
Chapter 5
Terahertz Scattering

L. M. Zurk and S. Schecklman

5.1 Introduction

Terahertz (THz) Time Domain Spectroscopy (TDS) measurements have the unique
ability to detect both the amplitude and phase of the electric field, simultaneously.
This eliminates complications introduced by Kramers–Kronig relations typically
used in near-infrared spectroscopy. Many materials of interest contain resonant fea-
tures in their refractive indices in the far-infrared (THz) spectrum, while their pack-
aging materials are generally transparent. Thus, an important application for THz
TDS is the ability to see inside packaging materials and detect the material features
of their contents. Such applications are promising for security screening (concealed
drugs, explosives, etc.) in post offices and airports as well as for non-destructive
evaluation (NDE) of products on an assembly line or tissue damage due to burns or
cancer [1–6].

The advancement of these technologies is complicated, however, because the
wavelength of THz waves are on the same order as geometric features of the samples
[7–10]. For example, spectral material features may be obscured by things like a
transparent covering layer on the order of 100 microns (for example, the thickness
of a piece of paper), a rough surface on the order of 10’s of microns (sandpaper or
fingerprint impressions), or scattering from grains or air bubbles on the order of 10’s
of microns. In addition, many materials of interest have relatively high absorption at
THz frequencies. In particular, THz waves have skin depths of only a few millimeters
in objects that contain high water content, such as the human body.

While carefully prepared samples may be studied in a controlled laboratory envi-
ronment, it is expected that most practical applications of THz technology will be
restricted to a reflection geometry. Measurements will probably also require some
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signal processing to correct for the frequency-dependent geometric scattering from
layers, rough surfaces, and particles. The effects of these scattering phenomena are
briefly introduced in this chapter.

5.2 Terahertz Reflection and Transmission from Samples with
Smooth Planar Interfaces

This section addresses scattering phenomena that may occur at an interface between
two media. Transmission and reflection coefficients are introduced to define the field
above and below the interface. The etalon effect is briefly considered for a thin layer
of material. Finally, scattering from random media is introduced and methods to
detect material features from rough surface scattering are discussed.

5.2.1 Reflection and Transmission at a Single Interface

This section will consider the simplest transmission and reflection configurations,
such as might be encountered while using prepared samples in a laboratory setting.
Figure 5.1a shows a horizontally polarized plane wave incident on a smooth interface
between two infinite half-spaces. The incident field is given by,

Ēi ( f, ki ) = ŷE0eixkxi −i zkzi e−i2π f t , (5.1)

where f is the frequency (in Hz) and t is time. In the remainder of this chapter, time-
dependence will be suppressed. In (5.1), kxi = k sin θi and kzi = k cos θi are the
horizontal and vertical components of the incident wave vector, ki = kxi x̂ +kzi ẑ and
θi is the incident angle. Throughout this chapter, k = 2π/λ will be used to represent
the wavenumber, where λ = c/ f is the wavelength and c = 3 × 108 m/s is the
speed of light in free space. This standard convention in electromagnetics is different
from the terminology sometimes used in spectroscopy where “wavenumber” is often
defined as 1/λ. We note that the notation in this chapter is different from other
chapters in this text where wavenumber is represented as K , and k is used for the
extinction coefficient.

For infinite planar surfaces the reflected and transmitted fields, Ēr and Ēt , are
given by the horizontal Fresnel reflection and transmission coefficients,

Rh
01 = N0 cos θi − N1 cos θt

N0 cos θi + N1 cos θt
, (5.2)

T h
01 = 1 + Rh

01. (5.3)
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Fig. 5.1 Panel A Plane of incidence for reflection and transmission at a smooth interface between
media 0 (free space) and 1. The horizontally polarized incident field, Ēi is reflected at the specular
angle, θs = θi . The refractive index, N1, may be dependent on the THz frequency. Note, the
incident, transmitted and reflected electric fields and the y-axis are illustrated as vectors pointing
into the page. Panel B Reflected and transmitted pulses from a single layer of material for normal
incidence, θr = θi = 0

In (5.2) and (5.3), R01 is the reflection coefficient for a field reflected from medium
1 into medium 0, T01 is the transmission coefficient for a field transmitted from
medium 0 into medium 1, and θt is the refracted angle inside medium 1. The complex
index of refraction, N1, is generally frequency-dependent in the THz portion of the
spectrum so that

N ( f ) = √
ε( f )μ, (5.4)

where

ε( f ) = ε′( f ) + iε′′( f ). (5.5)

The real part, ε′( f ), and imaginary part, ε′′( f ), of the complex relative permittivity
in (5.5) often contain unique spectral information which can be used for material
detection and identification. The relative permeability, μ, of non-magnetic materials
is 1. Figure 5.2 shows the complex permittivity for α-lactose monohydrate, calculated
from the Lorentz parameters. It has been shown that the 1st derivative of the reflection
coefficient magnitude or the 2nd derivative of the reflection coefficient phase may
yield a similar signature to the imaginary part of the permittivity when ε′ � ε′′
[11–13].

The primary objective of THz spectroscopy is to gain information about a material
from either the transmitted or reflected fields. For smooth surfaces, the reflected angle
is called the “specular” angle and is given by the law of reflection, θr = θi . In general,
the extraction of N1 from (5.2) is complicated by the dependence of θt on N1 due
to Snell’s Law of Refraction [14]. The process of extracting N1 is greatly simplified
if the angle of incidence is chosen to be normal. The transmitted field is preferred
over the reflected field for THz spectroscopy, because it is more heavily influenced
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Fig. 5.2 Relative permittivity for alpha-lactose-monohydrate calculated from the Lorentz parame-
ters. The imaginary part shows peaks near 0.54, 1.2, and 1.4 THz which may be used for material
identification

by the absorption features and because most materials of interest have relatively low
reflectivity.

It is difficult to accurately account for the transfer functions of all of the individual
components in a THz TDS system. This problem is by-passed by making an addi-
tional reference measurement without the sample material in place. Thus, normaliz-
ing the sample measurement by the reference measurement removes the unknowns
and isolates the material parameters in a process called deconvolution [14]. Thus, for
a given geometry with fixed incident and transmitted or reflected angles, the electric
field of the sample and reference THz pulses are measured as time-domain wave-
forms and the corresponding complex frequency spectra, E sample( f ) and E ref( f ),
are then computed using numerical Fast Fourier Transforms (FFT’s). Finally, the
ratio gives the deconvolved sample spectrum,

Edeconv( f ) = Esample( f )

Eref( f )
. (5.6)

For transmission measurements the reference is the electric field with the source
and receiver in the same position, but without a sample in the propagation path.
The reference for reflection measurements is the specular reflection from a mirror.
Although it is more practical, the reflection configuration presents a number of chal-
lenges. First, it is difficult to align the emitter, sample, and detector precisely at the
specular angle to capture the reflected signal. Similarly, the deconvolution operation
requires the mirror to be placed at exactly the same location as the sample. For exam-
ple, if the mirror is misplaced by only a few hundred microns there may be several
wavelengths difference in the propagation path between the sample and reference
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measurements. This subtle difference can result in a large error in the phase and
ultimately the extracted material properties. In addition, it is more difficult to extract
the material properties from reflection measurements because the calculation of θt

requires a-priori knowledge of the material’s index of refraction. Finally, an even
more important challenge for reflection spectroscopy is that most materials of inter-
est have a relatively small reflection coefficient (on the order of 10 percent) making it
difficult to acheive the signal to noise ratio (SNR) needed to identify spectral features
[15]. For these reasons it is expected that the detection and identification procedures
used in security or medical screening applications will rely on comparison of reflec-
tion spectra of the in situ samples with absorption spectra from a library of known
materials, derived from laboratory measurements made in transmission mode.

5.2.2 Reflection and Transmission from a Layer

Transmission though thin pellet samples in a laboratory environment will gener-
ally be used to extract material properties, which can be recorded in a database or
library of known material signatures. Samples are prepared by pressing powder in a
hydraulic press to create a pellet with smooth level surfaces on each side. However,
interference between the internal reflections within the pellet (etalon effect) may still
obscure spectral features of the sample material. This section will briefly describe
the complexities associated with transmission at normal incidence through a single
pellet with just two interfaces as illustrated in Fig. 5.1b.

For an electric field at normal incidence, the effective reflection, and transmission
coefficients for a layer of thickness, d, can be written as [16],

Reff = R01 + R10 exp(i2k1d)

1 + R01 R10 exp(i2k1d)
, (5.7)

and

Teff = T01T10 exp(ik1d)

1 + R01 R10 exp(i2k1d)
, (5.8)

where k1 = 2π f/N1c is the wavenumber inside region 1. Extraction of the refractive
index from a thin sample as illustrated in Fig. 5.1b will generally require (5.7) or
(5.8) to be solved using numerical methods. If the sample is thick enough so that only
the first transmitted pulse can be detected, then R10 in the denominator of Teff goes
to zero, and N1 can be extracted more easily using the methods in the literature [14].
This is the most desirable scenario, but is difficult to achieve in practice because thin
samples can become brittle and fall apart. Therefore, the sample material is often
mixed with a transparent binding material (such as polyethylene or Teflon). The grain
sizes of the sample and binding material must be small enough to avoid scattering
within the sample. The samples must also be pressed with sufficient pressure to
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Fig. 5.3 Most materials of interest for THz TDS must be modeled as random media (panel A). The
scattered field above random rough surfaces (panel B) will be discussed in Sect. 5.3.1. Scattering
from inhomogeneities randomly located inside a medium (panel C) will be discussed in the second
half of this chapter

reduce the size of air voids within the sample. Volume scattering will be considered
in the second part of this chapter.

In more practical applications of THz technology, accounting for the etalon effect
in the layers above a material of interest (clothing, packaging material, etc.) is imper-
ative. This has been done using optimization routines within an inverse model for a
single layer [17].

5.3 Random Media

As discussed above, THz TDS may be used to extract spectroscopic information from
homogeneous materials with smooth surfaces. However, most naturally occurring
materials will contain randomly distributed particles and/or surface protrusions or
indentations which are on the same order as THz wavelengths. This is illustrated
in panel A of Fig. 5.3. Scattering from random rough surfaces may dominate over
volume scattering within materials that are opaque (small skin depths) as shown in
(Fig. 5.3b), and discussed in the following section. Scattering from inhomogeneities
randomly distributed throughout materials with smooth surfaces (Fig. 5.3c) will be
discussed in the second half of this chapter.

For either case the scattered field will be the sum of the mean field and a fluctuating
field,

Es( f, ki , ks) = Em( f, ki , ks) + E f ( f, ki , ks), (5.9)
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where ks is the scattered wave vector in the θs direction, and the expected value of
the fluctuating field is equal to zero, 〈E f ( f, ki , ks)〉 = 0. It is important to note that
since the fluctuating part of the field is (by definition) phase incoherent the phase
structure corresponding to the material spectrum is contained solely within the mean
(or coherent) field component. Although the incoherent field averages to zero, the
incoherent power does not, and may therefore be used to obtain spectral information.

5.3.1 Terahertz Reflection from Random Rough Surfaces

Since most materials are opaque at THz frequencies, it is expected that more practi-
cal detection systems will need to operate in a reflection configuration. Furthermore,
many common surfaces will have roughness on the order of THz wavelengths (hun-
dreds of microns), and cause the spectroscopic signatures to be altered by scattering.
Since the surface of most materials will have some random roughness, it will be
necessary to average a number of measurements in order to characterize a typical
sample material. In fact, dozens or possibly hundreds of sample measurements may
be required. The complexity of the rough surface scattering physics motivates the
development of mathematical models and computer simulations that can accurately
and efficiently provide these answers.

A rough surface can be considered as an ergotic random process where the height
at any given location is a random variable, ζ . It is reasonable to assume that for most
random rough surfaces all of the heights will have the same probability distribution
and the same mean value. For a zero-mean surface the root-mean-square (rms) height
is given by

h =
√〈

ζ 2(x, y)
〉
. (5.10)

Along a single line in the y-dimension, the covariance between two points ζ(x1)

and ζ(x2), on a random rough surface is

〈ζ(x1)ζ(x2)〉 = h2C(x1 − x2), (5.11)

where C(x1 − x2) is the autocorrelation function. The correlation length is defined
as the horizontal distance, lc, that causes the autocorrelation function to decrease by
1/e, where e = 2.7183.

The strength of a wave reflected from a rough surface will depend on three factors:
material properties, viewing geometry (incident and detection angles), and rough
surface statistics. The impact of the surface on the scattering depends on the surface
height relative to a wavelength. As wavelength decreases (with increasing frequency)
a surface will appear more rough to the incident plane wave, resulting in more diffuse
scattering. According to the Fraunhofer Criterion a surface can be considered rough
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if it causes a π
8 phase shift as compared to a smooth surface [18, 19]. Thus, a surface

is “rough” if the rms height, h, satisfies the inequality

h ≥ λ

32 cos θi
. (5.12)

The scattered field, Es , from a horizontally polarized wave incident on a rough
surface will have both horizontal and vertical components. The horizontal component
is given by [20],

Ēh
s (r̄) = ŷ

[
ikeikr

4πr

] ∫

S′
dS′ [ŷ ·

(
k̂s × [

n̂ × E(r ′)
] + η

[
n̂ × H(r ′)

])
e−iks ·r ′]

,

(5.13)
where it has been assumed that the detector is in the plane of incidence. In (5.13), r is
the distance from the origin to the observation point, and r̄ ′ is a vector from the origin
to a patch of area, dS’, on the surface, S’. E and H are the electric and magnetic
fields, respectively, on the surface. The surface normal, n̂, points outward from the
surface, and the impedance of the (non-magnetic) surface material is η ≈ 377/

√
ε1

ohms, where ε1 is the relative permittivity of the surface material.
Although (5.13) is exact, the integral is difficult to solve for random rough sur-

faces. The integration may be solved using numerical techniques, such as Method of
Moments (MoM) [21] or Finite Difference Time Domain (FDTD) [22, 23].

At a distance, r , from a scatterer, the differential cross-section, σd , gives the
relative amount of scattered power

σd( f, ki , ks) = 4πr2 |Es( f, ki , ks)|2
|Ei ( f, ki , ks)|2

d
s, (5.14)

with units of area. In (5.14), d
s = sin θsdθsdφs is the differential solid angle in the
scattered direction, k̂s . Note, this is similar to THz TDS deconvolution as defined in
(5.6), where the normalized intensity is

Ideconv( f, ki , ks) = |Es( f, ki , ks)|2
|Eref ( f, ki , ks = specular)|2 . (5.15)

Thus, THz TDS intensity measurements will be proportional to differential cross-
section calculations.

The dimensions of rough surfaces are generally larger than the incident beam.
Therefore, the differential cross-section is often normalized by the incident beam
cross-section to give the (dimensionless) scattering coefficient,

γ ( f, ki , ks) = σd( f, ki , ks)

A0 cos θi
, (5.16)
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Fig. 5.4 Panel A Angular distribution of the scattering coefficient above two random rough con-
ductive surfaces at two frequencies, simulated with the MoM. At each frequency the rougher surface
(surface 2) diverts more energy away from the specular angle. For both surfaces, more scattering
occurs at the higher frequency. Panel B Spectral derivatives for specular reflection measured [24]
by a THz TDS system from a smooth lactose surface compared with lactose with rough surface 1
and 2, as in panel A. The peak near 0.54 THz corresponds to the peak in the extinction coefficient
in Fig. 5.2

where A0 is the area of the rough surface projected onto the x-y plane. Figure 5.4a
shows the scattering coefficients for two rough conductive surfaces at two frequen-
cies. The scattering coefficients were calculated using MoM [21] for 1D surfaces
of length 2L , where L = 25λ. The heights of surfaces 1 and 2 are both Gaussian
random variables with rms heights of 21 µm and 55 µm, respectively, and their cor-
relation lengths are 161 µm and 151 µm, respectively. Each case shows the average
scattering coefficient from 200 independent surface realizations.

For both surfaces in Fig. 5.4a the peak (main lobe) is centered at the specular
angle. The width of the specular peak is proportional to 1/(2L), and the height
of the main lobe decreases exponentially with increasing rms height, frequency,
and incident angle. At each frequency the rougher surface (surface 2) diverts more
energy away from the specular angle. For both surfaces, more scattering occurs at
the higher frequency. The scattering at the specular angle decreases with increasing
frequency as the diffuse scattering increases. For very rough surfaces, the coherent
peak disappears completely, as illustrated by surface 2 in Fig. 5.4a at 2.0 THz.

Terahertz TDS measurements were made in reflection mode to demonstrate the
ability to detect material features from rough surface scattering at the specular angle
[24]. The sample materials were prepared at the Indian Head Division, Naval Surface
Warfare Center (IHD NSWC) [25], and THz TDS measurments were conducted at
the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab)
at Portland State University. Lactose powder was mixed with a (transparent) poly-
tetrafluoroethylene (PTFE) binding material in a 20 % / 80 % PTFE/lactose weight
ratio and pressed into circular pellets 2 inches in diameter. The sample thickness,
approximately 9 mm, was large enough so that all etalon reflections could be time-
gated out without significant loss of frequency resolution. A smooth surface sample
was compared with two rough surface samples. The rough surface samples were
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impressed with the same roughness statistics as surface 1 and surface 2 by insert-
ing a piece of 80 grit and 40 grit sandpaper in the bottom of the die, respectively.
The samples and THz TDS transmitter and receiver were placed inside an acrylic
enclosure purged with Nitrogen to remove narrow-band water vapor attenuation. The
incident (collimated) beam was centered half-way between the center and the edge
of the 2 in lactose pellet, which was rotated (in 12 degree increments) about its center
to create 30 surface realizations. Reflection spectra were obtained by deconvolution
using a gold mirror as the reference. Figure 5.4b shows the negative derivatives of
the reflected power with respect to frequency for each surface. As discussed ear-
lier, the 1st derivative of the reflection coefficient magnitude (and thus also power)
can reveal a spectral signature similar to the imaginary part of the permittivity when
ε′ � ε′′ [11–13], a condition satisfied by lactose (Fig. 5.2). Thus, the spectral feature
of lactose near 0.54 THz is clearly apparent in Fig. 5.4b for the smooth surface, but
becomes smaller as the surface roughness increases because more energy is diverted
away from the specular angle.

Since the scattered power decreases exponentially with increasing frequency and
disappears altogether for very rough surfaces, it can be more helpful to work with the
diffuse scattering (incoherent power) from rough surfaces. Diffuse scattering will be
produced at all angles and thus no particular alignment is necessary. Improvement
in the SNR of the diffuse signatures may be realized by averaging over many scatter
angles. In addition, signal processing techniques such as correlation detection [26]
and Cepstrum filtering [27] have been applied to improve detections algorithms for
diffuse scattering.

5.3.1.1 Rough Surface Scattering Approximations

Insight into scattering behavior can be gained by considering approximate solutions
for (5.13). The two most common analytic approximations, the Kirchhoff Approxi-
mation and Small Perturbation Method, will be introduced in this section.

Kirchhoff Approximation
The Kirchhoff Approximation assumes the facets of a rough surface can be approx-

imated locally as tangent planes. For surfaces with large radius of curvature the
Kirchhoff Approximation simplifies (5.13) to give [18, 20],

Ēh
s (r̄) = ŷ

[
ikeikr

4πr

]
E0

∫

A0

[
a

δ

δx
ζ(x, y) − b

]
ei(ki −ks )·r ′

dx ′ dy′, (5.17)

where A0 is the total surface area, with dimensions 2Lx × 2L y , and the coefficients
are given by a = (1 − Rh

01) sin θi + (1 + Rh
01) sin θs , and b = (1 + Rh

01) cos θs −
(1 − Rh

01) cos θi . It is important to note that in (5.17) the emitter and detector are
assumed to be in the xz plane. In this case, only tangent planes of the surface which
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are perpendicular to the xz plane are relevant in the integration. Although these
tangent planes have no slope in the y-direction, a two-dimensional integration is still
necessary to account for the width of the planes. Since the local normal of each of
these planes will be parallel to the xz plane, the local polarization of the incident
wave is still in the y-direction and the horizontal reflection coefficient can be used
to compute the a and b coefficients. More general scattering scenarios are presented
in the literature [18, 20].

The scattered field from the Kirchhoff Approximation may be solved numerically
for a random surface realization, ζ(x, y), in (5.17). However, if the surface has small
slopes, then (5.17) can be simplified further [20],

Es(r) = ŷ

[
ikeikr

4πr

]
E0 [−b]

∫

Ao

ei(ki −ks )·r ′
dx ′ dy′. (5.18)

The Kirchhoff Approximation is valid for all frequencies for which the radius of
curvature is much larger than a wavelength. However, at large angles of incidence,
shadowing and multiple reflections in-between facets of the surface may occur. The
basic form of the Kirchhoff Approximation, presented here, does not account for
these effects.

If the surface has a Gaussian probability density function, then the scattering
coefficient can be solved analytically [20],

γ = k2

4π A0 cos θi
|−b|2 (| < I > |2 + DI ), (5.19)

where the first and second terms within the parenthesis represent the coherent and
incoherent scattered intensity, respectively. If the transmitter and receiver are both
in the xz plane, and the surface area includes many correlation lengths, then the
coherent scattering is given by [20],

< I >= A0 exp

[
−1

2
k2

dzh2
]

sinc(kdx Lx ), (5.20)

where sinc(x) = sin(x)/x , kdx = k(sin θi − sin θs) and kdz = k(cos θi − cos θs).
It is important to note that this is similar to the scattered field from a flat plate of
width 2Lx , but here the rough surface attenuates the field by an exponential factor
which is dependent on the rms height, angle of incidence, and wavelength.

Small Perturbation Method
For surfaces that have small rms height, kh 	 1, the Small Perturbation Method

(SPM) can be used to estimate the scattering coefficient for a Gaussian surface [20],

γ (1) =
[
4k4h2l2

c cos2 θs cos θi

]
∣
∣
∣
∣
∣

(k2
1 − k2)

(kz + k1z)(kzi + k1zi )

∣
∣
∣
∣
∣

2

exp

[
−1

4
k2

dρl2
c

]
. (5.21)
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where the superscript on the scattering coefficient indicates a first-order approx-
imation. In the medium above the rough surface, the vertical component of the
scattered wave vector is given by kz = k cos θs , and kdρ is the difference between
the horizontal components of the incident and scattered wave vectors where k2

dρ =
k2(sin2 θs + sin2 θi − 2 sin θs sin θi ). Similarly, the vertical components of the inci-
dent and scattered wave vectors are given by kz1i = k1 cos θi and k1z = k1 cos θs ,
respectively.

The SPM model is useful for frequencies at which the small height approximation
is valid. Therefore, SPM is only applicable for a band of frequencies bracketed by
the Fraunhofer Criterion (5.12) and the small height requirement, kh 	 1.

5.4 Volume Scattering and Absorption

This section considers an electromagnetic wave propagating in a material that has
volume inhomogeneities (i.e., grains or bubbles), as shown in the right-hand part
of Fig. 5.3. The energy in an electromagnetic wave propagating through such a
material will be scattered and absorbed by the particles. This is commonly observed
(experimentally) as a loss of energy from the incident or coherent wave, but the
scattering will also in general re-distribute energy into a scattered electric field that
propagates in other directions (much as rough surface scattering produces energy in
non-specular directions). The strength of the scattering depends on the size of the
scatterers relative to the THz wavelength; the dielectric contrast between the scatterer
and the background; and the shape, concentration, and orientation of the scatterers.

In random media, the exact positions and characteristics of the particles are not
precisely known, but often their properties can be described in terms of the particle
statistics. Given these statistics, it is possible to predict the mean field properties,
either with analytical approximations or numerical calculations (using Monte Carlo
techniques). In this section, several of the more commonly used approaches and
approximations for calculating the volume scattering and absorption are provided.

5.4.1 Scattering from Individual Particles

Consider the case of a single particle of permittivity εp (which differs from the
background permittivity ε) illuminated by the incident electric field as defined in
(5.1). In the far field, the field scattered from the particle will be a spherical wave
with dependence eikr/r , where r is the distance from the particle to the observation
point. The electric field scattering in the direction k̂s is

Ēs = ês fs(k̂s, k̂i )Eo
eikr

r
(5.22)
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and fs(k̂s, k̂i ) is the scattering amplitude from direction k̂i into direction k̂s . The
scattered power can be determined by integrating over all scattered angles to give
the scattering cross-section

σs =
∫

d
| fs(k̂s, k̂i )|2 (5.23)

where d
 is a differential solid angle. In addition to scattering, the particles may
also introduce absorptive loss, which is quantified by the absorption cross-section
σa . The extinction cross-section, σe = σs + σa accounts for both effects.

The analytic solution for the scattering amplitude (and hence the far-field scattered
field) can be found by expressing the incident, scattered, and internal fields in terms
of a complete orthonormal basis, such as spherical vector wave functions. Electro-
magnetic boundary conditions are then imposed at the particle boundaries, resulting
in expressions for the unknown expansion coefficients [28]. Typically, this process
only yields closed form solutions for canonical objects (e.g., spheroids, cylinders,
etc.); more complicated objects require numerical approaches.

The scattered field can be computed using the T-matrix [29, 30] method (see [31]
for a recent review on the approach), which represents the scattered field in terms of

the regular vector spherical wave functions M
(1)

mn and N
(1)

mn as

Es(r) =
∑

m,n

[as(M)
mn Mmn(kr, θ, φ) + as(N )

mn N mn(kr, θ, φ)] (5.24)

where θ and φ are the elevation and azimuthal angles in spherical coordinates and
as(M)

mn and as(N )
mn are the (unknown) coefficients of the spherical wave functions which

can be expressed in terms of the T-matrix as

[
ās(M)

ās(N )

]
=

⎡

⎣ T
(11)

T
(12)

T
(21)

T
(22)

⎤

⎦
[

āe(M)

āe(N )

]
. (5.25)

and each of the sub-matrices have dimensions Lmax×Lmax, where Lmax is determined
by the number of spherical harmonics necessary in the expansion in (5.24).

The scattering from spherical particles of radius a is referred to as Mie
scattering [33, 32], and for spherical scatterers the T-matrix is diagonal with

T (11)

mnm′n′ = δmm′δnn′ T (M)
n ; T (22)

mnm′n′ = δmm′δnn′ T (N )
n ; T (12)

mnm′n′ = T (21)

mnm′n′ = 0

(5.26)

where
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T (M)
n = jn(ksa) [kajn(ka)]′ − jn(ka) [ksa jn(ksa)]′

jn(ksa) [kahn(ka)]′ − hn(ka) [ksa jn(ksa)]′

T (M)
n =

[
k2

s a2 jn(ksa) [kajn(ka)]′
] − [

k2a2 jn(ka) [ksa jn(ksa)]′
]

[
k2

s a2 jn(ksa) [kahn(ka)]′
] − [

k2a2hn(ka) [ksa jn(ksa)]′
] (5.27)

where jn and hn are the spherical Bessel and Hankel functions, respectively, and
the prime indicates differentiation. The scattering and extinction cross-section for
spheres can then be written in terms of the T-matrix elements as

σs = 2π

k2

∞∑

n=1

(2n + 1)(|T (M)
n |2 + |T (N )

n |2), (5.28)

σe = −2π

k2

∞∑

n=1

(2n + 1){Re(T (M)
n + T (N )

n )}. (5.29)

The above expressions account rigorously for the scattering and absorption from
spherical particles. However, the computation requires a summation over spherical
harmonics, and the larger the particle the more terms are required in the summation.
For small dielectric spheres (ka 	 1) the only term that needs to be retained is
the electric dipole term. Thus, the scattering and absorption cross-sections for small
particles (called Rayleigh scattering) can be simplified to

σs = 8π

3
k4a6

∣
∣
∣
∣

εp − ε

εp + 2ε

∣
∣
∣
∣

2

= 8π

3
k4a6 |y|2 , (5.30)

σa = k
I m{εp}

ε

4πa3

3

∣
∣
∣
∣

3ε

εp + 2ε

∣
∣
∣
∣

2

, (5.31)

and y = (εs − ε)/(εs + 2ε).

5.4.2 Scattering from Randomly Distributed Collections of Particles

Many inhomogeneous materials can be modeled as a collection of finite scatterers
randomly distributed in a background media as shown in Fig. 5.3. The presence of
these scatterers will introduce scattering and absorption to an electromagnetic wave
propagating through the media. To compute the loss associated with this scattering
and absorption, consider the scattering and absorption of a wave passing through a
small volume dV which contains a large number of particles (with a density of n0
particles per unit volume) but is also larger than λ3.

The first case to consider is when the randomness of the particle separation is not
much smaller than a wavelength, so that that their positions will not introduce coher-
ent, correlated scattering. Under this condition, the independent scattering assump-
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tion can be utilized, and the scattering from the collection of particles is computed
as the product of the particle number density and the scattering from an individual
particle. The scattering, absorption, and extinction coefficients (κs , κa , κe respec-
tively) are defined as the cross-sections per unit volume, and under an independent
scattering approximation these can be written as

κs = n0σs, κa = n0σa (5.32)

κe = κs + κa = n0(σs + σa). (5.33)

The physical interpretation of the above can be seen in the context of a THz wave
of intensity I traveling through a volume of scatterers over a distance �z and with
a cross-sectional area S. The power extinguished due to scattering and absorption is
then

�P = −Iκe S�z (5.34)

giving the solution for the intensity as a function of distance z as

I = I0e−κez . (5.35)

Thus κe is the attenuation per unit distance due to scattering and absorption.
For many materials, the particles are not a single size, but can be described with a

size distribution p(a). Using the independent scattering assumption, the coefficients
for the multi-size particle mixture can be written,

κs =
∞∫

0

da p(a) σ (a) (5.36)

n0 =
∞∫

0

da p(a) (5.37)

where the integration is over the particle radius, a. For Rayleigh scattering under the
independent scattering assumption, particles with size distribution p(a) give

κs = 8π

3
k4

∣
∣
∣
∣

εp − ε

εp + 2ε

∣
∣
∣
∣

2 ∞∫

0

da p(a) a6 (5.38)

κa = k
I m{εp}

ε

4π

3

∣
∣
∣
∣

3ε

εp + 2ε

∣
∣
∣
∣

2 ∞∫

0

da p(a) a3, (5.39)

and κe = κs + κa .



110 L. M. Zurk and S. Schecklman

As an example, consider a material composed of a randomly distributed collection
of lactose (dielectric properties given in Fig. 5.2) spheres of radius a in a background
of air, with the lactose particles having a fractional volume of fv. Let us assume
that the particle concentration is sufficiently small that the independent scattering
assumption is valid, and thus the total loss due to scattering and absorption through a
distance l of the material is given byκel withκe given in (5.33). (Note: the independent
scattering assumption for this example is examined in the next section, and it is
shown that it can over-predict the amount of scattering—indicating an effective
media calculation is needed.) The scattering and absorption cross-sections can be
calculated with (5.30) and (5.31) if the particles are small (Rayleigh), but the general
solution requires the Mie expression in (5.28) and (5.29).

The total wave extinction is due to both scattering and absorption, and the portion
of the loss caused by absorption versus scattering is dependent on the particle radius.
Consider the results shown in the left-hand plot of Fig. 5.5, which shows the predicted
loss for single size particles with a fractional volume of 5 %, computed for three
different particles radii: a = 8 µm (dotted line), a = 50 µm (dashed line), and
a = 200 µm (solid line). The smallest particles (a = 8 µm) are Rayleigh scatterers
at all frequencies in the 0.0–3.0 THz band, and the wave extinction through the
particles is dominated by absorption. Thus, the spectral features of the extinction
prominently show the peaks present in material absorption spectra (see Fig. 5.2).
The largest particles (a = 200 µm) are in the Mie regime. These particles have
strong classical scattering resonances, and thus the features visible in the THz spectra
are due to scattering, not the material absorption. The mid-size particles transition
from Rayleigh into the Mie regime as a function of frequency, hence the lowest
lactose peak (0.54 THz) is evident in the extinction curve, while the higher peaks are
obscured by scattering losses.

Note the example above considered dielectric spheres in a background of air. A
more common mixture in THz transmission measurements is pellets formed from
pressing a sample material of interest under strong pressure to attempt to remove
residual air and form a homogeneous sample. However, small residual air gaps are
present in the mixture, and these can lead to scattering losses. The scattering losses
can be estimated by modeling the air gaps as scatterers in a background of the
dielectric material [34].

5.4.2.1 Dense Media Calculations

In dense media, particles are close together giving rise to correlated scattering and
the independent scattering approximation is not valid. In this situation, the scattering
calculation needs to take into account the interaction between particles based on
the statistics of their positions. There are two general approaches to achieving this.
The first is to analytically compute the expectation operator to obtain an expression
for the mean field properties. The second approach is to numerically calculate the
field for a given ensemble of particles (taking into account correlated scattering) and
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Fig. 5.5 Left-hand plot THz wave extinction (loss) for a randomly distributed collection of spherical
lactose particles. The particles are a single size, and the loss is computed for three different radii:
a = 8 µm (dotted line), a = 50 µm (dashed-dot, and dashed lines) and a = 200 µm (solid
line). Plot shows frequency dependence of the loss computed under the independent scattering
assumption for a fractional volume of 5 %. The total extinction loss is shown in black, and is the
sum of the scattering loss (red) and absorption loss (blue). Right-hand plot extinction loss as a
function of fractional volume shown as predicted by the independent scattering assumption and
QCA, calculated at 1.0 THz for particles with a = 50 µm. Note the overprediction in scattering loss
under the independent scattering assumption, indicating the losses in the left-hand plot are higher
than expected. See text for discussion

then use Monte Carlo averaging to obtain the mean field statistics. The numerical
approach is discussed in the next section.

One method of obtaining an analytic solution is to use the Quasi-Crystalline
Approximation (QCA) [28]. In this formulation, the multi-particle conditional prob-
ability can be written using Bayes’ rule to generate a hierarchy of equations, and
under the QCA, the resulting equation is truncated at the bivariate level. Thus, for
QCA, the particle distribution statistics are represented with a pair distribution func-
tion, g(r), which is a bivariate statistic whose value is proportional to the probability
of finding any two particle separated by a distance of r . For statistically isotropic
media in which non-penetrable particles are randomly positioned, the pair distribu-
tion function is given by the Percus Yevick (PY) pair distribution function. Several
other types of particle distributions can be considered, including densely packed
particles with a known size distribution or particles that exhibit some attraction or
clustering behavior [35].

An approximate solution under QCA is obtained by representing the scattered
wave in terms of an effective (complex) wavenumber

Keff = √
εeffω/c. (5.40)

where the real part of Keff represents the coherent phase progression of the wave in the
random media, and the imaginary part represents the attenuation due to scattering and
absorption. This effective media model can be used in the equation for the exciting
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field coefficient, and terms with the effective wavenumber Keff balanced to satisfy a
generalized Lorentz-Lorenz law. Then the Ewald-Oseen extinction theorem is used
to balance the integral equation for waves traveling with the background wavenumber
k. Physically, this ensures that the medium generates a wave that extinguishes the
incident wave. This process yields a single scalar equation in the form of the Ewald-
Oseen extinction theorem,

Keff − k = −π in0

k2

∑

n

(T (M)
n X M

n + T (N )
n X (N )

N ) (2n + 1). (5.41)

In (5.41), X M
n and X N

n are unknown amplitudes that satisfy a system of simultaneous
equations resulting from the Lorentz-Lorenz law (see [28] for full detail). In general,
a closed form solution can only be obtained in the low-frequency limit (i.e., small
ka), which yields

K 2
eff = k2 + 3 fvk2 y

1 − fv y

⎧
⎨

⎩
1 + i

2

3

(ka)3 y

1 − fv y
×

⎡

⎣1 + 4πn0

∞∫

0

dr r2[g(r) − 1]
⎤

⎦

⎫
⎬

⎭
(5.42)

where fv is the fractional volume, and y is defined in (5.30). For Rayleigh par-
ticles described by the PY pair distribution (single size non-penetrable particles,
statistically isotropic random placement) this reduces to

K 2
eff = k2 + 3 fvk2 y

1 − fv y

{
1 + i

2

3
k3a3 y

(1 − fv)
4

(1 − fv y)(1 + 2 fv)2

}
. (5.43)

For larger values of ka, the solution to (5.41) can be determined numerically.
The QCA solution accounts for multiple scattering between the particles and hence

can predict correlated scattering phenomenon. However, the derivation assumes that
the wave moves between the particles in the background media (dielectric with
permittivity ε). For high concentrations of particles, a more accurate approach would
be to use the wavenumber of the effective media for the propagating wave - or replace
the wavenumber k with the effective wavenumber Keff . This approach is called the
QCA with coherent potential (QCA-CP) [28].

For dense media, the effective wavenumber, Keff , characterizes the coherent wave
propagation, and thus the imaginary part of 2Keff represents the amount of power
(per unit length) extinguished in the media due to scattering and absorption. This is
analogous to the extinction coefficient in (5.33), which was derived for sparse media
using the independent scattering assumption. The choice of which expressions to use
to estimate (κe or 2I m{Keff}) depends on particle density.

An example of dense media scattering is presented in the plot in the right-hand of
Fig. 5.2. The extinction loss is plotted as a function of fractional volume, fv, for lac-
tose spheres of radius a = 50 µm in a background of air. The extinction coefficient
κe computed with (5.29) is shown as a dash-dot line, and the quantity 2I m{Keff}
obtained from the QCA approximation using (5.41) is shown as a dashed line. Under
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both approximations, the scattering increases as the particle density increases. How-
ever, since κe is proportional to the particle density, it increases linearly with an
increase in the fractional volume of the particles (n0 = fv/v0) with v0 denoting the
volume of a single particle. Clearly this is non-physical, since in the limit of fv = 1.0
the material is homogenous, and the absence of particles means there should be no
scattering. In contrast, the imaginary part of the QCA effective wavenumber (which
accounts for absorption and scattering losses) is seen to initially increase as a function
of fv, agreeing at low densities with the independent scattering approximation, but
then peaks and begins to decrease as the fv increases further. Thus, for appreciable
particle densities, the independent scattering assumption overpredicts the amount of
scattering. Comparing the curves in the right-hand plot of Fig. 5.2 at 5 % fractional
volume, it can be seen the losses in the left-hand plot (under the independent scat-
tering assumption) are about 25 % higher than predicted with a dense media (QCA)
calculation (and thus the scattering is over-predicted).

5.4.3 Numerical Calculations and Monte Carlo Simulations

In 5.4.1, the T-matrix expressions were presented for a single particle, and explicit
expressions were provided for Mie scattering for spherical particles. The T-matrix
method can also be used for systems of particles with random positions. However, for
collections of particles, each particle is excited not only by the incident electromag-
netic field, but by the field scattered by all the other particles in the collection. This
can be represented mathematically by writing the exciting field for the lth particle as

ā(e,l) =
J∑

j=1, j �=l

σ(krl j ) T a(e, j) + eiki ·rl ainc (5.44)

where ainc is a vector of the incident field coefficients, σ(kr) is a 2Lmax × 2Lmax
matrix of terms accounting for a coordinate transformation, rl j = r j − rl is the
vector pointing from center of the lth particle to the center of the j th particle, and

T is the T-matrix for the particles, as given in (5.27) for spherical particle. The
physical interpretation of (5.44) is that the excitation for the lth particle in the system
is a combination of the incident wave and the waves scattered from all the other
( j = 1..J, j �= l) particles in the system. Once a(e,l) is determined, the scattered field
coefficients can be computed using (5.24) to compute the scattered field coefficients
and hence the scattered field.

The expression in (5.44) is a rigorously derived expression for the scattered field
that includes all orders of multiple scattering. However, the solution for the coef-
ficients depend on the exact position and nature (shape, orientation, etc.) of the
particles; they are thus difficult to solve exactly for most practical problems. For
some problems, an iterative numerical approach can be employed [36].
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Another option is to calculate the solution using a numerical approach based on
the discretization of Maxwell’s equations. For time-domain THz systems, a partic-
ularly appropriate method is the Finite Difference Time Domain (FDTD) approach,
because the broadband data is generated in a single simulation pass. The FDTD
method originally reported by Yee is based on a discrete approximation of the point
form of Maxwells equations [37]. This basic algorithm breaks the simulation space
into discrete points where the electric and magnetic fields are sampled in space and
time. Furthermore, FDTD allows computation of dielectric media which can contain
both volume scatterers and rough interfaces; the complexity of the material is lim-
ited only on the ability to capture the material characteristics in a discretely sampled
representation. FDTD has been used extensively for electromagnetic scattering cal-
culations, and has more recently applied to THz sensing [23]; see [22] for a complete
background.

The electromagnetic field calculated for a single ensemble of particles represents
the response for a single realization, but does not provide the mean field properties.
In the previous section, the mean (or coherent) field was obtained by computing an
analytical expectation operator. For numerical computations, a Monte Carlo approach
can be used to generate a number of realizations drawn from the same statistical
characterization, and then computing the mean field by coherently averaging over
a sufficiently large number of realizations. To separate the coherent and incoherent
components, the scattered field is averaged to give the coherent scattered field. The
coherent scattered field is calculated by

〈Es〉 = 1

Nr

Nr∑

q=1

E
q
s (5.45)

where q is the realization index with q = 1, 2, ..Nr realizations, and E
q
s is the scat-

tered field from the elemental volume of many scatterers (includes their coherent near
and intermediate range interactions). The incoherent field is the difference between
the total field and the coherent field Eq

s = E
q
s − 〈Es〉. Calculation of the scattering

coefficient κs from the incoherent scattered field E s can be expressed as

κs = 1

V

π∫

0

dθs sin(θs)

2π∫

0

dφs
R2

Nr

Nr∑

q=1

|Eq
s |2. (5.46)

Note that the Monte Carlo approach is a valid approach for computing the field
propagating through a random distribution of particles, as well as for computing the
field scattered from a rough surface interface.
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5.5 Conclusions

This chapter provided short introduction into eletromagnetic phenomenon observed
in THz applications. In particular, it described the reflection and scattering of THz
waves from flat or rough interfaces, and the scattering and absorption of THz waves
through materials with volume inhomogeneities (such as grains). Since the length
scale of many naturally occurring media are comparable to the THz wavelength,
some of the scattering effects can be quite pronounced, and can be visible in the
material spectra
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