
Chapter 7
Computational Methods for the Assignment
of Vibrational Modes in Crystalline Materials

Daniele Tomerini and Graeme M. Day

Abstract In this chapter we provide a description of the computational tools used
for the calculation of the terahertz absorption spectrum of a crystalline material, with
a particular focus on molecular crystals. We explain using examples why it is not
correct to use the normal modes of vibration of an isolated molecule to understand
the vibrational spectrum of a material in the terahertz range, but that the features in
this spectral region are largely related to intermolecular interactions. It is, therefore,
necessary to use methods that consider the periodicity of the crystal structure. We
describe the two main methods used for the calculation of the vibrational frequencies
and their absorption intensities of a crystal: lattice dynamics and molecular dynamics,
providing examples showing the benefits and limitations of each method.

7.1 Introduction

The vibrational spectrum of a material is directly related to its internal properties:
a vibration is probed when the material absorbs energy from incoming radiation,
and the energies at which the material absorbs reflect the interactions between atoms
in the material. In classical infrared spectroscopy, it is often possible to directly
connect an observed absorption to the distortion (e.g. stretch or bend) of a bond
in a molecule, usually without the need of calculation. This is because the vibra-
tional normal modes are often localized in nature and because their associated vibra-
tional frequencies are usually only slightly shifted by their chemical environment.
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Fig. 7.1 Molecular structures of naphthalene, 2,2′-bithiophene and MDMA

Therefore, certain vibrational frequency ranges are characteristic of known distor-
tions of covalent bonds.

However, the vibrational normal modes become increasingly more complex at
lower frequencies; in the terahertz region, it is not generally possible to associate
an absorption feature to a simple motion such as the stretching of a bond. Instead,
absorption features generally result from collective motions of all the atoms in the
material. To correctly assign the nature of molecular motions associated with a par-
ticular absorption, it is thus necessary to rely on simulations. If a simulation is theo-
retically well-founded and can reproduce the positions and intensities of features in
an observed spectrum, the results can also be trusted to provide a faithful description
of the vibrational motions that give rise to these features. In this chapter, we discuss
the methods that are applied to the simulation of lattice modes in crystalline molec-
ular materials and can, therefore, be applied to characterise the features observed in
measured terahertz spectra.

7.1.1 Single Molecule Versus Periodic Crystal Structure
Calculations

A tempting approach to calculating the absorption spectrum of a molecular material
is to calculate the normal modes of vibration of an isolated molecule, as such single-
molecule calculations are generally much cheaper (in computing time and required
computing resources) than calculations that include the entire periodic crystal struc-
ture. However, the vibrational features observed in the gas phase and in a solid can
be radically different: in the gas phase, the interaction between molecules can be
neglected, while in solids this is not true, especially when considering low frequency
vibrations. Furthermore, pure rotational modes of molecules are allowed in the gas
phase (as can be seen in the absorption spectrum of water vapour [1]), while molec-
ular rotations are hindered in the solid phase by molecular close-packing and by the
interactions between molecules.

Consider the case of naphthalene (Fig. 7.1), whose lowest frequency infrared
active vibrational frequencies are listed in Table 7.1. The terahertz spectrum of the gas
phase and the calculation of the isolated molecular vibrational frequencies [2] agree
in finding no absorption below 175 cm−1, while the experimental [3] spectrum of
crystalline naphthalene shows several features below 100 cm−1. These additional fea-
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Table 7.1 Comparison of the three lowest energy infrared/terahertz active absorption frequencies
(cm−1) for naphthalene, in crystal and gas phase
Gas phase [2] Crystal [4, 5]
Experimental Calculated Experimental Calculated

166 179 53 45 54
359 376 66 62 74
473 492 98 91 97

Fig. 7.2 Experimental terahertz spectrum of crystalline 2,2′bithiophene (a, upper spectrum) com-
pared with a solid state calculation (a, lower spectrum) and a molecular calculation (b). The strongest
experimental features are indicated with letters. Reprinted with permission from [6]. Copyright 2005
Americal Chemical Society

tures only appear for the crystalline sample, so must be related to the intermolecular
interactions within the crystal. Indeed, simulations that include the periodic structure
of the crystal [4, 5] reproduce the observed frequencies and indicate that the corre-
sponding vibrations relate to whole-molecule motions about the equilibrium crystal-
lographic positions. Another example is the terahertz spectrum of 2,2′-bithiophene,
shown in Fig. 7.2. Again, there are clear differences between the vibrational modes
of the isolated molecule and those of the crystal: in this case, the isolated molecule
does have low-energy vibrational modes near and below 100 cm−1. However, this
region of the spectrum becomes much more detailed in the crystal and the number
and position of these features can only be reproduced in a calculation that includes
the entire crystal structure.
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Table 7.2 Experimental [7] and calculated [7, 8] frequencies of the terahertz absorption of MDMA
(cm−1), from isolated molecule and from lattice dynamics of the crystal, and corresponding assign-
ment to vibrational features

Experimental Isolated molecule calculation Crystal calculation
Frequency Assignment Frequency Assignment

37.0 36.6 Internal C–C bond
torsion

38.0 Rigid molecule rota-
tions

59.3 58.8 Internal C–C bond
bending

61.0 Rigid molecule trans-
lations

86.6 85.8 Internal CH2 group
rocking

94.4 Internal C–C bond
bending + rigid trans-
lations

A trickier example is represented by calculations on the drug molecule 3,4-
methylenedioxymethamphetamine (MDMA or ecstasy, Fig. 7.1). In this case,
calculations on the isolated molecule [7] seem to provide excellent agreement with
the experimental spectrum (Table 7.2), so that features of the terahertz spectrum were
assigned to intramolecular vibrations. However, a series of calculations [8, 9] based
on the dynamics of the known crystal structure, showed that the intramolecular vibra-
tions are shifted out of the terahertz region by coupling to the crystal environment
(see Sect. 7.2.2). Moreover, the calculations produce a series of intermolecular vibra-
tional modes at the frequencies seen in the experimental spectrum. Here, it seems
that the agreement of the frequencies found in the isolated molecule calculation with
the experimental spectrum was a result of fortuitous coincidence.

In conclusion, to correctly calculate the terahertz spectrum and the correspond-
ing vibrational modes of a crystalline material it is necessary to employ methods
that consider the molecular arrangement in the periodic structure and the associated
intermolecular interactions present in a crystal. Two computational approaches are
available: lattice dynamics and molecular dynamics (MD).

Lattice dynamics, described in Sect. 7.2, relies on calculating the forces acting
on the atoms in the crystal as a periodic system in static equilibrium. A harmonic
analysis of the forces leads to the normal modes of the system. MD, on the other hand
(Sect. 7.3), is a more general computational approach to investigating the dynamics in
chemical systems, where Newton’s laws of motion are applied to follow the dynamics
of molecules in a crystal around its equilibrium structure. The vibrational modes can
then be extracted from an analysis of the trajectories of atoms through time.

There are, of course, different types of systems: ionic crystals, covalent crystals,
semiconductors, and molecular crystals to name a few. Each of these has its own
peculiarity, and methods may need to be carefully tailored to address the differences
in their behaviour. In the proceeding sections, we will try to consider these different
aspects, but we will focus mainly on molecular organic crystals; for other types of
systems, we refer whenever possible to the relevant literature.
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7.2 Theory of Crystal Phonons

All the vibrational motions of atoms in a crystal can be described as a superposition
of the normal modes of vibration; the quanta of vibrations in a periodic system
are called phonons. The normal modes are characterised by the property that each
atom of the crystal oscillates with the same frequency ω, and that these oscillations
can interact with light of the corresponding frequency, producing absorption signals
detectable in vibrational spectroscopy. In the following section, we will introduce
how it is possible to calculate these normal mode frequencies for different types of
periodic systems.

7.2.1 Phonon in a 1-Dimensional Crystal

We start with the simplest model system: a 1-dimensional (1D) infinite chain of
equally spaced atoms, in which first neighbours interact via a harmonic interaction.
The instantaneous position xn of the nth atom can be written as

xn = nd0 + un, (7.1)

where d0 is the equilibrium separation between neighbouring atoms, and un the dis-
placement from the equilibrium position. Defining the force constant of the harmonic
nearest-neighbour interaction as C , and the atomic mass m, leads to the following
system of equations:

m
d2un

dt2 = C (un+1 − 2un + un−1) , (7.2)

From the periodicity of the system we expect the solution to be in the form of a
travelling wave:

un(t) = A exp (ikd0n − iωt), (7.3)

where A is the amplitude of motion of an atom, i.e. the maximum displacement
from the equilibrium position. Using this form of the solution we have simplified the
initial problem to a simpler parametric equation. We can find the so-called dispersion
relation between ω and k:

ω =
√

4C

m

∣∣∣∣sin
1

2
kd0

∣∣∣∣ (7.4)

The wavevector k is an important parameter in a crystal and is associated with a
crystal momentum �k. Quantum transitions within the crystal require that the crystal
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Fig. 7.3 Infinite linear chain of two alternating types of atom separated by a distance 1
2 d0. The

atoms are displayed in their equilibrium position, and the displacement u and v are indicated

momentum is conserved,1 which has an important consequence in spectroscopy:
because of the low momentum of a photon, interaction of a phonon with light is
possible only if k ≈ 0.

Another important rule for allowed transitions in vibrational terahertz and infrared
spectroscopy is that the phonon vibration must generate a vibrating electrical dipole
to interact with light; we must explore a less simple model to investigate the conse-
quences of this selection rule.

We now consider a linear chain of alternating atoms, of mass m1 and m2, respec-
tively, each of equal distance 1

2 d0 from each other. If we call un and vn (see Fig. 7.3)
the displacement of the atoms from their equilibrium positions, we obtain the system
of equations:

m1
d2un
dt2 = C (vn−1 + vn − 2un)

m2
d2vn
dt2 = C (un + un+1 − 2vn) ,

(7.5)

As with the first monoatomic chain model, the solution we look for will still be
in the form of a travelling wave, but now with two amplitudes, A1 and A2, for the
two atom types:

un = A1 exp (ikd0n − iωt)

vn = A2 exp (ikd0n − iωt)
(7.6)

Substituting into Eq. 7.5 leads to the following matrix relation:
⎛
⎜⎝

1

C
ω2m1 − 2 1 + exp (−ikd0)

1 + exp (ikd0)
1

C
ω2m2 − 2

⎞
⎟⎠

⎛
⎜⎝ A1

A2

⎞
⎟⎠ = 0 (7.7)

Non-trivial solutions exist only if the determinant of the matrix is 0. We can solve
the equations to obtain two dispersion relations between ω and k:

ω2± = C

(
1

m1
+ 1

m2

)
± C

√(
1

m1
+ 1

m2

)2

− 4 sin2
( 1

2 kd0
)

m1m2
(7.8)

1 Further detail can be found in most solid state physics texts (for example, see [10]).
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Fig. 7.4 Phonon dispersion (left) for a diatomic linear chain with the mass ratio m2/m1 = 2 and
relative motion (right) of the atoms at k = 0

In the spectroscopically interesting region near k = 0 we can write the approxi-
mate solutions as

ω2− = C
2(m1+m2)

k2d2
0

ω2+ = 2C
(

1
m1

+ 1
m2

) (7.9)

The ω+ solution has a finite frequency at k = 0 and, since this vibrational fre-
quency can then be observed by optical spectroscopy, it is therefore known as an
optical phonon. The solution ω−, which tends to ω = 0 at k = 0 is called an acoustic
phonon.

To examine the associated atomic displacements we substitute ω+ back into
Eq. 7.7 to obtain a relation between the amplitudes of the two types of atom:

A1

A2
= −m2

m1
(7.10)

The two neighbouring atoms move with opposing directions (Fig. 7.4), their centre
of mass being fixed: if the atoms have opposite charges, the motion creates a vibrating
dipole, which can interact with electromagnetic radiation.

Conversely, for the frequency ω−, we find that A1 = A2 and all the atoms move
coherently together: no dipole variation is possible.
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Fig. 7.5 Simple system of
a diatomic molecule. In the
upper picture, two equal
masses connected with a
spring of elastic constant k.
In the lower the same mole-
cule interacts with fixed walls
through springs of elastic con-
stant k1. The displacements x1
and x2 are indicated

7.2.2 Normal Modes in Vacuum and in Condensed State

When it comes to molecular solids, it is useful to consider the coupling between the
strong bonding within a molecule and the relatively weak intermolecular interactions.
As an illustration, consider a model of a homonuclear diatomic molecule: two atoms
of mass m connected by a spring of elastic constant k (Fig. 7.5). In a simple model of
this molecule in the condensed phase, the atoms also interact with their surroundings
(here, a pair of fixed walls) via additional bonds of spring constant k1. This second
system is equivalent to the isolated molecule when k1 = 0.

The normal modes can be calculated by considering the system of equations

m d2x1
dt2 = k1x1 + k (x2 − x1)

m d2x2
dt2 = k1x2 + k (x1 − x2)

(7.11)

and looking for an oscillatory solution for the displacements:

x1 = A1 exp (iωt)

x2 = A2 exp (iωt)
(7.12)

Substitution into Eq. 7.11, in matrix representation:

(
k + k1 − ω2m k

k k + k1 − ω2m

)(
A1
A2

)
= 0, (7.13)

which has non-trivial solution only if the matrix is singular. The solutions are:

ω2
1 = k1/m

ω2
2 = (2k + k1) /m

(7.14)
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In the case of a molecule in isolation (k1 = 0) there is only one mode of vibration:
stretching of the bond with frequency ω2

2 = 2k/m. For the constrained molecule
interacting with the two walls, there is the same stretching mode, but at increased
frequency ω2

2 = (2k + k1)/m, and a second vibration at frequency ω2
1 = k1/m

corresponding to translation of the whole molecule.
Depending on the strength of the intermolecular interactions, the absorption

frequencies of intramolecular vibrations are always shifted to higher frequencies.
This is sometimes enough for them to be shifted outside of the terahertz region.
The new vibrational modes that are introduced as a consequence of interactions of
a molecule with its surroundings correspond to whole-molecule motions. In two-
or three-dimensional systems, these can involve molecular rotation as well as the
translation seen in this simple 1D example.

7.2.3 Phonons in a 3D Crystal

The procedure to calculate the vibrational spectrum for a 3D crystal is a generali-
sation of what has been described in the previous sections: one main difference is
that atomic displacements are now vectors. Furthermore, for real systems we must
usually consider the interactions between all atoms, rather than the simplified nearest
neighbour interactions that we used in the model systems.

To derive the equations of motion, we start from the potential energy of the
crystal, φ.

For small displacements we can expand the potential energy φ in a Taylor series
up to second order in the displacement unl

α , the subscript α representing one of the
Cartesian coordinates (x, y, z) of atom n within the unit cell l:

φ = φ0 + 1

2

∑
αnl

∑
α′n′l ′

(
∂2φ

∂unl
α ∂un′l ′

α′

)

0

unl
α un′l ′

α′ . (7.15)

where the subscript 0 indicates that the potential has been expanded about the equi-
librium position. In the equilibrium configuration there are no net forces acting on
the atoms, hence there is no linear term; φ0 is the equilibrium potential energy.

From here, we can write the equations of motion:

mn
d2unl

α

dt2 = −
∑
α′n′l ′

(
∂2φ

∂unl
α ∂un′l ′

α′

)

0

un′l ′
α′ = −

∑
α′n′l ′

φ
nn′(l−l ′)
αα′ un′l ′

α′ (7.16)

Due to the translational invariance within a crystal, the force φ
nn′(l−l ′)
αα′ depends only

on the distance between the unit cells l and l ′, so we can drop the l dependence and
consider l ′ as the distance to a reference cell.

As in the previous section, we look for wave-like solutions of the form
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unl ′
α = An

α(k)√
mn

exp
(

ik · rl ′ − iω(k)t
)

, (7.17)

where the frequency depends on k, which is now a vector (called the wavevector).
Substitution into Eq. 7.16 gives

−ω2(k)An
α(k) =

∑
α′n′l ′

φnn′l ′
αα′√

mnmn′
An′

α′(k) exp
(
−ik · rl ′

)

=
∑
α′n′l ′

Dnn′l ′
αα′ (k)An′

α′(k) (7.18)

that are now a set of algebraic equations. D(k) is called the dynamical matrix, and
is the mass weighted Fourier transform of the force matrix.

The equations are simplified if we consider only the phonons involved in the
absorption of light (k = 0): we can thus drop the exponential dependence in 7.18,
leading to:

ω2(0)An
α(0) =

∑
α′n′l ′

Dnn′l ′
αα′ (0)An′

α′(0) (7.19)

This is an eigenvalue problem, composed of 3nb equations, where nb is the number
of atoms in the unit cell. It is possible to obtain both the eigenvectors un

α(k) and their
associated frequencies ω(k) by standard linear algebra techniques. Three (acoustic)
phonons have a frequency ω = 0 at k = 0: these correspond to bulk translation of
all the atoms in the unit cell. The remaining 3nb − 3 phonons are optical: they have
non-zero frequencies and can interact with an electric field.

From the resulting eigenvectors An
α(0) it is possible to return to the atomic dis-

placements unl
α using the relation 7.17.

Terahertz intensities IN are directly correlated with the change in electric dipole
moment μ of the system with respect to all of the atomic motions under excitation
of a phonon mode QN :

IN ∝
∣∣∣∣ μ

QN

∣∣∣∣
2

(7.20)

The calculation of how the cell dipole varies along each eigenvector depends on
the computational method employed. If the electronic part of the system is not
treated quantum mechanically (as in force field calculations and classical MD, see
Sects. 7.2.4 and 7.3), the dipole variation is most simply evaluated from the rigid
displacement of the atomic partial charges or multipoles.

In quantum mechanical methods (Sect. 7.2.5) the dipole has to be related to the
perturbation of the electronic distribution by the normal mode displacement; to do
so, the contribution of each of the n atoms to the cell dipole variation is expressed
using the Born effective charge tensor Zn , which is defined as the first derivative of
the polarisation P per unit cell with respect to the atomic displacements unl :
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Zn,αβ ∝ dPα

dunl
β

(7.21)

where α and β indicate the Cartesian coordinates.
Once the lattice frequencies and associated absorption intensities are known, the

spectrum can be simulated by assuming a peak shape for each absorption feature; it
is common to express the spectrum as a sum of Lorentzian functions

f (x) =
∑

N

IN

π

(
γ

(x − xN )2 + γ 2
)

, (7.22)

centred at the absorption frequencies xN , whose relative intensity IN equals the area
under the curve. The parameter γ simulates the signal broadening of the experimental
spectrum. Examples of this treatment are reported in Figs. 7.7 and 7.10.

7.2.3.1 Simple Parameterisation for Ionic Systems

It should be clear from the previous sections that, in order to perform a phonon
calculation, we need a model for the forces acting between atoms within the system
of interest. Various computational methods, with different degrees of approximation,
have been applied to evaluate the required forces to model the vibrations in crystals.

One of the earliest calculations of the phonon spectrum of an ionic crystal was
attempted by Kellermann [11] in 1940 for the simple cubic salt structure NaCl. This is
a simple cubic crystal: each atom is located at the corner of a cube, and each Na+ ion
is surrounded by 6 Cl− neighbours (and vice versa). The system was treated as a field
of interacting classical point charges held apart by a repulsive potential, v0, between
nearest neighbour atoms, which is necessary to keep the atoms at their equilibrium
positions. It is not necessary to know the exact form of this potential, but only its
behaviour near to the equilibrium position: the first derivative was calculated from
the equilibration of forces within the crystal, knowing that the forces on all atoms
in the crystal must vanish at the equilibrium structure. The second derivative of the
interatomic potential was determined from experimental data on compressibility of
the crystal.

From this model for the interatomic forces, a 6D (3D for each atom in the unit
cell) dynamical matrix was then constructed and diagonalised. One of the two mea-
surable frequencies of NaCl (two coinciding longitudinal optical phonons, LO) is
in remarkable agreement with experimental data (Table 7.3), especially considering
the simplicity of the model potential; the other (the transverse optical phonon, TO)
is more dependent on the effects of charge displacements (polarisation), which were
not included in this first model.

This method is simple enough to be performed on a simple system without the
need for a computer (Kellermann produced a phonon spectrum for k �= 0 as well!),
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Table 7.3 Phonon frequencies (THz) of the optical phonons of NaCl for k = 0 by Kellermann
compared with experimental values [14] and a calculation that includes charge displacement [15]

Phonon type Kellermann Lattice dynamics, with polarisation Experimental

LO 4.55 4.92 5.17 ± 0.03
TO 9.58 7.84 7.92 ± 0.07

and has been repeated for a number of structurally equivalent alkali halides and
oxides [12, 13].

Unfortunately the model for the interactions between atoms here is too sim-
plified to be generalisable to more complex solids. More sophisticated models
have been addressed in a number of studies, considering models to account for
polarisation of atomic charges [15, 16] and extended interactions beyond nearest
neighbours [17]. Many more adjustable parameters must be introduced to the model
of interatomic forces to account for these interactions, and the simplicity of the model
is lost. Interesting systems usually consist of more than two atoms in the unit cell,
so that many different atom–atom interactions must be considered. Furthermore, for
crystals of electrically neutral molecules, the interactions between atomic charges
are usually not the dominant attractive intermolecular interactions. Instead, a more
realistic model of the van der Waals forces is necessary. Overall, it is generally nec-
essary to calculate the phonon spectrum with the aid of a computer, by numerically
evaluating the matrix of second derivatives from a detailed description of the forces
acting within a crystal.

The quality of a molecular simulation depends on how well the interactions
between atoms in the system are represented. Two types of approach have been
applied to calculate the necessary forces:

• The atom–atom method: this is a generalisation of the approach used in the NaCl
example given above. A functional form is assumed for the important interatomic
interactions and these functions are parameterised to provide a description of the
energy and forces within the crystal. The combination of functional form and
parameters is often referred to as a force field. Electrostatic interactions in the
atom–atom method are treated classically, usually by atomic partial charges, and
sometimes with higher order atomic or molecular multipole expansions.

• Quantum mechanical electronic structure calculations: from the quantum mechan-
ical point of view, all of the relevant forces ultimately arise from the electrostatic
interactions between the electrons and nuclei. The electronic problem can be solved
by separating the nuclear and electronic wavefunctions (the Born–Oppenheimer
approximation) so that the energy and forces acting within a crystal can be calcu-
lated for any configuration of its constituent atoms. The most commonly applied
electronic structure method in recent years is density functional theory (DFT) for
which several software packages (see Sect. 7.2.5) are available to perform this type
of calculation.



7 Assignment of Vibrational Modes in Crystalline Materials 163

Electronic structure calculations on periodic systems are orders of magnitude more
computationally expensive than those based on the atom–atom force field approach.
The techniques necessary for DFT-based phonon calculations (density functional
perturbation theory [18]), along with the necessary computational power, have only
been available since the 1990s. While large-scale computing is nowadays common
in research facilities, the cost of such calculations still limits their application to the
crystal structures of fairly small molecules. For large systems, such as the crystal
structures of pharmaceutical molecules with hundreds of atoms within the unit cell,
the the atom–atom approach is still often the only practical solution. In the next two
sections we describe these two approaches in more detail.

7.2.4 The Atom–Atom Potential (Force Field) Method

The quality of a molecular simulation depends on how well the interactions between
atoms in the system are represented. The atom–atom potential method has been very
successfully applied to modelling a wide range of materials, and some of the early
development and applications are described by Pertsin and Kitaı̆gorodskiı̆ [19].

In most atom–atom calculations, there are three types of terms in the force field
used to describe the interactions between atoms [19]: repulsion–dispersion; electro-
statics and intramolecular terms.

• The repulsion–dispersion terms consist of a short-range repulsion, which arises due
to unfavourable overlap of electron density as the internuclear separation between
non-bonded atoms is decreased, and a longer range attractive term to model
London dispersion forces. The two commonly used forms of the repulsion term
are an AR−n term (R being the interatomic separation), where n is usually in the
range from 9 to 14, or a theoretically better founded exponential, A exp (−B R).
The attractive dispersion interaction between atoms arises from correlated fluc-
tuations in the electron charge distribution around the atoms, the leading term of
which corresponds to fluctuating dipole–dipole interactions and has an R−6 depen-
dence. R−8 and higher terms arise from higher order correlated electron density
fluctuations, but are less important and usually omitted. Thus, two common forms
of atom–atom repulsion–dispersion terms are:

Uik,repulsion−dispersion = Aικ R−n
ik − C ικ R−6

ik

Uik,repulsion−dispersion = Aικ exp (−Bικ Rik) − C ικ R−6
ik

(7.23)

where Rik is the separation between atoms i and k. These interactions are deter-
mined by the parameters A, B and C , whose values depend on the types (i and κ)
of atoms involved.

• The electrostatic interactions arise because electronic charge is not spread
uniformly within a molecule: its distribution can most simply be modelled by
assigning fractional point charges to each atom in the molecule. The electrostatic
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interaction between point charges has the usual long range R−1 dependence on
interatomic separation and does not depend on the mutual orientation of the inter-
acting atoms. However, some features of the electrostatic potential around mole-
cules cannot be adequately modelled using such a simple spherical atom model.
For example, localised lone pairs and aromatic π -electron density introduce impor-
tant anisotropy in the electron charge distribution around atoms. Therefore, some
atom–atom models include higher order multipoles (dipole, quadrupole, etc.) on
each atom.

• Intramolecular potentials. While the repulsion–dispersion and electrostatic terms
are used to model the interactions between non-bonded atoms, covalent bonding
is treated by a separate set of terms. At its most basic, an intramolecular force field
consists of bond stretching functions, usually modelled either as harmonic in the
bond length or using a more realistic Morse potential form, 3-atom angle bending
terms and 4-atom terms to model the torsional potential within four neighbouring
atoms.

Force fields differ in which of the above terms are included, their exact functional
form and how the parameters in each term are determined. These parameters depend
on the types of atoms that are interacting and are often developed to be transferable
between systems with similar chemical functionality, e.g. the parameters describing
repulsion-dispersion interactions between carbon atoms might be fitted to model any
carbon atoms in organic molecules. More elaborate parameter sets might include
separate sets of parameters for carbon atoms in different chemical environments,
such as different parameters for aromatic and aliphatic carbon atoms. The advantage
of such transferable parameter sets is that there is no need to develop a new force
field for each new system that is to be studied.

An example of this approach is the set of repulsion-dispersion parameters devel-
oped by Williams for hydrocarbons [20], oxygen [21], nitrogen [22] and fluorine
containing [23] hydrocarbons. The parameters in such transferable force fields were
fitted to reproduce structural parameters and heats of sublimation of a large set of
molecular organic crystal structures and can therefore be used to describe a wide
class of organic molecules.

An alternative approach to these transferable parameters is to develop and opti-
mise specific force fields for a single molecule or small family of molecules
[5, 24, 25], sometimes without the need to fit to experimental data. While such
molecule-specific models involve much more work, the advantage is that the func-
tional form and parameters can be fine-tuned to very accurately describe a particular
molecule.

7.2.4.1 All-Atom Versus Rigid-Molecule Calculations

Having chosen a suitable force field, the construction of the dynamical matrix is
performed by considering the forces generated by a series of perturbations about
the equilibrium structure. In the all-atom approach, this involves evaluating the 2nd
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derivatives of the lattice energy with respect to translations of each atom in the unit
cell in each of three orthogonal directions: the x, y and z directions in a globally
defined axis frame. The resulting dynamical matrix will provide the entire vibra-
tional spectrum of the crystal, including both the intramolecular vibrational modes
(bond stretching, angle bending, etc.) and the lattice modes, which are dominated by
overall translation and rotation of molecules about their equilibrium positions. It is
the latter types of modes that dominate the terahertz region (from 0 to 5 THz). Indeed,
despite the number of studies calculating the vibrational spectra of molecular crys-
tals, the interest has often been on the intramolecular frequencies that are more easily
accessible by infrared and Raman spectroscopy, with the calculation of the vibrational
frequencies in the terahertz range arising as a “by-product” of the calculations.

Developments allowing better experimental access to high quality spectra in
the terahertz frequency range has prompted more interest in calculations aimed at
characterising the vibrational modes in this region. One commonly employed sim-
plification in these calculations has been the rigid-molecule approach, which takes
advantage of the fact that intermolecular and intramolecular interactions often act
on very different strength scales; the geometry of small molecules in their crystal
structures is often unchanged from their gas phase geometry, indicating that the
intermolecular forces in the crystal are much weaker than the intramolecular forces
that dictate the molecular geometry. The rigid-molecule approximation assumes that
inter- and intramolecular interactions are completely uncoupled, so that all of the
intramolecular force field terms can be ignored when calculating the lattice mode
region of the vibrational spectrum. Furthermore, the relative positions of atoms within
a molecule can be kept fixed, so that the only relevant perturbations from the equi-
librium structure are overall molecular translations and rotations.

Thus, in the rigid-molecule approximation, the lattice dynamical equations are
reformulated such that the dynamical matrix (Eq. 7.18) refers to molecular centre-
of-mass displacements and rotations about molecular moments of inertia rather
than atomic displacements. Rigid-molecule lattice dynamics is fully described by
Walmsley [26] and Califano [5]. This approach can dramatically reduce the dimen-
sionality of the dynamical matrix and lowers the computational cost of the calcula-
tion; for a crystal structure with Z molecules in the unit cell, rigid-molecule lattice
dynamics leads to 6Z vibrational modes at k = 0, three of which are the acoustic
translational modes with ω = 0 at k = 0.

The rigid-molecule approximation is clearly most appropriate when there is a
large separation between the lowest energy intramolecular vibrational frequency and
the highest energy of these 6Z intermolecular vibrational modes, which are typically
found in the range from just under 1 THz to about 5 THz (or from approximately 30
to 160 cm−1). If the separation in frequency is large, then coupling of the two types
of motion should be small.
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7.2.5 Quantum Mechanical Electronic Structure Calculations

The basic requirement to be able to perform a calculation of the electronic structure
is the separation of the nuclear coordinates from the electronic coordinates, using
the Born–Oppenheimer approximation. Under this assumption the calculation of the
electronic wavefunction of a crystal can be viewed as a system of interacting electrons
in a field of nuclei. The equilibrium geometry of the crystal is the configuration
where there is no net force acting on each nucleus, and can be found by performing
a minimisation of the energy of the crystal with respect to the coordinates of the
nuclei.

The forces necessary to build the dynamical matrix can be obtained by distortion
of the nuclear equilibrium structure: moving an atom away from the equilibrium
position generates a restoring force that does not depend only on the equilibrium
electronic distribution, but on its variation as well [27], due to the parametric depen-
dence of the electron wavefunction on the nuclear perturbation. The generation of the
dynamical matrix thus needs the calculation of the electronic density (a computation-
ally expensive task) for a high number of nuclear configurations, and this contributes
to the significant computational cost of such a calculation. The calculation of the
electronic charge distribution is usually performed using density functional theory
(DFT). Hohenberg and Kohn [28] proved that only the electron density (rather than
the wavefunction) is necessary to describe the ground state of a system. Furthermore,
for a system of interacting electrons in an external potential V (such as the potential
generated by the atomic nuclei in the crystal) there exists a universal functional F
of the electron density n, independent of the external potential, such that the energy
E is defined as

E[n] = F[n] +
∫

V [r]n[r]dr (7.24)

Unfortunately, the theorem proves only the existence of the functional, not its
exact form. A practical approach, suggested by Kohn and Sham [29], is to express
the functional as a sum of physically recognisable contributions: it is the exchange–
correlation potential that is unknown, but possible to approximate. Therefore, many
functionals have been suggested and tested for their ability to reproduce the geome-
tries, energies and properties of molecules and crystals. The simplest form, the local
density approximation (LDA), relates the energy to the value of the electron density
at each point in space. This approach is exact in the limit of a slowly varying electron
density, so correctly describes weakly correlated systems such as semiconductors,
but fails to describe complex systems where the potential varies more drastically.
More elaborate functional forms have been developed through the years, containing
dependence on the gradient of the electron density (generalised gradient approxima-
tions) and by including the exact exchange energy from Hartree–Fock wavefunction
calculations (hybrid functionals, such as the very popular B3LYP functional). The
main limitation in current functionals is their unsatisfactory description of the dis-
persion attraction between molecules, which is often the dominant contribution to
the stability of organic molecular solids. DFT-based lattice energy minimisation of
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molecular organic crystals usually leads to unrealistic unit cell dimensions because,
although the intramolecular bonds are treated correctly, intermolecular interactions
are typically underestimated. As an example, the unit cell volume of the explosive
material RDX, modelled with the PBE functional [30, 31] gives an energy-converged
unit cell with a 20 % larger volume than the experimentally determined unit cell.
As this structural distortion relates to large changes in intermolecular contact dis-
tances, calculated frequencies of vibrational modes in the terahertz region cannot be
accurately modelled in such an energy-minimised structure. A common workaround
when applying DFT to organic solids where the dispersion attraction is dominant
is to avoid the optimisation of the unit cell, constraining the lattice vectors to their
experimentally determined values (see column a in Table 7.6). A more satisfactory
solution to the dispersion problem in DFT is to supplement the functional by a set
of parameterised atom–atom R−6 terms of the same form as those included in force
fields, leading to methods known as DFT-D [32]. These added terms add very little
to the computational cost over pure DFT [31]. However, as with force fields, the
parameterisation of these terms is not unique and different parameters are required
to correct different functionals.

7.2.5.1 Basis Set and Implementation

In practice, the electronic density in a DFT calculation is expanded as a linear combi-
nations of basis functions, with the expansion coefficients to be determined as a part
of the calculation. While an infinite number of basis functions might be necessary
for mathematical completeness, the number of basis functions that can be included
in a calculation is finite. In order to control the resulting finite basis set errors, the
choice of basis functions is crucial.

There are two classes of functions commonly employed, each with advantages and
drawbacks; we briefly describe them here, along with some of the software packages
that employ them2:

• Localised basis set: basis functions are centred at points in space, usually around
the nuclei of each atom, and the functions vanish as the distance r to the nucleus
tends to infinity. Thus, the number of basis functions required for a calculation
scales linearly with the number of atoms in the unit cell. The two frequently
implemented choices of localised basis functions are the atomic-like, Slater-type,
orbitals and Gaussian-type orbitals.
Atomic-like orbitals, with a exp(−ζr) radial dependence, represent the best
approximation of a real wavefunction in the long range limit: only few functions
are necessary to achieve a good description of an atomic orbital. The packages
DMol3 [33] and SIESTA [34] use numerically fitted atomic orbitals obtained from
solutions of the single atom problem, so that the functions represent the correct
radial dependence. The main advantage of this method is its fast convergence with

2 This is only a partial list of software: a more complete list can be found at http://www.psi-k.org/
codes.shtml.

http://www.psi-k.org/codes.shtml
http://www.psi-k.org/codes.shtml
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Fig. 7.6 Molecular structures
of benzene, pyrazine, imi-
dazole, carbamazepine and
benzoic acid
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the number of basis functions; on the other hand dealing with this kind of wave-
functions is numerically complex, and there are difficulties in the assessments of
how the convergence behaves with larger basis sets [35].
The advantage of Gaussian wavefunctions, used for example in the CRYSTAL
package [36], lies in their mathematical properties: the solutions of integrals involv-
ing two or more Gaussian functions (one of the main computational tasks to be
performed in electronic structure calculations) are easily expressed as combina-
tions of other Gaussian functions centred at a different point. The ease in the
manipulation in these functions comes at a cost: the difference in the behaviour
of these function from true atomic orbitals both in the short range, with a smooth
behaviour at r = 0 instead of a cusp, and in the long range, where they behave as
exp(−ξr−2) instead of the correct exp(−ζr), means that linear combinations of
large numbers of Gaussian basis functions are needed in order to achieve a good
representation of the true electron density.

• Plane wave basis sets: each basis function is a plane wave function exp(ik · r),
whose periodicity makes them natural solutions for periodic systems. Furthermore,
the simple mathematical form and the relation between k and the kinetic energy
provides a straightforward approach to systematically improving the basis set
completeness, by including higher kinetic energy plane waves until the calculated
properties of interest converge to the required level. Among the disadvantages
of plane waves are their poor description of localised states (it is necessary to
introduce pseudopotentials for the description of tightly bound core electrons)
and the dependence of the basis functions on the dimensions of the unit cell. The
latter means that large changes in the unit cell volume on energy minimisation will
change the kinetic energy cutoff and therefore the consistency of the calculation.
The plane wave approach is implemented in codes CASTEP [37] and VASP [38].
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7.2.6 Example Calculations

7.2.6.1 Atom–Atom Potential Results

First, we examine the influence of the rigid-molecule approximation, as described
in Sect. 7.2.4. Benzene, C6H6 (Fig. 7.6), is a prototypical example of a rigid mole-
cule for which the rigid-molecule approach should be appropriate; there is nearly
a 300 cm−1 gap between the highest frequency lattice modes at around 130 cm−1

and the lowest frequency intramolecular vibrations at around 400 cm−1. Taddei
et al. [39] examined the influence of the rigid molecule approach on the calcu-
lated lattice dynamics of crystalline benzene (Table 7.4). Their study found that
coupling of intramolecular modes to the lattice vibrations has a negligible effect
on the calculated displacement coordinates associated with the lattice modes, and
the effect of allowing coupling of intramolecular vibrations is to lower the frequen-
cies of the lattice modes by 1–3 cm−1. This effect is small compared to differences
in calculated frequencies with different parameter sets for the interatomic poten-
tials. Errors resulting from the rigid-molecule approach become more significant
with increasing molecular size. Naphthalene, C10H8, has a significantly smaller
gap of approximately 50 cm−1 between the lowest intramolecular mode and highest
lattice mode frequencies. Pawley and Cyvin [40] calculated differences between all-
atom and rigid-molecule phonon frequencies for crystalline naphthalene, finding that
coupling to intramolecular modes typically lowers the lattice mode frequencies by
about 5 cm−1, and by up to 10 cm−1 for some lattice modes. These errors are now
significant in comparison to errors in the experimental measurements and variations
that are found between atom–atom parameter sets. The errors resulting from the
rigid-molecule simplification become more severe for molecules with rotatable sin-
gle bonds, where vibrational frequencies of the free molecule are likely to overlap
with the frequency range of the lattice modes. The coupling might not influence all
calculated lattice modes equally. For example, Li et al. [41] found that the torsional
intramolecular vibration about the exocyclic C–C bond in benzoic acid strongly influ-
ences the lattice modes corresponding to molecular rotations about that molecular
axis. However, the remaining molecular rotations and translations are satisfactorily
modelled in the rigid-molecule approximation.

Next, we examine the sensitivity of the calculated lattice mode frequencies to the
form and parameterisation of the intermolecular atom–atom potential. Taddei [39]
found that the calculated lattice mode frequencies of benzene are very sensitive to
the parameters of the exp −6 atom–atom potential; changing from Williams’ [20]
parameters, which were fitted to the crystal structures of aromatic hydrocarbons, to
Williams’ [44] parameters, which were fitted to both aliphatic and aromatic hydro-
carbon crystal structures, resulted in a mean absolute change of 8 cm−1 in the lattice
mode frequencies, with individual frequencies shifting by up to 17 cm−1. Even for
such a simple molecule, the choice and validation of the force field parameters is
very important. For crystalline benzene, the results shown in Table 7.4 demonstrate
that adequate lattice dynamics results can be obtained using a repulsion–dispersion
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Table 7.4 Comparison of observed low temperature infrared [42] and Raman [43] with calculated
k = 0 lattice mode frequencies of crystalline benzene ( cm−1)

Symmetry Observed Calculated frequencies
Rigid molecule Flexible molecule

Raman absorptions
Ag 57 55 55
Ag 79 76 75
Ag 92 96 95
B1g 57 61 60
B1g 100 97 96
B1g 128 131 128
B2g 79 84 83
B2g 90 94 93
B2g Not assigned 102 101
B3g 61 67 66
B3g 92 90 89
B3g 128 129 127
Infrared absorptions
Au Inactive 57 56
Au Inactive 66 65
Au Inactive 98 95
B1u Acoustic 0 0
B1u 70 72 72
B1u 85 87 86
B2u Acoustic 0 0
B2u 53 59 57
B2u 94 102 99
B3u Acoustic 0 0
B3u 53 53 52
B3u 94 98 98

Calculations were performed using Williams’ [44] exp −6 model (see Eq. 7.23) for intermolecular
atom–atom interactions, with no explicit model for electrostatic interactions [39]

model with no model of intermolecular electrostatic interactions. However, many
molecules of interest contain polar functional groups, leading to a greater impor-
tance of electrostatic contributions to intermolecular interactions.

Take imidazole (Fig. 7.6) as an example, where the rigid molecule approach should
again be appropriate: imidazole molecules are aligned in the crystal structure so as to
form infinite chains of N–H· · · N hydrogen bonds. Neighbouring chains are antipar-
allel aligned and interact via C–H· · · N contacts, which could also be described as
weak hydrogen bonds. Hydrogen bonds are largely electrostatic in nature and, as
a result of their prevalence in this crystal structure, the electrostatic contribution to
atom–atom interactions contributes approximately 60 % of the total lattice energy of
the crystal [52]. Calculated rigid-molecule lattice mode frequencies using a range of
atom–atom potentials are given in Table 7.5, along with low temperature observed
frequencies from Raman and far-infrared spectroscopy. The UNI, FIT and W99 are
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Table 7.5 Sensitivity of calculated lattice mode frequencies (in cm−1) of crystalline imidazole to
the intermolecular model potential, using the lattice dynamics method

Symm. Expt. UNI FIT–
AC

W99–
AC

FIT–
DMA

W99–
DMA

MD(FIT–
DMA)

Mode description

Ag 54.5 44.5 41.2 36.1 45.7 40.3 47 Minimal N–H· · · N hydro-
gen bond distortion, slipping
of hydrogen bonded chains

Ag 79.0 62.6 60.0 60.3 79.3 82.5 79 N–H· · · N hydrogen bond
bending

Ag 86.5 63.4 70.1 66.0 98.8 106.3 99 Minimal N–H· · · N hydro-
gen bond distortion, stretch-
ing of interchain C–H· · · O
interactions

Ag 100.5 106.4 104.6 98.8 111.7 119.4 109 − 115 N–H· · · N hydrogen bond
bending

Ag 112.0 162.3 119.7 121.5 141.7 137.1 140 Minimal N–H· · · N hydro-
gen bond distortion, bend-
ing of interchain C–H· · · O
interactions

Ag 158.0 168.4 131.6 123.6 213.4 272.9 211 N–H· · · N hydrogen bond
bending

Bg 62.5 64.3 57.6 53.8 54.8 53.6 56 Minimal N–H· · · N hydro-
gen bond distortion, slipping
of hydrogen bonded chains

Bg 74.0 72.5 70.4 66.7 86.5 88.4 88 N–H· · · N hydrogen bond
bending

Bg 109.0 110.7 87.8 84.2 108.0 108.0 106 N–H· · · N hydrogen bond
bending

Bg 128.0 133.7 111.2 106.0 157.0 169.6 154 N–H· · · N hydrogen bond
stretching

Bg 163.0 169.8 139.8 132.5 184.1 177.5 181 Twisting about N–H· · · N
hydrogen bond axis

Bg 181.0 183.5 152.0 144.7 206.2 254.0 206 N–H· · · N hydrogen bond
bending

Au NA 74.4 64.2 63.8 74.1 74.0 77 N–H· · · N hydrogen bond
bending

Au 113.0 100.3 83.8 91.7 111.6 104.2 109 − 118 N–H· · · N hydrogen bond
bending/stretching

Au NA 129.7 113.3 104.9 141.3 161.2 138 Minimal N–H· · · N hydro-
gen bond distortion, bend-
ing of interchain C–H· · · O
interactions

Au 151.0 154.4 126.0 119.0 185.3 172.4 183 N–H· · · N hydrogen bond
stretching

Au 188.0 183.6 148.3 133.5 198.2 247.9 193 N–H· · · N hydrogen bond
bending

Bu 70.0 57.4 44.8 49.4 61.5 69.2 63 N–H· · · N hydrogen bond
bending

(continued)
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Table 7.5 continued

Symm. Expt. UNI FIT–
AC

W99–
AC

FIT–
DMA

W99–
DMA

MD(FIT–
DMA)

Mode description

Bu 97.0 79.1 76.2 73.2 102.3 114.8 102 Minimal N–H· · · N hydro-
gen bond distortion, bend-
ing of interchain C–H· · · O
interactions

Bu 128.0 105.0 93.1 89.7 149.9 150.5 147 Twisting about N–H· · · N
hydrogen bond axis

Bu NA 177.0 142.3 136.0 209.2 269.4 204 N–H· · · N hydrogen bond
bending

Raman active modes (Ag and Bg) [45] and infrared active modes (Au and Bu) [46] measured at
93 and 100 K, respectively (NA=not available experimentally). All atom–atom model potentials
are of the exp −6 form. The UNI potential is Filippini and Gavezzotti’s [47] atom–atom model
with no explicit electrostatics. The FIT model uses Williams’ parameters [21, 22] for all but the
N–H hydrogen atom, for which Coombes parameters [48] were used. W99 is Williams’ more
recent parameter set [49, 50]. AC indicates use of atomic charges and DMA indicates atom centred
electrostatic multipoles, determined using a distributed multipole analysis [51] of the molecular
wavefunction. Reprinted with permission from [52]. Copyright 2003 American Chemical Society.
Phonon mode frequencies from a MD simulation using the FIT–DMA model [53] are included for
comparison, in the column headed MD(FIT–DMA)

different parameterisations of the exp −6 functional form for repulsion-dispersion
interactions. The UNI model was developed so that electrostatic effects are absorbed
into the parameters of the exp −6 terms, so was used without an explicit electro-
static model. FIT and W99 were each paired with atomic partial charge and atomic
multipole (DMA) electrostatic models. The UNI model performs remarkably well,
given its simplified functional form; the largest errors are a result of underestimating
the frequencies of vibrational modes that bend the N–H· · · N hydrogen bonds, and
those that twist the molecules about the hydrogen bond axis. Frequencies of hydro-
gen bond bending and twisting vibrations are also underestimated using the atomic
point charge electrostatic models, but these motions are significantly stiffened when
atomic charges are replaced by multipole expansions. Indeed, with the multipole
models, vibrational frequencies of the bending modes are largely overestimated. The
vibrational modes that lead to minimal distortion of the strong N–H· · · N hydrogen
bonds are relatively insensitive to the potential used in the calculations.

Results reported using the same set of atom–atom potentials for crystalline
pyrazine demonstrate that the electrostatic model can have even more dramatic effects
on the lattice dynamics of polar molecules that lack strong hydrogen bonds [52].
Pyrazine molecules interact via weak C–H· · · N hydrogen bonds in the crystal struc-
ture and the electrostatic contribution is less dominant than in imidazole (contributing
about 35–40 % of the lattice energy). However, the electrostatic model is found to be
even more important in determining the lattice dynamics of the crystal: the restoring
force for motions that bend the weak C–H· · · N hydrogen bonds is almost entirely
due to dipole–dipole and higher order electrostatic interactions [52, 54]. In fact, with
the simplest atomic charge electrostatic model, the crystal structure is unstable to



7 Assignment of Vibrational Modes in Crystalline Materials 173

such molecular motions, resulting in non-physical negative values for the eigenvalues
(ω2) of the dynamical matrix.

Using the most successful atom–atom potentials, the absolute errors in calculated
frequencies are not large: for imidazole, most are predicted to within 10–15 cm−1.
However, the low symmetry of most molecular crystals leads to many distinct k = 0
lattice modes and the frequency range in which these are found is fairly narrow.
Therefore, a one-to-one assignment of calculated and observed frequencies will often
not be possible based on the absorption frequencies alone. In attempting to assign
spectral features to calculated vibrational modes, it can be helpful to consider the
absorption intensities from the dipole transition along each calculated vibrational
mode (Eq. 7.20). These intensities can vary greatly between modes, as shown in
the terahertz spectra of two of the polymorphs of carbamazepine (Fig. 7.7). In the
case of the thermodynamically stable polymorph (form III, a and b in Fig. 7.7),
the calculated intensities reproduce the observed relative peak intensities very well,
giving confidence in assigning specific calculated normal modes to the observed
features. In this case, the features could then be characterised in terms of the type of
distortion of the hydrogen bonding in the crystal [55]. In the case of carbamazepine
form I (c and d in Fig. 7.7), the crystal is of a particularly low symmetry, leading
to a very crowded terahertz spectrum; in this case, even with calculated absorption
intensities, it would not be possible to make a confident one-to-one assignment of
calculated lattice modes and observed features. Nevertheless, the calculations are still
useful for describing the types of molecular vibrations associated with each region
of the spectrum.

7.2.6.2 Density Functional Theory Results

Density functional theory calculations have been applied to model the phonon modes
of several classes of material such as salts, semiconductors, oxides and molecular
organic crystal: general considerations and systems are reported in Baroni’s review
on density functional theory [58]. For simple systems (such as—see Fig. 7.9), it
is possible to routinely achieve nearly perfect agreement between calculated and
observed phonon spectra. The same excellent agreement is found for minerals such
as forsterite (Mg2SiO4), for which the calculated vibrational frequencies differ from
measured absorption frequencies by at most 4 cm−1 [59]. For more complex materi-
als, when the dispersion forces become relevant, the agreement between calculated
and measured frequencies is less reliable. Recent articles directly calculating tera-
hertz spectra of organic molecular crystals have mainly been inspired by applications
of terahertz technology for monitoring polymorphism in pharmaceuticals and detec-
tion of explosives.

There are a number of studies where it is possible to see the difference in cal-
culated spectra associated with different exchange correlation functionals and basis
set types. For example, the explosive material RDX (Fig. 7.8) has been studied using
different DFT methods: Allis [60] and Ciezak [61] with atom-centred basis sets
using DMol3; Miao [62] studied the same material using plane-wave basis set cal-
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Fig. 7.7 Comparison of calculated (a, c) and observed (b, d) terahertz spectra of two crystal
forms of carbamazepine (Fig. 7.6). (a) and (c) show the lattice dynamics calculated spectra of
polymorphic forms III and I, respectively, using the FIT–DMA atom–atom potential described in
the text. Vertical lines indicate the normal mode frequencies, with heights scaled by the calculated
absorption intensities. The dashed lines represent the simulated spectrum, assuming a Lorentzian
line shape with a line width of 2 cm−1. (b) and (d) show the T = 7K observed terahertz spectra for
forms III and I, respectively. (oop = out-of-plane). Adapted with permission from [55]. Copyright
2006 American Chemical Society

culations using VASP and Shimojo [31] applied dispersion corrected functionals.
Some of these results are summarised in Table 7.6; the lattice dynamics calculations
provide good agreement with the observed spectrum, while variations in calculated
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frequencies associated with different choices of functional, basis set and the inclu-
sion of dispersion-correction terms to the DFT are mostly on the order of about
5–10 cm−1. These differences between methods range up to 20cm−1 or more for
some of the higher frequency vibrations. Overall, these variations are similar in
magnitude to the differences between parameter sets and electrostatic models seen
with force field based calculations.

Korter et al. have also performed studies to investigate the dependence of lattice
dynamics results on the exchange–correlation functionals, considering the drugs
MDMA hydrochloride [9] and ketamine [57]. These studies have provided insight
into the subtle dependences of calculated spectra on the DFT methods employed. One
of the most important observations from their study of MDMA hydrochloride was that
the number of normal modes calculated within the 0–100 cm−1 range (counting both
terahertz active and inactive modes) is not constant, varying from as few as 18 modes
in this range using the RPBE functional to as many as 23 using the BLYP functional.
Furthermore, it can be seen from a visual inspection of Fig. 7.10 that the calculated
intensity of absorptions of similar frequency have high variability with choice of DFT
functional, which is a warning sign that the calculated eigenvectors, which describe
the atomic displacements associated with each mode, differ significantly from one
calculation to another. These two factors lead to significant differences between the
predicted spectra from different functionals; in this case, the BP and BOP functionals
provided the best agreement with experimental data. This example shows that, even
using a potentially very accurate electronic structure method to calculate the lattice
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Fig. 7.10 Comparison of DFT lattice dynamics calculated (black lines) terahertz spectra of
MDMA·HCl (see Fig. 7.1) using different exchange–correlation functionals with the experimen-
tally observed absorption from a powdered sample of the crystal (blue lines). All calculations were
performed within a unit cell fixed at the experimentally determined T=161K dimensions. The
calculated plots are generated by fitting the absorption frequency using a 7 cm−1 Lorentzian line
shape. Adapted with permission from [57]. Copyright 2010 American Chemical Society

dynamics, a poor choice of DFT functional can have dramatic effects on the quality
of the simulated spectrum.

The use of a dispersion correction removes the need to constrain the unit cell
to experimentally determined dimensions during the structural minimisation task
of a DFT calculation, since effective dispersion correction terms should maintain
a realistic unit cell during an unconstrained lattice energy minimisation. For RDX
(Fig. 7.8) the effect of the dispersion correction to DFT is to provide agreement of
the unit cell volume to within 1 %, without significant increase of the computational
cost over pure DFT [31]. The resulting absorption frequencies calculated at the min-
imised structure are shown in Table 7.6 and show overall excellent agreement with
experimentally determined frequencies. It is to be noticed that the choice of the dis-
persion correction parameters is not unique and can have a dramatic effect on the final
results. For example, King [63] performed a series of calculations on naproxen (see
Fig. 7.8) showing that, for this system, the dispersion correction implemented in the
CRYSTAL09 code [36] generates a 10 % contraction in the unit cell when used with
the PBE functional, an error which is almost equal in magnitude to the uncorrected
PBE calculation, which results in +12 % volume expansion. It was demonstrated that
a fine-tuning of the coefficients is capable of providing agreement within 2.23 % of
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Table 7.6 Terahertz calculated absorption frequencies ( cm−1) for RDX with various methods
Lattice dynamics—DFT calculations Molecular dynamics Experimental
(a) BP (b) PBE-D (c) PW91 (d) (e)

36.3 34.5 28 31 33
42.1 43.1 52 41 41
46.4 54.6 54 49 50
52.0 56.6 56 50 54
60.3 63.4 60 65 59
64.1 67.8 74 66 66
74.2 72.0 73 79 74
84.3 84.5 88 80 83
87.0 85.3 100 88 85
95.5 92.8 98 89 96
101.7 96.0 101 100 100
104.7 106 123 102 103
112.7 121 144 116 109

In column (a) DFT, Gaussian atom-centred basis set, BP functional [60]; column (b) DFT-D using
a plane wave basis set [31]; column (c) DFT, plane wave basis set, PW91 functional [62]; column
(d) force field-based molecular dynamics [30]; column (e) experimental data [60]

Fig. 7.11 Naproxen simu-
lated spectrum with optimised
dispersion parameters (A)
compared with low tempera-
ture terahertz measurement.
From [63]. Reproduced by
permission of the PCCP
Owner Societies

the experimental low temperature unit cell parameters and excellent agreement with
the experimental spectrum (see Fig. 7.11). This result was obtained by rescaling of
the dispersion coefficients by a factor 0.52.

More results are shown in the next section, together with MD calculations.
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7.3 Molecular Dynamics

MD is a computational technique that can be used to model the evolution of a system
through time. This is performed through the numerical integration of the Newtonian
equation of motion arising from the interactions between the particles, starting from
an initial configuration: the final result is a collection of snapshots of the atomic con-
figuration, taken at discrete time steps. According to statistical mechanics, physical
quantities are obtained through an average over a high number of configurations of
the atoms in the system, and the effectiveness of a MD simulation lies in the number
(and the completeness) of configurations sampled in the trajectory. The main advan-
tage over lattice dynamics is that anharmonicity and the temperature-dependence
of vibrational frequencies is automatically included, while MD suffers from much
longer computational times and more complex analysis required to extract vibrational
frequencies from the atomic trajectories.

For the calculation of the absorption spectrum of a crystal, it is sufficient to
follow its vibrational dynamics around an equilibrium structure. The properties of
a crystal can be calculated by assigning random velocities to the atoms near their
equilibrium lattice positions, to wait for the equilibration of the system, after which
the configuration of the system will evolve, oscillating through time. Initial velocities
need not be so high as to break equilibrium conditions, or to introduce interactions
that cause instability of the system, and are chosen to provide the final temperature
(related to the total kinetic energy) of interest. MD can be performed with controls
placed on a number of other macroscopic properties such as pressure, volume and
total energy of the system. Apart from thermodynamic controls, the time step chosen
to evolve the system is crucially important: the time scale needs to be smaller than
the characteristic time associated with vibrations, which is typically in the range of
femtoseconds, and the number of steps has to be big enough to sample all of the
vibrations on the system.

It is customary to make use of the periodicity of the crystal within MD calculations
by use of periodic boundary conditions: the motion of all atoms within a supercell of
the unit cell of the crystal structure are treated explicitly. The positions and displace-
ments within this supercell are replicated in all directions, so that each translational
copy of an atom has the same velocity as that in the reference cell. Periodic boundary
conditions can generate artefacts in the MD calculation if an atom interacts with a
copy of itself; for this reason it is generally suggested to consider a supercell large
enough that no atom interacts with its image via short range interactions.

As with the lattice dynamics method, a correct description of the dynamics of a
system cannot be achieved without a proper handling of the forces acting between
atoms. The interactions within a crystal can be computed using electronic structure
methods such as DFT, or force fields, as discussed in Sect. 7.2.3.1. However, elec-
tronic structure MD methods, developed by Car and Parrinello [64] are so demanding
on computational time that, at the moment, they can be used only for crystals with
small unit cells (see [65] for an example); furthermore smaller time-steps are needed
to account for the dynamics and the rearrangement of the electron density, which is
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Fig. 7.12 CASTEP ab initio
molecular dynamics sim-
ulations of the terahertz
absorption of an ammonia
crystal at 160 K. The effect
of the length of the simu-
lation (Blackman window
in the graph) is considered.
Reprinted with permission
from [65]. Copyright 2008
American Chemical Society

much faster than that of the ions, and requires even smaller time steps, adding to the
computation cost.

We refer to Sect. 7.2.4 for details on force fields; we can add here that there
are a huge number of force fields that have been applied in MD studies of organic
molecules, mostly relating to studies performed in the protein and macromolecule
community: as a non-comprehensive list we can mention, among others MM2 [66]
and CFF [67] force fields, used for small organic molecules; CHARMM [68] and
GROMACS [69], for biomolecules and macromolecules; and UFF [70], with para-
meters for elements up to the actinoids. Furthermore, as mentioned previously, it is
possible to generate and fine-tune a force field specifically designed to apply to a
specific system, either where a well-developed force field does not exist or to improve
the accuracy of an older force field [71]. Once the trajectory of atoms or molecules
in a structure has been generated over a long enough time scale, the information
about the vibrational motion of the molecules is contained in the autocorrelation
functions: mathematical tools to determine patterns of a function that repeat in time.
For a property v, the autocorrelation function, is defined as the time average of the
product of that property’s value at a particular time with the value at a time origin,
t0:

A(t) = 〈v(t0)v(t0 + t)〉 , (7.25)

The brackets indicate an average over all configurations separated by a time interval t .
The autocorrelation function is easy to understand if we consider an example with

atoms within a crystal all oscillating with an oscillatory movement of period τ . If the
time t is not an integer multiple of τ the average over all configurations will be zero,
while when t is a multiple of the vibrational period, τ , the function v will take on the
same value at all pairs t and (t +τ) and the autocorrelation function will be non-zero.
For a complex trajectory, the autocorrelation function extracts only the periodic part
of the whole movement, with a weight proportional to its contribution. The Fourier
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Table 7.7 Calculated NH3 absorption frequencies ( cm−1) from Car Parrinello molecular dynamics
and DFT lattice dynamics
Lattice dynamics Molecular dynamics Experimental
B3LYP B3LYP B3PW91 PW91 PW91
TZP 6-311G** 6-311G** TZP 400 eV

98.1 99.7 93.8 111.2 98 107
121.6 113.4 120.2 142.2 125 138
130.9 132.6 127.5 144.9 136 138
174.8 177.0 174.5 191.5 175 181

The effect of using different exchange correlation functionals (top) and basis sets (bottom) is shown.
The molecular dynamics is based on the PW91 DFT functional with a plane wave basis set up to
a 400 eV cutoff. Lattice dynamics was performed using atom-centred basis functions and a range
of DFT functionals. Reprinted with permission from [65]. Copyright 2008 American Chemical
Society

transform of the autocorrelation function gives the frequency spectrum: an example
showing calculations on crystalline ammonia is shown in Fig. 7.12. Again, to have
a faithful representation of the slowest vibrations, the total simulation time needs
to be long enough, while the time steps used in the MD simulation must be short
enough to reproduce the fast vibrations. The absorption spectrum is obtained from
the electrostatic dipole autocorrelation function.

Information about the eigenvectors can be extracted from the velocity autocor-
relation function, noting that (since the simulation tries to sample all microscopic
states) the Fourier transform produces the spectrum of all phonon states (k �= 0
as well). The number of k points sampled in a calculation depends on the size of
the supercell used: larger cells provide a denser sampling of k points, as well as a
better description of the dynamics of the system. It is possible to separate k points
by considering the different phase of velocity for equivalent atoms in different cells:
for atoms at positions r1 and r2, separated by a distance R, the relation between the
velocities v is

v2 = v1 exp (ik · R) (7.26)

As a result, by a summation over all equivalent atoms with constraints dictated
by the relation in their velocities, it is possible to sort out the k = 0 phonons we are
interested in for optical spectroscopy (see [72] or [53] for details of the procedure).
Once the frequencies and their dispersion with k are known, it is possible to extract
the associated atomic displacements associated with each vibrational mode from the
trajectory.

Where direct comparisons have been made between the results of lattice dynam-
ics calculations and phonon frequencies extracted from MD, the agreement between
the two methods is generally very good. Table 7.7 shows DFT-based results for crys-
talline ammonia. MD frequencies are in fairly good agreement with those from lattice
dynamics calculations, although calculations using the same DFT functional (PW91)
find that frequencies from lattice dynamics are shifted to higher frequencies by
15–30 cm−1 compared to those from MD; this frequency shift could be attributed
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to the harmonic approximation applied in the lattice dynamics approach, while also
possibly being influenced by differences in the basis sets used in the two calculations.

Rigid-molecule force field based results for imidazole (Table 7.5) also show good
agreement between the MD and lattice dynamics approaches: frequencies calculated
using the exact same force field (FIT–DMA) agree to within about 5 cm−1 and mole-
cular displacements determined from the MD analysis were also reported to be in
very good agreement with the eigenvectors calculated from lattice dynamics [53].
Here, the frequency shifts can be directly related to the influence of anharmonicity
and we find that the frequencies extracted from MD trajectories are mostly shifted
to lower frequency. Interestingly, this shift was found to relate to the influence of the
vibration on the hydrogen bonds in the crystal structure: hydrogen bond stretching
modes are shifted to lower frequency by anharmonicity, while hydrogen bond bend-
ing modes are either unaffected or, surprisingly, shifted to higher frequencies in the
MD simulation.

7.4 Conclusions, Summary and Limitations of the Methods

The phonon modes in crystals correspond to collective oscillations of the atoms
in the structure. For molecular crystals, the vibrational modes in the terahertz
region are largely due to whole molecule motions about their equilibrium positions,
including both translational and rotational oscillations of the molecules. Therefore,
these modes are very sensitive to the interactions between molecules, making tera-
hertz spectroscopy a powerful probe of the intermolecular forces in crystals. How-
ever, the origin of the features observed in experimentally determined spectra are
difficult to interpret without the aid of modelling methods. The methods available
for simulating the vibrational spectra of crystals are lattice dynamics and MD, either
of which can be based on atom–atom (force field) or electronic structure methods,
whose main limitations and strengths are summarised below.

7.4.1 Force Fields Versus Electronic Structure (DFT) Calculations

The lattice dynamics approach performed within a force field framework was histor-
ically the first to be implemented, thanks to the lesser computational requirements
compared with a DFT calculation, allowing the fast calculation of the lattice modes
of systems with hundreds of atoms within the unit cell. For example, force fields
have been used to the calculate the spectrum of a chain of the protein ricin, with
a molecular mass in excess of 20,000 Dalton and with more than 300 vibrational
modes in the narrow frequency range from 2 to 50 cm−1 [73]. Such a system is cur-
rently intractable using electronic structure-based methods. The same holds for MD:
force field MD has been used to calculate the terahertz spectrum of opsins (proteins
responsible for the absorption of light in the eye), weighing around 40,000 Dalton,
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where it has even been possible to consider the effect of a hydration shell around the
molecule [74].

The most important limitation in force field methods is often in the accuracy of
the description of the electronic interactions, which is necessarily approximate and
usually limited to fixed atomic partial charges. Furthermore, the effectiveness of a
general force field is often related to the similarity of the system under study with the
systems to which the force field has been parameterised. Ad hoc, non-empirically
derived force fields, while potentially more precise, can take considerable time to
be developed and are typically limited to small molecules. On the other hand, DFT
results are also sensitive to the choice of functional. DFT calculations are potentially
very accurate and should provide a better description of the covalent, intramolecu-
lar interactions within a molecule. However, current functionals poorly describe the
intermolecular van der Waals interactions between neutral organic molecules. There-
fore, such calculations need to be corrected by an atom–atom dispersion correction
term.

7.4.2 Lattice Dynamics Versus Molecular Dynamics

Of the two, lattice dynamics is by far the simpler and less computationally demand-
ing method for simulating the lattice modes in crystals. The main advantage of a
MD calculation is the flexibility of the method: it is possible to perform calculations
at different temperatures, considering the effect on the spectrum explicitly. Further-
more, through the treatment of the vibrations at finite temperature it is possible to
include the anharmonicity of the crystal in a natural way. In contrast, lattice dynam-
ics calculations are often limited to a harmonic treatment where the results of the
calculation formally relate to zero kelvin.

MD methods may also be applied to non-periodic systems, allowing predictions
of the spectra liquids [75] or disordered materials. A related disadvantage of the
MD method is that the crystal symmetry cannot be enforced in the simulation, so
that it might therefore be difficult to assign the correct symmetry of the normal
modes of vibration; in lattice dynamics, symmetry analysis of the lattice modes is
straightforward. Lattice dynamics can also be more readily extended to include the
effect of long range electrostatic forces, while are known to break the degeneracy
(and therefore change the frequency) of some of the normal modes in polar crystals:
this effect is known as LO-TO splitting [76].

7.4.3 General Problems to Address

The examples included in this chapter show that the lattice dynamics and MD
approaches can give good agreement with the observed frequencies of lattice vibra-
tional modes, and are thus powerful methods for understanding the underlying mole-
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cular vibrations that lead to observed features in terahertz spectra. A large focus of
work for improving these methods is the development and fine-tuning of the methods
used to calculate the interactions in the structures. Apart from further improvements
to our force field or electronic structure-based energy models, we also highlight
several further effects that should be considered when simulating the spectrum of
a crystal using the methods described in the previous sections. These relate to the
fact that the computational methods are generally applied to infinite, perfect crystal
structures, while real measurements are affected by imperfections and the finite size
of the crystals being studied. Among others, we can mention:

• Surface effects, resulting from the finite size of the sample;
• the microcrystalline nature of samples;
• and disorder or impurities in crystal.

7.4.3.1 Surface Effects

It is currently not possible to account accurately for the finite size of the crystal on a
measured spectrum: lattice dynamics methods assume an infinite, periodic structure,
while MD methods cannot deal with a large enough number of atoms to form a
macroscopic crystal. The most significant deviations from the infinite crystal theory
occur when the dimension of the crystal are comparable to the wavelength of light.

It is possible to consider finite size effects for very simple crystals. Similarly to
what we described in Sect. 7.2.3.1, Ruppin and Englman [77] considered the case of a
cubic crystal of finite size and simple structure, introducing the conditions imposed
by Maxwell’s equations for travelling light into the lattice equations. The results
of this treatment are polariton modes: mixed modes with both phonon and photon
contributions, that describe the propagation of radiation inside the crystal. These
polariton modes may be either non-radiative (where the intensity decays outside
the crystal) or radiative (where the intensity does not decay, and can therefore be
detected).

The vibrational modes can be further classified according to their behaviour inside
the crystal: in bulk modes, the vibration occurs across the entire crystal, while the
motions associated with surface modes decrease exponentially away from the surface
of the sample into the bulk. The bulk frequencies calculated for finite crystallites are
not necessarily coincident with the frequencies arising from the treatment of an
infinite crystal, but tend towards the bulk frequencies as the dimension of the crystal
is increased. For example, for a finite NaCl crystal there is not one vibrational mode,
but a set of modes centred around the transverse and longitudinal frequencies of the
infinite crystal, ωT and ωL (Fig. 7.13).

The surface modes are intermediate in frequency between ωT and ωL , and are
characterised by motions that can be sustained at the interface of the crystal (see
Fig. 7.14). These modes are therefore strongly dependent on the geometry of the
crystallite. Analytic solutions for the modes can be found for simple structures in the
case of spherical crystallites, cylinders and rectangular slabs.
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Fig. 7.13 Calculated absorp-
tion for slab particles of NaCl.
In the top figure the parti-
cle height is 10µm. In the
lower figure, it is 1µm. The
absorption frequencies from
the infinite crystal, ωT and ωL ,
are indicated. Adapted from
[77] with permission from the
Institute of Physics

(a)

(b)

Fig. 7.14 Experimental
absorption of small paral-
lelepipeds of KCl of different
sizes. The sizes are (inµm)
2 × 4.5 × 4.5 for the full
curve, 2.5 × 9 × 9 for the
dashed curve (adapted from
[77] with permission from
the Institute of Physics). The
infinite crystal calculated fre-
quencies are indicated as ωT
and ωL

7.4.3.2 Powder Spectra

Measured absorption spectra often relate to microcrystalline samples, composed of a
myriad of randomly oriented microcrystals, often embedded in a binder that displays
limited absorption in the terahertz region. Such measurements are affected by the
issues exposed in the previous section: the presence of surface modes on crystals
of different sizes and with different orientations are also found to depend on the
dimension of the sample and on the dielectric constant of the medium in which
they are embedded (i.e. the measured frequency would be different for spherical
crystallites in air or in a binder).

Balan [78] has calculated the IR powder spectrum of a sedimentary natural clay
(kaolinite, Al2Si2O5(OH)4) taking into account the experimental set-up (Fig. 7.15).
The geometry of the microcrystals is experimentally known to be thin plates; these are
diluted in KBr powder binder, and compressed into a pellet. In a simple treatment, the
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Fig. 7.15 Experimental and calculated infrared spectrum of kaolinite (reproduced from [78] with
permission from Elsevier). The frequency eigenvalues are indicated by vertical lines at the bottom
of the spectra

Fig. 7.16 Possible configura-
tion of the benzoic acid dimer,
and the position inside a crys-
tallographic unit cell (a and
c axes shown). The hydrogen
bond within the molecule is
indicated with a dotted line.
Adapted from [79]

binder is theoretically approximated as a uniform dielectric medium, and its influence
on the microcrystal consists of a charge polarisation effect on the surface and in the
bulk crystal. This effect is averaged over the randomly oriented microcrystals, and
the effect was calculated on the normal modes calculated using DFT-based lattice
dynamics. The result is that some of the absorption frequencies are shifted with
respect to the normal modes of the crystal (see Fig. 7.15) and the absorption of some
of the modes is found to be strongly dependent on the dielectric constant of the binder.
This calculation resolved some of the issues related to shifted absorption bands that
could not be correctly assigned from previous calculations. It is to be noted that this
treatment required a detailed knowledge of the microcrystal geometry that might not
be possible for many systems, where distributions in size and shape of crystallites
are likely to exist.
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Fig. 7.17 Experimental and
calculated terahertz spectra of
crystalline benzoic acid (From
[41]. Reproduced by per-
mission of the PCCP Owner
Societies). a The experimen-
tal spectrum, measured at
T = 110 K, b the calculated
spectrum averaged over sev-
eral supercell models of the
disordered structure, c the
calculated spectrum with all
hydrogen bond dimers in the
lower energy configuration,
d the calculated spectrum with
all dimers in the higher energy
configuration
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7.4.3.3 Disorder and Impurities

The periodicity within a crystal can be broken by impurities and defects, whose
presence modifies the local environment of molecules inside the crystal and will
therefore affect the local intermolecular forces and, consequently, the lattice mode
spectrum of a crystal. An example is crystalline benzoic acid, in which molecules are
arranged as hydrogen bonded dimers. In this crystal structure, there are two possible
configurations for a benzoic acid dimer, differing only in the positions of the protons
within the hydrogen bond dimers (see Fig. 7.16). The relative populations of the two
types of dimer are temperature-dependent, with 87 % of dimers being found in the
lower energy configuration at T = 4K, while the ratio is as high as 1:2 [79] at higher
temperatures.

The influence of this disorder on the terahertz spectrum was recently investigated
by Li et al. [41], who modelled the disorder by considering several crystalline super-
cells of the known crystal structure in which the benzoic acid dimers were randomly
assigned one of the two configurations in the observed 1:2 ratio. These supercells
were then treated using force field-based lattice dynamics calculations and compared
to the results of calculations on completely ordered structures. While the frequen-
cies of all vibrational modes are overestimated by the force field method used, it is
clear (see Fig. 7.17) that the disorder in the proton positions has a noticeable effect
on the simulated spectrum. Furthermore, the effect of the disorder is different from
what would be predicted from an average of the spectra from the two ordered mod-
els: additional weak features are introduced and the splitting between the stronger
features is affected by the disorder.

The treatment of disorder here is only approximate, as a periodic unit cell is still
needed for the lattice dynamics approach. However, the results do demonstrate how
the spectrum is strongly influenced by the subtle effect of changing the position
of a single atom within a molecule. It is easy to imagine that the disorder in other
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structures may have an even greater influence on the terahertz spectrum and may be
necessary to consider in fully understanding the details in observed spectra. Again,
for this kind of treatment it is necessary to have a detailed knowledge of the subtleties
of a crystal structure.

Overall, computational methods have an integral role to play in interpreting the
terahertz spectra of molecular crystals. While the subtleties of observed spectra
may require further development of models to account for the influences of finite
crystalline size and imperfections, existing methods can already help understand
the molecular motions corresponding to observed features. These methods are thus
enabling a chemical interpretation of spectra in terms of the interactions between
molecules.
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