
FocalTest: A Constraint Programming Approach
for Property-Based Testing

Matthieu Carlier1, Catherine Dubois2, and Arnaud Gotlieb1

1 INRIA Rennes Bretagne Atlantique, Campus de Beaulieu,
35042 Rennes, France

2 CEDRIC-ENSIIE, 1 Square de la Résistance,
91025 Évry, France

{matthieu.carlier,arnaud.gotlieb}@inria.fr
dubois@ensiie.fr

Abstract. Property-based testing is the process of selecting test data from user-
specified properties fro testing a program. Current automatic property-based test-
ing techniques adopt direct generate-and-test approaches for this task, consisting
in generating first test data and then checking whether a property is satisfied or
not. are generated at random and rejected when they do not satisfy selected cov-
erage criteria. In this paper, we propose a technique and tool called FocalTest,
which adopt a test-and-generate approach through the usage of constraint rea-
soning. Our technique utilizes the property to prune the search space during the
test data generation process. A particular difficulty is the generation of test data
satisfying MC/DC on the precondition of a property, when it contains function
calls with pattern matching and high-order functions. Our experimental results
show that a non-naive implementation of constraint reasoning on these construc-
tions outperform traditional generation techniques when used to find test data for
testing properties.

Keywords: Software testing, Automated test data generation, MC/DC, Constraint
reasoning.

1 Introduction

Property-based testing is a general testing technique that uses property specifications to
select test cases and guide evaluation of test executions [1]. It implies both selecting test
inputs from the property under test (PUT) and checking the expected output results in
order to evaluate the conformance of programs w.r.t. its property specifications. Apply-
ing property-based testing to functional programing is not new. Claessen and Hugues
pionneered the testing of functional programs with the Quickcheck tool [2] for Haskell
programs. Koopman et al. proposed a generic automated test data generation approach
called GAST for functional programs [3]. The tool GAST generates “common border
values” and random values from variable types. More recently, Fisher et al. [4,5] pro-
posed an original data-flow coverage approach for the testing of Curry programs. This
approach is supported by the tool Easycheck [6]. In 2008, FocalTest [7], a tool that

J. Cordeiro, M. Virvou, and B. Shishkov (Eds.): ICSOFT 2010, CCIS 170, pp. 140–155, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

FocalTest: Property-Based Testing of Focal Programs 141

generates random test data for Focalize programs was proposed. Focalize [8] is a func-
tional language that allows both programs and properties to be implemented into the
same environment. It also integrates facilities to prove the conformance of programs
to user-specified properties. FocalTest is inspired by Quickcheck as it implements a
generate-and-test approach for test data generation: it automatically generates test in-
puts at random and reject those inputs that do not satisfy the preconditions of properties
[7]. This approach does not perform well when strong preconditions are specified and
strong coverage criteria such as MC/DC are required on the preconditions. As a trivial
example, consider the generation of a couple (X,Y) where X and Y stand for 32-bit
integers, that has to satisfy the precondition of property X = Y ⇒ f(X) = f(Y).
For a random test data generator, the probability of generating a couple that satisfies the
precondition is 1

232 .
In this paper, we improve FocalTest with a test-and-generate approach for test data

selection through the usage of constraint reasoning. The solution we propose consists
in exploring very carefully the precondition part of the PUT and more precisely the
definition of the involved functions in order to produce constraints upon the values of
the variables. Then it would remain to instantiate the constraints in order to generate
test cases ready to be submitted. The underlying method to extract the constraints is
based on the translation of the precondition part of the PUT and the body of the different
functions involved in it into an equivalent constraint logical program over finite domains
- CLP(FD). Constraint solving relies on domain filtering and constraint propagation,
resulting, if any, in solution schemes, that once instantiated will give the expected test
inputs.

The extraction of constraints and their resolution have required to adapt the tech-
niques developed in [9] to the specification and implementation language of Focalize,
which is a functional one, close to ML. In particular, an important technical contribu-
tion of the paper concerns the introduction in CLP(FD) of constraints related to values
of concrete types, i.e. types defined by constructors and pattern-matching expressions,
as well as constraints able to handle higher-order function calls.

In this paper, we describe, here, the constraint reasoning part of FocalTest that per-
mits to build a test suite that covers the precondition with MC/DC (Modified Condi-
tion/Decision Coverage). This involves the generation of positive test inputs (i.e. test
inputs that satisfy the precondition) as well as negative test inputs. We evaluated our
constraint-based approach on several Focalize programs accompanied with their prop-
erties. The experimental results show that a non-naive implementation of constraint
reasoning outperform traditional generation techniques when used to find test inputs
for testing properties.

The paper is organized as follows. Sec.2 proposes a quick tour of the environment
Focalize and briefly summarises the background of our testing environment FocalTest
which includes the subset of the language considered for writing programs and prop-
erties. Sec.3 details our translation scheme of a Focalize program into a CLP(FD) con-
straint system. Sec.4 presents the test data generation by using constraints. Sec.5 gives
some indications about the implementation of our prototype and gives the results of
an experimental evaluation. Lastly we mention some related work before concluding
remarks and perspectives.

142 M. Carlier, C. Dubois, and A. Gotlieb

2 Background

2.1 A Quick Tour of Focalize

Focalize is a functional language allowing the development of programs step by step,
from the specification phase to the implementation phase. In our context a specification
is a set of algebraic properties describing relations over inputs and outputs of the Focal-
ize functions. The Focalize language is strongly typed and offers mechanisms inspired
by object-oriented programming, e.g. inheritance and late binding. It also includes re-
cursive (mutual) functions, local binding (let x = e1 in e2), conditionals (if e then e1
else e2), and pattern-matching expressions (match x with pat1 → e1| . . . | patn → en).
It allows higher-order functions to be implemented but does not permit higher-order
properties to be specified for the sake of simplicity. As an example, consider the Fo-
calize program and property of Fig.1 where app (append) and rev (reverse) both are
user-defined functions. The property called rev prop simply says that reversing a list
can be done by reversing its sub-lists.

let rec app(L,G) = match L with
|[] → G
|H :: T → H :: app(T,G);

let rec rev aux(L,LL) = match L with
|[] → LL
|H :: T → rev aux(T,H :: LL);

let rev(L) = rev aux(L, []);

property rev prop : all L L1 L2 :list(int),
L = app(L1, L2) → rev(L) = app(rev(L2), rev(L1));

Fig. 1. A Focalize program

In Focalize, variables can be of integer type (including booleans) or of concrete type.
Intuitively, a concrete type is defined by a set of typed constructors with fixed arity.
Thus values for concrete type variables are closed terms, built from the type construc-
tors. For example, L in the rev prop of Focalize program of Fig.1 is of concrete type
list(int) with constructor [] of arity 0 and constructor :: of arity 2.

We do not detail further these features (details in [8]). We focus in the next section
on the process we defined to convert MC/DC requirements on complex properties into
simpler requests.

2.2 Elementary Properties

A Focalize property is of the form P (X1, . . . , Xn) ⇒ Q(X1, . . . , Xn) where X1, . . . ,
Xn are universally quantified variables and P stands for a precondition while Q stands
for a post-condition. P and Q are both quantifier free formulas made of atoms con-
nected by conjunction (∧), implication (⇒) and disjunction (∨) operators. An atom
is either a boolean variable Bi, the negation of a boolean variable ¬Bi, a predicate

FocalTest: Property-Based Testing of Focal Programs 143

(e.g.Xi = Xj) holding on integer or concrete type variables, a predicate involving func-
tion calls (e.g. L = app(L1, L2)), or the negation of a predicate. Focalize allows only
first order properties, meaning that properties can hold on higher order functions but
calls to these functions must instantiate their arguments and universal quantification on
functions is forbidden. Satisfying MC/DC on the preconditions of Focalize properties
requires building a test suite that guarantees that the overall precondition being true
and false at least once and, additionally requires that each individual atom individu-
ally influences the truth value of the precondition. The coverage criterion MC/DC has
been abundantly documented in the literature, we do not detail it any further in this pa-
per. It is worth noticing that covering MC/DC on the preconditions of general Focalize
properties can be simply performed by decomposing these properties into a set of ele-
mentary properties by using simple rewriting rules. Assuming there is no coupling con-
ditions (two equivalent conditions), this rewriting system ensures that covering MC/DC
on the precondition of each decomposed elementary property implies the coverage of
MC/DC on the original general property. More details on a preliminary version of this
rewriting system can be found in [7]. An elementary property is of the form:

A1 ⇒ . . . ⇒ An ⇒ An+1 ∨ . . . ∨ An+m (1)

where the Ais simply denote atoms in the sense defined below. For an elementary prop-
erty P , the precondition Pre(P) denotes A1 ∧ . . . ∧ An while the conclusion Con(P)
denotes An+1 ∨ . . .∨An+m. Property rev prop of the Focalize program of Fig.1 is an
elementary property of the form A1 ⇒ A2.

Covering MC/DC on the precondition Pre(P) of an elementary property is trivial
since Pre(P) is made of implication operators only (⇒). Assuming there are no cou-
pling conditions in Pre(P), covering MC/DC simply requires n + 1 test data: a single
test data where each atom evaluates to true and n test data where a single atom eval-
uates to false while all the others evaluate to true. In the former case, the overall
Pre(P) evaluates to true while in the latter it evaluates to false. It is not difficult to
see that such a test suite actually covers MC/DC on Pre(P).

2.3 Test Verdict

A test data is a valuation which maps each integer or concrete type variable Xi to a sin-
gle value. A positive test data for elementary property P is such that Pre(P) evaluates
to true while a negative test data is such that Pre(P) evaluates to false. When test
data are selected, Con(P) can be used to assess a test verdict which can be either OK,
KO, or defined by the user noted TBD (To Be Defined). The test verdict is OK when
a positive test data is selected and Con(P) evaluates to true. The test verdict is KO
when a positive test data is selected and Con(P) evaluates to false. In this case, as-
suming that property P is correct, the selected test data exhibits a fault in the Focalize
PUT. Finally, the test verdict is TBD when a negative test data is selected. When the
precondition of the PUT evaluates to false, then the user has to decide whether its
Focalize program is correct or not in this case. For example, if P is a safety property
specifying robustness conditions, then TBD should indeed be KO. Conversely if P is a
functional property specifying an algebraic law (e.g. X + (Y + Z) = (X + Y) + Z),
then TBD should be inconclusive when negative test data are selected.

144 M. Carlier, C. Dubois, and A. Gotlieb

In the paper, we only consider elementary properties (except in Sec.5.2) without
coupling conditions and focus on the problem of covering MC/DC on these properties.
Our test data generation method involves the production of positive, as well as negative
test data. In both cases, each atom of the elementary property takes a predefined value
(either true or false) and test data are required to satisfy constraints on integer and
concrete type variables. The rest of the paper is dedicated to the constraint reasoning
we implemented to handle function calls that can be found in atoms of precondition
(such as L = app(L1, L2)). Note that these function call involves constraints from all
the constructions that can be found in Focalize programs, including pattern-matching
and higher-order functions.

3 Constraint Generation

Each elementary property resulting from the rewriting of PUT, more precisely its pre-
condition, is translated into a CLP(FD) program. When translating a precondition, each
Focalize function involved directly or indirectly (via a call) in the precondition are also
translated into an equivalent CLP(FD) program.

Our testing method is composed of two main steps, namely constraint generation
and constraint-based test data generation. Fig.2 summarizes our overall test data gen-
eration method with its main components. A Focalize program accompanied with a
general property is first translated into an intermediate representation. The purpose of
this transformation is to remove all the oriented-object features of the Focalize program
by normalizing the code into an intermediate language called MiniFocal. Normaliza-
tion is described in Sec.3.1. The second step involves the construction of CLP(FD)
programs, which are constraint programs that can be managed by a Constraint Logic
Programming environment. As explained in the previous section, the general property
is dispatched into elementary properties and for each of them, a single CLP(FD) pro-
gram is generated. This process is described in Sec.3.2. Finally, the FD solver coming
from our Constraint Logic Programming environment is extended with specific con-
straint operators (namely apply and match) in order to solve requests, the solving
of which guarantees the MC/DC coverage of each individual elementary property. As a
result, our test data generation method produces a compliant MC/DC test suite for the
general property specified within the Focalize PUT.

3.1 Normalization of Function Definition

Each expression extracted from a function definition is normalized into simpler inter-
mediate expressions, designed to ease the translation into a set of constraints. Fig.3
gives the syntax of the intermediate language MiniFocal.

In MiniFocal, each expression used as an argument of a function call is assigned
a fresh variable. The same arises for decisions in conditional expressions and pattern-
matching operations. Furthermore, patterns are linear (a variable occurs only once in the
pattern) and they cannot be nested. High-order functions can be defined but the language
cannot cope with creation of closures and partial application. Moreover, MiniFocal does
not include if x then e1 /else e2 as this expression is translated into a match expression

FocalTest: Property-Based Testing of Focal Programs 145

Focalize program + Property

MiniFocal program (intermediate representation)

CLP(FD) program

FD Solver + apply/match extension

MC/DC compliant test suite

Fig. 2. Constraint solving procedure

expr ::= let x = expr in expr |
match x with
pat → expr; . . . ; pat → expr;
[→ expr] |
op(x, . . . , x) |
f(x, . . . , x) |
x(x, . . . , x) |
n | b | x | constructor(x, . . . , x)

pat ::= constructor | constructor(x, x)

Fig. 3. Syntax of the MiniFocal language

match x with | true → e2 | false → e3. Such automatic normalization procedures
are usual in functional programming, Another less-usual normalization procedure re-
quired by our method is the so-called lambda-lifting transformation, described in [10].
It consists in eliminating free variables from function definitions. The purpose of these
transformations is to ease the production of CLP(FD) programs.

3.2 Production of CLP(FD) Programs

The function definition (recursive or not) let [rec] f(X1, . . . , Xn) = E is translated
into the CLP(FD) program f(R,X1, . . . , Xn) :- E. Thus a function is translated into
a logical predicate with one clause that sets the constraints derived from the body of
the function. R is a fresh output variable associated to the result of f . E denotes the
constraint resulting from the translation of E, according to the rules described below.
In the following we omit the overlines on objects in the constraint universe when there
is no ambiguity.

The translation of arithmetic and boolean expressions is straightforward. A func-
tional variable is translated into a CLP(FD) variable. Next section explains what exactly
a CLP(FD) variable is. The translation of the binding expression let X = E1 in E2

requires first translating the output variable X and then second translating expressions
E1 and E2. For example, let X = 5 ∗ Y in X + 3, is translated into the constraint

146 M. Carlier, C. Dubois, and A. Gotlieb

X = 5 ∗ Y ∧ R = X + 3, assuming the expression is itself bound to variable R. A
function call f(X1, . . . , Xn), bound to variable R, is translated into f(R,X1, . . . , Xn).
In the case of recursive function, this is the natural recursion of Prolog that handles re-
cursion of MiniFocal functions. A higher-order function call X(X1, . . . , Xn) where
X denotes any unknown function is translated into the specific constraint combinator
apply with the following pattern apply(X, [X1, . . . , Xn]). The constraint apply is
detailed in Sec.4. Similarity, the pattern-matching expression is translated into a con-
straint combinator match. This constraint takes the matched variable as first argument,
the list of pattern clauses with their body as second argument, and the default case pat-
tern as third argument (fail when there is no default case). As an example, consider a
pattern-matching expression of Fig.1:
match L with [] → G; H :: T → H :: app(T,G); is translated into match(L, [
pattern([], R = G), pattern(H :: T, app(R1, T,G), R = H :: R1)], fail).

4 Constraint-Based Test Data Generation

Constraint-based test data generation involves solving constraint systems extracted
from programs. In this section, we explain the key-point of our approach consisting
in the implementation of the constraint combinators we introduced to model faithfully
higher-order function call and pattern-matching expressions. First we briefly re-
call how CLP(FD) program are handled by a Prolog interpreter (Sec.4.1), second we
explain our new dedicated constraint combinators (Sec.4.2), third we present the test
data labeling process (Sec.4.3) and finally we discuss the correction of our constraint
model (Sec.4.4).

4.1 Constraint Solving

A CLP(FD) program is composed of variables, built-in constraints and user-defined
constraints. There are two kinds of variables: free variables that can be unified to Prolog
terms and FD variables for which a finite domain is associated. The constraint solving
process aims at pruning the domain of FD variables and instantiating free variables to
terms. Built-in constraints such as +, −, ∗, min, max . . ., are directly encoded within
the constraint library while user-defined constraints can be added by the user either
under the form of new Prolog predicate or new constraint combinators. Unification is
the main constraint over Prolog terms. For example, t(r(1, X), Z) = t(H, r(2)) results
in solutions H = r(1, X) and Z = r(2).

Intuitively, a CLP(FD) program is solved by the interleaving of two processes,
namely constraint propagation and labeling. Roughly speaking, constraint propagation
allows reductions to be propagated throughout the constraint system. Each constraint is
examined in turn until a fixpoint is reached. This fixpoint corresponds to a state where
no more pruning can be performed. The labeling process tries to instantiate each vari-
able X to a single value v of its domain by adding a new constraint X = v to the
constraint system. Once such a constraint is added, constraint propagation is launched
and can refine the domain of other variables. When a variable domain becomes empty,

FocalTest: Property-Based Testing of Focal Programs 147

the constraint system is showed inconsistent (that is the constraint system has no so-
lution), then the labeling process backtracks and other constraints that bind values to
variables are added. To exemplify those processes, consider the following (non-linear)
example: X,Y in 0..10 ∧ X ∗ Y = 6 ∧ X + Y = 5. First the domain of X and Y is
set to the interval 0..10, then constraint X ∗ Y = 6 reduces the domain of X and Y
to 1..6 as values {0, 7, 8, 9, 10} cannot be part of solutions. Ideally, the process could
also remove other values but recall that only the bounds of the domains are checked for
consistency and 1∗6 = 6∗1 = 6. This pruning wakes up the constraint X+Y = 5, that
reduces the domain of both variables to 1..4 because values 5 and 6 cannot validate the
constraint. Finally a second wake-up of X ∗ Y = 6 reduces the domains to 2..3 which
is the fixpoint. The labeling process is triggered and the two solutions X = 2, Y = 3
and X = 3, Y = 2 are found.

4.2 Dedicated Constraint Combinators

In CLP(FD) programming environments, the user can define new constraint combina-
tors with the help of dedicated interfaces. Defining new constraints requires to instanti-
ate the following three points:

1. A constraint interface including a name and a set of variables on which the con-
straint holds. This is the entry point of the newly introduced constraint;

2. The wake-up conditions. A constraint can be awakened when either the domain of
one of its variables has been pruned, or one of its variables has been instantiated,
or a new constraint related to its variables has been added;

3. An algorithm to call on wake-up. The purpose of this algorithm is to check whether
or not the constraint is consistent1 with the new domains of variables and also to
prune the domains.

The CLP(FD) program generated by the translation of MiniFocal expressions (explained
in Sec.3) involves equality and inequality constraints over variables of concrete types,
numerical constraints over FD variables, user-defined constraints used to model (possi-
bly higher-order) function calls and constraint combinators apply and match.

The domain of FD variables is generated from MiniFocal variables using their types.
For example, MiniFocal 32-bits integer variable are translated into FD variables with
domain 0..232 − 1. Variables with a concrete type are translated into fresh Prolog vari-
ables that can be unified with terms defined upon the constructors of the type. For
example, the variable L of concrete type list(int) has infinite domain {[], 0 :: [], 1 ::
[], . . . , 0 :: 0 :: [], 0 :: 1 :: [], . . .}.

Apply Constraint. The constraint combinator apply has interface apply(F,L)
where F denotes a (possibly free) Prolog variable and L denotes a list of arguments.
Its wake-up condition is based on the instantiation of F to the name of a function in
the MiniFocal program. The encoding of apply follows the simple principle of sus-
pension. In fact, any apply(F,L) constraint suspends its computation until the free

1 If there is a solution of the constraint system.

148 M. Carlier, C. Dubois, and A. Gotlieb

variableF becomes instantiated. WheneverF is bound to a function name, then the cor-
responding function call is automatically built using a specific Prolog predicate called
=... This higher-order predicate is able to build Prolog terms dynamically. To make
things more concrete, consider the following simplified implementation of apply:
apply(F, L) :- freeze(F,CALL =.. F::L, CALL)

If L represents a list of argumentsX1 :: X2 :: [], this code just says that when F will
be instantiated to a function name f , the term f(X1, X2) will be created and called.
This is a simple but elegant way of dealing with higher-order functions in CLP(FD)
programs.

Match Operator. The match constraint combinator has interface match(X , [pattern
(pat1, C1), . . . , pattern(patn, Cn)], Cd) where C1, . . . , Cn, Cd denote FD or Prolog
constraints. The wake-up conditions of the combinator include the instantiation of X
or just the pruning of the domain of X in case of FD variable, the instantiation or
pruning of variables that appear in C1, . . . , Cn, Cd. The algorithm launched each time
the combinator wakes up is based on the following rules:

1. if n = 0 then match rewrites to default case Cd;
2. if n = 1, and Cd = fail, then match rewrites to X = pat1 ∧ C1;
3. if ∃i in 1..n such that X = pati is entailed by the constraint system, then match

rewrites to Ci;
4. if ∃i in 1..n such that ¬(X = pati ∧ Ci) is entailed by the constraint system

then match rewrites to match(X , [pattern(pat1, C1), . . . , pattern(pati−1, Ci−1),
pattern(pati+1, Ci+1), . . . , pattern(patn, Cn, Cd)], Cd).

The two former rules implement trivial terminal cases. The third rule implements for-
ward deduction w.r.t. the constraint system while the fourth rule implements backward
reasoning. Note that these two latter rules use nondeterministic choices to select the
pattern to explore first. To illustrate this combinator, consider the following example:
match(L, [pattern([], R = 0), pattern(H :: T,R = H + 10)], fail) where R
is FD variable with domain 6..14 and L is of concrete type list(int). As constraint
¬(L = [] ∧ R = 0) is entailed by current domains when the fourth rule is examined
(R = 0 and R ∈ 6..14 are incompatible), the constraint rewrites to
match(L, [pattern(H :: T,R = H + 10)], fail)
and the second rule applies as it remains only a single pattern: L = H :: T ∧ R =
H + 10. Finally, pruning the domains leads to R ∈ 6..14, H ∈ −4..4, and L = H :: T
where T stands for any list(int) variable.

4.3 Test Data Labeling

As mentioned below, constraint solving involves variable and value labeling. In our
framework, we give labels to variables of two kinds: FD variables and Prolog vari-
ables representing concrete types coming from MiniFocal programs. As these latter
variables are structured and involve other variables (such as in the above example of
list(int)), we prefer to instantiate them first. Note that labeling a variable can awake
other constraints that hold on this variable and if a contradiction is found, then the la-
beling process backtracks to another value or variable. Labeling FD variables requires

FocalTest: Property-Based Testing of Focal Programs 149

to define variable and value to enumerate first. Several heuristics exist such as labeling
first the variable with the smallest domain (first-fail principle) or the variable on which
the most constraints hold. However, in our framework, we implemented an heuristic
known as random iterative domain-splitting. Each time a non-instantiated FD variable
X is selected, this heuristic picks up at random a value v into the current bound of the
variable domain, and add the following Prolog choice points (X = v;X < v;X > v).
When the first constraint X = v is refuted, the process backtracks to X < v and selects
the next non-instantiated variable while adding X to the queue of free variables. This
heuristic usually permits to cut down large portions of the search space very rapidly. It
is worth noticing that once all the variables have been instantiated and the constraints
verified then we hold a test input that satisfies the elementary PUT.

4.4 Correctness, Completeness and Non-termination

Total correctness of our constraint model implies showing correctness, completeness
and termination. If we make the strong hypothesis that CLP(FD) predicates correctly
implement arithmetical MiniFocal operators and that the underlying constraint solver
is correct, then the correctness of our model is guaranteed, as the deduction rules of
match directly follow from the operational semantics of conditional and pattern match-
ing in Focalize. Completeness comes from the completeness of the labeling process in
CLP(FD). In fact, as soon as every possible test data is possibly enumerated during
the labeling step, any solution will be eventually found. But completeness comes at the
price of efficiency and preserving it may not be indispensable in our context. A proof
of the correctness and the completeness has been written [11]. It required to specify the
formal semantics of the Focalize functional language, the semantics of constraints, to
define formally the translation and the notion of solution of a constraint system derived
from a Focalize expression. We have formally proved that if we obtain a solution of the
CLP(FD) program, i.e. an assignment of variables of this program, then the evaluation
of the precondition, according to the Focalize operational semantics yields the expected
value.

Our approach has no termination guarantee as we cannot guarantee the termination
of any recursive function and guarantee the termination of the labeling process. Hence,
it is only a semi-correct procedure. To leverage the problems of non-termination, we
introduced several mechanisms such as time-out, memory-out and various bounds on
the solving process. When such a bound is reached, other labeling heuristics are tried
in order to avoid the problem. Note however that enforcing termination yields losing
completeness as this relates to the halting problem.

5 Implementation and Results

5.1 Implementation

We implemented our approach in a tool called FocalTest. It takes a Focalize program
the name of one of its (non-elementary) properties P as inputs and produces a test set
that covers MC/DC on the precondition part of P as output. The tool includes a parser

150 M. Carlier, C. Dubois, and A. Gotlieb

for Focalize, a module that breaks general properties into elementary ones, a prepro-
cessor that normalizes function definitions and the elementary properties, a constraint
generator, a constraint library that implements our combinators and a test harness gen-
erator. FocalTest is mainly developed in SICStus Prolog and makes an extensive use of
the CLP(FD) library of SICStus Prolog. This library implements several arithmetical
constraints as well as labeling heuristics. The combinator match is implemented using
the SICStus global constraint interface; It is considered exactly as any other FD con-
straint of the CLP(FD) library. All our experiments have been performed on a 3.06Ghz
clocked Intel Core 2 Duo with 4Gb 1067 MHz DDR3 SDRAM. Note also that Focalize
integers were given a domain based on a signed 16 bits encoding (−215..215 − 1).

5.2 Experimental Evaluation

Our goal in the experimental evaluation was to evaluate whether constraint reason-
ing can improve the test data generation process in FocalTest and to compare our
implementation with existing tools. We compared our implementation with 1) a pre-
liminary version of FocalTest [7] that used only a pure random test data generation
approach and 2) QuickCheck [2] the mainstream tool for test data generation of Haskell
programs.

Programs and Properties. We evaluated our implementation of constraint reasoning
on the examples listed below. All the negation listed below are implicitly quantified
universally.

Focalize Programs. Avl is an implementation of AVL trees. The considered property
says that inserting an element into an AVL (of integers) still results in an AVL:

is avl(t) ⇒ is avl(insert avl(e, t)) (insert avl)

We considered three properties holding on lists: insert list is similar to insert avl

but holds over sorted lists; inset min max list specifies the minimum and maximum
integer values of a list; and sum append list specifies the summation of all elements.

sorted(t) ⇒ sorted(insert list(e,t)) (insert list)
is min(min, l) ⇒ is max(max, l) ⇒

min list(e :: l) = min(min, e) ∧ max list(e :: l) = max(max, e) (insert min max list)
s1 = sum list(l1) ⇒ s2 = sum list(l2) ⇒ s1+ s2 = sum list(append(l1, l2)) (sum append list)

Thetriangle function takes three lengths as inputs and returns a value saying whether
the corresponding triangle is equilateral, isosceles, scalene or invalid.
For example:

triangle(x, y, z) = equilateral ⇒ (x = y ∧ y = z) (equilateral)

Voter is an industrial component of a Voting machine, that computes a unique vote
from three distinct data sources [12]. The function vote takes three integers as inputs
and returns a pair composed of an integer and a value in {Match, Nomatch, Perfect}.

FocalTest: Property-Based Testing of Focal Programs 151

Table 1. CPU time required to generate an MC/DC compliant test suite (in ms)

Programs Properties QuickCheck Random FocalTest Constraint FocalTest

avl insert avl 48,007 10,288,259 10,061
sorted list insert list 515 2 54
sorted list fold left insert list 276 6 87
sorted list fold right insert list 108 2 194
min max insert min max list Fail 147,202 264
sum list sum append list Fail 133,139 55
sum list fold left sum append list Fail 89,715 155
sum list fold right sum append list Fail 89,941 142
bst create bst – 18 269
Triangle equilateral Fail 70,416 113

isosceles 29,267 58,670 183
scalene 168 1 208
error 324 0 25

Voter

perfect 13,710 Fail 253
range c1 2,863 708 87
range c2 3,556 742 80
range c3 2,611 633 104
partial c1 Fail Fail 486
partial c2 Fail Fail 430
partial c3 Fail Fail 466

This latter value specifies the data source quality. For example, Perfect is obtained
when the difference between two inputs is less than 2. Other tags have similar meaning.
We show properties perfect, range c1 and partial c1 :

compatible(v1, v2) ⇒ compatible(v2, v3) ⇒ compatible(v1, v3) ⇒
compatible(fst(vote(v1, v2, v3)), v1) ∧

state(vote(v1, v2, v3)) = Perfect (perfect)
v2 = v3 ⇒ v1 �= v2 ⇒ v1 �= v3 ⇒

(sensor(vote(v1, v2, v3)) = capt 1 ∧ state(vote(v1, v2, v3)) = range match)

(range c1)
v1 = v2 ⇒ v2 �= v3 ⇒ v1 �= v3 ⇒

(sensor(vote(v1, v2, v3)) = capt 1)∧state(vote(v1, v2, v3)) = partial match)

(partial c1)

These properties contain recursive functions with heavy use of pattern matching and
combination of structures of concrete types (lists and trees over numerical values), as
well as conditionals.

Finally, the last property we considered is related to the construction of a binary
searched tree from a list.

create bst(l) ⇒ bst(t) (create bst)

5.3 Results Analysis

We got experimental results by asking the tool to generate 10 MC/DC-compliant test
suites for each property and program. We measured the CPU runtime (with the Unix
time command) required to generate the test suites and reported the average time for
generating a single test suite. The time required to produce the test harness and to ex-
ecute the Focalize program with the generated test cases were not reported, as these

152 M. Carlier, C. Dubois, and A. Gotlieb

processes do not depend on the test data generation strategy and are similar for all
approaches. We also dropped trivial test cases that are built only using empty lists or
singletons because they are of very limited interest for a tester. Tab.1 shows the results
obtained with QuickCheck [2] and two versions of FocalTest: the version of [7] that
implements only random test data generation and the version described in this paper
that implements constraint reasoning. Note that both QuickCheck and Random Focal-
Test cannot simply select test suites that covers MC/DC on the precondition part of
a property ; they only select test suites that satisfy the precondition. Hence, the time
measured for both these tools is necessarily less than the time that would have been re-
quired to get an MC/DC compliant test suite. On the contrary, our new constraint-based
implementation is designed to cover MC/DC.

Firstly, both implementations of random test data generation (QuickCheck and Ran-
dom FocalTest) give distinct results, which was a bit unexpected. For example, there is
about a 100-factor for the avl program. Note that results for min max and sum list
are very different. In fact, both tools use distinct random generators and distincts la-
beling strategies for concrete types. Therefore, it is worth to compare the results of
FocalTest with constraint reasoning with both approaches. Note also that both random
approaches fail very often (failure is reported when more than 10 millions of consecu-
tive non-adequate test data are generated).

Secondly, Tab.1 shows that our implementation of constraint reasoning offers the
best compromise on this experimental set. FocalTest with constraint reasoning always
finds an MC/DC compliant test set, even when both other approaches fail to do so (e.g.,
on Voterwith properties partial). Among the properties of triangle, two are easily
covered with the random test data generators. This is not astonishing since these proper-
ties only require the three input lengths to form a scalene triangle or an invalid triangle,
which is an event that has a huge probability to happen for a random generator of triples.
Similarily, the sorted list example is also tractable with the random approaches as
only small lists are required to be generated (4 elements). The probability to generate
sorted lists at random in this case is reasonnable. Therefore, for these examples, the
constraint reasoning approach is not useful. On the contrary, for properties containing
events with low probability, the constraint reasoning approach is always better (e.g.,
on Triangle with properties equilateral or Voter). Looking at the last column of
Tab.1, one see that constraint FocalTest represents the best compromise w.r.t. a random
approach. This approach always permits one to get a result in a short amount of time
(for all but one example, test data generation CPU time is always less than 1sec).

Our set of programs and properties is a bit limited, as it contains only a single in-
dustrial example (Voter). The size of programs is a also a limitating factor of our ex-
periments, as the biggest program takes only 711 LOC and contains about 20 function
definitions, excluding trivial definitions. However, although our experimental subjects
come mainly from academia and might not reflect industrial usage, they are represen-
tative of the expression power and the diversity of the Focalize language. Note also
that we generated test cases from correct versions of programs and properties and here
again, this might not perfectly reflect the usage of our tool. However, we considered
that, before attacking wrong instances, any test case generation tool should demonstrate
its ability to handle correct versions of programs and properties.

FocalTest: Property-Based Testing of Focal Programs 153

Even if our experimental set is of limited size, we can draw some conclusions from
the results:

– Our experiments show that constraint reasoning helps to find efficiently test data
for testing programs. The set of data that is generated covers MC/DC on the pre-
condition part of the properties, specified for these programs. We also noticed that
constraint reasoning outperforms traditional random generation over many exam-
ples. Consequently, constraint reasoning can be of great help to complement an
existing random test set previously generated;

– Using constraint combinators such as match, together with forward and backward
reasoning rules speeds up the computation of test data. An implementation with
Prolog choice points is ineffective whenever numerous execution paths exist within
the program. This result was expected but it needed to demonstrated once again
in the context of the unexplored domain of constraint-based testing of functional
programs.

6 Related Work

Using constraint solving techniques to generate test cases is not a new idea. [13] and
[14] were among the first to introduce Constraint Logic Programming for generating
test cases from specification models such as VDM or algebraic specifications. These
seminal works yield the development of GATEL, a tool that generates test cases for
reactive programs written in Lustre. In 1998, Gotlieb et al. proposed using constraint
techniques to generate test data for C programs [9]. This approach was implemented in
tools InKa and Euclide [15]. In [16] set solving techniques were proposed to generate
test cases from B models. These ideas were pushed further through the development
of the BZ-TT and JML-TT toolset. In 2001, Pretschner developed the model-based test
case generator AUTOFOCUS that exploited search strategies within constraint logic
programming [17] and recently, PathCrawler introduced dynamic path-oriented test
data generation [18]. This method was independently discovered in the DART/CUTE
approach [19,20].

In the case of testing functional programs, most approaches derive from the
QuickCheck tool [2] which generates test data at random. GAST is a similar implemen-
tation for Clean, while EasyCheck implements random test data generation for Curry
[6]. QuickCheck and GAST implement function generators for higher-order function
since they deal with higher-order properties while this is not necessary in our approach
because such properties are not allowed in Focalize. Easycheck resembles to FocalTest
because it takes advantage of the original language features such as free variable and
narrowing to generate automatically test cases w.r.t. a property. These features could
be related to clause definition, backtracking and labeling in CLP(FD) program with-
out constraint aspects. FocalTest originally takes inspirations from these tools, that is,
to test a functional program against a property. As far as we know, FocalTest is the
first application of constraint solving in the area of test data generation for functional
programs.

The development of SAT-based constraint solver for generating test data from declar-
ative models also yields the development of Kato [21] that optimizes constraint solving

154 M. Carlier, C. Dubois, and A. Gotlieb

with (Alloy) model slicing. Like some of the above tools such as GATEL, AUTOFO-
CUS or EUCLIDE, FocalTest relies on finite domains constraint solving techniques.
But, it has two main differences with these approaches. Firstly, it is integrated within
a environment which contains naturally property that could be used for testing. Sec-
ondly, it uses its own operators implementation for generating test data in the presence
of conditionals and pattern-matching operations and concrete type. This allows various
deduction rules to be exploited to find test data that satisfy properties. Unlike tradi-
tional generate-and-test approaches, this allows one to exploit constraints to infer new
domain reductions and then helps the process to converge more quickly towards sought
solutions.

7 Conclusions

The constraint-based approach proposed in this paper permits one to get an MC/DC
compliant test suite, satisfying the precondition part of Focalize properties. Our
approach is based on a systematic translation of Focalize program into CLP(FD) pro-
grams and relies on the definition of efficient constraint combinators to tackle pattern-
matching and higher-order functions. We integrated this constraint-reasoning to
FocalTest and relieves it from using inefficient generate-and-test approaches to select
test data satisfying given preconditions. Our experimental evaluation shows that using
constraint reasoning for this task outperforms traditional random test data generation.

Furthermore this work can be extended to the automatic test generation of other
functional languages, for example to extend test selection in QuickCheck-like tools
(that rely on random or user-guided generation). Furthermore exploring how the con-
straint model of the overall properties and programs could be used to formally prove the
conformance of the program to its specifications needs further investigation. Exploit-
ing constraint solving in automated software testing has certainly become an emerging
research topic in software engineering.

References

1. Fink, G., Bishop, M.: Property-based testing: a new approach to testing for assurance. SIG-
SOFT Softw. Eng. Notes 22(4), 74–80 (1997)

2. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell pro-
grams. ACM SIGPLAN Notices 35(9), 268–279 (2000)

3. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic Automated Soft-
ware Testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, pp. 84–100. Springer,
Heidelberg (2003)

4. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional logic
programs. In: Conf. on Princ. and Practice of Declarative Programming (PPDP 2007),
pp. 63–74 (2007)

5. Fischer, S., Kuchen, H.: Data-flow testing of declarative programs. In: Proc. of ICFP 2008,
pp. 201–212 (2008)

6. Christiansen, J., Fischer, S.: EasyCheck — Test Data for Free. In: Garrigue, J., Hermenegildo,
M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer, Heidelberg (2008)

FocalTest: Property-Based Testing of Focal Programs 155

7. Carlier, M., Dubois, C.: Functional testing in the focal environment. In: Test And Proof, TAP
(April 2008)

8. Dubois, C., Hardin, T., Viguié Donzeau-Gouge, V.: Building certified components within
focal. In: Fifth Symp. on Trends in Functional Prog., TFP 2004, vol. 5, pp. 33–48 (2006)

9. Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using constraint solving
techniques. In: Int. Symp. on Soft. Testing and Analysis, ISSTA, pp. 53–62 (1998)

10. Johnsson, T.: Lambda Lifting: Transforming Programs to Recursive Equations. In: Jouan-
naud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer, Heidelberg (1985)

11. Carlier, M.: Constraint Reasoning in FocalTest (2009) CEDRIC Technical report,
http://cedric.cnam.fr

12. Ayrault, P., Hardin, T., Pessaux, F.: Development life cycle of critical software under focal.
In: Int. Workshop on Harnessing Theories for Tool Support in Software, TTSS (2008)

13. Dick, J., Faivre, A.: Automating the Generation and Sequencing of Test Cases from Model-
Based Specifications. In: Larsen, P.G., Wing, J.M. (eds.) FME 1993. LNCS, vol. 670,
pp. 268–284. Springer, Heidelberg (1993)

14. Marre, B.: Toward Automatic Test Data Set Selection using Algebraic Specifications and
Logic Programming. In: Furukawa, K. (ed.) Int. Conf. on Logic Programming, ICLP,
pp. 202–219 (1991)

15. Gotlieb, A.: Euclide: A constraint-based testing platform for critical c programs. In: Int.
Conf. on Software Testing, Validation and Verification, ICST (April 2009)

16. Legeard, B., Peureux, F.: Generation of functional test sequences from B formal specifica-
tions - presentation and industrial case-study. In: Int. Conf. on Automated Soft. Eng., ASE
2001, pp. 377–381 (2001)

17. Pretschner, A.: Classical search strategies for test case generation with constraint logic pro-
gramming. In: Formal Approaches to Testing of Soft., FATES, pp. 47–60 (2001)

18. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: Automatic Generation of Path
Tests by Combining Static and Dynamic Analysis. In: Dal Cin, M., Kaâniche, M., Pataricza,
A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer, Heidelberg (2005)

19. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In: ACM
Conf. on Prog. Lang. Design and Impl., PLDI, pp. 213–223 (2005)

20. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In: ESEC/FSE-13,
pp. 263–272. ACM Press (2005)

21. Uzuncaova, E., Khurshid, S.: Constraint Prioritization for Efficient Analysis of Declarative
Models. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 310–325. Springer,
Heidelberg (2008)

http://cedric.cnam.fr

	FocalTest: A Constraint Programming Approach for Property-Based Testing
	Introduction
	Background
	A Quick Tour of Focalize
	Elementary Properties
	Test Verdict

	Constraint Generation
	Normalization of Function Definition
	Production of CLP(FD) Programs

	Constraint-Based Test Data Generation
	Constraint Solving
	Dedicated Constraint Combinators
	Test Data Labeling
	Correctness, Completeness and Non-termination

	Implementation and Results
	Implementation
	Experimental Evaluation
	Results Analysis

	Related Work
	Conclusions
	References

