
An Attack on Privacy Preserving Data

Aggregation Protocol for Wireless Sensor
Networks

Jaydip Sen1 and Subhamoy Maitra2

1 Innovation Labs, Tata Consultancy Services Ltd.,
Bengal Intelligent Park, Salt Lake Electronic Complex, Kolkata 700 091, India

jaydip.sen@acm.org
2 Applied Statistics Unit, Indian Statistical Institute,

203 B T Road, Kolkata 700 108, India
subho@isical.ac.in

Abstract. In-network data aggregation in Wireless Sensor Networks
(WSNs) provides efficient bandwidth utilization and energy-efficient
computing. Supporting efficient in-network data aggregation while pre-
serving the privacy of the data of individual sensor nodes has emerged as
an important requirement in numerous WSN applications. For privacy-
preserving data aggregation in WSNs, He et al. (INFOCOM 2007) have
proposed a Cluster-based Private Data Aggregation (CPDA) that uses
a clustering protocol and a well-known key distribution scheme for com-
puting an additive aggregation function in a privacy-preserving manner.
In spite of the wide popularity of CPDA, it has been observed that the
protocol is not secure and it is also possible to enhance its efficiency. In
this paper, we first identify a security vulnerability in the existing CPDA
scheme, wherein we show how a malicious participant node can launch
an attack on the privacy protocol so as to get access to the private data
of its neighboring sensor nodes. Next it is shown how the existing CPDA
scheme can be made more efficient by suitable modification of the pro-
tocol. Further, suitable modifications in the existing protocol have been
proposed so as to plug the vulnerability of the protocol.

Keywords: Wireless sensor network, privacy, data aggregation,
cluster-based private data aggregation (CPDA), key distribution, col-
luding attack, malicious node.

1 Introduction

In recent years, wireless sensor networks (WSNs) have drawn considerable at-
tention from the research community on issues ranging from theoretical research
to practical applications. Special characteristics of WSNs, such as resource con-
straints on energy and computational power and security have been well-defined
and widely studied [2][12]. What has received less attention, however, is the
critical privacy concern on information being collected, transmitted, and ana-
lyzed in a WSN. Such private and sensitive information may include payload

P. Laud (Ed.): NordSec 2011, LNCS 7161, pp. 205–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

206 J. Sen and S. Maitra

data collected by sensors and transmitted through the network to a centralized
data processing server. For example, a patient’s blood pressure, sugar level and
other vital signs are usually of critical privacy concern when monitored by a
medical WSN which transmits the data to a remote hospital or doctor’s office.
Privacy concerns may also arise beyond data content and may focus on context
information such as the location of a sensor initiating data communication. Ef-
fective countermeasure against the disclosure of both data and context-oriented
private information is an indispensable prerequisite for deployment of WSNs in
real-world applications.

Privacy protection has been extensively studied in various fields related to
WSNs such as wired and wireless networking, databases and data mining.
Nonetheless, the following inherent features of WSNs introduce unique chal-
lenges for privacy preservation in WSNs, and prevent the existing techniques
from being directly transplanted: (i) Uncontrollable environment : Sensors may
have to be deployed to an environment uncontrollable by the defender, such as
a battlefield, enabling an adversary to launch physical attacks to capture sen-
sor nodes or deploy counterfeit ones. As a result, an adversary may retrieve
private keys used for secure communication and decrypt any communication
eavesdropped by the adversary. (ii) Sensor-node resource constraints : battery-
powered sensor nodes generally have severe constraints on their ability to store,
process, and transmit the sensed data. As a result, the computational complexity
and resource consumption of public-key ciphers is usually considered unsuitable
for WSNs. (iii) Topological constraints : the limited communication range of sen-
sor nodes in a WSN requires multiple hops in order to transmit data from the
source to the base station. Such a multi-hop scheme demands different nodes to
take diverse traffic loads. In particular, a node closer to the base station (i.e.,
data collecting and processing server) has to relay data from nodes further away
from base station in addition to transmitting its own generated data, leading
to higher transmission rate. Such an unbalanced network traffic pattern brings
significant challenges to the protection of context-oriented privacy information.
Particularly, if an adversary holds the ability of global traffic analysis, observ-
ing the traffic patterns of different nodes over the whole network, it can easily
identify the sink and compromise context privacy, or even manipulate the sink
node to impede the proper functioning of the WSN.

The unique challenges for privacy preservation in WSNs call for the develop-
ment of effective privacy-preserving techniques. Supporting efficient in-network
data aggregation while preserving data privacy has emerged as an important re-
quirement in numerous wireless sensor network applications [1][4][8][9][13]. As a
key approach to fulfilling this requirement of private data aggregation, concealed
data aggregation (CDA) schemes have been proposed in which multiple source
nodes send encrypted data to a sink along a converge-cast tree with aggregation
of cipher-text being performed over the route [1][3][4][8][11][13].

He et al. have proposed a cluster-based private data aggregation (CPDA)
scheme in which the sensor nodes are randomly distributed into clusters [9]. The
cluster leaders carry out aggregation of data received from the cluster member

An Attack on Privacy Preserving Data Aggregation Protocol 207

nodes. The data communication is secured by using a shared key between each
pair of communicating nodes for the purpose of encryption. The aggregate func-
tion leverages algebraic properties of the polynomials to compute the desired
aggregate value in a cluster. While the aggregation is carried out at the aggre-
gator node in each cluster, it is guaranteed that no individual node gets to know
the sensitive private values of other nodes in the cluster. The intermediate ag-
gregate value in each cluster is further aggregated along the routing tree as the
data packets move to the sink node. The privacy goal of the scheme is two-fold.
First, the privacy of data has to be guaranteed end-to-end. While only the sink
could learn about the final aggregation result, each node will have information of
its own data and does not have any information about the data of other nodes.
Second, to reduce the communication overhead, the data from different source
nodes have to be efficiently combined at the intermediate nodes (i.e. aggregation)
along the path. Nevertheless, these intermediate nodes should not learn any in-
formation about the individual nodes’ data. The authors of the CPDA scheme
have presented performance results of the protocol to demonstrate the efficiency
and security of the protocol. The CPDA protocol has become quite popular, and
to the best of our knowledge, there has been no identified vulnerability of the
protocol published in the literature so far.

In this paper, we first demonstrate a security vulnerability in the CPDA
protocol and then proceed to show how the protocol may be made more efficient
and secure. We also propose necessary modifications in the CPDA protocol to
defend against the identified vulnerability.

The rest of this paper is organized as follows. Section 2 provides a brief back-
ground discussion on the CPDA scheme. In Section 3, we present a cryptanalysis
on CPDA and demonstrate a security vulnerability of the scheme. In Section 4,
we present some design modifications of the CPDA scheme. Section 4.1 presents
an efficient way to compute the aggregation operation so as to make CPDA more
efficient. Section 4.2 briefly discusses how the identified security vulnerability can
be addressed. Section 5 presents a comparative analysis of the overhead of the
original CPDA protocol and its proposed modified version. Section 5.1 provides a
comparison of the communication overheads in the network, and Section 5.2 pro-
vides an analysis of the computational overheads in the sensor nodes. Section 6
concludes the paper while highlighting some future scope of work.

2 The CPDA Scheme [9] for Data Aggregation in WSN

The basic idea of CPDA is to introduce noise into the raw data sensed by the
sensor nodes in a WSN, such that an aggregator can obtain accurate aggre-
gated information but not individual sensor data [9]. This is similar to the data
perturbation approach extensively used in privacy-preserving data mining. How-
ever, unlike in privacy-preserving data mining, where noises are independently
generated (at random) leading to imprecise aggregated results, the noises in
CPDA are carefully designed to leverage the cooperation between different sensor
nodes, such that the precise aggregated values can be obtained by the aggregator.

208 J. Sen and S. Maitra

The CPDA protocol classifies sensor nodes into two types: cluster leaders and
cluster members. There is a one-to-many mapping between the cluster leaders
and cluster members. The cluster leaders are responsible for aggregating data
received from the cluster members. For security, the messages communicated be-
tween the cluster leaders and the cluster members are encrypted using different
symmetric keys for each pair of nodes.

The details of the CPDA scheme are provided briefly in the following
sub-sections.

2.1 The Network Model

The sensor network is modeled as a connected graph G(V, E), where V represents
the set of senor nodes and E represents the set of wireless links connecting the
sensor nodes. The number of sensor nodes is taken as |V | = N .

A data aggregation function is taken that aggregates the individual sensor
readings. CPDA scheme has focused on additive aggregation function, f(t)=
∑N

i=1 di(t) where di(t) is the individual sensor reading at time instant t for node
i. For computation of the aggregate functions, the following requirements are
to be satisfied: (i) privacy of the individual sensor data is to be protected, i.e.,
each node’s data should be known to no other nodes except the node itself, (ii)
the number of messages transmitted within the WSN for the purpose of data
aggregation should be kept at a minimum, and (iii) the aggregation result should
be as accurate as possible.

2.2 Key Distribution and Management

CPDA uses a random key distribution mechanism proposed in [6] for encrypting
messages to prevent message eavesdropping attacks. The key distribution scheme
has three phases: (i) key pre-distribution, (ii) shared-key discovery, and (iii) path-
key establishment. These phases are described briefly as follows.

A large key-pool of K keys and their identities are first generated in the key
pre-distribution phase. For each sensor nodes, k keys out of the total K keys are
chosen. These k keys form a key ring for the sensor node.

During the key-discovery phase, each sensor node identifies which of its neigh-
bors share a common key with itself by invoking and exchanging discovery mes-
sages. If a pair of neighbor nodes share a common key, then it is possible to
establish a secure link between them.

In the path-key establishment phase, an end-to-end path-key is assigned to
the pairs of neighboring nodes who do not share a common key but can be
connected by two or more multi-hop secure links at the end of the shared-key
discovery phase.

At the end of the key distribution phase, the probability that any pair of
nodes possess at least one common key is given by (1).

pconnect = 1 − ((K − k)!)2

(K − 2k)!K!
(1)

An Attack on Privacy Preserving Data Aggregation Protocol 209

If the probability that any other node can overhear the encrypted message by a
given key is denoted as poverhear, then poverhear is given by (2).

poverhear =
k

K
(2)

It has been shown in [9] that the above key distribution algorithm is efficient
for communication in a large-scale sensor networks, and when a limited number
of keys are available for encryption of the messages to prevent eavesdropping
attacks.

2.3 Cluster-Based Private Data Aggregation (CPDA) Protocol

The CPDA scheme works in three phases: (i) cluster formation, (ii) computation
of aggregate results in clusters, and (ii) cluster data aggregation. These phases
are described below.

Cluster formation: Fig. 1 depicts the cluster formation process. A query server
Q triggers a query by sending a HELLO message. When the HELLO message
reaches a sensor node, it elects itself as a cluster leader with a pre-defined proba-
bility pc. If the value of pc is large, there will be more number of nodes which will
elect themselves as cluster leaders. This will result in higher number of clusters
in the network. On the other hand, smaller values of pc will lead to less number
of clusters due to fewer number of cluster leader nodes. Hence, the value of the
parameter pc can be suitably chosen to control the number of clusters in the
network. If a node becomes a cluster leader, it forwards the HELLO message to
its neighbors; otherwise, it waits for a threshold period of time to check whether
any HELLO message arrives at it from any of its neighbors. If any HELLO mes-
sage arrives at the node, it decides to join the cluster formed by its neighbor by

Fig. 1. Query server Q sends HELLO messages for initiating the cluster formation
procedure to its neighbors A, D, E and F . The query server is shaded in the figure.

210 J. Sen and S. Maitra

Fig. 2. A and D elect themselves as the cluster leaders randomly and in turn send
HELLO messages to their neighbors. E and F join the cluster formed by Q. B and C
join the cluster formed with A as the cluster leader, while G and H join the cluster
with D as the cluster leader. All the cluster leaders and the query server are shaded.

broadcasting a JOIN message as shown in Fig 2. This process is repeated and
multiple clusters are formed so that the entire WSN becomes a collection of a
set of clusters.

Computation within clusters: In this phase, aggregation is done in each
cluster. The computation is illustrated with the example of a simple case where
a cluster contains three members: A, B, and C, where A is the assumed to be
the cluster leader and the aggregator node, whereas B and C are the cluster
member nodes. Let a, b, c represent the private data held by the nodes A, B,
and C respectively. The goal of the aggregation scheme is to compute the sum
of a, b and c without revealing the private values of the nodes.

As shown in Fig. 3, for the privacy-preserving additive aggregation function,
the nodes A, B, and C are assumed to share three public non-zero distinct
numbers, which are denoted as x, y, and z respectively. In addition, node A
generates two random numbers rA

1 and rA
2 , which are known only to node A.

Similarly, nodes B and C generate rB
1 , rB

2 and rC
1 , rC

2 respectively, which are
private values of the nodes which have generated them.

Node A computes vA
A , vA

B, and vA
C as shown in (3).

vA
A = a + rA

1 x + rA
2 x2

vA
B = a + rA

1 y + rA
2 y2

vA
C = a + rA

1 z + rA
2 z2 (3)

Similarly, node B computes vB
A , vB

B , and vB
C as in (4).

An Attack on Privacy Preserving Data Aggregation Protocol 211

Fig. 3. Nodes A, B and C broadcast their distinct and non-zero public seeds x, y and
z respectively

vB
A = b + rB

1 x + rB
2 x2

vB
B = b + rB

1 y + rB
2 y2

vB
C = b + rB

1 z + rB
2 z2 (4)

Likewise, node C computes vC
A , vC

B , and vC
C as in (5).

vC
A = c + rC

1 x + rC
2 x2

vC
B = c + rC

1 y + rC
2 y2

vC
C = c + rC

1 z + rC
2 z2 (5)

Node A encrypts vA
B and sends it to node B using the shared key between node

A and node B. Node A also encrypts vA
C and sends it to node C using the shared

key between node A and node C. In the same manner, node B sends encrypted
vB

A to node A and vB
C to node node C; node C sends encrypted vC

A and vC
B to

node A and node B respectively. The exchanges of these encrypted messages is
depicted in Fig. 4. On receiving vB

A and vC
A , node A computes the sum of vA

A

(already computed by node A), vB
A and vC

A . Now, node A computes FA using (6).

FA = vA
A + vB

A + vC
A = (a + b + c) + r1x + r2x

2 (6)

In (6), r1 = rA
1 + rB

1 + rC
1 and r2 = rA

2 + rB
2 + rC

2 . Similarly, node B and node
C compute FB and FC respectively, where FB and FC are given by (7) and (8)
respectively.

FB = vA
B + vB

B + vC
B = (a + b + c) + r1y + r2y

2 (7)

FC = vA
C + vB

C + vC
C = (a + b + c) + r1z + r2z

2 (8)

212 J. Sen and S. Maitra

Fig. 4. Exchange of encrypted messages among nodes A, B and C using shared keys
of the nodes

Node B and node C broadcast FB and FC to the cluster leader node A, so that
node A has the knowledge of the values of FA, FB and FC . From these values the
cluster leader node A can compute the aggregated value (a + b + c) as explained
below.

The equations (6), (7), and (8) can be rewritten as in (9).

U = G−1F (9)

where, G =

⎡

⎣
1 x x2

1 y y2

1 z z2

⎤

⎦ ,U =

⎡

⎣
a + b + c

r1

r2

⎤

⎦ , and F =
[
FA FB FC

]T
.

Since x, y, z, FA, FB , and FC are known to the cluster leader node A, it can
compute the value of (a + b + c) without having any knowledge of b and c.

In order to avoid eavesdropping attack by neighbor nodes, it is necessary to
encrypt the values of vA

B, vA
C , vB

A , vB
C , vC

A , and vC
B . If node B overhears the value

of vA
C , then node B gets access to the values of vA

C , vA
B and FA. Then node B can

deduce vA
A = FA − vB

A − vA
C . Having the knowledge of vA

A , node B can further
obtain the value of a if x, vA

A , vB
A and vC

A are known. However, if node A encrypts
vA

C and sends it to node C, then node B cannot get vA
C . With the knowledge of

vA
B, FA and x from node A, node B cannot deduce the value of a. If node B

and node C collude and reveal node A’s information (i.e., vA
B and vA

C), to each
other, then node A’s privacy will be compromised and its private value a will be
revealed. In order to reduce the probability of such collusion attacks, the cluster
size should be as large as possible, since in a cluster of size m, at least (m - 1)
nodes should collude in order to successfully launch the attack. Higher values of
m will require larger number of colluding nodes thereby making the attack more
difficult.

An Attack on Privacy Preserving Data Aggregation Protocol 213

2.4 Cluster Data Aggregation

The CPDA scheme has been implemented on top of a protocol known as Tiny
Aggregation (TAG) protocol [10]. Using the TAG protocol, each cluster leader
node routes the sum of the values in the nodes in its cluster to the query server
through a TAG routing tree whose root is situated at the server.

3 An Attack on the CPDA Scheme

In this section, we present an efficient attack on the CPDA aggregation scheme.
The objective of the attack is to show the vulnerability of the CPDA scheme
which can be suitably exploited by a malicious participating sensor node. The
intention of the malicious node is to participate in the scheme in such a way
that it can get access to the private values (i.e., a, b and c) of the participating
sensor nodes. For describing the attack scenario, we use the same example clus-
ter consisting of three sensor nodes A, B and C. Node A is the cluster leader
whereas node B and node C are the cluster members. We distinguish two types
of attacks: (i) attack by a malicious cluster leader (e.g., node A) and (ii) attack
by a malicious cluster member (e.g., either node B or node C). These two cases
are described in detail in the following sub-sections.

3.1 Privacy Attack by a Malicious Cluster Leader

Let us assume that the cluster leader node A is malicious. Node A chooses a
very large value of x such that x � y, z. Since y and z are public values chosen
by node B and node C which are broadcast in the network by node B and node
C respectively, it is easy for node A to choose a suitable value for x.

Nodes A, B and C compute the values of vA
A , vA

B, vA
C , vB

A , vB
B , vB

C , vC
A , vC

B ,
and vC

C using (3), (4) and (5) as described in Section 2.3. As per the CPDA
scheme, node A receives vB

A = b+ rB
1 x+ rB

2 x2 from node B. Since x is very large
compared to b and rB

1 , node A can derive the value of rB
2 using (10) where we

consider integer division.

vB
A

x2
=

b

x2
+

rB
1

x
+ rB

2 = 0 + 0 + rB
2 = rB

2 (10)

Using the value of rB
2 as derived in (10), and using vB

A = b + rB
1 x + rB

2 x2, node
A can now compute the value of rB

1 by solving (11).

vB
A − rB

2 x2

x
=

b

x
+ rB

1 = 0 + rB
1 = rB

1 (11)

In the same manner, node A derives the values of rC
1 and rC

2 from vC
A received

from node C. Since r1 = rA
1 +rB

1 +rC
1 , and r2 = rA

2 +rB
2 +rC

2 , as shown in (6), (7)
and (8), node A can compute the values of r1 and r2 (rB

1 , rB
2 , rC

1 , and rC
2 are

derived as shown above, and rA
1 and rA

2 were generated by node A).

214 J. Sen and S. Maitra

At this stage, node A uses the values of FB and FC received from node B
and node C respectively as shown in (7) and (8). Node A has now two linear
simultaneous equations with two unknowns: b and c, the values of y and z being
public. Solving (7) and (8) for b and c, the malicious cluster leader node A can
get the access to the private information of nodes B and C, thereby launching
a privacy attack on the CPDA scheme.

3.2 Privacy Attack by a Malicious Cluster Member

In this scenario, let us assume that the cluster member node B is malicious and
it tries to access the private values of the cluster leader node A and the cluster
member node C. Node B chooses a very large value of y so that y � x, z.
Once the value of FB is computed in (7), node B derives the value of r2 and r1

using (12) and (13).

FB

y2
=

(a + b + c)
y2

+
r1

y
+ r2 = 0 + 0 + r2 = r2 (12)

FB − r2y
2

y
=

(a + b + c)
y

+ r1 = 0 + r1 = r1 (13)

As per the CPDA scheme, node B receives vC
B = c + rC

1 y + rC
2 y2 from node C.

Since the magnitude of y is very large compared to c, rC
1 and rC

2 , it is easy for
node B to derive the values of rC

2 and rC
1 using (14) and (15).

vC
B

y2
=

c

y2
+

rC
1

y
+ rC

2 = 0 + 0 + rC
2 = rC

2 (14)

vC
B − rC

2 y2

y
=

c

y
+ rC

1 = 0 + rC
1 = rC

1 (15)

Using (12), (13), (14) and (15) node B can compute rA
1 = r1 − rB

1 − rC
1 , and

rA
2 = r2 − rB

2 − rC
2 . Now, node B can compute the value of a using vB

A =
a + rA

1 y + rA
2 y2 (received from node A), in which the values of all the variables

are known except that of a. In a similar fashion, node B derives the value of c
using vC

B = c + rC
1 y + rC

2 y2 (received from C).
Since the private values of the nodes A and C are now known to node B, the

privacy attack launched by participating cluster member node B is successful
on the CPDA aggregation scheme.

4 Modifications of CPDA

In this section, we present two modifications of CPDA scheme: one towards
making the protocol more efficient and the other for making it more secure.

An Attack on Privacy Preserving Data Aggregation Protocol 215

4.1 Modification of CPDA for Enhanced Efficiency

In this section, a modification is proposed for the CPDA protocol for achieving
enhanced efficiency in its operation. The modification is based on suitable choice
for the value of x (the public seed) done by the aggregator node A.

Let us assume that the node A chooses a large value of x such that the
following conditions in (16) and (17) are satisfied.

r2x
2 � r1x (16)

r1x � (a + b + c) (17)

where, r1 = rA
1 + rB

1 + rC
1 and r2 = rA

2 + rB
2 + rC

2 . Now, node A has computed
the value of FA as shown in (6). In order to efficiently compute the value of (a
+ b + c), node A divides the value of FA by x2 as shown in (18).

FA

x2
=

(a + b + c)
x2

+
r1x

x2
+ r2 = 0 + 0 + r2 = r2 (18)

Using (18), node A derives the value of r2. Once the value of r2 is deduced, node
A attempts to compute the value of r1 using (19) and (20).

FA − r2x
2 = (a + b + c) + r1x (19)

r1 =
(FA − r2x

2)
x

− (a + b + c)
x

=
(FA − r2x

2)
x

− 0 =
(FA − r2x

2)
x

(20)

Since, the values of FA, r2 and x are all known to node A, it can compute the
value of r1 using (20). Once the values of r1 and r2 are computed by node A, it
can compute the value of (a + b + c) using (6). Since the computation of the
sum (a + b + c) by node A involves two division operations (involving integers)
only (as done in (18) and (20)), the modified CPDA scheme will be light-weight
and hence much more energy- and time-efficient as compared to the original
CPDA scheme. The original CPDA scheme involved additional computations of
the values of FB and FC , as well as an expensive matrix inversion operation as
described in Section 2.3.

4.2 Modification of CPDA for Resisting the Attack

In this section, we discuss the modifications required on the existing CPDA
scheme so that a malicious participant node cannot launch the attack described
in Section 3.

It may be noted that, the vulnerability of the CPDA scheme lies essentially
in the unrestricted freedom delegated on the participating nodes for generating
their public seed values. For example, nodes A, B and C have no restrictions on
their choice for values of x, y and z respectively while they generate these values.
A malicious attacker can exploit this freedom to generate an arbitrarily large
public seed value, and can thereby launch an attack as discussed in Section 3.

216 J. Sen and S. Maitra

In order to prevent such an attack, the CPDA protocol needs to be modified.
In this modified version, the nodes in a cluster make a check on the generated
public seed values so that it is not possible for a malicious participant to generate
any arbitrarily large seed value. For a cluster with three nodes, such a constraint
may be imposed by the requirement that the sum of any two public seeds must
be greater than the third seed. In other words: x + y > z, z + x > y, and y
+ z > x. If these constraints are satisfied by the generated values of x, y and
z, it will be impossible for any node to launch the attack and get access to the
private values of the other participating nodes.

However, even if the above restrictions on the values of x, y and z are imposed,
the nodes should also be careful in choosing the values for their secret random
number pairs. If two nodes happen to choose very large values for their random
numbers compared to those chosen by the third node, then it will be possible
for the third node to get access to the private values of the other two nodes.
For example, let us assume that nodes A and C have chosen the values of rA

1 ,
rA
2 and rC

1 , rC
2 such that they are all much larger than rB

1 and rB
2 - the private

random number pair chosen by node B. It will be possible for node B to derive
the values of a and c : the private values of nodes A and C respectively. This is
explained in the following.

Node B receives vA
B = a + rA

1 y + rA
2 y2 from node A and computes the values

of rA
1 and rA

2 using (21) and (22).

vA
B

y2
=

a

y2
+

rA
1

y
+ rA

2 = 0 + 0 + rA
2 = rA

2 (21)

vA
B − rA

2 y2

y
=

a

y
+ rA

1 = 0 + rA
1 = rA

1 (22)

In a similar fashion, node B derives the values of rC
1 and rC

2 from vC
B received

from node C. Now, node B computes r1 = rA
1 + rB

1 + rC
1 and r2 = rA

2 + rB
2 + rC

2

since it has access to the values of all these variables. In the original CPDA
scheme in [9], the values of FB and FC are broadcast by nodes B and C in
unencrypted from. Hence, node B has access to both these values. Using (7)
and (8), node B can compute the values of a and c, since these are the only
unknown variables in the two linear simultaneously equations.

In order to defend against the above vulnerability, the CPDA protocol needs
further modification. In this modified version, after the values vA

A , vB
A , and vC

A

are generated and shared by nodes A, B and C respectively, the nodes check
whether the following constraints are satisfied: vA

A + vB
A > vC

A , vB
A + vC

A > vA
A ,

and vC
A + vA

A > vB
A . The nodes proceed for further execution of the algorithm

only if the above three inequalities are satisfied. If all three inequalities are not
satisfied, there will be a possibility that the random numbers generated by one
node is much larger than those generated by other nodes - a scenario which
indicates a possible attack by a malicious node.

An Attack on Privacy Preserving Data Aggregation Protocol 217

5 Performance Analysis

In this section, we will briefly present a comparative analysis of the overheads of
the CPDA protocol and its proposed modified versions presented in Section 4.1
and Section 4.2. Our analysis is based on two categories of overheads: (i) overhead
due to message communication in the network and (ii) computational overhead
at the sensor nodes.

5.1 Communication Overhead

We compare communication overheads of three protocols - the tiny aggregation
protocol (TAG), the original CPDA protocol and the proposed modified CPDA
protocols. In TAG, each sensor node needs to send 2 messages for the data ag-
gregation protocol to work. One Hello message communication from each sensor
node is required for forming the aggregation tree, and one message is needed for
data aggregation. However, this protocol only performs data aggregation and
does not ensure any privacy for the sensor data. In the original CPDA proto-
col, each cluster leader node sends 4 messages and each cluster member node
sends 3 messages for ensuring that the aggergation protocol works in a privacy-
preserving manner. In the example cluster shown in Fig. 3, the 4 messages sent
by the cluster leader node A are: one Hello message for forming the cluster, one
message for communicating the public seed x, one message for communicating
vA

B and vA
C to cluster member nodes B and C respectively, and one message

for sending the aggregate result from the cluster. Similarly, the 3 messages sent
by the cluster member node B are: one message for communicating its public
seed y, one message for communicating vB

A and vB
C to cluster leader node A and

cluster member node C respectively, and one message for communicating the
intermediate result FB to the cluster leader node A.

In contrast to the original CPDA protocol, the modified CPDA protocol in
Section 4.1 involves 3 message communications from the cluster leader node and
2 message communications from each cluster member node. The 3 messages sent
by the cluster leader node A are: one Hello message for forming the cluster, one
message for brodcasting its public seed x, and one message for sending the final
aggregate result. It may be noted that in this protocol, the cluster leader node A
need not send vA

B and vA
C to the cluster member nodes B and C respectively. Each

cluster member node needs to send 2 messages. For example, the cluster member
node B needs to broadcast its public seed y, and also needs to send vB

A to the
cluster leader node A. Unlike in the original CPDA protocol, the cluster member
node B does not send FB to the cluster leader. Similarly, the cluster member
node C does not send FC to the cluster leader node A. In a cluster consisting
of three members, the original CPDA protocol would involve 10 messages (4
messages from the cluster leader and 3 messages from each cluster member).
The modified CPDA protocol presented in Section 4.1, on the other hand, would
involve 7 messages (3 messages from the cluster leader and 2 messages from each
cluster member) in a cluster of three nodes. Therefore, in a cluster of three nodes,
the modified CPDA protocol presented in Section 4.1 will involve 3 less message

218 J. Sen and S. Maitra

communications. Since in a large-scale WSN the number of clusters will be quite
high, there will be an appreciable reduction in the communication overhead in
the modified CPDA protocol presented in Section 4.1.

The secure version of the modified CPDA protocol presented in Section 4.2
involves the same communication overhead as the original CPDA protocol. How-
ever, if any node chooses abnormally higher values for its public seed or its private
random numbers, the secure version of the modified CPDA protocol will involve
2 extra messages from each of the participating sensor nodes. Therefore, in a
cluster of three nodes, the secure version of the modified CPDA protocol will
involve 6 extra messages in the worst case scenario when compared with the
original CPDA protocol.

If pc is the probability of a sensor node electing itself as a cluster leader, the
average number of messages sent by a sensor node in the original CPDA protocol
is: 4pc + 3(1− pc) = 3 + pc. Thus, the message overhead in the original CPDA
is less than twice as that in TAG. However, in the modified CPDA protocol
presented in Section 4.1, the average number of messages communicated by a
sensor node is: 3pc + 2(1 − pc) = 2 + pc. As mentioned in Section 2.3, in
order to prevent collusion attack by sensor nodes, the cluster size in the CPDA
protocol should be as large as possible. This implies that the value of pc should
be small. Since the value of pc is small, it is clear that the message overhead in
the modified CPDA protocol presented in Section 4.1 is almost the same as that
in TAG and it is much less (one message less for each sensor node) than that of
the original CPDA protocol. In the secure version of the protocol in Section 4.2,
the communication overhead, in the average case, will be the same as in the
original CPDA protocol. However, in the worst case, the number of messages
sent by a sensor node in this protocol will be: 6pc + 5(1 − pc) = 5 + pc. This
is 2.5 times the average communication overhead in the TAG protocol and 1.67
times the average communication overhead in the original CPDA protocol. The
secure protocol, therefore, will involve 67% more overhead in the worst case
scenario (where a malicious participant sensor node chooses abnormally higher
values for its public seed as well as for its private random numbers).

5.2 Computational Overhead

In this section, we present a comparative analysis of the computational overheads
incurred by the sensor nodes in the original CPDA protocol and in the proposed
efficient version of the protocol.

Computational overhead of the original CPDA protocol: The overhead of
the CPDA protocol can be broadly classified into four categories: (i) computation
of the parameters, (ii) computation for encrypting messages, (iii) computation
of the intermediate results, and (iv) computation of the final aggregate result at
the cluster leader node. The details of these computations are presented below:

An Attack on Privacy Preserving Data Aggregation Protocol 219

(i) Computation of the parameters at the sensor nodes : Each sensor node in a
three member cluster computes three parameters. For example, the cluster leader
node A computes vA

A , vA
B and vA

C . Similarly, the cluster member node B computes
vB

A , vB
B and vB

C . We first compute the overhead due these computations.
Since vA

A = a + rA
1 x + rA

2 x2, for computation of vA
A , node A needs to perform

2 addition, 2 multiplication and 1 exponentiation operations. Hence, for com-
puting vA

A , vA
B , vA

C , node A needs to perform 6 addition, 6 multiplication and
3 exponentiation operations. Therefore, in a cluster consisting of three mem-
bers, for computation of all parameters, the original CPDA protocol requires 18
addition, 18 multiplication and 9 exponentiation operations.

(ii) Computations for encrypting messages: Some of the messages in the CPDA
protocol need to be communicated in encrypted form. The encryption operation
involves computaional overhead. For example, node A needs to encrypt vA

B and
vA

C before sending them to nodes B and C respectively. Therefore, 2 encryption
operations are required at node A. For a cluster consisting of three members,
the CPDA protocol will need 6 encryption operations.

(iii) Computations of intermediate results: The nodes A, B, and C need to com-
pute the intermediate values FA, FB and FC respectively. Since FA = vA

A + vB
A

+ vC
A = (a + b + c) + r1x + r2x

2 and r1 = rA
1 + rB

1 + rC
1 , and r2 = rA

2 + rB
2

+ rC
2 , for computing FA, node A will need to perform 4 addition operations.

Therefore, for a cluster of three members, 12 addition operations will be needed.

(iv) Aggregate computation at the cluster leader : For computing the final ag-
gregated result in a privacy-preserving way, the cluster leader node A needs to
perform one matrix inversion operation and one matrix multiplication operation.

The summary of various operations in the original CPDA protocol are pre-
sented in Table 1.

Computational overhead of the modified CPDA protocol: The overhead
of the efficient version of the CPDA protocol presented in Section 4.1 are due
to: (i) computation of the parameters at the sensor nodes, (ii) computation of
the intermediate result at the cluster leader node, and (iii) computation of the
aggregated result at the cluster leader node. The details of these computations
are presented below.

Table 1. Operations in the CPDA Protocol

Operation Type No. of Operations

Addition 30

Multiplication 18

Exponentiation 3

Encryption 6

Matrix Multiplication 1

Matrix Inversion 1

220 J. Sen and S. Maitra

(i) Computation of the parameters at the sensor nodes : In the modified version
of the CPDA protoocl, the nodes A, B and C need to only compute vA

A , vB
A ,

and vC
A respectively. As shown earlier, each parameter computation involves 2

addition, 2 multiplication and 1 exponentiation operations. Therefore, in total,
6 addition, 6 multiplication, and 3 exponentiation operations will be needed.

(ii) Computations for encrypting messages: The nodes B and C will need to
encrypt the messages vB

A and vC
A respectively before sending them to the cluster

leader node A. Therefore, 2 encryption operations will be required.

(iii) Computation of intermediate result : The cluster leader node A will only
compute FA in the modified CPDA. The cluster member nodes B and C need
not perform any computations here. As discussed earlier, computation of FA

needs 4 addition operations.

(iv) Aggregate computation at the cluster leader : For computation of the final
result at the cluster leader node, 2 integer division and 2 subtraction operations
will be required.

The summary of various operations in the modified CPDA protocol are pre-
sented in Table 2.

Table 2. Operations in the Proposed Modified CPDA Protocol

Operation Type No. of Operations

Addition 10

Subtraction 2

Multiplication 6

Division 2

Exponentiation 3

Encryption 2

It is clearly evident from Table 1 and Table 2 that the modified version of
the CPDA protocol involves much less computational overhead than the original
version of the protocol.

6 Conclusion

Innetwork data aggregation in WSNs is a technique that combines partial results
at the intermediate nodes en route to the base station (i.e. the node issuing
the query), thereby reducing the communication overhead and optimizing the
bandwidth utilization in the wireless links. However, this technique raises privacy
issues of the sensor nodes which need to share their data with the aggregator
node. In applications such as health care and military surveillance where the
sensitivity of the private data of the sensors is very high, the aggregation has

An Attack on Privacy Preserving Data Aggregation Protocol 221

to be carried out in a privacy-preserving way, so that the sensitive data are not
revealed to the aggregator. A very popular scheme for this purpose exists in the
literature which is known as CPDA. Although CPDA is in literature for quite
some time now, no vulnerability of the protocol has been identified so far. In
this paper, we have first demonstrated a security vulnerability in the CPDA
protocol, wherein a malicious sensor node can exploit the protocol is such a
way that it gets access to the private values of its neighbors while participating
in data aggregation process. A suitable modification of the CPDA protocol is
further proposed so as to plug the identified vulnerability and also to make the
protocol computationally more efficient. We have also made an analysis of the
communication and computational overhead in the original CPDA protocol and
the proposed modified version of the CPDA protocol. It has been found from
the analysis that the modified version of the protocol involves appreciably less
message communication overhead in the network and computational load on the
sensor nodes.

It may be noted that over the past few years, several schemes have been
proposed in the literature for privacy preserving data aggregation in WSNs. A
very popular and elegant approach in this direction is homomorphic encryption
[7]. Westhoff et al. have proposed additive privacy homomorphic functions that
allow for end-to-end encryption between the sensors and the sink node and si-
multaneously enable aggregators to apply aggregation functions directly over the
ciphertexts [13]. This has the advantage of eliminating the need for intermediate
aggregators to carry out decryption and encryption operations on the sensitive
data. Armknecht et al. have presented a symmetric encryption scheme for sensor
data aggregation that is homomorphic both for data and the keys [3]. This is
called bi-homomorphic encryption, which is also essentially an additive homo-
morphic function. Castellucia et al. have proposed an approach that combines
inexpensive encryption techniques with simple aggregation methods to achieve
efficient aggregation of encrypted data in WSNs [4]. The method relies on end-
to-end encryption of data and hop-by-hop authentication of nodes. Privacy is
achieved by using additive homomorphic functions. A very simple approach for
privacy-preserving multi-party computation has been discussed by Chaum [5].
The protocol is known as Dining Cryptographers Problem which describes the
way a channel is created so that it is difficult to trace (i.e. identify) the sender
of any message through that channel.

The approaches based on privacy homomorphic functions are more elegant
than CPDA for the purpose of carrying out sensor data aggregation in a privacy
preserving way. However, they involve large computational overhead due to com-
plexities involved in computing the homomorphic encryption functions and the
associated key management related issues. The primary objective of our work
in this paper is to demonstrate a security vulnerability of the CPDA protocol.
We plan to evaluate the performance of our modified CPDA protocol as a future
scope of work, and make a comparative analysis of the protocol with the existing
privacy homomorphism-based approaches for sensor data aggregation.

222 J. Sen and S. Maitra

References

1. Acharya, M., Girao, J., Westhoff, D.: Secure Comparison of Encrypted Data in
Wireless Sensor Networks. In Proc. of the 3rd International Symposium on Mod-
eling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WIOPT),
Washington, DC, USA, pp. 47–53 (2005)

2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Net-
works: A Survey. Computer Networks 38(4), 393–422 (2002)

3. Armknecht, F., Westhoff, D., Girao, J., Hessler, A.: A Lifetime-Optimized End-
to-End Encryption Scheme for Sensor Networks Allowing In-Network Processing.
Computer Communications 31(4), 734–749 (2008)

4. Castelluccia, C., Chan, A.C-F., Mykletun, E., Tsudik, G.: Efficient and Provably
Secure Aggregation of Encrypted Data in Wireless Sensor Networks. ACM Trans-
actions on Sensor Networks 5(3) (2009)

5. Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Re-
cipient Untraceability. Journal of Cryptology 1(1), 65–75 (1988)

6. Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor
Networks. In: Proc. of the 9th ACM Conference on Computing and Communica-
tions Security, pp. 41–47 (2002)

7. Fontaine, C., Galand, F.: A Survey of Homomorphic Encryption for Nonspecialists.
EURASIP Journal on Information Security 2007, Article ID 13801 (2007)

8. Girao, J., Westhoff, D., Schneider, M.: CDA: Concealed Data Aggregation for
Reverse Multicast Traffic in Wireless Sensor Networks. In: Proc. of the 40th IEEE
Conference on Communications (IEEE ICC), vol. 5, pp. 3044–3049 (2005)

9. He, W., Liu, X., Nguyen, H., Nahrstedt, K., Abdelzaher, T.: PDA: Privacy-
Preserving Data Aggregation in Wireless Sensor Networks. In Proc. of the 26th
IEEE International Conference on Computer Communications (IEEE INFOCOM),
pp. 2045–2053 (2007)

10. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A Tiny Aggregation
Service for Ad-Hoc Sensor Networks. In Proc. of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), vol. 36 (2002)

11. Peter, S., Westhoff, D., Castelluccia, C.: A Survey on the Encryption of Converge-
cast Traffic with In-Network Processing. IEEE Transactions on Dependable and
Secure Computing 7(1), 20–34 (2010)

12. Sen, J.: A Survey on Wireless Sensor Network Security. International Journal of
Communication Networks and Information Security (IJCNIS) 1(2), 59–82 (2009)

13. Westhoff, D., Girao, J., Acharya, M.: Concealed Data Aggregation for Reverse
Multicast Traffic in Sensor Networks: Encryption, Key Distribution, and Routing
Adaptation. IEEE Transactions on Mobile Computing 5(10), 1417–1431 (2006)

	An Attack on Privacy Preserving Data Aggregation Protocol for Wireless Sensor Networks
	Introduction
	The CPDA Scheme helw:07 for Data Aggregation in WSN
	The Network Model
	Key Distribution and Management
	Cluster-Based Private Data Aggregation (CPDA) Protocol
	Cluster Data Aggregation

	An Attack on the CPDA Scheme
	Privacy Attack by a Malicious Cluster Leader
	Privacy Attack by a Malicious Cluster Member

	Modifications of CPDA
	Modification of CPDA for Enhanced Efficiency
	Modification of CPDA for Resisting the Attack

	Performance Analysis
	Communication Overhead
	Computational Overhead

	Conclusion
	References

