 2, . . . , n are
written in standard form, i. e as sums of monomial expressions.

Notice, if 1 ≤ k ≤ cn and αn and βn are fixed, then different strings
produce distinct public rules as above.

Transformations F1 = Ft1,t2,...,tk,n and F2 = Ft′1,t
′
2,...,t

′
s,n

from the group
Gn generated by Ft,n, t ∈ Q are different maps, if 1 ≤ k, s ≤ cn. If one
of parameters are outside the interval 1 ≤ k, s ≤ cn, then the problem on
equality F1 and F2 can be very complicated, see, for instance [32] for general
group theoretical algorithm to check whether or not two group elements are
equal.

Let K be a commutative ring. We refer to a pair of sequences of bi-
jective nonlinear polynomial maps Pt,n = P (t, n,K) and Lt = L(t, n,K),
n = 1, 2, . . . , t ∈ K of free module Kn into itself as bipartite dynamical sys-
tem B(K) of large cycle indicator, if the inverse maps P ′

t,n = P ′(t, n,K) and
L′
t,n = L′(t, n,K) for Pt,n and Lt,n are also polynomial maps of Kn and there

is an independent constant c, c > 0, such that for each multiplicative set Q
of K the following two conditions hold

(1) for each pair of distinct sequences (t1, t2, . . . , t2k) ∈ Q2k and
(t′1, t

′
2, . . . , t

′
2s) ∈ Q2s of length k < cn and s < cn, there exists

a point x from the free module Kn values of FP,t1,t2,...,t2k,n(x) and
FP,t′1,t

′
2,...,t

′
2s,n

(x) are different, FL,t1,t2,...,t2k,n(x) �= FL,t′1,t
′
2,...,t

′
2s,n

(x) .
(2) for each set ofmultiplicative generators {t1, t2, . . . , ts} the orders of trans-

formations FP,t1,t2,...,ts,n and FL,t1,t2,...,ts,n is going to infinity, when pa-
rameter n is growing.

We refer to B(K) as balanced bipartite dynamical systems of large cycle in-
dicator and denote it BB(K), if inverse maps P ′(t, n,K) and L′(t, n,K) for
P (t, n,K) and L(t, n,K) also form a bipartite dynamical system B′(K) of
large cycle indicator.

Obviously, each bipartite dynamical system of large girth is a bipartite
dynamical system of large cycle indicator. So, we have explicit constructions
of such objects.

We obtain definition of symmetric dynamical system SF (K) of large cycle in-
dicator, if we omit condition (2)within the list above and change it for condition:

(2’) for each pair of multiplicative irreducible sequences t1, t2, . . ., tk and
t′1, t

′
2, . . ., t

′
s of length k < cn and s < cn, there exists point x from the

free module Kn, such that values of Ft1,t2,...,tk,n(x) and Ft′1,t
′
2,...,t

′
s,n

(x)
are different.

Let K be a commutative ring. We refer to a pair of sequences B(K) of bijective
nonlinear polynomial maps Pt,n = P (t, n,K) and Lt,n = L(t, n,K), n =
1, 2, . . . , t ∈ K of free module Kn into itself as symmetric bipartite dynamical
system SB(K) of large cycle indicator, if

248 V. Ustimenko and U. Romańczuk

(1) the inverse map P ′
t,n = P ′(t, n,K) for Pt,n is some map of kind Lt′,n =

L(t′, n,K)), t′ ∈ K and the inverse map L′
t,n = L′(t, n,K) for Lt,n is

some map of kind Pt′,n, t
′ ∈ K.

(2) There is an independent constant c, c > 0, such that

(2.1) for each pair of multiplicative difference sequences t1, t2, . . . , tk and
t′1, t

′
2, . . . , t

′
s of even length k < cn and s < cn there is a point x from

the free module Kn values of FP,t1,t2,...,tk,n(x) and FP,t′1,t
′
2,...,t

′
s,n

(x)
(and FL,t1,t2,...,tk,n(x) and FL,t′1,t

′
2,...,t

′
s,n

(x)) are different.
(2.2) for each pair of multiplicative difference sequences t1, t2, . . . , tk

and t′1, t′2, . . . , t′s of odd length k < cn and s < cn there is a
point x from the free module Kn values of FP,t1,t2,...,tk−1,n ◦ Ptk,n(x)
and FP,t′1,t

′
2,...,t

′
s−1,n

◦ Pt′s,n(x) (and FL,t1,t2,...,tk−1,n ◦ Ltk,n(x) and

FL,t′1,t
′
2,...,t

′
s−1,n

◦ Lt′s,n(x)) are different.

(2.3) for each multiplicative difference sequence of kind t1, t2, . . . , ts, s is
even, the order of transformation FP,t1,t2,...,ts,n (and FL,t1,t2,...,ts,n) is
going to infinity, when parameter n is growing.

Theorem 10. For each commutative ring K, there exists symmetric bipartite
dynamical system SB(K) of large cycle indicator with c = 1, such that t′ =
−t, t ∈ K.

It is possible to show that the constant c in previous statement is the largest
possible one [53], [54] (see also next our chapter in this book).

Similarly to the case of dynamical systems of large girth we can associate
universal Turing machines to other dynamical systems, which were introduced
above. In fact, we consider more general Turing machine for general algebraic
graph later.

3.1 On the Case of Ring Extensions

Let us consider the case when a commutative ring K itself is a free module
over the other ring R, i. e. K = Rm. The reader may think over the following
examples.

(1) Commutative ring K is a Kronecker extension ofR: there is a polynomial
p(x) ∈ R[x] of degree ≥ 2, such that K = R[x]/p(x). Commutative ring
R[x]/p(x) can be with large multiplicative sets. Obvious examples: if
p(x) = xn+a1x

n−1+. . .+an−1x, then Q = {f(x) ∈ R[x]/p(x)|f(0) �= 0}
is a multiplicative set, if R = Fp, p is prime, and p(x) is irreducible
polynomial, then K = R[x]/p(x) is a finite field with multiplicative
group K− {0}.

(2) Recall, that a Boolean ring Bm is the Cartesian power Fm
2 of the finite

field F2, i.e a vector space over F2. We can generalize this example simply
by consideration of m-th Cartesian power Rm of general commutative
ring R.

Dynamical Systems of Large Girth and Multivariate Cryptography 249

We can generalize the Turing machine T (F (K), Q, τ1, τ2) associated with
dynamical system of large girth (cycle indicator) or bipartite dynamical sys-
tem via wider choice of linear transformations of the module Kn. We assume,
that τ1 and τ2 are bijective linear maps of Rmn given by rules:.

x1 → α1,1x1 + α1,2x2 + . . .+ α1,mnxmn + β1

x2 → α2,1x1 + α2,2x2 + . . .+ α2,mnxmn + β2

. . .

xmn → αmn,1x1 + αmn,2x2 + . . .+ αmn,mnxmn + βmn

Let us use symbol TR(F (K), Q) for generalized Turing machine as above.

Proposition 1. Let F (R) be a dynamical system of Theorem 1 or Theorem
2, p(x) ∈ R[x] and K = R[x]/p(x) or K = Rm. Then, Turing machine
TR(K, Q) produces cubical maps.

4 On the Velocities of Growth of Orders for
Polynomial Encryption Maps Based on Dynamical
Systems of Large Girth and of Large Cycle Indicator

Recall, that each dynamical system F (K) of large girth or large cycle in-
dicator is connected with Turing machine T (F (K), Q, τ1, τ2), where Q is a
multiplicative subset of K and τi, i = 1, 2 are sequences of bijective affine
maps τi,n = τi(n,K), i = 1, 2 on corresponding free modules Kn. As it follows
from definitions for τ1,n

−1 = τ2,n the order of transformation Ft1,n,t2,n,...,tk,n

is growing to infinity with the growth of n.
Further, we will evaluate transformations of graph based Turing machine

with internal alphabet Q = Reg(K).
Theorems 6 and 10 have been proven via explicit constructions of bipar-

tite dynamical system BD(K)of large girth and bipartite dynamical system
BA(K) of large cycle indicator (see next chapter of this volume). We com-
pare the growth of orders for FD,t1,t2,n = FD(t1, t2, n,K), and FA,t1,t2,n =
FA(t1, t2, n,K) t1+ t2 ∈ Reg(K). Obviously, we can assume that τi,n, i = 1, 2
are identical maps.

We evaluate orders of permutations FA,t1,t2,n and FD,t1,t2,n from below
via the lengthes of their minimal cycles (or length of some cycle). Recall that
the order of permutation is the least common multiple of all cycle lengthes.

We have run computer tests, to measure the length of the cycles gener-
ated by powers of the above mentioned maps corresponding to ”password”
t1, t2 for the bipartite dynamical systems BD(K) and BA(K). with different
parameters n, and different commutative rings K.

250 V. Ustimenko and U. Romańczuk

Table 1 shows these results for the first few prime numbers p (K = Zp).
Each test was repeated at least 20 times, every time with a random start
point, and random (t1, t2) parameter.

Table 1 Cycle length for FA,t1,t2,n, for the case K = Zq, where q is prime

n =4 n =10 n =30 n =50 n =100 n =200 n =400 n =600 n =1000

q =3 9 27 81 81 243 243 729 729 2187
q =5 5 25 125 125 125 625 625 625 3125
q =7 7 49 49 343 343 343 2041 2041 2041
q = 11 11 11 121 123 121 1331 1331 1331 1331

It is easy to see that the cycle length is always a power of the prime number
p. Another property is that cycle length does not depend on starting point,
nor parameters (t1, t2). This property does not hold for p = 2. In that case
the cycle length is always a power of 2, but for the same n we have different
results depending on start point x, and (t1, t2).

Recall that the order of permutation is a least common multiple of its
cycles. So in our experiment cycle length and order are same.

Table 2 Cycle length of FA,t1,t2,n for the case K = Zq , where q is some composite
numbers

n = 4 n = 10 n =30 n =50 n =100 n =200 n =400

q =4 16 32 64 128 256 512 1024
q =6 72 432 2592 5184 31104 62208
q =8 32 64 128 256 512 1024 2048
q =9 27 81 243 243 729 729 2187
q =15 45 675 10125 10125 30375 151875 455625

The comparison of cycles in cases FD,t1,t2,n and FA,t1,t2,n encryption
demonstrates big advantage of BA(K). The typical example is below (see
tables 3 and 4).

Table 3 Cycle length of FA,t1,t2,n for the case K = Zq, where q = 15

nMIN nMAX cycle length

4 4 45
5 8 225
9 24 675
25 26 3375
27 80 10125
81 120 30375
140 240 151875
260 620 455625
640 720 2278125

Dynamical Systems of Large Girth and Multivariate Cryptography 251

Table 4 Cycle length of FD,t1,t2,n for the case K = Zq, where q = 15

nMIN nMAX cycle length

4 7 45
8 17 225
18 53 675
54 65 3375
150 249 10125
250 299 30375
300 649 151875
650 1000 455625

5 Conclusion

The public key cryptosystem corresponding to symmetric bipartite dynam-
ical system SBD(Fq) over finite field Fq was proposed in [49](2004). The
Computer program in ”Mathematica” were generated cubical public rules
Rt,τ1,n,τ2,n, = R(t, τ1,n, τ2,n, n,K) of kind τ1,n ◦ FD,t1,t2,...,ts,n ◦ τ2,n for the
string t = t1, t2, . . . , ts, ti + ti+1 �= 0 and τ1,n = τ1(n,Fq), τ2,n = τ2(n,Fq),
which are invertible affine maps of vector space Fn

q . The rules are correspond-
ing to regular bijective polynomial map Ht,n = H(t, τ1,n, τ2,n), n,K)) of the
vector space.

The important fact that independently from the choice of string t the en-
cryption map is a cubical one was proven in [61]. So for each string t the com-
putation of the public rule takesO(n4) field operation. If we fixe maps τ1,n and
τ2,n and keep s �= [n + 5]/2 then maps Ht,n and Ht′,n, t �= t′ are strongly
different, i. e, for each x ∈ Fq the values of Ht,n(x) and Ht′,n(x) are different.

The hidden by affine maps dynamical system (or hidden graph) allows us
to decrypt with O(n) field operation. In fact corresponding private key had
been considered earlier (1998, see [46] or [47]), the method is used as stream
cipher encryption. It means, that the complexity gap between encryption
and decryption is larger in comparison with the cubical map of [41], where
encryption and decryption can be done forO(n3) andO(n2), respectively. The
public key corresponding to balanced bipartite dynamical system BB(Fq)
over finite field Fq is an example of Key Dependent Cryptography, our key
is the string t of length s in the internal alphabet Fq of encrypting Turing
machine. To achieve better security Alice can chose longer key.

The case τ2,n = τ−1
1,n is very important, because from the defini-

tion of symmetric dynamical system follows, that the order of Ht,n =
H(t, τ1,n, τ2,n, n,Fq) is growing to infinity with the growth of n. Other im-
portant property: the composition Hx

t,n of Ht,n with itself taken x times
is a cubical map (or identity, where x is the multiple of the order). Both
properties we can use for ”hidden discrete logarithm” method of symbolic
key exchange protocol (see [42], [43], [56], [58], [59], [60]). World hidden is
used because of order of cyclic group < Ht,n > generated by map Ht,n for

252 V. Ustimenko and U. Romańczuk

”sufficiently large” n is impossible to compute for the public user with his
restricted computational resources.

We can use map Ht,n = H(t, τ1,n, τ2,n, n,Fq) with fixed sequence τ1,n as
hash function for the text t = (t1, t2, . . . , ts), s >> n with the value Ht,n in
standard symbolic form. We can think that the outcome of computation is
the list of coefficients of n public rules taken in lexicographical order (string
of n4 +O(n3) field elements). We will ignore condition ti + ti+1 �= 0. We can
make outcome shorter via application of differential operator(

∂

∂x1
+

∂

∂x2
+ . . .+

∂

∂xn

)i

, where 1 ≤ i ≤ 3, x = (x1, x2, . . . , xn) ∈ Fn
q , to each symbolic coordinate for

the construction a shorter list with n4−i +O(n3−i) field elements.
It demonstrates the option for application of theory of graph based dynam-

ical systems to the development of Public Key Infrastructure (PKI). Recall,
that the PKI task is the development of security systems including private
and public keys, tools for identifications (electronic signatures and etc), key
exchange protocols and etc.

The further step was to expand the theory of dynamical system of large girth
for the case of arbitrary commutative ring. Obviously, arithmetics Z2m modulo
2m is much faster in comparison with finite field F2m . So Turing machines of
dynamical systems over arithmetical rings have important advantage.

First cryptosystems corresponding to dynamical systems over general com-
mutative ring K was suggested in [50], some their implementations have been
discussed in [56]. Recent studies of properties of such implemented crypto-
graphical tools the reader can find in [2], [18], [19], [22], [57], [23]. In mentioned
above works the internal alphabet of Turing machine was Reg(K) under as-
sumption that this set contains at least 3 elements. Computer simulations
bring some unexpectedly good results for the case of Zm, where m is com-
posite number (see [18], [19], [23], [42]).

The more general cryptosystems for the pair (K, Q), where Q is multi-
plicative set is proposed in current chapter. Such a generalisation is impor-
tant, because of option to construct Boolean maps over Boolean rings Bm,
|Bm| = 2m.

Finally, we start the new direction - studies of dynamical systems with large
cycle indicator. The explicit construction BA(K) of such bipartite system
which satisfying to conditions of Theorem 10 a reader can find in the next
our chapter of this book .

The cryptosystem based on maps generated via BA(K) was introduced in
[53]. The paper [19], [23] is devoted to implementation of this cryptosystem
and studies of its properties. Results of computer stimulations demonstrate
the advantage of new cryptosystem in comparison with security tools based
on dynamical system BD(K) discribed in the next chapter (better density of
public rules, larger cyclic groups generated by encryption map, and etc).

Dynamical Systems of Large Girth and Multivariate Cryptography 253

In cases of our dynamical systems BD(K) of large girth and dynamical
systems BA(K) of large cycle indicator our public rules are given by cubical
polynomials yi = fi(x1, . . . , xn), i = 1, 2, . . . , n, which are written in standard
way as linear combinations of monomials of kind xn1

i1
xn2

i2
xn3

i3
, where i1, i2, i3 ∈

{1, 2, . . . , n}, n1, n2, n3 ∈ {0, 1, 2, 3}, n1 + n2 + n3 ≤ 3, with the coefficients
from K = Fq. The cryptanalyst Cezar, having only a formula for y, has a
very hard task to solve the system of n equations of n variables of degree 3.
As we discussed in section 2 it is solvable in the exponential time O(3n

3

) by
the general algorithm based on the Gröbner basis algorithm or alternative
methods. Anyway studies of specific features of our polynomials could lead
to effective cryptanalysis. This is an open problem for specialists.

Authors of [45] have tried Gröbner Basis Attacks to our cryptosystem
based on BD(K) implemented via standard tools of Computational Algebraic
Geometry. The results did not lead to the solution of system formed by public
rules. In fact the current situation in studies of our cryptosystems based on
BD(K) andBA(K) is similar to investigations of cubical public rules suggested
in [41].

In case of ring extensions K = Rm (see subsection 3.1) we can modify the
algorithms by the choice of affine maps τ1 and τ2 as transformations of free
module Rmn of degree 1. This trick is, in fact, similar to the choice of affine
maps in MIC cryptosystem. This is an option to hide nonlinear dynamical
system maps dipper and improve the density of public rules.

References

1. Biham, E.: Cryptanalysis of the Chaotic-Map Cryptosystem Suggested at
EUROCRYPT 1991. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS,
vol. 547, pp. 532–534. Springer, Heidelberg (1991)

2. Boudeliouua, I., Al Raissi, M., Touzene, A., Ustimenko, V.: Performance of
Algebraic Graphs Based Stream-Ciphers Using Large Finite Fields. Annalles
UMCS Informatica AI X1 2, 81–93 (2011)

3. Courtois, N.T.: The Security of Hidden Field Equations (HFE). In: Naccache,
D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg
(2001)

4. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer,
Heidelberg (2000)

5. Davis, M.: The Universal Computer: The Road from Leibniz to Turing (2011)
6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on Info.

Theory IT-22(6), 644–654 (1976)
7. Ding, J.: A New Variant of the Matsumoto-Imai Cryptosystem through Per-

turbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 305–318. Springer, Heidelberg (2004)

8. Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multi-
variate Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 341–353. Springer, Heidelberg (2005)

254 V. Ustimenko and U. Romańczuk

9. Hasler, M., Maistrenko, Y.: An introduction to the synchronization of chaotic
systems: coupled skew tent maps. IEEE Trans. Circuits and Systems -I 44(10),
856–866 (1997)

10. Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A Secret Key Cryptosystem by
Iterating a Chaotic Map. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS,
vol. 547, pp. 127–140. Springer, Heidelberg (1991)

11. Hodges, A., Hofstadter, D.: Alan Turing: The Enigma (2000)
12. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM Cryptosystem. In:

Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer,
Heidelberg (2000)

13. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

14. Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High Order Linearization Equation
(HOLE) Attack on Multivariate Public Key Cryptosystems. In: Okamoto, T.,
Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg
(2007)

15. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems.
Springer (2006)

16. Kapitaniak, T.: Chaos for engineers, theory and applications, 142 p. (2000)
17. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem

by Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
19–30. Springer, Heidelberg (1999)

18. Klisowski, M., Romańczuk, U., Ustimenko, V.: On the implementation of cubic
public keys based on new family of algebraic graphs. Annales UMCS Informat-
ica AI XI 2, 127–141 (2011)

19. Klisowski, M., Ustimenko, V.: On the implementation of cubic public keys based
on algebraic graphs over the finite commutative ring and their symmetries. In:
MACIS 2011: Fourth International Conference on Mathematical Aspects of
Computer and Information Sciences, Beijing, p. 13 (2011)

20. Koblitz, N.: Algebraic aspects of cryptography. In: Algorithms and Computa-
tion in Mathematics, vol. 3. Springer (1998)

21. Kocarev, L.J., Halle, K.S., Eckert, K., Chua, L.O., Parlitz, U.: Experimental
demonstration of secure communications via chaos synchronization. Int. J. Bi-
furc. Chaos 2, 709–716 (1992)

22. Kotorowicz, J.S., Ustimenko, V.: On the implementation of cryptoalgorithms
based on algebraic graphs over some commutative rings. Condens. Matter
Phys. 11(2(54)), 347–360 (2008)

23. Kotorowicz, J.S., Ustimenko, V., Romaúczk, U.: On the implementation of
stream ciphers based on a new family of algebraic graphs. In: Proceedings of
the Conference CANA, FedSCIS 2011, pp. 485–490. IEEE Computer Society
Press (2011)

24. Kotulski, Z., Szczepaski, J.: Discrete chaotic cryptography. Annalen der
Physik 6, 381–394 (1997)

25. Kozaczuk, W.: Enigma: How the German Machine Cipher Was Broken, and
How It Was Read by the Allies in World War Two. University Publications of
America (1984)

26. Kruh, L.: Cipher Deavours. The Commercial Enigma: Beginnings of Machine
Cryptography. Cryptologia 26(1) (2002) (ang.)

Dynamical Systems of Large Girth and Multivariate Cryptography 255

27. Kymakya, K., Halang, W., Unger, H.: Recent Advances in Nonlinear Dynamics
and Synchronization Theory, 398 p. (2009)

28. Lazard, D.: Thirty years of Polynomial System Solving, and now? J. Symb.
Comput. 44(3), 222–231 (2009)

29. Wang, L.-C., Yang, B.-Y., Hu, Y.-H., Lai, F.: A “Medium-Field” Multivariate
Public-Key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 132–149. Springer, Heidelberg (2006)

30. Lavrov, R., Jacquot, M., Larger, L.: Nonlocal Nonlinear Electro-Optic Phase
Dynamics Demonstrating 10 Gb/s Chaos Communications. IEEE Journal of
Quantum Electronics 46(10) (October 2010)

31. Lavrov, R., Michael Peil, M., Jacquot, M., Larger, L., Udaltsov, V., Dudley,
J.: Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dy-
namics, chaos, and synchronization. Physical Review E 80, 026207 (2009)

32. Magnus, W., Karras, A., Solita̋r, D.: Combinatorial Group Theory. Interscience
Publishers, New York (1966)

33. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Effi-
cient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.)
EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

34. Moh, T.: A public key system with signature and master key functions. Com-
mun. Algebra 27(5), 2207–2222 (1999)

35. Parlitz, U., Chua, L.O., Kocarev, L.J., Halle, K.S., Shang, A.: Transmission
of digital signals by chaotic synchronization. Int. J. Bifurc. Chaos 2, 973–977
(1992)

36. Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp.
248–261. Springer, Heidelberg (1995)

37. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

38. Patarin, J.: Asymmetric Cryptography With a Hidden Monomial. In: Koblitz,
N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 45–60. Springer, Heidelberg
(1996)

39. Patarin, J., Courtois, N.T., Goubin, L.: FLASH, a Fast Multivariate Signature
Algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307.
Springer, Heidelberg (2001)

40. Pecora, L.M., Caroll, T.L.: Synchronization in chaotic systems. Phys. Rev.
Lett. 64, 821–824 (1990)

41. Rajesh, P., Singh, B., Sarma, K., Saiki, A.: Public key cryptography using.
Permutation P-Polynomials over Finite Fields IACR Cryptology ePrint Archive
2009, 208 p. (2009)

42. Romańuczk, U., Ustimenko, V.: On the key exchange with new cubical maps
based on graphs. Annales UMCS Informatica AI XI 4, 11–19 (2011)

43. Romańuczk, U., Ustimenko, V.: On the key exchange with matrices of large or-
der and graph based nonlinear maps. Albanian Journal of Mathematics, Special
Issue, Application of Computer Algebra 4(4), 203–211 (2010)

44. Shaska, T., Huffman, W.C., Joener, D., Ustimenko, V. (eds.): Series on Coding
Theory and Cryptology, vol. 3, pp. 181–199. World Scientific (2007)

45. Shaska, T., Ustimenko, V.: On the homogeneous algebraic graphs of large girth
and their applications. Linear Algebra Appl. 430(7), 1826–1837 (2009); special
Issue in Honor of Thomas J. Laffey

256 V. Ustimenko and U. Romańczuk

46. Ustimenko, V.: Coordinatisation of Trees and their Quotients. In: The
”Voronoj’s Impact on Modern Science”, vol. 2, pp. 125–152. Institute of Math-
ematics, Kiev (1998)

47. Ustimenko, V.: CRYPTIM: Graphs as Tools for Symmetric Encryption. In:
Bozta, S., Sphparlinski, I. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 278–286.
Springer, Heidelberg (2001)

48. Ustimenko, V.: Linguistic Dynamical Systems, Graphs of Large Girth and
Cryptography. Journal of Mathematical Sciences, Springer, vol 140(3), 412–
434 (2007)

49. Ustimenko, V.: Maximality of affine group and hidden graph cryptosystems. J.
Algebra Discrete Math. 10, 51–65 (2004)

50. Ustimenko, V.: On the extremal graph theory for directed graphs and its crypto-
graphical applications. In: Shaska, T., Huffman, W.C., Joener, D., Ustimenko,
V. (eds.) Advances in Coding Theory and Cryptography. Series on Coding and
Cryptology, vol. 3, pp. 181–200 (2007)

51. Ustimenko, V.: On the extremal regular directed graphs without commutative
diagrams and their applications in coding theory and cryptography. Albanian
J. Math. 1(4) (2007); special issue on algebra and computational algebraic
geometry

52. Ustimenko, V.: On the cryptographical properties of extreme algebraic graphs.
In: Shaska, T., Hasimaj, E. (eds.) Algebraic Aspects of Digital Communica-
tions, NATO Science for Peace and Security Series - D: Information and Com-
munication Security, vol. 24, pp. 256–281. IOS Press (July 2009)

53. Ustimenko, V.: On the K-theory of graph based dynamical systems and its
applications. Dopovidi of the National Ukrainian Academy of Sci. (to appear)

54. Ustimenko, V.: On Extremal Graph Theory and Symbolic Computations.
Dopovidi of the National Ukrainian Acad. Sci. (to appear)

55. Ustimenko, V.: On optimization problems for graphs and security of digital
communications. In: International Conference Discrete Mathematics, Algebra
and their Applications, October 19-22 (2009); Proceedings of the Institute of
Mathematics, Belarussian Acad. Sci. (3), 12 (2010)

56. Ustimenko, V.: Algebraic graphs and security of digital communications. Insti-
tute of Computer Science. University of Maria Curie Sklodowska in Lublin, 151
p. (2011); supported by European Social Foundation, available at the UMCS
web

57. Ustimenko, V., Kotorowicz, J.S.: On the properties of stream ciphers based
on extremal directed graphs. In: Chen, R.E. (ed.) Cryptography Research Per-
spective, pp. 125–141. Nova Science Publishers (April 2009)

58. Ustimenko, V., Wróblewska, A.: On the key exchange with nonlinear polyno-
mial maps of degree 4. Albanian Journal of Mathematics, Special Issue, Appli-
cations of Computer Algebra 4(4) (December 2010)

59. Ustimenko, V., Wróblewska, A.: On the key expansion of D(n;K)-based cryp-
tographical algorithm. Annales UMCS Informatica AI XI 2, 95–111 (2011)

60. Ustimenko, V., Wróblewska, A.: On the key exchange with nonlinear polyno-
mial maps of stable degree (to apear)

61. Wróblewska, A.: On some applications of graph based public key. Albanian J.
Math. 2, 229–234 (2008); Proceedings of the NATO Advanced Studies Institute:
”New challenges in digital communications”

On Extremal Graph Theory, Explicit
Algebraic Constructions of Extremal
Graphs and Corresponding Turing
Encryption Machines

Vasyl Ustimenko� and Urszula Romańczuk�

Abstract. We observe recent results on the applications of extremal graph
theory to cryptography. Classical Extremal Graph Theory contains Erdős
Even Circuite Theorem and other remarkable results on the maximal size of
graphs without certain cycles. Finite automaton is roughly a directed graph
with labels on directed arrows. The most important advantage of Turing ma-
chine in comparison with finite automaton is existence of ”potentially infinite
memory”. In terms of Finite Automata Theory Turing machine is an infinite
sequence of directed graphs with colours on arrows. This is a motivation of
studies of infinite families of extremal directed graphs without certain com-
mutative diagrams. The explicite constructions of simple and directed graphs
of large girth (or large cycle indicator) corresponds to efficient encryption of
Turing machines.

1 Introduction

The term graph becomes the common word of Modern Mathematics and The-
oretical Computer Science. Recall, that the abstract model of a computer, if

Vasyl Ustimenko · Urszula Romańczuk
Maria Curie-Sk�lodowska University in Lublin
Pl. Marii Curie-Sk�lodowskiej 5, Lublin, Poland
http://www.umcs.lublin.pl

Vasyl Ustimenko
Institute of Telecommunications and Global Information Space, Kiev,
National Academy of Science of Ukraine
Chokolovsky Boulevard 13, Kiev, Ukraine
http://www.itel.nas.gov.ua

� Research supported by a project ”Human - The Best Investment”. The project
is co-funded from the sources of the European Union within the European Social
Fund.

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 257–285.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

http://www.umcs.lublin.pl
http://www.itel.nas.gov.ua

258 V. Ustimenko and U. Romańczuk

we ignore the memory, is a finite automaton, roughly a directed graph with
colours on arrows taken from some finite alphabet. To make a graph theo-
retical model of a computer with memory working with potentially infinite
data, one have to use a concept of Turing machine, which can be described
via the infinite family of directed graphs of increasing order. Studies of fami-
lies of graphs (not an individual graph) satisfying a special requirements are
highly motivated by applications in Economics, Natural Sciences, Computer
Science, Networking and in Mathematics itself. For instance, the problem of
constructing infinite families of small world graphs has many remarkable ap-
plications in all above mentioned areas and in sociology. Everybody knows
that the ”small world graph” of binary relation ”two persons shake hands”
on the set of people in the world has small diameter (with large probability
7). Other important direction in studies of infinite families of simple graphs is
Extremal Graph Theory. The girth of the graph is minimal length of its size
(see [3],[4],[5],[6]). Some important results in this direction had been obtained
in the 50th by Paul Erdős via studies of families of graphs of large girth, i.e.
infinite families of simple regular graphs of fixed degree and increasing order,
such that the girth of the member is growing logarithmically with the growth
of the order. The existence of such a family with arbitrary large degree was
proved by Erdős famous probabilistic method.

Basically, just 3 explicit constructions of families of graphs of large girth
with unbounded girth and bounded but arbitrarily large degree are known:
the family of Cayley graphs introduced by G. Margulis [35] approximately
40 years after the appearance of Erdős probabilistic construction, the family
of algebraic graphs D(n, q) (see [29]) defined over the arbitrary finite field
Fq, their connected components CD(n, q) [30] and regular version of polarity
graphs forD(n, q) or CD(n, q) (see [31], [50]). Families of graphs of large girth
are traditionally used in Networking [2]. The above mentioned families of
simple graphs of large girth can be easily converted in special finite automata
and used for different applications. Family of Cayley graphs leads to linear
automata, but other families are related to depending on time nonlinear
dynamical systems defined on the vector space Fn

q or variety Fn
q ∪ Fn

q [50].
Related to them Turing machines turns out to be appropriate tools for the
construction of stream ciphers and polynomial public key algorithms.

We have been investigating the cryptographical properties of infinite fami-
lies of simple graphs of large girth with the special colouring of vertices since
1998 (see [46], [47], [48] and further references), the properties of graph based
private or public keys had been considered in [49], [50], [51]).

Bipartite graphs D(n, q) and CD(n, q) lead to the discovery of an inter-
esting LDPC codes and turbocodes in error correction theory (see [16], [17],
[18], [19], [38], [43], [44], and further references). Recall, that infinite families
of graphs are traditionally used in classical Coding Theory. Foundations of this
theory are based on the concept of finite distance-transitive or distance-regular
metrics (distance regular and distance transitive graphs in another terminol-
ogy). According to the famous Hilbert’s approach to Mathematical Concept of

On Extremal Graph Theory, Explicit Algebraic Constructions 259

Geometry it is a special incidence system (or multipartite graph). The major-
ity of all known families of distance transitive graphs are constructed in terms
of the incidence geometry of simple group of Lie type or geometry of its Weyl
group. Known constructions of families of distance-regular but not distance
transitive graphs (such as Ustimenko, Hemmeter and Egava constructions) are
also based on the properties of such geometries (see subject index in [9]). In
fact, some new nonclassical areas of Coding Theory like LDPC codes and tur-
bocodes use objects constructed via finite geometries: for the first construc-
tions of LDPC codes Tanner used finite geometries of rank 2, the infinite alge-
braic family of graphs of large girth is related to infinite rank 2 geometry over
finite field has been applied to constructions of new families of LDPC codes.

We realised, that only few families of simple graphs of large unbounded
girth and arbitrarily large degree are known, but finite automata are directed
graphs. This observation motivates the development of more general theory
of directed graphs of large girth and their cryptographical applications. Ex-
panded theory allows to obtain new explicit algebraic constructions of infinite
families of graphs of large girth. The first results on Extremal Digraph Theory
were obtained rather recently. Instead of prohibition of cycles of small length
there used requirements of absence of commutative diagrams. The analogue
of Erdős upper bound for the graphs on v vertices of girth > 2n and some
other bounds had been obtained. New theory is principally different from the
case of simple graph: the Erdős bound is known to be sharp only in excep-
tional case of n = 2, 3 and 5, but its analogue for the digraphs is always sharp.
The framework of Extremal Digraph Theory allows to construct an infinite
family of algebraic directed graphs of large girth for each finite commutative
ring K with more than 3 regular elements.

On this basis we can define, depending on time, dynamical systems over
free modules Kn, n ≥ 3. Change of finite fields on arithmetical rings Z28 , Z216

and Z232 usually used in computers for arithmetical computations allows to
speed up the computations in encryption algorithms. Our first constructions
used Turing machines with the internal alphabet Reg(K) (totality of regular
ring elements, i. e. non zero divisors) (see [52], [53], [54], [56], [59], [60],
[61], [62]). The last results on Extremal Digraph Theory allow to change
Reg(K) for arbitrary subset of nonzero elements, which is closed under ring
multiplication (see [57], [58], [70]).

We also discuss the new direction in Extremal Graph Theory (case of sim-
ple graphs). The definition of family of graphs of large cycle indicator was
motivated by cryptographical applications. The maximal size of the graph
with cycle indicator > d was estimated explicitly. The algebraic construc-
tions of family of simple graphs of large cycle indicator and its analogues for
commutative rings correspond to special time dependent dynamical system.
We shortly observe the first results of the implementation of graph based
cryptographical algorithms for the case of families of graphs of large cycle
indicator. It is interesting that all known constructions of simple graphs of
large girth or large cycle indicator are families of expanding graphs.

260 V. Ustimenko and U. Romańczuk

In conclusion we discuss the common properties for the class of Turing
machines related to the known dynamical systems of large girth or large
cycle indicator.

2 On Algebraic Graphs, Automata and Turing
Machines Related to Algebraic Graph

The missing theoretical definitions on directed graphs the reader can find in
[37]. Let φ be an irreflexive binary relation over the set V , i.e., φ ∈ V × V
and for each v the pair (v, v) is not the element of φ.

We say that u is the neighbour of v and write v → u if (v, u) ∈ φ. We use
the term balanced binary relation graph for the graph Γ of irreflexive binary
relation φ over a finite set V such that for each v ∈ V the sets {x|(x, v) ∈ φ}
and {x|(v, x) ∈ φ} have the same cardinality. It is a directed graph without
loops and multiple edges. We say that a balanced graph Γ is k-regular, if for
each vertex v ∈ Γ the cardinality of {x|(v, x) ∈ φ} is k.

If graph Γ corresponds to binary relation φ, then inverse graph Γ−1 corre-
sponds to binary relation φ−1 = {(x, y)|(y, x) ∈ φ}. Let K be a commutative
ring. The closed subsets in Zariski topology are exactly solution sets for the
system of algebraic equations

f1(x1, x2, . . . , xn) = 0, f2(x1, x2, . . . , xn) = 0, . . . , fr(x1, x2, . . . , xn) = 0,

where fi ∈ K[x1, x2, . . . , xn], i = 1, 2, . . . , r. This family of such closed sub-
sets lead to definition of algebraic variety Md(K) of dimension d in Zarissky
topology which can be considered as special subset of Kn for appropriate n
(see [49] and further references). In our examples algebraic variety Md(K)
will be isomorphic to Rd or Rd ∪Rd, where R is a certain commutative ring.

We will say that binary relation φ on the set M is algebraic relation over
commutative ring K and corresponding graph Γ is algebraic graph over K,
if M has structure of algebraic variety Md(K) as well as subset φ of variety
Md(K) × Md(K). We identify relation φ and corresponding directed graph
Γ . We refer to Γ as semiregular graph, if for each vertex v ∈ Md(K) sub-
set {x|(v, x) ∈ φ} is isomorphic to algebraic variety Ns(K) of dimension s
independently on v.

We say that semiregular graph Γ is algebraic graph over commutative ring
K with bijective colouring or algebraic automate over K if for each t ∈ Ns(K)
there is a regular automorphism ft : Md(K) → Md(K), such that (x, y) ∈ φ if
and only if there exists t ∈ Ns(K) such that ft(x) = y. We assume that t �= t′

implies ft(x) �= ft′(x) and refer to Ns(K) as a time set or a colour set. We
refer to ft, t ∈ Ns(K) as a transition function (standard term of automata
theory).

On Extremal Graph Theory, Explicit Algebraic Constructions 261

We refer to the family of algebraic automata Γn(K) with vertex setsMd(K)
of increasing dimension over the same set of colours Ns(K) as bijective al-
gebraic Turing machine (see [44], [49], [53], [56], [59] and [65]) for various
examples of such machines). Notice, that in the case d = n i.e. Mn(K) = Kn

the group of all automorphisms of variety will be Cremona group C(Kn). If
(t1, t2, . . . , tl) is a word in alphabet Ns(K), then composition Ft1,t2,...,tl,n(x)
of transition functions fti , i = 1, 2, . . . , l acts on each variety Mn(K) as bi-
jective transformation. The computation of Ft1,t2,...,tl,n in the point x from
Mn(K) corresponds to directed walk

x → ft1(x) → ft2(ft1(x)) → . . . → ftl(ftl−1
(. . . (ft1(x)) . . .) = y.

The inverse map F−1
t1,t2,...,tl,n corresponds to a certain directed walk in the

inverse graph Γ−1
n (K). Let us assume that all graphs from the family Γn(K)

are strongly connected, i.e. from each pairs of vertices (x, y) from the graph
there is a directed walk from x to y. In a case of strongly connected alge-
braic graph for each pair (x, y) of vertices there is a computation Ft1,t2,...,tl,n

shifting x into y.
E. Moore [36] used the term tactical configuration of order (s, t) for bireg-

ular bipartite simple graphs with bidegrees s+1 and r+1. It corresponds to
the incidence structure with the point set P , the line set L and the symmetric
incidence relation I. Its size can be computed as |P |(s+ 1) or |L|(t+ 1).

Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for the tactical
configuration with partition sets P (point set) and L (line set) and an inci-
dence relation I. We define the following irreflexive binary relation φ on the
set F :

Let (P,L, I) be the incidence structure corresponding to regular tactical
configuration of order t. Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈
L, p ∈ P, lIp} be two copies of the totality of flags for (P,L, I). Brackets and
parentheses allow us to distinguish elements from F1 and F2. Let DF (I) be
the directed graph (double directed flag graph) on the disjoint union of F1

with F2 defined by the following rules:

(i) (l1, p1) → [l2, p2] if and only if p1 = p2 and l1 �= l2,
(ii) [l2, p2] → (l1, p1) if and only if l1 = l2 and p1 �= p2.

3 Extremal Simple Graphs of Large Girth or Large
Cycle Indicator

The missing definitions of graph-theoretical concepts which appear in this
unit can be found in [6], [45] or [56]. All graphs we consider are simple graphs,
i. e. undirected without loops and multiple edges. Let V (G) and E(G) denote
the set of vertices and the set of edges of G, respectively. |V (G)| is called the
order of G, and |E(G)| is called the size of G. A path in G is called simple
path if all its vertices are distinct. When its convenient, we shall identify G

262 V. Ustimenko and U. Romańczuk

with the corresponding antireflexive binary relation on V (G), i.e. E(G) is a
subset of V (G) × V (G). The length of a path is a number of its edges. The
girth of a graph G, denoted by g = g(G) is the length of the shortest cycle
in G.

Classical Extremal Graph Theory developed by P. Erdős and his school
had been started with the following problem.

Problem 1. What is the maximal value ex(v, Cn) for the size (number of
edges) of graph on v vertices without cycles Cn of length n (see [6] and
further references)?

To discuss the behavior of function ex(v, Cn) for large variable v we will use
the following standard notations. Let f and g be two real valued functions
on (a,∞).

1. f(x) ⇔ g(x), x → ∞ if f(x)/g(x) → 1 for x → ∞;
2. f(x) = o(g(x)), x → ∞ if f(x)/g(x) → 0 for x → ∞;
3. f(x) = O(g(x)), x → ∞ if there exists C and x0 such that |f(x)| < C|g(x)|

for all x > x0;
4. f(x) = Ω(g(x)), x → ∞ if there exists a c > 0 and a sequence x1, x2, . . . →

∞ such that |f(xi)| > c|g(xi)| for all i ≥ 1.

0 If n = 2d+1 is odd, one can assume that v is even and takes the complete
bipartite graph with the partition sets of same cardinality v/2. It contains
v2/4 vertices, so

ex(v, C2d+1) = O(v2).

If n = 2d is even, then according to famous Erdős Even Circuit Theorem

ex(v, C2d) = O(v1+1/d).

For the proof of this result and its generalisations see [7], [14] and further
references. It had been obtained by famous Erdős probabilistic method. The
upper bound of the theorem is known to be sharp

ex(v, C2d) = Ω(v1+1/d)

for k = 2, 3 and 5 only (see [12], [13] for n = 2 and [1] for n = 3, 5). The
equivalence

ex(v, C4) ⇔ 1/2v3/2

had been obtained in [10] and [12]. The best lower bound

ex(v, C6) ≥ 1/2v4/3 + o(v4/3)

had been proven in [31]. The best known lower bound for the case n = 5 had
been obtained in [32]:

ex(v, C10) ≥ 4/5
6/5

v6/5.

On Extremal Graph Theory, Explicit Algebraic Constructions 263

The studies of maximal size ex(v, C3, C4, . . . , C2d) for graph on v vertices
without cycles C3, C4, . . . , C2d i.e. graphs of girth > 2d historically had been
motivated by their applications to Telephone Networking (see [2]). As it fol-
lows from Erdős Even Circuit Theorem

ex(v, C3, C4, . . . , C2d) = O(v1+1/d).

More precise evaluations lead to the following bounds:

ex(v, C3, C4, . . . , C2d, C2d+1) ≤ (1/2)1+1/dv1+1/d + o(v1+1/d) (1)

ex(v, C3, C4, . . . , C2d) ≤ (1/2)v1+1/d + o(v1+1/d) (2)

The inequality (1) had been established in [13] for all integers d ≥ 1. The
upper bound (2)can be obtained by similar probabilistic arguments (see, for
instance, [56]). Similar to the case of ex(v, C2d) both bounds (1) and (2) are
known to be sharp up to magnitude for d = 2, 3 and 5 only. The lower bound

ex(v, C10) ≥ 4/56/5v6/5

above and inequality (2) imply that

ex(v, c10) �= ex(v, C3, C4, . . . , C10).

An interesting question:

Question 1. Whether or not ex(v, C6) �= ex(v, C3, C4, C5, C6)?

The first general lower bounds of kind

ex(v, C3, C4, . . . Cn) = Ω(v1+c/n) (3)

where c is some constant < 1/2 had been obtained in 50th by famous Erdős
via studies of families of graphs of large girth, i.e. infinite families of simple
regular graphs Γi of degree ki and order vi such that

g(Γi) ≥ clogki
vi,

where c is the independent of i constant. Erdős proved the existence of such
a family with arbitrary large but bounded degree ki = k with c = 1/4 by his
famous probabilistic method.

Just several explicit families of graphs of large girth with unbounded girth
and arbitrarily large k are known: the family of Cayley graphs had been
defined by G. Margulis and investigated further by several authors (see [35]
and [33]), the family of algebraic graphs CD(n, q) [30], family of polarity
graphs [31] and its modifications suggested in [50]. Some examples of families
of bounded degreee the reader can find in [3], [4], [5].

Notice, that
ex(v, C2d) ≥ ex(v, C3, C4, . . . , C2d+1).

264 V. Ustimenko and U. Romańczuk

The best known lower bound for d �= 2, 3, 5 had been obtained in [30]:

ex(v, C3, C4, . . . , C2d+1) = Ω(v1+2/(3d−3+e)) (4)

where e = 0 if d is odd, and e = 1 if d is even.
Let Γ be a simple graph and CindΓ (x) be the length of the minimal cycle

containing vertex x ∈ V (Γ) and Cind(Γ) = max{CindΓ (x)|x ∈ V (Γ)}. We
refer to parameter Cind(Γ) as cycle indicator of the graph Γ .

Question 2. What is the maximal value ex(v, Cind(Γ) ≥ 2d) for the size
(number of edges) of graph Γ on v vertices of cycle indicator Cind(Γ) ≥ 2d?

The following statement the reader can find in [58].

Theorem 1
ex(v, Cind(Γ) > 2d) ⇔ 1/2v1+1/d

We will consider families of graphs of large cycle indicator, i.e. infinite families
of simple regular graphs Γi of degree ki and order vi such that the cycle
indicator

Cind(Γi) ≥ clogki
vi,

where c is the independent of i constant. As it follows from previous statement
the largest constant for the family of graphs of large girth is 2.

3.1 On Families of Digraphs of Large Girth or Large
Cycle Indicator

It is known that finite automaton roughly is a directed graph (or shortly
digraph) with labels on arrows. So the Computer Science motivates the de-
velopment of Extremal Graph Theory for Directed Graphs, which can named
shortly as Extremal Digraph Theory.

This unit is devoted to analogs of the above bounds for the special class
of directed graphs. We will consider here the directed graphs without loops
and multiple arrows (graphs of irreflexive binary relations). We assume that
the commutative diagram is formed by two directed paths for which the same
starting and ending points form the full list of common vertices. We refer to
the length of maximal path (number of arrows) as the rank of the diagram.We
will count a directed cycle of length m as a commutative diagram of rank m.

Let Γ be the graph of binary relation. The path between vertices a and b is
the sequence a = x0 → x1 → . . . → xs = b of length s, where xi, i = 0, 1, . . . s
are distinct vertices.

We say that the pair of paths a = x0 → x1 → . . . → xs = b, s ≥ 1 and
a = y0 → y1 → . . . → yt = b, t ≥ 1 form an (s, t)-commutative diagram Os,t

if xi �= yj for 0 < i < s, 0 < j < t. Without loss of generality we assume
that s ≥ t. We refer to the number max(s, t) as the rank of Os,t. It is ≥ 2,
because the graph does not contain multiple edges.

On Extremal Graph Theory, Explicit Algebraic Constructions 265

Notice, that the graph of antireflexive binary relation may have a directed
cycle Os = Os,0: v0 → v1 → . . . → vs−1 → v0, where vi, i = 0, 1, . . . , s − 1,
s ≥ 2 are distinct vertices.

We will count directed cycles of length ≥ 3 as commutative diagrams.
Notice, that studies of maximal size of directed graphs without certain

commutative diagrams without some restrictions on numbers of inputs or
outputs of the vertex do not make a sense in graph.

Really, the graph with the vertex set: P ∪ L = V , with the subdivision
into point set P and line set L of same cardinality, |P ∩ L| = 0, |V | is even
number v, formed by all arrows from point to line has order O(v2) and does
not contain directed cycles or commutative diagrams. That is why we will
consider only graphs for which the number iv of inputs x → v and number
ov of outputs v → x are at least two for each vertex v.

Let us assume that the girth indicator Gind(Γ), Gind(Γ) ≥ 2 of the di-
rected graph Γ is the minimal rank of its commutative diagram. Notice that,
if the girth indicator of the graph is > d, then for each pair of vertices a, b
the number of directed paths from a to b of length ≤ d is ≤ 1.

Let E(d, v) be the maximal size (number of arrows) for the graph on v
vertices with the girth indicator > d. The following analog of (1) has been
proven in [56].

Theorem 2
E(d, v) ⇔ v1+1/d

The above Theorem 2 is analog of bound (2) for directed graphs. The analog
of (1)will be introduced below.

The maximal size E(d, v) (number of arrows) of the binary relation graphs
with the girth indicator > d coincides with Ex(v,Os,t, s+ t ≥ 3|2 ≤ s ≤ d).

Let Ex2d+1(v) be the maximal size of the balanced directed graph with
the girth indicator > d and without diagrams Qd+1,d, then this number co-
incide with Ex(v,Od+1,d, Os,t|3 ≤ s ≤ d). In lecture notes [56] the following
statement is proven.

Theorem 3
Ex2d+1(v) ⇔ (1/2)1/dv1+1/d

Remark 1. Let EP (d, v) (Ex2d+1
P (v), ExP (Od,d, v)) be the maximal size for

the balanced graph on v vertices with the girth indicator > d satisfying the
graph theoretical property P . If P is the property to be a graph of symmetric
irreflexive relation, then

EP (d, v) = 2ex(v, C3, . . . , C2d−1, C2d),

Ex2d+1(v) ≥ 2ex(v, C3, C4 . . . , C2d),

because undirected edge of the simple graph corresponds to two arrows of
symmetric directed graph. So, the bounds of the Theorems 1 and 2 imply
inequalities (1) and (2) respectively.

266 V. Ustimenko and U. Romańczuk

Remark 2. The precise computation of E(d, v) and Ex2d+1(v) do not provide
the sharpness of (1) and (2)So, the questions on the sharpness of (1) and (2)
up to magnitude for n �= 3, 4 and 5 are still open, the lower bound (4)is still
the best known.

The analogs of the mentioned above statements for k-regular digraphs the
reader can find in [53], where also the problem of minimization of digraph
order for graphs with girth indicator> d were investigated. Some other results
on extremal digraph theory the reader can find in [59] or in survey [60].

We will use the term the family of directed graphs of large girth for the
family F of directed balanced regular graphs Γi of degree ki and order vi
such that

Gind(Γi) ≥ clogki
vi,

where c is the independent of i positive constant.
It agrees with the well known definition for the case of the simple graphs

given in previous unit. We have to notice that the girth of simple graph is
double of its girth indicator.

As it follows from the Theorem 2 the parameter c is at most 1. We refer
to the maximal value of c satisfying the above inequality as speed of growth
of the girth indicator for F.

Let Γ be a directed graph with the vertex set V (Γ). Let us assume that
the girth indicator of vertex x Gind(x) of the vertex x ∈ V (Γ) is the minimal
rank of commutative diagram of the graph with the starting point x.

We define a diagram indicator Dind(Γ) of the graph Γ as

max{Gind(x)|x ∈ V (Γ)}.

It is clear that
Dind(Γ) ≥ Gind(Γ).

Question 3. What is the maximal value Ex(v,Dind(Γ) > d) for the size
(number of edges) of graph Γ on v vertices of diagram indicatorDind(Γ) ≥ d?

The following statement a reader can find in [58].

Theorem 4
Ex(v,Dind(Γ) > d) ⇔ v1+1/d

We will use the term the family of directed graphs of large cycle indicator for
the family F of balanced directed regular graphs Γi of degree ki and order vi
such that

Dind(Γi) ≥ clogki
vi,

where c is the independent of i positive constant (speed of cycle indicator
growth). As it follows from previous theorem the speed of cycle indicator
growth is bounded above by 1.

On Extremal Graph Theory, Explicit Algebraic Constructions 267

3.2 Explicit Algebraic Constructions of Graphs,
Digraphs of Large Girth or Large Cycle Indicator
and Dynamical Systems

Recall, that a free module Kn is simply a Cartesian product of n copies of
K. Let us consider special generators of nonlinear maps on free modules Kn,
n = 3, 4, Let Q is the multiplicative set of K, i.e. the totality of nonzero
ring elements closed under multiplication in K.

We refer to a family F(K) of bijective nonlinear polynomial maps Ft,n =
F (t, n,K) , n = 3, 4, . . ., t ∈ K of free module Kn into itself as dynamical
system F (K) depending on time, if the inverse map for Ft,n is a polynomial
map F ′

t,n = F ′(t, n,K).
For each multiplicative subset Q such that |Q| ≥ 2 of K we consider the

family of graphs corresponding to the dynamical system depending on time
define as a binary relations φn,Q = φ(n,Q,K) on Kn: (x, y) ∈ φn if and
only if Ft,n(x) = y for some t ∈ Q. If all families Γ (Q) consisting of φn,Q

are families of directed graphs of large girth we refer to F (K) as dynamical
system of large girth with coefficient cQ ≥ c for some constant c > 0.

We apply term ”time” to a regular parameter t defining map Ft,n =
F (t, n,K). We refer to BF (K) as balanced dynamical systems of large girth
if F ′

t,n = F ′(t, n,K) also form a dynamical system F ′(K) of a large girth.
We refer to a family F(K), where K is a field, of distinct bijective nonlinear

polynomial maps Ft = F (t, n,K), n = 1, 2, . . ., t ∈ K − {0} of n-dimensional
vector space Kn into itself as symmetric dynamical system SF (K) of large
girth, if the following conditions hold

(1) for each t ∈ K there is a t′ ∈ K such that Ft′,n is the inverse map for
Ft,n, n = 2, 3, . . .,

(2) the family of graphs corresponding to the dynamical system depending
on time define as a binary relations φn,Q = φ(n,Q,K) on Kn: (x, y) ∈ φn

if and only if Ft,n(x) = y for some t �= 0 is a family of graphs of large
girth.

We refer to a pair of sequences of bijective nonlinear polynomial maps Pt,n =
P (t, n,K) and Lt,n = L(t, n,K), t ∈ K, n = 1, 2, . . . of free module Kn into
itself as bipartite dynamical system B(K) depending on time, if the inverse
maps P ′

t,n = P ′(t, n,K) and L′
t,n = L′(t, n,K) for Pt,n and Lt,n) are also

polynomial maps of Kn.
For each multiplicative subset Q, such that |Q| ≥ 2, of K we consider the

family of bipartite graphs corresponding to the bipartite dynamical system
depending on time B(K) defined as a binary relations ξn,Q on the set Pn∪Ln,
where Pn = Ln = Kn, ξn,Q = ξ(n,Q,K): (p, l) ∈ ξn,Q if and only if Pt,n(p) = l
for some t ∈ Q, where p ∈ Pn or Lt,n(l) = p for some t ∈ Q, where l ∈ Ln.

If all families of graphs Γ (Q) consisting of ξn,Q are families of directed
graphs of large girth we refer to B(K) as bipartite dynamical system of large
girth with coefficient cQ ≥ c for some constant c > 0.

268 V. Ustimenko and U. Romańczuk

We refer to B(K) as balanced bipartite dynamical systems of large girth
and denote it BB(K) if inverse maps P ′

t,n and L′
t,n for Pt,n and Lt,n also

form a bipartite dynamical system B′(K) of a large girth.
We refer to a family F(K), where K is a field, of distinct bijective nonlinear

polynomial maps Pt,n = P (t, n,K) and Lt,n = L(t, n,K), n = 1, 2, . . . , t ∈ K

of n-dimensional vector space Kn into itself as symmetric bipartite dynamical
system SB(K) of large girth, if the following conditions hold

(1) for each t ∈ K there is a t′ ∈ K such that Lt′,n, Pt′,n are the inverse
maps for Pt,n, Lt,n, n = 2, 3, . . ., respectively,

(2) the family of graphs corresponding to the bipartite dynamical system
depending on time define as a binary relations ξn,K on the set Pn ∪Ln,
where Pn = Ln = Kn: (p, l) ∈ ξn,K if and only if Pt,n(p) = l for some
t �= 0, where p ∈ Pn or Lt,n(l) = p for some t ∈ K, where l ∈ Ln is a
family of bipartite graphs of large girth.

We refer to a family F(K), where K is a field, of distinct bijective nonlinear
polynomial maps Pt,n = P (t, n,K) and Lt,n = L(t, n,K), n = 1, 2, . . . , t ∈ K

of n-dimensional vector space Kn into itself as symmetric bipartite dynamical
system SB(K) of large cycle indicator, if the following conditions hold

(1) for each t ∈ K there is a t′ ∈ K such that Lt′,n, Pt′,n are the inverse
maps for Pt,n, Lt,n, n = 2, 3, . . ., respectively,

(2) the family of graphs corresponding to the bipartite dynamical system
depending on time define as a binary relations ξn,K on the set Pn ∪Ln,
where Pn = Ln = Kn: (p, l) ∈ ξn,K if and only if Pt,n(p) = l for some
t �= 0, where p ∈ Pn or Lt,n(l) = p for some t ∈ K, where l ∈ Ln is a
family of bipartite graphs of large cycle indicator.

Below we consider the family of graphs A(n,K), where n > 5 is a positive
integer and K is a commutative ring. Such graphs were introduced formally in
[50], but interesting pure and applied properties of A(n,K) were introduced
in [39]. Graphs A(n,K), where K is the commutative ring with unity of char-
acteristic �= 2 are connected. This result of [57] was deduced from theorems
of [55]. Let P and L be two copies of Cartesian power KN, where K is the
commutative ring and N is the set of positive integer numbers. Elements of
P will be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets. If x ∈ V ,
then (x) ∈ P and [x] ∈ L. It will also be advantageous to adopt the notation
for co-ordinates of points and lines introduced in [16] for the case of a general
commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .),

[l] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , li,i, li,i+1, . . .].

The elements of P and L can be thought of as infinite ordered tuples of
elements from K, such that only a finite number of components are different
from zero.

On Extremal Graph Theory, Explicit Algebraic Constructions 269

We now define an incidence structure (P,L, I) as follows. We say that the
point (p) is incident with the line [l], and we write (p)I[l], if the following
relations between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

li,i+1 − pi,i+1 = li,ip0,1

The incidence structure (P,L, I) we denote as A(K). We identify it with the
bipartite incidence graph of (P,L, I), which has the vertex set P ∪L and the
edge set consisting of all pairs {(p), [l]} for which (p)I[l].

For each positive integer n ≥ 2 we obtain an incidence structure (Pn, Ln, In)
as follows. First, Pn and Ln are obtained from P and L respectively by simply
projecting each vector into its n initial coordinates with respect to the above
order. The incidence In is then defined by imposing the first n−1 incidence
equations and ignoring all others. The incidence graph corresponding to the
structure (Pn, Ln, In) is denoted by A(n,K).

For each positive integer n ≥ 2 we consider the standard graph homomor-
phism φn of (Pn, Ln, In) onto (Pn−1, Ln−1, In−1) defined as simple projection
of each vector from Pn and Ln onto its n− 1 initial coordinates with respect
to the above order.

Let PA,t,n = PA(t, n,K) be the operator of taking the neighbour of point
(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .)

of kind
[l] = [p0,1 + t, l1,1, l1,2, l2,2, l2,3, . . . , li,i, li,i+1, . . .],

where parameters l1,1, l1,2, l2,2,l2,3, . . ., li,i, li,i+1, . . . are computed con-
sequently from the equations in definition of A(n,K). Similarly, LA,t,n =
LA(t, n,K) is the operator of taking the neighbour of line

[l] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , li,i, li,i+1, . . .]
of kind

(p) = (l1,0 + x, p1,1, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .),
where parameters p1,1, p1,2, p2,2, p2,3,. . ., pi,i, pi,i+1, . . . are computed con-
sequently from the written above equations.

Notice, that Pn = Ln = Kn. So we can think that PA,t,n and LA,t,n

are bijective operators on the free module Kn. The following statement is
presented in [57].

Theorem 5. For each commutative ring K transformations PA,t,n and LA,t,n

of Kn form symmetric bipartite dynamical system SBA(K) of large cycle in-
dicator with c = 1, such that t′ = −t, t ∈ K and each nonidentical transfor-
mation of kind FAP ,t1,t2,...,tl,n or FAL,t1,t2,...,tl,n, where (t1, t2, . . . , tl) ∈ Kl is
a cubical map.

Let DAn(K) (DA(K)) be the double directed graph of the bipartite graph
A(n,K) (A(K), respectively). Remember, that we have the arc e of kind
(l1, p1) → [l2, p2], if and only if p1 = p2 and l1 �= l2. Let us assume that the
colour ρ(e) of the arc e is l11,0 − l21,0. Recall, that we have the arc e′ of kind

270 V. Ustimenko and U. Romańczuk

[l2, p2] → (l1, p1), if and only if l1 = l2 and p1 �= p2. Let us assume that the
colour ρ(e′) of arc e′ is p11,0 − p21,0.

The vertex set for the graph DAn(K) consists of two copies F1 and F2

of the edge set for A(n,K). We consider two families of bijective nonlinear
polynomial maps PDA,t,n+1 = PDA(t, n + 1,K) : F1 → F2 and LDA,t,n+1 =
LDA(t, n + 1,K) : F2 → F1, n = 3, 4, . . ., t ∈ K. It is easy to see that F1 =
F2 = Kn+1, so we may treat PDA,t,n+1 and LDA,t,n+1 as automorphisms of
Kn+1. The following statement is equivalent to previous theorem.

Theorem 6. For each commutative ring K families of maps PDA,n+1,t and
LDA,n+1,t form a balanced bipartite dynamical system BBDA(K) of large cy-
cle indicator with c ≥ 1, such that each nonidentical transformation of kind
FPDA,t1,t2,...,tl,n+1 or FLDA,t1,t2,...,tl,n+1, where (t1, t2, . . . , tl) ∈ Kl is a cubical
map.

We present the definition [47] of the family of graphs D(n,K), where n >
2 is positive integer and K is a commutative ring, such graphs have been
considered in [29] for the case K = Fq.

Let P and L be two copies of Cartesian power KN, where K is the commu-
tative ring and N is the set of positive integer numbers. Elements of P will
be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets. If x ∈ V ,
then (x) ∈ P and [x] ∈ L. It will also be advantageous to adopt the notation
for co-ordinates of points and lines introduced in [30] for the case of general
commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of elements
from K, such that only finite number of components are different from zero.

We now define an incidence structure (P,L, I) as follows. We say the point
(p) is incident with the line [l], and we write (p)I[l], if the following relations
between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

l′i,i − p′i,i = li,i−1p0,1 (6)

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′
i,i

(This four relations are defined for i ≥ 1, p′1,1 = p1,1, l
′
1,1 = l1,1). This inci-

dence structure (P,L, I) we denote as D(K). We speak now of the incidence
graph of (P,L, I), which has the vertex set P ∪ L and edge set consisting of
all pairs {(p), [l]} for which (p)I[l].

On Extremal Graph Theory, Explicit Algebraic Constructions 271

For each positive integer n ≥ 2 we obtain an incidence structure (Pn, Ln, In)
as follows. First, Pn and Ln are obtained from P and L, respectively, by sim-
ply projecting each vector into its n initial coordinates. The incidence In is
then defined by imposing the first n−1 incidence relations and ignoring all
others. The incidence graph corresponding to the structure (Pn, Ln, In) is
denoted by D(n,K).

Let PD,t,n = PD(t, n,K) be the operator of taking the neighbour of point
(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p

′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

of kind
[l] = [p0,1 + t, l1,1, l1,2, l2,1, l2,2, l

′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .],

where parameters l1,1, l1,2, l1,2, l2,2, . . . , li,i, l
′
i,i, li,i+1, li+1,i, . . . are computed

consequently from the equations in definition of D(n,K). Similarly, LD,t,n =
LD(t, n,K) is the operator of taking the neighbour of line

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, . . . , li,i, li,i+1, l
′
i,i, li+1,i, . . .]

of kind
(p) = (l1,0 + x, p1,1, p1,2, p2,1, p2,2, . . . , pi,i, pi,i+1, p

′
i,i, pi+1,i, . . .),

where parameters p1,1, p1,2, p2,1, p2,2,. . ., pi,i, pi,i+1, p
′
i,i, pi+1,i, . . . are com-

puted consequently from the equations written above.
Notice, that Pn = Ln = Kn. So, we can think that PD,t,n and LD,t,n are

bijective operators on the free module Kn.

Theorem 7. For each commutative ring K transformations PD,t,n and LD,t,n

of Kn form symmetric bipartite dynamical system SBD(K) of large girth with
c = 1/2, such that t′ = −t, t ∈ K and nonidentical transformation of kind
FDP ,t1,t2,...,tl,n or FDL,t1,t2,...,tl,n, where (t1, t2, . . . , tl) ∈ Kl is a cubical map.

In such form this and following statements on dynamical systems were given
in [57], see [56] for previous less general variants.

LetDD(n,K) (DD(K)) be the double directed graph of the bipartite graph
D(n,K) (D(K), respectively). Remember, that we have the arc e of kind
(l1, p1) → [l2, p2], if and only if p1 = p2 and l1 �= l2. Let us assume that the
colour ρ(e) of the arc e is l11,0 − l21,0. Recall, that we have the arc e′ of kind
[l2, p2] → (l1, p1), if and only if l1 = l2 and p1 �= p2. Let us assume that the
colour ρ(e′) of arc e′ is p11,0 − p21,0.

The vertex set for the graph DD(n,K) consists of two copies F1 and F2

of the edge set for D(n,K). We consider two families of bijective nonlinear
polynomial maps PDD,t,n+1 = PDD(t, n + 1,K) : F1 → F2 and LDD,t,n+1 =
LDD(t, n+ 1,K) : F2 → F1, n = 3, 4, . . . , t ∈ K. It is easy to see that F1 =
F2 = Kn+1, so we may treat PDD,t,n+1 and LDD,t,n+1 as automorphisms of
Kn+1.

The following statement is equivalent of the previous theorem.

Theorem 8. For each commutative ring K families of maps PDD,n+1,t and
LDD,n+1,t form a balanced bipartite dynamical system BBDD(K) of large
cycle indicator with c ≥ 1/2, such that each nonidentical transformation of
kind FPDD ,t1,t2,...,tl,n+1 or FLDD ,t1,t2,...,tl,n+1, where (t1, t2, . . . , tl) ∈ Kl is a
cubical map.

272 V. Ustimenko and U. Romańczuk

3.3 Polarities of Incidence Structures and Related
Dynamical Systems

Let P and L be disjoint sets, the elements of which we call points and lines,
respectively. A subset I of P × L is called an incidence relation on the pair
(P,L). The incidence graph Γ of tactical configuration (P,L, I) is defined to
be the bipartite graph with vertex set P ∪ L and edge set {{p, l}|p ∈ P, l ∈
L, (p, l) ∈ I}.

Let π : P ∪L → P ∪L be a bijection for which the following relations hold

(i) P π = L and Lπ = P ,
(ii) for all p ∈ P , l ∈ L (lπ, pπ) ∈ I if and only if (p, l) ∈ I,
(iii) π2 = 1.

We call such π a polarity of the incidence structure (P,L, I). Note, that π
induces an order two automorphism of the incidence graph Γ which inter-
changes the bipartition sets P and L. We shall use the term ”polarity” and
the notation ”π” for the graph automorphism as well.

We now define the polarity graph Γ π of the structure (P,L, I) with respect
to polarity π. It is the graph with the vertex set V (Γ π) = P and edge set
E(Γ π) = {{p1, p2}|p1, p2 ∈ P, p1 �= p2, (p1, p2

π) ∈ I}.
Finally, we call point p ∈ P an absolute point of the polarity π provided

(p, pπ) in I.
The following proposition the reader can find in [50].

Proposition 1. The map π given by the close formula
pπ = [p10,−p11, p21, p12,−p′22,−p22, . . . ,−p′ii,−pii, pi+1,i, pi,i+1, . . .],
lπ = (l01,−l11, l21, l12,−l′22,−l22, . . . ,−l′ii,−lii, li+1,i, li,i+1, · · ·)

is a polarity of D(n,K) if n is even.

The neighbourhood of vertex v polarity graph Dπ(n,K) contains |K| points
or |K| − 1 vertices.

We consider k-regular algebraic automat RDπ(n,K), n = 2s over commu-
tative ring on the set Pn = Kn defined by function FDπ ,t,n(x) = π[Pt,n(x)],
t ∈ K− {0}. It is easy to see that simple graph RDπ(n,K) is a subgraph of
polarity graph Dπ(n,K). Function FDπ ,t,n(x), n = 2s can be written in the
form of

(x1, x2, . . . , xn−1, xn) = (x1 + t, f2(x1, x2), . . . , fn−1(x1, x2, . . . , xn−1),

fn(x1, x2, . . . , xn)).

We assume that FDπ,t,n−1(x) is defined by the rule

(x1, x2, . . . , xn−1) = (x1 + t, f2(x1, x2), . . . ,

fn−1(x1, x2, . . . , xn−1)).

Theorem 9. For each commutative ring K family of functions FDπ,t,n, n =
3, 4, . . ., t ∈ K − {0} form a symmetric dynamical system SFDπ (K) of large

On Extremal Graph Theory, Explicit Algebraic Constructions 273

girth with c ≥ 1/4, such that t′ = −t, t ∈ K and each function FDπ,t1,t2,...,tr,n

is a cubical map.

Let us consider the family DD(n,K) of double directed graphs for bipartite
graphs D(n,K) (D(K), respectively). Remember, that we have the arc e of
kind (l1, p1) → [l2, p2] if and only if p1 = p2 and l1 �= l2.

The vertex set for the graph DD(n,K) consists of two copies F1 and F2 of
the edge set forD(n,K). Let us assume that n is even and consider the follow-
ing binary relation ξn (directed graph) on the set F1: ([l1], (p1))I([l2], (p2))
if and only if π[l2] = (p1) and the first coordinates of p2 equals to the first
coordinate of l1 plus t, t �= 0. Let St,n([l1], (p1)) be the neighbour of vertex
of graph ξn from F1 corresponding to parameter t.

The following statement follows from the previous theorem.

Theorem 10. For each commutative ring K the family F(K) of maps St,n =
S(t, n,K) is a balanced dynamical system BFDDπ (K) of large girth with c ≥
1/4, such that each nonidentical transformation of kind FS,t1,t2,...,tl,n, where
(t1, t2, . . . , tl) ∈ Kl is a cubical map.

3.4 Improvement of Constants, Transitivity of Some
Turing Machines

The following results on graphs D(n,K) the reader can find in [50]. To fa-
cilitate notation in the future results, it will be convenient for us to de-
fine p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = −1,
p′1,1 = p1,1, l

′
1,1 = l1,1) and to assume that (6) are defined for i ≥ 0.

Notice, that for i = 0, the four conditions (6) are satisfied by every point
and line, and, for i = 1, the first two equations coincide and give l1,1−p1,1 =
l1,0p0,1.

Let n ≥ 6, s = [(n + 2)/4], and let u =
(uα, u11, · · · , uss, u

′
ss, us,s+1, us+1,s, . . .) be a vertex of D(n,K)

(α ∈ {(1, 0), (0, 1)}, it does not matter whether u is a point or a line). For
every r, 2 ≤ r ≤ s, let

ar = ar(u) =
∑
i=0,r

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, . . . , as). Similarly, we assume a = a(u) =
(a2, a3, . . . , as, . . .) for the vertex u of infinite graph D(K).

Let η be the equivalence relation:

uηv ⇔ a(u) = a(v)

on the vertex set of graph D(n,K) (D(K)), respectively.

Proposition 2. (i) For any sequence xi ∈ K, i = 2, . . . , s , 2 ≤ s ≤ [(n +
2)/4], there exists a vertex v of D(n,K) for which a(v) = (x2, . . . , xs) =
(x).

274 V. Ustimenko and U. Romańczuk

(ii) The equivalence class Cm for the equivalence relation η on the set Kn∪Kn

is isomorphic to the affine variety Km ∪ Km , n = [4/3m] + 1 for
n = 0, 2, 3 mod 4, n = [4/3m] + 2 for n = 1 mod 4.

(iii) The vertex setCm is the union of several connected components ofD(n,K).

Let C be the equivalence class on η on the vertex set D(K), then the
induced subgraph with the vertex set C is the union of several connected
components of D(K).

We shall use notation C(m,K) (C(K)) for the induced subgraph ofD(n,K)
(D(K)) with the vertex set Cm (vertex set C, respectively).

The graph C(m, q) in the case of K = Fq coincides with CD(n, q). The
following statement was proven in [55].

Theorem 11. Let K be commutative ring with unity of characteristic d, d �=
2. Then graphs C(m,K), m ≥ 6 and C(K) are connected.

If K = Fq, q is odd, then the graph C(Fq) is a q-regular tree. In cases char(K)
the questions of the description of connected components of C(m,K) and
C(K) are open.

Notice, that Pn = Ln = Kn. Recall, that PD,t,n = PD(t, n,K) and LD,t,n =
LD(t, n,K) are bijective operators on the free module Kn associated with the
bipartite graph D(n,K) on the vertex set Pn ∪ Ln, where Pn = Ln = Kn.
Let PC,t,m and LC,t,m are restrictions of this operators on the sets of points
and lines of the graph C(m,K).

Theorem 12. For each commutative ring K transformations PC,t,m and
LC,t,m of Km form symmetric bipartite dynamical system FC(K) of large
girth with c = 2/3 such that t′ = −t, t ∈ K.

Let PDC,t,m and LDC,t,m be restrictions of maps PDD,t,n and LDD,t,n on the
totality FDC(n,K) of all elements (l1, p1) and [l1, p1], where l1 and p1 are
vertices of C(m,K). It is easy to see, that set of vertices of double directed
graph DC(m,K) of C(m,K) is isomorphic to Km+1 ∪Km+1.

Theorem 13. For each commutative ring K families of maps PDC,t,m and
LDC,t,m form a balanced bipartite dynamical system BBDC(K) of large cycle
indicator with c ≥ 2/3.

Recall, that k-regular algebraic automat RD(n,K), n = 2s over commutative
ring K on the set Pn = Kn defined by the function PDπ ,t,n(x) = π[Pt,n(x)],
t ∈ K− {0}. Let PCDπ ,t,n be the restriction of map PDπ ,t,n on the point set
of graph CD(n,K).

Theorem 14. For each commutative ring K family of functions PCDπ ,t,n,
t ∈ K−{0} form symmetric dynamical system SFCDπ(K) of large girth with
c ≥ 1/3 such that t′ = −t, t ∈ K.

Remark 3. Dynamical system of Theorem 14 corresponds informally to family
of graph CDπ(n,K).

On Extremal Graph Theory, Explicit Algebraic Constructions 275

Let CSt,n be the restriction of map St,n as in the Theorem 10 on totality of
[l], (p) from D(n,K)) onto subset of pair ([l], (p)) from CD(n,K)

Theorem 15. For each commutative ring K the family of maps CSt,n is a
balanced dynamical system BFCDπ(K) of large girth with c ≥ 1/3.

Theorems of our previous chapter on the existence of dynamical systems of
large girth or cycle indicator are direct corollaries from the results of this
section.

3.5 Correlation with Expansion Properties

Our applications of the Graph theory to Cryptography is based on the use
of the graphs of high girth. Other cryptographic application uses expansion
properties of graphs, which is also important for parallel computations and
some other area of Computer Science (see [33] and further references).

In fact, there is an interesting correlation between these two properties:

(i)All infinite families of simple algebraic regular graphs of given degree de-
fined over finite field Fq, q is prime power, which have been considered
above, are infinite families of expanders with the second largest eigenvalue
bounded by constant 2

√
q.

(ii)The list is CD(n, q), their regular polarity graphs CDπ(n, q), A(n, q).

Let us consider these facts in more details. Recall, that adjacency matrix T for
k-regular graph X on the vertex set {1, 2, . . . ,m} is m×m matrix (ti,j) such
that ti,j = 1 if nodes i and j are connected by an edge, if i and j do not form
an edge in X , then ti,j = 0. The matrix T of simple graph is symmetrical,
so all its eigenvalues (eigenvalues of the graph) are real numbers. It is easy
to see that k is the largest eigenvalue of the graph. Let λ1(X) be the second
largest eigenvalue.

Let A be a set of vertices of simple graph X . We define ∂A to be the set
of all elements b ∈ X −A such that b is adjacent to some a ∈ A.

We say that k-regular graph with n vertices has an expansion constant c
if there exists a constant c > 0, such that each set A ⊂ X with |A| ≤ n/2,
that |∂A| ≥ c|A|.

One says that the infinite family of graph Xi is a family of expanders, if
there exists a constant c which is an expansion constant for each graph Xi.

An explicit construction of infinite families of t-regular expanders (k-fixed)
turns out to be difficult. It can be shown that if λ1(X) is the second largest
eigenvalue of the adjacency matrix of the graph X , then c ≥ (k − λ1)/2k.
Thus, if λ1 is small, the expansion constant is large.

So, the family Xi of t-regular graphs will be a family of expanders, if
the upper bound for the limit λ1(Xn). n → ∞ is bounded away from t. A
well-known result of Alon and Bopanna says, that if Xn is an infinite family
of k-regular graphs (k fixed), then limλ1(Xn) ≥ 2

√
k − 1. This statement

was the motivation of Ramanujan graphs as special objects among k-regular

276 V. Ustimenko and U. Romańczuk

graphs. A finite t-regular graph Y is called Ramanujan, if for every eigenvalue
λ of Y , either |λ| = k or |λ| ≤ 2

√
k − 1. So, Ramanujan graphs are, in some

sense, the best expanders. There is an interest to families of the Ramanujan
graph of unbounded degree too.

Gregory Margulis constructed the first family of expanders via studies of
Cayley graphs of large girth. He uses representation theory of semisimple
groups.

Lubotzky, Phillips and Sarnak [33] proved that graphs defined by Margulis
[34] are Ramanujan graphs of degree p+ 1 for all primes p. M. Morgenstern
proved that, for each prime degree q, there exists a family of Ramanujan
graphs of the degree q − 1. Recent developments in constructive theory of
expanding graphs the reader can find in [15].

The q or q−1 regular graphs related to dynamical systems over finite with
the second largest eigenvalue bounded by 2

√
q are very close to Ramanujan.

Computer experiment supports the conjecture that graphs CD(n,Zm), their
regular polarity graphs CDπ(n,Zm), A(n,Zm) are also expanders. Expanding
properties of graphs related to dynamical systems of large girth or large cycle
indicator lead to good mixing properties of stream ciphers based on such
systems (see the section on implementations below).

4 On the Recent Implementation of Turing Machines
Related to Graph Based Dynamical Systems

We have implemented stream cipher corresponding to bipartite dynamical
system B(K) of theorem 5 and sequences of affine transformations τ1,n =
τ1(n,K) and τ2,n = τ2(n,K) of free module Kn, n = 3, 4, . . . (see [56]). We
used ”sparse” affine transformationsτ1,n and τ2,n , so their computations take
O(n). Numerical examples the reader can find in [24]. In our tables for the
evaluation of time execution we will simply use identical affine maps.

The alphabet for password (internal alphabet of corresponding Turing ma-
chine) is the multiplicative set Q = Reg(K), which consist of all odd residues
of the ring, |Q| = 2m−1 We implemented also universal Turing machine with
Q = K.

To achieve high speed property, commutative ring K = Z2m , m ∈
{8, 16, 32}, with operations +,× modulo 2m has been chosen. Parameter n
stands for the length of plaintext (input data) and the length of ciphertext.
We mark by T (Z28) the algorithm with m = 8, by T (Z216) the algorithm
with m = 16, and by T (Z232) the algorithm with m = 32. All the tests in
this cases reader can find in paper [56], were run on computer with param-
eters: AMD Athlon 1.46 GHz processor, 1 GB RAM memory, Windows XP
operating system. The program was written in Java language. Well known
algorithms RC4 and DES which were used for comparison where taken from
Java standard library for cryptography purposes - javax.crypto.

On Extremal Graph Theory, Explicit Algebraic Constructions 277

Similar implementation of symmetric dynamical system corresponding to
polarity graphs of D(n,K) the reader can find in [25].

In the article [8] has presented results of implemented stream cipher
corresponding to bipartite dynamical system B(F2m), m ∈ {8, 16, 32}, cor-
responding Turing machine T (F28), T (F216) and T (F232), respectively, was
implemented in C++. The experiment was conducted on machine that has a
2.99 GHz Intel(R) Core(TM)2 Duo CPU and a 1.96 GB of RAM. The results
of these runs are shown in the tables of this unit.

Authors use encryption map in combination with affine transformation of
the cipher space. Our objective is to study the performance of the encryption
tool for different values of m = 8, 16, 32. The results show that performance
(speed) of algorithms is getting better when m is increased.

In this subsection we will use the term unit for the character of our natural
alphabet.

The algorithm has been implemented using C++ language. A readymade
library created in 2009 of procedures for finite field arithmetic in F2m for m =
8, 16 and 32 will be used to perform the necessary operations of multiplication
and XOR (addition/subtraction) on a finite field. The library is written in C,
but it is compatible with C++ as well. It is especially tailored for m equal
to 8, 16 and 32, but it is also applicable for any other value of m. We refer
to our algorithms as

Prior to going into further details, it is important to talk a little about the
implementation approach that reveals how the date in the input files is con-
verted to F2m elements. The system accepts various types of data files such
as video, image, text and audio. The system reads these files as streams of
binary bits into units and directly converts each unit to its decimal represen-
tation. However, when dealing with text files and characters, a byte consists
of 8-bits and the ASCII code of a character represents it in decimal. To find
the polynomial that stands for a particular character, we convert the decimal
value of the character to its binary representation. The binary bits correspond
to the coefficients of the polynomial in F28 . If F216 is intended to be utilized
in the algorithm, we consider a unit of two characters at a time. Similarly
for m = 32, we divide the data to be encrypted into units of four characters
and convert the units to their corresponding polynomial versions in F232 . For
a unit of size 1-byte (i.e. m = 8), the fastest way to perform multiplication
is to employ multiplication table and store this table internally. This table
consumes 2(m+2) bytes, so it is only applicable when w is reasonably small.
For example, when m = 8, this is 256 KB. However, when we select a unit
of size 2-bytes, this multiplication table consumes 2(2m + 2) bytes and in
case of m = 16, this table is 234 bytes which is very large and cannot fit into
memory. The proposed solution states that when multiplication tables cannot
be employed, the most efficient way to carry out multiplication is to use log
and inverse log tables, as described in [8]. The log table consumes 2(m+ 2)
bytes and the inverse log table consumes 3 · 2(m+2) bytes, so when m = 16,
this is approximately 1 MB of tables which can easily fit into a memory.

278 V. Ustimenko and U. Romańczuk

The experimental evaluation of any algorithm is essential to acquire a
realistic vision of the resources required by the algorithm. In this section,
we will test the execution time of the algorithm upon various sizes of date
files, passwords and determine its time complexity in order to measure the
efficiency of our algorithm. Analyzing the algorithm structure shown in the
previous section, we expect that as we increase the unit size, performance
of the algorithm will improve since the plaintext and the password will be
consumed faster. Consequently, the expected execution time to produce the
cipher text will relatively decrease.

4.1 Comparison of Our Symmetric Algorithm with
RC4

RC4 is a well known and widely used stream cipher algorithm. Protocols SSL
(to protect Internet traffic) and WEP (to secure wireless networks) use it as
an option. Nowadays RC4 is not secure enough and not recommended for
the use in a new system. Anyway we chose it for comparison, because of its
popularity and high speed.

Table 1 RC4 vs high girth graph based algorithm (128 bit password)

File [MB] RC4 [s] T (Z28) [s] T (Z216) [s] T (Z232) [s] T (F28) [s] T (F216) [s] T (F232) [s]

4 0.15 0.67 0.19 0.08 422.02 201.99 96

16.1 0.58 2.45 0.71 0.30 1698.62 812.98 386.4

38.7 1.75 5.79 1.68 0.66 4083.01 1954.2 928.8

62.3 2.24 9.25 2.60 1.09 6572.9 3145.91 1495.2

121.3 4.41 18.13 5.14 2.13 12797.64 6125.17 2911.2

174.2 6.30 25.92 7.35 2.98 18378.8 8796.41 4180.8

RC4 is not dependent on password length in terms of complexity, and our
algorithm is. Longer password makes us do more steps between vertices of
graph. So, for a fair comparison we have used fixed password length equal to
suggested upper bound for RC4 (16 Bytes).

4.2 Comparison with DES

In the next test we have compared our algorithm with popular old block
cipher DES (Data Encryption Standard). DES is more complicated and have
better cryptographical properties than RC4, but it is much slower.

The version of DES implemented in Java library uses 64 bit password and
makes from it 56 bit key (due to documentation).

On Extremal Graph Theory, Explicit Algebraic Constructions 279

Table 2 DES vs high directed graph based algorithm, 64 bit password

File [MB] DES [s] T (Z28) [s] T (Z216) [s] T (Z232) [s] T (F28) [s] T (F216) [s] T (F232) [s]

4 0.81 0.35 0.11 0.05 211.01 100.99 48

16.1 2.99 1.23 0.40 0.18 846.31 406.49 193.22

38.7 7.24 2.90 0.92 0.41 2025.68 977.1 464.4

62.3 11.69 4.60 1.49 0.68 2041.51 1572.96 747.61

121.3 22.85 9.03 2.85 1.25 6398.82 3062.58 1455.63

174.2 33.60 13.00 4.08 1.82 9189.4 4398.22 2090.45

4.3 On the Expansion of Speed Evaluation for Some
Other Stream Ciphers

In the papers [48], [49] were discussed the importance of finite automata
related to algebraic graph B(n, S,K) over commutative ring K defined by
the system S of quadratic equations on the variety P ∪ L, P = Kn, L = Kn

in the following manner.
Point (x1, x2, . . . , xn) and line [y1, y2, . . . , yn] are connected by an edge if

and only if the following system S of relations holds.

y2 − x2 = x1y1

yj − xj = xkjylj , kj < j, lj < j, j = 3, 4, . . . , n

Such graphs over fields are playing an important role in Theory of geometries
associated with Simple Lie Algebras (see [67], [68], [69]).

It is clear that graph D(n,K) is a special one from the defined above class
of graphs. Other important for us family of graphs is formed by alernating
graph A(n,K). We can rewrite the equations in their definition (for example
in case, when n is even) as

y2 − x2 = y1x1,

y3 − x3 = x1y2,

y4 − x4 = y1x3,

. . .

yn−1 − xn−1 = x1yn−2,

yn − xn = y1xn−1,

So A(n,K) is a graph of kind B(n, S,K).
Other example is family of Wenger graphs W (n,K) defined by system of

equations

280 V. Ustimenko and U. Romańczuk

y2 − x2 = x1y1

y3 − x3 = x1y2,

. . .

yn − xn = x1yn−1.

As it was proven in [65] for fixed K = Fq family W (n,K) is a family of small
world graphs without small cycles. the stream cipher based on Wenger graphs
was proposed in [65].

Other class of important graphs Γ (n, S,K) is corresponding to symmetric
binary relatin on the set Kn: (x1, x2, . . . , xn) and (y1, y2, . . . , yn) if and only
is equations from the system S hold. It is clear that polarity graphs Dπ(n,K)
is a special subgraph of kind Γ (n, S,K).

The following statement is following instantly from the definitions.

Proposition 3. Let C be the computation in finite automaton corresponding
to walk of length min graph B(n, S,K) or Γ (S,K). Then the execution of C
takes 2nm+m ring operations

It means that we can evaluate execution of other stream ciphers (encryption
via bipartite dynamical systems of large width based on A(n,K), symmetric
dynamical systems of large girth based on polarity graphs for D(n,K) [66],
stream cipher based on Wenger graphs W (n,K)) defined over rings Z2m ,
m = 6, 8, 16 or fields F2m , m = 6, 8, 16 looking on tables in previous units
of this section.

Remark 4. In difference with speed evaluation other properties including mix-
ing parameters, description of orbits, orders of bijective encryption maps and
etc, are very dependable from the list of equations for the system S In the
next unit we compare the orders of cubical encryption maps of bipartite dy-
namical system of large girth corresponding to graphs D(n,K) with orders of
cubical transformations of dynamical system of large width related to graphs
A(n,K).

5 Conclusion

We use several infinite families of simple algebraic graphs without small cycles
for the constraction of different dynamical systems of large girth or large cycle
indicator over the finite fields (see previous chapter of the book). In fact the
concept of such dynamical system was motivated by Extremal Graph Theory.

The list of families of the graphs is the following:

1. Bipartite graphs D(n, q), q = pm, p is prime. They are disconnected, but
their connected components are growing fast. The projective limit of this
graph is an infinite q - regular forest.

On Extremal Graph Theory, Explicit Algebraic Constructions 281

2. The induced subgraphs CD(n, q) of graph D(n, q). In the case of odd
parameter q they are simply connected components of D(n, q). The well
defined projective limit of bipartite graphs CD(n, q is a q regular tree.

3. Regular polarity graphs Dπ(2n, q) of degree q−1. They also form a family
of graphs of large girth. Essential difference between polarity graphs and
D(n, q) or CD(n, q) is that polarity graphs are not bipartite graphs and
they contain cycles of odd length.

4. We can also consider a family CDπ(2n, q) of induced subgraphs of
Dπ(2n, q) with the better speed of growth.

5. A family of bipartite graphs A(n, q) of large cycle indicator. If q is odd
then the projective limit of A(n, q) is a q-regular tree and A(n, q) is a
family of graphs of increasing girth. We may conjecture that graphsA(n, q)
also form a family of large girth. Anyway we can prove that the speed of
growth for the girth of A(n, q) is less than the velocity of the growth of
large indicator. It means that graphs A(n, q) are not vertex transitive. So
the studies of girth for A(n, q) or cryptanalytic studies of related Turing
encryption machine look more difficult in comparison with cases 1, 2, 3 of
edge transitive graphs.

Finally, we can consider the generalisations D(n,K), CD(n,K), Dπ(n,K),
CDπ(n,K), A(n,K) of graphs 1, 2, 3, 4, 5 for more general cases of com-
mutative rings. After that we can pick up multiplicative subset T of K and
Play with Turing machines which correspond to double directed graphs for
D(n,K), CD(n,K), Dπ(n,K), CDπ(n,K), A(n,K). So, we get a rather wide
class of algorithms, which have many common features. In fact one can al-
ternatively use a symmetric dynamical systems of large girth or large cy-
cle indicator associated with simple graphs(D(n,K), CD(n,K), Dπ(n,K),
CDπ(n,K) and A(n,K) (see the previous chapter of the book), but we do
not discuss this approach here.

If you implement such machines on symbolical level you will get a cubical
public rule for which a public user will encrypt the plaintext with O(n4) steps
of Turing machine. Alice can use a numerical private key decryption. So, she
can use the stream cipher and decrypt forO(n) steps. Despite the difference of
graph properties the speed of execution of private key depends on the chosen
ring only (see discussion and tables in previous units). Of course, the choice
of arithmetical rings Z2m speed up the execution time of stream ciphers in
comparison with the case of finite fields F2m . Currently, we work on a very
promising case of Boolean rings.

If we choose special ”sparce” affine transformations, then stream ciphers
will have very good mixing properties [24], [66], i.e. change of one character
of password or plaintext leads to change 96% - 98% characters of ciphertext.
For mixing properties it is important that our graphs are good expanders.
Other implementations of stream ciphers a reader can find in [25], [26], [27].

In papers [20], [21], [22] we investigated the density properties of public
rules corresponding to Turing machine for graph based dynamical systems
of large girth or large cycle indicator.The reslts of thetables with numbers of

282 V. Ustimenko and U. Romańczuk

nonzero cubical monomials do not depend seriously on the choice of algebraic
graph over finite field. We can only say that the choice of graph A(n, q) has
some advantages.

Graph based Turing machines implemented via tools of Computer algebra
with the use of two mutually inverse affine transformations have the following
property: each nonidentical power of the map is also a cubical transformation.
So, one can use it in the symbolical key exchange protocol (see [39], [40], [61],
[62], [63], [64]) or the development of as a fast hash function (see [70]). Other
option is a conjugation of linear map of large order by cubical graph based
transformation (see [41]).

We hope that some of above mentioned algorithms can be tested as tools for
various tasks which appear in the development of Public Key Infrastructures
(see [11], [23], [42]). Some of the presented algorithms may attract attention
of specialists in Cryptanalisis.

References

1. Benson, C.T.: Minimal regular graphs of girth eight and twelve. Canadien Jour-
nal of Mathematics (18), 1091–1094 (1966)

2. Bien, F.: Constructions of telephone networks by group representations. Notices
Amer. Mah. Soc. 36, 5–22 (1989)

3. Biggs, N.: Algebraic Graph Theory, 2nd edn. University Press, Cambridge
(1993)

4. Biggs, N.L.: Graphs with large girth. Ars Combinatoria 25C, 73–80 (1988)
5. Biggs, N.L., Boshier, A.G.: Note on the Girth of Ramanujan Graphs. Journal

of Combinatorial Theory, Series B 49, 190–194 (1990)
6. Bollobás, B.: Extremal Graph Theory. Academic Press, London (1978)
7. Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. J. Combin. The-

ory, Ser. B 16, 87–105 (1974)
8. Boudeliouua, I., AlRaissi, M., Touzene, A., Ustimenko, V.: Performance of

Algebraic Graphs Based Stream-Ciphers Using Large Finite Fields. Annalles
UMCS Informatica AI X1 2, 81–93 (2011)

9. Brower, A., Cohen, A., Nuemaier, A.: Distance regular graphs. Springer, Berlin
(1989)

10. Brown, W.G.: On graphs that do not contain Thomsen graph. Canad. Math.
Bull. 9(3), 281–285 (1966)

11. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. on Info.
Theory IT-22(6), 644–654 (1976)

12. Erdős, P., R’enyi, A., S’oc, V.T.: On a problem of graph theory. Studia. Sci.
Math. Hungar. 1, 215–235 (1966)

13. Erdős, P., Simonovits, M.: Compactness results in extremal graph theory. Com-
binatorica 2(3), 275–288 (1982)

14. Faudree, W., Simonovits, M.: On a class of degenerate extremal graph problems.
Combinatorica 3(1), 83–93 (1983)

15. Hoory, S., Linial, M., Wigderson, A.: Expander graphs and their applications.
Bulletin (New Series) of AMS 43(4), 439–461

16. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge
University Press (2003)

On Extremal Graph Theory, Explicit Algebraic Constructions 283

17. Guinand, P., Lodge, J.: Tanner Type Codes Arising from Large Girth Graphs.
In: Proceedings of the 1997 Canadian Workshop on Information Theory (CWIT
1997), Toronto, Ontario, Canada, June 3-6, pp. 5–7 (1997)

18. Guinand, P., Lodge, J.: Graph Theoretic Construction of Generalized Product
Codes. In: Proceedings of the 1997 IEEE International Symposium on Infor-
mation Theory (ISIT 1997), Ulm, Germany, June 29-July 4, p. 111 (1997)

19. Kim, J.-L., Peled, U.N., Perepelitsa, I., Pless, V., Friedland, S.: Explicit con-
struction of families of LDPC codes with no 4-cycles. IEEE Transactions on
Information Theory 50(10), 2378–2388 (2004)

20. Klisowski, M., Romańczuk, U., Ustimenko, V.: On the implementation of cubic
public keys based on new family of algebraic graphs. Annales UMCS Informat-
ica AI XI 2, 127–141 (2011)

21. Klisowski, M., Ustimenko, V.: On the implementation of cubic public keys based
on algebraic graphs over the finite commutative ring and their symmetries. In:
MACIS 2011: Fourth International Conference on Mathematical Aspects of
Computer and Information Sciences, p. 13. Beijing (2011)

22. Klisowski, M., Ustimenko, V.: On the comparison of implementations of mul-
tivariate cryptosystems based on different families of graphs with large cycle
matroid (to appear)

23. Koblitz, N.: Algebraic aspects of cryptography, Algorithms and Computation
in Mathematics, vol. 3. Springer (1998)

24. Kotorowicz, S., Ustimenko, V.: On the implementation of cryptoalgorithms
based on algebraic graphs over some commutative rings. Condens. Matter
Phys. 11(2(54)), 347–360 (2008)

25. Klisowski, M., Ustimenko, V.: On the public keys based on the extremal graphs
and digraphs. In: International Multiconference on Computer Science and In-
formational Technology, CANA Proceedings, Wisla, Poland (October 2010)

26. Kotorowicz, J.S., Ustimenko, V., Romańczuk, U.: On the implementation of
stream ciphers based on a new family of algebraic graphs. In: Proceedings of
the Conference CANA, FedSCIS, pp. 485–490. IEEE Computer Society Press

27. Kotorowicz S., Ustimenko, V.: On the comparison of mixing properties of
stream ciphers based on graphs D(n, q) and A(n, q) (to appear)

28. Lazebnik, F., Ustimenko, V.A.: New Examples of graphs without small cycles
and of large size. Europ. J. of Combinatorics 14, 445–460 (1993)

29. Lazebnik, F., Ustimenko, V.: Explicit construction of graphs with an arbitrary
large girth and of large size. Discrete Appl. Math. 60, 275–284 (1995)

30. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: New Series of Dense Graphs of
High Girth. Bull (New Series) of AMS 32(1), 73–79 (1995)

31. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: Polarities and 2k-cycle-free
graphs. Discrete Mathematics 197/198, 503–513 (1999)

32. Lazebnik, F., Ustimenko, V.A., Woldar, A.J.: Properties of certain families of
2k-cycle free graphs. J. Combin. Theory, Ser. B 60(2), 293–298 (1994)

33. Lubotsky, A., Philips, R., Sarnak, P.: Ramanujan graphs. J. Comb. The-
ory. 115(2), 62–89 (1989)

34. Margulis G.: Explicit group-theoretical constructions of combinatorial schemes
and their application to desighn of expanders and concentrators. Probl.
Peredachi Informatsii. 24(1), 51–60; English translation publ. Journal of Prob-
lems of Information Transmission, 39–46 (1988)

35. Margulis, G.A.: Explicit construction of graphs without short cycles and low
density codes. Combinatorica 2, 71–78 (1982)

284 V. Ustimenko and U. Romańczuk

36. Moore, E.H.: Tactical Memoranda. Amer. J. Math. 18, 264–303 (1886)
37. Ore, R.: Graph theory. Wiley, London (1971)
38. Polak, M., Ustimenko, V.: On LDPC Codes corresponding to affine parts of

generalized polygons. Annalles UMCS Informatica AI X1 2, 143–150 (2011)
39. Romańuczk, U., Ustimenko, V.: On the key exchange with new cubical maps

based on graphs. Annales UMCS Informatica AI XI 4, 11–19 (2011)
40. Romańuczk, U., Ustimenko, V.: On the key exchange with matrices of large or-

der and graph based nonlinear maps. Albanian Journal of Mathematics, Special
Issue, Application of Computer Algebra 4(4), 203–211 (2010)

41. Romańuczk U., Ustimenko V.: On families of large cycle matroids, matrices
of large order and key exchange protocols with nonlinear polynomial maps of
small degree (to appear)

42. Shaska, T., Huffman, W.C., Joener, D., Ustimenko, V. (eds.): Advances in
Coding Theory and Crytography (Series on Coding Theory and Cryptology).
World Scientific Publishing Company (2007)

43. Shaska T., Ustimenko V.: On some applications of graph theory to cryptogra-
phy and turbocoding. Albanian J. Math. 2(3), 249–255 (2008); Proceedings of
the NATO Advanced Studies Institute: ”New challenges in digital communica-
tions”

44. Shaska, T., Ustimenko, V.: On the homogeneous algebraic graphs of large girth
and their applications. Linear Algebra Appl. 430(7), 1826–1837 (2009); Special
Issue in Honor of Thomas J. Laffey

45. Simonovits, M.: Extremal graph theory. In: Beineke, L.W., Wilson, R.J. (eds.)
Selected Topics in Graph Theory 2, vol. (2), pp. 161–200. Academic Press,
London (1983)

46. Ustimenko, V.: Random walks on graphs and Cryptography, Extended Ab-
stracts, AMS Meeting, Loisville (March 1998)

47. Ustimenko, V.: Coordinatisation of Trees and their Quotients. The ”Voronoj’s
Impact on Modern Science”, Kiev, Institute of Mathematics, vol. 2, pp. 125–152
(1998)

48. Ustimenko, V.: CRYPTIM: Graphs as Tools for Symmetric Encryption. In:
Bozta, S., Sphparlinski, I. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 278–287.
Springer, Heidelberg (2001)

49. Ustimenko, V.: Graphs with Special Arcs and Cryptography. Acta Applicandae
Mathematicae 74(2), 117–153 (2002)

50. Ustimenko, V.: Linguistic Dynamical Systems, Graphs of Large Girth and
Cryptography. Journal of Mathematical Sciences 140(3), 412–434 (2007)

51. Ustimenko, V.: Maximality of affine group and hidden graph cryptosystems. J.
Algebra Discrete Math. 10, 51–65 (2004)

52. Ustimenko, V.: On the extremal graph theory for directed graphs and its crypto-
graphical applications. In: Shaska, T., Huffman, W.C., Joener, D., Ustimenko,
V. (eds.) Advances in Coding Theory and Cryptography. Series on Coding and
Cryptology, vol. 3, pp. 181–200 (2007)

53. Ustimenko, V.: On the extremal regular directed graphs without commutative
diagrams and their applications in coding theory and cryptography. Albanian
J. Math. 1(4) (2007); Special issue on algebra and computational algebraic
geometry

54. Ustimenko, V.: On the graph based cryptography and symbolic computations.
Serdica Journal of Computing (2007); Proceedings of International Conference
on Application of Computer Algebra, ACA 2006, Varna, vol. (1) (2006)

On Extremal Graph Theory, Explicit Algebraic Constructions 285

55. Ustimenko, V.: Algebraic groups and small world graphs of high girth. Albanian
J. Math. 3(1), 25–33 (2009)

56. Ustimenko, V.: On the cryptographical properties of extremal algebraic graphs,
Algebraic Aspects of Digital Communications. In: Shaska, T., Hasimaj, E.
(eds.) NATO Science for Peace and Security Series - D: Information and Com-
munication Security, vol. 24, pp. 256–281. IOS Press (July 2009)

57. Ustimenko, V.: On the K-theory of graph based dynamical systems and its
applications. Dopovidi of the National Ukrainian Academy of Sci. (to appear)

58. Ustimenko, V.: On Extremal Graph Theory and Symbolic Computations.
Dopovidi of the National Ukrainian Acad. Sci. (to appear)

59. Ustimenko, V.: On optimization problems for graphs and security of digital
communications. In: International Conference on Discrete Mathematics, Alge-
bra and their Applications, October 19-22 (2009); Proceedings of the Institute
of Mathematics, Belarussian Acad. Sci. (3), 12 (2010)

60. Ustimenko, V.: Algebraic graphs and security of digital communications, 151 p.
Institute of Computer Science, University of Maria Curie Sklodowska, Lublin
(2011); Supported by European Social Foundation, available at the UMCS web

61. Ustimenko, V., Wróblewska, A.: On the key exchange with nonlinear polyno-
mial maps of degree 4. Albanian Journal of Mathematics, Special Issue, Appli-
cations of Computer Algebra 4(4) (December 2010)

62. Ustimenko, V., Wróblewska, A.: On the key expansion of D(n;K)-based cryp-
tographical algorithm. Annales UMCS Informatica AI XI 2, 95–111 (2011)

63. Ustimenko V., Wróblewska A.: On the key exchange with nonlinear polynomial
maps of stable degree (to appear)

64. Wróblewska, A.: On some applications of graph based public key. Albanian
J. Math. 2(3), 229–234 (2008); Proceedings of the NATO Advanced Studies
Institute: ”New challenges in digital communications”

65. Futorny, V., Ustimenko, V.: On Small World Semiplanes with Generalised Schu-
bert Cells. Acta Applicandae Mathematicae (4) (2007)

66. Ustimenko, V., Kotorowicz, J.: On the properties of Stream Ciphers Based
on Extremal Directed graphs. In: Chen, R.E. (ed.) Cryptography Research
Perspectives. Nova Publishers (2008)

67. Ustimenko, V.: Small Schubert cells as subsets in Lie algebras. Functional Anal-
ysis and Applications 25(4), 81–83 (1991)

68. Ustimenko, V.: On the Varieties of Parabolic Subgroups, their Generalizations
and Combinatorial Applications. Acta Applicandae Mathematicae 52, 223–238
(1998)

69. Ustimenko, V.: Linear interpretations for flag geometries of Chevalley groups.
Ukr. Math. J. 42(3), 383–387 (1990)

70. Ustimenko, V., Romańczuk, U.: On dynamical systems of large girth or cycle
indicator and their applications to multivariate cryptography

AIML Knowledge Base Construction
from Text Corpora

Giovanni De Gasperis, Isabella Chiari, and Niva Florio

Abstract. Text mining (TM) and computational linguistics (CL) are com-
putationally intensive fields where many tools are becoming available to study
large text corpora and exploit the use of corpora for various purposes. In this
chapter we will address the problem of building conversational agents or chat-
bots from corpora for domain-specific educational purposes. After addressing
some linguistic issues relevant to the development of chatbot tools from cor-
pora, a methodology to systematically analyze large text corpora about a
limited knowledge domain will be presented. Given the Artificial Intelligence
Markup Language as the “assembly language” for the artificial intelligence
conversational agents we present a way of using text corpora as seed from
which a set of “source files” can be derived. More specifically we will illustrate
how to use corpus data to extract relevant keywords, multiword expressions,
glossary building and text patterns in order to build an AIML knowledge
base that could be later used to build interactive conversational systems.
The approach we propose does not require deep understanding techniques
for the analysis of text.

As a case study it will be shown how to build the knowledge base of
an English conversational agent for educational purpose from a child story
that can answer question about characters, facts and episodes of the story.
A discussion of the main linguistic and methodological issues and further
improvements is offered in the final part of the chapter.

Giovanni De Gasperis · Niva Florio
Dipartimento di Ingegneria e Scienze dell’Informazione, Matematica,
Università degli Studi dell’Aquila, L’Aquila, Italy
e-mail: {giovanni.degasperis,niva.florio}@univaq.it

Isabella Chiari
Dipartimento di Scienze documentarie, linguistico-filologiche e geografiche,
Università degli Studi di Roma ”La Sapienza”, Roma, Italy
e-mail: isabella.chiari@uniroma1.it

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 287–318.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{giovanni.degasperis,niva.florio}@univaq.it
isabella.chiari@uniroma1.it

288 G. De Gasperis, I. Chiari, and N. Florio

1 Introduction: Turing Test and Conversational Agents

This work is aimed at understanding how it is possible to analyze the text of a
fictional book in order to create an artificial agent that can answer questions
about the same content. The critical step is to build a knowledge base in
a format usable for a conversational system that should face information
exchange at a human level, i.e. using natural language. We proposed a natural
language interpreter/generator, without deep understanding of the text, or
phrase structure analysis.

The chapter looks at historical evolution of such conversational systems,
trying to concentrate on application in education. We then propose a specific
educational application, choosing a children novel book as text source being
the main corpus.

The educational application we illustrate is focused on specific domain and
purpose chatbot design, is corpus-based, but does not require deep under-
standing techniques to be applied to the knowledge base. We further propose
some possible future improvements regarding the ability to take synonymy
and semantic inference into the answer retrieval system. Section 1 illustrates
the historical background of chatbot systems design with reference to Tur-
ing imitation game proposal. We present some major experiences in chatbot
construction and their approach, specifically focusing on chatbots built for
educational purposes. The end of the Section proposes an overview of AIML
(Artificial Intelligence Mark-up Language), the markup language chosen for
the construction of our chatbot system. Section 2 addresses the main lin-
guistic issues posed by corpus selection and exploitation, glossary building
and FAQ construction from corpora and provides examples from our chatbot
case study, the Talking Cricket, answering questions about the child story
“Adventures of Pinocchio.”

Section 3 is dedicated to the design approach from a software engineering
point of view: requirements, input set definition, implementation and testing.
We then discuss the overall proposed methods in section 4. Section 5 provides
readers with a brief illustration of selected tools and resources useful to build
similar chatbots.

1.1 Turing Test as a Regulative Idea

In his 1950 paper Computing Machinery and Intelligence Alan Turing de-
scribed for the first time the imitation game, later best known as the Turing
test. In the imitation game an interrogator engages in communication with
a man and woman, situated in separate rooms. The interrogator poses ques-
tions to discover who is the woman between the two. A variant of the game
substitutes the woman with a machine. The objective of the game is to ob-
serve if the interrogator, by asking questions, is able to assess which is the
machine. The interrogator is free to ask questions on any topic in order to

AIML Knowledge Base Construction from Text Corpora 289

pursue his task. The machine passes the test if it is able to perform not worst
than the man in the man-woman game.

With the imitation game Turing explicitly replaces the question “Can ma-
chines think?”, which he considers meaningless, with another sort of questions
“Are there imaginable digital computers which would do well in the imitation
game?”.

The debate that started from the 1950 paper has been so intense and
fruitful in its philosophical, theoretical, methodological aspects - to last up
to today. The Turing test posed challenges to Artificial Intelligence (AI), but
also to the philosophical debate on intelligence, thinking, meaning and rea-
soning, focusing its approach on performance evaluation. The roots of the
imitation game can be further traced in XVIIth century thought, especially
in Descartes, but also in Leibniz, as pointed out by N. Chomsky (2008). What
seems truly interesting in the light of current computational linguistics trends
is that the Turing test poses language, natural language, in its spontaneous
register of conversation, to the core of the evaluation of man-machine interac-
tion. The Turing test can be considered a sort of regulative idea, as it guides
and grounds empirical investigation in intelligent and conversational system
design and testing.

A deep overview of the manifold issues Turing paper raised is given in
three recent publications: The Turing test: the elusive standard of artifi-
cial intelligence (Moor 2003); The Turing test: verbal behavior as the hall-
mark of intelligence (Shieber 2004); Parsing the Turing test: philosophical
and methodological issues in the quest for the thinking computer (Epstein
2008).

Among the many questions raised by the imitation game one of the most
obvious has been to test its discriminative power by creating conversational
agents able to face such a challenge. From the mid-Nineties onwards the
wide accessibility to the world wide web and advances in various fields of
computational linguistics and artificial intelligence lead to a larger demand
for computer programs capable of interacting with users. Those applications
tend to be centred in specific domains and thus restricted in tasks performed
and in the extension of their knowledge bases. Still some chatbot applications
aim at broader scopes and can aim at challenging humans in unrestricted
Turing tests.

As an acknowledgment of the interest in these applications in 1990, the
Loebner Prize proposed a competition for artificial intelligence chatbots to
contest in an unrestricted Turing test (Mauldin 1994). On the same path is
to be seen the recent Jeopardy human-versus-machine match won by IBM
question answering (QA) computing system Watson in 2011.

1.2 Chatbot Early History and General Developments

Chatbots (or chatter-bots, conversational agents, dialogue systems) are ap-
plications that simulate human conversation through a textual interaction

290 G. De Gasperis, I. Chiari, and N. Florio

between a human user providing the input and the agent that responds to it
(answering or making questions). The first attempt at building a conversa-
tional agent was ELIZA, designed in the late Sixties by Joseph Weizenbaum
(1966) as a fictitious psychotherapist engaging in a conversation with users.
ELIZA used a keyword matching technique in order to perform her task.

Similar to ELIZA is PARRY (Colby et al. 1971), the paranoid bot, im-
plemented in MLISP (meta-lisp), who also dialogued with ELIZA creating
the first machine-machine conversation log. Immediately after, care has been
taken to provide these chatbots of a more user-friendly interface, focusing on
the development of text and natural language interfaces (Shawar and Atwell
2007), as in Cliff and Atwell (1987) and Wilensky et al. (1988).

A rebirth of research on chatbot architecture has begun since the ’80s
(Shawar and Atwell 2007a). For example, Hutchens (1996, 1998) implemented
MegaHal, a chatbot that produces its answers thanks to the mechanism of
the Markov chain, which bases its answers on what the user and the con-
versational agent have previously said in their conversation. CONVERSE
(Batacharia et al. 1999) uses various tools of computational linguistics (text
parser, spell checker, etc.) to analyze and understand user questions, while
linguistic databases and dictionaries are used by a CONVERSE special mod-
ule to understand user questions and generate answers. Another very suc-
cessful example of chatbot is A.L.I.C.E. (http://alice.pandorabots.com),
the Artificial Linguistic Internet Computer Entity, a general purpose “un-
restricted” conversational agent using pattern-matching and AIML, or Ar-
tificial Intelligence Markup Language, a derivative of Extensible Mark-up
Language (XML). A.L.I.C.E. has about 50,000 categories manually coded by
a community of about 500 editors (Wallace 2009). Jabberwocky (Pirner 2007)
is able to answer questions on the homonymous poem by Lewis Carroll. This
chatbot has a learning mechanism based on its interaction with human users;
the mechanism that uses pattern matching is similar to that of ELIZA, while
its knowledge base is not contained in AIML files, but in simple text files
containing a particular template for questions and answers.

In more recent years, the attempts to solve the problem concerning the
construction of chatbot knowledge base and its representation have been
various. Agostaro et al. (2005) proposes a LSA-bot. The knowledge base
of this chatbot is created with the mechanism of Latent Semantic Analysis
(LSA) by which a corpus of documents is mapped to a data-driven conceptual
space. In the course of a conversation between this LSA-bot and a human
user, the sentences of user input are mapped into the same conceptual space;
at this point the chatbot is able to answer due to a binding mechanism based
on the level of similarity between the question of the user and the LSA-bot
knowledge base. Augello et al. (2009) use the LSA to create a semantic space
integrated with a semi-structured knowledge base. The knowledge of their
chatbot is composed of an AIML file, DBpedia and Wikipedia: through the
AIML categories the conversational agent is able to find a match between
the user input sentence and DBpedia resources; if it finds no correspondence,

http://alice.pandorabots.com

AIML Knowledge Base Construction from Text Corpora 291

it looks for the answer in the LSA-based semantic space representing the
knowledge contained in Wikipedia.

Spoken language conversation samples are the source of approaches that
extract data from spoken dialogue corpora or large reference corpora (Shawar
and Atwell 2003b, 2005), in (Shawar and Atwell 2003b) the authors describe
how to implement a corpus-based chatbot like ELIZA or ALICE. They im-
plement a Java program that transforms a corpus of plain texts into pattern
and template in the AIML format; the corpus they use is the Dialogue Di-
versity Corpus, that is made up of links to different corpora of dialogues
on multiple subjects (e.g. physics, algebra, astronomy, etc.) transcribed by
hand. According to Wu, Wang, Li and Li (Wu et al 2008), the mechanism of
acquisition of knowledge proposed by Shawar and Atwell (Shawar and Atwell
2003b) is not suitable to restricted domains of knowledge, but is only apt to
be used for the acquisition of common sense knowledge. Additionally, this ap-
proach is based on a manually trascribed training corpus. For these reasons,
Wu and the other authors use threads of online forums as a training corpus,
further translated automatically into AIML format. These kind of conver-
sations are thus considered suitable for automatic conversion as they hold
a question-answer structure similar to the structure of the AIML template
and, moreover, the dialogues in forum threads tend to be about a restricted
domain of knowledge.

Now online we can find a large number of professional and non
professional chatter-bots, some of which can be found at Pandorabots
(http://www.pandorabots.com), a webservice, where it is possible to test
and host chatbot prototypes. Recent experimentations try to combine tradi-
tional conversational agent design techniques with machine learning in order
to avoid the largely manual approach typical of content supply (Shawar and
Atwell 2003a, 2005; Chantarotwong 2006). Some recent tools try to derive
information directly from the web (Ueno et al. 2010; Augello et al. 2009).

Latest developments in conversational agents, especially those aimed at
entertainment and simulation games, are associated to speech synthesis and
multidimensional avatars and talking heads and embodied agents, capable of
emotion expressions and gesture (Vrajitoru 2006; Augello et al. 2011; Santos-
Perez et al. 2011).

1.3 Chatbot Applications for Educational Purpose

Applications of chatbots vary from tutoring, e-commerce, information re-
trieval, as helpdesk tools, customer support, automatic answering systems
and human digital assistants. One of the most prolific, best-documented and
useful application concerns the use of chatbots in education.

Early in 2003, Wallace, Tomabechi and Aimless envisaged “chatterbots
acting as talking books for children”, chatter-bots for foreign language in-
struction, and teaching in general (Wallace et al. 2003). Since then, the use

http://www.pandorabots.com

292 G. De Gasperis, I. Chiari, and N. Florio

of these conversational agents as educational tools has been further explored
(Kerly et al. 2007; Kelly at al. 2009). They are seen as learning companions
(Eynon et al. 2009), (Jia et al. 2003), helpers (Feng et al. 2006; Vieira et al.
2004), tutors (De Pietro and Frontera 2005; Kim et al. 2002) and as peda-
gogical agents (Veletsianos et al. 2010), but, as in the case of other learning
environments supported by software agents, they are mostly used in relation
to specific domains of learning (e.g. FREUDBOT and SOFIA).

FREUDBOT (Heller et al. 2005) is a chatbot who mimics the character
of Sigmund Freud, who speaks to learners in the first person about Freudian
theories and life episodes. The content of this chatbot is written in AIML
and its developer has added some particular control features: for example,
if FREUDBOT does not know the answer to a question, it admits not to
know the topic and asks the learner to provide additional information or
to change the subject of the conversation. SOFIA (Knill et al. 2004) is a
calculus chatbot, a conversational agent that helps students to solve general
mathematical problems. The main mathematical knowledge of SOFIA is con-
tained in plain text files that are converted to AIML thanks to Perl scripts;
this knowledge base is used to produce glossaries of mathematical definitions
and algorithms and a help for students. This chatbot is able to communicate
with other mathematical agents such as Pari, web resources as Wikipedia
and a computer algebra system via its web interface in order to solve algebra
problems.

Pirrone et al. (2008) describe an Intelligent Tutoring System (ITS), that,
thanks to a particular cognitive architecture, is able to enrich its knowledge by
interaction with users and by external web resources, representing structured
and unstructured information in the same framework. The knowledge base of
this ITS is made up of an ontology that is integrated with other information
from Wikipedia, Wordnet, folksonomies and learning documents provided by
the teacher and collected in a dedicated database. Through the mechanism
of LSA, the knowledge base of the chatbot is represented in a semantic space,
where the various documents are connected with the symbolic representation
of the topic of conversation. Also the student input sentences are represented
via LSA in order to assess the level of similarity between the user questions
and the chatbot knowledge base. To provide its answers, this ITS needs an
AIML file that describes the typical structure of the interaction in natural
language. This tutorbot holds a student model, that describes the assessment
level of each student, and, according to it, the chatbot searches the knowledge
base and provides the appropriate material for each student; moreover, during
conversation, the chatbot is able to evaluate the improvements of the user
and to update its model.

Some of the applications of chatbots are focused on language learning and
practice (Shawar and Atwell 2007a). Jia proposes several chatbot intended
as systems for teaching English as a foreign language (Jia 2003, 2004, 2009).
He describes a chatbot based on keywords like a “partner learning of foreign
language” (Jia 2003) for Chinese university and college students who speak

AIML Knowledge Base Construction from Text Corpora 293

fluent English. This chatbot is based on AIML files and on pattern-matching
techniques, like ELIZA. This type of chatbot, according to Jia, does not per-
form satisfactorily because it is simply based on the mechanics of keywords,
completely ignoring grammar and semantics.

A few years later, Jia proposes a chatbot (Jia 2004, 2009) based on the
representation of grammatical structures that underly natural language sen-
tences. CSIEC (Computer Simulation in Educational Communication) is an
English learning companion that “generates communicative response accord-
ing to the user input, the dialogue context, the user and its own personality
knowledge, common sense knowledge, and inference knowledge” (Jia 2009).
Jia introduces also a NLML (Natural Language Markup Language), an XML
dialect designed for annotating natural language texts. NLML annotation can
be written manually thanks to a GUI pattern-template editor, or automat-
ically generated. In the latter case, an English parser analyzes natural lan-
guage texts and the resulting grammatical structure is converted into NLML.
Then the NLML parser translates NLML annotation into NLOMJ (Natural
Language Object Model in Java), that is into the objects that represent the
grammar elements in the rules. NLDB (Natural Language Database) con-
tains the NLOMJs, and other tables containing all the chatbot knowledge: a
“table direct-response”, that, according to Jia, “must be done by an author
who is good at English grammar and dialogue generation” and an inference
rule table, while for the semantic knowledge the system takes advantage of
WordNet. In a chatting session with students, the input text is parsed and
transformed first in NLML and then into NLOMJ. CSIEC has two answer
mechanisms. Thanks to a pattern-matching mechanism, CSIEC searches for
the correct direct answers in NLDB in the “table direct-response” and in
the first case the answer is produced just taking into account the student
input. A second type of answer is produced using the GTE (Generation of
Textual Entailment) mechanism makes inference on a text thanks to an in-
ference rule table contained in NLDB. At the end the CR (Communication
Response) mechanism generates the answer, taking into account user input
and the knowledge in NLDB.

Most applications of chatbots as foreign language learning tools assume
students to possess a good level of proficiency of the second language in
order to interact with them, and learners can mostly have a general conver-
sation with them. On the contrary in (De Gasperis and Florio 2012), authors
describe two chatbots designed for students who have no fluency in the sec-
ond language. The first conversational agent is intended for English word
spelling improvement and proposes to students exercises that are typical of
a foreign language text book. Students have English chat sessions with their
virtual tutor, checking their conversation, proposing to learners the correct
sentence in case they produce an incorrect one. The second is an expert fable
chatbot that can answer to student question about a fable that learners have
to read. This conversational agent is indented to check and improve learners
reading comprehension of a text in a foreign language. Both chatbots are

294 G. De Gasperis, I. Chiari, and N. Florio

ALICE-like based, but their AIML knowledge base is automatically gener-
ated form plain text documents such as FAQ, glossary, multiwords, keywords
and stopwords files as described in this chapter.

1.4 AIML Language and Architecture

AIML is the Artificial Intelligence Markup Language defined by Richard Wal-
lace (Wallace 2009) aimed at describing lexical knowledge bases for conver-
sational agents. It is derived from XML with the purpose of describing units
of textual knowledge called categories:

<category>

<pattern>WHO IS PINOCCHIO</pattern>

<template>

Pinocchio in the main character in the book:

Adventures of Pinocchio, written by Carlo Collodi.

</template>

</category>

Here is described the exact text pattern WHO IS PINOCCHIO to be
matched in a question that has to produce as output the text between the
< template > tags.

Categories can also be linked together where there is a semantic common
base by means of the SRAI construct:

<category>

<pattern>WHO IS THE PINE-WOOD MARIONETTE</pattern>

<template>

<srai>WHO IS PINOCCHIO</srai>

</template>

</category>

effectively realizing a link between the two categories:

WHO IS PINOCCHIOWHO IS THE PINE-WOOD MARIONETTE SRAI

Fig. 1 Two categories linked by the SRAI AIML relation

An important feature of the AIML pattern is that wildcards can be used
‘ ’ and ‘*’, the first with higher priority over the latter. For example a more
general category can be used for all “WHO IS” questions, obtained combining
the wildcards, the SRAI construct and the <star/> element:

AIML Knowledge Base Construction from Text Corpora 295

<pattern> WHO IS * </pattern>

<template>

<srai>

WHO_QUESTION <star/>

</srai>

</template>

<star/> is a monolithic tag that copies the text selected by the position of
the wild card.

SRAI constructs can be linked in a tree like structure in order to reduce
lexical forms to a common root.

* BIRD

BIRD

SRAI

BIRD * SRAI

* BIRDS

SRAI

BIRDS *

SRAI

Fig. 2 Many categories linked to the same root element by SRAI relations

In Fig. 2 many categories are generated combining wildcards, singular and
plural lexemes, all linked to the same root concept made by the lemma BIRD.
This tree-like connection could also be used with synonyms and verbs forms
so that user input text can be reduced to a sequence of lemmas.

AIML has a much more complex TAG set and possible parameters (Wal-
lace 2009), such as temporal memory, variables, topics, etc.., but we found
that for the purpose of this chapter, to automatically generate AIML knowl-
edge bases starting from text corpora, it is sufficient to consider only the
following elements:

1. categories
2. SRAI construct
3. wildcards

Once all the AIML categories have been aggregated into .aiml files, they
can be used with an AIML interpreter so that a human can engage in a
conversation with it. AIML files are also incremental, they can be added to the
chatter-bot memory as needed, supplying it with the respective knowledge.

For example, the explanation of words that can be derived by a glossary
can be integrated in single .aiml file.

296 G. De Gasperis, I. Chiari, and N. Florio

2 Corpus Based Chatbots and Linguistic Issues

In the last few years a number of tools have been developed combining the
chatbot architecture with corpora. Spoken language corpora can be used to
provide new topics and naturally occurring linguistic samples for the dialogue
in general purpose chatbots, while domain-specific corpora can be used to
provide a knowledge base that can be queried using natural language and
interacting by means of the conversational agent.

General problems of objective and domain specificity still apply to knowl-
edge bases constituted by corpora. Chatbots modeled on spoken language
conversation and large reference corpora can produce interesting results from
the point of view of the naturalness of the dialogue turns (Shawar and Atwell
2005), but still cannot avoid the problem of inconsistencies, illogical dialogue
sequences and unreliability of information sources.

Furthermore it has become overtly clear that general purpose chatbots pose
problems radically different than those of task-specific and domain-specific,
i.e. restricted, chatbots. While the use of spoken conversational routines and
natural spontaneous language are capital for the design of general purpose
chatbots, for chatbots built to respond to narrower objectives such features
are not considered so relevant. The idea of simulating a human being and
eventually deceiving the user has now been completely removed from the
scene, focusing more on coherence in question answering systems built for
specific purposes on restricted domains.

2.1 The Corpus

A corpus, intended as a collection of texts, can be used in chatbot creation
for many purposes, depending on the kind of text included and on the specific
objective of the conversational agent application. It can be used to train a
chatbot, as in the case of spoken corpora containing spontaneous natural
conversation (Shawar and Atwell 2003a), and it can be used as a knowledge
base to build conversation and information structure for a dialogue system.

There are many digital libraries that contain free and out of copyright
restriction texts. The best known multilingual digital libraries are: Internet
Archive (http://www.archive.org) containing 3,209,736 books of all gen-
res in various formats and Project Gutemberg (http://www.gutenberg.org)
which offers about 38,000 books, mostly fictional works. Depending on the
kind of corpus needed for the chatbot project different pre-processing pro-
cedures will be required, such as eliminating unneeded information, links,
coding, etc.

For our case study we chose to develop a prototype of a conversational
agent for educational purposes. We selected children books as our source
texts and decided to opt for the well known novel Adventures of Pinoc-
chio by Carlo Collodi. We used the English translation of Pinocchio by Carol
Della Chiesa. The electronic text is freely available at the Project Gutemberg

http://www.archive.org
http://www.gutenberg.org

AIML Knowledge Base Construction from Text Corpora 297

website (http://www.gutenberg.org). The chatter-bot built was named:
“The Talking Cricket”.

When building a conversational agent from corpora, especially if intended
for educational purposes, it is necessary to determine how to use the corpus
and how to integrate corpus data with other data that might be useful for the
application. In our case-study we chose to use the text itself as the domain
for the chatbot and also as the main corpus for the Talking Cricket chatbot
question-answering system.

When dealing with literary text and building a chatbot to develop tex-
tual understanding and analysis in learners, it is important to consider using
different sources as knowledge bases for the chatbot:

1. the original text itself as a primary source
2. summaries of the text, manually or automatically generated
3. para-textual and inter-textual information (from essays, literary criticism,

external information on the work fortune and historical information on
author/s, etc.).

2.2 Building a Glossary: Linguistic Issues

A glossary is useful in chatbot design in order to cope with the possibility that
learners (whether natives or second language learners) might need linguistic
explanations of terms and words occurring in the text that is the object of the
chatbot domain. The glossary is thus intended to contain significant words or
multiwords occurring in the chatbot conversation and/or in the source text
that the user might not know. Thus the glossary will provide explanation on
the meaning of those words. Since words are not all equally well known by
people bearing different education degrees, it is appropriate to evaluate the
objectives of each chatbot application in order to define which threshold to
set for glossary inclusion.

Glossary candidates are the words that we presume that the chatbot user
might not know and thus might need to find the meaning of. We can select
those words manually, but in this case we would certainly hazard on the user
knowledge. The best way to select glossary candidates is to presume little
knowledge in the final user, in order to prevent the case in which the user
poses a definition question and the chatbot does not have the correct answer.

The fist step in selecting glossary candidate entries is to develop a pro-
cedure to eliminate non relevant vocabulary, e.g. mainly extremely high
frequency words that presumably are well known to native speakers. The
necessity of eliminating non relevant vocabulary comes from the aim at econ-
omizing on glossary entries to be coded in the system.

A large portion of the vocabulary of every language, containing about 2,000
words, among the most frequent in the language, are commonly known by
native speakers having primary education. The top 2,000 words of a reference
corpus generally contain most function words (and, it, on, to, the, etc.) and

http://www.gutenberg.org

298 G. De Gasperis, I. Chiari, and N. Florio

very common content words (to do, to make, man, home, etc.). Those words,
not only are commonly known, but also have a very high coverage rate on
any text of a specific language (Guiraud 1960), and are generally called the
“fundamental vocabulary” of a given language. It is very unlikely that a
native speaker will need explanation for those terms.

To further economize on glossary candidates it is possible to restrict the
word list to nouns and verbs, extracted both from the corpus list and the
reference corpus list in order to obtain the most salient possible words to be
included in the glossary.

Thus a good practice is to eliminate from the glossary candidate list the
most common lemmas of the language. In order to do so we need:

1. a lemmatized frequency list of a reference corpus (lemma list A) for the
language we are processing

2. a lemmatized frequency list of the corpus (lemma list B) we intend to use
for the chatbot.

Finding a Lemmatized Frequency List of a Reference Corpus

A reference corpus is a very large corpus, balanced by genres (containing texts
from written and spoken language), aimed at representing most variation
registers and text types of that language. The golden standard is generally
set to 100 million words.

Frequency data on usage of words in a reference corpus are generally given
in a lemmatized form. This means that all running words that occur inflected
in texts, such as abandoned, loves, men, does, etc., are grouped in lemmas
that represent the general lexical class for that form, cumulating frequencies
of all inflected forms pertaining to that lexeme.

The usual format for a lemmatized frequency list is the following:

rank, frequency, lemma, word-class

For the English language a very often used reference corpus is the British
National Corpus (http://info.ox.ac.uk/bnc), which we used in our case
study. It is also possible to use other similar resources such as the American
National Corpus (http://americannationalcorpus.org), or existing refer-
ence corpora for other languages, if a lemmatized version of the vocabulary
of the corpus is given.

A sample of the most common words in English (BNC), ordered by inverse
frequency, will be similar to the following: 1, 6187267, the, det; 2, 4239632, be,
v; 3, 3093444, of, prep; 4, 2687863, and, conj; 5, 2186369, a, det; 6, 1924315,
in, prep, etc. The further step is to extract from the list the top ranked verbs
and nouns. We will now have a lemmatized frequency list of the so-called
fundamental vocabulary of the reference corpus (lemma list A).

http://info.ox.ac.uk/bnc
http://americannationalcorpus.org

AIML Knowledge Base Construction from Text Corpora 299

Lemmatizing the Corpus and Extracting Glossary Candidates

In order to build a lemmatized frequency list of the corpus (lemma list B)
we need a specific tool called a POS-tagger or a lemmatizer. The POS tagger
performs the operation of analysing the corpus and tagging all inflected forms
with its part-of-speech (or word-class) in the context the word occurs, and
associating it to its reference lemma.

There are many ways of performing this tasks and many available tools,
depending on the language needed. A freely available tool that performs POS
tagging for English and many other languages is TreeTagger (Schmid 1994).

Once the corpus has been tagged for lemma and part of speech all we need
to do is building a lemmatized frequency list that summarizes data on lemma,
word-class and number of occurrences in the corpus in order to compare it
to the reference corpus lemmatized list.

Table 1 Example of a POS-tagged text output

Word POS Lemma

how WRB how
it PP it

happened VVD happen
that IN/that that

Mastro NP Mastro
Cherry NP Cherry

carpenter NN carpenter
found VVD find

a DT a
piece NN piece

of IN of
wood NN wood

If the tagset used for the reference corpus and that used for the corpus are
different, they need to be converted in a common coding in order to make
the matching possible. In our case the reference corpus BNC has a larger
tagset than that used by TreeTagger for the corpus (e.g. the BNC tags nouns
NN0: Common noun, neutral for number; NN1: Singular common noun, NN2:
Plural common noun, while TreeTagger uses only two tags NN: for Singular
or mass nouns and NNS for plural nouns, verb tagging is more divergent) so
it was necessary to re-code both lemma list in a common tagset.

From the corpus list (lemma list B), sorted by inverse frequency, we filter
and re-move the reference corpus list (lemma list B) by matching both lemma
and POS in both lists and obtain a list of candidate for the glossary of
the chatbot (lemma list C). It is very important to match both lemma and
word-class since several lemmas exist in different word-classes (e.g. love as
noun and love as verb).

300 G. De Gasperis, I. Chiari, and N. Florio

The lemma list (C) now contains relevant words that occur in the corpus,
but not words that appear banal and common to a native speaker.

Depending on the specific objective for the glossary, it is possible to re-
move from the list all hapax, words that occur only once in the corpus. To
evaluate this option it is important to fully assess tasks and objectives of the
chatbot application and to manually screen hapax. In our prototype we did
not remove hapax from the glossary list since the corpus was not so large
and rarely occurring nouns and verbs were considered relevant to the global
understanding of the work by our future users.

Glossary Entries and Definitions

When building a glossary we might not need only common words (especially
verbs and nouns) occurring in the corpus but we also need proper nouns and
named entities (in our case study: Pinocchio, Geppetto, Antonio, Polend-
ina, Tunny, Melampo, Harlequin, Cherry, Eugene, John, Pulcinella, Alidoro,
Romeo, Rosaura, Medoro), all of which can be extracted from lemma list C
(by selecting noun, verb and proper noun POS tags).

The next step is to build the glossary by associating the lemma list C to
glossary definitions. Depending on the specific goals of the chatbot we will
choose the appropriate source for our definitions. In our case we provided brief
definition for proper nouns (character nouns) occurring in the corpus from
the Wikipedia page of Adventures of Pinocchio and used Wordnet (Fellbaum
1998, 2005) definitions for all the remaining words. It is also possible to
link glossary entries to Wiktionary (http://en.wiktionary.org) or other
available sources. Along with the lemma list we need to collect multiword
expressions. It is not always necessary to include multiword expressions in
the glossary, but it is very important if those multiwords constitute keywords
or named entities (such as Mastro Cherry, Mastro Antonio in our case study).

2.3 Corpus Based FAQ

In this section we will present some of the most relevant issues in designing
the FAQ for chatbot creation from text, keyword, multiword selection, and
grammatical and semantic problems that might arise in the design process.

General Issues

The fist problem to address in building FAQs from corpora is how to use the
corpus, whether to use it as a knowledge base or as a machine learning tool.
In the first case the corpus will be analyzed combining manual and automatic
means in order to select portions of the text to be included in the FAQ. In the
latter case the corpus itself is to be considered the source of both questions
and answers for the FAQ and of the categorization of topics and categories in
AIML. In our paper we have chosen to adhere to the former approach, thus

http://en.wiktionary.org

AIML Knowledge Base Construction from Text Corpora 301

FAQ building is text-centred but task definition and question selection has
been conducted (semi)manually.

The texts of the corpus have been used as the main source for the answers
in a bottom up procedure. After choosing portions of text to be selected as
answers, a keyword analysis has been made on each piece of text in order
to build questions for the FAQ and keywords to be matched with the user
input.

The goal is to build a set of questions (Q) and answers (A) that are re-
lated to the main content of the source corpus. For example, from the first
chapter a selection of relevant sections of the text is generated, manually or
automatically. We preferred to select paragraphs manually in order not to
introduce further complexity in the set of software tools needed to achieve a
reasonable result. Starting from these selections of the first chapter, the most
significant sentences are selected as possible answers. Then each answer has
been associated to possible questions including their formal variants.

At this point it is important to evaluate the opportunity of introducing the
processing of inflected forms (e.g. loved, did, noses, etc.) and synonyms (e.g.
story, novel, book, etc.) to be able to cope with input that is presented in a dif-
ferent textual form from that of the keywords present in the source texts, but
ultimately to be considered equivalent in the question answering procedure.
Choosing to take into account inflected forms and synonyms largely depends
on the language of the chatbot and on the specific aims for the application.

Another relevant issue is that of incomplete, ill-formed or ungrammatical
input. When designing the FAQ it is important to consider the fact that
for multiple reasons it is common for the user to pose question that seem
incomplete or far from a well-formed standardized questions. Thus it is im-
portant in addressing the problem of input analysis to use an approach that
allows the user freedom in the wording of questions and that allows deviating
and unusual grammatical rules. Pattern- or keyword matching techniques
and careful selection of stopwords generally make it possible to solve this
problem, as in our case study.

Stopwords can have a great impact on the efficiency of the final AIML
categories matching. Using a combination of wildcards and SRAI the stop
words can be carefully filtered out from the user input, so that ideally only
a list of significant lemmas from the user input is matched with a list of
significant lemmas of a question, so to find the right answer, as shown in
Fig. 3.

User INPUT Stop words filter Question AnswerKeywords match

Fig. 3 Ideal workflow from the user input to the right answer.

302 G. De Gasperis, I. Chiari, and N. Florio

A further problem is the scope and level of generality of the question and
answer relationship. Using corpora for FAQ building tends to focus ques-
tion/answer scope to local ranges, because small bits of texts, often single
sentences, are chosen as relevant answers in FAQs, following a general char-
acteristic of spontaneous conversation.

Human: Why was Mastro Cherry called that way?

The Talking Cricket: His real name was Mastro Antonio, but

everyone called him Mastro Cherry, for the tip of his nose

was so round and red and shiny that it looked like a ripe cherry.

But in the case of applications that are aimed at general knowledge querying
and for text analysis in educational contexts it is also relevant to introduce a
broader and global level of question answering that might include summarized
information.

A further relevant aspect is the selection of keywords to be used both
for input analysis and pattern-matching. The selection of keywords can be
done manually or automatically depending of objectives of the application
and extension of the corpus chosen. Associated to this step is the relevance
of multiword expressions identification and processing of inflected forms and
semantic aspects.

Pattern-matching techniques generally do not adequately respond to the
complexity of texts produced in languages like those of the Romance or
Semitic families that possess a rich morphology and thus present the same lex-
eme inflected in multiple textual forms. Keyword selection and input match-
ing strongly rely on the capability of processing a large number of forms (e.g.
any Italian verb has about 50 different textual forms that can be reduced
to the same lemma). Precision in associating the user input with the correct
answer relies on the capability of using this grammatical information in the
matching process. Since our case study is in the English language, that is not
particularly rich in morphology compared to other languages, we decided to
stick to traditional pattern-matching techniques.

The same problem arises with the use of synonyms (e.g. marionette, pup-
pet) or co-referent expressions (e.g. Mastro Cherry, Mastro Antonio, the car-
penter), but also with hyperonyms and hyponyms (e.g. the novel, the book;
the cat, the animal).

In future developments of the Talking Cricket prototype we intend to use
Wordnet information on inflections and sets of synonyms to allow a better
management of keywords and input matching.

The Talking Cricket FAQ Design

The Talking Cricket (http://glottoweb.org/talkingcricket) uses two
kinds of sources as knowledge bases: the English translation of Adventures
of Pinocchio and the Wikipedia page on the work to provide minimal para-
textual information for the chat-bot.

http://glottoweb.org/talkingcricket

AIML Knowledge Base Construction from Text Corpora 303

The Talking Cricket mainly uses the exact wording of the original text to
answer question about episode and story development, while using external
sources to inform the user on the author, characters and textual analysis.
The general approach has privileged local scope questions and answers since
the text has been chosen to be the main base to be questioned. So questions
are designed in order to be answered by a small self-contained portion of the
source text, without any manual rewriting.

Q Why did Mastro Cherry sing?

A The poor fellow was scared half to death, so he tried to

sing a gay song in order to gain courage.

Summaries of chapters, provided in the source text itself, are used for broader
scope question/answers, regarding story development of each chapter.

Q What happens in the first chapter?

A How it happened that Mastro Cherry, carpenter, found

a piece of wood that wept and laughed

like a child.

Broader scope question/answer typologies are extracted from the Wikipedia
page on the novel and give information about the book that are not con-
tained in the source text itself, but that can be useful to young users of the
educational chatbot we designed.

Q Who is the author of the book?

A The Adventures of Pinocchio is a novel

for children by Italian author Carlo Collodi

Q Who is Carlo Collodi?

A Carlo Lorenzini (November 24, 1826 - October

26, 1890), better known by the pen name Carlo Collodi, was an

Italian children’s writer known for the world-renowned fairy

tale novel, The Adventures of Pinocchio.

At the moment the prototype of the Talking Cricket is able to chat about
the first chapter of the book and about external para-textual information.
Further versions of the Talking Cricket prototype will include automatically
generated summaries of episodes in the text in order to answer to general
aspects of the story development.

3 Steps for Chatter-Bot Generation

The following sequence diagram shows the overall procedure needed to build
the restricted AIML FAQ based chatter-bot the Talking Cricket shown in
this chapter, but it can be used in general on any other source text corpus:

304 G. De Gasperis, I. Chiari, and N. Florio

Fig. 4 Sequence diagram to generate the FAQ chatter-bot lexical knowledge base

In a language learning context, the story expert is the educator and the
user is the student. The story expert/educator has to produce text files as
knowledge seeds in order to generate the lexical knowledge base about the
story. No programming skills are required, files can be edited writing in free
text form, just taking care of a straightforward format to separate questions
from answers (FAQ), or item from definitions (glossary). Only after the lexical
knowledge base is generated in the form of AIML files, it can be uploaded
to an online AIML interpreter, if the learning application is web based, or
locally saved to a folder where standalone interpreter can read them. Then
the user/student can interact in real time with the interpreter which matches
user text input with AIML categories to return an answer. The user/student
can use free text, as far as there are no typing errors and she/he keeps using
lexemes being part of the lexical set used in the FAQ questions and the
glossary items. The AIML agent will reply a structured text, not free, meaning
that the output text it is just copied from the answers of the FAQ set, or the
glossary definitions where applicable.

3.1 Requirements for the Chatter-Bot

The overall design of the Talking cricket chatter-bot is based on requirements
that are needed to keep the application up-to-date with current conversa-
tional agents technology:

AIML Knowledge Base Construction from Text Corpora 305

1. restricted knowledge domain
2. human computer interaction requirements:

a. textual interface
b. free text from the user
c. structured answer text from the chatter-bot

3. no temporal memory
4. resolution of lexical ambiguity by finite number of choices
5. no answer transparency

Requirement n.1 implies that chatter-bot will not answer general knowledge
questions, but only on the specific subject defined by the FAQ and the glos-
sary. This also means that this kind of chatter-bot cannot be considered at
the unrestricted Turing test level.

Requirement n. 2 is related to the simplified implementation, but it could
feasibly evolve in future version in a semantic network representation that
could allow some form of text re-generation of the FAQ answers.

Requirement n.3 implies that chatter-bot output is independent from any
previous interaction.

Requirement n.4 implies that in case of multiple possible answers derived
from the user input processing, the chatter-bot should explicitly ask for a
more detailed question to overcome the ambiguity.

Requirement n.5 implies that in case no answer is available for a given user
input, the chatter-bot should produce a standard output to let the user be
aware that the given knowledge base is insufficient to give a proper answer.

3.2 Input Set Definition

The story expert needs to analyze the given text corpus and derive from it
units of lexical knowledge that can seed the generation of the chatter-bot
knowledge base.

This is a-priori work made by the chatter-bot designer. This can be sup-
ported by several computational linguistic tools now available, but still is not
completely automated.

Data is organized as follows:

1. a FAQ file F, frequently asked questions, is a free text file composed of
several units of FAQ-knowledge:

Q <the question phrase> | {Q <alternative version>}

A <the answer phrase> | {A <alternative version>}

for as many units as needed to cover the restricted knowledge domain.
2. a glossary file G, where important keywords and or multi-word expressions

will be listed with their free text definition:

306 G. De Gasperis, I. Chiari, and N. Florio

G <the glossary item> | {G <alternative version>}

D <the glossary item definition>

the glossary item can be a single word or a multi word.
3. a keywords file K, just listed one on each text line
4. a multiwords file M, just listed as many as needed on each text line
5. a stopwords file S, listed all of the non meaningful words, like articles,

prepositions, adjectives, adverbs and other forms, mostly taken from the
question text in the FAQ set.

Text files <F, G, K, M, S> can be directly typed by the story expert using
a simple text editor; this set makes the input of the PyGenBot software
package, as seen in the previous sequence diagram.

Fig. 5 Workflow from input data set to AIML output.

3.3 Chatter-Bot Lexical Knowledge Base
Construction

The generator algorithm has been developed (De Gasperis, 2010) in Python
programming language resulting into about 500 lines of code. The program
has been named PyGenBot.

The main steps of the generation algorithm can be summarized as the
following:

AIML Knowledge Base Construction from Text Corpora 307

Algorithm 1: Main AIML Generation Algorithm

F0. merge user defined multiwords and character names

from the glossary

F1. extract all the relevant category lists from FAQ questions

F2. calculate possible branches from each category

F3. extract the answers

F4. generate AIML output set linking categories to answers

Detailed Steps of F1

A single category, such as it is defined in the AIML, is a couple of pattern-
template. The pattern need to coincide with one or more words taken from
the question text so that they can be matched in the user question and linked
to the proper answer of the FAQ file, as listed in Algorithm 2.

Algorithm 2: Generation of AIML categories

define Dw as the stopwords set

define Pw as the multiwords entries set

define Kw as the keywords entries set

FOR all questions q in FAQ file DO

build list L of meaningful words/multiwords wi from q

(i.e. filter out all wi in Dw and use wi in Pw

taken as a sequence or in Kw)

initialize an emtpy category list C

FOR all words/multiwords wi in L DO

append wi in C combined with all the others taken 2 by 2

END FOR

build a category list M with all the meaningful words found in q

append C and M to category list set Sc

END FOR

Detailed Steps of F2

This method, shown in algorithm F2, is needed to calculate all the possible
outgoing branches from a category that can lead to different answers. This
will be used later as information to generate the AIML code, as shown in
algorithm 3.

Algorithm 3: Extraction of categories branches

Let OUT be the output dictionary map indexing

a category to a list of integers

FOR all categories list Cl in Sc DO

let Ai be the answer which question Qi has generated Cl

FOR all categories ci in Cl DO

append the integer i to the OUT[ci] list

308 G. De Gasperis, I. Chiari, and N. Florio

END FOR

END FOR

return OUT

In the implementation, the powerful dictionary data structure as defined in
the Python language, here OUT [< category >] is crucial during the calcula-
tion of the categories branches.

Detailed Steps of F4

This method finally generates the FAQ AIML file, trying to catch all of
the meaningful word from the user sentence and matching them with the
meaningful words sequences from the FAQ questions. It uses SRAI recursions
as defined by the AIML 1.0.1 standard [3].

Generation of GLOSSARY-AIML

The generation of Glossary AIML takes into account the list of most signif-
icant lexemes selected by the linguistic analysis; for each glossary item, its
definition is manually selected from Wordnet.

Algorithm 4: Generation of final AIML

FOR all questions Qi DO

given the category list Cl generated from Qi

let Ta be the AIML SRAI template containing the answer text

FOR all categories ci in Cl DO

IF ci is a combination of two words THEN

generate all possible edges (SRAI) to Ta

ELSE IF ci has just one branch THEN

generate an edge (SRAI) to Ta

IF ci is just a single word

and is a glossary item THEN

generate an edge (SRAI) to the glossary definition

END IF

ELSE IF ci has multiple branches to several answers THEN

generate an edge (SRAI) to a phrase

asking the user to be more specific.

END IF

END FOR

END FOR

AIML Ouput

The generation of the chatter-bot AIML includes code generation from the
FAQ file and from the glossary file. Also a reduction AIML is needed so that
it could filter out the stopwords set, during user interaction, so that each

AIML Knowledge Base Construction from Text Corpora 309

sentence the user enters during the conversation will be reduced to a sequence
of meaningful words that can be matched with a FAQ AIML/GLOSSARY
AIML knowledge-base unit, in order to best match the right answer to the
asked question.

3.4 Chatter-Bot Testing

In (Shawar and Atwell 2007b), the authors illustrate different chatbot eval-
uation methods, and describe three different metrics they used to evaluate
three different chatbot prototypes (see (Shawar and Atwell 2007b) for more
details) and at the end they conclude that “evaluation should be adapted to
the application and to user needs”. As regards the Talking Cricket chatbot,
a dialogue efficiency metrics has been used for evaluating it, measuring the
correctness of the responses given by the chatbot. For this purpose different
quality levels has been defined:

1. Level 0: the Talking Cricket answers correctly to all questions in the FAQ
file

2. Level 1: the Talking Cricket gives the correct answer for at least 50% of
questions that have semantic variations with respect to the questions in
the FAQ file

3. Level 2: the Talking Cricket gives the correct answer for all the question
that presents semantic variants of all questions with respect to the FAQ
questions.

The testing phase demonstrate the Talking Cricket has reached Level 1.
Firstly the Talking Cricket has been tested by submitting to it all the FAQ
question and it answered correctly in all cases, as the following example of
conversation shows:

Human: Who found the piece of wood?

talking_cricket: Mastro Cherry, carpenter, found a piece of wood

that wept and laughed like a child.

Human: What does the carpenter’s nose look like?

talking_cricket: His real name was Mastro Antonio, but everyone

called him Mastro Cherry, for the tip of his nose was so round

and red and shiny that it looked like a ripe cherry.

Human: Why is Mastro Cherry filled with joy?

talking_cricket: As soon as he saw that piece of wood, Mastro

Cherry was filled with joy.

Human: What is the book ending?

talking_cricket: After long months of working for the farmer and

supporting the ailing Geppetto (Mastro Cherry) he goes to town

with what money he has saved (40 pennies to be exact) to buy

310 G. De Gasperis, I. Chiari, and N. Florio

himself a new suit. He meets the snail, who tells him that the

Blue-haired Fairy is ill and needs money. Pinocchio instantly

gives the snail all the money he has, promising that he will help

his mother as much as he is helping his father. That night, he

dreams he is visited by the Fairy, who kisses him. When he wakes

up, he is a real boy at last. Furthermore, Pinocchio finds that

the Fairy left him a new suit and boots, and a bag which

Pinocchio thinks is the forty pennies he originally loaned to

the Blue Fairy. The boy is shocked to find instead forty freshly

minted gold coins. He is also reunited with Geppetto, now healthy

and resuming woodcarving. They live happily ever after.

Human: Who is Pinocchio?

talking_cricket: Pinocchio is a naughty, pine-wood marionette who

gains wisdom through a series of misadventures which lead him to

becoming a real human as re-ward for his good deeds.

Human: What is firewood?

talking_cricket: a fire fed by pieces of wood.

Human: What does it mean mistake?

talking_cricket: an understanding of something that is not correct;

"he wasn’t going to admit his mistake";

"make no mistake about his intentions";

"there must be some misunderstanding--I don’t have a sister".

Then, questions that have semantic variations with respect to the questions
in the FAQ file are made to the Talking Cricket and it has answered correctly
to the 50% of the case, as the following chat session example demonstrates:

Human: What kind of piece of wood mastro cherry found?

talking_cricket: Mastro Cherry, carpenter, found a piece of wood

that wept and laughed like a child.

Human: To what fruit does the nose of Mastro Antonio look like?

talking_cricket: His real name was Mastro Antonio, but everyone

called him Mastro Cherry, for the tip of his nose was so round

and red and shiny that it looked like a ripe cherry.

Human: What does the carpenter wish to make with the piece of

wood?

talking_cricket: He mumbled half to himself: "I shall use it to

make the leg of a table.".

Human: For what reason is Mastro Cherry filled with joy?

talking_cricket: As soon as he saw that piece of wood, Mastro

Cherry was filled with joy.

AIML Knowledge Base Construction from Text Corpora 311

The following example shows some cases where the chatbot did not provide
correct replies and admits to not knowing the answer:

Human: What is the reason for the joy of Mastro Antonio?

talking_cricket: No glossary information about " the reason for

the joy of Mastro Antonio", maybe... the reason for the joy of

Mastro Antonio.

Human: What is the meaning of firewood?

talking_cricket: No glossary information about " the meaning of

firewood", maybe... the meaning of firewood.

Human: what is the real name of mastro cherry?

talking_cricket: No glossary information about " the real name

of mastro cherry", maybe... the real name of mastro cherry.

In few cases the talking Cricket has given an incorrect answer:

Human: What happened when Mastro Cherry sees the piece of wood?

talking_cricket: As he was about to give it the first blow, he

stood still with arm up-lifted, for he had heard a wee, little

voice say in a beseeching tone: "Please be careful!

Do not hit me so hard!".

If users ask question very different from the FAQ questions, as the Level 2
requires, in most cases the chatbot do not provide the correct answers:

Human: Why did Mastro Cherry want to hit the piece of wood

with an axe?

talking_cricket: He mumbled half to himself: "I shall use it

to make the leg of a table.".

Human: What instilled courage in mastro antonio?

talking_cricket: Sorry, I

do not understand what you wrote in this form.

Can you ask it in other words, please?

4 Discussion

This chapter gives an overview of past and present research on chatbot design
and illustrates procedures in order to build a corpus-based conversational agent
that takes into account some basic linguistic issues. More specifically we have
discussed glossary candidates selection, FAQ construction and presented tools
to automatically compile AIML from pre-processed text documents. We also
introduced a simple quality level grid of FAQ chatter-bots that can help to eval-
uate qualitatively their performance, counting the number of correct answers,
i.e. the error in respect to a desired behaviour. The lower the quality level, more

312 G. De Gasperis, I. Chiari, and N. Florio

the behaviour of the chatter-bot is dependent on lexical adherence to the text
sources of the FAQ.The quality raises if the chatter-bot exhibits behaviour that
suggests its capability of taking into account lexical variation within the same
semantic set, that should not depend on the exact match with the source text
(by using keywordmatch o searching over the multiple textual forms related to
the same concept). As more machine learning algorithm will be introduced the
quality of such FAQ chatter-bots can definitively be enhanced so they can be
used proficiently in real world applications.

One of the major weaknesses in existing chatbot systems is the lack of
memory. Chatbots generally engage in conversations that cannot be appre-
ciated throughout turns. It has been often pointed out that this lack in the
ability of keeping track of the conversational turns and their development is
an element that reveals the unnaturalness of the communicative interchange,
because in introduces inconsistency and incoherence in the turn sequences.
This is especially witnessed in general-purpose chatbots, such as ALICE.
Users tend to engage in short exchanges and tend not to come back to the
tool after the first try in 88% of the cases (Jia 2004). Some attempts at taking
into account at least a form of short-term memory have been made (Vrajitoru
2003), but this issue is far from being properly addressed. There are cases in
which the input provided by the user can be associated to multiple answers.
In this case, if short term memory is introduced to keep track of the turn
sequences, it is possible to conceive a further intervention of the chatbot to
ask questions to the user in order to give the appropriate answer.

As we have pointed out (2.3.1) further improvements can address the prob-
lem of dealing with languages with rich morphology and with introducing
systematically (and automatically) the semantic properties of keywords, such
as synonyms, hyperonyms and co-reference. In a future development of the
Talking Cricket prototype we mean to integrate Wordnet information on
these aspects to improve the automatic generation of keywords and of input
pattern-matching.

A further issue regards the automatic alignment of Wordnet definition
with glossary entries. At the moment the correct word sense for each of the
glossary entries has been selected manually, but when the corpus source of the
chatbot is a larger text, manual alignment may not be a feasible option. The
easiest solution could be to integrate the whole Wordnet lemma entry letting
the user disambiguate the specific word sense present in the text; the hardest,
and most challenging option, is to evaluate the possibility of automatizing
at least partly the word sense disambiguation task by relying on ontologies,
especially when the domain of the application is restricted.

5 Tools and Resources

Here we refer to useful tools and examples available online, mostly free or
open source, that can be used to approach the text corpora study in order to
produce good linguistic based chatter-bots and to understand their evolution.

AIML Knowledge Base Construction from Text Corpora 313

Chatter-Bot Hosting

Making chatbots and let them “live” online can be done in several different
ways. First of all the chatter-bot need to be hosted in some kind of server.
The most common way is uploading AIML files on an online chatbot hosting
server where users can chat online with their own conversational agent. Some
commercial and free chatbot hosting service are:

• Pandorabots (http://www.pandorabots.com)
Pandorabots is a chatbot hosting web service; allows anyone to develop
their own chatbots manually writing the AIML files, were the chatbots
can also be published. Users can upload their AIML knowledge files on
Pandorabots server. It is free as long as the interaction keeps traffic lower
than a given threshold. Chatbots hosted on Pandorabots can be integrated
on web pages, in Second Life, in online games and on instant messaging
service, respond to email or in forum threads, appear in social networks
as Twitter and Facebook and run on mobile smart-phones applications.

• AI-Buddy (http://www.ai-buddy.com)
AI-buddy is a chatbot hosting service that enables users to create chatbots
for AIM, AOL, the web, email and mobile phones. It provides a set of tool
to create chat-bots, as for example a bot editor. It also offers a free plan
for low traffic chabots.

AIML Interpreters

Otherwise a chatter-bot master can use some other open source AIML inter-
preter, install on its own virtual private server and let it answer question to
online users:

• Program D (http://aitools.org/Program_D)
Program D is an AIML bot engine implemented in Java, easy to configure
and runs in a GUI application.

• Program W (http://programw.sourceforge.net)
Program W is an AIML interpreter implemented in Java that extends
ProgramD, adding new AIML tags that allow user to create chatbots able
to question the WordNet lexical dictionary.

• PyAIML (http://pyaiml.sourceforge.net)
PyAIML, also known as Program Y, is an AIML interpreter implemented
with Python, developed as an extension to the AIML chatbot Howie.

• Program E (http://sourceforge.net/projects/programe)
Program E is an AIML application written in PHP for running chatbots. It
uses a MySQL database where AIML files have to be uploaded. It provides
an AIML rule engine and HTML, Flash and XML-R chat interfaces.

Selected Online Tools

Here follows a list of some of the tools mentioned in this chapter.

http://www.pandorabots.com
http://www.ai-buddy.com
http://aitools.org/Program_D
http://programw.sourceforge.net
http://pyaiml.sourceforge.net
http://sourceforge.net/projects/programe

314 G. De Gasperis, I. Chiari, and N. Florio

The Talking Cricket

(http://glottoweb.org/talkingcricket)

“The Adventures of Pinocchio” story expert (limited to the first chapter and
some meta knowledge) developed for this chapter.

British National Corpus

(http://info.ox.ac.uk/bnc)

The British National Corpus (BNC) is a 100 million word corpus, contain-
ing samples of written (90) and spoken (10) language from a wide range of
sources, designed to represent a wide cross-section of British English from
the later part of the 20th century. The corpus is encoded according to the
Guidelines of the Text Encoding Initiative (TEI). Data and documentation
(lemma lists, forms list, corpus composition, etc.) is freely available at the
following address:
ftp://ftp.itri.bton.ac.uk/bnc.

A detailed version of the frequency data can be found in Leech et al.
2001. The lemmatized frequency list for the 6,318 words with more than 800
occurrences in the BNC is called lemma.al [123kb], is a space-separated text
and can be found at:
ftp://ftp.itri.bton.ac.uk/bnc/lemma.al.

Project Gutemberg

(http://www.gutenberg.org)

Project Gutemberg is a library of free electronic versions of printed books,
founded in 1971 by Michael Hart. The texts available are free because they
are of public domain, they are never been covered by copyright, or copy-
right restriction have lapsed. The library offers also some copyrighted texts
given permission from authors to this form of publication. In 2011 Project
Gutemberg collection contains 33,000 eBooks, most of which are in English.

TreeTagger

(http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger)

TreeTagger was developed by Helmut Schmid at the Institute for Compu-
tational Linguistics of the University of Stuttgart. The tool is language in-
dependent and performs POS-tagging on a large number of languages such
as German, English, French, Italian, Dutch, Spanish, Bulgarian, Russian,
Greek, Portuguese, Chinese, Swahili, Latin, Estonian. It can be used for other

http://glottoweb.org/talkingcricket
http://info.ox.ac.uk/bnc
ftp://ftp.itri.bton.ac.uk/bnc
ftp://ftp.itri.bton.ac.uk/bnc/lemma.al
http://www.gutenberg.org
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger

AIML Knowledge Base Construction from Text Corpora 315

languages if provided with a manually tagged training corpus. It is available
for Sparc, Linux and Windows PC and Mac.

WordNet

(http://wordnet.princeton.edu)

Wordnet is a free and open source lexical database of the English language.
Wordnet contains semantic and cognitive information on nouns, verbs, ad-
jectives and adverbs grouped in sets of synonyms (synsets). The synsets are
further interlinked by means of conceptual-semantic and lexical relations.
Wordnet can be freely browsed but can also be downloaded and used for
multiple application objectives. For chatbot improvements it can be used in
word definition association for glossary building and for synonym sets to be
used in generating questions for the FAQ.

References

Agostaro, F., Augello, A., Pilato, G., Vassallo, G., Gaglio, S.: A Conversational
Agent Based on a Conceptual Interpretation of a Data Driven Semantic Space.
In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp.
381–392. Springer, Heidelberg (2005)

Augello, A., Vassallo, G., Gaglio, S., Pilato, G.: A Semantic Layer on Semi-
Structured Data Sources for Intuitive Chatbots. In: International Conference
on Complex, Intelligent and Software Intensive Systems, pp. 760–765 (2009)

Augello, A., Gambino, O., Cannella, V., Pirrone, R., Gaglio, S., Pilato, G.: An
Emotional Talking Head for a Humoristic Chatbot. In: Applications of Digital
Signal Processing. InTech (2011)

Batacharia, B., Levy, D., Catizone, R., Krotov, A., Wilks, Y.: CONVERSE: a con-
versational companion. Kluwer Iternational Series in Engineering and Computer
Science, pp. 205–216. Kluwer Academic Publishers Group (1999)

Chantarotwong, B.: The learning chatbot. Ph.D. Thesis. UC Berkeley School of
Information (2006)

Chomsky, N.: Turing on the ”Imitation game”. In: Epstein, R., Roberts, G., Beber,
G. (eds.) Parsing the Turing test: Philosophical and Methodological Issues in
the Quest for the Thinking Computer, pp. 103–106. Springer, New York (2008)

Colby, K.M., Weber, S., Hilf, F.D.: Artificial Paranoia. Artificial Intelligence 2(1),
1–15 (1971)

Cliff, D., Atwell, E.: Leeds Unix Knowledge Expert: a domain-dependent Expert
System generated with domain-independent tools. BCS-SGES: British Computer
Society Specialist Group on Expert Systems Journal 19, 49–51 (1987)

De Gasperis, G.: Building an AIML Chatter Bot Knowledge-Base Starting from a
FAQ and a Glossary. JE-LKS. Journal of e-Learning and Knowledge Society 2,
79–88 (2010)

De Gasperis, G., Florio, N.: Learning to read/type a second language in a chatbot
enhanced environment. In: Proceedings of ebTEL 2012: International Workshop
on Evidenced-based Technology Enhanced Learning, University of Salamanca,
March 28-30 (accepted for publication, 2012)

http://wordnet.princeton.edu

316 G. De Gasperis, I. Chiari, and N. Florio

De Pietro, O., Frontera, G.: TutorBot: An Application AIML-based for Web-
Learning. In: Advanced Technology for Learning, vol. 2(1), ACTA Press (2005)

Epstein, R., Roberts, G., Beber, G.: Parsing the Turing test: philosophical and
methodological issues in the quest for the thinking computer. Springer, New
York (2008)

Eynon, R., Davie, C., Wilks, Y.: The Learning Companion: an Embodied Conver-
sational Agent for Learning. In: Conference on WebSci 2009: Society On-Line
(2009)

Fellbaum, C.: WordNet: an electronic lexical database. MIT Press, Cambridge
(1998)

Fellbaum, C.: WordNet and wordnets. In: Brown, K. (ed.) Encyclopedia of Lan-
guage and Linguistics, pp. 665–670. Elsevier, Oxford (2005)

Feng, D., Shaw, E., Kim, J., Hovy, E.: An intelligent Discussion-bot for answer-
ing student queries in threaded discussions. In: Proceeding of the International
Conference on Intelligent User Interfaces, IUI, pp. 171–177 (2006)

Guiraud, P.: Problèmes et méthodes de la statistique linguistique. Presses univer-
sitaires de France, Paris (1960)

Heller, B., Procter, M., Mah, D., Jewell, L., Cheung, B.: Freudbot: An investiga-
tion of chatbot technology in distance education. In: Proceedings of the World
Conference on Multimedia, Hypermedia and Telecommunication (2005)

Hutchens, J.L.: How to pass the Turing test by cheating. School of Electrical, Elec-
tronic and Computer Engineering research report TR97-05. University of West-
ern Australia, Perth (1996)

Hutchens, J.L., Alder, M.D.: Introducing MegaHAL. In: Proceedings of the Joint
Conferences on New Methods in Language Processing and Computational Nat-
ural Language Learning, pp. 271–274 (1998)

Jia, J.: The study of the application of a keywords-based chatbot system on the
teaching of foreign languages, Arxiv preprint cs/0310018 (2003)

Jia, J.: The study of the application of a web-based chatbot system on the teaching
of foreign languages. In: Ferdig, R.E., Crawford, C., Carlsen, R., Davis, N., Price,
J., Weber, R., Willis, D.A. (eds.) Proceedings of Society for Information Tech-
nology and Teacher Education International Conference 2004, pp. 1201–1207
(2004)

Jia, J.: CSIEC: A computer assisted English learning chatbot based on textual
knowledge and reasoning. Knowledge-Based Systems 22(4), 249–255 (2009)

Kerly, A., Hall, P., Bull, S.: Bringing chatbots into education: Towards natural
language negotiation of open learner models. Know.-Based Syst. 20(2), 177–185
(2007)

Kerry, A., Ellis, R., Bull, S.: Conversational Agents in E-Learning. In: Applications
and Innovations in Intelligent Systems XVI, pp. 169–182 (2009)

Kim, Y.G., Lee, C.H., Han, S.G.: Educational Application of Dialogue System to
Support e-Learning. In: Association for the Advancement of Computing in Ed-
ucation, AACE (2002)

Knill, O., Carlsson, J., Chi, A., Lezama, M.: An artificial intelligence experiment
in college math education (2004), Preprint,
http://www.math.harvard.edu/~knill/preprints/sofia.Pdf

Leech, G., Rayson, P., Wilson, A.: Word frequencies in written and spoken English:
based on the British National Corpus. Longman, London (2001)

Mauldin, M.L.: Chatterbots, tinymuds, and the turing test: Entering the loebner
prize competition. In: AAAI 1994 Proceedings of the Twelfth National Confer-
ence on Artificial Intelligence, vol. 1, pp. 16–21 (1994)

http://www.math.harvard.edu/~knill/preprints/sofia.Pdf

AIML Knowledge Base Construction from Text Corpora 317

Moor, J.: The Turing test: the elusive standard of artificial intelligence, vol. 6, p.
273. Kluwer Academic Publishers, Dordrecht (2003)

Pirner, J.: The beast can talk (2012), Pdf. Published online,
http://www.abenteuermedien.de/jabberwock/how-jabberwock-works.pdf

(accessed February 2012)
Pirrone, R., Cannella, V., Russo, G.: Awareness mechanisms for an intelligent tu-

toring system. In: Proc. of 23th Association for the Advancement of Artificial
Intelligence (2008)

Santos-Pérez, M., González-Parada, E., Cano-Garćıa, J.M.: AVATAR: An Open
Source Architecture for Embodied Conversational Agents in Smart Environ-
ments. In: Bravo, J., Hervás, R., Villarreal, V. (eds.) IWAAL 2011. LNCS,
vol. 6693, pp. 109–115. Springer, Heidelberg (2011)

Schmid, H.: Probabilistic Part-of-Speech Tagging Using DecisionTrees. Paperpre-
sented to the Proceedings of International Conference on New Methods in Lan-
guage Processing (1994)

Shawar, B.A., Atwell, E.: Using dialogue corpora to train a chatbot. In: Archer, D.,
Rayson, P., Wilson, A., McEnery, T. (eds.) Proceedings of the Corpus Linguistics
2003 Conference, pp. 681–690. Lancaster University (2003)

Shawar, B.A., Atwell, E.: Machine Learning from dialogue corpora to generate
chatbots. Expert Update Journal 6(3), 25–29 (2003)

Shawar, B.A., Atwell, E.: A chatbot system as a tool to animate a corpus. ICAME
J. 29, 5–24 (2005)

Shawar, B.A., Atwell, E.: Chatbots: are they really useful? LDV Forum 22, 29–49
(2007)

Shawar, B.A., Atwell, E.: Different measurements metrics to evaluate a chatbot
system. In: Proceedings of the Workshop on Bridging the Gap: Academic and
Industrial Research in Dialog Technologies, pp. 89–96 (2007)

Shieber, S.M.: The Turing test: verbal behavior as the hallmark of intelligence. MIT
Press, Cambridge (2004)

Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)
Ueno, M., Mori, N., Matsumoto, K.: Novel Chatterbot System Utilizing Web In-

formation. In: Distributed Computing and Artificial Intelligence, pp. 605–612
(2010)

Veletsianos, G., Heller, R., Overmyer, S., Procter, M.: Conversational agents in
virtual worlds: Bridging disciplines. Wiley Online Library, British Journal of
Educational Technology 41(1), 123–140 (2010)

Vieira, A.C., Teixeria, L., Timteo, A., Tedesco, P., Barros, F.: Analyzing online
collaborative dialogues: The OXEnTCH-Chat. In: Proceedings of the Intelligent
Tutoring Systems 7th International Conference, pp. 72–101. IEEE (2004)

Vrajitoru, D.: Evolutionary sentence building for chatterbots. In: GECCO 2003
Late Breaking Papers, pp. 315–321 (2003)

Vrajitoru, D.: NPCs and Chatterbots with Personality and Emotional Response. In:
2006 IEEE Symposium on Computational Intelligence and Games, pp. 142–147
(2006)

Wallace, R.S., Tomabechi, H., Aimless, D.: Chatterbots Go Native: Considerations
for an eco-system fostering the development of artificial life forms in a human
world (2003),
http://www.pandorabots.com/pandora/pics/chatterbotsgonative.doc

(accessed February 2012)

http://www.abenteuermedien.de/jabberwock/how-jabberwock-works.pdf
http://www.pandorabots.com/pandora/pics/chatterbotsgonative.doc

318 G. De Gasperis, I. Chiari, and N. Florio

Wallace, R.S.: The Anatomy of A.L.I.C.E. In: Epstein, R., Roberts, G., Beber, G.
(eds.) Parsing the Turing Test, pp. 181–210. Springer, Netherlands (2009)

Weizenbaum, J.: ELIZA A computer program for the study of natural language
communication between man and machine. Communications of the ACM 10(8),
36–45 (1966)

Wilensky, R., Chin, D.N., Luria, M., Martin, J., Mayfield, J., Wu, D.: The Berkeley
UNIX consultant project. Computational Linguistics 14(4), 35–84 (1988)

Wu, Y., Wang, G., Li, W., Li, Z.: Automatic Chatbot Knowledge Acquisition from
Online Forum via Rough Set and Ensemble Learning. In: IFIP International
Conference on Network and Parallel Computing, NPC 2008, pp. 242–246. IEEE
(2008)

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 319–343.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

Multidisciplinary Trends in Modern Artificial
Intelligence: Turing's Way

Elena N. Benderskaya and Sofya V. Zhukova*

Abstract. The paper faces the challenge to generalize existing trends and
approaches in the field of artificial intelligence. Under consideration are expert
systems, dynamic neural networks, probabilistic reasoning, fuzzy logic, genetic
algorithms, multi-agent systems, bio-inspired algorithms, distributed nonlinear
computing, chaos-driven pattern recognition. Each approach strengths and limita-
tions are stated without exhaustive treatment to involve specialist from adjacent
fields in discussion. The most perspective research directions are revealed and
analyzed in reference to Turing’s way in artificial intelligence and beyond.

Keywords: artificial intelligence, multidisciplinarity, bio-inspired methods, chaotic
neural network, Turing machine, self-organization, chaotic maps, chaotic
computing.

1 Introduction

Modern trends in scientific research are inspired by innovations in adjacent scien-
tific domains. There are no exceptions among knowledge areas. This can be con-
sidered as a distinctive mark of up-to-dateness in modern science. Some scientific
fields are inconceivable without utilization of knowledge from other domains
because originally they were developed beyond disciplines boundaries. One of
such fields is Artificial Intelligence (AI).

It is worth noticing that in artificial intelligence the role of multidisciplinary re-
search became not only important but transformed greatly in the way that almost

Elena N. Benderskaya
St. Petersburg State Polytechnical University, Faculty of Computer Science,
Russia, 194021, St. Petersburg, Politechnicheskaya 21
e-mail: helen.bend@gmail.com

Sofya V. Zhukova
St. Petersburg State University, Graduate School of Management,
Russia, 199004, St. Petersburg Volkhovsky Per. 3
e-mail: sophya.zhukova@gmail.com

3

320 E.N. Benderskaya and S.V. Zhukova

every new approach encourages a scientist to look into more and more distant
from original background scientific areas. More over most of the recent AI ad-
vances come from directions previously considered to be beyond AI field.

The joint application of symbolic and connectionist AI methods in the form of
separate parts of intelligent systems or within hybrid solutions often faces conser-
vatism and inertia when the number of combined scientific approaches is growing.
The value of contradictory hypothesis testing is discussed widely but the most
prominent to mention is the paper by Alan Turing "Can Automatic Calculating
Machines be Said to Think?" This revolution work proposed to combine both
methodology of symbolic AI (vividly represented by computer chess playing) and
connectionist AI (when machine is learning like human being).

It is a well-known fact that every book on artificial intelligence refers to Alan
Turing’s contributions to symbolic AI – computability theory, complexity theory,
universal Turing machine, etc. AI books often mention Turing’s test to measure
machine's ability to exhibit intelligent behavior. There still exists a controversy
about its up-to-dateness but all agree upon significance of the “imitation game” for
the formation of AI as a separate scientific domain.

To our point of view intuition of Turing genius lead him to the discoveries im-
portant for the development of truly intelligent systems. To start discussion let us
question the relevance between thinking processes, formation of amazing patterns
on fishes scales or spots on leopard’s fell. At the first glance there is no relevance
at all and the very question sounds queer. The only connection is that all these
issues are covered by wide set of Turing interests. Analysis of modern artificial
intelligence trends on the following pages gives the answer to the question.

In this chapter are considered not only adjacent to AI scientific areas but also
those that in the nearest future would become perspective to resolve the limitations
of existing AI techniques.

It is worth tracking the influence of Turing ideas on current blue lines in AI to
reveal the correlation between stated in the past AI antagonisms and advances of
the present. Further discussion notices that almost all new methods and perspec-
tives were foreseen by Alan Turing. Through the lens of his holistic vision this
paper considers evolution of inhomogeneous nonlinear dynamic system applicable
to accomplish rather universe approach to clustering problem. Evolution of new
clustering method based on chaotic neural network (CNN) is examined as an ex-
ample of highly multidisciplinary research. And this research combines advances
from very different knowledge domains. Clustering problem as one of the most
interesting within AI field is under concern because its solution in general case is
supposed to be the key to breakthrough towards naturally intelligent systems. Our
understanding of “truly intelligent system” is given further on in reference to Tur-
ing AI principal works that represent his way in artificial intelligence and beyond.
Relying upon multidisciplinary analysis authors generalizes advantages and limi-
tations of different AI domains from the position of “big picture” approach with-
out exhaustive treatment of details in order to identify the most perspective
upcoming AI trends.

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 321

2 Artificial Intelligence: Challenges and Multidisciplinarity

Since the moment of origin artificial intelligence has been a multidisciplinary field
and comprised knowledge from various scientific domains [38]. Most likely its
emergence can be considered as the starting point that sped up mutual penetration
and integration of sciences. This process is somewhat opposite to the one of
sciences differentiation and their branching of philosophy.

Necessity to address research results from various knowledge domains comes
from complex notion of AI. At the very beginning it was important to specify
research object of natural intelligence in terms of properties, functions, capabilities
[38]. After this first stage it became possible to appeal to theory of engineering
analysis and synthesis. Natural intelligence definition involved knowledge from
such adjacent areas as psychology, physiology, biology, neurology, etc. This inte-
gration process predetermined extensive incorporation of terminology, research
methods and their modifications in order to fit the requirements of particular re-
search. Diversified nature of AI field is widely discussed in literature but it is
worth mentioning in order to understand the transformation spiral and perspectives
of this extremely multidisciplinary area [14, 34, 55].

Though the need for interdisciplinary investigations sufficiently increased dis-
cipline differentiation processes continue flourishing as the research objects be-
come more and more composite and theories more intricate. From this point of
view computer vision and machine vision introduce undoubtful advances in ob-
jects and people identification in real environment characterized by variances in
locations, low quality video signals, etc. At the same time automatic video
processing systems capable not only to detect multiple objects and recognize
scenes (or context) in real time are still missing. It seems like Pareto 80/20
principal [15] govern AI research contributions – the rest 20 percent of
development efforts may take much longer time than some novel alternative
research direction (design innovation).

2.1 Symbolic and Connectionist Artificial Intelligence

Two main approaches within AI field, namely Symbolic AI (associated with ex-
perts systems, knowledge bases, ontologies, etc.) and Connectionist AI (associated
with neural networks and implicit knowledge learning, etc.) no more compete but
supplement each other [32, 37, 43]. The most vivid examples are neuro-fuzzy
systems when both learning processes and explicit knowledge statements are
combined.

However, despite this mutual enrichment AI theory is still far from its
ambitious goal that seemed to be so quick and easy to solve – creation of genuine
intelligent systems [4, 12, 15, 18] capable to learn, set goals and solve problems
without external assistance, find new solutions that were not foreseen at the
development stage. The system with such abilities in this paper is referred as truly
intelligent system.

Let us examine principal AI approaches from the point of truly intelligent
systems design. The reasons why various compositions of advantageous methods

322 E.N. Benderskaya and S.V. Zhukova

intersections do not fully get over existing limitations of artificial intelligent
systems are proposed for discussion.

One of the main issues that challenge Symbolic AI researchers consists in im-
possibility to formalize all variants of states a system can converge to [21, 43].
After making some assumptions a set of problems of a certain class (dependent on
the limitations) are successfully solved. In case of heavy assumptions universality
appears to be unattainable. The system is intelligent at the extent of input data
comprehensiveness and predesigned scenarios. When we speak about simple prob-
lems it is just enough but to solve complex ones AI concept acquires new know-
ledge creation within system itself. There is another point of consideration that
deals not only with the ability to arrive at some logical inference or prove a theo-
rem (both based on previous systems knowledge) but with compensation of in-
complete, inconsistent input data and imperfection of underlying models. And the
complexity of the system namely the amount of freedom degrees should be
enough to generate intelligent behavior including the case when system’s dynam-
ics is absolutely unpredictable. As systems behavior can be unexpected the ethical
issues of AI development are on the agenda among specialists from absolutely
different domains. For example AI ideas are widely exploited in science fiction.
One of the common visions was expressed by I. Azimov who’s main idea is to put
veto on the robot’s actions that can be potentially harmful for a human being. The
veto is an inevitable step in situation when a machine should function in a com-
plex unknown environment and demonstrate creative non routine approach to
analysis, independent way of thinking.

Connetcionist AI researches face the same restriction on representation of ade-
quate size and quality of training samples. Neural networks are good at operating
with implicit data and generalizing through learning process. At the same time
approximation results on feed-forward networks depend drastically [25] on the
quality of training sample. And we know that in real world comprehensive data in
most cases is unavailable. Self-organizing maps (SOM) being a wonderful tool to
visualize datasets topology suffer from post-processing expenditures on cluster’s
number estimation. Hundreds of modifications aim to overcome k-means and
SOM problems induced by averaging out concept. This concept is based on calcu-
lation of clusters centers and metric-based approach. The averaging out concept
mostly fails when clusters number uncertainty play a significant role. Other well-
known neural network representatives have tight relations with their algebraic
versions: Radial Basis Function Network is analogous to potential function me-
thod; Feed Forward Neural Network represents a system of nonlinear approxima-
tors; Adaptive Resonance Theory Networks correspond to k-means modifications,
Bayesian Networks are variations of probability reasoning [25]. Briefly speaking
most classical neural networks represent parallel implementation of corresponding
pattern recognition methods of algebraic computations and thus inherit their ad-
vantages and most of disadvantages.

2.2 In Between AI Approaches: Multi-Agent Systems

Function-behavior modeling deals with idea to divide all possible agent behavior
patterns into functional blocks. Rules and function database is created on the basis

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 323

of developer vision on agents functioning and adaptation. Thus this approach inhe-
rits the advantages and disadvantages of Symbolic AI. Self-organization and adap-
tation effects occur in such systems but from the very start are limited by the rules.
In other words function approach can be interpreted as bottom-up system devel-
opment. In this approach agent is governed by formal rules for individual func-
tioning in changing environment and thus is rather complex.

The multi-agent approach [122] adjoin distributed intelligence techniques. In-
telligent agents are more simple than discussed previously (neuron, cell, ant, bee)
but have more degrees of freedom. Evolution processes are given on the overall
systems level. Cooperative self-organization effects that can emerge totally de-
pend on the global description of multi-agents system. In this case the uncertainty
of macro-level decisions corresponds to the idea of top-down design [27]. In such
systems under the main focus of consideration is cooperative interaction within
distributed elements network that share intelligent decision making. Cooperation
principals that define these systems predetermine their application area - approx-
imate optimization of complex function (too hard for classical optimization tech-
niques). At this point of view multi-agent approach relates more to bio-inspired
methods.

3 Natural and Artificial Intelligence

Some scientists working in AI field are rather skeptic about brain modeling. They
consider AI field as separate intellectual tasks that can be solved without reference
to natural analogues. However the complexity level of tasks is increasing dramati-
cally and there is the demand for new approaches. And again like many years ago
the scope and capabilities of intelligent systems are questioned. It is a well-known
fact that a lot of complex intelligent tasks in AI field in reality are very simply
accomplished in everyday life by a human being. It is not out of place to mention
that AI as a scientific domain arose to formalize human thought and perception.
And the famous paper by Alan Turing "Can Automatic Calculating Machines be
Said to Think?" was a significant start. The issue of truly intelligent system crea-
tion, creation of systems able to perceive, adapt and operate like human beings
stands to be open. Thus it occur natural to address brain sciences that consider
human cortex as the most effective intelligent system.

The most perspective direction is based on the attempts to model the work of
human brain, which is a highly complex, nonlinear and parallel information-
processing system. Complex cortex structure is modelled and formed by artificial
neuron lattices, which are joined by great amount of interlinks. This global link of
simple neurons provides their collective behaviour. Each neuron carries out the
role of a processor. That’s why neuron network structure is the most appropriate
base for parallel computing – there is no need to prepare data (in neural network
input data is already parallelized). For parallel computing to work software should
partition its work and the data it operates on over hundreds of processors. High
speed and with the same time high quality solution of the most various compli-
cated problems can be received by means of microsystem’s collective behaviour.
The main idea of self-organization is in distributed character of data processing,

324 E.N. Benderskaya and S.V. Zhukova

when one element dynamics means nothing, but at the same time group dynamics
define macroscopic unique state of the whole system, that allows this system to
reveal capabilities for adaptation, learning, data mining and as one of the results -
high computation effectiveness.

Advances in experimental brain science show [13] that cognition, memory, at-
tention processes are the results of cooperative chaotic dynamics of brain cortex
elements (neurons). Thus the design of artificial dynamic neural networks on the
base of neurobiological prototype seems to be the right direction of the search for
innovative clustering techniques. Computer science development predetermined
promising possibilities of computer modelling. It became possible to study com-
plex nonlinear systems. Great evidence for rich behaviour of artificial chaotic
systems was accumulated and thus chaos theory came into being [23, 44, 54].
Dynamics exponential unpredictability of chaotic systems, their extreme instabil-
ity generates variety of system’s possible states that can help us to describe all the
multiformity of our planet.

Latest promising results in the field of genetic engineering together with wide
accumulation of experimental data on brain dynamics obtained by means of mod-
ern techniques in noninvasive supervision over brain functioning [62, 66] ex-
tended greatly the knowledge on cortex activities. High performance computing
makes possible to model and minutely examine memory and behavioral processes
that are accomplished by cells. A lot of research activities deal with estimation of
chemical connection concentrations and potential levels that indicate different
states of neural systems. It is worth mentioning that equation that govern neuron
functioning was deduced in the late 1940’s. It would seem that having knowledge
on the structure and properties of basic construction element it is possible to ex-
tend this knowledge to real-life intelligent system. However time passed but things
are nearly right where they started. Only recently were obtained results on rat
brain modeling, cultivation of biological neurons on substrates (without holistic
vision on future applications of electric current effects). It’s time to absorb know-
ledge from much broader set of areas than previously because wide knowledge
about micro-level functioning seldom leads to understanding a system as a whole
entity. Scaling without taking into account synergetic effects isn’t much helpful in
getting the big picture [17, 22, 45, 51].

Intensive computer development substantially influenced directions within ar-
tificial intelligence field. Together with obvious valuable contribution to our opi-
nion there appeared an undesirable extensive search component when approx-
imately right solutions are simply looked through. At the same time in [1, 65] is
discussed the ineffectiveness of NP-complete problem solution by means of clas-
sical computer. Thus a lot of time is spent on data gatherings and search proce-
dures (genetic algorithms, evolutionary computations, etc.) and in the end solu-
tions hardly related to intelligent ones are obtained. It seems that research focus
shifts more and more to empirical studies via computer modeling of different hy-
brid models and algorithms [43]. Theoretical generalization and harmonization of
scientific results in adjacent areas somehow pale into insignificance.

Incoordination and fragmentation of knowledge is also on the agenda. Know-
ledge integration in holistic well-composed theory is under consideration in many

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 325

research papers [22, 64]. Answering the question about the paradigm that can stick
together multi-level and multi-aspect information about such complex system as
brain push the mind to synergetics. Synergetics is a holistic science that explains
formation and self-organization of patterns and structures in open systems. Incor-
porating nonlinear dynamics into artificial intelligence field is rather natural as it
is proved that brain is first of all a dynamic system.

It is assumed that development of full-fledged artificial intelligence theory
seems to be impossible without knowledge from physics and chemistry, medicine
and biology [16, 19, 30]. Many scientists working in neuroinformatics area have
their major mostly in physics and chemistry. For example such approach as cy-
bernetic physics focuses on the idea that a lot of cybernetic systems can’t be in-
vestigated without physical analogues. It is important to stress that extent of
knowledge aggregation has increased greatly since last decade and thus we face
the importance to acquire more global development skills.

From another point of view astonishing growth of computing power would
hardly help with intelligent problems solution as brain frequencies are incommen-
surably smaller in comparison to computer processor units (CPU) frequencies.
CPUs are oriented to deal with algebraic well-formalized data while brain operates
mainly with imprecise, incomplete, implicit patterns and «calculates» them ap-
proximately before conscience starts formulating its logical findings. Neurophysi-
ologists proved the fact that discovery moments happen earlier than awareness,
voicing out or accomplishment phases take place.

So the dilemma sounds like this: at what extent we should fix our efforts on bi-
ological processes imitation and at the same time what level of abstraction from
origin prototype is bearable?

There is a huge amount of isolated single-purpose models and methods [38, 53] that
are effective in narrowly defined problems. But it is hard to consider them separately
as basic ideas for general theory. Thus there are a lot of methods, great theoretical
contributions and empirical materials deeply worked through but general picture hap-
pens to be rather messy. Like in the old story about six wise men from Indostan who
recognized parts of a big picture (the Elephant) with blind eyes.

It is obvious that claim about unprecedented attempt to combine all existing ar-
tificial intelligence models into the unified super one wouldn’t give a positive
effect. And here arises more particular research question about most perspective
trends from behalf of Turing’s scientific fields and development of general AI
theory.

3.1 Bio-inspired Methods and Transdisciplinarity

For centuries humans admire animate nature and accessories applied by life crea-
tures to fulfil various functions. At first it was just formal resemblance and
mechanistic imitation, then along with sciences maturity the focus shifted on inner
construction of living systems.

However due to the complexity of a living system it is reproduced partly. Sepa-
rate subsystems embody limited set of functions and principals. Just independently
showed up several AI directions: artificial neural networks (attempts to mimic

326 E.N. Benderskaya and S.V. Zhukova

neural system), genetic algorithms (data transfer by means of inheritance), artifi-
cial immune systems (partial reproduction of immune system), evolutionary mod-
elling (imitation of evolution development principals). The idea of natural self-
organization within individuals is the basis for swarm and ant colony technologies
[11, 24]. It is important to note that nearly all mentioned technologies deal with
distributed parallel data processing thanks to numerous simple processing units
comprised into self-organized networks that adapt to ever-changing environment
(input information).

Of course there exit substantial peculiarities in the types of local cooperation
and global behaviour mechanisms predetermined by system’s goal (as it is well-
known systems demonstrate not only interconnectivity of elements but their ability
to serve one purpose).

Evolution of society and new computer technologies have in common the idea
of small worlds modelling. Communities of various natures (interests clubs, com-
puter clusters, marketing networks, etc.) speak up for strong local linkage of units
and weak connectivity outward nearest neighbours (nodes of the net).

Recent research on brain activities gives evidence for its cluster organization
[33]. So we can generalize that small-world models reflect both animate nature
and abiocoen. Originally the notion bio-inspired comprised problem solving ap-
proaches borrowed from living systems but nowadays it is understood more
widely. Results in the field of chaos theory and nonlinear dynamics contribute
greatly to bio-inspired methodology as soon as nonlinear chaotic models find their
application in data mining. We propose to classify bio-inspired methods via fol-
lowing issues:

• structure and connection: neural networks (macro level) and artificial immune
systems (micro level);

• collective behaviour : ant-based networks, swarm methods, multi agent sys-
tems, small-world networks;

• evolution and selection: genetic algorithm, evolutionary programming, evolu-
tionary modelling and evolutionary computations;

• linguistics: fuzzy logic.

To step forward with generalization one can note that nearly all mentioned meth-
ods realize collective data processing through adaptation to external environment.
Exception is fuzzy logic that is more relative to classical mathematics (interval
logic reflects the diversity of natural language descriptions).

It is worth noticing that in last Turing’s works connectionist AI methods in the
form of specific neural networks development were under consideration. His pa-
pers are more and more often referred in respect to advances not only in Symbolic
AI but also connectionist direction. What is more interesting he also introduced
ideas to apply evolutionary mechanisms to estimate system’s parameters.

Recent modifications of bio-inspired methods are developed as heuristics. The
desire to enlarge the abilities of intellectual systems is represented by a separate
knowledge domain within artificial intelligence field revealed – soft computing
[14, 37, 46]. Soft computing considers various combinations of bio-inspired me-
thods. As a result there appeared such hybrid methods like: neural-fuzzy methods,

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 327

genetic algorithms with elements of fuzzy logic, genetic algorithms. It is important
to note that the basics of genetic algorithms were also developed by А.Turing
[60]. Neural networks apparatus was also extended with fuzzy logic with genetic
algorithm constituent, fuzzy systems with neural network constituent, etc. One of
the main ideas of such combinations is to obtain flexible tool that allow to solve
complex problems and to compensate drawbacks of one approach by means of
cooperation with another.

For example, fuzzy logic and neural network combination provides learning ab-
ilities and at the same time formalize knowledge due to fuzzy logic element [37].
Fuzzy logic is applied as soon as we want to add some flexibility to a data mining
technique. One of the main drawbacks of all fuzzy systems are absence of learning
capabilities, absence of parallel distributing processing and what is more critical
the rely on expert’s opinions when membership functions are tuned. Besides input
parameters sensitivity almost all methods suffer from dimension curse and remain
to be resource consuming. The efficiency of these methods depends greatly on the
parallel processing hardware that simulate processing units: neurons of neural
networks, lymphocyte in artificial immune systems, ants and swarms, agents in
multi-agent systems, nodes in small-world networks, chromosomes in genetic
algorithms, genetic programming, genetic modeling.

In spite of the fact that origin of artificial intelligence is already bio-inspired the
approximation to biological prototype can differ. More and more attention is given
to bio-inspired neural networks with neurons similar to nerve cells. Classical neur-
al network models are comprised of formal neurons. Recent investigations speak
for the sputter out phase in neural network models design as the solutions im-
provements remain to be insufficient in comparison to huge efforts spent in this
direction. Most likely detailed reproduction of the processes occurring in separate
nerve cells without understanding the principals of mutual interactions will result
with analogous effect. Chemical and physical reaction imitations were originally
considered to be more perspective in biological applications rather than in artifi-
cial intelligence problems. From the AI side hardware implementation on appro-
priate organic basis or neural tissue allows transformation of intelligent system
appearance but does not really add to its data processing abilities.

Obtained results supplement our knowledge on multiform behavior of biologic
systems but simple reproduction of neuron ensembles characteristics for partial
regimes is hardly to be generalized. It is underlined that improvement of one part
of parameters negatively influence on another one previously well-tuned. Bottom-
up design starting from the lowest level most likely will not result with emergence
of system with new qualities. Synergy effects occur mainly when self-organization
principals underlie the system [22, 30, 64].

We can benefit from synergetic effects if consider not only collective dynamics
but also physical and chemical nature of construction elements – nonlinear oscilla-
tors with chaotic dynamics. As it is shown in numerous investigations on nonlin-
ear dynamics: the more is the problem complexity the more complex should be the
system dynamics. All over the world investigations on molecular level take place
to get new materials, to find new medicine, to solve pattern recognition problem,

328 E.N. Benderskaya and S.V. Zhukova

etc. Most of them consume knowledge from adjacent disciplines: biology, chemis-
try, math, informatics, nonlinear dynamics, and synergetics.

3.2 Dynamic and Nonlinear Artificial Intelligence

Special hopes rest on dynamic neural networks, also called recurrent neural net-
works or feedback networks. In spite of input stimuli processing previous systems
dynamics is analyzed. One of the first models in this class Hopfield’s model man-
ages to mimic processes of associative memory. The results fully correlate to neu-
rophysiology evidence about close connection between memory and recognition
activities. However the structure of Hopfield network along with doubtless advan-
tages has a lot of application limitations [25]. Existing model upgrades aim to
overcome diverse difficulties but in the meantime the answer to all related ques-
tions is still out there. Special models of Elman and Jordan neural networks are
applicable to separate class of tasks but suffer from limitations and do not bring
closer recognition universality [25].

The amount of publications that link Turing ideas to modern trends in Connec-
tionist AI increased greatly through recent decades. Formerly symbolic AI and
philosophy of logic were widely recognized as the main directions of his contribu-
tions. However today one can see how versatile and comprehensive the expertise
areas of this remarkable Scientist are.

Separate class of dynamic neural networks comprise reservoir computing [39,
41]. The origins of such systems can be found among neural networks with ran-
dom structure capable to generate promising complex dynamics. More detailed
consideration of these models will be given in following section.

Independently from each other new structures were introduced by Maas and
Jager in [31]. Both models are comprised by a random neural network and an
observer. To the point is the remark that development of neural networks with
random structure was originally proposed by A. Turing [56, 63].

Maas neural network is formed of spike neurons (Liquid State Machines, LSM)
while Jager neural network (Echo State Networks, ESN) consists of formal neu-
rons with sigmoid transfer function. These two models gave birth to reservoir
computing. In these models the principal of complexity commensurability be-
tween a problem and a solving technique is fulfilled. The evolution curve of mem-
ory investigations can be represented like this:

• First stage. Static neural networks with patterns stored by means of weight
assignment [25].

• Second stage. Hopfield and Haken neural networks with images in memory that
correspond to fix-point attractors in the phase space [22, 25].

• Third stage. Dynamic neural networks with closed trajectories forming cycle
attractors that correspond to patterns the system converges to [65].

• Current stage. Neural networks with unstable dynamics characterized by set of
trajectories scaled in the phase space to a location with infinite number of
switching states [6, 40].

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 329

When speaking about reservoir computing one of the main difficulties consist in
no guarantees whether system would produce the required dynamics. The experi-
ments with LSM and ESN reveal two issues. First of all, we need a wide variety of
systems states in order to keep it unstable. Second of all, input stimuli should not
transfer system into turbulent regime, because in this case it is impossible to iden-
tify desired signal. In terms of Prigogine [51] the system should balance between
order and chaos. In it was discovered that the cutting edge between chaos and
order forms not a strict line but an interval of systems parameters values. Analysis
of papers on reservoir computing together with own experiments lead to several
conclusions.

First, estimation of proper value of neurons number is still on the agenda. The idea
that small number of neurons is not enough to generalize knowledge is supported by
common sense and strong proof given in. Adding extra neurons (degrees of freedom)
in feed-forward neuron network often results with memorizing but not generalization
of input patterns. Sometimes pseudo laws in datasets can be revealed. In reservoir
networks additional neurons lead to system’s transfer to an ignorance regime when no
reactions occur in respond to input signals. This can be interpreted as persistence on
systems own opinion that can’t be changed by outer world. Lack of neurons (like in
feed-forward) ends up with insufficient number of freedom dimensions when different
patterns are recognized in the same way instead of being distinguished. To train the
observer different techniques are applied [39].

Second, there is no common approach to observer design. Analysis result al-
lows to conclude that simplified model of observer prevents from taking advan-
tage of reservoir rich capacities. Some surprising advances demonstrate that the
observer constituent produce better results if no relation to reservoir is provided.
The solution quality depends greatly on the observer skills to interpret reservoir
dynamics. As suitable analogy student-teacher interaction can be considered with
the aim to evaluate student’s residual knowledge. It is inappropriate way to use
feed-forward network because right answers in this case are hardly formalized and
can be expressed in many ways. Different right answers variations are comprised
within instructor’s knowledge and experience. If we step back to observer - a ra-
ther complex structure should be designed to analyze reservoir output in order to
create an adequate interpretation.

Third, there exists a great uncertainty about reservoir parameters (especially ac-
tual for Maas bio-inspired model). Empiric (intuitive) parameter assignment is
done on the basis of preliminary experiments series. There is strong proof that
Turing machine can be realized on reservoir neural network [39, 40] but wide
practical application of this approach is still the matter of future investigations.

4 Chaos and Artificial Intelligence

Truly intelligent systems demonstrate the adequate decision making in previously
unseen environment. Chaotic systems are hard to control because of unpredictable
unstable dynamics. Thus chaotic issues could fill the missing point in artificial
intelligence. As far back as in 1950 A. Turing marked importance of unexpected
elements in human behavior [60].

330 E.N. Benderskaya and S.V. Zhukova

To develop a network with complex behavior basic transfer functions in recur-
rent neural networks are replaced with chaotic maps [29]. Application of functions
that provide deterministic chaos corresponds with the current trend to combine
linkage complexity concept with gradual complication of processing units. The
most applicable is one-dimension logistic map [48] that allows to control chaos by
means of one parameter.

Fundamental research on coupled map lattices is conducted in the field of mo-
lecular physics and nonlinear dynamics. Globally and locally coupled maps attract
attention due to self-organization phenomena they produce. Research results can
be applied to neural network design to solve one of the most complex pattern rec-
ognition problem – clustering [5, 6]. It is important to stress that incorporation of
input data in chaos-driven systems is one of the main success points. The devel-
opment of unified approach to AI requires keeping the system in harmony with
input changes. Isolation from the environment is not effective from the point of
systems results scaling in upstream applications. This idea is widely discussed in
[49] where the role of chaos intelligent agent is considered. Most likely that such
holistic approach will help to formalize at last such complex notion as context.

During the last decades the emergence of collective dynamics in large networks
of coupled units has been investigated mostly in physics, chemistry, biology, and
ecology [48]. The synchronization effects in systems of coupled oscillators
nowadays provide a unifying framework for different phenomena observed in
nature. Complex networks have recently provided a challenging framework for the
study of synchronization among dynamic units. Synchronization is considered on
the edge of interplay between overall topology complexity and local dynamical
properties of the coupled units. A key problem is to assess conditions that
guarantee the stability of the synchronous behavior for a concrete network
topology (it can vary e.g. in the form of coupling configuration).

The complexity of interconnected chaotic systems comes from different direc-
tions:

• nonlinear dynamics of elements;
• exponential dependence on initial conditions;
• unpredictable dependence on adjacent systems dynamics;
• insufficient mathematical apparatus that help to describe multidimensional

nonlinear systems;
• computer modelling methodology (the calculations precision starts to be critical

in terms of forecasting the long term behaviour of nonlinear systems).

These directions focus mainly on the analysis of interdependent pairs of chaotic
oscillators, or on the overall dynamics of oscillators ensemble with homogeneous
type of linkage [48].

As it is hard to find formal mathematical solution for the system of
multidimensional difference equations we can try to obtain the solution by means
of computer programming and visualizing of the results. Rapid development of
computer technologies extends the abilities of scientist to find answers by means
of computer modeling techniques.

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 331

4.1 Chaotic Neural Network Basics

Chaotic neural networks seized attention of scientists from various points of view
due to the amazing effects they produce. Phenomenology of structure formation in
nature inspired scholars to mimic complex and with the same time quasi-optimal
solutions to generate artificial systems with similar capabilities. One of the do-
minant ways to provide collective dynamics of previously unordered elements is
self-synchronization that happens without any outside enforcement.

The origins of chaotic neural network can be found in the works of Angelini
and his colleagues who proposed the idea to apply self-organization effects occur-
ring in chaotic map lattices to solve clustering problems.

To ensure distributed data processing it was proposed to consider each
processing block as a neuron with nonlinear transfer function namely logistic map.
The phenomenological behavior of globally coupled logistic maps organized in
chains or having random linkage was investigated in detail by K. Kaneko.

Examination of system dynamics via clustering wave effects and map lattices
allowed to articulate the peculiarities of CNN functioning regimes.

Primary results on modeling high dimensional chaotic map lattices were pub-
lished by K. Kaneko [35]. These works showed up the fact that globally coupled
chaotic map lattices exhibit formation of ensembles synchronously oscillating
elements. These ensembles were called clusters serving as system’s attractors. If
there appear to be several clusters then the system is characterized by multistabili-
ty, when several attractors coexist in the phase space at the same parameters val-
ues.

To apply oscillatory clustering phenomenon L. Angelini and his colleagues
proposed [2] to hand on information about input dataset to logistic map network
by means of inhomogeneous weights assignment

,,1,,||,
2

exp}{)()(

2

NjiXXd
a

d
wW ji

ij
ij

ij =−=
⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−== (1)

where N – number of elements, ijw - strength of link between elements i and j,

]...,,,[)()(
2

)(
1

)(i
m

iii xxxX = - points in m-dimensional input dataset, ijd - Eucli-

dean distance between neurons i and j, а – local scale, depending on k-nearest
neighbors. The value of a is fixed as the average distance of k-nearest neighbor
pairs of points in the whole system. So we can see that here the authors used mod-
ified Euclidean metric.

Each neuron is responsible for one object in the dataset, but the image itself is
not given to inputs, because CNN does not have classical inputs – it is recurrent
neural network with one layer of N neurons. Instead, the image (input dataset)
predetermines the strength of neurons interactions (as at Hopfield’s network [25]).

As long as 0=iid (Ni ,1=), then there is no loops in Angelini’s model. Evo-

lution of each neuron is governed by

332 E.N. Benderskaya and S.V. Zhukova

,...1 ,))((
1

)1(Tttyfw
C

ty
N

ji
iij

i
i ==+ ∑

≠

 (2)

)(21))((2 tytyf −= (3)

where NjiwC
ji

iji ,1,, ==∑
≠

, T – time interval, N – number of elements. Neurons

state is dependent on the state of all other elements. In [35] the system’s function-
ing is divided into two parts: transition regime and stationary regime. The statio-
nary regime of difference equation system (2) corresponds to a macroscopic at-
tractor which is independent of the initial conditions. During transition period Tp
the system converges to the macroscopic attractor. Stationary regime is characte-

rized by gathering statistics about dynamics of each variable yi (Ni ,1=).

4.2 Clustering Challenges

Clustering problem is one of the most challenging in modern artificial intelligence
as it highly complex and resource consuming. The division of input data set into
subsets in most cases is interpreted as optimization task with goal function deter-
mined by inter and inner cluster distances. This approach obliges the user to give a
priori information about priorities. What is more important, compactness of clus-
ters and their diversity in feature space, or inner cluster density and small numbers
of clusters? The formalization process of clustering problems in terms of optimi-
zation procedures and advantages of bio-inspired methods is one of the edge one
in data mining [24].

During the last decade three curses formed an alliance: great volume of infor-
mation, its increasing variety and velocity of data processing. These curses prede-
termine strict quality requirements to data mining systems. The costs of wrong
decisions increase exponentially as the environment changes rapidly. Under this
condition the development of automatic clustering systems seems to be one of the
most pressing problems. At the moment the greater part of existing clustering
systems are semiautomatic. And the key reason for this is the multiformity of da-
tasets that cannot be formalized in one unified way.

The set of elements division into non-overlapping groups (clusters) is provided
via criterion of similarity that predetermines the result. In terms of neural networks
it is solved by means of unsupervised learning or learning without a teacher [20].
This term means that system should learn by itself to extract the solution from input
dataset without external aid. Thus the division must be provided automatically.

To solve clustering problem a lot of clustering techniques were developed to
reveal most appropriate division of objects in the input dataset in terms of concrete
measures of similarity (metrics). There are two types of metrics [46]: type 1 -
similarity measure between objects within a cluster (euclidean, cityblock, Mahala-
nobis, Minkowski, cosine, Chebyshev, supremum norm, etc.); type 2 - similarity

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 333

(or dissimilarity) measure between the clusters themselves (single linkage, com-
plete linkage, median clustering, centroid clustering, Ward’s method, statistical
clustering, etc.). Numerous clustering techniques are named according to the con-
crete metric or group of metrics.

The similarity measure depends greatly on mutual disposition of elements in
the input dataset. If we have no a priori information about the type of groups (el-
lipsoidal, ball-shaped, compact, scattered due to some distribution or just chaoti-
cally, and this list is endless) then the probability of erroneous measure choice is
very high [36]. If our hypothesis about the clusters interrelations or their form or
their density does not fulfill then the application of clustering method to this data-
set will perform erroneous results.

To overcome the data uncertainty about possible clusters interrelations usually
an expert estimations are used to decide on the choice of clustering technique or
interpret clusterization results. Without an expert application of a method to con-
crete dataset (when there is no a priori information available) each time is a rou-
lette game. This is a serious obstacle on the way to automatic clustering.

To summarize there are three targets to be hit by one clustering technique: it
should be fast in terms of calculations, independent to the information about num-
ber and topology of clusters, flexible to reveal inner structure of input dataset. So
the main question is how to accomplish all this issues in one method.

5 Evolution of CNN

Among recent advances in clustering a particular niche is occupied by chaotic
neural networks. It is important to focus that complexity of these systems prede-
termines consecutive knowledge utilization from different scientific domains in
order to meet clustering targets. The example of this involvement is considered
below in reference to our previous research results.

5.1 Synchronization Phenomenon and Oscillatory Clusters

Utilization of information theory results together with statistical apparatus happen
to be insufficient to analyze complex CNN dynamics. To investigate CNN beha-
vior results from oscillation theory, synchronization theory, chaos theory and non-
linear dynamics were applied. This synergy of approaches gave the chance to
discover new synchronization type – fragmentary synchronization. Synchroniza-
tion as a universal concept is thoroughly discussed in literature [48]. One of the
most important generalizations of inner synchronization effects are the conditions
that cause inner synchronous motions among groups of nonlinear:

• large amount of globally coupled nonlinear elements;
• weak coupling strength to exclude the possibility of several elements to sup-

press individual dynamics of all others;
• instability dynamics of each nonlinear element;
• feedbacks to provide own element’s dynamics tuning to the neighbors’ fluctuations.

334 E.N. Benderskaya and S.V. Zhukova

The main focus of research in terms of synchronization is on the combination of
systems parameters that predetermine the appearance of different synchronization
types corresponding to functioning regimes. In accordance with [47, 48] in the
ensembles of poorly connected identical neurons emerge synchronization of vari-
ous types, depending on the system’s parameter combination. We introduce these
types on the example of CNN:

• complete synchronization;
• imphase and phase synchronization;
• lag synchronization (time series coincide but with some delay in time);
• generalized synchronization.

Besides these well-known synchronization types we found out CNN to produce
new synchronization type – we named it fragmentary synchronization. It is charac-
terized by different oscillatory melodies-fragments. Synchronization is no more
about comparing separate trajectories, but about integrative consideration of clus-
ter’s music of fragments.

The dynamics of a separate neuron output highly depends on initial conditions,
but the most fruitful about CNN is its ability to form stable (independent of initial
conditions) synchronous clusters in terms of joint dynamics of neurons. Stable
mutual synchronization of neurons (points) within each cluster in terms of CNN
corresponds to the macroscopic attractor, when we receive indifferent to initial
conditions oscillatory clusters, though instant outputs of neurons differ greatly.
The complexity of mutual oscillations depends on the complexity of input image
[5, 8]. The system is stable in terms of mutual synchronous dynamics of outputs
within time but not in terms of instant values of separate neurons.

5.2 Structure Complexity and Delaunay Triangulation

At present in general case solving high dimension system of difference equation
does not always succeed. The solution is frequently obtained by means of comput-
er modeling. Though this process can be automated at great extent nevertheless it
re-quires large computational resources and expert assistance at the final stage of
CNN parameters definition. Number of clusters and their structure constancy that
is independent from initial conditions serve as a criterion for unique and proper
clustering result.

A priori uncertainty about amount and topology of clusters now is replaced by
un-certainty about CNN parameters. To obtain clustering results of good quality
was applied apparatus from geometry, namely topology theory.

In CNN model weights matrix W is calculated under the condition that pre-
viously was determined local scale a on the base of a priori unknown value of k-
nearest neighbors. Generalization of classical clustering methods brings to a con-
clusion that only geometrical criterion of least distances [36, 46] values does not
always provide proper clustering results especially if the assumption about the
metric happens to be wrong. To fix the parameters that ensure stable clustering
results CNN has been run over and over again from different initial conditions and

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 335

various k-nearest neighbor values. To reduce number of frequentative experiments
we proposed to calculate weights coefficients using Delaunay triangulation [50].

Triangulation is a set of lines connecting each point to its natural neighbors
from every quarter. These lines form a loop-free graph with triangles as compo-
nent parts. There are many ways to find triangulation. If for each triangle is true
the condition that the unique circle circumscribed about the triangle contains no
data points then we deal with Delaunay triangulation. Delaunay triangulation [50]
gives us all the nearest neighbors of each point from all directions. The value of a
is now fixed as the average distance of Delaunay-nearest neighbor pairs of points
in the whole system. Thus we form the proper mean field that contributes greatly
to convergence of CNN dynamics to macroscopic attractor.

5.3 Clustering and Classification by CNN

To extend functionality of CNN it was modified to solve both clustering and clas-
sification problems. Solutions of complex pattern recognition problems deal with
clustering and classification processes. When there is no information about typical
representatives of classes (or group labels assigned to objects) clustering is prelim-
inary accomplished. There are two main approaches to use clustering results.

First one considers clustering as the mechanism to get group labels and clus-
tered image becomes training data for classification algorithms that either con-
structs classifier (discriminant rule) in the form of surfaces or class centers. (In
case of unknown number of clusters there is the need to combine centers of clus-
ters to reflect more closely real number of groups in the input dataset). This ap-
proach in fact doubles classification time.

Second approach generalize clustering results in the form of computing centers
of clusters with further comparison of new object with centers of clusters as their
typical representatives in order to classify new object. Thus classification process
can be realized in two different ways: classification with fixed classes and classifi-
cation with changing classes (dynamic clustering). If a new object belongs to a
class that previously was not recognized wrong classification take place, as pattern
recognition system can’t generate the answer “I don’t know” without fuzzification
[46]. Thus modern pattern recognition system somehow should combine both
classification and clustering abilities to reduce the computational complexity and
to increase clustering and classification quality.

It was shown in [9] that CNN is capable to provide not only clustering but clas-
sification solutions in parallel which is more efficient in comparison to Kohonen’s
network, where objects can be classified only consequently. A lot of existing clus-
tering techniques do not support incremental clustering. However it is possible via
CNN application to form new clusters without recalculation of previously revealed
clusters and thus accomplish clustering-on-the-fly.

The performance of new clustering technique was compared to other methods.
Overwhelming majority of clustering techniques use geometric interpretation of
objects similarity measure [20, 36, 46, 61]. The title of a method depends either
on the metric name or combination of metrics. The necessity to apply several me-
trics comes from two types of measures: inner cluster distance used to estimate
similarity between objects within a cluster and inter cluster distance to calculate

336 E.N. Benderskaya and S.V. Zhukova

dissimilarity of objects from different clusters. In case of no a priori information
about input dataset to prove or reject each of the hypothesis the final decision is
made by an expert. When feature space is multidimensional and there is no a pri-
ori information about cluster topology it is appropriate to choose the clustering
answer by means of voting principle.

In [7, 9] clustering results were produced for several problems from FCPS set
[61] by means of 42 clustering techniques. The results were obtained for 41 com-
binations metrics combinations and k-means. Similarity measures between objects
within a cluster (euclidean, cityblock, Mahalanobis, Minkowski, cosine, Cheby-
shev, square euclidean) and similarity measure between the clusters themselves
(single linkage, complete linkage, median clustering, centroid clustering, average
linkage, weighted method) were modelled.

The results demonstrate that even for test clustering problems there does not
exist one combination of metrics that produces best fit solutions for all considered
input datasets simultaneously. To solve pattern recognition problems by classical
methods a priori information about number and topology of clusters is extremely
important. CNN is free from this disadvantage as it manages to produce 100%
correct clustering results of problems from FCPS.

5.4 Fractals and Oscillatory Dynamics

The captivating interplay of oscillations within dynamical clusters that we call
fragmentary synchronization could hardly be interpreted somehow in a numerical
way. Other problem that seemed to have no answer is that the dependence be-
tween clustering quality and the size of outputs statistics is not obvious. The ex-
tensive growth of CNN states to be analysed sometimes is not successful in terms
of clustering quality and predetermines even worse results than those obtained on
a smaller dataset. Such observations force us to focus mainly on synchronization
of time-series in order to reveal some order in the macroscopic attractor, com-
prised by temporal sequences. To indicate the existence of macroscopic attractor
the coincidence of clustering results (synchronous dynamical clusters) is obtained
for different initial conditions.

As it is resource consuming to reveal fragmentary clusters the oscillatory dy-
namics of CNN needs to be considered in detail. Under the notion of fractal coex-
ists a wide set of structures, both of spatial and temporal nature that demonstrate
self-similarity. The very word fractal is formed from latin «fractus» which means to
consist of fragments. Broad definition tells that fractal is the structure consisted of
the parts which are similar the whole [42]. In the case of CNN it is more applicable
to say that fractals are signals that display scale-invariant or self-similar behaviour.

In terms of recurrent behaviour of CNN outputs we consider the joint dynamics
of neurons as waves of complex form. After careful consideration we noticed that
there exist quasi similar fragments not only in terms of horizontal lines that com-
prise melodies, but repeating waves in the overall chaotic neural network [10].

This temporal similarity leads us to the hypothesis of oscillations fractal struc-
ture that was proved in [10]. The structure of fragments and overall dynamics
of CNN was investigated by means of recurrence and cross-recurrence plots

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 337

visualization techniques. Understanding the mechanism of fragments interplay
(periodical vertical similarity) along with oscillatory clusters interplay (horizontal
dissimilarity of cluster’s melodies) is vital for discovering the low resource con-
suming algorithm of CNN outputs processing in order to translate nonlinear lan-
guage of oscillation into the language of images in data mining field (important to
solve general clustering problem).

New CNN features were discovered to utilize benefits of chaotic effects. In
some cases they allow to simplify analysis of CNN results. More over fractal na-
ture of generated by CNN chaotic codes predetermines fault tolerance of proposed
clustering technique. Even serious losses in CNN statistics may not influence
clustering quality.

Together with fractal structures the role of different chaotic maps (transfer
functions) was investigated in [9]. The word chaos is naturally associated with
extremely unpredictable systems dynamics, but not with the stable, and recurrent
reproduction of the same results. And in case of clustering problems there should
be generated the only solution every time the method is applied. The chaotic dy-
namic of CNN is guaranteed by logistic map. A hypothesis is formulated that
chaos in CNN dynamics is important only to ensure the sufficient level of instabil-
ity to make the emergence of self-organizing phenomenon possible. Similar clus-
tering dynamics for different chaotic maps prove the hypothesis that transfer func-
tion does not matter unless it is one-dimensional discrete chaotic map with con-
stant mean value.

6 Chaotic Neural Network and Multidiscilinarity

The analysis of chaotic neural networks origins and modifications foster the de-
velopment of approaches roadmap to clarify the evolution track. To solve highly
complicated problems it is appropriate to combine achievements in nonlinear dy-
namics, self-organization theory and neural networks theory. The proposed clus-
tering technique possesses features of almost every of bio-inspired methods:

• from small–world networks we take irregular, incomplete linkage between
elements in (clusters are formed by nearest neighbours);

• from ant-based networks we take parallel performance of elements (the solu-
tion is generated both by individual and collective dynamics of elements);

• from genetic algorithms we take iterative improvement of intermediate solution
by means of previous experience interchange (extensive search of best fit solu-
tion);

• from fuzzy logic we take interval logic in post processing of clustering results
(both vertical when we analyse fractal structure of system’s output dynamics
and horizontal when time-series analysis is conducted);

• from neural networks we take processing element with complex transfer func-
tion (logistic map) and stress that in case of new technique its dynamics can be
interpreted as learning process;

• from classical self-organizing maps we take k-means metric.

338 E.N. Benderskaya and S.V. Zhukova

The visualization of knowledge utilization process of chaos applications to data min-
ing problems is given on Fig. 1. CNN can be considered from various perspectives:

• from the point of nonlinear dynamics: a discrete nonlinear dynamic system that
induced chaotic oscillations;

• from the point of Connectionist AI: oscillatory neural network;
• from the point of pattern recognition: a system learning without a teacher (thus

it is possible to apply CNN to clustering problems);
• from the point of control theory and output-input influence: recurrent system.

Fig. 1 Evolution of chaotic neural network

7 Turing Ideas and Hardware Implementation of CNN

Our observation of Turing advances in different scientific fields lead us to conclu-
sion that he proceeded in both symbolic and connectionist AI directions (Fig. 2)
[57-60]. His broad vision predetermined a lot of modern trends in AI, namely
random neural networks, DNA computing, discrete cells modeling, chemical uni-
versal Turing machine [3, 26]. What is more important in reference to CNN im-
plementation Turing has managed to develop the mathematical basics for upcom-
ing era of chemical computers realized on the basis of reaction-diffusion media.
On the intersection of symbolic and connectionist AI among Turing interest is
found one of the most perspective direction – biochemistry. And the reason for
that is the chaotic nature of processes in reaction-diffusion systems so attractive
for hardware implementation of artificial intelligent systems. Open questions
CNN hardware implementation can be resolved by application of reaction-
diffusion models proposed by Alan Turing. The value of Turing works for devel-
opment of modern AI together with highly-performance computation is found in

 t

CNN evolution

Pattern recognition:
Learning without a teacher
Metric based approach

Informatics:
Shannon entropy
Shannon information

Physics of clusters:
Globally coupled maps

Geometry:
Topology
Delaunay triangulation

Synergetics:
Chaotic self-organization
Fragmentary synchronization

Pattern recognition:
Clustering
Classification

Nonlinear dynamics:
Cross recurrence analysis
Fractal waves

Chaos theory:
Chaotic maps
Chaotic oscillations

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 339

new computational paradigm – DNA computing [52]. Turing’s developments are
also actual in evolutionary computation and cellular interactions applied to model
artificial/natural neuron cells and complex biological systems (models of multi-
local interactions).

The origins of brain functioning, spots on animals fell have common features
and refer to self-organization – one of the main phenomenon of Turing’s attention.
Thus bifurcation modeling (namely Turing bifurcation) is important for further AI
development. Fundamental principle of chaos from order emergence together with
boundless opportunities of chaotic systems applications open new perspectives for
AI researches.

Fig. 2 Turing’s Way in artificial intelligence

We can benefit from synergetic effects if consider not only collective dynamics
but also physical and chemical nature of construction elements – nonlinear oscilla-
tors with chaotic dynamics.

8 Conclusion

This paper analyses research trends and prospects of improvement in artificial
intelligence (AI) methodology. Under the transformation pressure the role of
disciplines intersections changes in order to attain a quantum leap in intelligent
systems development. Though a lot of promising results were published regarding
complex intelligent problems the holistic findings on true intelligence are still a
matter of future research. An attempt was undertaken to rise up over multiformity
of AI models and methods in order to skip exhaustive considerations and focus on
the essence of AI paradigms.

Computing machinery:
Universal Turing machine
Computability and complexity

Mathematical physics:
Approximation of Lie groups
Partial differential equations

Mathematic logic:
Automated theorem proving

Biochemistry and
mathematical biology :

Natural computations:
Genetic algorithms
DNA computing

Neuroscience:
Random neural networks

 Connectionist AI

Information theory:
Advances in coding theory

Biophysics:
Discrete cells
Models of multi-local
interactions

Reaction-diffusion media Geometry of phillotaxis
Theory of morphogenesis

 Symbolic AI

Turing bifurcation

 Turing’s Way

340 E.N. Benderskaya and S.V. Zhukova

Connectionist AI succeed greatly in the growth of multidisciplinary intersec-

tions. It combines not only different sections of mathematics (formal logic, infe-
rence theory, probability theory, opportunity theory, automata theory) but also
methods from mathematical physics, biophysics, neurobiology, etc. This trend is
caused by biological nature of artificial intelligence. Thus brain research results
should be involved into consideration.

The genius guess about the role of elements with random components was giv-
en the evidence in very different applications (randomized methods and probabil-
istic search). The digression from original deterministic way of functioning to
foster unpredictable behavior is consonant to human being nature. Thus investiga-
tions of approaches that add digression and facilitate uncommon decision making
are very relevant today. One of the possible ways is application of nonlinear ele-
ments with chaotic dynamics. As it is shown in many papers these systems pro-
duce complex functioning regimes with new system states. A. Turing’s research
achievements in many scientific fields can serve as a required knowledge basis for
further development of next generation AI systems.

Intellectual systems development specified to solve certain class of problems
should be obviously accomplished by means of approved methods or their hybrid
modifications. Detailed reproduction of separate neuron cell ensembles in attempt
to investigate some cortex domain is rational in neurophysiology models. Unified
approach to development of artificial intelligent systems with quality commensur-
able to natural neural systems to our opinion should be based on distributed en-
sembles of coupled maps. This direction of research is attractive to combine ideas
of agent theory, neural network theory, nonlinear dynamics, synchronization
theory, formal logics. Ample opportunities to apply complex synergetic effects to
deal with uncertainty not only in technical but also in biological, economic, geo-
political systems foster an idea that in the nearest future nonlinear dynamics and
chaos will become the most demanded apparatus to understand and model cogni-
tion processes.

References

1. Aaronson, S.: The Limits of Quantum Computers. Scientific American 298/3(50-7),
36–8733 (2008)

2. Angelini, L., Carlo, F., Marangi, C., Pellicoro, M., Nardullia, M., Stramaglia, S.: Clus-
tering data by inhomogeneous chaotic map lattices. Phys. Rev. Lett. (85), 78–102
(2000)

3. Arbib, M.: Turing Machines, Finite Automata and Neural Nets. Journal of the ACM 8,
467–475 (1961)

4. Baum, S.D., Goertzel, B., Goertzel, T.: How long until human-level AI? Results from
an expert assessment. Technological Forecasting & Social Change 78, 185–195 (2011)

5. Benderskaya, E.N., Zhukova, S.V.: Clustering by Chaotic Neural Networks with Mean
Field Calculated Via Delaunay Triangulation. In: Corchado, E., Abraham, A., Pedrycz,
W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 408–416. Springer, Heidelberg
(2008)

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 341

6. Benderskaya, E.N., Zhukova, S.V.: Fragmentary Synchronization in Chaotic Neural
Network and Data Mining. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B.
(eds.) HAIS 2009. LNCS, vol. 5572, pp. 319–326. Springer, Heidelberg (2009)

7. Benderskaya, E.N., Zhukova, S.V.: Dynamic Data Mining: Synergy of Bio-Inspired
Clustering Methods. In: Funatsu, K. (ed.) Knowledge-Oriented Applications in Data
Mining, pp. 398–410. InTech (2011) ISBN: 978-953-307-154-1

8. Benderskaya, E.N., Zhukova, S.V.: Self-organized Clustering and Classification: A
Unified Approach via Distributed Chaotic Computing. In: Abraham, A., Corchado,
J.M., González, S.R., De Paz Santana, J.F. (eds.) International Symposium on Distri-
buted Computing and Artificial Intelligence. AISC, vol. 91, pp. 423–431. Springer,
Heidelberg (2011)

9. Benderskaya, E.N., Zhukova, S.V.: Oscillatory Chaotic Neural Network as a Hybrid
System for Pattern Recognition. In: Proceedings of IEEE Workshop on Hybrid Intelli-
gent Models and Applications, Paris, France, April 10-15, pp. 39–45 (2011)

10. Benderskaya, E.N., Zhukova, S.V.: Chaotic Clustering: Fragmentary Synchronization
of Fractal Waves. In: Esteban, T.-C. (ed.) Chaotic Systems, pp. 187–202. InTech
(2011) ISBN: 978-953-307-564-8

11. Blum, C., Merkle, D.: Swarm Intelligence: Introduction and Applications. Springer
(2009) ISBN 978-3642093432

12. Bobrow, D.G., Brady, M.: Artificial Intelligence 40 years later. Artificial Intelli-
gence 103, 1–4 (1998)

13. Borisyuk, R.M., Borisyuk, G.N., Kazanovich, Y.B.: The synchronization principle in
modelling of binding and attention. Membrane & Cell Biology 11(6), 753–761 (1998)

14. Boryczka, U.: Finding groups in data: Cluster analysis with ants. Applied Soft Compu-
ting (9), 61–70 (2009)

15. Chinchuluun, A., Pardalos, M.P., Migdalas, A., Pitsoulis, L.: Pareto Optimality. Game
Theory and Equilibria. In: SOIA, Springer (2008)

16. Cooper, S.B.: Emergence as a computability-theoretic phenomenon. Applied Mathe-
matics and Computation 215, 1351–1360 (2009)

17. Cristianini, N.: Are we still there? Neural Networks 23, 466–470 (2010)
18. Delvenne, J.: What is a universal computing machine? Applied Mathematics and

Computation 215, 1368–1374 (2009)
19. Diller, A.: Why AI and Robotics are going nowhere fast? In: Vallverdu, J. (ed.) Think-

ing Machines and the Philosophy of Computer Science: Concepts and Principles, pp.
328–343, Information Science Reference (2010)

20. Dimitriadou, E., Weingessel, A., Hornik, K.: Voting-Merging: An Ensemble Method
for Clustering. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS,
vol. 2130, pp. 217–224. Springer, Heidelberg (2001)

21. Giarratano, J.C., Riley, G.D.: Expert Systems. Principles and Programming. Course
Technology (2004)

22. Haken, H.: Synergetic Computers and Cognition: A Top-Down Approach to Neural
Nets. Springer, SSS (2010)

23. Haken, H.S.: Introduction and Advanced Topics. In: Physics and Astronomy Online
Library, p. 758. Springer (2004)

24. Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1(2),
95–113 (2007)

25. Haykin, S.: Neural Networks. A Comprehensive Foundation. Prentice Hall PTR, Up-
per Saddle River (1998)

342 E.N. Benderskaya and S.V. Zhukova

26. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural net-
works and Turing machines. Proceedings of the National Academy of Sciences of the
United States of America 88, 10983–10987 (1991)

27. Hutter, M.: Universal Algorithmic Intelligence: A mathematical top-down approach.
In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence, pp. 227–290.
Springer (2007)

28. Hyötyniemi, H.: Turing Machines are Recurrent Neural Networks. In: Alander, J.,
Honkela, T., Jakobsson, M. (eds.) Proceedings of STeP 1996, pp. 13–24 (1996)

29. Inoue, M., Kaneko, K.: Dynamics of coupled adaptive elements: Bursting and intermit-
tent oscillations generated by frustration in networks. Physical Review E (81), 026203,
1–14 (2010)

30. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability
and Bursting. MIT Press (2010)

31. Jaeger, H.: Short term memory in echo state networks. GMD Report 152: German Na-
tional Research Center for Information Technology (2001)

32. Jang, J.R., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational
Approach to Learning and Machine Intelligence. Prentice-Hall (1997)

33. Kaiser, M.: Brain architecture: a design for natural computation. Philosophical Trans-
actions of the Royal Society A 365(1861), 3033–3045 (2007)

34. Kamps, M.: Towards Truly Human-Level Intelligence in Artificial Applications. Cog-
nitive Systems Research (2011) doi:10.1016/j.cogsys.2011.01.003

35. Kaneko, K.: Chaotic but regular posi-nega switch among coded attractors by cluster-
size variations. Phys. Rev. Lett. 63(14), 219–223 (1989)

36. Kumar, B.V., Mahalanobis, A., Juday, R.D.: Correlation Pattern Recognition, p. 402.
Cambridge University Press (2006)

37. Lin, C.-T., Lee, C.S.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent
Systems. Prentice Hall (1998)

38. Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem
Solving. Addison-Wesley (2008)

39. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Computer Science Review 3(3), 127–149 (2009)

40. Maass, W., Natschlaeger, T., Markram, H.: Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural Computa-
tion 14(11), 2531–2560 (2002)

41. Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook,
2nd edn. Springer (2010)

42. Mandelbrot, B.: The Fractal Geometry of Nature, p. 468. W.H. Freeman (1983)
43. Mira, J.M.: Symbols versus connections: 50 years of artificial intelligence. Neurocom-

puing 71, 671–680 (2008)
44. Mosekilde, E., Maistrenko, Y., Postnov, D.: Chaotic synchronization. World Scientific

Series on Nonlinear Science, Series A vol. 42, 440 (2002)
45. Oliveira, F.: Limitations of learning in automata-based systems. European Journal of

Operational Research 203, 684–691 (2010)
46. Pedrycz, W., Weber, R.: Special issue on soft computing for dynamic data mining.

Applied Soft Computing (8), 1281–1282 (2008)
47. Peitgen, H., Jürgens, H., Dietmar, S.: Chaos and Fractals. New Frontiers of Science,

2nd edn., vol. XIII(864), p. 125 illus (2004) ISBN: 978-0-387-20229-7

Multidisciplinary Trends in Modern Artificial Intelligence: Turing's Way 343

48. Pikovsky, A., Maistrenko, Y.: Synchronization: Theory and Application. NATO
Science Series II: Mathematics, Physics and Chemistry, p. 268. Springer (2008) ISBN-
9781402014178

49. Potapov, A.V., Ali, M.K.: Nonlinear dynamics and chaos in information processing
neural networks. Differential Equations and Dynamical Systems 9(3-4), 259–319
(2001)

50. Preparata, F.R., Shamos, M.I.: Computational Geometry. An Introduction. Mono-
graphs in Computer Science, p. 398. Springer (1993)

51. Prigogine, I.: Order Out of Chaos. Shambala (1984)
52. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing ma-

chines. DNA Based Computers 6, 75–120 (1996)
53. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall

(2002)
54. Schweitzer, F.: Self-Organization of Complex Structures: From Individual to Collec-

tive Dynamics. CRC Press (1997)
55. Simon, H.A.: Artificial intelligence: an empirical science. Artificial Intelligence 77,

95–127 (1995)
56. Teuscher, C.: Turing’s Connectionism An Investigation of Neural Network Architec-

tures (2002)
57. Saunders, P.T. (ed.): Turing, A. M. Collected Works of A. M. TUring: Morphogenesis.

North-Holland (1992)
58. Britton, J.L. (ed.): Turing, A. M. Collected Works of A. M. Turing: Pure Mathematics.

North-Holland (1992)
59. Ince, D.C. (ed.): Turing, A. M. Collected Works of A. M. TUring: Mechanical Intelli-

gence. North-Holland (1992)
60. Gandy, R., Yates, C. (eds.): Turing A. M. Collected Works of A. M. Turing-

Mathematical Logic. Elsevier (2001)
61. Ultsch, A.: Clustering with SOM: U*C. In: Proc. Workshop on Self-Organizing Maps,

Paris, France, pp. 75–82 (2005)
62. Velazquez, J.: Brain, behaviour and mathematics: Are we using the right approaches?

Physica D 212, 161–182 (2005)
63. Webster, C.S.: Alan Turing’s unorganized machines and artificial neural networks: his

remarkable early work and future possibilities. Evolutionary Intelligence, 1–9 (July 22,
2011)

64. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)
65. Zak, M.: Quantum-inspired resonance for associative memory. Chaos, Solitons and

Fractals 41, 2306–2312 (2009)
66. Zbilut, J.P., Giuliani, A.: Biological uncertainty Theory Bioscience 127 (2008)

An Overview of Computational Sparse Models
and Their Applications in Artificial Intelligence

Yue Deng, Qionghai Dai, and Zengke Zhang

Abstract. Computational sparse models are drawing more and more attentions in
a wide range of scientific communities including statistic signal processing and ma-
chine learning. The prominent goal of them aims at revealing the sparse structure or
correlation among redundant data in terms of computational approaches, e.g. convex
optimization and probability inference. The main scope of this chapter concentrates
on reviewing the state-of-the-art sparse models and discussing their applications in
the field of artificial intelligence. After a brief introduction to the the general idea of
sparse computation, the bulk of the chapter will be split into three core sections on
sparse signal optimization, low rank matrix completion and low rank structure learn-
ing. These three parts respectively correspond to the sparse models for vector case,
matrix case and the combination of both. In order to effectively solve the sparse
models reviewed in this chapter, we will unify the solutions to all of them in the
general framework of proximal gradient algorithm which is a benchmark method
for convex optimization with quadratic term. Besides, in each section, after theoret-
ical discussions, some interesting applications of the model will be presented and
introduced. Some of these applications are from other researchers’ and our previous
publications and some of them are novelly proposed in this book chapter.

Keywords: sparse learning, low rank matrix completion, artificial intelligence,
machine learning, computer vision.

1 Introduction

When Alan Turing set up the basic concept of Turing Machine in the year 1936 [1]1,
he must have not expected that, after about eighty years, the data acquisition and

Yue Deng · Qionghai Dai · Zengke Zhang
Automation Department, Tsinghua Nationality Laboratory for Information Science
and Technology (TNList), Tsinghua University
http://media.au.tsinghua.edu.cn/

1 Turing submitted his paper on 31 May 1936 to the London Mathematical Society, but it
was published in early 1937. So in this chapter, we prefer to say that the concept of Turing
machine was originally set up in 1936.

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 345–369.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

http://media.au.tsinghua.edu.cn/

346 Y. Deng, Q. Dai, and Z. Zhang

processing demands in people’s daily life are expanding in such an unpredictable
rate that is far beyond Moore’s law. It is widely known that the foundation of Turing’s
theory is computation, which is meanwhile the basis of modern artificial intelligence
(AI) [2]. As an important branch of Turing’s theory, machine learning approaches
for data processing are now playing a central role in diverse areas of artificial intel-
ligence. A robust learning machine (a.k.a. methodology) could intelligently extract
useful information from massive data and generalize the learning results to the un-
known samples to make predictions and decisions. Therefore, one of the most chal-
lenging and critical problems of Turing’s configuration is the interaction between
data and computation. As an honor for the great scientist Alan Turing [3], in this
chapter, we concentrate on introducing a kind of prevalent and powerful computa-
tional models, i.e. sparse models to the researchers in the area of AI. In a nutshell,
we will discuss how to reveal the intrinsic sparse structure of high-dimensional data
and how to apply these effective computational models to solve practical problems.

Sparse data structure can be found in many scientific disciplines in real world. For
example, in cognitive science, temporal EEG signals are captured from many chan-
nels and at a certain time tick, only a small portion of channels have responses of
the brain while other channels have zero values [4, 5]. In medical image processing,
only a small number of basis in the dictionary contribute to the final reconstruction
of the noiseless image[6, 7]. In manifold learning [8], the neighboring nodes on the
graph span as a linear subspace and thus the affinity matrix of nodes is sparse with
most entries be zero [9, 10, 11]. In 3D vision, the multiview images are redundant
to describe a certain object and their intrinsic structure is low rank [12]. The sparse
examples in practical world are too numerous to mention individually and we will
introduce some representative and interesting ones later in this chapter.

From aforementioned discussions, it is apparent that learning sparse structure
from high dimensional data is desired for many scientific researches. Accordingly,
we will introduce some state-of-the-art sparse models in this chapter. For the sake
of logic and brevity, the sparse models reviewed in this chapter are categorized into
three kinds, i.e. sparse signal optimization, low rank matrix completion and low rank
structure learning.

Sparse Signal Optimization: Sparse signal optimization is the foundation of al-
most all the consequent sparse models. It considers to recover the sparse structure
of the signal with linear constraints. Sparse structure means that the vector only
contains a small portion of non-zero entries. In signal processing, sparse signal op-
timization is always referred as compressive sensing[13, 14, 15, 16, 17]. The goal
of compressive sensing aims at reconstructing a desired signal from a small number
of projections. In statistics, it is always called sparse variable selection which sup-
pose that the observed output is only attributed by a small number of input variables
[18, 19, 20]. In pattern recognition and machine learning, sparse signal optimization
is generally named sparse representation or sparse learning[21, 22]. See section 2
for details.

Low Rank Matrix Completion: Low rank matrix is a specific case of sparse signal.
The rank of a matrix is equivalent to the number of its non-zero singular values

An Overview of Computational Sparse Models and Their Applications 347

[23]. Therefore, it naturally inspires us to extend the power of sparse models from
vector data to matrix cases. One famous sparse model for matrix is low rank matrix
completion (MC)[24, 25]. It subjects to whether it is possible to recover the whole
matrix from only a small portion of observed entries. It seems to be an ill-posed
topic since there are countless solutions to fill into the unknown entries in the matrix.
However, recent developments of compressive sensing indicated that when the rank
of the incomplete matrix is low, i.e. the singular vectors are sufficient spread, the
incomplete matrix can be exactly recovered via sparse computation. Please refer to
section 3 for discussions.

Low Rank Structure Learning: Low rank structure learning(LRSL) can be re-
garded as a combination of the aforementioned two sparse models [26]. It learns the
low rank structure of a matrix from noisy observations corrupted by sparse errors.
Therefore, in the formulation of LRSL, both the sparse signal and low rank ma-
trix should be simultaneously optimized and recovered. In this chapter, we will re-
spectively introduce two models on LRSL, i.e. Principal Component Pursuit (PCP)
[27, 28] and Low Rank Representation (LRR) [29, 30]. The former recovers the
low rank matrix from additive corruptions and the latter aims at revealing the low
rank structure of the affinity matrix for data representation. Detailed discussions are
provided in section 4

Although these sparse models are very effective, the solutions to them are not
that straightforward. For signal optimization, the sparse signal is always of very
high dimensional but the number of observations is quite limited, which yields to
an under-determined problem. For matrix completion, there are countless choices
to fit into the missing entries and an optimal one should be optimized. In low rank
structure learning, it is desired to recover two terms from one equation which is an
ill-posed problem. In general, it is not straightforward to obtain the solutions to these
sparse models and some intelligent computational approaches should be involved.
Existing works to solve sparse models always follow two ways, i.e. with probability
inference and with convex optimization.

Probability graphical models [31] and inferences are very powerful tools for a
huge number of practical problems in AI. In sparse computation, it assumes that
sparse signals are random variables sampled from some specific distributions, e.g.
Laplacian distribution. The density function of Laplacian distribution exhibits an
impulse around zero, which guarantees that the sampled variable has high proba-
bility to be zero. Some previous works have been devoted to solving sparse models
in the Bayesian framework [32, 33]. However, since the prior distribution of sparse
signals is no longer Gaussian, we cannot always expect to make the joint probability
tractable. Widely used strategies to make inferences always rely on approximating
algorithms, e.g. Gibbs sampling. Unfortunately, Gibbs sampling is too much time
consuming and, more crucial, the final solution is only an approximation to the
global optimum. Therefore, more and more attentions are now paid to solving the
sparse models via convex optimization.

There are many prevalent convex optimization strategies for sparse optimization,
e.g. shrinkage thresholding[34, 35] and Augmented Lagrangian Multiplier [36, 37].

348 Y. Deng, Q. Dai, and Z. Zhang

This chapter prefers to solve all the reviewed sparse models in the framework of
Proximal Gradient (PG) algorithm [38, 39]. It is not only because that PG method
has concise formulations and exhibits solid theoretical convergence guarantee [40].
More general, PG is a general paradigm for the optimizations with a smooth function
plus a quadratic term. To our knowledge, many models in machine learning and
artificial intelligence finally subject to the objective in such form. Therefore, we
introduce PG method in this chapter and hope it may inspire readers to generalize
its effectiveness to other problems.

Another goal of this chapter is to review some interesting applications of sparse
models. We will divide these applications into each section after the discussions of
the individual model. It will be verified that sparse models can be applied to a diverse
of areas in AI including machine learning, signal and image processing, computer
vision, robotics, sensor network, finance, etc. In the application review, most works
will be generally discussed and their citations are provided for interested readers.
But we will elaborately discuss one to two benchmark applications of each model
as application highlights. Some of these detailed materials are from previous works;
and some of the applications (e.g. illumination decomposition) are novelly proposed
in this book chapter.

2 Sparse Signal Optimization

In this section, we will discuss sparse vector optimization and its applications in
compressive sensing and pattern recognition.

2.1 Sparse Signal Pursuit

Sparse signal pursuit (a.k.a sparse signal optimization) aims at recovering a sparse
signal from an under-determined linear system by

(P0) : min ‖x‖�0 s.t. y = Ax, (1)

where ‖x‖�0 is the �0 norm which counts the number of non-zero entries in a vector
x and y = Ax is an under-determined linear constraint. In compressive sensing,
x ∈ Rn is the unknown sparse signal; A ∈ RN×n is a full rank projection matrix
and y ∈ RN are the measurements of the unknown signal. If n > N , the linear
constraint yields to an over-determined problem that can be typically solved via
least square minimization. However, when n < N , the under-determined equation
can only be solved by imposing other priors. For compressive sensing, Eq.1 imposes
a prior that the original signal is sparse.

In sparsity pursuit, P0 uses the �0 norm which is a natural description to the spar-
sity of a vector. However, the general optimization in (1) is intractable and the exact
solution to it subjects to an NP-hard problem. Accordingly, in order to efficiently
solve the sparse optimization, Tao et al. proposed to minimize the convex envelope

An Overview of Computational Sparse Models and Their Applications 349

of �0 norm, i.e. using �1 norm as a tradeoff [13]. �1 norm accumulates the absolute
value of all the entries in a vector, which can be expressed as ‖x‖�1 =

∑
i |xi|.

(P1) : min ‖x‖�1 s.t. y = Ax. (2)

P1 is convex and its solution can be recast as a linear program (LP). From the per-
spective of signal reconstruction, Candès et al. use the Restricted Isometry Prop-
erty (RIP) [41, 42], Uniform Uncertainty Principal (UUP) and Exact Reconstruction
Principal(ERP)[43, 44] to theoretically justify the sufficient condition of exactly re-
covering a sparse signal from random measurements via �1 minimization.

The problem in P1 is also known as the basis pursuit [45], in which a more general
case was considered that the observation y is contaminated with noises. Therefore,
basis pursuit relax the strict equality in P1 and allows some Gaussian noise. The
formulation of basis pursuit relax the linear constraint of P1 in the objective function
and solves,

min ‖x‖�1 +
μ

2
‖y −Ax‖22 . (3)

Compared to (2), the objective in (3) allows recovery residual in Ax − y and μ
is a given positive parameter whose value is determined by the noisy levels in the
observed measurements.

In light of the high interests in efficiently solving the �1 least square problem in
(3), many algorithms have been devoted to the corresponding field. A good review of
these algorithms are provided in [46], where the authors conclude the algorithms in
the following categories: greedy pursuit type algorithm [47], gradient projection [48,
49],Homotopy [50], Iterative Shrinkage-Thresholding [34, 51], Proximal Gradient
(PG) [39, 38] and Augment Lagrangian Multiplier [37]. In this section, we will
introduce the PG method to solve it.

2.2 Proximal Gradient Method

The general proximal gradient algorithm is designed to solve the problem in the
form of,

min
.
= f(x) + g(x), (4)

where f(·) is a bounded, convex and smooth function; g(·) is convex and lower
semimountainous [39]. When assuming the domain of f(·) is closed and ∇f is
Lipschitz continuous, we get,

‖∇f(x1)−∇f(x2)‖2 ≤ Lf ‖x1 − x2‖ ,

where Lf is the Lipschitz constant. Accordingly, it is possible to extend the contin-
uous f(x) at a particular point α by,

g(x) + f(x) ≈ g(x) + f(α)+ < ∇f(α), x − α > +
Lf

2
‖x− α‖22 , (5)

350 Y. Deng, Q. Dai, and Z. Zhang

where < ·, · > defines the inner product. In PG method, instead of directly min-
imizing (4), we minimize its upper bound at α for substitution. For the sake of
computational simplicity, we combine the inner product into the quadratic term. By
dropping all the terms that are irrelative to the optimization variables in (5), we get,

Γ (x|α) = g(x) +
Lf

2

∥∥∥x− (α− L−1
f ∇f(α)

∥∥∥2
2
. (6)

Eq. (6) is a formulation of PG method for general optimizations in the form of (4).
Using PG method, we should iteratively select the given point α to construct the
upper bound and then to minimize it. It becomes clear later that if we apply PG
method to (6), we can directly get its closed-form solution at each iteration which
greatly simplify the �1 minimization problem.

The only problem remaining here is how to select the α to construct the upper-
bound at each iteration. One natural choice is to set αk = x∗

k that we extend f(x)
at the optimal point obtained in the last iteration. Such selection guarantees the
convergence rate is no worse than O(k−1) [35]. In [40], an accelerating strategy
was proposed to set αk = x∗

k +
tk−tk−1

tk
(x∗

k − x∗
k−1) with t2k+1 − tk+1 ≤ t2k.

The accelerate proximal gradient method could make the optimization converge in
a rate with O(k−2). Without the loss of generality, in this chapter we will choose
the accelerate method for PG optimization.

2.3 Solving Basis Pursuit via PG

The PG method introduced here is a general optimization strategy for many prob-
lems in machine learning. Specifically, in this part, we will show how to apply it to
solve the basis pursuit problem in (3). It is possible to directly define g(x) = 1

μ‖x‖�1
and f(x) = 1

2‖Ax− y‖22. By taking these two terms into (5), the basis pursuit prob-
lem yields to:

min
1

μ
‖x‖�1 +

Lf

2

∥∥∥x− (α− L−1
f AT (Aα − y))

∥∥∥2
2

(7)

It is well known (see, for example, [52]) that for scalars x and y, the unique optimal
solution to the problem

min
x

τ |x|+ 1

2
‖x− y‖22 (8)

is given by
x∗ = sgn(y)max(|y| − τ, 0)

.
= sτ (y). (9)

According to all the discussions above, we give the iterative solutions to (3) in
Algorithm 1.

In Algorithm.1, the only parameter need to be specified is μ, which controls the
balance between the sparsity of the signal and the noise tolerance. Recalling Eq.3,
it is apparent that a large μ will make the residual in the quadratic term ‖y −Ax‖2
be small and relax the sparsity constraint. One the contrary, if μ is too small, too

An Overview of Computational Sparse Models and Their Applications 351

Algorithm 1. Solving basis pursuit via Proximal Gradient method
Input : Random projection matrix A and the measurements vector y
Initialization: k = 1, Lf > 0, t0 = t1 = 1, η < 1 and x0 = x1 = 0.
repeat1

αk = xk +
tk−tk−1

tk
(xk − xk−1) ;2

Gk = αk − L−1
f AT (Aαk − y);3

xk+1 = s1/(μLf)(G);4

tk+1 =
1+

√
4t2

k
+1

2
,μk+1 = max(ημk, μmax);5

k = k + 1;6

until convergence ;7

Output : xk+1.

much noise will be leave in the quadratic term but returning an absolutely sparse
signal in ‖x‖�1 . Accordingly, in Algorithm.1, μk is initialized to be a relative small
value, e.g. μ0 = 1e − 3 and then they are increased during the iterations until
a maximal value μmax is obtained. μmax is always determined by the noises in
the original observation y. Alternatively, one can also incrementally increase μk

until the recovery residual is less than some user specified threshold. This parameter
setting strategy is also applied to the other sparse models discussed later in this
chapter.

2.4 Applications in Compressive Sensing

Compressive sensing is one of the most hot topics in signal processing over the
last decade. Thanks to the theoretical contributions in [15][13], we know that it
is possible to exactly recover a sparse signal with a sampling frequency less than
the famous Nyquist law. Many practical applications on compressive sensing have
been proposed covering a wide range of areas in medical image processing [6][7],
graphics [53] and portfolio management [23]. Except for these theoretical works
and simulations, some practical hardware-based systems on compressive sensing
have been realized. Eldar et al. successfully set up a DSP system to sample and
recover the signal beyond Nyquist law [54]. Recently, a conceptual camera, i.e.
single pixel camera, was invented in [55]. The camera could produce a photo with
only single-pixel sensor. Behind the magic configuration, the theoretical guarantee
is compressive sensing.

Fig.1 provides the system overview and some results of the single-pixel camera.
In Fig.1(a), the lights from the original image are first filtered by a digital encoder
system, i.e. DMD+ALP board. The encoder is a digital chip produced by TI which is
composed of many small mirrors. The status of these small mirrors are controlled by
computer. If the mirror status is on, then the light can be reflected from such a point
and vice versa. Therefore, TI chip plays an important role to produce the projection
matrix, i.e. A in Eq.2. Then, all the passed lights are accumulated via Lens 2 in
Fig.1(a) and the total energy is sensed by the single-pixel photodiode circuit. The

352 Y. Deng, Q. Dai, and Z. Zhang

(a) The system overview of the single-pixel camera

(b) Images of the single-pixel camera.

Fig. 1 The overview and experimental results of the single-pixel camera realized under the
configuration of CS theory. Reproduced with permission from [55] c© 2008 IEEE.

projection and sampling procedures are repeated for multiple times with different
but known random projections imposed on the TI chip. We record all the sensing
results of the single-pixel camera and they are stacked as the measurement vector y.
Besides, the random generated variables are accumulated to span as the projection
A in Eq.2. Accordingly, based on the �1 minimization strategies reviewed above, it
is possible to recover the exact image x from compressive sensing. Two results of
the single-pixel camera are provided in Fig.1(b). It is worth noting that although the
image is not a sparse signal, sparse coefficients are available by processing the image
with some wavelet transformations. The sparse coefficients are used in compressive
sensing.

An Overview of Computational Sparse Models and Their Applications 353

2.5 Sparse Learning

Different from the applications in signal processing, the prominent goal of sparse
models in machine learning is to increase the scalability of knowledge represen-
tation. We conclude the effectiveness of sparse learning from the following three
perspectives.

To avoid over-fitting phenomena. Over-fitting phenomena always appears in
many supervised and semi-supervised learning problems. The training procedure
too much preserves and fits the structures of the historical data in the training set.
The learned parameters are not ideal for predictions of the new data in the test-
ing set. It is an effective way to avoid the over-fitting problem by imposing some
regularization terms, e.g. �1 term. Such regularization makes the optimization find a
balance between the data and the model. Some benchmark works of applying sparse
regularizations in machine learning can be found in [20, 56] for regression, in [22]
for bayesian learning and in [57, 58] for Support Vector Machine (SVM).

Fig. 2 Occluded faces classification. The first row shows the top five classification results
via Nearest Neighbor Classification (NNC). The corresponding Euclidean Distance (ED) of
these images to the query image is listed below each image. Due to the disturbance by oc-
clusions, none of these five classified images belongs to the subject. The second row provide
top five results by Sparse Representation Classification (SRC). Among these five faces, three
faces which are marked with the red mask are the same to the query image. The correspond-
ing Sparse-classification Coefficients (SC) are denoted below the images. Reproduced with
permission from [59] c© 2011 IEEE.

To improve robustness to corruptions. In many applications, the data acquired
from practical world are not clean. For example, the data is corrupted by some large
noises and disturbances. To improve the robustness of machine learning algorithms
to the corrupted data, sparse models have been used as a classifier in [60, 59]. It con-
siders that a corrupted sample can be sparsely represented by a number of basis in
the training set. The classification result is determined by the amplitude of the rep-
resentation coefficients. In Fig.2, we provide the classification result of an occluded
face [59]. The input sample is a face corrupted by a scarf and the classification re-
sults via sparse classification (SC) and nearest neighbors classification (NNC) are
provided, respectively. Obviously, SC generally outperforms typical classifier on the
noisy data classification.

354 Y. Deng, Q. Dai, and Z. Zhang

To reduce the complexity of data representation. Sparse models could also be
used to reveal the intrinsic structure for data representation. In manifold learning
[8], one difficult problem is how to construct the initial graph topology based on
the intrinsic data structures. Typical approaches use K-nearest-neighbors (KNN)
method or the KNN method with a Gaussian kernel (GKNN) to represent the initial
linearity of manifold structure. However, these approaches too much rely on the pa-
rameter selection, e.g. the number of k in KNN graph. Accordingly, recent works
proposed to use �1 minimization to learn the initial affinity matrix [61, 62]. In a
nutshell, one node can be sparsely represented by all the other nodes in the graph
and we only connect the node to the ones with large coefficients. In [10], we incor-
porate a random walk model into the sparse graph for face recognition and achieve
promising learning performances. Fig.3 provides the learning results by applying
the random walk model on different graph topologies for face recognition. Two face
datasets used here are AR and FERET. It is apparent that the random walk model on
the sparse graph generally performs better than the recognition rates on KNN and
GKNN graphs.

Fig. 3 The comparisons of commute time [10] with different graph similarities on different
graph topologies: K-Nearest-Neighbors(KNN), Gaussian KNN(GKNN),Sparse Graph(SG)
[61] and Sparseness Induced Graph (SIG)[62]. Reproduced with permission from [10] c©
2012 Elsevier.

3 Low Rank Matrix Completion

Previously, we have introduced the sparse optimization for vector cases. In this part,
we will consider applying sparse optimization on matrices. For vector case, the spar-
sity always means the number of non-zero entries; and for matrix case, the sparsity
refers to the rank of the matrix. Essentially, the low rankness and vector sparsity are
two sides of a coin because the rank of a matrix is equivalent to the number of its
non-zero singular values. In this section, we start the discussions from an interesting
problem of low rank matrix completion.

An Overview of Computational Sparse Models and Their Applications 355

3.1 Low Rank Matrix Completion

Suppose we are given an incomplete matrix PΩ(Y) ∈ Rn1×n2 and only information
available about it is a sample of entries Yij , (i, j) ∈ Ω, where Ω is a subset of the
compete set of entries [n1] × [n2]. Based on the incomplete set Ω, the sampling
operator PΩ(Y) : Rn1×n2 → Rn1×n2 is defined by

[PΩ(Y)]ij =

{
Yij , (i, j) ∈ Ω
0, otherwise.

(10)

Thus, matrix completion problem subjects to whether it is possible to recover the
whole matrix only from the information PΩ(Y). It seems to be an ill-posed topic
since there are countless solutions to be filled into the unknown entries of the matrix.
However, recent developments in compressed sensing indicated that when the rank
of the incomplete matrix is low, i.e. the singular vectors of Y are sufficient spread,
this incomplete matrix can be recovered via convex optimization.

The task of matrix completion may be described as that there is a unique low-rank
matrix X which is consistent with the observed entries and one would, in principle,
recover the unknown matrix by solving

min rank(X)
s.t. PΩ(X) = PΩ(Y),

(11)

where X ∈ Rn1×n2 represent the decision variables and should be recovered via
optimization. Unfortunately, solving this problem is proven to be NP-hard and all
known algorithm for exactly solving it are doubly exponential in theory and in prac-
tice [23]. Directly minimizing the rank of a matrix is comparable to the intractable
�0-minimization problem in sparse signal recovery.

A modern approach for solving this problem is to optimize its convex envelope
via convex relaxation [25, 24]. Nuclear norm is the convex envelope of rank(X),
which is expressed as ‖ · ‖∗. Assume that the matrix X has r singular values of
σ1 > σ2 · · · > σr > 0, i.e. rank(X) = r. The nuclear norm of X is defined as the

summation of its singular values, i.e.‖X‖∗ =
r∑

i=1

σi(X).

In real world applications, one will only observe a few entries corrupted at
least by noises. The noises can be small Gaussian noises or some large distur-
bances2. When the Frobenius norm of noise term is less than some threshold, i.e.
‖ PΩ(N) ‖F≤ δ , Candès et al. proved that it is possible to exactly recover the
incomplete and noisy matrix [24] by,

min ‖X‖∗
s.t. ‖PΩ(N)‖F = ‖PΩ(Y −X)‖F ≤ δ.

(12)

2 If the matrix was corrupted by large noises, it can be removed by imposing an isolate �1
term in the objective to penalize large noises. We will discuss it in section 4.

356 Y. Deng, Q. Dai, and Z. Zhang

In order to stably recover X from a noisy observed matrix Y , the following reg-
ularized nuclear norm minimization was used as the objective function for matrix
completion, i.e.

min ‖X‖∗ +
μ

2
‖PΩ(X − Y)‖2

F
. (13)

3.2 PG Optimization for MC

The matrix completion model in (13) can also be solved via PG method introduced
in section 2.2. We regard the nuclear norm term as g(x) and the quadratic term as
f(x) in Eq.4. Accordingly, after convex relaxation in PG method, (13) yields to,

min
1

μ
‖X‖∗ +

Lf

2

∥∥∥X − (α− L−1
f PΩ(α− Y))

∥∥∥2
F
, (14)

where α is a given point. Without the loss of generality, in the accelerated PG frame-
work, we can select αk = Xk+

tk−1−1
tk

(Xk−Xk−1). For matrices X,D, a number
of authors, e.g. [63, 25, 26], have shown that the unique optimal solution to the
problem

min
X

α ‖X‖∗ +
1

2
‖X −D‖2F (15)

is given by
X∗ = Usα(Σ)V T .

= dα(D), (16)

where D = UΣV T denotes the singular value decomposition of D and sα(·) is de-
fined in Eq.9. According to all the discussions above, we give the iterative solutions
to (13) in Algorithm. 2

Algorithm 2. Matrix completion via Proximal Gradient method
Input : Indicator matrix PΩ and the observation matrix Y
Initialization: k = 1, Lf > 0, t0 = t1 = 1, η < 1 and X0 = X1 = 0.
repeat1

αk = Xk +
tk−tk−1

tk
(Xk −Xk−1) ;2

Gk = αk − L−1
f PΩ(αk − Y);3

Xk+1 = d1/(μLf)(Gk);4

tk+1 =
1+

√
4t2

k
+1

2
,μk+1 = max(ημk, μmax);5

k = k + 1;6

until convergence ;7

Output : Xk+1.

Fig.4 provides a toy example of matrix completion that we use a vector to stack
as a rank one matrix. Then, some of its entries are randomly sampled out as un-
known positions and the noises are added to the observed entries. The added noises
include both Gaussian noises and some kinds of large corruptions. Because it in-
volves some large corruptions on the observed entries, for matrix completion, we

An Overview of Computational Sparse Models and Their Applications 357

use the Log-sum Penalty Completion (LPC) method introduced in [12] to complete
it. Also, we compare MC based method with average filling and random filling. For
average filling, we use the average value of all the known values of the row to fill
into the unknown position. For random sampling, the unknown entries are filled
by randomly selecting one known entry in the same row. It is apparent that matrix
completion method outperforms other methods without optimization.

3.3 MC Applications: A General Review

Matrix completion arises a number of applications in practical world. One of the
most acknowledged applications is the collaborative filtering [64], which is also
known as the Netflix problem. The Netflix problem assumes that only a small num-
ber of factors actually affect users’ attitude towards some certain object, e.g. games,
music and movies on the internet. However, one user only leave their comments
or scores on some resources but not to all. It becomes important to infer a user’s
attitude towards some movies that he has not watched and to make a recommenda-
tion for him. It is possible to solve this important problem in the matrix completion
framework. We scan the labeled scores of a user as an incomplete vector and ac-
cumulated such scoring vectors from multiple users. These scores are stacked as
an incomplete matrix by aligning the scores of same movies in the same row. If a
user has not watched the movie, the corresponding position is labeled as unknown
and its value can be inferred via matrix completion. The completed matrix gives the
answers of the user’s attitude to the movies that he has not watched yet.

Fig. 4 A toy example for a rank-one matrix completion with different methods.

358 Y. Deng, Q. Dai, and Z. Zhang

Matrix completion is also a powerful tool for locating sensors in a network. In
global positioning, one can reveal the distances and relationships between different
pair of sensors by Multidimensional Scaling (MDS) [65]. However, not all the dis-
tance information between a pair of sensors are available. Therefore, one can only
get an incomplete matrix. The incomplete matrix is low rank since all the sensors
are distributed on a 2D (rank 2) or 3D (rank 3) planer. Accordingly, it is possible to
solve this problem by low rank matrix completion.

For computer vision, Tong et al. [66] make use of matrix completion for light
transport. Based on the traditional light transport equation, they attempted to re-
cover the light transport matrix from different light sources. The kernel Nystrom
method proposed in the paper is robust to complex lighting conditions. Inspired by
previous works, we have introduced matrix completion framework to a typical 3D-
based vision problem of noisy depth maps fusion for Multiview stereo (MVS) [12].
We will introduce this work in the next subsection.

3.4 Noisy Depth Maps Fusion via MC

Extracting depth maps (a.k.a. point clouds) from multiple images is a well studied
subject in computer vision. But the depth maps extracted via the stereo algorithm
owns the properties as incompleteness, noisy and high-dimensional.

1) Incompleteness. In stereo system, camera can only see part of a whole object
due to self-occlusions and the localization of sensors. 2) Noisy. Recovering 3D in-
formation from calibrated images is a systematic work involving steps as camera
calibration, feature points matching, optic-flow optimization , etc. Any error in each
step may disturb the accuracy of the final result. Thus, the point cloud acquired by
stereo system is full of noise. The quality of them is not comparable to the ones
acquired by 3D scanner. 3) High-dimensional. In the pursuit for high accuracy, it is
required to accumulate millions of discrete points to approximate the 3D geometry
of a real-world object. Thus, mathematically speaking, stereo-based fusion needs to
seek for a unique and dense solution to represent the original high-dimensional and
incomplete data in spite of noises.

In order to address the aforementioned properties, we consider the point clouds
fusion problem as an incomplete low-rank matrix completion problem. The basic
idea for the proposed fusion algorithm is comprehensible. Although each calibrated
camera can only recover a potion of the 3D geometry of a certain object, we suppose,
it can see all the geometry of the object. From each view, the observed points are
regarded as known entries and the unseen points are viewed as missing entries.
The points from each view are regarded as a vector. In stereo system, it is able
to accumulate such vectors from all the views. When composing these incomplete
vectors as an incomplete matrix, its intrinsic rank should be one since the vectors
describe the same object.

Following the idea in [12], the depth maps of each view are accumulated in an in-
complete and noisy matrix PΩ(Â). In MVS system, there are n cameras distributed

An Overview of Computational Sparse Models and Their Applications 359

around the object, and thus, n incomplete vectors are accumulated and are combined
in a matrix, we obtain

PΩ(Â) = [V1, V2, V3, ...Vn]. (17)

In the observed incomplete matrix PΩ(Â), columns represent different cameras and
rows represent point cloud information on the 3D object. If we can complete a noise-
less matrix A from PΩ(Â), the rank of A should be low since all the vectors in the
matrix, i.e. V1, V2, ...Vn, describe the same object. Theoretically, if there are no er-
rors in the depth information, the rank of the completed matrix A should be one.
However, due to the errors and disturbance, it is required to complete the incom-
plete matrix by simultaneously removing the noises on the observed entries. In [12],
inspired by [27], we design an optimization to complete the noisy matrix by

min ‖A‖∗ + λ
∑

ij(logNij)

s.t. PΩ(Â) = PΩ(A) + PΩ(N).
(18)

In (18), PΩ(Â) is the observed incomplete matrix, and PΩ(·) indicates the loca-
tions of the visible points. A is the desired fusion matrix that should be recov-
ered and N accumulates large outliers in the depth maps. The large outliers are
penalized by log-sum term. Fig.5 shows the results of the proposed algorithm on
reconstructing human bodies. Matrix completion is effective to handle the noises
and conflicts among different cameras. Nevertheless, it doesn’t degrade the orig-
inal high-frequency information in the depth information. From Fig.5, the fold on

Fig. 5 Reconstructions on human bodies in [67]. The first column shows the ground truth.
Columns 2 to 3 provide the reconstructions with and without matrix completion strategy.

360 Y. Deng, Q. Dai, and Z. Zhang

clothes is preserved during the reconstruction. More experimental discussions about
the fusion algorithm may refer to [12].

4 Low Rank Structure Learning from Corruptions

In this part, we introduce the Low Rank Structure Learning problem, which can
be regarded as the combination of the two sparse models discussed previously. Be-
sides, we will propose an illumination decomposition algorithm based on low rank
structure learning.

4.1 Low Rank Structure Learning

Low rank structure learning aims at recovering a low rank matrix from sparse cor-
ruptions which can be formulated as

min
(A,N)

rank(A) + λ ‖N‖�0
s.t. P = f(A) + g(N),

(19)

where data matrix P is the only known matrix in the optimization; rank(A) is
adopted to describe the low-rank structure of matrix A and the sparse noise is pe-
nalized via ‖N‖�0; f(·) and g(·) are both linear mappings. The value of parameter λ
is given which controls the balance between the rank term and the noise term. Based
on the discussions of the previous two sparse models, it is not difficult to know that
directly solving (19) is NP hard and we may utilize convex envelopes to make the
problem trackable. Accordingly, the objective in (19) yields to min ‖A‖∗+λ‖N‖�1 .

Derived from the basic formulation in (19), Principal Component Pursuit (PCP)
problem [27] was proposed with the constraint P = A +N . In PCP model, P is a
corrupted matrix obtained in practical world and the desired goal is to recover the
intrinsic low rank matrix A by removing sparse error N from P . Applications of
PCP model in computer visions includes video background modeling [27], texture
alignment[68], face analysis[26, 69] and image classification [70].

Recently, Low rank representation (LRR) was proposed to recover the low rank
correlations among data by eliminating the disturbances of large noises. For LRR,
the constraints in (19) changes to be P = PA + N [30, 29], where P is the data
matrix, A is the affinity matrix that records the correlations between pairs of data in
P and N is the residual of such a representation. LRR model has been successfully
applied to the problem of subspace clustering [71] and generally outperforms many
other methods on the benchmark dataset for motion segmentation [72]. In [26], the
LRR model is extended to an financial application of stock categorization.

The optimization for LRSL involves two terms in one objective. Accordingly, it
is only possible to solve this kind of models by distributed optimization strategy
[37]. Distributed optimization solves LRSL via an iterative way that in an iteration,
it only update one variable and regarded others as fixed constants. Let us take the

An Overview of Computational Sparse Models and Their Applications 361

PCP model as an example to present how distributed optimization works for LRSL.
Following the basic idea in PG method, PCP model can be formulated as,

min ‖A‖∗ + λ‖N‖�1 +
μ

2
‖P −A−N‖2F . (20)

In (20), when updating N , A is regarded as a constant and we get the noise term
optimization, i.e.

min
N

λ ‖N‖�1 +
μ

2
‖N − (P −Ak)‖2F , (21)

which is a classic sparse vector optimization problem introduced in section 2. Sim-
ilarly, the updating rule for low rank matrix subjects to,

min
A

‖A‖∗ +
μ

2
‖A− (P −Nk)‖2F . (22)

Eq.(22) is now in the same form as the rank optimization problem introduce in
section 3. We give the iterative updating rules and solutions to PCP problem in
Algorithm 3.

Algorithm 3. Principal Component Pursuit (PCP) via Proximal Gradient
method

Input : Data matrix P
Initialization: k = 1, Lf > 0, t0 = t1 = 1, η < 1 and A0 = A1 = N0 = N1 = 0.
repeat1

αN
k = Nk +

tk−tk−1

tk
(Nk −Nk−1); αA

k = Ak +
tk−tk−1

tk
(Ak − Ak−1) ;2

GN
k = αN

k − L−1
f [αN

k − (P − Ak)]; GA
k = αA

k − L−1
f [αA

k − (P −Nk)];3

Nk+1 = sλ/(μLf)(G
N
k);Ak+1 = d1/(μLf)(G

A
k);4

tk+1 =
1+

√
4t2

k
+1

2
,μk+1 = max(ημk, μmax);5

k = k + 1;6

until convergence ;7

Output : (Ak+1Nk+1).

After theoretical discussions, we will show how to use the powerful LRSL
method to solve some practical problems. In the next section, we propose an il-
lumination decomposition algorithm based on the PCP model.

4.2 Illumination Decomposition via LRSL

Decomposing the global illumination from material is a hot topic in the areas of
graphics and image processing. The key framework for illumination decomposition
always subjects to the basic illumination equation:

I = M × L. (23)

362 Y. Deng, Q. Dai, and Z. Zhang

In (23), I is the pixel on the image; M represents the material reflectance and L
denotes the intensity of illumination. In practice, only the pixel value of I are avail-
able. Illumination decomposition refers to recovering two variables (i.e. M and L)
from only one equation. This is an ill-posed problem. However, this problem can be
efficiently solved from the perspective of low rank structure learning.

The first column in Fig.6 shows a number of images of Taj Mahal collected from
the Internet. These photos are taken from different views, at different time and un-
der different illuminations. However, there is one thing in common for these photos.
They all show the same scene, i.e. the Taj Mahal. If we stack the material reflectance
of images as a matrix, it should be low-rank because the material reflectance is
similar of the same scene. However, it is impossible to assemble these material re-
flectance. The only information available is the pixel value while not the reflectance.
Fortunately, based on low rank structure learning, it is possible to use the low rank
prior of the reflectance matrix to conduct the illumination decomposition.

Consider a matrix I which is developed by stacking pixel values of the scene as
rows. Then, we perform the natural logarithm on the pixel matrix,

log I = logM︸ ︷︷ ︸
low rank

+ logL︸ ︷︷ ︸
noise

. (24)

Compare to the basic model in (20), logI , logM and logL correspond to P , A and
N , respectively. Because they share the similar material reflectance in common,
logM should be low rank. Theoretically, it is a rank one matrix. The global illu-
mination logL is regarded as the noise added to the low-rank matrix. Due to this
property, it is possible to decompose the illumination (logL) from a low rank matrix
(logM) via optimization introduced in Algorithm 3.

For implementation, we introduce the detailed procedures to construct the pixel
matrix I in Fig.6. First, the foreground scene is segmented from the background.
Then, the histogram statistic is made. According to the histogram distribution, q

Fig. 6 The overview of pixel matrix development.

An Overview of Computational Sparse Models and Their Applications 363

(a) Taj Mahal under global
illumination.

(b) Taj Mahal with illumination de-
composition.

(c) Great wall under global
illumination.

(d) Great wall with illumination de-
composition.

Fig. 7 Global illumination decomposition via low rank structure learning.
(Best viewed in color.)

pixels 3 located around the peak are obtained. These q pixels are considered as the
most representative values of the scene. These pixels are written in the form of a
vector Ii, where the subscript i implies that this vector is from the ith image. By
stacking sampling data of each image, we obtain the image matrix, i.e. I ∈ Rq×n.

After constructing the pixel matrix from n images, the PCP algorithm is imple-
mented on the matrix to learn the low-rank matrix (logM) from noise(logL). For
these color images, the red, green and blue channels are computed separately. From
the experimental result, the recovered rank of the material matrix is definitely equiv-
alent to one, which verifies the theoretical analysis. When getting the estimation of
lighting (L) and material (M), it is not a difficult task to remove the illumination
from the image. We follow the idea in [73] to remove the illuminations. Fig.7 shows
the illumination decomposition result for the Taji Mahal and the Great Wall.

The effectiveness of illumination decomposition by PCP could be verified from
the comparisons between Fig.7(a) and Fig.7(b). In Fig.7(a), Taj Mahal is rendered
by the global purple illumination. After decomposition, Taj Mahal turns to be white.
The decomposition effects can also be demonstrated from the comparison between
Fig.7(c) and Fig.7(d). The Great Wall is illuminated with the setting sun. The white

3 q is selected as 100 in this experiment.

364 Y. Deng, Q. Dai, and Z. Zhang

wall is rendered to be yellow. After illumination decomposition, the great wall turns
to be white in Fig.7(d). The yellow cloud in Fig.7(c) also changes to be white in
Fig.7(d).

5 Discussions on Future Works

In this chapter, we reviewed some state-of-the-art sparse models. We discussed the
computational approaches to solve these models with convex optimization and also
introduced some interesting applications of these models for artificial intelligence,
signal processing and machine learning. Although sparse models have achieved sig-
nificant progresses during the last decade, there are still some challenges and open
problems for this hot topic. At the end of this chapter, we discuss some directions
that deserve future efforts from the following three perspectives.

Theoretical perspective: All the models reviewed above are solved based on the
�1 heuristic approach that we use �1 norm to approximate the essential �0 sparsity.
This is because �1 norm is the convex envelop of the �0 norm. In optimization, con-
vex objective greatly facilitate the computations and naturally owns a number of
sound properties. However, recent works in [74, 75] indicate that some non-convex
surrogate may further improve the performance and robustness for sparse optimiza-
tion. This is because these terms, although not convex, are much closer approxima-
tions to �0 norm rather than the convex �1 norm. But these non-convex optimizations
can only be solved by some non-convex optimization strategies. Besides, by �1 op-
timization, the converged point is the global optimum since the objective is convex.
But with some non-convex objective, the convergence of the algorithm should be
further justified. In [26], we use the log-sum term to replace the �1 norm for low
rank structure learning. But we could only prove that the converged point is a sta-
tionary point. Therefore, using non-convex surrogates for sparse optimization and
constructing their theoretical guarantees are still worth great efforts.

Computational perspective: Thanks to the advanced convex optimization algo-
rithms, sparse optimization for most vectors and matrices of relative small scale can
be finished in almost real time. But the dimensionality of data is expanding in an
unexpected rate that many practical applications need to solve an optimization with
large scale vectors, e.g. for gene data. Therefore, finding fast optimization strate-
gies is becoming more and more important. Some recent works try to linearize the
quadratic penalty in sparse optimization and add a proximal term to accelerate the
convergence [76, 77]. Such linearized methods show promising results on the tasks
of nuclear norm minimization and on the low rank representation[30]. To our knowl-
edge, many more works are now contributing to the topic of large scale sparse signal
optimization by the researchers in the field of applied mathematics, signal process-
ing and machine learning. We hope and believe that such bottleneck will be broken
in the not too far future.

System perspective: Although solid theoretical guarantees for compressive sens-
ing have been established on textbooks, there are hardly practical systems realized
in the real industry. We have reviewed some conceptual systems [55, 54] in this

An Overview of Computational Sparse Models and Their Applications 365

chapter. However, they are only laboratory models. It is desired to generalize the
power of sparse models to real world systems for signal processing, data compres-
sion, knowledge representation and machine learning. It is our great honor to see
that this chapter may inspire related researchers to contribute their intelligences to
implementing sparse models in real world devices and systems. We hope the gap
between theory and practice will be filled in the not far future.

Acknowledgments. This work was supported by the National Basic Research Project
(No.2010CB731800) , the Key Project of NSFC (No. 61035002) and the Science Fund for
Creative Research Groups of NSFC (No. 60721003). Yue Deng was partially supported by
the fellowship of Microsoft Research Asia, 2010.

References

1. Turing, A.: On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society 2, 230 (1937)

2. Herken, R.: The universal Turing machine: a half-century survey, vol. 2. Springer
(1995)

3. Hodges, A.: Alan turing: the enigma, Vintage, London, UK (1984)
4. Hu, S., Stead, M., Dai, Q., Worrell, G.: On the recording reference contribution to eeg

correlation, phase synchorony, and coherence. IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics 40(5), 1294–1304 (2010)

5. Hu, S., Stead, M., Worrell, G.: Automatic identification and removal of scalp reference
signal for intracranial eegs based on independent component analysis. IEEE Transac-
tions on Biomedical Engineering 54(9), 1560–1572 (2007)

6. Chen, G., Tang, J., Leng, S.: Prior image constrained compressed sensing (piccs): a
method to accurately reconstruct dynamic ct images from highly undersampled projec-
tion data sets. Medical Physics 35, 660 (2008)

7. Lustig, M., Donoho, D., Pauly, J.: Sparse mri: The application of compressed sensing
for rapid mr imaging. Magnetic Resonance in Medicine 58(6), 1182–1195 (2007)

8. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data rep-
resentation. Neural computation 15(6), 1373–1396 (2003)

9. Niyogi, X.: Locality preserving projections. In: Advances in Neural Information Pro-
cessing Systems 16: Proceedings of the 2003 Conference, vol. 16, p. 153. The MIT
Press (2004)

10. Deng, Y., Dai, Q., Wang, R., Zhang, Z.: Commute time guided transformation for fea-
ture extraction. Computer Vision and Image Understanding 116(4), 473–483 (2012),
http://www.sciencedirect.com/science/
article/pii/S1077314211002578

11. Deng, Y., Dai, Q., Zhang, Z.: Feature extraction using randomwalks. In: IEEE Youth
Conference on Information, Computing and Telecommunication, YC-ICT 2009, pp.
498–501. IEEE (2009)

12. Deng, Y., Liu, Y., Dai, Q., Zhang, Z., Wang, Y.: Noisy depth maps fusion for multiview
stereo via matrix completion. Submitted to IEEE Journal of Selected Topics in Signal
Processing (2012)

13. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4),
1289–1306 (2006)

http://www.sciencedirect.com/science/article/pii/S1077314211002578
http://www.sciencedirect.com/science/article/pii/S1077314211002578

366 Y. Deng, Q. Dai, and Z. Zhang

14. Candès, E.: The restricted isometry property and its implications for compressed sens-
ing. Comptes Rendus Mathematique 346(9-10), 589–592 (2008)

15. Baraniuk, R.: Compressive sensing lecture notes. IEEE Signal Processing Maga-
zine 24(4), 118–121 (2007)

16. Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems. IEEE Journal of Se-
lected Topics in Signal Processing 1(4), 586–597 (2007)

17. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Transactions on Information
Theory 52(2), 489–509 (2006)

18. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 67(2), 301–320 (2005)

19. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with
the lasso. The Annals of Statistics 34(3), 1436–1462 (2006)

20. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological) 58(1), 267–288 (1996),
http://www.jstor.org/stable/2346178

21. Vinje, W., Gallant, J.: Sparse coding and decorrelation in primary visual cortex during
natural vision. Science 287(5456), 1273 (2000)

22. Tipping, M.: Sparse bayesian learning and the relevance vector machine. The Journal
of Machine Learning Research 1, 211–244 (2001)

23. Fazel, M.: Matrix rank minimization with applications. Ph.D thesis. Stanford University
(March 2002)

24. Candès, E., Recht, B.: Exact matrix completion via convex optimization. Foundations
of Computational Mathematics 9(6), 717–772 (2009)

25. Candes, E., Plan, Y.: Matrix completion with noise. Proceedings of the IEEE 98(6),
925–936 (2010)

26. Deng, Y., Dai, Q., Liu, R., Zhang, Z.: Reweighted scheme for low-rank structure learn-
ing via log-sum heuristic recovery. Submitted to IEEE Transactions on Neural Network
and Learning System (2012)

27. Candes, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal
of the ACM 59(3), 1–37 (2011)

28. Zhou, Z., Li, X., Wright, J., Candes, E.J., Ma, Y.: Stable principal component pursuit.
In: Proceedings of International Symposium on Information Theory (June 2010)

29. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In:
International Conference on Machine Learning, pp. 663–670 (2010)

30. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace struc-
tures by low-rank representation. Appear in IEEE Transactions on Pattern Analysis and
Machine Intelligence (2012)

31. Wainwright, M., Jordan, M.: Graphical models, exponential families, and variational
inference. Foundations and Trends R© in Machine Learning 1(1-2), 1–305 (2008)

32. Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Transactions on Signal
Processing 56(6), 2346–2356 (2008)

33. Zhou, M., Wang, C., Chen, M., Paisley, J., Dunson, D., Carin, L.: Nonparametric
bayesian matrix completion. In: 2010 IEEE Sensor Array and Multichannel Signal Pro-
cessing Workshop (SAM), pp. 213–216. IEEE (2010)

http://www.jstor.org/stable/2346178

An Overview of Computational Sparse Models and Their Applications 367

34. Combettes, P.L., Pesquet, J.-C.: Proximal thresholding algorithm for minimization over
orthonormal bases. SIAM Journal on Optimization 18(4), 1351–1376 (2007),
http://link.aip.org/link/?SJE/18/1351/1

35. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear in-
verse problems. SIAM J. Image Science 2(1), 183–202

36. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. Submitted to Mathematical Programming

37. Boyd, S.: Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in Machine Learning 3(1), 1–122
(2010)

38. Ganesh, A., Lin, Z., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast algorithms for recovering
a corrupted low-rank matrix. In: Proceedings of International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP) (December 2009)

39. Toh, K.: An accelerated proximal gradient algorithm for nuclear norm regularized linear
least squares problems. Engineering 117543(3), 1–31 (2009)

40. Nesterov, Y.: A method of solving a convex programming problem with convergence
rate o(1=k2). Soviet Mathematics Doklady 27(2), 372–376 (1983)

41. Candès, E.: The restricted isometry property and its implications for compressed sens-
ing. Comptes Rendus Mathematique 346(9-10), 589–592 (2008)

42. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted
isometry property for random matrices. Constructive Approximation 28(3), 253–263
(2008)

43. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: Univer-
sal encoding strategies? IEEE Transactions on Information Theory 52(12), 5406–5425
(2006)

44. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal recon-
struction from highly incomplete frequency information. IEEE Transactions on Infor-
mation Theory 52(2), 489–509 (2006)

45. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing 20(1), 33–61 (1999)

46. Yang, A., Sastry, S., Ganesh, A., Ma, Y.: Fast 1-minimization algorithms and an appli-
cation in robust face recognition: A review. In: 17th IEEE International Conference on
Image Processing (ICIP) 2010, pp. 1849–1852. IEEE (2010)

47. Bruckstein, A., Donoho, D., Elad, M.: From sparse solutions of systems of equations to
sparse modeling of signals and images. SIAM Review 51(1) (2009)

48. Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems. IEEE Journal of Se-
lected Topics in Signal Processing 1(4), 586–597 (2007)

49. Kim, S., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for
large-scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Pro-
cessing 1(4), 606–617 (2007)

50. Osborne, M., Presnell, B., Turlach, B.: A new approach to variable selection in least
squares problems. IMA Journal of Numerical Analysis 20(3), 389–403 (2000)

51. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for lin-
ear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics 57(11), 1413–1457 (2004)

52. Donoho, D.: De-noising by soft-thresholding. IEEE Transactions on Information The-
ory 41(3), 613–627 (1995)

53. Avron, H., Sharf, A., Greif, C., Cohen-Or, D.: l1-sparse reconstruction of sharp point
set surfaces. ACM Transactions on Graphics (TOG) 29(5), 135 (2010)

http://link.aip.org/link/?SJE/18/1351/1

368 Y. Deng, Q. Dai, and Z. Zhang

54. Mishali, M., Eldar, Y.: From theory to practice: Sub-nyquist sampling of sparse wide-
band analog signals. IEEE Journal of Selected Topics in Signal Processing 4(2),
375–391 (2010)

55. Duarte, M., Davenport, M., Takhar, D., Laska, J., Sun, T., Kelly, K., Baraniuk,
R.: Single-pixel imaging via compressive sampling. IEEE Signal Processing Maga-
zine 25(2), 83–91 (2008)

56. Rätsch, G., Demiriz, A., Bennett, K.: Sparse regression ensembles in infinite and finite
hypothesis spaces. Machine Learning 48(1), 189–218 (2002)

57. Suykens, J., Lukas, L., Vandewalle, J.: Sparse approximation using least squares sup-
port vector machines. In: Proceedings the 2000 IEEE International Symposium on Cir-
cuits and Systems, ISCAS 2000 Geneva., pp. 757–760 (2000)

58. Tan, M., Wang, L., Tsang, I.: Learning sparse svm for feature selection on very high
dimensional datasets. In: Proceedings of the 27th International Conference on Machine
Learning (ICML 2010), pp. 1047–1054 (2010)

59. Deng, Y., Dai, Q., Zhang, Z.: Graph lalapce for occluded face completion and recogni-
tion. IEEE Transactions on Image Processing (99), 1–1 (2011)

60. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2),
210–227 (2009)

61. Cheng, B., Yang, J., Yan, S., Huang, T.: Learning with l1 graph for image analysis.
IEEE Transactions on Image Processing 19(4), 858–866 (2010)

62. Cheng, H., Liu, Z., Yang, J.: Sparsity induced similarity measure for label propagation.
In: 2009 IEEE 12th International Conference on Computer Vision, pp. 317–324. IEEE
(2009)

63. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Review 52(3), 471–501 (2010)

64. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave
an information tapestry. Communications of the ACM 35(12), 61–70 (1992)

65. Biswas, P., Lian, T.C., Wang, T.C., Ye, Y.: Semidefinite programming based algorithms
for sensor network localization. ACM Transactions on Sensor Networks 2(2), 188–220
(2006)

66. Wang, J., Dong, Y., Tong, X., Lin, Z., Guo, B.: Kernel nyström method for light trans-
port. ACM Transactions on Graphics (TOG) 28(3), 29 (2009)

67. http://media.au.tsinghua.edu.cn/cmvs.jsp
68. Zhang, Z., Liang, X., Ganesh, A., Ma, Y.: Tilt: transform invariant low-rank textures.

In: Computer Vision–ACCV 2010, pp. 314–328 (2011)
69. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Rasl: Robust alignment by sparse and

low-rank decomposition for linearly correlated images. In: 2010 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 763–770. IEEE (2010)

70. Zhang, C., Liu, J., Tian, Q., Xu, C., Lu, H., Ma, S.: Image classification by non-negative
sparse coding, low-rank and sparse decomposition. In: 2011 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1673–1680. IEEE (2011)

71. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2009, pp. 2790–2797. IEEE (2009)

72. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace separation
in the presence of outlying, incomplete, or corrupted trajectories. In: IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

73. Hsu, E., Mertens, T., Paris, S., Avidan, S., Durand, F.: Light mixture estimation for
spatially varying white balance. In: ACM Transactions on Graphics (TOG), vol. 27(3),
p. 70. ACM (2008)

http://media.au.tsinghua.edu.cn/cmvs.jsp

An Overview of Computational Sparse Models and Their Applications 369

74. Candes, E.J., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted �1 minimization.
J. Fourier Anal. Appl., 877–905 (2007)

75. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Statis-
tic. Soc. B 67, 301–320 (2005)

76. Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty
for low-rank representation. In: NIPS 2011 (2011)

77. Yang, J., Yuan, X.: Linearized augmented lagrangian and alternating direction methods
for nuclear norm minimization. To appear in Math. Comp. (2011)

MiTS in Depth: An Analysis of
Distinct Tabu Search Configurations
for Constructing Mixed Covering
Arrays

Loreto Gonzalez-Hernandez, Jose Torres-Jimenez,
and Nelson Rangel-Valdez

Abstract. Alan turing work is related with the first use of heuristic algo-
rithms. His work on broking the Nazi code of the Enigma cipher was oriented
by a guided search whose expected result in most of the times would be the
deciphering of the codes, even though sometimes it might not work. This
idea reflects the modern meaning of an heuristic, and represents the main
relationship with this chapter, as it involves the use of metaheuristics to try
to guide the search to find a solution faster, or a better solution of a problem.
The metaheuristic is Tabu Search (TS), and it is used to solve the Mixed Cov-
ering Array Problem (MCAP). This problem focuses on the construction of
optimal test sets for software testing. The metaheuristic is designed through
a fine tuning process that involves the parameters: initialization function,
tabu list size, stop criterion, and neighborhood functions. The contributions
are: a) a more robust fine tune process to design a new TS approach; b) the
analys is of parameter values of the TS; and, c) new bounds over a benchmark
reported in the literature.

1 Introduction

AlanTuring is considered one of the founders of theComputer Science, someone
who brought to us the first formalization of the concept of an algorithm through

Loreto Gonzalez-Hernandez · Jose Torres-Jimenez
CINVESTAV-Tamaulipas, Km. 5.5 Carretera Cd. Victoria-Soto la Marina, 87130,
Cd. Victoria Tamps., Mexico
e-mail: agonzalez@tamps.cinvestav.mx,jtj@cinvestav.mx

Nelson Rangel-Valdez
Universidad Politécnica de Victoria, Km. 5.5 Carretera Cd. Victoria-Soto la Marina,
87138, Cd. Victoria Tamps., Mexico
e-mail: nrangelv@upv.edu.mx

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 371–402.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

agonzalez@tamps.cinvestav.mx, jtj@cinvestav.mx
nrangelv@upv.edu.mx

372 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

the Turing machine, presented in his ground-breaking paper entitled: On com-
putable numbers, with an application to the Entscheidungsproblem [45].

Alan Turing had worked in many research areas concerning Artificial In-
telligence (AI), or Cryptography. However, the main relationship with the
present work is related with one of the first uses of the term heuristics. It
is well known that Alan Turing was one of the main contributors for the
break-out of the German Enigma ciphers at Bletchley Park. Turing himself
was found in the task of solving problems by means of searching through
the space of possible solutions, guided by rule-of-thumb principles; this idea
received the name of heuristic search and can be seen as a set of shortcuts
to find a solution that is believed as correct. Nowadays, the term represents
part of the foundations that rule the modern AI, as it is the base of most of
the techniques (which have evolved into metaheuristics) used in the modern
phenomenon that is trying to emulate partially what is called the machine
learning. Therefore, the use of the Tabu Search metaheuristic to guide the
sear ch of a solution for the problem of designing optimal test, can be seen as
the result of the evolution and impact over the informatic society, produced
by the first application of a search called heuristic, which was done by Alan
Turing.

Software systems are used in many areas of our society, e.g. they are in
education, business, medicine, government, airlines etc., so a failure in them
can lead to large losses, as in the case of the Ariane 5 rocket, which exploded
37 seconds after launch because of a malfunction in the control software [32].
This scenario reflects the importance of paying special attention in the reli-
ability of the software.

The first formal report about the impact of failures in software was due
to the National Institute of Standard and Technologies (NIST) in 2002 [42].
This report showed that failures in software coasted over 60 billions, but
that an important saving of 22 billions could be achieved if more adequate
software testing schemes were developed; ten years after this publication, it
continues being a point of reference for many related research works [26, 27].
In addition, more recent reports have appeared bringing information about
how failures in software still affect the industry of informatics. For example,
Coverity, a leader company in development testing1, carried out a study that
reported high-risk deffects in the kernel of the Android Operative System2.
Indeed, And roid is a platform widely used by mobile technology that still has
several bugs, situation that shows fault detection as one of the main concerns
in software development. Based on this fact, it can be seen the importance
of an adequate testing process.

Software testing has the aim to detect failures of system components, in
this way, the bugs can be corrected before the software begins to be used. The
1 http://www.coverity.com/
2 Coverity Scan: 2011 Open Source Integrity Report

http://www.coverity.com/library/pdf/coverity-scan-2011-open-source-integrity-
report.pdf

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 373

greater the number of failures found, the testing process will be more effec-
tive. Many software testing methods have been proposed, which are target to
detect several types of failures that can be effective for certain testing scenar-
ios. Given this view there are two basic strategies that can be used to design
test cases. These are called white box (sometimes called clear or glassbox) and
the black box (sometimes called functional or specification) test strategies [4].
The white box approach focuses on the inner structure of the software, i.e. is
related to the source code, verifying its correct functionality. On the contrary,
black box testing takes an external perspective of the test object to derive
test cases. The test designer selects valid and invalid inputs and determines
if the output is the one that was expected, based on the input configuration.
In this approach there is no knowledge of the test object’s internal structure
(i.e., how it works). The tester only has knowledge of what it does. In this
chapter, software testing assumes to the black box strategy.

The stage of testing is carried out through test cases that involve the
execution of a software with parameters and values. A parameter is defined
as an element of software that serves as input, receiving an unique value from
a set of possible values. In this context, it is assumed that exists a software
which can be constituted by components or modules, every component (or
module) has a set of k parameters, each parameter receives a unique input
value from a possible set of v values. A test case (or configuration) indicates
the values that have to be set up in each of the k parameters to execute a run.
The term interaction between parameters or interactions of size t is referred
to the set of combinations of values that exists between these t parameters.
If each parameter has v possible values, there are vt different combinations.

It would be ideal to test all possible input configurations during the stage
of testing, unfortunately this approach is most times infeasible, in terms of
time and budget, in fact, Hinch et al. [21] comment that sometimes this stage
consumes more than the half of the total cost of the development, likewise
Hartman [20] affirms that it is more than 80%. Therefore to carry out the
verification in an exhaustive way, generally uses excessive resources. To clarify
this point, suppose that we want to test a system that has 12 parameters
each with 4 possible values, for testing all the combinations it is necessary
to use 412 = 16, 777, 216 test cases. This quantity is too large for practical
purposes. In the same way, when the number of values of each parameter
increases, also the total number of configurations grows exponentially. For
this reason, another alternative has to be taken in order to conduct the tests
using the minimum of possible cases and t he maximum coverage.

Recent studies have shown that close to 100% of the known failures of dif-
ferent kinds of software were triggered with interactions among 6 parameters
[28], this means that it is possible to construct an effective test set, if it con-
tains all the interactions of size 6. In this way, the overall number of test cases
can be reduced significantly. Combinatorial Testing (CT) is an approach that
can be used for software testing based on the results of these studies. The
main advantage is that the test suite constructed by this approach offers a

374 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

certain degree of coverage, i.e. all configurations between t parameters ap-
pear (at least once) in every t-sub-set of the test suite, so if a failure of the
software under test (SUT) is produced for a specific combination of values
between t parameters, this combination will be included in the test suite.

Under this criterion, instead of using 412 = 16, 777, 216 test cases (by the
exhaustive approach) it would require 46 = 4, 096 tests [9]. It represents a
decrease of over 99% in the size of this test suite, therefore CT is an acceptable
approach that influences in the cost of the tests and the required degree
of coverage [49]. CT uses combinatorial objects to represent the test suite,
the most common are Covering Arrays (CAs) and Mixed Covering Arrays
(MCAs). CAs and MCAs are matrices of size N ×k where each row indicates
a test case and the columns represent the k parameters of the software.

There is a great variety of approaches in the literature used to construct
CAs [29, 30, 31]. However, only a few of them address the more general
problem of constructing MCAs. Due to this situation, this chapter presents
the analysis of two of the most recent implementations of the Tabu Search
(TS) algorithm created for this purpose (constructing MCAs) with the goal
of designing an experiment through which a better implementation can be
used to construct MCAs. The analysis includes the study of different values
of parameters for the TS algorithm.

To the best of our knowledge, the most recent approaches used to con-
struct MCAs are the TS algorithms with a mixture of neighborhood functions
(called MiTS), which are reported in [18, 17], and the tool ACTS from the
NIST [26]. The following points were observed from the analysis of [18, 17]
as areas of opportunity: a) the granularity of the mixture in the neighbor-
hood function was not uniform, and then it can be standardized; b) there
are different types of functions to create the initial solution, so all of them
were considered at once; c) the mixture of neighborhood functions is het-
erogeneous, so it was designed a fine tuning process that considered all the
functions. The benchmark presented in [26] was used to evaluate the per-
formance of the TS approach proposed in this chapter, as a result from the
analysis of the previous reported techniques.

The main reason to develop the research presented in this chapter was
derived from the results of the study over the TS implementations found in
[18, 17], which lack of a deeper analysis. Moreover, both strategies present
potential areas of opportunity because their respective experimental designs
involved different parameters, so they can be combined into one more robust
fine tuning process in order to design a better TS implementation. Given that
all these implementations are based on a mixture of neighborhood functions
(including the one propose here) all of them will be referred as MiTS.

In general, the research works about MiTS do not present an analysis about
the individual behavior or contribution of each parameter of the TS algorithm
over the quality of the solution. Additionally, they do not contemplate an anal-
ysis of the new benchmark published in a recent research work of the NIST.
Finally, the ACTS tool (which firstly began as the deterministic strategy IPO,

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 375

and after that became the non deterministic algorithm IPOG-F) is still widely
used in scientific literature. This tool was developed by NIST researchers,
and recently it has been used to design the test sets of a platform for smart
phone apps, named Android [26]; this benchmark is used in this chapter for
comparison.

Summarizing, the main purpose of this chapter is to point out some of the
weaknesses in the values considered by previous approaches. The research
question that guide the study focused in the construction of a better MiTS
design through a more robust fine tuning of the parameters of the most recent
TS approaches implemented to solve the Mixed Covering Array construction
Problem (MCAP). In other words, this chapter characterizes the previous
reported strategies, called MiTS, that have been used to construct MCAs;
and exploits the results from the characterization in favor of the design of a
better MiTS design, which is used to create new bounds in a new benchmark
reported in [26].

In order to guide the information presented in this chapter, its organiza-
tion has been structured in the following way. Firstly, a brief summary of the
most relevant strategies for the present research are analyzed in Section 2.
After that, Section 3 presents a formal definition of the problem of construc-
tion of MCAs, including some of the basic acronyms that are used during
the chapter. The structure continues in Section 4 with the characterization
of the parameters of the TS approach proposed in this chapter; specifically,
the initial solutions, the stop criterion, the number of evaluations, the neigh-
borhood functions, and the tabu list size are presented and defined. The
following expected step is to fine tune the parameters of the TS combining
the different parameters reported in the recent scientific literature, in order to
produce a better MiTS design, this activity is presented in Section 5, which
concludes with the analysis of the individual behavior of the different values
of the parameters of TS, and the comparison of the resulting MiTS against
a benchmark derived from a research work done by the NIST. Finally, in
Section 6 are summarized the main conclusions derived from this research.

2 Related Work

This section gives a brief state-of-the-art of the construction strategies of CAs
and MCAs. Also, it is presented a summary of the representative approaches
that are of interest for the present research (used for experimental compar-
isons). Finally, two recent works that were used for analysis and design of the
proposed approach are presented at the end of this section.

The problem to construct CAs with the minimum possible number of rows
is known in the literature as the Covering Array Construction (CAC) prob-
lem. It consist in given as input k parameters with v possible values and a t
size of interaction between them; obtain the minimum possible N rows. This
problem is a highly combinatorial and hard to solve for exact approaches.

376 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

Nevertheless there are some special cases where can be used direct methods
to construct CAs in polynomial time.

The case t = v = 2 was solved firstly by Reyni [36] for even values of k, after
by Katona [24] and Kleitman and Spencer [25] for any value of k. Bush [5]
reported a method that uses Galois Finite Fields to construct CA(v2; 2; v +
1; v) where v is a prime or a power of prime and t < v. Another direct
method that can construct some optimal CAs is named Zero-sum [12], it
leads to CA(vt; t, t + 1, v) for any t > 2.

Another methods that have been developed to construct CAs are: a) al-
gebraic methods [23, 10], b) recursive methods [14, 13], c) greedy methods
[15, 2], d) metaheuristics [44, 43] and e) exact methods [1, 48]. Recently, the
post-optimization process [19, 34] is an alternative that has been used to im-
proved the size of some CAs and MCAs constructed by other strategies. A
most detailed explanation of all these methods can be found in recent surveys
[29, 30, 31].

Some of the metaheuristics that have been implemented to construct CAs
including Simulated Annealing [33, 43], Tabu Search (TS) [35, 22, 50], Hill
Climbing (HC) [8], Great Deluge (GD) [3], and those in the category of
artificial life algorithms such as Genetic Algorithms (GA) [40], Memetic Al-
gorithms [38] and Ant Colony Optimization Algorithm (ACO) [39]. Some of
the best reported result of these metaheuristics have been constructed by SA
and TS.

Table 1 presents a summary of research works that have used strategies for
the construction of CAs and MCAs, which are of interest for this research.

Table 1 Some approaches for the construction of MCAs used as benchmarks in
this research work.

Approach Year Reference

Tconfig 1996 [47]
AETG 1997 [7]
TCG 1997 [7]
IPO 2002 [41]
SA 2003 [8]
GA 2004 [39]

ACO 2004 [39]
DDA 2004 [11]
TS 2010 [18]
TS 2010 [17]

ACTS 2010 [26]

The main features of the TS approach presented in Table 1 are: a) the
functions I to create the initial solution; b) the size of tabu list T ; c) the
maximum number of evaluations E ; and d) the probabilities ρ to use the
neighborhood functions N . Table 2 presents the codification for each of them.

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 377

Table 2 Main features of the TS approaches presented in [18, 17].

Code Description

Initialization functions
I1 Random initialization
I2 Hamming distance
I3 Subsets of t columns

Tabu list sizes
T 1 N ∗ k ∗ vmax/8
T 2 N ∗ k ∗ vmax/10
T 3 N ∗ k ∗ vmax/12

Maximum number of evaluations
E1 N ∗ k ∗ vmax

t*100
E2 N ∗ k ∗ vmax

t*150
E3 N ∗ k ∗ vmax

t*200

Neighborhood funtions
N 1 Select randomly a position (i, j) of the matrix
N 2 Select randomly a column i of the matrix
N 3 Change each cell of the matrix
N 4 Coverage of a missing combination

Table 3 Different configurations of parameter values used for TS Approaches. A
symbol x denotes that it was considered in the approach.

Research work I1 I2 I3 T 1 T 2 T 3 E1 E2 E3 N 1 N 2 N 3 N 4

TS [18] x x x x x x x x x x x
TS [17] x x x x x x

Proposed Approach x x x x x x x x x x x

Table 3 indicates where these features have been used, and how a combination
of them was implemented in the design presented in our proposal approach.

3 Mixed Covering Array Problem

The purpose of this section is to present the basic notation to be used during
the chapter, that is related with the definition of the problem that is object
of study in this research.

If a software system has k parameters each with v possible values, it would
take vk configurations if it wants to be tested in an exhaustive way. However
another method called combinatorial testing (CT) can be used [6]. The main

378 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

goal of this approach is to find the minimum possible number of tests which
satisfies the indicated coverage.

The combinatorial structures used are described as follows: An orthogonal
array (OA), denoted by OAλ(N ; t, k, v), is an N × k array on v symbols such
that every N × t sub-array contains all the ordered subsets of size t from v
symbols exactly λ times. Orthogonal arrays have the property that λ = N

vt .
When λ = 1, it can be omitted from the notation and the OA is optimal. An
orthogonal array OA(N ; t, k, v) is a special type of CA(N ; t, k, v) [5].

A covering array (CA) is a mathematical object, denoted by CA(N ; t, k, v)
which can be described like a matrix with N × k elements, such that every
N×t sub-array contains all possible combinations of vt symbols at least once.
N represents the rows of the matrix, k is the number of parameters, which
has v possible values and t represents the strength or the degree of controlled
interaction [1].

A CA has the same cardinality in all their parameters. However, software
systems are generally composed with parameters that have different cardi-
nalities; in this situation a mixed covering array (MCA) can be used.

A mixed covering array, or MCA(N ; t, k, v1v2 . . . vk), is a N×k array where
v1v2 . . . vk is a cardinality vector that indicates the values for every column
[8]. The MCA has the following properties:

1. Each column i (1 ≤ i ≤ k) contains only elements from a set Si with
|Si| = vi.

2. The rows of each N × t sub-array cover all t -tuples of values from the t
columns at least once.

The shorthand notation MCA(N ; t, k, wr1
1 wr2

2 . . . wrs
s), where k =

∑s
i=1 ri

and wj ∈ {v1, v2, . . . , vk}, for all 1 ≤ j ≤ k, can be used alternatively. The
problem of constructing a given MCA(t, k, v1v2 . . . vk) is called the Mixed
Covering Array problem (MCAP). The minimum N for which there exists a
MCA is called mixed covering array number MCAN(k, t, v1v2 . . . vk).

The previous definitions can be illustrated with a simple instance. Suppose
that we want to verify a Web Service in four different aspects: O.S., Inter-
preter, Protocol and Web browser. The first aspect has three possible values
and the rest of them have two possible values as shown in Table 4. Every
possible value of each parameter is labeled like 0, 1, or 2 as the case.

Table 4 Parameters of a Web Service, The first with three possible values and the
rest with two.

O.S. Interpreter Protocol Web browser

0 → Windows Server Pearl http Firefox
1 → Debian GNU Ajax ftp Chrome
2 → SUN Solaris

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 379

The MCA(6; 2, 4, 3123) is a test suite that covers all interactions between
pairs in the Web Service where every row indicates the configuration of a test
case. The mapping of the MCA to the corresponding software test suite is
shown in Table 5.

Table 5 Mapping of the MCA(6; 2, 4, 3123) to the corresponding pair-wise test
suite.

O.S. Interpreter Protocol Web browser

0 0 1 1 → Windows Server Pearl ftp Chrome
0 1 0 0 → Windows Server Ajax http Firefox
1 0 0 1 → Debian GNU Pearl http Chrome
1 1 1 0 → Debian GNU Ajax ftp Firefox
2 0 1 0 → SUN Solaris Pearl ftp Firefox
2 1 0 1 → SUN Solaris Ajax http Chrome

4 Proposed Approach

The goal of this section is to describe the proposed TS design studied in this
chapter, and to discuss the characteristics and parameter values that define
it.

The Tabu Search (TS) metaheuristic is a local search optimization ap-
proach that copes with different problems of combinatorial optimization [37].
The TS was proposed by Glover and Laguna [16]. The general idea behind
TS is based on a tabu list. The tabu list keeps track of the last movements
done to transform the actual solution s into a new solution s′. Then, every
time that a new solution is created, the solution s must be changed avoiding
the use of the movements found in the tabu list. The tabu list can be defined
as a memory that stores information of forbidden moves; the use of those
moves allows the TS to avoid been stuck in a local optimal solution, because
the new good solution can not be used to create other solutions until they
leave the tabu list. Another distinguishing feature of TS is the aspiration
criteria, which allows the use of movements in the tabu list when they can
create better solutions than the best so far.

The Algorithm 1 shows the pseudocode that guides the design of the TS
approaches presented in this chapter. The elements that define the algorithm
are: a) the initial solution so; b) the tabu list size T ; c) the neighborhood
function N (s, ρ1, ρ2, ρ3, ρ4); d) the evaluation function C(s); and e) the stop
criterion sbest > 0 and e < E .

The key feature of the Algorithm 1 is the use of a mixture of neighborhood
functions to create a neighbor. All the TS approaches presented in this chap-
ter use this feature. For simplicity, we will refer to any of those approaches
as MiTS design in the rest of the document (MiTS stands for TS with a
mixture of neighborhood functions).

380 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

Algorithm 1. General pseudocode for the design of the TS approaches.
s ←so;1

sbest ←s;2

while C(sbest) > 0 and e < E do3

s’ ←F(s,ρ1, ρ2, ρ3, ρ4);4

if C(s’) < C(sbest) then5

sbest ←s’;6

end7

if NotInTabuList(s’) then8

s ←s’;9

UpdateTabuList(s, s’);10

end11

e ←e+NumEvalRequired(s,i);12

end13

The following subsections describe in depth each of the elements
of a MiTS design. The descriptions use a matrix MN×k to represent
MCA(N ; t, k, v1v2 . . . vk). Each cell mi,j ∈ M can take values from
{0, 1, ..., vj − 1}, where vj is the cardinality of the alphabet corresponding
to the parameter j in the instance.

4.1 Creating the Initial Solution

The purpose of this subsection is to describe the different strategies consid-
ered to construct an initial matrix that serves as input for the TS algorithm.
These strategies are common in TS approaches that construct MCAs.

Given the MCAP instance MCA(N ; t, k, v1 . . . vk), a solution s is repre-
sented as a matrix M of size N × k, where the columns are the parameters
and the rows are the cases of the test set that is constructed. Each cell mi,j in
the array accepts values from the set {0, 1, ..., vj − 1}, which is the alphabet
of the jth column.

An initial solution so is a matrix M which not necessary is a MCA but
can be used to construct one by TS. Three techniques were studied for the
construction of so; these are described in the following paragraphs.

The first technique, or I1, randomly selects a value for each cell mi,j ∈ M
to construct so.

The second strategy, denoted by I2, generates so as a random matrix M
having the maximum Hamming distance. The Hamming distance between
two rows Ri, Rj of a matrix M is the number of columns at which the cor-
responding symbols are different. A random matrix M will be of maximum
Hamming distance if it is constructed under the following conditions: a) the
first row R1 is generated at random; b) for each row Ri, where i > 1, two
candidate rows c1, c2 are randomly generated, then the row Ri will be the

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 381

candidate row that maximizes the accumulated Hamming distance H(M, ci),
which is formally defined in Equation 1.

Table 6 exemplifies the evaluation of H(M, ci) and the use of I2 as the
function that initializes the matrix M for a TS approach. Firstly, in the
example it is supposed that the matrix M already has two rows R1, R2.
Then, in order to add the row R3 the function I2 must choose between two
candidate rows generated at random (in this case these rows are {c1, c2}).
Note that the rows R1, c1 have a Hamming distance of 5 and the rows R2, c1

have a Hamming distance of 3 resulting in a value of H(M, c1) = 8, i.e. the
Hamming distances between the candidate row c1 and the rows of the matrix
M is of 8 (see Figure 6(a) for reference). Following the same process with the
candidate row c2, the result is H(M, c1) = 6 (see Figure 6(b) for reference).
Therefore, the candidat e row c1, which has the maximum Hamming distance,
is added to the matrix M as the row R3 (see Figure 6(c) for reference), to
continue the process of creation of the initial solution through the function
I2.

H(M, ci) =

i−1∑
s=1

k∑
v=1

h(ms,v, mi,v),

where ms,v, mi,v ∈ M

and h(ms,v, mi,v) =

{
1 if ms,v �= mi,v

0 otherwise

(1)

Table 6 Initial solution s0 created through the initialization function I2. This
example presents a matrix s0 =M with two rows R1, R2, R3, and the selection of
R3 from {c1, c2}.

(a) Candidate row
c1

M

R1 1 1 1 1 0 1 1 0
R2 1 1 0 1 0 1 1 1
c1 0 1 0 1 1 0 1 1

H(M, c1) = 8

(b) Candidate row
c2

M

R1 1 1 1 1 0 1 1 0
R2 1 1 0 1 0 1 1 1
c2 0 0 0 1 0 1 1 0

H(M, c2) = 6

(c) Resulting matrix
M

M

R1 1 1 1 1 0 1 1 0
R2 1 1 0 1 0 1 1 1
R3 0 1 0 1 1 0 1 1

The third technique, or I3, generates the matrix M using smaller sub-
matrices that already are MCAs. To create those submatrices it follows a
simple process. Initially, we take the first t columns of M and generate all
the combinations of symbols derived from the alphabets of those columns.
After that, each combination is assigned to a different row of M in increas-
ing order starting at row r1. The whole set of combinations is duplicated
as many times as it be necessary to complete the N rows of M. Each time
that a new copy of the set of symbols is required to complete the matrix,
the combinations must be assigned in the same order they were assigned the

382 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

first time. Once that this process is concluded, the first t columns will form
a MCA that is a submatrix of M. After that, we choose the next t columns
in M and proceed in a similar way; we proceed in this way until the matrix
M is completely filled.

Table 7 Initial solution s0 created using initialization function I3, such that the
TS can be used to create the MCA(10; 2, 5, 3322).

(a)

m1

A B

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

(b)

M1

A B C D E

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2
0 0

(c)

m2

C D

0 0
0 1
1 0
1 1
2 0
2 1

(d)

M2

A B C D E

0 0 0 0
0 1 0 1
0 2 1 0
1 0 1 1
1 1 2 0
1 2 2 1
2 0 0 0
2 1 0 1
2 2 1 0
0 0 1 1

(e)

m3

E

0
1

(f)

M3

A B C D E

0 0 0 0 0
0 1 0 1 1
0 2 1 0 0
1 0 1 1 1
1 1 2 0 0
1 2 2 1 1
2 0 0 0 0
2 1 0 1 1
2 2 1 0 0
0 0 1 1 1

Table 7 shows an initial solution matrix so = M for
MCA(10; 2, 5, 3322). The columns of this matrix will be referred as
{A, B, C, D, E}, and its rows by {1, 2, 3, ..., 10}. The first step is the
creation of a submatrix m1 that already is a MCA; given that the MCA
is of strength t = 2, and the first two columns have 3 parameters, the
submatrix created is of size 9 × 2 and has all the symbol combinations
{(0, 0), (0, 1), (0, 2), ..., (2, 2)} (see Table 7(a) for reference). This submatrix
m1 is then added to the columns {A, B} of the matrix M1, starting in the
first row, as shown in Table 7(b). Note the matrix M1 required one more
row, it was taken from the first row of the submatrix m1 created in this
iteration to complete the set. The process is repeated, but this time taking
the following two columns of M, and their alphabets of values v = 3 and
v = 2, respectively (see Tables 7(c) and 7(d) for reference); here, it is shown
the use of the submatrix m2 plus its first four rows to complete the required
rows in the matrix M2 in columns {C, D}. Finally, the third iteration,
involved the submatrix m3 created from the remaining column {E}, which
has an alphabet value of v = 2; this submatrix was copied five times in
M3 to end the construction of the initial matrix s0 = M = M3 using the
method I3. It is important to point out that the submatrices m1, m2, m3 are
already MCAs.

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 383

4.2 Tabu List Definitions

Tabu Search approaches use a list of movements that can’t be made by the
algorithm when constructing a solution. These prohibited movements, also
called Tabu movements, commonly are changes in a solution to produce new
ones. Those changes depend on the problem and the strategy used to solve
it.

In this chapter, a tabu movement is characterized by the tuple
(N , v, i, j, m), i.e. when it happens again that the neighborhood function N
sets the symbol v in the cell mi,j ∈ M and produces exactly the same number
l of missing combination of symbols. A missing combination of symbols, or
just missing, is a combination of symbols that the matrix M doesn’t have in
subset of t columns (or t-tuple) and needs it to become a MCA.

The management of the Tabu movements is generally done through three
main parameters: the expiration criteria, aspiration criteria, and the size of
the tabu list. The expiration and aspiration criteria control the permanence
of the Tabu movements in the list. While the expiration time E rules the
period of time that a movement is considered tabu, the aspiration criterion
A represents exceptions to that rule.

Even though the aspiration criterion allows that good movements become
valid when they are tabu, they are out from the scope of the TS designs
analyzed in this chapter. Hence, we only consider the expiration criterion and
we define it as the number of generated solutions E, i.e. after E neighbors
have been created, a movement in the tabu list will not be prohibited any
longer.

The size of tabu list, or T , is defined by the expiration time E. Only after
E solutions have been generated, a movement will left the tabu list. This
action implies a size for the tabu list of T = E. Therefore, the TS designs
presented in this chapter will define the tabu list only by its size T . Table
2 presents the different values of T studied for MiTS. These values depends
on the size of the matrix M and on vmax =

∏i=t
i=1 wi (where wi is the ith

cardinality of alphabet in decreasing order).

4.3 Neighborhood Functions

The movements that form new solutions comes from the neighborhood func-
tion. A neighborhood function f(s) is a set of movements that allow the
generation of new solutions s′ given a current solution s. The solution s′ is
called a neighbor of s. Whenever some of the movements performed by the
neighborhood function are random, the set of neighbors derived from s are
called the neighborhood and denoted by N (s). When more than one neighbor
are possible, the use of an objective function that evaluates their cost will
decide the one that will be chosen as the new solution s′.

A neighbor is a solution created from another solution through heuris-
tics. The function that creates neighbors is called neighborhood function.

384 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

Different mixtures of four different neighborhood functions were consid-
ered during the design of the different TS considered in this chapter. All
the functions modify the matrix M that represents the solution s for the
MCA(N ; t, k, v1 . . . vk).

In order to describe the neighborhood functions, three sets derived from
an instance MCA(N ; t, k, v1 . . . vk) of the MCAP will be defined as follows:
a) the set C = {c1, c2, ..., cl}, where each of its elements c is a t tuple to be
covered; b) the set A, where each of its elements Ai is a set containing the
combinations of symbols that must be covered in the t tuple ci ∈ C; and c)
the set R = {r1, ..., rN}, where each element ri ∈ R will be a test set of
the MCA that will be constructed. The cardinality l = |C| is given by the
expression

(
k
t

)
. The cardinality |Ai| of each Ai ∈ A is given by |{0, 1, ..., vi −

1}|, where vi is the cardinality of the alphabet of column i in the MCA
that is constructed. The cardinality of the set R is N , the expected number
of rows in the MCA. Table 8 co ntains the sets C,A,R derived from the
MCA(10; 2, 5, 3322) instance shown in Table 7.

The function N1(s) randomly chooses a position (i, j) of the matrix M
and carries out all the possible changes of symbol in that cell. This function
has vj − 1 possible neighbors.

The neighborhood function N2 works directly over the test set R that is
being formed. This function randomly selects a column or parameter from
the test set (which in our case will be a value 1 ≤ j ≤ k). After that, for each
different test case ri ∈ R, the function N2 changes the symbol at ri,j , where
j is the jth symbol in ri ∈ R, and evaluates the number of missing symbol
combinations. In this neighborhood function, every possible change of symbol
in ri,j is made. The number of calls to the evaluation function performed in
N2 are O((vj −1) ·N), because there are vj −1 possible changes of symbols in
column j and there are N different test cases. The neighborhood function N2

will choose to change the symbol at ri,j to v′ if changing the jth symbol in
test case ri for the symbol v′ minimizes the number of missing combin ations
among all the other possible changes of symbols performed by the function.

The neighborhood function N3 is a generalization of the function N2 in
the sense that it performs all the changes of symbols in the whole test set R.
Again, the change of symbol that minimizes the number of missing combina-
tions will be the one chosen by this function to create the new neighborhood.
The number of evaluations of the objective function performed by this neigh-
borhood function is O((vj − 1) · N · k).

Finally, the neighborhood function N4 consists in two phases. The first
phase searches for a t tuple c′ ∈ C such that it contains at least one symbol
combination a′ missing. To do that, the function N1 randomly chooses a t
tuple ci ∈ C to start with. Then, it checks if ci has a symbol combination
a ∈ Ai not covered yet. If the neighborhood function N1 fails in its first try,
it takes the next combination in order ci+1 if i + 1 <

(
k
t

)
otherwise it takes

c1. This process continues until a non-covered t tuple c′ is found, and one of
its missing symbol combination is identified, denoted by a′.

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 385

Table 8 Example of the sets C,A,R derived from instance MCA(10; 2, 5, 3322)
shown in Table 7.

C ← {c1 = (A, B), c2 = (A,C), c3 = (A,D), c4 = (A,E), c5 = (B, C),
c6 = (B, D), c7 = (B,E), c8 = (C, D), c9 = (C, E), c10 = (D, E)}

A ← {A1 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},
A2 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},
A3 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A4 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A5 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)},
A6 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A7 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A8 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A9 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A10 = {(0, 0), (0, 1), (1, 0), (1, 1)}}

R ← {r1 = {0, 0, 0, 0, 0},
r2 = {0, 1, 0, 1, 1},
r3 = {0, 2, 1, 0, 0},
r4 = {1, 0, 1, 1, 1},
r5 = {1, 1, 2, 0, 0},
r6 = {1, 2, 2, 1, 1},
r7 = {2, 0, 0, 0, 0},
r8 = {2, 1, 0, 1, 1},
r9 = {2, 2, 1, 0, 0},
r10 = {0, 0, 1, 1, 1}}

Once that a non-covered t tuple c′ ∈ C is found and a missing symbol
combination a′ identified, the second phase of N1 starts. This phase searches
for the best test case r ∈ R where the symbol combination a′ can substitute
the symbols defined by the non-covered t tuple c′ in that case. The test case
r′ will be the one that, when substituting the symbols described by c′ for
the symbol combination a′, minimizes the total number of missing symbol
combination in the MCA constructed. The number of evaluations of the ob-
jective function done by the neighborhood function N4 is O(N), because in
the worst case the function requires to change the symbol combination for c′

in each of the N test cases.
The design of the approach presented in this section was based on the

premise that using a mixture of neighborhood functions in TS, rather than
just one, improves the construction of MCAs. When more than one neighbor-
hood function is used, each function Ni is assigned a probability of selection
ρi. Given that the MiTS designs considered in this chapter use four different
neighborhood functions, a set ρ = {ρ1, ρ2, ρ3, ρ4} of probabilities must be
specified to describe its participation in the generation of neighbors.

The following subsection defines the evaluation function used in this chap-
ter to implement the MiTS algorithm.

386 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

4.4 Evaluation Function

Whenever a matrix M is not a MCA(N ; t, k, v1v2 . . . vk), we say that there are
some combination of t symbols missing in the matrix (and that are required
for M to become a MCA). The missing combinations of symbols can be
found in any subset of t columns of M. In the rest of the chapter, a t-tuple
will be one subset of t columns of M. Also, a missing will be one missing
combination of symbols in M, regardless of the t-tuple that misses it.

The evaluation function C(s) of a solution s is defined as the number of
missings. In this way, the matrix M will be a MCA if it has zero missings.
A formal definition for C(s) is given in Equation 2. In this equation C(s) =
f(M, C,A), where M is the matrix of the solution s and C,A are the sets of
t-tuples and of combination of symbols, respectively.

f(M, C,A) :
∑

∀c∈C
∑

∀Ai∈A
∑

∀a∈Ai
g(M, c, a)

where

g(M, c, a) =

{
1 if Matrix M doesn’t contain a in c
0 otherwise

(2)

An example of the use of the evaluation function f(M, C,A) is shown in
Table 9, where the number of missing symbol combinations in matrix M
shown in Table 7 is counted. Table 9 shows in the first column the differ-
ent combinations of symbols to be covered in the matrix. The rest of the
columns show the different t tuples in the matrix and the number of times
that each combination of symbol is covered in M. A symbol − represents
that a combination of symbols must not be satisfied in a certain combination
c; in the other side, the value 0 represents that a combination has not yet
been satisfied. The results obtained from f(M, C,A) are shown at the end of
the table, note that the matrix M still has 8 missing combinations making
it a non MCA.

The cost of evaluating f(M, C,A) is O(
(

k
t

)
× N), because the operation

requires to examine the N rows of the matrix M and the
(

k
t

)
different t tuples.

With the aim of improving the time of this calculation, we implemented the
P matrix. This matrix is shown in Table 9 and it is of size

(
k
t

)
× vmax, where

vmax =
∏i=t

i=1 vi and vi is the ith alphabet cardinality taken in decreasing
order from the cardinalities of the columns of M. Each element pij ∈ P
contains the number of times that the ith combination of symbols is found
in the t tuple cj ∈ C; the value of pij is not taken into account if the ith

combination of symbols must not be included in the t tuple cj .
To avoid the expensive cost O(

(
k
t

)
× N) at every call of f(M, C,A), the

matrix P is used for a partial recalculation of the cost of M, i.e., the cost of
changing a symbol in a cell mij ∈ M is determined and only the affected t
tuples in P are updated, modifying the results from f(M, C,A) according to
that changes. The cells in P that must be updated when changing a symbol
from mij ∈ M are the t tuples that involve the column j of the matrix M.

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 387

Table 9 Matrix P of symbol combinations covered in M (from Table 7) and results
from evaluating M with f(M, C,A).

P c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

(0, 0) 2 2 2 2 2 2 2 2 2 5
(0, 1) 1 2 2 2 2 2 2 2 2 0
(0, 2) 1 0 − − 0 − − − − −
(1, 0) 1 0 1 1 2 1 1 2 2 0
(1, 1) 1 1 2 2 0 2 2 2 2 5
(1, 2) 1 2 − − 1 − − − − −
(2, 0) 1 2 2 2 0 2 2 1 1 −
(2, 1) 1 1 1 1 2 1 1 1 1 −
(2, 2) 1 0 − − 1 − − − − −

f(M, C,A) = 8

On this way, the complexity taken for the update of f(M, C,A) is reduced
to O(

(
k−1
t−1

)
× 2).

4.5 Stop Criterion

The stop criterion for the MiTS algorithm is a given number of evaluations
E of the objective function. Some values that have been considered in the
literature are shown in Table 2. An alternative stop criterion is when the
MCA has been created, i.e. when the number of missings is 0.

The stop criterion to be analyzed for the MiTS design considered in this
chapter are in relation with the ones reported in the literature for the MCAP.
In this respect, the values reported in [18, 17] are included in Table 2, and
therefore they will be considered for the designs in this chapter. All these
values are dependent on the size of the problem, which for the case of MCAs
are defined in terms of the parameters of a MCA matrix, N , k, v and t.
Additionally, a constant is added by the previous works in order to have a
good starting point. Their results show that these values for the stop crite-
rion works well for their purpose, reason why they remain unchanged in the
present work; and because the purpose of the research in the chapter is to
analyze their effect in the algorithm in combination with other parameter
values (something that is missing in previous works).

5 Experimental Design: Analysis and Results

The purpose of this section is to present the methodology followed to ana-
lyze two state-of-the-art MiTS designs. From this study, the most important
characteristics were extracted and combined into a single fine tuning pro-

388 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

cess, with the purpose of yielding an improved MiTS design. This last design
is used to solve a recent benchmark, that no of the other approaches have
solved. In addition, it presents an analysis of the effect in the performance of
the MiTS design, due to individual elements such as the initial solution I,
tabu list size T , and the mixture of neighborhood functions N .

The MiTS designs were based on the different parameter values discussed
so far, which were derived from the approaches [18, 17], they are: the three
initialization functions I, the three different tabu list size T , and the mixture
of neighborhood functions N . The value of the number of evaluations E was
set to E3 = N ∗ k ∗ vt

max ∗ 200, because it was the one that yielded the best
results in the previous approaches.

The organization of this section is presented in three main parts. The first
one, shown in subsection 5.1, has as goal to present the characterization of
the MiTS design presented in [18]. The information presented includes a brief
summary of the parameter values of its design (e.g. which initialization func-
tions were used, or how is composed the set of neighborhood functions used in
the mixture, etc.), the methodology followed in the fine tuning process, and
the results achieved by the approach. This part ended with an analysis of the
information pointing out the main weaknesses of the approach, in relation to
the robustness of the fine tuning process.

The second part, presented in subsection 5.2, is somehow related with
the first one, in the sense that it summarizes the information relating the
TS approach presented in [17]. Again, it presents the way in which the fine
tuning process was developed, in order to adjust the parameter values of the
TS approach. Also, it includes a summary of the results achieved in that
approach. This subsection ends with a general revision of both approaches
[18, 17]. The results from these revisions point out the weaknesses of the
approaches in relation to the fine tuning process of their parameter values;
weaknesses that are studied as the main contribution of this chapter in the
subsection 5.3.

The subsection 5.3 presents the main contribution of this chapter, i.e.
the analysis of a more robust fine tuning of the parameter values of a TS
approach, that includes the most relevant characteristics found in the ap-
proaches reported in [18, 17]. Firstly, it shows the methodology to fine-tune
the parameters of the MiTS design proposed in this chapter, which combines
all the initialization functions, neighborhood functions, and tabu list sizes
described previously. After that, it presents an analysis of the best MiTS
design resulting from the fine-tuning, pointing out the difference in relation
with the performance between the use of a mixture of neighborhood func-
tions, or using a single one; or, the difference of performance among all the
initialization functions, and tabu list sizes. Finally, it shows the results from
the comparison of the best MiTS design against a state-of-art algorithm, us-
ing a recent benchmark reported in the lite rature, which was not included
in the previous reported approaches.

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 389

5.1 First MiTS Design for MCA

To the best of our knowledge, the works presented in [18, 17] are the only
ones that use MiTS designs to construct MCAs. This subsection describes
the MiTS design of [18].

In [18], it is presented a MiTS design that is derived from a fine-tuning
of the following parameters: the initialization function I, the tabu list size
T , the number of evaluations E , and the neighborhood functions N . Table 2
shows a summary of the different values considered for these parameters.

The methodology proposed in [18] combines a
MCA(9; 2, 3, 2312) and the solutions of the Diophantine equation
x1 + x2 + x3 = 5 in a full factorial design to find the combination of
values for I, T , E and N that gives the best performance in a MiTS design.
The MCA is shown in Table 10; this MCA has 9 test cases and is used to
configure the values of I, T and E .

The use of the Diophantine equation x1 + x2 + x3 = 5 defines a gran-
ularity of 0.2, i.e. the discretization level of the probability values for each
neighborhood; then the probabilities values ρ considered for the neighbor-
hood functions N are ρ = {0, 0.2, 0.4, 0.6, 0.8, 1.0}. A particular solution of
the Diophantine equation will assign the probability value xi

5 to the neigh-
borhood function Ni, where xi refers to the variable value on that particu-
lar solution. The number of different solutions for the Diophantine equation
x1 + x2 + x3 = 5 is 21. Hence, in [18] were considered 21 different configura-
tions of probabilities values to fine-tune the parameters of the MiTS design;
these configurations are presented in Table 11.

Table 12 shows the combination of each row from MCA(9; 2, 3, 2312) with
each solution of x1 +x2+x3 = 5. Each cell in this table represents a combina-
tion of a specific configuration of the probability values for the neighborhood
functions, with a specific configuration of the parameters of initial solution,
tabu list size and number of evaluations of the TS approach (e.g. cell {C9,
C2-P} makes reference to the particular use of the initialization function I2,

Table 10 Values of I, T and E used for constructing the test cases to fine-tune
parameters in [18].

Codification so T E

C1 I1 T 1 E1

C2 I1 T 1 E2

C3 I1 T 2 E2

C4 I1 T 2 E3

C5 I1 T 3 E1

C6 I2 T 1 E3

C7 I2 T 2 E1

C8 I2 T 3 E2

C9 I2 T 3 E3

390 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

Table 11 Different configurations for the probabilities values of the neighborhood
functions used in [18].

Codification ρ1 ρ2 ρ3

C1-P 0.0 0.0 1.0
C2-P 0.0 0.2 0.8
C3-P 0.0 0.4 0.6
C4-P 0.0 0.6 0.4
C5-P 0.0 0.8 0.2
C6-P 0.0 1.0 0.0
C7-P 0.2 0.0 0.8
C8-P 0.2 0.2 0.6
C9-P 0.2 0.4 0.4
C10-P 0.2 0.6 0.2
C11-P 0.2 0.8 0.0
C12-P 0.4 0.0 0.6
C13-P 0.4 0.2 0.4
C14-P 0.4 0.4 0.2
C15-P 0.4 0.6 0.0
C16-P 0.6 0.0 0.4
C17-P 0.6 0.2 0.2
C18-P 0.6 0.4 0.0
C19-P 0.8 0.0 0.2
C20-P 0.8 0.2 0.0
C21-P 1.0 0.0 0.0

tabu list size T3 and number of evaluations E3 with the mixture of neighbor-
hood functions N1 = 0.00,N2 = 0.20,N3 = 0.80, indicating their probability
of being chosen). These combinations represent the test set of the full facto-
rial design used for the fine-tuning of MiTS in [18]. Each of the 189 different
configurations constituted a different MiTS design and were used to construct
the MCA(30; 2, 19, 6151463823). Table 12 shows the percentage from 31 runs
in which each configuration made it at constructing the MCA, i.e. the MCA
without missings.

The information of the Table 12 shows a poor performance in the combina-
tions that involves only one neighborhood function, such as the rows labeled
with C1-P, C6-P and C21-P. On the other hand, a configuration involving a
mixture of neighborhood functions (the configuration {C9, C2-P}) was the
one with the best performance, it could construct a MCA in 90.32% of the
31 runs. The MiTS design constructed using the configuration {C9, C2-P}
was used to solve a benchmark reported in the literature. The benchmark
and the results comparing the design with other state-of-the-art algorithms
are reported in Table 13.

The results presented in this subsection show that better designs can be
found using a mixture of neighborhood functions than considering each one

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 391

Table 12 Full factorial design for the fine-tuning of a MiTS design in [18]. For
each design it is presented the percentage of hits that each configuration (MiTS
design) had from 31 runs.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Average

C1-P 6.45 16.13 9.68 3.23 6.45 3.23 12.90 3.23 6.45 7.53
C2-P 29.03 54.84 54.84 64.52 38.71 64.52 25.81 64.52 90.32 54.12
C3-P 38.71 58.06 74.19 87.10 61.29 67.74 58.06 74.19 87.10 67.38
C4-P 32.26 35.48 45.16 61.29 54.84 54.84 51.61 83.87 67.74 54.12
C5-P 19.35 12.90 45.16 58.06 48.39 45.16 45.16 58.06 83.87 46.24
C6-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C7-P 3.23 9.68 29.03 25.81 19.35 16.13 6.45 41.94 41.94 21.51
C8-P 12.90 38.71 38.71 64.52 41.94 32.26 29.03 48.39 64.52 41.22
C9-P 12.90 32.26 48.39 61.29 45.16 58.06 41.94 64.52 67.74 48.03
C10-P 19.35 6.45 25.81 29.03 25.81 16.13 25.81 41.94 45.16 26.16
C11-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C12-P 3.23 0.00 6.45 3.23 6.45 3.23 0.00 12.90 0.00 3.94
C13-P 0.00 3.23 0.00 9.68 3.23 6.45 3.23 6.45 19.35 5.73
C14-P 0.00 0.00 0.00 0.00 0.00 3.23 0.00 3.23 3.23 1.08
C15-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C16-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C17-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C18-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C19-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C20-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C21-P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average 8.45 12.75 17.97 22.27 16.74 17.67 14.29 23.96 27.50 17.96

Table 13 Comparison made in [18] between its MiTS design and some results
previously reported. The * means that the solution is an optimal.

Instance TConfig IPO AETG TCG SA GA ACO DDA MiTS Best Time
[46] [2] [41] [2] [7] [7] [8] [39] [39] [11] reported (sec.)

MCA(N ; 2, 513822) 21 21 19 18 15 15 16 21 15 15* 0.03
MCA(N ; 2, 716151453823) 91 48 45 42 42 42 42 43 42 42* 0.26
MCA(N ; 2, 415317229) 39 34 41 34 30 37 37 35 30 29 25.22
MCA(N ; 2, 41339235) 29 26 28 26 21 27 27 27 22 21 5.81
MCA(N ; 2, 101918171615141312111) 91 90 90* 0.55
MCA(N ; 2, 82726252) 70 64 64* 1.87
MCA(N ; 2, 665534) 56 50 50 3.94
MCA(N ; 2, 4534) 23 19 19 0.13
MCA(N ; 3, 524232) 114 100 108 106 100 100* 3.21
MCA(N ; 3, 101624331) 377 360 360 361 360 360* 37.18

individually. We can conclude this through the results that show the MiTS
design being competitive against representative algorithms in the state-of-
the-art. The next subsection describes another MiTS design reported in the
literature.

392 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

5.2 Second MiTS Design for MCA

The work presented in [17] shows another MiTS design. The main contri-
butions of this work are the initialization function I3 and the neighborhood
function N4. This work analyzed different MiTS designs which only varied
in the mixture of the neighborhood functions used. The values for I, T and
E were fixed to I3, T3 and E3, respectively. The neighborhood functions con-
sidered were N2,N3,N4.

The methodology for fine-tuning used in [17] is based in the Diophantine
equation x1 + x2 + x3 = 10. The granularity defines probabilities values of
ρ = {0, 0.1, 0.2, . . . , 0.9, 1.0} for each neighborhood function. A total of 66
configurations for the probabilities values were derived from the Diophantine
equation x1 + x2 + x3 = 1.0.

A total of 66 different MiTS designs were tested in [17]. The main differ-
ences between these designs and the ones studied in [18] are: a finer granu-
larity in the probabilities ρ, the use a different set of neighborhood functions
and a new initialization function.

The performance of the 66 designs tested in [17] was evaluated using the
MCA(30; 2, 19, 6151463823). Again, each MiTS design was run 31 times and
each time its goal was the construction of the MCA. A summary of the re-
sults derived from this experimentation is shown in Table 14. This summary
includes only the 6 best configurations. The configurations are rated accord-
ing to both the percentage of the runs in which they could construct the
MCA without missings and the spent time to build the MCA. In this way,
the best configuration of probabilities that resulted from the experiment was
ρ2 = 0.6, ρ3 = 0.4, ρ4 = 0; it constructed the MCA(30; 2, 19, 6151463823) in
all the runs having the smallest average time (0.11 seconds per run).

Table 14 Performance of MiTS design in [17] with the 6 best combinations of
probabilities ρ which constructed the MCA (30; 2, 19, 6151463823) without missings
in 100% of the runs.

XXρ1XX XXρ2XX XXρ3XX Avg. time (sec.)

0.4 0.6 0.0 0.11
0.2 0.8 0.0 0.15
0.3 0.7 0.0 0.16
0.6 0.3 0.1 0.17
0.8 0.2 0.0 0.18
0.1 0.9 0.0 0.18

The winner configuration ρ2 = 0.6, ρ3 = 0.4, ρ4 = 0 was compared in [17]
against state-of-the-art algorithms. Two benchmarks were considered in this
cases: a new benchmark proposed in the chapter, and a test set coming from

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 393

Table 15 Results of the performance of MiTS for the new benchmark of MCA
instances.

Instance N*
IPOG-F MiTS

N Time (sec.) N Time (sec.)

MCA(N ; 2, 6, 223242) 16 16 0.009 16 0.00202
MCA(N ; 3, 6, 223242) 48 51 0.002 48 0.01647
MCA(N ; 4, 6, 223242) 144 146 0.019 144 0.11819
MCA(N ; 5, 6, 223242) 288 295 0.014 288 0.17247
MCA(N ; 6, 6, 223242) 576 576 0.004 576 0.00162
MCA(N ; 2, 8, 22324252) 25 25 0.003 25 0.00716
MCA(N ; 3, 8, 22324252) 100 107 0.009 100 17.50079
MCA(N ; 4, 8, 22324252) 400 433 0.035 400 94.88019
MCA(N ; 5, 8, 22324252) 1200 1357 0.201 1200 11379.21255
MCA(N ; 6, 8, 22324252) 3600 3743 0.995 3600 7765.91885
MCA(N ; 2, 10, 2232425262) 36 36 0.004 36 0.06124
MCA(N ; 3, 10, 2232425262) 180 207 0.034 185 991.70933
MCA(N ; 2, 12, 223242526272) 49 50 0.006 49 0.42382
MCA(N ; 3, 12, 223242526272) 294 356 0.061 330 528.76392
MCA(N ; 2, 14, 22324252627282) 64 67 0.002 64 1.53441
MCA(N ; 2, 16, 2232425262728292) 81 86 0.012 81 26.93236
MCA(N ; 2, 18, 2232425262728292102) 100 107 0.016 100 702.30086
MCA(N ; 2, 20, 2232425262728292102112) 121 131 0.017 122 3927.93448

Table 16 Results of the performance of the MiTS design of [17] for TCAS module.
It is compared against other approaches found in the literature.

t-way
MiTS IPOG-F ITCH Jenny TConfig TVG

Best
Size Time Size Time Size Time Size Time Size Time Size Time

2 100 0.03 100 0.8 120 0.73 108 0 108 1 hour 101 2.75 100
3 400 26.21 400 0.36 2388 1020 413 0.71 472 12 hour 9158 3.07 400
4 1200 10449.12 1361 3.05 1484 5400 1536 3.54 1476 21 hour 64696 127 1200
5 3600 627079.08 4219 18.41 NA >1 day 4580 43.54 NA 1 day 313056 1549 3600

the Traffic Collision Avoidance System (TCAS) module. The results achieved
in these benchmarks are presented in Tables 15 and 16, respectively.

Again, we can observe, through the results presented in this subsection,
that the use of a mixture of neighborhood functions can lead to better results
than the use of a single one.

Despite of fact that the work presented in [17] involves the same parameters
studied in [18], it does not include all the parameter’s values. For example,
the initialization function I3 or the neighborhood function N4 are studied in
[17] but not in [18]. On the other side, the neighborhood function N1 used
in [18] or the different combinations of values for the parameters T , I, E are
not included in the analysis of different MiTS design of [17]. These facts sug-
gest the necessity of a better fine-tuning for the evaluation of MiTS designs.

394 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

This constitutes the main contribution of this chapter, a more robust fine-
tuning for the parameters to configure MiTS designs, which is described in
the following subsection.

5.3 Third MiTS Design for MCA

The purpose of this section is to present a more detailed fine-tuning for the
parameters of MiTS designs. The goal of the fine-tuning is to consider a
combination of values not previously considered. Particularly, the fine-tuning
in this chapter involves all the different values for the parameters I, T , N
presented in [18, 17].

The values for the parameters I, T , N are shown in Table 2. The parameter
E was fixed to E= (N ∗ k ∗ vt

max ∗ 200) ∗ 0.1. The reason to fix this value in
the fine tuning process was to perform it faster. In the other side, this value
was fixed because it was used in the both previous approaches [18, 17] giving
the best results in them. The value of E only was reduced in the fine tuning
experiment, due to the time consuming task that represented to test 286
different combinations. The value of number of evaluations E was a tenth of
the original, it was enough to show the performance of every combinations,
and to discriminate among them in order to chose a winner.

The solutions of the Diophantine equation x1 + x2 + x3 + x4 = 10 were
used to define the set of configurations for the probability values considered
for the neighborhood functions N . The total number of configurations were
286. This 286 configurations was combined with the 3 values for the initial
solutions I and the 3 values for the tabu list size T to create a full factorial
design with 2574 test cases. Each test case represents a different MiTS design.

In order to evaluate the different MiTS designs, we solve with them the
instance MCA(137; 3, 9, 524433) (taken from new benchmark found in [26]).
Each MiTS design tried to construct the MCA 31 times. For each run it was
recorded the number of missings, the spent time in seconds, and the number
of evaluations (calls to the objective function). The design with the greatest
hit rate, i.e. the one that constructed the MCA with zero missings in most of
runs, is considered as the best configuration to solve the new benchmark. The
spent time and the number of evaluations were considered as alternatives to
break ties among configurations with the same hit rate.

The MiTS designs were implemented in C language and compiled with
gcc. The instances have been run on a cluster using eight processing nodes,
each with two dual-core Opteron Processors. The features of each node are:
Processor 2 X Dual-Core AMD, Opteron Processor 2220, 4GB RAM Memory,
Operating Systems Red Hat Enterprise Linux 4 64-bit and gcc 3.4 Compiler.

Table 17 shows the 6 best configurations (or MiTS designs) derived from
the values of I, T and N . The configurations are shown in descending order
according to the hit rate, where a hit is a run where the number of missings
was zero in the constructed MCA. The ties are broken using the average time

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 395

per run spent by each design. Table 17 also reports the minimum, maximum
and average number of evaluations required by these configurations. The
statistics are presented also for the spent time and are calculated taking in
consideration only the runs that were hits.

Note that according with the results shown in Table 17, the 6 best con-
figurations have a mixture of neighborhood functions in them. Particularly,
the best MiTS design was the one that has the parameter values I2, T2 and
ρ = {0.1, 0.9, 0.0, 0.0}. This configuration constructed the MCA in 27 of the
31 runs with an average time per run of 3.98 seconds.

Figures 1, 2 and 3 present three graphs of the performance of the best MiTS
design (the one with parameter values I2, T2 and ρ = {0.1, 0.9, 0.0, 0.0}). The
performance is compared against the different parameter values for I, T and
N taken individually. The three graphs show in the x axis the number of
evaluations and in the y axis the average number of missings, both shown
in logarithmic scale. The curves in the graphs represent the evolution of the
average number of missings.

Figure 1 presents the performance of the four neighborhood functions
N1,N2,N3,N4, considered as the only neighborhood functions against the
design with the best mixture Best. In this analysis, the values of the rest of
the parameters were I = I2 and T = T2. According with the results shown
in this graph, the use of the neighborhood function N2 without a mixture
is good. However, a slight difference in the mixture (i.e., the winner MiTS
design) produced better results, reducing the average number of missings at
the end of the construction.

The influence of the different tabu list size is presented in the Figure 2.
Again, a set of curves is shown and each of them represents the average
number of missings in the time line for three different MiTS designs. In
this case, the designs fixed the values of I and N to those of the winner
configuration and varied the value of T to {T1, T2, T3}.

Figure 3 shows an analysis similar to those presented in Figures 1 and
2, but in this case considering only the different initialization functions
I1, I2, I3. The values of T and N were fixed to the values of the winner
configuration.

Table 17 Best MiTS designs resulting from the new fine-tuning.

I T Functions
hits

Evaluations Time (in sec.)
N1 N2 N3 N4 min max avg. min max avg.

I2 T2 0.1 0.9 0.0 0.0 27/31 333333 1217257 835064.04 1.52187 5.84 3.98
I2 T3 0.1 0.9 0.0 0.0 27/31 496903 1203142 844586.93 2.37464 5.82 4.04
I2 T2 0.0 0.9 0.0 0.1 26/31 307702 1082437 693603.31 1.43583 5.20 3.32
I1 T2 0.1 0.9 0.0 0.0 26/31 373740 1171270 781610.15 1.7311 5.61 3.72
I2 T2 0.2 0.8 0.0 0.0 25/31 451141 1228757 879799.16 1.86683 5.00 3.59
I2 T1 0.0 0.9 0.0 0.1 25/31 364968 1196284 778860.40 1.75208 5.77 3.73

396 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

M
is

si
ng

s

Evaluations

Convergence of Neighborhood Functions

Ν1
Ν2
Ν3
Ν4

Best

(a)

Fig. 1 Comparison of the performance of the configuration of neighborhood func-
tions ρ = {0.1, 0.9, 0.0, 0.0} against the different configurations that involve one
neighborhood function. The initialization function was I2 and the tabu list size T2.

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

M
is

si
ng

s

Evaluations

Size of Tabu List

T1
T2
T3

(a)

Fig. 2 Comparison of the performance of the different sizes of the tabu list using
as I2 and ρ = {0.1, 0.9, 0.0, 0.0} as the initialization function and the mixture of
neighborhood functions, respectively.

Observe that the performance graphs presented in Figures 1, 2, and 3 show
that some designs are better than others (because some reach smaller values
in the average number of missings). However, the difference between designs
varying the initial solution or the tabu list size are not so significant that
the ones that vary the mixture of neighborhood functions, i.e. some mixtures

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 397

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06 1e+07

M
is

si
ng

s

Evaluations

Initialization Functions

Ι1
Ι2
Ι3

(a)

Fig. 3 Comparison of the performance of the different initialization function when
the tabu list size and the mixture of neighborhood functions are fixed to I2 and
ρ = {0.1, 0.9, 0.0, 0.0}, respectively.

of neighborhood functions improve others in an order of magnitude. The
importance of the mixture of neighborhood function is also supported by
the fact that from the 1462 configurations that were able to construct the
MCA without missings, only 209 involved the use of only one neighborhood
function (all of them suggest the use of the neighborhood function N2).

It is important to point out that the performance achieved by MiTS,
through the use of the different considered tabu list sizes, conducted to a
similar overall performance, giving the idea that this parameter is unneces-
sary. However, the fact is that a potential area of opportunity for studying
a wider range of values of T is present, and it opens the possibility of con-
structing better MiTS designs (because a better avoidance of local optimal
solutions could be achieved).

Finally, to complete the experimentation of this subsection, we test the
best MiTS design in a benchmark reported recently in [26]. The benchmark
is a platform for smart phone apps, named ANDROID, reported in [26]. The
benchmark is described in column 1 of Table 18. The column 2 shows the the-
oretical lower bounds. The column 4 presents the best upperbounds found so
far. The values were obtained using the ACTS tool developed by the NIST3.
The MiTS design, using the values I2, T2 and ρ = {0.1, 0.9, 0.0, 0.0} (for the
probability values of the neighborhood functions N), was used to improve the
upperbounds of this benchmark. The algorithm stops until the initial solution
becomes a MCA, i.e. the matrix has no missings. The results are presented in
the column 3. These results show that it is possible to construct smaller MCAs
3 http://math.nist.gov/coveringarrays/

http://math.nist.gov/coveringarrays/

398 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

Table 18 Instances from NIST

Instance N* MiTS ACTS

MCA(N ; 2, 9, 524433) 25 25 29
MCA(N ; 3, 9, 524433) 100 108 137
MCA(N ; 4, 9, 524433) 400 600 625
MCA(N ; 5, 9, 524433) 1600 2400 2532
MCA(N ; 6, 9, 524433) 6400 8500 9168

for this benchmark using a MiTS design. The constructed matrices are avail-
able under request at http://www.tamps.cinvestav.mx/~jtj/aplication.php.

In conclusion, we have presented so far a new MiTS design for the con-
struction of MCAs. The performance of the design was compared against
traditional designs using single neighborhood functions. Also, the design was
used to improve existing upperbounds found for a benchmark in the litera-
ture. The results show the benefits that can be achieved from using a mix-
ture of neighborhood functions together with an adequate methodology for
fine-tuning the parameters of a TS approach, in the construction of MCAs.
These benefits are summarized in the quality of the solution of the MCAs
constructed, measured in terms of the their size.

6 Conclusions

This chapter focused on the design of different TS approaches for the con-
struction of MCAs. The TS approaches, name MiTS designs, involve a mix-
ture of neighborhood functions. Basically, this chapter presents an analysis
of the state-of-art algorithms that use MiTS designs for the construction of
MCAs. The analysis identified the following sets: initial solutions I = {I1, I2,
I3}, tabu list sizes T = {T1, T2, T3} and neighborhood functions N =
{N1,N2,N3,N4}.

Also, a new fine-tuning that combines all the different values for I, T ,N ,
which has not being previously done, is proposed. The aim of the fine-tuning
is to extend the analysis of MiTS designs.

The methodology uses a full factorial design among I, T ,N to define dif-
ferent MiTS designs. A total of 2574 designs resulted from the methodology
and were evaluated according to their performance on the construction of
MCAs.

The performance of the different MiTS designs was tested in
MCA(137; 3, 9, 524433). Each design tried to construct the MCA 31 times.
The configuration I2, T2 and ρ = {0.1, 0.9, 0.0, 0.0} was the one with the
best performance because it constructed the MCA in 27 of the 31 tries in less
time. The platform for smart phone apps, named ANDROID, was used to test
the best MiTS design reported in this chapter. The benchmark derived from

http://www.tamps.cinvestav.mx/~jtj/aplication.php

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 399

ANDROID is formed by the MCA(N ; t, 9, 524433) for t = {2, 3, 4, 5, 6}. The
MiTS design with configuration I2, T2 and ρ = {0.1, 0.9, 0.0, 0.0} improved
the upperbounds previously reported by a state-of-the-art algorithm.

Our work, in combination with the results previously reported over the set
of neighborhood functions N = {N1,N2,N3,N4}, reveals that the neighbor-
hood function N2 is important for the construction of MCAs. The importance
is denoted by the fact that this function appears in all the mixtures that have
been analyzed so far.

In conclusion, the results obtained from the analysis presented in this
chapter for MiTS designs extend the evidence previously reported that a
mixture of neighborhood function can yield better TS performance for the
construction of MCAs than the use of only one neighborhood function.

As a result of the research developed in this work, it is possible to see
how individual elements of the parameter of a TS algorithm can affect its
performance. Due to this reason, it is suggested as future work to extend
the analysis to those parameter values not considered so far, in the analysis
of new MiTS designs. Some interesting areas of opportunity are the use of
the lévy flight random walk as a possible alternative for the construction of
the initial solution, or varying the values of the number of evaluations E or
the tabu list size T , or finally, the use of new neighborhood functions in the
mixture.

References

1. Bracho-Rios, J., Torres-Jimenez, J., Rodriguez-Tello, E.: A New Backtrack-
ing Algorithm for Constructing Binary Covering Arrays of Variable Strength.
In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.) MICAI 2009. LNCS,
vol. 5845, pp. 397–407. Springer, Heidelberg (2009)

2. Bryce, R.C., Colbourn, C.J.: The density algorithm for pairwise interaction
testing: Research articles. Software Testing, Verification and Reliability 17,
159–182 (2007)

3. Bryce, R.C., Colbourn, C.J.: One-test-at-a-time heuristic search for interac-
tion test suites. In: Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation Conference, GECCO 2007, July 7-11, 2007,
pp. 1082–1089. ACM, New York (2007)

4. Burnstein, I.: Practical software testing: a process-oriented approach. Springer
Professional Computing (2003) ISBN: 0-387-95131-8

5. Bush, K.A.: Orthogonal arrays of index unity. Annals of Mathematical Statis-
tics 23(3), 426–434 (1952)

6. Changhai, N., Hareton, L.: A survey of combinatorial testing. ACM Comput-
ing Surveys (CSUR) 43, 11:1–11:29 (2011)

7. Cohen, D.M., Fredman, M.L., Patton, G.C.: The aetg system: An approach
to testing based on combinatorial design. IEEE Transactions on Software En-
gineering 23(7), 437–444 (1997)

400 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

8. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing
test suites for interaction testing. In: Proceedings of the 25th International
Conference on Software Engineering, ICSE 2003, May 3-10, pp. 38–48. IEEE
Computer Society, Washington, DC (2003)

9. Colbourn, C.J.,
http://www.public.asu.edu/~ccolbou/src/tabby/6-4-ca.html’

10. Colbourn, C.J.: Covering arrays from cyclotomy. Designs, Codes and Cryp-
tography 55, 201–219 (2010)

11. Colbourn, C.J., Cohen, M.B., Turban, R.C.: A deterministic density algorithm
for pairwise interaction coverage. In: Proceedings of the IASTED International
Conference on Software Engineering, February 17-19, pp. 345–352 (2004)

12. Colbourn, C.J., Dinitz, J.H.: The CRC Handbook of Combinatorial Designs.
CRC Press, Boca Raton (1996) ISBN: 0-8493-8948-8

13. Colbourn, C.J., Martirosyan, S., Trung, T., Walker II., R.A.: Roux-type con-
structions for covering arrays of strengths three and four. Designs, Codes and
Cryptography 41, 33–57 (2006), doi:10.1007/s10623-006-0020-8

14. Colbourn, C.J., Martirosyan, S.S., Mullen, G.L., Shasha, D., Sherwood, G.B.,
Yucas, J.L.: Products of mixed covering arrays of strength two. Journal of
Combinatorial Designs 14(2), 124–138 (2006)

15. Forbes, M., Lawrence, J., Lei, Y., Kacker, R.N., Kuhn, D.R.: Refining the in-
parameter-order strategy for constructing covering arrays. Journal of Research
of the National Institute of Standards and Technology 113(5), 287–297 (2008)

16. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1998)
ISBN 0-7923-9965-X

17. Gonzalez-Hernandez, L., Rangel-Valdez, N., Torres-Jimenez, J.: Construction
of Mixed Covering Arrays of Variable Strength Using a Tabu Search Ap-
proach. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508,
pp. 51–64. Springer, Heidelberg (2010)

18. Gonzalez-Hernandez, L., Torres-Jimenez, J.: MiTS: A New Approach of Tabu
Search for Constructing Mixed Covering Arrays. In: Sidorov, G., Hernández
Aguirre, A., Reyes Garćıa, C.A. (eds.) MICAI 2010, Part II. LNCS, vol. 6438,
pp. 382–393. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-16773-7_33

19. Gonzalez-Hernandez, L., Torres-Jiménez, J., Rangel-Valdez, N.: An Exact Ap-
proach to Maximize the Number of Wild Cards in a Covering Array. In: Batyr-
shin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS (LNAI), vol. 7094,
pp. 210–221. Springer, Heidelberg (2011)

20. Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. Dis-
crete Mathematics 284, 149–156 (2004)

21. Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint mod-
els for the covering test problem. Constraints 11, 199–219 (2006),
doi:10.1007/s10601-006-7094-9

22. Walker II, R.A., Colbourn, C.J.: Tabu search for covering arrays using per-
mutation vectors. Journal of Statistical Planning and Inference 139(1), 69–80
(2009)

23. Ji, L., Yin, J.: Constructions of new orthogonal arrays and covering arrays of
strength three. Journal of Combinatorial Theory Series A 117, 236–247 (2010)

24. Katona, G.O.H.: Two applications (for search theory and truth functions) of
sperner type theorems. Periodica Mathematica Hungarica 3, 19–26 (1973)

http://www.public.asu.edu/~ccolbou/src/tabby/6-4-ca.html'
http://dx.doi.org/10.1007/978-3-642-16773-7_33

MiTS in Depth: An Analysis of Distinct Tabu Search Configurations 401

25. Kleitmain, D.J., Spencer, J.: Families of k-independent sets. Discrete Mathe-
matics 6(3), 255–262 (1973)

26. Kuhn, D.R., Kacker, R.N., Lei, Y.: Practical combinatorial testing. Technical
report, National Institute of Standards and Technology (October 2010)

27. Kuhn, D.R., Kacker, R.N., Lei, Y.: Advanced combinatorial test methods for
system reliability. Technical report, 2010 Annual Technical Report of the IEEE
Reliability Society, 2010 Annual Technical Report (January 2011)

28. Kuhn, D.R., Wallance, D.R., Gallo Jr., A.M.: Software fault interactions and
implications for software testing. IEEE Transactions on Software Engineer-
ing 30, 418–421 (2004)

29. Kuliamin, V., Petukhov, A.: Covering Arrays Generation Methods Survey. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 382–396.
Springer, Heidelberg (2010), doi:10.1007/978-3-642-16561-0 36

30. Kuliamin, V., Petukhov, A.: A survey of methods for constructing covering
arrays. Programming and Computer Software 37, 121–146 (2011)

31. Lawrence, J., Kacker, R.N., Lei, Y., Kuhn, D.R., Forbes, M.: A survey of
binary covering arrays. Electronic Journals of Combinatorics 18, P84 (2011)

32. Lions, J.L.: Ariane 5, flight 501, report of the inquiry board. European Space
Agency (July 1996)

33. Martinez-Pena, J., Torres-Jimenez, J., Rangel-Valdez, N., Avila-George, H.:
A heuristic approach for constructing ternary covering arrays using trinomial
coefficients. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS,
vol. 6433, pp. 572–581. Springer, Heidelberg (2010), doi:10.1007/978-3-642-
16952-6 58

34. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized postoptimization of
covering arrays. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009.
LNCS, vol. 5874, pp. 408–419. Springer, Heidelberg (2009), doi:10.1007/978-
3-642-10217-2 40

35. Nurmela, K.J.: Upper bounds for covering arrays by tabu search. Discrete
Applied Mathematics 138(1-2), 143–152 (2004); Optimal Discrete Structures
and Algorithms

36. Rényi, A.: Foundations of Probability. Wiley (1971) ISBN: 0486462617
37. Rodrigues, L.C.A., Weller, T.R.: Cell Formation with Alternative Routings

and Capacity Considerations: A Hybrid Tabu Search Approach. In: Gelbukh,
A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 482–491.
Springer, Heidelberg (2008)

38. Rodriguez-Tello, E., Torres-Jimenez, J.: Memetic Algorithms for Constructing
Binary Covering Arrays of Strength Three. In: Collet, P., Monmarché, N.,
Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009. LNCS, vol. 5975,
pp. 86–97. Springer, Heidelberg (2010)

39. Shiba, T., Tsuchiya, T., Kikuno, T.: Using artificial life techniques to generate
test cases for combinatorial testing. In: Proceedings of the 28th Annual Inter-
national Computer Software and Applications Conference, COMPSAC 2004,
September 27-30, vol. 1, pp. 72–77. IEEE Computer Society, Washington, DC
(2004)

40. Stardom, J.: Metaheuristics and the search for covering and packing arrays.
Master’s thesis, Simon Fraser University (2001)

41. Tai, K.C., Lei, Y.: A test generation strategy for pairwise testing. IEEE Trans-
actions on Software Engineering 28, 109–111 (2002)

402 L. Gonzalez-Hernandez, J. Torres-Jimenez, and N. Rangel-Valdez

42. Tassey, G.: The economic impacts of inadequate infrastructure for software
testing. Technical report, National Institute of Standards and Technology
(May 2002)

43. Torres-Jimenez, J., Rodriguez-Tello, E.: Simulated annealing for constructing
binary covering arrays of variable strength. In: IEEE Congress on Evolutionary
Computation, CEC 2010, July 18-23, pp. 1–8 (2010)

44. Torres-Jimenez, J., Rodriguez-Tello, E.: New bounds for binary covering ar-
rays using simulated annealing. Information Sciences 185(1), 137–152 (2012)

45. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society 42, 230–265
(1936)

46. Williams, A.W.: Determination of test configurations for pair-wise interac-
tion coverage. In: TestCom 2000: Proceedings of the IFIP TC6/WG6.1 13th
International Conference on Testing Communicating Systems, August 29-
September 1, pp. 59–74. B.V. Kluwer, Deventer (2000)

47. Williams, A.W., Probert, R.L.: A practical strategy for testing pair-wise cov-
erage of network interfaces. In: Proceedings of the The Seventh International
Symposium on Software Reliability Engineering, ISSRE 1996, October 30-
November 02, pp. 246–254. IEEE Computer Society, Washington, DC (1996)

48. Yan, J., Zhang, J.: Backtracking algorithms and search heuristics to generate
test suites for combinatorial testing. In: 30th Annual International on Com-
puter Software and Applications Conference, COMPSAC 2006, September
17-21, vol. 1, pp. 385–394. IEEE Computer Society, Washington, DC (2006)

49. Yan, J., Zhang, J.: A backtraking search tool for constructing combinatorial
test suites. The Journal of Systems and Software 81, 1681–1693 (2008)

50. Zekaoui, L.: Mixed covering arrays on graphs and tabu search algorithms. Mas-
ter’s thesis, Ottawa-Carleton Institute for Computer Science at the University
of Ottawa (2006)

Part II
Evolutionary Computation

and Metaheuristics

Metaheuristic Optimization: Nature-Inspired
Algorithms and Applications

Xin-She Yang

Abstract. Turing’s pioneer work in heuristic search has inspired many generations
of research in heuristic algorithms. In the last two decades, metaheuristic algorithms
have attracted strong attention in scientific communities with significant develop-
ments, especially in areas concerning swarm intelligence based algorithms. In this
work, we will briefly review some of the important achievements in metaheuris-
tics, and we will also discuss key implications in applications and topics for further
research.

1 Introduction

Alan Turing pioneered many areas from artificial intelligence to pattern formation.
Turing was also the first to use heuristic algorithms during the second World War for
his code-breaking work at Bletchley Park. Turing called his search method heuristic
search, as it could be expected it worked most of time, but there was no guarantee
to find the true or correct solution, but it was a tremendous success [6]. In 1945,
Turing was recruited to the National Physical Laboratory (NPL), UK where he set
out his design for the Automatic Computing Engine (ACE). In an NPL report on
Intelligent machinery in 1948 [33], he outlined his innovative ideas of machine in-
telligence and learning, neural networks and evolutionary algorithms [38]. In this
chapter, we will review the latest development in metaheuristic methods, especially
swarm intelligence based algorithms.

2 Metaheuristics

Metaheuristic algorithms, especially those based on swarm intelligence, form an im-
portant part of contemporary global optimization algorithms [21, 40, 2, 3, 4, 24, 26]

Xin-She Yang
Mathematics & Scientific Computing, National Physical Laboratory,
Teddington TW11 0LW, UK

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 405–420.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

406 X.-S. Yang

Good examples are simulated annealing [22], particle swarm optimization [21] and
firefly algorithm [40, 41]. They work remarkably efficiently and have many advan-
tages over traditional, deterministic methods and algorithms, and thus they have been
applied in almost all area of science, engineering and industry [15, 11, 42, 43, 51].

Despite such a huge success in applications, mathematical analysis of algorithms
remains limited and many open problems are still un-resolved. There are three chal-
lenging areas for algorithm analysis: complexity, convergence and no-free-lunch
theory. Complexity analysis of traditional algorithms such as quick sort and ma-
trix inverse are well-established, as these algorithms are deterministic. In contrast,
complexity analysis of metaheuristics remains a challenging task, partly due to the
stochastic nature of these algorithms. However, good results do exist, concerning
randomization search techniques [2].

Convergence analysis is another challenging area. One of the main difficulties
concerning the convergence analysis of metaheuristic algorithms is that no generic
framework exists, though substantial studies have been carried out using dynamic
systems and Markov processes. However, convergence analysis still remains one of
the active research areas with many encouraging results [5, 17].

Along the mathematical analysis of optimization algorithms, another equally
challenging, and yet fruitful area is the theory on algorithm performance and com-
parison, leading to a wide range of no-free-lunch (NFL) theorems [36, 19]. While
in well-posed cases of optimization where its functional space forms finite domains,
NFL theorems do hold; however, free lunches are possible in continuous domains
[2, 37, 34].

In this chapter, we intend to provide a state-of-the-art review of widely used
metaheuristic algorithms. We will also briefly highlights some of the convergence
studies. Based on these studies, we will summarize and propose a series of recom-
mendations for further research.

3 Metaheuristic Algorithms

There are more than a dozen of swarm-based algorithms using the so-called swarm
intelligence. For a detailed introduction, please refer to [43, 26]. In this section, we
will focus on the main chararcteristics and the ways that each algorithm generate
new solutions, and we will not discuss each algorithm in details. Obviously, not all
metaheuristic algorithms are swarm-inspired, for example, harmony search is not a
swarm-intelligence-based algorithm. Similarly, genetic algorithms are bio-inspired,
or more generally nature-inspired, but they are not based on swarm intelligence.
Here we will introduce a few population-based metaheuristic algorithms which are
widely used or active research topics. Interested readers can follow the references
listed at the end of this chapter and also refer to other chapters of this book.

Metaheuristic Optimization: Nature-Inspired Algorithms and Applications 407

3.1 Ant Algorithms

Ant algorithms, especially the ant colony optimization [10], mimic the foraging be-
haviour of social ants. Primarily, it uses pheromone as a chemical messenger and the
pheromone concentration as the indicator of quality solutions to a problem of inter-
est. As the solution is often linked with the pheromone concentration, the search
algorithms often produce routes and paths marked by the higher pheromone con-
centrations, and therefore, ants-based algorithms are particular suitable for discrete
optimization problems.

The movement of an ant is controlled by pheromone which will evaporate over
time. Without such time-dependent evaporation, the algorithms will lead to prema-
ture convergence to the (often wrong) solutions. With proper pheromone evapora-
tion, they usually behave very well.

There are two important issues here: the probability of choosing a route, and the
evaporation rate of pheromone. There are a few ways of solving these problems,
although it is still an area of active research. Here we introduce the current best
method.

For a network routing problem, the probability of ants at a particular node i to
choose the route from node i to node j is given by

pi j =
φα

i j dβ
i j

∑n
i, j=1 φα

i j dβ
i j

, (1)

where α > 0 and β > 0 are the influence parameters, and their typical values are α ≈
β ≈ 2. φi j is the pheromone concentration on the route between i and j, and di j the
desirability of the same route. Some a priori knowledge about the route such as the
distance si j is often used so that di j ∝ 1/si j, which implies that shorter routes will be
selected due to their shorter traveling time, and thus the pheromone concentrations
on these routes are higher. This is because the traveling time is shorter, and thus the
less amount of the pheromone has been evaporated during this period.

3.2 Bee Algorithms

Bees-inspired algorithms are more diverse, and some use pheromone and most do
not. Almost all bee algorithms are inspired by the foraging behaviour of honey bees
in nature. Interesting characteristics such as waggle dance, polarization and nectar
maximization are often used to simulate the allocation of the foraging bees along
flower patches and thus different search regions in the search space. For a more
comprehensive review, please refer to [26, 40].

In the honeybee-based algorithms, forager bees are allocated to different food
sources (or flower patches) so as to maximize the total nectar intake. The colony has
to ‘optimize’ the overall efficiency of nectar collection, the allocation of the bees is
thus depending on many factors such as the nectar richness and the proximity to the
hive [23, 39, 20, 27].

408 X.-S. Yang

The virtual bee algorithm (VBA), developed by Xin-She Yang in 2005, is an op-
timization algorithm specially formulated for solving both discrete and continuous
problems [39]. On the other hand, the artificial bee colony (ABC) optimization algo-
rithm was first developed by D. Karaboga in 2005. In the ABC algorithm, the bees
in a colony are divided into three groups: employed bees (forager bees), onlooker
bees (observer bees) and scouts. For each food source, there is only one employed
bee. That is to say, the number of employed bees is equal to the number of food
sources. The employed bee of an discarded food site is forced to become a scout for
searching new food sources randomly. Employed bees share information with the
onlooker bees in a hive so that onlooker bees can choose a food source to forage.
Unlike the honey bee algorithm which has two groups of the bees (forager bees and
observer bees), bees in ABC are more specialized [1, 20].

Similar to the ants-based algorithms, bee algorithms are also very flexible in deal-
ing with discrete optimization problems. Combinatorial optimization such as rout-
ing and optimal paths has been successfully solved by ant and bee algorithms. In
principle, they can solve both continuous optimization and discrete optimization
problems; however, they should not be the first choice for continuous problems.

3.3 Genetic Algorithms

Genetic algorithms are by far the most widely used [18], and one of the reasons is
that the GA appeared as early as in the 1960s, based on the evolutionary features of
biological systems. Genetic operators such as crossover and mutation are very pow-
erful in generating diverse solutions or search points, while elitism, adaptation and
selection of the fittest help to ensure the proper convergence of genetic algorithms.

Parameter choices are also important, but there are many parametric studies in
the literature, and the overall literature of genetic algorithms is vast. In essence, the
crossover should be more frequent with the highest probability, often above 0.7 to
0.95. On the other hand, mutation rate should be very low, because if the mutation
rate is too high, the solutions generated are too diverse, and thus makes it difficult
for the search process to converge properly. Therefore, mutation rate is typically 0.1
to 0.01.

Genetic algorithms have many variants and often combined with other algorithms
to form hybrid algorithms, and encode and decoding can be binary, real or even
imaginary. Interested readers can refer to the recent books, for example, Goldberg
[16] and other relevant books listed in the bibliography.

3.4 Differential Evolution

Differential evolution (DE) can be considered as a vectorized and improved genetic
algorithm, though DE has its own unique mutation operator and crossover operation
[32]. Mutation is carried out by the donor vector based on the difference of two ran-
domly chosen solution vectors; in this sense, its mutation is like an exploration move
in pattern search. Alternatively, we can consider it as a multi-site mutation vector,

Metaheuristic Optimization: Nature-Inspired Algorithms and Applications 409

based on genetic algorithms. Crossover is more elaborate which can be performed
either in a binomial or exponential manner. There are many variants of DE and they
are often combined with other algorithms to form efficient hybrid algorithms [28].
DE can also be combined with other methods such as eagle strategy to get even
better results [48].

3.5 Particle Swarm Optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in
1995 [21], based on the swarm behaviour such as fish and bird schooling in nature.
Since then, PSO has generated much wider interests, and forms an exciting, ever-
expanding research subject, called swarm intelligence. PSO has been applied to al-
most every area in optimization, computational intelligence, and design/scheduling
applications.

The movement of a swarming particle consists of two major components: a
stochastic component and a deterministic component. Each particle is attracted to-
ward the position of the current global best g∗ and its own best location x∗i in history,
while at the same time it has a tendency to move randomly.

Let xi and vi be the position vector and velocity for particle i, respectively. The
new velocity and location updating formulas are determined by

vt+1
i = vt

i +αε1[g
∗ − xt

i]+β ε2[x
∗
i − xt

i]. (2)

xt+1
i = xt

i + vt+1
i , (3)

where ε1 and ε2 are two random vectors, and each entry taking the values between 0
and 1. The parameters α and β are the learning parameters or acceleration constants,
which can typically be taken as, say, α ≈ β ≈ 2.

There are at least two dozen PSO variants which extend the standard PSO al-
gorithm, and the most noticeable improvement is probably to use inertia function
θ (t) so that vt

i is replaced by θ (t)vt
i where θ ∈ [0,1]. This is equivalent to introduc-

ing a virtual mass to stabilize the motion of the particles, and thus the algorithm is
expected to converge more quickly.

3.6 Firefly Algorithm

Firefly Algorithm (FA) was developed by Xin-She Yang at Cambridge University
[40, 41], which was based on the flashing patterns and behaviour of fireflies. In
essence, each firefly will be attracted to brighter ones, while at the same time, it
explores and searches for prey randomly. In addition, the brightness of a firefly is
determined by the landscape of the objective function.

The movement of a firefly i is attracted to another more attractive (brighter) firefly
j is determined by

xt+1
i = xt

i +β0e−γr2
i j (xt

j − xt
i)+αt εt

i , (4)

410 X.-S. Yang

where the second term is due to the attraction. The third term is randomization with
αt being the randomization parameter, and εt

i is a vector of random numbers drawn
from a Gaussian distribution or uniform distribution. Here is β0 ∈ [0,1] is the attrac-
tiveness at r = 0, and ri j = ||xt

i − xt
j|| is the Cartesian distance. For other problems

such as scheduling, any measure that can effectively characterize the quantities of
interest in the optimization problem can be used as the ‘distance’ r. For most imple-
mentations, we can take β0 = 1, α = O(1) and γ = O(1).

Ideally, the randomization parameter αt should be monotonically reduced gradu-
ally during iterations. A simple scheme is to use

αt = α0δ t , δ ∈ (0,1), (5)

where α0 is the initial randomness, while δ is a randomness reduction factor similar
to that used in a cooling schedule in simulated annealing. It is worth pointing out
that (4) is essentially a random walk biased towards the brighter fireflies. If β0 = 0,
it becomes a simple random walk. Furthermore, the randomization term can easily
be extended to other distributions such as Lévy flights. A basic implementation can
be obtained from this link.1 High nonlinear and non-convex global optimization
problems can be solved using firefly algorithm efficiently [14, 49]).

3.7 Harmony Search

Harmony Search (HS) is a music-inspired metaheuristic algorithm and it was first
developed by Z. W. Geem et al. in 2001 and a recent summary can be found at Geem
[12]. Harmony search has three components: usage of harmony memory, pitch ad-
justing, and randomization.

The usage of harmony memory is similar to choose the best fit individuals in
the genetic algorithms, while pitch adjustment is similar to the mutation operator in
genetic algorithms. Further more, randomization is used to increase the diversity of
the solutions.

3.8 Bat Algorithm

Bat algorithm is a relatively new metaheuristic, developed by Xin-She Yang in 2010
[44]. It was inspired by the echolocation behaviour of microbats. Microbats use a
type of sonar, called, echolocation, to detect prey, avoid obstacles, and locate their
roosting crevices in the dark. These bats emit a very loud sound pulse and listen for
the echo that bounces back from the surrounding objects. Their pulses vary in prop-
erties and can be correlated with their hunting strategies, depending on the species.
Most bats use short, frequency-modulated signals to sweep through about an octave,
while others more often use constant-frequency signals for echolocation. Their sig-
nal bandwidth varies depends on the species, and often increased by using more
harmonics.

1 http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm

Metaheuristic Optimization: Nature-Inspired Algorithms and Applications 411

Inside the bat algorithm, it uses three idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers in some magical way;

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automatically
adjust the wavelength (or frequency) of their emitted pulses and adjust the rate
of pulse emission r ∈ [0,1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) A0 to a minimum constant value Amin.

BA has been extended to multiobjective bat algorithm (MOBA) by [47], and pre-
liminary results suggested that it is very efficient.

3.9 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang and Suash Deb [45, 46]. CS is based on the
brood parasitism of some cuckoo species. In addition, this algorithm is enhanced by
the so-called Lévy flights, rather than by simple isotropic random walks. This algo-
rithm was inspired by the aggressive reproduction strategy of some cuckoo species
such as the ani and Guira cuckoos. These cuckoos lay their eggs in communal nests,
though they may remove others’ eggs to increase the hatching probability of their
own eggs. Quite a number of species engage the obligate brood parasitism by laying
their eggs in the nests of other host birds (often other species).

In the standard cuckoo search, the following three idealized rules are used:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
• The best nests with high-quality eggs will be carried over to the next generations;
• The number of available host nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability pa ∈ [0,1]. In this case, the host bird
can either get rid of the egg, or simply abandon the nest and build a completely
new nest.

As a further approximation, this last assumption can be approximated by a fraction
pa of the n host nests are replaced by new nests (with new random solutions). Recent
studies suggest that cuckoo search can outperform particle swarm optimization and
other algorithms [46].

This algorithm uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter pa. The lo-
cal random walk can be written as

xt+1
i = xt

i + s⊗H(pa− ε)⊗ (xt
j − xt

k), (6)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform

412 X.-S. Yang

distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

xt+1
i = xt

i +αL(s,λ), L(s,λ) =
λΓ (λ)sin(πλ/2)

π
1

s1+λ , (s � s0 > 0). (7)

A vectorized implementation can be obtained from this link here.2

The literature on cuckoo search is expanding rapidly. Interestingly, cuckoo search
was originally published in 2009 and our matlab program was in the public domain
in 2010, while some authors later in 2011 used a different name, cuckoo optimiza-
tion algorithm, to essentially talk about the same inspiration from cuckoo behaviour.

There have been a lot of attention and recent studies using cuckoo search with
diverse range of applications [13, 35, 50]. Walton et al. improved the algorithm by
formulating a modified cuckoo search algorithm [35], while Yang and Deb extended
it to multiobjective optimization problems [50]. Durgun and Yildiz applied it to
structural design optimization [9].

There are other metaheuristic algorithms which have not been introduced here,
and interested readers can refer to more advanced literature [43, 26].

4 Artificial Neural Networks

Artificial neural networks in essence belong to optimization algorithms, though they
may work in a different context.

The basic mathematical model of an artificial neuron was first proposed by W.
McCulloch and W. Pitts in 1943, and this fundamental model is referred to as the
McCulloch-Pitts model. Other models and neural networks are based on it.

An artificial neuron with n inputs or impulses and an output yk will be activated
if the signal strength reaches a certain threshold θ . Each input has a corresponding
weight wi. The output of this neuron is given by

yl = Φ
(n

∑
i=1

wiui
)
, (8)

where the weighted sum ξ = ∑n
i=1 wiui is the total signal strength, and Φ is the so-

called activation function, which can be taken as a step function. That is, we have

Φ(ξ) =
{

1 if ξ ≥ θ ,
0 if ξ < θ . (9)

We can see that the output is only activated to a non-zero value if the overall signal
strength is greater than the threshold θ .

The step function has discontinuity, sometimes, it is easier to use a nonlinear,
smooth function, called a Sigmoid function

2 http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-
algorithm

Metaheuristic Optimization: Nature-Inspired Algorithms and Applications 413

S(ξ) =
1

1+ e−ξ , (10)

which approaches 1 as U → ∞, and becomes 0 as U →−∞. An interesting property
of this function is

S′(ξ) = S(ξ)[1− S(ξ)]. (11)

4.1 Neural Networks

A single neuron can only perform a simple task – on or off. Complex functions can
be designed and performed using a network of interconnecting neurons or percep-
trons. The structure of a network can be complicated, and one of the most widely
used is to arrange them in a layered structure, with an input layer, an output layer,
and one or more hidden layer (see Fig. 1). The connection strength between two
neurons is represented by its corresponding weight. Some artificial neural networks
(ANNs) can perform complex tasks, and can simulate complex mathematical mod-
els, even if there is no explicit functional form mathematically. Neural networks
have developed over last few decades and have been applied in almost all areas of
science and engineering.

The construction of a neural network involves the estimation of the suitable
weights of a network system with some training/known data sets. The task of the
training is to find the suitable weights wi j so that the neural networks not only can
best-fit the known data, but also can predict outputs for new inputs. A good arti-
ficial neural network should be able to minimize both errors simultaneously – the
fitting/learning errors and the prediction errors.

The errors can be defined as the difference between the calculated (or predicated)
output ok and real output yk for all output neurons in the least-square sense

E =
1
2

no

∑
k=1

(ok − yk)
2. (12)

Here the output ok is a function of inputs/activations and weights. In order to mini-
mize this error, we can use the standard minimization techniques to find the solutions
of the weights.

A simple and yet efficient technique is the steepest descent method. For any initial
random weights, the weight increment for whk is

Δwhk =−η
∂E

∂whk
=−η

∂E
∂ok

∂ok

∂whk
, (13)

where η is the learning rate. Typically, we can choose η = 1.
From

Sk =
m

∑
h=1

whkoh, (k = 1,2, ...,no), (14)

and

414 X.-S. Yang

Fig. 1 Schematic representation of a three-layer neural networks with ni inputs, m hidden
nodes and no outputs.

ok = f (Sk) =
1

1+ e−Sk
, (15)

we have
f ′ = f (1− f), (16)

∂ok

∂whk
=

∂ok

∂Sk

∂Sk

∂whk
= ok(1− ok)oh, (17)

and
∂E
∂ok

= (ok − yk). (18)

Therefore, we have

Δwhk =−ηδkoh, δk = ok(1− ok)(ok − yk). (19)

4.2 Back Propagation Algorithm

There are many ways of calculating weights by supervised learning. One of the sim-
plest and widely used methods is to use the back propagation algorithm for training
neural networks, often called back propagation neural networks (BPNNs).

The basic idea is to start from the output layer and propagate backwards so as to
estimate and update the weights.

From any initial random weighting matrices wih (for connecting the input nodes
to the hidden layer) and whk (for connecting the hidden layer to the output nodes),
we can calculate the outputs of the hidden layer oh

oh =
1

1+ exp[−∑ni
i=1 wihui]

, (h = 1,2, ...,m), (20)

and the outputs for the output nodes

ok =
1

1+ exp[−∑m
h=1 whkoh]

, (k = 1,2, ...,no). (21)

Metaheuristic Optimization: Nature-Inspired Algorithms and Applications 415

The errors for the output nodes are given by

δk = ok(1− ok)(yk − ok), (k = 1,2, ...,no), (22)

where yk(k = 1,2, ...,no) are the data (real outputs) for the inputs ui(i = 1,2, ...,ni).
Similarly, the errors for the hidden nodes can be written as

δh = oh(1− oh)
no

∑
k=1

whkδk, (h = 1,2, ...,m). (23)

The updating formulae for weights at iteration t are

wt+1
hk = wt

hk +ηδkoh, (24)

and
wt+1

ih = wt
ih +ηδhui, (25)

where 0 < η ≤ 1 is the learning rate.
Here we can see that the weight increments are

Δwih = ηδhui, (26)

with similar updating formulae for whk. An improved version is to use the so-called
weight momentum α to increase the learning efficiency

Δwih = ηδhui +αwih(τ − 1), (27)

where τ is an extra parameter.

5 Characteristics of Metaheuristics

Metaheuristics can be considered as an efficient way to produce acceptable solutions
by trial and error to a complex problem in a reasonably practical time. The complex-
ity of the problem of interest makes it impossible to search every possible solution
or combination, the aim is to find good feasible solution in an acceptable timescale.
There is no guarantee that the best solutions can be found, and we even do not know
whether an algorithm will work and why if it does work. The idea is to have an
efficient but practical algorithm that will work most the time and is able to produce
good quality solutions. Among the found quality solutions, it is expected some of
them are nearly optimal, though there is often no guarantee for such optimality.

The main components of any metaheuristic algorithms are: intensification and
diversification, or exploitation and exploration [4, 40, 43]. Diversification means to
generate diverse solutions so as to explore the search space on the global scale, while
intensification means to focus on the search in a local region by exploiting the infor-
mation that a current good solution is found in this region. This is in combination
with the selection of the best solutions.

416 X.-S. Yang

As seen earlier, an important component in swarm intelligence and modern meta-
heuristics is randomization, which enables an algorithm to have the ability to jump
out of any local optimum so as to search globally. Randomization can also be used
for local search around the current best if steps are limited to a local region. When
the steps are large, randomization can explore the search space on a global scale.
Fine-tuning the randomness and balancing local search and global search are cru-
cially important in controlling the performance of any metaheuristic algorithm.

Randomization techniques can be a very simple method using uniform distri-
butions and/or Gaussian distributions, or more complex methods as those used in
Monte Carlo simulations. They can also be more elaborate, from Brownian random
walks to Lévy flights.

6 No-Free-Lunch Theorems

The seminal paper by Wolpert and Mcready in 1997 essentially proposed a frame-
work for performance comparison of optimization algorithms [36], using a com-
bination of Bayesian statistics and Markov random field theories. Let us sketch
Wolpert and Macready’s original idea. Assuming that the search space is finite
(though quite large), thus the space of possible objective values is also finite. This
means that objective function is simply a mapping f : X → Y , with F = Y X as
the space of all possible problems under permutation.

As an algorithm tends to produce a series of points or solutions in the search
space, it is further assumed that these points are distinct. That is, for k iterations, k
distinct visited points forms a time-ordered set

Ωk =
{(

Ω x
k (1),Ω

y
k (1)

)
, ...,

(
Ω x

k (k),Ω
y
k (k)

)}
. (28)

There are many ways to define a performance measure, though a good measure still
remains debatable [30]. Such a measure can depend on the number of iteration k, the
algorithm a and the actual cost function f , which can be denoted by P(Ω y

k‖ f ,k,a).
Here we follow the notation style in the seminal paper by Wolpert and Mcready
(1997). For any pair of algorithms a and b, the NFL theorem states

∑
f

P(Ω y
k | f ,k,a) = ∑

f

P(Ω y
k | f ,k,b). (29)

In other words, any algorithm is as good (bad) as a random search, when the perfor-
mance is averaged over all possible functions.

Along many relevant assumptions in proving the NFL theorems, two fundamental
assumptions are: finite states of the search space (and thus the objective values), and
the non-revisiting time-ordered sets.

The first assumption is a good approximation to many problems, especially in
finite-digit approximations. However, there is mathematical difference in countable
finite, and countable infinite. Therefore, the results for finite states/domains may
not directly applicable to infinite domains. Furthermore, as continuous problem are

Metaheuristic Optimization: Nature-Inspired Algorithms and Applications 417

uncountable, NFL results for finite domains will usually not hold for continuous
domains [2].

The second assumption on non-revisiting iterative sequence is often considered
as an over-simplification, as almost all metaheuristic algorithms are revisiting in
practice, some points visited before will possibly be re-visited again in the future.
The only possible exception is the Tabu algorithm with a very long Tabu list [15].
Therefore, results for non-revisiting time-ordered iterations may not be true for the
cases of revisiting cases, because the revisiting iterations break an important as-
sumption of ‘closed under permutation’ (c.u.p) required for proving the NFL theo-
rems [25].

Furthermore, optimization problems do not necessarily concern the whole set
of all possible functions/problems, and it is often sufficient to consider a subset of
problems. It is worth pointing out active studies have carried out in constructing
algorithms that can work best on specific subsets of optimization problems, in fact,
NFL theorems do not hold in this case [8].

These theorems are vigorous and thus have important theoretical values. How-
ever, their practical implications are a different issue. In fact, it may not be so im-
portant in practice anyway, we will discuss this in a later section.

7 Search for Free Lunches

The validity of NFL theorems largely depends on the validity of their fundamen-
tal assumptions. However, whether these assumptions are valid in practice is an-
other question. Often, these assumptions are too stringent, and thus free lunches are
possible.

One of the assumptions is the non-revisiting nature of the k distinct points which
form a time-ordered set. For revisiting points as they do occur in practice in real-
world optimization algorithms, the ‘closed under permutation’ does not hold, which
renders NFL theorems invalid [29, 25, 31]. This means free lunches do exist in
practical applications.

Another basic assumption is the finiteness of the domains. For continuous do-
mains, Auger and Teytaud in 2010 have proven that the NFL theorem does not hold
[2], and therefore they concluded that ‘continuous free lunches exist’. Indeed, some
algorithms are better than others [7]. For example, for a 2D sphere function, they
demonstrated that an efficient algorithm only needs 4 iterations/steps to reach the
global minimum.

No-free-lunch theorems may be of theoretical importance, and they can also have
important implications for algorithm development in practice, though not everyone
agrees the real importance of these implications.

There are three kinds of opinions concerning the implications. The first group
may simply ignore these theorems, as they argue that the assumptions are too strin-
gent, and the performance measures based on average overall functions are irrele-
vant in practice. Therefore, no practical importance can be inferred, and research
just carries on.

418 X.-S. Yang

The second kind is that NFL theorems can be true, and they can accept that the
fact there is no universally efficient algorithm. But in practice some algorithms do
performance better than others for a specific problem or a subset of problems. Re-
search effort should focus on finding the right algorithms for the right type of prob-
lem. Problem-specific knowledge is always helpful to find the right algorithm(s).

The third kind of opinion is that NFL theorems are not true for other types of
problems such as continuous problems and NP-hard problems. Theoretical work
concerns more elaborate studies on extending NFL theorems to other cases or on
finding free lunches [2]. On the other hand, algorithm development continues to
design better algorithms which can work for a wider range of problems, not neces-
sarily all types of problems. As we have seen from the above analysis, free lunches
do exist, and better algorithms can be designed for a specific subset of problems
[41, 46].

Thus, free lunch or no free lunch is not just a simple question, it has impor-
tant and yet practical importance. There is certain truth in all the above arguments,
and their impacts on optimization community are somehow mixed. Obviously, in
reality, the algorithms with problem-specific knowledge typically work better than
random search, and we also realized that there is no universally generic tool that
works best for all the problems. Therefore, we have to seek balance between spe-
ciality and generality, between algorithm simplicity and problem complexity, and
between problem-specific knowledge and capability of handling black-box opti-
mization problems.

References

1. Afshar, A., Haddad, O.B., Marino, M.A., Adams, B.J.: Honey-bee mating optimization
(HBMO) algorithm for optimal reservoir operation. J. Franklin Institute 344, 452–462
(2007)

2. Auger, A., Teytaud, O.: Continuous lunches are free plus the design of optimal optimiza-
tion algorithms. Algorithmica 57, 121–146 (2010)

3. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent
Developments. World Scientific (2010)

4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimisation: Overview and concep-
tural comparision. ACM Comput. Surv. 35, 268–308 (2003)

5. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in
a multidimensional complex space. IEEE Trans. Evolutionary Computation 6, 58–73
(2002)

6. Copeland, B.J.: The Essential Turing. Oxford University Press (2004)
7. Corne, D., Knowles, J.: Some multiobjective optimizers are better than others. In: Evo-

lutionary Computation, CEC 2003, vol. 4, pp. 2506–2512 (2003)
8. Christensen, S., Oppacher, F.: Wath can we learn from No Free Lunch? In: Proc. Genetic

and Evolutionary Computation Conference (GECCO 2001), pp. 1219–1226 (2001)
9. Durgun, I., Yildiz, A.R.: Structural design optimization of vehicle components using

cuckoo search algorithm. Materials Testing 3, 185–188 (2012)
10. Dorigo, M., Stütle, T.: Ant Colony Optimization. MIT Press (2004)
11. Floudas, C.A., Pardolos, P.M.: Encyclopedia of Optimization, 2nd edn. Springer (2009)

Metaheuristic Optimization: Nature-Inspired Algorithms and Applications 419

12. Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications.
Springer (2009)

13. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a meteheuristic ap-
proach to solve structural optimization problems. In: Engineering with Computers, July
29 (2011), doi:10.1007/s00366-011-0241-y

14. Gandomi, A.H., Yang, X.S., Talatahari, S., Deb, S.: Coupled eagle strategy and differ-
ential evolution for unconstrained and constrained global optimization. Computers &
Mathematics with Applications 63(1), 191–200 (2012)

15. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
16. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic

Algorithms. Addison-Wesley, Reading (2002)
17. Gutjahr, W.J.: Convergence Analysis of Metaheuristics. Annals of Information Sys-

tems 10, 159–187 (2010)
18. Holland, J.: Adaptation in Natural and Artificial systems. University of Michigan Press,

Ann Anbor (1975)
19. Igel, C., Toussaint, M.: On classes of functions for which no free lunch results hold.

Inform. Process. Lett. 86, 317–321 (2003)
20. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical

Report TR06, Erciyes University, Turkey (2005)
21. Kennedy, J., Eberhart, R.: Particle swarm optimisation. In: Proc. of the IEEE Int. Conf.

on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
22. Kirkpatrick, S., Gellat, C.D., Vecchi, M.P.: Optimisation by simulated annealing. Sci-

ence 220, 671–680 (1983)
23. Nakrani, S., Tovey, C.: On Honey Bees and Dynamic Server Allocation in Internet Host-

ing Centers. Adaptive Behaviour 12(3-4), 223–240 (2004)
24. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algo-

rithms and Their Computational Complexity. Springer (2010)
25. Marshall, J.A., Hinton, T.G.: Beyond no free lunch: realistic algorithms for arbitrary

problem classes. In: WCCI 2010 IEEE World Congress on Computational Intelligence,
Barcelona, Spain, July 18-23, pp. 1319–1324 (2010)

26. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J.
Bio-Inspired Computation 3, 1–16 (2011)

27. Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algo-
rithm A Novel Tool for Complex Optimisation Problems. In: Proceedings of IPROMS
2006 Conference, pp. 454–461 (2006)

28. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global
Optimization. Springer (2005)

29. Schumacher, C., Vose, M., Whitley, D.: The no free lunch and problem description
length. In: Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 565–
570 (2001)

30. Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.J.: A general framework for statisti-
cal performance comparison of evolutionary computation algorithms. Information Sci-
ences 178, 2870–2879 (2008)

31. Spall, J.C., Hill, S.D., Stark, D.R.: Theoretical framework for comparing several stochas-
tic optimization algorithms. In: Probabilistic and Randomized Methods for Design Under
Uncertainty, pp. 99–117. Springer, London (2006)

32. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

33. Turing, A.M.: Intelligent Machinery. Technical Report, National Physical Laboratory
(1948)

420 X.-S. Yang

34. Villalobos-Arias, M., Coello Coello, C.A., Hernández-Lerma, O.: Asymptotic conver-
gence of metaheuristics for multiobjective optimization problems. Soft Computing 10,
1001–1005 (2005)

35. Walton, S., Hassan, O., Morgan, K., Brown, M.R.: Modified cuckoo search: a new gra-
dient free optimization algorithm. Chaos, Solitons & Fractals 44(9), 710–718 (2011)

36. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimisation. IEEE Trans-
action on Evolutionary Computation 1, 67–82 (1997)

37. Wolpert, D.H., Macready, W.G.: Coevolutonary free lunches. IEEE Trans. Evolutionary
Computation 9, 721–735 (2005)

38. Turing Archive for the History of Computing, www.alanturing.net
39. Yang, X.-S.: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In:

Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer,
Heidelberg (2005)

40. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
41. Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O., Zeug-

mann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)
42. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J.

Bio-Inspired Computation 2, 78–84 (2010a)
43. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications.

John Wiley and Sons, USA (2010b)
44. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta,

D.A., Cruz, C., Terrazas, G., Krasnogor, N., et al. (eds.) NICSO 2010. Studies in Com-
putational Intelligence, vol. 284, pp. 65–74. Springer, Heidelberg (2010c)

45. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceeings of World Congress
on Nature & Biologically Inspired Computing, NaBIC 2009, pp. 210–214. IEEE Publi-
cations, USA (2009)

46. Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Modelling
& Num. Optimisation 1, 330–343 (2010)

47. Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Compu-
tation 3(5), 267–274 (2011)

48. Yang, X.S., Deb, S.: Two-stage eagle strategy with differential evolution. Int. J. Bio-
Inspired Computation 4(1), 1–5 (2012)

49. Yang, X.S., Hossein, S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex
economic dispatch problems with valve loading effect. Applied Soft Computing 12(3),
1180–1186 (2012)

50. Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Computers
and Operations Research (October 2011) (accepted), doi:10.1016/j.cor.2011.09.026

51. Yu, L., Wang, S.Y., Lai, K.K., Nakamori, Y.: Time series forecasting with multiple candi-
date models: selecting or combining? Journal of Systems Science and Complexity 18(1),
1–18 (2005)

www.alanturing.net

Bat Algorithm and Cuckoo Search: A Tutorial

Xin-She Yang

Abstract. Nature-inspired metaheuristic algorithms have attracted much attention
in the last decade, and new algorithms have emerged almost every year with a vast,
ever-expanding literature. In this chapter, we briefly review two latest metaheuris-
tics: bat algorithm and cuckoo search for global optimization. Bat algorithm was
proposed by Xin-She Yang in 2010, inspired by the echolocation of microbats, while
cuckoo search was developed by Xin-She Yang and Suash Deb in 2009, inspired by
the brood parasitism of some cuckoo species. Both algorithms have shown superi-
ority over many other metaheuristics over a wide range of applications.

1 Bat Algorithm

1.1 Behaviour of Microbats

Bats are fascinating animals. They are the only mammals with wings and they also
have advanced capability of echolocation. It is estimated that there are about 1000
different species which account for up to 20% of all mammal species. Their size
ranges from tiny bumblebee bats (of about 1.5 to 2 g) to giant bats with a wingspan
of about 2 m and weight up to about 1 kg. Microbats typically have a forearm length
of about 2.2 to 11 cm [14, 15]. Most bats uses echolocation to a certain degree;
among all the species, microbats are a famous example as microbats use echoloca-
tion extensively, while megabats do not [1, 5].

Most microbats are insectivores. Microbats use a type of sonar, called echoloca-
tion, to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
These bats emit a very loud sound pulse and listen for the echo that bounces back
from the surrounding objects. Their pulses vary in properties and can be corre-
lated with their hunting strategies, depending on the species. Most bats use short,
frequency-modulated signals to sweep through about an octave, while others more

Xin-She Yang
Mathematics & Scientific Computing, National Physical Laboratory,
Teddington TW11 0LW, UK

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 421–434.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

422 X.-S. Yang

often use constant-frequency signals for echolocation. The bandwidth of echoloca-
tion signals varies with species, and often increases by using more harmonics.

Studies show that microbats use the time delay from the emission and detection
of the echo, the time difference between their two ears, and the loudness variations
of the echoes to build up three dimensional scenario of the surrounding. They can
detect the distance and orientation of the target, the type of prey, and even the mov-
ing speed of the prey such as small insects. Indeed, studies suggested that bats seem
to be able to discriminate targets by the variations of the Doppler effect induced by
the wing-flutter rates of the target insects [1].

1.2 Acoustics of Echolocation

Though each pulse only lasts a few thousandths of a second (up to about 8 to 10 ms),
however, it has a constant frequency which is usually in the region of 25 kHz to 150
kHz. The typical range of frequencies for most bat species are in the region between
25 kHz and 100 kHz, though some species can emit higher frequencies up to 150
kHz. Each ultrasonic burst may last typically 5 to 20 ms, and microbats emit about
10 to 20 such sound bursts every second. When hunting for prey, the rate of pulse
emission can be sped up to about 200 pulses per second when they fly near their
prey. Such short sound bursts imply the fantastic ability of the signal processing
power of bats. In fact, studies show the integration time of the bat ear is typically
about 300 to 400 μs.

As the speed of sound in air is typically v = 340 m/s at room temperature, the
wavelength λ of the ultrasonic sound bursts with a constant frequency f is given by

λ =
v
f
, (1)

which is in the range of 2 mm to 14 mm for the typical frequency range from 25
kHz to 150 kHz. Such wavelengths are in the same order of their prey sizes [1, 14].

Amazingly, the emitted pulse could be as loud as 110 dB, and, fortunately, they
are in the ultrasonic region. The loudness also varies from the loudest when search-
ing for prey and to a quieter base when homing towards the prey. The travelling
range of such short pulses are typically a few metres, depending on the actual fre-
quencies. Microbats can manage to avoid obstacles as small as thin human hairs.

Obviously, some bats have good eyesight, and most bats also have very sensitive
smell sense. In reality, they will use all the senses as a combination to maximize
the efficient detection of prey and smooth navigation. However, here we are only
interested in the echolocation and the associated behaviour.

Such echolocation behaviour of microbats can be formulated in such a way that
it can be associated with the objective function to be optimized, and this makes it
possible to formulate new optimization algorithms. We will first outline the basic
formulation of the Bat Algorithm (BA) and then discuss its implementation.

Bat Algorithm and Cuckoo Search: A Tutorial 423

1.3 Bat Algorithm

If we idealize some of the echolocation characteristics of microbats, we can develop
various bat-inspired algorithms or bat algorithms [18, 20]. For simplicity, we now
use the following approximate or idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers;

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin (or
wavelength λ), varying wavelength λ (or frequency f) and loudness A0 to search
for prey. They can automatically adjust the wavelength (or frequency) of their
emitted pulses and adjust the rate of pulse emission r ∈ [0,1], depending on the
proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) A0 to a minimum value Amin.

Another obvious simplification is that no ray tracing is used in estimating the time
delay and three dimensional topography. Though this might be a good feature for
the application in computational geometry; however, we will not use this, as it is
more computationally extensive in multidimensional cases.

In addition to these simplified assumptions, we also use the following approxima-
tions, for simplicity. In general the frequency f in a range [fmin, fmax] corresponds
to a range of wavelengths [λmin,λmax]. For example, a frequency range of [20 kHz,
500 kHz] corresponds to a range of wavelengths from 0.7 mm to 17 mm.

For a given problem, we can also use any wavelength for the ease of implemen-
tation. In the actual implementation, we can adjust the range by adjusting the fre-
quencies (or wavelengths). The detectable range (or the largest wavelength) should
be chosen such that it is comparable to the size of the domain of interest, and then
toning down to smaller ranges. Furthermore, we do not necessarily have to use the
wavelengths themselves at all, instead, we can also vary the frequency while fixing
the wavelength λ . This is because λ and f are related, as λ f is constant. We will
use this later approach in our implementation.

For simplicity, we can assume f ∈ [0, fmax]. We know that higher frequencies
have short wavelengths and travel a shorter distance. For bats, the typical ranges are
a few metres. The rate of pulse can simply be in the range of [0,1] where 0 means
no pulses at all, and 1 means the maximum rate of pulse emission.

Based on the above approximations and idealization, the basic steps of the Bat
Algorithm (BA) can be summarized as the pseudo code shown in Fig. 1.

1.3.1 Movement of Virtual Bats

In the standard bat algorithm [20, 24], we have to use virtual bats. We have to define
the rules how their positions xi and velocities vi in a d-dimensional search space are
updated. The new solutions xt

i and velocities vt
i at time step t are given by

fi = fmin +(fmax − fmin)β , (2)

424 X.-S. Yang

Bat Algorithm

Initialize a population of n bats xi (i = 1,2, ...,n) and vi
Initialize frequencies fi, pulse rates ri and the loudness Ai

while (t <Max number of iterations)
Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions [(2) to (4)]
if (rand > ri)

Select a solution among the best solutions
Generate a local solution around the selected best solution

end if
Generate a new solution by flying randomly
if (rand < Ai & f (xi) < f (x∗))

Accept the new solutions
Increase ri and reduce Ai

end if
Rank the bats and find the current best x∗

end while

Fig. 1 Pseudo code of the bat algorithm (BA).

vt+1
i = vt

i +(xt
i − x∗) fi, (3)

xt+1
i = xt

i + vt
i, (4)

where β ∈ [0,1] is a random vector drawn from a uniform distribution. Here x∗
is the current global best location (solution) which is located after comparing all
the solutions among all the n bats at each iteration t. As the product λi fi is the
velocity increment, we can use fi (or λi) to adjust the velocity change while fixing
the other factor λi (or fi), depending on the type of the problem of interest. In our
implementation, we will use fmin = 0 and fmax = O(1), depending on the domain
size of the problem of interest. Initially, each bat is randomly assigned a frequency
which is drawn uniformly from [fmin, fmax].

For the local search part, once a solution is selected among the current best solu-
tions, a new solution for each bat is generated locally using random walk

xnew = xold + ε At , (5)

where ε is a random number which can be drawn from a uniform distribution in
[−1,1] or a Gaussian distribution, while At =<At

i > is the average loudness of all
the bats at this time step.

The update of the velocities and positions of bats have some similarity to the
procedure in the standard particle swarm optimization, as fi essentially controls the
pace and range of the movement of the swarming particles. To a degree, BA can be
considered as a balanced combination of the standard particle swarm optimization
and the intensive local search controlled by the loudness and pulse rate.

Bat Algorithm and Cuckoo Search: A Tutorial 425

1.3.2 Loudness and Pulse Emission

Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated
accordingly as the iterations proceed. As the loudness usually decreases once a bat
has found its prey, while the rate of pulse emission increases, the loudness can be
chosen as any value of convenience. For simplicity, we can use A0 = 1 and Amin = 0,
assuming Amin = 0 means that a bat has just found the prey and temporarily stop
emitting any sound. Now we have

At+1
i = αAt

i, (6)

and
rt

i = r0
i [1− exp(−γt)], (7)

where α and γ are constants. In fact, α is similar to the cooling factor of a cooling
schedule in simulated annealing. For any 0 < α < 1 and γ > 0, we have

At
i → 0, rt

i → r0
i , as t → ∞. (8)

In the simplest case, we can use α = γ , and we have used α = γ = 0.9 in our
simulations.

The choice of parameters requires some experimenting. Initially, each bat should
have different values of loudness and pulse emission rate, and this can be achieved
by randomization. For example, the initial loudness A0

i can typically be around [1,2],
while the initial emission rate r0

i can be around zero, or any value r0
i ∈ [0,1] if using

(7). Their loudness and emission rates will be updated only if the new solutions
are improved, which means that these bats are moving towards the optimal solution
[18, 20].

1.3.3 Discussions

The bat algorithm is much superior to other algorithms in terms of accuracy and
efficiency [18, 25]. If we replace the variations of the frequency fi by a random
parameter and setting Ai = 0 and ri = 1, the bat algorithm essentially becomes the
standard particle swarm optimization (PSO).

Similarly, if we do not use the velocities, we use fixed loudness and rate: Ai and
ri. For example, Ai = ri = 0.7, this algorithm is virtually reduced to a simple har-
mony search (HS) [19], as the frequency/wavelength change is essentially the pitch
adjustment, while the rate of pulse emission is similar to the harmonic acceptance
rate (here with a twist) in the harmony search algorithm. The current studies imply
that the proposed new algorithm is potentially more powerful and thus should be
investigated further in many applications of engineering and industrial optimization
problems.

426 X.-S. Yang

1.4 Further Topics

Bat algorithms start to attract attention, as many researchers have written to the
authors to request a demo code. More applications for both single objective and
multiobjective optimization problems have appeared in the literature [25, 24, 16].

From the formulation of the bat algorithm and its implementation and compari-
son, we can see that it is a very promising algorithm. It is potentially more powerful
than particle swarm optimization and genetic algorithms as well as harmony search.
The primary reason is that BA uses a good combination of major advantages of
these algorithms in some way. Moreover, PSO and harmony search are the special
cases of the bat algorithm under appropriate simplifications.

In addition, the fine adjustment of the parameters α and γ can affect the conver-
gence rate of the bat algorithm. In fact, parameter α acts in a similar role as the cool-
ing schedule in the simulated annealing. Though the implementation is slightly more
complicated than those for many other metaheuristic algorithms; however, it does
show that it utilizes a balanced combination of the advantages of existing success-
ful algorithms with innovative feature based on the echolocation behaviour of bats.
New solutions are generated by adjusting frequencies, loudness and pulse emission
rates, while the proposed solution is accepted or not, depending on the quality of the
solutions controlled or characterized by loudness and pulse rate which are in turn
related to the closeness or the fitness of the locations/solution to the global optimal
solution.

The exciting results suggest that more studies will be needed to carry out the
sensitivity analysis, to analyze the rate of algorithm convergence, and to improve the
convergence rate even further. More extensive comparison studies with a more wide
range of existing algorithms using much tough test functions in higher dimensions
will pose more challenges to all optimization algorithms, and thus such comparisons
will potentially reveal the virtues and weakness of all the algorithms of interest.

An interesting extension will be to use different schemes of wavelength or fre-
quency variations instead of the current linear implementation. In addition, the rates
of pulse emission and loudness can also be varied in a more sophisticated man-
ner. Another extension for discrete problems is to use the time delay between pulse
emission and the echo bounced back. For example, in the travelling salesman prob-
lem, the distance between two adjacent nodes/cities can easily be coded as the time
delay.

As microbats use time difference between their two ears to obtain three-
dimensional information, they can identify the type of prey and the velocity of a fly-
ing insect. Therefore, a further natural extension to the current bat algorithm would
be to use the directional echolocation and Doppler effect, which may lead to even
more interesting variants and new algorithms.

Bat Algorithm and Cuckoo Search: A Tutorial 427

2 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang of Cambridge University and Suash Deb of
C. V. Raman College of Engineering. CS was based on the brood parasitism of
some cuckoo species. In addition, this algorithm is enhanced by the so-called Lévy
flights, rather than by simple isotropic random walks. Recent studies showed that
CS is potentially far more efficient than PSO and genetic algorithms [21, 22, 3].

2.1 Cuckoo Breeding Behaviour

Cuckoo are fascinating birds, not only because of the beautiful sounds they can
make, but also because of their aggressive reproduction strategy. Some species such
as the ani and Guira cuckoos lay their eggs in communal nests, though they may
remove others’ eggs to increase the hatching probability of their own eggs. Quite a
number of species engage the obligate brood parasitism by laying their eggs in the
nests of other host birds (often other species) [9].

There are three basic types of brood parasitism: intraspecific brood parasitism,
cooperative breeding, and nest takeover. Some host birds can engage direct conflict
with the intruding cuckoos. If a host bird discovers the eggs are not their owns, they
will either get rid of these alien eggs or simply abandon its nest and build a new nest
elsewhere. Some cuckoo species such as the New World brood-parasitic Tapera have
evolved in such a way that female parasitic cuckoos are often very specialized in the
mimicry in colour and pattern of the eggs of a few chosen host species. This reduces
the probability of their eggs being abandoned and thus increases their reproductivity.

In addition, the timing of egg-laying of some species is also amazing. Parasitic
cuckoos often choose a nest where the host bird just laid its own eggs. In general, the
cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo chick
is hatched, the first instinct action it will take is to evict the host eggs by blindly
propelling the eggs out of the nest, which increases the cuckoo chick’s share of food
provided by its host bird. Studies also show that a cuckoo chick can also mimic the
call of host chicks to gain access to more feeding opportunity.

2.2 Lévy Flights

Various studies have shown that the flight behaviour of many animals and insects
may pose some typical characteristics of Lévy flights [2, 10]. A recent study showed
that fruit flies or Drosophila melanogaster, explore their landscape using a series of
straight flight paths punctuated by a sudden 90o turn, leading to a Lévy-flight-style
intermittent scale free search pattern [12, 13].

Studies on human behaviour such as the Ju/’hoansi hunter-gatherer foraging pat-
terns also show the typical feature of Lévy flights [4]. Even light can be related to
Lévy flights. Subsequently, such behaviour has been applied to optimization and
optimal search, and preliminary results show its promising capability [10, 11].

428 X.-S. Yang

2.3 Cuckoo Search

For simplicity in describing our standard Cuckoo Search developed by Xin-She
Yang and Suash Deb [21, 22], we now use the following three idealized rules:

• Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen
nest;

• The best nests with highest quality eggs will be carried over to the next generations;
• The number of available host nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability pa ∈ [0,1]. In this case, the host bird
can either get rid of the egg, or simply abandon the nest and build a completely
new nest.

As a further approximation, this last assumption can be approximated by a fraction
pa of the n host nests are replaced by new nests (with new random solutions). For a
maximization problem, the quality or fitness of a solution can simply be proportional
to the value of the objective function. Other forms of fitness can be defined in a
similar way to the fitness function in genetic algorithms.

For the implementation point of view, we can use the following simple represen-
tations that each egg in a nest represents a solution, and each cuckoo can lay only
one egg (thus representing one solution), the aim is to use the new and potentially
better solutions (cuckoos) to replace a not-so-good solution in the nests. Obviously,
this algorithm can be extended to the more complicated case where each nest has
multiple eggs representing a set of solutions, or representing multiobjectives [24].

For this present tutorial, we will use the simplest approach where each nest has
only a single egg. In this case, there is no distinction between egg, nest or cuckoo,
as each nest corresponds to one egg which also represents one cuckoo.

Based on these three rules, the basic steps of the Cuckoo Search (CS) can be
summarized as the pseudo code shown in Fig. 2.

This algorithm uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter pa. The lo-
cal random walk can be written as

xt+1
i = xt

i + s⊗H(pa− ε)⊗ (xt
j − xt

k), (9)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

xt+1
i = xt

i + αL(s,λ), (10)

where

L(s,λ) =
λΓ (λ)sin(πλ/2)

π
1

s1+λ , (s � s0 > 0). (11)

Bat Algorithm and Cuckoo Search: A Tutorial 429

Cuckoo Search via Lévy Flights

Objective function f (x), x = (x1, ...,xd)T

Generate initial population of n host nests xi

while (t <MaxGeneration) or (stop criterion)
Get a cuckoo randomly/generate a solution by Lévy flights

and then evaluate its quality/fitness Fi

Choose a nest among n (say, j) randomly
if (Fi > Fj),

Replace j by the new solution
end
Abandon a fraction (pa) of worse nests & generate new solutions
Keep best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Postprocess results and visualization

Fig. 2 Pseudo code of the Cuckoo Search (CS).

A vectorized implementation can be obtained from this link here1.
The Lévy flight essentially provides a random walk whose random step length is

drawn from a Lévy distribution

Lévy ∼ 1

sλ+1
, (0 < λ ≤ 2), (12)

which has an infinite variance with an infinite mean. Here the steps essentially form
a random walk process with a power-law step-length distribution with a heavy tail.
Some of the new solutions should be generated by Lévy walk around the best so-
lution obtained so far, this will speed up the local search. However, a substantial
fraction of the new solutions should be generated by far field randomization and
whose locations should be far enough from the current best solution, this will make
sure that the system will not be trapped in a local optimum.

The advantages of CS may be related to the characteristics in the algorithm.
Firstly, CS is a population-based algorithm, in a way similar to GA and PSO, but it
uses some sort of elitism and/or selection similar to that used in genetic algorithms
and harmony search. Secondly, the randomization in CS is more efficient, as its step
length distribution is heavy-tailed, and any step size (whether large or small) is pos-
sible. Thirdly, the number of parameters in CS to be tuned is fewer than GA and
PSO, and thus it is potentially more generic to adapt to a wider class of optimiza-
tion problems. In addition, each nest can have many eggs and thus represent a set
of solutions, CS can thus be extended to the type of meta-population algorithms, or
even hyper-heuristic algorithms.

1 http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-
algorithm

430 X.-S. Yang

2.4 Choice of Parameters

We have carried out a parametric study by varying the number of host nests (or
the population size n), the probability pa and other parameters. We have used n =
5,10,15, 20, 30, 40,50, 100, 150, 250,500 and pa = 0, 0.01, 0.05,0.1, 0.15,0.2,
0.25, 0.3,0.4,0.5. From our simulations, we found that n = 15 to 40, pa = 0.25
to 0.5 and λ = 1 to 1.5 are sufficient for most optimization problems. In addition,
the step size scaling factor α should be linked with the upper limits/bounds Ub and
lower bounds Lb in the following empirical way

α = 0.01(Ub−Lb), (13)

which makes that the steps are not too aggressive (jumping out of the feasible do-
main), thus ensuring most newly-generated solutions in the right search regions.
Here Ub and Lb are d-dimensional vectors with the same dimensions as the solution
vector.

Results and analysis also imply that the convergence rate, to some extent, is not
sensitive to the parameters used. This means that the fine adjustment is not needed
for any given problems.

2.5 How to Do Lévy Flights

Broadly speaking, Lévy flights are a random walk whose step length is drawn from
the Lévy distribution, often in terms of a simple power-law formula L(s) ∼ |s|−1−β

where 0 < β ≤ 2 is an index. Mathematically speaking, a simple version of Lévy
distribution can be defined as

L(s,γ,μ) =

⎧⎪⎨⎪⎩
√

γ
2π exp[− γ

2(s−μ)]
1

(s−μ)3/2 , 0 < μ < s < ∞

0 otherwise,

(14)

where μ > 0 is a minimum step and γ is a scale parameter. Clearly, as s → ∞, we
have

L(s,γ,μ) ≈
√

γ
2π

1

s3/2
. (15)

This is a special case of the generalized Lévy distribution.
In general, Lévy distribution should be defined in terms of Fourier transform

F(k) = exp[−α|k|β], 0 < β ≤ 2, (16)

where α is a scale parameter. The inverse of this integral is not easy, as it does not
have analytical form, except for a few special cases.

For the case of β = 2, we have

F(k) = exp[−αk2], (17)

Bat Algorithm and Cuckoo Search: A Tutorial 431

whose inverse Fourier transform corresponds to a Gaussian distribution. Another
special case is β = 1, and we have

F(k) = exp[−α|k|], (18)

which corresponds to a Cauchy distribution

p(x,γ,μ) =
1
π

γ
γ2 +(x− μ)2 , (19)

where μ is the location parameter, while γ controls the scale of this distribution.
For the general case, the inverse integral

L(s) =
1
π

∫ ∞

0
cos(ks)exp[−α|k|β]dk, (20)

can be estimated only when s is large. We have

L(s) → α β Γ (β)sin(πβ/2)
π |s|1+β , s → ∞. (21)

Here Γ (z) is the Gamma function

Γ (z) =
∫ ∞

0
tz−1e−t dt. (22)

In the case when z = n is an integer, we have Γ (n) = (n−1)!.
Lévy flights are more efficient than Brownian random walks in exploring un-

known, large-scale search space. There are many reasons to explain this efficiency,
and one of them is due to the fact that the variance of Lévy flights

σ2(t) ∼ t3−β , 1 ≤ β ≤ 2, (23)

increases much faster than the linear relationship (i.e., σ2(t) ∼ t) of Brownian ran-
dom walks. It is worth pointing out that a power-law distribution is often linked to
some scale-free characteristics, and Lévy flights can thus show self-similarity and
fractal behavior in the flight patterns. Here β is exactly the parameter λ used earlier.

From the implementation point of view, the generation of random numbers with
Lévy flights consists of two steps: the choice of a random direction and the genera-
tion of steps which obey the chosen Lévy distribution. The generation of a direction
should be drawn from a uniform distribution, while the generation of steps is quite
tricky. There are a few ways of achieving this, but one of the most efficient and yet
straightforward ways is to use the so-called Mantegna algorithm for a symmetric
Lévy stable distribution [8]. Here ‘symmetric’ means that the steps can be positive
and negative.

A random variable U and its probability distribution can be called stable if a
linear combination of its two identical copies (or U1 and U2) obeys the same distri-
bution. That is, aU1 + bU2 has the same distribution as cU + d where a,b > 0 and

432 X.-S. Yang

c,d ∈ℜ. If d = 0, it is called strictly stable. Gaussian, Cauchy and Lévy distributions
are all stable distributions.

In Mantegna’s algorithm, the step length s can be calculated by

s =
u

|v|1/β , (24)

where u and v are drawn from normal distributions. That is

u ∼ N(0,σ2
u), (25)

and
v ∼ N(0,σ2

v), (26)

where

σu =
{ Γ (1 + β)sin(πβ/2)

Γ [(1 + β)/2] β 2(β−1)/2

}1/β
, σv = 1. (27)

This distribution (for s) obeys the expected Lévy distribution for |s| ≥ |s0| where s0

is the smallest step. In principle, |s0| � 0, but in reality s0 can be taken as a sensible
value such as s0 = 0.1 to 1.

Studies show that Lévy flights can maximize the efficiency of resource searches
in uncertain environments. In fact, Lévy flights have been observed among foraging
patterns of albatrosses and fruit flies, and spider monkeys. In addition, Lévy flights
have many applications. Many physical phenomena such as the diffusion of fluores-
cent molecules, cooling behavior and noise could show Lévy-flight characteristics
under the right conditions.

The literature on cuckoo search is expanding rapidly. There have been a lot of
attention and recent studies using cuckoo search with diverse range of applications
[7, 17, 26]. Walton et al. improved the algorithm by formulating a modified cuckoo
search algorithm [17], while Yang and Deb extended it to multiobjective optimiza-
tion problems [26]. Durgun and Yildiz applied it to structural design optimization
[6]. Interested readers can refer to more advanced literature [22, 23].

At present, metaheuristic algorithms are inspired by some specific features of
the successful biological systems such as social insects and birds. Though they are
highly successful, however, these algorithms still have room for improvement. In
addition to the above open problems, a truly ‘intelligent’ algorithm is yet to be devel-
oped. By learning more and more from nature and by carrying out ever-increasingly
detailed, systematical studies, some truly ‘smart’ self-evolving algorithms will be
developed in the future so that such smart algorithms can automatically fine-tune
their behaviour to find the most efficient way of solving complex problems. As
an even bolder prediction, maybe, some hyper-level algorithm-constructing meta-
heuristics can be developed to automatically construct algorithms in an intelligent
manner in the not-too-far future.

Bat Algorithm and Cuckoo Search: A Tutorial 433

References

1. Altringham, J.D.: Bats: Biology and Behaviour. Oxford University Press (1996)
2. Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature 453,

495–498 (2008)
3. Bradley, D.: Novel ‘cuckoo search algorithm’ beats particle swarm optimization in en-

gineering design (news article). In: Science Daily, May 29 (2010); Also in: Scientific
Computing (magazine) (June 1, 2010)

4. Brown, C., Liebovitch, L.S., Glendon, R.: Lévy flights in Dobe Ju/’hoansi foraging pat-
terns. Human Ecol. 35, 129–138 (2007)

5. Colin, T.: The Variety of Life. Oxford University Press (2000)
6. Durgun, I., Yildiz, A.R.: Structural design optimization of vehicle components using

cuckoo search algorithm. Materials Testing 3, 185–188 (2012)
7. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a meteheuristic ap-

proach to solve structural optimization problems. In: Engineering with Computers, July
29 (2011), doi:10.1007/s00366-011-0241-y

8. Mantegna, R.N.: Fast, accurate algorithm for numerical simulation of Levy stable
stochastic processes. Physical Review E 49, 4677–4683 (1994)

9. Payne, R.B., Sorenson, M.D., Klitz, K.: The Cuckoos. Oxford University Press (2005)
10. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Computa-

tional Physics 226, 1830–1844 (2007)
11. Pavlyukevich, I.: Cooling down Lévy flights. J. Phys. A: Math. Theor. 40, 12299–12313

(2007)
12. Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with

an optimal intermittent scale-free search. PLoS One 2, e354 (2007)
13. Reynolds, A.M., Rhodes, C.J.: The Lévy flight paradigm: random search patterns and

mechanisms. Ecology 90, 877–887 (2009)
14. Richardson, P.: Bats. Natural History Museum, London (2008)
15. Richardson, P.: The secrete life of bats, http://www.nhm.ac.uk
16. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J., Istanda, V.: Bat algorithm inspired algorithm

for solving numerical optimization problems. Applied Mechanics and Materials 148-
149, 34–137 (2012)

17. Walton, S., Hassan, O., Morgan, K., Brown, M.R.: Modified cuckoo search: a new gra-
dient free optimization algorithm. Chaos, Solitons & Fractals 44(9), 710–718 (2011)

18. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta,
D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–
74. Springer, Heidelberg (2010)

19. Yang, X.-S.: Harmony Search as a Metaheuristic Algorithm. In: Geem, Z.W. (ed.) Music-
Inspired Harmony Search Algorithm. SCI, vol. 191, pp. 1–14. Springer, Heidelberg
(2009)

20. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, UK
(2010)

21. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proc. of World Congress on Na-
ture & Biologically Inspired Computing (NaBic 2009), pp. 210–214. IEEE Publications,
USA (2009)

22. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Modelling
& Numerical Optimisation 1, 330–343 (2010)

23. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications.
John Wiley and Sons, USA (2010)

http://www.nhm.ac.uk

434 X.-S. Yang

24. Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Compu-
tation 3, 267–274 (2011)

25. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering
optimization. Engineering Computations 29(4) (in press, 2012)

26. Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimiza-
tion. Computers and Operations Research, October 2011 (2012) (accepted),
doi:10.1016/j.cor.2011.09.026

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 435–476.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

Memory and Learning in Metaheuristics

Arif Arin and Ghaith Rabadi*

Abstract. The rapid increase of dimensions and complexity of real life problems
makes it more difficult to find optimal solutions by traditional optimization
methods. This challenge requires intelligent and sophisticated algorithms to make
the right decisions given a set of inputs and a variety of possible actions. In the
problem solving arena, this definition is transformed into the term of artificial
intelligence. Artificial intelligence emerges in metaheuristics via memory and
learning in algorithms. Metaheuristics are promising approaches that can find
near-optimal solutions in an acceptable amount of time. Many successful
metaheuristics employ “intelligent” procedures to obtain high quality solutions for
discrete optimization problems. To demonstrate the contribution of memory and
learning into metaheuristics, Estimation of Distribution Algorithms will be
incorporated as a memory and learning mechanism into Meta-RaPS (Meta-
heuristic for Randomized Priority Search) which is classified as a memoryless
metaheuristic. The 0-1 multidimensional knapsack problem will be used to
evaluate the “intelligence” of the new algorithm.

Keywords: Artificial intelligence, memory, learning, metaheuristics, Meta-RaPS,
0-1 multidimensional knapsack problem.

1 Introduction

One of the most important effects of improvement in modern sciences and
technologies is understanding and modeling real life problems realistically and in
more detail. The natural outcome of this fact is the rapid increase of problem
dimensions and complexity, which challenges us to develop more sophisticated
approaches. A powerful answer to this challenge can be based on solving
problems by incorporating intelligence in the proposed solution methods.
Intelligence can defined as the ability to make the right decisions given a set of
inputs and a variety of possible actions. In the problem solving arena, this is

Arif Arin · Ghaith Rabadi
Engineering Management & Systems Engineering,
Old Dominion University, 241 Kaufman Hall
Norfolk, VA 23529, USA
e-mail: {aarin,grabadi}@odu.edu

3

436 A. Arin and G. Rabadi

transformed into the term “artificial intelligence”, or AI, that emerges by
systematizing intellectual tasks relevant to human intellectual activity. AI employs
intelligent procedures to understand and to create intelligent entities [1].

Alan Turing started the AI approach when he worked out how mental
computations could be broken down into a sequence of steps that could be
mechanically simulated [2]. In the 1950s, while the AI term had not yet been
introduced, Alan Turing came up with an idea of building intelligent machines
where he proposed that if the problem can be expressed as an algorithm, or a
precise set of formal instructions, then it can be computed mechanically by a
machine. Turing proposed that if this machine’s response were indistinguishable
from a human’s, then the computer could be considered a thinking machine, and
this became known as the Turing Test [3]. Turing machine is one of the most
important breakthroughs of the twentieth century that led both to the invention of
the modern computer and to new ways of thinking of human cognition.

Computational Intelligence (CI) is a modern name for the subfield of AI (also
named scruffy or soft) techniques. CI has a similar meaning to the well-known
phrase AI, although CI is perceived more as a “bottom up” approach from which
intelligent behavior can emerge, whereas AI tends to be studied from the “top
down”, and derive from pondering upon the “meaning of intelligence” [4]. CI
involves approaches based on strategy and outcome, and includes adaptive and
intelligence systems, e.g. evolutionary computation, swarm intelligence (particle
swarm and ant colony optimization), fuzzy systems, and artificial neural networks
[5, 6].

Metaheuristics can be viewed as another name for the strategy-outcome
perspective of scruffy AI. Heuristic is an algorithm that finds ‘good enough’
solutions to a problem without concern for whether the solution can be proven to
be optimal [7]. Birattari [8] defines a heuristic as “a generic algorithmic template
that can be used for finding high quality solutions of hard combinatorial
optimization problems”. Heuristic approaches have already proved themselves in
many large scale optimization problems by offering near-optimal solutions where
it is difficult to find optimal solutions by other approaches. In theory, there is a
chance to find the optimum solution by implementing heuristic methods.
However, often being trapped in local optima can move the heuristics away from
the optimum solution. Metaheuristics or “modern heuristics” confront this
challenge by adding strategies and mechanisms to existing construction and local
search mechanisms in heuristics to avoid local optima [9]. Glover and Laguna [10]
define metaheuristics as “a master strategy that guides and modifies other
heuristics to produce solutions beyond those that are normally generated in a quest
for local optimality”. A procedure in a metaheuristic is considered black box in
that little (if any) prior knowledge needs to be known about it by the
metaheuristic, and as such it may be replaced with a different procedure.

2 Concepts of Memory and Learning

There are substantial relationships between the term intelligence and the terms
memory and learning. “Intelligence” is the ability that requires information captured

Memory and Learning in Metaheuristics 437

by “learning” and stored in “memory” to make correct decisions in solving problems.
The level of intelligence depends on the efficiency of learning activities and the
capacity of memory; thus enhancing intelligence will then mean enhancing both
memory and learning. Most researchers accept intelligence as an umbrella that covers
the intellectual activities.

Webster`s Dictionary [11] defines memory as “the act or fact of retaining and
recalling impressions, facts, etc.”; and learning as “knowledge acquired by
systematic study or by trial and error”. Based on these definitions, we can see that
the concepts of learning and memory are closely related. Furthermore, learning
can be thought of as the acquisition of skill or knowledge, while memory as the
expression of what you have acquired. Another factor that can be used in defining
these two concepts is the rate at which the two processes occur: If the new skill or
knowledge is gained slowly, that is learning, and if the gain happens instantly, that
is considered creating a memory [12].

The structure of memory is central to one's knowledge of the past,
interpretation of the present, and prediction of the future [13]. Memory related to
the past can be employed to create predictive models in the present, and therefore
can guide current thoughts, decisions, and actions. Learning lets human beings
have a greater degree of flexibility and adaptability than any other species.

Due to significant advancement in neuroscience, the concepts of memory and
learning have undergone enormous changes over the last decade. In cognitive
psychology, types of memory can be classified in a number of ways, depending on
the criterion used. With duration as the criterion, it is divided into three functions
for storage: sensory, short-term, and long-term [14]. Sensory memory takes the
information provided by the senses and retains it accurately but very briefly. It is
often considered part of the process of perception, and essential for storing
information in short-term memory. The short-term memory temporarily records
the succession of events, and determines what information moves from sensory
memory to short-term memory. This information will quickly disappear forever
unless we make a conscious effort to retain it. Sensory memory is a necessary step
for short-term memory, and short-term memory is a necessary step toward the
next stage of retention, long-term memory. Long-term memory is relatively
permanent storage with information stored on the basis of meaning and
importance. Its capacity seems unlimited; however it sometimes distorts the facts,
and tends to become less reliable as time goes by [14].

Based on the distinctions related to memory structure, learning can be accepted
as a long-term change in mental representations or associations as a result of
experience [15]. If learning is a change in behavior, it can then be measured by
observing the changes in behavior. The most common ways of measuring learning
are recording the reduction in errors, the changes in the form and/or intensity of
the behavior, the change in the speed with which a behavior is performed, and the
change in the rate or frequency at which a behavior occurs [16].

Since memory stores and retrieves the information that is learned, it is then an
essential component to all learning activities. Memory is nothing more than the
record left by a learning process, and thus, memory depends on learning. But
learning also depends on memory because the knowledge stored in memory
provides the framework to new knowledge.

438 A. Arin and G. Rabadi

3 Memory and Learning Mechanisms in Metaheuristics

Alan Turing was probably the first to use heuristic algorithms during the Second
World War in breaking German Enigma ciphers via his cryptanalytic
electromechanical machine, the Bombe. The bombe used an algorithm to search for
the correct setting coded in an Enigma message among about 1022 potential
combinations. Turing named his search method as heuristic search, as was expected
to work most of the time, but there was no guarantee to find the correct solution; it
was a great success, nevertheless [1].

Glover and Laguna [10] introduced a classification method for metaheuristic
algorithms that depends on three design choices: the use of adaptive memory, the
type of neighborhood exploration used, and the number of current solutions
carried from one iteration to the next. The metaheuristic classification notation can
be represented in a three-field form of a|b|c. If the metaheuristic has adaptive
memory, the first field, a, will be A, and M if the method is Memoryless.
Depending on the neighborhood mechanism, the second field, b, will be N for
somehow systematic neighborhood search, and S for using random sampling. The
third field, c, can be 1 for a single-solution approach or P for a population-based
approach with population size P. The classification method for metaheuristics is
summarized in Table 1.

Table 1 Classification Method for Metaheuristics

a b c
Use of

Adaptive Memory
Type of

Neighborhood
Number of Solutions

Carried at each iteration
A M N S 1 P

Adaptive
Memory

Memoryless Systematic
Neighborhood

Search

Random
Sampling

Single
Solution

Population
Size of P

The mechanisms of memory and learning in algorithms store various
information related to search history so that the algorithm can reach high quality
solutions. Learning takes place when the problem at hand is not well known at the
beginning, and its structure becomes clearer and clearer when more experience
with the problem is gained. Online learning is the type of learning in which an
algorithm uses task-dependent local properties for a problem instance while it is
solving that instance to determine the appropriate level trade-off between
diversification and intensification [1]. Different memory and learning structures
have been used in different metaheuristics, as shown in Table 2 in which only
Tabu Search (TS) is a single-solution metaheuristic and the rest are population-
based metaheuristics.

The memory and learning structures can be described in the best way by taking
TS algorithm as a baseline. In the memory and learning structures of TS,
four main aspects are defined; recency, frequency, quality, and influence. The

Memory and Learning in Metaheuristics 439

recency-based memory keeps track of the attributes of the solutions found in the
search process which have changed in the recent past. Attributes found in the
solutions visited recently are defined as tabu-active which are called tabu in TS.

Table 2 Memory structures in some metaheuristics (adapted from [18])

Metaheuristics Search Memory

Tabu search Tabu list
Evolutionary algorithms Population of individuals
Scatter search Population of solutions
Path relinking Population of solutions
Ant colony optimization Pheromone matrix
Particle swarm optimization Population of particles
Estimation of distribution algorithms Probabilistic learning model

While the aspect of recency can be accepted as a short term memory
implementation, the aspect of frequency deals with the long term TS strategies. The
frequency-based memory consists of mainly two ratios: transition frequencies,
which record how often the attributes are changed, and residence frequencies,
which record how often the attributes are component of solutions produced. In
scheduling for example, the number of times job j has been moved to an earlier
position in the sequence can be an example for transition frequencies, and the sum
of tardiness of job j when it occupies position Pj can be an example for residence
frequencies [10]. The quality-based memory discovers the common elements in
good solutions, or the paths that lead to good solutions. In these mechanisms some
penalties can also be applied to move away from poor solutions. The last aspect of
influence-based memory considers the effects of the decisions made in the solution
process on both the quality and the structure. The quality aspect can be accepted as
a special case of the influence aspect.

Intensification and diversification are two important strategies for the memory
structure. According to Rochat and Taillard [19] “diversification drives the search
to examine new regions, and intensification focuses more intently on regions
previously found to be good.” Intensification strategies modify the algorithm to
search the promising regions more thoroughly based on high quality solution
features found in the search process, or by modifying choice rules to favor the
inclusion of attributes of these solutions. These strategies focus on inspecting the
neighborhood of elite solutions by incorporating their good attributes into new
solutions. On the other hand, diversification strategies encourage the algorithm to
explore new regions and mainly utilize the long term memory mechanisms. Local
search optimization methods often rely on diversification strategies to reach better
solutions. Diversification strategies help prevent cycling of the search process, and
give more robustness to the algorithm.

The more sophisticated version of TS includes longer term memory with
associated intensification and diversification strategies. Glover and Laguna [10]
define this approach as Adaptive Memory Programming (AMP) because it is
based on exploiting the strategic memory components. Based on the AMP

440 A. Arin and G. Rabadi

approach, Dr´eo et al. [20] present Adaptive Learning Search (ALS) in which the
memorized data is not only the raw data input, but also the information on the
distribution and, thus, on the solutions. The algorithm for ALS consists of the
following steps:

1. Initialize a sample.
2. Until the stopping criteria is met, do:

a. Sampling: either explicit, implicit or direct;
b. Learning: the algorithm extracts information from the sample;
c. Diversification: it searches for new solutions;
d. Intensification: it searches to improve the existing sample; and
e. Replace the previous sample with the new one.

The main difficulty for metaheuristic search is the issue of balancing the
intensification and diversification strategies. The search process can easily converge
toward a local optimum and to diversify the search process, or to visit the solutions
with different attributes, requires increasing the number of moves or components that
are labeled as undesirable. For TS, the discussion then turns into finding the optimum
tabu list size. Indeed, the reactive TS is designed to automatically adapt the tabu list
size [21].

The term reactive search supports the integration of learning techniques into
metaheuristic search to solve complex optimization problems. The word reactive
here describes an immediate response to events during the search through an
internal feedback loop for online adaptation. The knowledge related to the search
history is utilized for adaptation in an autonomic manner. The algorithm keeps the
ability to respond to different situations during the search process, but the
adaptation is automated, and executed while the algorithm runs on a single
instance reflecting on its past experience. Intelligent optimization refers to a more
extended area of research, including online and offline schemes based on the use
of memory, adaptation, and incremental development of models, experimental
algorithmics applied to optimization, intelligent tuning, and design of
metaheuristics [17].

4 Metaheuristics with Memory and Learning

Memory and learning in metaheuristics represent the information extracted and
stored during the search for better solutions. The content of these mechanisms
varies from a metaheuristic to another (Table 2). While tabu list represents
memory in TS, in most of the metaheuristics such as evolutionary algorithms and
scatter search, the search memory is limited to the population of solutions. In Ant
Colonies Optimization (ACO), the pheromone matrix is the main component of
the search memory, whereas in Estimation Distribution Algorithms, it is a
probabilistic learning model that composes the search memory.

Memory and Learning in Metaheuristics 441

4.1 Tabu Search (TS)

TS algorithms, introduced by Glover [22], are one of the most common single-
solution based metaheuristics that improve a single solution. The major property
of this approach emerges from storing information related to the search process,
which is called memory. A TS can be classified either as A|N|1 or A|N|P. The
reason behind this classification is that TS employs the adaptive memory using a
neighborhood search and it moves from one current solution to the next after
every iteration.

A TS begins with local or neighborhood search and generally the whole
neighborhood is explored deterministically and the best solution found in the
neighborhood is selected as the new current solution. According to Talbi [18], a
TS may be considered as a dynamic transformation of the neighborhood; however,
this mechanism may create cycles, which in order to be avoided, the TS
“memorizes” the recent search trajectory by means of a tabu list. Usually, a tabu
list consists of a constant number of solutions or attributes of the moves, which are
updated at each iteration of the search process. Besides the tabu list, there is
another mechanism called the aspiration criteria, to accept a solution that is
“good” even though it is in the tabu list. A common aspiration criterion is if a
solution is better than the best solution so far.

Due to the fact that a tabu list generally contains the information of recent
solutions or moves, it can be classified as a short-term memory. Along with the
short-term memory, in a TS there are medium-term and long-term memory
mechanisms to apply for different purposes. While the medium-term memory, or
intensification memory, stores the elite solutions and gives priorities to their
attributes, the long-term or diversification memory, keeps the information of the
visited solutions to use in exploring unvisited regions in the solution space.

Although TS was originally developed for combinatorial optimizations, in
recent years it has been employed to solve continuous optimization problems too
[23]. There are many new successful hybrid methods of TS with linear
programming [24], branch-and-bound [25], genetic algorithms [26], simulated
annealing [27], neural networks [28], ant colony optimization [29] and scatter
search [30]. TS has wide range of applications including those in scheduling [31,
32], in production and logistics [33, 34] and vehicle routing problem [35, 36].

Reactive Tabu Search

As a design parameter, the size of the tabu list plays a very important role in
reaching high-quality solutions. Increasing the size of the tabu list can prevent
cycles; however it can constrain the search process in a certain region, too. To
handle this trade-off, various methods are developed in the literature. During the
search process, the robust tabu approach chooses randomly different tabu list sizes
from a specified range, and the deterministic tabu approach picks tabu list sizes
that are previously assigned. A common feature of these methods is that they
require a fixed range determined before the start of the search process [37]. These
facts brought Battiti and Tecchiolli [21] to the more sophisticated version of the
TS, a reactive tabu search in which the size of the tabu list dynamically, or

442 A. Arin and G. Rabadi

reactively, adapts as the search progresses. They created an analogy between the
evolution of the search process in combinatorial optimization and the theory of
dynamic systems. According to the authors, similar to a dynamic system, three
cases should be avoided in the search process: local minima, limit cycles, and
chaotic attractors. Local minima are attractors of the system dynamics, and they
are fixed points until the system is enforced by some phenomena to leave the local
optimum and continue the search process. Limit cycles, or closed orbits, denote
the case of visiting solutions previously found in the search process. Even in the
absence of local minima and limit cycles, the solution space can be narrowed or
deformed, and the search process can visit only parts of the solution space due to
the chaotic attractors [38]. Battiti and Tecchiolli [21] used the term “chaotic
attractor” as an example of a dynamic behavior that could affect the search
process. In their study, chaotic attractors are identified "by a contraction of the
areas, so that trajectories starting with different initial conditions will be
compressed in a limited part of the solution space, and by a sensitive dependence
upon the initial conditions, so that different trajectories will diverge”. They
suggested that for an effective and efficient search process, preventing limit cycles
is not enough, and the chaotic-like attractors should be removed too.

According to Glover and Laguna [39], avoiding cycles is not the ultimate
purpose of the search process; another purpose is to continue the exploration of
new solution regions. To reach these goals, reactive tabu search implements two
mechanisms: first is adapting the size of tabu list (tabu tenure) throughout the
search process depending on the repetitions of the solutions. The algorithm stores
the information related to the solutions visited during the search process to control
the repetitions and the interval between visits. The mechanism increases the size
of tabu list when the number of repetitions exceeds a certain threshold, and vice
versa. The second mechanism is an escape or diversification strategy, to take the
search process out from its current region randomly if it repeats itself excessively
[40], or in other words, when there is evidence for chaotic attractors in the search
space.

While adapting the size of the tabu list, intensification strategies are also
employed to deeply search the area that gives good or elite solutions. Reactive
tabu search algorithm aims to balance the intensification and diversification
functions to control and run the search process fluently. As in the basic tabu
search, in addition to the tabu list, the aspiration criteria also help prevent getting
trapped at a local optimal solution. As a new approach to TS, reactive tabu search
produced promising results for the problems to which it was applied [41, 42].

4.2 Evolutionary Algorithms (EAs)

The works of J. Mendel on the heredity from parents to offspring, and C. Darwin`s
theory of evolution presented in his famous book On the Origin of Species in
around nineteenth century have inspired computer scientists in designing
evolutionary algorithms in the 1980s. Since then different approaches have
evolved independently in the evolutionary algorithms area: Genetic algorithms,
mainly developed by J. H. Holland [43, 44]; evolution strategies, developed by I.

Memory and Learning in Metaheuristics 443

Rechenberg [45, 46] and H-P. Schwefel [47]; evolutionary programming by L.
Fogel [48, 49]; and genetic programming proposed by J. Koza [50]. Each of these
approaches is inspired by the principles of natural evolution.

Genetic Algorithms (GA) are generally associated with binary representations;
however, other types of representations can also be employed in different versions
of GAs. The GA usually implements a crossover operator to two solutions having a
“good” fitness values, and a mutation operator to modify the individual solution to
create diversity. The replacement, or survivor selection, is performed by replacing
the parents systematically with offspring. The basic crossover operator is based on
n-point or uniform crossover while the mutation is bit flipping. Probabilities are
applied to both of the crossover and mutation operators.

Evolution Strategies (ES) are mostly applied to continuous optimization where
the problem representations are based on real-valued vectors. ES usually use an
elitist replacement strategy, and a normally (Gaussian) distributed mutation, while
crossover is rarely used. An individual is composed of the problem’s decision
variables as well as some search parameters in order to evolve both the solution
and the strategy parameters (e.g., mutation step size) at the same time. Their main
advantage is their efficiency in terms of time complexity [18].

Evolutionary programming (EP) mainly uses mutation, but not recombination
or crossover. Traditional EP algorithms have been developed to evolve finite state
machines to solve time series prediction problems and more generally to evolve
learning machines [49]. Contemporary EP algorithms have later been applied to
solving continuous optimization problems using real-valued representations. They
use normally distributed mutations and self-adaptation principle of the parameters
as in ESs. The parent selection operator is deterministic, while the replacement
operator is probabilistic and is based on a stochastic tournament selection [51]. EP
is less used than the other approaches of EAs because of its similarity to ES.

Genetic programming (GP) expands the scope of the generic model of learning
to the space of programs. Its main distinction from other EAs approaches is that
the evolving individuals are themselves programs (nonlinear representation based
on trees) instead of fixed length strings from a limited alphabet of symbols (linear
representation). GP is a form of program induction that creates programs to solve
a given task. In GP, the parent selection is based on fitness proportions and the
survivor selection is a generational replacement. The crossover operator is based
on subtrees exchange and the mutation is based on random change in the tree. One
of the main problems in GP is the uncontrolled growth of trees which is called
bloat. Theory of GP is less developed than in evolution strategies and genetic
algorithms [52] and it is widely applied in machine learning and data mining tasks
such as prediction and classification.

In EAs, the population is usually generated randomly. Every individual in the
population is an encoded version of a solution that is called “chromosome” while
the decision variables within a solution (chromosome) are genes. The possible
values of variables (genes) are the alleles and the position of an element (gene)
within a chromosome is called locus. An objective function stands for a fitness
value which shows the ability of an individual or a solution to survive in its
environment. At each step, individuals are selected to form parents depending on

444 A. Arin and G. Rabadi

their fitness value; individuals with better fitness are selected with a higher
probability. The selection mechanism will lead the population to better solutions.
However, individuals not having “good” fitness are not discarded immediately
since they may have useful genetic material for future operations. The selection
process is executed by assigning a strategy, e.g. roulette wheel selection,
tournament selection, stochastic universal sampling, or rank-based selection.

The selected individuals are then reproduced using variation operators (e.g.,
crossover, mutation) to generate new offspring. Finally, a replacement mechanism
is applied to select which individuals (parents and offspring) of the population will
survive to the new generation. Mutation operators are unary operators acting on a
single individual representing small changes to selected individuals of the
population. The probability Pm defines the mutation probability for each element
(gene) of the representation. In general, small values are recommended for this
probability (Pm ∈ [0.001, 0.01]). Some strategies initialize the mutation probability
to 1/k where k is the number of decision variables, meaning that only one variable
is mutated. The role of crossover operators is to pass down some characteristics of
the two parents to generate the offspring. Unlike unary operators such as mutation,
the crossover operator is binary and sometimes n-ary. The crossover probability
Pc represents the proportion of parents on which a crossover operator will act. The
common values for crossover probability are typically selected in the interval
[0.45, 0.95].

The population size is another important parameter for EAs and usually larger
population sizes have greater chances of converging to better or optimal solutions.
While the sampling errors become more important in smaller populations, the time
complexity of EAs grows linearly with the size of the population. A proper level
of population size between the quality of the obtained solutions and the search
time must be determined. In practice, a population size between 20 and 100 is
usually considered typical.

In addition to different GA designs developed for problems in the literature
such as constrained optimization [53], allocation [54], supply chain [55], GA has
successfully been applied in real world problems including satellite optimization
[56], robust optimization [57], airfoil design [58], and software testing [59]. Like
GA, ES has been also used in solving problems such as video tracking system
optimization [60], computing periodic orbits [61] and vehicle routing problems
[62]. Different variants of ES were recently introduced in the algorithm arena, e.g.
multi-criteria of co-ES [63], mixed-integer ES [64]. There is an interesting survey
to explore the effects of different strategies on organizational performance, such as
balanced scorecard [65]. A basic introduction to ES can be found in [66].

Beside GA and ES, using EP technique also created novel approaches to
optimization problems including fuzzy clustering [67], pattern classification [68],
and production planning [69]. Huaxiang and Jing [70] designed an adaptive EP
based on reinforcement learning theory to learn individual mutation operators. Liu
[71] presented new discoveries in fast EP. Like other EAs, GP approach has been
successful in solving optimization problems in many areas including strategy

Memory and Learning in Metaheuristics 445

development [72], software reliability [73], flexible process planning [74] and
robot failure recognition [75]. Researches that produced very recent surveys about
applications of different GP variants are included in [76-78]. O'Neill et al.
discussed some of the challenges and open issues in GP despite the successful GP
application to a number of challenging real-world problem domains [79].

4.3 Scatter Search

The concept of scatter search (SS), first proposed by Glover [80], is a deterministic
algorithm applied to both combinatorial and continuous optimization problems. SS
is a population metaheuristic that recombines solutions selected from a reference
set to build others, and from this point of view, it can be seen as an evolutionary
algorithm [81]. SS create the reference set by selecting “good” solutions from the
population obtained in the previous search process. The selected solutions from the
reference are combined to provide starting solutions to an improvement procedure,
and the reference set is updated to incorporate both high-quality and diversified
solutions [18]. The diversity can be measured by taking the minimum Hamming
distance from a solution to any solution selected for the reference set. The set of
solutions is evolved by using of recombination of solutions and applying some
local search algorithms.

SS is designed by integrating of five methods:

1. A Diversification Generation Method to generate a set of diverse initial
solutions in order to diversify the search by selecting high-quality
solutions.

2. An Improvement Method to transform a trial solution into one or more
enhanced trial solutions, in general, by applying a local search procedure.

3. A Reference Set Update Method to create a reference set from the “best”
solutions by keeping both diverse and high-quality solutions.

4. A Subset Generation Method to operate on the reference set, to produce a
subset of its solutions as a basis for creating combined solutions. This
method is similar to the selection operator in EAs with the differences
being, first, SS uses a deterministic operator, whereas in EAs, it is
generally a stochastic operator; second, the size of the reference set in SS is
much smaller than the size of the population in EAs [18].

5. A Solution Combination Method to transform a given subset of solutions
produced by the Subset Generation Method into one or more combined
solutions. The combination method can be seen as the crossover operator in
EAs where more than two individuals are recombined.

In recent years, SS has been applied to different optimization problems including
dynamic optimization [82], clustering [83], multi-objective optimization [84],
facility location problem [85], vehicle routing problem [86], and scheduling [87,
88]. SS has also interesting real world applications such as satellite module layout
design [89], detecting credit card fraud [90], crew rostering in the airline industry
[91] and water distribution networks [92].

446 A. Arin and G. Rabadi

4.4 Path Relinking

Features used in SS are applied in the Path Relinking (PR) concept, too. PR can be
accepted as an approach to integrate intensification and diversification strategies as it
allows exploring paths connecting elite solutions found by scatter search. PR approach
generates new solutions by exploring trajectories connecting the initiating solution and
the guiding solution. While following the path from the initiating towards the guiding
solution the high-quality solutions are created by selecting moves with “good”
attributes contained in the guiding solution [81]. At each iteration, the best move in
terms of the objective function and decreasing the distance between the two solutions
is selected. This is repeated until the distance is equal to 0 at which point the best
solution found in the trajectory is returned by the algorithm.

The approach is named Path Relinking because it generates a path between
solutions linked by a series of moves during a search to incorporate attributes of
the guiding solution while recording the objective function values [10].

For each pair of solutions, different alternatives exist in selecting the starting
and the target solutions:

• Forward: The worst of both solutions is used as the starting solution.
• Backward: The better of both solutions is used as the starting solution.

Since the starting solution’ neighborhood is more explored than that of the
target solution, the backward strategy is in general better than the forward
one.

• Back and forward relinking: Two paths are constructed in parallel, using
alternatively both solutions as the starting and the target solutions.

• Mixed relinking: Two paths are constructed in parallel from both solutions
but the guiding solution is an intermediate solution at the same distance
from both solutions.

Recent PR approaches have been developed to solve the problems such as large-
scale global optimization [93], team orienteering problem [94] and scheduling
[95]. There are many successful hybrid applications where PR is used to add a
memory mechanism by integrating it into other algorithms; PR with GRASP [96,
97]; TS [98], GA [99, 100], and memetic algorithms [101]. Some of these hybrid
algorithms include continuous optimization problems [102], max-min diversity
problem [103], generalized quadratic assignment problem [104], and lot sizing
problem [105].

4.5 Swarm Intelligence

In the field of optimization there are some promising algorithms inspired by the
behavior of some species such as ants, birds, fish, bees, etc. These types of algorithms
are called swarm intelligence algorithms. The expression "swarm intelligence" was
first used by Beni, Hackwood, and Wang [106-108] in the context of cellular robotic
systems. Swarm intelligence is defined as a field of computer science which is
focused on the efficient computational methods for solving problems in a way that is

Memory and Learning in Metaheuristics 447

inspired by the behavior of real swarms or insect colonies [109, 110]. The main
characteristics of (artificial) swarm intelligence algorithms are that the particles, or
species, are simple and nonsophisticated agents; they cooperate by an indirect
communication instrument; and they move in the decision space of the optimization
problem [111].

Indeed, the behavior of real species is complex; they can process a lot of
sensory inputs, which means a large amount of information. However, the
complexity of the species is still not sufficient to describe what these social
colonies can do. This issue of how to connect individual behavior with collective
performance can be explained by using self-organization (SO) concept, and in
reality, the activities of social species are self-organized. SO theories originally
developed in the context of physics and chemistry but have been extended to
social insects to show that complex collective behavior may emerge from
interactions among individuals that exhibit simple behavior [112, 113]. Recent
research shows that SO is a major component of a wide range of collective
phenomena in social species [114]. The modeling of social species by means of
SO can help design artificial distributed problem-solving devices that self-
organize to solve problems, or in other words swarm-intelligent systems. SO is
based on four elements [109]:

• Positive feedback (amplification) promotes the creation of structures. For
instance, recruitment to a food source is a positive feedback that relies on
trail laying and trail following in some species like ants.

• Negative feedback counterbalances positive feedback and helps stabilize
the collective pattern; it may take the form of saturation, exhaustion, or
competition.

• Amplification of fluctuations (random walks, errors, random task-
switching, etc.). Not only do structures emerge despite randomness, but
randomness is often crucial since it enables the discovery of new solutions,
and fluctuations can act as seeds from which structures nucleate and grow.

• Multiple interactions. A single individual can generate a self-organized
structure, however, SO generally requires a minimal density of mutually
tolerant individuals. Moreover, individuals should be able to make use of
the results of their own activities as well as of others'.

SO in social insects often requires interactions among insects and such interactions
can be direct or indirect. Indirect interactions are more subtle however; two
individuals interact indirectly when one of them modifies the environment and the
other responds to the new environment at a later time. This type of interaction is an
example of stigmergy, which was introduced by Grasse [115, 116] and is considered
the second most important theoretical concept of swarm intelligence after self-
organization. Stigmergy (from the Greek stigma: sting, and ergon: work) does not
describe how species coordinate their activities, however, it does provide a general
mechanism that relates individual and colony-level behaviors: individual behavior
modifies the environment, which in turn modifies the behavior of other individuals.

The most successful swarm intelligence inspired optimization algorithms are ant
colony and particle swarm optimization. Besides the wide range of applications of

448 A. Arin and G. Rabadi

swarm intelligence in the literature, hybrid techniques in which swarm intelligence
algorithms work with other metaheuristics can also be a promising concept to make
use of both the intelligence of swarms and the efficiency of metaheuristics.

Ant Colony Optimization

Ant colony optimization (ACO) is one of the most successful swarm intelligence
algorithms. The possibility of “forming of communication by means of modifications
of the environment” is defined as stigmergy, which is one of the basic concepts for
the ACO [117].

The ACO aims to imitate the real ants as multiagent systems to solve
optimization problems and was first proposed by Dorigo [118]. Even though real
ants cannot see well, they can find the shortest path between two points. In this
process they are using a very simple and yet powerful mechanism; a chemical trail
called pheromone. The ants follow their routes according to the amount of
pheromone; the larger the amount of the pheromone on a route, the larger the
probability of being selected by the ants. However the pheromone is a volatile
substance and it decreases over time. In the beginning of the process, the
probabilities of selecting the routes by ants are equal, but since the shorter routes
need less time to travel, they will emerge with higher rates of selection due to higher
amounts of pheromone. This process, supported by the evaporation mechanism, will
end up with finding the shortest path. The pheromone trail in essence represents the
long term memory of the entire system and where information related to the process
stored [119].

ACO is composed of two main steps: construction of solutions and updating the
pheromone. In the first step solutions are constructed by adding solution components
to partial solutions according to the probabilistic transition rule in equation (1):

[] []
.

[] []
k
i

ij ijk
ij

il il
l N

P
α β

α β

τ η
τ η

∈

=
∑

(1)

where τij is pheromone desirability, ηij is heuristic desirability, α is ratio of
pheromone desirability (0 < α < 1), and β is ratio of heuristic desirability (0 < β <
1) for selecting component j after the component i. By using this probabilistic
transition the construction algorithm takes into account both the amount of
pheromone and problem-dependent heuristic information.

In the second step the amount of pheromone is updated in two phases:
evaporation phase and reinforcement phase. In the evaporation phase the
pheromone trail is reduced by a fixed ratio q (0 < q ≤ 1) for all components in the
decision space by applying equation (2).

τij = (1 – q) τij . (2)

This evaporation process protects all ants from a premature convergence toward
good solutions and encourages diversifying the search space.

In the reinforcement phase, the amount of the pheromone is updated according
to solutions generated by using two main strategies: online and offline updates. In

Memory and Learning in Metaheuristics 449

the case of online updating, the pheromone trail is updated by an ant either at each
step of the solution construction (step-by-step updating) or after a complete
solution is generated (delayed updating). The offline updating is more popular
where the updating process is applied only after all ants generate a complete
solution. In this approach different strategies can be performed including quality-
dependent, rank-based, elitist solution, best-worst, moving average, and minimum
pheromone values update [120].

The selection of the of ACO parameters plays a critical role in the search
process. Therefore, a good trade-off between the ratios of the pheromone
desirability (or intensity), and heuristic desirability (or visibility) must be found to
balance intensification and diversification. If the ratio of pheromone desirability is
equal to 0, the ACO algorithm will act like a stochastic greedy algorithm, and if
the ratio of heuristic desirability is equal to 0, only the pheromone trails will guide
the search. The number of ants is not a critical parameter and mainly depends on
the computational capacity [18].

Different variants of ACO have been generated to deal with continuous
optimization [121, 122], mixed integer nonlinear programming [123], neural
networks [124] and scheduling [125-126]. There are also hybrid versions of ACO
with fuzzy systems [127, 128], simulated annealing [129], and memetic algorithm
[130]. Besides travelling salesman problem [131], multidimensional knapsack
problem [132], and vehicle routing problem [133], there are interesting application
areas investigated by ACO such as supply chain management [134], project
management [135], airline crew scheduling [136] and satellite control resource
scheduling [137]. There is a recent survey that reviews various research and
implementation of ACO [138].

Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic population-based metaheuristic
inspired by swarm intelligence. PSO simulates the social behavior of natural
organisms, e.g. bird flocking or fish schooling, in search of food. Among these
organisms, or the swarm, a dynamic behavior in relatively complex displacements
can be observed, where the individuals have access to limited information, like
their closest neighbors’ positions and speed [117]. Each individual uses the local
information regarding this displacement to decide on its own displacement. In
other words, a coordinated behavior using local movements emerges without any
central control.

In PSO algorithms, each individual particle of a swarm represents a potential
solution in a multidimensional search space. The particles start searching
randomly for the optimal solution of a given objective function by moving through
the search space. The objective function measures the quality or amount of food at
each place and the particle swarm searches for the place with the best or most food
[120]. The position of each particle is adjusted according to its velocity (i.e., rate
of change) and the difference between its current positions, the best position found
by its neighbors, and the best position it has found so far. As the model is iterated,
the swarm focuses more and more on an area of the search space containing high-
quality solutions [139].

450 A. Arin and G. Rabadi

The individual particle is represented by the vector xi, which has its own
position and velocity. Each particle adjusts its position according to the global
optimum with respect to two factors: the best position visited by itself (pbesti)
denoted by the vector pi, and the best position visited by the whole swarm (gbest)
denoted by the vector gi. The vector (pi - xi) shows the difference between the
current position of the particle i and the best position of its neighborhood. The
neighborhood, which must be defined for each particle, describes the social
influence between the particles in the swarm. To define a neighborhood, two
methods are traditionally used: the global best method and the local best method.
In the global best method, the neighborhood is defined as the whole population of
particles, whereas in the local best method, the neighborhood of a particle is the
set of directly connected particles, in which case, the neighborhood may be empty
and the particles isolated [18]. A particle is composed of three vectors: the x-
vector for its current position, the p-vector for the location of the best solution
found so far by the particle and the v-vector for the direction of the particle to
travel in the search space. In each iteration, the movement of the particle can be
given by equation (3):

xi(t) = xi(t−1) + vi(t) . (3)

Updating of the particles’ positions is dependent on the direction of their
movement, their speed, the best preceding position pi and the best position pg
among the neighbors as shown in the equation (4):

vi(t) = vi(t − 1) + ρ1α1 × (pi − xi(t − 1)) + ρ2 α2 × (pg − xi(t − 1)) . (4)

where ρ1 and ρ2 are random variables in the range [0, 1], and the α1 and α2 represent
the learning factors. The parameter α1 is the cognitive learning factor that decides
the level that a particle has toward its own success, and the parameter α2 is the
social learning factor that reflects the level of attraction that a particle has toward
the success of its neighbors. Socio-psychology suggests that the movements of the
individuals are influenced by their last behavior and that of their neighbors who are
closely placed in the social network and not necessarily in space.

To control the balance between intensification and diversification of the search
space, a weight w, called inertia, is generally added to the velocity update
procedure as in equation (5):

vi(t) = w × vi(t − 1) + ρ1 × (pi − xi(t − 1)) + ρ2 × (pg − xi(t − 1)) . (5)

A large inertia weight encourages diversify the search, and a smaller inertia weight
encourages intensify the search in the current region. According to new velocity
each particle updates its position in the solution space was given in equation (3).

After these updates each particle will update the best local solution, pi = xi
if (xi) < pbesti, and the best global solution of the swarm, gi = xi if (xi) < gbest. As
such, a particle changes its position after each iteration according to its own and to
its neighbors’ positions.

Unlike ACO algorithms, PSO has been successfully designed originally for
continuous optimization problems; however, by employing velocity models, PSO
can be applied to discrete optimization problems also. Velocity models for discrete

Memory and Learning in Metaheuristics 451

optimization problems are inspired from mutation and crossover operators in EAs.
The velocity models may be real valued, stochastic, or based on a list of moves. In
stochastic velocity models for binary encodings, the velocity is associated with the
probability for each binary dimension to take value of 1.

PSO creates promising solutions to the problems in areas such as scheduling
[140, 141], neural networks [142], nonlinear optimization [143], and supply chains
[144]. In the literature there are also studies in multiobjective PSO [145, 146] and
discrete PSO [147, 148]. PSO has widespread real life applications in
multidisciplinary optimization [149], unmanned aerial vehicle (UAV) attitude
controller [150], task allocation for on-orbit servicing spacecrafts [151], reliability
[152], and face recognition [153]. Kameyama [154] reviews the progress of PSO
research so far, and the recent achievements for application to large-scale
optimization problems.

4.6 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDA) are recent optimization techniques
that belong to the class of the population-based metaheuristics. While creating
new populations, EDA implements a probabilistic learning model that is used as
memory. EDA is an outgrowth of genetic algorithms where statistical information
is obtained from the population to form a new population and the Darwinian
operators are replaced by probability distributions. EDA have been specifically
designed for black box optimization (BBO) problems in which objective functions
are not given in a closed analytical form [155]. In a BBO, the structure of an
optimization problem is hidden from the optimization process and the only
information that can be exploited is a quality measure that is assigned to candidate
solutions.

The idea behind EDA is transforming the optimization into a search over
probability distributions. From the population, EDA estimates the probability
distribution for each decision variable and with the help of this distribution it
generates new solutions, which then replace the old population according to given
rules. This process iterates until termination criteria are met.

The main step in EDA is estimating the probability distribution P(x). If the
optimization problem is represented by a bit vector, the distribution is represented
by a single vector of n probability elements P = (p1, p2, ..., pn). Each element of
this probability vector stands for the probability of being included in the solution,
i.e. 1 if selected, 0 otherwise with probability of 1 - pn.

Since the interactions between the decision variables are important in many
optimization problems, EDA takes into account the level of variable interactions
in the probabilistic model and can be classified as univariate, bivariate, and
multivariate EDAs. In the class of univariate EDAs, no interactions between the
decision variables are considered in the generation of the probabilistic model. In
the bivariate EDAs the interactions between two decision variables and for the
multivariate EDAs the interactions among more than two decision variables define
the probabilistic model. If the interactions between the variables in the
optimization problem are not significant, univariate and bivariate EDAs will give

452 A. Arin and G. Rabadi

better results; however if higher order interactions between the variables emerge,
multivariate EDAs should be used to improve the solutions.

EDAs also differ by the probabilistic models and their construction methods.
One of the most known EDAs is Population-Based Incremental Learning (PBIL)
which is the first EDA strategy applied to solve optimization problems [156]. In
PBIL, after generating new solutions, the best solution or the set of best solutions,
is selected to create the probability distribution of best solutions, Pbest = (p1

best,
p2

best, ..., pn
best), which will be used to update the probability distribution of

solutions, P = (p1, p2, ..., pn), by using the rule in equation (6):

pi = (1 − α) pi + α pi
best . (6)

where α is the learning factor. A smaller learning factor implies a diversifing
search process and a higher learning factor means an intensifing search process.
According to Sa´ez [157], the mutation operator plays also an important role
during the search process to guarantee convergence, avoiding local optima, and
maintaining the diversity through the iterations. The mutation operator in PBIL
algorithms can be applied at two levels: solution vector or probability matrix to
maintain genetic diversity. Besides the genetic algorithm operators, local search
algorithms can also be implemented in EDA to enhance the solution quality [158].

In the literature there are different EDA designs developed for continuous
optimization [159] and dynamic optimization problems [160]. Besides
multiobjective EDA applications [161, 162], EDA created high quality solutions
when hybridized with algorithms such as PSO [163], memetic algorithms [164],
neural networks [165] and variable neighborhood search [166]. Scheduling [167],
robust airfoil optimization [168], and real-time video tracking [169] are among the
very recent applications of EDA. Hauschild and Pelikan [170] presented in their
survey different types of EDAs, their advantages over other metaheuristics and
some efficiency enhancement techniques applied to EDAs. An extensive
information about EDA can be found in [171].

5 Contribution of Memory and Learning into the Meta-RaPS
Metaheuristic

Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a fairly new
metaheuristic that can produce high quality solutions for discrete optimization
problems, such as the Resource Constrained Project Scheduling Problem [172],
the Vehicle Routing Problem [173], the Traveling Salesman Problem [174], the 0–
1 Multidimensional Knapsack Problem [175], the Parallel Machine Scheduling
Problem with Setup Times [176], Early/Tardy Single Machine Scheduling
Problem [177], Parallel Multiple-Area Spatial Scheduling Problem with Release
Times [178] and Aerial Refueling Scheduling Problem (ARSP) [179].

Meta-RaPS can currently be classified as a memoryless metaheuristic and it
should benefit from existing memory and learning mechanisms to increase its
effectiveness. Thus, we propose incorporating memory and learning mechanisms
into Meta-RaPS to study whether such techniques can help it become more

Memory and Learning in Metaheuristics 453

“intelligent”. Specifically, the EDA approach will be incorporated into Meta-RaPS
as a memory and learning mechanism and the 0-1 multidimensional knapsack
problem will be used as a testbed to evaluate the effectiveness of the proposed
algorithm.

5.1 Meta-RaPS

Meta-RaPS is based on the “Computer Method of Sequencing Operations for
Assembly Lines” (COMSOAL) introduced by Arcus [180]. COMSOAL is an iterative
computer heuristic created for balancing large complex assembly lines. Meta-RaPS
first generates a feasible solution by including randomness in the construction phase
and improves the feasible solution in the improvement phase. Indeed, Meta-RaPS is a
general form of GRASP (greedy randomized adaptive search procedure) which is a
greedy metaheuristic that consists of two phases: construction and local search. The
feasible solutions constructed in the first phase are improved in the second phase of
local search. Although GRASP generates solutions by introducing randomness, it does
not implement any probabilistic priority to the best solutions [181].

Moraga et al. [182] defines Meta-RaPS as “generic, high level search procedures
that introduce randomness to a construction heuristic as a device to avoid getting
trapped at a local optimal solution”. Meta-RaPS, which can be classified as M|S|1,
combines the mechanisms of priority rules, randomness, and sampling. Like
GRASP, Meta-RAPS is a two-phase metaheuristic: a constructive phase to create
feasible solutions and an improvement phase to improve them. In the constructive
phase, a solution is built by repeatedly adding feasible components or activities to
the current solution in an order that is based on their priority rules until the stopping
criterion is satisfied. Generally, solutions obtained by implementing only
constructive algorithms can reach mostly local optima, which can be avoided in
Meta-RaPS by employing randomness in the constructive phase.

Meta-RaPS uses four parameters: number of iterations (I), the priority percentage
(p%), the restriction percentage (r%), and the improvement percentage (i%). Meta-
RaPS does not select the component or activity with the best priority value in every
iteration, nor does it select the one with the lowest incremental cost as in. Instead, the
algorithm may randomly accept an activity or component with a good priority value,
but not necessarily the best one. The parameter p% is used to decide the percentage of
time a component or activity with the best priority value will be added to the current
partial solution, and 100% − p% of time it will be randomly selected from a candidate
list (CL) containing “good” components or activities. The CL is created by including
items whose priority values are within r% of the best priority value. The CL is
therefore created using equations (7) and (8) where Pb is the component or activity
with the best priority value and F is the set of feasible components or activities [183]:

CL = { i : i ∈ F and Pi ≤ Pb · (1 + r%) } for minimization .

CL = { i : i ∈ F and Pi ≥ Pb · (1 - r%) } for maximization .

(7)

 (8)

In the construction phase, the level of the randomness is adjusted by controlling
the values of the parameters p% and r% where smaller values of p% and larger

454 A. Arin and G. Rabadi

values of r% will randomize the search more. The construction phase of Meta-
RaPS is completed when a feasible solution is produced.

The improvement phase is performed if the feasible solutions generated in the
construction phase are within i% of the best unimproved solution value from the
preceding iterations. For the feasible solution to be improved in this phase, it must
be determined whether its objective function value Z satisfies the requirements in
(9) and (10) where Z* is the solution with the best objective function value
obtained in the construction phase:

Z ≤ Z* · (1 + i%) } for minimization .

Z ≤ Z* · (1 - i%) } for maximization .

(9)

 (10)

The quality of the solution created by Meta-RaPS is heavily dependent to its
parameters, especially the number of iterations and the improvement percentage.
However, increasing the values of these parameters will also increase the need for
more computational time. DePuy et al. [184] emphasized that the advantages of the
Meta-RaPS over other metaheuristics are that run times for Meta-RaPS is not
significantly affected by the size of the problem, it is easy to understand and
implement, and can generate a feasible solution at every iteration.

5.2 The 0-1 Multidimensional Knapsack Problem

The 0-1 multidimensional knapsack problem (MKP) is the generalized form of the
classical knapsack problem (KP). In KP there is a knapsack with an upper weight
limit b, a set of n items with different profits cj and weights aj per item j. The
problem is to select the items from the set such that the total profit of the selected
items is maximized without exceeding the upper weight limit of the knapsack. If
m knapsack exist, the problem becomes the MKP in which each knapsack has a
different upper weight limit bi, and an item j has a different weight aij for each
knapsack i. The objective is to find a set of items with maximal profit such that the
capacity of each knapsack is not exceeded [185]. The MKP can be formulated as
in the equations (11 - 13):

Maximize
1

n

j j
j

c x
=
∑ . (11)

Subject to
1

n

ij j i
j

a x b
=

≤∑ , i = 1, …, m; j = 1, …, n . (12)

xj ∈ {0,1}, j = 1, …, n (13)

where x is a vector of binary variables such that xj = 1 if item j is selected, and xj =
0 otherwise. The MKP can be accepted as a special case of the general linear 0-1
integer programming problem with nonnegative coefficients. In the literature it is
assumed that profits, weights and capacities are positive integers. However they
can be easily extended to the case of real values [186].

Memory and Learning in Metaheuristics 455

The MKP is a resource allocation problem, which can be used to model many

problems in the literature such as the capital budgeting, project selection, cutting
stock and many loading problems.

The MKP is an NP-hard problem whose difficulty increases with more constraints.
To solve the MKP, both exact and approximation algorithms have been used. The
development of exact algorithms began at the same time for both the KP and MKP
[187], and included dynamic programming, branch-and-bound network approach,
hybridization of dynamic programming and branch-and-bound, special enumeration
technique and reduction schemes. Even when recent advances of methods such as
branch-and-cut have made the solution of middle size MKP instances possible,
increasing the number of constraints makes approximation algorithms necessary.

The MKP is often used as a platform to evaluate new metaheuristics [188].
Battiti and Tecchiolli [189] solved the MKP instances by employing the Reactive
Tabu Search with satisfactory performances. Moraga et al. [175] implemented
Meta-RaPS and achieved good results when compared their algorithm to both the
optimal solution and other 0-1 MKP solution techniques such as simulated
annealing, tabu search, genetic algorithms, and 0-1 MKP heuristics. Dynamic
programming based approach [190], exact methods [191], and heuristic methods
[192, 193] are among the recent approaches to 0-1 MKP presented in the
literature. Wilbaut and Hanafi [194] proposed several convergent algorithms to
solve a series of small sub-problems of 0-1 MKP generated by relaxations. There
are extensive surveys produced on the 0-1 MKP with interesting reviews and
effective heuristics with their applications in [195, 196].

5.3 A Representative Example of 0-1 Multidimensional Knapsack
Problem

Suppose there are three knapsacks with the upper weight limits of 82, 65, and 51,
respectively. A decision maker has to select a set of items from 8 items with
different profits and different weights such that the total profit is maximized
without exceeding the upper weight limit of each knapsack. Data for the example
MKP problem is summarized in the Table 3.

Table 3 The 0-1 multidimensional knapsack problem example

Constraints
Item Profit 1 2 3

1 9 19 20 3
2 5 14 13 2
3 19 13 6 5
4 10 9 10 11
5 17 15 4 14
6 11 27 18 23
7 16 25 27 6
8 6 18 5 13
Upper Weight

Limits: 82 65 51

456 A. Arin and G. Rabadi

The 0-1 MKP can be coded as a general linear 0-1 integer programming
problem with nonnegative coefficients, as in the equations (14 - 18).

Maximize 9x1 + 5x2 + 19x3 + 10x4 + 17x5 + 11x6 + 16x7 + 6x8 (14)

Subject to 19x1 + 14x2 + 13x3 + 9x4 + 15x5 + 27x6 + 25x7 + 18x8 ≤ 82 (15)

 20x1 + 13x2 + 6x3 + 10x4 + 4x5 + 18x6 + 27x7 + 5x8 ≤ 65 (16)

 3x1 + 2x2 + 5x3 + 11x4 + 14x5 + 23x6 + 6x7 + 13x8 ≤ 51 (17)

 xi ∈ {0,1}, i = 1, …, 8 (18)

When this example is solved optimally, items 3, 4, 5, 7 and 8 will be selected with
an optimum profit of 68.

5.4 Meta-RaPS Solution for 0-1 Multidimensional Knapsack
Problem

In this section, the 0-1 MSP example will be solved first by using Meta-RaPS without
a memory mechanism incorporated. Meta-RaPS is a two-phase metaheuristic: a
constructive phase to create feasible solutions and an improvement phase to improve
them. In solving the MKP example with Meta-RaPS, the Dynamic Greedy Rule
(DGR) will be used as a priority rule in determining the priorities or order of the items
between them [175]. In this rule, a penalty factor for each item is calculated according
to the equation (19):

m
ij

i
j=1 j j

a
w =

b -CW∑ , for i = 1, …, n. (19)

where aij is the coefficients of item i in constraint j, bj is the amount of resource for
each constraint j, and CWj is the amount of resource j consumed by the items so
far; i.e., in the partial solutions. To determine the priority of an item i, its profit ci
is divided by its penalty factor, i.e. ci/wi. The item with maximum ci/wi has the
highest priority in the solution process. Because the penalty factors change after
each iteration in the construction process, the priorities of the items are updated
after each item is added to the partial solution. For example, in the beginning of
the process, the priority of item 3 is obtained after the calculations given in
equations (20-21):

3
3 j 31 32 33

3
j 1 j j 1 2 3

a a a a 13 6 5
w 0.35.

b CW b 0 b 0 b 0 82 0 65 0 51 0=
= = + + = + + =

− − − − − − −∑ (20)

3
3

3

c 19
priority 54.5.

w 0.34
= = =

(21)

Memory and Learning in Metaheuristics 457

Since in the construction phase of the Meta-RaPS the items are added to the partial
solutions, and their order is not important, the initial priority matrix in Table 4 is
created by adding the priority of item i to the priority of item j if item i is selected
after j was included in the (partial) solution, i.e. priorityij = priorityi + priorityj, and
priorityij = priorityji. The parameters used in the Meta-RaPS are as given in Table 5.

Table 4 The initial priority matrix

Item 1 2 3 4 5 6 7 8

1 - 27.2 69.5 35.9 47.8 25.4 34.1 25.9
2 27.2 - 66.7 33.1 45.0 22.6 31.3 23.1
3 69.5 66.7 - 75.3 87.2 64.9 73.6 65.3
4 35.9 33.1 75.3 - 53.6 31.3 40.0 31.7
5 47.8 45.0 87.2 53.6 - 43.2 51.9 43.6
6 25.4 22.6 64.9 31.3 43.2 - 29.5 21.3
7 34.1 31.3 73.6 40.0 51.9 29.5 - 30.0
8 25.9 23.1 65.3 31.7 43.6 21.3 30.0 -

Table 5 The Meta-RaPS parameters

Parameter Value

Priority percentage (p) 0.6
Restriction percentage (r) 0.2
Improvement percentage (i) 0.7
Number of iterations (I) 10

Meta-RaPS does not select every time the item with the best priority value. The
algorithm may accept one with good priority value, not the best, based on a
randomized approach. The priority percentage (p%) is employed to decide the
percentage of time the item with the best priority value will be added to the
current partial solution, and (1-p)% of the time an item with the good priority
value is randomly selected from a candidate list (CL) which contains items with
“good” priorities. The CL is created for maximization problems by including the
ones whose priority values are higher than the lower limit found by equation (22).

Lower Limit = Maximum Priority · (r%) . (22)

Checking the feasibility of the (partial) solution in every step of every iteration is
very important. That is, the items with the highest priorities and those in the CL
must ensure that the (partial) solution are feasible (within the limits of the
constraints) if added to the (partial) solution.

Meta-RaPS starts by selecting an item randomly as the first item in the partial
solution. Because the selected item consumes some of the resources, the priorities
in the priority matrix should be updated after each item is added to the partial
solution. If, for example, item 5 is selected in the beginning, the updated priorities
would be as in Table 7.a. Maximum and minimum priorities of row 5 in Table 6.a.
are 69.9 and 33.8, respectively. If the random number created is smaller than or

458 A. Arin and G. Rabadi

equal to p%, the item with maximum priority is chosen; otherwise, another item is
selected randomly from the CL. In the 1st step of iteration 1, because the random
number happened to be 0.76 which is greater than p = 0.60, an item from the CL is
accepted randomly which is for now item 7 as shown in Table 6.b.

Table 6.a The updated priorities after selecting item 5

Item 1 2 3 4 5 6 7 8

1 - 23.5 57.4 29.8 38.5 21.3 29.4 21.5
2 23.5 - 54.9 27.3 36.0 18.8 26.9 19.0
3 57.4 54.9 - 61.2 69.9 52.8 60.8 53.0
4 29.8 27.3 61.2 - 42.2 25.1 33.2 25.3
5 38.5 36.0 69.9 42.2 - 33.8 41.8 34.0
6 21.3 18.8 52.8 25.1 33.8 - 24.7 16.9
7 29.4 26.9 60.8 33.2 41.8 24.7 - 24.9
8 21.5 19.0 53.0 25.3 34.0 16.9 24.9 -

Table 6.b The report for the 1st step in iteration 1

Item
Max

Priority
Min

Priority
Lower
Limit

Max
Item

Candidate
List

Random
Number p Decision Profit

5 69.9 33.8 41.0 3 4, 7 0.76 > 0.60 Select 7 17

After item 7 is added to the partial solution, the priority matrix is updated, and
the column and row of item 5 are deleted. This step is completed by using the
updated priority matrix (Table 7.a. and b.).

Table 7.a The updated priorities after selecting item 7

Item 1 2 3 4 5 6 7 8

1 - 14.3 37.3 19.5 13.7 18.0 13.9
2 14.3 - 35.8 18.0 12.2 16.5 12.4
3 37.3 35.8 - 40.9 35.1 39.5 35.4
4 19.5 18.0 40.9 - 17.3 21.7 17.6
5
6 13.7 12.2 35.1 17.3 - 15.9 11.8
7 18.0 16.5 39.5 21.7 15.9 - 16.1
8 13.9 12.4 35.4 17.6 11.8 16.1 -

Table 7.b Report for the 2nd step in iteration 1

Item
Max

Priority
Min

Priority
Lower
Limit

Max
Item

Candidate
List

Random
Number p Decision Profit

5 69.9 33.8 41.0 3 4, 7 0.76 > 0.60 Select 7 17

7 39.5 15.9 20.6 3 4 0.28 ≤ 0.60 Select 3 16

Memory and Learning in Metaheuristics 459

This process is followed until there are no items left without affecting the
feasibility of the partial solution. After adding item 3 to the partial solution, it can
be seen from the report in Table 8 that item 4 has the highest priority, and there
are no items in the CL. However, accepting item 4 makes the partial solution
infeasible, and therefore cannot be selected. Because the other items (2, 6, 8) give
the same result, the first iteration of the algorithm stops. The constructed solution
in the first iteration is (5, 7, 3, 1) and the total profit is 61. The construction phase
of Meta-RaPS continues in this fashion until the number of iterations or any other
stopping criterion is met.

Table 8 Report for the construction phase in iteration 1 of Meta-RaPS

Item
Max

Priority
Min

Priority
Lower
Limit

Max
Item

Candidate
List

Random
Number p Decision Profit

5 69.9 33.8 41.0 3 4, 7 0.76
>

0.60
Select 7 17

7 39.5 15.9 20.6 3 4 0.28 ≤ 0.60 Select 3 16

3 31.4 26.7 27.6 4 1 0.83
>

0.60
Select 1 19

1 5.79 3.59 5.13 4 - - - Stop 9

 Total Profit : 61

The improvement phase is performed if the feasible solutions generated in the
construction phase are within i% of the best unimproved solution value from the
preceding iterations. To decide whether to perform the improvement phase after
the construction phase for maximization problems or not, the value of Δ in
equation (23) is calculated:

Δ = WCS + (BCS – WCS) · (i%) . (23)

where WCS and BCS are the Worst Constructed Solution and Best Constructed
Solution, respectively. If the current solution (CS) is smaller than or equal to the
Δ-value, the improvement phase will be executed. At the end of the construction
phase for iteration 4, the data collected in this process is summarized in the Table
9. According to Table 8 an improvement phase is required for iterations 2 and 3.

Table 9 Decision phase for improvement of constructed solutions in iteration 1 of Meta-
RaPS

Iteration
Constructed

Solutions
BCS WCS CS Δ CS vs. Δ Decision

1 61

2 60 61 60 60 60.7 CS ≤ Δ Improve

3 56 61 56 56 59.5 CS ≤ Δ Improve

4 61 61 56 61 59.5 CS > Δ Not Improve

460 A. Arin and G. Rabadi

In the improvement phase, two different algorithms will be employed: the 2-opt
and the insertion algorithms. In the 2-opt algorithm, an item in the solution is
replaced in a systematic way with another item that is not in the solution, while in
the insertion algorithm, items that are not in the solution are inserted to the
solution. In both algorithms the solutions must remain feasible. Table 10
summarizes the solution report of the 0-1 MKP example by Meta-RaPS for which
it could find the optimum value at the 4th iteration.

Table 10 Meta-RaPS solution report for the 0-1 MKP example

Iteration Construction Phase Improvement Phase

1 61 -
2 60 67
3 56 61
4 61 68*

5.5 Meta-RaPS EDA Solution for the 0-1 Multidimensional
Knapsack Problem

An Estimation of Distribution Algorithm (EDA) implements a probabilistic
learning model as a memory mechanism where it estimates the probability
distribution for each decision variable to generate new solutions which replace the
old ones according to some rules. This process iterates until termination criteria
are met.

To be able to estimate the distribution of the solutions for Meta-RAPS EDA
algorithm, a set of five feasible solutions is generated randomly in Table 11, and
the probability of an item being in this set, P’(i), is calculated as in the equation
(24), e.g., if item 1 is found four times in five solutions then P’(1) = 4 / 5 = 0.8.

P’(item i) = #item i in solutions

#solutions in memory set
 (24)

Table 11 The random solution set and related information

Item 1 2 3 4 5 6 7 8 f(x)
f(x)

Ratio
S1 0 0 1 1 0 1 1 0 56 0.21
S2 1 1 1 1 1 0 0 0 60 0.23
S3 1 1 1 1 0 0 0 1 49 0.19
S4 1 1 0 1 1 0 0 1 47 0.18
S5 1 1 0 0 1 0 1 0 47 0.18

P’(i) 0.8 0.8 0.6 0.8 0.6 0.2 0.4 0.4 ∑ 259 1.00
P(i) 0.156 0.156 0.127 0.164 0.119 0.043 0.080 0.074

Memory and Learning in Metaheuristics 461

To include the effect of their objective function values into the process, the
ratio of the objective function value to the total objective function value of
solutions in the set is calculated for each solution. For example, the objective
function value of solution 1, coded as S1 in the first row, is 56 and equal to 21%
of the total objective function value for all solutions in the set which is 259. The
contribution of each item can be found by taking the mean of ratios of the
objective function values for the solutions where the item is selected. Item 1 is
found in solutions 2, 3, 4 and 5, and their ratios are 0.23, 0.19, 0.18 and 0.18,
respectively. The contribution of item 1 is the mean of these ratios which is 0.195.
If this contribution is multiplied by P’(i) the probability of being selected for item
1, P(i), is obtained as P(1) = 0.8 · 0.195 = 0.156. Next, the conditional probability
P(item i | item j) for each item is computed, which is the probability of selecting
item i given that item j has been already selected in the solution set. The
conditional probability is found by using equation (25).

P(item i | item j) = P(item i item j)

P(item j)

∩ . (25)

For example, assuming item 1 is already selected, the probability of selecting item
3 as the next item for the partial solution can be calculated as in (26):

() # times both item 3 and item 1 selected (in S2 and S3) 2
P item 3 | item 1 0.5

times item 1 selected (in S2, S3, S4, S5) 4
= = = (26)

After obtaining the conditional probabilities for all pairs of items, the conditional
probability matrix in Table 12 is formed.

Table 12 The conditional probability matrix

Item 1 2 3 4 5 6 7 8

1 - 1.00 0.50 0.75 0.75 0.00 0.25 0.50
2 1.00 - 0.50 0.75 0.75 0.00 0.25 0.50
3 0.67 0.67 - 1.00 0.33 0.33 0.33 0.33
4 0.75 0.75 1.00 - 0.50 0.25 0.25 0.50
5 1.00 1.00 0.33 0.67 - 0.00 0.33 0.33
6 0.00 0.00 1.00 1.00 0.00 - 1.00 0.00
7 0.50 0.50 0.50 0.50 0.50 0.50 - 0.00
8 1.00 1.00 0.50 1.00 0.50 0.00 0.00 -

To transform these two types of probabilities into an estimation of distribution
for items in solutions, the probability of selecting item i given that item j has been
already selected is multiplied by the probability of selecting item i, i.e. P(item i) ·
P(item i | item j).

462 A. Arin and G. Rabadi

Table 13 The probabilistic priority matrix

Item 1 2 3 4 5 6 7 8

1 - 0.157 0.064 0.123 0.089 0.000 0.020 0.037
2 0.157 - 0.064 0.123 0.089 0.000 0.020 0.037
3 0.105 0.105 - 0.164 0.039 0.014 0.026 0.024
4 0.118 0.118 0.127 - 0.059 0.011 0.020 0.037
5 0.157 0.157 0.042 0.110 - 0.000 0.026 0.024
6 0.000 0.000 0.127 0.164 0.000 - 0.080 0.000
7 0.078 0.078 0.064 0.082 0.059 0.022 - 0.000
8 0.157 0.157 0.064 0.164 0.059 0.000 0.000 -

The probabilities in Table 13 constitute the probabilistic priority matrix that
serves as the priority matrix in Met-RaPS. For example, to find 0.064 in Table 13,
that is the information within the estimation of distribution for item 3 after item 1
is selected, the probability of selecting item 3 given that item 1 has been selected
(= 0.50) is multiplied by the probability of selecting item 3 (= 0.127). Progressing
in the same fashion, at the end of the construction phase in iteration 1, the solution
(5, 3, 4, 8, 1) with the total profit of 61 is obtained. The detailed report for the last
step in iteration 1 is in Table 14.

Table 14 Report for the construction phase in iteration 1 of Meta-RaPS EDA

Item
Max

Priority
Min

Priority
Lower
Limit

Max
Item

Candidate
List

Random
Number p Decision Profit

5 0.157 0.000 0.031 1,2 3 0.76 > 0.60 Select 3 17

3 0.164 0.014 0.044 4 1,2 0.28 ≤ 0.60 Select 4 19

4 0.118 0.011 0.032 1,2 8 0.83 > 0.60 Select 8 10

8 0.157 0.000 0.031 1,2 - 0.58 ≤ 0.60 Select 1 6

1 All are NF 9

 Total Profit : 61

As in Meta-RaPS, the current solutions are improved whenever the current
solution (CS) is smaller than or equal to the Δ-value calculated using equation (23)
as shown in Table 15. And Table 16 summarizes the solution report at the end of 4
iterations of Meta-RaPS EDA algorithm, which could find the optimum value at
the 2nd and 4th iterations for the MKP example.

Table 15 Decision phase for improvement of constructed solutions in iteration 1 of Meta-
RaPS EDA

Iteration
Constructed

Solutions
BCS WCS CS Δ CS vs. Δ Decision

1 61

2 56 61 56 56 59.5 CS ≤ Δ Improve

3 56 61 56 56 59.5 CS ≤ Δ Improve

4 56 61 56 56 59.5 CS ≤ Δ Improve

Memory and Learning in Metaheuristics 463

Table 16 Meta-RaPS EDA solution report of the 0-1 MKP example

Iteration Construction Phase Improvement Phase

1 61 -
2 56 68*
3 56 58
4 56 68*

After the improvement phase at the end of each iteration of algorithm, the Meta-
RaPS EDA memory matrix is updated by replacing the solution found in the current
iteration with the solution in the memory matrix according to some criteria, e.g.
objective function value or diversity. The memory update process can be also
accomplished by replacing the new solution with any solution selected randomly.

5.6 Comparison of Meta-RaPS and Meta-RaPS EDA

Because of the memoryless nature of Meta-RaPS, it begins every iteration from
the same point, and has no information about the search history. However, in the
case of Meta-RaPS EDA, the probabilistic priority matrix serves as a memory
which is updated at every iteration, and converges to its optimum values as
iterations proceed. If the items in the probabilistic priority matrix are tracked, it
can be easily observed from Fig. 1 and 2 that the means of the probabilistic
priorities of optimal items are increasing while other items’ means of the
probabilistic priorities are decreasing. Because of the probabilistic nature of Meta-
RaPS EDA algorithm the trend for convergence and accuracy of the probabilistic
priority matrix can be expected to increase with the size of the instances.

Fig. 1 The trend of probabilistic priorities of items selected in optimal solution

464 A. Arin and G. Rabadi

Fig. 2 The trend of probabilistic priorities of items not selected in optimal solution

This small example presents the role of memory in improving the search in Meta-
RaPS. To further evaluate the performance, Meta-RaPS EDA will be applied to 0-1
MKP instances that exist in the literature, and the performances of both algorithms will
be compared in terms of solution quality, or deviation percentage. The deviations
between solutions s (solution found in the current method) and s* (optimum solution
or best solution found) will be calculated using the following equation (27):

(*) - ()
100.

(*)

f s f s
x

f s
 (27)

55 small and medium 0-1 MKP test instances and 30 large ones available from the
OR-Library will be used to evaluate the Meta-RaPS algorithms [197]. Comparison
of the solutions for small/medium size and large 0-1 MKP test instances with
Meta-RaPS and Meta-RaPS EDA is summarized in Table 17. Meta-RaPS EDA
algorithm could produce quiet promising results compared to Meta-RaPS,
confirming the previous result of representative 0-1 MKP example.

Table 17 Comparison of solutions by Meta-RaPS and Meta-RaPS EDA

Solution Method
Average Deviation%

Small/Medium Large
Meta-RaPS 0.003 0.600
Meta-RaPS EDA 0.001 0.022

6 Conclusion

In our constantly changing environment, we always adapt ourselves to different
situations that we encounter in our life. Instead of “hardwiring” [198] into us all

Memory and Learning in Metaheuristics 465

types of behavior, we learn the best strategies in certain cases and store them in
our brain to call when similar situations arise again.

Learning, according to David Fogel [199], is an intelligent process in which the
basic unit of mutability is the idea. “Good” adaptive ideas are maintained, much as
good genes increase in a population, while poor ideas are forgotten. In insect
societies this only requires the evaporation of pheromone trails; in humans it
requires time for actual forgetting [110]. In similar manner, memory and learning
mechanisms in metaheuristics can learn and remember “good” ideas related to the
search process to make it possible to create high quality solutions for optimization
problems by utilizing this information.

Artificial intelligence emerges in metaheuristics via memory and learning of
algorithms. Intelligent metaheuristics that can learn and memorize, maintain a
single candidate solution or a population of solutions that provides the information
acquired by the process, and the basis for making future decisions. The use of
prior knowledge created by the adapted solutions can sometimes be interesting,
innovative, and even competitive with human expertise [200].

Combinatorial problems, such as scheduling, are not well solved by traditional
computer science and exact optimization techniques, and in such cases,
metaheuristics and techniques provided by artificial intelligence can provide
excellent solutions. With the ability of learning and memorizing the search
history, an intelligent algorithm can be used to find good initial starting point(s),
and then a local method is employed to search for better solution from the initial
starting point(s) [201].

Since Alan Turing created the Turing machine in 1950, and John McCarthy
named this approach as Artificial Intelligence in 1956 at a conference in
Dartmouth College, in New Hampshire, the aim of Artificial Intelligence is no
longer to create a robot as intelligent as a human, but rather to have algorithms and
metaheuristics learn and memorize in a similar way like the human brain while
solving problems. There are convincing reasons to employ memory and learning
functions in metaheuristics, or intelligent algorithms, especially as the solution
environment is becoming so complex that human beings can no longer understand
it, and software systems become so intractable that they can no longer be
controlled. As a scruffy artificial intelligence technique, metaheuristics that can
learn and memorize offer an efficient way of designing "intelligent" solution
procedures, in which autonomy, emergence, and distributed functioning replace
control, preprogramming, and centralization [109].

In this chapter, we demonstrated how memory and learning can be
implemented in a memoryless metaheuristic like Meta-RaPS and showed that
incorporating a method such as EDA can result in a significant improvement to
the metaheuristic’s performance. In the optimization area there are some powerful
metaheuristics whose power comes from their ability to memorize and learn in
reaching high-quality solutions for large scale problems. Memory and learning
abilities are among the main features that draw the line between human beings’
excellence and other beings, and now they are revealing the difference between
intelligent algorithms and others.

466 A. Arin and G. Rabadi

References

1. Yang, X.-S.: Engineering Optimization: An Introduction with Metaheuristic
Applications. John Wiley & Sons, Inc., New Jersey (2010)

2. Turing, A.M.: On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, Series
2 41, 230–267 (1936)

3. Turing, A.M.: Computing Machinery and Intelligence. Mind 59, 433–460 (1950)
4. Mumford, C.L., Jain, L.C.: Computational Intelligence: Collaboration, Fusion and

Emergence. Springer, Heidelberg (2009)
5. Pedrycz, W.: Computational Intelligence: An Introduction. CRC Press (1997)
6. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. John

Wiley and Sons (2007)
7. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer (2004)
8. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. SCI,

vol. 197. Springer, Heidelberg (2009)
9. Moraga, R.J.: Meta-RaPS. Optimization Methods Class Notes. Northern Illinois

University, IL (2009)
10. Glover, F., Laguna, M.: Tabu Search, University of Colorado, Boulder. Kluwer

Academic Publishers, Boston (1997)
11. Webster‘s New Universal Unbridged Dictionary. Random house Value Publishing,

Inc., Barnes & Nobles Books, New York (1996)
12. Kazdin, A.E.: Encyclopedia of Psychology. Oxford University Press, USA (2000)
13. Kesner, R.P.: Neurobiology of Learning and Memory. In: Martinez Jr., J.L., Kesner,

R.P. (eds.) Neurobiological Views of Memory. Academic Press, California (1998)
14. Anderson, J.R.: Learning and memory: An integrated approach. John Wiley & Sons,

New York (2000)
15. Ormrod, J.E.: Human Learning. Pearson Education, Inc., New Jersey (2008)
16. Chance, P.: Learning and Behavior: Active Learning Edition, Belmont, CA (2008)
17. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization.

Springer, New York (2008)
18. Talbi, E.G.: Metaheuristics, From Design to Implementation, University of Lille.

John Wiley & Sons, Inc., New Jersey (2009)
19. Rochat, Y., Taillard, E.: Probabilistic Diversification and Intensification in Local

Search for Vehicle Routing. Journal of Heuristics 1(1), 147–167 (1995)
20. Dréo, J., Aumasson, J.-P., Tfaili, W., Siarry, P.: Adaptive Learning Search, A New

Tool To Help Comprehending Metaheuristics. International Journal on Artificial
Intelligence Tools 16(3) (2007)

21. Battiti, R., Tecchiolli, G.: The Reactive Tabu Search. ORSA Journal on
Computing 6(2), 126–140 (1994)

22. Glover, F.: Tabu search: Part I. ORSA Journal on Computing 1(3), 190–206 (1989)
23. Chen, X., Yang, J., Li, Z., Tian, D., Shao, Z.: A combined global and local search

method to deal with constrained optimization for continuous tabu search. J. Numer.
Meth. Engng. 76, 1869–1891 (2008)

24. Flisberga, P., Lidéna, B., Rönnqvist, M.: A hybrid method based on linear
programming and tabu search for routing of logging trucks. Computers & Operations
Research 36, 1122–1144 (2009)

25. Hung, Y.-F., Chen, W.-C.: A heterogeneous cooperative parallel search of branch-
and-bound method and tabu search algorithm. J. Glob. Optim. 51, 133–148 (2011)

Memory and Learning in Metaheuristics 467

26. Thamilselvan, R., Balasubramanie, P.: A Genetic Algorithm with a Tabu Search
(GTA) for Traveling Salesman Problem. International Journal of Recent Trends in
Engineering 1(1), 607–610 (2009)

27. Yeh, S.-F., Chu, C.-W., Chang, Y.-J., Lin, M.-D.: Applying tabu search and
simulated annealing to the optimal design of sewer networks. Engineering
Optimization 43(2), 159–174 (2011)

28. Wang, Y., Li, L., Ni, J., Huang, S.: Feature selection using tabu search with long-
term memories and probabilistic neural networks. Pattern Recognition Letters 30,
661–670 (2009)

29. Karimi, A., Nobahari, H., Siarry, P.: Continuous ant colony system and tabu search
algorithms hybridized for global minimization of continuous multi-minima
functions. Comput. Optim. Appl. 45, 639–661 (2010)

30. Duarte, A., Martí, R., Glover, F., Gortazar, F.: Hybrid scatter tabu search for
unconstrained global optimization. Ann. Oper. Res. 183, 95–123 (2011)

31. Bilge, Ü., Kurtulan, M., Kırac, F.: A tabu search algorithm for the single machine
total weighted tardiness problem. European Journal of Operational Research 176,
1423–1435 (2007)

32. Pitts Jr., R.A., Ventura, J.A.: Scheduling flexible manufacturing cells using Tabu
Search. International Journal of Production Research 47(24), 6907–6928 (2009)

33. Shiguemoto, A.L., Armentano, V.A.: A tabu search procedure for coordinating
production, inventory and distribution routing problems. Intl. Trans. in Op. Res. 17,
179–195 (2010)

34. Pacheco, J., Casado, S., Núñez, L.: A variable selection method based on Tabu
search for logistic regression models. European Journal of Operational Research 199,
506–511 (2009)

35. Brandão, J.: A deterministic tabu search algorithm for the fleet size and mix vehicle
routing problem. European Journal of Operational Research 195, 716–728 (2009)

36. Derigs, U., Reuter, K.: A simple and efficient tabu search heuristic for solving the
open vehicle routing problem. Journal of the Operational Research Society 60,
1658–1669 (2009)

37. Wassan, N.: Reactive Tabu Adaptive Memory Programming Search for the Vehicle
Routing Problem with Backhauls. Journal of the Operational Research Society 58,
1630–1641 (2007)

38. Chiang, W., Russell, R.A.: A Reactive Tabu Search Metaheuristic for the Vehicle
Routing Problem with Time Windows, University of Tulsa. INFORMS Journal on
Computing 9(4), 417–430 (1997)

39. Glover, F., Laguna, M.: Tabu Search. In: Reeves, C.R. (ed.) Modern Heuristic
Techniques for Combinatorial Problems, pp. 70–150. Blackwell Publishing, Oxford
(1993)

40. Wassan, N.: A Reactive Tabu Search for the Vehicle Routing Problem. Journal of
the Operational Research Society 57, 111–116 (2006)

41. Wassan, N.A., Wassan, A.H., Nagy, G.: A reactive tabu search algorithm for the
vehicle routing problem with simultaneous pickups and deliveries. J. Comb.
Optim. 15, 368–386 (2008)

42. Paraskevopoulos, D.C., Repoussis, P.P., Tarantilis, C.D., Ioannou, G., Prastacos,
G.P.: A reactive variable neighborhood tabu search for the heterogeneous fleet
vehicle routing problem with time windows. J. Heuristics 14, 425–455 (2008)

43. Holland, J.H.: Outline for a Logical Theory of Adaptive Systems. Journal of the
ACM 3, 297–314 (1962)

44. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor (1975)

468 A. Arin and G. Rabadi

45. Rechenberg, I.: Cybernetic Solution Path of an Experimental Problem. Technical
Report. Royal Aircraft Establishment Library Translation No. 1112, Farnborough,
UK (1965)

46. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog (1973)

47. Schwefel, H-P.: Kybernetische Evolution als Strategie der Experimentellen
Forschung in der Strömungstechnik. Technical Report. Diplomarbeit Hermann
Fottinger Institut für Strömungstechnik. Technische Universität, Berlin, Germany
(1965)

48. Fogel, L.J.: Toward Inductive Inference Automata. In: Proceedings of the
International Federation for Information Processing Congress, Munich, pp. 395–399
(1962)

49. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated
Evolution. Wiley (1966)

50. Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)
51. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)
52. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer (2002)
53. Tsoulos, I.G.: Solving constrained optimization problems using a novel genetic

algorithm. Applied Mathematics and Computation 208(1), 273–283 (2009)
54. Vasanthi, T., Arulmozhi, G.: Optimal allocation problem using genetic algorithm.

International Journal of Operational Research 5(2), 211–228 (2009)
55. YoungSu, Y., Chiung, M., Daeho, K.: Hybrid genetic algorithm with adaptive local

search scheme for solving multistage-based supply chain problems. Computers &
Industrial Engineering 56(3), 821–838 (2009)

56. Awad, M.M., Chehdi, K.: Satellite image segmentation using hybrid variable genetic
algorithm. International Journal of Imaging Systems and Technology 19(3), 199–207
(2009)

57. Maruyama, T., Igarashi, H.: An effective robust optimization based on genetic
algorithm. IEEE Transactions on Magnetics 44(6), 990–993 (2008)

58. Liu, J.-L., Chen, C.-M.: Improved intelligent genetic algorithm applied to long-
endurance airfoil optimization design. Engineering Optimization 41(2), 137–154
(2009)

59. Srivastava, P.R.: Optimisation of software testing using genetic algorithm.
International Journal of Artificial Intelligence and Soft Computing 1(2-4), 363–375
(2009)

60. Garcia, J., Perez, O., Berlanga, A., Molina, J.M.: Video tracking system optimization
using evolution strategies. International Journal of Imaging Systems and
Technology 17(2), 75–90 (2007)

61. Abad, A., Elipe, A.: Evolution strategies for computing periodic orbits. Advances in
the Astronautical Sciences 134, 673–684 (2009)

62. Mester, D., Braysy, O.: Active-guided evolution strategies for large-scale capacitated
vehicle routing problems. Computers & Operations Research 34(10), 2964–2975
(2007)

63. Chang, Y.-H., Wu, T.-T.: Dynamic multi-criteria evaluation of co-evolution
strategies for solving stock trading problems. Applied Mathematics and
Computation 218(8), 4075–4089 (2011)

64. Li, R., Eggermont, J., Shir, O.M., Emmerich, M.T.M., Bäck, T., Dijkstra, J., Reiber,
J.H.C.: Mixed-Integer Evolution Strategies with Dynamic Niching. In: Rudolph, G.,
Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp.
246–255. Springer, Heidelberg (2008)

Memory and Learning in Metaheuristics 469

65. Deng-Neng, C., Ting-Peng, L.: Knowledge evolution strategies and organizational
performance: A strategic fit analysis. Electronic Commerce Research and
Applications 10(1), 75–84 (2011)

66. Bäck, T.: Evolution strategies: Basic introduction. In: Genetic and Evolutionary
Computation Conference, GECCO 2011, pp. 875–897 (2011)

67. Dong, H., Dong, Y., Zhou, C., Yin, G., Hou, W.: A fuzzy clustering algorithm based
on evolutionary programming. Expert Systems with Applications 36(9), 11792–
11800 (2009)

68. Tan, S.C., Lim, C.P.: Fuzzy ARTMAP and hybrid evolutionary programming for
pattern classification. Journal of Intelligent and Fuzzy Systems 22(2-3), 57–68
(2011)

69. Lin, Y.-C., Lin, Y.-C., Su, K.-L.: Production planning based on evolutionary mixed-
integer nonlinear programming. ICIC Express Letters 4(5B), 1881–1886 (2010)

70. Huaxiang, Z., Jing, L.: Adaptive evolutionary programming based on reinforcement
learning. Information Sciences 178(4), 971–984 (2008)

71. Liu, Y.: New discoveries in fast evolutionary programming. International Journal of
Innovative Computing, Information and Control 7(5B), 2881–2896 (2011)

72. Sun, K.-T., Lin, Y.-C., Wu, C.-Y., Huang, Y.-M.: An application of the genetic
programming technique to strategy development. Expert Systems with
Applications 36(3), pt. 1, 5157–5161 (2009)

73. Costa, E.O., Pozo, A.T.R., Vergilio, S.R.: A genetic programming approach for
software reliability modeling. IEEE Transactions on Reliability 59(1), 222–230
(2010)

74. Li, X.Y., Shao, X.Y., Gao, L.: Optimization of flexible process planning by genetic
programming. International Journal of Advanced Manufacturing Technology 38(1-
2), 143–153 (2008)

75. Zhang, Y., Rockett, P.: Application of multiobjective genetic programming to the
design of robot failure recognition systems. IEEE Transactions on Automation
Science and Engineering 6(2), 372–376 (2009)

76. Oltean, M., Grosan, C., Diosan, L., Mihaila, C.: Genetic programming with linear
representation: A survey. International Journal on Artificial Intelligence Tools 18(2),
197–238 (2009)

77. McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’neill, M.: Grammar-based
Genetic programming: A survey. Genetic Programming and Evolvable
Machines 11(3-4), 365–396 (2010)

78. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic
programming to classification. IEEE Transactions on Systems, Man and Cybernetics
Part C: Applications and Reviews 40(2), 121–144 (2010)

79. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in Genetic
Programming. Genetic Programming and Evolvable Machines 11(3-4), 339–363
(2010)

80. Glover, F.: Heuristics for Integer Programming Using Surrogate Constraints.
Decision Sciences 8, 156–166 (1977)

81. Glover, F., Laguna, M., Marti, R.: Scatter Search and Path Linking. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. Kluwer Academic
Publishers (2003)

82. Egea, J.A., Balsa-Canto, E., García, M.-S.G., Banga, J.R.: Dynamic optimization of
nonlinear processes with an enhanced scatter search method. Industrial and
Engineering Chemistry Research 48(9), 4388–4401 (2009)

83. Caballero, R., Laguna, M., Martí, R., Molina, J.: Scatter tabu search for
multiobjective clustering problems. Journal of the Operational Research
Society 62(11), 2034–2046 (2011)

470 A. Arin and G. Rabadi

84. Baños, R., Gil, C., Reca, J., Martínez, J.: Implementation of scatter search for multi-
objective optimization: A comparative study. Computational Optimization and
Applications 42(3), 421–441 (2009)

85. Contreras, I.A., Diaz, J.A.: Scatter search for the single source capacitated facility
location problem. Annals of Operations Research 157, 73–89 (2008)

86. Tang, J., Zhang, J., Pan, Z.: A scatter search algorithm for solving vehicle routing
problem with loading cost. Expert Systems with Applications 37(6), 4073–4083
(2010)

87. Saravanan, M., Haq, A.N.: A scatter search algorithm for scheduling optimisation of
job shop problems. International Journal of Product Development 10(1-3), 259–272
(2010)

88. Nasiri, M.M., Kianfar, F.: A hybrid scatter search for the partial job shop scheduling
problem. International Journal of Advanced Manufacturing Technology 52(9-12),
1031–1038 (2011)

89. Wang, Y.-S., Teng, H.-F., Shi, Y.-J.: Cooperative co-evolutionary scatter search for
satellite module layout design. Engineering Computations (Swansea, Wales) 26(7),
761–785 (2009)

90. Duman, E., Ozcelik, M.H.: Detecting credit card fraud by genetic algorithm and
scatter search. Expert Systems with Applications 38(10), 13057–13063 (2011)

91. Maenhout, B., Vanhoucke, M.: A hybrid scatter search heuristic for personalized
crew rostering in the airline industry. European Journal of Operational
Research 206(1), 155–167 (2010)

92. Liberatore, S., Sechi, G.M.: Location and calibration of valves in water distribution
networks using a scatter-search meta-heuristic approach. Water Resources
Management 23(8), 1479–1495 (2009)

93. Duarte, A., Martí, R., Gortazar, F.: Path relinking for large-scale global optimization.
Soft Computing 15(11), 2257–2273 (2011)

94. Souffriau, W., Vansteenwegen, P., Vanden, B.G., Van Oudheusden, D.: A Path
Relinking approach for the Team Orienteering Problem. Computers and Operations
Research 37(11), 1853–1859 (2010)

95. Bozejko, W.: Parallel path relinking method for the single machine total weighted
tardiness problem with sequence-dependent setups. Journal of Intelligent
Manufacturing 21(6), 777–785 (2010)

96. Nguyen, V.-P., Prins, C., Prodhon, C.: Solving the two-echelon location routing
problem by a GRASP reinforced by a learning process and path relinking. European
Journal of Operational Research 216(1), 113–126 (2012)

97. Nascimento, M.C.V., Resende, M.G.C., Toledo, F.M.B.: GRASP heuristic with
path-relinking for the multi-plant capacitated lot sizing problem. European Journal of
Operational Research 200(3), 747–754 (2010)

98. Armentano, V.A., Shiguemoto, A.L., Løkketangen, A.: Source: Tabu search with
path relinking for an integrated production-distribution problem. Computers &
Operations Research 38(8), 1199–1209 (2011)

99. Ribeiro, C.C., Vianna, D.S.: A hybrid genetic algorithm for the phylogeny problem
using path-relinking as a progressive crossover strategy. International Transactions
in Operational Research 16(5), 641–657 (2009)

100. Vallada, E., Ruiz, R.: Genetic algorithms with path relinking for the minimum
tardiness permutation flowshop problem. Omega 38(1-2), 57–67 (2010)

101. Jaszkiewicz, A., Zielniewicz, P.: Pareto memetic algorithm with path relinking for
bi-objective traveling salesperson problem. European Journal of Operational
Research 193(3), 885–890 (2009)

Memory and Learning in Metaheuristics 471

102. Jaeggi, D.M., Parks, G.T., Kipouros, T., Clarkson, P.J.: The development of a multi-
objective tabu search algorithm for continuous optimisation problems. European
Journal of Operational Research 185(3), 1192–1212 (2008)

103. Resende, M.G.C., Martí, R., Gallego, M., Duarte, A.: GRASP and path relinking for
the max-min diversity problem. Computers & Operations Research 37(3), 498–508
(2010)

104. Mateus, G.R., Resende, M.G.C., Silva, R.M.A.: GRASP with path-relinking for the
generalized quadratic assignment problem. Journal of Heuristics 17(5), 527–565
(2011)

105. Nascimento, M.C.V., Resende, M.G.C., Toledo, F.M.B.: GRASP heuristic with
path-relinking for the multi-plant capacitated lot sizing problem. European Journal of
Operational Research 200(3), 747–754 (2010)

106. Beni, G.: The Concept of Cellular Robotic System. In: Proceedings 1988 IEEE Int.
Symp. on Intelligent Control, Los Alamitos, CA, pp. 57–62 (1988)

107. Beni, G., Wang, J.: Swarm Intelligence. In: Proceedings Seventh Annual Meeting of
the Robotics Society of Japan, Tokyo, pp. 425–428 (1989)

108. Hackwood, S., Beni, G.: Self-Organization of Sensors for Swarm Intelligence. In:
Proceedings IEEE 1992 International Conference on Robotics and Automation, pp.
819–829. IEEE Computer Society Press, Los Alamitos (1992)

109. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Sante Fe Institute. Studies in the Sciences of Complexity. Oxford
University Press, New York (1999)

110. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence: Collective, Adaptive.
Morgan Kaufmann, San Francisco (2001)

111. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A Survey of Very Large Scale
Neighborhood Search Techniques. Discrete Applied Mathematics 123, 75–102
(2002)

112. Nicolis, G., Prigogine, I.: Self-Organization in Non-Equilibrium Systems. Wiley &
Sons, New York (1977)

113. Haken, H.: Synergetics. Springer, Berlin (1983)
114. Deneubourg, J.-L., Goss, S., Franks, N.R., Pasteels, J.M.: The Blind Leading the

Blind: Modeling Chemically Mediated Army Ant Raid Patterns. J. Insect Behav. 2,
719–725 (1989)

115. Grasse, P.-P.: La Reconstruction du nid et les Coordinations Inter-Individuelles chez
Bellicositerm. es Natalensis et Cubitermes sp. La theorie de la Stigmergie: Essai
d’interpretation du Comportement des Termites Constructeurs. Insect. Soc. 6, 41–80
(1959)

116. Grasse, P.-P.: Termitologia, Tome II. Fondation des Societes. Construction, Paris,
Masson (1984)

117. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard
Optimization. Springer, Heidelberg (2006)

118. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis. Politecnico
di Milano, Italy (1992)

119. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Massachusetts
(2004)

120. Merkle, D., Middendorf, M.: Swarm Intelligence. In: Burke, E.K., Kendall, G. (eds.)
Search Methodologies: Introductory Tutorials in Optimization and Decision Support
Techniques. Springer, New York (2005)

121. Chengming, Q.: Ant colony optimization with local search for continuous functions.
Advanced Materials Research 204-210, pt. 4, 1135–1138 (2011)

122. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European
Journal of Operational Research 185(3), 1155–1173 (2008)

472 A. Arin and G. Rabadi

123. Schlüter, M., Egea, J.A., Banga, J.R.: Extended ant colony optimization for non-
convex mixed integer nonlinear programming. Computers and Operations
Research 36(7), 2217–2229 (2009)

124. Mei, H., Wang, Y.: Ant colony optimization for neural network. Key Engineering
Materials 392-394, 677–681 (2009)

125. Lin, B.M.T., Lu, C.Y., Shyu, S.J., Tsai, C.Y.: Development of new features of ant
colony optimization for flowshop scheduling. International Journal of Production
Economics 112(2), 742–755 (2008)

126. Mirabi, M.: Ant colony optimization technique for the sequence-dependent flowshop
scheduling problem. International Journal of Advanced Manufacturing
Technology 55(1-4), 317–326 (2011)

127. Juang, C.-F., Chang, P.-H.: Designing fuzzy-rule-based systems using continuous
ant-colony optimization. IEEE Transactions on Fuzzy Systems 18(1), 138–149
(2010)

128. Yeong-Hwa, C., Chia-Wen, C., Chin-Wang, T., Hung-Wei, L., Jin-Shiuh, T.: Fuzzy
sliding-mode control for ball and beam system with fuzzy ant colony optimization.
Expert Systems with Applications 39(3), 3624–3633 (2012)

129. Yan, C.-Y., Luo, Q.-Q., Chen, Y.: An efficient hybrid evolutionary optimization
algorithm combining ant colony optimization with simulated annealing. International
Journal of Digital Content Technology and its Applications 5(8), 234–240 (2011)

130. Mavrovouniotis, M., Shengxiang, Y.: A memetic ant colony optimization algorithm
for the dynamic travelling salesman problem. Soft Computing 15(7), 1405–1425
(2011)

131. Vasko, F.J., Bobeck, J.D., Governale, M.A., Rieksts, D.J., Keffer, J.D.: A statistical
analysis of parameter values for the rank-based ant colony optimization algorithm for
the traveling salesperson problem. Journal of the Operational Research
Society 62(6), 1169–1176 (2011)

132. Ke, L., Feng, Z., Ren, Z., Wei, X.: An ant colony optimization approach for the
multidimensional knapsack problem. Journal of Heuristics 16(1), 65–83 (2010)

133. Yu, B., Yang, Z.-Z., Yao, B.: An improved ant colony optimization for vehicle
routing problem. European Journal of Operational Research 196(1), 171–176 (2009)

134. Silva, C.A., Sousa, J.M.C., Runkler, T.A., Sá da Costa, J.M.G.: Distributed supply
chain management using ant colony optimization. European Journal of Operational
Research 199(2), 349–358 (2009)

135. Abdallah, H., Emara, H.M., Dorrah, H.T., Bahgat, A.: Using Ant Colony
Optimization algorithm for solving project management problems. Expert Systems
with Applications 36(6), 10004–10015 (2009)

136. Deng, G.-F., Lin, W.-T.: Ant colony optimization-based algorithm for airline crew
scheduling problem. Expert Systems with Applications 38(5), 5787–5793 (2011)

137. Zhang, N., Feng, Z.-R., Ke, L.-J.: Guidance-solution based ant colony optimization
for satellite control resource scheduling problem. Applied Intelligence 35(3), 436–
444 (2011)

138. Mohan, B.C., Baskaran, R.: A survey: Ant colony optimization based recent research
and implementation on several engineering domain. Expert Systems with
Applications 39(4), 4618–4627 (2012)

139. Blum, C., Li, X.: Swarm Intelligence in Optimization. In: Blum, C., Merkle, D.
(eds.) Swarm Intelligence: Introduction and Applications. Springer, Heidelberg
(2008)

140. Zhang, J., Zhang, C., Liang, S.: The circular discrete particle swarm optimization
algorithm for flow shop scheduling problem. Expert Systems with
Applications 37(8), 5827–5834 (2010)

Memory and Learning in Metaheuristics 473

141. Lian, Z.: A united search particle swarm optimization algorithm for multiobjective
scheduling problem. Applied Mathematical Modelling 34(11), 3518–3526 (2010)

142. Leung, S.Y.S., Tang, Y., Wong, W.K.: A hybrid particle swarm optimization and its
application in neural networks. Expert Systems with Applications 39(1), 395–405
(2012)

143. Abd-El-Wahed, W.F., Mousa, A.A., El-Shorbagy, M.A.: Integrating particle swarm
optimization with genetic algorithms for solving nonlinear optimization problems.
Journal of Computational and Applied Mathematics 235(5), 1446–1453 (2011)

144. Bachlaus, M., Pandey, M.K., Mahajan, C., Shankar, R., Tiwari, M.K.: Designing an
integrated multi-echelon agile supply chain network: A hybrid taguchi-particle
swarm optimization approach. Journal of Intelligent Manufacturing 19(6), 747–761
(2008)

145. Abido, M.A.: Multiobjective particle swarm optimization for
environmental/economic dispatch problem. Electric Power Systems Research 79(7),
1105–1113 (2009)

146. Elsays, M.A., Aly, M.N., Badawi, A.A.: Optimizing the dynamic response of the
H.B. Robinson nuclear plant using multiobjective particle swarm optimization.
Kerntechnik 74(1-2), 70–78 (2009)

147. Quan-Ke, P., Tasgetiren, M.F., Yun-Chia, L.: A discrete particle swarm optimization
algorithm for the no-wait flowshop scheduling problem. Computers and Operations
Research 35(9), 2807–2839 (2008)

148. Guner, A.R., Sevkli, M.: A Discrete Particle Swarm Optimization Algorithm for
Uncapacitated Facility Location Problem. Journal of Artificial Evolution &
Applications, 861512 (9 p.) (2008)

149. Ebrahimi, M., Farmani, M.R., Roshanian, J.: Multidisciplinary design of a small
satellite launch vehicle using particle swarm optimization. Structural and
Multidisciplinary Optimization 44(6), 773–784 (2011)

150. Pu, H., Zhen, Z., Wang, D., Hu, Y.: Improved particle swarm optimization algorithm
for intelligently setting UAV attitude controller parameters. Transactions of Nanjing
University of Aeronautics & Astronautics 26(1), 52–57 (2009)

151. Qi-Xin, Z., Fu-Chun, S., Wei, X.: Task allocation for On-orbit servicing spacecrafts
using discrete particle Swarm optimization Algorithm. International Journal of
Advancements in Computing Technology 3(11), 467–476 (2011)

152. Wu, P., Gao, L., Zou, D., Li, S.: An improved particle swarm optimization algorithm
for reliability problems. ISA Transactions 50(1), 71–81 (2011)

153. Ramadan, R.M., Abdel-Kader, R.F.: Face recognition using particle swarm
optimization-based selected features. International Journal of Signal Processing,
Image Processing and Pattern Recognition 2(2), 51–64 (2008)

154. Kameyama, K.: Particle swarm optimization - a survey. IEICE Transactions on
Information and Systems E92-D(7), 1354–1361 (2009)

155. Grahl, J.: Estimation of Distribution Algorithms in Logistics: Analysis, Design, and
Application. PhD Thesis. Mannheim University, Dortmund (2007)

156. Baluja, S., Pomerleau, D., Jochem, T.: Towards Automated Artificial Evolution for
Computer-Generated Images. Connection Science, 325–354 (1994)

157. Sáez, Y.: Optimization Using Genetic Algorithms with Micropopulations. In: Alba,
E., Blum, C., Isasi, P., León, C., Gómez, J.A. (eds.) Optimization Techniques for
Solving Complex Problems, John Wiley & Sons Inc, New Jersey (2009)

158. Zhang, Q., Sun, J., Tsang, E., Ford, J.: Estimation of Distribution Algorithm with 2-
opt. Local Search for the Quadratic Assignment Problem. In: Lozano, J.A.,
Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary
Computation, Advances in the Estimation of Distribution Algorithms. STUDFUZZ,
vol. 192, pp. 281–292. Springer, Heidelberg (2006)

474 A. Arin and G. Rabadi

159. Xiao, J., Yan, Y., Zhang, J.: HPBIL: A histogram-based EDA for continuous
optimization. Applied Mathematics and Computation 215(3), 973–982 (2009)

160. Yuan, B., Orlowska, M., Sadiq, S.: Extending a class of continuous estimation of
distribution algorithms to dynamic problems. Optimization Letters 2(3), 433–443
(2008)

161. Qingfu, Z., Aimin, Z., Yaochu, J.: RM-MEDA: a regularity model-based
multiobjective estimation of distribution algorithm. IEEE Transactions on
Evolutionary Computation 12(1), 41–63 (2008)

162. Martí, L., Garca, J., Berlanga, A., Coello Coello, C.A., Molina, J.M.: MB-GNG:
Addressing drawbacks in multi-objective optimization estimation of distribution
algorithms. Operations Research Letters 39(2), 150–154 (2011)

163. Hongcheng, L., Liang, G., Quanke, P.: A hybrid particle swarm optimization with
estimation of distribution algorithm for solving permutation flowshop scheduling
problem. Expert Systems with Applications 38(4), 4348–4360 (2011)

164. Huang, X., Jia, P., Liu, B.: Controlling chaos by an improved estimation of
distribution algorithm. Mathematical and Computational Applications 15(5 Spec.
Issue), 866–871 (2010)

165. Zhou, Y., Wang, J.: Neural network combined with estimation of distribution for
max-cut problem. ICIC Express Letters 4(4), 1161–1166 (2010)

166. Santana, R., Larrañaga, P., Lozano, J.A.: Combining variable neighborhood search
and estimation of distribution algorithms in the protein side chain placement
problem. Journal of Heuristics 14(5), 519–547 (2008)

167. Jarboui, B., Eddaly, M., Siarry, P.: An estimation of distribution algorithm for
minimizing the total flowtime in permutation flowshop scheduling problems.
Computers & Operations Research 36(9), 2638–2646 (2009)

168. Zhong, X., Ding, J., Li, W., Zhang, Y.: Robust airfoil optimization with multi-
objective estimation of distribution algorithm. Chinese Journal of Aeronautics 21(4),
289–295 (2008)

169. Patricio, M.A., García, J., Berlanga, A., Molina, J.M.: Visual data association for
real-time video tracking using genetic and estimation of distribution algorithms.
International Journal of Imaging Systems and Technology 19(3), 199–207 (2009)

170. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution
algorithms. Swarm and Evolutionary Computation 1(3), 111–128 (2011)

171. Lozano, J.A., Larrañaga, P., Inz, I., Bengoetxea, E.: Evolutionary Computation:
Towards a New Advances in the Estimation of Distribution Algorithms. Springer,
Heidelberg (2006)

172. DePuy, G., Whitehouse, G.E.: A simple and effective heuristic for the multiple
resource allocation problem. International Journal of Production Research 32(4), 24–
31 (2001)

173. Moraga, R.J.: Meta-RaPS: An Effective Solution Approach for Combinatorial
Problems. Ph.D. thesis, University of Central Florida, Orlando, FL (2002)

174. DePuy, G.W., Moraga, R.J., Whitehouse, G.E.: Meta-RaPS: a simple and effective
approach for solving the traveling salesman problem. Transportation Research Part
E: Logistics and Transportation Review 41(2), 115–130 (2005)

175. Moraga, R.J., DePuy, G.W., Whitehouse, G.E.: Meta-RaPS approach for the 0–1
multidimensional knapsack problem. Computers and Industrial Engineering 48(2),
83–96 (2005)

176. Rabadi, G., Moraga, R., Al-Salem, A.: Heuristics for the unrelated parallel machine
scheduling problem with setup times. Journal of Intelligent Manufacturing 17, 85–97
(2006)

Memory and Learning in Metaheuristics 475

177. Hepdogan, S., Moraga, R.J., DePuy, G.W., Whitehouse, G.E.: A Meta-RaPS For The
Early/Tardy Single Machine Scheduling Problem. International Journal of
Production Research 47(7), 1717–1732 (2009)

178. Garcia, C., Rabadi, G.: A Meta-RaPS algorithm for spatial scheduling with release
times. Int. J. Planning and Scheduling 1(1/2), 19–31 (2011)

179. Kaplan, S., Rabadi, G.: A Simulated Annealing and Meta-RaPS Algorithms for the
Aerial Refueling Scheduling Problem with Due Date-to-Deadline Windows and
Release Time. Engineering Optimization (in press)

180. Arcus, A.L.: COMSOAL: A Computer Method of Sequencing Operations for
Assembly Lines. The International Journal of Production Research 4(4), 259–277
(1966)

181. Hepdogan, S., Moraga, R.J., DePuy, G.W., Whitehouse, G.E.: A Meta-RaPS for the
Early/Tardy Single Machine Scheduling Problem. International Journal of
Production Research 47(7), 1717–1732 (2009)

182. Moraga, R.J., DePuy, G.W., Whitehouse, G.E.: Metaheuristics: A Solution
Methodology for Optimization Problems. In: Badiru, A.B. (ed.) Handbook of
Industrial and Systems Engineering. CRC Press, FL (2006)

183. Lan, G., DePuy, G.W., Whitehouse, G.E.: An Effective and Simple Heuristic for the
Set Covering Problem. European Journal of Operational Research 176, 1387–1403
(2007)

184. DePuy, G.W., Whitehouse, G.E., Moraga, R.J.: Meta-RaPS: A Simple and Efficient
Approach for Solving Combinatorial Problems. In: 29th International Conference on
Computers and Industrial Engineering, Montreal, Canada, November 1-3, pp. 644–
649 (2001)

185. Gallardo, J.E., Cotta, C., Fernandez, A.J.: Exact, Metaheuristic, and Hybrid
Approaches to Multidimensional Knapsack Problems, Optimization Techniques for
Solving Complex Problems. John Wiley & Sons, Hoboken (2009)

186. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer
Implementations. John Wiley & Sons, Chichester (1990)

187. Freville, A.: The Multidimensional 0–1 Knapsack Problem: An Overview. European
Journal of Operational Research 155, 1–21 (2004)

188. Wilbaut, C., Hanafi, S., Salhi, S.: A Survey of Effective Heuristics and Their
Application to a Variety of Knapsack Problems. IMA Journal of Management
Mathematics 19, 227–244 (2008)

189. Battiti, R., Tecchiolli, G.: Local Search with Memory: Benchmarking RTS. OR-
Spektrum 17, 67–86 (1995)

190. Balev, S., Yanev, N., Fréville, A., Andonov, R.: A dynamic programming based
reduction procedure for the multidimensional 0–1 knapsack problem. European
Journal of Operational Research 186, 63–76 (2008)

191. Boussier, S., Vasquezb, M., Vimont, Y., Hanafi, S., Michelon, P.: A multi-level
search strategy for the 0-1 Multidimensional Knapsack Problem. Discrete Applied
Mathematics 158, 97–109 (2010)

192. Fleszar, K., Hindi, K.S.: Fast, effective heuristics for the 0-1 multi-dimensional
knapsack problem. Computers & Operations Research 36, 1602–1607 (2009)

193. Boyer, V., Elkihel, M., El Baz, D.: Heuristics for the 0–1 multidimensional knapsack
problem. European Journal of Operational Research 199, 658–664 (2009)

194. Wilbaut, C., Hanafi, S.: New convergent heuristics for 0–1 mixed integer
programming. European Journal of Operational Research 195, 62–74 (2009)

195. Fréville, A.: The multidimensional 0-1 knapsack problem - An overview. European
Journal of Operational Research 155, 1–21 (2004)

196. Fréville, A., Hanafi, S.: The multidimensional 0-1 knapsack problem - bounds and
computational aspects. Ann. Oper. Res. 139, 195–227 (2005)

476 A. Arin and G. Rabadi

197. Beasley, J.E.: OR-Library: Distributing Test Problems by Electronic Mail. Journal of
the Operational Journal Society 41, 170–181 (1990),
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

198. Alpaydın, E.: Introduction to Machine Learning. The MIT Press, Cambridge (2004)
199. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. IEEE Press, Piscataway (1995)
200. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic

Programming IV: Routine Human-Competitive Machine Intelligence. Springer
(2003)

201. Panigrahi, B.K., Shi, Y., Lim, M.-H.: Handbook of Swarm Intelligence: Concepts,
Principles and Applications. Springer, Heidelberg (2011)

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 477–524.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

On Some Aspects of Nature-Based Algorithms
to Solve Multi-Objective Problems

Susmita Bandyopadhyay and Ranjan Bhattacharya*

Abstract. This chapter presents an overview of various nature-based algorithms to
solve multi-objective problems with the particular emphasis on Multi-Objective
Evolutionary Algorithms based on Genetic Algorithm. Some of the significant
hybridization and the modification of the benchmark algorithms have also been
discussed as well. The complexity issues have been outlined and various test prob-
lems to show the effectiveness of such algorithms have also been summarized. At
the end, a brief discussion on the software packages used to model these type of
algorithms are presented.

Keywords: Nature based algorithms, Multi-Objective Evolutionary Algorithm,
Hybrid algorithm, Complexity, Test Problem.

1 Introduction

Problems in real world are mostly multi-objective in nature. Thus the relevance of
multi-objective problems is quite essential. This is the cause of increased populari-
ty and attention towards multi-objective problems and their solution methodolo-
gies. The practical problem lies in the fact that most multi-objective problems are
difficult to solve by simple and deterministic methods. This fact has attracted im-
mense attention from both the research community and practitioners in various
fields of study. Such difficulty has also resulted in a number of methods and algo-
rithms to solve such problems.

However, a constrained multi-objective problem consists of more than one ob-
jective and one or more constraints. The general form of a constrained multi-
objective problem is given below.

Susmita Bandyopadhyay · Ranjan Bhattacharya
Department of Production Engineering, Jadavpur University, Raja S. C. Mallick Road,
Kolkata, West Bengal, India – 700032
e-mail: bandyopadhyaysusmita2011@gmail.com,
 rbhattacharya@production.jdvu.ac.in

3

478 S. Bandyopadhyay and R. Bhattacharya

Minimize 1 2() [(), (),..., ()]T
kf x f x f x f x=

Subject to the constraints:

() 0ig x ≥ , 1, 2,...i I=

() 0jh x = , 1, 2,...j J=

Where ()if x is the ith objective function, ()ig x is the expression for the con-

straint in-equation, ()jh x is the expression for the constraint equation.

Since a single objective problem contains only one objective, thus we get a sin-
gle solution for a single objective problem. But since the number of objectives in a
multi-objective problem is more than one, thus we get a set of solutions instead of
a single solution since the objectives of a multi-objective problem cannot be opti-
mized altogether. Thus the results of a multi-objective problem consist of a set of
compromised solutions which is known as Pareto optimal solution, termed after
the name of Vilfredo Pareto [1]. This chapter focuses on the study on nature based
algorithms to solve multi-objective problems.

The existing literature shows research studies applying various existing algo-
rithms in order to solve the multi-objective problem considered in their studies.
The research studies have either applied deterministic mathematical approach or
non-mathematical approach. Mathematical approach includes methods like Goal
programming [2-4] and non-mathematical approach includes various nature based
methods. The mathematical technique has limited search capability whereas nature
based methods present no standard way to guarantee global optimum solution [5].
However nature based algorithms have the potential advantage of producing more
than one solution instead of a single solution. The nature-based algorithms are
popular mainly because of the population based nature of their solution. This
means that we obtain a population of solutions on applying the nature-based algo-
rithms and as a result the decision maker may choose solution from the population
of solutions.

A significant number of research studies are observed to propose new algo-
rithms, new strategies, and hybrid algorithms and modify existing algorithms.
Thus the study of multi-objective optimization cannot be confined to proposed
algorithms only. Thus in this chapter, a number of aspects of multi-objective op-
timization have been studied.

The remainder of this chapter is organized into the following sections. Section
2 presents various benchmark nature based phenomenon applied to propose multi-
objective algorithms in the existing literature; section 3 studies various benchmark
multi-objective optimization algorithms based on the nature based phenomenon as
discussed in section 2; section 4 discusses some additional algorithms which are
not present in section 3; section 5 discusses various hybrid algorithms as proposed
in the existing literature; section 6 discusses the modifications to the existing algo-
rithms as proposed in the existing literature; section 7 considers the issues related
to the complexity of the algorithms; section 8 summarizes test problems in order

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 479

to test the performance of the proposed algorithms; section 9 outlines the various
software packages used to implement the algorithms; section 10 concludes this
chapter.

2 Benchmark Nature Based Phenomenon

A brief description to each of the nature based phenomenon on which the multi-
objective optimization algorithms have been developed, is given below.

2.1 Genetic Reproduction

Genetic Reproduction is the process of producing offsprings. In sexual selection
under consideration, members of one sex compete with each other in order to mate
with the member of other sex. The winner of the competition gets the opportunity
to mate. The mating is the process of pairing with opposite sex. As a result, the
genetic data of both the male and female are combined and offsprings are pro-
duced from such combination. Thus the offsprings contain the characteristics of
both parents. Here, the crossover operation indicates the exchange of genetic data.
The genetic data refers to the genes in a chromosome. The mutation refers to the
permanent change to the sequence of genes. Mutation alters the amino acid se-
quence of the protein as encoded by the genes.

2.2 Swarm Behavior

Swarm basically indicates groups of insects which live in colonies, such as ants,
bees, wasps, termites and so on [6]. The behaviors of such insects have drawn
attention to researchers in proposing algorithms. The relevant interesting beha-
viors include ant foraging behavior, communication and networking among in-
sects and colonies, division of labor, task allocation, nest building, cooperative
transport etc. The basic emphasis is generally on the behaviors social insects.

2.3 Ant Colony

Ant colony is an underground place where ants live, eat and mate. Worker ants
build their colony and also carry food to their colony. Ants’ behavior for searching
and carrying foods has led to the development of ant colony optimization algo-
rithm. Ants use a signaling communication system based on their deposit of a
substance called pheromone, on their path. An ant foraging for food lay down
their pheromone to mark its route so that it can return to its nest after searching for
food, reinforcing the trail of pheromone. The other nearby ants may get attracted
by the pheromone and may follow the same route with greater probability. All the
ants deposit pheromone on their route which strengthens the attraction towards the
substance for other ants. The process works as a positive feedback system and
may lead the ants to follow the shortest route to the food source.

480 S. Bandyopadhyay and R. Bhattacharya

2.4 Immunity System

Immunity system can be defined as the protective mechanism against the external
injurious foreign bodies in a living being. Vertebrates have a very complex im-
mune system that protects us from infectious and toxic agents [7] which are called
antigens. As any infectious or toxic agent enters inside physical system of a verte-
brate, the immune system generates lymphocyte receptors through a complex
series of processes. Thus antibodies are formed to combat these antigens. Such
system may be represented by algorithms where antigens are represented by worse
results and antibodies or better results are required to get rid of the antigens.

In the next two sections, a brief glance of all the benchmark algorithms along
with some other proposed algorithms from the existing literature are provided.
Before going into the following sections, Figure 1 presents a list of all the algo-
rithms discussed in this chapter, in the form of a chart.

Fig. 1 Nature-Based Algorithms Discussed

3 Nature Based Benchmark Multi-Objective Optimization
Algorithms

A variety of nature based multi-objective optimization algorithms have been pro-
posed in the existing literature. This section provides a glimpse of those algo-
rithms with the particular emphasis on the Multi-Objective Evolutionary Algo-
rithms (MOEA) [8].

3.1 Genetic Algorithms

Genetic algorithms are a kind of meta-heuristics developed based on the natural
process of genetic reproduction. Genetic algorithms proposed by John Holland [9]
and later developed by Goldberg [10], have the largest share in the existing

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 481

literature in terms of the number of research publications. Genetic algorithms have
been used widely to solve multi-objective problems. Numerous algorithms in this
direction are observed. Such a large number of different algorithms are difficult to
present within a very short span of space. However some of them are discussed
below.

Nondominated Sorting Genetic Algorithm (NSGA)
Nondominated Sorting Genetic Algorithm (NSGA) was originally developed by
Srinivas and Deb [11] and later it was modified to NSGA-II [12]. NSGA-II is a
widely applied Multi-Objective Evolutionary Algorithm (MOEA) in the literature.
The basic features of NSGA-II are the classification of individuals (chromosomes)
in a population into ranks and assign crowding distance value to each individual.
The population is then sorted based on the nondomination level. A mating pool of
chromosomes is created from the selected individuals in the population and genet-
ic operators (crossover and mutation) are applied to the individuals in the mating
pool in order to generate the offspring population. The offspring population is then
combined with the original population to form an intermediate population. At last
the best individuals are selected until the original population size is filled up. Fig-
ure 2 shows the pseudo code of NSGA-II.

Fig. 2 Nondominated Sorting Genetic Algo-
rithm – II

Fig. 3 Strength Pareto Evolutionary
Algorithm 2

Strength Pareto Evolutionary Algorithm (SPEA)
Strength Pareto Evolutionary Algorithm (SPEA) was originally developed by
Eckart Zitzler and Lothar Thiele [13] and later modified to SPEA2 [14]. The fea-
tures of SPEA2 include: 1) the provision of an external archive of nondominated
individuals to which Nondominated individuals are copied at each generation and
a strength value is computed for each individual, 2) improved fitness assignment
that considers the number of individuals that a particular chromosome dominates

482 S. Bandyopadhyay and R. Bhattacharya

and the number of individuals that dominate the particular individual under con-
sideration, 3) an efficient search technique by nearest neighbor density estimation
technique. Figure 3 shows the pseudo code of SPEA2.

Pareto Archived Evolution Strategy (PAES)
Pareto Archived Evolution Strategy (PAES) was proposed by Joshua D. Knowles
and David W. Corne [15]. The evolutionary strategy as proposed by original
PAES and its several modifications includes (1+1) (single parent single offspring)
strategy, (1+λ) strategy, (µ+λ) strategy. PEAS maintains diversity in solutions
through a crowding procedure by dividing the objective space recursively. Each
solution has a coordinate location in the objective space and is placed in a grid
location. Each grid contains a number of solutions and a map of such grids is pro-
vided. Figure 4 shows the pseudo code of PEAS for (1+1) strategy.

Fig. 4 Pareto Archived Evolution Strategy Fig. 5 Niched Pareto Genetic Algorithm

Niched Pareto Genetic Algorithm (NPGA)
Niched Pareto Genetic Algorithm (NPGA) was originally proposed by Horn et al.
[16] and later enhanced to NPGA 2 by Erickson et al. [17]. The main feature of
NPGA was the introduction of Tournament Selection in which two chromosomes
are chosen randomly and the better chromosome based on nondomination is se-
lected. NPGA 2 added Pareto ranking along with the Tournament Selection.
Figure 5 shows the pseudo code of NPGA 2.

Pareto Envelope-Based Selection Algorithm (PESA)
Pareto Archived Selection Algorithm (PESA) was proposed by Corne et al. [18]
and later modified to PESA-II [19]. PESA maintained diversity through crowding
distance measurement by dividing the phenotype space into hyper grids and divid-
ing the solutions into the grids. PESA-II improved PESA by introducing hyperbox
concept where the algorithm puts the individuals in the hyperbox after selecting a
hyperbox for that individual. Figure 6 shows the pseudo code of PESA-II.

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 483

Fig. 6 Pareto Envelope-based Selection
Algorithm

Fig. 7 Multi-Objective Messy Genetic
Algorithm

MultiObjective Messy Genetic Algorithm (MOMGA)
Multiobjective Messy Genetic Algorithm (MOMGA) was proposed by David A.
Van Veldhuizen and Gary B. Lamont [20] and later extended by Deb [21].
MOMGA is performed in three phases – 1) initialization phase, 2) primordial
phase and 3) juxtapositional phase. In the initialization phase, the basic building
blocks are developed; in primordial phase, tournament selection is performed and
the population size is reduced if required; in juxtapositional phase, cut and splice
recombination operator is applied over the selected individuals. The pseudo code
of MOMGA is shown in Figure 7.

Micro Genetic Algorithm (µGA)
Micro GA (µGA), proposed by Coello and Pulido [22], is performed over small popu-
lation and the population is divided into two parts – replaceable and non-replaceable
parts. The non-replaceable part occupies a portion of population memory and never
changes over the iterations. The replaceable part of the population goes through
changes over a number of iterations. Figure 8 shows the pseudo code of µGA.

Fig. 8 Micro Genetic Algorithm

484 S. Bandyopadhyay and R. Bhattacharya

Some Other Algorithms
Vector Evaluated Genetic Algorithm (VEGA), proposed by Schaffer [23] is the
first Multi-Objective Genetic Algorithm and simple to understand. In VEGA,
population is divided into a number of subpopulations. Each subpopulation is
evaluated for a different objective. The disadvantage is that the solutions tend to
converge to the extreme value of objective.

Weight Based Genetic Algorithm (WBGA), proposed by Hajela and Lin [24],
considered weighted average of the objectives considered. The algorithm faces
difficulties in non-convex function space.

Rank-Density-based multiobjective Genetic Algorithm (RDGA), proposed by
Lu and Yen [25] reduces the problem under consideration into bi-objective prob-
lem with solution rank and density as objective. The disadvantage lies in the diffi-
culty in implementation of the algorithm.

Lexicographic Ordering Genetic Algorithm (LOGA), proposed by Fourman
[26], first takes the rankings of the objective under consideration. The algorithm,
then, solves the objectives sequentially, starting with the most preferred one and
proceeding according to decreasing order of ranks of the objectives.

3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm is a kind of meta-heuristics devel-
oped based on the swarm behavior. Particle Swarm Optimization, developed by
Eberhart and Kennedy [27] was initially applied to single objective optimization
and can also be applied to multi-objective optimization. Here the words ‘swarm’
and ‘particle’ indicates the ‘population of solutions’ and ‘a particular solution’.
The progress of the algorithm represents the evolution of the solution to the next
generation. Thus the positions of the particles (solutions) are updated and modifi-
cation is performed by updating the velocity of the particles. In general, a particu-

lar solution ix can be modified by the expression (1).

1(1) () (1)i i ix t x t v t−+ = + +

 (1)

Where t and (t+1) are the previous and current iterations, iv is the velocity of

particle (solution) i.
The general expression to update the velocity is given in expression (2) [28].

1 1 2 2(1) () (() ()) (() ())i ij ij ij gj ijv t wv t c r p t x t c r p t x t+ = + − + −

 (2)

Where the parameter w is called inertia weight, positive constants 1c and 2c are

called cognitive and social parameters respectively, 1r and 2r are two uniformly

distributed random numbers in the range [0,1], ijp is the best solution (particle)

that ijx has viewed, gjp is the best particle (known as leader).

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 485

Durillo et al. [29] have summarized four velocity updating schemes among
several others. The four expressions are as 1) proposed by Reyes-Sierra and Coel-
lo [30] in their proposed algorithm called OMOPSO (Optimized Multi-Objective
PSO) (expression 3); 2) proposed by Durillo et al. [31] in the proposed algorithm
called SMPSO (Spread constrained Multiobjective PSO) (expression 5); 3) pro-
posed by Ratnaweera et al. [32] in the proposed algorithm called MOPSO TVAC
(MultiObjective PSO Time-Varying Acceleration Coefficients) (expressions 7 &
8); 4) proposed by Ratnaweera et al. [32] in the proposed algorithm MOHPSO
(MultiObjective self-organizing Hierarchical PSO) (expressions 9 & 10).

,

, ,

,

, ()

() de , ()

(),

j i j j

i j j i j j

i j

delta v t delta

v t lta v t delta

v t otherwise

⎧ >
⎪= − ≤ −⎨
⎪
⎩

 (3)

Where,

_ lim _ lim)

2
j j

j

upper it lower it
delta

−
=

 (4)

2

2

2 4
w

ϕ ϕ ϕ
=

− − −

 (5)

Where,

1 2 1 2

1 2

, 4

4, 4

c c c c

c c
ϕ

+ + >⎧
= ⎨ + ≤⎩

 (6)

1 1 1 1()f i i

iter
c c c c

MAXITR
= − +

 (7)

2 2 2 2()f i i

iter
c c c c

MAXITR
= − +

 (8)

Where, 1 fc , 1ic , 2 fc , 2ic are constants, iter is the current iteration number,

MAXITR is the maximum number of iterations.

1 1 2 2() ((1) ()) (() ())i ij ij gj ijv t c r p t x t c r p t x t= − − + −

 (9)

If , ()i jv t =0, then , ()i jv t is reinitialized by expression (10).

486 S. Bandyopadhyay and R. Bhattacharya

,

1. , 2 0.5
()

3.(), 2 0.5
j

i j
j

rand delta rand
v t

rand delta rand

<⎧
= ⎨ − ≥⎩

 (10)

Where, rand1, rand2 and rand3 are uniformly distributed random numbers in the
range [0,1]. Figure 9 shows the pseudo code of a generalized PSO.

Fig. 9 Particle Swarm Optimization Fig. 10 Differential Evolution

3.3 Differential Evolution (DE)

Differential Evolution (DE), proposed by Storn and Price [33] indicates the differ-
ences of individuals for mutation. The algorithm uses floating-point encoding. The
first multi-objective application of DE was implemented by Chang et al. [34]. In
multi-objective version of DE, an external archive (known as ‘Pareto optimal set’)
of nondominated solutions is provided and crossover is performed over three ran-
domly chosen parents instead of two parents. Better offsprings replace the worse
individuals in the population [35].

Numerous multi-objective versions of DE have been in the existing literature.
Some of the significant research studies among them include Pareto DE (PDE)
[36], Self-adaptive PDE (SPDE) [37], Pareto DE Approach (PDEA) [38], Adap-
tive PDE (APDE) [39], Multi-Objective DE (MODE) [40], Vector Evaluated DE
(VEDE) [41], Multi-Objective DE based Decomposition (MODE/D) [42], DE for
Multi-Objective optimization with Random Sets (DEMORS) [43]. Some of these
approaches are hybrid approaches, such as, MODE. MODE is the hybridization of
NSGA-II and DE. Figure 10 shows the pseudo code for a multi-objective applica-
tion of differential evolution.

3.4 Artificial Immune System (AIS)

Artificial Immune System (AIS) is a meta-heuristics developed based on the Im-
mune System as introduced in section 2. Artificial Immune Systems was first
implemented as an algorithm by Bersini and Varela [44] and later applied to

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 487

multi-objective problem by Yoo and Hajela [45]. Among several approaches to
applying AIS, Yoo and Hajela [45] applied linear aggregating function to aggre-
gate the objectives considered to scalar value which was used as fitness function.
The algorithm chooses an antigen randomly from a population of antigens. There
is a population of antibodies from which a sample is taken randomly. Then each
antibody in the sample population is matched with the selected antigen and a
matching score is computed for the antigen based on the Hamming distance meas-
ure. This matching score is added to the fitness value of the antigen. The above
process is repeated for a pre-specified number of times. Figure 11 shows the pseu-
do code for Artificial Immune Algorithm (AIA).

Fig. 11 Artificial Immune Algorithm Fig. 12 Ant Colony Optimization Algorithm

3.5 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a kind of meta-heuristics developed based on
the behavior of ants in an ant colony. In Ant Colony Optimization, ants deposit
and follow the trail of a substance called pheromone as mentioned in section 2. At
the end of the process, it is seen that the ants are following the shortest route. Thus
it can be used as an optimization method to find the best solution to a problem.
Gambardella and Dorigo [46] developed an Ant-Q algorithm by combining Ant
system with the Q-Learning mechanism. Later, Mariano and Morales [47] pro-
posed an extended Ant-Q algorithm known as MOAQ (Multi-Objective Ant Q) to
solve multi-objective problem. The algorithm is similar to the Lexicographic Or-
dering algorithm where a family of agents is assigned to each objective. The
agents search for the solution of the objective and communicate the solution with
the other family. Agents try to modify their objective without affecting the solu-
tion found for other objectives by other families. After completing the iteration,
the solutions obtained are evaluated using dominance relationships. The Nondo-
minated solutions are kept in an external archive. These solutions are used for the

488 S. Bandyopadhyay and R. Bhattacharya

next iteration. Figure 12 shows the pseudo code for Ant Colony Optimization
algorithm.

3.6 Simulated Annealing (SA)

Simulated Annealing (SA) [48] is a meta-heuristic which simulates the process of
annealing where a solid is heated and then cooled continuously. Thus the tempera-
ture is raised up to a certain level (higher energy state) and then the temperature is
lowered up to a certain level (lower energy state). SA is actually an adaptation of
the Metropolis-Hastings algorithm (MHA) which is a Monte Carlo method used to
generate sample states of a thermodynamic system. MHA is used to find a
sequence of random samples from a probability distribution for which direct
sampling is difficult. The generated sequence may be used to approximate the
distribution.

The implemented single objective optimization algorithm also depends on the
temperature value. The solution is modified based on the current temperature. The
two other important parameters of the algorithm are the cooling schedule and the
number of iterations. SA was first used in multi-objective optimization in the work
of Serafini [49]. In this algorithm, a neighboring solution is compared with the
current solution under consideration and the better solution is accepted as the cur-
rent state. A set of nondominated solutions are stored in a memory and further
filtering procedure is applied to reduce the number of nondominated solutions.
Figure 13 shows the pseudo code for Simulated Annealing Algorithm.

Fig. 13 Simulated Annealing Algorithm Fig. 14 Tabu Search Algorithm

3.7 Tabu Search (TS)

Glover [50] proposed Tabu search (TS) algorithm. Tabu search approach is based
on the idea of accepting the nearest neighboring solution that has smallest cost,
thus making it a local search procedure. A total of three types of memories are

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 489

considered. The short term memory of already found solutions is set as ‘Tabu’ so
that those solutions are never revisited. The intermediate memory is used to store
the intermediate or current near-optimal solutions and the long term memory is
used to record the search space areas which have already been searched. Thus
diverse solutions can be obtained by the proper use of the long term memory.

A problem faced by TS is that the search may converge to a small area in the
search space. In order to resolve this problem, the tabu list is made to consist of
the attribute of a solution instead of the entire solution which results in to another
problem. When a single attribute is made a tabu, then more than one solution may
become tabu and some of these solutions which have to be avoided, might be bet-
ter solutions but might not be visited. In order to get rid of this problem, “aspira-
tion criteria” is used. An aspiration criterion overrides the tabu state of a solution
and includes the better solution which could otherwise be excluded. An aspiration
criterion, commonly used, can be – to allow solutions which are better than the
current best solutions.

The research study of Gandibleaux et al. [51] was probably the first to apply ta-
bu search to solve multi-objective problems. The Multi-Objective Tabu Search
[51] used a reference point with respect to which the improvement of the objec-
tives is measured. Thus the choice of such reference point is vital for the effective
implementation of the algorithm. Generally the reference point (also called, uto-
pian point) represents the best objective value for each objective. The value of
such point may be obtained by solving the each objective of the problem separate-
ly. Figure 14 shows the pseudo code of Tabu Search algorithm.

4 Other Miscellaneous Algorithms

4.1 High-Dimensional Objective Genetic Algorithm (HOGA)

HOGA, proposed by Hunag et al. [52], is developed on the basis of the idea that
the well-known Multi-Objective Evolutionary Algorithms (MOEAs) are not ap-
propriate for high dimensional problems. HOGA is based on Shannon entropy in
order to calculate the weight for each object. HOGA views GA as a Markov chain
where vector x(n) is modified to vector x(n+1) in the next generation by the fol-
lowing transformation.

mutation selection crossover
() () () () (1)x n y n u n v n x n⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ × ⎯⎯⎯⎯⎯→ +

HOGA uses grey coding to encode its parameters and concatenates the parameters
to chromosome. Mutation applied is the bit mutation and single point crossover is
used. Convergence analysis has also been performed in martingale framework
which sets guidelines for HOGA. Fitness assignment is done using Shannon en-
tropy. The fitness of individual is given by expression ().

490 S. Bandyopadhyay and R. Bhattacharya

1

.
n

i j ij
j

f W f
=

=∑

 (11)

Where jW is the weight of object j, and is given by,

1

j
j n

j
j

d
W

d
=

=
∑

 (12)

Where

1j jd E= −

 (13)

Where jE is the entropy of the jth objective function and is given by,

1

ln()
m

j ij ij
i

E k px px
=

= − ∑ , 1 / lnk m= (14)

Where ijpx is the evaluation for ijf and is given by,

11 12 1

21 22 2

1 2

...

...

...

...

...

n

n

ij

m m mn

px px px

px px px

px

px px px

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (15)

Where we consider n real-valued objective function to m individuals, given by,

11 12 1

21 22 2

1 2

...

...

...

...

...

n

n

m n

m m mn

f f f

f f f

D

f f f

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (16)

4.2 Pareto Converging Genetic Algorithm (PCGA)

PCGA, proposed by Kumar and Rockett [53] is supposed to have the following
properties: 1) the algorithm should maintain Nondominated solutions across evo-
lutions; 2) the algorithm should preserve diversity and should not get trapped into

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 491

local optima; 3) the algorithm should have a mechanism to check for convergence
to the Pareto optimal front. The idea of PCGA is delineated in the following
points.

1. The population is divided into some islands and individuals are ranked in each
island. The rank of each individual is determined by the number of individuals
by which it is dominated. Ranks of all nondominated individuals are same. Ties
are broken randomly for individuals with equal objective vector.

2. A pair of individuals is chosen randomly and crossover and/or mutation are
performed on the selected pair of individuals. Thus two offsprings are produced
from two parents.

3. These offsprings are inserted into the population based on the ranks in the pop-
ulation. If the size of population would be N then the size of the population af-
ter inserting the two offsprings would be (N+2).

4. Two lowest ranked individuals are discarded from the population in order to
keep the original population size of N.

The above process is continued for each island till the stopping criteria is satisfied.
Two types of histograms are drawn to check for the stopping criteria – 1) intra-
island histogram (histogram of individuals in a single island) and inter-island his-
tograms (histogram of individuals from merged islands. A match between two
intra-island histograms from two successive epochs or a match of one histogram
with another from a merged state for the merged islands, may stop the algorithm.

4.3 Real-Coded Quantum Clone MOEA (RQC-MOEA)

RQC-MOEA, proposed by Xiawen and Yu [54], is developed in order to get rid of
the disadvantage of the binary coded quantum MOEA. The disadvantages of bi-
nary coded quantum MOEA are the lower efficiency and the chance of coding
inaccuracy. The overall idea of RQC-MOEA is delineated in the following points.

1. The population is initialized by triploid chromosomes. RQC-MOEA uses the
quantum bit concept of digital computers and proposes a triploid chromosome
structure, given by,

1 2

1 2

1 2

...

...

...

n

n

n

x x x

α α α
β β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Where, 1x , 2x , …, nx are the decision vectors; iα and iβ are the probability

amplitude for the corresponding quantum bits. iα and iβ are initialized by

“chaos-based method” in order to increase the diversity in the population. The algo-

rithm generates a random number 0y by uniform distribution in the range [0, 1].

Then the following expressions are used to calculate iα and iβ .

492 S. Bandyopadhyay and R. Bhattacharya

1 14 (1)i i iy y y− −= −

 (17)

(2i Cosα = π)iy

 (18)

(2i Sinβ = π)iy

 (19)

iα , iβ represent the allele of ix and
2 2

1α β+ = .

An empty Nondominated set ND is also initialized. Let the initial population

and the Nondominated set are 0P and 0ND respectively.

2. The algorithm uses Gaussian mutation. The population of size N is divided into
m1 and m2 individuals and m1 and m2 individuals mutate according to equation
(20) and (21).

1 2
max min(). (0, ())t t t

i i i i ix x x x N α+ = + −

 (20)

1 2
max min(). (0, ())t t t

i i i i ix x x x N β+ = + −

 (21)

Where t is the generation number. When 1
min

t
i ix x+ < or 1

max
t
i ix x+ > , then 1t

ix +

is generated in the following way.

1
min

1
max

1

1 0.5& 2 0.5

1 0.5 & 2 0.5

1 0.5

t
i i
t
i i

t t
i i

x x if r r

x x if r r

x x if r

+

+

+

= > ≤
= > >
= ≤

 (22)

Where, r1 and r2 are random numbers.
An improved version of crowding distance measure of NSGA-II is also applied

in RQC-MOEA.

3. For crossover, select two chromosomes and exchange their probabilities ran-

domly. Both 1t
iα + and 1t

iβ + are updated by the following expressions.

1

1

t t
i i
t t
i i

Cos Sin

Sin Cos

θ θα α
θ θβ β

+

+

⎡ ⎤ − ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (23)

4. The population at generation t (tP) and the Nondominated set at generation

(t+1) (1tND +) are merged together. Truncation may be applied if required in

order to keep the original size.

5. A cloning method is used to clone the chromosomes in 1tND + in order to get

1tP+ .

6. The above process is continued till the last generation number.

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 493

The authors of this algorithm show that RQC-MOEA maintains a “good balance”
and performs better than NSGA-II and SPEA2.

4.4 Multi-Objective Gene Expression Programming (MOGEP)

The contribution of the MOGEP, proposed by Nie et al. [55], lies in the fitness
assignment scheme, diversity maintenance strategy and elitist strategy. An exter-
nal archive of nondominated individuals is maintained. At the end of each itera-
tion, these nondominated solutions are saved into the population for the next
generation. This strategy helps to maintain diversity and elitism in the population.

The fitness assignment scheme combines the Pareto dominance relation and
density information. Each individual in the population is assigned a rank through
nondomination and density information. The fitness is determined by incorporat-
ing density information into the rank.

The rank, density and fitness are calculated by expressions (24), (25) and (27)
respectively.

() 1()jR i j i PF= − ∈

 (24)

max() exp(2* /)k
iD i d d= −

 (25)

Where,

max max{ , }k
i jd d i PF= ∈

 (26)

() () ()f i G R i D i= − − (27)

Where,

()R i : Rank if individual i

jPF : j-th Pareto front

()D i : Density of individual i
k
id : k-th element of individual i

The fitness of individuals in 1PF lies in the range [G-1,G), fitness of individuals

in 2PF lies in the range [G-2,G-1), … , fitness of individuals in GPF lies in the

range [0,1).
The chromosome is encoded in an interested way, based on the application of

the algorithm on the scheduling problem. The two sets – Function Set (FS) and
Terminal Set (TS) ae used to construct a chromosome, where FS and TS are given
by,

FS={+, -, *, /} and TS={p, r, d, sl, st, wt}

494 S. Bandyopadhyay and R. Bhattacharya

Where p: processing time of job; r: release date of job; d: due date of job; sl: posi-
tive slack and is given by sl=max{d-pd-max{t,r},0}, t: idle time of machine; st:
stay time of job and is given by st=max{t-r,0}; wt: wait time of job and is given by
wt=max{r-t,0}.

The encoding is done in the following way. The head of each chromosome con-
tain element from FS and TS, the tail of each chromosome contains element from
TS only, the length of head and tail must satisfy the expression tl=hl*(arg-1)+1,
where hl and tl are the lengths of head and tail respectively. “arg” is the maximum
number of arguments for all operations in FS.

4.5 GAR-SD

GAR-SD, proposed by Pachón et al. [56], is basically a rule based algorithm and
deals with Subgroup Discovery (SD). The most common aspects of SD are cover-
age, significance, unusualness, support, confidence, among which, significance
(SIG), Support (SUP) and Confidence (CONF) are defined below.

SIG is the “average of likelihood ration of each rule”; SUP is the “percentage
of target examples positives covered by the rules”; CONF is the “average of the
relative frequency of examples satisfying the complete rule among those satisfying
only the antecedent”.

The algorithm can work for both numeric and discrete attributes. The role of
MOEA in this algorithm is to find the most effective rule for each subgroup. The
algorithm defines “subgroup discovery” as the “conjunctions of features that are
characteristics for a selected class of individuals. An individual in the population
represents a rule. The algorithm is especially applicable to database applications.
The overall idea of the algorithm is listed in the following points.

1. Let S_SUP represents the percentage of examples covered by rules in a sub-

group and G is the maximum number of generations. The algorithm first gene-
rates and initializes the population (()P nGen) at generation nGen .

2. Each individual in the population is evaluated.
3. The best individuals are selected to develop the next generation (1)P nGen +

by crossbreeding and mutation.
4. The best individuals are included in the set of rules R. the lower and upper

bounds of the rules in R are adjusted.
5. The above process continues till the maximum generation number.

4.6 S-Metric Selection Evolutionary Multi-Objective Algorithm
(SMS-MOEA)

SMS-MOEA, proposed by Beume et al. [57], uses S-metric to approximate Pareto
front and focuses on convergence rate of evolutionary algorithm. S-metric is not a
metric in mathematical sense, but rather a quality measure based on the closeness
of solutions to Pareto front.

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 495

The target of SMS-MOEA is to maximize the S-metric value of the population.
SMS-MOEA performs (µ+1) selection. Nondomination sorting is performed over
the population and (µ+1) individuals are partitioned based on nondomination. The
hypervolume of the worst set is determined and individuals with the least contri-
bution to the set are rejected, therefore, minimizing the “loss of the population
dominated hypervolume”. SMS-MOEA applies Simulated Binary Crossover
(SBX) and Guassian or uniform mutation on the hypersphere surface.

4.7 Multi-Objective Optimization Using Cross Entropy Method
(MOO CEM)

In MOO CEM, proposed by Bekker and Aldrich [58], a truncated normal distribu-
tion is used for each decision variable and is given by,

0

()
()

()

0

i

i

i

n
Ti i iu

n

l

i

for x l

h x
h x for l x u

h x dx

for x u

⎧
⎪

<⎪
⎪⎪= ≤ ≤⎨
⎪
⎪
⎪
⎪ >⎩

∫

 (28)

Where iu and il are the upper and lower limits of decision variable ix ; and

()nh x is the density and is the normal probability density function defined over

(–infinity) and (+infinity); n is the number of decision variables. The main fea-
tures of the algorithm are stated below.

Each individual in the population is assigned a Pareto rank and a solution hav-
ing rank 0 is Nondominated. The solutions whose ranks are below a threshold
value are the elitist ones and represent the weakly nondominated set.

A histogram is constructed by the values of the decision variables in the elite
vector. The histograms are maintained throughout the entire search process for
nondominated solutions. The new population for the next generation is formed
‘proportionately’ based on the class frequencies for each decision variable. Ad-
justments to histogram frequencies are performed in order to prevent premature
convergence.

4.8 Multi-Objective Symbiotic Evolutionary Algorithm (MOSEA)

MOSEA, proposed by Shin et al. [59], imitates the symbiotic and endosymbiotic
evolution. Symbiotic evolution is supposed to encourage parallel search capability
and the endosymbiotic evolution is supposed to encourage solution convergence to
Pareto optimal front. Thus MOSEA encourages both divergence and convergence

496 S. Bandyopadhyay and R. Bhattacharya

to the Pareto optimal front. Symbiotic evolution can be defined as reciprocative
positive changes among two or more interacting species where the chance of sur-
vival of one species depends on the survival success of the other ‘interacting’
species. Endosymbiotic evolution represent the evolution from prokaryotes to
eukaryotes. Here, “relatively simple structured prokaryotes enter into a larger host
prokaryote. Later they live together in symbiosis and evolve into eukaryote”.

The authors applied MOSEA on FMS (Flexible Manufacturing System) prob-
lems and also used the strategies for elitist and fitness sharing. The entire popula-
tion is divided into two levels. Level 1 contains symbionts representing several
process plans of the parts and level 2 representing endosymbionts contains the
complete process plan. A good combination of individuals in level 1 are trans-
ferred to level 2. The good combination is obtained by interactions among indi-
viduals following symbiosis and andosymbiosis.

MOSEA is a multi-level algorithm which is mainly divided into three levels -
initialization level, evaluation level 1 and evaluation level 2. The levels are de-
scribed below in brief.

1. In the initialization level, an empty set ND of nondominated solutions is
initialized and individuals’ fitness values are determined based on the ob-
jective vector.

2. In the first level of evaluation, crossover and mutation are applied over the
population P to produce population P′ . Then all nondominated individu-
als are copied to the set ND .

3. In the second level of evaluation, the populations of P , P′ and ND com-
bined to form an intermediate population. The best individuals are chosen
from this intermediate population to form the final population for the next
generation.

4.9 Multi-Objective Modified Shuffled Frog Leaping Algorithm
(MMSFLA)

MMSFLA, proposed by Niknam et al. [60], is a memetic meta-heuristic algorithm
and is based on the global exchange of information among the individuals in a
population of ‘frogs’. In MMSFLA, a population of frogs is the host for memes,
each of which consists of a number of memetypes (similar to ‘genes’ in a chromo-
some). The memetypes are improved through interaction among the frogs. The
improvement represents the change of position of frog and is done by modifying
the leap size. In this way, the algorithm improves the ideas held by the frogs in the
virtual population of frogs without changing the physical characteristics of the
individuals in the population. The overall algorithm is stated below.

1. The algorithm first generates N frogs as the initial population and initializ-

es an empty Pareto archive set A.
2. Nondominated sorting is performed over the population followed by the

updation of set A.

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 497

3. The frogs are divided into parallel memplexes and memetic evolution is
applied within each memeplex.

4. Next population of frogs is shuffled and mutation is applied on the shuffled
population.

5. The gene transfer operation followed by swapping mutation is applied
next.

6. The next generation of frogs is formed by selecting the best frogs, after up-
dating the value of dynamical ideal point, which is basically a “virtual
point” with coordinates obtained by separately optimizing each objective
function.

4.10 Objective Space Dividing MOEA (OSD MOEA)

OSD MOEA, proposed by Li et al. [61], divides the objective space and chooses
the individuals nearer to the minimal value of objectives for the next generation.
The main contribution lies in the mechanism for dividing the objective space, a
crowding mechanism and the choice of operator. OSD MOEA uses Adaptive Grid
Algorithm (AGA) to divide the objective space. First, the objective space is di-
vided using AGA to compute the total indexes. Then the nondomination sorting is
performed based on these indexes. The population is sorted in the ascending order
of indices. This reduces the computation of vast information of grid density. The
operators are chosen based on the index sorting and the individual crowding. The
division of the objective space along with the idea of the algorithm is shown
below.

1. First, the maximum and minimum values of each objective are found out.

These values are used as the corner points of a grid to be drawn. These
corner points are joined by lines in order to form the squares in the grid.
The finer the grid is, the more is the effective of the grid in processing so-
lutions. Thus the entire objective space is divided into a number of equally
sized cells. If the number of objectives is two, then the space will be di-
vided in the form of a matrix similar to that shown in Figure 15.

Fig. 15 An Example of a Grid

498 S. Bandyopadhyay and R. Bhattacharya

2. The solutions are assigned to these cells based on their values. If some so-
lutions are beyond the boundary of this space then those are discarded.
Thus each solution gets a positional coordinate.

3. The coordinates (or indexes) of each solution are added and the results are
sorted in the ascending order of their values. This order is the sorted order
of the solutions. The individuals with lower indexes are given higher prior-
ity in order to ensure that the best nondominated individuals are chosen.

4. An algorithm called “Partitioned Quasi-Random Selection” is used for se-
lecting the best individuals. First, the algorithm finds the individuals with
same total value of indexes. Secondly, an individual with lowest value of
index of single objective is chosen. Finally, a comparison is made between
the “value of index of another different objective while choosing another
kind of individual with different total value of indexes”, until enough indi-
viduals are chosen. Thus this algorithm chooses only part of individuals for
selection. The selection also takes into account the crowding distance me-
chanism.

5. The genetic operators (crossover and mutation) are applied on the selected
individuals and intermediate population is formed by combining the origi-
nal population with the offspring population.

6. The objective space division algorithm is again applied and the individuals
in the intermediate population are sorted in the ways described in steps 1-3.
The best individuals selected from this intermediate population are allowed
to enter the next generation of solutions.

4.11 Multi-Objective Membrane Algorithm (MOMA)

MOMA, proposed by [62], combines Quantum-Inspired Evolutionary Algorithm
(QIES) with P system. MOMA uses 1) Q-bits (quantum bits), 2) classical bits, 3)
Q-gates (Quantum Inspired gates), 4) P system that consist of a membrane, 5) a
replacement strategy. An object for MOMA consists of 1) Q-bits, 2) classical bits,
3) rule comprising Q-gates, 4) P system. The rule is composed of evolution rule,
observation rule and communication rule. The authors have applied MOMA to
solve knapsack problem. The idea of MOMA is depicted in the following points.

1. The objects and the membranes are initialized and a population of individ-

uals is generated. N Q-bit individuals are scattered over the elementary
membranes so that each membrane contains at least one Q-bit individual.

2. Then QIEA is performed over the membrane. Binary solutions are proba-
bilistically produced from Q-bit individuals and fitness value based on the
evaluation function is assigned to each of these binary solutions.

3. After this, Nondominated sorting is performed in order to select Pareto bi-
nary solutions and these solutions are then stored. Next Q-gate evolutio-
nary rules are applied to transform Q-bits of the individuals at the current
generation to the Q-bits at the next generation.

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 499

4. Communication rules are applied to send the local Pareto binary solutions
from the elementary membranes to the skin membrane. After this, a fast
nondominated sorting is applied to select global Pareto binary solutions
from the elementary membranes.

5. An effective replacement strategy is applied to select better global Pareto
binary solutions for the next generation. The above sequence of operations
is repeated until a stopping criterion is satisfied.

4.12 Regularity Model Based Multi-Objective Estimation
Distribution Algorithm (RMMEDA)

RMMEDA is proposed by Mo et al. [63]. Estimation Distribution Algorithm
(EDA) replaces the traditional genetic operators (crossover and mutation) by
learning and sampling the probability distribution. EDA basically uses statistical
information from a search process and builds a probability model to characterize
better solutions and then results in a set of trial solutions based on the model built.

In EDA, each member of a population is represented by probability distribu-
tions. For example, if each member of a population is represented by a six bit
string, then the EDA for the population may be represented by a vector of six
probabilities, (p1, p2, p3, p4, p5, p6), where each p is the probability of that posi-
tion. In case of EDA, new solutions of a population can be obtained by sampling
the distribution of the current solution. Some of the popular EDAs include – Popu-
lation Based Incremental Learning (PBIL), Bayesian Optimization Algorithm
(BOA), Estimation of Bayesian Networks Algorithm (EBNA), Hill Climbing with
Learning (HCwL), Estimation of Gaussian Networks Algorithm (EGNA), Proba-
bilistic Incremental Program Evolution (PIBE) and so on.

An improved version of RMMEDA includes nondominated sorting in order to
filter the solutions further. The population is sorted before building the probability
model and the best half of the population of solutions is selected over which the
probability model is further applied. The basic idea of RMMEDA is described in
the following steps.

1. An initial population is generated using EDA and fitness is assigned to
each individual in the population. A probability model is built to model the
distribution of solutions.

2. New solutions are generated using the built probability model and the new
solutions are combined with the old solutions to build an intermediate pop-
ulation of solutions.

3. Best individuals are chosen from the intermediate population to fill the
population size of N. The above process is repeated till the maximum
number of generations.

500 S. Bandyopadhyay and R. Bhattacharya

4.13 Multi-Objective Greedy Randomized Adaptive Search
Procedure MetaHeuristic Algorithm (mGRASP/MH)

mGRASP/MH, proposed by Li and Landa-Silva [64], is a multi-start algorithm
since the algorithm repeatedly improves the starting solution. Both the Greedy
randomized procedure and local search procedure are applied in each iteration.
The best of the local solutions is retained in the iteration.

The starting solution is built by greedy randomized construction procedure. An
empty set E of all component solution is initialized. For each element e in E a greedy
function g(e) is calculated. Then a Restricted Candidate List (RCL) is prepared by
components with low g values. A common way to select the elements is to select g

value that lies between min min max min[, ()]g g g gα+ × − for [0,1]α ∈ , where

α is a balancing factor between greediness and randomness. Thus when 0α = , the

minimum g value is selected. For 1α = , each component has equal chance to be
selected.

At each iteration, greedy solutions are generated based on λ(i) and π(i) where λ(i)
and π(i) are the weight vector and the objective vector for the i-th individual re-
spectively. After this, local search procedure is performed in order to find the best
local solution. This solution then replaces the worst individual in the population.
At last, λ(i) is modified adaptively. The above sequence of operations is repeated
until the stopping criterion is satisfied.

4.14 Multi-Objective Honey Bee Mating Optimization (MHBMO)

MHBMO, proposed by [65] is based on the social activities of bees in their colo-
ny. There are three types of bees in a colony – queen bee, drone bees and worker
bees. MHBMO maintains an external archive of nondominated solutions
representing selected queen bees. Each time when a better solution is obtained, the
better solution replaces a worse solution in the population.

MHBMO uses several queens (Nondominated solutions). There is also a popu-
lation of drones. A queen and a drone are selected randomly and the mating hap-
pens based on the probability expression provided in expression (29).

Pr() exp(/ ())queen droneD F F S t= − −

 (29)

Where,

2 2 2
1 1 2 2() () ... ()queen drone queen drone queen drone

queen drone k kF F f f f f f f− = − + − + + −

(30)

The offspring is compared with the archive of solutions. If the offspring is better
than any solution, then it replaces the worse solution in the population. The overall
procedure of MHBMO is shown below.

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 501

1. First an initial population of drones is initialized from where a set of
drones is selected randomly. A repository of queens is also maintained.
The objective functions of the selected drones are calculated. If a selected
drone is nondominated then that drone is added to the repository of
queens.

2. A drone from the set of selected drone and a queen from the repository of
queens are selected and mating is performed between the selected drone
and the selected queen based on the probability given in expression (29).

3. Next objective functions are evaluated for each brood. If a brood is non-
dominated then that brood is added to the repository of queens. The
above process continues until a particular pre-specified convergence con-
dition is satisfied.

4.15 Bacteria Foraging Algorithm (BFA)

BFA, proposed by Tabatabaei et al. [66], is based on the notion that natural selec-
tion favors living beings with better foraging capability or strategy and eliminates
living beings with worse foraging strategy. BFA has been developed based on the
foraging strategy of E. Coli bacteria living in the human intestines. Four
processes, viz., chemotaxis, swarming, reproduction and elimination & dispersal,
govern the foraging activities of E. Coli. Chemotaxis is the process of deciding
over the proper swimming direction of movement for the bacteria. Swarming is
the process of grouping with others in a swarm or group, around the food source.
Next, half the population in the swarm that are worse, die and each of the individ-
ual bacteria in the other half split into two bacteria so that the size of the popula-
tion remains same. This process is called reproduction. At last, elimination and
dispersal of bacteria may happen due to environmental adversity.

The BFA algorithm has also been developed following the processes depicted
above. After initialization and creating the population of bacteria, elimination and
dispersal of the worse solutions are performed. Then, reproduction of the solutions
starts. After this, the position is modified in the chemotaxis phase. Then again the
worse solutions (unhealthy bacteria) are discarded. In this way, the process con-
tinues until a stopping criterion is satisfied.

4.16 Cultural Algorithms (CA)

Although cultural algorithms may not be included as a true nature based algo-
rithm, but still, this algorithm is based on human beliefs and behavior traits.
Among a few research studies on cultural algorithm application on multi-objective
problems, the research study of Raynolds [67] is discussed below.

A population of individuals is generated first, each individual being represented
by certain behavior traits. An evaluation function evaluates the performance of
each individual in solving the given problem. Each individual has a set of beliefs
which are modified by “group mappa” representing general experience gathered.
Experience of each individual is added to group mappa which in turn shapes the
belief. The individual mappa is the combination of group mappa and individual

502 S. Bandyopadhyay and R. Bhattacharya

belief. If the resultant individual mappa for an individual is found to be lower than
a threshold value, then that individual is discarded from the population (belief
space). Then a selection process is performed to select individuals from the parent
population. Domain-specific genetic operator is then applied on the selected indi-
viduals. The communication channel used and the protocols influence the interac-
tion between the population and the belief space.

The multi-objective version of cultural algorithm proposed by Coello and Be-
cerra [68] used evolutionary programming for searching and Pareto ranking to
rank individuals in the population. The belief space consists of a phenotypic nor-
mative part and a grid of nondominated solutions. The phenotypic normative part
contains the lower and upper bounds of the intervals of each objective. The grid is
built within these bounds.

4.17 Firefly Algorithm (FA)

Firefly Algorithm (FA) [69] is a nature inspired algorithm based on the flashing
behavior of fireflies which are mainly found in tropical and temperate regions. FA
is particularly suitable for multimodal optimization according to Yang [69], Par-
ticle Swarm Optimization (PSO) is a special case of FA. The fireflies flash light
through a process known as “bioluminescence”, because of three reasons – 1) to
communicate with the mating partners, 2) to attract preys and 3) as protective
warning mechanism. The opposite sexes come together based on the flashing
rhythms, flashing rate and the time duration of flash. Each species has unique
flashing pattern and the female fireflies may imitate the flashing pattern of other
firefly species in order to attract and eat the males of other species. The algorithm
is based on these behaviors of fireflies.

We know that light intensity I is inversely proportional to the distance r by the

relation 21/I r∞ and the light becomes weaker as the air absorbs light. These
two factors are important influence on FA. In the algorithm, first a generation of
fireflies is initialized, each objective function is associated with a light intensi-

ty iI , an absorption coefficient γ is defined. The algorithm compares the intensi-

ties of each pair of fireflies in the population and the lower intensity firefly is
moved towards a higher intensity firefly. The attractiveness is varied with distance
and new solutions are generated by updating the fireflies following the expression
(31).

1 2exp[]t t
i i ij t tx x rβ γ α ε+ = + − +

 (31)

Where, t is the generation number, β is the attractiveness that depends on r and is

proportional to light intensity, ijr is the distance between the ith and jth firefly, tα

is a parameter that controls the step size, tε is a vector drawn from a pre-specified

distribution.
FA has found its application in wireless sensor network, travelling salesman prob-

lem, feature selection, image processing, clustering and continuous optimization.

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 503

4.18 Cuckoo Search (CS)

CS [70] is based on the brooding behavior of some species of cuckoo and is en-
hanced by Levy flight behavior of some birds and flies, with jump steps based on
a distribution. The basic idea is: cuckoos generally lay their eggs in the nest of
other species of birds. There are three types of brooding parasitism – 1) intraspe-
cific brood parasitism, 2) cooperative brooding and 3) nest takeover. The cuckoo
may choose a nest of another selected species for which the chance of abandoning
or destroying eggs is the least. Then they lay eggs in the selected nest. The cuckoo
may also destroy the eggs of the host bird in order to increase the chance of sur-
vival of its eggs.

The algorithm based on CS generates a population of nests. Then the algorithm
gets a cuckoo depending on its fitness. Then a nest is chosen randomly. The fit-
nesses of the nests are compared and better nest replaces the worse nest. Then the
solutions are ranked and the best ones are kept in the new population. An impor-
tant aspect of this algorithm is the application of levy flights and random walk to
generate new solution. The expression to update a solution is given by expression
(32).

1t t tx x sE+ = +

 (32)

Where, t is the generation number, s is the step size which indicates how far a

random walker can go for a fixed number of iterations, tE is drawn from a distri-

bution which is normal distribution generally.
The multi-objective version of this algorithm assigns random weights to com-

bine the objectives into a single objective. CS algorithm has been applied in nurse
scheduling problem, welded beam design problem, spring design problem, wire-
less sensor network, knapsack problem, software testing.

4.19 Gravitational Search Algorithm (GSA)

GSA [71] is based on the law of gravity and the mass interactions. In this algo-
rithm, a collection of mass (search agents) interact among themselves based on
Newton’s law of gravity and the laws of motion. A population of search agents is
generated and the fitness of each agent is evaluated. Each of the agents has four
specifications – 1) position, 2) inertial mass, 3) active gravitational mass and 4)
passive gravitational mass. The inertial mass, active & passive gravitational mass
and the best and the worst of the agents are found out. The positions of the agents
are updated based on the total force in different directions, acceleration and ve-
locity of the agents. The best agents are then chosen for the new population of
solutions. The multi-objective version of GSA is called NSGSA (Nondominated
Sorting GSA) proposed by Nobahari et al. [72]. The NSGSA uses non-dominated
sorting in order to update the acceleration. The elitist solutions are preserved in an
external archive. The positions are also mutated using the “sign and reordering”
mutation (turbulence).

504 S. Bandyopadhyay and R. Bhattacharya

4.20 Charged System Search (CSS)

CSS [73] is based on the Coulomb’s law of electrostatics and Newton’s laws of
mechanics. CSS is a multi-agent approach where each represents a charged par-
ticle (CP). The CPs can affect each other depending on the distance among them
and their fitness values. The population consists of charged particles. The proba-
bilities of moving and the attracting force vector are calculated for each CP and
then the new positions and velocities of the CPs are determined. The better
charged particles are accepted as the new solutions. CSS is particularly suitable to
non-smooth or non-convex domains and is considered both as a good global and
local optimizer.

4.21 Miscellaneous Algorithms

Intelligent Water Drops (IWD) algorithm [74] is based on how the natural rivers
find their optimal paths to their destinations. The selection of optimal path here is
based on the actions and reactions among the water drops and the interactions of
the water drops with the riverbeds. The water drops cooperate with each other in
order to find the optimal path and the solution is constructed incrementally.

River Formation Dynamics (RFD) [75] is based on the idea of how water forms
river by eroding the ground and depositing sediments. The altitudes of places are
dynamically changed because of the actions by water and as a result decreasing
gradients are formed. In this way, new gradients are formed by drops. Here good
solutions are characterized by decreasing altitudes.

Self-Propelled Particles (SPP) algorithm [76], also known as “Couzin-Vicsek
Algorithm” is based on the idea of “self-ordered motion in systems of particles
with biologically motivated interaction”. Particles move with constant absolute
velocity and an average direction of the motion of the particles in their neighbor-
hood is assumed.

Some other significant research studies include the research studies of Luna et
al. [77], Raúl et al. [78], Farooq and Lam [79], Xueshun et al. [80], Tapia et al.
[81], Basgalupp et al. [82], Li et al. [83].

5 Hybrid Algorithms

A number of hybrid algorithms are observed in the existing literature. The hybri-
dization has been performed between different types of algorithms and sometimes
a part of the proposed algorithm has been modified by other algorithm in order to
enhance the performance. Since a detailed discussion of such algorithm may lead
to the repetition of the same concepts discussed before thus a table of such re-
search studies along with the algorithms used in the hybridization is provided in
Table 1.

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 505

Table 1 Hybrid Algorithms

Reference Algorithms Hybridized
[84] Differential Evolution; BioGeography Based Optimization
[85] Multi-Objective Evolutionary Algorithm based on Decomposition

(MOEA/D); Problem specific generalized subproblem-dependent
heuristics

[86] Ant Colony Optimization; Simulated Annealing
[87] Nondominated Sorting Differential Evolution; Back Propagation

Algorithm
[88] Differential Evolution; Cultural Algorithm
[89] Evolutionary Computing; Neural Network
[90] Nondominated Sorting Genetic Algorithm-II; Particle Swarm

Optimization
[91] Differential Evolution; Estimation of Distribution Algorithm
[92] Nondominated Sorting Genetic Algorithm-II; Neural Network
[93] Immune Algorithm; Differential Evolution
[94] Immune Algorithm; Game Theory
[95] Particle Swarm Optimization; Genetic Algorithm
[96] Differential Evolution; Rough Set Theory
[97] Nondominated Sorting Genetic Algorithm-II; Sequential Quadratic

Programming

6 Modification/Improvement of Existing Algorithms

A number of research studies on the improvement of the existing algorithms, are
observed in the existing literature. Some of the significant research studies on the
improved algorithms are presented in this section.

Murugan et al. [98] used controlled elitism to improve NSGA-II. Elitism in
NSGA-II is maintained through tournament selection and crowding distance main-
ly. A geometric distribution is also used in this paper to distribute the individuals
among the fronts. Wang et al. [99] used partial order relation and Cauchy Distri-
bution was used for crossover operator. Individuals were sorted by Cauchy Distri-
bution in order to generate nondominated individuals.

Sato et al. [100] embedded δ-similar elimination method into NSGA-II to im-
prove its distribution and used Geometric distribution for controlled elitism which
is a way to reduce excessive selection pressure. The main idea is: if two individu-
als are within δ distance, the similar elimination procedure is used to eliminate any
one of those two individuals. Long et al. [101] applied a better preservation strate-
gy to NSGA-II to increase diversity in the solution. Yan et al. [102] proposed an
improved NSGA-II in which genetic operators are applied to the population at first
and invalid individuals from the resultant population are modified to valid
individuals. Mansour et al. [103] used node-depth encoding scheme to modify
NSGA-II.

506 S. Bandyopadhyay and R. Bhattacharya

Lakashminarasimman et al. [104] proposed dynamic crowding distance and
controlled elitism to improve NSGA-II. Controlled elitism is supposed to maintain
“lateral diversity of nondominated front” whereas dynamic crowding distance
“improves distribution of nondominated solutions”. The main disadvantage of
crowding distance mechanism as observed by the authors is the lack of uniform
diversity in the obtained nondominated solutions. The dynamic crowding distance
was measured by expression (33).

log(1/)
i

i

CD
DCD

v
=

 (33)

Where,

2
1 1

1

1
()

r
k k

i i i i
k

v f f CD
r + −

=
= − −∑

 (34)

Where,

1
k

if + : kth objective of (i+1)th individual

1
k

if − : kth objective of (i-1)th individual

 r: number of objectives

iCD : Crowding distance of the ith individual

Coelho et al. [105] modified NSGA-II by applying chaotic sequence based on
“Zaslavskii map” in the crossover operator which results in the greater conver-
gence and effective distribution. Aguirre and Tanaka [106] used ε -sampling to
sample the population into smaller subgroups and ε -ranking to rank the groups.
Yijie and Gongzhang [107] proposed three modes of crossover operator, viz., max
distance, max-min distance and neighboring max and used these operators in the
existing algorithm. Jie et al. [108] proposed a ‘delete’ operator in order to increase
the search capability and the operator was incorporated in NSGA-II. The main
idea is that, when selecting the elitist, if neither of the two individuals in a popula-
tion wins and they are nearly same, then delete one of them. A ‘circular selection’
is also presented to preserve good genes of the parent population.

Ripon et al. [109] proposed an improved version of Precedence Preservation
Crossover (IPPX). Onety et al. [110] applied a new strategy in NSGA-II which is
the application of different encoding schemes for different parts of population, in
two levels. At level 1, the first part of the population is encoded and in the level 2,
the second part of the solution is encoded. The proposed approach was found to be
an effective one. Tiwari et al. [111] improves micro genetic algorithm by propos-
ing a selection strategy that reduces the probability of searching less desirable
regions. The algorithm is designed to obtain “fast and reliable convergence” and
also decouples the external archive with the current population.

Among the other significant research studies the research studies of Fernandez et al.
[112], Wang and Yang [113], Sun [114], Ishibuchi et al. [115] are significant.

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 507

7 Test Functions

Test functions can be defined as the functions or algebraic expressions of various
natures, which may be used to verify the various aspects or characteristics of an
algorithm. A few papers in the existing literature are observed to set guidelines on
test functions. However, guidelines on test functions for testing algorithms han-
dling more than two objectives are rarely available.

Deb [116] has clearly identified the problems faced while solving Multi-
Objective Problems (MOPs) with an algorithm. Deb [116] has identified four fac-
tors that may prevent an algorithm to converge to the true Pareto front. These are:
1) multimodality, 2) deception, 3) isolated optimum and 4) collateral noise. He has
also identified the factors which may lead the multi-objective algorithms to face
difficulties in obtaining diverse solutions. These are: 1) “convexity or non-
convexity in the Pareto optimal front”, 2) “discreteness in the Pareto optimal
front”, 3) “non-uniform distribution of solutions in the Pareto optimal front”. After
investigating with a number of different kinds of functions, Deb [116] has summa-
rized a table of different kinds of functions for both the objectives and the con-
straints and their effects.

Viennet et al. [117] had summarized a total of six bi-objective and one
tri-objective unconstrained test problems. The test problems were found to be
effective from the experimentations conducted by the authors. A total of six con-
strained bi-objective test problems were also investigated. However, while devel-
oping test functions, the following characteristics for the test functions should be
kept in mind, in order to test the performance of an algorithm [8]. Saxena et al.
[118] took a modular approach in developing test instances. They considered
objective function of the form as shown in expression (35).

() () (1:),i i i mf x xI y nα β= + +

 (35)

Where,

M: Number of objectives
N: Number of decision variables

1 2(, ,...,)mxI x x x= and 1 2(, ,...,)m m nxII x x x+ +=

iα : Functions from
1

[,]
m

i i
i

a b
=

∏ to R

iβ : Function from n mR − to R

The research studies of Trautmann et al. [119], Wagner et al. [120], Liang et al.
[121] have also provided tests for checking convergence of solutions. Deb [122]
proposed the use of five basic functions, viz., Sphere function (expression 36),
Rastrigin’s function (expression 37), Weierstrass function (expression 38), Grie-
wank’s function (expression 39) and Ackley’s function (expression 40). A combi-
nation of these functions was used for a ten-objective problem in order to test
various aspects of the test functions.

508 S. Bandyopadhyay and R. Bhattacharya

2

1

()
D

i
i

f x x
=

=∑ , [100,100]Dx ∈ − (36)

2

1

() (10 (2
D

i
i

f x x Cos
=

= −∑ π) 10)ix + , [5,5]Dx ∈ − (37)

max

1 0

() ([(2
D k

k

i k

f x a Cos
= =

=∑ ∑ π (0.5))])k
ib x + , [100,100]Dx ∈ − (38)

2

1 1

() () 1
4000

DD
i i

i i

x x
f x Cos

i= =

= − +∑ ∏ , [100,100]Dx ∈ − (39)

2

1

1
() 20exp(0.2)

D

i
i

f x x
D =

= − − ∑

1

1
exp((2

D

i

Cos
D =

− ∑ π)) 20ix e+ + , [32,32]Dx ∈ − (40)

Deb et al. [122] had provided a set of test functions for solving problems with
more than two objectives. Table 2 provides an effective subset of all test functions
proposed in the existing literature, so far.

Table 2 Test Functions

Paper Test Functions
Deb
[116] 1 1()f x c x=

1

()
m

i i
i

f x c x
=

=∑

4
1 1() 1 exp(4) (5f x x Sin= − − π 1)x , 10 1x≤ ≤ , for m=1

or
4

1() 1 exp(4) (5f x r Sin= − − π)r where,

2

1

m

i
i

r x
=

= ∑

1 1
1

2 20.2 0.6
() 2.0 exp 0.8exp

0.004 0.4
{() } {() }x x

f x
− −

= − − − −

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 509

Table 2 (continued)

1
1

() ()
m

i
i

f x f l
=

=∑ where, f is actually the expression for g

defined below.

2 (), ()
(())

1, ()
i i i

i
i i

u l u l l
g u l

u l l

+ <⎧
= ⎨ =⎩

Where, ()iu l is the unitation of the first substring of length il

Coel-
lo et
al. [8]

2
1()f x x=

2
2 () (2)f x x= −

5 510 10x− ≤ ≤

2
1

1

1
() 1 exp(())

n

i
i

f x x
n=

= − − −∑

2
2

1

1
() 1 exp(())

n

i
i

f x x
n+

= − − +∑

4 4;ix− ≤ ≤ 1, 2,3i =

2 2
1 1 1 2 2(,) [1 () ()]f x y A B A B= − + − + −

2 2
2 (,) [(3) (1)]f x y x y= − + + +

1 0.5 1 2 1 2 1.5 2A Sin Cos Sin Cos= − + −

2 1.5 1 1 2 2 0.5 2A Sin Cos Sin Cos= − + −

1 0.5 2 1.5B Sinx Cosx Siny Cosy= − + −

2 1.5 2 0.5B Sinx Cosx Siny Cosy= − + −

1
2 2

1 1
1

() (10exp((0.2)*))
n

i i
i

f x x x
−

+
=

= − − +∑

2
1

() (5 ())
n

b
i i

i

a
f x x Sin x

=

= +∑

5 5ix− ≤ ≤ , 1, 2,3i = , 0.8a = , 3b =

510 S. Bandyopadhyay and R. Bhattacharya

Table 2 (continued)

 2 2 2 2
1(,) 0.5*() ()f x y x y Sin x y= + + +

2 2

2

(3 2 4) (1)
(,) 15

8 27

x y x y
f x y

− + − += + +

2 2()
3 2 2

1
(,) 1.1

(1)
x yf x y e

x y
− −= −

+ +
 30 , 30x y− ≤ ≤

1(,)f x y x=

2(,) (1 10)* 1 2
1 10 1 10

[() (x x
f x y y Sin

y y
α= + − −

+ +
π

)]qx

0 , 1x y≤ ≤ , 4q = , 2α =
2 2

1

(2) (1)
(,) 3

2 13

x y
f x y

− += + +

2 2

2

(3) (2)
(,) 17

36 8

x y x y
f x y

+ − − + += + −

2 2

3

(2 1) (2)
(,) 13

175 17

x y y x
f x y

+ − −= + −

400 , 400x y− ≤ ≤

Deb
et al.
[122]

1 1 2 1

1
() ... (1 ())

2 M Mf x x x x g x−= +

2 1 2 1

1
() ...(1)(1 ())

2 M Mf x x x x g x−= − +

.

.

1 1 2

1
() (1)(1 ())

2M Mf x x x g x− = − +

2

1
() (1)(1 ())

2M Mf x x g x= − + ,

Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ = , where,
2() 100[(0.5) (20

i M

M M i
x x

g x x x Cos
∈

= + − −∑ π (0.5))]ix −

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 511

Table 2 (continued)

1 1() (1 ()) (Mf x g x Cos x= + π 2/2) (Cos x π 2/2)... (MCos x − π 1/2) (MCos x − π

/2)

2 1() (1 ()) (Mf x g x Cos x= +

π 2/2) (Cos x π 2/2)... (MCos x − π 1/2) (MSin x − π /2)

3 1() (1 ()) (Mf x g x Cos x= + π 2/2) (Cos x π 2/2)... (MSin x − π /2)

.

.

1 1() (1 ()) (M Mf x g x Cos x− = + π 2/2) (Sin x π /2)

1() (1 ()) (M Mf x g x Sin x= + π /2)

Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ =

Where, 2() (0.5)
i M

M i
x x

g x x
∈

= −∑

1 1() (1 ()) (Mf x g x Cos x= + π 2/2) (Cos x π 2/2)... (MCos x − π 1/2) (MCos x − π

/2)

2 1() (1 ()) (Mf x g x Cos x= +

π 2/2) (Cos x π 2/2)... (MCos x − π 1/2) (MSin x − π /2)

3 1() (1 ()) (Mf x g x Cos x= + π 2/2) (Cos x π 2/2)... (MSin x − π /2)

.

.

1 1() (1 ()) (M Mf x g x Cos x− = + π 2/2) (Sin x π /2)

1() (1 ()) (M Mf x g x Sin x= + π /2)

Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ = , where
2() 100[(0.5) (20

i M

M M i
x x

g x x x Cos
∈

= + − −∑ π (0.5))]ix −

512 S. Bandyopadhyay and R. Bhattacharya

Table 2 (continued)

1 1 2 2 1() (1 ()) (/2) (/2)... (/2) (/2M M Mf x g x Cos x Cos x Cos x Cos xπ π π ππ π π π− −= +

2 1 2 2 1() (1 ()) (/2) (/2)... (/2) (/2M M Mf x g x Cos x Cos x Cos x Sin xπ π π ππ π π π− −= +

3 1 2 2() (1 ()) (/ 2) (/ 2)... (/ 2)M Mf x g x Cos x Cos x Sin xπ π ππ π π−= +
.
.

1 1 2() (1 ()) (/ 2) (/ 2)M Mf x g x Cos x Sin xπ ππ π− = +

1() (1 ()) (/ 2)M Mf x g x Sin xππ= +

Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ = , where
2() (0.5)

i M

M i
x x

g x x
∈

= −∑

1 1 2 2 1() (1 ()) (/2) (/2)... (/2) (/2)M M Mf x g x Cos Cos Cos Cosθπ θπ θ π θ π− −= +

2 1 2 2 1() (1 ()) (/2) (/2)... (/2) (/2)M M Mf x g x Cos Cos Cos Sinθπ θπ θ π θ π− −= +

3 1 2 2() (1 ()) (/ 2) (/ 2)... (/ 2)M Mf x g x Cos Cos Sinθ π θ π θ π−= +
.
.

1 1 2() (1 ()) (/ 2) (/ 2)M Mf x g x Cos Sinθ π θ π− = +

1() (1 ()) (/ 2)M Mf x g x Sin θ π= +

Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ = , where

(1 2 ())
4(1 ())i M i

M

g x x
g x

πθ = +
+

, 2,3,...(1)i M= −

2() (0.5)
i M

M i
x x

g x x
∈

= −∑

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 513

Table 2 (continued)

1 1 2 2 1() (1 ()) (/2) (/2)... (/2) (/2)M M Mf x g x Cos Cos Cos Cosθπ θπ θ π θ π− −= +

2 1 2 2 1() (1 ()) (/2) (/2)... (/2) (/2)M M Mf x g x Cos Cos Cos Sinθπ θπ θ π θ π− −= +

3 1 2 2() (1 ()) (/ 2) (/ 2)... (/ 2)M Mf x g x Cos Cos Sinθ π θ π θ π−= +
.
.

1 1 2() (1 ()) (/ 2) (/ 2)M Mf x g x Cos Sinθ π θ π− = +

1() (1 ()) (/ 2)M Mf x g x Sin θ π= +

Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ = , where

(1 2 ())
4(1 ())i M i

M

g x x
g x

πθ = +
+

, 2,3,...(1)i M= −

0.1() ()
i M

M i
x x

g x x
∈

= ∑

1 1()f x x=

2 2()f x x=

.

.

1 1()M Mf x x− −=

1 2 1() (1 ()). (, ,..., ())M M Mf x g x h f f f g x−= +

Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ = , where

9
() 1

i M

i
x xM

g x x
x ∈

= + ∑

1

1 2 1
1

(, ,...,) (1 (3))
1 ()

()
M

i
M i

i

f
h f f f g M Sin f

g x
π

−

−
=

= − +
+∑

514 S. Bandyopadhyay and R. Bhattacharya

Table 2 (continued)

(1)

1
() ()

/

n
j
M

j i
n

i j
M

f x x
n M

⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥= −⎢ ⎥⎣ ⎦

=
⎢ ⎥⎣ ⎦

∑ , 1, 2,...,j M∀ =

Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ = , where

() () 4 () 1 0j M jg x f x f x= + − ≥ , 1, 2,..., (1)j M∀ = −

1
, 1,() 2 () min [() ()] 1 0M

M M i j i j i jg x f x f x f x−
= ≠= + + − ≥

0.1

(1)

1
() ()

/ i

n
j
M

j
n

i j
M

f x x
n M

⎢ ⎥
⎢ ⎥⎣ ⎦

⎢ ⎥= −⎢ ⎥⎣ ⎦

=
⎢ ⎥⎣ ⎦

∑ , 1, 2,...,j M∀ =

Subject to 0 1ix≤ ≤ , 1, 2,...,i n∀ = , where
2 2() () () 1 0

M jjg x f x f x= + − ≥ , 1, 2,..., (1)j M∀ = −

8 Software Packages Used

Every proposed multi-objective evolutionary algorithm needs software for expe-
rimentation. Researchers in the existing literature have either used any existing
software or have proposed new software tools.

First of all, among the existing software, Matlab, C, C++ have been widely
used to implement any contributed algorithm. However, there are a few research
studies which have also proposed some software frameworks.

Liefooghe et al. [123] proposed a software framework named ParadisEO-
MOEO which is basically developed using C++ object-oriented concept. Thus all
the components of the software including the initialization, stopping criteria, fit-
ness assignments, diversity assignments, selection schemes, replacement and so
on, are represented by objects.

Although some multi-objective tools are available such as the toolbox of Mat-
lab, but while implementing a newly proposed algorithm, these tools cannot work
effectively because of the newly proposed logic in the algorithm. Therefore, in
those situations, the programs are developed using the existing programming lan-
guages.

The main problem seems to lie in representing the results of a multi-objective
nature based algorithm. Although, the latest version of Excel may sometimes be
simple to use, but the main difficulty is faced while representing the Pareto optim-
al solutions of the algorithm. However some plot attainment software such as
‘dplot’ may be used. The feature of ‘dplot’ is that the tools of dplot software are
embedded into Excel after installation of the software. Therefore, the ordinary
known software framework of Excel can easily be used along with additional tools
of dplot software. Besides GRS software package is capable of generating and

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 515

illustrating Pareto optimal solutions. among some other software packages,
NIMBUS is particularly remarkable.

9 Complexity of Nature Based Algorithms

One of the basic causes for the development of a vast number research studies is
the complexity of the previously existing deterministic solution methodologies.
The multi-objective problems are basically NP hard problems. In order to reduce
the time complexity of the traditional methods, a vast number of multi-objective
evolutionary algorithm have been proposed in the existing literature. However, the
nature based multi-objective algorithms do not ensure global optimal solutions and
therefore these methods are still drawing a lot of attention from the research com-
munity. However the inherent complexity issues of the algorithms has resulted in
a very few research studies which have endeavored to simplify some aspects of
the already existing benchmark evolutionary algorithms. For example, three way
radix quick sort algorithm has been used by Gao et al. [124] in order to reduce the
complexity of the sorting process of NSGA-II. Sun and Ding [125] have used
simple quick sort to enhance sorting efficiency and Liu et al. [126] have used
quick sort to reduce the time complexity of their algorithm.

10 Conclusion

The existing literature on the nature based algorithms can mainly be categorized
into 1) the research papers proposing new ideas, 2) research papers proposing
hybrid algorithm, 3) the research papers on the modification of the existing algo-
rithms, 4) the research studies which have applied the existing algorithms. Be-
sides, a few research studies have also investigated test suites for testing the pro-
posed algorithm are also observed in the existing literature.

In this chapter, brief descriptions of each of the existing benchmark nature
based algorithms have been discussed at first. These benchmark algorithms are
frequently seen to be applied in the existing literature. The other nature based
algorithms which are not frequently applied, have also been discussed. A total of
twenty three such algorithms have been discussed. Besides the some significant
hybrid algorithms and some research studies which have modified the existing
algorithms have also been discussed. The test problems proposed to test various
aspects of the proposed algorithms have also been summarized. At last a glimpse
of the software packages which are in use to implement the nature based algo-
rithms have been shown and complexity issues have been outlined.

References

1. Pareto, V.: Cours d’e_conomie politique professe_ a_ l’universite_de Lausanne, vol.
1, 2. F. Rouge, Laussanne (1896)

2. Hung, S.-J.: Activity-based divergent supply chain planning for competitive advan-
tage in the risky global environment: A DEMATEL-ANP fuzzy goal programming
approach. Expert Systems with Applications 38(8), 9053–9062 (2011)

516 S. Bandyopadhyay and R. Bhattacharya

3. Mirakhorli, A.: Multi-objective optimization of reverse logistics network with fuzzy

demand and return-product using an interactive fuzzy goal programming approach.
In: 40th International Conference on Computers and Industrial Engineering: Soft
Computing Techniques for Advanced Manufacturing and Service Systems, Awaji
Island, Japan (2010)

4. Wu, C., Barnes, D., Rosenberg, D., Luo, X.: An analytic network process-mixed in-
teger multi-objective programming model for partner selection in agile supply chains.
Production Planning & Control 20(3), 254–275 (2009)

5. Susmita, B., Bhattacharya, R.: Applying modified NSGA-II for bi-objective supply
chain problem. Journal of Intelligent Mamnufacturing (2012), doi: 10.1007/s10845-
011-0617-2

6. Eric, B., Marco, D., Guy, T.: Swarm Intelligence From Natural to Artificial Systems.
Oxford University Press, New York (1999)

7. Faro, J., Combadao, J., Gordo, I.: Did Germinal Centers Evolve Under Differential
Effects of Diversity vs Affinity? In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006.
LNCS, vol. 4163, pp. 1–8. Springer, Heidelberg (2006)

8. Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems, 2nd edn. Springer, Berlin (2007)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Mich-
igan Press, Ann Arbor (1975)

10. Goldberg David, E.: Genetic Algorithms in Search, Optimization & Machine Learn-
ing, Fifth Indian Reprint. Pearson Education, Delhi (1989)

11. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in
Genetic Algorithms. Evolutionary Computations 2(3), 221–248 (1994)

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computing 6(2), 182–197
(2002)

13. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Com-
putation 3(4), 257–271 (1999)

14. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolu-
tionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fo-
garty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization
and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100
(2001)

15. Knowles Joshua, D., Corne David, W.: Approximating the Nondominated Front Using
teh Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172
(2000)

16. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for
Multiobjective Optimization. In: Proceeding of the First IEEE Conference on Evolu-
tionary Computation. IEEE World Congress on Computatyional Intelligence, vol. 1,
pp. 82–87. IEEE Service Center, Piscataway (1994)

17. Erickson, M., Mayer, A., Horn, J.: The Niched Pareto Genetic Algorithm 2 Applied to
the Design of Groundwater Remediation Systems. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 681–695.
Springer, Heidelberg (2001)

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 517

18. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto Envelope-based Selection Al-
gorithm for Multiobjective Optimization. In: Schoenauer, M., Deb, K., Rudolph, G.,
Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS,
vol. 1917, pp. 839–848. Springer, Heidelberg (2000)

19. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Regionbased Se-
lection in Evolutionary Multiobjective Optimization. In: Spector, L., Goosman, E.D.,
Wu, A., Langdon, W., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Gar-
zon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO 2001), pp. 283–290. Morgan Kaufmann Publishers, San
Francisco (2001)

20. Veldhuizen, D.A., van Lamont, G.B.: Multiobjective Optimization with Messy
Genetic Algorithms. In: Proceedings of the 2000 ACM Symposium on Applied
Computing. ACM, Villa Olmo (2000)

21. Deb, K.: Binary and Floating-Point Function Optimization using Messy Genetic
Algorithms. PhD Thesis, University of Alabama, Tuscaloosa, Alabama (1991)

22. Coello Coello, C.A., Toscano Pulido, G.: A Micro-Genetic Algorithm for Multiob-
jective Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne,
D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001)

23. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algo-
rithms. In: Genetic Algorithms and their Applications: Proceedings of the First Inter-
national Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum,
Hillsdale (1985)

24. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design.
Structural Optimization 4, 99–107 (1992)

25. Lu, H., Yen, G.G.: Rank-density-based multiobjective genetic algorithm and bench-
mark test function study. IEEE Transactions on Evolutionary Computation 7(4),
325–343 (2003)

26. Fourman Michael, P.: Compaction of Symbolic Layout using Genetic Algorithms. In:
Grefenstette, J.J. (ed.) Genetic Algorithms and their Applications: Proceedings of the
First International Conference on Genetic Algorithms, pp. 141–153. Lawrence Erl-
baum, Hillsdale, Hillsdale (1985)

27. Eberhart, R.C., Kenndy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth Symposium on Micro Machine and Human Science, pp. 39–43.
IEEE Service Center, Piscataway (1995)

28. Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm
optimization. In: Porto, V.W., et al. (eds.) Evolutionaey Programming, vol. VII,
pp. 611–616. Springer (1998)

29. Durillo, J.J., Nebro, A.J., García-Nieto, J., Alba, E.: On the Velocity Update in Multi-
Objective Particle Swarm Optimizers. In: Coello Coello, C.A., Dhaenens, C., Jour-
dan, L. (eds.) Advances in Multi-Objective Nature Inspired Computing. SCI,
vol. 272, pp. 45–62. Springer, Heidelberg (2010)

30. Reyes-Sierra, M., Coello Coello, C.A.: Improving PSO-Based Multi-objective Opti-
mization Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A.,
Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519.
Springer, Heidelberg (2005)

31. Durillo, J.J., García-Nieto, J., Nebro, A.J., Coello Coello, C.A., Luna, F., Alba, E.:
Multi-Objective Particle Swarm Optimizers: An Experimental Comparison. In: Ehr-
gott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009.
LNCS, vol. 5467, pp. 495–509. Springer, Heidelberg (2009)

518 S. Bandyopadhyay and R. Bhattacharya

32. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle
swarm optimizer with time-varying accelration coefficients. International Journal of
Computational Intelligence Research 8(3), 240–255 (2004)

33. Storn, R., Price, K.V.: Differential evolution-A simple and efficient adaptive scheme
for global optimization over continuous spaces, Technical Report, ICSI, University
of California, Berkeley (1995)

34. Chang, C.S., Xu, D., Quek, H.: Pareto-optimal set based multiobjective tuning of
fuzzy automatic train operation for mas transit system. IEE Proceedings on Electric
Power Applications 146(5), 577–583 (1999)

35. Saku, K., Jouni, L.: Generalized Differential Evolution for Constrained Multi-
Objective Optimization. In: Thu, B.L., Sameer, A. (eds.) Multi-Objective Optimiza-
tion in Computational Intelligence Theory and Practice, pp. 43–75. Information
Science Reference, USA (2008)

36. Bergey, P.K.: An agent enhanced intelligent spreadsheet solver for multicriteria deci-
sion making. In: Proceedings of teh Fifth American Conference on Information Sys-
tems (AMCIS 1999), Milwaukee, WI, pp. 966–968 (1999)

37. Abbass, H.A.: The self-adaptive Pareto differential evolution algorithm. In: Proceed-
ings of the 2002 Congress on Evolutionary Computation (CEC 2002), Honolulu, HI,
pp. 831–836. IEEE Service Center (2002)

38. Madavan, N.K.: Multi-objective optimization usaing a Pareto differential evolution
approach. In: Proceedings of the 2002 Congress on Evlutionary Computation (CEC
2002), Honolulu, HI, pp. 1145–1150. IEEE Service Center (2002)

39. Zaharie, D.: Multi-objective optimization with adaptive Pareto differential evolution.
In: Proceedings of Symposium on Intelligent Systems and Applications (SIA 2003),
Iasi, Romania (2003)

40. Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evo-
lution. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC
2003), Canberra, Australia, pp. 862–869. IEEE Service Center (2003)

41. Parsopoulos, K.E., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.:
Vector evaluated differential evolution for multiobjective optimization. In: Proceed-
ings of the 2004 Congress on Evolutionary Computation (CEC 2004), Portland, OR,
pp. 204–211. IEEE Service Center (2004)

42. Li, H., Zhang, Q.: A Multiobjective Differential Evolution Based on Decomposition
for Multiobjective Optimization with Variable Linkages. In: Runarsson, T.P., Beyer,
H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006.
LNCS, vol. 4193, pp. 583–592. Springer, Heidelberg (2006)

43. Hernáandez-Diaz, A.G., Santana-Quintero, L.V., Coello Coello, C.A., Caballero, R.,
Molina, J.: A new proposal for multi-objective optimization using differenetial evolu-
tion and rough set theory. In: Proceeings of the Genetic and Evolutionary Computa-
tion Conference, GECCO 2006, Seattle, WA, pp. 675–682. ACM Press (2006)

44. Bersini, H., Varela, F.J.: A Variant of Evolution Strategies for Vector Optimization.
In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197.
Springer, Heidelberg (1991)

45. Yoo, J., Hajela, P.: Immune network simulations in multicriterion design. Structural
Optimization 18, 85–94 (1999)

46. Gambardella, L.M., Dorigo, M.: Ant-Q: A reinforcement learning approach to teh
traveling salesman problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of the
12th International Conference on Machine Learning, pp. 252–260. Morgan Kauf-
mann (1995)

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 519

47. Mariano, C.E., Morales, E.: MOAQ an Ant-Q algorithm for multiple objective opti-
mization problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar,
V., Jakiela, M., Smith, R.E. (eds.) Genetic and Evolutionary Compouting Conference
(GECCO 1999), vol. I, pp. 894–901. Morgan Kaufmann, San Francisco (1999)

48. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science 220(4598), 671–680 (1983)

49. Serafini, P.: Simulated Annealing for Multiple Objective Optimization Problems. In:
Tzeng, G., Wang, H., Wen, U., Yu, P. (eds.) Proceedings of the 10th International
Conference on Multiple Criteria Decision Making: Expand and Enrich the Domains
of Thinking and Application, vol. I, pp. 283–294. Springer, Berlin (1994)

50. Glover, F.: Future paths for integer programming and links to Artificial Intelligence.
Computers and Opereations Research 13(5), 533–549 (1986)

51. Gandibleux, X., Mezdaoui, N., Fréville: A Tabu Search Procedure to Solve Combina-
torial Optimisation Porblems. In: Caballero, R., Ruiz, F., Steuer, R.E. (eds.) Advances in
Multiple Objective and Goal Programming. LNEMS, vol. 455, pp. 291–300. Springer
(1997)

52. Huang, J., Huang, X., Ma, Y., Lin, Y.: On a high-dimensional objective genetic algo-
rithm and its nonlinear dynamic properties. Communications in Nonlinear Science
and Numerical Simulation 16(9), 3825–3834 (2011)

53. Kumar, R., Rockett, P.I.: Improved sampling of the Pareto-front in multiobjective
genetic optimizations by steady-state evolution: a Pareto converging genetic algo-
rithm. Evolutionary Computation 10(3), 283–314 (2002)

54. Yang, X., Shi, Y.: A Real-coded Quantum Clone Multi-Objective Evolutionary Al-
gorithm. In: 2011 International Conference on Consumer Electronics, Communica-
tions and Networks (CECNet 2011), XianNing, April 16-18, pp. 4683–4687 (2011)

55. Nie, L., Gao, L., Li, P., Wang, X.: Multi-Objective Optimization for Dynamic Sin-
gle-Machine Scheduling. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011,
Part II. LNCS, vol. 6729, pp. 1–9. Springer, Heidelberg (2011)

56. Pachón, V., Mata, J., Domínguez, J.L., Maña, M.J.: Multi-objective Evolutionary
Approach for Subgroup Discovery. In: Corchado, E., Kurzyński, M., Woźniak, M.
(eds.) HAIS 2011, Part II. LNCS, vol. 6679, pp. 271–278. Springer, Heidelberg
(2011)

57. Nicola, B., Marco, L., Günter, R.: Convergence Rates of SMS-MOEA on Continuous
Bi-Objective Problem Classes. In: FOGA 2011, Schwarzenberg, Austria, January 5-9
(2011)

58. James, B., Chris, A.: The cross-entropy method in multi-objective optimization: An
asessment. European Journal of Operational Research 211(1), 112–121 (2011)

59. Shin, K.S., Park, J.-O., Kim, Y.K.: Multi-Objective FMS process planning with va-
riuous flexibilities using a symbiotic evolutionary algorithm. Computers and Opera-
tions Research 38(3), 702–712 (2011)

60. Taher, N., Ehsan, A.F., Majid, N.: An efficient multi-objective modified shuffled
frog leaping algorithm for distribution feeder configuration problem. European
Transactions on Electrical Power 21(1), 721–739 (2010)

61. Li, Z.-Y., Chen, C., Ren, C.-A., Mohammed Esraa, M.: Novel Objective-Space Di-
viding Multi-Objectives Evolutionary Algorithm and its Convergence Property. In:
2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and
Applications (BIC-TA), Changsha, September 23-26, pp. 372–379 (2010)

520 S. Bandyopadhyay and R. Bhattacharya

62. Zhang, G., Li, Y., Marian, G.: A Multi-Objective Membrane Algorithm for Knapsack
Problems. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing:
Theories and Applications (BIC-TA), Changsha, September 23-26, pp. 604–609
(2010)

63. Mo, L., Dai, G., Zhu, J.: The RM-MEDA Based on Elitist Strategy. In: Cai, Z., Hu,
C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 229–239. Springer,
Heidelberg (2010)

64. Li, H., Landa-Silva, D.: An Elitist GRASP Metaheuristic for the Multi-objective
Quadratic Assignment Problem. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X.,
Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 481–494. Springer,
Heidelberg (2009)

65. Taher, N.: An efficient multi-objective HBMO algorithm for distribution feeder con-
figuration. Expert Systems with Applications 38(3), 2878–2887 (2011)

66. Tabatabaei, S.M., Vahidi, B., Hosseinian, S.H., Madani, S.M.: Bacterial Foraging-
Based Solution for Optimal Capacitor Allocation in Distribution Systems. In: 2010
IEEE International Conference on Power and Energy (PECon 2010), Kuala Lumpur,
Malaysia, November 29-December 1, pp. 253–258 (2010)

67. Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Sebald, A.V., Fogel, L.J.
(eds.) Proceedings of the Third Annual Conference on Evolutionary Programming,
pp. 131–139. World Scientific, River Edge (1994)

68. Coello Coello, C.A., Landa, B.R.: Evolutionary Multiobjective Optimization using A
Cultural Algorithm. In: 2003 IEEE Swarm Intelligence Symposium Proceedings, In-
dianapolis, Indiana, USA, pp. 6–13. IEEE Service Center (April 2003)

69. Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O.,
Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidel-
berg (2009)

70. Yang, X.-S., Deb, S.: Cuckoo Search via Lévy Flights. In: Proceedings of World
Congress on Nature and Biologically Inspired Computing (NaBIC 2009), India, pp.
210–214. IEEE, USA (2009)

71. Esmat, R., Hossein, N.-P., Saeid, S.: GSA: A Gravitational Search Algorithm. Infor-
mation Sciences 179(13), 2232–2248 (2009)

72. Hadi, N., Mahdi, N., Patrick, S.: Non-dominated Sorting Gravitational Search Algo-
rithm. In: International Conference on Swarm Intelligence (ICSI 2011), Cergy,
France, June 14-15, pp. 1–10 (2011)

73. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system
search. Acta Mechanica 213(3-4), 267–289 (2010)

74. Shah-Hosseini: The intelligent water drops algorithm: a nature-inspired swarm-based
optimization algorithm. International Journal of Bio-Inspired Computation 1(1-2),
71–79 (2009)

75. Pablo, R., Ismael, R., Fernando, R.: Using River Formation Dynamics to Design
Heuristic Algorithms. Springer (2007) ISBN 978-3-540-73553-3

76. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transi-
tion in a system of self-driven particles. Physical Reviews Letters 75, 1226–1229 (1995)

77. María, L.J., Raúl, R.J., Sebastián, V.: G3PARM: A Grammar Guided Genetic Pro-
gramming Algorithm for Mining Association Rules. In: 2010 IEEE Congress on Evo-
lutionary Computation (CEC), Barcelona, July 18-23, pp. 1–8 (2010)

78. Baños, R., Gil, C., Reca, J., Ortega, J.: A Pareto-based memetic algorithm for optimiza-
tion of looped water distribution systems. Engineering Optimization 42(3), 223–240
(2010)

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 521

79. Usman, F., Lam, C.P.: A Max-Min Multiobjective Technique to Optimize Model
Based Test Suite. In: 2009 10th ACIS International Conference on Software Engi-
neering, Artificial Intelligences, Networking and Parallel/Distributed Computing,
Daegu, May 27-29, pp. 569–574 (2009)

80. Wang, X., Yu, S.-H., Dai, J., Luo, T.: A Multiple Constraint Quality of Service
Routing Algorithm Base on Dominating Tree. In: International Conference on Com-
putational Intelligence and Software Engineering (CISE 2009), Wuhan, December
11-13, pp. 1–4 (2009)

81. Juan, T.J., Vallego Edgar, E., Enrique, M.: MOCEA: A Multi Objective Clustering
Evolutionary Algorithm for Inferring Protein-Protein Functional Interactions. In:
GECCO 2009, Montréal, Québec, Canada, July 8-12, pp. 1793–1794 (2009)

82. Basgalupp Márcio, P., Barros Rodrigo, C., Carvalho André, C.P.L.F., de Freitas Alex
A., Ruiz Duncan, D.: LEGAL-Tree: A Lexicographic Multi-Objective Genetic Algo-
rithm for Decision Tree Induction. In: SAC 2009, Honolulu, Hawaii, USA, March
8-12, pp. 1085–1090 (2009)

83. Li, M., Zheng, J., Li, K., Wu, J., Xiao, G.: An Spanning Tree Based Method for
Pruning Non-Dominated Solutions in Multi-Objective Optimization Problems. In:
Proceedings of the 2009 IEEE International Conference on Systems, Man and Cy-
bernetics, San Antonio, TX, USA, pp. 4882–4887 (October 2009)

84. Fallah-Jamshidi, S., Karimi, N., Zandieh, M.: A hybrid multi-objective genetic algo-
rithm for planning order release date in two-level assembly system with random lead
times. Expert Systems with Applications 38(11), 13549–13554 (2011)

85. Andreas, K., Kun, Y.: Multi-objective energy-efficient dense deployment in wireless
sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Compu-
ting 11(6), 4117–4134 (2011)

86. Behnamian, J., Zandieh, M., Ghomi, S.M.T., Fatemi: Bi-objective parallel machines
scheduling with sequence-dependent setup times using hybrid metaheuristics and
weighted min-max technique. Soft Computing 15(7), 1313–1331 (2011)

87. Noman, Q.S., Mariyam, S.S.: Memetic Elitist Pareto Differential Evolution Algo-
rithm based Radial Basis Function Networks for Classification Problems. Applied
Soft Computing 11(8), 5565–5581 (2011)

88. Lu, Y., Zhou, J., Qin, H., Wang, Y., Zhang, Y.: A hybrid multi-objective cultural al-
gorithm for short-term environmental/economic hydrothermal scheduling. Energy
Conversion and Management 52(5), 2121–2134 (2011)

89. Vidal Juan, C., Manuel, M., Alberto, B., Manuel, L.: Machine scheduling in custom
furniture industry through neuro-evolutionary hybridization. Applied Soft Compu-
ting 11(2), 1600–1613 (2011)

90. Sivakumar, K., Balamurugan, C., Ramabalan, S.: Concurrent multi-objective toler-
ance allocation of mechanical asemblies considering alternative manufacturing
process selection. International Journal of Advanced Manufacturing Technolo-
gy 53(5-8), 711–732 (2011)

91. Chen, W., Shi, Y.-J., Teng, H.-F.: A Generalized Differential Evolution Combined with
EDA for Multi-objective Optimization Problems. In: Huang, D.-S., Wunsch II, D.C.,
Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 140–147. Sprin-
ger, Heidelberg (2008)

92. Fernández, J.C., Hervás, C., Martínez-Estudillo, F.J., Gutiérrez, P.A.: Memetic Pare-
to Evolutionary Artificial Neural Networks to determine growth/no-growth in predic-
tive microbiology. Applied Soft Computing 11(1), 534–550 (2011)

522 S. Bandyopadhyay and R. Bhattacharya

93. Zhang, J., Zhang, Y., Qin, P.: Immune Clonal Differential Evolution Algorithm for
Multi-Objective Flexible Job-Shop Scheduling Problem. In: 2010 International Con-
ference on Artificial Intelligence and Education (ICAIE), Hangzhou, October 29-30,
pp. 73–76 (2010)

94. Jarosz, P., Burczyski, T.: Coupling of Immune Algorithms and Game Theory in Mul-
tiobjective Optimization. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 500–507.
Springer, Heidelberg (2010)

95. Xiao, G., China, G., Mei, J.: Reactive Power Optimization Based on Hybrid Particle
Swarm Optimization Algorithm. In: 2010 Asia-Pacific Conference on Wearable
Computing Systems, pp. 173–177 (2010)

96. Almeida Leandro, M., Ludermir Teresa, B.: A multi-objective memetic and hybrid
methodology for optimizing the parameters and performance of artificial neural net-
works. Neurocomputing 73(7-9), 1438–1450 (2010)

97. Abhay, K., Deepak, S., Kalyanmoy, D.: A Hybrid Multi-Objective Optimization Pro-
cedure Using PCX Based NSGA-II and Sequential Quadratic Programming. In: IEEE
Congress on Evolutionary Computation (CEC 2007), Singapore, September 25-28,
pp. 3011–3018 (2007)

98. Murugan, P., Kannan, S., Baskar, S.: Application of NSGA-II Algorithm to Single-
Objective Transmission Constrained Generation Expansion Planning. IEEE Transac-
tions on Power Systems 24(4), 1790–1797 (2009)

99. Wang, M., Dai, G., Hu, H.: Improved NSGA-II algorithm for optimization of con-
strained functions. In: 2010 International Conference on Machine Vision and Hu-
man-Machine Interface (MVHI), Kaifeng, China, April 24-25, pp. 673–675 (2010)

100. Masahiko, S., Aguirre Hernán E., Kiyoshi, T.: Effects of δ-Similar Elimination and
Controlled Elitism in the NSGA-II Multiobjective Evolutionary Algorithm. In: 2006
IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, July 16-21,
pp. 1164–1171 (2006)

101. Yu, L., Wang, P., Zhu, H.: A Novel Diversity Preservation Strategy based on Rank-
ing Integration for Solving Some Specific Multi-Objective Problems. In: 2010 Ninth
International Symposium on Distributed Computing and Applications to Business,
Engineering and Science, Hong Kong, August 10-12, pp. 97–101 (2010)

102. Qiang, Y., Zhao, J.-J., Chen, J.-J., Wang, X.-G.: Workload Control of Autonomic
Database. In: 2009 2nd International Conference on Power Electronics and Intelli-
gent Transportation System (PEITS), Shenzhen, December 19-20, pp. 263–267
(2009)

103. Mansour, M.R., Santos, A.C., London Jr., J.B., Delbem, A.C.B., Bretas, N.G.: Node-
depth Encoding and Evolutionary Algorithms Applied to Service Restoration in Dis-
tribution Systems. In: 2010 IEEE Power and Energy Society General Meeting, Min-
neapolis, MN, July 25-29, pp. 11–18 (2010)

104. Lakashminarasimman, N., Baskar, S., Alphones, A.: Multiobjective Mobile Antenna
Location Identification using Evolutionary Optimization Algorithm. In: 2010 Second
International Conference on Computing, Communication and Networking Technolo-
gies, Karur, July 29-31, pp. 1–4 (2010)

105. dos Santos, C.L., Piergiorgio, A.: Multiobjective Electromagnetic Optimization
Based on a Nondominated Sorting Genetic Approach with a Chaotic Crossover Op-
erator. IEEE Transactions on Magnetics 44(6), 1078–1081 (2008)

On Some Aspects of Nature-Based Algorithms to Solve Multi-Objective Problems 523

106. Hernán, A., Kiyoshi, T.: Adaptive ε-Ranking on MNK-Landscapes. In: 2009 IEEE
Symposium on Computational Intelligence in Miulti-Criteria Decision-Making
(MCDM 2009), Nashville, TN, March 30-April 2, pp. 104–111 (2009)

107. Sun, Y., Shen, G.: Improved NSGA-II Multi-objective Genetic Algorithm Based
on Hybridization-encouraged Mechanism. Chinese Journal of Aeronautics 21(6),
540–549 (2008)

108. Jia, J., Chen, J., Chang, G.-R.: Efficient Cover Set Selection in Wireless Sensor Net-
works. Acta Automatica Sinica 34(9), 1157–1162 (2008)

109. Nawaz, R.K.S., Siddique, N.H., Jim, T.: Improved precedence preservation crossover
for multi-objective job shop scheduling problem. Evolving Systems 2, 119–129
(2011)

110. Onety, R.E., Moreira, G.J.P., Neto, O.M., Takahashi, R.H.C.: Variable Neighborhood
Multiobjective Genetic Algorithm for the Optimization of Routes on IP Networks. In:
Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS,
vol. 6576, pp. 433–447. Springer, Heidelberg (2011)

111. Santosh, T., Georges, F., Kalyanmoy, D.: AMGA2: improving the performance of
the archive-based micro-genetic algorithm for multi-objective optimization. Engi-
neering Optimization 43(4), 377–401 (2011)

112. Eduardo, F., Edy, L., Fernando, L., Coello Coello, C.A.: Increasing selective pressure
towards the best compromise in evolutionary multiobjective optimization: The ex-
tended NOSGA method. Information Sciences 181(1), 44–56 (2011)

113. Wang, L., Liang, Y., Yang, J.: Improved Multi-Objective PSO Algorithm for Opti-
mization Problems. In: 2010 IEEE International Conference on Progress in Informat-
ics and Computing (PIC), Shanghai, December 10-12, pp. 195–198 (2010)

114. Sun, C.: An improved differential evolution and novel crowding distance metric for
multi-objective optimization. In: 2010 3rd International Symposium on Knowledge
Acquisition and Modeling, Wuhan, October 20-21, pp. 265–268 (2010)

115. Hisao, I., Noritaka, T., Yusuke, N.: Diversity/improvement by Non-Geometric Bi-
nary Crossover in Evolutionary Multiobjective Optimization. IEEE Transactions on
Evolutionary Computation 14(6), 985–998 (2010)

116. Kalyanmoy, D.: Multi-objective Genetic Algorithms: Problem Difficulties and Con-
struction of Test Problems. Technical Report No. CI-49/98, Department of Computer
Science/XI, University of Dortmund, Germany (October 1998)

117. Viennet, R., Fontiex, C., Marc, I.: Multicriteria Optimization Using a Genetic Algo-
rithm for Determining a Pareto Set. Journal of Systems Science 27(2), 255–260
(1996)

118. Saxena, D.K., Zhang, Q., Duro, J.A., Tiwari, A.: Framework for Many-Objective
Test Problems with Both Simple and Complicated Pareto-Set Shapes. In: Takahashi,
R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576,
pp. 197–211. Springer, Heidelberg (2011)

119. Trautmann, H., Ligges, U., Mehnen, J., Preuß, M.: A Convergence Criterion for Mul-
tiobjective Evolutionary Algorithms Based on Systematic Statistical Testing. In: Ru-
dolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS,
vol. 5199, pp. 825–836. Springer, Heidelberg (2008)

120. Wagner, T., Trautmann, H., Naujoks, B.: OCD: Online Convergence Detection for
Evolutionary Multi-Objective Algorithms Based on Statistical Testing. In: Ehrgott,
M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS,
vol. 5467, pp. 198–215. Springer, Heidelberg (2009)

524 S. Bandyopadhyay and R. Bhattacharya

121. Liang, J.J., Suganthan, P.N., Deb, K.: Novel Composition Test Functions for Numer-
ical Global Optimization. In: Proceedings of the 2005 IEEE Symposium on Swarm
Intelligence (SIS 2005), June 8-10, pp. 68–75 (2005)

122. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimiza-
tion Test Problems. In: Proceedings of the 2002 Congress on Evolutionary Computa-
tion (CEC 2002), Honolul, HI, USA, May 12-17, pp. 825–830 (2002)

123. Arnaud, L., Laetitia, J., El-Ghazali, T.: A software framework based on a conceptual
unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. Eu-
ropean Journal of Operational Research 209(2), 104–112 (2011)

124. Gao, G., Zhang, G., Huang, G., Gu, P., Liu, F.: Improved Multi-objective Evolutio-
nary Algorithm Based on Three-way Radix Quicksort. In: 2010 3rd IEEE Interna-
tional Conference on Computer Science and Information Technology (ICCSIT),
Chengdu, July 9-11, pp. 378–382 (2010)

125. Sun, H., Ding, Y.: A Scalable Method of E-Service Workflow Emergence Based on
the Bio-Network. In: Fourth International Conference on Natural Computation
(ICNC 2008), October 18-20, pp. 165–169 (2008)

126. Liu, L., Zhang, X., Xie, L., Du, J.: A Novel Multi-Objective Particle Swarm Optimi-
zation based on Dynamic Crowding Distance. In: IEEE International Conference on
Intelligent Computing and Intelligent Systems (ICIS 2009), November 20-22,
pp. 481–485 (2009)

Image Processing with Spiking Neuron
Networks

Boudjelal Meftah, Olivier Lézoray, Soni Chaturvedi,
Aleefia A. Khurshid, and Abdelkader Benyettou

Abstract. Artificial neural networks have been well developed so far. First two
generations of neural networks have had a lot of successful applications. Spiking
Neuron Networks (SNNs) are often referred to as the third generation of neural net-
works which have potential to solve problems related to biological stimuli. They
derive their strength and interest from an accurate modeling of synaptic interactions
between neurons, taking into account the time of spike emission.

SNNs overcome the computational power of neural networks made of threshold
or sigmoidal units. Based on dynamic event-driven processing, they open up new
horizons for developing models with an exponential capacity of memorizing and a
strong ability to fast adaptation. Moreover, SNNs add a new dimension, the temporal
axis, to the representation capacity and the processing abilities of neural networks.
In this chapter, we present how SNN can be applied with efficacy in image cluster-
ing, segmentation and edge detection. Results obtained confirm the validity of the
approach.

1 Introduction

There are many artificial neural networks that can be successfully used in image
processing tasks, the most prominent of them are networks, commonly known by

Boudjelal Meftah
Equipe EDTEC, Université de Mascara, Mascara, Algérie

Olivier Lézoray
Université de Caen Basse-Normandie, GREYC UMR CNRS 6072, 6 Bd. Maréchal Juin,
F-14050, Caen, France

Soni Chaturvedi · Aleefia A. Khurshid
Priyadarshini Institute of Engineering and Technology, Nagpur Maharashtra, India

Abdelkader Benyettou
Laboratoire Signal Image et Parole, Université Mohamed Boudiaf, Oran, Algérie

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 525–544.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

526 B. Meftah et al.

now as Spiking Neural Networks (SNN) [1]. Highly inspired from natural comput-
ing in the brain and recent advances in neuroscience, they derive their strength and
interest from an accurate modeling of synaptic interactions between neurons, taking
into account the time of spike firing. SNNs overcome the computational power of
neural networks made of threshold or sigmoidal units [2].

The use of spiking neurons promises high relevance for biological systems and,
furthermore, might be more flexible for computer vision applications [3]. Wu et
al. [4] proposed hierarchical spiking neural networks to process visual stimuli, in
which multiple overlapped objects are represented by different orientation bars.
Their model segments images and binds their pixels to form shapes of objects using
local excitatory lateral connections. Girau et al. [5] had implemented integrate-and-
fire neurons to the standard LEGION (Local Excitatory Global Inhibitory Oscillator
Network) architecture to segment grey-level images. In order to segment images,
the LEGION model groups oscillators that receive their input from similar features
in an image. Oscillators group together by synchronization of their phase thanks to
excitatory connections, and they get desynchronized from other groups of oscilla-
tors by means of global inhibition. Buhmann et al. [6] proposed a network of leaky
integrate-and-fire neurons to segment gray-scale images. The network architecture
with local competition between neurons that encode segment assignments of image
blocks is motivated by an histogram clustering approach to image segmentation.
Rowcliffe et al. [7] had developed an algorithm to produce self-organisation of a
purely excitatory network of Integrate-and-Fire neurons. Pixels from an image are
used as scalar inputs for the network, and segmented as the oscillating neurons are
clustered into synchronised groups.

In this chapter, a spiking neural network is used to cluster images, segment
images and detect edges with Hebbian based winner-take-all learning. We seek,
through a series of experiments carried out, the best parameters of the SNN network
to have a good segmentation and a fine detection of contours.

The chapter is organized as follows: in first Section, related works are presented
within the literature of spiking neural network (SNNs). Second Section is the central
part of the chapter and is devoted to the description of the architecture of a spiking
neural network with multiple delay connections, the encoding mechanism for con-
verting the real valued inputs into time vectors and the learning rule. The results
and discussions of the experimental activity are reported in the third Section. Last
Section concludes.

2 Overview of Spiking Neuron Networks

Spiking neural networks (SNNs) are a class of ANNs that are increasingly receiving
the attention as both a computationally powerful and biologically plausible mode
of computation [8], [9]. SNNs model the precise time of the spikes fired by a neu-
ron, as opposed to the conventional neural networks which model only the average
firing rate of the neurons. It is proved that the neurons that convey information by

Image Processing with Spiking Neuron Networks 527

individual spike times are computationally more powerful than the neurons with
sigmoidal activation functions [10].

2.1 Artificial Neuron Generations

Wolfgang Maass [11] delineates past and current artificial neural network research
into three generations and makes the following observations.

The first generation is based on the McCulloch-Pitts neuron (also known as a
perceptron or a threshold-gate) as the basic computation unit. Models of the first
generation, such as the multi-layer perceptron, use digital input and output, usu-
ally binary or bipolar. Any Boolean function can be computed by some multi-layer
perceptron with a single hidden layer.

The second generation is based on computation units (neurons) that use an activa-
tion function of a continuous set of possible output values. Commonly, these activa-
tion functions are the sigmoid, or the hyperbolic tangent. Second generation neural
networks, like first generation networks, can compute arbitrary boolean functions
(after using a threshold). Second generation networks can compute certain boolean
functions with fewer neurons than first generation neurons. Also, second generation
networks with one hidden layer can approximate any continuous, analog function
arbitrarily well. Important to many implementations is the fact that second genera-
tion networks support learning algorithms based on gradient descent, such as error
back-propagation.

The third generation of artificial neural networks is based on spiking neurons, or
integrate and fire neurons. These neurons use recent insights from neurophysiology,
specifically the use of temporal coding to pass information between neurons. These
networks, like those of the second generation, can approximate continuous functions
arbitrarily well, but with temporally encoded inputs and outputs [11], [12]. Further,
there are function that require fewer neurons in a pulsed neural net to approximate
than would be needed in a second generation network [11].

All three of these generations are simplifications of what is known about the
physiology of biological neurons but the third generation is the model with the high-
est fidelity.

2.2 Spiking Neuron Networks Architecture

The network architecture consists in a feedforward network of spiking neurons with
multiple delayed synaptic terminals (Fig. 1.a). The neurons in the network generate
action potentials, or spikes, when the internal neuron state variable, called ”mem-
brane potential”, crosses a threshold ϑ . The relationship between input spikes and
the internal state variable is described by the Spike Response Model (SRM), as in-
troduced by Gerstner [9]. Depending on the choice of suitable spike-response func-
tions, one can adapt this model to reflect the dynamics of a large variety of different
spiking neurons.

528 B. Meftah et al.

Fig. 1 (a) Spiking neural network architecture; (b) Multiple synapses transmitting multiple
spikes.

Formally, a neuron j, having a set Γj of immediate predecessors (pre-synaptic
neurons), receives a set of spikes with firing times ti, i ∈Γj. Any neuron generates at
most one spike during the simulation interval, and fires when the internal state vari-
able reaches a threshold ϑ . The dynamics of the internal state variable x j(t) are de-
termined by the impinging spikes, whose impact is described by the spike-response
function ε(t) modeling a simple α-function weighted by the synaptic efficacy wi j:

x j(t) = ∑
i∈Γj

m

∑
k=1

wk
i jε(t − ti − dk) (1)

The height of the post-synaptic potential (PSP) is modulated by the synaptic weight
wi j to obtain the effective post-synaptic potential (PSP).

ε(t) a spike-response function shaping a PSP and τ models the membrane poten-
tial decay time constant that determines the rise and decay time of the PSP. Figure
2 illustrates and equation (2) represents one of the most popular mathematical spike
response models.

x j(t) = ∑
i∈Γj

m

∑
k=1

wk
i jε(t − ti − dk) (2)

In the network as introduced in [13], an individual connection consists in a fixed
number of m synaptic terminals, where each terminal serves as a sub-connection
that is associated with a different delay and weight (Fig. 1.b). The delay dk of a
synaptic terminal k is defined by the difference between the firing time of the pre-
synaptic neuron, and the time the post-synaptic potential starts rising.

We describe a presynaptic spike at a synaptic terminal k as a PSP of standard
height with delay dk. The unweighted contribution of a single synaptic terminal to
the state variable is then given by:

yk
i (t) = ε(t − ti − dk) (3)

Image Processing with Spiking Neuron Networks 529

Fig. 2 Spike response Function, Postsynaptic Potential is Excitatory (EPSP),τ = 8.

The time ti is the firing time of pre-synaptic neuron i, and dk the delay associated
with the synaptic terminal k.

Extending equation Eq.1 to include multiple synapses per connection and insert-
ing equation (Eq.3), the state variable x j of neuron j receiving input from all neurons
i can then be described as the weighted sum of the pre-synaptic contributions:

x j(t) = ∑
i∈Γj

m

∑
k=1

wk
i jy

k
i (t) (4)

Where wk
i j denotes the weight associated with synaptic terminal k. The firing time

t j of neuron j is determined as the first time when the state variable crosses the
threshold ϑ : x j(t) ≥ ϑ . Thus, the firing time t j is a non-linear function of the state
variable x j : t j = t j(x j).

2.3 Neural Coding Schemes

The spiking model is fundamentally different than previous generations of artifi-
cial neurons. Most importantly, the information passed by spikes can only be that
of the relative timing between them. Thus the passing of useful information across
a spiking net requires conversion from other forms (typically analog) to temporal
data. The first question that arises when dealing with spiking neurons is how neu-
rons encode information in their spike trains. Basically, there are three different
coding methods: rate coding, temporal coding and population coding (see [14] for
reviews).

530 B. Meftah et al.

2.3.1 Rate Coding

Rate coding is a traditional coding scheme, assuming that most, if not all, infor-
mation about the stimulus is contained in the firing rate of the neuron. Because
the sequence of action potentials generated by a given stimulus varies from trial to
trial, neuronal responses are typically treated statistically or probabilistically. They
may be characterized by firing rates, rather than as specific spike sequences. Con-
sequently, rate coding is inefficient but highly robust with respect to the Inter-Spike
Interval Noise (ISI Noise) [15].

2.3.2 Temporal Coding

When precise spike timing or high-frequency firing-rate fluctuations are found to
carry information, the neural code is often identified as a temporal code [16]. A
number of studies have found that the temporal resolution of the neural code is on a
millisecond time scale, indicating that precise spike timing is a significant element
in neural coding [17], [18]. Temporal codes employ those features of the spiking
activity that cannot be described by the firing rate. The temporal structure of a spike
train or firing rate evoked by a stimulus is determined both by the dynamics of
the stimulus and by the nature of the neural encoding process. Stimuli that change
rapidly tend to generate precisely timed spikes and rapidly changing firing rates no
matter what neural coding strategy is being used. Temporal coding refers to tem-
poral precision in the response that does not arise solely from the dynamics of the
stimulus, but that nevertheless relates to properties of the stimulus. The interplay be-
tween stimulus and encoding dynamics makes the identification of a temporal code
difficult.

2.3.3 Population Coding

Population coding is a method to represent stimuli by using the joint activities of
a number of neurons. In population coding, each neuron has a distribution of re-
sponses over some set of inputs, and the responses of many neurons may be com-
bined to determine some value about the inputs. From the theoretical point of view,
population coding is one of a few mathematically well-formulated problems in
neuroscience. It grasps the essential features of neural coding and yet, is simple
enough for theoretic analysis [17]. Experimental studies have revealed that this cod-
ing paradigm is widely used in the sensor and motor areas of the brain.

3 Spiking Neuron Networks for Clustering, Segmentation and
Edge Detection

However, before building a SNN, we have to explore three important issues: in-
formation coding, learning method and network architecture for each operation of
image processing. After that we will use the SNN to cluster images, segment images
and detect edges.

Image Processing with Spiking Neuron Networks 531

In order to simplify the model, we assume that before a neuron generates a spike,
it has been at its resting state for a sufficiently long time such that the back propa-
gation action potential is negligible. Also, in one learning cycle, each neuron fires
only once.

In this section, we will review how to encode real input data temporally, the
architecture and learning of spiking neural networks.

3.1 Information Coding

Spike timing encoding is the process of transforming measurements of sensory in-
puts into a spike train representation, which is the form of input a spiking neuron can
handle. Thus the multidimensional raw data, which consists of real values, needs to
be mapped into a temporal space before being fed to the network.

Bohte et al. [19], proposed the population coding method that encodes an input
variable using multiple overlapping Gaussian Receptive Fields (RF). Gaussian RF
are used to generate firing times from real values. The range of the data is first
calculated, and then each input feature is encoded with a population of neurons that
cover the whole data range. For a range [IMax..IMin] of a variable, which is also called
the coding interval, a set of m Gaussian RF neurons are used. The center Ci and the
width σi of each RF neuron i are determined by the following equations:

Ci = Imin +

(
2i− 3

2

)(
Imax − Imin

m− 2

)
(5)

σi =
1
γ

Imax − Imin

m− 2
(6)

Where m is number of receptive fields in each population and a value of 1.5 is used
for the variable γ .

While converting the activation values of RF into firing times, a threshold ϑ
has been imposed on the activation value. A receptive field that gives an activation
value less than this threshold will be marked as not-firing and the corresponding
input neuron will not contribute to the post-synaptic potential.

An illustration of this encoding scheme is shown in Figure 3, which shows the
firing times resulting from the encoding of the real value 0.3 using six RF. In this
example, assuming that the time unit is millisecond, the value 0.3 was encoded with
six neurons by delaying the firing of neurons 1 (5.564ms), 2 (1.287ms), 3 (0.250ms),
4 (3.783ms) and 5 (7.741ms). Neuron 6 does not fire at all, since the delay is above
threshold 9ms and stand in the no firing zone.

3.2 Spiking Neuron Networks for Unsupervised Learning Method

Our goal is that after learning, the spiking neural network can do clustering, segmen-
tation and edge detection by using the firing time of postsynaptic neurons associated

532 B. Meftah et al.

Fig. 3 Coding of a real value, and its corresponding firing time.

with each input pattern. The approach presented here implements the Hebbian rein-
forcement learning method through a winner-take-all algorithm [20], [21].

For unsupervised learning, a Winner-Takes-All learning rule modifies the weights
between the input neurons and the neuron first to fire in the output layer using a
time-variant of Hebbian learning: if the start of a PSP at a synapse slightly precedes
a spike in the output neuron, the weight of this synapse is increased, as it had signif-
icant influence on the spike-time via a relatively large contribution to the membrane
potential. Earlier and later synapses are decreased in weight, reflecting their lesser
impact on the output neuron’s spike time. The synaptic weights should be randomly
initialized. When an input pattern is presented to the network, neurons are expected
to fire. The first neuron to fire is called the winner of the competitive process. Only
the weights of the winner neuron are updated using a Hebbian learning rule L(Δ t).

In a clustering task, the learning process consists mainly of adapting the time
delays, so that each output neuron represents an RBF center. This goal is achieved
using a learning function (Fig.4), which is defined as a function of the time interval
Δ ti j between the firing times ti and t j. This function controls the learning process by
updating the weights based on this time difference, as shown in equation (7), where
Δwi j is the amount by which the weights wi j are increased or decreased and η is the
learning rate.

Δwk
i j = ηL(Δ ti j) (7)

The learning function is a Gaussian curve defined by the equation (8). It reinforces
the synapse between neurons i and j if Δ ti j < 0, and depresses the synapse if Δ ti j > 0
(Gerstner, 2002, Leibold,2001).

L(Δ t) = (1+ b)e
(Δt−c)2

2(k−1) − b (8)

Image Processing with Spiking Neuron Networks 533

with
k = 1− ν2

2ln b
1+b

where: L(.) is the learning function; η is the learning rate; ν determines the width of
the learning window; Δ t is the difference between the arriving of the spike and the
fire of neuron j; b determines the negative update given to a neuron; c fixes the peak
of the learning function; wk

i j is the increase of the kth connection between neurons
i and j. The weights are limited to the range 0 to wmax, the maximum value that a
weight can take.

Fig. 4 Gaussian learning function with b =0.2 c=-2.3 and ϑ = 5.

It is important to remark that this system is extremely sensible to the b parameter,
since a range from 0 to -0.3 leads to completely different dynamics in the learning
process. When the synaptic weight sum is stable (b=-0.007), the firing time tends to
evolute only according to the competitive learning process [23].

3.3 SNN Architecture for Clustering, Segmentation and Edge
Detection

3.3.1 SNN Architecture for Clustering Images

The model for a spiking neuron which we use in the following is the spike response
model with short term memory. Here we consider a network of such spiking archi-
tecture in a fully connected feedforward with connections implemented as multiple
delayed synaptic terminals (Fig. 5).

The network consists in an input layer, a hidden layer, and an output layer. The
first layer is composed of three inputs neurons (RGB values) of pixels. Each node
in the hidden layer has a localized activation φn = φ(‖X −Cn‖,σn) where φn(.) is

534 B. Meftah et al.

Fig. 5 Network topology for clustering and Segmentation images.

a radial basis function (RBF) localized around Cn with the degree of localization
parameterized by σn. Choosing φ(Z,σ) = exp Z2

2σ 2 gives the Gaussian RBF. This
layer transforms real values to temporal values.

Instead of a single synapse, with its specific delay and weight, this synapse model
consists of many sub-synapses, each one with its own weight and delay dk, as shown
in Fig.1.b. The use of multiple synapses enables an adequate delay selection using
the learning. For each multiple synapse connecting neuron i to neuron j, with s
subsynapses, the resulting PSP is given by equation (1). The total contribution of all
presynaptic neurons is then given by equation (4). The neuron model implemented
is the SRM0 (Gerstner, 2002), with a strictly excitatory PSP. The delays dk are fixed
for all sub-synapse k, varying from zero in 1ms fixed intervals. ε(t) modeling a
simple α-function.

3.3.2 SNN Architecture for Cell Segmentation

In this section, before introducing the architecture used, we give a quick review of
cellular segmentation methods.

Image analysis in the field of cancer screening is a significant tool for cytopathol-
ogy [24]. Two principal reasons can be highlighted. First, the quantitative analysis

Image Processing with Spiking Neuron Networks 535

of shape and structure of nuclei coming from microscopic color images brings to
the pathologist valuable information for diagnosis assistance. Second, the quantity
of information that the pathologist must deal with is large, in particular when the
number of cancer screening increases. That is why; a segmentation scheme for mi-
croscopic cellular imaging must be efficient for reliable analysis.

Many cellular segmentation methods have been presented. They include water-
shed [25], region-based [26] and threshold-based methods [27]. Application of ac-
tive contour has been widely investigated for cell segmentation (Karlosson, 2003).
Cells stained with Papanicolaou international staining make it possible to classify
the color pixels among three classes [29]: background, cytoplasm or nucleus. How-
ever, this classification cannot be perfect. Indeed, a fraction on nuclei pixels have
the same color then cytoplasm pixels because of the variability of the nuclei accord-
ing to the type of the cells and to the chromatin distribution. Moreover, for some
cytopathologies, the mucus present in the background has the same color as some
cells (cytoplasm and nucleus).

For cell segmentation, The network architecture consists in a fully connected
feedforward network of spiking neurons with connections implemented as multiple
delayed synaptic terminals. We consider two different topologies for unsupervised
and supervised learning. For unsupervised learning, the SNN performs its learning
directly on the pixels of the image to classify. For unsupervised learning, a reference
data set of pixels from different images is used for learning. In both topologies
depicted in Fig. 6(a) and Fig. 6(b), the network consists in an input layer, a hidden
layer, and an output layer. The first layer is composed of RGB values of pixels. Each
node in the hidden layer has a localized activation φn = φ(‖X−Cn‖,σn) where φn(.)
is a radial basis function (RBF) localized around Cn with the degree of localization
parameterized by σn. Choosing φ(Z,σ) = exp Z2

2σ 2 gives the Gaussian RBF. This
layer transforms the RGB values of pixels in first layer to temporal values. Third
layer consist in class outputs (cell background, cytoplasm and nuclei).

The network architecture consists in a fully connected feedforward network of
spiking neurons with connections implemented as multiple delayed synaptic termi-
nals. We consider two different topologies for unsupervised and supervised learning.
For unsupervised learning, the SNN performs its learning directly on the pixels of
the image to classify. For unsupervised learning, a reference data set of pixels from
different images is used for learning. In both topologies depicted in Figure 6(a) and
Figure 6(b), the network consists of an input layer, a hidden layer, and an output
layer. The first layer is composed of RGB values of pixels. Each node in the hidden
layer has a localized activation n where n (.) is a radial basis function (RBF) local-
ized around cn with the degree of localization parameterized by n. Choosing z gives
the Gaussian RBF. This layer transforms the RGB values of pixels in first layer to
temporal values. Third layer consist in class outputs (cell background, cytoplasm
and nuclei).

536 B. Meftah et al.

(a)

(b)

Fig. 6 (a) Network topology for unsupervised training; (b) Network topology for supervised
training.

3.3.3 SNN Architecture for Edge Detection

First image of a microscopic cell is segmented with spiking neural network. Once
the segmentation done, we will record the activity of each output neuron which
gives for each input pixel an output binary 1 if the neuron is active or 0 if the neuron
is inactive. The result of binary matrices activation of output neurons can be rep-
resented by binary images containing the edges detected by these neurons for each
class. Fusion is then made to have the final edges by superimposing the resulting
images (Figure 7).

Image Processing with Spiking Neuron Networks 537

Fig. 7 SNN edge network topology.

4 Experimental Results and Discussion

4.1 Clustering Images

Based on the work in [30], several experiments are carried out by changing the
number of synapses, the number of receptive fields and the size of training corpus
to select the best network parameters on a set of 50 images taken from the Berke-
ley database (Martin, 2001). The best architecture for a mean quadratic error of
87.352+−[28.747,39.319] has the following parameters:

Table 1 Best parameter of the SNN.

Receptive
field

Subsynapse Threshold
ϑ

Training set η τ υ b c

8 12 9 20% 0.0025 3 5 -0.007 -2.3

To compare the result of clustering with others models, we had used the neural
network SOM and Kmeans. The clustering image with Kmeans is shown in Figure
8.a, with SOM neural network is shown below in Figure 8.b and with spiking neural
networks in Figure 8.c.

Evaluation Methods

To see if clustering is close to the original image, an error metric is needed. The
error between the original image and the quantized image is generally used. For
this evaluation we had used the Peak Signal Noise Ratio (PSNR), the Mean Square
Error (MSE), the Mean Absolute Error (MAE) and Normalized Color Difference
(NCD) are therefore considered to evaluate the clustering. Table 2 summarizes the
evaluation obtained for each resulting image in Figure 8.

538 B. Meftah et al.

(a) (b)

(c)

Fig. 8 (a) Clustering image with Kmeans (b) Clustering image with SOM (c) Clustering
image with SNN.

Table 2 Clustering evaluation (best rates bold faced).

clustering with Kmeans clustering with SOM clustering with SNN
PSNR 51.283 62.574 65.404
MSE 385.37 124.596 93.845
MAE 16.643 7.960 7.841
NCD 0.152 0.110 0.083

Image Processing with Spiking Neuron Networks 539

4.2 Cell Segmentation

For the considered class of microscopic images, a microscopy expert has to choose
judicious images that well describe the whole segmentation problem (a ground
truth). This ground truth database can be used for the learning step and also as a
reference segmentation to evaluate the relevance of an automatic segmentation. In
the sequel, we will consider a publicly available database [32] of 8 microscopic im-
ages of bronchial tumors (752 x 574 pixels). The pixels of these images have to be
classified into one of the three following classes background, cell cytoplasm and
cell nucleus. Figures 9.a and 9.b shows a microscopic color image and its ground
truth. Pixel dataset has been split to produce training, validation and test sets.

(a) (b)

Fig. 9 (a) Original image; (b) Ground truth.

Images in Figure 10 show segmentation results with our segmentation scheme
for the parameter of Table 1 in comparison with the expert segmentation. It is worth
to note that the mucus present in all images is correctly identified as background
[33].

Evaluation Methods

To evaluate our approach, we use several classification rates. These classifications
rates are expressed as follows:

R0 =
Number o f pixels well classi f ied
Number o f pixels o f the image

(9)

R1 =
Number o f nuclei pixels well classi f ied
Number o f nuclei pixels o f the image

(10)

540 B. Meftah et al.

Fig. 10 Cell microscopic images (First row); expert segmentation (Second row); segmenta-
tion produced by unsupervised training (Third row) and segmentation produced by supervised
training (Fourth row).

Image Processing with Spiking Neuron Networks 541

R2 =
Number o f background pixels well classi f ied
Number o f background pixels o f the image

(11)

R3 =
R1 +R2

2
(12)

Results in Table 3 show that SNN with supervised training has the best classification
accuracies as compared to SNN with unsupervised training.

Table 3 Classification rates (best rates bold faced).

SNN with unsupervised train-
ing

SNN with supervised training

R0 89.07% 94.27%
R1 69.57% 80.37%
R2 94.55% 99.06%
R3 82.06% 89.71%

Table 4 presents a comparison of the classification accuracies obtained by Meurie
et al. [32] for different classifiers as well as with our SNN supervised training. Our
approach clearly outperforms all these state-of-the-art methods.

Table 4 Segmentation rates and comparison with Meurie et al. approaches [32], with best
rates bold faced.

Classifier R1

SVM 72.2%
Bayes 74.6%
K-means 74.4%
MLP 73%
Fisher 1 72.3%
KNN 70%
Supervised SNN 80.37%

4.3 Edge Detection

The result of edge detection and a comparison with other methods of edge detection
is obtained in Figure 11.

542 B. Meftah et al.

(a) (b)

(c) (d)

Fig. 11 (a) Edge detection with Prewitt (b) Edge detection with morphology black top hat
(c) Edge detection with Canny (d) Edge detection with SNN.

5 Conclusion

In this chapter, we have applied a Spiking Neural Network (SNN) Model for im-
age clustering, segmentation and edge detection. To use a SNN for these problems,
we have addressed the issue of parameter selection. We have focused our study on
the keys parameters: network architecture (number of subsynapses, receptive fields,
output neurons) and learning parameters (training step, size of the training data base,
peak of the learning function). These parameters are set up for each specific image
problem problems. Results have shown that a careful setting of parameters is re-
quired to obtain efficient results. Future works will concern the application of this
works to video processing.

Image Processing with Spiking Neuron Networks 543

References

1. Ghosh-Dastidar, S., Adeli, H.: Third generation neural networks: Spiking neural net-
works. In: Yu, W., Sanchez, E.N. (eds.) Advances in Computational Intelligence. AISC,
vol. 61, pp. 167–178. Springer, Heidelberg (2009)

2. Paugam-Moisy, H., Bohte, S.M.: Computing with Spiking Neuron Networks. In: Kok,
J., Heskes, T. (eds.) Handbook of Natural Computing. Springer, Heidelberg (2009)

3. Thorpe, S. J., Delorme, A., VanRullen, R. : Spike-based strategies for rapid processing.
Neural Networkss 14(6-7), 715–726 (2001)

4. Wu, Q.X., McGinnity, M., Maguire, L.P., Belatreche, A., Glackin, B.: Processing visual
stimuli using hierarchical spiking neural networks. Neurocomputing 71(10-12), 2055–
2068 (2008)

5. Girau, B., Torres-Huitzil, C.: FPGA implementation of an integrate-and-fire LEGION
model for image segmentation. In: European Symposium on Artificial Neural Networks,
ESANN 2006, pp. 173–178 (2006)

6. Buhmann, J., Lange, T., Ramacher, U.: Image Segmentation by Networks of Spiking
Neurons. Neural Computation 17(5), 1010–1031 (2005)

7. Rowcliffe, P., Feng, J., Buxton, H.: Clustering within Integrate-and-Fire Neurons for
Image Segmentation. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415,
pp. 69–74. Springer, Heidelberg (2002)

8. Maass, W.: On the relevance neural networks. MIT Press, London (2001)
9. Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press (2002)

10. Gerstner, W., Kistler, W.: Mathematical formulations of Hebbian learning. Biological
Cybernetics 87, 404–415 (2002)

11. Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network
Models. Neural Networks 10(9), 1659–1671 (1997)

12. Maass, W.: Computing with spiking neurons. In: Maass, W., Bishop, C.M. (eds.) Pulsed
Neural Networks, MIT Press, Cambridge (1999)

13. NatschlNager, T., Ruf, B.: Spatial and temporal pattern analysis via spiking neurons.
Network: Comp. Neural Systems 9(3), 319–332 (1998)

14. Averbeck, B., Latham, P., Pouget, A.: Neural correlations, population coding and com-
putation. Nature Reviews Neuroscience 7, 358–366 (2006)

15. Stein, R., Gossen, E., Jones, K.: Neuronal variability: noise or part of the signal? Nature
Reviews Neuroscience 6, 389–397 (2005)

16. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems. The MIT Press, Cambridge (2001)

17. Butts, D.A., Weng, C., Jin, J., Yeh, C., Lesica, N.A., Alonso, J.M., Stanley, G.B.: Tem-
poral precision in the neural code and the timescales of natural vision. Nature 449, 92–95
(2007)

18. Bohte, S.M.: The Evidence for Neural Information Processing with Precise Spike-times:
A Survey. Natural Computing 3(2), 195–206 (2004)

19. Bohte, S.M., La Poutre, H., Kok, J.N.: Unsupervised clustering with spiking neurons by
sparse temporal coding and Multi-Layer RBF Networks. IEEE Transactions on Neural
Networks 13(2), 426–435 (2002)

20. Oster, M., Liu, S.C.: A winner-take-all spiking network with spiking inputs. In: Proceed-
ings of the 11th IEEE International Conference on Electronics, Circuits and Systems
(ICECS 2004), vol. 11, pp. 203–206 (2004)

21. Gupta, A., Long, L.N.: Hebbian learning with winner take all for spiking neural net-
works. In: IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1189–
1195 (2009)

544 B. Meftah et al.

22. Leibold, C., Hemmen, J.L.: Temporal receptive fields, spikes, and Hebbian delay selec-
tion. Neural Networks 14(6-7), 805–813 (2001)

23. da Silva Simões, A., Costa, A.H.R.: A Learning Function for Parameter Reduction in
Spiking Neural Networks with Radial Basis Function. In: Zaverucha, G., da Costa, A.L.
(eds.) SBIA 2008. LNCS (LNAI), vol. 5249, pp. 227–236. Springer, Heidelberg (2008)

24. Knesek, E.A.: Roche image analysis system. Acta Cytologica 40(1), 60–66 (1996)
25. Lezoray, O., Cardot, H.: Cooperation of pixel classification schemes and color water-

shed: a Study for Microscopical Images. IEEE Transactions on Images Processing 11(7),
738–789 (2002)

26. Mouroutis, T., Roberts, S.J., Bharath, A.A.: Robust cell nuclei segmentation using sta-
tistical modeling. BioImaging 6, 79–91 (1998)

27. Wu, H.S., Barba, J., Gil, J.: Iterative thresholding for segmentation of cells from noisy
images. J. Microsc. 197, 296–304 (2000)

28. Karlsson, A., Stråhlén, K., Heyden, A.: Segmentation of Histopathological Sections
Using Snakes. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749,
pp. 595–602. Springer, Heidelberg (2003)

29. Papanicolaou, G.N.: A new procedure for staining vaginal smears. Science 95, 432
(1942)

30. Meftah, B., Benyettou, A., Lezoray, O., Wu, Q.X.: Image clustering with spiking neuron
network. In: IEEE World Congress on Computational Intelligence, International Joint
Conference on Neural Networks (IJCNN 2008), pp. 682–686 (2008)

31. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural im-
ages and its application to evaluating segmentation algorithms and measuring ecological
statistics. In: Proc. 8th Int Conf. Computer Vision, vol. 2, pp. 416–423 (2001)

32. Meurie, C., Lezoray, O., Charrier, C., Elmoataz, A.: Combination of multiple pixel clas-
sifiers for microscopic image segmentation. IASTED International Journal of Robotics
and Automation 20(2), 63–69 (2005)

33. Meftah, B., Lezoray, O., Lecluse, M., Benyettou, A.: Cell Microscopic Segmentation
with Spiking Neuron Networks. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.)
ICANN 2010, Part I. LNCS, vol. 6352, pp. 117–126. Springer, Heidelberg (2010)

Circle Detection on Images Using Learning
Automata

Erik Cuevas, Fernando Wario, Daniel Zaldivar,
and Marco Pérez-Cisneros

Abstract. The outcome of Turing’s seminal work, originally proposed as a simple
operational definition of intelligence, delivered several computer applications for
solving complex engineering problems such as object detection and pattern recog-
nition. Among such issues, circle detection over digital images has received con-
siderable attention from the computer vision community over the last few years.
This chapter presents an algorithm for the automatic detection of circular shapes
from complicated and noisy images with no consideration of conventional Hough
transform principles. The proposed algorithm is based on Learning Automata (LA)
which is a probabilistic optimization method that explores an unknown random en-
vironment by progressively improving the performance via a reinforcement signal.
The approach uses the encoding of three non-collinear points as a candidate circle
over the edge image. A reinforcement signal indicates if such candidate circles are
actually present in the edge map. Guided by the values of such reinforcement signal,
the probability set of the encoded candidate circles is modified through the LA algo-
rithm so that they can fit to the actual circles on the edge map. Experimental results
over several complex synthetic and natural images have validated the efficiency of
the proposed technique regarding accuracy, speed and robustness.

1 Introduction

In 1936, the English mathematician Alan Turing published a ground-breaking paper
entitled: “On computable numbers, with an application to the Entscheidungsprob-
lem” [23]. In the paper, Turing introduced the notion of an abstract model of compu-
tation as an idealization of practices and capabilities of a human computer, that is, a
person who follows a precisely laid down and reliable procedure to derive numerical

Erik Cuevas · Fernando Wario · Daniel Zaldivar · Marco Pérez-Cisneros
Universidad de Guadalajara, Av. Revolucin 1500
e-mail: {erik.cuevas,fernando.wario,daniel.zaldivar,marco.perez}

@cucei.udg.mx

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 545–570.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

546 E. Cuevas et al.

values (i.e., outputs) bearing a specified relation to the initial data (inputs). This ab-
stract model has been known as the Turing machine. The outcome of such seminal
work delivered several new computer paradigms for solving different engineering
problems such as object detection and pattern recognition. Such tasks have been
strongly influenced by Turing’s legacy as their methods are conceived as iterative
procedures.

On the other hand, the problem of detecting circular features holds paramount
importance for image analysis, in particular for industrial applications such as auto-
matic inspection of manufactured products and components, aided vectorization of
drawings, target detection, etc. [9]. Circular Hough transform [15] is arguably the
most common technique for circle detection on digital images. A typical Hough-
based approach employs an edge detector to infer locations and radii values. Averag-
ing, filtering and histogramming of the transformed space are subsequently applied.
The approach demands a large storage space as 3-D cells to store operational pa-
rameters (x, y, r), seriously constraining the overall performance to low processing
speeds. In Hough Transform methods, circle’s parameters are poorly defined under
noisy conditions [1] yielding a longer processing time which constrains their appli-
cation. In order to overcome such problems, researchers have proposed new Hough
transform-based (HT) approaches such as the probabilistic HT [20], the randomized
HT (RHT) [26] and the fuzzy HT (FHT) [10]. In [13], Lu and Tan proposed a novel
approach based on RHT called Iterative Randomized HT (IRHT) that achieves bet-
ter results on complex images and noisy environments. Such implementations apply
iteratively the RHT to a given region of interest which has been previously defined
from the latest estimation of ellipse/circle parameters.

Alternatively to the Hough Transform, the shape recognition problem in com-
puter vision has also been handled with optimization methods. In particular, Genetic
Algorithms (GA) have recently been used for important shape detection tasks. For
instance, Roth and Levine have proposed the use of GA for extracting geometrical
primitives [18]. Lutton et al. have developed an improvement of the aforementioned
method [14] while Yao et al. have proposed a multi-population GA to detect ellipses
[27]. In [28], GA have been used for template matching despite the available pattern
has been modified by an unknown affine transformation. Ayala-Ramirez et al. have
presented a GA based circle detector in [2] which is able to detect multiple circles
on real images but failing frequently on imperfect circles.

This paper assumes the circle detection problem as an optimization algorithm
and develops an alternative approach based on Learning Automata (LA) [12, 4, 22].
LA is an adaptive decision making method that operates at an unknown random
environment while progressively improving its performance via a learning process.
A probability density function is defined over the parameter space where each pa-
rameter (or parameters in case of a multidimensional problem) represents an action
which is applied to a random environment. The corresponding response from the
environment, which is also known as reinforcement signal, is used by the automata
to update the probability density function at each stage in order to select its next
action. The procedure continues until an optimal action is defined.

Circle Detection on Images Using Learning Automata 547

The main motivation behind the use of LA refers to its abilities as global op-
timizer for multimodal surfaces. Optimization techniques based on Learning Au-
tomata (LA) fall into the random search class. The distinguishing characteristic of
automata-based learning is that the searching for the optimal parameter vector is per-
formed within the space of probability distributions which has been defined over the
parameter space rather than over the parameter space itself [16]. Therefore LA has
been employed to solve different sorts of engineering problems, for instance, pat-
tern recognition [19], adaptive control [29], signal processing [11], power systems
[25] and computer vision [7]. Other interesting applications for multimodal com-
plex function optimization based on the LA have been proposed in [11, 21, 30, 3],
yet showing that their performance is comparable to (GA) [30].

This paper presents an algorithm for the automatic detection of circular shapes
from complicated and noisy images with no consideration of conventional Hough
transform principles. The proposed algorithm LA requires the probability of three
encoded non-collinear edge points as candidate circles (actions). A reinforcement
signal indicates if such candidate circles are actually present in the edge-only im-
age. Guided by the values of such performance evaluation function, the probability
set of the encoded candidate circles is modified using the LA algorithm so that they
can fit into the actual circles (optimal action) in the edge map. The approach gener-
ates a sub-pixel circle detector which can effectively identify circles in real images
despite circular objects exhibiting a significant occluded portion. Experimental ev-
idence shows its effectiveness for detecting circles under different conditions. A
comparison to other state-of-the-art methods such as the GA algorithm [2] and the
Iterative Randomized Hough Transform approach (IRHT) [13] on multiple images
has demonstrated the improved performance of the proposed method.

The paper is organized as follows: Section 2 provides a brief outline of LA theory
while Section 3 presents the LA-based circle detector. In section 4 a new approach
for the detection of multiple circles using heuristic algorithms is presented. Section 5
shows the results of applying the LA algorithm for circle recognition under several
image conditions and section 6 presents a performance comparison between the
proposed method and other relevant techniques reported in the literature. Finally
Section 7 discusses on some relevant conclusions.

2 Learning Automata

Learning Automata (LA) is a finite state machine that operates in an unknown
stochastic environment and progressively improves its performance through a learn-
ing process. LA features two characteristics: first, the action choice is based on
a probability distribution over the action-set and second, such probability distri-
bution is updated at each instant according to the reinforcement feedback from
the environment. Traditionally, the action-set is always considered to be finite.
Figure 1 shows the typical LA system architecture. Let B = {b1,b2, ...,bn},n <
∞, be the set of actions available. At each instant k, the automaton selects ran-
domly an action b(k) ∈ B based on its current internal probability distribution

548 E. Cuevas et al.

P(k) = {p1(k), p2(k), ..., pn(k)},k = 0,1, (Here, pi(k) = Prob[b(k) = bi] and
∑n

i=1 pi(k) = 1,∀k). After applying such action to the environment, a reinforce-
ment signal β (k) ∈ R ⊆ [0,1] is provided through the evaluation function, where
R is the set of all possible reactions. A reinforcement signal holding a higher value
is considered as a more desirable response. Let di denote the expected value of
β (k)i f b(k) = bi. Then di is known as the reward probability associated with ac-
tion bi. Let dm = maxi{di}, then the action bm is called the optimal action. If the
identity of the optimal action is not time-varying, then the environment is said
to be stationary. Otherwise, it is said to be non-stationary. The LA aims to iden-
tify the optimal action without any knowledge of the reward probabilities. This is
achieved through the learning algorithm that updates the internal probability distri-
bution P(k) to P(k+1) at each instant k, by considering the most recent interaction
with the environment. In general the internal probability distribution P(k) is up-
dated through a process in which the actions that achieve desirable performance are
reinforced via an increased probability while those not-performing actions are pe-
nalized or left unchanged depending on the particular learning rule which has been
employed. The procedure is repeated until the optimal action boptimal is found. From
an optimization-like perspective, the action with the highest probability (optimal ac-
tion) corresponds to the global minimum as it is demonstrated by rigorous proofs of
convergence available in [16] and [17].

The operation of a LA during iteration consists of two basic functions: (a) Proba-
bility Updating: based on the environmental response to the selected action β (b(k)),
the automaton modifies the probability distribution P(k) over the set of actions to
P(k+ 1), then, the automaton selects a new action. (b) Action Selection: according
to the new probability distribution P(k+1), the automaton selects a new action bnew

that is applied to the environment. A learning algorithm is said to be ε − optimal if
given any ε > 0, it is possible to choose a set of parameters for the learning algo-
rithm such that the probability will greater than 1− ε

Random
Environment

Performance
Evaluation

Learning
Automaton

Selected
Action

currentB

Environment
response

(())b kβ

(a)

Learning
Automaton

Learning
Automaton

Learning
Automaton

1x

2x

3x

1 2 3(, ,)=X x x x (())b kβ

(b)

Fig. 1 (a) The reinforcement learning system and (b) a parallel connected automata

Circle Detection on Images Using Learning Automata 549

Lim in fk→∞ poptimal(k)> 1− ε.

From the definition above, it is easily seen that ε−optimality is achieved if and only
if Lim in fk→∞E[β (k)]> doptimal −ε . Thus, the objective of the learning scheme is to
maximize the expected value of the reinforcement received from the environment.
Hence, an equivalent way of characterizing the goal of an automata algorithm is as
follows:

maximize f (P) = E[β (k)|P(k) = P]

There is a wide variety of reported learning algorithms that are proven to be ε −
optimal. One of the most widely used is the linear reward/inaction (LRI) scheme
[21]. Considering an automaton B with n different actions, br represents the action
r of a set of n possible actions. As a response to an action br, at a time step k, the
probability updating process from P(k) to P(k+ 1) is calculated as follows:

pr(k+ 1) = pr(k)+θ ·β (br) · (1− pr(k))

pq(k+ 1) = pq(k)−θ ·β (br)·q (k), i f q �= r (1)

With θ being a learning rate and 0 < θ < 1, β (·)[0,1] the reinforcement signal
whose value β (·) = 1 indicates the maximum reward and β (·) = 0 signals a null
reward considering r,q ∈ 1, ,n. Using the LRI scheme, the probability of successful
actions will increase until they become close to unity. The action selection phase
is achieved as follows: first, an uniformly distributed pseudo-random number z is
generated in the range [0,1], then, in order to select the next action bl ∈ (b1,b2, ,bn)
to be entered to the system and considering the present probability density function
to be P(k+ 1), the following sum should be done:

l

∑
h=1

ph(k+ 1)> z (2)

Therefore, the chosen action bl triggers the environment which responds through
feedback β (bl) and continues the loop. As stop criteria, the LA algorithm is con-
straint to a cycle number that is usually half of the number of actions considered
by the automaton. Once the cycle number has been reached, the action holding the
best probability value is taken as the solution boptimal . In order to solve multidi-
mensional problems, the learning automata can also become connected to a parallel
setup (see Figure 1(b)). Each automaton operates with a simple parameter while its
concatenation allows working within a multidimensional space. There is no inter-
automata communication as the only joining path is through the environment. In [2],
it is shown how discrete stochastic learning automata can be used to determine the
global optimum for problems with multi-modal surfaces.

550 E. Cuevas et al.

3 Circle Detection Using LA

3.1 Data Preprocessing

In order to apply the LA circle detector, candidate images must be pre-processed
in advance by the Canny algorithm which is one of the standard edge detector
algorithms that delivers single-pixel edge-only images. Once the image has been
pre-processed by the Canny algorithm, the (xi,yi) coordinates for each edge pixel
pi are stored inside the edge vector Pt = {p1, p2, , pNt}, with Nt being the total
number of edge pixels.Following the RHT technique in [2], only a representative
percentage of edge points (about 5%) are considered for building the new vector
array Pt = {p1, p2, , pNp}, where Np is the number of edge pixels randomly selected
from Pt .

3.2 Action Representation

In the context of this problem, each of the automata’s actions will represent a cir-
cle candidate laying on the image. In order to generate only plausible solutions,
each action Ci (circle candidate) will be constructed taking into consideration three
edge points previously stored inside the vector P. Such pixels must be grouped as-
suming that they are connected through the circle’s contour. Therefore, the circle
Ci = {pi1 , pi2 , pi3} passing over such points may be considered as a potential so-
lution for the detection problem. Considering the configuration of the edge points
shown by Figure 2, the circle center (x0,y0) and the radius r of Ci can be character-
ized as follows:

(x− x0)
2 +(y− y0)

2 = r2 (3)

Where x0 and y0 are computed through the following equations:

x0 =
det(A)

4((xi2 − xi1)(yi3 − yi1)− (xi3 − xi1)(yi2 − yi1))

y0 =
det(B)

4((xi2 − xi1)(yi3 − yi1)− (xi3 − xi1)(yi2 − yi1))
(4)

With det(A) and det(B) representing determinants of matrices A and B respectively,
considering:

A =

⎡⎣ x2
i2
+ y2

i2
− (x2

i1
+ y2

i1
) 2 · (yi2 + yi1)

x2
i3
+ y2

i3
− (x2

i1
+ y2

i1
) 2 · (yi3 + yi1)

⎤⎦

B =

⎡⎣ 2 · (xi2 − xi1) x2
i2
+ y2

i2
− (x2

i1
+ y2

i1
)

2 · (xi3 − xi1) x2
i3
+ y2

i3
− (x2

i1
+ y2

i1
)

⎤⎦ (5)

Circle Detection on Images Using Learning Automata 551

The radius r can therefore be calculated using:

r =
√
(x0 − xd)2 +(y0 − yd)2 (6)

where d ∈ {i1, i2, i3}, and (xd ,yd) are the coordinates of any of the three selected
points which define the action Cd . Figure 2 illustrates main parameters defined by
Equations 3-6. The shaping parameters for the circle, [x0,y0,r] can be represented
as a transformation T of the edge vector indexes i1, i2 and i3.

[x0,y0,r] = T (i1, i2, i3) (7)

r 1i
p

2i
p

3i
p

0 0(,)x y

Fig. 2 Circle candidate (action) formed from the combination of points pi1 , pi2 and pi3

The total number of actions nall is generated considering all feasible combina-
tions of Pt . After calculating the circle parameters [x0,y0,r] using equation 7, only
the actions whose radii fall into a determined range are considered. The allowed
range is defined to be 8 < r < max(I(columns)/2, I(rows)/2) where I(columns)
and I(rows) represent the maximum number of columns and rows inside the im-
age, respectively. Moreover, every candidate circle is considered only once, i.e. if
a group of pixels yields the parameters of a circle that has been already generated,
it will not be considered. Hence, the final number of actions nc, represents the re-
sulting solution set. The LA solution is based on tracking the probability evolution
for each circle candidate, also known as actions, as they are modified according to
their actual affinity. Such affinity is computed using an objective function which
determines if a circle candidate is actually present inside the image. Once the pre-
defined number of cycles has been reached, the circle candidate showing the highest
probability value is assumed as a circle actually present in the image. Although the
HT based methods for circle detection also use three edge points to cast one vote
for a potential circular shape in the parameter space, they require huge amounts of
memory and longer computational times to reach a sub-pixel resolution. On the con-
trary, the LA method employs an objective function yielding improvement at each

552 E. Cuevas et al.

generation step, discriminating among non-plausible circles and avoiding unneces-
sary testing of certain image points. However, both methods require a compulsory
evidence-collecting step for future iterations.

3.3 Performance Evaluation Function β (·)
In order to model the environment’s reaction to the application of an action Ci, the
circumference coordinates of the circle candidate Ci are calculated as a virtual shape
which must be validated, i.e. verified if it really exists in the edge image. The cir-
cumference coordinates are grouped within the test set Si = {s1,s2, ,sNs}, with NS

representing the number of points over which the existence of an edge point, cor-
responding to Ci, should be verified. The test Si is generated by the midpoint circle
algorithm (MCA) [24] which is an algorithm to determine the required points for
drawing a circle. MCA requires as inputs only the radius r and the center point
(x0,y0) considering only the first octant over the circle equation: x2 + y2 = r2. The
MCA aims to calculate the required points Si in order to represent a circle candidate.
It draws a curve starting at point (r,0) and proceeds upwards-left by using integer
additions and subtractions. Although the algorithm is considered as the quickest
providing a sub-pixel precision, it does not considers the actual image dimensions;
therefore it is important to assure that points lying outside the image are not consid-
ered in Si. The reinforcement signal β (Ci) represents the matching error produced
between the pixels Si of the circle candidate Ci (action) and the pixels that actually
exists in the edge-only image, yielding:

β (Ci) =
∑NS

h=1 E(Sh)

NS
(8)

Where E(sh) is a function that verifies the pixel existence in sh, being sh ∈ Si and
NS the number of pixels lying over the perimeter and corresponding to Ci, currently
under testing. Hence the function E(sh) is defined as:

E(sh) =

{
1, if the pixels sh is an edge point

0, otherwise
(9)

A value of β (Ci) near to unity implies a better response from the “circularity” op-
erator. Figure 3 shows the procedure to evaluate a candidate action Ci with its rep-
resentation as a virtual shape Si. Figure 3(a) shows the original edge map, while
Figure 3(b) presents the virtual shape Si representing the action Ci = {pi1 , pi2 , pi3}.
In Figure 3(c), the virtual shape Si is compared to the original image, point by point,
in order to find coincidences between virtual and edge points. The action has been
built from points pi1 , pi2 and pi3 which are shown in Figure 3(a). The virtual shape
Si, which is obtained by MCA, gathers 56 points (NS = 56) with only 18 of them ex-
isting in both images (shown as blue points plus red points in Figure 3) and yielding:
∑NS

h=1 E(sh) = 18, therefore β (Ci)≈ 0.33. The LA algorithm is set to a pre-selected
cycle limit that is usually chosen to half the number of actions (nc/2) that form

Circle Detection on Images Using Learning Automata 553

(a) (b)

(c)

Fig. 3 Environment reaction to an action Ci: The image shown by (a) presents the original
edge image while (b) portraits the virtual Si corresponding to Ci. The image in (c) shows
coincidences between both images through blue or red pixels while the virtual shape is also
depicted in green.

the automaton. There are two cases to obtain a solution (optimal action), either if
one action (circle candidate) generates a value of β (·) greater than a pre-established
limit or taking the highest probability action at the end of the learning process.

3.4 LA Implementation

The procedure of the LA circle detector can be summarized in the followings steps.

1. Apply the Canny filter to the original image.
2. Select 5% of the edge pixels to build the P vector and generate nall considering

all feasible combinations.
3. Generate nc by calculating [x0,y0,r] = T (i1, i2, i3) from nall , and selecting only

actions which are either the scope or are not repeated.
4. Set iteration k = 0.

554 E. Cuevas et al.

5. Initialize P(k) = p1(k), p2(k), . . . , pn(k) to a uniform distribution, i.e. all ele-
ments of the vectors are set to (1/nc).

6. Repeat while k < (nc/2).
7. Select a new action Cv ∈ (C1,C2, . . . ,Cnc) to test, by generating a random z

between 1 and 0, and considering the area under the probability density function
as ∑v

h=1 ph(k)> z.
8. Evaluate the performance (environment reaction) calculating β (Cv) (Eq.8).
9. Update the automaton’s internal probability distribution P(k) =

{p1(k), p2(k), . . . , pn(k)} using Eq. 1.
10. Increase k, and jump to step 7.
11. After k > (nc/2), the solution Coptimal is represented by the element (circle)

showing the highest probability within vector P(k).

Figure 4 shows one of the results produced by the LA algorithm. The image in Fig-
ure 4(a) is considered as an input, a noisy image with a resolution of 200× 200
pixels which contains one imperfect circle. The best found circle, which is shown
in Figure 4(b), is obtained after 100 iterations. In the experiment, the required de-
tection time is 0.1 seconds. Figure 4(c) presents the action’s probability distribution
evolution P(k) across the 100 epochs; it is easy to identify the action with the highest
probability as it is represented by the highest peak.

4 The Multiple Circle Detection Procedure

The circle detection method in [2, 8] has been commonly employed for detecting
multiple circles, finding one circle at a time. However, the method proposed in this
chapter is capable to detect singles or multiples circles through only one optimiza-
tion procedure. In our approach, the set of encoded candidate circles are evolved
using the LA, as it is guided by the values of a matching function (reinforcement
signal). The best circle candidate can thus be fitted into an actual circle within the
edge-only image. The actual meaning of the best circle candidate refers to the action
holding the highest value according to the probability distribution. In order to detect
remaining circles, the algorithm analyses the probability distribution as it aims to
find a significant local minima. In order to find the local minima, the probability
distribution is arranged into a descending order. The idea is to explore action by ac-
tion, identifying those representing an actual circle in the image. As several actions
can be represented by the same circle, a distinctiveness factor Esdi [6] is required
to measure the mismatch between two given circles (actions). This distinctiveness
factor is defined as follows:

Esdi = ‖xA − xB‖+ ‖yA− yB‖+ ‖rA− rB‖ (10)

Being, (xA,yA) and rA the central coordinates and radius of the circle CA respec-
tively, while (xB,yB), rB are the corresponding parameters of the circle CB. A thresh-
old value Esth is also calculated to decide whether two circles must be considered
different or not. Esth is calculated as:

Circle Detection on Images Using Learning Automata 555

(a) (b)

(c)

Fig. 4 The evolution of the probability parameters during the circle detection process: (a)
shows the original image while (b) depicts the detected circle as an overlay. Image in (c)
shows the parameter evolution that yields the probability density.

Esth =
rmax − rmin

s
(11)

Where [rmin,rmax] is the feasible radii’s range and s is a sensitivity parameter. By
setting a high s value, the case of two circles with quite similar parameters would
be considered different. On the other hand, a smaller value for s would consider
them as similar circles. After the probability distribution is obtained and arranged,
the highest value Prhigh is assigned to the first circle. Then, by exploring the remain-
ing values, other circles are detected through some discrimination criteria which are
depicted by Equations 9 and 10. This procedure is repeated until the action’s prob-
ability reaches a minimum threshold Prth. According to such threshold, the values
above Prth represent the actions (circles) that are considered as significant; mean-
while all values below such threshold are considered false circles and they are not
contained in the image. After several experiments the value of Prth has been set to

556 E. Cuevas et al.

Prhigh/10. The multiple circle detection procedure can be summarized in the fol-
lowing steps:

1. The parameter of sensitivity s is set in order to define Esth .
2. The actions (circles candidates) are organized into a descending order by consid-

ering their probabilities values.
3. The action with the highest probability Prhigh is identified as the first circle C1.
4. The distinctiveness factor Esdi of circle Cm (action m) with the next highest prob-

ability is evaluated with respect to Cm−1. If Esdi > Esth , then it is considered as a
new circle, otherwise, the next action is evaluated.

5. The step 4 is repeated until the probability of the current action to be evaluated
reaches the threshold value Prhigh/10.

(a) (b)

(c) (d)

Fig. 5 The multiple circle detection process: (a) shows details on the final probability distri-
bution, (b) presents thirty actions with highest probabilities as they are sorted into descending
order. (c) The edge-map image and (d) the detected circles.

Figure 5 shows the process which has been described for the detection of multiple
circles. Figure 5(a) shows a detail of the final probability distribution including the
action with the highest probability. As it is described above, the actions are sorted
into descending order according to the probability value which is achieved during
the learning process. Figure 5b shows the first thirty actions. The circles detected as
result of the analysis of the probability distribution are shown in Figure 5(d).

Circle Detection on Images Using Learning Automata 557

5 Experimental Results

In order to evaluate the performance of the proposed LA circle detector, several
experimental tests have been carefully implemented; the results of such experiments
are presented as follows:

1. Circle localization.
2. Shape discrimination.
3. Multiple circle localization.
4. Circular approximation.
5. Occluded circles and arc detection.
6. Complex cases.

Table 1 presents the parameter set for the LA implementation which has been exper-
imentally determined and kept for all test images through all experiments. All the
experiments are performed on a Pentium IV 2.5 GHz computer under C language
programming with all images being preprocessed by the standard Canny edge-
detector from the image-processing toolbox for MATLAB R2008a.

Table 1 LA circle detector parameters

Kmax θ

nc/2 0.003

5.1 Circle Localization

Synthetic images

The experimental setup includes the use of twenty binary synthetic images of 200×
200 pixels. Each image represents an edge map, with white pixels being considered
as edge pixels, meanwhile black pixels are considered as background as they can be
processed directly by the circle detection algorithm. Each image has been generated
drawing only one imperfect circle (ellipse shape) which has been randomly located.
All images have been contaminated by adding white pixels in random locations
as to increase the complexity in the detection process. Such addition will increase
the number of false actions in the LA and complicate the evaluation process. The
experiment aims to detect the center of the circle position (x,y) and its radius (r),
allowing only 100 epochs for each test image. For all the cases, the algorithm is able
to detect best circle parameters despite the noise influence. The detection is robust
to translation and scale keeping a reasonably low elapsed time (typically under 0.1
s).Figure 6 shows the results of the circle detection acting over a synthetic image.
Figure 6(a) corresponds to the original image while Figure 6(b) shows the detected
circle as an overlay.

558 E. Cuevas et al.

(a) (b)

Fig. 6 Circle detection and the evolution of the probability parameters. (a) Original image.
(b) The detected circle is shown as an overlay.

Natural images

The experiment tests the LA circle detector’s performance upon real-life images.
Twenty five images of 640× 480 pixels are used on the test. All images have been
captured by using digital camera under 8-bit color format. Each natural scene in-
cludes a circular shape among other objects. All images are preprocessed using the
Canny edge detection algorithm and then fed into the LA-based detector. Figure 7
shows a particular case from 25 test images. After evaluating 300 times the objective
function, the evolution of the probability distribution is shown by Figure 7(c). Real-
life images rarely contain perfect circles so the detection algorithm approximates the
circle that better adapts to the imperfect circle within a noisy image. Such circle cor-
responds to the smallest error from the objective function β (·). Detection results have
been statistically analyzed for comparison purposes. For instance, the detection algo-
rithm is executed 100 times on the same image (Figure 7), yielding same parameters
x0 = 231, y0 = 301 and r = 149. This indicates that the proposed LA algorithm is
able to converge to a minimum solution from the objective function β (·).

5.2 Circle Discrimination Test

Synthetic images

This section discusses on the algorithm’s ability to detect circles despite the image
featuring any other shape. Five synthetic images of 540×300 pixels are considered
in the experiment. Just as it happens in the experiments from section 5.1, all images
at this section have been contaminated with impulsive noise aiming formulating the
edge map that is usually obtained from a noisy image. Figure 8(a) shows one of the
images used during the experiment: a synthetic image containing different shapes
including an overlapped circle. Figure 8(b) presents the detected circle which has
been marked by a red overlay. It is important to notice that the algorithm would tend
to identify most relevant circular-like shapes on the image.

Circle Detection on Images Using Learning Automata 559

(a) (b)

(c)

Fig. 7 Circle detection and the evolution of the probability parameters for a natural image.
(a) Original image. (b) The detected circle is shown as an overlay, (c) parameter evolution
yielding the probability density graph.

(a) (b)

Fig. 8 A sample of synthetic image containing a variety of shapes. (a) sample input (b) the
detected circle.

560 E. Cuevas et al.

Natural images

The experiment is repeated considering real-life images. Figure 9 shows an exam-
ple that contains one circular shape among others. Its corresponding edge map is
depicted in Figure 9(b), although more than one circle may be shown in the image.
The algorithm will only detect the one that falls into its range of interest.

5.3 Multiple Circle Detection

The LA circle detector is also capable of detecting several circles embedded into the
same image. The approach is applied over the edge-only image until the first circle
is detected, i.e. the Coptimal circle holding the maximum probability value is located.
That shape is thus masked (i.e. eliminated) on the primary edge-only image. Then,
the LA circle detector operates again over the modified image. The procedure is
repeated as many times as necessary until the β (·) value of the action with the high-
est probability reaches a minimum predefined threshold Mth (typically 0.1). Figure
10(d) shows a natural image containing several overlaid detected circles. For this
case, the algorithm searches for the best circular shapes (greater than Mth). Figure
10(c) depicts the edge image after applying the Canny algorithm just before it is fed
into the LA algorithm.

(a) (b)

Fig. 9 Natural image with a variety of shapes: (a) the original image with an overlay for the
detected circle and (b) the corresponding edge map

5.4 Circular Approximation

In this approach, the circle detection process is considered to be similar to an op-
timization problem, assuming that it is feasible to approximate other circular-like
shapes by means of concatenating circles. The LA method detects several circular
patterns which show the highest probability. They can be subsequently reshaped into
a more complex geometry.

Figure 11 shows the approximation over several shapes by means of the circle
concatenation. In particular Figure 11(b) shows the circular approximation of a

Circle Detection on Images Using Learning Automata 561

partial circular shape and Figure 11(d) presents the circular approximation for an
ellipse. For both cases, three circles are used to approximate the original shape.

5.5 Occluded Circles and Arc Detection

The LA circle detector algorithm is also able to detect occluded or imperfect circles
as well as partially defined shapes such as arc segments. The LA algorithm achieves
the shape matching according to the probability value pi(k) which represents a score
value for a given shape candidate. Figure 12 shows an example on arcs detection.

A typical heuristic-based circle detector usually masks up previously detected
circles, losing valuable information. In contrast, the proposed method records the
available circle’s information during the evaluation process. Such fact enables the al-
gorithm to detect figures that would not be detectable under different circumstances.
Figure 13 shows an example of this situation, where three circular figures (two of
them occluded) are detected.

2500 3000 3500 4000 4500 5000 5500 6000

0.05

0.1

0.15

0.2

0.25
PROBABILITY DISTRIBUTION

actions

pr
ob

ab
ili

tie
s

(a)

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25
PROBABILITY DISTRIBUTION

actions

pr
ob

ab
ili

tie
s

(b)

(c) (d)

Fig. 10 Multiple circle detection on natural images: (a) the final probability distribution, (b)
thirty actions showing the highest probability in descending order. (c) The edge-map image
and (d) its correspondent detected circles as an overlay.

562 E. Cuevas et al.

5.6 Complex Cases

In order to test the robustness of the LA algorithm, a particular set of images has
been prepared. In addition to at least one circular figure, all the images in the set in-
clude other added shapes as well as impulsive noise, considering both as distracters.
Figure 14 presents the results after applying the LA method to one image from the
image set.Such synthetic image represents the edge map of a complex image; it can
be observed nine different geometrical shapes, among four circles with two sharing
their center coordinates.Yet, the algorithm is capable to detect the all circles in the
image. Figure 15 shows the analysis of another image; Figure 15(a) corresponds to
the original image that has been fed into the LA algorithm. The image contains six
shapes with three semi-circular patterns. The first circle (top-left on the image) is a
quasi-perfect shape while the second (down-right in the image) is an occluded cir-
cle. The last circular form has been hand-drawn at the top-right area. Figure 15(b)
shows the image after the circle detection process has been applied.

(a) (b)

(c) (d)

Fig. 11 Approximating several shapes by means of circle concatenation: (a)-(c)original im-
ages, (b)-(d) their circle approximation

Circle Detection on Images Using Learning Automata 563

(a) (b)

Fig. 12 Occluded circles and arc detection: (a) Original synthetic image with two arcs, (b)
its circle detection

(a) (b)

(c) (d)

Fig. 13 Multiple occluded circles detection: (a) the final probability distribution, (b) the thirty
actions showing the highest probability in descending order. (c) The edge-map image and (d)
its correspondent overlaid of detected circles.

564 E. Cuevas et al.

(a) (b)

Fig. 14 Circle detection over images with added shapes (distracters) and noise: (a) original
image with nine shapes, (b) detection of four circles (overlaid)

(a) (b)

Fig. 15 Circle detection on images containing different shapes (distracters): (a) original im-
age including six shapes, (b) detection of three imperfect circles

6 Performance Comparison

In order to enhance the algorithm discussion, the LA algorithm performance is com-
pared to other two approaches over a set of different images. First the IRHT [10] that
is mainly a deterministic approach whose method can be summarized as an iterative
application of the RHT. Second is the GA [2] circle detector which is represents a
heuristic approach which aims to find the parameters defining a circle in the image
by means of the GA evolution.

6.1 Parametric Setup

The GA follows the design described in Ayala-Ramirez et al. [2], with a population
size of 70, the crossover probability of 0.55, the mutation probability of 0.10 and
number of elite individuals equal to 2. The roulette wheel selection and the 1-point
crossover are both applied. The parameter setup and the fitness function follow the

Circle Detection on Images Using Learning Automata 565

configuration suggested in [2]. For the IRHT algorithm, all parameter values are
defined as suggested in [10], with its most important parameters being grouped into
the vector Δc which defines the desired set of enlargements for the circle/ellipse
parameters that are to be built as a new region of interest. At this comparison, Δc

is considered as Δc = [0.5 ·σx 0.5 ·σx 0.5 ·σa 0.5 ·σb 0], making the algorithm less
sensitive to noisy images. The LA parameters are presented in Table 1.

6.2 Error Score and Succes Rate

Images rarely contain perfectly-shaped circles. Therefore, in order to test accuracy,
the results are compared to ground-truth circles which are manually detected over
the original edge-map. The parameters (xtrue,ytrue,rtrue) of the ground-truth circle
are computed by using Equations 2 to 2, considering three circumference points
from the manually detected circle. If the centre and the radius for such circle are
defined as (xD,yD) and rD, then an error score can be computed as follows:

ES = η · (‖xA − xB‖+ ‖yA− yB‖)+ μ · ‖rA − rB‖ (12)

The first term represents the shift of the centre of the detected circle as it is com-
pared to the benchmark circle. The second term accounts for the difference between
their radii. η and μ are two weights which are chosen to agree the required accu-
racy as η = 0.05 and μ = 0.1. Such choice ensures that the radii length difference
would be strongly weighted in comparison to the difference of central circular po-
sitions between the manually detected and the machine-detected circles. In case ES

is less than 1, the algorithm gets a success; otherwise it has failed on detecting the
edge-circle. Notice that for η = 0.05 and μ = 0.1, it yields ES < 1 which accounts
for a maximal tolerated difference on radius length of 10 pixels, whereas the maxi-
mum mismatch for the centre location can be up to 20 pixels. In general, the success
rate (SR) can thus be defined as the percentage of reaching success after a certain
number of trials. Figure 16 shows three synthetic images and their results after pro-
cessing fromthe GA-based algorithm [2], the IRHT [13] and the proposed approach.
Figure 16 presents the experimental resultsfor the same three algorithms consider-
ing real-life images. The results are averaged over 65 independent runs for each
algorithm. Table 2 shows the averaged execution time, the success rate in percent-
age and the averaged error score (ES) following Equation 12 for all three algorithms
over six test images shown by Figures 16 and 17. The best entries are bold-cased in
Table 2. A close inspection reveals that the proposed method is able to achieve the
highest success rate and the smallest error, still requiring less computational time
for most cases.

566 E. Cuevas et al.

Ta
bl

e
2

D
at

a
ev

id
en

ce
co

nt
ai

ni
ng

th
e

av
er

ag
ed

ex
ec

ut
io

n-
ti

m
e,

th
e

su
cc

es
s

ra
te

an
d

th
e

av
er

ag
ed

E
S

fo
r

th
e

G
A

-b
as

ed
al

go
ri

th
m

,t
he

IR
H

T
m

et
ho

d
an

d
th

e
pr

op
os

ed
L

A
-a

lg
or

it
hm

,c
on

si
de

ri
ng

si
x

te
st

im
ag

es
sh

ow
n

by
F

ig
ur

es
16

an
d

17

Im
ag

e
A

ve
ra

ge
d

ex
ec

ut
io

n
ti

m
e
±

S
ta

nd
ar

d
de

vi
at

io
n

S
uc

ce
ss

R
at

e
(S

R
)

(%
)

A
ve

ra
ge

d
E

s±
S

ta
nd

ar
d

de
vi

at
io

n
G

A
IR

H
T

L
A

G
A

IR
H

T
L

A
G

A
IR

H
T

L
A

S
yn

th
et

ic
im

ag
es

(a
)

2.
23
±(

0.
41

)
1.

71
±(

0.
51

)
0.

21
±(

0.
22

)
94

10
0

10
0

0.
41
±(

0.
04

4)
0.

33
±(

0.
05

2)
0.

22
±(

0.
03

3)
(b

)
3.

15
±(

0.
39

)
2.

80
±(

0.
65

)
0.

36
±(

0.
24

)
81

95
98

0.
51
±(

0.
03

8)
0.

37
±(

0.
03

2)
0.

26
±(

0.
04

1)
(c

)
3.

02
±(

0.
63

)
4.

11
±(

0.
71

)
0.

64
±(

0.
19

)
93

78
10

0
0.

71
±(

0.
03

6)
0.

77
±(

0.
04

4)
0.

42
±(

0.
01

1)
N

at
ur

al
im

ag
es

(a
)

2.
02
±(

0.
32

)
3.

11
±(

0.
41

)
0.

31
±(

0.
12

)
10

0
10

0
10

0
0.

45
±(

0.
05

1)
0.

41
±(

0.
02

9)
0.

25
±(

0.
03

7)
(b

)
2.

11
±(

0.
31

)
3.

04
±(

0.
29

)
0.

57
±(

0.
13

)
10

0
92

10
0

0.
87
±(

0.
07

1)
0.

71
±(

0.
05

1)
0.

54
±(

0.
07

1)
(c

)
2.

50
±(

0.
39

)
2.

80
±(

0.
17

)
0.

51
±(

0.
11

)
91

80
97

0.
67
±(

0.
08

1)
0.

61
±(

0.
04

8)
0.

31
±(

0.
01

5)

Circle Detection on Images Using Learning Automata 567

(a) (b) (c)

Original images

GA-based algorithm

IRHT

LA

 Fig. 16 Synthetic images and their detected circles following the application of the GA-based

algorithm, the IRHT method and the proposed LA algorithm

568 E. Cuevas et al.

(a) (b) (c)
Original images

GA-based algorithm

IRHT

LA

 Fig. 17 Real-life images and their detected circles for the GA-based algorithm, the IRHT

method and the proposed LA algorithm

7 Conclusions

This paper has presented an algorithm for the automatic detection of circular shapes
from complicated and noisy images with no consideration of the conventional Hough
transform principles. The detection process is considered to be similar to an opti-
mization problem. The proposed algorithm is based on Learning Automata (LA)
which uses the probability of the three encoded non-collinear edge points as candi-

Circle Detection on Images Using Learning Automata 569

date circles (actions) within an edge-only image. A reinforcement signal (matching
function) indicates if such candidate circles are actually present in the edge image.
Guided by the values of such performance evaluation function, the probability set of
the encoded candidate circles are evolved using the LA algorithm so that they can fit
into the actual circles (optimal action) in the edge map. Classical Hough Transform
methods for circle detection use three edge points to cast a vote for the potential cir-
cular shape in the parameter space. However, they require huge amounts of memory
and longer computational times to obtain a sub-pixel resolution. Moreover, the ex-
act parameter set for a detected circle after applying HT frequently does not match
the quantized parameter set, rarely finding the exact parameter set for a circle in the
image [5]. In our approach, the detected circles are directly obtained from Equations
3 to 6, still reaching sub-pixel accuracy. In order to test the circle detection perfor-
mance, speed and accuracy have been compared. A score function (see Equation
10) has been proposed to measure the accuracy yielding an effective evaluation of
the mismatch between a manually-determined and a machine-detected circle. More-
over, the experimental evidence has demonstrated that the LA method outperforms
both the GA (as described in [2]) and the IRHT (as described in [13]) within a
statistically significant framework. Table 2 also indicates that the LA method can
yield better results on complicated and noisy images in comparison to the GA and
the IRHT methods. However, this paper does not aim to beat all the circle detector
methods proposed earlier, but to show that the LA algorithm can effectively serve
as an attractive method to successfully extract multiple circular shapes.

References

1. Atherton, T.J., Kerbyson, D.J.: Using phase to represent radius in the coherent circle
Hough transform. In: Proc. IEE Colloquium on the Hough Transform, IEE, London
(1993)

2. Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle
detection on images using genetic algorithms. Pattern Recognition Letters 27, 652–657
(2006)

3. Beygi, H., Meybodi, M.R.: A new action-set learning automaton for function optimiza-
tion. Int. J. Franklin Inst. 343, 27–47 (2006)

4. Beigyab, H., Meybodibc, M.R.: A learning automata-based algorithm for determination
of the number of hidden units for three-layer neural networks. International Journal of
Systems Science 40(1), 101–118 (2009)

5. Chen, T.-C., Chung, K.-L.: An efficient Randomized Algorithm for detecting Circles.
Computer Vision and Image Understanding 83, 172–191 (2001)

6. Cheng, H.D., Yanhui, G., Yingtao, Z.: A novel Hough transform based on eliminating
particle swarm optimization and its applications. Pattern Recognition 42, 1959–1969
(2009)

7. Cuevas, E., Zaldivar, D., Perez-Cisneros, M.: Seeking multi-thresholds for image seg-
mentation with Learning Automata. Machine Vision and Applications (2010), doi:
10.1007/s00138-010-0249-0

8. Dasgupta, S., Das, S., Biswas, A., Abraham, A.: Automatic circle detection on digital
images with an adaptive bacterial foraging algorithm. Soft Computing 14, 1151–1164
(2010)

570 E. Cuevas et al.

9. Da Fontoura Costa, L., Marcondes Cesar Jr., R.: Shape Analysis and Classification. CRC
Press, Boca Raton (2001)

10. Han, J.H., Koczy, L.T., Poston, T.: Fuzzy Hough transform. In: Proc. 2nd Int. Conf. on
Fuzzy Systems, vol. 2, pp. 803–808 (1993)

11. Howell, M., Gordon, T.: Continuous action reinforcement learning automata and their
application to adaptive digital filter design. Engineering Applications of Artificial Intel-
ligence 14, 549–561 (2001)

12. Ikonen, E., Najim, K.: Online optimization of replacement policies using learning au-
tomata. International Journal of Systems Science 39(3), 237–249 (2008)

13. Lu, W., Tan, J.L.: Detection of incomplete ellipse in images with strong noise by iterative
randomized Hough transform (IRHT). Pattern Recognition 41(4), 1268–1279 (2008)

14. Lutton, E., Martinez, P.: A genetic algorithm for the detection 2-D geometric primitives
on images. In: Proc. of the 12th Int. Conf. on Pattern Recognition, vol. 1, pp. 526–528
(1994)

15. Muammar, H., Nixon, M.: Approaches to extending the Hough transform. In: Proc. Int.
Conf. on Acoustics, Speech and Signal Processing ICASSP, vol. 3, pp. 1556–1559 (1989)

16. Najim, K., Poznyak, A.S.: Learning Automata - Theory and Applications. Pergamon
Press, Oxford (1994)

17. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: an Introduction. Prentice-Hall,
London (1989)

18. Roth, G., Levine, M.D.: Geometric primitive extraction using a genetic algorithm. IEEE
Trans. Pattern Anal. Machine Intell. 16(9), 901–905 (1994)

19. Seyed-Hamid, Z.: Learning automata based classifier. Pattern Recognition Letters 29,
40–48 (2008)

20. Shaked, D., Yaron, O., Kiryati, N.: Deriving stopping rules for the probabilistic Hough
transform by sequential analysis. Comput. Vision Image Understanding 63, 512–526
(1996)

21. Thathachar, M.A.L., Sastry, P.S.: Varieties of learning automata: An overview. IEEE
Trans. Systems. Man Cybernet. Part B: Cybernet 32, 711–722 (2002)

22. Tsetlin, M.L.: Automaton Theory and Modeling of Biological Systems. Academic Press,
New York (1973)

23. Turing, A.M.: On computable numbers, with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society 42, 230–265 (1936)

24. Van-Aken, J.R.: Efficient ellipse-drawing algorithm. IEEE Comp, Graphics Applic. 4(9),
24–35 (1984)

25. Wu, Q.H.: Learning coordinated control of power systems using inter-connected learning
automata. Int. J. Electr. Power Energy Syst. 17, 91–99 (1995)

26. Xu, L., Oja, E., Kultanen, P.: A new curve detection method: Randomized Hough trans-
form (RHT). Pattern Recognition Lett. 11(5), 331–338 (1990)

27. Yao, J., Kharma, N., Grogono, P.: Fast robust GA-based ellipse detection. In: Proc. 17th
Int. Conf. on Pattern Recognition, ICPR 2004, Cambridge, UK, pp. 859–862 (2004)

28. Yuen, S., Ma, C.: Genetic algorithm with competitive image labelling and least square.
Pattern Recognition 33, 1949–1966 (2000)

29. Zeng, X., Zhou, J., Vasseur, C.: A strategy for controlling non-linear systems using a
learning automaton. Automatica 36, 1517–1524 (2000)

30. Zeng, X., Liu, Z.: A learning automaton based algorithm for optimization of continuous
complex function. Information Sciences 174, 165–175 (2005)

Decision Incorporation in
Meta-heuristics to Cope with Decision
Scheduling Problems

Yacine Laalaoui and R.B. Ahmad

Abstract. The halting problem is one of the most important Turing’s dis-
coveries. It is a decision problem and it consists of reporting whether a given
program P with some input data would stop or run forever. This problem was
proved by Turing to be undecidable. This means that the relevant algorithm
to solve this problem doesn’t exist. In this paper, we will show the application
of this problem when the program P is a meta-heuristic technique and the
input data is a decision scheduling problem. Further, we will also describe an
efficient technique to solve the halting problem in this application case.

Keywords: the halting problem, meta-heuristics, decision scheduling prob-
lems, steady-state.

1 Introduction

Decision problems in computing theory are problems in which the expected
output for a given program is either ”yes” (success) or ”no” (failure). Ex-
amples of such problem include Satisfiability problem (SAT), Scheduling
problems, Graph Coloring problem, Halting problem,...etc. In artificial in-
telligence point of view, existing algorithms that solve decision problems are
either Complete or Incomplete. Complete algorithms would never run for
ever thanks to their ability to report failure if a feasible solution doesn’t exist
in the state-space. Further, Complete algorithm are able to find an existing
feasible solution in the state-space. In contrast, Incomplete algorithms are un-
able 1) to provide the guarantee to find an existing feasible solution and 2) to
report a failure if a feasible solution doesn’t exist in the state-space. If a fea-
sible solution has been found by an Incomplete algorithm, then the problem

Yacine Laalaoui · R.B. Ahmad
UniMAP University, Perlis Kangar, Malaysia
e-mail: yacine.laalaoui@gmail.com

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 571–599.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

yacine.laalaoui@gmail.com

572 Y. Laalaoui and R.B. Ahmad

instance is solvable and the resulting output is ”yes”; otherwise, there is noth-
ing to say about the input problem instance and the corresponding program
would run forever if not ended by the user. Examples of Incomplete algo-
rithms include meta-heuristic techniques such as Simulated Annealing (SA),
Ant Colony Optimization (ACO) and Tabu Search (TS). Those techniques
are often running along finite time (finite number of iterations) and space to
carry out either a reachable feasible solution or nothing to report about the
input problem instance. If a meta-heuristic technique has run along an infi-
nite number of iterations and no feasible solution has been reached yet, then
the decision whether the corresponding program would stop is intractable
because of the Incompleteness nature of meta-heuristic techniques.

The main aim of this chapter is to tackle the halting problem when the
input problem instance is a decision scheduling problem and the running
program is a treeless Incomplete algorithm such as meta-heuristic techniques
(Fig.1). We will describe the steady-state test which is a decision test to
be incorporated into meta-heuristic techniques. Then, we will see that this
decision test is a Necessary Condition for the non-schedulability of the input
problem instance if the used algorithm is Incomplete. The new test aims to
replace the maximum number of iterations to report failure. This is a new
way to know something about programs that run infinitely which should be
stopped once the steady-state has been reached.

2 The Halting Problem

It is well known in computing theory that everything Computable can be
computed by Turing Machine (TM) or one of its equivalent model such as
computer programs (algorithms) and λ-calculus expressions. But the prob-
lem is that not everything is computable. In other words, if an algorithm to
perform a given task exists, then this task is said Computable and the corre-
sponding problem to this algorithm is said Solvable. Furthermore, if there is
a possibility to construct a physical machine to execute this task, then this
machine is said deterministic [1].

In fact, a TM has some inputs to execute and carry out some outputs.
Without loss of generality, a TM has an arbitrary inputs and arbitrary out-
puts. But, how long a TM takes time to complete its task and returning a
success or failure ? If there is a success, then TM halts. Otherwise, TM will
continue the execution perhaps infinitely since we don’t know anything about
the computation. This problem is well known under the name The Halting
Problem which is one of the most important Turing’s discoveries[2]. It is de-
fined as follows : given a program P as a model of a TM and a set of inputs to
this program. If P returns outputs, then P doesn’t loop infinitely. Otherwise,
there is nothing to say about P since either it loops infinitely or we didn’t
wait enough to see the outputs. This problem has been proved by Turing to

Decision Incorporation in Meta-heuristics to Cope 573

(a) halting problem components (b) meta-heuristics for decision
scheduling problems

Fig. 1 Application of the halting problem in case of meta-heuristics for decision
scheduling problems

be Undecidable[2]. This means that the relevant algorithm to decide whether
a given program P finishes or continues to run forever doesn’t exist.

3 Decision Scheduling Problems

3.1 Overview

Scheduling problems constitutes a very hot research field in computer science
domain. They range from simple operation research to complex artificial in-
telligence problems [3]. Simple scheduling problems have in general a poly-
nomial time complexity while difficult problems have exponential complexity
and they are in general NP-Hard problems[4]. What ever the scheduling prob-
lem, there is a set of jobs to be scheduled on a specific architecture (a single
or multiple processing elements). Furthermore, a scheduling problem is ei-
ther an optimization or a decision problem. In optimization problems, the
scheduling algorithm is looking for the best scoring solution according to a
given objective function. In decision problems, the scheduling algorithm is
targeting an acceptable scoring solution which is not necessary the one with
best existing score.

Existing scheduling algorithms are either on-line or off-line. On-line algo-
rithms doesn’t have any prior knowledge about jobs arrival. In contrast, in
off-line algorithms the whole set of jobs to be scheduled is known in advance
and there is no more arriving jobs during the scheduling process. Of course,
the applicability of both types of algorithms depends on the industrial needs.
It is worth to note that recently, there are many works to combine those types
together trying to take benefits from both sides [5]. Moreover, scheduling al-
gorithms are either preemptive or non-preemptive. A preemptive scheduler
may allow each job to run the first time not until completion and what re-
mains of the corresponding processing units would be resumed later until
completion. This means that each preempted job may take the Processing
Element (PE) several times to complete its execution.

574 Y. Laalaoui and R.B. Ahmad

3.2 Problem Formulation

Consider the decision scheduling problem P for an input job set J = { J1,
J2, ...,Jn }. Each job Ji has its first release date r(Ji), its computation time
C(Ji). The input set is expected to be scheduled on a specific architecture
e.g. a single PE system non-preemptively by an off-line scheduling algorithm
A [6]. Let start(J) be the start time of the job J i.e., the instant of taking
the PE, which is greater than or equal to its release date. Let end(J) be the
end time for the job J which is the instant of yielding the PE to another job
including the idle job.

Since the problem P is a decision problem, then the output of the schedul-
ing algorithm A is either ”yes” or ”no”. The scheduling algorithm A reports
”yes” if a feasible schedule is found. A schedule S is said feasible if f(S) ≤ k
(resp. ≥) is satisfied where f(S) is the objective function and k is an initially
specified threshold [7]. The job set is said schedulable if there exists a feasible
schedule S. Therefore, the only way to answer ”yes” for a given decision
scheduling problem P is to find at least one feasible schedule S.

The function f can be the maximum lateness, the makespan, the total
tardiness,...etc. In the remainder of this chapter, we will use the maximum
lateness as the objective function and k equal to 0 to represent decision job
scheduling problems. To this end, each job from the input set has one more
timing parameter called the deadline which is a time given to each job to
finish its execution. The lateness of each job J is the difference between its
end time and deadline. The objective function is the maximum value from all
obtained latenesses. If the objective function f is less than or equal to 0, then
all jobs have finished the execution before their corresponding deadlines.

Basically, there is only one difference between the most of existing ob-
jective functions which is the relationship of the function either to each job
individually or to the complete solution. For example, the total tardiness
is related to whole solution while the maximum lateness is related to each
job. Such difference between the objective functions would make the dif-
ference between problem solvers nature. In Artificial Intelligence literature,
the problem to find a solution with a desired criteria to answer ”yes” (resp.
”no”) is a Constraint Satisfaction Problem (CSP) [16] since a solution that
doesn’t satisfy the objective function would not be accepted. To solve a CSP
problem, one can use either complete-and-repair or backtracking techniques
[17][18]. In complete-and-repair techniques, the problem solver generates a
complete solution with many constraints’ violations and proceeds for possible
repairs until finding a solution with zero constraint violation. In backtrack-
ing techniques, there is only one repair instead of multiple repairs. Further,
backtracking solvers extend each partial solution gradually until finding a
complete solution with zero violation. If the extension leads to one con-
straint violation, then the problem solver stops the extension trying to retract
one of the previous partial solutions. Both techniques work on possible

Decision Incorporation in Meta-heuristics to Cope 575

permutations of jobs along repeated process until finding a solution with
no constraint violation.

To limit the focus of this chapter to the decision problem, we assume that
all jobs are ready for selection at the beginning of the search. This would mean
that all jobs are selected independently 1 from each others. Nevertheless, the
extension to dependent jobs is possible with just separating two sub-sets of
jobs Jready and J where the former is the set of jobs currently independent
and the latter set contains jobs which are not yet ready for selection. The
set Jready would be updated along the search process and dependent jobs are
selected according to their precedence orders.

4 Meta-heuristics and Decision Problems

Meta-heuristics, which are treeless Incomplete algorithms, attempt to build
and improve a solution which is not feasible (Fig. 2). Meta-heuristics have
been used widely in both pathfinding and CSP problems. Since, the most of
existing problems are NP-Hard, there was a need of reducing the exponential
costs (time and space) to reasonable values by using meta-heuristics. One
well known drawback of meta-heuristics is that the Completeness property
is sacrificed and no meta-heuristic algorithm is Complete.

Algorithm A;
Inputs : a problem instance;

a threshold k to bound the objective function;
Outputs : ”yes” with a feasible solution or ”no” with failure;
Begin
(01) Do.
(02) Build-and-Improve-a-solution
(03) While(a feasible solution is not found)

AND (MAX NUMBER OF ITERATIONS IS NOT EXCEEDED))
End.

Fig. 2 Generic algorithm of meta-heuristic techniques designed to solve decision
problems.

To the best of our knowledge, all heuristic and meta-heuristic algorithms
are using only the number of iterations, once exceeded, to carry out failure if
no feasible solution has been found yet. The desired solution could exist so far
or maybe after few iterations which is unknown a priori but the Incomplete
algorithm is not able to reach it. In other words, there is no built-in test to
be used instead of the maximum number of iterations to decide about the
feasibility of the problem instance.

1 We mean by dependency the non-existence of precedence relationships between
jobs.

576 Y. Laalaoui and R.B. Ahmad

4.1 Simulated Annealing

Simulated Annealing (SA) meta-heuristic is inspired from the annealing
process in metallurgy [8]. This physical process involves a repeated heat-
ing/cooling of a given material in order to increase the size of its crystal and
reduce its defects. The heat causes the atoms to move from their initial posi-
tions to other states with higher energy. Then, the slow cooling allows them
to take different positions with lower energy than the initial one.

By analogy, a trial in the SA algorithm corresponds to an action of heating
and cooling the material in the annealing process and it represents the current
solution. A solution of each trial is controlled by the desired solution quality
(represents as a function value) and a global parameter T called temperature.
The quality of a solution is domain dependent and it corresponds to the
internal energy E to be minimized. Along the SA trials, T is decreasing until
an acceptable solution is found.

The SA algorithm starts with an initial complete solution s0 and attempts
to improve it along repeated iterations. At each iterations, there are many
candidate solutions. The SA algorithm decides whether to move to a new
solution s′ or to stay in the current one s probabilistically . Such decision has
to make sure that the next solution should be with lower energy E than the
previous one. In other words, if this move leads to a better solution, then it
is always executed. Otherwise, the next solution is chosen probabilistically .

4.2 Ant Colony Optimization

The Ant Colony Optimization (ACO) meta-heuristic is inspired from behav-
ior of natural ants. In ACO approaches, a colony of m ants is used. Each ant
has to build its solution which is supposed to be with an improved quality
compared to the solution generated by the preceding ant. Iteratively, this
process is repeated until obtaining a solution with an acceptable quality [9].
Ants, when moving between states of the search space, are using a decision
rule to select the next move. This rule is based on the quantity of pheromone
present on the edge leading to the next state. This rule is using also a heuristic
information related to the considered problem in order to guide the search
toward better solutions. The major problem of ant colonies is the stagna-
tion situation and they can converge to sub-optimal paths on which much
pheromone is concentrated. An alternative decision is called sometimes to
avoid this problem where the next move is selected using probabilities and
random variables. ACO is a global framework for many ant-based algorithms
such as Ant-Q, Ant Colony System (ACS) [9],...etc. Each ACO algorithm is
a constructive approach where many ants (a colony) are competing to find a
desired solution over repeated iterations.

Decision Incorporation in Meta-heuristics to Cope 577

4.3 Tabu Search

Tabu Search (TS) is a meta-heuristic technique that enhances local search
techniques [12]. TS uses some memory space to avoid repeated visits of the
same solutions in the state-space. TS is considered as one variant from SA
meta-heuristic. A simple implementation of the sacrificed memory is a list
which is called tabu list. For each solution s, TS determines the set of neigh-
borhoods s′ for possible moving to one potential solution. The process is re-
peated iteratively along many iterations until reaching an acceptable solution
or some other criteria has been satisfied. TS is considered as an improvement-
based approach since it starts with one random solution and it attempts to
perform some improvements.

It is worth to mention that our main reason to choose ACO, SA and
TS meta-heuristics in our study is to represent both classes of algorithms
that deal with generic decision problems : backtracking (or constructive) and
complete-and-repair techniques. We did our implementation so that ACO
represents constructive2 techniques with only one constraint violation at the
end of each partial solution while SA and TS represent complete-and-repair
techniques.

Further, the other reason is to observe the number of detected preemptions
by both classes which is used in the decision to halt the program.Complete-and-
repair techniques often detect more preemptions than constructive techniques
aswewill see in the next sections. The detection of great number of preemptions
means waiting longer times to decide about stopping the programwhile a small
number leads to wait shorter times.

5 Decision with the Steady-State

5.1 Overview

The decision with the steady-state is proposed the first time in [10] to increase
the success rate of the ACO meta-heuristic in preemptive context. This test
exploits the gap between preemptive and non-preemptive schedulers. The idea
is to detect and to postpone possible preemptions where the authors called
such process by preemption learning. As it was defined in [10], A steady-state
is the set of iterations during which no more preemption could be detected.

2 We mean by constructive, a technique that constructs a feasible solution grad-
ually from a partial to a complete one. Further, it stops the iteration when a
specified constraint (e.g. the objective function bound is exceeded) is violated.
Moreover, we did our implementation so that the search started from the scratch
after each constraint violation i.e. each ant has to start building its solution from
an empty one attempting to take another search direction during the next it-
eration avoiding the previous direction. Often, backtracking techniques doesn’t
construct a solution from scratch but retracting one from some visited solutions
by removing many jobs recently added to the current solution [17] .

578 Y. Laalaoui and R.B. Ahmad

If a preemption is detected, then a non-preemptive scheduler will not perform
that preemption but just save it in a data structure called ListPrmpt. Iter-
atively more preemptions are detected and saved until no more preemptions
could be detected which corresponds to the steady-state. When the steady-
state is reached, then the non-preemptive scheduler can decide to stop the
search for feasible schedules where either it is not able to reach an existing
feasible schedule or there is no feasible schedule in the state-space.

5.2 Preemptive vs Non-preemptive Schedulers

In scheduling area, some times a job that is currently using the PE should
be stopped to assign the same PE to another urgent job. The stopped job
will be resumed later, possibly not on the same PE, when the system load
allows or its emergency becomes the highest. Job’s emergency is determined
on how the used scheduling algorithm is taking into account available timing
parameters, for example EDF selects the job with the closest deadline [11] .
A job Ji from J can be preempted at any time before its completion and it
can carry out as much as its computation time sub-jobs. A job with a single
processing unit is the atomic job and there is no possibility for its preemp-
tion. Usually preemptions are performed on-line in all existing scheduling
algorithms (run-time and pre-run-time) i.e., if the preemption is detected,
then it is performed and it will not be postponed. Some authors were talking
about preemption threshold in run-time schedulers [13] where the idea is to
disable jobs preemptions up to a given threshold priority. But, to the best of
our knowledge, only the work described in [10] is using the idea of detecting
and postponing preemptions to decide about the input job set.

5.3 Preemption Learning

Definition 1. (job request) : A job request Ri(t) is the fact that the
job Ji is asking to take the Processing Element at time t.

The above definition shows that each job Ji is asking to take the PE. Each
request is either satisfied of not. If a job request is satisfied, then Ji takes the
PE. Otherwise, the job Ji is said to have an outstanding request . Therefore,
each job can have many outstanding requests until getting the PE. Notice
that the scheduling algorithm selects jobs at the beginning of the search and
after the end of execution of the job currently occupying the PE.

Definition 2. (outstanding request) : A request Ri(t) of a job Ji is said
to have an outstanding request at time t if its occurrence at time r(Ji) has
not been satisfied at time t where t ≥ r(Ji).

The outstanding causes for a job Ji at time t can be one of the following
reasons : 1) non-preemptive selection nature of the scheduling algorithm in

Decision Incorporation in Meta-heuristics to Cope 579

non-preemptive context or 2) Ji doesn’t have the highest priority 3 value
among all jobs present during the selection process in preemptive context.
In the remainder of this chapter we consider only the first case i.e. non-
preemptive selection.

Job selection instants in preemptive schedulers is performed when a job
has finished its execution or another job present in J has the highest priority
value. However, non-preemptive schedulers have a non-conservative decisions
and they select jobs while the set J is not empty. Needed idle times in the
latter schedulers are inserted implicitly. Possible preemptions can be detected
easily by non-preemptive schedulers by observing job’s outstanding request .

When a new job called Jj is selected to be executed on the PE after
a given job Ji currently using the PE, if Jj has an outstanding request at
time t after its release date r(Jj), then Jj may preempt Ji if its priority is
the highest. Instead of performing preemptions during selection times, each
detected preemption can be saved in a data structure called ListPrmpt to
be performed later if preemptions are allowed. Each preemption from the set
ListPrmpt is defined by the job Ji to be preempted and its new computation
time. For a job Ji, that is supposed to be preempted by another job Jj , its
new computation time is r(Jj)-start(Ji).

The process of detecting and saving possible preemptions is called Preemp-
tion Learning. This process of Learning is repeated along the search iterations
until convergence to a feasible schedule or the maximum number of iterations
is exceeded.

Fig. 3 Example of detecting preemptions.

In Fig.3, there is a sequence of execution of two jobs A and B. The job A
is released at time t equal to 1 and it has a computation time equal to 7 while
job B is released at time t equal to 3 and it has a computation time equal to
6. Fig.3 shows that job B is selected for execution after the end of the job
A. Further, the job B has an outstanding request at time t equal to 3 since
A is occupying the PE. Job B is executed after the completion of A at time
t equal to 8. In preemptive scheduling, job A may release the PE at time t

3 We mean by priority a heuristic value assigned using heuristic function according
to some timing and other heuristic parameters.

580 Y. Laalaoui and R.B. Ahmad

equal to 3 if B has the highest priority which result to the division of A into
two jobs A (filled area) and A′(unfilled area) with two different computation
times 2 and 5 respectively. Thus, job A is a new candidate to be appended
to the set ListPrmpt.

(xx)
(01) For each job Ji in the current solution do
(02) if (start(Ji)< r(Jj) AND end (Ji)> r(Jj)) then
(03) ListPrmpt ←− ListPrmpt ∪ {(Jj ,r(Jj)-start(Ji))}
(04) End-for
(xx)

Fig. 4 Learning code to be integrated into a constructive meta-heuristic technique
such as ACO. Jj is the currently selected job.

(xx)
(01) For each job Ji in the current solution do
(02) For each job Jj in the current solution do
(03) if (Ji �= Jj) then
(04) if (start(Ji)< r(Jj) AND end (Ji)> r(Jj))then
(05) ListPrmpt ←− ListPrmpt ∪ {(Jj ,r(Jj)-start(Ji))}
(06) End-for
(07) End-for
(xx)

Fig. 5 Learning code to be integrated into a complete-and-repair meta-heuristic
technique such as TS and SA.

The code shown in Fig.4 would be inserted to constructive techniques to
learn possible preemptions. This code would be inserted after selecting a job
Jj from the candidate set where the latter job would be appended to the
current solution. This means that jobs are selected one by one (according to
a selection criteria) from the candidate set and appended also one by one
to the current solution until finding a complete feasible solution or initial
constraints have been violated (the objective function f is not satisfied). If
the selected job Jj has an outstanding request , then another job Ji from
the current solution is occupying the job’s j release date r(Jj) i.e. start(Ji)<
r(Jj) and end (Ji)> r(Jj). In this case, there is one possible preemption to
be inserted into the set ListPrmpt which is defined by the job Ji and the
number of units from this job is equal to r(Jj)-start(Ji).

Similarly to the code shown in Fig.4, the code shown in Fig.5 would
be inserted to complete-and-repair techniques to learn possible preemptions.
This code would be inserted after the generation of each new solution. During
each iteration, there is a generation of at least one new solution not necessary
the best one. For example, the generation in SA and TS techniques consists of

Decision Incorporation in Meta-heuristics to Cope 581

making some changes on the current solution to move to its neighbor. Notice
that each new solution is one possible permutation of the n input jobs. In
Genetic Algorithms (GA), there is a combination of multiple solutions by
crossovers and mutations to generate a new solution which is expected to
be with better quality. The preemption learning code takes a longer time in
complete-and-repair techniques compared to constructive technique because
there is a need to check for each job Ji from each new solution whether there is
a job Jj which is occupying the job’s Ji release date r(Ji). Straightforwardly,
the time complexity of the code show in Fig.5 is O(n2). But, it is easy to add
a condition on detecting the time window of the job Ji to stop the second
nested loop and to reduce the search time.

When a new preemption is detected, it is appended to the set ListPrmpt if
it was not appended previously. The set ListPrmpt size is increased gradually
along the search iterations. The number of detected preemptions is bounded
since the input job set is finite and each job has a fixed and finite computation
time. The total number of possible preemptions is given in the following rule
for a set J of n jobs :

" =
∑
Ji∈J

(C(Ji)− 1) = (
∑
Ji∈J

C(Ji))− n (1)

This equation is an upper bound on the number of possible preemptions along
the scheduling process. A given job Ji can be divided into a set of C(Ji)-1
sub-jobs and the total number is the sum of all jobs preemptions as it is
shown in this equation.

When the scheduling algorithm loops infinitely, then there is no feasible
schedule or the scheduling algorithm is not able to find an existing feasible
schedule due to its Incompleteness nature. For both cases, the scheduling
algorithm detects a given number of preemptions between jobs.

The learning stage is performed either from intermediate solutions or from
the best solution. In ACO, we have taken from ant’s solution which is not
necessary the best global solution. In TS, we took from each intermediate so-
lution which is not necessary the best one. When a new neighbor solution is
generated from the current best solution and if it is not in the tabu list, then
we try to find associated preemptions and all newly generated preemptions
would be appended to the set ListPrmpt if they are not within this set yet.
In SA the process is the same like in TS technique, we took from each inter-
mediate solution which is not necessary the global best one. It is worth to
note that ACO technique is a constructive technique which means that newly
generated preemptions are detected one by one after appending each job to
the current solution. Further, in constructive techniques there is a manipula-
tion of partial solution until finding a complete solution with a desired score
of the objective function. In contrast, SA and TS are improvement-based
techniques which means there is a complete solution (randomly generated
initially) to be improved along the search iterations. This means that new

582 Y. Laalaoui and R.B. Ahmad

Table 1 Example of a job set.

A B C D E F

r 2 1 0 0 1 3

C 5 3 2 2 2 3

d 10 10 10 10 10 10

preemptions are detected after the generation of the intermediate complete
neighbor solutions.

Fig.6 shows the behavior of detecting preemptions by ACO, TS and SA
meta-heuristic techniques during the search for feasible schedules. Notice
that the input job set is described in Table.1 and there is no feasible non-
preemptive schedule in the state-space for this example. All curves show the
number of preemptions detected along the iteration interval [1...2000]. The
learning process starts from zero at the beginning of the search for the ACO
while in SA and TS it starts from few preemption. The cause is the nature
of those techniques where ACO is a constructive technique and both TS and
SA are improvement-based techniques. It means that in ACO, preemptions
are collected from a partial solution while in TS and SA, they are collected
from a complete solution and it is clear that the number of preemptions
in one complete solution is greater than the number of preemptions in one
partial solution. The learning process continues to detect more preemptions
until reaching the steady state. The steady-state starts at the iteration 15 for
SA with 20 preemptions. In TS, The steady-state starts at the iteration 15
with 18 preemptions. In ACO, it starts after 800 iterations during that there
are only 6 possible preemptions. Straightforwardly, no other preemptions is
detected after the steady-state.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000

nu
m

be
r

of
 p

re
em

pt
io

ns

iterations

steady-state(SA)

steady-state(TS)

steady-state(ACO)

ACO preemptions
TS preemptions
SA preemptions

Fig. 6 Preemption learning along the search iterations by ACO, TS and SA meta-
heuristic techniques. In ACO, the number of iterations is 10000 with 10 ants (sub-
iterations). In SA, the initial temperature is set to 50 and the final is set to 1. In
TS, we’ve run the corresponding program along 10000 iterations.

Decision Incorporation in Meta-heuristics to Cope 583

Definition 3. (steady-state) : A steady-state is the set of iterations
during that no more preemptions could be detected.

If the steady-state is reached, then no more preemptions between jobs could be
observed by the scheduling algorithm. This would mean that the scheduling
algorithm is not able to explore more regions in the state-space or there is
no feasible schedule. Therefore, it is not possible to continue the search if
the steady-state is reached. In all classical meta-heuristic algorithms, only
the maximum number of iterations once exceeded is used to decide stopping
the search and they didn’t integrate any observation technique about the
problem to be solved.

It is worth noting that the maximum number of possible preemptions is
defined by the steady-state and it can not exceed the upper bound " outlined
in above equations. The heuristic nature of the learning algorithm can result
to detect more preemptions so far. The speed of reaching the steady-state
depends particularly on the nature of the meta-heuristic and its parameter.

Lemma 1. The steady-state exists for every finite job set.

Proof: The proof of the lemma comes directly from the upper bound defined
previously ". Since each job from the input set has a limited computation
time and the total number of jobs is finite, then also the number of preemp-
tions is finite. It means that, at worst the maximum number of preemptions
would be detected by the learning process and no other preemptions could
be detected which is the case of the steady-state. �

Lemma 2. If a job set is not schedulable, then the Incomplete scheduling
algorithm loops infinitely.

Proof: Assume the converse of the lemma, the input job set is not schedulable
and the scheduling algorithms doesn’t loop infinitely. The only conditions to
stop the search are the maximum number of iterations is reached or one
feasible schedule is found which contradicts the assumption that there is no
feasible schedule. Thus, we prove the lemma. �

Theorem 1. If a job set is not schedulable, then the steady-state is reachable
when the Incomplete scheduling algorithm loops infinitely.

Proof: This theorem means that the steady-state test is just a Necessary
Condition for the non-schedulability of the input job set and its proof is
as follows. Assume the converse of the theorem, the input job set is not
schedulable and 1) the steady-state is not reachable or 2) the scheduling
algorithm doesn’t loop infinitely. If the steady-state is not reachable, then
there is a contradiction with Lemma 1. If the scheduling algorithm doesn’t
loop infinitely, then it contradicts Lemma 2. Therefore, we prove the theorem
for both cases. �

584 Y. Laalaoui and R.B. Ahmad

Corollary 1. If an algorithm A is Incomplete and the steady-state is reached,
then A is not able to find an existing feasible schedule or there is no feasible
schedule in the state-space.

Proof: This corollary generalizes the result provided in the above theorem
for Incomplete algorithms in both cases : schedulable and non-schedulable
input job sets. The proof of this corollary is easy and it is by converse like
the aove theorem. Assume the converse of this theorem, A is Incomplete
and the steady-state has been reached but there is a feasible schedule in the
state-space and A is able to find it.

Since the steady-state is detected, then A loops infinitely according to the
definition of the steady-state i.e., A is not able to find an existing feasible
schedule which contradicts our assumption that A is able to find an existing
feasible schedule. �
As stated above, theorem 1. provides a necessary and not sufficient schedu-
lability test. A feasible schedule could exist but the scheduling algorithm fails
to find it due to its Incompletness nature. If the number of detected preemp-
tions remains the same along many iterations (steady-state is reached) and
no feasible schedule is found yet, then probably there is no feasible schedule.
The setting of the number of iterations to detect the steady-state depends
on the input job set (job set size, jobs timing parameters,...etc) and the
expected performance of the scheduling algorithm in terms of time either it
should give the answer within a short or a long time.

5.4 Search Iterations Sampling and Decision Points

To implement the steady-state idea, the infinite 4 search iterations should be
divided into infinite samples where each sample is defined with a finite number
of iterations. It is supposed that all samples have the same pre-specified fixed
size5. We call each sample by sample-interval.

At the end of each sample-interval, the problem solver observeswhat happen
during iterations of this sample in order to take the decision to continue/stop
the search. In other words, the steady-state test (decision points) is based on
observing the variation of ListPrmpt’s size at the end of each sample-interval
(Fig.7). If this size is not increased during the last sample-interval, then there
is a possibility that the steady-stated is entered and probably6 it is the time to
stop the search.

4 Now, it is supposed that the scheduling algorithm is running for unbound number
of iterations and the only way to stop the search process is either a feasible
schedule has been found or the steady-state has been reached.

5 The reason to take the size of all samples as a fixed value is just to simplify
the study and a deeper analysis in case of variable size would be one possible
direction in our future researches.

6 Probably in the sense that we didn’t wait enough to detect more preemptions.

Decision Incorporation in Meta-heuristics to Cope 585

Fig. 7 test points along the search iterations

The pseudo-code shown in Fig.8 is the implementation of the steady-state
decision test. This code is expected to be inserted into a meta-heuristic tech-
nique pseudo code. For example, the latter pseudo-code (Fig.8) together
with the preemption learning pseudo-code (Fig.4 and Fig.5) can be in-
serted between steps 02 and 03 in the pseudo-code described in Fig.2. The
new pseudo-code is shown in Fig.9. The pseudo-code shown in Fig.8 is in-
dependent since its unique input is the solution of the current iteration from
which there is a learning of preemptions and testing whether the steady-state
has been reached or not yet. In Fig.8, the variable iter is the iterations’
counter and prev size is set initially to 0 to keep the previous size of the set
ListPrmpt. The control test in step 01 performs a modulo arithmetic opera-
tion between the iteration counter (iter) and the size of the sample-interval
to check whether the end of the sample-interval is reached or not yet.

(xx)
(xx) // if test point is reached
(01) if ((iter%sample interval size) == 0)then
(02) if (prev size == size(ListPrmpt))then
(03) the steady-state has been reached, stop the search.
(04) else
(05) prev size ←− size(ListPrmpt)
(06) end-if.
(xx)

Fig. 8 steady-state detection code. iter is the iterations’ counter.
sample interval size is the size of the sample-interval which is an initially
specified parameter.

When the size of the sample-interval is smaller, then the decision time
about the schedulability of the input job set is shorter. In this case, there
is a risk of skipping potential feasible schedules that require more iterations.
When the size of the sample-interval is longer, then the decision about the
schedulability of the job set would take a long time and more chances are

586 Y. Laalaoui and R.B. Ahmad

Algorithm A;
Inputs : a problem instance;

size of the sample-interval ;
a threshold k to bound the objective function;

Outputs : ”yes” with a feasible solution or ”no” with failure;
Begin
(01) Do.
(02) Build-and-Improve-a-solution
(03) Preemption-learning
(04) Testing the steady-state
(05) While((a feasible solution is not found)

AND (STEADY-STATE IS NOT REACHED))
End.

Fig. 9 A new generic algorithm of meta-heuristic techniques designed to solve
decision scheduling problems.

given to the scheduling algorithm to find existing feasible schedules. This
issue is discussed in the next section.

5.5 Experimental Study

Overview. The aim of the current experimental study is to show the impact
of the sample-interval sizes to detect the steady-state and to decide about the
schedulability of the input job sets. As stated above, we have implemented
three meta-heuristics ACO, TS and SA while input data is generated ran-
domly. It is worth to note that a more efficient implementations for all used
techniques ACO, SA and TS can exists. But, we remind the reader about
the main aim of the current work which is the description of the new built-in
decision test to be integrated to existing Incomplete techniques namely meta-
heuristics. The new test will replace the maximum number of iterations which
is non-informative and unknown a priori to stop the search when the desired
solution doesn’t exist in the state-space.

It is worth to mention that along our experimental section we are talking
about the number of rejections (or rejection rate) of implemented techniques.
Notice that, an efficient technique is the one with the lowest rejection rate of
input job sets. This would mean that the number of skipped feasible schedules
for an efficient technique should be as small as possible.

Experimental Setup. The used data-set contains 100 random job sets and
their characteristics are depicted in Table.3 (see Appendix). The exact num-
ber of schedulable job sets (number of ”yes”) is unknown for us because the
data-set is random and the problem of checking the schedulability of a job
set needs using exact techniques such as Depth-First-Search (DFS) which is
time limited since the problem is NP-HARD. We will show results of what we

Decision Incorporation in Meta-heuristics to Cope 587

have obtained using ACO, TS and SA. The maximum number of schedulable
job sets is 67 which is found by SA technique while the minimum number is
66 found by ACO and TS. All reported results are taken from only one trail
for all used techniques since results provided after many trials are often close.

The size of the sample-interval is set to the following values : 5, 10, 20, 30,
50, 100, 300, 500 and 800 iterations and results (number of NO) are taken
for each value. We have set the maximum number of iterations for 15000
and 30000 for all techniques ACO, TS and SA. Of course, when the steady-
state decision test is incorporated into a meta-heuristic, then the number of
iterations to say ”NO” (stop the search) would not be known in advance
since it depends on the used technique’s behavior to explore the state-space
and to reach the steady-state.

Overall Behavior. The histograms shown in Fig.10 report results of two
trials of running ACO, TS and SA. The first trial is after 15000 and the
second one is after 30000 iterations as the maximum number of iterations.
These histograms show how many rejections after the maximum number
of iterations and not after the steady-state. Depicted results give an idea
about the global behavior of used techniques in terms of the number of times
the steady-state test has been used during our experimental study. These
results are taken when the sample-interval size is set to the maximum i.e.
800 iterations.

Straightforwardly, only two histograms are shown after both cases 15000
and 30000 iterations. The missing histograms corresponds to the technique
which has used only the steady-state test to stop the search. It is the ACO
technique with red color in the figure. All rejected job sets by ACO were
rejected after reaching the steady-state and not after reaching the maximum
number of iterations.

The rejection rate for both SA and TS is going down when the maximum
number of iterations is increased. This means that both techniques need more
iterations to reach the steady-state. The rejection rate for SA is higher than
TS for both cases. This is so because it is known that SA is more efficient
than TS in state-space exploration i.e. SA needs more iterations to reach
desired solutions.

The next section discusses the detail when the sample-interval size is set
to values less than 800 iterations for all techniques.

Behavior When the Maximum Number of Iterations Is Set to
15000. The histograms shown in Fig.11 reports results of one trial of run-
ning ACO, TS and SA after 15000 as the maximum number of iterations.
These histograms show how many rejections after the maximum number of
iterations and after the steady-state for different sizes of the sample-interval
: 5, 10,...,800 iterations.

Straightforwardly, only two histograms are shown for all settings of the
sample-interval size. The ACO meta-heuristic is missing in this figure which

588 Y. Laalaoui and R.B. Ahmad

 0

 5

 10

 15

 20

 25

 30

 35

 40

15000

30000

Numner of rejections after the maximum number of iterations

Ant Colony Optimization
Tabu Search

Simulated Annealing

Fig. 10 Rejections after the maximum number of iterations : 15000 and 30000
when the sample-interval size is set to 800 iterations.

means that the steady-state test has been used for all sample-interval settings.
Of course, if the steady-state has been used for all rejections when the sample-
interval size setting 800, then surely it would be also used for all rejections
when the sample-interval size is set to values lesser than 800 iterations.

The SA technique starts to use the maximum number of iterations to stop
the search at 100 iterations of the sample-interval size while the TS starts
after 300 iterations. After 100 iterations, the SA rejects more job sets than TS
using the maximum number of iterations. Again, this is due to the efficiency
of SA in exploring the state-space and it needs more iterations to reach the
steady-state.

After 100 iterations, both SA and TS rejection rates are going up when
the sample-interval size is increased. Obviously, there is a need to take more
time in exploring the search-space and detecting more preemptions for the
steady-state decision.

Graphs in Fig.12(a) shows the rejection rate after different sizes of the
sample-interval. Reported results in this figure include both types of rejection
: after reaching the maximum number of iterations and after reaching the
steady-state. The histograms shown in Fig.11 gives the reader an idea about
plotted data in Fig.12(a) i.e. how many job sets were rejected using the
maximum number of iterations instead of the steady-state.

Notice that for all used techniques, the rejection number would not be
above 66 because the number of job sets successfully scheduled using the
plain heuristic EDF is 34 sets as it is shown in Table.3 unless there is a
problem in implementing used meta-heuristics ACO, TS and SA . Recall
that the minimum setting size for the sample-interval is 5 iterations for all
techniques which should give much better results than EDF.

Decision Incorporation in Meta-heuristics to Cope 589

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 20 30 50 100
300

500
800

Numner of rejections (NOs) after the maximum number of iterations

Ant Colony Optimization
Tabu Search

Simulated Annealing

Fig. 11 Number of rejections after the maximum number of iterations 15000 for
different sizes of the sample-interval.

In Fig.12(a),when the sample-interval ’s size is less than 10 iterations, then
around 55% job sets are rejected. When the sample-interval ’s size is above
800 iterations, then the rejection rate is less than 38%. When the size of the
sample-interval is set to 5 iterations, then there are 53, 53 and 55 by ACO,
SA and TS respectively. When the size of the sample-interval is set to 800
iterations, then there are 34, 34 and 37 by ACO, TS and SA respectively. The
maximum number of rejections is obtained by TS, 55 job sets were rejected
during the sample-interval size set to 5 iterations. The minimum number of
rejection is 34 job sets which was obtained by both ACO and TS when the
sample-interval size set to 800 iterations.

One more important remark about the graph shown in Fig.12(a), all the
graphs are almost straight after the sample-interval size equal to 100 until
800 iterations i.e. results are very close for all algorithms ACO, SA and TS.
The number of rejections after 100 is almost the same number after 800
iterations. The maxium number of rejected job set is 37 while the minimum
is 34 between 100 and 800 iterations. This would mean that there is no need
to perform more than 100 iterations (for the sample-interval) to halt the

590 Y. Laalaoui and R.B. Ahmad

program and reporting failure. This is a very good sign for the usefulness of
the steady-state test since the rejection time when sample-interval size is set
100 is shorter than the rejection time when the sample-interval size is set to
800 in all algorithms Fig.12(c).

SA technique has the highest rejection rate when the sample-interval size
is set to the maximum (800 iterations) (Fig.12(a)). It is well known that
SA is a very efficient technique in terms of state-space exploration but it is
slow technique in problem solving. The desired solution (answering ”yes”)
would be reached but after a very long time. The steady-state (answering
”no”) would also be reached but after a very long time as it is shown in
Fig.12(b). The latter figure shows that SA has the highest number of rejected
job sets using the maximum number of iterations which would mean that the
steady-state is not reached yet after the maximum number of iterations 15000.
Fig.12(b) shows the average time to reject job sets where SA and TS have
the longest time with a close results.

As we have seen in this experiment, SA is more efficient than ACO since
the former technique has the lowest rejection rate. Nevertheless, ACO could
also increase its efficiency but after increasing the sample-interval size above
800 iterations (the size at which ACO has reached its lowest rejection rate).
When the sample-interval is set to 1200 iterations and the ACO is run for
30000 iterations, the resulting number of rejections is the same to the previous
result 34. The ACO is able to schedule only 66 job sets out of 100.

But, how to determine the sample-interval size so that no feasible schedule
would be skipped ?

From the above experiments, it is not obvious to determine the size of the
sample-interval a priori.

Firstly, it depends on the search technique behavior in exploring the state-
space. 100 iteration was quite enough to use 7 in the ACO technique while
800 iterations was not enough to detect the steady-state in SA and TS tech-
niques. What we can say is that constructive techniques such as ACO detect
lesser preemptions than complete-and-repair techniques such as SA and TS.
Therefore, settings of the sample-interval size to detect the steady-state is
related to the class of the used technique either constructive or complete-
and-repair. As we have seen above, there are unnecessary permutations of
jobs during the search process in complete-and-repair techniques which need
larger sizes of the sample-interval. In contrast, in constructive techniques the
same partial solution is gradually extended until finding a complete feasible
schedule i.e., there are lesser permutations between jobs during the search
process which would result to tighter sizes of the sample-interval.

Then, it depends also on the job set size. In the general case, a set with a
small number of jobs would be easy to decide compared to a job set with a
great number of jobs as it is depicted in graphs of Fig.13. In this figure, for
all algorithms ACO, TS and SA, the time to decide (saying ”NO”) about the

7 In the sense that all decisions are made using the steady-state test and not the
maximum number of iterations.

Decision Incorporation in Meta-heuristics to Cope 591

 30

 35

 40

 45

 50

 55

 60

 0 100 200 300 400 500 600 700 800

#r
ej

ec
tio

ns
 (

N
O

s)

sample-interval size

Simulated Annealing
Tabu Search

Ant Colony Optimization

(a) rejection rate for different sizes of the sample-
interval

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

av
er

ag
e

re
je

ct
io

ns
 ti

m
e

sample-interval size

Simulated Annealing
Tabu Search

Ant Colony Optimization

(b) average rejections time

Fig. 12 Number of rejections and the average rejection time after different sizes
of the sample-interval

schedulability of the input job set is increased according to that job set size.
Notice that the times reported in Fig.13 are taken when the sample-interval
size was set to the greatest value (800 iterations). Therefore, if the size of
the input job set is small and the size of the sample-interval is large, then
reporting failure would not take a long time.

Recall that there are 100 job sets in our data set with the minimum number
of jobs equal to 9 while the maximum is 263 jobs. The average size is 82 jobs
per set as it is described in Table.3. The maximum value 800 iterations for
the sample-interval is 10 times larger than the average size of the job set and
almost 4 times larger than the largest job set size.

The value 800 iterations was quit enough to all techniques to achieve a close
rejection rates 33, 32 and 34 for SA, TS and ACO respectively. But recall also

592 Y. Laalaoui and R.B. Ahmad

Fig. 13 Time to report ”NO” vs job set size when sample-interval is set to 800.

that, for complete-and-repair techniques many job sets were rejected using
the maximum number of iterations in which more time (iterations) is needed
to reach the steady-state which is not the case for the constructive technique
ACO.

In conclusion of this section, if someone has set the sample-interval size to
great values, then the time to reject job sets would be long. But, it is very
informative compared to use the maximum number of iterations to reject the
input job set. Further, the risk of skipping potential feasible solutions would
be decreased. The fact of a technique takes a long time to report failure is
not related to the steady-state decision test since many techniques take a
very long time to explore the search space such as SA as we have seen in our
experimental study. Further, users of SA technique are often familiar with
the long time that this technique takes to report good results.

6 Complexity Study

One of the most important issues is the complexity of solving the halting
problem if the running program is a meta-heuristic technique and the in-
put problem instance is a decision scheduling problem and both time and
space complexities are required. Table.2 shows both time and space com-
plexities for both classes of algorithms constructive and complete-and-repair
techniques. In fact the time and space complexities refer to the extra steps
that we have added so that we can decide using the steady-state technique
(steps 03 and 04 in Fig.9). They didn’t refer to the complexity of the meta-
heuristic itself.

In the following, we prove complexity results shown in Table.2.

Decision Incorporation in Meta-heuristics to Cope 593

Table 2 Time and space complexities.

Time complexity Space complexity

Constructive techniques O(k ∗ n) O(
n∑

i=1

(Ci− 1))

Complete-and-repair techniques O(k ∗ n2) O(

n∑

i=1

(Ci− 1))

Lemma 3. The space complexity to detect the steady-state for both construc-

tive and complete-and-reapir techniques is O(

n∑
i=1

(Ci − 1).

Proof: This lemma means that the space to decide stopping the search is
linear according to the jobs’ computation times. The proof of this lemma is
easy and it comes directly from the definition of the steady-state and the size
of the set ListPrmpt.

Since the number of jobs n is finite, since the jobs’ computation times are

also finite, thus

n∑
i=1

(Ci − 1) is also finite. �

Since the division of jobs is not allowed i.e., preemptions are not performed,
the real size of the set ListPrmpt would be much lesser than the maximum
size.

Lemma 4. The time complexity to detect the steady-state for constructive
techniques is O(k ∗ n).
Proof: The proof of this lemma is also by converse and it comes from the
algorithm shown in Fig.4 and the size of the set ListPrmpt.

Assume that the whole time to check the steady-state is infinite i.e. k ∗ n
is unbounded.

It is clear from Fig.4 that the algorithm runs for O(n). It is also clear that
the set ListPrmpt would be checked many times which is unknown a priori.
Let k be the number of times of checking the set ListPrmpt. if k is finite,
then also k ∗ n is finite since n is finite. Let’s prove that k is finite.

The algorithm would stop when the steady-state has been reached. This
would mean no more preemptions would be detected. Since the algorithm
is Incomplete, then it is able to visit a limited region in the state-space.
Thus, it is able to detect a finite number of possible solutions (feasible and
non-feasible). Since, the number of detected solutions is finite, then the num-
ber of detected preemptions is also finite which coincides with steady-state.
Therefore, the time to reach the steady-state is finite since it corresponds
to the number of detected solutions. Since the detection time is finite, then
the number of needed sample-intervals is also finite which means that k is

594 Y. Laalaoui and R.B. Ahmad

finite. Therefore, k ∗ n is finite which contradicts our assumption that k ∗ n
is unbounded and we prove the lemma. �

Lemma 5. The time complexity to detect the steady-state for complete-and-
repair techniques is O(k ∗ n2).

Proof: The proof of this lemma is similar to the proof of the previous lemma.
It is by converse and it comes from the algorithm shown in Fig.5 and the
size of the set ListPrmpt.

7 Applicability of the Steady-State

The work described in this chapter is a separate technique to be integrated
into an existing meta-heuristic technique to avoid infinite looping for either
a target solution doesn’t exist or the used meta-heuristic is not able to reach
the target solution. It is an application of the Turing halting problem when
the running program is an Incomplete meta-heuristic technique and the in-
put problem instance is a decision scheduling problem. It is worth to mention
that the notion of preemption is related to all scheduling problems either pre-
emptive or non-preemptive. Therefore the steady-state is a practical common
test for all decision scheduling problems. But, it depends on the input job set
timing parameters particularly the computation time and the used algorithm
nature.

7.1 Job Set Characteristics

The steady-state decision test is useful when jobs of the input set have their
computation times greater than 1 which is the atomic job’s computation
time. If all jobs’ computation times are single units, then no preemption
could be detected. In real-life scheduling problems, this case could not happen
since problem instances are often with random parameters. Furthermore, the
schedulibilty of such problem instances is studied theoretically and analytic
conditions were developed [26]. Moreover, such problem instances are often
easy to solve using polynomial time and space complexities[26][7].

7.2 Treeless Algorithms

Search algorithms are either tree or treeless techniques. If an algorithm is
a tree search technique, then there is a tree data structure stored in RAM
during the search process. In contrast, a treeless algorithm doesn’t use a
tree during the search process. Examples of treeless algorithms include meta-
heuristic techniques. Tree algorithms can easily decide about the existence
of a desired solution in the state-space thanks to the tree data structure.
This kind of algorithms terminates even when there is no solution in the

Decision Incorporation in Meta-heuristics to Cope 595

state-space. This property is related to the use of trees when searching for
feasible solutions. The role of the search tree is to keep track of visited regions
in the state-space. For example, DFS keeps only one branch in memory and
it traverses the spanning tree from left to right until reaching the most right
branch. The termination of DFS would be detected if the stack (the current
branch) is empty. Further, the most of existing tree algorithms are Complete
i.e. they have : 1) the ability to find an existing feasible solution and 2) the
ability to report failure if the feasible solution doesn’t exist in the state-space.

To the best of our knowledge, all treeless algorithms didn’t incorporate
the decision test whatever the input problem instance (second Completeness
property). Further, all treeless algorithms, which exist in the literature, are
unable to reach an existing feasible solutions all the times (first Completeness
property). the target solution would not exist in the state-space but the
treeless algorithm would not be able to report failure and it would loop
infinitely.

Therefore, the steady-state idea would be applied to all algorithms wherein
the tree data structure is not used when searching for feasible solutions either
the algorithm has a proof of convergence to an existing feasible solution 8 or
not . The steady-state is designed to replace the tree data structure so that
the decision about the existence of feasible schedules would be made. As
shown before, the size of the sacrificed RAM space grows linearly (instead of
exponentially in tree algorithms) according to the number of jobs and their
corresponding computation times. Furthermore, the implementation of the
steady-state is much easier than implementing trees in tree algorithms where
complex data structure are required in the latter techniques.

7.3 Automatic Parameter Settings in Meta-heuristics

Why we should know whether a meta-heuristic program would eventually
halt or not for a given inputs (problem instance) ?

It is worth to note that one of the reasons to fail in finding an existing
feasible solution in meta-heuristic techniques is the numerical parameters set-
tings. Such settings are related to the input problem instance. A good setting
to one problem instance, doesn’t mean that it is also a good setting for an-
other problem instance[20][19][21]. It is well known that the best parameters
setting is not known in advance (before the run of the algorithm). The user
may run its meta-heuristic for several times to fix the best settings. For each
run, the meta-heuristic program is halted using the maximum number of

8 To the best of our knowledge, a treeless algorithm with a convergence proof
to an existing feasible solution doesn’t exist in CSP area. The only existing
treeless algorithm is Learning-Real-Time-A* (LRTA*) [24][25] which is designed
to solve pathfinding problems. Further, LRTA* is Complete in state-space with
a reachable target and if the target state is not reachable, then LRTA* loops
infinitely without any ability to report failure.

596 Y. Laalaoui and R.B. Ahmad

iterations or forced by hand before exceeding the maximum number of itera-
tions. Then, the user tries to set some numerical parameters to other values
by hand and he runs again the program. The desired solution may exist so
far, but for both cases (using the maximum number of iterations or forcing
the program to halt) the program can easily fail to find that solution since
the user didn’t wait enough. The process of setting/halting is often repeated
several times until finding good settings or the code may be changed if those
tentatives didn’t lead to desired results.

So, the challenge remains in when to assign individual values to specific pa-
rameters during the run of the used meta-heuristic. To the best of our knowl-
edge, all existing self-adaptation techniques that deal with this problem are
either instance-based tuning [19] or algorithm-based tuning [21]. None of the
those techniques is informative about the time to decide tuning parameters.

The steady-state could be very useful in automatic numerical parame-
ters setting in meta-heuristic techniques. Instead of halting the program and
changing manually numerical parameters, the steady-state could be used to
decide updating previous settings since they are not leading to desired solu-
tions. Once the steady-state has been reached, then it is the time to change
the current settings and the detection of possible preemptions should be
started from the beginning trying to find some desired solutions or to reach
the steady-state again using the new settings.

The following figure (Fig.14) shows the new algorithm of meta-heuristic
integrating automatic parameters settings using the steady-state technique.
The new algorithm inputs’ are intervals for some numerical parameters which
would be tried. The new outputs are either a desired solution or a failure with
best numerical parameters that give close results to the target solution. The

Algorithm A;
Inputs : a problem instance;

a threshold k to bound the objective function;
a set of intervals for some numerical parameters;

Outputs : ”yes” with a feasible solution or ”no” with failure;
report even the best parameters settings.

Begin
(01) Do.
(02) Do.
(03) Build-and-Improve-a-solution
(04) Preemption-learning
(05) Testing the steady-state
(06) While((a feasible solution is not found)

AND (STEADY-STATE IS NOT REACHED))
(07) record the best settings of numerical parameters
(08) While(a feasible solution is not found) AND (all intervals are not exceeded))
End.

Fig. 14 A new generic algorithm of meta-heuristic techniques designed to solve
decision scheduling problems with automatic parameter settings.

Decision Incorporation in Meta-heuristics to Cope 597

algorithm would be halted once the set of all intervals are exceeded if the
desired solution is not found.

8 Conclusion

The halting problem is one of the most important Turing’s discoveries. It is
a decision problem and it consists of reporting whether a given program P
with some input data would stop or run forever. This problem was proved by
Turing to be undecidable. This means that the relevant algorithm to solve this
problem doesn’t exist. In this chapter, we have seen the application of this
problem when the program P is a meta-heuristic technique and the input
data is a decision scheduling problem. Further, we have also described an
efficient technique to solve the halting problem in this application case.

The technique described in this chapter, to solve the halting problem in
specific application case, is based on the steady-state detection idea [10]. As
we have seen, this technique is an enhancement, to decide not to search, in
Incomplete algorithms namely meta-heuristic techniques Ant Conloy Opti-
mization, Tabu Search, Simulated Annealing and specific heuristics such as
the one proposed in [14] [15].

Although the steady-state provides a Necessary Condition for non-
schedulability of the input job set for Incomplete algorithms namely
meta-heuristics, what ever the case, there is no feasible schedule or the used
algorithm is not able to find it, the used algorithm is running forever and it
must be stopped.

The potential use of the technique described in this chapter include treeless
algorithms as we have seen earlier. Treeless algorithms, for example meta-
heuristics, are techniques with no tree data structure construction during the
search process. We believe that if there is no tree (or another data structure)
that keeps track of visited regions in the state-space, then the decision pro-
cess is not possible unless the input problem instance is easy to solve. The
steady-state idea aims to integrate the decision property in meta-heuristic
techniques.

The potential use of the technique described in this chapter includes also
automatic parameter settings in meta-heuristics which is one of the challeng-
ing problems in contemporary search and optimization field. The difficulty
lies in determining the time to decide changing parameters to specific values.
The steady-state idea provides an effective informative decision to do such a
task as discussed above.

598 Y. Laalaoui and R.B. Ahmad

Appendix

Data-set Characteristics

Table.3 shows the most important data-set characteristics used in this chap-
ter. The number of job sets is 100. The maximum number of jobs per set
is 263 and the minimum number is 9 jobs. The average number of jobs is
82. The maximum system load9 is 1.10 and the minimum load is 0.00018.
The set of used periods is : 10, 22, 30, 48, 132, 285, 336 and 425 where all
other timing parameters (release date, computation time and deadline) are
derived from those periods. Please, refer to [22] for further details about the
generation of random datasets. The average load is 0.30. EDF sched in the
last column of the table reports the number of job sets schedulable using the
plain heuristic Earliest Deadline First (EDF) (with a linear time and space
complexities). It has been added to our study to show how many job sets are
easy to solve.

Table 3 Datasets characteristics.

#job-sets Min#jobs Max#jobs Avg#jobs MinLoad MaxLoad AvgLoad EDF sched

100 9 263 82 0.00018 1.10 0.30 34

References

1. Davis, M.: Computability and Unsolvability. Mcgraw-Hill Series in Information
Processing and Computers (1985) ISBN: 0486614719

2. Turing, A.: On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, Series. 2 43,
544–546 (1937)

3. Baptiste, P., Laborie, P., Le Pape, C., Nuijten, W.: Constraint-Based Schedul-
ing and Planning. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of
Constraint Programming. Elsevier Publisher (2006) ISBN 1574-6525

4. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the
Theory of NP-Completeness. USA Freeman, New York (1979)

5. Xu, J., Lam, K.-Y.: Integrating RunTime Scheduling and Preruntime Schedul-
ing of Real-Time Processes. In: Proc. 23rd IFAC/ IFIP Workshop on Real-Time
Programming (June 1998)

6. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine
scheduling problems. Annals of Discrete Mathematics 12, 343–362 (1977)

7. Bruker, P.: Scheduling Algorithms, 5th edn. Springer (2006) ISBN: 978-3-540-
69515-8

8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Anneal-
ing. Science Journal 220, 671–680 (1983)

9 The systm load is an information about the PE utilization. A value 1.10 means
the PE is overloaded (110%) [23]. Usually, overloaded jobs sets are difficult to
solve while underloaded job sets are easy to solve.

Decision Incorporation in Meta-heuristics to Cope 599

9. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning
Approach to the TSP. IEEE Transactions on Evolutionary Computation 1(1),
53–66 (1997)

10. Laalaoui, Y., Drias, H.: ACO Approach with Learning for Preemptive Schedul-
ing of Real-Time Task. The International Journal of Bio-Inspired Computing
(IJBIC) 2(6) (2010)

11. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM 20(1), 46–61 (1973)

12. Glover, F.: Tabu Searcch - Part I. ORSA Journal on Computing 1(3), 190–206
(1989)

13. Wang, Y., Saksena, M.: Scheduling Fixed-Priority Tasks with Preemption
Threshold. In: 6th International Conference on Real-Time Computing Systems
and Applications (RTCSA 1999), pp. 328–335 (1999)

14. Balas, E., Lancia, G., Serafini, P., Vazacopoulos, A.: Job Shop Scheduling With
Deadlines. Journal of Combinatorial Optimization 1, 329–353 (1998)

15. Sadeh, N., Fox, M.S.: Variable and value ordering heuristics for the job shop
scheduling and constraint satisfaction problem. The Journal of Artificial Intel-
ligence 86(1), 1–41 (1996)

16. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming.
Elsevier (2006) ISBN 1574-6525

17. Van Beek, P.: Backtracking techniques for Constraint Satisfaction Problems. In:
Rossi, F., Van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
ch. 4, pp. 85–118. Elsevier (2006)

18. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence 58(1-3), 161–205 (1992)

19. Safrankova, J., Pavlu, J.: Recent Development in Automatic Parameter Tuning
for Metaheuristics. In: Proceeding of the 19th Annual Conference of Doctoral
Students, WDS 2010, Prague, pp. 54–63 (2010)

20. Dreo, J.: Using performance fronts for parameter setting of stochastic meta-
heuristics. In: Proceedings of the 11th Annual Conference Companion on Ge-
netic and Evolutionary Computation Conference, GECCO 2009, Montreal Que-
bec, Canada, pp. 2197–2200 (2009)

21. Dobslaw, F.: Iteration-wise parameter learning. In: IEEE Congress on Evolu-
tionary Computation, New Orleans, LA, USA, pp. 455–462.

22. Baker, T.: A Comparison of Global and Partitioned EDF Schedulability Tests
for Multiprocessors. Technical Report, Florida State University Dept. of Com-
puter Science Tallahassee, FL 32306 USA (2005)

23. Xu, J., Parnas, D.: On satisfying timing constraints in hard-real-time systems.
IEEE Transaction on Software Engineering 19, 70–84 (1993)

24. Korf, R.: Real-Time Heuristic Search. Artificial Intelligence 42(2-3), 189–211
(1990)

25. Bulitko, V., Lee, G.: Learning in Real-Time Search: A Unifying Framework.
Journal of Artificial Intelligence Research 25, 119–157 (2006)

26. Frederickson, G.N.: Scheduling unit-time tasks with integer release times and
deadlines. Information Processing Letters 16, 171–173 (1983)

Evolutionary Models for Agent-Based
Complex Behavior Modeling

Zengchang Qin, Yingsai Dong, and Tao Wan

Abstract. In this chapter, the essentials of genetic algorithm (GA) following
the footsteps of Turing are introduced. We introduce the connection between
Turing’s early ideas of organized machines and modern evolutionary compu-
tation. We mainly discuss the GA applications to adaptive complex system
modeling. We study the agent-based market where collective behaviors are re-
garded as aggregations of individual behaviors. A complex collective behavior
can be decomposed into aggregations of several groups agents following differ-
ent game theoretic strategies. Complexity emerges from the collaboration and
competition of these agents. The parameters governing agent behaviors can
be optimized by GA to predict future collective behaviors based on history
data. GA can also be used in designing market mechanisms by optimizing
agent behavior parameters to obtain the most efficient market. Experimental
results show the effectiveness of both models. Using evolutionary models may
help us to gain some more insights in understanding the complex adaptive
systems.

1 Introduction

Alan Turing (1912-1954) is a legend. He is a profound mathematician, logician
and esteemed as the father of computer science. He is also a patriotic wartime
codebreaker and, tragically, a victim of prejudice - being prosecuted by the

Zengchang Qin · Yingsai Dong
Intelligent Computing and Machine Learning Lab
School of Automation Science and Electrical Engineering
Beihang University (BUAA), Beijing, China
e-mail: zcqin@buaa.edu.cn,dysalbert@gmail.com

Tao Wan
School of Medicine, Boston University, Boston, USA
e-mail: taowan@bu.edu

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 601–631.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

zcqin@buaa.edu.cn, dysalbert@gmail.com
taowan@bu.edu

602 Z. Qin, Y. Dong, and T. Wan

police because of his “illegal” homosexuality, that directly leads his suicide
at the age of 41. This has been remembered by us and also recorded in
his memorial statue plaque, situated in the Sackville Park in Manchester,
England [42]. His legendary contributions founded the modern computing
and the indirectly create the machine I am using to type and compile this
chapter - a MacBook with 2.4 GHz Intel Core 2 Duo and 3 GB 1067 MHz
DDR3. These terms can remind us the path of computing revolutions and
those ingenious minds following his footsteps.

Like other geniuses in history, his contributions are not limited to one or
two fields. He conceived of the modern computer by introducing Turing ma-
chines in 1935, pioneered the field later called Artificial Intelligence (A.I.)
by proposing the famous Turing test [38] as a way of determining whether a
machine can think 1. During World War II, Turing’s work in code-breaking
was regarded by historians short-ended the war in two years. His 1950 paper
Computing Machinery and Intelligence [38] gave a fresh approach to the tra-
ditional mind-body problem, by relating it to the mathematical concept of
computability he himself had introduced in his paper On computable num-
bers, with an application to the Entscheidungsproblem. It has a deep influence
not only in mathematics and computer science, but also becomes one of the
most frequently cited work in modern philosophical literature [44]. In this
paper, Turing considers the question “Can machines think?” Since both the
terms “think” and “machine” can’t be defined in clear and satisfying way,
Turing suggests we “replace the question by another, which is closely related
to it and is expressed in relatively unambiguous words.” Under this scenario,
a hypothetical computing prototype called Turing machine is proposed.

A Turing machine is a device that manipulates symbols on a strip of infinite
tape according to a table of rules. In modern terms, the table of behavior of a
Turing machine is equivalent to a computer program. It goes beyond Charles
Babbage’s unprogrammable mechanical computer [45]. The Turing machine is
not intended as a practical computing technology, but rather as a conceptual
device representing a computing machine. Despite its simplicity, a Turing
machine can be adapted to simulate the logic of any computer algorithm, and
is particularly useful in explaining the functions of a CPU inside a modern
computer. It helps computer scientists understand the limits of mechanical
computation [44]. His work on Turing machines and Computing Machinery
and Intelligence can be regarded as the foundation of computer science and
of the artificial intelligence. But It is not widely realized that Turing was
probably the first person to consider to construct systems which could modify
their own programs. By the expression of ‘genetical or evolutionary search’, he
also anticipated the ‘genetic algorithms’ which since the late 1980s have been

1 Whether a machine can think has been a controversial topic. For example, John
Searle proposed a thought experiment called the “Chinese room”, which holds
that a program cannot give a computer a “mind” or “understanding”, regardless
of how intelligently it may make it behave [46].

Evolutionary Models for Agent-Based Complex Behavior Modeling 603

developed as a less closely structured approach to self-modifying programs
[8].

In this chapter, we will revisit Turing’s idea on unorganized machines and
how it will contribute to the current connectionism. Following his footsteps,
we introduce the modern genetic algorithms and their applications in study-
ing collective behaviors in complex adaptive systems. During the last years
of his life, Turing also pioneered the field of artificial life. He was trying to
simulate a chemical mechanism by which the genes of a fertilized egg cell
may determine the anatomical structure of the resulting animal or plant [7].
In this chapter, we are studying a similar but much simpler process of how
observable collective behaviors are influenced by consisting individual deter-
ministic behaviors. We are also hoping to find the answer of how patterns
emerge from the complex adaptive systems like financial markets.

This chapter is structured as follows: Section 2 gives a historical intro-
duction on Turing’s idea on unorganized machines, which is related to the
modern genetic algorithms. Section 3 gives a general introduction on the ge-
netic algorithms. Two novel applications of GAs to the complex adaptive
systems (agent-based virtual market models) with detailed empirical evalu-
ation results are introduced in Section 4 and 5, respectively. At the end, we
summarize this field of research and discuss its research potentials worthing
further investigations.

2 Turing’s Unorganized Machines

Throughout his remarkable career in his short life, Turing had no great in-
terest in publicizing his ideas (possibly because of his Bletchley Park2 expe-
rience). Consequently, important aspects of his work have been neglected or
forgotten over the years. In an unpublished report in 1948, he first gave a
prophetic manifesto of the field of artificial intelligence. This work is unpub-
lished until 1968, 14 years after Turings death, for which we learn that Turing
not only set out the fundamentals of connectionism but also brilliantly intro-
duced many of the concepts that were later to become central to AI, these
ideas have been rediscovered or reinvented to develop into the fields of neural
networks, evolutionary computation and artificial life [6, 7, 8].

2.1 Turing’s Idea of Neural Computation

In this unpublished report, Turing proposed so-called unorganized machines
(u-machines). Two types of u-machines are discussed. The first were A-type
machines, which are essentially randomly connected networks of logic gates.

2 Bletchley Park is located in Buckinghamshire, England, currently houses the
National Museum of Computing. During World War II, Bletchley Park was the
site of the United Kingdom’s main decryption base, where Turing was working
in secret before moving to Hub 8.

604 Z. Qin, Y. Dong, and T. Wan

Table 1 The NAND operation given two inputs and one output.

Input 1 Input 2 Output ← (Input 1 NAND Input 2)

0 0 1
0 1 1
1 0 1
1 1 0

Specifically, every node (or neuron in Turing’s conceptual cortex model) has
two inputs and any number of outputs with two states representing by 0 or
1. The output of a neuron is a simple logical function of its two inputs. Every
neuron in the network executes the same logical operation of “not and” (or
NAND): the output is 1 if either of the inputs is 0. If both inputs are 1, then
the output is 0 (Table 1). Fig. 1 illustrates a network of A-type machines.
The state transition matrix given node assignment at the time T is shown in
Table 2.

The second type u-machines were called the B-type machines, which could
be created by taking an A-type machine and replacing every inter-node con-
nection with a structure called a connection modifier -which itself is made
from A-type nodes. The purpose of the connection modifiers were to allow the
B-type machine to undergo “appropriate interference, mimicking education”
in order to organize the behavior of the network to perform useful work. Tur-
ing took his inspiration from how human cortex works and its self-adaptive
ability [9].

Actually, Turing theorized that “the cortex of an infant is an unorganized
machine, which can be organized by suitable interfering training.” Initially a

Fig. 1 An example of A-type machine with 5 inter-connected nodes. The graph is
modified from [37]. State transition matrix is shown in Table 2.

Evolutionary Models for Agent-Based Complex Behavior Modeling 605

Table 2 State transition of the network of A-type machines shown in Fig. 1 from
time T to T + 7. For example, N1(T + 1) = N2(T) NAND N3(T) = 1 NAND
0 = 1.

Node T T + 1 T + 2 T + 3 T + 4 T + 5 T + 6 T + 7 . . .

N1 1 1 0 0 1 0 1 0 . . .
N2 1 1 1 0 1 0 1 0 . . .
N3 0 1 1 1 1 1 1 1 . . .
N4 0 1 0 1 0 1 0 1 . . .
N5 1 0 1 0 1 0 1 0 . . .

network that is to be trained contains random inter-neural connections, and
the modifiers on these connections are also set randomly. Unwanted connec-
tions are destroyed by switching their attached modifiers to interrupt mode.
The output of the neuron immediately upstream of the modifier no longer
finds its way along the connection to the neuron on the downstream end.
Conversely, switching the setting of the modifier on an initially interrupted
connection to the other mode to create a new connection [6]. From the mod-
ern A.I. point of view, Turing’s unorganized machines were in fact very early
examples of randomly-connected, binary neural networks, and Turing claimed
that these were the simplest possible model of the nervous system.

One thing that makes the field so exciting is the way people studying the
human brain work with people who are trying to build artificial intelligence.
On the one hand, brainlike structures such as artificial neural networks hav-
ing the ability to change their responses according to their success or failure
(that is, to “learn”) are surprisingly good at some tasks, ranging from face
recognition to flood prediction. Such learning mechanism of “tuning parame-
ters” or “tuning structures of networks” brought a revolutionary technology
of machine learning, which has becomes arguably the most successful branch
of A.I.

2.2 Turing’s Idea of Genetic Algorithms

Changing the settings of the connection modifiers in a B-type network
changes its topological structure and functions. Turing had realized that the
B-type machines could be very complex when the number of nodes in the net-
work was large. In any moderately sized network there will be a very large
number of possible patterns of modifier settings, only a tiny fraction of which
will be useful. Any attempt to find best setting patterns of the network by
exhaustively searching all possibilities, becomes intractable as the number of
nodes increases. Turing himself mentioned a method which is believed to be
the most promising for solving the B-type training problem; that of a genetic
algorithm (GA), or as Turing called it before the term GA was coined, a

606 Z. Qin, Y. Dong, and T. Wan

Table 3 Structure of a network can be coded by 0 and 1 to represent the connec-
tions of nodes. The following table represents the network in Fig. 1.

Input N1 N2 N3 N4 N5

Node

N1 0 1 1 0 0

N2 0 0 1 0 1

N3 0 0 0 1 1

N4 0 0 1 1 0

N5 0 1 0 0 1

genetical search. Based on the original idea of Turing, Webster and Fleming
replicate the network designing by GAs [40].

To illustrate this idea, we use the following example. The network struc-
ture can be coded into a table of 0s and 1s by considering the input-output
relations. Table 3 shows a 5× 5 matrix used to represent the network shown
in Fig. 1. Modifier for direct connection between nodes is represented by 1,
otherwise, it is 0. E.g.:

N1 ← Input(N2 = 1, N3 = 1)

indicate that the input nodes for N1 are N2 and N3. Given a network of 5
nodes, any possbile structure of the network can be uniquely defined by a 5×5
matrix S. For each predefined S, we have a corresponding state transition
matrix given the initial condition. If we know the state transition matrix A
and a set of possible structure S = {S1, S2, . . . , SK}. Which is the most likely
structure Si ∈ S given A? Since the number of possible network structure
grows exponentially with the number nodes. How can we adaptively learn
such a structure, is the problem we can solve by genetic algorithms today.

For example, we would create a population of randomly connected B-
type networks and test each in turn to calculate a score based on the given
transition matrix. For each node, if the generated state value is identical to
the given training data, we will add one to the score. The final score for
the network would the sum of scores across the whole networks in T steps.
These scores would become the fitness measures of the individual networks
and dictate their number of offspring through biased genetic selection. The
most fit networks would be disproportionately over-represented in the next
generation, while those poorer scoring networks would be under-represented
or drop out of the population altogether. If this test-and-reproduce cycle is
repeated for many generations individual networks will become better to fit
the training data until eventually a network will be created which gains a
perfect score. This idea of genetic search of Turing is one of the earliest ideas
in the field of evolutionary computation [19].

Evolutionary Models for Agent-Based Complex Behavior Modeling 607

3 Genetic Algorithms

A genetic algorithm (GA) is a search heuristic that mimics the process of
natural evolution. It belongs to a general field of metaheuristics for designing
computational methods to optimize a problem by iteratively trying to im-
prove a candidate solution regard to a given measure of quality [24]. A GA
can be used to generate solutions to optimization problems using techniques
inspired by natural evolution, such as inheritance, crossover and mutation.

3.1 Brief History of Genetic Algorithm

The development of genetic algorithms has its roots in work done in the 1950s
by biologists using computers to simulate natural genetic systems [21]. John
Holland created the genetic algorithm field. In the cybernetics writing of the
1940s and 1950s there are several, usually fairly vague, mentions of the use of
artificial evolution. In an interview, Holland claimed that he has been focus
his attention on adaptive systems. Fisher’s book On the Genetical Theory of
Natural Selection had a great influence on him as his starting point for the
genetic algorithm [19]. He claimed that:

“Computer programming was already second nature to me by that time, so
once I saw his mathematical work it was pretty clear immediately that it
was programmable I began to think of selection in relation to solving
problems as well as the straight biological side of it. In fact, by the time I
was doing the final writing up of my thesis I had already gone heavily in the
direction of thinking about genetics and adaptive systems. ”

Holland’s interest was in machine intelligence, and he and his students devel-
oped and applied the capabilities of genetic algorithms to artificial systems.
He laid the groundwork for applications to artificial systems with his publi-
cations on adaptive systems theory [17]. Holland’s systems were self-adaptive
in that they could make adjustments based on their interaction with the
environment over time.

Beginning in the 1960s Holland’s students routinely used selection,
crossover, and mutation in their applications. Several of Holland’s students
made significant contributions to the genetic algorithm field. The term “ge-
netic algorithm” was used first by Bagley in [2], which utilized genetic algo-
rithms to find parameter sets in evaluation functions for playing the game
of Hexapawn, that is a chess game played on a 3 × 3 chessboard in which
each player starts with three pawns. In 1975, K.A. DeJong finished his Ph.D.
dissertation under Holland’s supervision [10]. In his work, a few classical com-
plex function optimization problems were studied by using GA, in which two
import metrics for GAs were devised, one to measure the convergence of the
algorithm, the other to measure the ongoing performance. David E. Goldberg,
another of Hollands students, has concentrated on engineering applications
of genetic algorithms. His volume published in 1989, Genetic Algorithms in

608 Z. Qin, Y. Dong, and T. Wan

Search, Optimization, and Machine Learning, is one of the most influential
books on genetic algorithms [15]. It has been widely used as a textbook of
GAs across all over the world. A more comprehensive history note of the
genetic algorithm can be found in [21].

3.2 Essentials of Genetic Algorithm

There are a few good textbooks and tutorials for introducing the genetic
algorithm [15, 27]. In this chapter, we are not going to talk about the technical
details and the variants of GA. Instead, we give short introduction on the
basic ideas of GA. By solving a problem using a genetic algorithm, you must
represent a solution to your problem as a chromosome (or genome). Each
chromosome can be interpreted into a particular assignment of variables. For
example, if the values for the variable x was a number in range of 0 ∼ 256;
then an eight-bit binary number was thus an obvious way of representing it.
In this example, suppose the fitness function f(x) of the problem is the sine
function, because the nature of the sine function places the optimal value of
x = 128, where f(x) = 1. The binary representation of 128 is 10000000; the
representation of 127 is 01111111. Thus, the smallest change in fitness value
can require a change of every bit in the representation. Binary encoding of
chromosome is the most common type of coding, mainly because first works
in GA used this type of encoding [10].

The genetic algorithm then creates a population of solutions and applies
genetic operators such as mutation and crossover to evolve the solutions in
order to find the best one(s). In using a GA, usually we need to consider the
following three most important aspects. (1) definition of the fitness function,
(2) definition and implementation of the genetic representation for construct-
ing the search space and (3) definition and implementation of the genetic
operators. Once these three have been well defined, the generic genetic al-
gorithm should work fairly well. Beyond that you can try many different
variations to improve performance or computational efficiency (e.g., parallel
GAs).

Fitness Function. A fitness function is a particular type of objective func-
tion that is used to measure how close a given design solution is to achieving
the set aims. The fitness function basically determines which possible solu-
tions get passed on into the next generation of solutions (after genetic op-
erations). This is usually done by analyzing the chromosome, which encodes
a particular candidate solution to the problem you are trying to solve. The
fitness function will look at a pool of chromosomes and make some qualita-
tive assessment, returning a fitness value for that solution. The rest of the
genetic algorithm will discard any solutions with a “poor” fitness value and
accept any with a “good” fitness value. Two main classes of fitness functions
exist: one where the fitness function does not change, as in optimizing a fixed
function or testing with a fixed set of test cases; and one where the fitness

Evolutionary Models for Agent-Based Complex Behavior Modeling 609

function is mutable, as in niche differentiation or co-evolving the set of test
cases [21].

Search Space. If we are solving some problems, we are usually looking for
some solutions, which will be the best among others. The space of all feasible
solutions (it means objects among those the desired solution is) is called
search space, also state space. Each point in the search space (in chromosome
coding) represent one feasible solution. Genetic algorithms are about search
in this space to find the best chromosome(s) guided by the heuristics of
maximizing the fitness function. The chromosome with highest fitness has
the highest probability to be selected for genetic operations or directly pass
into the next generation.

Genetic Operations. The most important operator in GA is crossover,
based on the metaphor of sexual combination and reproduction inspired by
the real biological life which are extremely widespread throughout both the
animal and plant kingdoms. Crossover is a term for the recombination of
genetic information during sexual reproduction. In practice, after we have
decided what encoding we will use, crossover selects genes from parent chro-
mosomes and creates a new offspring. The offsprings have equal probabilities
of receiving any gene from either parent, as the parents chromosomes are
combined randomly. The simplest way is to choose randomly some crossover
point and everything before this point copy from a first parent and then
everything after this point copy from the second parent.

In GAs, mutation is the stochastic flipping of bits in chromosome that
occurs in each generation. It is always with a very low mutation rate (e.g.,
with a probability of something like 0.001 ∼ 0.05). This is to prevent falling
all solutions in population into a local optimum of solved problem. Mutation
changes randomly to generate new offspring. For binary encoding we can
switch a few randomly chosen bits from 1 to 0 or from 0 to 1. As a matter
of fact, mutation is not an especially important operator in GA. It is usually
set at a very low rate, and sometimes can be omitted.

4 Evolutionary Collective Behavior Decomposition

Collective intelligence is a shared or group intelligence that emerges from
the collaboration and competition of many individuals and appears in con-
sensus decision making of agents. Collective behaviors can be modeled by
agent-based games where each individual agent follows its own local rules.
Agent-based models (ABM) [41] of complex adaptive systems (CAS) provide
invaluable insight into the highly non-trivial collective behavior of a popula-
tion of competing agents. These systems are universal and researchers aim to
model the systems where involving agents are with similar capability com-
peting for a limited resource. Agents may share global information and learn
from past experience.

610 Z. Qin, Y. Dong, and T. Wan

In this section, we will introduce an evolutionary approach to study the
relationship between micro-level behaviors and macro-level behaviors. A com-
plex collective behavior is assumed to be generated by aggregation of several
groups of agents following different strategies. The strategy of agents is mod-
eled by some simple games because of limited information available for the
agents. Genetic algorithms are used to obtain the optimal collective behavior
decomposition model based on history data. The trained model will be used
for collective behavior prediction.

4.1 Complex Adaptive Systems and Pattern
Formation

Extensive research in econophysics [26] has been done on agent-based ex-
perimental games from the perspective of interdisciplinary disciplines such
as physics, mathematics and complexity science. For example, Sysi-Aho pro-
posed a genetic algorithm based adaptation mechanisms within the frame-
work of the minority game, and found that the adaptation mechanism leads
the market system fastest and nearest to maximum utility or efficiency [30].
Gou [16] studied how the change of mixture of agents in the mixed-game
model can affect the change of average winnings of agents and local volatili-
ties of the artificial stock market.

Unfortunately, fewer research focus on exploring macro-level collective be-
havior prediction by understanding the emergent properties of macro-level be-
havior from micro-level behaviors. We can rarely see that agent-based models
were put into practice of real market predictions, e.g. predicting fluctuation of
the stock prices. In this chapter, we assume that the collective data are gen-
erated from the combination of micro-behaviors of variant groups of agents
employing different strategies. We then model and estimate the resource-
constrained environment parameters to maximize the approximation of the
system outputs to the real-world test data.

In his last years, Turing has focus his interests on patter formation, to
understand the orderly outcomes of self-organization. Especially in biology,
pattern formation refers to the generation of complex organizations of cell
fates in space and time. However, our problem of collective behavior decom-
position is sort of reverse version of the pattern formation. The patterns of
individual agents are lost through behavior aggregation. We hope to redis-
cover these lost patterns by studying the micro-level and macro-level rela-
tions. Fig. 2 gives an example of aggregated collective behavior generated by
a group of agents playing the minority game [3]. It is obvious to see that the
observable collective behaviors are random and no patterns can be directly
detected. However, this messy behavior is mostly generated by deterministic
individual behaviors. More details are available in the next section.

Evolutionary Models for Agent-Based Complex Behavior Modeling 611

0 100 200 300 400 500
0

10

20

30

Number of Games

N
um

be
r o

f A
ge

nt
s

in
 R

oo
m

 A

Fig. 2 A sample of random collective behavior, which is generated by a group of
agents playing the minority game with fixed strategies.

4.2 Agent Behavior Modeling with Minority Game

Agent-based experimental games have attracted much attention in different
research areas, such as psychology [35], economics [13, 36] and financial mar-
ket modeling [12, 20, 32]. Among these agent-based models, minority game
(MG) [3] is an important model in which an odd number N of agents suc-
cessively compete to be in the minority side. This model can be regarded as
a simplified version of EI Farol Bar Problem [1], in which a number of peo-
ple decide weekly whether go to the EI Farol bar to enjoy live music in the
risk of staying in a crowd place or stay at home. As a new tool for learning
complex adaptive systems, the minority game has been applied to variety ar-
eas especially in financial market modeling [12, 20, 32]. In real-life scenarios,
some agents make random decisions and some groups employ similar strate-
gies. The complexity of marketing world is embodied in existence of varieties
types of agents using strategies based on their own rules.

Formally, the minority game consists of N (an odd number) agents, at time
t (t = 1, . . . , T), each agent need to take an action ai(t) for i = 1, · · · , N , to
attend room A or B.

ai(t) =

{
A Agent i choose room A
B Agent i choose room B

(1)

At each round t, agents belonging to the minority group win. The winning
outcome can be represented by a binary function w(t). If A is the minority
side, i.e. the number of agents choosing Room A is no greater than (N−1)/2,
we define the winning outcome w(t) = 0; otherwise, w(t) = 1.

612 Z. Qin, Y. Dong, and T. Wan

w(t) =

{
0 if:

∑N
i=1 Δ(ai(t) = A) ≤ N−1

2
1 otherwise

(2)

where Δ(α) is the truth function:

Δ(α) =

{
0 α is false
1 α is true

(3)

We assume that agents make choices based on the most recent m winning
outcomes h(t), which is called memory and m is called the length of memory.

h(t) = [w(t −m), . . . , w(t − 2), w(t− 1)] (4)

Given the outcome w(t) at the moment t, agent i may keep a record ri(t)
that tells whether it has won the game or not.

ri(t) =

{
Win Agent i wins at time t
Loss Agent i loses at time t

(5)

Table 4 One sample strategy for an agent in the minority game with m = 4.

h(t) 0000 0001 0010 0011 0100 0101 0110 0111

S(h(t)) A A B B B A B B

h(t) 1000 1001 1010 1011 1100 1101 1110 1111

S(h(t)) B A A A A B B B

In minority game, we usually assume that each agent’s reaction based on
the previous data is governed by a “strategy” [3]. Each strategy is based
on the past m-bit memory which are described as a binary sequence. Every
possible m-bit memory are mapped in correspond to a prediction of choosing
room A or B in the next round. Therefore, there are 22

m

possible strategies in
the strategy space. Agents employing the same strategy will be categorized as
one strategy group. Given the memory h(t), the choice for the agent i guided
by the strategy S is denoted by S(h(t)). The value of m is usually set by a
number less than 6 in practical experiments as people tend to use short-term
memory rather than a long-term memory in making a 0-1 decision.

Table 4 shows one possible strategy withm = 4. For example, h(t) = [0010]
represents that if the agent who choose B in the latest three time steps win,
the next round (at time t) choice for this agent will be S([0010]) = B. A
strategy can be regarded as a particular set of decisions on the permutations
of previous winning outcomes. The decision process of minority game can be
schematically illustrated in the Fig. 3. We assume each agent has its own
strategy, at each time step, the agent will take action based on previous m
outcomes of the system. The winning of this round by applying the minority
rule will be broadcast to the system.

Evolutionary Models for Agent-Based Complex Behavior Modeling 613

Fig. 3 For a given time step: the strategy maps the last four winning groups
(m = 4) into the agent decision. Solid thick lines mimic how the information flows
in the system: the N agents take the last m numbers (1101 in this case) from the
sequence of winning groups and perform an action accordingly. The N actions (A
or B) are transformed into the next winning group (0 in this case) through the
minority rule. This information is shared with the agents for their own feedback
and becomes the next number in the sequence of winning outcomes. This figure is
modified from a similar one in [28].

4.3 Behavior Learning with Genetic Algorithms

In the previous research, Li et al. [23] designed an intelligent agent that uses
machine learning method to learn the patterns of other agents with complete
information, i.e. the information who went to which room in which round
of the game is available to the public (i.e. ri(t) and w(t) for t = 0, . . . , T
and i = 1, . . . , n). Fig. 4 is the performance of the intelligent agent using a
probabilistic estimation tree [33]. As we can see from the figure, the predictive
power of this agent is significantly better than the random guessing which
means that it can capture the patterns very well from a seemingly random
and messy collective information shown in Fig. 2.

However, the complete information is not a realistic assumption. In most
cases, we can only obtain the collective data w(t). Ma et al. first proposed
a framework that assumes this sort macro-level behavior can be decomposed
into the micro-level behaviors of several strategy groups in the minority game.
A Genetic Algorithm [15] can be used to estimate the parameters of the de-
composition. We assume that N agents are divided into a number of strategy

614 Z. Qin, Y. Dong, and T. Wan

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of Games

A
cc

ur
ac

y
of

 In
te

lli
ge

nt
 A

ge
nt

Fig. 4 The performance of the intelligent agent which can learn the behaviors of
others with the complete information.

groups. One group of agents is random agents, and several groups of agents
have fixed strategies of their own. However, we have no idea how many agents
in each group and what strategies this group of agents employ. We only know
the history of winning outcomes w(t) and an educated guessed maximum
group number K. We use a vector of parameters to represent the number of
agents in each group and the strategy they use, a GA can be used to optimize
these parameters in order to obtain the most similar history of winning out-
come sequence. Since the parameters are independent to each other and the
problem is with a large parameter space, using a stochastic search algorithm
such as GA is a way for finding the most suitable parameters.

Given the winning outcomes w(t) and a guessed maximum number of
groups using fixed strategies K, the agents can be divided into K+1 groups:

{Gr, G1, . . . , GK}

where group Gr is the group of random agents and Gk for k = 1, . . . ,K
employs the strategy Sk. We use the following parameters to define one MG:
the percentage of random agents Pr, percentage of agents with one certain
fixed strategy PSk

where Sk is the strategy for the group. Therefore, we can
construct a chromosome x consisting of the following parameters.

x = [Pr, PS1 , S1, . . . , PSK , SK]

The fitness function calculation of f(x) is illustrated in Fig. 5. At time t of
the game, in order to evaluate one chromosome xj (j = 1, . . . , J where J is
the population size in the GA), we run the MG with the parameter setting
given by xj to obtain the history of winning outcomes yj(t). Comparing y(t)
with the actual sequence w(t): for t runs from 1 to a specified time T , once
yj(t) = w(t), we add 1 to f(xj). Formally:

Evolutionary Models for Agent-Based Complex Behavior Modeling 615

f(xj(t)) ←
{
f(xj(t)) + 1 if: yj(t) = w(t)
f(xj(t)) otherwise

(6)

At each time t, the best chromosome x∗(t) is selected from the pool:

x∗(t) = argmax
j

f(xj(t)) for j = 1, . . . , J

Given the best chromosome x∗(t), its parameters can give the best possible
complete information scenario so that we can use machine learning algo-
rithms to predict each agent’s behavior and make final decision based on
these predictions [23, 25].

1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 ……………………………………..1 0 0 1 0 1 1 1 0 0 0 1Xj(t)

Proportion of Random Agents
Proportion of Agents Using Strategy 1

Strategy 1
Proportion of Agents Using Strategy 2

Strategy 2

Proportion of Agents Using Strategy K
Strategy K

 0 1 0 0 0 0 1 1 0 …… 1 0 1 1MG Winning Outcomes Yj(t)

 0 0 1 1 0 1 1 0 0 …… 0 0 0 1Actural Winning Outcomes W(t)

 +1 +1 +1 +1 ………. +1 +1F(xj(t)) =

Fig. 5 The process for calculating the fitness function for a chromosome at time t.
A chromosome is consisted by numbers of agents in each group and the strategies of
this group. For each chromosome xj , we can obtain a sequence of winning outcomes
yj(t) by running the MGs based on the given parameters. The fitness function is
calculated based on the comparisons between yj(t) and the actual sequence of
winning outcomes w(t).

4.4 Modeling with Mixed-Games

The evolutionary collective behavior decomposition is a general framework
for studying the micro-level and macro-level relations. In order to obtain a
better approximation of the collective behaviors in the real-world market,
Gou [16] modifies the MG model and proposes the ‘mixed-game model’, in
which agents are divided into two groups: each group has different memory
length, Group GN plays minority game with the same strategy, while Group
GJ plays majority game with the same strategy. Comparing to the MG, the
most significant part of mixed-game is that it has an additional group of
“trend chasers”, therefore be more realistic to simulate a real-world case,
e.g., financial market, social networks and etc.

616 Z. Qin, Y. Dong, and T. Wan

Technically, all agents in GN choose the best strategy with which they can
predict the minority side most correctly, while all agents in GJ choose the
best strategy with which they can predict the majority side most correctly.
N1 represents the number of agents in GN and N2 represents the number
of agents in GJ . We use m1 and m2, respectively, to describe the memory
length of these two groups of agents. As each agent’s reaction is based on

a strategy corresponding a response to past memories, there are 22
(m1)

and

22
(m2)

possible strategies for GN or GJ , respectively. We assume the com-
pleteness of marketing world is embodied in existence of variant groups of
agents using their own strategies. Therefore, we improve the mixed-game of
Gou [16] by dividing the agents into three diverse types of agents: agents who
make random decisions (denoted by GR), agents of Group GN (playing the
minority game) with different strategies, agents of Group GJ (playing the
majority game) with different strategies. Fig. 6 illustrates that the collective
behavior is a combination of choices from the above three types of agents.
Given history sequence h(t), we can use GA to explore all possible combina-
tions of subgroups or compositions of the market, then use this information
to make better choices.

All Agents

Group Gn with
Strategy Sn,Kn

Group GJ with
Strategy SJ,1

Group Gn with
Strategy Sn,1

Group GR
Random Agents

Group GJ with
Strategy SJ,1

Number of agents in room A

0 1 1 0 0 0 1 0 1 0

Fig. 6 The generative process for collective data. All agents can be divided into
KN + KJ + 1 groups where agents in the same subgroups act identically based on
the strategy they follow. The collective data can be regarded as an aggregation of
all agents’ actions.

Evolutionary Models for Agent-Based Complex Behavior Modeling 617

Given the history winning outcomes w(t), the expected maximum number
of subgroups using fixed strategies in GN is KN , and the expected maximum
number of subgroups using fixed strategies in GJ is KJ . Thus agents can be
divided into KN +KJ + 1 groups:

{GR, G(S1
N), G(S2

N), . . . , G(SKN

N), G(S1
J), G(S2

J), . . . , G(SKJ

J)}

where GR represents the group of random agents, G(Si
N) (for i = 1, . . . ,KN)

represents the subgroup agents holding strategy Si
N in Group GN (the group

playing minority game). G(Sk
J) (for k = 1, . . . ,KJ) represents the subgroup

agents holding strategy Sk
J in Group GJ .

The chromosome for genetic algorithms x is encoded with the following
parameters:

x = [PR, P (S1
N), S1

N , . . . , P (SKN

N), SKN

N , P (S1
J), S

1
J , . . . , P (SKJ

J), SKJ

J]

• PR : the percentage of random agents among all agents (i.e. PR = |GR|
N)

• P (Si
N): the percentage of the number of agents in the minority game sub-

group i (i ∈ [1, 2, . . . ,KN]) with the fixed strategy Si
N (i.e. P (Si

N) =
|G(Si

N)|
N).

• Si
N : Binary coding of the minority game strategy Si

N .
• P (Sk

J): the percentage of the number of agents in the majority game sub-
group k (k ∈ [1, 2, . . . ,KJ]) with the fixed strategy Sk

J (i.e. P (Sk
J) =

|G(Sk
J)|

N).
• Sk

J : Binary coding of the majority game strategy Sk
J .

This evolutionary mixed-game learning model was first proposed by Du et
al. [11] and some empirical results to verify its effectiveness in the real-world
applications will be given in the next section.

4.5 Experimental Studies

The general framework is referred to evolutionary game learning (EGL) and
the micro-level behavior of agent can be modeled by either minority game,
mixed-game or other game theory models. The model with the mixed game
is referred to as evolutionary mixed-game learning (EMGL) and the model
with the minority game is evolutionary minority game learning (ENGL). In
the following experiments, We tested these two models on the U.S.Dollar-
RMB (Chinese Renminbi) exchange rate3. For each trading day t, suppose
the opening price is Vb and the closing price is Vf , the fluctuation of price
can be transferred to w(t) as follows:

w(t) =

{
1 if: Vb < Vf

0 otherwise
(7)

3 Data obtained from: http://bbs.jjxj.org/thread-69632-1-7.html

618 Z. Qin, Y. Dong, and T. Wan

500 550 600 650 700 750 800
0.4

0.5

0.6

0.7

0.8

Number of Games

P
re

d
ic

t
A

cc
u

ra
cy

EMGL(4−3)#1. The Exchange Rate of RMB against U. S. Dollar

500 550 600 650 700 750 800
0.4

0.5

0.6

0.7

0.8

Number of Games

P
re

d
ic

t
A

cc
u

ra
cy

EMGL(5−3)#1. The Exchange Rate of RMB against U. S. Dollar

500 550 600 650 700 750 800
0.4

0.5

0.6

0.7

0.8

Number of Games

P
re

d
ic

t
A

cc
u

ra
cy

EMGL(6−3)#1. The Exchange Rate of RMB against U. S. Dollar

Fig. 7 Performance of the ENGL model and the EMGL model with different
memory lengths on the USD-RMB exchange rate. Each curve is plotted on the
mean accuracy with plus and minus the standard deviation.

By correctly predicting w(t) using the learning model, we can capture the
ups and downs of the market prices though we are not trying to predict the
exact price at this stage.

In the following experiments we set KN = KJ = 20. Since almost all
agents play with history memories of 6 or less in a typical MG, and mN

is usually larger than mJ when using mixed-game model to simulate real
market [16], we set mN = 4, 5, 6 and mJ = 3 to establish three configuration
of EMGL models. For example, EMGL(6-3) represents mN = 6, mJ = 3. We
set K = 20 and m = 3 for the ENGL model. As for the GA, we set population
size J = 50, crossover rate Pc = 0.8, mutation rate Pm = 0.05. We run the
whole experiments for 30 times to reduce the influences of randomness in
GAs.

From the USD-RMB experiment shown in Figure 7, we can see both EMGL
(starred curve) and ENGL (dotted curve) can predict with high accuracy
(the mean accuracy is up to 58.6% for ENGL and 63.8% for EMGL (4-
3)), indicating a strong existing pattern captured by the new models. In
general, almost all results of ENGL and EMGL are statistically better than
the random guess (the mean is around 50% with a small variance) plotted
at the bottom. Du et al. tested the EMGL and ENGL models on 13 Chinese
stocks. The experimental results show that both models perform significantly
better than the random guess [11].

Evolutionary Models for Agent-Based Complex Behavior Modeling 619

5 Evolutionary Market Mechanism Designs

In the last section, we investigated the collective behavior decomposition in
agent-based market and introduced an evolutionary learning framework of
modeling agent behavior by game theory models. We use the new model
to predict the collective behaviors by learning from the history data. The
collective behavior of the market is assumed to be the aggregation of individ-
ual behaviors. In the simple minority game and mixed-game modeling, the
behavior of agents are governed by a set of parameters and make decisions
independently. This is not a realistic assumption, as we know, the interaction
between agents are the key issue for why the system is so unpredictable and
complex. In this section, we will mainly consider the interactions between
agents and how should they operate under the rules of market - the market
mechanism.

The market mechanism design is an important topic in computational eco-
nomics and finance for resolving multi-agent allocation problems [22]. In this
section, we review relevant background of trading agents, and market designs
by evolutionary computing methods. In particular, a genetic algorithm can
be used to design auction mechanisms in order to automatically generate a
desired market mechanism for markets populated with trading agents.

Equilibrium Quantity

E
q.

 P
ri

ce

Price

Quantity

Supply CurveDemand Curve

E

Fig. 8 An schematic illustration of a supply-demand schedule, where the intersec-
tion E is the equilibrium.

5.1 Market Mechanism

In every classical economic model, demand and supply always play promi-
nent roles. Supply is used to describe the quantity of a good or service that a
household or firm would like to sell at a particular price. Demand is used to
describe the quantity of a good or service that a household or firm chooses
to buy at a given price. For a buyer, with increasing of quantity of the com-
modity, he will be inclined to bid a lower price to make a purchase, but with

620 Z. Qin, Y. Dong, and T. Wan

the less quantity of commodity, he has to increase his bid price. Because buy-
ers want to make purchases at lower prices so that the demand curve slopes
downward. For sellers, if the commodity is at a higher price, they will be in-
clined to sell as many as they can, that keeps the supply curve slope upward.
The intersection of the supply curve and demand curves is called the equi-
librium, and the corresponding price and quantity are called, respectively,
the equilibrium price and the equilibrium quantity (Fig. 8). In case of prices
beyond the equilibrium, the market will self-correct them to the equilibrium
by an “invisible hand” according to Adam Smith. At an equilibrium price,
consumers get precisely the quantity of the good they are willing to buy at
that price, and sellers sell out the quantity they are willing to sell at that
price. Neither of them has any incentive to change. In a competitive market,
the price actually paid and received in the market will tend to the equilibrium
price. This is called the law of supply and demand [29].

In economics and game theory, interactions of traders consist of two com-
ponents: a protocol and a strategy. Protocol defines the valid behavior of
traders during the interaction. It is set by the marketplace owner and should
be known publicly for all the participants. Strategy is privately designed by
each agent to achieve their negotiation objectives within a protocol. In the
previous section, the minority game model was used for modeling the agent
strategy. In this section, we will put our focus on the protocol. Moreover,
the effectiveness of the strategy is very much dependent on the protocol: an
optimal strategy for one protocol may perform very badly for other protocols.
In a marketplace, the protocol is an“auction”. It is the market mechanism by
which buyers and sellers interact in this marketplace. Strategy is the adap-
tive behavior or “intelligence” of traders such as the ZIP agents’ [4] updating
rules that will be discussed later.

There are many types of auctions. English Auction (EA), sellers keep silent
and buyers quote increasing bid-prices, and the buyer with highest bid is al-
lowed to buy; Dutch Flower Auction (DFA), buyers keep silent and sellers
quote decreasing offer-prices and the seller with lowest offer is allowed to
sell. In other auctions such as the Vickery or second-price sealed-bid auction,
sealed bids are submitted and the highest bidder is allowed to buy, but at the
price of the second highest bid. EA and DFA are also called single sided auc-
tions because either buyers or sellers are active but not both. The Continuous
Double Auction (CDA), one the most popular of all auctions, allows buyers
and sellers to continuously update their bids/offers at any time in the trad-
ing period. The bids/offers are quoted simultaneously and asynchronously by
buyers/sellers. At any time the sellers/buyers are free to accept the quoted
bids/offers [32].

In 1950s, Smith [36] demonstrated that markets consisting of small num-
bers of traders could still exhibit equilibration to values predictable from
classical microeconomic theory. In a given supply-demand schedule with n
transactions between ‘sellers’ and ‘buyers’, the coefficient of convergence α
(0 ≤ α ≤ 1)is introduced to measure the deviation of transaction prices from

Evolutionary Models for Agent-Based Complex Behavior Modeling 621

the theoretical market equilibrium price p0 [36]. α is calculated at the end
based on transaction prices pi for i = 1, · · · , n. The coefficient of convergence
is defined as follows:

α = 100 · δ0/p0 (8)

where

δ0 =

√√√√ 1

n

n∑
i=1

(pi − p0)2 (9)

The E-market discussed in this chapter as well as in [5] and [32] is based on
Smith’s experiment and the α measure is used to evaluate the convergence
of the market.

5.2 Agent Strategy Modeling

Zero-intelligence (ZI) agents were initially proposed to explore the relation-
ship between limited rationality, market institutions and the general equi-
libration of markets to the competitive equilibrium [12]. The fundamental
discovery is that within the classical double auction (CDA) market only the
weakest elements of rationality is needed to exhibit high allocative efficiency
and price convergence in a competitive market. This convergence is later
proved as a statistical must but not an emergent behavior. Zero intelligence
plus (ZIP) agents, proposed by Cliff [4] as an augmented version of ZI agents
use a simple machine learning algorithm to adapt their behavior for maxi-
mizing their own utility function.

Each ZIP trader i is given a private secret limit price, λi, which for a seller is
the price below which it must not sell and for a buyer is the price above which
it must not buy (based on Smith’s experiment). The pseudo-code of the ZIP
agent’s strategy is shown in Alg. 1. If a ZIP trader completes a transaction
at its λi price then it generates zero utility, where utility for traders means
the profit for the sellers or saving for the buyers. Each ZIP trader i maintains
a time-varying profit margin μi(t) and generates quote-prices pi(t) at time t
according to

pi(t) = λi(1 + μi(t)) (10)

pi(t) = λi(1 − μi(t)) (11)

for sellers and for buyers, respectively. Trader i is given an initial value μi(0)
(when t = 0) which is subsequently adapted over time using a simple machine
learning technique known as the Widrow-Hoff (W-H) rule which is well used
in gradient optimization and back-propagation neural networks. The W-H
rule has a “learning rate” βi that governs the speed of convergence between
trader i’s quote price pi(t) and the trader’s idealized target price τi(t) which is
determined by a stochastic function of last quote price with two small random
absolute perturbations: Ai(t) and Ri(t). Ai(t) is generated uniformly from

622 Z. Qin, Y. Dong, and T. Wan

the interval [0, Ca] denoted by U [0, Ca] for sellers and U [−Ca, 0] for buyers.
For sellers, Ri(t) is generated from

Ri(t) ∼ U [1, 1 + Cr]

and for buyers
Ri(t) ∼ U [1− Cr, 1]

Ca and Cr are called system constants. To smooth over noise in the learning,
there is an additional “momentum” γi for each trader (momentum is also
used in back propagation neural networks.

For each ZIP agent i, its adaptation is governed by three real-valued pa-
rameters: learning rate βi, momentum γi and initial profit margin μi(0). Be-
cause of the randomness and the uncertainty involved in trading, a trader’s
values for these parameters are assigned at initialization, using uniform dis-
tributions: for all traders, βi, γi and μi(0) are sampled from:

β ∼ U(βmin, βmin + βΔ)

γi ∼ U(γmin, γmin + γΔ)

μi(0) ∼ U(μmin, μmin + μΔ)

Hence, to initialize an entire ZIP trader market it is necessary to specify
values for the six market-initialization parameters βmin,βΔ, γmin, γΔ, μmin,
μΔ plus the other two system constants Ca and Cr. Clearly, any particular
choice of values for these eight parameters can be represented as a vector:

V = [βmin, βΔ, γmin, γΔ, μmin, μΔ, Ca, Cr] ∈ R8

which corresponds to a single point in the 8-dimensional space of possible
parameter values. A Genetic Algorithm can be used to explore this space for
parameter optimization. The degree of price convergence to the equilibrium
price can be used as the fitness function.

5.3 Evolutionary Optimization

Market mechanism design addresses the problem of designing an auction in
which the agents’ interaction generates a desirable macro-scale outcome, by
assuming the trading agents are self-interested. A desired market can be sim-
ply considered as the one with least transaction price variance to the equilib-
rium price determined by the market’s supply-demand schedule. Therefore,
the fitness function for each individual can be calculated by monitoring price
convergence in a series of n CDA market experiments, measured by weight-
ing Smith’s α measurement on the given supply-demand schedules. If each
experiment lasted k “days”, the score of experiment number e is:

Evolutionary Models for Agent-Based Complex Behavior Modeling 623

S(Vi, e) =
1

k

k∑
d=1

wdα(d) (12)

where α(d) is the value of α and wd is the weight on the day d. According
to the experiments in [5], all experiments last for 6 days and we place a
greater emphasis on the early days of trading. The weights are set as follows:
w1 = 1.75, w2 = 1.50, w3 = 1.25 and w4, w5 and w6 are all equal to 1.00. The
fitness of the genotype Vi is evaluated by the mean score of n experiments:

F (Vi) =
1

n

n∑
e=1

S(Vi, e) (13)

Where n = 50 the performance of trading experiments are fairly stable based
on empirical work in [34]. The lower fitness a market has, the sooner the
market approaches to the equilibrium and the smaller price variance the
market has. GAs were used for optimizing the parameters for ZIP agents and
showed that evolved parameter settings via GAs perform significantly better
than “educated guessing” in CDA [4].

Now consider the case when we implement CDA. At time t, either a seller
or a buyer will be selected to quote, which means that sellers and buyers have
a fifty-fifty chance to quote. We use Qs to denote the probability of the event
that a seller offers. Then in CDA, Qs = 0.5. For English Auction Qs = 0 and
Dutch Flower Auction Qs = 1; which means, sellers cannot quote and sellers
are always able to quote, respectively. The inventive step introduced in [5]
was to consider the Qs with values of 0.0, 0.5 and 1.0 not as three distinct
market mechanisms, but rather as the two endpoints and the midpoint on
a continuum referred as a continuous auction space. For other values, e.g.,
Qs = 0.1, it can be interpreted as follows: on the average, for every ten
quotes, there will be only one from sellers while 9 are from buyers. This also
means, for a particular significant time t, the probability of a seller being
the quoting trader is 0.1. The fact is, this kind of auction is never found in
human-designed markets. However, no one knows whether this kind of hybrid
mechanism in which Qs �= 0, 0.5 or 1.0 is preferable to human-designed ones.
This motivates us to use a GA to explore with additional dimension Qs

ranging from 0 to 1 giving us the following genotype based on the old one by
adding a new dimension Qs:

[βmin, βΔ, γmin, γΔ, μmin, μΔ, Ca, Cr, Qs] ∈ R9

According to the experiments in [5], the hybrid mechanisms are found to be
the optimal auctions in 2 of the 4 given schedules.

Although the case of Qs = 0.5 is an exact approximation to the CDA
in the real-world, the fact that a trader will accept a quote whenever the
quoting price satisfies his expected price. For the two single sided extreme
cases of Qs = 0.0 and Qs = 1.0, this model is not an exact analogue of the

624 Z. Qin, Y. Dong, and T. Wan

EA and DFA. Qin and Kovacs [34] proposed a more realistic auction space.
All the following experiments are conducted in this realistic auction space.
More detailed are available in [34].

5.4 Trading with Heterogeneous Agents in CDA

Smith’s experiment [36] qualitatively indicated that the relationship of the
supply-demand schedule has an impact way in which transaction prices ap-
proached the equilibrium, even with a small number of participants. This
experiment has been conducted by using ZI [12] and ZIP agents [5], re-
spectively. Here we will consider the case of using a mixture of the same
number of ZI and ZIP agents, which are referred to as heterogeneous agents
experiments.

Algorithm 1. Pseudocode for updating rules of ZIP traders

For Sellers: ;
if the last shout was accepted at price q then

any seller si for which pi ≤ q should raise its profit margin;
else

if the last shout was a bid then
any active seller si for which pi ≥ q should lower its margin

else
if the last shout was an offer then

any active seller si for which pi ≥ q should lower its margin

For Buyers: ;
if the last shout was accepted at price q then

any buyer bi for which pi ≥ q should raise its profit margin;
else

if (the last shout was an offer then
(any active buyer bi for which pi ≤ q should lower its margin)

else
if the last shout was a bid then

any active buyer bi for which pi ≤ q should lower its margin

For all agents, the distribution of limit price determines the supply and
demand curves for the experiment and their intersection indicates the theo-
retical equilibrium price and quantity. In the simulation of real marketplaces,
we assume that each significant event (quoting, making deal or not making
deal etc.) always occurs at a unique time. In the CDA market, at time t, an
active trader (seller or buyer) i is chosen randomly to quote a price pi(t) to
become the “current quote q(t)”, where the active traders are ones who still
have utility (goods or money) for deals. Next, all traders on the contra side

Evolutionary Models for Agent-Based Complex Behavior Modeling 625

(i.e. all buyers j if i is a seller, or all sellers j if i is a buyer) compare q(t)
to their current quote price pj(t) and if the quotes cross (i.e. if pj(t) ≤ q(t)
for sellers or pj(t) ≥ q(t) for buyers) then the trader j is able to accept. If
no traders are able to accept, the quote is regarded as “ignored”. For ZIP
traders, either the current quote is accepted or ignored and the traders up-
date their profit margins μ(t) using the W-H rule. For example, suppose the
last quote is an offer and was accepted at price q then any sellers for which
their price is less than q should raise their profit margin with learning rate of
βi. The details about the updating rules for ZIP agents can be found in [4]
(See Alg. 1). For ZI traders, the previous transaction prices and the status
of the last offer do not have cause any influence on their further actions (ZI
traders are not intelligent, they only quote prices randomly).

5.5 Experimental Studies

In this section, we conduct a series of experiments of evolutionary designs of
market mechanism based on heterogeneous agents where ZI and ZIP agents
have the approximately same number. The auction space model is the one
proposed in [34]. All experiments are based on four given supply-demand
schedules: SD1, SD2, SD3 and SD4 (see Fig. 9). There are 22 trading agents
in the experiments, 11 sellers and 11 buyers, each of them is initialized with
one unit of goods and their limit prices are distributed as supply and de-
mand curves show. The vertical axis represents price and the equilibrium
price is 2.00 for all these 4 given schedules. Each schedule of supply and de-
mand curves is stepped. This is because the commodity is dealt in indivisible
discrete units, and there are only a small number of units available in the
market. Thus, supply and demand in this simple market differs appreciably
from the smoothly sloping curves of an idealized market. These are the same
schedules have also been used in previous studies [4, 5, 31, 34, 32] for the
convenience of comparison studies.

Fig. 10 shows the performance of the three groups of agents: ZI only, ZIP
only and the heterogenous mixture of of ZI and ZIP. It is obvious that the ZIP
only group has the minimum variance (α value) because the learning ability of
the ZIP agents. ZI agents are the most naive agents without learning ability,
the α value for this group is no doubt the largest of the 3. The right-hand
side figure of Fig. 10 shows the performance of the heterogeneous agents
under different auctions: EA, DFA and CDA. Though the differences are not
statistically different, we can still see the CDA gives the best performance in
these three human-designed auctions.

In the market evolution experiments, a simple GA is used to minimize
the fitness value (see equation 13) given 25 independent runs of trading ex-
periments. Population size is 20 and each parameter is coded with 8 bits,
crossover rate is a constant with the value of 0.7 and mutation rate is 0.015.
Elitism strategy is applied which means that the fittest individual in each

626 Z. Qin, Y. Dong, and T. Wan

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

Supply

Demand

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

Supply

Demand

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

Supply

Demand

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

Supply

Demand

Fig. 9 Supply-demand schedules for experiments: SD1, SD2 (upper) and SD3, SD4
(bottom).

0 1 2 3 4 5 6 7

−5

0

5

10

15

20

25

30

35

Day

α

ZI Agents

ZIP Agents

Heterogeneous Agents

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

Heterogeneous Agents

Day

α

Q

s
=0.0

Q

s
=0.5

Q

s
=1.0

Fig. 10 Left: the average performance of 3 groups of agents: ZI only, ZIP only
and the mixture of the same number of ZI and ZIP. Right: given a population
of heterogenous agents, the comparisons of α value under different auctions: EA
(Qs = 0), DFA(Qs = 1) and CDA (Qs = 0.5).

Evolutionary Models for Agent-Based Complex Behavior Modeling 627

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

Q
s

Heterogeneous Agents

ZIP Agents

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generation

Q
s

Heterogeneous Agents

ZIP Agents

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

Q
s

Heterogeneous Agents

ZIP Agents

0 100 200 300 400 500 600
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generation

Q
s

Heterogeneous Agents

ZIP Agents

Fig. 11 The comparisons of evolutionary trials of Qs for ZIP (dot lines) and het-
erogeneous agents (solid lines) on schedules SD1 to SD4 through 600 generations.

generation is logged. We run 600 generations in a single experiment. How-
ever, one of the drawbacks of GA is that it cannot be guaranteed the global
optimum. Thus we gain formal simplicity at the cost of computation. We run
the entire process of evolution many times independently and reduce the ef-
fect of randomness as time goes by, to encourage convergence. The results of
Qs represented here are based on 25 independent runs of the GA on the given
4 supply-demand schedules and the average results with standard deviation
through generation 600 are shown in Fig. 11.

As we can see from the figures, although Qs values converges to real-world
auctions in 3 of the 4 given schedules, we still found a hybrid auction in
SD4. Comparing the ZIP agents in the old auction space and the new auc-
tion space, the only difference is SD3. Both in the old auction [4] and new
auction space [34, 32] with ZIP agents, there were hybrid auctions found by
GAs. Cliff [5] presented a result of using only ZI agents given SD3 and the
hybrid auction was found. However, the Qs values for these hybrid auctions
are different: Qs = 0.39 for experiments with ZI agents only, Qs = 0.16 for
ZIP agents in the old auction space and Qs = 0.23 for ZIP agents in the new
auction space [34]. Here in the experiment with heterogeneous agents which

628 Z. Qin, Y. Dong, and T. Wan

are a mixture of ZI and ZIP agents, the optimal auction is CDA but not a
hybrid one. We believe that the optimal auction for a market is related to
the supply-demand schedule given. So far, we just demonstrated with empir-
ical studies due to the complexity of such problems. The theoretic relations
among hybrid auction, supply-demand schedule, the number of agents and
other factors are considered as a future work. However, we demonstrated
that given a particular supply-demand schedule, we can use some machine
learning technology to find the optimal auction for such a market.

6 The End

Turing died from cyanide poisoning, possibly by his own hand. On June 8,
1954, shortly before what would have been his 42nd birthday, he was found
dead in his bedroom. The logo of Apple computer is often erroneously referred
to as a tribute to Alan Turing, with the bite mark a reference to his method
of suicide. It is not true though even Steve Jobs hopes it were [43]. He had
left a large pile of handwritten notes. Decades later this fascinating material
is still not fully understood.

In this chapter, we follow Turing’s footstep and recognize his early ideas
in neural networks and evolutionary computation thanks to Copeland and
his colleagues [6, 7, 8]. We interpret his ideas of genetic algorithm by a novel
example based on Webster and Fleming’s work [40]. The essentials of ge-
netic algorithm are summarized following after a brief history of the GA.
We introduced two novel evolutionary models in agent-based computational
economics. Both models use GAs to optimize the agent behavior to obtain
the wanted market dynamics. The first model studies the collective behavior
decomposition which is to estimate individual agent’s strategies (or behav-
iors) from the random macro-level information. The second model uses GAs
to optimize both agents’ strategies and the protocol between them (mar-
ket mechanism) in order to obtain the most efficient market. Both models’
performance are testified by experimental studies to show the effectiveness.

2012 is the year we celebrate Turing’s 100 birthday and his contributions
that has led us to the new era of computing and information technology.
We have witnessed the development of computer science and its impact on
our life. The research presented in this chapter is relatively new. Following
Turing’s footsteps, we shall see a bright future of using computation to un-
derstand the economics, psychology, sociology and other complex adaptive
systems.

Acknowledgment. This work is partially funded by the NCET Program of MOE,
China and the SRF for ROCS. ZQ also thanks the China Scholar Council for the
6-month visiting fellowship (No. 2010307502) to CMU.

Evolutionary Models for Agent-Based Complex Behavior Modeling 629

References

1. Arthur, W.: Bounded rationality and inductive behavior (the El Farol problem).
American Economic Review 84, 406 (1994)

2. Bagley, J.D.: The behavior of adaptive systems which employ genetic and cor-
relation algorithms. Ph.D. dissertation. University of Michigan, Ann Arbor
(1967)

3. Challet, D., Zhang, Y.: Emergence of cooperation in an evolutionary game.
Physica A 246, 407 (1997)

4. Cliff, D.: Minimal-intelligence agents for bargaining behaviors in market-
based environments. Technical Report HPL-97-91, Hewlett-Packard Labora-
tories (1997)

5. Cliff, D.: Explorations in evolutionary design of online auction market mecha-
nism. Electronic Commerce Research and Applications 2, 162–175 (2003)

6. Copeland, B.J. (ed.): The Essential Turing: Seminal Writings in Computing,
Logic, Philosophy, Artificial Intelligence, and Artificial Life plus the Secrets of
Enigma. Oxford Press (2004)

7. Copeland, B.J., Proudfoot, D.: Alan Turings forgotten ideas in computer sci-
ence. Scientific American, 99-103 (April 1999)

8. Copeland, B.J., Proudfoot, D.: On Alan Turing’s anticipation of connectionism.
Synthese 108, 361–377 (1996)

9. Eberbach, E., Goldin, D., Wegner, P.: Turings ideas and models of computation.
In: Teuscher, C. (ed.) Alan Turing: Life and Legacy of a Great Thinker, pp.
159–194. Springer (2004)

10. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive sys-
tems. Doctoral dissertation. University of Michigan, Ann Arbor (1975)

11. Du, Y., Dong, Y., Qin, Z., Wan, T.: Exploring Market Behaviors with Evo-
lutionary Mixed-Games Learning Model. In: J ↪edrzejowicz, P., Nguyen, N.T.,
Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 244–253. Springer,
Heidelberg (2011)

12. Gode, D., Sunder, S.: Allocative efficiency of markets with zero-intelligence
traders: Market as a partial substitute for individual rationality. Journal of
Political Economy 101(1), 119–137 (1993)

13. Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature 460,
685–686 (2009)

14. Fisher, R.A.: On the Genetical Theory of Natural Selection. Clarendon Press,
Oxford (1930)

15. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading (1989)

16. Gou, C.: Agents play mix-game. In: Econophysics of Stock and Other Markets,
Part II. LNCS, pp. 123–132 (2006)

17. Holland, J.H.: Outline for a logical theory of adaptive systems. Journal of the
Association for Computing Machinery 3, 297–314 (1962)

18. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. The MIT
Press (1992)

19. Husbands, P., Holland, O., Wheeler, M. (eds.): The Mechanical Mind in History.
MIT Press (2008)

20. Johnson, N., Jefferies, P., Hui, P.: Financial Market Complexity. Oxford Uni-
versity Press, Oxford (2003)

630 Z. Qin, Y. Dong, and T. Wan

21. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann
Publishers (2001)

22. LeBaron, B.: Agent-based computational finance: Suggested readings and early
research. Journal of Economic Dynamics and Control 24, 679–702 (2000)

23. Li, G., Ma, Y., Dong, Y., Qin, Z.: Behavior Learning in Minority Games. In:
Guttmann, C., Dignum, F., Georgeff, M. (eds.) CARE 2009 / 2010. LNCS,
vol. 6066, pp. 125–136. Springer, Heidelberg (2011)

24. Luke, S.: Essentials of Metaheuristics (2009),
http://cs.gmu.edu/~sean/book/metaheuristics/

25. Ma, Y., Li, G., Dong, Y., Qin, Z.: Minority Game Data Mining for Stock
Market Predictions. In: Cao, L., Bazzan, A.L.C., Gorodetsky, V., Mitkas, P.A.,
Weiss, G., Yu, P.S. (eds.) ADMI 2010. LNCS, vol. 5980, pp. 178–189. Springer,
Heidelberg (2010)

26. Mantegna, R., Stanley, H.: An Introduction to Econophysics: Correlations and
Complexity in Finance. Cambridge University Press (1999)

27. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996)
28. Moro, E.: The Minority Game: an introductory guide. In: Cuerno, K. (ed.)

Advances in Condensed Matter and Statistical Physics, Nova Science Publisher,
Inc. (2004)

29. Stiglitz, J.E., Driffill, J.: Economics. W. W. Norton & Company, Inc. (2000)
30. Sysi-Aho, M., Chakaborti, A., Kaski, K.: Searching for good strategies in ada-

pative minority games. Physical Review (2004),
doi:10.1103/PhysRevE.69.036125

31. Qin, Z.: Evolving Marketplace Designs by Artificial Agents. MSc Dissertation,
Computer Science, University of Bristol (2002)

32. Qin, Z.: Market mechanism designs with heterogeneous trading agents. In: Pro-
ceedings of Fifth International Conference on Machine Learning and Applica-
tions (ICMLA), pp. 69–74 (2006)

33. Qin, Z.: Nave Bayes classification given probability estimation trees. In: The
Proceedings of Fifth International Conference on Machine Learning and Appli-
cations (ICMLA), pp. 34–39 (2006)

34. Qin, Z., Kovacs, T.: Evolution of realistic auctions. In: Withall, M., Hinde, C.
(eds.) Proceedings of the 2004 UK Workshop on Computational Intelligence,
Loughborough, UK, pp. 43–50 (2004)

35. Rapoport, A., Chammah, A., Orwant, C.: Prsoner’s Dilemma: A Study in Con-
flict and Cooperation. University of Michigan Press, Ann Arbor (1965)

36. Smith, V.: An experimental study of competitive market behavior. Journal of
Political Economy 70, 111–137 (1962)

37. Teuscher, C., Sanchez, E.: A revival of Turings forgotten connectionist ideas:
exploring unorganized machines. In: Connectionist Models of Learning, Devel-
opment and Evolution, Perspectives in Neural Computing, pp. 153–162 (2001)

38. Turing, A.: Computing machinery and intelligence. Mind LIX (236), 433–460,
doi:doi:10.1093/mind/LIX.236.433

39. Turing, A.: Intelligent machinery. In: Ince, D.C. (ed.) Collected Words of A.
M. Turing: Mechanical Intelligence. Elsevier Science (1992)

40. Webster, C., Fleming, W.: Evolved Turing neural networks,
http://compucology.net/evolved

41. Wiesinger, J., Sornette, D., Satinover, J.: Reverse engineering financial mar-
kets with majority and minority game using genetic algorithms. Swiss Finance
Institute Research Paper No. 10-08 (2010)

http://cs.gmu.edu/~sean/book/metaheuristics/
http://compucology.net/evolved

Evolutionary Models for Agent-Based Complex Behavior Modeling 631

42. http://en.wikipedia.org/wiki/Alan_Turing_Memorial

43. http://en.wikipedia.org/wiki/Alan_Turing

44. http://plato.stanford.edu/entries/turing/

45. http://en.wikipedia.org/wiki/Charles_Babbage

46. http://en.wikipedia.org/wiki/Chinese_Room

http://en.wikipedia.org/wiki/Alan_Turing_Memorial
http://en.wikipedia.org/wiki/Alan_Turing
http://plato.stanford.edu/entries/turing/
http://en.wikipedia.org/wiki/Charles_Babbage
http://en.wikipedia.org/wiki/Chinese_Room

Bankruptcy Prediction for Banks: An Artificial
Intelligence Approach to Improve
Understandability�

Alma Lilia Garcia-Almanza, Biliana Alexandrova-Kabadjova,
and Serafin Martinez-Jaramillo

Abstract. Artificial Intelligence (AI) is a prominent field within Computer Sci-
ence whose main goal is automatic problem solving. Some of the foundations of
this area were established by Alan M. Turing in his two seminal papers about ma-
chine intelligence [39] and [40]. Machine Learning (ML) is an important branch
within the AI field which currently is on an intensive stage of development due to
its wide range of applications. In particular, ML techniques have recently gained
recognition in finance, since they are capable to produce useful models. However,
the difficulty, and even the impossibility, to interpret these models, has limited the
use of ML techniques in some problems where the interpretability is an important
issue. Bankruptcy prediction for banks is a task which demands understandability
of the solution. Furthermore, the analysis of the features (input variables), to cre-
ate prediction models, provides better knowledge about the conditions which may
trigger bank defaults. The selection of meaningful features before executing the
learning process is beneficial since it reduces the dimensionality of the data by de-
creasing the size of the hypothesis space. As a result, a compact representation is
obtained which is easier to interpret . The main contributions of this work are: first,
the use of the evolutionary technique called Multi-Population Evolving Decision
Rules MP-EDR to determine the relevance of some features from Federal Deposit
Insurance Corporation (FDIC) data to predict bank bankruptcy. The second contri-
bution is the representation of the features’ relevance by means of a network which
has been built by using the rules and conditions produced by MP-EDR. Such rep-
resentation is useful to disentangle the relationships between features in the model,
this representation is aided by metrics which are used to measure the relevance of
such features.

Alma Lilia Garcia-Almanza · Biliana Alexandrova-Kabadjova · Serafin Martinez-Jaramillo
Banco de Mxico
e-mail: {algarcia,balexandrova,smartin}@banxico.org.mx
� The views expressed here are those of the authors and do not represent the views of Banco

de Mexico

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 633–656.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{algarcia,balexandrova,smartin}@banxico.org.mx

634 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

1 Introduction

Since the last global financial crisis in 2007-2008 and the never ending story of the
European debt crisis, banks are at the center of the regulators agenda and the devel-
opment of accurate and transparent tools for micro-prudential purposes is becoming
an unavoidable and urgent duty. For that reason, it is important to have reliable tech-
niques to detect early signals when a bank is near to the default. This would allow
financial authorities to take preventive actions in order to stop contagion to other
financial institutions.

Consequently, these recent crises and the failure of some classical models in eco-
nomics and finance to predict, prevent or even handle them has open the oportunity
for alternative approaches including AI and ML. Moreover, despite the fact that the
AI field has had some contributions in the past in economics and finance, nowadays
it is possible to find many successful and sophisticated ML applications in various
disciplines in economics and finance. In fact, the use of high frequency trading (al-
gorithmic trading which does not depend on human supervision) was in the news
recently during the flash crash that the stock markets in the United States experi-
enced on May 6, 2010.

As it was previously mentioned, some of the most important goals in AI and ML
are automatic problem solving and to mimic “intelligent” human behaviour. In his
two seminal papers, [39] and [40], Alan Turing expresed his views on “machinery
intelligence” and first described the Turing test for intelligence. Additionally, the
work of another pioneer in AI and recipient of the Turing Award, Herbert Simon in-
troduced the concept of bounded rationality, [34], [35], [36], [37] which challenges
fundamental aspects in economic sciences. Currently, the use of autonomous “in-
telligent” economic agents has gained some acceptance although there is still more
progress to be made.

Within the range of AI techniques used in economics and finance Evolutionary
Algorithms occupy an important place due to its flexibility and performance. As
an example, evolutionary computation techniques (Genetic Algorithms and Genetic
Programming) have been used to create forecasting models which present competi-
tive behaviour in comparison with other ML and some statistical techniques. One of
the best known evolutionary techniques is Genetic Programming (GP), created by
John Koza [22] which the author has pushed to the limits of invention.

Genetic programming can be defined as is done in [22] as a domain-independent
problem solving approach in which programs are evolved to solve, or approximately
solve, problems. John Koza has been intensively using its “invention machine” to
create anthenas, circuits and lens and getting human-competitive patents from its
genetic programming generated inventions.

Nevertheless, GP alone is not turing complete, meaning that it is not powerfull
enought to recognize all possible algorithms [38]. It is necessary to combine GP
with a technique known as indexed memory (see [38]) it is possible to get a Turing
complete language. This fact has enormous implications because it basically means
that it is possible to evolve any algorithm by using genetic programming and indexed

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 635

memory. Another related work is [44] in which the authors by using a recurrent
network consistent of trees are able to make GP Turing complete.

The artificial intelligence is used to identify useful patterns capable to recognize
the occurrence of a specific event by learning from a set of examples. The resul-
tant patterns are used to predict the occurrence of a similar situation. It is by no
means trivial to find the correct model to predict bankruptcy and despite all the well
established theory, there is room for improvement and machine intelligence comes
as an important alternative for sophisticated financial problems. Artificial Neural
Networks are the perfect example of competent ML techniques which are seen as
black boxes by the practitioners. On the other hand, GAs and GP have been used in
the past in bankruptcy prediction mainly due to its performance but not enougth at-
tention has been given to properties which we consider crucial: interpretability and
transparency of the generated models.

The transparency of a forecasting model allows us to analyze in detail the in-
teractions of the input features1 to construct predictive rules. Thus the model can
provide significant information that can help to create a regulatory frame by under-
standing which conditions, events or situations can trigger an undesirable situation.
In this context, it is worth mentioning that Breiman et al. [2] pointed out that the
main goals of classification are 1) to generate an accurate classification model able
to predict unseen cases and 2) discover the predictive structure of the problem. The
last goal includes providing an understanding of the variables and conditions that
control or are involved in the event.

There are many factors that impact the success of a machine learning classifier
and undoubtedly the quality of the training data set affects the result. When the input
contains irrelevant or redundant data or this is noisy and unreliable the classifier
performance declines and the result could be imprecise and more complex. Since the
good quality of the input data is an essential requirement for a successful induction
algorithm, the selection of relevant features has become an important research field
in the Machine Learning and Data Mining area [25].

In this paper a GP based technique is used for bankruptcy prediction because
of the advantages that this technique provides: its proved performance in this spe-
cific task, its flexibility and its transparency which can be directly translated into
interpretability of the resulting models.

This work presents an approach to select features, by using the GP based Multi-
Population Evolving Decision Rules (MP-EDR) approach [9] as learning induction
algorithm. Furthermore, a relevance graph representation for the input features is
introduced, its objective is to express the relationship between features as well as
the usefulness of these attributes. We propose to create an undirected graph whose
vertexes represent each feature in the data set, the vertexes are connected by edges
that denote the relationship of the features to form conditions (patterns).

The rest of this work is organized as follows: section 2 provides a brief literature
review about feature selection, next the section 3 describes the Multi-Population
EDR approach; whereas section 4 introduces the index to measure features’ rel-

1 In this work, the terms ”variable” and ”feature” are used as synonyms.

636 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

evance. Section 5 introduces the graph of usefulness, which is the graph approach
proposed in this work to estimate feature relevance. Finally, the experimental results
and conclusions are described in sections 6 and 7.

2 Feature Selection

The beginning of a successful induction algorithm is a good quality data set, this
involves the selection of relevant attributes capable to provide important information
to create a model. The lack of relevant attributes to gather patters make impossible
to generate a model. On the other hand, when a data set contains more variables
than the needed, there is the risk that the resulting model would be more complex
than it is necessary by the inclusion of useless information. Other inconvenient is
that the processing time to create the model may increase importantly. There exists
techniques, such as the eigen vectors that try to reduce the number of input variables
by means of eliminating the variables that are correlated and for that reason these
do not contribute with new information, this technique is very useful since it helps
to identify redundant information, however, it is not capable to determine if the
information provided by the feature has predictive power. There exists some ML
techniques whose objective is to create new features to train a classifier with the
aim to improve the prediction, the new features are generated by using a set of input
variables. Some of those works have shown improvement in the accuracy; however,
the introduction of constructed features hides the original variables and this makes
difficult the understandability of the model.

Since the good quality of the input data is an essential requirement for a success-
ful induction algorithm, the selection of relevant features has become an important
research field in the Machine Learning and Data Mining areas [25]. The proce-
dure of feature selection is mainly composed by the analysis of features, also called
variables, with the purpose of eliminating those with little or no predictive infor-
mation [19]. The motivation for feature selection involves constructing simpler and
more comprehensible models, improving the performance of the classifier by using
a data set composed by just meaningful features [28]. The relevance of this topic
has motivated the publication of several works in journals and conference proceed-
ings, offering several approaches to address this challenge. Even several books have
been entirely dedicated to this task, this is the case of [27],[14],[26], [17],[32]. Since
the feature selection has become a necessary prerequisite to create a model, many
approaches has been proposed to solve different kind of problems such as to create
credit scoring model [30], text categorization [47], [46], [6], image recognition [41],
financial time series forecasting [3] and many other applications.

A relevant work in the feature selection field is the article presented by John
et al [18], the authors divided the feature selection techniques in wrapper and fil-
ter approach. The wrapper approach is aided by a learning algorithm to evaluate
the usefulness of the features. To be more precise, the learning algorithm per-
forms a search to get a subset of meaningful features, where the algorithm itself
is part of the evaluation function. The wrapped approach has been aided by many

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 637

algorithms such as Genetic Programming [23], Evolutionary Algorithms [19],[41],
[16], [45], ID3 [18], C4.5 [18],[33], Support Vector Machines [3],[43], neural net-
work (multi-layer perceptron with back-propagation), logistic regression, and k-
nearest-neighbours [30], ough sets and particle swarm optimization [42], decision
trees and Naive-Bayes [20] among many others. On the other hand, a filter approach
estimates the feature utility according to heuristics based on general characteristics
of the data. According to Mark [15] in the majority of the cases the wrapper ap-
proach is able to produce a better feature subsets but its performance is slower than
a filter approach [15]. The approach proposed in this paper is a wrapper technique
and this is aided by an evolutionary approach, which is called Multi-population
Evolving Decision Rules.

To consult a more extended literature review about feature selection, the inter-
ested reader is referred to the following sources: for readers who prefer to study the
pioneer works in this research area it is recommended the survey presented by Dash
and Liu [4]. That work provides an overview of many existing techniques from the
1970’s to 1997, the authors recognize four basic procedures of a typical feature se-
lection method, and classifies the different existing methods in terms of generation
procedures and evaluation functions. Guyon and Elisseeff [13] provide a survey re-
view from 1997, when relevant papers as Blum and Langley [1] and Kohavi and
John [20], were published in the special issue Selection of Relevant Features and
Examples in Machine Learning. Additionally, the authors provide a more precise
definition of the objective function, feature construction, feature ranking, multivari-
ate feature selection, efficient search methods, and feature validity assessment meth-
ods. Liu and Yu [29] present a survey about existing feature selection algorithms for
classification and clustering, groups and compares different algorithms with a cate-
gorizing framework based on search strategies, evaluation criteria, and data mining
tasks and provide guidelines to choose an algorithm to select features. Finally to
consult the state of the art works the reader is referred to [28].

3 Multi-Population EDR Approach

In a previous work [7] an evolutionary technique called Evolving Decision Rules
(EDR) was applied to gather patterns from the Federal Deposit Insurance Corpora-
tion (FDIC) data. The objective of that work was to induce a set of comprehensible
rules that were capable to predict bank bankruptcy. This approach is able to gener-
ated fully interpretable models by showing decision rules that are composed by the
input variables. The rules were analyzed to discover the utility of the input features
by using an index of relevance which integrated the number of appearances in the
decision rules as well as the performance of these. A qualitative test was carried out
in order to find out the impact of that attributes. The following example shows a
couple of decision rules generated by the EDR approach.

638 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

IF (NCA2 > CUS3 and NOI < 0.155 and ROE < 0.553) THEN Bankruptcy
IF (ROE4 < NCA5 and NOI6 < 0.643 and NCA > -0.414) THEN Bankruptcy

The previous decision rules were created by the EDR approach with the aim of
detecting early signals of bank bankruptcy. As can be observed the features are
composed by finantial radios, thus, the format of the obtained model made possible
to detect risky situations when the mentioned financial indicators are getting close
to the thresholds in the decision rules. Such scenario may indicate the warning of a
undesirable situation.

In a later work the Multipopulation-EDR (MP-EDR) approach was introduced,
the contribution of that work was to integrate the knowledge from several executions
of the EDR approach. MP-EDR keeps the understandability of the result, addition-
ally this performs a deep search in the space solution helping to avoid the deception
problem, it means to fall in a local optima.

The present work introduces a graph representation for the input features whose
objective is to express the relationship between features as well as the usefulness of
these attributes. The main motivation of this work is to provide information about
the input features in order to indentify the predictive power of those. This infor-
mation is very important since the variable selection helps to improve the classifier
performance by removing meaningless data that may cause bias and overfitting.

The feature selection that is proposed in this work, is performed by using a wrap-
per approach. It means that an inductive learning algoritm will be used to identify
the useful attributes. The MP-EDR approach has been selected as the learning algo-
rithm because of the following reasons:

• MP-EDR provides a fully understandable model. The transparency of the solu-
tion is really important since the analysis of the model is used to determine the
predictive power for each variable

• MP-EDR integrates the information of several runs, this characteristic helps to
diminish the bias and suboptimal solutions.

Since one of the purposes of this chapter is to be a self-contained work, let us briefly
describe the EDR and MP-EDR approaches, for that reason some common defini-
tions are given for a better understanding.

Definition 1. A Repository R is a colleccion of decision rules that represent a model.

Definition 2. A decision rule ri is a pattern and this is formed by conjunction of
conditions, where the conditions can be the comparison of two variables or the com-
parison of a variable and a threshold.

Definition 3. A hard condition is the equation that compares two variables, for ex-
ample: var1 < var2 .

2 Non-current assets plus other real estate owned to assets.
3 Cash plus US treasury and government.
4 Return on equity.
5 Non-current assets plus other real estate owned to assets.
6 Net operating income to assets.

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 639

Definition 4. A flexible condition is the equation between a variable and a threshold,
for instance var1 < 0.8

Definition 5. A condition ci is similar to ck if both conditions are flexible and these
compare the same variable or feature using the same operator ”<”, ”>”, for example
the conditions ci = {var1 > .82} and ck = {var1 > .76} are similar

Definition 6. A decision rule ri is called a hard rule, when this is entirely composed
by hard conditions

Definition 7. A decision rule ri is a flexible rule, if this contains at least one flexible
condition

3.0.1 Evolving Decision Rules Method Description

Evolving Decision Rules [11],[10] is an evolutionary technique based on GP [21].
The main objective of the EDR approach is to generate and evolve a set of under-
standable rules to classify a single class, in this case the event of bankruptcy. The
final results is a repository R of decision rules , which is a model expressed in terms
of the input variables or attributes. Different classifications can be obtained by us-
ing different subsets of rules from R, those subsets are conformed by rules whose
precision reaches a specific threshold. It is fear to say that many Genetic Programs
are not able to produce fully understandable soluctions due to the presence of in-
trons [31] which is unused code, this problem is known as bloat [24]. Since EDR
is aidded by a simplication process this approach is able to create understandable
solutions avoiding the bloat problem. Let us briefly describe the main steps of the
Evolving Decision Rules approach.

Step 1: Creation of a initial population of random decision trees (individuals).
Step 2: Extraction of rules from the decision trees
Step 3: Rule simplification, the sucessful rules are simplified by removing redun-

dant7 and vacuous8 conditions.
Step 4: Integration of successful rules into the repository.
Step 5: Creation of a new population by using the successful individuals in the

previous generation and applying the mutation and hill-climbing operators. The
process is repeated from Step 2 until the algorithm has reached the maximum
number of generations.

Step 6: Testing EDR approach. The evaluation is performed by using sub-
collections of rules grouped by precision, generating a set of classifications.

The final result is a repository of rules which are expressed in terms of the input fea-
tures (see the example in figure 1). If all conditions in the decision rule are satisfied
it indicates that a bank bankruptcy may occur. A more detailed description about the

7 Redundant conditions are those which are repeated or report the same event, e.g., R1 =
var1 > 0.5 and var1 > 0.7, thus the first condition is redundant.

8 Vacuous conditions refers to those that regardless its values are always satisfied, as a in-
stance.

640 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

r1 = {var1 > var2 and var3 > .06} p(r1) = .86
R = r2 = {var3 > var2 and var3 > var4} p(r2) = .78

r3 = {var4 > var1 and var4 > .65} p(r3) = .76
r4 = {var3 > var7 and var2 > .89 and var3 > .56} p(r4) = .66

Fig. 1 Example of a set decision rules

EDR process is provided in the algorithm 1. Let us describe the EDR procedure by
using an easy example.

For each generation of the evolutionary process the population is composed by
a set of decision trees, all of them are decomposed in decision rules, thus, a tree
can be expressed as Tk = rk1,rk2, ...rkn. The rules whose precision is bigger than a
predefined threshold will be simplified. Lets rk be a decision rule whose precision
is bigger than the minimum required and this is composed as follows: rk= {var4 >
var1 and var4 > .75 and var4 > .56}. Then rk is analysed in order to remove the
redundant conditions, for that reason the rule rk is simplified as: rk ={var4 > var1

and var4 > .75}. As can be noticed the condition var4 > .75 includes the condition
var4 > .56, for that reason the latest was eliminated.

Once the rule has been simplied, we look for a similar rule in R, lets the repository
R be composed by the rules in figure 1. As can be noticed r3 is similar to rk, if the
latest performs better then r3 will be replaced by rk. On the other hand, if there is
not a rule similar to rk, then rk will be included in the repository. Finally if rk is a
hard rule and there is not an equal rule, then rk will be added to R. The addition of
new patterns is limited by the maximum number of rules in R, when this threshold
has been achieved the new rule is included by replacing the worst rule in R when
the performance of the latest is outperformed by rk.

3.0.2 Multi-Population Evolving Decision Rules Method Description

The objective of the Multi-Population Evolving Decision Rules (MP-EDR) is to
gather patterns from independent executions of the EDR approach in order to create
a Multi-Population repository of rules. The MP-EDR approach gathers rules from a
set of repositories R1,R2...Rn and forms a new repository of rules, which is called
Multi-Population Repository Rmp. In this way MP-EDR summarizes the knowledge
acquired by the previous solutions. This technique helps to increase the diversity
and to tackle the deception or premature convergence, which occurs when a popula-
tion converges to a global suboptimal solution. The main steps of MP-EDR are the
following:

Step 1: Creation of n repositories of decision rules |R|n. The EDR method is ex-
ecuted n times, since EDR is a stochastic method this is capable to generate n
different repositores of rules.

Step 2: Initialization of the first multi-population repository Rmp by introducing
the rules in R1.

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 641

Algorithm 1: EvolvingDecisionRules()

P a population of decision trees t1, t2, ...
n the number of decision trees in P
R ={ri} a repository of decision rules ri ∀i = 1,2, ..
m the maximum number of rules in the Repository
NumGenerations the number of Generations in the evolutionary proccess
Tmin the minimum precision threshold1

input :
output : Repository

begin2

/* Creates an initial population of random decision trees */3

P ← a set of n random decision trees4

/* Repeat until the number of generations is reached*/5

for j=1 to NumGenerations do6

/* Analizes every decision tree tk ∈ P */7

for each tk ∈ P do8

tk ← the k-esim decision tree in P9

/* extracts the decision rules from tk */10

{rki}← the set of decision rules in tk11

/* Evaluates each rki to determine if this can enter into R */12

for each rki ∈ tk do13

if precision(rki)> Tmin then14

if (rki is a hard rule and rki /∈ R) or (rki is a flexible rule and not ∃15

rβ ∈ R such as rβ is similar to rki) then
nR ← the number of rules in R16

if nR < m then17

R = R∪ rki18

else19

/* R has reached the maximum number of rules, thus the20

worst rule will be replaced by rki*/
rworst ← the lowest ranked rule in R21

if precision(rki)> precision(rworst) then22

R = R− rworst23

R = R∪ rki24

else25

if (∃ rβ ∈ R such as rβ is similar to rki) and26

precision(rβ)< precision(rki) then
R = R− rβ27

R = R∪ rki28

return R29

end30

642 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

Step 3: Integration of new rules into the repository. For each repository Rk where
k = 2,3, ..n and for each rule rki ∈ Rk, The rule rki is compared with the existing
rules in the repository Rmp. If rki represents a different pattern this is integrated
into Rmp. If there is a rule rmpi ∈ Rmp which is similar to rule rki and rki perfor-
mances better than the existing rule, then rmpi is replaced by rki.

Step 4: Testing EDR. Once the evolutionary process has finished, EDR is tested
by using another data set. It is evaluated by using sub-collections of rules from
the repository, those rules are grouped according to their precision

A more detailed description about the MP-EDR approach is provided in [9].

R1 ©
Simplifies the rules ↙

Rmp ©←− Identifies new patterns ←− R2 ©
Evaluate the new patterns ↖

...
Integrates the new sucessful rules Rn ©

Fig. 2 The Multi-population Repository R gathers rules from repositories of rules that were
created by independent evolutionary processes

4 Index to Measure the Features Relevance

To determine the predictive power of each feature in the data set, a metric to measure
the relevance of these features is proposed, the objective is to measure the frequency
and the impact of each variable in the sucessful decision rules.

Lets:
ri be a decision rule
R be a repository of rules created by MP-EDR

such as R = {ri} where i = 1,2...m
m be the maximum number of rules in R
n be the number of features in the data set
p(ri) be the precision of rule ri

Dβ be a resampled data set from D0 where β = 1,2..s
s be the number of resampled data sets
vari be the i-esim variable (feature)
Variables be the set of variables such as Variables = {vari}∀i = 1..n
A be a nxn matrix that is composed by the elements ai j

where i, j = 1,2...n
ai j be an element of the matrix A such as

ai j =
∑m

k=1 f (i, j,k)
m

(1)

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 643

f (i, j,k) =

⎧⎪⎨⎪⎩
p(rk) if vari and var j ∈ rk,where rk ∈ R

0 Otherwise

(2)

For each data set Dβ there is a MP-Repository Rβ and then there is a matrix Aβ .
Lets call A′ the matrix for the data set Dβ whose elements are described as a′i j and
these are calculated as follows:

a′i, j =
1
s

s

∑
β=1

aβ
i, j where aβ

i, j ∈ Aβ (3)

The matrix A′ registers all the edges or relationships between features, thus the graph
of A′ = {a′i, j} shows all the edges and vertices that have been used at least once for
one rule. Section 5 describes the procedure to represent the matrix A′ as a graph.
Thus the index to measure the performance of the variables is described as follows:

Index(vari) =
n

∑
j=1

a′i, j (4)

Additionally let us describe other measure that will be used to analyse the perfor-
mance of each feature. Lets A′′ be the matrix whose elements a′′i, j are defined as
follows:

a′′i, j =

⎧⎪⎨⎪⎩
a′i, j if ∏∀β aβ

i j > 0 where aβ
i j ∈ Aβ

0 Otherwise

The matrix A′′ registers just the edges between features that have been present in
all the repositories of rules Rβ . The graph of A′′ (see section Section 5) displays the
edges and vertices which have been used in all the MP-Repositories.

5 Graph of Features Approach

To measure the relevance of the features in the data set we propose to create an
undirected graph whose vertexes represent each feature in the data set. The vertexes
are connected by edges that denote the relationship of the features to form conditions
(patterns) that should be capable to represent a model of the data set. The objective
of assigning values to the edges is to detect the main relationships between the
different variables and to measure their performance. Let us introduce the following
definitions that are used to assign values to the edges.

Definition 8. Let be Variables = {vari} the set of variables (features) in the data
set.

Definition 9. Let be V = {vi} the set of vertexes that represents each of the variables
in Variables, thus there is a vertex in the graph for each variable vari.

644 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

Definition 10. Let rk be a decision rule, such as rk={ck1∧ck2...∧ckn}, and let pk be
the precision of rk.

Definition 11. if ck j is a hard condition such as varx > vary then there is an edge
vx,vy, and its value is increased by pk.

Definition 12. if ck j is a flexible condition such as varx > threshold, then, there is a
loop in the vertex vx and its value is increased by pk.

As it was mentioned previously each feature is represented by a vertex, it means
that the graph will be composed by n vertexes where n in the number of features.
Since the edges represent the relationship between variables, these may or not exists,
thus, the graph will be formed by at most nxn edges including the loops. Using the
definitions 2 and 3 the edges of the type vx,vy ∀ x �=y represent the hard conditions
while the loops represent just the flexible conditions. Thus, the value of the edge
vx,vy indicates how often this combination of variables has been used in the model
to form a decision rule. The precision of the decision rule has been incorporated into
the formula in order to take into account the performance of the rule. The algorithm
1 shows the pseudo-code for assigning values to the edges and loops.

The matrix A′ (see previous section) registers the connections between the differ-
ent variables and the self-connections (loops), the latest are registered in the diago-
nal of the matrix.

6 Experimental Section

The objective of this section is to test our approach in order to show its efficiency, our
method has been illustrated for selecting rules to predict bank failure. An analysis is
carried on in order to test our findings. Finally, the most successful decision rules,
which were generated by using just the relevant features, are shown.

The data set to train and test our approach is composed of financial ratios, these
are listed in Table 1. The data comes from the Federal Deposit Insurance Corpo-
ration (FDIC) and it was kindly provided by the Centre for Computational Finance
and Economic Agents (CCFEA), University of Essex. The parameters for running
the EDR and the MP-EDR approaches are described in table 2. This work uses the
same parameter values than [8],[9] since these have showed to be sucessful.

6.1 Experiment Description

The purpose of the experiment is to select, from a group of features, the most suit-
able variables to create a model to forecast bank failure. We devote substantial time
to this task because removing irrelevant features from the data set helps to avoid
confusion and noise trying to integrate no-relevant information into the model. Ad-
ditionally the reduction of variables simplifies the model and speeds the creation of
the classifier.

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 645

Algorithm 2: GetEdgeValue()

m the number of rules in the Repository
n the number of feature (variables) in the data set
Repository ={ri} a repository of decision rules ri ∀i = 1,2, ..
Variables = {var j} the variables in the data set
v j the i-esim vertex ∀ j = 1,2...n
Edge jk a matrix that registers the values of the edge between v j and vk
cik the k−esim condition ∈ ri1

input : List Repository, List Variables
output : List

begin2

n ← Number of variables3

for each var j ∈Variables do4

v j ← var j5

/*Initializes the matrix */6

for j=1 to n do7

for k=1 to n do8

Edge jk ← 09

for each ri ∈ Repository do10

for each cik ∈ ri do11

begin12

if cik is a hard condition then13

a ← first variable number in cik14

b ← second variable number in cik15

Edgeba ← Edgeba +Precision(ri)16

else17

a ← variable number in cik18

b ← a19

Edgeab ← Edgeab +Precision(ri)20

end21

return Edge jk22

end23

To determine the predictive power of each variable an index is used to measure
the relevance of each feature (see section 4), after that, this information will be
plotted in an indirected graph (see section 5) with the aim to visualize the activity
and relationships of the features. The intention is to find useful patterns that help us
to discrimate relevant features. Finally, an analysis is carried on in order to validate
our findings, the steps of this experiment are listed belong.

1 A data set D0 was randomly re-sampling ten times to create ten different data
sets D1,D2,...D10, this technique is well known as bootstrapping [5]

2 Given that, the intention is to use MP-EDR method in order to integrate the
information from several executions, the EDR approach was performed ten times

646 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

per each data set D j where j = 1,2..10. In total EDR was performed 100 times
producing the same number of rules’ repositories, let us call them R jk where j
indicates the number of the data set and k the number of the execution.

3 A MP-Repository R j was generated by using the repositories created in the
previous step. Thus, a MP-Repository is generated by using the set of repositories
R jk trained by D j.

4 Every MP- repository Ri is mapped into a matrix using the algorithm 1.
5 The index to measure the relevance of each feature is calculated by applying the

procedure in section 4.
6 The matrixes A′ and A′′, which are calculated by using the set of matrixes A =

{Ai}, are plotted as graphs (see section 5).
7 An analysis of the indexes and graphs is carried on in order to determine the

non relevant features.
8 To test our approach an analysis is performed by removing from the result the

non-relevant features and measuring their impact.

Table 1 List of variables, financial indicators

Number Description Short name

1 Net interest margin NIM
2 Non-interest income to earning assets NII
3 Non-interest expense to earning assets NIX
4 Net operating income to assets NOI
5 Return on assets ROA
6 Return on equity ROE
7 Efficiency ratio ER
8 Non-current assets plus other real estate NCA

owned to assets
9 Cash plus US treasury and government CUS

10 Equity capital to assets EC
11 Core capital leverage ratio CR

Table 2 Parameters used for running EDR and MP-EDR

Parameter name Value

Population size 500
Number of generations 50
Initialization method Growth
Crossover Rate 0.8
Mutation Rate 0.05
Type of selection Tournament (size 2)
Control bloat growing Tarpeian method
Evaluate rules varying precision .02

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 647

The results of the experiment are presented in the following figures and tables:
The matrixes A′ and A′′ are displayed in figures 3 and 5 respectively, while the
graphs for the mentioned matrixes are shown in figures 4 and 6. The index for each
feature has been presented and ranked in table 3. The next section analyses the re-
sults obtained in the experiment in order to determine the relavance of each features.

6.2 Observations

As can be seen, table 3 presents the index for measuring the relevance of each
feature, the index integrates the frequency and the performance of the variable by
analysing the set of repositories of rules |R j|. The highest value denotes that this
variable has been used constantely and the decision rules produced by this fea-
ture performs well. However, once the index has been calculated, could be dif-
ficult to determine which index is low and which is high. By just analysing the
values in table 3 the average is 0.37 and the values that are lower than this are
var1,var2,var5,var7,var9 and var11. Notice that the column called degree, in table
3, describes the number of connections with other vertexes.

Figure 4 shows the graph created by plotting A′, this graph presents the edges
that were observed in the multi-population Repositories R j, as well as the values for
each edge including the loops. As can be observed the vertex v1,v2,v7 and v11 are not
connected with any other vertex in the graph. It means that these are not combined
with other variables in order to form conditions. While variables v3,v4,v5,v6 and v9

are connected with two other vertex. The features v8 and v10 are connected with the
same variables v3,v4,v5, v6 and v8.

Figure 6 shows the graph for matrix A′′, this exposes just the edges that
were persistent in the ten multi-population repositories. As it was expected the
edges with the lowest values were removed v4,v10, v5,v8,v5,v10 and v9,v10,.
As can be observed, some loops have been removed from the graph, these are
v2,v5,v7,v8,v9,v10 and v11. In our understanding none of the features used in this
work are correlated with the result (indication of default or not) for that reason we
believe that flexible conditions (for example v1 > .30) could be sucessful because
these overfit the data. As can be observed from graph 6, the vertexes v1,v2,v5,v7

and v11 are isolated, furthermore the index of those variables are the lowest ranked
from table 3. By analysing the graph 6 and table 3 these suggest that the isolated
variables should be removed, since these are not connected and their indexes are
vey low. As can be noticed, the index of v9 is also low but higher than the indexes
of the mentioned variables. Since v9 is connected in the graph this will be consid-
ered a relevant feature. Finally, based on the previous analysis the variables that are
relevant for the model are v3,v4,v6,v8,v9 and v10, notice that more than the half
part of the variables was discriminated, the removed variables were v1,v2,v5,v7

and v11.

648 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

Table 3 Features ranking according to the index

Feature Ranking Index Degree

var1 7 0.07 1
var2 10 0.05 1
var3 5 0.46 3
var4 1 1.06 3
var5 8 0.05 3
var6 3 0.65 3
var7 11 0.03 1
var8 2 1.03 6
var9 6 0.18 3
var10 4 0.49 6
var11 9 0.05 1

6.3 Analysis to Test the Approach

The objective of this section is to carry on an analysis in order to test the effec-
tiveness of our approach. The idea is to measure the performance of the resulting
repositories of rules by first removing the features that has been classified as mean-
ingless and after removing the relevant features. The results are compared against
the performance of the original repositories. In order to perform our study lets:

n be the number of features in the data set
f1 be a feature that according to the index is ranked in the i-place, for

example f1 = v4 and f6 = v9 (see table 3)
Fi be the set of features such as Fi = { fi, fi+1, ... fn}∀i ≤ n
R−Fi be the MP-Repository R by removing the rules whose conditions use at

least a feature in Fi

A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 .07 0 0 0 0 0 0 0 0 0 0
v2 0 .05 0 0 0 0 0 0 0 0 0
v3 0 0 .17 0 0 0 0 .15 0 .14 0
v4 0 0 0 .59 0 0 0 .39 0 .07 0
v5 0 0 0 0 .03 0 0 .01 0 .01 0
v6 0 0 0 0 0 .24 0 .28 0 .13 0
v7 0 0 0 0 0 0 .03 0 0 0 0
v8 0 0 .15 .39 .01 .28 0 .10 .10 0 0
v9 0 0 0 0 0 0 0 .10 .01 .07 0
v10 0 0 .14 .07 .01 .13 0 0 .07 .07 0
v11 0 0 0 0 0 0 0 0 0 0 .05

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 3 Matrix A′ registers all the edges or relationships between features, thus the graph of
A′ = {a′i, j} shows all the edges and vertices that have been used at least once time

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 649

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

← .15
.14

.39
← .07

.01 →
.01

.28
.13

.10
.07

.07

.05

.17
.59

.03

.24

.03

.10 →

.01 .07

.05

Fig. 4 Graph of matrix A′, each vertex represents a feature and the edges represent the con-
nections between variables that were used for the sucessful decision rules. This graph shows
all the connections between variables that were used by the rules in the MP-Repositories Ri

The analysis is composed by the following steps:

1.- The features are ranking based on their performance by using the index in
section 4.

2.- The performance for each MP-repository Ri that was generated for each data
set Di, is measured by using the Area Under the ROC9 Curve (AUC).

3.- The AUC and the number of rules for each repository Ri−Fn−w ∀i = 1,2, ..10
and w = 0,1..n− 1 are calculated. As can be seen, the features which are ranked
in the places n−w are removed from Ri. Table 6 indicates the features that have
been removed for each measure.

The resultant AUC and the number of rules for each data set are shown in tables 4
and 5. The graph 8 shows the values of the AUC for each data set by reducing the
features. Figure 9 displays the number of rules when the set of featues is reduced.
Finally the averaged values for the AUC and the number of rules are described in
table 6.

9 ROC -Receiver Operating Characteristic [12].

650 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

A′′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 .07 0 0 0 0 0 0 0 0 0 0
v2 0 0 0 0 0 0 0 0 0 0 0
v3 0 0 .17 0 0 0 0 .15 0 .14 0
v4 0 0 0 .59 0 0 0 .39 0 0 0
v5 0 0 0 0 0 0 0 0 0 0 0
v6 0 0 0 0 0 .24 0 .28 0 .13 0
v7 0 0 0 0 0 0 0 0 0 0 0
v8 0 0 .15 .39 0 .28 0 0 .10 0 0
v9 0 0 0 0 0 0 0 .10 0 0 0
v10 0 0 .14 0 0 .13 0 0 0 0 0
v11 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 5 The matrix A′′ registers the connections between variables, which are represented by
the edges, that were persistent in all the repositories of rules.

v1

v2

v3
v4

v5

v6

v7

v8

v9
v10

v11

.15
.14

.39 →

.28
.13

.07

.17
.59

.24

.10

Fig. 6 Graph of matrix A′′, this shows the variables’ connections that were persistent in all
the MP-Repositories

As can be noticed from table 6, this table has been divided horizontally in or-
der to separate the features that according to our approach are relevant. As it can
be observed, after removing the non-relevant features the AUC has not decreased
importantly, since the average AUC for Ri is 0.9228 and the average AUC after re-
moving the features v7,v2,v11,v5 and v1 is 0.9215 (a reduction of .14%), it means that
the remotion of those features does not affect the performance of Ri. In contrast, the
number of rules in the repository decreased from 50 to 36.4, in other words it de-
creased 27%. It is shown that the remotion of 5 features from the 11 does not affect
the performance of Ri, however since the number of decision rules in the repository

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 651

v3
v4

v6

v8

v9
v10

Fig. 7 The graph presents the variables and connections that according to our analysis are
relevant for the model

R − F10 − F8 − F6 − F4 − F2 −−
0.5

0.6

0.7

0.8

0.9

1

Set of features

A
U

C

Fig. 8 The values for the AUC for each data set D0,D1...D10, when the set of features is
reduced

is reduced in 27% the prediction model is benefited because it has been simplified.
However, it is still questionable if features v9 and v3 are relevant or not, because the
removal of these causes a decrease in the AUC of 0.4% and 1.6% respectively. How-
ever, the reduction of rules is considerable to 30.6 and 10.1. It can be concluded that
variables v8,v4 and v6 are the most relevant features, since these are able to identify
the 0.897 of the positive cases by just using the following rules:

652 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

IF {ROE¡NCA and NOI < 0.3410} THEN bankruptcy
IF {NOI < 1.6495 and NCA > 0.3430} THEN bankruptcy
IF {NOI < 0.3577 and ROE < -0.458 and NCA > -2.609} THEN bankruptcy
IF {NOI < NCA and NCA > 0.5729} THEN bankruptcy
IF (ROE<NCA and NOI < 0.3896 and ROE < 1.2759) THEN bankruptcy

R R −F10 R −F8 R −F6 R −F4 R −F2 −−
0

10

20

30

40

50
Number of rules after reducing features

Fig. 9 The number of rules for each data set D0,D1...D10, when the set of features is reduced

Table 4 AUC by Reducing features, data sets D1,D2...D5

Removed AUC Num AUC Num AUC Num AUC Num AUC Num
Variable D1 Rules D2 Rules D3 Rules D4 Rules D5 Rules

R .852 50 .946 50 .96 50 .937 50 .956 50
R−F11 .852 50 .946 50 .96 48 .937 49 .956 47
R−F10 .852 47 .946 50 .96 44 .937 45 .956 43
R−F9 .852 44 .946 50 .96 41 .937 43 .955 39
R−F8 .852 42 .948 49 .95 39 .932 39 .954 33
R−F7 .852 40 .949 46 .95 37 .932 38 .946 28
R−F6 .836 36 .939 41 .94 30 .932 37 .947 22

R−F5 .798 6 .88 2 .94 12 .934 12 .947 13
R−F4 .797 4 .88 1 .93 5 .934 7 .946 8
R−F3 .735 1 .5 0 .88 2 .809 1 .906 5
R−F2 .5 0 .5 0 .5 0 .5 0 .5 0
R−F1 .5 0 .5 0 .5 0 .5 0 .5 0

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 653

Table 5 AUC by Reducing features, data sets D6,D7...D10

Removed AUC Num AUC Num AUC Num AUC Num AUC Num
Variable D6 Rules D7 Rules D8 Rules D9 Rules D10 Rules

R .903 50 .939 50 .882 50 .896 50 .957 50
R−F11 .903 50 .939 49 .882 47 .896 49 .957 45
R−F10 .903 50 .939 47 .882 44 .891 46 .961 43
R−F9 .903 50 .939 43 .882 38 .892 41 .961 41
R−F8 .906 47 .938 40 .882 37 .892 39 .961 37
R−F7 .906 46 .938 35 .889 21 .892 37 .961 36
R−F6 .908 44 .918 26 .909 10 .887 31 .961 29

R−F5 .897 6 .912 12 .909 8 .876 16 .927 14
R−F4 .898 4 .911 8 .863 5 .874 8 .937 10
R−F3 .826 2 .831 1 .5 0 .797 2 .886 3
R−F2 .5 0 .5 0 .5 0 .5 0 .5 0
R−F1 .5 0 .5 0 .5 0 .5 0 .5 0

Table 6 Average AUC and number of rules by reducing features from the R

Repository of rules by removing those rules which AUC Num
contain the non relevant feature Average Average

Ri Ri 0.9228 50.0
Ri−F11 Ri −v7 0.9228 48.4
Ri−F10 Ri −v7,v2 0.9227 45.9
Ri−F9 Ri −v7,v2,v11 0.9227 43.0
Ri−F8 Ri −v7,v2,v11,v5 0.9215 40.2
Ri−F7 Ri −v7,v2,v11,v5,v1 0.9215 36.4
Ri−F6 Ri −v7,v2,v11,v5,v1,v9 0.9177 30.6

Ri−F5 Ri −v7,v2,v11,v5,v1,v9,v3 0.9023 10.1
Ri−F4 Ri −v7,v2,v11,v5,v1,v9,v3,v10 0.8970 6.0
Ri−F3 Ri −v7,v2,v11,v5,v1,v9,v3,v10,v6 0.7670 1.7
Ri−F2 Ri −v7,v2,v11,v5,v1,v9,v3,v10,v6,v8 0.500 0
Ri−F1 Ri −v7,v2,v11,v5,v1,v9,v3,v10,v6,v8,v4 0.500 0

7 Conclusions

There are many prediction problems that demand the understandability of the so-
lution since the analysis of the conditions that are involved in the model provides
knowledge about the scenarios that may trigger the event to predict. A good selec-
tion of relevant features to train a machine learning classifier is beneficial since it
reduces the dimensionality of the data set by decreasing the size of the hypothesis
space. Obviously the result is a more compact representation which can be inter-
preted easier. Furthermore, removing irrelevant features from the data set helps to
avoid confusion and noise trying to integrate no-relevant information into the model.

654 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

This work has presented a wrapped technique to select meaningful features by
using MP-EDR, this approach can produce understandable models, which are ca-
pable to describe, in terms of the features, the conditions that may induce the event
to predict. Besides, MP-EDR is a machine learning techique that can integrates the
information from several executions, it helps to tackle the deception and the bias.

We proposed two important contributions: first, the use of the MP-EDR approach
to determine the relevance of a set of data to predict bank bankruptcy. The second
contribution is the implementation of a graph to represent the features’ relevance,
this graph is built by using the rules and conditions produced by MP-EDR. From
experimental results it was shown that an analysis based on an index of relevance
could be sucessfully aided by the graph proposed in this work. The graphs expose
the relationship between variables that were found by MP-EDR. Additionally the
graph is used to show the features’ relatioships that persist along several executions.
The infomation provided by the graphs are useful to estudy the main relationships
of features in the data set.

The sort of information use here consists mainly on financial ratios but the tech-
nique is by no means limited to such type of information. In this sense, feature
selection takes a more important role because if many more features are used to
perform this task, then, it is important to select in a first round meaninful features to
constrain the search space explosion. By using GP to predict bankruptcy, this work
pushes AI techniques into areas in which more statistical techniques dominate. This
is also a contribution as we put on the table a technique which is not only competent
in performance terms but is also flexible, powerfull and transparent.

References

1. Blum, A., Langley, P.: Selection of relevant features and examples in machine learning.
Artificial Intelligence 97(1-2), 245–271

2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression
trees. Wadsworth International Group, United States of America (1984)

3. Cao, L.J., Tay, F.E.H.: Feature Selection for Support Vector Machines in Financial Time
Series Forecasting. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000. LNCS,
vol. 1983, pp. 268–273. Springer, Heidelberg (2000)

4. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1(1-4),
131–156 (1997)

5. Efron, B.: Bootstrap methods: Another look at the jackknife. The Annals of Statis-
tics 7(1), 1–26 (1979)

6. Forman, G.: An extensive empirical study of feature selection metrics for text classifica-
tion. Journal of Machine Learning Research 3, 1289–1305 (2003)

7. Garcia-Almanza, A.L., Alexandrova-Kabadjova, B., Martinez-Jaramillo, S.: Understand-
ing bank failure: A close examination of rules created by genetic programming. In: IEEE
Electronics Robotics and Automotive Mechanism Congress, CERMA (September 2010)

8. Garcia-Almanza, A.L., Alexandrova-Kabadjova, B., Martinez-Jaramillo, S.: Understand-
ing bank failure: A close examination of rules created by genetic programming. In: Pro-
ceedings of the IEEE The Electronics, Robotics and Automotive Mechanics Conference
(CERMA), pp. 34–39. IEEE (2010)

Bankruptcy Prediction for Banks: An Artificial Intelligence Approach 655

9. Garcia-Almanza, A.L., Martinez-Jaramillo, S., Alexandrova-Kabadjova, B., Tsang, E.:
Early signals for supervisory actions to prevent bank bankruptcy. In: Yap, A. (ed.) Infor-
mation Systems for Global Financial Markets: Emerging Developments and Effects. IGI
Global (2011)

10. Garcia-Almanza, A.L., Tsang, E.: Evolving decision rules to predict investment oppor-
tunities. International Journal of Automation and Computing 05(1), 22–31 (2008)

11. Garcia-Almanza, A.L., Tsang, E., Galvan-Lopez, E.: Evolving decision rules to discover
patterns in financial data sets. Computational Methods in Financial Engineering (2007)

12. Greiner, M., Pfeiffer, D., Smith, R.D.: Principles and practical application of receiver-
operating characteristic analysis for diagnostic tests. Prevent Veterinary Med. 45, 23–41
(2000)

13. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of
Machine Learning Research 3, 1157–1182 (2003)

14. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A. (eds.): Feature Extraction: Foundations
and Applications. STUDFUZZ. Springer, Berlin (2006)

15. Hall, M.A., Smith, L.A.: Feature selection for machine learning: Comparing a
correlation-based filter approach to the wrapper (1999)

16. Huang, C.-L., Wang, C.-J.: A GA-based feature selection and parameters optimization
for support vector machines. Expert Systems with Applications 31(2), 231–240 (2006)

17. Jensen, R., Shen, Q. (eds.): Computational Intelligence and Feature Selection: Rough
and Fuzzy Approaches. IEEE Press Series on Computational Intelligence. Wiley and
sons Inc., Hoboken (2008)

18. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem,
pp. 121–129 (1994)

19. Kim, Y.S., Street, N., Menczer, F.: Feature selection in data mining. In: Wang, J. (ed.)
Data Mining: Opportunities and Challenges, pp. 80–105. Idea Group Publishing (2003)

20. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence 97(1-2), 273–324 (1997)

21. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. The MIT Press, Cambridge (1992)

22. Koza, J.R.: Genetic programming (1997)
23. Landry, J.-A., Costa, L.D., Bernier, T.: Discriminant feature selection by genetic pro-

gramming: Towards a domain independent multi-class object detection system. Sys-
temics, Cybernetics and Informatics 3(1), 76–81 (2006)

24. Langdon, W.B., Poli, R.: Fitness causes bloat. In: Chawdhry, P.K., Roy, R., Pant, R.K.
(eds.) Soft Computing in Engineering Design and Manufacturing, pp. 13–22. Springer,
London (1997)

25. Langley, P.: Selection of relevant features in machine learning. In: Proceedings of the
AAAI Fall Symposium on Relevance, pp. 140–144. AAAI Press (1994)

26. Liu, H., Motoda, H. (eds.): Feature Selection for Knowledge Discovery and Data Min-
ing. The Springer International Series in Engineering and Computer Science. Springer,
Heidelberg (1998)

27. Liu, H., Motoda, H. (eds.): Computational Methods of Feature Selection. Data Mining
and Knowledge Discovery Series. Chapman and Hall/Crc, Boca Raton, Florida (2007)

28. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: An ever evolving frontier
in data mining. Journal of Machine Learning Research - Proceedings Track 10, 4–13
(2010)

29. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and
clustering. IEEE Transactions on Knowledge and Data Engineering 17(4), 491–502
(2005)

656 A.L. Garcia-Almanza, B. Alexandrova-Kabadjova, and S. Martinez-Jaramillo

30. Liu, Y., Schumann, M.: Data mining feature selection for credit scoring models. Journal
of The Operational Research Society 56, 1099–1108 (2005)

31. Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive
crossover in genetic programming. In: Rosca, J.P. (ed.) Proceedings of the Workshop
on Genetic Programming: From Theory to Real-World Applications, Tahoe City, Cali-
fornia, USA, July 9, pp. 6–22 (1995)

32. Okun, O. (ed.): Feature Selection and Ensemble Methods for Bioinformatics: Algorith-
mic Classification and Implementations. Medical Information Science Reference (2011)

33. Pitt, E., Nayak, R.: The use of various data mining and feature selection methods in the
analysis of a population survey dataset (2007)

34. Simon, H.A.: Models of Man: Social and Rational. John Wiley and Sons, Inc., New York
(1957)

35. Simon, H.A.: Models of Bounded Rationality, vol. 2. MIT Press, Cambridge (1982)
36. Simon, H.A.: Models of Bounded Rationality: Economic Analysis and Public Policy,

vol. 1. The MIT Press, Cambridge (1984)
37. Simon, H.A.: Models of Bounded Rationality: Empirically Grounded Economic Reason,

vol. 3. The MIT Press, Cambridge (1997)
38. Teller, A.: Turing completeness in the language of genetic programming with indexed

memory. In: Proceedings of the 1994 IEEE World Congress on Computational Intelli-
gence, June 27-29, pp. 136–141. IEEE Press, Orlando (1994)

39. Turing, A.M.: Intelligent machinery. Report, National Physical Laboratory (1948)
40. Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)
41. Vafaie, H., De Jong, K.: Genetic algorithms as a tool for feature selection in machine

learning, pp. 200–204. Society Press (1992)
42. Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets

and particle swarm optimization. Pattern Recognition Letters 28(4), 459–471 (2007)
43. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature se-

lection for SVMs. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural
Information Processing Systems, vol. 13, pp. 668–674. The MIT Press, Cambride (2001)

44. Yabuki, T., Iba, H.: Turing-complete data structure for genetic programming. In: IEEE
International Conference on Systems, Man and Cybernetics, October 5-8, 2003., pp.
3577–3582. IEEE Press, Washington, D.C (2003)

45. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intelligent
Systems 13(2), 44–49 (1998)

46. Yang, Y., Pedersen, J.O.: A comparative study of feature selection in text categorization.
In: ICML 1997: Proceedings of the Fourteenth International Conference on Machine
Learning, pp. 412–420. Morgan Kaufmann Publishers, San Francisco (1997)

47. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization.
In: Proceedings of the Fourteenth International Conference on Machine Learning, ICML
1997, pp. 412–420. Morgan Kaufmann Publishers Inc., San Francisco (1997)

Neural Network Based Approaches for Network
Traffic Prediction

Flávio Henrique Teles Vieira, Victor Hugo Teles Costa,
and Bruno Henrique Pereira Gonçalves

Abstract. In this chapter, we review some learning strategies for neural networks
such as MLP (Multilayer Perceptron), RBF (Radial Basis Function) and Recurrent
Networks applied to computer network traffic prediction. That is, the considered
neural networks and training algorithms are used to predict the traffic volume of
a computer network. Some methods of improving the prediction performance of
neural networks are also considered such as application of Wavelet Transform. We
discuss about using the Wavelet Transform in supervised training of neural net-
works by decomposing the traffic process into approximation and detail processes.
We present some results involving the application of the Orthogonal Least Squares
(OLS) algorithm in RBF networks for traffic prediction. Regarding the Recurrent
neural networks, we verify their traffic prediction performance when trained with
the Extended Kalman Filter (EKF) and the RTRL (Real Time Recurrent Learning).
Real network traffic traces are used in the simulations in order to verify the predic-
tion performance of the neural network algorithms.

Keywords: Neural network, Traffic prediction, Recurrent Network, RBF neural
network, Wavelets.

Flávio Henrique Teles Vieira
School of Electrical and Computer Engineering (EEEC) of the Federal University of Goiás
(UFG), Av. Universitária, 1488, Quadra 86, Bloco A, 3 piso, 74605-010,
Setor Leste Universitário, Goiânia, GO, Brazil
e-mail: flavio@eee.ufg.br

http://www.eeec.ufg.br/

Victor Hugo Teles Costa
Federal University of Goiás
e-mail: victor@vcosta.com.br

Bruno Henrique Pereira Gonçalves
Federal University of Goiás
e-mail: brunohpg@gmail.com

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 657–684.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

flavio@eee.ufg.br
http://www.eeec.ufg.br/
victor@vcosta.com.br
brunohpg@gmail.com

658 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

1 Introduction

This chapter describes some neural network based approaches to model and predict
the traffic intensities of communication networks. The prediction is carried out by
mapping previous and future values of a time series.

When modeling a signal, we try to imitate the behavior of the system that gen-
erates it, in general without knowledge of its operating mechanisms. The modeling
purpose can be predictive or only for characterization. By modeling a time series, we
try to learn more about or to predict the corresponding system behavior. Among the
techniques used to find the relation between values of a time series we can mention:
adaptive filtering, artificial neural networks, etc. The system that generates the time
series can be deterministic or stochastic. In the specific case of computer networks,
there is a random amount of generated data. Even network traffic being stochastic,
neural networks can make a mapping between values of the traffic data in different
time instants.

In order to achieve high utilization of resources in a computer network and for
better decision making, traffic prediction must be as accurate as possible. Unfortu-
nately, the prediction accuracy deteriorates with increasing range, or the prediction
horizon. A certain time interval is needed by the control actions of the commu-
nications network. The factors that may affect the traffic prediction can be: traffic
characteristics, measurement interval, time scale of prediction, traffic aggregation
(multiplexing), sampling (smoothing), etc.

The MLP (Multilayer Perceptron) and RBF (Radial Basis Function) neural net-
works compose the backbone of the neural networks with supervised learning. Neu-
ral networks can be used in complex nonlinear decision-making and to approxi-
mate the data generating mechanism of certain systems. The RBF neural network
in particular has been successfully applied in nonlinear time series prediction [11],
[34],[9].

This chapter focuses on the application of neural networks to model the behavior
of computer network traffic as well as to predict its future behavior in order to pro-
vide mechanisms for traffic control. That is, the problem considered in this chapter
is to predict the next value of a time series corresponding to Internet and Ethernet
network traffic.

Most of the prediction success of neural networks is in the prediction of station-
ary signals. Since real signals are not only nonlinear but also non-stationary, it is
necessary to develop predictors that takes into account these characteristics. It was
verified the ability of neural networks with one hidden neuron layer to approximate
any continuous function [16]. The RBF neural network, which has this capability,
has a training that can be seen as an interpolation and be solved by matrix inversion.
However, with this approach, numerical problems can be found. In order to avoid
these problems, we suggest to apply the OLS (Orthogonal Least Squares) algorithm
to the RBF training. The OLS algorithm has been used in various applications such
as automatic control [12], fuzzy neural networks [25] and other applications.

Most existing prediction methods perform a global analysis of the data. Such
methods lead to loss of details (underfitting) or the inclusion of noise (overfitting).

Neural Network Based Approaches for Network Traffic Prediction 659

It would be interesting to take into account, when predicting the signal, the predic-
tion of its details at each scale. The decomposition of the process in its detail and
approximation processes can be carried out by using the Wavelet Transform. This
topic is also covered in this chapter.

Neural networks trained with on batch algorithms such as the backpropagation
require a cyclical presentation of all training set to converge. This feature is not de-
sired for adaptive processing where the input data vectors are obtained in sequence.

As the RTRL (Real Time Recurrent Learning) is incremental, it is not necessary
to train with all data already received, but only with the new information. Therefore,
with the increase of data received by the system there is no expansion of the learning
time and no additional storage. The present work shows that it is possible learning
real-time traffic by different neural networks responsible for specific input patterns,
making the system robust to large changes that may occur in the traffic data of a
computer network.

In the present chapter, we show that it is possible to adaptively learn real-time
traffic by recurrent neural networks, being robust to large changes that may occur in
the traffic data of a computer network. In order to validate the algorithms we used
real traffic traces from Bellcore1 that present self-similar and multifractal character-
istics [50].

2 Wiener Filters

One of the starting points for the great advance on Neural Networks is the theory of
linear adaptive filters, which paved the way for the study of multilayer perceptrons
with nonlinear neurons.

Let x be the input signal and w the weight vector of a filter such as that of Fig. 1.
The Wiener-Hopf equations determine the optimal solution for the weights, so that
the output of the network of Fig. 1 is close to the desired.

Fig. 1 Wiener Filter

In this sense, we want to determine w such that function ε = 1
2 E[e2] be minimal,

where e is equal to the estimation error, the difference between the desired process

1http://www.acm.org/sigcomm/ITA/

http://www.acm.org/sigcomm/ITA/

660 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

value and the estimate, given by e= d−y. Filters whose weights satisfy this criterion
are known as Wiener filters [22].

The optimal set of weights wok can be determined by equations (1), (2), and (3),
the Wiener-Hopf equations:

p

∑
j=1

wokrx(j,k) = rxd(k) k = 1,2, ..., p (1)

rx(j,k) = E[x jxk] j,k = 1,2, ..., p (2)

rxd(k) = E[xkd] k = 1,2, ..., p (3)

One way to solve the equation (1) and avoid a matrix inversion is to use the conju-
gate gradient method[19]. According to this method, in each iteration the weights
are updated by the following equations:

Δwk(n) =−η
dε(n)

dwk(n)
k = 1,2, ..., p (4)

wk(n+ 1) = wk(n)+Δwk(n) (5)

Once dε(n)
dwk(n)

= ∑p
j=1 wjrx(j,k)− rxd(k) , we can redefine the conjugate gradient

method in terms of the correlation functions:

wk(n+ 1) = wk(n)+η

[
p

∑
j=1

wjrx(j,k)− rxd(k)Δwk(n)

]
(6)

3 Linear and Nonlinear Prediction

Let x(n) = [x(n),x(n− 1), ...,x(t −L− 1)]T . An one-step prediction of the process
x(n) can be written as [57]:

x̂(n+ 1) = F [x(n)] = F[x(n),x(n− 1), ...,x(n−L− 1)]T (7)

where F is the function that represents the dynamics of the system. This method
justified by Takens and used for systems without noise is adopted in several areas
[45].

According to equation (7), we can express the predicted value as a function of
previous values. We say that the prediction is linear if the function F can be de-
scribed as a linear combination of past samples. In the 40‘s, Wiener began to apply
the theory of linear prediction in various situations. The root mean square error of
the prediction can be minimized using Wiener filters [22], but the process must be
wide-sense stationary. Linear prediction models are simple and easy to implement.

Neural Network Based Approaches for Network Traffic Prediction 661

Rewriting equation (7), we have:

x(n) =
p

∑
n=1

w(n)x(k− n)+ e(k) (8)

This equation defines the AR (autoregressive) type of stochastic processes where a
future value of the time series can be obtained from the weighted sum of past values
of a series plus instantaneous errors [30]. Using Wiener filters for calculating the
optimal coefficients w0, the estimated future values of the series are:

x̂(n) =
p

∑
k=1

w0(n)x(n− k) (9)

In the nonlinear prediction, the input-output mapping is richer than in linear predic-
tion, which consists of a simple hyperplane. In the nonlinear autoregressive model
we have:

y(n) = G(y(k− 1),y(k− 2), ...,y(k− p))+ e(k) (10)

where G is a nonlinear function.
For a stationary signal x(n), the minimization of the mean squared prediction

errors corresponds to predict the average of x(n) given some past samples:

x̂(n) = E[x(n) | x(n− 1), ...,x(n− p)] (11)

A more general model that provides a plausible description for different types of
signals is the NARMA (Nonlinear Autoregressive Moving Average) model [7]. The
NARMA model uses a more general function incorporating past errors:

x̂(n) = F [x(n− 1), ...,x(n− p);e(t− 1), ...,e(t − p)] (12)

Thus, more information is available to the model to improve predictions.
The neural network community still has often used the NAR model (Nonlin-

ear Autoregressive) embedded in feedforward networks such as the MLP, which
presents great capabilities, but does not contain all information about the past. In
[15], it is shown that a NARMA network, whose outputs are fed back to the input,
is a special case of a general fully connected network. However, Aussem says that
fully connected networks provide a better approximation [5]. This is the reason of
various studies in recurrent networks. Therefore, in this chapter, we also present a
study on recurrent networks whose parameters are adaptively adjusted.

4 Least Mean Square (LMS) Algorithm and the Adaline Neural
Network

The LMS(Least Mean Square) algorithm is also known as delta rule, Widrow-Hoff
rule and stochastic gradient algorithm [8]. The Adaline (Adaptive Linear Element)

662 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

neural network can be considered an adaptive linear system that responds to changes
while running. It is used in pattern classification, echo cancellation, control and
signal processing systems [8]. It uses the LMS to update the neural weights. The
neuron outputs consists of a limiter whose value is 1 when the output of the adder is
positive and -1 (or zero) when negative (Fig. 4). Thus, the Adaline neural network
can solve only linearly separable problems.

Fig. 2 Perceptron

The LMS algorithm can be used to train the neural network depicted in Fig. 2,
that is, to adaptively adjust its weights. The LMS is able to work in a non-stationary
environment by using correlation function estimations in equation (1) as the follow-
ing:

r̂x(j,k;n) = x j(n)xk(n) (13)

r̂dx(k;n) = xk(n)d(n) (14)

Inserting the above equations into equation (6), we have:

ŵk(n+ 1) = ŵk(n)+η

[
x j(n)xk(n)−

p

∑
j=1

ŵ j(n)x j(n)xk(n)

]
(15)

ŵk(n+ 1) = ŵk(n)+ηxk[d(n)− y(n)] (16)

y(n) =
p

∑
j=0

ŵ j(n)x j(n) (17)

The LMS algorithm minimizes instantaneous estimates of a cost (error) function.
Due to this reason, it is not necessary to store more than the present information
(the filter weights). In summary, the algorithm consists of the initialization of the
weights, the use of equation (17) for obtaining the network output and (16) for
updating the weights (Fig. 3).

Neural Network Based Approaches for Network Traffic Prediction 663

Fig. 3 Adjust of weights -
Adaline Neural Network

5 Multilayer Perceptron and the Backpropagation Algorithm

The MLP neural network (Multilayer Perceptron) is a generalization of the one-
layer perceptron. It is the most widely used neural network in various applications
such as character recognition, forecasting stock exchange, signature verification,
medical diagnosis, etc. It consists of an input layer, hidden layers and an output
layer, and, of course, neurons (Figs. 5 and 6). One of the algorithms applied to the
MLP neural network training is the backpropagation algorithm, that can be viewed
as a generalization of the LMS algorithm.

According to Cybenko, theoretically a continuous function can be implemented
(learned) by a neural network with one hidden layer, and two hidden layers allow

Fig. 4 Adaline neural net-
work

Fig. 5 Multilayer neural
network

664 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

Fig. 6 Neuron as part of multilayer neural network

the approximation of any function [16]. Single layer networks, i.e., without hidden
layers, only solve linearly separable problems. The hidden layers nodes act as fea-
ture detectors, they generate an internal encoding of the input patterns to produce
the desired outputs. It should be remembered that the last layer has a precise idea
of the network error, while others have estimates of the error. The number of nodes
in the hidden layers depends on factors such as the complexity of the function to be
learned, the number of training pairs and data noise.

From an operational view, the online training (pattern by pattern) requires less
storage and can be used in real time neural network applications, with constant
updating of the weights. On the other hand, the on-batch training (by a pattern pre-
sentation cycle) can provide a more accurate estimate of the gradient vector, despite
being slower method.

In summary, the error backpropagation algorithm in its online mode can be de-
scribed as:

1. Initialization: Choose random numbers with uniform distribution for the weights
and the neural network threshold terms;

2. Progressive Computing (forward): Assuming [x(n),d(n)] as the training pairs,
we compute the neuronal activations. The internal activation of a neuron j in
layer L is:

v(L)j (n) =
P

∑
i=0

wL
ji(n)y

(L−1)
i (n) (18)

The output of neuron j is calculated using a nonlinear differentiable function,
which may be the sigmoid (Fig. 7):

y(L)j (n) =
1

1+ exp(−v(L)j (n))
(19)

The outputs of the neurons are used to calculate the error: e j(n) = d j(n)−y j(n).
3. Computing backwards: Calculate the local gradients δs, backpropagating layer

by layer:

Neural Network Based Approaches for Network Traffic Prediction 665

Fig. 7 Sigmoid function

- Neuron j at output layer O:

δ (O)
j (n) = e(O)

j (n)s j(n)[1− s j(n)] (20)

- Neuron j at hidden layer L:

δ (L)
j (n) = y(L)j (n)[1− y(L)j (n)]∑

k

δ (L+1)
k (n)w(L+1)

k j (n) (21)

in which y(L)j (n) = s j(n). Then, update the weights by the equation:

w(L)
ji (n+ 1) = w(L)

ji (n)+ δ (L)
j (n)y(L−1)

j (n) (22)

4. Repeat from step 1 until the mean square error reaches an acceptable value, or
after N cycles.

The training by error backpropagation performs a stochastic gradient descent al-
gorithm in the weight space while updating the synaptic weights pattern by pattern,
ensuring that the network takes the way on the error surface toward the error reduc-
tion. The backpropagation algorithm has the risk of converging to a local minimum.
However, for a quadratic error surface, the convergence to a global minimum is
guaranteed.

The more a neural network can accurately estimate the future output of the sys-
tem, the greater is its ability to generalize, i.e., it has a good method of nonlinear
interpolation of the input data. However, when overtrained, the network can get spe-
cialized for the training set and degrade its ability to generalize. The generalization
is influenced by the size and efficiency of the training set, the network architecture
and the complexity of the problem in question.

666 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

6 Radial Basis Function (RBF) Neural Network

The RBF neural network is a multilayer network with one layer of input nodes (sen-
sory nodes), a layer of hidden nodes and one output layer. RBF networks with more
than one intermediate layer have also been proposed [23]. In this neural network,
the activation of a node is a function of the distance between input vectors and their
weights. The transfer functions between the input layer and hidden layer are non-
linear and those connecting the hidden layer to output layer are linear. Therefore,
the input-output mapping performed by RBF is obtained by a nonlinear transfor-
mation followed by a linear one. In the output layer, the adjustable parameters are
the weights of a linear combination. These parameters can be determined using
the least squares method. The RBF networks build local approximations for input-
output mappings, leading to a fast learning and reduced sensitivity to the order of
data presentation in the training set.

Let P be an integer number and assuming P < N (where N = training set size),
the output of the RBF neural network shown in Fig. 8 is given by:

y =
P

∑
k=0

wkϕ(x, tk)+w0 (23)

where tk represents the vector of centers of radial basis functions.
By using regularization for training this neural network the cost function εR to be

minimized is given by:

εR =
N

∑
i=1

(di − f (xi))
2 +

P

∑
j=1

λ jw
2
j (24)

Notice that d = [d1,d2, ...,dN]
T is the desired response vector, w =

[w0,w1,w2, ...,wP]
T is the weight vector of the RBF neural network, λ j is the

regularization parameter and f (xi) is the output of the neural network to an input
vector xi .

The neural network, according to these equations, has P nodes in the hidden layer.
In its training, the radial basis functions center locations tk are found.

The Gaussian function is generally chosen as the radial basis function, that is:

ϕ(x, tk) = exp

(
− 1

σ2
k

‖x− tk‖2
)

k = 1,2,3, ...,P (25)

where σk represents the radial function width and tk is its center. However, theoret-
ical investigations and practical results suggest that the choice of the nonlinearity is
not crucial to the RBF neural network performance [35].

y =
P

∑
k=0

wkexp

(
− 1

σ2
k

‖x− tk‖2
)
+w0 (26)

Neural Network Based Approaches for Network Traffic Prediction 667

Fig. 8 RBF neural network

Let Φ be the interpolation matrix, whose size is Nx(P+1), where N is the num-
ber of training examples and P is the number of radial basis functions, given by:

Φ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 ϕ(x1, t1) ϕ(x1, t2) · · · ϕ(x1, tP)
1 ϕ(x2, t1) ϕ(x2, t2) · · · ϕ(x2, tP)
...

...
...

. . .
...

...
...

...
. . .

...
1 ϕ(xN , t1) ϕ(xN , t2) · · · ϕ(xN , tP)

⎤⎥⎥⎥⎥⎥⎥⎦ (27)

In matrix terms, the weight vector that minimizes the cost function εR (equation 24)
is [21]:

w = (ΦT ×Φ+Q)−1ΦT ×d (28)

where:

Q =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λP

⎤⎥⎥⎥⎦ (29)

The number of nodes in the intermediate layer can be defined as being equal to
the number of input patterns, so each center is located on an input vector and the
RBF network accurately maps the input vector to the output. However, the exact
interpolation can be undesirable especially when there is noise in the input data.
It can cause overfitting, in which a good generalization of the neural network is
not achieved, i.e., the network does not extrapolate well for new input data. That is
one reason to use a number of centers less than the number of input patterns. The
regularization also discourages the neural network to overfit the training set [56].

668 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

The RBF network performance sensitively depends on the chosen centers. The
bad conditioning occurs due to the choice of close centers. The ROLS algorithm
can be used for selecting a set of centers from some candidates and avoid bad con-
ditioning problems, in addition provides a smaller number of centers for the neural
network.

6.1 Regularized Orthogonal Least Squares (ROLS) Algorithm

The learning of MLP neural networks is based on nonlinear optimization techniques
and may have local minima problems. Other optimization techniques such as ge-
netic algorithms, while being able to find a global minimum, may require extensive
computation.

The direct selection is a nonlinear algorithm that searches in a discrete space of
sets a subset with the lowest prediction error. It starts with an empty subset and
adds, in each iteration, a basis function (center) that reduces the sum of squared
errors, until some criterion is reached.

The orthogonal least squares algorithm reduces the computational complexity of
direct selection. It consists of a Gram-Schmidt orthogonalization that ensures that
each new column to be added in the design matrix will be perpendicular to all other
columns.

The ROLS is based on the optimal solution for the weights (equation 28), that we
rewrite as:

w = (HT ×H+λ H)−1HT ×d (30)

where H is called design matrix:

H =

⎡⎢⎢⎢⎣
h1(x1) h2(x1) · · · hm(x1)
h1(x2) h2(x2) · · · hm(x2)

...
...

. . .
...

h1(xp) h2(xp) · · · hm(xp)

⎤⎥⎥⎥⎦ (31)

This matrix is factored into Hm = H̃mUm, where H̃m has mutually orthogonal
columns and Um is an upper triangular matrix.

Let Z be a matrix whose columns
{

z f
}M

f−1 correspond to M possible candidates:

Z = [z1 z2 · · · zM] (32)

At each step m, a vector z̃i is added in the orthogonalized design matrix H̃m =
[H̃m−1z̃i] given by:

z̃ f = z f −
m

∑
j=1

zT
f h̃ j

h̃T
j h̃ j

h̃ j (33)

Neural Network Based Approaches for Network Traffic Prediction 669

such that leads to greater reduction in mean squared error and maximizes the equa-
tion:

εrm − εrm+1 =
(dT z̃ f)

2

λ + z̃T
f z̃ f

(34)

The orthogonalized weight vector is calculated by the following equation:

w̃m =
dT h̃ j

λ + h̃T
j h̃ j

(35)

and then the regular weight vector as:

wm = U−1
m w̃m (36)

which uses the upper triangular matrix Um, given by:

Um =

[
Um−1 (H̃T

m−1H̃m−1)
−1H̃T

m−1z f

0T
m−1 1

]
(37)

In order to calculate the regularization parameter λ value, we need the projection
matrix P:

P̃m+1 = Ip −
m

∑
j=1

h̃ jh̃T
j

λ + h̃T
j h̃ j

(38)

The regularization parameter is optimized at each addition of a new center and is
chosen based on the GCV (Generalised Cross Validation) minimization [28]. A new
value for λ is calculated after each center selection using the prior λ . The equation
for updating of the regularization parameter value is given by:

λ =

[
dtrace(P̃m)

dλ

]
(dT P̃2

md)

trace(P̃m)w̃T
m(H̃T

mH̃m +λ Im)−1w̃m
(39)

where the starting value of the parameter is zero.
The decision to interrupt the addition of basis functions can be done by monitor-

ing some selection criterion; we use the BIC (Bayesian Information Criteria) [28]:

σ2
BIC =

n+(ln(n)− 1)γ
n− γ

dT P2d
n

(40)

where γ = n− trace(P)T . When this criterion stops decreasing and begins to in-
crease, the addition of radial basis functions is interrupted.

670 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

6.2 Wavelet Transform

In this section, we give a brief resume of the wavelet transform theory in order to fur-
ther discuss about its application in the RBF neural network learning. The wavelet
transform provides a multiresolution representation of the signal, with the idea to
analyze the signal at different scales. A function ϕ that satisfies the admissibility
condition [14] is a wavelet function. In order to satisfy the admissibility condition,
the mother wavelet function ϕ has compact support, i.e., has no spectral components
out of a range of frequencies and is oscillatory. By dilations and translations of the
mother wavelet function ϕ the following family of functions is obtained:

ϕs,t(u) = |s|−p ϕ
(

u− t
s

)
(41)

where p ≥ 0, s is the dilation parameter and s ∈R, and t is the translation parameter.
The Continuous Wavelet Transform (CWT) of a function f (t) is mathematically
defined as:

W (s, t) =
∫ +∞

−∞
f (u)ϕs,t(u)du = 〈 f ,ϕs,t 〉 (42)

The discrete transform is obtained by the temporal and scale discretization of the
continuous transform. Thus, we have a countable set of functions using a dyadic
discretization in which s = 2m, t = 2nmt0 and m,n ∈ Z:

ϕm,n(u) = |2|−m
2 ϕ(2−mu− n) (43)

The discrete wavelet expansion coefficients are:

cm,n = 〈 f ,ϕm,n〉 (44)

The set ϕm,n forms a L2(R) orthonormal basis, the space of functions where R is the
real numbers set and whose functions have finite energy [18]. Therefore, a function
f can be reconstructed as follows:

f = ∑
m,n

cm,nϕ∗
m,n (45)

Consider a function Φ ∈ L2(R) called scaling function, such that the family of func-
tions:

φ j,k(u) = |2|− j
2 φ(2− ju− k) j,k ∈ Z (46)

is orthonormal basis of the subspace Vj called scale-space and composed of func-
tions whose details are in the 2 j scale. We can represent a function f ∈ L2(R) by
orthogonal projection in Vj:

PV j(f) = ∑
k

〈
f ,φ j,k

〉
φ j,k (47)

Neural Network Based Approaches for Network Traffic Prediction 671

When j decreases, the Φ j,k width decreases, increasing, thereby, the resolution fre-
quency. The details that appear on the 2 j scale are present on the 2 j−1 scale. Thus,
we have:

Vj ⊂Vj−1 (48)

The space Vj−1 is obtained by adding all the L2(R) functions with frequencies in
the range [a j,a j−1]. We denote this space as Wj, which is generated by a wavelet
orthonormal basis

{
ϕ j,kk ∈ Z

}
.

Finally, the representation of a signal f in the Vj−1 scale is:

PV−1 j(f) = ∑
k

〈
f ,φ j,k

〉
φ j,k +∑

k

〈
f ,ϕ j,k

〉
ϕ j,k (49)

6.3 RBF Neural Network and Wavelets: Simulations and Results

The wavelet transform can be used to improve the prediction performance of RBF
neural networks by decomposing the signal in processes corresponding to approxi-
mations and details at various scales. In our simulations, for each process obtained
from the wavelet decomposition, an RBF neural network is responsible for pro-
viding a one-step prediction of the process. The sum of these predictions can be
considered the prediction of the original time series.

The time series used in this section were taken from measurements of the traffic
intensities at Bellcore (Bell Communications Research). The files BC-pOct89 e BC-
Oct89Ext traffic traces can be found at http://www.acm.org/sigcomm/ITA/
and have been used in several studies [48][47].

Fig. 9 Scale decomposition
of the original signal

In order to evaluate the prediction performance, we used the normalized mean
squared error (NMSE) given by:

http://www.acm.org/sigcomm/ITA/

672 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

NMSE =
1

σ2 p

p

∑
k=1

[y(k)− ŷ(k)]2 (50)

where y(k) is the real value of the traffic process, σ2 is its variance over the pre-
diction interval, ŷ(k) is the predicted value and p is the number of test samples.
Consider the wavelet decomposition of a signal f (x) to a scale, for example at j = 3
(Fig. 9). The signal reconstruction at that scale is obtained, the approximation 3,
which is a smoothed version of the original signal, with less detail. If we add the de-
tails at 3, 2 and 1 scales to the approximation 3, the original signal is reconstructed.
That is, the signal f (x) can be written as:

f (x) = PV3(f (x))+
3

∑
j=1

PW j(f (x)) (51)

This equation provides a formula for reconstructing the original process, taking into
account the time series decomposition to the scale 3. Once equation (51) is additive,
we can likewise add predictions in order to obtain the prediction of the original
traffic process.

In this section, we use RBF neural networks to predict the Bc-Octext traffic trace
with five input elements and optimized for each series (Fig. 10). The neural networks
were trained with 1000 training examples from Bc-Octext series and other 1000
points from the same series were used as test. We obtained the following mean
squared errors and the chosen number of centers:

• Approximation 3: NMSE = 0.1645 and centers = 4;
• Detail 3: NMSE = 0.2480 and centers = 19;
• Detail 2: NMSE = 0.3275 and centers = 38;
• Detail 1: NMSE = 0.5727 and centers = 17.

Fig. 10 RBF neural networks optimized by predictions sum

Figure 11 shows the BIC (Bayesian Information Criteria) values in terms of the
number of centers for the Bc-Octext traffic trace approximation 3[3]. Once the val-
ues BIC maintain almost constant with four selected centers, four centers are cho-
sen. We obtained a NMSE equals to 0.2068 for the prediction of 1000 samples of
the Bc-Octext traffic trace.

Neural Network Based Approaches for Network Traffic Prediction 673

Fig. 11 BIC decay in terms of additional centers in the RBF neural network training for the
approximation of the signal at scale 3

The Bc-Octint traffic trace presents a statistical jump around the 1100 time instant
and, thus, causes a more difficult prediction by neural networks. The simulation for
the Bc-Octint series used 30 normalized elements for the input vector with 900 train-
ing points and 800 test points, getting a 0.1331 NMSE by the signal decomposition
to the scale 3.

The applied technique reached that result due to, among other things, the RBF
network ability to predict abrupt changes that comes with the less details approxi-
mations of the signal.

Comparing the prediction performance of other neural networks, a significant
reduction in the NMSE prediction can be observed (Table 1). For the MLP neural
network applied for predicting the Bc-Octext series, we used the points from 1 to
800 for training, the 801 to 1000 samples for validation and from 1001 to 2000 for
prediction testing, and for the Bc-Octint traffic trace the points from 1001 to 1700
for testing. With the FIR MLP network the same number of training and testing
points as the RBF network were used.

Table 1 NMSE of Neural Networks

NMSE
Serie MLP FIR RBF+OLS RBF+OLS+Wavelets

MLP
Bc-Octext 0.4037 0.4260 0.3962 0.2068
Bc-Octint 1.21 0.7408 0.5092 0.1331

674 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

Keeping the same number of input elements to the neural network, the Bc-Octint
series prediction was simulated decomposing the traffic process into different levels
of detail processes (Table 2).

Table 2 NMSE from experiments 1, 2, 3 e 4

NMSE
Approx1 Det1 Det2 Det3 Det4 NMSE

Exp1 0.2301 0.6058 - - - 0.2552
Exp2 0.0875 0.6058 0.3262 - - 0.1657
Exp3 0.0294 0.6058 0.3262 0.1896 - 0.1331
Exp4 0.0185 0.6058 0.3262 0.1896 0.1896 0.1319

We can observe in Table 2 that by considering details at more scales the NMSE
decreases until a minimum value that the RBF network can not outperform.

7 Recurrent Neural Networks

Artificial neural networks have been applied in the prediction and identification of
time series [17][38]. When neural networks are used for adaptive processing tasks,
the most general architecture is a recurrent neural network (that is, a neural network
whose output of some units is fed back as an input to some others). The unit out-
puts of recurrent networks are generally allowed to take any real value in a given
interval. The growing interest in recurrent neural network is also due to its temporal
processing and its capacity to implement adaptive memories [6].

Next, we describe the recurrent neural network type that we considered in this
chapter and in the traffic prediction performance evaluations.

Consider a recurrent neural network consisting of N neurons with M external in-
put elements, x(n) the input vector Mx1 in the time instant n, and y(n+1) the output
vector Nx1 in the time instant n+ 1. We define the vector u(n) as a concatenation
of two vectors x(n) and y(n). If i ∈ A then ui(n) = xi(n) , if i ∈ B then ui(n) = yi(n),
where A is the external input set and B is the output set. The considered recurrent
neural network has two layers: a processing layer and input-output concatenation
layer (Fig. 12). The neural network is completely connected with MN direct con-
nections, N2 feedback connections and z−1 is an unit delay applied to the output
vector. We denote as W, the weight matrix with N(M+N) dimension.

Let v j(n) be the j neuron internal activity in the time instant n for j ∈ B given by:

v j(n) = ∑
i∈A∪B

wji(n)ui(n) (52)

where wji represent synaptic weigths. The j neuron output at the next instant is
given by:

Neural Network Based Approaches for Network Traffic Prediction 675

y j(n+ 1) = ϕ(v j(n)) (53)

Equations (52) and (53) describe the system dynamics where the function ϕ is as-
sumed to be a linear ramp function.

Fig. 12 Recurrent Neural Network

7.1 Real Time Recurrent Learning (RTRL) Algorithm

In this chapter, we evaluate the prediction performance of the neural network de-
scribed in the last section trained by two different algorithms: the RTRL (Real
Time Recurrent Learning) and the Kalman algorithm. We describe in this section
the first algorithm, i.e., the real time recurrent learning (RTRL) algorithm proposed
by Williams and Zipser in 1989 for recurrent networks [54].

Let d j(n) be the desired response for the neuron j at time n and C be the set
of visible output neurons. We can define a time-varying error as e j(n) = d j(n)−
y j(n) if j ∈C. Defining an instantaneous sum of squared errors at time n as ε(n) =
1
2 ∑ j∈C e2

n(n), we must minimize the cost function εtotal = ∑n ε(n). To this end, it is
used an approximation of the gradient descent method: ∇wεtotal = ∑n ∇wε(n). For a
particular weight wkl(n), we have:

dε(n)
dwkl(n)

=− ∑
j∈C

e j(n)
dy j(n)
dwkl(n)

(54)

Using (52) and (53), we obtain [21]:

dy j(n+ 1)
dwkl(n)

= ϕ ′(v j(n))

[
−∑

i∈B
wji(n)

dyi(n)
dwkl(n)

+ δklul(n)

]
(55)

676 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

Rewriting this equation using a triple-indexed variable, we get the following:

π j
kl(n) =

dy j(n)

dwkl(n)
(56)

π j
kl(n+ 1) = ϕ ′(v j(n))

[
−∑

i∈B

wji(n)π j
kl(n)+ δklul(n)

]
(57)

As Δwkl(n) = −η dε(n)
dwkl(n)

= η ∑ j∈C e j(n)π j
kl(n) , the synaptic weights are updated

according to the following equation:

wkl(n+ 1) = wkl(n)+Δwkl(n) (58)

7.2 An Extended Kalman Filter (EKF) Based Training Algorithm

The Kalman filter consists of some equations that provide an efficient and recursive
computation for the solution of the least squares method [58].

The Extended Kalman Filter (EKF) is a modification of the Linear Kalman Filter
that can handle nonlinear dynamics and nonlinear measurement equations. The EKF
is an optimal estimator that recursively combines noisy data with a model of the
system dynamics.

The extended Kalman filter (EKF) can be used as a real time algorithm for re-
current neural network weight determination. In this case, the real time learning is
considered a filtering problem. Once the neural network is a nonlinear structure,
the extended Kalman filter is more adequate to train neural networks than the tradi-
cional Kalman filter. Roughly speaking, the extended Kalman filter ‘linearizes’ the
nonlinear part of the system and it uses the original Kalman filter in this linearized
model.

The EKF algorithm was initially applied in the MLP neural network training
by Singhal and Wu [43]. They showed that the EKF algorithm converges faster
than the backpropagation algorithm and sometimes, when the backpropagation fails,
the EKF (Extended Kalman Filter) converges for a good solution. Puskorius and
Feldcamp applied the Kalman algorithm in the recurrent neural network training
[37]. Williamns trained recurrent neural networks through the Extended Kalman
Filter [53].

We address this training with a different state vector formulation. First, we present
the equations of the Extended Kalman Filter used in this work. The extended Kalman
filter estimates the vector sate y(n) at time instant n of a nonlinear system described
by the following equations:

y(n) = hn(x(n))+ r(n) (59)

x(n+ 1) = fn(x(n))+q(n) (60)

Neural Network Based Approaches for Network Traffic Prediction 677

where x(n+1) is the measure vector, r(n) represents the system noise and q(n) the
measure error.

Let x̂(n\n−1) be an ‘a priori’ estimate of the system state at time instant n given
the knowledge of the measures until time instant n−1 and x̂(n\n) be ‘a posteriori’
estimate of the system state at time instant n given the knowledge of the measures
until time instant n. The nonlinear functions h and f can be written according to the
Taylor expansion as:

hn(x(n)) = hn(x̂(n \ n− 1))+Hn(n)(x(n)− x̂(n \ n− 1))+ ... (61)

fn(x(n)) = fn(x̂(n \ n))+Fn(n+ 1,n)(x(n)− x̂(n \ n))+ ... (62)

where the Jacobian matrixes Fn(n+ 1,n) and Hn(n) are given by, respectively:

Fn(n+ 1,n) =
d fn(x̂(n \ n))

dx
(63)

Hn(n) =
dhn(x̂(n \ n− 1))

dx
(64)

Then, we can rewrite equations (59) and (60) as:

y(n) = Hn(n)x(n)+u(n)+ r(n) (65)

x(n+ 1) = Fn(n+ 1,n)x(n)+ v(n)+q(n) (66)

where:

u(n) = hn(x̂(n \ n− 1))−Hn(n)x̂(n \ n− 1) (67)

v(n) = fn(x̂(n \ n))−Fn(n+ 1,n)x̂(n \ n) (68)

The derivatives corresponding to equations (63) and (64) are computed in each iter-
ation, resulting in the following algorithm:

Algorithm 1: Extended Kalman Algorithm

Kalman Gain computing:

K(n) =
P(n \ n− 1)HT

n (n)
Hn(n)P(n \ n− 1)HT

n (n)+R(n)
(69)

Measure update equations:

x̂(n \ n) = x̂(n \ n− 1)+K(n)[y(n)− hn(x̂(n \ n− 1))] (70)

P(n \ n) = (I−K(n)Hn(n))P(n \ n− 1) (71)

678 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

Temporal update equations:

x̂(n+ 1 \ n) = fn(x̂(n \ n)) (72)

P(n+ 1 \ n)= Fn(n+ 1,n)P(n \ n)FT
n (n+ 1,n)+Q(n) (73)

Now, we turn to the Extended Kalman Filter based neural training. Let d(n) be the
desired output vector of size sx1. Our aim is to find the w(n) neural weights (system
states) such that the difference among the neural network output and the desired be
minimum in terms of quadratic error. The equations that govern the recurrent neural
network operation are:

d(n) = hn(w(n),u(n))+ r(n) (74)

w(n+ 1) = w(n) (75)

where d(n) is viewed as the measurement vector, r(n) is the error measurement
vector and the nonlinear function hn describes the relationship among the input u(n)
and the weights w(n). The EKF algorithm can be applied for the training of the
presented recurrent neural network through the following equations:

Algorithm 2: Extended Kalman based Training Algorithm

Measurement Update Equations:

K(n) =
P(n \ n− 1)HT

n (n)
Hn(n)P(n \ n− 1)HT

n (n)+R(n)
(76)

ŵ(n \ n) = ŵ(n \ n− 1)+K(n)[d(n)− hn(ŵ(n \ n− 1),u(n))] (77)

P(n \ n) = (I−K(n)Hn(n))P(n \ n− 1) (78)

Temporal Update Equations:

ŵ(n+ 1 \ n)= ŵ(n \ n) (79)

P(n+ 1 \ n)= P(n \ n) (80)

where:

Hn(n) =
dhn(ŵ(n),u(n))

dw
(81)

and hn(·) = [h1,h2, ...,hs] are the s neural network outputs, R(n) is the measure-
ment error covariance matrix, P is the state error covariance matrix, ŵ(n) is a state
estimate (weights) and K(n) is known as Kalman gain [20].

Neural Network Based Approaches for Network Traffic Prediction 679

7.3 Recurrent Neural Networks: Simulations and Results

Traffic prediction can be used to control traffic flows, since the prediction errors
obtained with real-time training algorithms are comparable to those of on-batch
training with MLP or RBF neural networks [49][51].

Adaptively updating the neural network weights, we can better track processes
such as the Bc-Octext traffic trace (Fig. 13), which shows abrupt changes. Besides,
recurrent neural networks are able to map points in the future based on present
samples.

In order to evaluate the prediction performance of the considered recurrent net-
works we again used the normalized mean squared error (NMSE) given by:

NMSE =
1

σ2 p

p

∑
n=1

[y(n)− ŷ(n)]2 (82)

where y(n) is the series real value, ŷ(n) is the predicted value, σ2 is the variance of
the real sequence over the prediction duration interval and p is the number of test
samples.

The traffic traces used in the simulations were: Bc-Octext whose time scale cho-
sen was 1 min with 2046 points and Bc-Octint series with 1759 points and 1s time
scale. Different parts of the same traffic trace are used in training and prediction of
the neural network.

For the Bc-Octint traffic trace, the one-step prediction NMSE from the instant 801
to 1701 was 0.3850, using two neurons, with five input elements equal to 5 instants
in sequence of the traffic and learning rate 0.1 (Table 3).

For the Bc-Octext traffic trace, we also used two neurons, one input and learning
rate equals to 0.2.

Fig. 13 One-step ahead prediction by the EKF based Recurrent Neural Network (solid line)

680 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

We obtained a prediction NMSE of 0.3946 for the points from 1000 to 2000.

Table 3 Neural network prediction NMSE

NMSE
RTRL EKF

Bc-Octext series 0.3946 0.3972
Bc-Octint series 0.3850 0.3398

Table 4 NMSE of Neural Networks

NMSE
Series MLP FIR RBF+ RBF+OLS+ RTRL EKF

MLP OLS Wavelets
Bc-Octext 0.4037 0.4260 0.3962 0.2068 0.3946 0.3972
Bc-Octint 1.21 0.7408 0.5092 0.1331 0.3850 0.3398

8 Conclusions

Throughout this chapter we described some methods and algorithms for predicting
traffic traces using neural networks. These algorithms are used to model systems in
several areas of mathematics, physics, engineering among others. For the telecom-
munication area, they can be powerful tools for network traffic analysis.

The MLP neural network (Multilayer Perceptron) is the most used neural net-
work. However, the interest in recurrent neural network is also great due to its tem-
poral processing and its ability to implement adaptive memories. Another neural
network used for traffic prediction is the RBF neural network, whose layer that uses
radial basis functions transforms a non-linearly separable input set in a linearly sep-
arable set, grouping input data into clusters. The output layer ‘classifies’ the patterns
received from the previous layer. Thus, the RBF neural network finds existing pat-
terns in traffic data.

Besides verifying the RBF prediction efficiency, we showed that the Wavelet
Transform and the decomposition of the traffic process in different scales provide
a significant improvement in the prediction performance of the RBF network. The
combined RBF and Wavelet decomposition is an efficient tool for modeling and
predicting the behavior of complex systems, being also stable and independent of
the initial choice of the weights. It was observed that the static mapping between
present traffic sample and future points may not be able to handle large statistic
variations of the signal. However, the analysis of the scale and the detail levels
incorporates more information in the modeling of real time series non-stationarity.
This method also provides an opportunity to use different neural networks, even of
different types, in the modeling of the processes that compose the original traffic

Neural Network Based Approaches for Network Traffic Prediction 681

trace. Thus, the limit of the process predictability [42] can be reached including
RBF neural networks in the prediction, increasing the computational cost.

With the real-time training of recurrent neural networks it is aimed, besides to
reduce the data training, to update the weights of the neural network in order to deal
with possible statistics variations of the traffic, for which neural networks with ’on
batch’ training could not be prepared.

The RTRL and the EKF based training algorithms are fast and provide excel-
lent modeling performance for small recurrent neural network, i.e, neural networks
possessing a few number of neurons.

Table 4 summarizes the results of simulations with the neural networks. The re-
sults show that the presented neural networks are efficient for predicting network
traffic. We reveal that RBF neural network can outperform the MLP network in the
traffic prediction task and that the application of Wavelet transform can decrease the
prediction error of the neural networks. In fact, the RBF+OLS+Wavelets approach
presented smaller NMSEs among the other neural networks for the traffic traces.
Notice that the MLP neural Network with on-batch training, even though widely
used, achieved the highest NMSEs. We also observed that the RTRL and EKF based
Recurrent Neural Network can provide similar results to the RBF network without
Wavelet decomposition. Besides, these algorithms are adaptive and can be applied
to real time traffic predictions. If an improvement in prediction performance of these
recurrent neural networks is desired, the wavelet decomposition can be applied.

References

1. Adas, A.: Supporting real time VBR video using dynamic reservation based on linear
prediction. In: Proc. IEEE INFOCOMM 1996, pp. 1476–1483 (1996)

2. Adas, A., Mukherjee, A.: On resource management and QoS guarantees for long range
dependent traffic. In: Proc. IEEE INFOCOMM, pp. 779–787 (April 1995)

3. Ando, T.: Bayesian Model Selection and Statistical Modeling (Statistics: A Series of
Textbooks and Monographs), 1st edn. Chapman and Hall/CRC (2010)

4. Aussem, A., Murtag, F.: Combining Neural Network Forecasts on Wavelet-Transformed
Time Series. Connection Science 9, 113–121 (1997)

5. Aussem, A., Murtag, F., Sarazin, M.: Dynamical Recurrent Neural Networks- towards
environmental time series prediction. International Journal on Neural Systems 6, 145–
170 (1995)

6. Bengio, Y., Frasconi, P., Gori, M.: Recurrent Neural Networks for Adaptive Temporal
processing. Universitá di Firenze (1993)

7. Box, G.E., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden Day,
San Francisco (1976)

8. de Pádua Braga, A., de Leon, F., de Carvalho, A., Ludermir, T.B.: Fundamentos de Redes
Neurais Artificiais. DCC/IM, COPPE/Sistemas NCE/UFRJ, Rio de Janeiro (1998)

9. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive net-
works. Complex Systems 2, 321–355 (1988)

10. Carpenter, G.A., Grossberg, S.: Adaptive Resonance Theory, 2nd edn. The Handbook of
Brain Theory and Neural Networks. MIT Press (2003)

11. Chen, S.: Orthogonal least square learning algorithm for radial basis function networks.
IEEE Transactions on Neural Networks 2(2), 335–356 (1989)

682 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

12. Chen, S., Billings, S.A.: Neural networks for nonlinear dynamic system modeling and
identification. International Journal of Control 56(2), 319–346 (1992)

13. Chen, B.-S., Peng, S.-C., Ku-Chen: Traffic Modeling, Prediction and Congestion Con-
trol for High-Speed Networks: A Fuzzy AR Approach. IEEE Transactions in Fuzzy Sys-
tems 8(5) (2000)

14. Chui, C.K.: An Introduction to wavelets. Department of Mathematics Texas. A&M Uni-
versity College Station, Texas (1992)

15. Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent Neural Networks and Robust Time
Series Prediction. IEEE Transactions on Neural Networks 5(2), 240–253 (1994)

16. Cybenko, G.: Approximation by superposition of a sigmoid function. Mathematics of
Control, Signals and Systems 2, 303–314 (1989)

17. Doulamis, A.D., Doulamis, N.D., Kollias, S.D.: An Adaptable Neural-Network Model
for Recursive Nonlinear Traffic Prediction and Modeling of MPEGVideo Sources. IEEE
Transactions on Neural Networks 14(1) (2003)

18. Gomes, J., Velho, L., Goldstein, S.: Wavelets: Teoria, Software e Aplicações. IMPA, Rio
de Janeiro (1997)

19. Güler, O.: Foundations of Optimization (Graduate Texts in Mathematics), 1st edn.
Springer (2010)

20. Haykin, S.: Modern filters. Macmillan Publishing Company (1989)
21. Haykin, S.: Neural Networks - A Comprehensive Foundation. Prentice Hall (1994)
22. Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice-Hall (2002)
23. He, X., Lapedes, A.: Nonlinear modeling and prediction by successive approximations

using radial basis functions. Technical report, Los Alamos National Laboratory (1991)
24. Jagannathan, S., Talluri, J.: Adaptive Predictive Congestion Control of High-Speed ATM

Networks. IEEE Transactions on Broadband 48(2) (2002)
25. Jamg, J.-S.R., Sun, C.-T.: Functional equivalence between radial basis function networks

and fuzzy inference systems. IEEE Transactions on Neural Networks 4, 156–159 (1993)
26. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transac-

tion of the ASME - Journal of Basic Engineering, 35–45 (1960)
27. Mathews, M.B.: Neural networks nonlinear adaptive filtering using the extended Kalman

filtering algorithm. In: Proceedings of the International Neural Networks Conference,
Paris, vol. 1, pp. 115–119 (1990)

28. Orr, M.J.L.: Regularization in the Selection of Radial Basis Function Centres. Neural
Computation 7(3), 606–623 (1995)

29. Page, M.: Connectionist modelling in psychology: a localist manifesto. Behavioral and
Brain Sciences 23, 443–512 (2000)

30. Papoulis, A., Pillai, S.: Probability, Random Variables and Stochastic Processes, 4th edn.
McGraw-Hill (2001)

31. Park, K., Kim, G., Crovella, M.: On the Relation between File Sizes, Transport Protocols
and Self-similar Network Traffic. In: Proc. IEEE Int’l. Conf. Network Protocols (1996)

32. Park, K., Kim, G., Crovella, M.: On the Effect of Traffic Self-similarity on Network
Performance. In: Proc. SPIE Int’l. Conf. Perf. and Control of Network Sys., pp. 296–310
(1997)

33. Pollen, D.A.: On the neural correlates of visual perception. Cerebral Cortex 9, 4–19
(1999)

34. Potts, M.A.S., Broomhead, D.S.: Time series prediciotn with a radial basis function neu-
ral network. In: SPIE Adaptive Signal Processing, vol. 1565, pp. 255–266 (1991)

35. Powell, M.J.D.: Radial basis function approximations to polynomials. In: Proc. 12th Hi-
ennial Numerical Analysis Conf. (Dundee), pp. 223-241 (1987)

Neural Network Based Approaches for Network Traffic Prediction 683

36. Puskorius, G.V., Feldkamp, L.A.: Decoupled extended Kalman filter training of feedfor-
ward layered networks. In: Proceedings of the International Joint Conference on Neural
Networks, pp. 771–777 (1991)

37. Puskorius, G.V., Feldkamp, L.A.: Neurocontrol of nonlinear dynamical systems with
Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks 5, 279–
297 (1994)

38. Qiu, L., Jiang, D., Hanlen, L.: Neural network prediction of radio propagation. In: Pro-
ceedings of Communications Theory Workshop, pp. 272–277 (2005)

39. Riedi, R.H., Crouse, M.S., Ribeiro, V., Baraniuk, R.G.: A multifractal wavelet model
with application to network traffic. IEEE Trans. Info. Theory 45(3), 992–1018 (1999)

40. Roberts, J.W.: Engineering for quality of service. Self-similar network traffic and perfor-
mance evaluation. John Wiley & Sons (2000)

41. Sahinoglu, Z., Tekinay, S.: On Multimedia Networks: Self-similar Traffic and Network
performance. IEEE Communications Magazine (January 1999)

42. Sang, A., Li, S.Q.: A predictability analysis of network traffic. In: Conference on Com-
puter Communications. IEEE Infocom, New York (2000)

43. Singhal, S., Wu, L.: Training multilayer perceptrons with the extended Kalman filter
algorithm. In: Advances in Neural Information Processing Systems, pp. 133–140 (1989)

44. Stallings, W.: High Speed Networks: TCP/IP, ATM Design Principles, pp. 181–207.
Prentice-Hall (1998)

45. Takens, F.: Detecting Strange Attractors in Turbulance. In: Dynamical Systems and Tur-
bulance. Warwick 1980. Lectures Notes of Mathematics, vol. 898, pp. 366–381. Springer
(1981)

46. Tuan, T., Park, K.: Congestion Control for Self-similar Network Traffic. Dept.of Comp.
Science, Purdue Univ., CSD-TR 98-014 (1998)

47. Veitch, D., Abry, P.: Wavelet analysis of long-range dependent traffic. IEEE Trans. Info.
Theory 44(1), 2–15 (1998)

48. Veitch, D., Abry, P.: A wavelet based joint estimator of the parameters of long-range
dependence. IEEE Trans. Inform. Theory-Special Issue on Multiscale Statistical Signal
Analysis and Its Applications 45(3) (1999)

49. Vieira, F.H.T.: Predição de tráfego em redes de comunicações utilizando redes neurais e
análise wavelet- Alocação dinâmica de largura de faixa. Dissertação de mestrado. Uni-
versidade Federal de Goiás, Goiânia, Goiás, Brasil

50. Vieira, F.H.T., Bianchi, G.R., Lee, L.L.: A network traffic prediction approach based on
multifractal modeling. J. High Speed Networks 17(2), 83–96 (2010)

51. Vieira, F.H.T., Lemos, R.P., Lee, L.L.: Aplicação de Redes Neurais RBF Treinadas com
Algoritmo ROLS e Análise Wavelet na Predição de Tráfego em Redes Ethernet. In: Pro-
ceedings of the VI Brazilian Conference on Neural Networks, SP-Brasil, pp. 145–150
(2003)

52. Wan, E.A.: Time series prediction by using a connectionist network with internal delay
lines. In: Time Series Prediction: Forecasting the Future and Understanding the past, pp.
195–217. Addison-Wesley (1994)

53. Williams, R.J.: Training Recurrent Networks Using the Extended Kalman Filter. In: Pro-
ceedings of the International Joint Conference on Neural Networks, Baltimore, vol. IV,
pp. 241–246 (1992)

54. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent
networks. Neural Computation 1, 270–280 (1989)

55. Williams, R.J., Zipser, D.: An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural Computation 2, 490–501 (1989)

684 F.H. Teles Vieira, V.H. Teles Costa, and B.H. Pereira Gonçalves

56. Yee, P.V., Haykin, S.: Regularized Radial Basis Function Networks: Theory and Appli-
cations. John Wiley (2001)

57. Yule, G.: On a Method of Investigating Periodicity in Disturbed Series with Special
Reference to Wofer’s Sunspot Numbers. Phil. Trans. Roy. Soc. London A226, 267–298
(1927)

58. Zarchan, P., Musoff, H.: Fundamentals of Kalman Filtering: A Practical Approach, Re-
vised 2nd edn. AIAA (2005)

Application of Bat Algorithm
and Fuzzy Systems to Model Exergy
Changes in a Gas Turbine

A.L. Tamiru and F.M. Hashim

Abstract. Exergy analysis plays a major role in thermal systems. Using ex-
ergy, apart from finding components for a potential for further improvement,
fault detection and diagnosis, performance optimization, and environmen-
tal impact assessment can be conducted. This chapter addresses the use of
fuzzy systems for modeling exergy destructions in the main components of
an industrial gas turbine. The details include: (i) system description and the
challenges in developing first principle models, (ii) thermodynamic models
for part load and full load operating conditions, (iii) model identification
technique that uses fuzzy systems and a meta-heuristic nature inspired algo-
rithm called Bat Algorithm, (iv) validation graphs for semi-empirical models,
and (v) validation test for fuzzy models. In the validation of the fuzzy model,
the inputs to the model are considered the same as the inputs as experienced
by the gas turbine generator. The comparison tests between actual data and
prediction demonstrate how promising the combined method is as compared
to separate use of the fuzzy systems trained by a heuristic approach.

1 Introduction

With the current high cost of energy, avoiding waste is as important as search-
ing for a new alternative. For the old systems, energy saving is being done
by retrofitting techniques after conducting some optimization based on pinch
analysis or exergy method. For new systems, continuous studies are being
carried out on the energy conversion devices to come up with new ideas to
better utilize the available energy. While the first law of thermodynamics is
common in the bookkeeping of energy, it is the second law of thermodynamics

A.L. Tamiru · F.M. Hashim
Mechanical Engineering Department, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 685–719.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

686 A.L. Tamiru and F.M. Hashim

which is more popular in identifying processes with a potential for further im-
provement. The second law deals with exergy, which is the maximum useful
energy that can be obtained from a system at a given state and in a known
environment. Exergy method was applied for thermal system optimization
[1, 2], and fault diagnosis [3, 4].

Exergy analysis involves calculation of enthalpy and entropy changes in the
system [5]. For part load analysis, it also requires design point calculations. At
each state point, properties of the working fluid need to be estimated taking
into account stagnation temperatures and pressures. All in all, given the fact
that simulation of gas turbines also demand performance maps for the main
components (axial compressor, combustion chamber, turbine, gearbox and
generator), it is fair to say that the off-design point calculation for a number
of state points is quite involved. If the purpose of the model is for online
application, which is true in case of fault detection and diagnosis, the delay
due to model simulation is a concern.

Artificial neural networks and fuzzy systems are known to provide alter-
native or surrogate models. As shown in [6, 7, 8], an Artificial Neural Net-
work (ANN) with a single hidden layer is good enough to approximate any
nonlinear function to a reasonable accuracy. In fuzzy systems, set of fuzzy
rules are used to capture input-output relations [9]. As compared to ANN,
fuzzy models are transparent. They are also flexible to accommodate quali-
tative information. Once trained, simulation of either ANN or fuzzy model
is equivalent to function evaluation, which is the required characteristic to
overcome the drawback in the online simulation of first principle models. The
fast execution in the fuzzy models is an attractive feature not only for fault
detection and diagnosis, but also for design optimization, and environmental
load assessment.

Das and Nanda [10] used ANN to capture the relationships between
Reynolds number, transverse pitch and fanning friction factor. The purpose
of the ANN model was to conduct exergy analysis on a regenerator bed. Com-
bining ANN model with Leveque analogy, they demonstrated the possibility
of calculating heat transfer coefficient from pressure drop data, which was
latter used in the exergy analysis. The ANNs were designed on the bases of
sigmoid functions and back propagation learning algorithm. Recently, Yoru
et al. [11] showed the use of ANNs to exergy modeling in thermal systems
that included gas turbines, and cogeneration. In this case as well, the ANN
models were constructed with sigmoid activation functions while the train-
ing was done by back-propagation technique. They compared the predicted
results against the prediction from a thermodynamic model. Fuzzy systems
are widely used for model identification [9], controller design [12], fault detec-
tion and diagnosis [13], and pattern classification. However, to the author’s
knowledge, there is no work related to exergy.

A fuzzy model intended for function approximation can be trained us-
ing clustering followed by least squares, back-propagation or nature-inspired
global optimization algorithms. Since developing an optimum model also

Application of Bat Algorithm and Fuzzy Systems 687

involves optimization of the model structure, a combination of methods
preferably with the global optimization algorithm as the main part is mostly
used. The use of global optimization algorithm, while it is free of derivatives
of the overall model, helps to avoid the parameter estimation process from
being trapped at the local minimum.

There are several nature-inspired and metaheuristic optimization algo-
rithms that can be used to train a nonlinear model. In [14], timeline of the
main algorithms is discussed. Among the recent algorithms include, pho-
tosynthetic algorithm[15], bacterial foraging[16], firefly algorithm[17], cuckoo
search[18], cat swarm optimization[19], biogeography-based optimization[20],
bat algorithm[21], glowworm swarm optimization [22], ant colony algorithm
[23], bee colony-inspired algorithm[24], monkey search[25], hunting search[26],
big bang-big crunch[27], charged system search[28], imperialist competitive
algorithm[29], intelligent water drop algorithm[30], catalytic search algorithm
[31], and artificial chemical reaction optimization algorithm[32]. These al-
gorithms have in common successive generation of candidate solutions and
selection of the best in terms of predefined fitness function.

The main purpose of this chapter is to develop models for exergy changes
in the components of a gas turbine generator applying fuzzy systems and bat
algorithm. Bat algorithm is a recently proposed global optimization algorithm
only tested using general benchmark problems. Testing of the algorithm in
thermal systems modeling is a good step in bringing the method to the atten-
tion of mechanical and chemical engineers. Since exergy is not a measurable
variable, a thermodynamic model is included so as to generate appropriate
training and validation data.

2 Methodology

2.1 System Configuration

The gas turbine that is modelled is part of a Cogeneration and Cooling Plant
(CCP) or trigeneration plant. A CCP generates electricity, steam and chilled
water utilizing a single source of energy that could be either from natural
gas or liquid fuel. In the cogeneration section, comprised of a Gas Turbine
Generator (GTG) and a Heat Recovery Steam Generator (HRSG), the pri-
mary energy is used to generate electricity and convert boiler feed water to
steam. In the district cooling, the chilled water required for space cooling is
thermally processed utilizing the steam from the HRSG. To cope with instant
power and steam demand, the gas turbine is controlled by modulating the air
entering the compressor and the amount of fuel admitted to the combustion
chamber. Variable Inlet Guide Vanes (VIGVs) are used to control the air flow
rates.

In the GTG, the air compressor (AC) increases total pressure of the atmo-
spheric air sucked into the system. The high pressure air is then mixed with

688 A.L. Tamiru and F.M. Hashim

the fuel and burnt in the combustion chamber (CC). Expansion of the high
temperature gas through the gas turbine (TU) results in rotational power
sufficient enough to run the compressor, the load acting on the generator,
and the auxiliary systems connected to the GTG shaft. Fig. 1 shows the
schematic diagram for a gas turbine driven CCP.

Fig. 1 Gas Turbine Driven Cogeneration and Cooling Plant

Challanges in Developing First Principle Model. Gas turbines are
known for their fast starting characteristics and flexibility to accomodate
variable loads. The use of variable geometry compressor and turbine also
make them ideal for cogeneration applications. As compared to diesel engines,
they are also featured by low lubrication cost. However, while the occurance of
major failures is rare, there is a general consensus that they posses relatively
high maintenance cost [33]. Their performance can drop caused by fouling,
erosion, corrosion and even change in environmental conditions. Since they
normally have high energy throughouts, a 1% drop in effeciency could mean
high economic loss. Due to this reason and the penalities related to execessive
greenhouse gas emissions, their performance have to be monitored regularly
to make sure that the operating points are as envisaged at the design stage.

Performance of the GTG relies on efficiency of each component along the
gas path. Details about each componentmay be provided by the manufacturer.
However, for proprietary reasons, it rarelyhappens so. If the gas turbine is a used
one, true in the present work, the following information are commonlymissing:

– The GTG is equipped with VIGVs and Variable Stator Vanes (VSVs) con-
nected to a hydraulic driving mechanism. Changing the position of VIGVs
and VSVs affects working fluid direction and hence the performance of the

Application of Bat Algorithm and Fuzzy Systems 689

system. In developing a high fidelity model, the dimensions of driving links
and blade geometry need to be known.

– The GTG may be using natural gas as fuel. The composition of the gas
is described as CxHyOz with the value of x, y, and z varying depending
upon the well location. Since heating value and combustion products rely
on these values, they need be available for accurate modeling.

– One of the auxiliary systems in a gas turbine is the air system. The air sys-
tem provides air for cooling hot section of the gas turbine and for driving
some of the actuators in the control loop. Some of the air is also used at the
bearing chambers to air tight the labyrinth seals. The air is tapped at an op-
timum location on the air compressor. Performance of the GTG is affected
by the amount of air used for cooling. Again, full piping and instrumentation
diagram and amount of flow at the design point is not available.

– As the working fluid flows through different section of the GTG, pressure
loss is inevitable. Pressure loss affects the engine performance. Off-design
simulation requires knowing duct pressure loss at the design point. Similar
to the other cases, these values are hardly available.

– Operation of the gas turbine in high load regions are controlled based on
feedback signals for the shaft speed, and temperature at the inlet or second
stage of the gas turbine, respectively. Since the turbine is expected to sup-
port the load while providing high temperature exhaust gas to the HSRG,
a minimum value signal selector is used as part of the main controller. All
controller gains, time constants, delays, and offsets are not readly available
making dynamic simulation a difficult task.

Design point data, some of them obtained by calculation applying mass and
energy conservation equations, are shown in Table 1. These data are used
for normalizing the training and validation data. The Distributed Control
System (DCS) for the GTG allows online monitoring of fuel flow rate, VIGV
position, compressor discharge pressure, and electric power output. These
parameters will be used as reference to validate the thermodynamic model
presented in the next section. The thermodynamic model would be used to
generate data suitable for fuzzy model training and validation.

Table 1 Design Point Data for the Gas Turbine Generator

Parameter Symbol Units Value

Electric Power Ẇele kW 4917
Compressor Discharge Pressure P2 kPa 1177
Fuel Flow Rate ṁf kg.sec−1 0.3167
Lower Heating Value LHV kJ.kg−1 47939

VIGV Position θ̇VIGV − 100

Exergy Destruction in the Compressor İAC kJ.kg−1 356.9

Exergy Destruction in the Combustion Chamber İCC kJ.kg−1 3104.3

Exergy Destruction in the Turbine İTU kJ.kg−1 1148.5

690 A.L. Tamiru and F.M. Hashim

2.2 First Principle Model

Overview. For the gas turbine model to be applicable, it has to describe
real characteristic of the gas turbine accurately. To this end, all the factors
that affect behaviour of the gas turbine have to be included in the models.
This, not only, has to include proper empirical equations representing part
load performance maps of the components but also properties of the work-
ing fluid at the actual operating pressure and temperature[34]. In developing
the governing equations for the whole gas turbine, mass and energy conser-
vation equations are applied assuming a control volume surrounding each
component and considering Steady State Steady Flow (SSSF) condition. The
conservation equations are as follows:

∑
ṁin =

∑
ṁout (1)

Q̇+
∑

ṁin

(
h+

V 2

2
+ gz

)
=

∑
ṁout

(
h+

V 2

2
+ gz

)
out

+ Ẇ (2)

Where, ṁ is the mass flow rate; h is the specific enthalpy; Q̇ and Ẇ are rate
of heat exchange and power, respectively. In SSSF devices, the kinetic energy
V 2

2 and potential enegy gz terms are assumed negligible.

Gas Turbine Component Models. The components of a gas turbine gen-
erator are designed and manufactured separately. Their characteristics when
they are assembled and simulated alone are different due to the influence of
adjacent systems. In assembling the components, efforts are usually made
to make sure that the components are matched in terms of mass flow rates,
momentum change and energy changes. In this section, models are presented
for each component.

Compressor. The compressor is a variable geometry, multi-stage, axial flow
design. Its characterisics changes with the change in the position of the VIGVs
and the first three stages of the VSVs. The reason behind having this kind of
design is to avoid compressor surge and stall during starting and shut-down.
The design also plays a critical role in keeping the exhaust gas tempera-
ture constant. Complete characterization over all operating regions, there-
fore, requires consideration of the effect of variable geometry. For a known
inlet properties of the working fluid, the temperature Tout, pressure Pout and
power ẆAC at the outlet of the compressor, respectively, are calculated by

Tout = Tin +

(
Tin

ηAC

)[
π

(
γair−1

γair

)

AC − 1

]
. (3)

Application of Bat Algorithm and Fuzzy Systems 691

Pout = PinπAC . (4)

ẆAC = ṁair (hout − hin) . (5)

Efficiency ηAC and pressure ratio πAC are functions of the mass flow rate
through the compressor and rotational speed N of the compressor shaft. For
a new compressor and fixed geometry design, the performace map in the
form of graphs or look-up table may be provided by the manufacturer. For a
variable geometry compressor, it is not common to prepare such a graph for
the characteristics changes in reponse to the VIGV and VSV positions. In
many cases, the performance map may not be available at all for proprietary
reasons. If the gas turbine is a reconditioned engine operated for thousands
of hours, it is highly likely that the current performance map is different
from the one envisaged during design or right after reconditioning. In such
conditions, it is necessary that the maps be generated based on realities on
the groud.

There are many suggested methods to find approximate maps that can
be considered as a substitute for the missing characteristics. One such ap-
proach is to assume that the normalized pressure ratios and mass flow rate
are directly proportional [35]. The second approach is to assume linear and
quadratic models for the pressure ratio and isentropic efficiency, respectively,
while assuming mass fow rate and VIGV position as inputs [36, 37]. The
third method is to apply scaling method followed by calculation of correction
factors to account for the effect of VIGV and VSV positions [38, 39]. In cases
where geometric data is available, either stage-stacking [40] or blade element
method [41] can be applied.

With the intent to include machine performance deterioration with time,
the following set of equations are applied to characterize the compressor over
the whole operating region:

Pout

Pout,d
=

⎧⎨⎩ a11

(
Ẇele

Ẇele,d

)
+ a12 if

(
Ẇele

Ẇele,d

)
≤ 0.5 and θVIGV = 1

a21θVIGV + a22 if
(

Ẇele

Ẇele,d

)
> 0.5

(6)

ηAC

ηAC,d
=

⎧⎨⎩ 1− b11

(
1− Pout

Pout,d

)2

if
(

Ẇele

Ẇele,d

)
≤ 0.5 and θVIGV = 1

1− b12 (1− θVIGV)
2 if

(
Ẇele

Ẇele,d

)
> 0.5

(7)

In (6) and (7), Pout,d, ηAC,d and Ẇele,d represent design point value of com-
pressor discharge pressure, isentropic efficiency of the compressor, and electric
power output at the generator terminal, respectively. Validation of the two
equations are demonstrated in the result and discussion section.

Combustion Chamber. The gas turbine is equipped with six annular combus-
tors. In the combustor, the compressed air is mixed with fuel and burned.
The governing equation for the combustion process is defined by

692 A.L. Tamiru and F.M. Hashim

CxHyOz + λ
(
x+

y

2
− z

)
(O2 + 3.773N2)

→ aCO2 + bH2O+ cO2 + dCO+ eN2 . . . (8)

Where, λ is the excess air coefficient.
The temperature at the outlet of the combustion chambers can be esti-

mated using a combustion chart [42] or iterative method [34]. Regardless
of the method applied, the energy conservation equation characterizing the
combustion process is a function of LHV of the fuel, fuel to air ratio (FAR),
and combustion efficiency ηCC. In terms of enthalpies h(i) and mass fractions
ni, it can be written as(∑

i

nih
(i)

)
reactant

+ ηCCLHV =

(∑
i

nih
(i)

)
product

(9)

For the combustor, two parameters need to be calculated prior to estimating
the exhaust gas temperature. The first parameter is the combustor efficiency
ηCC. Adapting the procedure mentioned in [34], the efficiency could be ob-
tained from (10) after calculating the combustor loading that is given by
(11).

ηCC =

6∑
i=1

θi−1λ
i−1
CC (10)

λCC =
ṁ

V P 1.8
in 10(0.00145(Tin−400))

(11)

Where, ṁ is the mass flow rate inside the combustor, V is volume of the
combustor, Pin and Tin are the pressure and temperature, respectivly, at the
inlet to the combustor. The volume can be determined from design point data
[34]. At part load, efficiency of the combustion chamber is approximated by
(10). Interested readers on alternative empirical models related to combustion
efficiency are referred to the discussion in [43].

The pressure at the outlet of the combustion chamber is calculated taking
into account the pressure loss due to the chamber resisting air flow, and high
level of turbulence required for combustion and heat addition[42]. The model
equation is

Pout = Pin −ΔPCC (12)

ΔPCC

Pin
=

(
ṁCC

√
RinTin

Pin

)2 [
K1 +K2

(
Tout

Tin
− 1

)]
(13)

Where, K1 and K2 are constants for the cold loss and hot loss, respectively,
in the combustor.

Application of Bat Algorithm and Fuzzy Systems 693

Turbine. The turbine is a three-stage design with the first two stages cooled
by compressed air bleed at the last stage of the compressor. Use of the com-
pressed air for cooling affects the gas turbine performance. In addition to
the additional work lost to compress the cooling air, mixing of the cooling air
with the combustion gas in the main stream causes pressure loss, which would
be reflected negatively in the power output from the system. The methods
used in this work treat each stages separately allowing the consideration of
enthalpy changes due to mixing. The stagnation temperature at the outlet of
i-th stage is calculated by

T
(i)
out = T

(i)
in + T

(i)
in η

(i)
TU

⎡⎢⎣1−(
1

π
(i)
TU

) (γg−1)
γg

⎤⎥⎦ (14)

Where, γg is ratio of specific heats. The power output from the turbine is the
sum of power outputs from each stage.

ẆTU =
∑
i

ṁi

(
h
(i)
out − h

(i)
in

)
(15)

In (14), the efficiency η
(i)
TU and pressure ratio π

(i)
TU have to be known a prior.

These values are normaly given in terms of lookup tables or maps describing
the turbine behaviour under part load conditions. Similar to the case stated
for axial compressors, the performance map is not available. In 1951, Ain-
ley and Mathieson [44] proposed a method that uses geometric data. The
same method is being used until recently in performance analysis of gas tur-
bines using fluids other than combustion gases [45]. The simplest approaches,
however, are one-dimensional nozzle equation [46], Stodola ellipse equation
[41], and considering the turbine stages as choked with the corresponding
efficiency set equal to a constant value. In the present work, scaling method
[47] that demands relatively little information at design point is considered.

Scaling Method. For a compressor, there are three available performance
calculation techniques: scaling method[47], stage-stacking method [40], and
blade element method [41, 48]. Among the three methods, scaling method
is the easiest. But the inherent simplicity has the drawback of demanding a
suitable reference map [49]. Besides, it is not suitable for studying variable
geometry compressors from the point of view of understanding the stage in-
teraction inside the compressor. Scaling method is good if the interest of the
analyst is to understand the compressor as a black box. This is true for the
case of fixed geometry compressors. Scaling method overlooks compressibility
effect. Modified versions of the scaling method have been suggested recently
[50, 51]. The main idea in the scaling method is that performance map of a
compressor can be generated if the design conditions are known. The basic
equations for the scaling method are

694 A.L. Tamiru and F.M. Hashim

(
π − 1

πdesign − 1

)
=

(
π − 1

πdesign − 1

)
map

(16)

(
ṁ

ṁdesign

)
=

(
ṁ

ṁdesign

)
map

(17)

(
η

ηdesign

)
=

(
η

ηdesign

)
map

(18)

Where, πdesign, ṁdesign and ηdesign are design point pressure ratio, mass flow
rate, and efficiency, respectively.

Cooling. One of the auxiliary systems in a gas turbine is the air system. The
purpose of the air system is to provide cooling air to the hot sections, bearing
chamber, and controller circuits. The air required for cooling and other pur-
poses are extracted at a certain location in the compressor with the condition
that the pressure is sufficient enough to overcome the losses in the cooling
air flow path and the static pressure at the sink point is higher than the sur-
rounding static pressure. The amount of air extracted from the compressor
affects the performance of the system. For this reason, some assumptions need
to be made at the design point calculations. Referring to the values given in
[34], for turbine disc cooling and rim sealing a quantity of 0.5% per disc face
is assumed. For bearing chamber sealing, around 0.02kg.sec−1 per chamber is
used. In addition to the two flows, a separate flow is required for cooling first
stage stators. The amount for cooling the first stage stator vanes and rotor
blades is technology dependent. Hence, for a given stator exit temperature,
the percent of cooling air required may be read from the chart provided in
the same reference. After the design calculation is performed, the flows for
off-design operations are calculated assuming that the cooling air flows at the
deign point are choked.

Gear and Generator Efficiencies. The true power output at the generator
terminal is a function of gear and generator efficiencies. High speed of the
turbine shaft is reduced to the synchronous speed using epicyclic gears. At
part load, the gear efficieny varies with the lubrication performance. It may
also change due to bearing loss and gear mesh losses. The generator experi-
ences iron and copper losses. The copper loss varies with the load as it is a
function of the voltage on the stators. In the present work, the models pro-
posed by Haglind [52] are considered, which assume that gear and generator
efficiencies are functions of the load.

ηgb =
ξwηgb,d

ξwηgb,d + (1− ηgb,d)
(19)

ηgb =
ξwηge,d

ξwηge,d + ξ∗w (1− ηge,d)
(20)

Application of Bat Algorithm and Fuzzy Systems 695

Where, ξw is the rated power; ηgb,d and ηge,d are gearbox and generator
efficiencies, respectively, at the design point. The value of ξ∗w is calculated by

ξ∗w = (1− ν) + νξ2w (21)

Where the constant ν is taken as 0.34.

Duct Pressure Loss. The gas turbine is partly composed of ducts at multiple
locations. The pressure loss in the ducts affects the overall performance at
part load condition. The equation employed for off-design simulation is as
follows [53]. (

Pout−Pin

Pin

)
(

ṁin

√
Tin

Pin

)2 =

(
Pout−Pin

Pin

)
d(

ṁin

√
Tin

Pin

)2

d

(22)

Equation (22) was used in [54, 55].

Second Law Analysis. Components of gas turbines are often considered
as steady state steady flow energy systems. For a control volume enclosing
an SSSF device, the rate of exergy change is related to mass, heat and work.
For steady state condition, the exergy entering the component is equal to the
exergy leaving plus the exergy destroyed. For transient operation, the general
equation for rate of exergy change in the control volume is given by:

Ψ̇in +
∑
S

Q̇S

(
1− T0

TS

)
+ Ẇ − Ψ̇out + İ =

dΨ

dt
. (23)

Where, Ψ̇in =
∑

ṁiψi ; Ψ̇out =
∑

ṁjψj ; ṁ is the mass flow rate; ψ̇ is rate of
exergy associatedwith the flow stream, which is the sum of physical exergy and
chemical exergy; Q̇S is the rate of heat transfer from a source at temperature
TS ; Ẇ is the rate of work done; İ is the rate of exergy destruction. Assuming
constant specific heats, physical exergy of the flow stream at the inlet or outlet
of a component is related to temperature and pressure through (24).

Ψ̇ph = ṁCpT0

[(
Tin

T0
− 1

)
− ln

(
Tin

T0

)]
+ ṁRT0 ln

(
Pin

P0

)
. (24)

Where, R is the gas constant; T0 and P0 are temperature and pressure at the
reference condition, respectively; Tin and Pin are temperature and pressure
at the inlet to the control volume, respectively. Equations (23) and (24) are
applied to each component of the gas turbine. Table 2 provides the rate
of exergy destruction equations for each component. The properties of air
and exhaust gas are calculated using empirical equations taken from [34]. To
correct for the quality of fuel, a constant of 0.913 was considered from [5].

696 A.L. Tamiru and F.M. Hashim

Table 2 Rate of Exergy Destruction Equations for the Main Components in the
GTG

Component Equation

Multi-Stage Axial Air Compressor İAC=ẆAC − ṁair (ψ2 − ψ1)

Annular Combustors İCC=ṁfψf − ṁCC[(1 + FAR)ψ4 − ψ3]

Multi-Stage Axial Turbine İTU=ṁair (ψ3 − ψ7) − ẆTU

Exhaust Duct İED=ṁexh (ψ7 − ψatm)

Solution Method. Two steps are required to successfully simulate the ther-
modynamic model. The first is design point analysis, where the missing pa-
rameters and performance maps are estimated from partially known overall
performance specification and general design criteria taken from literature
[34, 53]. In the second part, calculations of working fluid properties and en-
ergy changes accross each component are performed. Regardless of which step
we are in, the following compatibility conditions need to be satisfied.

ẆTU − ẆAC − Ẇload = 0 (25)

The flowchart for estimating design point variables is shown in Fig. 2. The
inputs to the algorithm are nominal power output, LHV, pressure ratio, gen-
erator efficieny, gearbox efficiency, number of stages in the compressor and
turbine, heat rate (HR), exhaust gas flow rate ṁexh, and temperature and
pressure at the inlet to the compressor. The fuel flow rate ṁf is related to
HR and electric poweroutput through (26).

ṁf =
Ẇele · HR

LHV
(26)

The parameters estimated by iteration are isentropic efficiencies, cooling air
flow rate ṁco, and duct pressure loss. At each state point, variation of specific
heat with temperture is considered. Once the design point parameters are
estimated, scaling method is applied to generate the performance maps for
the turbine stages. In the off-design simulation, the load on the generator and
the set point temperature at the inlet to the third stage of the gas turbine
T5 are considered known. Mass flow rate of air and mass flow rate of fuel
are varied until the errors in the estimation of the electric power output and
temperature T5 are below the allowable limit. The flowchart demonstrating
the calculation sequence is shown in Fig. 3.

2.3 Model Identification

In a situation where the description of a system by first principle models is
difficult attributed to missing design data or the configuration of the system

Application of Bat Algorithm and Fuzzy Systems 697

Fig. 2 Flowchart for Design Point Calculation

being complex – leading to expensive modelling – data based models are
considered. The general equation, in state space form, of a data based model
for i-th Multiple Input Single Output (MISO) system can be stated as

x(i) (k + 1) = Φx(i) (k) + Γu(i) (k) + d(i) (k) (27)

y(i) (k) = G
(
x(i) (k) , θ(i)

)
+ ε(i) (k) (28)

Where, x(i) (k) ∈ IRnx is the state vector; u(i) (k) ∈ IRnu is the input vector;
y(i) (k) ∈ IRny is the output vector; d(i) (k) ∈ IRnd is vector of unmeasured
disturbance; ε(i) (k) ∈ IRny is zero mean Gaussian white noise; θ(i) is vector
of model parameters; G (.) represents the nonlinear function that relates the
states with the output. The matricesΦ and Γ are obtained by parameterizing
the input signals using the classical approach or orthogonal basis functions. In
nonlinear system identification, the model in (28) can be well approximated
by a fuzzy model [9].

Fuzzy Systems and Fuzzy Model. Fuzzy systems allow the description
of concepts or ideas with approximate reasoning. They have been applied
in classification and control system design problems. The basic idea in the
fuzzy systems is the description of input-output relationships by sets of if-then

698 A.L. Tamiru and F.M. Hashim

Fig. 3 Flowchart for Off-Design Point Simulation

rules. In the premise part of the rule, fuzzy membership functions are used
to map the crisp signal into a form suitable for applying fuzzy operators. The
common membership functions include triangular, trapizoidal, logistic, and
Gaussian membership functions. In the consequent part of a rule, the outcome
is calculated using relational operators or input-output functions. The result
from a fuzzy model is an aggregate, in a certain way, of the activation levels
from all rules. The general structure of a fuzzy model involves a knowledge
base, fuzzification, inferencing and defuzzification steps. For details regarding
fuzzy operators, readers are referred to the books by [12, 56].

In the present work, the model defined by (28) is replaced by Takagi Sugeno
Kang (TSK) model. In a TSK fuzzy model, fuzzy membership functions and
if-then rules are used to capture the nonlinear relationship between input and
output data. First, the Membership Functions (MF) are estimated. As docu-
mented in [9, 12, 13], clustering techniques canbe applied to decide on the shape
and location ofMFs.Using theMFs, each input is fuzzified and aggregate values
are calculated for each rule. A prediction for the current output ismade by com-
bining the results from each rule. Linear equations are used in the consequent
part of the rules. For a MISO system, the l-th rule in a TSK model is given by

Application of Bat Algorithm and Fuzzy Systems 699

Rl : if x1 (k) is Al,1and · · · and xnx (k) is Al,nx then zl = ψ
T
l (k)θl (29)

Where, xi (k) ∈ IR is the state; Al,i is the fuzzy set; ψl ∈ IRnx+1 is the
regression vector; θl ∈ IRnx+1 is vector of local linear model parameters;
zl ∈ IR is the rule output. The model output is given by (30).

y (k) =

nl∑
l=1

ϕl (k) .zl (k) (30)

Where the expression for ϕl (k) is

ϕl (k) =
αl (k)∑nl
l=1 αl (k)

(31)

In (31), ϕl (k) is the normalized activation level for l-th rule. It is worth

noting that
∑nl

l=1 αl (k) = 1. The number of fuzzy rules decides the value of
αl (k). Assuming Gaussian membership functions, αl (k) is calculated as

αl (k) = exp

[
−1

2

nx∑
i=1

(
xi − cl,i
σl,i

)2
]

=

nx∏
i=1

Al,i (32)

Where, cl,i and σl,i are center and width of the membership function, re-
spectively. With the input and output data, and fuzzy membership functions
known, the model parameters are estimated by minimizing the optimization
problem stated in (33).

θ̂ = argmin
1

Nd

Nd∑
k=1

[y (k)− ŷ (k)]
2

(33)

In the case where the MFs are predetermined applying clustering method
or global optimization algorithms, θ̂ is limited to the consequent parame-
ters solely. As such, the solution to (33) can be determind assuming Global
Least Squares (GLS) [12] or Weighted Least Squares (WLS) [9]. If GLS is
considered, the optimum solution is

θ̂ =
(
MTM

)−1
MTy (34)

Where, M = [M1M2 . . .Mnl]; Ml = ϕl.R;

ϕl = diag (ϕl (1) , ϕl (2) , . . . , ϕl (k) , . . . , ϕl (Nd))

700 A.L. Tamiru and F.M. Hashim

with R ∈ IRNd×(nx+1), and Rk = [1, x1(k), x2(k), . . . , xnx(k)]
T
. If WLS is

assumed, the corresponding optimum solution for l-th local linear model is
given by

θ̂l =
(
RTQlR

)−1
RTQly (35)

Where,Ql = ϕ
T
l ϕl. In the present work, implementation of (35) is done using

Local Linear Model Tree (LOLIMOT) algorithm [9]. In order to evaluate
performance of a trained fuzzy model, the Root Mean Squared Error (RMSE)
and Akak′s Information Criterion (AIC) are applied.

RMSE =

[
1

Nd

Nd∑
k=1

[y (k)− ŷ (k)]
2

]1/2

(36)

AIC = Nd ln

[
1

Nd

Nd∑
k=1

[
ε(k, θ̂)

]2]
+ 2nθ (37)

Where, nθ = (nx + 1) is the number of model parameters; ŷ (k) is the pre-

dicted output; ε(k, θ̂) = y (k)− ŷ (k).

Calculation of Model Confidence Interval. One important part of model
identification is the calculation of model uncertainity for a given confidence
level. Since the gas turbine operating point is affected by load on the generator
and change in environmental conditions, the confidence interval has to evolve
with the dynamics of the system. This kind of consideration is specifically
important to fault detection and diagnosis system design.

Assuming that θ∗ and J(θ̂) represent true value of model parameters and

first derivative of G(x (k) , θ̂) with respect to θ̂, respectively, it can be shown
that for a confidence level of (1 − α), the confidence interval (CI) for a new
prediction is is given by

CI(k) = ±tα/2,Nd−nθ
σ̂ref

[
1 + Jk(θ̂)

THo(θ̂)Jk(θ̂)
]1/2

(38)

In (38), the subscript o stands for training data; Ho(θ̂) = Jo(θ̂)
−1Jo(θ̂);

tα/2,Nd−nθ
is the percentage value of t-distribution that leaves a probability

of α/2 in the upper tail and (1 − α/2) in the lower tail; (Nd − nθ) is the
degree of freedom. The unbiased estimate for σ̂ref is

σ̂2
ref =

1

Nd − nθ

Nd∑
k=1

[
ε(k, θ̂)

]2
(39)

Bat Algorithm(BA). BA is a meta-heuristic nature inspired algorithm for
the first time developed by Yang [21] at Cambridge University. Among all
bats, microbats use echolocation to distinguish their prey, avoid obstacles,

Application of Bat Algorithm and Fuzzy Systems 701

and identify their roosting crevices in the dark. The BA is formulated ideal-
izing bats characteristics in hunting their prey. The pseudo code as developed
by Yang [21] is shown below.

Bat Algorithm:

Objective function f(s), s = [s1 ... sd]

Initialize the bat population si(i = 1, 2, ..., n) and vi

Define pulse frequency fi at si

Initialize pulse rates ri and the loudness Ai

while (t < Max number of iterations)

Generate new solutions by adjusting frequency,

and updating velocities and locations

if (rand > ri)

Select a solution among the best solutions

Generate a local solution around the selected best solution

end if

Generate a new solution by flying randomly

if (rand < Ai & f(si) < f(s))

Accept the new solutions

Increase ri and reduce Ai

end if

Rank the bats and find the current best solution

end while

Postprocess results and visualization

The main updating equations in BA are as follows:

fi = fmin + (fmax − fmin)β (40)

v
(p)
i = v

(p−1)
i +

(
s
(p)
i − s∗

)
fi (41)

s
(p)
i = s

(p−1)
i + v

(p)
i (42)

Where, β ∈ [0, 1] is a random number; fmin and fmax are minimum and
maximum,respectively, of emitted pulse; s∗ is current global best position;fi,

v
(p)
i and s

(p)
i are frequency, velocity and position, respectively, of i-th bat at

p-th generation. During initialization, the value of fi is randomly selected
from [fmin, fmax]. Once the current global best is identified, a local search is
performed based on (43).

snew = sold + ε.A(p) (43)

Where, ε is a random number drawn from [−1, 1]; A(p) is average loudness
at p-th generation.

Loudness and Pulse Emission. As the search for the best solution proceeds,
the loudness A(p) decreases while the pulse emission r(p) increases. This, in
fact, reflects the true behaviour of bats reducing loudness and increasing
pulse rate as they approach the prey. Updating equations related to impoved
solutions are formulated as

702 A.L. Tamiru and F.M. Hashim

A
(p+1)
i = α.A

(p)
i (44)

r
(p+1)
i = r

(0)
i [1− exp (−γ.p)] (45)

The values of α and γ in (44) and (45), respectively, are constants. Each can
be assumed equal to 0.9 [21]. BA was found superior to genetic algorithm and
particle swarmoptimization [21].Theoriginal bat algorithmwasapplied to solve
multiobjective optimization problems [57] and to train neural network models
[58]. Inspired by the original bat algorithm, Tsai et al.[59] recently proposed
what is called evolved bat algorithm (EBA). In the EBA, bat’s movement and
random generation of a bat position are governed by (46) and (47).

s
(p)
i = s

(p−1)
i +D (46)

s
(p)
i,random = β.

(
s ∗ −s

(p)
i

)
(47)

Where, β is considered an element of [0, 1] while D is assumed equal to
0.17T with T randomly drawn from [−1, 1] . The algorithm was tested using
Rosenbrocks function, Griewanks function, and Rastrigins function[21]. It
was claimed to have outperformed the original BA.

In the present work, the intention is to consider bats in groups, which make
the algorithm a bit different from the original design. Besides, the updating
equations are selected according to an additional optimization parameter
called elite fraction ξe . After sorting the fitness value for the local best
performing bats in descending order, if the group identification index i is
less than or equal to ξe, (48) and (49) are used for updating the current bat
location.

V
(p+1)
ij = V

(p)
ij + fij ×

(
S
(p)
lb,i − S

(p)
gb

)
. (48)

S
(p+1)
ij = S

(p)
lb,ij +V

(p+1)
ij . (49)

Where, S
(p)
lb,i is the local best or best in the i-th group; S

(p)
gb is the global best

corresponding to p-th generation. If ξe < i ≤ 2 × ξe , then the inverse of

golden ratio ψ =

(
1+

√
(5)

)

2 is applied to decide on the size of the displacement
to be added to the old location. That is,

S
(p+1)
ij = S

(p)
ij +

1

ψ
×

(
S
(p)
gb,ij − S

(p)
ij

)
. (50)

If i > 2ξe, then the bats with weak performance are totally replaced by new
bats. The equation for this purpose is

S
(p+1)
ij = rand((nθ, 1) (51)

Where, nθ is the number of model parameters to be estimated. The pseudo
code for the BA algorithm with the addition of grouping and elite fraction is

Application of Bat Algorithm and Fuzzy Systems 703

stated as follows. The elite fraction is applied after sorting the fitness values
for all bats in a generation in descending order. Accordingly, well performing
bats are put first while the weakest are left in the bottom. The BA combined
with the grouping concept is applied to train the fuzzy models. Note that the
values of loudness and pulse rate are assumed constant.

Group based BA Algorithm:

Objective function f(s), s= [s1 ... sn]

% Initialize BA parameters

Loudness A, pulse rate r, elite fraction, number of bats in

a group, number of groups, minimum frequency fmin, and

maximum frequency fmax

% Initialize iteration parameters

Error goal, Maximum number of epoch

% Generate Initial Position & Velocities for each bat

% Run the BA algorithm

while (t < Maximum number of epoch)

if t=1

Evaluate the objective function for each bat position

Identify the local best

Sort the bats based on their performance

Identify the global best

Move all bats to the better locations

Number of elite = number of bats in a group X elite fraction

while (i < number of groups)

while (j < number of bats in i-th group)

if (i < Number of elite)

Update velocity and locations

if (rand > ri)

Generate a local solution

end

elseif (Number of elite < i & i < 2 X Number of elite)

Use inverse of Golden ratio and update the location

elseif (i > 2 X Number of elite)

Replace the current location by a random location

end

end while

end while

else

Evaluate the objective function for each bat position

Identify the local best

Identify the global best

Choose global best comparing current vs recent past

Choose local best comparing current vs recent past

Move all bats to the better locations

end

end while

704 A.L. Tamiru and F.M. Hashim

3 Result and Discussion

3.1 Validation of First Principle Model

This section presents application of the methods discussed thus far to an
actual gas turbine generator. The gas turbine is part of a cogeneration and
cooling plant providing electricity and chilled water to the academic buildings
of Universiti Teknologi PETRONAS, Malaysia. To begin the validation, part
of the design point data is extracted from overall performance map provided
by the gas turbine manufacturer. The GTG is specified as Taurus 60S-7301. It
is designed and manufactured by Solar Turbine Inc.. The specification at sea
level states that, the GTG was originally designed for 5.2MW. After recon-
ditioning, however, the certified test data shows a rated capacity of 4916MW
corresponding to a natural gas fuel having LHV of 47938 kJ.kg−1. At the
rated load, gearbox and generator efficiencies are stated as 0.982 and 0.964,
respectively. Pressure ratio of the axial compressor, turbine exit tempera-
ture, exhaust flow, and turbine exit temperature are all read from overall
performance map. The number of stages in the compressor and turbine are
eleven and three, respectively. The design of the combustor is annular type.
Six combustors are used to feed enough exhaust gas to the turbine stages.

Since cooling air flow rate distributions, duct pressure loss, and component
efficiencies are not known, assumptions are made relying on data from gen-
erally accepted literature while suitability of the selected values are decided
according to mass and energy conservation equations. The main calculation
step follows the flowchart discussed in the preceeding section (cf. Fig. 2).
Varying isentropic efficiencies of the compressor and turbine, duct pressure
loss, and cooling air flow rates, the relative error between actual and calcu-
lated values of rated power at the generator terminal is minimized. An error
goal of εmax=1e-3 is assumed to terminate the calculation loop. The resuting
estimated values for the missing data is shown in Table 3.

Fig. 4 and Fig. 5 show the models developed for the variable geometry
compressor over the whole operating region. The models are governed by (6).
For a reasonable approximation of the actual data, the coefficients need to be
a11 = 0.19995, a12 = 0.7769, a21 = 0.7114, and a22 = 0.3479. After repeated
run, the selected values for b11 and b12 are 0.5 and 8e-5, respectively. In fact,
the same values are used by Higlind [52].

From the optimized result, the compressor appeared to have a mass flow
rate of 21.0324 kg.sec−1 and pressure ratio of 11.615 while the turbine is
featured by exhaust gas flow rate of 21.349 kg.sec−1 and a pressure ratio of
10.8. Once turbine stage pressure ratio, mass flow rate, and efficiency are
known, performance maps are created applying the scaling method. As a
reference, a turbine map from [60] is chosen for its design point pressure
ratio is close to the pressure ratio of the Solar Turbine. The maps resulted
from applying the scaling method are shown in Fig.6 and Fig.7.

Application of Bat Algorithm and Fuzzy Systems 705

Table 3 Estimated Design Point Data for the Gas Turbine Components

Parameter Unit Value

Compressor Efficiency 1 0.8551
Combustor Efficiency 1 0.98
Combustor Volume m3 0.3468
Turbine Stage Efficiency 1 0.899

Stage-1 kg.sec−1 20.38
Turbine Mas Flow Rate Stage-2 kg.sec−1 20.49

Stage-3 kg.sec−1 20.59

Turbine Statge Pressure Ratio 1 2.21
Cooling Air kg.sec−1 0.4270
Air Control Systems kg.sec−1 0.1052
Air for Bearing Chambers kg.sec−1 0.5468
Inlet Duct Pressure Loss % 0.5
Compressor Exit Diffuser Loss % 2
Combustion Chamber Pressure Loss % 2

Fig. 4 Normalized Pressure Ratio Versus Rated Power: load ≥ 0.5

706 A.L. Tamiru and F.M. Hashim

Fig. 5 Normalized Pressure Ratio Versus VIGV Position: load ≥ 0.5

Fig. 6 Stage Performance Map for Turbine: Normalized Efficiency Versus Normal-
ized Pressure Ratio

Application of Bat Algorithm and Fuzzy Systems 707

Fig. 7 Stage Performance Map for Turbine: Normalized mass flow rate Versus
Normalized Pressure Ratio

For the part load operation, the validation was done considering compres-
sor discharge pressure P2, fuel flow rate ṁf , temperature T5, and electric

power output at the generator terminal Ẇele. Fig.8 shows the first three pa-
rameters versus power Ẇele. Note that the graphs are presented in normalized
form. The data listed in Table 1 are used for normalizing each parameter be-
tween zero and one. As can be seen from the graphs, the predicted result
closely matches the actual data.

In the first operating region, i.e. for relative load less than 0.5, the tem-
perature T5 increases with load. This is expected because the GTG in this
region is operating in load control only. So as to meet the load requirement,
the fuel flow rate increases gradually with the load. However, the compres-
sor VIGV is at fully open position and the VSVs are all at their respective
design stagger angles that make the air flow rate almost constant. The nor-
malized pressure also increases with lower slope. This is quite strange for a
compressor whose shaft speed is constant and VIGV at fully open position.
One may argue that this may be due to the existence of bleed air from the
compressor. In our case, there is no strong evidence that supports the use of
bleed air during part load. The document provided by the manufacturer only
mentions the use of the bleed valve during start-up and shut-down. After
many simulation tests, excluding bleed air during part load operation, the
algorithm had no troubles in convergence if the actual pressure ratio is used
to match the temperature T5 and electric power output. The resulting air

708 A.L. Tamiru and F.M. Hashim

Fig. 8 Predicted performance for the Gas Turbine Generator (lines: model, marks:
real data)

mass flow rate in this region also appears to remain almost constant. In light
of satisfying the three conditions, it can be said that the assumption on bleed
air during low load operation is convincing.

For load greater than 50% of rated load, the GTG runs under temperature
and load control. In fact this region is also called SoLoNOx regiondue lowgreen-
house gas emission. Near to 50% load, the VIGV starts to close gradually while
the setting for temperature T5 is increased to 667 ◦C. This is visible in the vali-
dation graphs shown in Fig.8. Themonitored data is collected every 10 seconds.
Because the rate of opening of the VIGV and ramping up of T5 setting in the
transition region is faster than 10 seconds, it was not possible to acquire data
for validation purpose. The temperature control is based on the feedback signal
from temperature at the inlet to the 3rd stage of the gas turbine. The pressure
ratio and fuel flow rate increases with increase in electric power output while
the temperatureT5 is almost constant. In the SoLoNOx region, the hot exhaust
gas is used to run the heat recovery steam generator where steam is generated.
Hence, the high temperature in the exhaust gas is reasonable. Finally, the ther-
modynamic models validated in the current section are used to generate data
that can be used to train and validate fuzzy models. This is presented in the
next section.

The semi-empirical model was also used to predict air mass flow rate and
NOx emission. These parameters were not available for measurement. As can
be seen from Fig. 9, the air flow rate is almost constant in the less than 50%
rated load region. This is acceptable for the VIGV is fully open and the shaft
speed is constant. In the SoLoNOx region, the air flow rate increases with the

Application of Bat Algorithm and Fuzzy Systems 709

load. NOx emission increases with temperature and pressure, which is well
indicated in the graph.

3.2 Validation of Fuzzy Models

In order to demonstrate the application of the fuzzy method and the bat
algorithm to a gas turbine generator, fuzzy TSK models are developed for the
exergy changes in the main components of the GTG. The approach is to use
BA in three different ways: (i) LOLIMOT-BA, where LOLIMOT algorithm
is first applied to train the fuzzy model while BA is used to further tune the
spread term σl,i(l = 1, . . . , nl; i = 1, 2, . . . , nx); (ii) BA-GLS, where BA is
used to optimize the shape and location of the fuzzy membership functions
while GLS is employed to find optimum values for the parameters in the local
linear models; (iii) BA-WLS, BA still used for adjusting the membership
functions but the parameters in the local linear models are estimated by
weighted least squares.

The input-output data used for model training are shown in Fig.10 to
Fig.12. VIGV position and fuel flow rate are considered as inputs. In fact the
two parameters are true manipulated inputs to the gas turbine generator.
The graphs in Fig.10 are obtained from GTG data acquisition system while
the exergy graphs are results of simulating the thermodynamic model for the
same inputs. VIGV percentage opening various in the range of 40 to 75 %
while the fuel flow rate changes in the range of 0.2kg.sec−1 to 0.28kg.sec−1.

Fig. 9 Predicted Air Mass Flow Rate and NOx Emission

710 A.L. Tamiru and F.M. Hashim

A maximum of 75% in the VIGV position is due to the load demand that
does not go beyond 4.2MW. Note that the data used for model training and
validation is for electric loads higher than 50% of nominal generating capacity.
This region is selected for many of the parameters in this region change with
the electrical load and enviromental conditions.

Initialization of the LOLIMOT algorithm involves only the parameter Δ,
which controls the fraction of cut on the distance between two adjacent cen-
ters. The spread term for a particular membership function is defined as the
product of Δ and the distance between two adjacent centers. In the present
work, the value of Δ is assumed 1/3 regardless of the membership function
location. Initialization of BA algorithm, however, needs setting of suitable
values for maximum error tolerance, number of bats, sound loudness, pulse
rate, frequency range, and maximum number of generations or iterations.
Since the present work uses the group based BA, three more parameters
need to be provided. These include number of groups, number of bats in a
group, and elite fraction. The values assumed for training the fuzzy models
are listed in Table 4. The same set of numbers are applied if BA is involved
in the calculation.

In the first attempt, LOLIMOT alone is used to train fuzzy TSK mod-
els for exergy changes in the air compressor İAC , combustion chamber İCC

, gas turbine İTU , and exhaust duct İED . The values of RMSE and AIC
corresponding to each model are summarized in Table 5. As can be seen, all
the models are featured by lower values of RMSE and AIC. The number of
fuzzy rules for the combustion chamber, turbine, and exhaust duct appeared
in the range of 4 to 6. The values of RMSE and AIC related to the validation
data are also listed in Table 6. In this case as well, the parameters demon-
strated higher performance. Relatively lower values of RMSE and AIC in
the air compressor model could be attributed to the higher number of rules
in the fuzzy model. Fig.13 and Fig.14 show plots of the validation graphs
for exergy changes in the combustion chamber and gas turbine, respectively.
The same graphs depict modelling error and confidence interval for 95% con-
fidence level. In both cases, the modeling error was found lower than 0.01
indicating good accuracy of the models. The cause for exergy destruction in
the combustion chamber is the pressure drop, flow turbulence and irreversible
combustion. Normally, it increases with the GTG load. Among the three com-
ponents in the system, the exergy destruction in the combustion chamber is
the highest. In the air compressor, the cause for exergy destruction could be
related to off-design point performance, fouling and erosion.

In the second test, the models from LOLIMOT algorithm were further
optimized by BA. RMSE and AIC values have improved. However, perfor-
mance parameters for the validaion data show poor accuracy as compared
to LOLIMOT only based model. In fact this is what happens when there is
over fitting.

Application of Bat Algorithm and Fuzzy Systems 711

Fig. 10 Training Data: (a) VIGV position, and (b) Fuel Flow Rate

Fig. 11 Training Data for Exergy Destruction in (a)Air Compressor, and (b) Com-
bustion Chamber

712 A.L. Tamiru and F.M. Hashim

Table 4 Optimization Parameters assumed for BA

Parameter Symbol Value

Sound Loudness A 0.25
Pulse Rate r 0.5
Minimum Frequency fmin 0.0
Maximum Frequency fmax 20
Number of Groups ng 10
Number of Bats in a Group nb 5
Elite Fraction ξe 1/3
Maximum Numer of Generation Nmax 20
Maximum Error Tolerance εmax 1e-4

Fig. 12 Training Data for Exergy Destruction in (a) Gas Turbine, and (b) Exhaust
Duct

In the third test, BA-GLS is used. Instead of running the algorithm using
the number of rules estimated in the first test, different number of rules in
the range of 2 to 15 were tested. The optimum found in terms of RMSE and
AIC were 5, 5, 2, and 4 for İAC, İCC, İTU, and İED, respectively. The values
of RMSE and AIC for the training data are presented in Table 5 while the
correspond result for validation test is depicted in Table 6. For the training
data, BA-GLS resulted in better performance as compared to LOLIMOT and
LOLIMOT-BA methods. The number of fuzzy rules are reduced. However,
the prediction performance for the validation data is relatively poor.

Application of Bat Algorithm and Fuzzy Systems 713

Table 5 Fuzzy Model Structure and Performance: Training Data

LOLIMOT LOLIMOT-BA BA-GLS BA-WLS

Parameter nl RMSE AIC RMSE AIC RMSE AIC RMSE AIC

İAC 15 9.2625e-5 -17.4839 9.2625e-5 -17.5139 5.5745e-5 18.5494 0.0011 -12.6355

İCC 6 0.0048 -9.6567 0.0047 -9.7054 0.0045 -9.7961 0.0045 -9.7641

İTU 4 0.0060 -9.2025 0.006 -9.2209 0.0060 -9.2108 0.0061 -9.1951

İED 5 0.0109 -8.0039 0.0108 -8.0281 0.0106 -8.0744 0.0107 -8.0261

Table 6 Fuzzy Model Structure and Performance: Test Data

LOLIMOT LOLIMOT-BA BA-GLS BA-WLS

Parameter nl RMSE AIC RMSE AIC RMSE AIC RMSE AIC

İAC 15 1.23e-4 -16.9160 1.2337e-4 16.9402 8.9932e-5 17.5927 9.8368e-4 -12.8082

İCC 6 0.0045 -9.7923 0.0067 -8.9937 0.0067 -8.9916 0.0044 -9.8031

İTU 4 0.0061 -9.1722 0.00663 -9.1320 0.0063 -9.1177 0.0063 -9.1025

İED 5 0.0106 -8.0665 0.0102 -8.1413 0.0119 -7.8457 0.0108 -8.0381

Fig. 13 Validation Graph for Gas Turbine: (a) Normalized Exergy Destruction,
and (b) Prediction Error

714 A.L. Tamiru and F.M. Hashim

Fig. 14 Validation Graph for Combustion Chamber: (a) Normalized Exergy De-
struction, and (b) Prediction Error

Fig. 15 Surface Plots for Exergy Destruction: (a) Air Compressor, (b) Combustion
Chamber, (c) Turbine, and (d) Exhaust Duct

Application of Bat Algorithm and Fuzzy Systems 715

The last test is made by using BA-WLS algorithm. Similar to the case for
BA-GLS, optimum number of rules for each models is estimated running the
optimization algorithm for number of rules in the range of 2 to 15. The opt-
mum number of rules were found 5, 4, 2, and 3 for İAC, İCC, İTU, and İED,
respectively. As compared to BA-GLS models, the number of rules for the
combustion chamber and exhaust duct are reduced by one. For each model,
the values of RMSE and AIC appeared better than the previous models. Sur-
face plots for the final model are shown in Fig.15. This graphs are generated
simulating the fuzzy models in the working region.

Summary. In this chapter, apart from developing and validating a thermo-
dynamic model, group based BA is implemented to train fuzzy TSK models
for exergy changes in the gas turbine generator. From the training and vali-
dation result, it can be seen that BA is a powerful tool for nonlinear model
identification. BA combined with GLS and WLS is potentially more poweful
than LOLIMOT algorithm, which is partly a heuristic approach. The deve-
olped fuzzy models are easy to use for generating enough data required to
creat surface plots for the exergy changes, which otherwise could have been
tedious had it been the thermodynamic model implemented for the same
purpose.

In the group based BA, candidate solutions are generated in two steps. In
the first step, objective function values for each group are sorted in descending
order and the bat with the lowest objective value is selected. Repeating the
same procedure, this time among bats best in their respective groups, the
global best performing bat is selected. In the second step, once the local
best bat locations are sorted according to objective function values, the total
number of bats is divided into elite and non-elite groups. For those in the
elit group, new locations are generated by adjusting frequencies, loudness,
and pulse emission rate. For the non-elite groups, bat location update is
done either using the golden ratio or assuming random location generator.
The proposed approach is seen as a good contribution that could play more
important role in the use of a combination of optimization algorithms. It is
also helpful for solving huge problems using parallel computing technique.

There are other training methods in the identification of fuzzy TSK mod-
els. Among them are, Adaptive Neuro-Fuzzy Inference Systems (ANFIS)[56],
Fuzzy clustering combined with least squares [12], heaurstic approaches [9],
back-propagation, and using evolutionary algorithms [13]. This work suggests
that more work need to be done to expose how powerful it is as compared to
these algorithms.

As suggested by Yang [21], many varities of BAs can be created by includ-
ing models for directional echolocation and Doppler effect. Therefore, this is
another area that should be explored to a greater detail and in the context
of nonlinear model identification. The current work, however, confirms that
the existing BA by itself is good enough for modeling exergy changes as ac-
curacy is not an issue. Accuracy becomes very important if the model is to

716 A.L. Tamiru and F.M. Hashim

be used, for example, in control system design. In that case, the sensitivity
of BA needs to be tested against signals with high noise to signal ratio.

In the mechanical engineering area, there are also problems including op-
timization of cogeneration plant [2], reliability redundancy allocation [61],
machining parameter selection [62], and optimization of machine loading in
flexible manufacturing systems [63]. Therefore, to benefit the most of BA,
the authors believe that, it has to be tested in these areas as well.

References

[1] Lazzaretto, A., Toffolo, A.: Energy, economy and environment as objectives in
multi-criterion optimization of thermal systems design. Energy 29, 1139–1157
(2004)

[2] Sayyaadi, M.B., Farmani, M.R.: Implementing of the multi-objective particle
swarm optimizer and fuzzy decision-maker in exergetic, exergoeconomic and
environmental optimization of a benchmark cogeneration system. Energy 36,
4774–4789 (2011)

[3] Verda, V., Borchiellini, R.: Exergy method for the diagnosis of energy systems
using measured data. Energy 32, 490–498 (2007)

[4] Zhang, C., Chen, S., Zheng, C., Lou, X.: Thermoeconomic diagnosis of a coal
fired power plant. Energy Conversion and Management 48, 405–419 (2007)

[5] Dincer, I., Rosen, M.A.: Exergy: Energy, Environment, and Sustainable De-
velopment. Elsevier Ltd. (2007)

[6] Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals, and Systems (MCSS) 2, 303–314 (1989)

[7] Funahashi, K.-I.: On the Approximate Realization of Continuous Mappings by
Neural Networks. Neural Networks 2, 183–192 (1989)

[8] Hornik, K., Stinchcombe, M., White, H.: Multilayer Feedforward Networks are
Universal Approximators. Neural Networks 2, 359–366 (1989)

[9] Nelles, O.: Nonlinear System Identification. Springer, Heideberg (2001)
[10] Das, S.K., Nanda, P.: Use of artificial neural network and leveque analogy for

the exergy analysis of regenerator beds. Chemical Engineering and Process-
ing 39, 113–120 (2000)

[11] Yoru, Y., Karakoc, T.H., Hepbasli, A.: Exergy analysis of a cogeneration sys-
tem through Artificial Neural Network (ANN) method. International Journal
of Energy 7, 178–192 (2010)

[12] Babuska, R.: Fuzzy Modeling and Identification. The Netherlands, Deft Uni-
versity of Technology (1996)

[13] Korbicz, J., Koscielny, J.M., Kowalczuk, Z.: Fault diagnosis: models, artificial
intelligence, applications. Springer (2004)

[14] Gandomi, A., Yang, X.-S., Alavi, A.: Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems. Engineering with Comput-
ers, 1–19 (2011)

[15] Hashimoto, Y., Murase, H., Morimoto, T., Torii, T.: Intelligent systems for
agriculture in Japan. IEEE Control Systems 21, 71–85 (2001)

[16] Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization
and control. IEEE Control Systems 22, 52–67 (2002)

Application of Bat Algorithm and Fuzzy Systems 717

[17] Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe,
O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer,
Heidelberg (2009)

[18] Yang, X.-S., Deb, S.: Cuckoo Search via Levy Flights. In: Proc. of World
Congress on Nature & Biologically Inspired Computing (NaBIC 2009), India,
pp. 210–214 (2009)

[19] Chu, S.-C., Tsai, P.-W.: Computational Intelligence based on the behavior of
cats. International Journal of Innovative Computing, Information and Con-
trol 3 (2007)

[20] Simon, D.: Biogeography-Based Optimization. IEEE Transactions on Evolu-
tionary Computation 12, 702–713 (2008)

[21] Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R.,
Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI,
vol. 284, pp. 65–74. Springer, Heidelberg (2010)

[22] Krishnanand, K.N., Ghose, D.: Glowwarm Swarm Optimization: A New
Method for Optimizing Multi-Modal Functions. International Journal of Com-
putational Intelligence Studies 1 (2009)

[23] Dorigo, M., Stutzle, T.: Anty Colony Optimization: Massachusetts Institute of
Technology (2004)

[24] Hackel, S., Dippold, P.: The bee colony-inspired algorithm (BCiA): a two-
stage approach for solving the vehicle routing problem with time windows.
In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation. ACM, Montreal (2009)

[25] Mucherino, A., Seref, O.: Monkey Search: A Novel Meta-Heuristic Search for
Global Optimization. In: AIP Conference Proceedings 953, Data Mining, Sys-
tem Analysis and Optimization in Biomedicine, pp. 162–173 (2007)

[26] Oftadeh, R., Mahjoob, M.J., Shariatpanahi, M.: A novel meta-heuristic op-
timization algorithm inspired by group hunting of animals: Hunting search.
Computers & Mathematics with Applications 60, 2087–2098 (2010)

[27] Erol, O.K., Eksin, I.: A new optimization method: Big Bang-Big Crunch. Ad-
vances in Engineering Software 37, 106–111 (2006)

[28] Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged
system search. Acta Mechanica 213, 267–289 (2010)

[29] Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: An al-
gorithm for optimization inspired by imperialistic competition. In: IEEE
Congress on Evolutionary Computation, pp. 4661–4667 (2007)

[30] Shah-Hosseini, H.: Intelligent water drops algorithm: A new optimization
method for solving the multiple knapsack problem. International Journal of
Intelligent Computing and Cybernetics 1, 193–212 (2008)

[31] Yamamoto, L.: Evaluation of a Catalytic Search Algorithm. In: González, J.R.,
Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI,
vol. 284, pp. 75–87. Springer, Heidelberg (2010)

[32] Alatas, B.: ACROA: Artificial Chemical Reaction Optimization Algorithm for
global optimization. Expert Systems with Applications 38, 13170–13180 (2011)

[33] Boyce, M.P.: Gas Turbine Engineering Handbook. Gulf Professional Publishing
(2006)

[34] Walsh, P.P., Fletcher, P.: Gas Turbine Performance. Blackwell Science Ltd.
(2004)

[35] Kakimoto, N., Baba, K.: Performance of gas turbine-based plants during fre-
quency drops. IEEE Transactions on Power Systems (2003)

718 A.L. Tamiru and F.M. Hashim

[36] Verda, V.: Thermoeconomic Diagnosis of an Urban District Heating System
based on Cogeneration Steam and Gas Turbines. PhD Dissertation. Dipart-
mento Di Energetica, Politecnico Di Torino (2001)

[37] Kurzke, J.: GasTurb 9–A Program to Calculate Design and Off-Design Perfor-
mance of Gas Turbines, Germany (2001), http://www.gasturb.de

[38] Kim, T.S., Hwang, S.H.: Part load performance analysis of recuperated gas
turbines considering engine configuration and operation strategy. Energy 31,
260–277 (2006)

[39] Celis, C., Pinto, P.d.M.R., Barbosa, R.S., Ferreira, S.B.: Modeling of Variable
Inlet Guide Vanes Affects on a One Shaft Industrial Gas Turbine Used in a
Combined Cycle Application. In: ASME Conference Proceedings, vol. 2, pp.
1–6 (2008)

[40] Muir, D.E., Saravanamuttoo, H.I.H., Marshall, D.J.: Health Monitoring of
Variable Geometry Gas Turbines for the Canadian Navy. Journal of Engi-
neering for Gas Turbines and Power 111, 244–250 (1989)

[41] Dixon, S.L.: Fluid Mechanics, Thermodynamics of Turbomachinery. Elsevier
Butterworth-Heinemann (2005)

[42] Razak, A.M.Y.: Industrial Gas Turbines Performance and Operability. Wood-
head Publishing Limited and CRC Press, LLC (2007)

[43] Lefebvre, A.H., Ballal, D.R.: Gas Turbine Combustion: Alternation Fuels and
Emissions. CRC Press, Taylor and Francis Group (2010)

[44] Ainley, D.G., Mathieson, G.C.R.: A Method of Performance Estimation for
Axial-Flow Turbines. British Aeronautical Research Council, Reports and
Memoranda No. 2974 (1951)

[45] Tournier, J.M., El-Genk, M.S.: Axial flow, multi-stage turbine and compressor
models. Energy Conversion and Management 51, 16–29 (2010)

[46] Ordys, A.W., Pike, A.W., Johnson, M.A., Katebi, R.M., Grimble, M.J.: Mod-
elling and Simulation of Power Generation Plant. Springer, London (1994)

[47] Sellers, J.F., Daniele, C.J.: DYNGEN: A program for calculating steady-state
and transient performance of turbojet and turbofan engines. NASA–TN–D–
7901 (1975)

[48] Johnsen, I.A., Bullock, R.O.: Aerodynamic design of axial-flow compressors.
NASA SP–36 (1965)

[49] Tamiru, A.L., Hashim, F.M., Rangkuti, C.: Generating Gas Turbine Compo-
nent Maps Relying on Partially Known Overall System Characteristics. Jour-
nal of Applied Sciences 11, 1885–1894 (2011)

[50] Kong, C., Ki, J., Kang, M.: A New Scaling Method for Component Maps
of Gas Turbine Using System Identification. Journal of Engineering for Gas
Turbines and Power 125, 979–985 (2003)

[51] Kong, C., Ki, J.: Components Map Generation of Gas Turbine Engine Using
Genetic Algorithms and Engine Performance Deck Data. Journal of Engineer-
ing for Gas Turbines and Power 129, 312–317 (2007)

[52] Haglind, F.: Variable Geometry Gas Turbines for Improving the Part-Load Per-
formance of Marine Combined Cycles - Gas Turbine Performance. Energy 31,
467–476 (2010)

[53] Saravanamutto, H.I.H., Rogers, G.F.C., Cohen, H.: Gas Turbine Theory. Long-
man Group Limited (1996)

[54] Kim, J.H., Kim, T.S., Sohn, J.L., Ro, S.T.: Comparative Analysis of Off-Design
Performance Characteristics of Single and Two-Shaft Industrial Gas Turbines.
Journal of Engineering for Gas Turbines and Power 125, 954–960 (2003)

http://www.gasturb.de

Application of Bat Algorithm and Fuzzy Systems 719

[55] Lee, J.J., Kang, D.W., Kim, T.S.: Development of a gas turbine performance
analysis program and its application. Energy 36, 5274–5285 (2011)

[56] Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft computing: a com-
putational approach to learning and machine intelligence. Printice Hall (1997)

[57] Yang, X.S.: Bat algorithm for multi-objective optimisation. International Jour-
nal of Bio-Inspired Computation 3 (2011)

[58] Khan, K., Sahai, A.: A Levy-flight Neuro-biosonar Algorithm for Improving
the Design of eCommerce Systems. Journal of Artificial Intelligence 4 (2011)

[59] Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J., Istanda, V.: Bat Algorithm In-
spired Algorithm for Solving Numerical Optimization Problems. Applied Me-
chanics and Materials 148, 134–137 (2011)

[60] Converse, G.L., Giffin, R.G.: Extended Parametric Representation of Com-
pressor Fans and Turbines. CMGEN User’s Manual, NASA–CR–174645, vol.
1 (1984)

[61] Yeh, W.C., Hsieh, T.J.: Solving reliability redundancy allocation problems
using an artificial bee colony algorithm. Computers & Operations Research 38,
1465–1473 (2011)

[62] Khan, Z., Prasad, B., Singh, T.: Machining condition optimization by genetic
algorithms and simulated annealing. Computers & Operations Research 24,
647–657 (1997)

[63] Biswas, S., Mahapatra, S.: Modified particle swarm optimization for solving
machine-loading problems in flexible manufacturing systems. The International
Journal of Advanced Manufacturing Technology 39, 931–942 (2008)

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 721–749.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

A KBRL Inference Metaheuristic
with Applications

Laurentiu Bucur, Adina Florea, and Catalin Chera*

Abstract. In this chapter we propose an inference metaheuristic for Kernel-Based
Reinforcement Learning (KBRL) agents – agents that operate in a continuous-state
MDP. The metaheuristic is proposed in the simplified case of greedy policy RL
agents with no receding horizon which perform online learning in an environment
where feedback is generated by an ergodic and stationary source. We
propose two inference strategies: isotropic discrete choice and anisotropic optimiza-
tion, the former focused on speed and the latter focused on generalization capability.
We cast the problem of classification as a RL problem and test the proposed meta-
heuristic in two experiments: an image recognition experiment on the Yale Faces
database and a synthetic data set experiment. We propose a set of inference filters
which increase the vigilance of the agent and show that they can prevent the agent
from taking erroneous actions in an unknown environment. Two parallel inference
algorithms are tested and illustrated in a cluster and GPU implementation.

Keywords: Kernel Based Reinforcement Learning, Minimum Embedding Dimen-
sion, Chaos Theory, Parallel Algorithms, GPU, Cluster.

1 Introduction

In this chapter we propose a novel kernel-based inference metaheuristic for rein-
forcement learning (RL) agents operating in a continuous-state MDP. The meta-
heuristic is proposed in the simplified case of greedy policy RL agents with no
receding horizon which perform online learning in an environment where feed-
back is generated by an ergodic and stationary source. The metaheuristic is ex-
tended for parallel implementation on a cluster and GPU architecture, together
with extensive experimentations and demonstrations. The contributions of this
chapter are summarized as follows:

Laurentiu Bucur · Adina Florea · Catalin Chera
POLITEHNICA University of Bucharest, Department of Computer Science and Engineering,
Splaiul Independenţei nr. 313, 060042, Bucharest, Romania
e-mail: {laur.bucur,kerac2002}@gmail.com, adina.florea@cs.pub.ro

3

722 L. Bucur, A. Florea, and C. Chera

• An improved Kernel Based Reinforcement Learning inference metaheuristic is
proposed. The metaheuristic focuses on solving the problem of kernel parame-
ter function selection during the inference process of a KBRL agent. More
specifically, we focus on the optimization of the Gaussian kernel parameters
during the estimation of the reward function in continuous-state Markov Deci-
sion Processes.
o Two inference strategies are proposed: isotropic discrete choice and ani-

sotropic optimization. The former is designed for speed and the latter
designed for a more thorough exploration of the space of possible hypo-
theses at inference time.

• We then propose a set of Quality of Inference filters (together referred to as
QoINF) which are used to improve the decision making process of the agent.

• After the inference metaheuristic is introduced and augmented with QoINF
filters, we perform online KBRL learning and classification experiments, to
prove the performance, general applicability and scalability of the proposed in-
ference metaheuristic. The applications are:
o A synthetic data experiment that proves the ability of the anisotropic op-

timization strategy to detect relevant features at inference time, and the
superiority over the isotropic discrete choice strategy for the correct clas-
sification of binary labeled data.

o An image recognition experiment in which we re-cast the problem of
classification as a reinforcement learning problem and prove that the infe-
rence algorithm together with the proposed QoINF inference filters is able
to achieve 100% recognition accuracy on the Original Yale Faces Data-
base and 80% on the Extended Yale Faces Database.

• Two parallel algorithms are proposed (Parallel1 and Parallel2) for the isotrop-
ic discrete choice inference strategy. The Parallel1 algorithm is tested in an
image recognition experiment for the Yale Faces Databases, which we cast as a
classification problem in a 4860-dimensional continuous-state MDP. We im-
prove on the complexity of the Parallel1 algorithm and propose the Parallel2
isotropic discrete choice algorithm, which is an order of magnitude faster. We
prove that Parallel2 can be executed on a more suitable architecture – the
NVIDIA GeForce GPU, using the OpenCL programming model [2]. We show
that the partial execution of the proposed KBRL inference metaheuristic’s first
strategy- the isotropic discrete choice strategy is possible in a GPGPU (General
Purpose GPU) implementation, and that it can achieve real time face recogni-
tion performance, given enough capabilities in the GPU. Finally, we illustrate
the application of the Parallel2 algorithm in the FCINT Computer Vision
System which currently under development. We conclude that the proposed
metaheuristic can be applied to computer vision applications and we outline
directions for future work.

This chapter is structured as follows: Section 2 presents a brief introduction on
Kernel-Based Reinforcement Learning. Section 3 introduces the proposed me-
taheuristic and the two proposed inference strategies. In Section 4 the inference
strategies are tested and illustrated on a synthetic data example. The advantage

A KBRL Inference Metaheuristic with Applications 723

of using the anisotropic optimization inference strategy over using the first pro-
posed inference strategy (isotropic discrete choice) is outlined. In Section 5 we
introduce a set of inference filters, together referred to as QoINF (Quality of In-
ference) filters which supplement the inference process of the agent. They can
lead to improved cumulative reward from the reinforcement agent’s environ-
ment and help the agent avoid accumulate negative feedback by adding three
vigilance criteria. Section 6 contains a complexity analysis of the proposed in-
ference metaheuristic and presents two parallel algorithms which implement the
isotropic discrete choice strategy: Parallel1 and Parallel2, designed for execu-
tion in HPC architectures. Section 7 outlines the advantages and disadvantages
of the proposed inference strategies. Section 8 illustrates the applicability and
performance of the KBRL inference metaheuristic for the problem of image
recognition on the Yale Faces Databases. Section 9 shows the performance of
the Parallel2 algorithm which is an improvement over the Parallel1 algorithm.
We show that the Parallel2 algorithm can achieve real time image recognition
performance on an NVIDIA GPU processor as well as on a single core CPU
implementation. We provide experimental results obtained in the FCINT Com-
puter Vision System [3] which uses the proposed Parallel2 inference algo-
rithm. Section 10 concludes the chapter and suggests directions of future work.

2 Kernel-Based Reinforcement Learning

2.1 Markov Decision Processes and Reinforcement Learning

A Markov Decision Process is defined as the tuple <S,A,T,R> consisting of:

- a finite state space S
- a finite action space A
- a transition function T:S x A x S R
- a reward function R: S x A R

From a state s∈S an action a∈A produces reward R(s,a) and the system transitions
to another state s’ with probability T(s,a,s’).

Reinforcement Learning agents often involve planning by computing a policy
π : SA that maximizes future cumulative rewards

An optimal policy satisfies:

π(s)= argmaxa Q(s,a) (1)

where Q:S x A R,

Q(s,a) = R(s,a) + γ ∑ , , (2)

where V(s) is the maximum cumulative expected reward in state s,

V(s) = maxa Q(s,a) (3)

724 L. Bucur, A. Florea, and C. Chera

In this contribution we assume a simplified version of (2) where the second term
of the right hand side of the equation is 0, the RL agent being only reactive in its
behaviour.

2.2 Kernel-Based Reinforcement Learning

Kernel-Based Reinforcement Learning (KBRL) [4], [5], [6] extends the choice of
optimal policies (1) in continuous state MDPs. KBRL methods approximate the
value functions directly from a set of historical outcomes.

Let S ⊆ RD be a D-dimensional state space of a continuous-state Markov Deci-
sion Process <S,A,T,R> and s1,…,sN be a sequence of states sampled from S. At
each state i, we have an executed action ai, observed reward ri and successor state
s’i.

Ormoneit and Sen [4] define the approximate Bellman equations for all s∈S
and a∈A. Considering S has a distance metric d : , , ∑ φ .

σ
γ| (4)

where:

 = maxa ,
σ is a bandwidth parameter
φ is a nonnegative weighting function.

Jong and Stone [5] extend the kernel-based approximations to the transition and
reward functions based on the same principles used by Ormoneit and Sen [4].
They define the transition function and reward function approximations as: : , , , φ ,0 (5)

: , , ∑ φ ,| (6)

where

 , ∑ φ ,| (7)

is a normalization factor.

3 A Novel Inference Metaheuristic

We consider a simplified model of a Reinforcement Learning agent that uses a
simple greedy approach [7] in a MDP, namely:

A KBRL Inference Metaheuristic with Applications 725

π(s)= argmaxa , (8)

using the experience s1,…, sN, associated actions a1…,aN and rewards r1,…rN.
The model proposed by Jong and Stone [5] offers flexibility in the choice of the

metric d, parameter σ and the weighting function φ.
The contribution of our research - the proposed inference metaheuristic - focus-

es on optimizing the shape of the isotropic and anisotropic Gaussian kernels as
weighting functions in (6) and (7).

For each observation si (i=1..N) and any s∈S we focus on the Gaussian Kernel
[8]:

─ The isotropic Gaussian kernel : ,
πσ

exp || ||
σ

 (9)

─ The anisotropic Gaussian kernel with diagonal covariance matrix:

 , | πΣ| exp Σ (10)

where:

 Σ
σ 00 σ

 (11)

and σ ,… σ are the bandwidths for each direction i, i=1..D
Our proposed metaheuristic is:

 π(s,a) = argmaxa,σ σ , (12)

It extends (8) also to optimizing the shape of a Gaussian kernel function K at infe-
rence time. In (12) σ=(σ1,... σD) is the kernel bandwidth parameter vector, which
defines σ , using an anisotropic kernel of the form (10), for a D-dimensional
problem and a number of observations as:

σ , , ∑ K s, s| (13)

where (7) becomes, for a given σ :

 , ∑ K s, s| (14)

In general the choice of a specific kernel function K is problematic and problem spe-
cific [9], and the choice of the kernel function parameters in general involves the use
of an optimization procedure. In this case, the choice of the kernel function parame-
ters (11) relates to the choice of the kernel parameter vector σ. A small choice of σ
values leads to very low generalization capability, while too large σ can lead to high

726 L. Bucur, A. Florea, and C. Chera

variance (error) in the approximation of the true unknown reward function R : S x
A R.

The difficulty in choosing the optimal solution of kernel parameters σ1,…σD
which maximize (12) arises from the fact that (13) is not guaranteed to be a con-
vex function with respect to σ1,…σD. This problem in general has been shown to
be intractable.

Our proposed metaheuristic consists of two simple strategies for optimizing
(12) at inference time. Both strategies involve a finite, polynomial time optimiza-
tion approximation of the general continuous-function optimization problem (12)
over σ=(σ1,…σD) and discrete over the action a :

• The isotropic discrete choice strategy: chooses the optimal isotropic kernel
vector σ=(σ1,…σD) with σ1=…=σD= σCandidate by maximizing (12) over all
possible (σCandidate,a) ∈ Candidateσ x A.

• The anisotropic optimization strategy involves a higher complexity optimiza-
tion algorithm for (12) . At each step of the optimization procedure uses every
pair (σCandidate,a) ∈ Candidateσ x A as the initial condition for optimization, by
setting σ1=…=σD= σCandidate. Assuming linear independence among the
σ1,…σD, it performs a D-dimensional hill climbing optimization of (12) over
the variables σ1,…σD in a limit number of iterations max_iterations, by updat-

ing the variables σ σ

σ ,
σ2
σ ,2σ (i=1..D) and choosing the value of a for

which the highest local maximum of (12) is achieved

Given a variation interval [σmin, σmax] and a positive integer σSTEPS, both strategies
generates a uniformly spaced set of values for σ:

Candidateσ φ
sigmaStep= (σmax – σmin)/(σSTEPS - 1)

for i=0.. σSTEPS-1

 crtσ = σmin + i* sigmaStep

 Candidateσ Candidateσ ∪ { crtσ }

3.1 The Isotropic Discrete Choice Strategy

For a given s∈S the inference strategy selects the kernel function Kσ(.,s) such as:

 π(s,a) = argmaxa,σ∈Candidate σ σ , (15)

where σ , is (13) defined for a particular choice of σ in the kernel (10).

A KBRL Inference Metaheuristic with Applications 727

The advantage of this strategy is speed. The complexity of the inference (12) is
O(σSTEPS * Card(A)). The disadvantage is that the strategy does not guarantee the
optimal choice of the kernel function parameters which maximize (12).

The isotropic discrete choice inference strategy algorithm follows.

ISOTROPIC_DISCRETE_CHOICE

Input: State s∈S, S⊆RD
 Action set A
Output: best action a from state s

1. for each candidate σ
Candidate

 ∈ Candidateσ

 1.1 set σ
1
= σ

2
= …σ

D
= σ

 1.2 for each a∈A
 1.2.1 Calculate (13) using an isotropic kernel

 with kernel parameter σ
1
 … σ

D
 = σ

Candidate

 1.2.2 Maximize (12) with respect to a if

 (a,(σ
1
..σ

D
))are better than the current optimum

2. Store the best local optimum of (σ
1
..σ

D
)

 over all possible a∈A and initial conditions σ
i
 ∈

 Candidateσ which maximizes (12).

return:

- the action a∈A for which the local maximum in step 1.2 is
the best local optimum achieved by the search.

- the number of matches in the agent’s memory for (12)
which corresponds to the optimal choice of a and (σ

1..
 σ

D
)

- the win rate and win/loss ratio in the optimal estimate
(13)(see Section 5)

3.2 Anisotropic Optimization

Using the same candidate set generation as in the isotropic discrete choice strate-
gy, the anisotropic optimization inference strategy uses every candidate σCandidate
∈ Candidateσ, as the initial condition for a D-dimensional optimization problem
of (13) using a gradient ascent procedure.
This strategy chooses the highest local optimum of (13) that maximizes (12) over
all possible candidate actions.

ANISOTROPIC_OPTIMIZATION

Input: State s∈S, S⊆RD
 Action set A
Output: best action a from state s

1. for each candidate σ∈ Candidateσ

728 L. Bucur, A. Florea, and C. Chera

 1.1 set σ1 = σ2 = …σD = σ
 1.2 for each a∈A
 1.2.1 Ref = Calculate (13) using an isotropic

 kernel with kernel parameter σ
 1.2.2 Calculate the partial 1st order and 2nd or
 der derivatives of (13) with respect to

 σ1 = σ2 = …σD :
 for each i=1..D

 1.2.2.a Calculate σ ,
σ

 1.2.2.b Calculate σ ,
σ

 1.2.3 Update σ1 = σ2 = …σD (hill climbing):
 for each i=1..D

σ σ η

σ ,
σ2
σ ,2σ

 1.2.4 Store the best local maximum of (13) if a
 higher (12) is achieved in 1.2.3

2. Store the best optimum of (12) over all possibl ea∈A
 and initial conditions σCandidate ∈ Candidateσ which
 maximize (13).

return:

- the action a∈A for which the optimum estimate of
(12) is obtained by the search.

- the number of matches in the agent’s memory in (13)
which corresponds to the optimal choice of a and (σ1
… σD)

- the win rate and win/loss ratio in the optimal es-
timate (13)(see Section 5)

The advantages of this strategy are:

─ an anisotropic kernel selection which produces a greater or equal maximum
value
(12) relative to the discrete choice strategy.

─ Usually higher accuracy, as will be shown in the next section.

The disadvantages are:

─ an increased complexity of the inference algorithm : O(σSTEPS * Card(A) *
KMAX) where KMAX is an upper bound on the number of iterations in step 1.2.3.

A KBRL Inference Metaheuristic with Applications 729

─ as with all gradient-based approaches convergence to a global optimum for an
arbitrary continuous differentiable function is not guaranteed.

4 Inference Strategy Comparison. A Synthetic Data Example

In this section the comparative advantage of using the anisotropic optimization
strategy over the isotropic discrete choice strategy is shown using a synthetic data
set.

For the purpose of this scenario, let us consider a 2-class (1/0) classification
problem, with samples generated according to the model in Table 1.

Table 1 Conditional probability distribution for a 2 class synthetic sample generator

X1 X2 X3 X4 Class label Y
1 ? 0 ? 1
0 0 ? ? 0

The generating source is described by the conditional probability distribution:

• P(y=1|(x1=1,x3=0)) =1
• P(y=0|(x1=0,x2=0))=1
• ? marks features irrelevant to the class in column 5

The training and test sets sampled from the model are listed in Tables 2 and 3
using 5 samples in each set. The aim of the experiment is to test the classification
accuracy of the proposed inference metaheuristic (20) using the two inference
strategies, and show the superiority of the anisotropic optimization strategy.

Table 2 Training data

Sample # X1 X2 X3 X4 Class label Y
1 1 0.5 0 1 1
2 1 0.55 0 0 1
3 1 0 0 0.5 1
4 1 1 0 1 1
5 1 1 0 0 1
6 0 0 1 0.5 0
7 0 0 0 0 0
8 0 0 0.5 0 0
9 0 0 0.5 1 0
10 0 0 0 0.5 0

730 L. Bucur, A. Florea, and C. Chera

Table 3 Test data

Test # X1 X2 X3 X4 Class label Y
1 0 0 0 0 0
2 1 3 0 4 1
3 1 -1 0 3 1
4 0 0 3 3 0
5 0 0 -1 0 0
6 1 0.3 0 0.6 1
7 1 0.4 0 0.4 1
8 0 0 5 5 0

The σ values in the Observations column in Table 4 list the anisotropic kernel
parameters for each input variable. The values correspond to the choice of σ
parameters which maximizes the estimated reward according to the proposed me-
taheuristic (12).

Table 4 Tests results

Test #
Isotropic
Discrete
Choice

Observations Anisotropic
Optimization

Observations

1 PASS 100% confidence PASS
100% confidence,
σ=(0.00001, 0.00001,
5007,943)

2 FAIL
50% confidence
level

PASS
100% confidence,
σ=(0.00001,875,
0.00001, 25358)

3 FAIL
50% confidence
level

PASS
100% confidence,
σ=(0.00001, 17021,
0.00001,4933)

4 FAIL
50% confidence
level

PASS
100% confidence,
σ=(0.00001,
0.00001,12082,16244)

5 FAIL
50% confidence
level

PASS
100% confidence,
σ=(0.00001,
0.00001,17483,1708)

6 FAIL
50% confidence
level

PASS
100% confidence,
σ=(0.00001, 70233,
0.00001,15028)

7 FAIL
50% confidence
level

PASS
100% confidence,
σ=(0.00001,
0.00001,3704,4545)

8 FAIL
50% confidence
level

PASS
100% confidence,
σ=(0.00001,
0.00001,5714,4793)

A KBRL Inference Metaheuristic with Applications 731

Each row in Table 4 corresponds to a test sample in Table 3.

• For samples in Table 3 which correspond to the 0 class, the σ values in Table 4
corresponding to the third and fourth input dimensions are large, which means
that during inference the Gaussian kernel’s equivalent fuzzy inference rule dis-
cards X3 and X4 from the decision making process, while X1 and X2 have small
corresponding σ values, which means X1=0 and X2=0 provide high pointwise
mutual information for class 0.

• For samples in Table 3 which correspond to the 1 class, the same reasoning can
be applied: the σ values in Table 4 corresponding to the second and fourth in-
put dimensions are large, which means the equivalent fuzzy inference rule dis-
cards X2 and X4 from the decision making process, while X1 and X3 have small
corresponding σ values, which means X1=1 and X3=0 provide high point wise
mutual information for class 1.

The above observations suggest that in this experiment the anisotropic optimiza-
tion inference strategy is able to detect the generative model in Table 1 that de-
fines the conditional probability distribution of the two classes.

As a result, from Table 4 it can be seen that the anisotropic optimization infe-
rence strategy achieves 100% accuracy and outperforms the isotropic discrete
choice strategy. This can be explained by:

• the asymmetric distribution of the mutual information of the input features
relative to the class label, as discussed above

• inability of the isotropic kernel to generalize for an asymmetric distribution of
mutual information. As a result, even though it proves superior in speed, the
anisotropic discrete choice strategy issues predictions with only 50% confi-
dence levels. As will be shown later, this strategy can be very successful in the
image recognition problem, where mutual information is more uniformly scat-
tered across input variables in a high dimensional input space (a 2D image)

5 Quality of Inference (QoINF) Filters

The inference metaheuristic proposed in the previous section and the results of [4],
[5], [6] do not address the statistical support behind the choice of the optimal ac-
tion a during the inference process. By statistical support we understand the num-
ber of terms s1, ….sK in the summation (13) which, for a particular state s, satisfy
K(s,si)≥εmachine in a finite-precision floating point CPU with representation preci-
sion εmachine. This corresponds to the number of examples inside the hypersphere
K(s,.)≥εmachine for isotropic Gaussian kernels (9) and for elliptic (anisotropic)
Gaussian kernels of the form (10).

Following these considerations, we propose three inference filters that can be
used in the estimation of (12) and (13). The purpose of the inference filters is to
eliminate the candidate actions a in (12) which do not meet certain minimum per-
formance criteria in the summation (13) that correspond to the candidate action a
during the inference process.

732 L. Bucur, A. Florea, and C. Chera

NOTE: We assert that the agent may receive both positive and negative feedback
from its environment with probability greater than 0, as R(s,a): S x A R

Following the above assertion, we propose three inference filters; together re-
ferred to as QoINF (Quality of Inference) filters:

• MinSupport filter: The best action a chosen in (12) and the highest summation
(13) must have behind it a minimum number of occurrences apriori stored in
the agent’s memory, which match the current state s according to a chosen ker-
nel function K (see discussion above). In terms of matching states in the sum-
mation (13), this means:

 Card { si | K(s,si)≥εmachine} ≥ minSupport (16)

where minSupport ∈ N is a user-defined threshold

• MinWinRate filter: The best action a chosen in (12) and the optimal summa-
tion (13) should guarantee a minimum success probability Prob(, >0) >=
minProb for all patterns matching the current state s by K(s,si)≥εmachine. In
terms of matching states, this means:

 Prob(ri | K(s,si))≥εmachine} ≥ minProb (17)

where minProb ∈ [0,1] is a user-defined threshold

• MinProfitFactor filter: If the reward function is asymmetric in the sense that
there exists at least one state s ∈S and a pair (ai,aj) ∈ A x A such that R(s,ai)
R(s,aj)<0 and R(s,ai) ≠ |R(s,aj)|, the agent may need to use an alternative candi-
date to the MinWinRate filter, which takes into account the possible asymmetry
of the reward function. Specifically, during the inference processes (12) and the
iterations over (13) the agent may discard candidate actions for which the esti-
mated Profit Factor is less than a minimum threshold minPF.

We introduce the Profit Factor (PF) function as:
PF : S x A R

, ∑ | , , , ε∑ | || , , , ε
, 0 (18)

The MinProfitFactor criterion, when applied to a given state s, candidate action a
and kernel function K is to accept a candidate action a in (12) and (13) if:

 PF(s,a) ≥ minPF (19)

where minPF is a positive user-defined threshold.

A KBRL Inference Metaheuristic with Applications 733

6 Parallel Inference Extensions for High Performance
Computing

In this section we reiterate the basic form of the metaheuristic, perform a complex-
ity analysis of both inference strategies in the context of using the anisotropic
Gaussian kernel and we include two parallel algorithms for the isotropic discrete
choice strategy, parallel extensions for the anisotropic optimization strategy being
a future research directions.

6.1 The KBRL Metaheuristic and the Anisotropic Gaussian
Kernel

Given a continuous-state MDP with a D-dimensional state (problem) space S:

The metaheuristic focuses on the problem of calculating the optimal greedy policy:

 π(s,a) = argmaxa,σ∈Candidate σ σ , (20)

by maximizing the expected reward:

 σ , , ∑ ,| (21)

where: , ∑ ,| (22)

for each state s, given a general Gaussian kernel function K of the form:

 , | πΣ| Σ (23)

where, for a given set of parameters σ = (σ1, … σD), assuming an orthogonal
covariance matrix the columns of which are aligned to the basis vectors of the
input space:

Σ
σ

σ
 (24)

Complexity Analysis
Assuming an orthogonal covariance matrix of the form (24), from the model pro-
posed it can be seen the computational complexity of:

• Evaluating the value of the anisotropic kernel (10) is O(D), where D is the
number of dimensions of vectors s and si

• Evaluating (22) is O(D*N) where N is the number of examples (si, ai, ri)i=1..N
stored in the agent’s memory.

• Evaluating (20) is O(D*N*Card(A)*Card(Candidateσ)) for the isotropic dis-
crete choice strategy, where:

734 L. Bucur, A. Florea, and C. Chera

o Card(A) is the number of possible actions of the agent given an action set A
o Card(Candidateσ) = σSTEPS – an integer specifying the number of candi-

date isotropic values for the elements of the vector σ used in (20) (see
Subsection 3.1 for the isotropic discrete choice algorithm)

• The anisotropic optimization strategy for (20) is O(Card(Candidateσ)
*MAX_Iterations*N*D2*Card(A)), as the strategy can be summarized as
follows:

o For each candidate σ //O(Card(Candidateσ))

 Set initial conditions and optimize up to MAX_Iterations over all poss-
ible candidate actions in set A //O(MaxIterations)*N*D2*Card(A)
o For each candidate action a, at each iteration: //Card(A)

• evaluate (12) in O(N*D) steps //O(N*D)

• For each dimension i=1..D: //O(D)

• Calculate the first derivative of (13) with respect to σi, i=1..D
//O(N*D)

• Also evaluate the second derivative using a second evaluation
of (13) //O(N*D)

o Loop for a maximum number of Max_iterations for hill climbing
//Polynomial bound that makes the algorithm tractable, as the gener-
al approach for optimizing (12) is not tractable for any reward
function.

6.2 Parallel Algorithms

This section presents two parallel algorithms for the isotropic discrete choice
strategy.

Parallel 1

Input: State s∈S, S⊆RD
 Action set A
 MinSupport,MinWinRate,MinPF: QoINF filters
 threshold values
Output: best action a from state s

1.for each candidate σ∈ Candidateσ
 fork();

 1.1 set σ1 = σ2 = .. σD = σ
 1.2 for each a∈A
 1.2.1 Calculate (21) using an isotropic kernel

 with kernel parameter σ
 1.2.2 Maximize (20) with respect to a if (21)

 based on (a,(σ1 .. σD)) is greater than the
 current optimum.
join();

A KBRL Inference Metaheuristic with Applications 735

2. Maximize (20) over all σ∈ Candidateσ and actions a∈A
3. Store the best optimum (a,(σ1 .. σD)) of step 1.2,

 measured over all possible a∈A and initial conditions

 σi ∈ Candidateσ which maximizes (20) that satisfies
 the QoINF filter threshold values (See section 5 for a
 complete description of the Quality of Inference
 Filters).

return:

- the action a∈A for which the local maximum in
step 1.2 is the best

- optimum value of (20) achieved by the search.

- the number of matches (non-zero terms) in the
highest summation (21) which achieves the optimal
value for (20).

- the win rate and win/loss ratio in the optimal
estimate (21) (see Section 5 for a complete de-
scription of the Quality of Inference filters)

Parallel2 – We propose an improved variant of the Parallel1 algorithm, which we
currently use and are developing in the FCINT Computer Vision System for real
time image classification tasks.

We assert that the calculation of (21) for each action a ∈ A involves the calcula-
tion of terms of the form K(s,si) for a given isotropic Gaussian kernel function (9),
with σ as the kernel parameter.

This implies that in steps 1.2 and 1.2.1 expressions of the form (21):

σ , 1, K s, s|

are calculated for each action a∈A using terms of the Gaussian kernel (9): , 12πσ exp | |2σ

At each iteration of the 1.2 step of the Parallel1 algorithm, the same N constant

terms of form Σ are calculated in (23) and used in (21)

for a given σ, where N is the number of samples in the KBRL agent memory. For
the isotropic kernel, this multiplication has the simplified form:

σ

 (25)

736 L. Bucur, A. Florea, and C. Chera

The complexity of the Parallel1 algorithm can be reduced if we pre-calculate all
the terms of the form (25) before Step 1.2 of the algorithm and use the precalcu-
lated values in the loop 1.2 of the Parallel1 algorithm when evaluating (21).

The proposed Parallel2 algorithm is similar with the Parallel1 algorithm but of-
fers a reduced complexity due to this precalculation, by computing:

• Squared Inner Product Array:

 (26)

is an N dimensional array of squared inner products between the current state s
and each state si (i=1..N) in the KBRL agent memory

• Pre-calculated Kernel Function Matrix:

 σ
…

σ (27)

where CandidateSigmas = Card(Candidateσ)

The significance of the pre-calculated Kernel Function Matrix M is :

o Column j of matrix M contains all the precalculated kernel function ar-
guments of the form (25) between the current observable state s and all
the N records in the KBRL agent memory, scaled by the j-th candidate σ
in the set Candidateσ, according to each element in the right-hand side of
(27)

o Element M(i,j) is the evaluation of (25) between the current observable
state s and the i-th sample in the agent memory, using the j-th parameter
σ in the set Candidateσ.

The dimension of the matrix M is N x CandidateSigmas where N is the
number of records (si,ai,ri)i=1..N in the KBRL agent memory and CandidateSig-
mas = Card(Candidateσ)

Parallel 2

Input: State s∈S, S⊆RD
 Action set A
 MinSupport,MinWinRate,MinPF: QoINF filters
 threshold values
Output: best action a from state s

1. Calculate DotP as specified in (26), in paral-
lel

2. Pre-calculate the Kernel Function Matrix M us-
ing (27)

3. for each candidate σ∈ Candidateσ

A KBRL Inference Metaheuristic with Applications 737

 3.1 set σ1 = σ2 = …σD = σ
 3.2 for each a∈A calculate (21) using the

 precalculated values in the matrix M
 3.2 Maximize (20) with respect to a if (21) for

 (a,(σ1..σD)) achieves a higher value

4. loop step 3 over all σ∈ Candidateσ and actions
a∈A

5. Store the best values of a and (σ1 .. σD) which
maximize (20)

return:

- the action a∈A for which the local maximum in
step 1.2 is the best

- optimum value of (20) achieved by the search.

- the number of matches (non-zero terms) in the
highest summation (21) which achieves the optimal
value for (20).

- the win rate and win/loss ratio in the optimal
estimate (21) (see Section 5 for a complete de-
scription of the Quality of Inference filters)

Complexity Analysis:
The calculation of the inner product array DotP (26) has a complexity of O(N*D),
where N is the number of records in the KBRL agent memory and D is the dimen-
sionality of the state space S of the underlying Markkov Decision Process (MDP).
This is the most computationally intensive step of the algorithm that can be ex-
ecuted on a parallel architecture.

• The calculation of (2) takes N x Card (Candidateσ) steps and has a complexity
of O(N), due to the fact that Candidateσ is a constant and user predefined set of
σ parameters.

• Step 3 of the algorithm has Card(Candidateσ) iterations
o Step 3.1 of the algorithm has O(D) = O(1) complexity
o Step 3.2 of the algorithm has Card(A) steps. At each step the evaluation

of (21) takes O(N) steps because terms in (21) are only scaled versions of
elements in the DotP array, therefore the complexity of 3.2 is O(N)

o Step 3.3 has complexity O(1)
The complexity of step 3 is O(Card(Candidateσ)*N) = O(N) from step 3.2

From the complexity analysis we conclude the complexity of the Parallel2 algo-
rithm is O(N*D), the complexity of step 1 of the algorithm.

738 L. Bucur, A. Florea, and C. Chera

7 Advantages and Disadvantages of the Proposed Metaheuristic

The advantages of the proposed inference metaheuristic can be summarized as
follows:

─ the method solves the problem of kernel function selection for KBRL agents
─ the isotropic discrete choice strategy proposes a fast linear search procedure for

inference
─ the anisotropic optimization strategy is introduced to provide superior quality

of inference in the case of arbitrary conditional probability distributions. In
practice this translates in the metaheuristic’s ability to discard irrelevant fea-
tures of the continuous state space S during decision making. An experimental
study in Section 4 illustrates this advantage.

─ The proposed inference strategies can be easily implemented and executed on
HPC architectures with one and two hierarchical levels.

The disadvantages of the metaheuristic can be summarized as:

─ the isotropic discrete choice strategy provides a lower performance compared
to the anisotropic discrete choice

─ the anisotropic discrete choice is suited for fairly low dimensional problems,
due to its computational complexity that we focus on reducing in future work.

8 KBRL Image Recognition Experiments

In the following sections (8 and 9) we illustrate the applicability of the proposed
KBRL inference metaheuristic to the problem of image recognition, using the
isotropic discrete choice strategy. First we cast the problem of classification in the
context of reinforcement learning. Then we test the Parallel1 implementation of
the Istotropic discrete choice strategy to classify the images in the Original and
Extended Yale Faces Databases. In the experiments we perform online classifica-
tion on a test set comprising of 15 different classes (Original Yale Faces Database)
and 39 classes (The Extended Yale Faces Database) respectively, using an
OpenMPI implementation of the Parallel1 algorithm. The experiments show the
ability of the inference metaheuristic to correctly classify the subjects in the image
databases. We then focus on the performance of the Parallel2 algorithm to classi-
fying images in real time and illustrate our preliminary tests on the FCINT Com-
puter Vision System.

8.1 Purpose

The purpose of this section is to illustrate the applicability of the proposed KBRL
inference metaheuristic to the problem of image recognition on the Yale Faces
Databases (Original and Extended).

Considering a set S={(xi,yi)}i=1..m of labeled images xi, xi ∈ RN (i=1..m) with
labels yi from a finite alphabet A⊂R, the problem of using the proposed inference

A KBRL Inference Metaheuristic with Applications 739

metaheuristic described in Section 3 is to classify each input example xi by cor-
rectly choosing a label (action) ai ∈ A such that ai = yi.

8.2 Data

The Original Yale Faces Database
The original Yale Faces Databases A [10] contains 165 grayscale images in GIF
format of 15 individuals. There are 11 images per subject, one per different facial
expression or configuration: center-light, w/glasses, happy, left-light, w/no
glasses, normal, right-light, sad, sleepy, surprised, and wink.

The original GIF images were converted to 256 Bitmap (.BMP) format and
scaled to 1/16 their original size (25% width and height stretch), such that the
resulting images were reduced to 80 x 61 pixels in size. Each image was con-
verted to a 4860 dimensional training sample. The assigned label was the number
identifying the subject in the image. For this classification problem, the alphabet
of labels is A= {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} corresponding to each indi-
vidual in the pictures.

For each individual, half of the images were stored in a training set (83 sam-
ples) and half were stored in a test set (82 samples)

Fig. 1 Sample images from the Original Yale Faces Database

The Extended Yale Faces Database
The Extended Yale Faces Database [11] (size 76 MB) contains 2414 images in
PGM format for 39 subjects. There are an average 64 pictures for each subject
under different illumination conditions: intensity (ambient and specular light) and
direction (specular light), the database providing more variability in the sampling
of the images of the subjects compared to the original Yale Faces Database. For
this experiment the original cropped images were converted to 256 Bitmap
(.BMP) format and scaled to 53 x 61 pixels in size, establishing a 3233-
dimensional classification problem.

For each subject, half of the images were stored in a training set and half were
stored in the test set. The images were equally split between the two sets by pre-
serving an equal balance of illumination conditions.

Figure 2 illustrates sample illumination conditions for a set of subject photos
from the Extended Yale Faces Database. For each subject, the images were
equally partitioned into test and training sets.

740 L. Bucur, A. Florea, and C. Chera

Fig. 2 Sample illumination conditions in the Extended Yale Faces Database

Fig. 3. Sample subject images from the Extended Yale Faces Database

Figure 3 shows image samples for 28 distinct subjects in the Extended Yale Faces
Database.

Casting Classification as a Reinforcement Learning Problem
The classification problem is equivalent to a reinforcement learning problem by
properly defining the environment reward as a function of the form:
R: S x A R , 1,1, (28)

Under this assumption, the agent performing the classification uses a simple gree-
dy policy: , , (29)

where x is a test image and a corresponds to the hypothesis that the label of x is a
For this experiment, we used the metaheuristic (20) proposed in section 3 with

the isotropic discrete choice strategy.

8.3 Experimental Procedure

The images were split into two sets:

• TRAIN – 83 images / TEST – 82 images for the Original Yale Faces Database
• TRAIN – 1209 images / TEST – 1205 images for the Extended Yale Faces

Database

We ran two image recognition experiments using the Parallel1 inference algo-
rithm, one for each image database, on the UPB NCIT cluster [1].

A KBRL Inference Metaheuristic with Applications 741

Each experiment consisted of two passes (two-fold cross-validation):

• Pass 1: Using TRAIN as the initial training set, label the images in the TEST
set

• Pass 2: Using TEST as the initial training set, label the images in the TRAIN
set

For each image database the classification accuracy was measured as follows:

─ Parallel1 was run with the number of worker cores equal to σsteps = 80 in both
Pass 1 and Pass 2

─ The total number of classifications passing a minimal QoINF filter was counted
in each pass, together with the number classifications

─ Based on the total number of classifications passing the QoINF filter and on the
number of correct ones, the classification accuracy was measured for each pass
as a percentage

─ The combined accuracy for the entire experiment (image database) was meas-
ured

A table is shown for each image data base with the accuracy in each pass as well
as the combined accuracy.

For each pass the following procedure was used:

─ In an initial training stage, all the samples in the training set were stored with
their corresponding labels in the KBRL agent’s memory in the root (master)
MPI process.

─ Online classification and learning was performed for the images in the test
set:

o for each image x in the test set:
 Classify the image using the Parallel1 algorithm using the Iso-

tropic
Discrete Choice strategy, as shown in Subsection 6.2

 Add x to the KBRL agent memory on all nodes (online learning)
 Count the inference if it passes QoINF filter

The complete data sets, implementation and simulation results for the OpenMPI
implementation of the Parallel1 algorithm are available at [12].

In all passes of both experiments, the Parallel1 inference algorithm was tested
with the following parameters:

o σmin = 0.0001
o σmax = 100
o σsteps = 80

742 L. Bucur, A. Florea, and C. Chera

The set A of possible actions (classes) of the MDP of the KBRL agent was set to:

o A = {1,2,..,15} for the Original Yale Faces Database and
o A= {1,2…,40} for the Extended Yale Faces Database

─ QoINF filters: The WinPercentage(1) and MinSupport(1) inference filters
were applied with the threshold parameter set to 100%,and 1 respectively such
that only 100% confidence classifications were considered with at least one
memory match, i.e classifications were only considered accurate if confidence
was 100% for at least one image match.

8.4 Classification Results of the Isotropic Discrete Choice in
Parallel1 Implementation

The Original Yale Faces Database.

The classification results of the KBRL agent can be summarized as follows:

• Pass 1 result: From a total of 82 samples, 40 inferences passed the QoINF infe-
rence filters with a recognition accuracy of 100%. The rest of the samples were
not recognized due to the high dimensionality of the data (4860 inputs), data
sparsity (less those 200 samples) and a rather large difference between the im-
ages presented and the samples stored in memory.

• Pass 2 results: From a total of 83 samples, 42 inferences passed the inference
filters with a recognition accuracy of 100%. The rest of the samples were not
recognized for the same reasons as in pass 1.

• Overall the Parallel1 inference algorithm achieved 100% classification accu-
racy on the Original Yale Faces Database

Table 5 Parallel1 accuracy analysis – The Original Yale Faces Database

Pass 1 total classifi-
cations

Pass 1 correct classifications Pass 1 accuracy

40 40 100%
Pass 2 total classifi-
cations

Pass 2 correct classifications Pass 2 accuracy

42 42 100%
Total classifications Total correct classifications Overall accuracy

82 82 100%

A KBRL Inference Metaheuristic with Applications 743

The Extended Yale Faces Database

The image recognition results of the KBRL agent on the Extended Yale Faces
database can be summarized as follows:

─ Pass 1 result: From a total of 1127 samples, 923 image classifications (infe-
rences) passed the QoINF inference filters with a recognition accuracy of
81.89%. The rest of the samples were not recognized due to the high dimensio-
nality of the data and a rather large difference between the illumination condi-
tions for the images in the training set compared to the test set images.

─ Pass 2 results: From a total of 1118 samples, 887 inferences passed the infe-
rence filters with a recognition accuracy of 79.33%. The rest of the samples
were not recognized for the same reasons as in pass 1.

Overall the Parallel1 inference algorithm achieved 80.6% classification accuracy
on the original Yale Faces Database

Table 6 Parallel1 accuracy analysis – The Extended Yale Faces Database

Pass 1 total classifica-
tions

Pass 1 correct classifications Pass 1 accuracy

1127 923 81.89%
Pass 2 total classifica-
tions

Pass 2 correct classifications Pass 2 accuracy

1118 887 79.33%
Total classifications Total correct classifications Overall accuracy
2245 1810 80.6%

9 The Parallel2 Algorithm and the FCINT Computer Vision
System

In this section we describe the use of the Parallel2 algorithm introduced in Sub-
section 6.2 in a real time image classification application.

To this aim, we have developed the experimental FCINT Computer Vision Sys-
tem [13] illustrated in figure 4, which is currently being developed around the
Parallel2 algorithm. The final purpose of the system is to identify the inhabitants
of a building using facial features, an implementation in a GPU and classification
in the features subspace using the Parallel2 algorithm.

More specifically, we present the Parallel2 algorithm’s average image classifi-
cation time in a parallel implementation on an NVIDIA GeForce 210 GPU using
OpenCL and we compare the execution times to the implementation on a single
CPU core, using various training set (KBRL agent memory) sizes.

744 L. Bucur, A. Florea, and C. Chera

Fig. 4 The FCINT Computer Vision System – identification of a number of people in a
room (image classification using the Parallel2 algorithm)

9.1 Parallel2 and the FCINT Computer Vision System

In the FCINT Computer Vision System (figure 4) we have developed a GPU im-
plementation of the Parallel2 algorithm which was described in Subsection 6.2.

In our implementation, the calculation of the DotP array which is the most com-
putationally intensive task was tested on both the NVidia GeForce 210 GPU and
on the CPU in our analysis.

More specifically, in step 1 of the Parallel2 algorithm:

○ For each gray scale image linearized as a 8100 vector (figure 4 –
right) the squared dot product between the grayscale images and
each sample stored in the KBRL agent memory is executed in paral-
lel on the GPU using the OpenCL programming model [2]. This is
the first step of the Parallel2 algorithm, as shown above. This is the
most computationally intensive task which we considered demands
parallelization. (see Subsection 6.2 for the complexity analysis of
the Parallel2 algorithm).

○ The squared dot products are used by the main CPU for image clas-
sification in the rest of the algorithm, as steps 2-5 require linear
complexity O(N) in the number of samples stored in the agent’s
memory (see Subsection 6.2 for the complexity analysis).

A KBRL Inference Metaheuristic with Applications 745

Below we include the listing of the squared dot product GPU kernel function
which executes the calculation of the DotP array step 1 of the Parallel2 algorithm.
The kernel function is executed by each scalar processor on the GPU.

__kernel void dotproduct(__global float *state, __global
float *arrayMatrix, __global float *DotP, int nRe-
cords,int probDimension)

{
 int id=get_global_id(0);
 int i=0;\nint j=id*probDimension;
 float dotProduct=0;
 for(i=0;i<probDimension;i++){
 dotProduct=dotProduct+(arrayMatrix[j+i]-
 state[i])*(arrayMatrix[j+i]-state[i]);};
 dest[id] = dotProduct*(-0.5);
};

The kernel function dot product is called in step 1 of the Parallel2 algorithm with
the following parameters:

○ state : a 8100 dimensional array containing the grayscale encoding
of the current image viewport for which classification is performed

○ arrayMatrix: an N x 8100 array with the grayscale image encodings
of all the previous N 90 x 90 pixels image viewports encodings
stored in the agent memory

DotP – an N dimensional array with the squared dot product calculated by the
GPU kernel

Technologies used in the FCINT Computer Vision System:

• We used the AForge.NET library for video frame capturing from any installed
videocamera

• We used the OpenCV (Open Computer Vision) Library for face detection in
each frame analyzed. For speed improvements, we applied the algorithm fol-
lowed by classification every 5 frames.

• Up to 4 candidate face regions were converted individually to grayscale
and each was stretched in a 90 x 90 pixel image (an example is illustrated in
figure 4)

• For each captured grayscale candidate face image, we applied the Parallel2
classification algorithm on the raw grayscale data (8100 dimensional real
vector) as follows, in two separate timing experiments, which are summarized
in Table 7:
─ Experiment 1: Implementation of step 1 of the algorithm using the OpenCL

toolkit provided in the NVIDIA GPU Computing SDK 4.0 - C++ Managed,
and implementation of steps 2..5 using C# on the main CPU (single thread).

746 L. Bucur, A. Florea, and C. Chera

In this implementation, the use of the CPU in step 1 was only deemed neces-
sary if no OpenCL support was detected in the system (for our experiments
this was not the case, but the mechanism is implemented in software).

─ Experiment 2: full implementation in C# (CPU only, single core). In this
case step 1of the algorithm was also executed on the CPU to measure the
single core execution times of the Parallel2 algorithm (Table 7 column 3)

9.2 Execution Benchmarks

We have performed live image classification tests in a room using the Parallel2
algorithm in the FCINT Computer Vision System. We used the OpenCL pro-
gramming model [2] in the NVIDIA GPU Computing SDK 4.0 [14]. The hard-
ware used is an NVIDIA GeForce 210 GPU [15] , with the following technical
specifications:

• CUDA Cores: 16
• Graphics / Processor Clock: 589 MHz/ 1402 MHz
• 512 MB , 64 bit memory interface, 8 GB/sec memory bandwidth

Real time image tests were performed for image viewports consisting of 90 x 90
grayscale pictures of the faces detected by the OpenCV Haar classifiers [16]. The
Parallel2 algorithm performance was tested for various KBRL agent memory
loads (Table 7). In the table we included sample execution times of the algorithm
on the NVIDIA GPU implementation, in column 2. Column 3 of Table 7 contains
the execution (image classification) times of the Parallel2 algorithm on the single
core CPU implementation, as a basis for comparison.

The GPU implementation was tested against the following Intel-based architec-
ture configuration: Intel (R) Xeon(R) CPU 5120 @ 1.86GHz quad core, 4 GB of
RAM, Windows 7 64 bits.

Table 7 Parallel2 sample image classification times - the NVIDIA GeForce 210 GPU and
single core CPU as a function of number of samples in the agent memory

Images in the KBRL
agent memory (num-
ber of MDP samples)

Image classification
time (ms) – NVIDIA
GeForce 210 GPU

Image classification
time (ms)

INTEL
4 1 2
100 4 4
200 9 9
1000 44 43
2000 90 87
4000 159 152
6000 210 195
8000 276 262
10000 367 349

A KBRL Inference Metaheuristic with Applications 747

Figure 5 illustrates the comparative results of the GPU and single core CPU
implementations. From our experiments the image classification performance of
the Parallel2 algorithm attained on the GeForce 210 GPU is comparable in terms
of execution speed with the image classification time obtained on the INTEL
CPU.

Fig. 5 Parallel2 image classification time as a function of the number of images in the
KBRL agent memory

9.3 Lessons Learned

In this section we briefly described an experimental implementation of the Paral-
lel2 algorithm in the FCINT Computer Vision System which is currently under
development. In this application, the KBRL inference metaheuristic has been
tested and shown to work in a GPU implementation using the OpenCL program-
ming model [2] to the fast squared dot product step in the Parallel2 inference algo-
rithm used for image classification.

In our current implementation we used the OpenCL library [2] for the parallel
computation of the DotP array in step 1.1 of the Parallel2 algorithm. The imple-
mentation was tested on an NVIDIA GeForce 210 GPU against a single core CPU
base run. Execution timing analysis shows that the performance of the GeForce
210 implementation is comparable to the single core implementation of the Paral-
lel2 algorithm, due to the technical capabilities of the GPU. To achieve a higher
performance (lower classification time), and more powerful GPU boards are
needed for experimentation. Nevertheless, acceptable average image classification
times of 90 ms can be achieved even with a GeForce 210 GPU at a memory load
of 2000 images (Table 7).

748 L. Bucur, A. Florea, and C. Chera

10 Conclusions and Future Work

10.1 Conclusions

In this chapter we proposed a novel inference metaheuristic for reactive KBRL
(Kernel-Based Reinforcement Learning) agents. The purpose of this contribution
is to solve the kernel function parameter selection problem during the inference
process of a KBRL agent operating in a continuous-state Markov Decision
Process (MDP), using a polynomial time approximation algorithm, and to propose
parallel implementations that achieve good accuracy and real time classification
performance. For the proposed inference metaheuristic we suggest with two poly-
nomial time inference strategies: isotropic discrete choice and anisotropic optimi-
zation. We prove that the latter, even though more complex than the former, can
isolate class-specific relevant features. This is illustrated using a synthetic data
example. Subsequent experiments focus on the isotropic discrete choice strategy,
anisotropic optimization extensions being a future research direction. The infe-
rence metaheuristic is supplemented with a set of inference filters, together
referred to as Quality of Inference (QoINF filters). The filters impose a set of con-
straints on the inference process and can lead to improved cumulative reward and
increased accuracy from the reinforcement agent’s environment, preventing the
agent from accumulatine excessive negative feedback in an unknown environ-
ment.

The chapter includes two parallel inference algorithms for the isotropic discrete
choice and provides extensive experimental results. The proposed algorithms are
parallel variants of the isotropic discrete choice strategy: Parallel1 , tested on the
UPB NCIT cluster and an optimized version for the GPU: Parallel2. We conclude
that the proposed inference metaheuristic is scalable both in cluster and GPU
architectures and that the isotropic discrete choice strategy can provide accurate
classifications (80%-100% accuracy) on the Yale Faces Databases (Original and
Extended). The experimental results obtained in the FCINT Computer Vision
system suggest that the Parallel2 algorithm, in an NVIDIA GPU implementation,
can achieve near real time image classification performance. Finally we conclude
that the Parallel2 algorithm is well suited for a GPGPU (General Purpose GPU)
implementation.

10.2 Future Work

Future research directions will focus on imposing certain assumptions on the re-
ward function so that the inference process is tractable and using evolutionary
computation in a GPU architecture implementation for the choice of kernel func-
tion, to enable partially obscured object recognition in images in real time.

We envisage extending the Parallel2 algorithm for a parallel implementation of
the anisotropic optimization strategy.

Acknowledgments. This research was supported by the FCINT Project (POS-
CCE Priority Axis 2, O2.1.2, ID 551, Contract no. 181/18.06.2010).

A KBRL Inference Metaheuristic with Applications 749

References

1. GEEA – Centru de resurse GRID multi-corE de înalta pErformAnta pentru suportul
cercetarii,
http://cluster.grid.pub.ro/index.php/projects/projects-geea/

2. The OpenCL programming model,
http://www.ks.uiuc.edu/Research/gpu/files/
upcrc_opencl_lec1.pdf

3. Bucur, L.: The FCINT Computer Vision System (Software, 2011f),
http://www.fcint.ro/portal/service/FCINT_ComputerVisionSys
tem/FCINT_ComputerVision.zip

4. Ormoneit, D., Sen, S.: Kernel-Based Reinforcement Learning. Machine Learning 49,
161–178 (2002)

5. Jong, N.K., Stone, P.: Kernel-Based Models for Reinforcement Learning. In: The
ICML 2006 Workshop on Kernel Methods in Reinforcement Learning (June 2006)

6. Bernstein, A., Shimkin, N.: Adaptive-resolution reinforcement learning with poly-
nomial exploration in deterministic domains. Machine Learning 81(3), 359–397

7. Kaelbing, L.P., Littman, M.L., Moore, A.: Reinforcement Learning: A Survey. Journal
of Artificial Intelligence Research 4, 237–285 (1996)

8. Brox, T., Rosenhahn, B., Cremers, D., Seidel, H.-P.: Nonparametric Density Estimation
with Adaptive, Anisotropic Kernels for Human Motion Tracking. In: Elgammal, A., Ro-
senhahn, B., Klette, R. (eds.) Human Motion 2007. LNCS, vol. 4814, pp. 152–165.
Springer, Heidelberg (2007)

9. Taylor, J.S., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press (2004) ISBN 978-0-521-81396-6

10. Bucur, L.: Experimental data and software for the Original Yale Faces image recogni-
tion experiment,
https://docs.google.com/uc?id=0B7VYFkQ0d6D-
OTU2NDExNjUtODNkNS00ZDFjLWI5OWItNTFhZTNkNzU3YTE0&export=do
wnload&authkey=COHq0rkJ&hl=en

11. The Extended Yale Faces Database,
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html

12. Bucur, L.: Image recognition data sets and software for the HPC KBRL image recogni-
tion experiment, https://docs.google.com/leaf?id=0B7VYFkQ0d6D-
Zjg0N2RmNTEtNjYxNS00NDgxLWIzYjUtZTcyM2Q5OGU0NmJh&hl=en_US

13. Bucur, L.: The FCINT Computer Vision System,
http://www.fcint.ro/portal/service/FCINT_ComputerVisionSys
tem/FCINT_ComputerVision.zip

14. NVIDIA Corporation GPU Computing SDK,
http://developer.nvidia.com/gpu-computing-sdk

15. NVIDIA GeForce 210 Technical specifications,
http://www.nvidia.com/object/product_geforce_210_us.html

16. The OpenCV Library, http://opencv.willowgarage.com/wiki/

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 751–774.
springerlink.com © Springer-Verlag Berlin Heidelberg 201

Multi-objective Simulated Annealing Algorithm
for Partner Selection in Virtual Enterprises*

Hisham M. Abdelsalam and Amany M. Mohamed

Abstract. Virtual Enterprise (VE) is a temporary alliance of autonomous enter-
prises formed to act together to share skills or core competencies and resources in
order to respond to a market opportunity. The success of VE strongly depends on
its composition, so partner selection can be considered as the most important prob-
lem in VE. This paper presents and solves a model for the partner selection prob-
lem in VEs that considers two main evaluation criteria; project completion time
and total cost. To do so, the paper uses a multi-objective algorithm, namely Pareto
Simulated Annealing (PSA). Results showed improved performance of PSA com-
pared to the Tabu Search algorithm used in a recent study.

Keywords: Virtual Enterprises, Partner Selection, Pareto Simulated Annealing,
multi-objective optimization.

1 Introduction

With the rapidly developing information technologies and the continuous exacer-
bation of competitiveness in global manufacturing area, Virtual Enterprises are
becoming most advanced and efficient approach to meet the market’s require-
ments of high quality, low cost, customer satisfaction, and quick responsiveness
[1, 2]. VE is one of the most promising paradigms for the future enterprises [3].
And it’s important is increasing in quite different contexts such as manufacturing,
healthcare, tourism, transportation and others [4]. VE is an alliance of separate

Hisham M. Abdelsalam
Operations Research and Decision Support Department,
Faculty of Computers and Information, Cairo University, Cairo, Egypt
e-mail: h.abdelsalam@fci-cu.edu.eg

Amany M. Mohamed
Decision Support and Future Studies Center,
Faculty of Computer and Information, Cairo University, Cairo, Egypt
e-mail: amagdy@idecision.org

3

752 H.M. Abdelsalam and A.M. Mohamed

enterprises (that function autonomously), interconnected, customer oriented, and
acting together to share skills or core competencies and resources in order to
respond to market opportunity [5]. The collaboration among these enterprises is
supported by computer networks.

The typical life cycle of VE has four stages: creation, operation, evolution, and
dissolution. The selection of partners (Partner Selection as named in the literature)
is one of the most important problem in the creation and operation in VE. Partner
selection is a difficult task and involves important decision making because it
includes many factors: quality, cost, trust, delivery time, geographical limitations,
communication skills, etc. However, the key factors to be addressed are cost and
time [5].

In literature, qualitative analysis methods are commonly used to deal with the
partner selection problem. Nevertheless, quantitative analysis methods for partner
selection are still a challenge to VEs. Consequently, it is important to formulate
mathematical models and to propose optimization methods for decision making on
partner selection when a VE is to be established [6].

In 1996, Talluri and Baker proposed a two-phase mathematical programming
approach for the partner selection in designing a VE where the factors of cost,
time and distance were considered [7]. Wu et al. [8] established a cost-
minimizing model of virtual enterprise partner selection in Agile Manufacturing,
and gave the solution of graph theory. A virtual enterprise partner selection model
based on time constraints of minimize the cost was proposed and solved with a
two-phase algorithm in [9]. Su et al [10] built model of virtual en-terprise partner
selection and used an improved genetic algorithm to solve. A model of operational
costs based on production and transportation cost minimization of virtual
enterprise partner selection was presneted solved with the heuristic tabu search
algorithm in [11]. In 2003, Ip et al., built model of virtual enterprise partner
selection on the failure rate of sub-projects and minimize the loss of working time
rate, and used real-parameter genetic algorithm (RGA) [12].

Researches established a virtual enterprise partner selection model of minimize
the cost of the project, and gives Genetic Algorithm (GA) and branch & bound
(B&B) algorithm [13]. In 2006, Zeng et al., proved that the partner selection
problem with a due date constraint in a VE is a NP-complete problem, and a
nonlinear integer programming model for this problem was established [14]. In
2009, Yan et al., Established virtual enterprises partner selection model of
minimizing the total cost and completing time and apply discrete particle swarm
optimization algorithm (DPSO) to solve it [15].

Most of researches concentrate on time as a constraint in the virtual enterprises
partner selection models, but a few of researches considered it in the objective
function. In 2001, May and Carter have shown in their case study of "a virtual
team working in the European automotive industry" that utilization of virtual en-
terprises which make them get benefits as better quality, lower costs and time re-
duction to market (from 20 to 50%). Yet, most of researches concentrate on time
as a constraint in the virtual enterprises partner selection models, but a few of re-
searches considered it in the objective functions.

Multi-objective Simulated Annealing Algorithm 753

This research proposes a model and a solution approach to the partner selection
problem considering two main evaluation criteria: project completion time and
project total cost. This multi-objective problem is solved by Pareto Simulated
Annealing (PSA) algorithm. Section 2 provides a background on the topics related
to the optimization method used in this chapter; multi-objective optimization, and
Pareto Simulated Annealing. Section 3 presents the problem at hand and outlines
its context along with the used mathematical model. Solution algorithm is
provided in Section 4 followed by an illustrative example in section 5 and
comparison to the Tabu Search algorithm. Concluding remarks and future research
direction are given in Section 6.

2 Background

2.1 Multi-objective Optimization

A general multi-objective optimization problem can be formulated in the follow-
ing manner. Given an n-dimensional solutions space of decision variables
tor , … , , it is required to find a vector that satisfies a given set of
criteria depending on objective functions , … , .the solu-
tion space is restricted by a series of constraints, such as for 1, … , , and bounds on the decision variables [17].

Consider a decision-maker who wishes to optimize more than one objective and
wants to find a solution that guarantee the optimal values for all objectives togeth-
er. But in real-life problems, objectives under consideration conflict with each
other. So, if we focus on optimizing the solution with respect to a single objective
frequently results in unacceptable results with respect to the other objectives. For
that reason, a perfect multi-objective solution that simultaneously optimizes each
objective function is almost impossible. A sensible solution to a multi-objective
problem is to explore a set of solutions, each of which satisfies the objectives at an
acceptable level without being dominated by any other solution [18].

The concept of Pareto dominance (Pareto optimum) was proposed by Vilfredo
Pareto in 1896. This concept has been widely used to establish superiority be-
tween solutions in multi-objective optimization [19].

Marler and Arora sum up the multi-objective optimization area within the fol-
lowing definitions [20]:

• Pareto dominance: consider minimization problem, a feasible solution is said
to dominate feasible solution , if _ for 1, … , and _ for at least one objective function [18].

• Weak dominance: A solution is said to weakly dominate a solution if is better than in at least one objective and is as good as
in all other objectives.

754 H.M. Abdelsalam and A.M. Mohamed

• Pareto optimal solution: A solution is said to be Pareto optimal if it is not dom-
inated by any other solution in the solution space.

• Pareto optimal set: The set of all feasible non-dominated solution in and the
corresponding objective function values in the objective space is called the Pa-
reto front.

2.2 Multi- objective Simulated Annealing

In 1953, Metropolis’s paper brought attention to the idea of simulated annealing
[28]. In this paper, the algorithm simulated the cooling of material in a heat bath.
This process is known as annealing. The structural properties of the solid depend
on the rate of cooling, if you heat a solid past melting point and then cool it. If the
cooling process of the liquid was slow, large crystals will be formed. Neverthe-
less, if the cooling process of the liquid was quick the crystals will contain imper-
fections.

The material in Metropolis’s algorithm simulated as a system of particles. The
algorithm simulates the cooling process by lowering the temperature of the system
gradually until it converges to a steady, frozen state.

The process can be described as follows. First, to solid melts the temperature of
the heat bath is increased to a maximum value. Therefore, all particles of the solid
arrange themselves randomly. Afterwards, to arrange the particles in structured
lattice with minimum energy the temperature is carefully decreased until the par-
ticles of the melted solid reach in the ground state of the solid. The physical an-
nealing process can be simulated by computer programs using Monte Carlo tech-
niques proposed in [28]. Given an actual state of the solid with energy , a
perturbation mechanism is applied to generate a new state , which transforms
the current state into the next state by a small distortion. The state is ac-
cepted as the current state if the energy difference ΔE E E is less or

equal to zero. The state is accepted with probability exp , , where T de-

notes the temperature of the heat bath and the Boltzmann constant [21].
In 1982, the idea of the Metropolis algorithm was taken by Kirkpatrick and ap-

plied it to optimization problems. In this context, the simulated annealing is used
to search for feasible solutions and converge to an optimal solution. As the tem-
perature drops, the probability of accepting deteriorated solutions decreases. The
decreasing probability for accepting deteriorations is controlled by a scheme
called a cooling schedule. To freely explore the solution space in the beginning of
an optimization process and to fully exploit the most promising region in the solu-
tion space, a cooling schedule starts at a high temperature and decreases toward
zero as the search progresses.

Pareto Simulated Annealing
In 1992, Serafini proposed multiple objective version of simulated annealing. The
method uses the standard scheme of single objective simulated annealing. The
outcome of the algorithm is the set of potentially Pareto-optimal solutions

Multi-objective Simulated Annealing Algorithm 755

containing all the solutions not dominated by any other solution generated by the
algorithm. Serafini considered a number of acceptance rules, defining acceptance
probability of new neighborhood solutions.

In 1999, Ulungu et al. proposed a method called multi-objective simulated an-
nealing (MOSA). They also used multiple objective acceptance rules. MOSA uses
a number of predefined weight vectors. Each of the vectors is associated with an
independent annealing process.

In this study, we used Pareto simulated annealing (PSA). PSA is a multiple ob-
jective meta-heuristic that uses the same concept of single objective simulated
annealing. PSA differs from the single objective simulated annealing in two main
issues: (1) instead of using just one solution; PSA uses a set of generated
tions ; and (2) the way of which the probability for accepting new neighborhood
solutions is calculated.

For each, generating solution Y there is a new generated solution . The prob-
ability (P) of accepting is equal to one, if dominates Y. Otherwise:

, , , Λ min 1, exp /

where is the change in the objective function values of objective j
for solutions and , is the number of objectives, is the annealing tempera-
ture, and Λ is the weighting vector Λ , , … , for solution .

The weighting vector Λ is used to assure dispersion of the generating solutions
over the whole . If the weight associated with a given objective is high, the
probability of accepting the new solution that decrease the value on this objective
is low and the probability of improving the value of this objective is high. For a
given solution ∈ , in order to increase the probability of moving away from its
closest neighbor in denoted by the weights are changed.

This is obtained by increasing the weights of the objectives with a factor of
(0 and is a constant close to 1) on which is better than and decreasing

the weights of the objective with a factor of 1/ on which is worse than . The
flowchart of a PSA algorithm is shown in fig. 1.

 During the all iterations of PSA, the non dominated solution is preserved in a
set called Pareto set (PS). If the solution dominates its preceding solution Y in
the generated set, is checked for Pareto dominance among solutions in PS. is added to PS if it is non-dominated. All solutions originally in that are
dominated by are removed from .

The PSA process is stopped when stop conditions are fulfilled. Several com-
monly used stop conditions include: (1) predetermined number of solutions (i.e.,
iterations) is generated and evaluated and (2) the accepting ratio of solutions falls
below a threshold. When PSA stops, the non-dominated set contains solutions
that form the approximated Pareto front [22].

756 H.M. Abdelsalam and A.M. Mohamed

Fig. 1 Flowchart of PSA

Multi-objective Simulated Annealing Algorithm 757

3 Problem Description

3.1 Context

Assume a set of companies capable of performing activities, providing a finite
amount of resources and these resources are available over specific intervals of
time. One of these companies is responsible for formation process of the virtual
enterprises (this company can be considered as the decision maker). Companies
have predefined relationships that will determine how these companies will con-
nect with each other.

At a certain point of time, projects are created. Each project has a set of activi-
ties that demands a specific amount of resources, have to be performed within a
given time interval and have a number of precedence relationships. The problem
framework is shown in Fig. 2.

The aim of this study is to obtain the optimal group of partner enterprises for all
projects in order to minimize the total cost and completion time of the projects.
The main constraints are time windows and the minimum amount of resources
required.

Fig. 2 Problem Framework

3.2 Objectives and Constraints

At a certain point of time, give a set of companies (VEs) and a list of candidate
projects, it is required to obtain the optimal group of companies that perform all
activities of candidate projects.

758 H.M. Abdelsalam and A.M. Mohamed

The problem is a multi-objective problem with two main objectives:

• Minimizing the project’s total cost
• Minimizing the project’s total time. For each solution, we try to fit the set of

companies that can execute the projects in minimum time. This can occur when
the company allows the activity to start working in its earliest start time or soon
as possible from it

The problem constraints are:

1. Time Window constraint (if company contracted to perform an activity the time
interval of its resources are available fits the ‘time window’ of activity).

2. Ensure that if company contracted to perform an activity in a specific time, it
provides the quantity of resource that the activity is required.

3. The project completion time must be less than the project deadline.
4. Total cost of project activities cannot be larger than the global budget of the

project.
5. Ensure that the precedence relationships between activities are achieved. For

two activity ‘A’ and ‘B’ with a precedence relation, execution of activity ‘B’
can only begin after execution of activity ‘A’.

3.3 Model Formulation

Indices.

 = 1, … , T Time periods
 = 1, … , E Companies
 = 1, … , P Projects

Parameters.

 : Project completion time
: Deadline of project
: budget of project

: set of candidates for performing activity
: available quantity of resources of candidate in period , : Interval time in which candidate is available

 : set of activities in project
 : processing time of activity of project , : Time window to perform activity of project

 : cost for performing activity by candidate
 : quantity of resources needed to perform activity of project

Decision Variables

Multi-objective Simulated Annealing Algorithm 759

Objective function, to minimize

 ,
 ∈

Subject to the following constraints

 ∈

 ∈ , ∈

 , ∈ , ∈

 ∈ , ∈

 ∈ , ∈ ∈ , ∈

4 Solution Algorithm

4.1 Solution Representation

A solution is represented in a vector consists of two rows. The first row represents
the name of activities in each project and the second row represents the companies
ID associated with each project activity.

Solution length is the total sum of the number of activities in each project we
have. For example, if we have two projects one of them has five activities and the
other has four activities, the solution length will be nine.

Fig. 3 shows the solution representation. From this representation, Act1 can be
performed by company 20 and Act2 can be performed by company 5 etc.

760 H.M. Abdelsalam and A.M. Mohamed

Act 1 Act 2 Act3 …… Act n Act1 Act 2 Ac3 ……. Act m
20 5 15 10 50 25 100 80

Fig. 3 Solution Representation

4.2 Generating an Initial Solution

A heuristic is used to generate the initial feasible solution. For each activity, we
have a list of companies that are able to execute it (resources that the activity
needs are available in each company in the list). First of all, for each project, find
the sequence of project’s activities that satisfies the precedence constraint and then
to generate the group of companies that will be able to execute this project follow
the following steps:

• For the first activity, find the list of companies that are able to execute it.
• Select randomly a company and ensure that the company satisfies all con-

straints of time interval and the quantity of resource of this activity. If the se-
lected company does not satisfy the constraints, select another one randomly
until finding the company that satisfies constraints.

• Schedule the activity by determining the actual start time and the earliest finish
time.

• Update the available time interval of the resource activity by cutting the time
window of the activity form it and update the available company’s resource
amount by decreasing the amount of activity’s resource amount from it.

• Repeat the pervious steps for the remaining activities in the project until finding
the feasible group of companies.

Finally, repeat the pervious heuristic to generate a feasible set of random
solutions.

4.3 Time Calculation

To calculate the completion time of each project in the solution (VE configura-
tion); apply the following steps for each project activity:

• If the activity has no inputs, based on the available time of the activity resource
in the proposed enterprise, find the available interval that the activity can start
in it and then calculate its finish time.

• If the activity has inputs, the actual start time will be the maximum finish time
of all its inputs. Based on the actual start time, find the available interval that
the activity can start on it and then calculate its finish time.

• Repeat the pervious steps until execute the all activities.

The project completion time will be the finish time of the last activity in the
project.

Multi-objective Simulated Annealing Algorithm 761

4.4 Generating a New Solution

From the literature, there are a many methods to generate a new solution from the
current one. Pairwise exchange “Select two elements from the solution configura-
tion and swap the values of it”, insert move “Select an element from the solution
configuration and remove it from its position and insert it into the position before
or after the second selected cell”, 2-opt “Select two elements from the solution
configuration and reverse the order of them”, and tails swap “Select two elements
from the solution configuration and exchange the tails” [23- 27].

In our problem, the pervious types of methods do not work because each activi-
ty has a list of companies that can execute it. We want to guarantee that when we
exchange (swap) the company of a specific activity, we select another company
that can execute it also; consequently, we apply a different move that proposed in
[4]. In this paper, the move will be slightly different; the total number of compa-
nies that will be changed equal to the total number of projects in the solution.

To generate a new solution, we will change the selected company in the current
solution with a company outside the solution (from the list of companies). For ex-
ample, if we have two projects in the solution we will generate the new solution
by changing two companies by selecting activity randomly and then select the
company ID randomly.

Because of the problem is constraint problem, we will first check the feasibility
of the new solution. If the new solution is feasible, the current solution will be re-
placed by the new solution.

Example
Assume that the company list of two activities as follows:

D G
3 1
4 10
20 15
5 6

And the current solution as follows:

A B C D E F G
4 3 10 20 1 5 6

If we select randomly activities “D” and “G”, the new solution may be as fol-

lows:

A B C D E F G
4 3 10 5 1 5 15

762 H.M. Abdelsalam and A.M. Mohamed

4.5 Feasibility

The solution will be unfeasible solution if: (1) at least one project violates the
problem constraints or (2) at least one enterprise of the proposed enterprises can’t
execute the activity in its available time window and with its amount of resources.
This research only accepts feasible solution.

4.6 Stopping Criterion

The algorithm will be terminated when it reach the stopping temperature.

5 Illustrative Example

This example presents a case in which we have two projects and a network com-
posed of 50 companies. By applying the pervious algorithm, we want to find the
optimal group of companies that can execute the projects in acceptable level of
time and cost. The proposed algorithm is coded in Visual Basic for Application
(VBA) on Excel.

5.1 Input Data

Each project is decomposed into six activities. Each activity demands a specific
amount of resource in a specific time interval. The data of each project includes
the following fields [Activities name (Act_name), Precedent activities
(P_activities), Duration, Earliest Start time (ES), Latest Finish time (LF), Re-
source ID (R_ID), Quantity of resource (Q_R)]. Projects data are presented in ta-
ble 1(a) and (b). Project 1 can start immediately and has to be completed before
day 165. Project 2 can start on day 10 and has to be completed before day 234. For
project 1 activity A, B, and C has no inputs; activity “D” will start when activity
“A” finished and the same issue for activities “E” and “F”. Activity “A” need to
400 unit of resource from the resource that it’s ID is “7” to be completed in 36
day.

The data of each company includes the following fields [Company ID (C_ID),
Set of activities that the company can execute (Act_execute), cost of executing ac-
tivities (Cost), ID of available resources (RID_available), Quantity of available re-
source (RQ_available), and Available time interval of resources
(RTime_available)]. A sample of 20 companies is presented in appendix A. Com-
pany 1 can execute the activities G, F, C, J, and K and the cost is 90, 80, 60, 100,
and 105 respectively. The available resources in the company are 5 resources 4, 8,
3, 6, and 9, and the available quantity is 1000, 900, 700, 800, and 600; these re-
sources available in a specific intervals of time. For resources 4, 8, 3, 6, and 9, the
available time intervals are [0, 400], [10, 500], [10, 300], [0, 400] and [25, 500]
respectively.

Multi-objective Simulated Annealing Algorithm 763

Table 1(a) Projects data [4]

Project 1

A
ct

_
na

m
e

P_
 a

ct
iv

iti
es

D
ur

at
io

n

E
S

L
F

R
_

ID

Q
_R

A - 36 0 106 7 400

B - 62 0 97 8 604

C - 67 0 122 3 528

D A 16 36 122 5 275

E B 25 62 122 4 368

F C, E, D 43 87 165 8 304

Table 1(b) Projects data [4]

Project 2

A
ct

_
na

m
e

P_
 a

ct
iv

iti
es

D
ur

at
io

n

E
S

L
F

R
_

ID

Q
_R

G - 99 10 159 4 362

H - 56 10 202 2 206

I - 30 10 202 9 135

J G 41 109 201 6 116

L G 44 109 201 8 221

K H, I, L, J 32 153 234 9 282

Table 2 Algorithm Parameters

Parameter Value

Initial Temperature 200

Stopping Temperature 1

Cooling rate 0.98

Maximum solution number of acceptance 30

Maximum solution number of rejection 30

Pareto set size 7

5.2 Results

To initialize the feasible initial solution, for each activity, find the list of compa-
nies that have the resources which activity need and select randomly one of them.
Check if the selected company has the quantity of resource that activity need in its

764 H.M. Abdelsalam and A.M. Mohamed

available interval time. If not, randomly select another one; stop this process when
finding a feasible company that satisfies the all constraints. For example, from the
sample of the companies’ data, the list of companies that can perform activity “A”
are company 2, 8, 4, 10, 11, 32, 28, 30, 34, 44, and 50. Example of initial feasible
solution is presented in table 3.

Table 3 Example of Initial Feasible Solution

A B C D E F G H I J L K

32 27 50 49 27 29 1 28 34 42 28 34

The schedule of the initial solution is presented in table 4.

Table 4 Schedule of initial solution

Activity ID Start Time Finish Time

Project 1

A 80 116

B 48 110

C 100 167

D 116 132

E 110 135

F 167 210

Project2

G 10 109

H 100 156

I 25 55

J 109 150

L 109 153

K 156 188

Each project will be scheduled to calculate the completion time of it. For each
activity, find the available start time that is suitable to the available interval time
of required resource. For example, the earliest start time of activity "A" in project
1 is 0 but actually the activity will start in day 80; because the available start time
for the resource "7" is 80. The finish time of the activity is 116 (80 + 36). If the
activity has inputs, the actual start time will be the maximum finish time of all its
inputs. For example, activity "F" has inputs C, E, and D and according to the
schedule these inputs will finished in 167, 135, and 123 respectively, so activity
"F" will start in day 167. The completion time of the project will be the finish time
of the last activity in the project, consequently the completion time of project 1
and project 2 is the finish time of activities "F" and "K" which is 210 and 188 re-
spectively. And the total time of the initial solution is 398 (210 + 188).

Multi-objective Simulated Annealing Algorithm 765

After using the algorithm parameters (as presented table 2) and applying PSA,
we have obtained 7 non-dominated solutions. Table 5(a) and (b) shows a sample
of these solutions. In this table, each row contains the companies assigned to the
project activities. For example, solution VE1 for project 1 includes companies 2,
33, 46, 37, 3, and 35 respectively for activities A, B, C, D, E, and F. And figure 4
shows the Pareto front solutions. Fig. 4 shows the objective function values of
time and cost of each solution during the iterations, and shows the non-dominated
solutions (Pareto Front). As we can see, the non-dominated solutions are the set of
solutions in the left side of the graph, and it strongly dominated the other
solutions.

Fig. 5 shows the Pareto Front progress during iterations. In the beginning of the
iterations, the solutions in the Pareto set have largest value of time and cost. Dur-
ing the iteration the solutions in Pareto set have better values and the solutions
values get closer to each other until they form the Pareto front as shown in fig. 5
(x), (y), (z), and (aa).

Table 5(a) Non-dominated solutions

 Project 1

A B C D E F

VE1 2 33 46 37 3 35

VE2 13 33 35 31 17 29

VE3 2 33 46 37 3 35

VE4 15 17 6 37 23 29

Table 5(b) Non-dominated solutions

 Project 2

G H I J L K

VE1 15 8 46 43 12 31

VE2 15 48 26 29 25 1

VE3 15 8 46 43 12 31

VE4 3 22 46 46 18 19

766

Fig. 4 Pareto Front – Time v

(a) after initia

(c) after 600

(e) after 1200

Fig. 5 Pareto Front Progress

H.M. Abdelsalam and A.M. Mohame

vs. Cost

alization (b) after 300 iterations

iterations (d) after 900 iterations

0 iterations (f) after 1500 iterations

ed

Multi-objective Simulated A

(g) after 1800

(i) after 2400

(k) after 3000

(m) after 3600

(o) after 4200

(q) after 4800

Fig. 5 (continued)

Annealing Algorithm 76

0 iterations (h) after 2100 iterations

iterations (j) after 2700 iterations

0 iterations (l) after 3300 iterations

0 iterations (n) after 3900 iterations

0 iterations (p) after 4500 iterations

0 iterations (r) after 5100 iterations

67

768

(s) after 5400

(u) after 6000

(w) after 6600

(y) after 7200

Fig. 5 (continued)

6 Algorithm Perfor

To test the performance o
the Tabu Search (TS) algo

H.M. Abdelsalam and A.M. Mohame

0 iterations (t) after 5700 iterations

0 iterations (v) after 6300 iterations

0 iterations (x) after 6900 iterations

0 iterations (z) after 7500 iterations

(aa) after 7800 iterations

rmance

of the proposed algorithm, a comparison was made wit
orithm used in [4]. The comparison is based on the sam

ed

th
me

Multi-objective Simulated Annealing Algorithm 769

illustrative example presented earlier and setting were made to have both algo-
rithm reaches a certain number of solutions’ evaluation (7800 evaluations). To
measures were taken for this comparison; (1) CPU time, and (2) converge of Pare-
to fronts [29]. Assume two Pareto fronts A and B, the converge C A, B of the two
Pareto fronts maps the ordered pair A, B to the interval [0, 1]:

C A, B | b ∈ B| a ∈ A: a b ||B|

where |B| means the number of solutions in set B. C A, B gives the fraction of B
dominated by A. C A, B 1 means that all individuals in B are dominated by A.
The opposite C A, B 0 represents the situation that no individual in B is domi-
nated by A [29].

Applying the pervious concept on the case at hand resulted in C TS, SA = 0.51
and C SA, TS = 0.82 indicating that the effectiveness of SA is much better than
that of TS. On the other hand, the CPU time (in minutes) - shown in Table 6 -
shows that the efficiency of SA is also higher than that of the TS. It should be
noted, however, that the computation time is relatively high for both algorithm be-
cause of the use of VBA.

Table 6 CPU time (minutes)

TS SA

Min 15.95 Min 4.56

Average 20.49 Average 5.99

Max 28.43 Max 8.03

7 Conclusion

In this study, an approach based on Pareto Simulated Annealing is used to solve
the problem of partner selection in virtual enterprises. Partner selection is the most
important problem in virtual enterprises, and it has attracted much research atten-
tion in recent times. Most of researches concentrate on time as a constraint in the
virtual enterprises partner selection models, but a few of researches considered it
in the objective function. And because of the importance of cost and quick respon-
siveness to the market’s opportunity, we considered two main evaluation criteria:
completion time and cost. An illustrative example demonstrates that the used algo-
rithm have better performance in solving the problem. Future work will study the
proposed approach on Research and Development projects and investigate the in-
fluence of different values of the Simulated Annealing parameters.

770 H.M. Abdelsalam and A.M. Mohamed

References

[1] Chen, H., Zhu, Y., Hu, K., Li, X.: Virtual Enterprise Risk management Using Artifi-
cial Intelligence. Mathematical Problems in Engineering 2010, Article ID 572404, 20
pages (2010), doi:10.1155/2010/572404

[2] Gao, F., Cu, G., Zhao, Q., Liu, H.: Application of Improved Discrete Particle Swarm
Algorithm in Partner Selection of Virtual Enterprise. International Journal of Com-
puter Science and Network Security 6(3), 208–212 (2006)

[3] Lu, F.-Q., Huang, M., Ching, W.-K., Wang, X.-W., Sun, X.-L.: Multi-swarm particle
swarm optimization based risk management model for virtual enterprise. In: Proceed-
ings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation
(GEC 2009), Shanghai, China, pp. 387–392 (2009)

[4] Crispima, J.A., Sousa, J.P.: Partner selection in virtual enterprises. International Jour-
nal of Production Research 48(3), 683–707 (2010)

[5] Simona, D., Raluca, P.: Intelligent modeling method based on genetic algorithm for
partner selection in virtual organizations. Business and Economic Horizons 5(2),
23–34 (2011)

[6] Huang, B., Gao, C., Chen, L.: Partner selection in a virtual enterprise under uncertain
information about candidates. Expert Systems with Applications 38(9), 11305–11310
(2011)

[7] Talluri, S., Baker, R.C.: A Quantitative Framework for Designing Efficient Business
Process Alliances. In: Proceedings of International Conference on Engineering Man-
agement, pp. 656–661. IEEE Engineering Management Society Press, Canada (1996)

[8] Wu, N., Mao, N., Qian, Y.M.: An Approach to Partner Selection in Agile Manufac-
turing. Journal of Intelligent Manufacturing 10(7), 519–529 (1999)

[9] Wu, N., Su, P.: Selection of partners in virtual enterprise paradigm. Robotics and
Computer Integrated Manufacturing 21(2), 119–131 (2005)

[10] Su-ping, Nai-Qi, W., ZhaoQin, Y., Qiang, Y.: The Improved Genetic Algorithm for
Partner Selection and Optimization. Systems Engineering Theory & Practice 12,
85–91 (2006)

[11] Ko, C.S., Kim, T., Hwang, H.: External partner selection using tabu search heuristics
in distributed manufacturing. International Journal of Production Research 39(17),
3959–3974 (2001)

[12] Ip, W.H., Huang, M., Yung, K.L., et al.: Genetic algorithm solution for a risk based
partner selection problem in a virtual enterprise. Computers & Operations Re-
search 30(2), 213–231 (2003)

[13] Yu, W., Feng, Z., Hua, G., Jing, Z.: The Partner Selection in Virtual Enterprise Based
on BDI Agent. International Journal of Digital Content Technology and its Applica-
tions 4(9) (2010)

[14] Zeng, Z.B., Li, Y., Zhu, W.X.: Partner selection with a due date constraint in virtual
enterprises. Applied Mathematics and Computation 175(2), 1353–1365 (2006)

[15] Bu, Y.-P., Zhou, W., Yu, J.-S.: A Discrete PSO Algorithm for Partner Selection of
Virtual Enterprise. In: Second International Symposium on Intelligent Information
Technology Application, IITA 2008, pp. 814–817 (2009)

[16] Ebrahim, N.A., Ahmed, S., Taha, Z.: Critical factors for new product developments in
SMEs virtual team. African Journal of Business Management 4(11), 2247–2257
(2010)

Multi-objective Simulated Annealing Algorithm 771

[17] Hanoun, S., Nahavandi, S., Kull, H.: Pareto Archived Simulated Annealing for Single
Machine Job Shop Scheduling with Multiple Objectives. In: The Sixth International
Multi-Conference on Computing in the Global Information Technology, pp. 99–104
(2011)

[18] Konak, A., David, W.C., Alice, E.S.: Multi-objective optimization using genetic algo-
rithms: A tutorial. Reliability Engineering and System Safety 91(9), 992–1007 (2006)

[19] Le, K., Landa-Silva, D., Li, H.: An Improved Version of Volume Dominance for
Multi-Objective Optimisation. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao,
J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 231–245. Springer, Hei-
delberg (2009)

[20] Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engi-
neering. Structural Multidisciplinary Optimization 26(6), 369–395 (2004)

[21] Haidine, A., Lehnert, R.: Multi-Case Multi-Objective Simulated Annealing (MC-
MOSA): New Approach to Adapt Simulated Annealing to Multi-objective Optimiza-
tion. World Academy of Science, Engineering and Technology 48, 705–713 (2008)

[22] Jaszkiewicz, A.: Multiple ObjectiveMetaheuristic Algorithms for Combinatorial
Optimization, Habilitation Thesis 360, Poznan University of Technology, Poznan,
Poland (2001)

[23] Fenghua, D., Xiaonian, H.: On Open Vehicle Routing Problem with Soft Time Win-
dows and Tabu Search. In: Logistics Research and Practice in China-Proceedings of
2008 International Conference on Logistics Engineering and Supply Chain (2008)

[24] Schmidt, K.: Using tabu search to solve the job shop scheduling problem with se-
quence dependent setup times. Master’s thesis, Brown University, USA (2001)

[25] Dell’Amico, M., Trubian, M.: Applying tabu search to the job-shop scheduling Prob-
lem. Annals of Operations Research 41, 231–252 (1993)

[26] Eles, P.: Heuristic Algorithms for Combinatorial Optimization Problems Tabu
Search. Department of Computer and Information Science (IDA), Linköpings univer-
sitet (2010), http://www.ida.liu.se/~petel/

[27] Schneider, U.: A Tabu Search Tutorial Based on a Real-World Scheduling Problem.
Central European Journal of Operations Research 19, 467–493 (2010)

[28] Metselaar, C., Dael, R.: Organisations Going Virtual. AI & Society 13, 200–209
(1999)

[29] Lee, S., Allmen, P.V., Fink, W., Petropoulos, A.E., Terrile, R.J.: Comparison of Mul-
ti-Objective Genetic Algorithms in Optimizing Q-Law Low-Thrust Orbit Transfers.
In: GECCO, Washington, DC, USA, June 25-29 (2005)

Appendix A: Companies Data

Company ID Act_execute G F C J K

1 Cost ($ 1000’s) 90 80 60 100 105

 RID_available 4 8 3 6 9

 RQ_available 1000 900 700 800 600

 RTime_available [0, 400] [10, 500] [10, 300] [0, 400] [25, 500]

Company ID Act_execute D A K L B

2 Cost ($ 1000’s) 110 109 80 99 120

772 H.M. Abdelsalam and A.M. Mohamed

 RID_available 5 7 9 8

 RQ_available 1000 900 700 800

 RTime_available [0, 300] [10, 400] [60, 500] [20, 500]

Company ID Act_execute H A C E L

8 Cost ($ 1000’s) 102 96 90 107 95

 RID_available 2 7 3 4 8

 RQ_available 1000 900 700 800 600

 RTime_available [0, 500] [10, 400] [10, 300] [70, 400] [70, 500]

Company ID Act_execute H A B G

4 Cost ($ 1000’s) 116 103 119 50

 RID_available 2 7 8 4

 RQ_available 1000 900 700 800

 RTime_available [0, 500] [0, 400] [50, 500] [50, 400]

Company ID Act_execute D A B J

10 Cost ($ 1000’s) 90 105 115 98

 RID_available 5 7 8 6

 RQ_available 1000 900 700 800

 RTime_available [40, 300] [50, 400] [40, 500] [40, 400]

Company ID Act_execute G F E A

11 Cost ($ 1000’s) 100 75 117 111

 RID_available 4 8 7

 RQ_available 1000 900 700

 RTime_available [10, 300] [80, 500] [0, 400]

Company ID Act_execute I E L

45 Cost ($ 1000’s) 102 120 78

 RID_available 9 4 8

 RQ_available 1000 900 700

 RTime_available [250, 500] [90, 400] [62, 500]

Company ID Act_execute F C E

35 Cost ($ 1000’s) 45 63 110

RID_available

8

3

4

 RQ_available 1000 900 700

 RTime_available [110, 500] [50, 300] [15, 400]

Multi-objective Simulated Annealing Algorithm 773

Company ID Act_execute H I J D

22 Cost ($ 1000’s) 102 111 78 101

 RID_available 2 9 6 5

 RQ_available 1000 900 700 800

 RTime_available [90, 500] [58, 500] [80, 400] [56, 300]

Company ID Act_execute D A E

32 Cost ($ 1000’s) 82 98 112

 RID_available 5 7 4

 RQ_available 1000 900 700

 RTime_available [0, 300] [80, 400] [80, 400]

Company ID Act_execute F B E K

27 Cost ($ 1000’s) 74 99 126 79

 RID_available 8 4 9

 RQ_available 1000 900 700

 RTime_available [48, 500] [65, 400] [70, 500]

Company ID Act_execute A K L H

28 Cost ($ 1000’s) 80 95 101 99

 RID_available 7 9 8 2

 RQ_available 1000 900 700 800

 RTime_available [200, 400] [250, 500] [78, 500] [100, 500]

Company ID Act_execute F J H G

29 Cost ($ 1000’s) 63 54 96 85

 RID_available 8 6 2 4

 RQ_available 1000 900 700 800

 RTime_available [49, 500] [20, 400] [105, 500] [90, 400]

Company ID Act_execute G C B A

30 Cost ($ 1000’s) 75 71 103 89

 RID_available 4 3 8 7

 RQ_available 1000 900 700 800

 RTime_available [0, 400] [70, 300] [150, 500] [25, 400]

Company ID Act_execute A K I L

34 Cost ($ 1000’s) 99 85 96 105

 RID_available 7 9 8

 RQ_available 1000 900 700

774 H.M. Abdelsalam and A.M. Mohamed

 RTime_available [10, 400] [25, 500] [19, 500]

Company ID Act_execute C I J

42 Cost ($ 1000’s) 86 103 73

 RID_available 3 9 6

 RQ_available 1000 900 700

 RTime_available [90, 300] [58, 500] [70, 400]

Company ID Act_execute A B H

44 Cost ($ 1000’s) 101 104 107

 RID_available 7 8 2

 RQ_available 1000 900 700

 RTime_available [105, 400] [20, 500] [80, 500]

Company ID Act_execute D B L

49 Cost ($ 1000’s) 92 122 97

 RID_available 5 8

 RQ_available 1000 900

 RTime_available [87, 300] [86, 500]

Company ID Act_execute K J H

48 Cost ($ 1000’s) 101 61 95

 RID_available 9 6 2

 RQ_available 1000 900 700

 RTime_available [30, 500] [250, 400] [70, 500]

Company ID Act_execute A C I E

50 Cost ($ 1000’s) 120 67 130 130

 RID_available 7 3 9 4

 RQ_available 1000 900 700 800

 RTime_available [0, 400] [100, 300] [300, 500] [78, 400]

Metaheuristic Approaches for the Winner
Determination Problem in Combinatorial
Auction

Dalila Boughaci

Abstract. Many problems in combinatorial optimization are NP-Hard. This has
forced researchers to explore meta-heuristic techniques for dealing with this class
of complex problems and finding an acceptable solution in reasonable time.

In this chapter, we are interested in the winner determination problem (WDP) in
combinatorial auction (CA). CA is an auction that allocates a set of many goods to
bidders in the presence of substitutes and complements. The winner determination
problem is a complex problem. It is the problem of finding winning bids that max-
imize the auctioneers revenue under the constraint that each good can be allocated
to at most one bidder.

This chapter presents a computational experience regarding four well-known
meta-heuristics (stochastic local search, tabu search, genetic algorithms and memetic
algorithms) for solving the winner determination problem (WDP). The purpose of
this study is to evaluatethe performance of each one of the different techniques
to solve the WDP in combinatorial auctions. The different methods are evaluated
on various benchmark problems, and compared with the hybrid simulated anneal-
ing (SAGII) and Casanova. The computational experiments show that in general
the metaheuristic approaches provide competitive results and find good quality
solutions.

1 Introduction

The combinatorial auction is a type of auctions in which agents (bidders) can place
bids on combinations of items (goods), called packages, rather than just individual
items.

The combinatorial auctions have been used in solving resource and task alloca-
tion problems in multi-agents system [7, 23]. They play an important role in various

Dalila Boughaci
USTHB, BP 32 El-Alia, Beb-Ezzouar, Algiers, 16111
e-mail: dalila_info@yahoo.fr

X.-S. Yang (Ed.): Artif. Intell., Evol. Comput. and Metaheuristics, SCI 427, pp. 775–791.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

dalila_info@yahoo.fr

776 D. Boughaci

domains such as economics, game theory and the sale of spectrum licenses in Amer-
ica’s Federal Communications Commissions (FCC)1 auctions.

In this chapter, we are interested in the optimal winner determination problem
(WDP) in combinatorial auctions. Given a set of bundles bids, the winner determi-
nation problem is to decide which of the bids to accept.

The winner determination problem is a complex problem and it is equivalent to
a weighted set packing problem which is NP−Complete [24, 8]. The problem can
be stated as follows:

Let us consider a set of m items, M= {1, 2 . . . m} to be auctioned and a set of n
bids, B= {B1,B2 . . .Bn}. A bid B j is a tuple < S j,Pj > where S j is a set of items, and
Pj is the price of B j (Pj) 0). Further, consider a matrix Am×n having m rows and n
columns where Ai j = 1 iff the item i belongs to S j, Ai j = 0, otherwise. Finally the
decision variables are defined as follows: x j = 1 iff the bid B j is accepted (a winning
bid), and x j = 0 otherwise (a losing bid).

The W DP can be modeled as the following integer program:

Maximize
n

∑
j=1

Pj.x j (1)

Under the constraints :
n

∑
j=1

Ai jx j ≤ 1 i ∈ {1 . . .m} (2)

x j ∈ {0,1} (3)

The objective function (1) maximizes the auctioneer’s revenue which computed as
the sum of prices of the winning bids. The constraints (2) mean that the item can
be allocated to at most one bidder. The inequality (Ai jx j ≤ 1) allows that some item
could be left uncovered. This is due to the free disposal assumption.

This chapter presents, at first, two single-oriented metaheuristics called stochastic
local and tabu search respectively for the WDP. Then, two well-known population-
oriented metaheuristics which are genetic algorithms and memetic algorithms for
the WDP are detailled. The four metaheuristics approaches have been implemented
and tested on machine for solving WDP hard benchmarks.

The rest of the chapter is organized as follows. Section 3 gives an overview of
some related works. Section 4 presents the four metaheuristic approaches for the
WDP which are the stochastic local search, the tabu search, the genetic algorithms
and the Memetic algorithms. Experimental results are reported in section 5. Finally,
section 6 concludes the work.

2 Review of Related Work

The WDP is the problem of finding winning bids that maximize the auctioneer’s
revenue under the constraint that each item can be allocated to at most one bidder
[21, 29, 28].

1 http://wireless.fcc.gov/auctions.

Metaheuristics Approaches for the WDP in CA 777

Several methods have been proposed to solve the winner determination problem
[28]. These methods can be divided into two main categories: exact and inexact
methods.

• The exact algorithms, given enough time, permit to find an optimal solution
and prove its optimality. The well-known exact algorithms for the WDP are
based on Branch-and-Bound [28, 25, 26]. Among them, we cite Branch-on-
Items (BoI) [25], Branch on Bids (BoB) [27], and Combinatorial Auctions
BoB (CABoB)[26]. These methods can find reasonable optimal allocation with
hundreds of items. The CASS (Combinatorial Auction Structural Search) is a
Branch-and-Bound algorithm for the WDP proposed by Fujishima et al. [8].
Leyton- Brown et al. [20, 19] proposed CAMUS (Combinatorial Auctions
Multi-Unit Search) which is a new version of the CASS for determining the opti-
mal set of bids in general multi-unit combinatorial auctions. Rothkopf et al. [24]
used a dynamic programming approach. Andersson et al. [1] proposed another
exact algorithm based on integer programming. Holland and O’sullivan used con-
straint programming to solve a particular Vickrey combinatorial auction [14].

• The inexact methods, given enough time, may find optimal solutions, but they
cannot be used to prove the optimality of any solution they find. In general, the
inexact methods are based on heuristics or metaheuristics and they are helpful for
finding model of very large instances. The current well-known inexact algorithms
for the WDP are: Hybrid Simulated Annealing SAGII [12, 13], Casanova [15],
stochastic local search [5, 3] and memetic algorithms[4].

3 Metaheuristic Approaches for the WDP

In this section, we present the principles of both the single-oriented metaheuristics
(stochastic local search and tabu search) and the population-oriented metaheuristics
(genetic algorithms and memetic algorithms) that we have proposed to solve the
winner determination problem. All the four methods use the same solution repre-
sentation, a conflict graph and the same evaluation function. The main background
of the different approaches is given in the following.

3.1 The Solution Representation

A solution for the WDP is a collection of winning bids. We have used an allocation
V (a vector with a variable length) where each of whose components Vi receives the
winning bid number.

3.2 The Random Key Encoding

To generate a feasible solution for the WDP, we have used the Random Key Encod-
ing (RK) mechanism [2] that operates as follows: we generate n real numbers se-
quenced by an r order where n is the number of bids and the r order is a permutation

778 D. Boughaci

of keys values. To generate an allocation, first we select the bid having the highest
order value to include in the allocation. Secondly, the bid having the second-highest
order value is accepted if it does not conflict with with accepted bid currently in
the allocation, otherwise it is discarded. The process is repeated until having exam-
ined the n bids. We obtain a subset of bids that can be a feasible solution to the WDP.

Example: Consider a set of four items {1, 2, 3, 4 } to be auctioned and five bids
{ B1,B2,B3,B4,B5 }. Each bid Bi = (Si,Pi) specifies which price Pi the bidder is
prepared to pay for the corresponding bundle of items Si.

We consider the following five bids:

• B1=({1, 2, 4 }, 120.25)
• B2=({1, 2, 3}, 300)
• B3=({3, 4}, 200.10)
• B4=({2, 3}, 200)
• B5=({3}, 100.10)

To generate a feasible solution for this example, we follow these steps:

• Since we have five bids, we generated five real numbers sequenced by an r order.
For example, r= {0.85, 0.65, 0.60, 0.38, 0.70}.
The first bid to be accepted is the bid B1, because it has the highest order value
(0.85). The current allocation receives the bid B1, thus V= {B1}.

• The bid having the second highest order value is B5. The Bid B5 can be added to
the allocation V because there is no conflict with the bids in V when it is added,
thus V= {B1,B5}.

• The bid having the third highest order value, B2 is discarded because it conflicts
with the bids in V . They share some items.

• The bids B3 and B4 having the lowest order value are discarded because they
conflict with the bids in V . They share some items.

We obtain the allocation V = {B1,B5} that can be one of the solution for the WDP.
The overall price is the sum of prices of the winning bids {B1,B5} which equals to
120.25+ 100.10 = 220.35.

3.3 The Conflict Graph

The conflict graph is a tool which we have used to ensure feasibility of allocations
during the search process. The vertices of the conflict graph represent the bids and
edges connect bids that cannot be accepted together. This graph permits to detect
directly the conflict bids that share an item.

Metaheuristics Approaches for the WDP in CA 779

3.4 The Evaluation Function

The objective function F measures the quality of a solution V . The F(V) value is
the overall price of the winning bids of the allocation V = {B1,B2, . . . ,BL}.

F(V) =
L

∑
i=1

Price(Bi) =
L

∑
i=1

Pi (4)

where L is the number of the elements of the allocation V .

3.5 The SLS for the WDP

The stochastic local search [5] starts with an initial allocation V generated randomly
according to the random key encoding. Then, it performs a certain number of local
steps that consists in selecting a bid to be added in the current allocation V and in
removing all conflicting bids that can be occurred in the current allocation. At each
step, the bid to be accepted is selected according to one of the two following criteria:

1. The first criterion (step1 of Algorithm 1) consists in choosing the bid in a random
way with a fixed probability wp > 0.

2. The second criterion (step2) consists in choosing the best bid (the one maximiz-
ing the auctioneer’s revenue when it is selected) to be accepted.

The process is repeated for a certain number of iterations called maxiter fixed em-
pirically.

The SLS algorithm is sketched in Algorithm 1.

Algorithm 1: The SLS method.
Require: a WDP formula, an allocation V , maxiter, wp
Ensure: an improved allocation V
1: for I = 1 to maxiter do
2: r ⇐ random number between 0 and 1;
3: if r ≺ wp then
4: bid = pick a random bid (*Step 1)
5: else
6: bid = pick a best bid; (*Step 2)
7: end if
8: V = V with bid included into it;
9: Based on the conflict graph, remove from V any conflicting bids;

10: end for
11: return the best allocation found.

3.6 The TS for the WDP

Tabu search (TS) is a search method which has been applied for large combinatorial
optimization problems. Given the search space, the method attempts to find a global

780 D. Boughaci

minimum state. It is a general meta-heuristic that has been proposed by Fred Glover
[10, 11]. The tabu search method for the WDP [5]combines two main strategies of
intensification and diversification.

• The intensification step starts with a random initial allocation. Then, the best
neighbor allocation is selected to be the candidat solution for the next itera-
tion. To generate neighbor allocations, two moves are used: On-Bid and On-
Item moves. A move is an operator used to generate neighborhood solutions. The
move operator consists in selecting a best bid from the current unsatisfied bids to
be included into the current allocation to obtain new ones.

– The On-Bid move: we define the state space as a set of unsatisfied bids which
are not in the current allocation. These bids are considered admissible and can
be included into the current allocation. The best bid in the current state space
is selected to be added into the current allocation and any conflicting bids in
the allocation are removed. The best bid is the one that maximizes the overall
price when it is added to the allocation.

– The On-Item move: we define the state space as a set of items which are not
covered by the bids in the current allocation. Then the best bid covering such
items is selected to be added to the current allocation. We note here that, at
each iteration, from the set of admissible bids (if not empty), one bid among
those when included into the allocation yield maximal increase in the overall
price, is selected to be included into the current allocation.

The move is done if it is the best and if it is not tabu. Once a bid is selected and
added into the allocation, it receives the tabu status so its index is saved in the
tabu list and the algorithm is not allowed to visit it again for a given number of λ
iterations called ”tabu tenure”. It is removed from this list after λ iterations. This
mechanism permits to avoid local optima. However, when a Tabu move applied
to a current allocation gives a better solution; we accept this move in spite of its
Tabu status by aspiration criterion.

• The diversification step added into the tabu search process permits to explore
new regions. Such strategy permits to avoid a search stagnation. More precisely,
to obtain a neighbor solution, we apply in this step a diversification strategy that
consists in selecting a random unsatisfied bid to be included into the current best
allocation. This process is repeated for n consecutive steps where n is the number
of bids. The diversification step is called if there are no improvements during d
iterations.

The tabu search process is repeated for a certain number of iterations fixed by an
empirical study.

3.6.1 The Tabu Search Outline for the WDP

The TS algorithm is sketched in Algorithm 2.

Metaheuristics Approaches for the WDP in CA 781

Algorithm 2: The Tabu search for the WDP.
Require: A WDP formula, a collection V , maxiter, d, λ
Ensure: An improved allocation V
1: T L is the tabu list, initially empty: T L = φ ;
2: Generate an arbitrary feasible allocation V
3: Create the conflict graph
4: Evaluate F(V), V ∗= V , F∗ = F ;
5: iter = 1;
6: while iter , maxiter do
7: Generate neighbor allocations using the move operators;
8: Select the best move;
9: Ignore the tabu status by aspiration criterion if such move generates a best solution;

10: Made the best move by adding the selected bid into V ;
11: Based on the conflict graph, remove any conflicting bids in V ;
12: Insert the best move in the T L;
13: Evaluate F(V);
14: if F � F∗ then
15: V ∗ = V; F∗ = F; iter best= iter;
16: end if
17: if iter- iter best) d then
18: Diversification step.
19: end if
20: Iter = Iter+1;
21: end while
22: return the best allocation found.

3.7 The Genetic Algorithm for the WDP

Genetic algorithms [9] are an evolutionary meta-heuristic that have been used for
solving difficult problems. They have been applied to complex optimization prob-
lems with remarkable success in some cases. Their behavior mimics the process of
natural evolution. A population initially made of candidate solutions representing
individuals improves towards another population of individuals with higher qual-
ity along a process repeating a finite number of times, sequentially reproduction
between individuals, and mutation of chromosomes and selection of better individ-
uals. The goal is to create a very fit individual.

The genetic algorithm operates as follows. From a population of points (parents),
the algorithm constructs a new population (children) in combining several parents
and applying some random modifications (mutation). The selection phase chooses
the best points among parents and children to produce the next population for the
next iteration. Usually, the genetic algorithms converges, ie, the population has the
tendency to lose its diversity, so it loses its efficacy; it is why the convergence is often
used like stop criteria. However, the premature convergence of genetic algorithms
is an inherent characteristic that makes them incapable of searching numerous so-
lutions of the problem domain why it is frequent to stop searching after a certain
number of generations.

782 D. Boughaci

The overall GA algorithm for the WDP is sketched in Algorithm 3.

Algorithm 3: The Genetic Algorithm for the WDP.
Require: an instance of WDP.
Ensure: an allocation of bids that maximizes the auctioneer’s revenue
1: Create the conflict graph
2: Generate randomly an initial population P according to the RK
3: While (the maximum number of generations is not reached and the optimal solution is

not found) do Begin
4: Repeat
5: Select two individuals;
6: Generate at random a number Rc from [0, 100];
7: If (Rc ¿ crossover rate) then apply the crossover;
8: Generate at random Rm from [0, 100];
9: While (Rm ¡ mutation rate do Begin

10: Choose at random a chromosome from the individual obtained by the cross over and flip
it;

11: Generate at random Rm from [0, 100];
12: End ;
13: Evaluate the new individual;
14: End repeat;
15: Replace the bad individuals of the population by the fittest new ones.
16: End;
17: return the best individual solution found.

3.8 The Memetic Algorithm for the WDP

The memetic algorithms, as Moscato claimed in [22], can be viewed as ”a marriage
between a population-based global technique and a local search made by each of the
individuals. They are a special kind of genetic algorithms with a local hill climbing”.

Like genetic algorithms, memetic algorithms are population-based approaches.
Basically, they combine local search methods with crossover operators. Therefore,
some researchers have viewed them as hybrid genetic algorithms, others known
them as parallel genetic algorithms or genetic local search [17, 18, 6].

The memetic algorithm for the winner determination problem (MA) [4] is a
population-based approach. The method incorporates the same Random Key en-
coding and the same conflict graph mechanisms already used by the SLS and TS
methods. The MA method uses a novel selection strategy based on fitness and qual-
ity criteria and applies a crossover operator to create new trial individuals which are
enhanced by using the stochastic local search (SLS) component.

The proposed memetic algorithm for the WDP starts with an initial population
P of individuals created randomly according to the random key encoding (RK). It
then selects a collection C of individuals of size |C| 2 from the current population in
order to participate in the reproduction phase.

2 |C| is the cardinality of the collection C.

Metaheuristics Approaches for the WDP in CA 783

The collection C contains, on one hand, |C1| highest-fitness individuals, that are
selected from the population P according to their fitness value. On the other hand,
|C2| other individuals from P−C1 are added to the collection C to complete it. The
individuals of C2 are called diverse individuals since they are the most distant from
the individuals in C. The diversity of an individual is measured by a similarity func-
tion that computes the number of the same genes between two individuals. The novel
strategy of selection helps the algorithms to maintain at each generation a good and
diversified population which lead to a good compromise between intensification and
diversification. The size of the collection C, |C|= |C1|+ |C2|, is fixed by an empirical
study.

After selecting a set of good and diverse individuals, the reproduction phase
starts. Once two parents have been selected, their chromosomes are combined and
a new individual is generated. In order to locate solutions more effectively, the mu-
tation phase is replaced by a stochastic local search.

The new individuals are added in the current collection of individuals according
to both their fitness and diversity values. That is, a new individual is added to the
best solutions of C1 and the worst one is removed when the new individual improves
the quality of the current collection C. Otherwise, if the new individual improves the
diversity of the current collection C, then the individual in the collection having a
big similarity value is replaced by the new one.

The memetic process is repeated a finite number of generations fixed by an em-
pirical study.

3.8.1 The Similarity Measure

The similarity measure is used to compute the number of the same genes between
two individuals. This function is used to choose a collection of diverse individuals
that will participate in the reproduction phase. It is clear that an individual that has
a small similarity value to another individuals already in the current collection will
contribute to the diversity of the collection.

Given the similarity measure Sm(X ,Y) between two individuals X and Y , the
similarity value SmC(X) of a given individual X to a set of individuals C can be
calculated by:

SmC(X) = maxY∈C Sm(X ,Y)

To compute the diversity value of a solution X to the collection C requires calcu-
lating C similarity values which is computationally expensive. This is one of the
reasons why the new selection strategy is more effective when applied to a small
collection of individuals.

Examples:

1. The similarity value between X = (B2,B3) and Y = (B3,B1,B4,B5) (Sm(X ,Y))
is equal to 1.

2. The similarity value between X = (B1,B2) and the set of the two individuals
|C| ={ Y, Z }. Y = (B3,B1,B4,B5) and Z = (B3,B2,B1) is equal to 2, i.e., the

784 D. Boughaci

maximum between Sm(X ,Y) and Sm(X ,Z) values. Sm(X ,Y) is equal to 1.
Sm(X ,Z) is equal to 2.

3.8.2 The Selection Strategy

At each generation, a collection of individuals is chosen to produce a new individ-
uals for the next generation. The selection strategy is based on both diverse and
quality criteria. The collection of individuals is selected as following.

1. First, from the current population P we choose a set of C1 highest-fitness indi-
viduals.

2. Second, for each individual V from the rest of the population P−C1, we calculate
its similarity value to the current collection C.

3. from P−C1 we select a certain number of |C2| diverse individuals having small
similarity values to complete the collection C.

Globally, we obtain a collection C of C1 highest-fitness individuals and C2 diverse
individuals.

3.8.3 The Crossover Operator

The proposed crossover operator takes two individuals called parents and produces
a new individual called a child. From the first parent to the end of the second par-
ent, the operator decides which parent will contribute gene value to the child; all
conflicting bids are discarded as shown in Algorithm 4.

Algorithm 4: The crossover operator.
Require: two parents Parent1 and Parent2
Ensure: A child, Child
1: Child ⇐ φ
2: for each gene from the beginning of Parent1 to the end of the Parent2 do
3: if (there is no conflict) then
4: Child ⇐ Child with a gene value included into it
5: end if
6: end for
7: return the individual Child.

3.8.4 The MA Algorithm for the WDP

The overall algorithm for the WDP is sketched in Algorithm 5.

Metaheuristics Approaches for the WDP in CA 785

Algorithm 5: The Memetic Algorithm for the WDP.
Require: an instance of WDP.
Ensure: an allocation of bids that maximizes the auctioneer’s revenue
1: Create the conflict graph
2: Generate randomly an initial population P according to the RK
3: Select a list of candidate individuals C from P using the new selection strategy
4: while (the maximum number of generations is not reached) do
5: repeat
6: Select two individuals from C
7: Apply the crossover to obtain a new individual V
8: Apply SLS on V
9: if (V improves the quality of C) then

10: Add V to the C1 best individuals
11: Remove from C the worst one
12: else if (V improves the diversity of C) then
13: Add V to the C2 diverse individuals
14: Remove from C the less diversified one
15: end if
16: until (All the parent combinations are examined)
17: end while
18: return the best individual solution found.

4 Computational Experiments

This section is dedicated to the experimental studies. The C programming language
is used to implement the different proposed algorithms for the WDP. We run the
program on a Pentium- IV 2.8 GHz, 1GB of RAM.

First, we compared the four approaches (SLS, TS, GA and MA) for solving the
WDP. The four methods used the random key encoding (RK) mechanism and the
conflict graph.

The GA uses a standard selection strategy, the specific crossover operator the
same one used in MA and a mutation operator without local search. The standard
selection strategy of the GA is a fitness-based process. The mutation operator con-
sists in selecting a random bid to be included in the individual.

Then, a comparative study with some well-known algorithms of the state of the
art the WDP that are Casanova [15]and SAGII[13] is done.

4.1 Benchmarks

The different algorithms were implemented and tested on various benchmark
problems[16]. The data set includes 500 instances and it is available at the Zhuyi’s
home page3. These instances can be divided into 5 different groups of problems
where each group contains 100 instances given as following where m is the number
of items and n is the number of bids.

3 (http;//logistics.ust.hk/ zhuyi/instance.zip)

786 D. Boughaci

• From in101 to in200: m=500, n=1000
• From in201 to in300: m=1000, n=1000
• From in401 to in 500: m=1000, n=500
• From in501 to in 600: m=1000, n=1500
• From in601 to in 700: m=1500, n=1500

4.2 Parameters Tuning

The adjustment of parameters of the proposed algorithms is fixed by an experimental
study. We conducted several experiments to evaluate the performance of the differ-
ent approaches. The fixed values are those for which a good compromise between
the quality of the solution obtained by the algorithm and the running time of the
algorithm is found.

• The SLS parameters are: the maximum number of iterations (maxiter) is fixed to
10000 and wp is fixed to 0.3.

• The TS parameters are: the maximum number of iterations (maxiter) is fixed to
25000, the ”tabu tenure” (λ) to 40 and the d parameter to 40.

• The GA parameters are fixed by an empirical study as follows: maxgen =100,
popsize=25, crossover rate =0.6 and a mutation rate=0.1.

• The MA parameters are: a collection of C(5,7) , a population of 300 individ-
uals, a number of 100 generations and 300 iterations of local search , and the
probability wp is fixed empirically to 0.3.

4.3 A Comparison between SLS, TS, GA and MA

Tables 1 to 5 depict the results of SLS, TS, GA and MA algorithms on some realistic
test sets where sol corresponds to the solution found by the algorithm and time is
the running time of the algorithm in second.

Table 1 GA, MA,SLS and TS on some REL-1000-500 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in101 336.90 42100.71 129.62 67101.93 23.51 66170.61 57.86 66170.61
in102 432.76 39641.22 132.18 67797.61 23.89 65466.95 63.43 64716.31
in103 338.89 43376.54 133.34 66350.99 24.79 66350.99 128.68 66350.99
in104 376.37 42790.65 135.14 64618.41 22.92 67268.71 120.56 62524.23
in105 331.31 40841.21 153.96 66376.83 22.92 67268.71 120.56 62524.23
in106 385.43 41770.07 140.96 65481.64 22.37 63479.26 129.42 64591.70
in107 379.15 38781.82 146.40 66245.70 23.18 66245.70 128.51 63972.62
in108 337.35 43881.51 161.03 74588.51 24.01 71505.66 119.84 68776.34
in109 336.89 42001.62 144.71 62492.66 22.20 61751.22 80.98 64343.07
in110 320.84 38632.49 149.01 65171.19 23.25 64083.64 115.31 60275.66

Metaheuristics Approaches for the WDP in CA 787

Table 2 GA, MA,SLS and TS on some REL-1000-1000 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in201 697.65 56640.60 98.26 77499.82 697.65 56640.60 98.26 77499.82
in202 693.14 59029.76 106.68 90464.19 693.14 59029.76 106.68 90464.19
in203 562.29 59476.80 102.28 86239.21 562.29 59476.80 102.28 86239.21
in204 732.71 57671.10 97.40 81969.046 732.71 57671.10 97.40 81969.046
in205 573.98 59915.07 91.26 82469.19 573.98 59915.07 91.26 82469.19
in206 627.01 58674.13 93.99 86881.42 627.01 58674.13 93.99 86881.42
in207 667.75 60383.29 100.90 91033.51 667.75 60383.29 100.90 91033.51
in208 646.34 63052.38 101.29 83667.76 646.34 63052.38 101.29 83667.76
in209 655.09 59333.98 96.42 81966.65 655.09 59333.98 96.42 81966.65
in210 547.09 64762.35 97.78 85079.98 547.09 64762.35 97.78 85079.98

Table 3 GA, MA,SLS and TS on some REL 500-1000 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in401 1193.89 56437.68 37.07 72948.07 5.67 72948.07 44.14 68485.81
in402 1272.06 56637.00 37.20 71454.78 5.79 71454.78 23.57 72820.03
in403 1299.01 57024.78 38.81 74843.96 6.01 74843.96 34.15 74843.96
in404 1088.39 61123.14 38.78 78761.68 6.12 78761.68 16.85 73385.62
in405 1030.96 58852.75 39.29 72674.25 6.04 72674.25 15.90 72674.25
in406 1318.40 58714.53 38.09 71791.03 5.87 71791.03 37.12 71791.03
in407 1021.79 58239.19 40.95 73935.28 6.35 73278.66 15.57 71578.48
in408 1348.82 59185.08 39.07 72580.04 5.95 72580.04 27.37 70144.19
in409 1342.28 54950.59 36.28 68724.53 5.48 67177.35 25.48 67177.35
in410 1005.54 59764.76 41.90 71791.57 6.37 71791.57 14.01 72791.68

Table 4 MA, GA, SLS and TS on some REL-1500-1000 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in501 1624.84 64961.36 107.82 79132.03 15.62 77140.72 98.71 82216.35
in502 1707.18 56954.75 108.71 80340.76 15.98 78574.26 120.82 74127.61
in503 1450.79 59161.13 114.15 83277.71 15.99 79554.65 114.11 77005.81
in504 1662.53 59691.51 116.11 81903.02 16.48 81903.02 155.54 81903.02

Table 5 GA, MA,SLS and TS on some REL-1500-1500 instances

Instances GA MA SLS TS
time sol time sol time sol time sol

in601 1489.40 73665.13 110.62 99044.32 15.54 96255.53 100.76 97473.85
in602 1810.56 76006.38 114.18 98164.23 15.71 95328.21 155.34 93873.31
in603 1685.07 71585.28 110.71 94126.96 15.48 94126.96 137.95 92568.61
in604 1627.37 71958.50 110.60 103568.86 15.59 103568.86 96.70 92869.78
in605 1634.68 71348.06 122.40 102404.76 17.36 98799.71 175.14 95787.59
in606 1656.29 72505.09 107.79 104346.07 15.60 104346.07 334.12 104346.07
in607 1625.37 72162.60 113.26 105869.44 15.89 100417.40 267.79 98674.39
in608 1625.46 76189.79 109.15 95671.77 15.26 95671.77 95.62 91554.61
in609 1581.18 71664.87 111.12 98566.94 16.76 98566.94 103.10 96652.44
in610 1572.06 72393.14 120.17 102468.60 17.57 99975.09 146.03 99975.09

788 D. Boughaci

The numerical results show that the genetic algorithm (GA) usually fails to find
a good solution to the WDP problems for all the checked instances. The MA always
outperforms the GA in both solution quality and efficiency.

The MA, SLS and TS find good quality solutions for almost all the benchmarks
efficiently. It can be seen that SLS is the fastest algorithm. However, for the REL
500-1000 class, TS outperforms SLS in term of solutions quality.

4.4 Further Comparisons

4.4.1 A Comparison between SLS, Casanova and Tabu Search

Table 6 shows the numerical results where the column μ corresponds to the arith-
metic average solution of the 100 instances in each group and the column time
corresponds to the average time in second.

Table 6 Casanova vs. SLS vs. TS

Test set #ins Casanova SLS TS
time μ time μ time μ

REL-500-1000 100 119.46 37053.78 22.35 64216.14 91,07 65286,94
REL-1000-500 100 57.74 51248.79 5.91 72206.07 25,84 71985,34
REL-1000-1000 100 111.42 51990.91 14.19 82120.31 104,30 81633,63
REL-1000-1500 100 168.24 56406.74 14.97 79065.08 223,37 77931,41
REL-1500-1500 100 165.92 65661.03 16.47 98877.07 175,68 97824,64

From the numerical results, we can see that SLS performs better than Casanova.
It finds better solutions in shorter time. The difference between SLS and Casanova
is even greater. Table 6 shows good performances of the SLS in solving the WDP
compared to TS. It improves slightly TS. SLS and TS are definitely better than
Casanova that fails to find good solutions for all the instances.

4.4.2 A Comparison between MA, SAGII and SLS

Table 7 summarizes the results found by MA, SAGII and SLS methods for the 500
instances of the 5 groups. The column μ corresponds to the arithmetic average rev-
enue of the 100 instances in each group and the column time gives the average time
in second.

The results of Table 7 show a slight performance in favor of the MA. The differ-
ence between MA and SAGII is not greater despite of the sophisticate Branch and
Bound and the pre-processing

According to the results, the MA algorithm compares well with the SAGII which
produces quite similar results in terms of the solution quality.

On the other hand, the stochastic local search SLS and MA are comparable but
MA remains efficient on the checked instances. This is due to a good combination
between the crossover operator and the stochastic local search.

Metaheuristics Approaches for the WDP in CA 789

Table 7 Comparison between MA, SAGII and SLS

Test set #ins MA SAGII SLS
time μ time μ time μ

REL-500-1000 100 159.30 66544.93 38.06 64922.02 22.3519 64216.14
REL-1000-500 100 38.30 73562.89 24.46 73922.10 5.9187 72206.07
REL-1000-1000 100 96.37 84199.99 45.37 83728.34 14.1957 82120.31
REL-1000-1500 100 105.66 80173.42 68.82 82651.49 14.9745 79065.08
REL-1500-1500 100 113.31 101035.52 91.78 101739.64 16.476 98877.07

5 Conclusion

A combinatorial auction (CA) is an auction that allocates a set of many goods to
bidders in the presence of substitutes and complements. In this chapter, genetic al-
gorithm, memetic algorithm, stochastic local search and tabu search metaheuristic
methods are studied for solving the winner determination problem (WDP) in com-
binatorial auctions.

All the methods are implemented and evaluated on several benchmark problems
with various sizes, and compared with SGAII and Casanova. The experimental re-
sults are very encouraging. Both local search and evolutionary metaheuristic provide
competitive results and find solutions of a higher quality.

To improve our algorithm on quality, new features will be integrated into the
proposed algorithm such as the combination of the MA, SLS and a Branch-and-
Bound exact method. Our purpose is to conceive a hyperheuristic method able to
search good quality solutions.

References

1. Anderson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction
winner determination. In: Proceedings of 4th International Conference on Multi-Agent
Systems, pp. 39–46. IEEE Computer Society Press (July 2000)

2. Bean, J.C.: Genetics and random keys for sequencing and optimization. ORSA Journal
of Computing 6(2), 154–160 (1994)

3. Boughaci, D., Benhamou, B., Drias, H.: Local Search Methods for the Optimal Winner
Determination Problem in Combinatorial Auctions. J. Math. Model. Algorithms 9(2),
165–180 (2010)

4. Boughaci, D., Benhamou, B., Drias, H.: A memetic algorithm for the optimal winner
determination problem. Soft Computing 13(8-9), 905–917 (2009)

5. Boughaci, D., Benhamou, B., Drias, H.: Stochastic Local Search for the Optimal Win-
ner Determination Problem in Combinatorial Auctions. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 593–597. Springer, Heidelberg (2008)

6. Boughaci, D., Drias, H., Benhamou, B.: Solving MAX-SAT problems using a Memetic
Evolutionary Meta-Heuristic. In: Proceedings of the IEEE International conference on
Cybernetics and Intelligent Systems, CIS 2004, pp. 480–484 (December 2004)

790 D. Boughaci

7. Collins, J., Sundareswara, R., Gini, M., Mobasher, B.: Bid Selection Strategies for
Multi-Agent Contracting in the Presence of Scheduling Constraints. In: Moukas, A.,
Ygge, F., Sierra, C. (eds.) Agent Mediated Electronic Commerce II. LNCS, vol. 1788,
pp. 113–130. Springer, Heidelberg (2000)

8. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complexity of
combinatorial auctions: optimal and approximate approaches. In: Sixteenth International
Joint Conference on Artificial Intelligence, pp. 48–53 (1999)

9. Goldberg, D.E.: Genetic Algorithms in search Optimization and Machine Learning.
Addison-Wesley, Wokingham (1989)

10. Glover, F.: Future paths for integer programming and links to Artificial intelligence. Op-
erational Search 31 (1986)

11. Glover, F.: “Tabu search”: Part I. ORSA, Journal on Computing (1989)
12. Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a brokering set packing prob-

lem. In: Proceedings of Eighth International Symposium on Artificial Intelligence and
Mathematics, pp. 10–14 (2004)

13. Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a bidding problem. Computers
and Operations Research 33(8), 2179–2188 (2006)

14. Holland, A., O’sullivan, B.: Towards Fast Vickrey Pricing using Constraint Program-
ming. Artificial Intelligence Review 21(3-4), 335–352 (2004)

15. Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local search.
In: Proceedings of the 17th National Conference on Artificial Intelligence, pp. 22–29
(2000)

16. Lau, H.C., Goh, Y.G.: An intelligent brokering system to support multi-agent web-based
4th-party logistics. In: Proceedings of the 14th International Conference on Tools with
Artificial Intelligence, pp. 54–61 (2002)

17. Ishibuchi, H., Narukawa, K.: Some issues on the implementation of local search in evo-
lutionary multiobjective optimization. In: Deb, K., et al. (eds.) GECCO 2004, Part I.
LNCS, vol. 3102, pp. 1246–1258. Springer, Heidelberg (2004)

18. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search
in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans-
actions on Evolutionary Computation 7(2), 204–223 (2003)

19. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combi-
natorial auction algorithms. In: ACM Conference on Electronic Commerce, pp. 66–76
(2000)

20. Leyton-Brown, K., Tennenholtz, M., Shoham, Y.: An Algorithm for Multi-Unit Combi-
natorial Auctions. In: Proceedings of the 17th National Conference on Artificial Intelli-
gence, Austin, Games 2000, Bilbao and ISMP 2000, Atlanta (2000)

21. McAfee, R., McMillan, P.J.: Auctions and bidding. Journal of Economic Literature 25,
699–738 (1987)

22. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts:
Towards Memetic Algorithms. In: Caltech Concurrent Computation Program, C3P Re-
port 826 (1989)

23. Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proceedings of ACM
Conference on Electronic Commerce (EC 2000), pp. 1–12. ACM SIGecom, ACM Press,
Minneapolis (2000)

24. Rothkopf, M.H., Pekee, A., Ronald, M.: Computationally manageable combinatorial
auctions. Management Science 44(8), 1131–1147 (1998)

25. Sandholm, T.: Algorithms for Optimal Winner Determination in Combinatorial Auc-
tions. Artificial Intelligence 135(1-2), 1–54 (1999)

Metaheuristics Approaches for the WDP in CA 791

26. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABoB: a fast optimal algorithm for com-
binatorial auctions. In: Proceedings of the International Joint Conferences on Artificial
Intelligence, pp. 1102–1108 (2001)

27. Sandholm, T., Suri, S.: Improved Optimal Algorithm for Combinatorial Auctions and
Generalizations. In: Proceedings of the 17th National Conference on Artificial Intelli-
gence, pp. 90–97 (2000)

28. Sandholm, T.: Optimal Winner Determination Algorithms. In: Cramton, P., et al. (eds.)
Combinatorial Auctions. MIT Press (2006)

29. de Vries, S., Vohra, R.: Combinatorial auctions a survey. INFORMS Journal of Comput-
ing 15, 284–309 (2003)

Author Index

Abdelsalam, Hisham M. 751
Ahmad, R.B. 571
Alexandrova-Kabadjova, Biliana 633
Arin, Arif 435

Bandyopadhyay, Susmita 477
Benderskaya, Elena N. 319
Benyettou, Abdelkader 525
Bhattacharya, Ranjan 477
Boughaci, Dalila 775
Bucur, Laurentiu 721
Bull, Larry 63
Burgin, Mark 201

Cardoso, Jaime S. 109
Chaturvedi, Soni 525
Chera, Catalin 721
Chiari, Isabella 287
Costa, Victor Hugo Teles 657
Cuevas, Erik 545

da Costa, Joaquim F. Pinto 109
Dai, Qionghai 345
De Gasperis, Giovanni 287
Deng, Yue 345
Ding, Amy Wenxuan 83
Dong, Yingsai 601

Eberbach, Eugene 201

Florea, Adina 721
Florio, Niva 287

Garcia-Almanza, Alma Lilia 633
Gonçalves, Bruno Henrique Pereira 657
Gonzalez-Hernandez, Loreto 371
Greer, Kieran 43

Hashim, F.M. 685

Imada, Akira 19

Khurshid, Aleefia A. 525

Laalaoui, Yacine 571
Lézoray, Olivier 525

Martinez-Jaramillo, Serafin 633
Meftah, Boudjelal 525
Mohamed, Amany M. 751

Nitaj, Abderrahmane 139

Pérez-Cisneros, Marco 545
Pietruszkiewicz, Wiesław 19
Prentzas, Jim 169

Qin, Zengchang 601

Rabadi, Ghaith 435
Rangel-Valdez, Nelson 371
Romańczuk, Urszula 231, 257

Sousa, Ricardo 109

Tamiru, A.L. 685
Torres-Jimenez, Jose 371

794 Author Index

Ustimenko, Vasyl 231, 257

Vieira, Flávio Henrique Teles 657

Wan, Tao 601
Wario, Fernando 545

Yampolskiy, Roman V. 3
Yang, Xin-She 405, 421
Yevseyeva, Iryna 109

Zaldivar, Daniel 545
Zhang, Zengke 345
Zhukova, Sofya V. 319

	Title
	Preface
	Contents
	Part I Artificial Intelligenceand Cryptography
	Turing Test as a Defining Featureof AI-Completeness
	Introduction
	The Theory of AI-Completeness
	Definitions
	Turing Test as the First AI-Complete Problem
	Reducing Other Problems to TT
	Other Probably AI-Complete Problems
	1st AI-Hard Problem: Programming

	Beyond AI-Completeness
	Conclusions
	References

	Artificial Intelligence Evolved from RandomBehaviour: Departure from the State of the Art
	Introduction
	Artificial Intelligence vs. Natural Intelligence
	Definition of Human Intelligence
	Informal Definitions of Machine Intelligence
	Formal Definitions of Machine Intelligence

	A Thought on Artificial Intelligence So-Far-Proposed
	Artificial Intelligence Evolved from Randomness
	Machiavellian Intelligence
	Hibbard’s Formal Definition Revisited
	Avidian

	A Modern Interpretation of Turing Test
	During 50 Years Since the Proposal
	An Easy Way to Cheat Human?
	Turing Test These Days

	Biologically Inspired Artificial Intelligence
	A Benchmark to Evaluate Artificial Intelligence
	To Aim a Real Human-Like Machine Intelligence
	Huge Number of Neurons–From Emulation to Simulation
	Toward Real AI by Parallelism

	Conclusions
	References

	Turing: Then, Now and Still Key
	Introduction
	Simplified Model of the Human Brain
	A List of Requirements for Intelligence
	General Mechanisms and Processes for Building a Solution
	Related Work
	Conclusions
	References

	Imitation Programming Unorganised Machines
	Introduction
	Background
	Discrete Dynamical Systems
	Graph-Based Representations
	Unorganised Machines

	Imitation Programming: Cultural Search
	Experimentation
	Asynchrony
	A Comparison with Evolution
	Towards Memristive Hardware
	Implication A-Types
	Synapse

	Conclusions
	References

	Towards Machine Equivalent Consciousness
	Introduction
	Patterns of Human Perceptions
	Sensation of Sight
	Sensation of Hearing
	Sensation of Smell
	Sensation of Taste
	Sensation of Touch

	A Comparison between Human and Machine Perceptions
	Awareness as Perceived Pattern of Physical Energy Changes
	Turing’s Ideas for Building a Machine with Self-awareness
	Differences in Drawing Inference between Humans andMachines
	An Unfixable Difference in Drawing Inference
	A Fixable Difference

	Conclusion
	References

	Multicriteria Models for Learning OrdinalData: A Literature Review
	Introduction
	Terminology and Concepts
	Multicriteria Decision Analysis
	MCDA Methods

	Inductive Learning Algorithms
	Feature Selection Algorithms on Ordinal Data
	Performance Measures

	Conclusion
	References

	Diophantine and Lattice Cryptanalysisof the RSA Cryptosystem
	Introduction
	The RSA Cryptosystem
	Diophantine Approximations
	Diophantine Approximations Cryptanalysis of RSA
	Wiener’s Attack on RSA
	de Weger’s Generalization of Wiener’s Attack
	Another Generalization of Wiener’s Attack
	Nassr et al. Generalization of Wiener’s Attack

	Lattices
	Small Solution of Polynomial Equations
	Howgrave-Graham’s Theorem
	Coppersmith’s Theorem
	Herrmann and May’s Theorem for Bivariate Modular LinearEquations
	The Small Inverse Problem

	Lattice-Reduction Cryptanalysis of RSA
	Factoring the RSA Modulus with Partial Knowledge of p
	Factoring the RSA Modulus with Small Prime Difference
	Boneh and Durfee’s Class of Weak Keys
	Another Generalization of Wiener’s Attack on RSA
	Least Significant Bits of d Known
	The Φ-Hiding Assumption

	Diophantine and Lattice Cryptanalysis of RSA
	Bl\"{o}mer and May’s Class of Weak Keys
	Another Class of Weak Keys

	Conclusion
	References

	Artificial Intelligence Methods in EarlyChildhood Education
	Introduction
	Background
	Educational Technology in Early Childhood: General Issues
	Intelligent Educational Systems
	Intelligent Educational Robots for Young Children

	Case Studies of Integrating IESs in Early Childhood Settings
	Outline of IES Approaches in Early Childhood
	Discussion of Derived Results

	Case Studies of Robot Integration in Early ChildhoodSettings
	Approaches Integrating Robots in Typical Early Childhood Classrooms
	Robots and Young Children with Special Needs
	General Approaches Concerning Robots and Young Children
	Discussion

	Conclusions
	References

	Recursively Generated Evolutionary TuringMachines and Evolutionary Automata
	Introduction
	Basic Evolutionary Machines
	Computations by Evolutionary Machines
	Construction of Evolutionary Machines
	Conclusion
	References

	On Dynamical Systems of Large Girth or Cycle Indicator and TheirApplications to Multivariate Cryptography
	Introduction
	On Cryptography Basics, Cremona Groupand Dynamical Systems
	Symmetric Cryptography
	Idea of a Asymmetry
	On the Discrete Logarithm Problem for SpecialSubgroups of Cremona Group
	On the History of Constructive MultivariateCryptography

	Dynamical Systems with Large Cycle Indicator,Related Public Keys and Key Exchange Protocols
	On the Case of Ring Extensions

	On the Velocities of Growth of Orders for Polynomial Encryption Maps Based on Dynamical Systems of Large Girth and of Large Cycle Indicator
	Conclusion
	References

	On Extremal Graph Theory, Explicit Algebraic Constructions of Extremal Graphs and Corresponding TuringEncryption Machines
	Introduction
	On Algebraic Graphs, Automata and TuringMachines Related to Algebraic Graph
	Extremal Simple Graphs of Large Girth or LargeCycle Indicator
	On Families of Digraphs of Large Girth or Large Cycle Indicator
	Explicit Algebraic Constructions of Graphs,Digraphs of Large Girth or Large Cycle Indicator and Dynamical Systems
	Polarities of Incidence Structures and Related Dynamical Systems
	Improvement of Constants, Transitivity of SomeTuring Machines
	Correlation with Expansion Properties

	On the Recent Implementation of Turing MachinesRelated to Graph Based Dynamical Systems
	Comparison of Our Symmetric Algorithm withRC4
	Comparison with DES
	On the Expansion of Speed Evaluation for SomeOther Stream Ciphers

	Conclusion
	References

	AIML Knowledge Base Construction�from Text Corpora
	Introduction: Turing Test and Conversational Agents
	Turing Test as a Regulative Idea
	Chatbot Early History and General Developments
	Chatbot Applications for Educational Purpose
	AIML Language and Architecture

	Corpus Based Chatbots and Linguistic Issues
	The Corpus
	Building a Glossary: Linguistic Issues
	Corpus Based FAQ

	Steps for Chatter-Bot Generation
	Requirements for the Chatter-Bot
	Input Set Definition
	Chatter-Bot Lexical Knowledge Base Construction
	Chatter-Bot Testing

	Discussion
	Tools and Resources
	References

	Multidisciplinary Trends in Modern ArtificialIntelligence: Turing's Way
	Introduction
	Artificial Intelligence: Challenges and Multidisciplinarity
	Symbolic and Connectionist Artificial Intelligence
	In Between AI Approaches: Multi-Agent Systems

	Natural and Artificial Intelligence
	Bio-inspired Methods and Transdisciplinarity
	Dynamic and Nonlinear Artificial Intelligence

	Chaos and Artificial Intelligence
	Chaotic Neural Network Basics
	Clustering Challenges

	Evolution of CNN
	Synchronization Phenomenon and Oscillatory Clusters
	Structure Complexity and Delaunay Triangulation
	Clustering and Classification by CNN
	Fractals and Oscillatory Dynamics

	Chaotic Neural Network and Multidiscilinarity
	Turing Ideas and Hardware Implementation of CNN
	Conclusion
	References

	An Overview of Computational Sparse Modelsand Their Applications in Artificial Intelligence
	Introduction
	Sparse Signal Optimization
	Sparse Signal Pursuit
	Proximal Gradient Method
	Solving Basis Pursuit via PG
	Applications in Compressive Sensing
	Sparse Learning

	Low Rank Matrix Completion
	Low Rank Matrix Completion
	PG Optimization for MC
	MC Applications: A General Review
	Noisy Depth Maps Fusion via MC

	Low Rank Structure Learning from Corruptions
	Low Rank Structure Learning
	Illumination Decomposition via LRSL

	Discussions on Future Works
	References

	MiTS in Depth: An Analysis ofDistinct Tabu Search Configurations for Constructing Mixed Covering Arrays
	Introduction
	Related Work
	Mixed Covering Array Problem
	Proposed Approach
	Creating the Initial Solution
	Tabu List Definitions
	Neighborhood Functions
	Evaluation Function
	Stop Criterion

	Experimental Design: Analysis and Results
	First MiTS Design for MCA
	Second MiTS Design for MCA
	Third MiTS Design for MCA

	Conclusions
	References

	Part II Evolutionary Computationand Metaheuristics
	Metaheuristic Optimization: Nature-InspiredAlgorithms and Applications
	Introduction
	Metaheuristics
	Metaheuristic Algorithms
	Ant Algorithms
	Bee Algorithms
	Genetic Algorithms
	Differential Evolution
	Particle Swarm Optimization
	Firefly Algorithm
	Harmony Search
	Bat Algorithm
	Cuckoo Search

	Artificial Neural Networks
	Neural Networks
	Back Propagation Algorithm

	Characteristics of Metaheuristics
	No-Free-Lunch Theorems
	Search for Free Lunches
	References

	Bat Algorithm and Cuckoo Search: A Tutorial
	Bat Algorithm
	Behaviour of Microbats
	Acoustics of Echolocation
	Bat Algorithm
	Further Topics

	CuckooSearch
	Cuckoo Breeding Behaviour
	L´evy Flights
	Cuckoo Search
	Choice of Parameters
	How to Do L´evy Flights

	References

	Memory and Learning in Metaheuristics
	Introduction
	Concepts of Memory and Learning
	Memory and Learning Mechanisms in Metaheuristics
	Metaheuristics with Memory and Learning
	Tabu Search (TS)
	Evolutionary Algorithms (EAs)
	Scatter Search
	Path Relinking
	Swarm Intelligence
	Estimation of Distribution Algorithms

	Contribution of Memory and Learning into the Meta-RaPSMetaheuristic
	Meta-RaPS
	The 0-1 Multidimensional Knapsack Problem
	A Representative Example of 0-1 Multidimensional KnapsackProblem
	Meta-RaPS Solution for 0-1 Multidimensional KnapsackProblem
	Meta-RaPS EDA Solution for the 0-1 MultidimensionalKnapsack Problem
	Comparison of Meta-RaPS and Meta-RaPS EDA

	Conclusion
	References

	On Some Aspects of Nature-Based Algorithmsto Solve Multi-Objective Problems
	Introduction
	Benchmark Nature Based Phenomenon
	Genetic Reproduction
	Swarm Behavior
	Ant Colony
	Immunity System

	Nature Based Benchmark Multi-Objective OptimizationAlgorithms
	Genetic Algorithms
	Particle Swarm Optimization
	Differential Evolution (DE)
	Artificial Immune System (AIS)
	Ant Colony Optimization (ACO)
	Simulated Annealing (SA)
	Tabu Search (TS)

	Other Miscellaneous Algorithms
	High-Dimensional Objective Genetic Algorithm (HOGA)
	Pareto Converging Genetic Algorithm (PCGA)
	Real-Coded Quantum Clone MOEA (RQC-MOEA)
	Multi-Objective Gene Expression Programming (MOGEP)
	GAR-SD
	S-Metric Selection Evolutionary Multi-Objective Algorithm(SMS-MOEA)
	Multi-Objective Optimization Using Cross Entropy Method(MOO CEM)
	Multi-Objective Symbiotic Evolutionary Algorithm (MOSEA)
	Multi-Objective Modified Shuffled Frog Leaping Algorithm(MMSFLA)
	Objective Space Dividing MOEA (OSD MOEA)
	Multi-Objective Membrane Algorithm (MOMA)
	Regularity Model Based Multi-Objective EstimationDistribution Algorithm (RMMEDA)
	Multi-Objective Greedy Randomized Adaptive SearchProcedure MetaHeuristic Algorithm (mGRASP/MH)
	Multi-Objective Honey Bee Mating Optimization (MHBMO)
	Bacteria Foraging Algorithm (BFA)
	Cultural Algorithms (CA)
	Firefly Algorithm (FA)
	Cuckoo Search (CS)
	Gravitational Search Algorithm (GSA)
	Charged System Search (CSS)
	Miscellaneous Algorithms

	Hybrid Algorithms
	Modification/Improvement of Existing Algorithms
	Test Functions
	Software Packages Used
	Complexity of Nature Based Algorithms
	Conclusion
	References

	Image Processing with Spiking NeuronNetworks
	Introduction
	Overview of Spiking Neuron Networks
	Artificial Neuron Generations
	Spiking Neuron Networks Architecture
	Neural Coding Schemes

	Spiking Neuron Networks for Clustering, Segmentation andEdge Detection
	Information Coding
	Spiking Neuron Networks for Unsupervised Learning Method
	SNN Architecture for Clustering, Segmentation and EdgeDetection

	Experimental Results and Discussion
	Clustering Images
	Cell Segmentation
	Edge Detection

	Conclusion
	References

	Circle Detection on Images Using LearningAutomata
	Introduction
	Learning Automata
	Circle Detection Using LA
	Data Preprocessing
	Action Representation
	Performance Evaluation Function β (·)
	LA Implementation

	The Multiple Circle Detection Procedure
	Experimental Results
	Circle Localization
	Circle Discrimination Test
	Multiple Circle Detection
	Circular Approximation
	Complex Cases
	Occluded Circles and Arc Detection
	Complex Cases

	Performance Comparison
	Parametric Setup
	Error Score and Succes Rate

	Conclusions
	References

	Decision Incorporation in Meta-heuristics to Cope with DecisionScheduling Problems
	Introduction
	The Halting Problem
	Decision Scheduling Problems
	Overview
	Problem Formulation

	Meta-heuristics and Decision Problems
	Simulated Annealing
	Ant Colony Optimization
	Tabu Search

	Decision with the Steady-State
	Overview
	Preemptive vs Non-preemptive Schedulers
	Preemption Learning
	Search Iterations Sampling and Decision Points
	Experimental Study

	Complexity Study
	Applicability of the Steady-State
	Job Set Characteristics
	Treeless Algorithms
	Automatic Parameter Settings in Meta-heuristics

	Conclusion
	References

	Evolutionary Models for Agent-BasedComplex Behavior Modeling
	Introduction
	Turing’s Unorganized Machines
	Turing’s Idea of Neural Computation
	Turing’s Idea of Genetic Algorithms

	Genetic Algorithms
	Brief History of Genetic Algorithm
	Essentials of Genetic Algorithm

	Evolutionary Collective Behavior Decomposition
	Complex Adaptive Systems and PatternFormation
	Agent Behavior Modeling with Minority Game
	Behavior Learning with Genetic Algorithms
	Modeling with Mixed-Games
	Experimental Studies

	Evolutionary Market Mechanism Designs
	Market Mechanism
	Agent Strategy Modeling
	Evolutionary Optimization
	Trading with Heterogeneous Agents in CDA
	Experimental Studies

	TheEnd
	References

	Bankruptcy Prediction for Banks: An Artificial Intelligence Approach to ImproveUnderstandability
	Introduction
	Feature Selection
	Multi-Population EDR Approach
	Index to Measure the Features Relevance
	Graph of Features Approach
	Experimental Section
	Experiment Description
	Observations
	Analysis to Test the Approach

	Conclusions
	References

	Neural Network Based Approaches for NetworkTraffic Prediction
	Introduction
	Wiener Filters
	Linear and Nonlinear Prediction
	Least Mean Square (LMS) Algorithm and the Adaline NeuralNetwork
	Multilayer Perceptron and the Backpropagation Algorithm
	Radial Basis Function (RBF) Neural Network
	Regularized Orthogonal Least Squares (ROLS) Algorithm
	Wavelet Transform
	RBF Neural Network and Wavelets: Simulations and Results

	Recurrent Neural Networks
	Real Time Recurrent Learning (RTRL) Algorithm
	An Extended Kalman Filter (EKF) Based Training Algorithm
	Recurrent Neural Networks: Simulations and Results

	Conclusions
	References

	Application of Bat Algorithm and Fuzzy Systems to Model ExergyChanges in a Gas Turbine
	Introduction
	Methodology
	System Configuration
	First Principle Model
	Model Identification

	Result and Discussion
	Validation of First Principle Model
	Validation of Fuzzy Models

	References

	A KBRL Inference Metaheuristicwith Applications
	Introduction
	Kernel-Based Reinforcement Learning
	Markov Decision Processes and Reinforcement Learning
	Kernel-Based Reinforcement Learning

	A Novel Inference Metaheuristic
	The Isotropic Discrete Choice Strategy
	Anisotropic Optimization

	Inference Strategy Comparison. A Synthetic Data Example
	Quality of Inference (QoINF) Filters
	Parallel Inference Extensions for High PerformanceComputing
	The KBRL Metaheuristic and the Anisotropic Gaussian Kernel
	Parallel Algorithms

	Advantages and Disadvantages of the Proposed Metaheuristic
	KBRL Image Recognition Experiments
	Purpose
	Data
	Experimental Procedure
	Classification Results of the Isotropic Discrete Choice in Parallel1 Implementation

	The Parallel2 Algorithm and the FCINT Computer VisionSystem
	Parallel2 and the FCINT Computer Vision System
	Execution Benchmarks
	Lessons Learned

	Conclusions and Future Work
	Conclusions
	Future Work

	References

	Multi-objective Simulated Annealing Algorithmfor Partner Selection in Virtual Enterprises
	Introduction
	Background
	Multi-objective Optimization
	Multi- objective Simulated Annealing

	Problem Description
	Context
	Objectives and Constraints
	Model Formulation

	Solution Algorithm
	Solution Representation
	Generating an Initial Solution
	Time Calculation
	Generating a New Solution
	Feasibility
	Stopping Criterion

	Illustrative Example
	Input Data
	Results

	Algorithm Performance
	Conclusion
	References

	Metaheuristic Approaches for theWinnerDetermination Problem in Combinatorial Auction
	Introduction
	Review of Related Work
	Metaheuristic Approaches for theWDP
	The Solution Representation
	The Random Key Encoding
	The Conflict Graph
	The Evaluation Function
	The SLS for the WDP
	The TS for the WDP
	The Genetic Algorithm for the WDP
	The Memetic Algorithm for the WDP

	Computational Experiments
	Benchmarks
	Parameters Tuning
	A Comparison between SLS, TS, GA and MA
	Further Comparisons

	Conclusion
	References

	Author Index

