
Chapter 11
Terahertz Spectroscopy: Ellipsometry and
Active Polarization Control of Terahertz Waves

Makoto Kuwata-Gonokami

Abstract The principles and experimental methods of terahertz (THz) wave ellip-
sometry are described. The procedure to determine diagonal and off-diagonal com-
ponents of the complex dielectric tensor for materials using THz time domain
spectroscopy in transmission and oblique reflection geometries are explained. The
measured optical activity in artificial chiral grating structures is also described as
applications of this technique.

11.1 Introduction

Terahertz (THz) time domain spectroscopy (TDS) provides phase- sensitive informa-
tion on electromagnetic responses and enables one to determine complex dielectric
functions of materials. It is natural to extend this technique to polarization-sensitive
measurements, to determine both the diagonal and off-diagonal components of the
complex dielectric tensor. It has strong potential for various applications including
magneto-optical measurements for non-contact Hall mobility measurements [1, 2],
detection of chiral molecules and sensing for biological applications [3, 4]. Recently,
with improved sensitivity of polarization rotation [5], quantum hall effects have been
clearly confirmed in the THz frequency region [6].

In this section, first, a method for THz time domain ellipsometry in transmis-
sion mode is described. Experimental results for the measurement of polarization
effects of artificial chiral structures are given. Second, THz-TDS for magneto-optical
effects measured in oblique reflection mode are given. Explicit expressions between
polarization parameters and dielectric tensors are formulated. As an application, the
results of active polarization control of THz waves are also demonstrated.
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Fig. 11.1 Schematics of experimental setup for polarization state measurements of a THz wave
with wire-grid polarizers

11.2 Transmission-Mode Time Domain Ellipsometry

11.2.1 Method of Polarization State Measurement with Wire-Grid
Polarizers

In THz-TDS, a nonlinear optical crystal or a detection antenna is used for THz-
wave detection. They are sensitive to the direction of polarization of a THz wave.
Therefore, a wire-grid polarizer (WGP) is usually placed in front of these devices,
in order to determine the polarization direction of a detected THz wave. Placing
another WGP in front of the WGP enables one to measure the polarization states of
a THz wave. Here, electro-optic (EO) sampling measurement with ZnTe crystal is
considered as shown in Fig. 11.1. WGP1 is placed in order to make the polarization
direction of detected THz wave oriented parallel to x-axis to maximize the sensitivity
of THz-wave detection.

The relation between the electric field vector incident on WGP2, Ẽ , and the electric
field vector incident on ZnTe crystal, F̃ , is described as

F̃ = [ 1 0 ]
[

cos θ − sinθ
sin θ cosθ

] [
1 0
0 0

] [
cos θ sinθ
− sinθ cos θ

]
Ẽ

= [
cos2θ sinθ cos θ

] [
Ẽx

Ẽy

]
, (11.1)

where θ is the angle between the y-axis and the direction of polarization for WGP2
as shown in Fig. 11.1. Therefore, each component of Ẽ is determined by performing
measurements with different values of θ1 and θ2. From the measured amplitude θ
from the measurement at θ1 and θ2, Ẽ is calculated as

[
Ẽx

Ẽy

]
=

[
cos2 θ1 sinθ1 cos θ1

cos2 θ2 sin θ2 cos θ2

]−1 [
F̃1

F̃2

]
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= 1

cosθ1 cos θ2sin(θ2 − θ1)

[
sin θ2 cos θ2 − sin θ1 cos θ1

− cos2 θ2 cos2 θ1 cos θ1

] [
F̃1

F̃2

]
. (11.2)

If we set θ1 = −π/4 and θ2 = π/4,

[
Ẽx

Ẽy

]
=

[
F̃1 − F̃2

F̃1 + 2F̃2

]
. (11.3)

However, when Ẽx is very small, it is difficult to measure Ẽx with high accuracy
from the difference between F̃1 and F̃2. In this case, it may be better to set θ1 = 0
and θ2 = π/4, and the resulting relations are described as :

[
Ẽx

Ẽy

]
=

[
F̃1

−F̃1 + 2F̃2

]
. (11.4)

In this case Ẽx is simply equal to F̃1, and that value can be obtained with high
accuracy.

Polarization azimuth rotation θ and ellipticity angle η are calculated from the
following relationships.

θ = tan−1

(
Re{Ẽ∗

x Ẽy}
|Ẽx |2 − |Ẽy |2

)
(11.5)

η = − sin−1

(
Im{Ẽ∗

x Ẽy}
|Ẽx |2 − |Ẽy |2

)
(11.6)

11.2.2 Calculation of Dielectric Tensor

The dielectric tensor of samples from polarization measurements can be obtained.
The relationship between the reference wave Ẽref , measured without a sample, and
that transmitted through a sample Ẽsample is described by the square matrix T̃ as,

Ẽsample = T̃ Ẽref . (11.7)

The experimental results with different reference waves Ẽ
1
ref and Ẽ

2
ref can be des-

cribed as; [
Ẽ

1
sample Ẽ

2
sample

]
= T̃

[
Ẽ

1
ref Ẽ

2
ref

]
(11.8)

Because Ẽ
1
sample, Ẽ

2
sample, Ẽ

1
ref , Ẽ

2
ref can be measured by using the method described

in the Sect. 11.2.1, matrix T̃ is determined from the following equation;
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T̃ =
[

Ẽ
1
sample Ẽ

2
sample

] [
Ẽ

1
ref Ẽ

2
ref

]−1
. (11.9)

In the case of a magnetized isotropic medium, the dielectric tensor is presented in
the following form:

ε̃ =
⎛
⎝ ε̃xx ε̃xy 0

−ε̃xy ε̃xx 0
0 0 ε̃zz

⎞
⎠ . (11.10)

When light propagates through such media in the z-direction, the eigen modes have
circular polarization (e± = 1

2 (1,±i)T ) and its eigen values of refractive index have
the following relationship to the complex permittivity,

ε0ñ2± = ε̃xx± i ε̃xy . (11.11)

In this case, matrix T̃ is described as follows,

T̃ =
[

t̃x t̃xy

−t̃xy t̃x

]
, (11.12)

and two measurements are not necessary to obtain matrix T̃ . If we set Ẽref =
(0, Ẽref), matrix T̃ is simply obtained with the following Eq. (11.7);

[
t̃xy

t̃x

]
= Ẽsample/Ẽref . (11.13)

The matrix T̃ can also be diagonalized with circular polarization eigenmodes as
follows;

T̃ =
[

t̃x t̃xy

−t̃xy t̃x

]
= [

e+ e−
] [

t̃+ 0
0 t̃−

] [
e+ e−

]−1
, (11.14)

where t̃+ and t̃− are transmittances for left and right circularly polarizations, respec-
tively, being related to t̃x and t̃xy ;

t̃± = t̃x ± i t̃xy . (11.15)

In the case of a plate sample in air, t̃± is described, taking account of the Fresnel
constants on the interfaces and phase change inside the sample, as follows

t̃± = Ẽ±
sample

Ẽ±
ref

= 2

ñ± + 1
· 2ñ±

ñ± + 1
· ñ± − 1

ñ± + 1
exp

(
iωL

c ñ±
)
/exp

(
iωL

c

)

= 4ñ

(ñ± + 1)2 exp
[

iωL
c (ñ± − 1)

]
. (11.16)
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Fig. 11.2 Schematic illustrations of experimental setup and sample

where ñ+ and ñ− are complex refractive indices of the sample for left and right
circularly polarizations, respectively, L is the thickness of the sample and ω is the
angular frequency of THz wave ñ± can be obtained by solving (11.13), (11.15),
(11.16) numerically. Each component of the dielectric tensor is obtained with (11.11):

ε̃xx = ñ2+ + ñ2−
2ε0

(11.17)

ε̃xy = ñ2+ − ñ2−
2iε0

. (11.18)

11.2.3 Example of Polarization Measurements

In this section, the procedure explained previously is employed to demonstrate the
polarization rotation angle and complex dielectric tensor using transmission-mode
measurements of an artificial planar periodic structure with chirality. Recent progress
on the design and fabrication of artificial subwavelength structures, such as metama-
terials, has revealed several novel functions for controlling light [7]. For example,
metal chiral structures have been proposed to show optical activity [8], and chirality-
dependent polarization-sensitive effects have been reported [9–15]. The development
of such artificial structures for THz wave control is important because polarimetry in
the THz region is hampered by a lack of good polarization devices in this frequency
range.

Figure 11.2 shows schematic illustrations of the experimental setup and sample.
Arrays of achiral (cross) and chiral (gammadion patterns) structures were fabricated
by depositing a thin gold film on to a resist layer placed upon a high-resistance Si sub-
strate and patterned by electron-beam lithography. The resulting samples, without
lift-off treatment, have two metal layers with complementary patterns. The grat-
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Fig. 11.3 Time domain THz waveforms of transmitted waves obtained in the cross-Nichol arrange-
ment (a), with WGP2 −45◦ (b) and +45◦ (c). The green curves show reference signals measured
without any sample. The red, blue, and black curves show the signals for right- and left- twisted
gammadion samples and cross-patterned samples, respectively. By Fourier transform, the corre-
sponding x- and y-elements of the electric field in the frequency domain are calculated and shown
in (d) and (e). In addition, absolute values of electric field are shown in (d). The relative delays
between the signals with and without a sample correspond to the propagation delay times of the
THz pulses during the propagation through the samples (From [16])

ings are arranged in a two-dimensional square periodic structure with a period of
100µm. The thicknesses of the gold film and the resist layer are 100 and 180 nm,
respectively. Because these structures have fourfold symmetry, around the normal to
the substrate, the samples are in-plane isotropic and the dielectric tensor is presented
by Eq. (11.10). It was experimentally confirmed that no birefringence was observed
at normal incidence. The THz wave, generated by optical rectification with a ZnTe
crystal, is focused onto the sample at normal incidence down to a diameter of about
1 mm.

The polarization state of a transmitted wave is determined by using the method
explained in the previous sections. The cross-Nicol method (with (11.4)) was used
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Fig. 11.4 Absolute values of diagonal (a) and off-diagonal (b) elements for the Jones matrix of
the sample. Spectra of rotation angle (c) and ellipticity (d). Effective complex dielectric tensor of
the sample for left- (blue) and right-twisted (red) gammadion samples and cross-patterned sample
(black). Green curves show the results of the Si substrate (e)–(h) (From [16])

to measure the Ẽx component with high sensitivity, and 45 ◦ polarizer method
(with (11.3)) to measure the Ẽ y component. Detailed information about the sample
fabrication and experimental setup is described in [16]. Waveforms of the elec-
tric fields obtained with the cross-Nicol configuration are shown in Fig. 11.3a and
those obtained with the angle of WGP2 at −45 and +45 ◦ with x-axis are shown in
Figs. 11.3b and c, respectively. The green curves show the signals without sample
indicating the waveform of the incident wave, Ẽref . In Fig. 11.3a, the chiral sam-
ples show pronounced orthogonal components of the electric fields and the sign of
the electric fields are opposite for right- and left-twisted gammadion samples. This
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shows that polarization rotation occurs for chiral patterns, and the rotation direction
is reverted depending on the chirality of the unit cell pattern. The frequency-domain
spectra of the x-component amplitude shown in Fig. 11.3d are almost the same for
right- and left- twisted patterns, and much larger than that of the cross pattern. The
slight difference observed between the spectra of left- and right-twisted patterns is
mainly due to the limitation of reproducibility in the pattern fabrication.

Matrix T̃ (ω) is obtained by using (11.13). Figure 11.4a and b shows the obtained
values of |t̃x | and |t̃xy |. The errors indicate the standard deviations for the statistical
fluctuation after repeating the measurements eight times. The polarization azimuth
rotation and ellipticity angle spectra for the incident linear polarization are calculated
using (11.5) and (11.6). Figure 11.4c and d shows the corresponding spectra obtained.
Rotations of about 1.5 ◦ are observed at 0.4 and 1.2 THz and about 1 ◦ at 0.8 THz.
From the obtained T̃ (ω) matrix for the sample, the complex effective dielectric tensor
of the sample as a whole can aslo be determined, including the Si substrate, following
the procedure explained above. Figure 11.4e–h shows the spectra of the calculated
elements of effective dielectric tensor. The mechanism of polarization rotation of the
wave in such a structure will be explained in Sect. 11.3.

11.3 Reflection Mode Time Domain Magneto-Optical
Ellipsometry

Reflection mode measurements enable one to investigate the optical properties of
materials that are opaque in the frequency region of interest, by analyzing the
polarization azimuth rotation φ and ellipticity angle η of the reflected light wave.
In the case of Magneto-optical Kerr effect (MOKE) measurements, MOKE data are
usually analyzed using the small magneto-optical response approximation (SMRA).
With SMRA, one assumes that: (i) the off-diagonal component of the dielectric tensor,
ε̃xy , is small compared to the diagonal component, ε̃xx (i.e., |Q| � 1, where
Q = i ε̃xy/ε̃xx ); and (ii) the change of the diagonal component induced by the
magnetic field is negligible. Since in this approximation φ and η are proportional
to ε̃xy , one can obtain the real and imaginary part of ε̃xy directly from φ and η,
using the complex refractive index measured with no magnetic field. However, if the
medium has a large magneto-optical response, additional measurements are needed
to determine the components of the dielectric tensor. This can be done, for example,
using a conventional ellipsometry techniques that involve measurements of three
polarization-dependent reflection coefficients [17–20]. In the THz frequency region,
there are even more opportunities. Specifically, THz measurements are performed
in the time domain, so that information on the temporal evolution of the electric
field on the THz wave can be obtained. This information allows one to obtain both
the amplitude and phase of the THz wave [21, 22], and can be used to obtain the
diagonal and off-diagonal components of the dielectric tensor, from experimental
data acquired with a conventional MOKE scheme without using SMRA.
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Fig. 11.5 Illustration of the
reflection problem in the plane
of incidence, for the Cartesian
coordinate systems {xyz} and
{xy′z′} [23]

In this part, a method is introduced that enables one to determine the real and imag-
inary parts of ε̃xx and ε̃xy from complex reflection coefficients that are obtained in
MOKE measurements with oblique incidence [23]. Of course, the method described
here can be employed to other materials with off-diagonal components of the dielec-
tric tensor, e.g., chiral media.

11.3.1 MOKE Signal at Oblique Incidence

We assume that the interface coincides with plane z = 0 and a permanent magnetic
field H is along the −z direction, while the wave vector of the incident light wave
is at angle θ0 with the interface normal, as shown in Fig. 11.5. For this magneto-
optical experiment, this is often referred to as the polar Kerr geometry. For this
reason, the measured spectrum will be referred to here as the “magneto-optical Kerr
effect spectrum”. It is necessary to note that the Voigt or Cotton-Mouton effect also
contributes to the measured signal, since the incidence angle is finite. In the Cartesian
coordinate system {xyz}, the dielectric tensor of the magnetized isotropic medium
is presented in the same as (11.10).

In order to obtain the reflection coefficients and the polarization state of the
reflected waves, it is convenient to introduce a Cartesian system {xy′z′} with the
z′ axis along the wave vector of the transmitted wave. In this Cartesian coordinate
system, the dielectric tensor of the magnetized medium can be presented in the fol-
lowing form:

ε̃ =
⎛
⎝ ε̃xx ε̃xy cos θ −ε̃xy sin θ̃

−ε̃xy cos θ̃ ε̃xx + �̃ sin2 θ̃ �̃ sin θ̃ cos θ̃

ε̃xy sin θ̃ �̃ sin θ̃ cos θ̃ ε̃zz + �̃ cos2 θ̃

⎞
⎠ (11.19)
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where �̃ ≡ ε̃zz − ε̃xx and θ̃ is the refraction angle in medium 1. The evolution
equation for the amplitude of the transmitted light wave is described as follows [24]:

[
ñ2

(
δi j − δi z′, δ j z′

) − ε̃i j
] = 0, (11.20)

where ñ is the complex refractive index of the sample and the subscripts indicate
Cartesian axes x, y′ and z′. Equation (11.20) has nontrivial solutions when

(
ε̃zz cos2 θ̃ + εxx sin2 θ̃

)
η̃4 −

[
ε̃xx ε̃zz

(
1 + cos2 θ̃

) + (
ε̃2

xx + ε̃2
xy

)
sin2 θ̃

]
η̃2

+ ε̃zz
(
ε̃2

xx + ε̃2
xy

) = 0. (11.21)

This equation, along with the Snell’s law (i.e., η̃ sin θ̃ = n0 sin θ0 where θ̃ is the
complex refraction angle and n0 is the refractive index of free space) allows one to
arrive at two eigenvalues of the refractive index η̃ and the relevant refraction angle θ̃.
Correspondingly, the transmitted light wave can be presented in the following form:

ẼT = ẼAe−i( ω
c )ñ Az′ + ẼBe−i( ω

c )ñBz′
(11.22)

Here, subscripts A and B label the modes, i.e., the solutions of (11.21). The magneto-
optical response of the medium also results in a nonzero longitudinal component of
the transmitted light wave, i.e., ẼA,B , have nonzero projection on the propagation
axis z′. Therefore, the amplitudes of both p and z′ components of the transmitted
wave are obtained in terms of its s component as Ẽ pk = ξ̃k Ẽsk and Ẽz′k = ζ̃k Ẽsk .
Subscript k labels eigenmodes A and B, while coefficients ξ̃k and ζ̃k can be obtained
from (11.19) and (11.20), respectively as follows:

ξ̃k =
ñ2 − ε̃xx − ε̃2

xy sin2 θ̃k

ε̃xx +�̃ cos2 θ̃k

ε̃xycos2θ̃k + �̃ sin2 θ̃k cos θ̃k

ε̃xx +�̃ cos2 θ̃k

(11.23)

ζ̃k = ε̃2
xy�̃(ñ2

k − ε̃xx )

ε̃zz ε̃xy
sin θ̃k (11.24)

The polarization effects will be restricted to the p-polarized incident light wave;
however, the magneto-optical response ensures the existence of the both s- and
p-polarized components in the reflected and transmitted waves (see Fig. 11.5). In
the Cartesian system {xyz}, in which the vacuum-medium interface coincides with
the plane z = 0, the electric (Ẽ) and magnetic (H̃) fields of the incident (subscript
I) and reflected (subscript R) waves can be presented in the following form:

ẼI = (0, Ẽ I p cos θ0, Ẽ I p sin θ0)

H̃I = n0

c
(Ẽ I p, 0, 0) (11.25)
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ẼR = (ẼRS, −ẼRp cos θ0, ẼRp sin θ0)

H̃R = n0

c
(−ẼRp, −ẼRS cos θ0, ẼRS sin θ0) (11.26)

As shown in (11.22), the transmitted wave consists of two eigenmodes; the complex
amplitude in the Cartesian system {xyz} and relevant electric and magnetic fields are
expressed by the following:

Ẽk = (Ẽsk, Ẽ pk cos θ̃k − Ẽzk sin θk, Ẽ pk sin θ̃k + Ẽzk cos θ̃k)

H̃k = nk

c
(−Ẽ pk, Ẽsk cos θ̃k, −Ẽsk sin θk) (11.27)

where k = A, B. The continuity of the tangential components of the electric and
magnetic field at z = 0 gives

ẼRS = Ẽs A + Ẽs B

Ẽ I p cos θ0 − ẼRp cos θ0 = χ̃A Ẽs A + χ̃B Ẽs B

−n0 Ẽ I p − n0 ẼRp = −ñ A ξ̃A Ẽs A − ñB ξ̃B Ẽs B

−n0 ẼRS cos θ0 = ñ A Ẽs A cos θ̃A + ñB Ẽs A cos θ̃A (11.28)

where
χ̃k = ξ̃k cos θ̃k − ζ̃k sin θ̃k . (11.29)

The Solution for (11.28) gives the following expressions for the amplitude reflection
coefficients:

r̃ pp = ẼRp

Ẽ I p
= (ñ A ξ̃A − ñ0χ̃A/ cos θ0)τB − (ñB ξ̃B − ñ0χ̃B/ cos θ0)τA

(ñ A ξ̃A + ñ0χ̃A/ cos θ0)τB − (ñB ξ̃B + ñ0χ̃B/ cos θ0)τA
(11.30)

r̃sp = ẼRS

Ẽ I p
= 2n0(ñB cos θ̃B − ñ A cos θ̃A)

(ñ A ξ̃A + ñ0χ̃A/ cos θ0)τB − (ñB ξ̃B + ñ0χ̃B/ cos θ0)τA
(11.31)

where
τk = ñk cos θ̃k + n0 cos θ0. (11.32)

It should be noted here that (11.30) and (11.31) are valid for an oblique angle of
incidence and any magnitude of the magneto-optical response. Since r̃ pp and r̃sp are
functions of three complex variables; ε̃xx , ε̃xy , ε̃zz we can calculate ε̃xx and ε̃xy from
the obtained complex reflection coefficients, as long as ε̃zz is known. For example,
ε̃zz can be obtained with reflection measurement at normal incidence because the
reflection coefficients at normal incidence, r̃n is described as r̃n = (1 − √

ε̃zz)/(1 +√
ε̃zz).



284 M. Kuwata-Gonokami

By using conventional formulas for the polarization azimuthangle φ and ellipticity
angle η in terms of the Cartesian components of the electric field E [25];

φ = 1

2
tan−1

(
2Re{Ẽx Ẽ∗

y}
|Ẽx |2 − |Ẽy |2

)
,

η = 1

2
sin−1

(
2Im{Ẽx Ẽ∗

y}
|Ẽx |2 + |Ẽy |2

)
, (11.33)

One can now readily obtain φ and η, in terms of r̃ pp and r̃sp, with (11.30) and (11.31):

φ = −1

2
arg

(
r̃ pp − i r̃sp

r̃ pp + i r̃sp

)

η = tan−1
( |r̃ pp − i r̃sp| − |r̃ pp + i r̃sp|

|r̃ pp − i r̃sp| + |r̃ pp + i r̃sp|
)

(11.34)

The procedure based on (11.30), (11.31), and (11.34) will be outlined for the evalu-
ation of ε̃xx and ε̃xy from ellipsometric experiments below.

At the end of this section, the obtained Eqs. (11.30) and (11.31) are compared with
the result of SMRA. The difference between mode A and B is reduced to the difference
of the sign of magneto-optical response; therefore, + and − subscripts are used
instead of A and B. Substituting the SMRA condition, i.e.,|Q| ≡ |i ε̃xy |/|ε̃xx | � 1
and �̃ ≈ 0 in Eq. (11.21), the following is obtained:

ñk = ñ

(
1 ± i α̃Q̃

2

)
, (11.35)

sin θ̃k = n0 sin θ0

ñ

(
1 ± i α̃Q̃

2

)
, (11.36)

where α̃ =
√

n2
0sin2θ0/ε̃zz − 1. ñ = √

ε̃zz is the index of refraction of medium 1

without a magnetic field. With these variables, the quantities ξ̃k, ζ̃k and χ̃k can be
reduced to the following:

ξ̃k = ∓α̃ − i Q̃ sin2 θ̃ + i(α̃2 Q̃/2) tan2 θ̃

cos θ̃
, (11.37)

ζ̃k = i Q̃ sin θ̃, (11.38)

χ̃k = ∓α̃ − 2i Q̃ sin2 θ̃. (11.39)

Substituting these into (11.30) and (11.31), one obtains
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r̃ pp = ñ cos θ0 − ñ cos θ0

ñ cos θ0 + ñ cos θ0
(11.40)

r̃sp = i Q̃n0ñ cos θ0

(ñ cos θ̃ + n0 cos θ0)(ñ cos θ + n0 cos θ0) cos θ̃
(11.41)

These are the same as (2.31) in [26].

11.3.2 Analysis Based on Intensity Measurements

Before considering in detail the time domain THz ellipsometry, a conventional
MOKE technique is revisited for optical frequencies based on light intensity
measurements. With MOKE intensity-based measurement techniques, the polariza-
tion azimuth angle φ and ellipticity angle η of the reflected electromagnetic wave
under the magnetic field are obtained [27]. Since φ and η depend only on the ratio
r̃sp/r̃ pp, see (11.34), both the real and imaginary parts of r̃sp/r̃ pp can be determined
from the MOKE experiment.

When the SMRA conditions are fulfilled (i.e., when the magneto-optical response
is small |Q| � 1, and dependence of ε̃xx on the magnetic field is negligible), φ and
η are less than a few degrees. In such a case, (11.30), (11.31) and (11.34) are reduced
to the following SMRA equation [26]:

(
φ
η

)
=

(
Re
Im

)
n0ε̃xy

(ε̃xx − n2
0)

√
ε̃xx

cos θ0

cos(θ0 + θ̃)
(11.42)

In (11.42), ε̃xx and ε̃xy are separated; therefore, if ε̃xx is measured independently
(e.g. from the reflectivity at zero magnetic field), the real and imaginary part of ε̃xy

can be determined directly from the measured values of φ and η.
When the magneto-optical response is large, SMRA cannot be applicable. In

such case, the diagonal component of the dielectric tensor is not negligible and one
needs to perform additional measurements to determine ε̃xx and ε̃xy , even in the
case of normal incidence. In particular, this can be done using the conventional
ellipsometry technique [17–20]. In this technique, R̃pp = r̃ pp/r̃ss , R̃sp = r̃sp/r̃ss ,
and R̃ps = r̃ ps/r̃ss can be measured by rotating the analyzer with a finite angular
frequency [18], while ε̃xx , ε̃xy , and ε̃zz are obtained by fitting the measured reflection
coefficients [19] using exact equations [20].

11.3.3 Analysis Based on the Time Domain THz Ellipsometry

In this section, we explain a method to determine ε̃xx and ε̃xy from experimentally
obtained r̃ pp and r̃sp values, when ε̃zz is obtained from independent measurements.
The method is based on time domain THz spectroscopy one; more specifically as
“time-domain THz ellipsometry”. The THz spectroscopy technique enables us to

http://dx.doi.org/10.1007/978-3-642-29564-5_2
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reveal the temporal evolution of the THz electric field [21, 22] and to obtain the phase
and amplitude of the reflected THz wave, and the complex reflection coefficient. This
technique gives both the real and imaginary parts of r̃ pp/r̃ pp and r̃sp/r̃ p, where r̃ p

is a reflection coefficient that is determined from a given ε̃zz [28]. As described
below, this procedure allows one to arrive at real and imaginary parts of r̃ pp and r̃sp,
therefore, to obtain φ and η, see (11.34).

The case where the incident wave Ẽin has p-polarization is considered:

Ẽin = Ẽinep (11.43)

where es,p are eigenvectors for s- and p- polarization. The refracted wave ẼB
r in the

case with an external magnetic field, is;

ẼB
r = Ẽ B

r,pep + Ẽ B
r,ses = (r̃ B

ppep + r̃ B
spes)Ẽin . (11.44)

The refracted wave Ẽ0
r , in the case without external magnetic field, is;

Ẽ0
r = Ẽ0

r,pep = r̃ p Ẽinep. (11.45)

The detected THz electric fields after a polarizer, with angle to p-polarization is ϕ,
are described as follows;

Ẽ B,ϕ
r = (r̃ pp cos ϕ + r̃sp sin (ϕ))Ẽin f (ϕ) (11.46)

Ẽ0,ϕ
r = (r̃ p cos ϕẼin f (ϕ) (11.47)

where f (ϕ) is detection efficiency that depends on the polarization of THz wave.
The ratio ε̃B,ϕ ≡ Ẽ B,ϕ

r /Ẽ B,0
r is measured for two different polarizer angles ϕ1

and ϕ2;

ε̃B,ϕ,i = r̃ pp cos ϕ j + r̃sp sin ϕ j

r̃ p cos ϕ j
( j = 1, 2). (11.48)

Here, r̃ pp and r̃sp can be calculated from (11.48) as follows;

r̃ pp = ε̃B,ϕ1 tan ϕ2 − ε̃B,ϕ2 tan ϕ1

tan ϕ2 − tan ϕ1
r̃ p (11.49)

r̃sp = ε̃B,ϕ1 − ε̃B,ϕ2

tan ϕ1 − tan ϕ2
r̃ p. (11.50)

In summary, r̃ pp and r̃sp can be obtained by measuring complex THz electric fields
at two different polarizer angles with and without external magnetic fields. If we set
ϕ1 = π/4 and ϕ2 = −π/4, (11.49) and (11.50) are simplified as follows;
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r̃ pp = ε̃B,π/4 + ε̃B,−π/4

2
r̃ p (11.51)

r̃sp = ε̃B,π/4 − ε̃B,−π/4

2
r̃ p (11.52)

The next step includes rewriting (11.30) and (11.31) to obtain ε̃xx and ε̃xy as
functions of r̃ pp and r̃sp;

ε̃xx = ε̃xx (r̃ pp, r̃sp, ε̃zz).

ε̃xy = ε̃xy(r̃ pp, r̃sp, ε̃zz). (11.53)

Following these nonlinear simultaneous equations, ε̃xx and ε̃xy are calculated from
the measured r̃ pp and r̃sp and the ε̃zz given by using numerical calculations, such as
the Newton-Raphson method [29].

The procedure to obtain ε̃xx and ε̃xy is summarized in Fig. 11.6. The numbers in
Fig. 11.6 correspond to the following numbers.

1. Measure the incident THz waves, Ein(t), and the reflected THz wave, Eout(t),
without external magnetic field.

2. Calculate r̃ p = F[Eout(t)]/F[Ein(t)], where F[. . .] corresponds to a Fourier
transformation.

3. Measure the reflected waves with and without external magnetic field, Eπ/4
out,B(t)

and E−π/4
out (t), with the wire-grid polarizer ϕ = π/4.

4. Measure the reflected THz waves with and without external magnetic field,
E−π/4

out,B (t) and E−π/4
out (t), with the wire-grid polarizer ϕ = −π/4.

5. Calculate the ratios F[E±π/4
out,B (t)]/F[E±π/4

out,B (t)]. These correspond to ε̃B,ϕi in
(11.48).

6. Calculate r̃ pp and r̃sp using (11.51) and (11.52). φ and η can be obtained from
(11.34).

7. Obtain ε̃zz from r̃ p with numerical calculation.
8. Obtain ε̃xx and ε̃xy from r̃ pp, r̃sp; ε̃zz with numerical calculations.

11.3.4 Analysis Example

In this section, the procedure explained above can be employed to obtain the complex
dielectric tensor using the results of the THz MOKE measurements for n-type InAs.

The first step is to measure the complex reflectivity coefficient r̃ p in the absence of
the magnetic field. A numerical method for the misplacement phase error correction
is effective for THz time domain reflection-mode spectroscopy [30, 31]. Since the
crystal symmetry does not permit any current parallel to the magnetic field, it is
natural to assume that the field along z axis (see Fig. 11.1) does not change the
longitudinal component of the dielectric tensor, i.e., ε̃zz(H) = ε̃zz(H = 0). Within
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Fig. 11.6 Schematic illustration of the calculation procedure

this approximation, ε̃zz can be calculated from r̃ p [21, 22]. The measured THz spectra
of r̃ p and ε̃zz are shown in Fig. 11.7. Second, by using the experimental procedure
described above with a 45◦ angle of incidence, r̃ pp/r̃ p and r̃sp/r̃ p are measured,
which allows us to obtain r̃ pp and r̃sp, as shown in Fig. 11.4.

From the above complex reflection coefficients r̃ pp and r̃sp, the polarization plane
azimuth angle φ and ellipticity angle η of the reflected wave (i.e., MOKE signal) can
be obtained, as shown in Fig. 11.9 [28]. In this system, the dielectric response in the
THz frequency region originates from the intraband motion of conduction electrons.
Therefore, one can use the Drude model to describe the THz response. In the Drude
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Fig. 11.7 The spectra of a r̃ p and b ε̃zz . ε̃zz is calculated from measured value of r̃ p [23]

model framework, the components of the dielectric tensor in the presence of the
magnetic field are as follows:

ε̃xx = εb

[
1 − ω2

p(ω
2 + iω�)

(ω2 + iω�)2 − ω2ω2
c

]
,

ε̃xy = iω2
pεbωωc

(ω2 + iω�)2 − ω2ω2
c
,

ε̃zz = εb

[
1 − ω2

p

ω2 + iω�

]
, (11.54)

where εb is the background dielectric constant, ωp = √
Ne2/εbm∗ is the plasma

frequency, N and m∗ are the carrier density and effective mass, � is the damping
constant, and ωc = e|H |/m∗c is the cyclotron frequency (Fig. 11.8). Solid lines in
Fig. 11.9 represent this Drude model fitting, which are obtained using (11.30), (11.31)
and (11.34) at ωp = 1.8 THz (the corresponding carrier density is 2.1 × 1016 cm−3),
Γ = 0.75 THz, ωc = 0.46 THz, εb = 16.3 and m∗ = 0.026me. One can observe a
pronounced resonance feature in the vicinity of the plasma frequency. This effect is
often referred to as the magnetoplasma resonance [32].

By using the measured complex reflection coefficients r̃ pp, r̃sp, and ε̃zz , obtained
in the first step, one can reconstruct the diagonal and off-diagonal component of the
dielectric tensor by inversely solving (11.30) and (11.31). Here, the Newton-Raphson
method for this procedure was employed [29].

Figure 11.10 shows the spectra of the obtained complex dielectric tensor. For
comparison, the complex dielectric tensor calculated with the Drude model is also
shown; the parameters of which are obtained above. One can observe from Fig. 11.10
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Fig. 11.8 Spectra of (a) Re{r̃ pp}, (b) Im{r̃sp}, (c) Re{r̃sp}, and (d) Im{r̃sp}obtained from measured
r̃ pp/r̃ p , r̃sp/r̃ p , and r̃ p [23]

that ε̃xx and ε̃xy , directly calculated from the complex reflection coefficients and do
not rely on the particular mechanism of the MOKE, correspond to the ones calculated
using the Drude model with parameters obtained from the measured MOKE signal.
A slightly bigger (in comparison with other components) discrepancy between the
calculated Im{ε̃xy} and its MOKE fitting is due to the smallness of the magnitude of
Im{ε̃xy}.

Finally, the conventional analysis based on SMRA are compared with the results
obtained above. Figure 11.11 shows the frequency dependence of the off-diagonal
component of the dielectric tensor, ε̃xy , obtained from the measured φ and ε̃zz by
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Fig. 11.9 The measured
spectra of φ (circles) and
η (dots) calculated from
measured and r̃ pp/r̃ p and
r̃sp/r̃ p . Solid curves show the
results of Drude model fitting
[23]
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using SMRA (i.e., assuming that and |Q| � 1 and ε̃xx ≈ ε̃zz) and by using the refined
method. One can observe from Fig. 11.11 that the obtained off-diagonal component
of the dielectric tensor, ε̃ex

xy , shows better correspondence with the Drude fitting of
measured MOKE signals than ε̃xy , which was calculated in the SMRA framework.
Results of the THz experiment presented here are apparently beyond the range of
applicability of SMRA (|Q| ≈ 0.5 and |φ + iη| ≈ 0−1) and require a more rigorous
treatment.

Figure 11.12a and b shows the spectra for the polarization rotation φ and ellipticity
angle η, respectively, calculated from the measured off-diagonal component of the
dielectric tensor ε̃ex

xy using SMRA, calculated from the exact formulae developed
above, and measured by the experiment. The correspondence of the measured values
and those calculated using the exact expression shows the correctness of the analysis.
One can observe from Fig. 11.11 that SMRA results in a nonnegligible deviation in
the polarization rotation and ellipticity angle from those measured, particularly in
the vicinity of the plasma resonance of 1.8 THz.

In order to describe the difference between the refined method and SMRA, a value
is introduced, δ = |ε̃xy − ε̃SMRA

xy |/|ε̃xy |; this is a quantitative measure of the SMRA
imposed error. Note that here the dielectric tensor is used to calculate the Drude
model with parameters obtained from the MOKE signal fits described previously.
From this tensor, one can calculate the MOKE signal φ + iη, and calculate ε̃SMRA

xy
from φ + iη using SMRA. Figure 11.13a shows the frequency dependence of δ and
|Q| = |ε̃xy/ε̃xx | in the frequency range from 0.5 to 2.5 THz. In Fig. 11.13b, δ is
plotted versus φ+ iη, using frequency as a parameter, where the dotted line and bold
line correspond to the frequency regions above and below ωp.

One can observe that with ω > ωp, δ increases monotonically as |φ+iη| increases.
With ω < ωp, δ does not reduce monotonically as is reduced. From Fig. 11.13a and
b it can be noticed that the small MOKE signal does not always correspond to a small
ε̃xy(i.e., |Q| � 1). In other words, SMRA may fail even when |φ + iη| is relatively
small. Note that in metals, for which the magneto-optical response is conventionally
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Fig. 11.10 Frequency dependence of (a) Re{ε̃xx }, (b) Im{ε̃xx }, (c) Re{ε̃xy}, and (d) Im{ε̃xy}
obtained from measured spectra of r̃ pp, r̃sp , and r̃ p(dots) and calculated spectra from Drude model
with parameters obtained by fitting of MOKE signals (lines) [23]

studied by using the MOKE technique, |Q| is of the order of 10−2, and SMRA is
usually valid. However, a more careful analysis is necessary when the frequency of
the incident wave is resonant to the intrinsic longitudinal electromagnetic modes of
the medium, such as plasmons, optical phonons, longitudinal excitons, etc.
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Fig. 11.11 Off-diagonal component of the dielectric tensor obtained from rigorous calculations
with our method (circles), SMRA (solid line), and Drude model fitting (bold line) with MOKE [23]
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Fig. 11.12 Polarization azimuth (a) and ellipticity angle (b) calculated from the experimentally
determined dielectric tensor using SMRA (dotted lines), calculated using exact formulas (thin solid
lines), and measured in the experiment (bold broken lines) [23]

11.4 Active Polarization Control of Terahertz Wave

In the optical region, photoelastic modulators are commonly used for highly sensitive
polarization measurements [27]. Such polarization modulation devices are required
to develop THz polarimetry. If optical activity is induced by an external stimulus,
such as photoexcitation in an artificial structure that was introduced in the Sect. 11.2,
the polarization state of the THz wave can be modulated. In this section, the optical



294 M. Kuwata-Gonokami

0.25

0.20

0.15

0.10

0.05

0.00

δ

0.250.200.150.100.05

|φ+ιη|

ω = ωp

ω < ωp

ω > ωp

0.6

0.5

0.4

0.3

0.2

0.1

0.0

|Q
|=

|i ε
xy

/ ε
xx

|

2.52.01.51.00.5

Frequency(THz)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

δ=
|ε

xy -εxy S
M

R
A

|/|ε
xy |

ωp/2π

(b)(a)

ω < ωp
ω > ωp

Fig. 11.13 SMRA versus exact analysis [23]. a Frequency dependence of the magneto-optical
constant Q and the error δ. b The relation between δ and the magnitude of MOKE signal

activity in the THz region induced by photoexcitation on silicon is discussed with
a subwavelength chiral-patterned metal mask [31]. Two-dimensional arrays of gold
chiral masks are fabricated on a silicon substrate, which is an achiral medium. In
contrast to the case of visible light waves [9–11, 15], for THz waves gold-patterned
films are too thin to induce three-dimensional effects. No significant polarization
effect was observed for single-layered metal chiral grating samples, as previously
reported [16]. However, significant THz optical activity was observed, illuminating a
single-layered chiral grating patterned on silicon samples. The metal chiral gratings
and photogenerated carrier distribution form a conducting three-dimensional chiral
structure.

Figure 11.14a shows optical microscopic images of the samples. Arrays of achiral
(cross) and chiral (gammadion) patterns are fabricated with electron-beam lithogra-
phy and consist of 100 nm thick gold film on a high resistance Si substrate. A thin
Cr film of 5 nm thickness exists between the gold film and the substrate to improve
adhesion. The structures are arranged in a two-dimensional square lattice with a
period of 100µm.

Figure 11.14b shows a schematic description of the experimental setup of THz
wave polarization measurements. A regenerative amplified Ti:sapphire laser is used
as a light source. It is divided into three beams and is used for the generation and
detection of THz radiation and photoexcitation of the sample. The optical rectifi-
cation and free-space electro-optic sampling with ZnTe crystals were employed for
THz generation and detection, respectively. To detect the polarization state of THz
radiation, the time domain waveforms were measured with wire-grid polarizers, as
described in the Sect. 11.2 [33].

Both the pump beam and THz radiation are incoming on the sample surface at
normal incidence, and their diameters are approximately 3 and 2 mm, respectively.
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Fig. 11.14 a Optical microscopic images of the samples. b illustration of excitation. Pump beam
and THz wave normally incident on the sample. The polarization azimuth rotation angle θ of the
transmitted THz wave is measured. c Illustration of complimentary double-layered structure, created
by the photoexcitation of carriers in semiconductor substrate (From [33])

The directions of the pump beam and THz pulse are horizontally and vertically
polarized, respectively. The THz pulse arrives at the sample at a delay τ = 70 ps
after the photoexcitation. Since the lifetime of photocarriers is much longer than the
duration of the THz pulse, the response of the carrier can be considered to be in a
quasi-steady-state regime.

Figure 11.15 shows the measured transmission spectra and polarization-rotation
spectra of chiral and achiral structures. One can observe that an increase in the
pump power results in the suppression of the transmittance. The polarization-rotation
spectra are shown in Fig 11.15b. The polarization rotation without photoexcitation is
negligibly small. However, polarization rotation is observed at around 1 THz, when
the chiral gammadion-patterned samples are photoexcited, and the sign of polariza-
tion rotation depends on the chirality of the patterns. The magnitude of the polar-
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Fig. 11.15 Experimental results of transmission and polarization-rotation spectra. a Transmission
spectra and b polarization-rotation spectra at different photoexcitation powers. Top, middle and
bottom figures are the results of the samples with cross, right-twisted, and left-twisted metal patterns,
respectively (From [23])

ization rotation increases with pump power. One can observe, from Fig. 11.15b,
that there is no polarization effect in the achiral cross-patterned sample. This
indicates that the observed polarization effect originates from the structure chirality.
The polarization rotation effects was not found to depend on the incident polarization
direction.

The mechanism of the observed polarization effect can be understood by com-
parison with the enhancement of optical activity in complementary double-layered
chiral structures whose experimental data are shown in Fig. 11.4. In that case, the
coincidence of the resonant frequency of the complementary double layers, because
of Babinet’s principle, and the local enhanced electric fields near the edges of two
layers at close lateral positions contributed to realize a large optical activity [16]. In
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Fig. 11.16 Results of numerical calculation of transmission and polarization-rotation spectra.
Numerical calculation results of a transmission spectra and b polarization-rotation spectra of the
left-twisted gammadion structure at different photoexcitation levels, identified by ωp (From [23])

the case illustrated in Fig. 11.14, the photoexcitation generates a chiral distribution of
photocarriers at the surface and inside the semiconductor substrate. The gold metal
mask and photocarriers form a double-layered complementary metallic grating, and
optical activity results. The present technique of active THz polarization control is
based on the formation of a three-dimensional chiral morphology of semiconducting
material system.

To examine the validity of the observed phenomena, numerical calculations
of transmission spectra and polarization-rotation spectra were performed with the
rigorous coupled-wave analysis method. The dielectric response function ε(z,ω)

for the photoexcited region, based on the Drude model, was introduced taking into
account the carrier density attenuation along the z direction as follows,

ε(z,ω) = εSi + �ε(ω)exp(−z/d), (11.55)

�ε(ω) = ω2
p

ω (ω − iγ)
(11.56)

where εSi is the dielectric constant of silicon without photoexcitation, the attenuation
length d = 9.8μm is the penetration depth of the pump beam [34]. The damping
constant of the Drude model is assumed to be γ/2π = 0.5 THz. The excitation level
is expressed by ωp in (11.56); larger ωp indicates stronger excitation because ωp is
proportional to the square root of the photoexcited carrier density. The results of the
calculation are shown in Fig. 11.16. The suppression of the transmission spectra and
the enhancement of optical activity with photoexcitation are well reproduced.

In conventional schemes, carrier lifetime limits the switching time of
photocarrier-induced effects. In the present case, however, the photo-induced opti-
cal activity decays much faster than the lifetime of photocarriers in silicon (∼μs).
Numerical calculations and experiments were performed to clarify the mechanism
of such fast decaying, and found that the gammadion-patterned carrier distribution
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becomes uniform within about 250 ns, and the optical activity vanishes. By using a
semiconductor substrate with a shorter lifetime of carriers or faster carrier diffusion,
a faster response of active polarization control can be achieved.

11.5 Conclusion

In this chapter, THz time domain ellipsometry, which makes use of the vectorial
nature of THz waves, has been described. Using this method, all the components
of the complex dielectric tensor, including off-diagonal parts, can be obtained with
high accuracy by extracting both information of amplitude and phase from the x
and y components of a THz time domain wave vector. As examples of application,
optical activity was observed in artificial chiral grating structures. Such structures
can also be used as active polarization modulators. THz ellipsometry can develop
new applications for THz-TDS, such as detection of quantum hall [6] and magneto-
optical effects. These methods could be employed as powerful spectroscopic tools
in the future.

References

1. T. Hofmann, U. Schade, C.M. Herzinger, P. Esquinazi, M. Schubert, Rev. Sci. Instrum. 77,
063902 (2006)

2. B. Parks, S. Spielman, J. Orenstein, Phys. Rev. B 56, 115–117 (1997)
3. K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and

N. Sarukura, Terahertz time-domain spectroscopy of amino acids and polypeptides, Biophys.
J. 89, L22–L24 (2005)

4. R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E. H Linfield, and M. Pepper,
Phys. Med. Biol. 47, 3853–3863 (2002)

5. Y. Ikebe and R. shimano, Appl. Phys. Lett. 92, 012111 (2008)
6. Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, R. Shimano, Phys. Rev. Lett. 104,

256802 (2010)
7. V.M. Shalaev, Nat. Photonics 1, 41 (2007)
8. Y. Svirko, N. Zheludev, M. Osipov, Appl. Phys. Lett. 78, 498 (2001)
9. A. Papakostas, A. Potts, D.M. Bagnall, S.L. Prosvirnin, H.J. Coles, N.I. Zheludev, Phys. Rev.

Lett. 90, 107404 (2003)
10. T. Valius, K. Jefimovs, J. Turunen, P. Vahimaa, Y. Svirko, Appl. Phys. Lett. 83, 234 (2003)
11. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen,

Y. Svirko, Phys. Rev. Lett. 95, 227041 (2005)
12. A.V. Rogacheva, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev. Phys. Rev. Lett. 97, 177401

(2006)
13. E. Plum, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, Y. Chen, Appl. Phys. Lett. 90, 223113

(2007)
14. M. Decker, M.W. Klein, M. Wegener, S. Linden, Opt. Lett. 32, 856 (2007)
15. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, M. Kuwata-Gonokami, Opt. Express 15, 9575

(2007)
16. N. Kanda, K. Konishi, M. Kuwata-Gonokami, Opt. Express 15, 11117 (2007)



11 Terahertz spectroscopy 299

17. A. Berger, M.R. Pufall, Appl. Phys. Lett. 71, 965 (1997)
18. M. Schubert, B. Rheinländer, J.A. Woollam, B. Johs, C.M. Herzinger, J. Opt. Soc. Am. A 13,

875 (1996)
19. M. Schubert, T.E. Tiwald, J.A. Woollam, Appl. Opt. 38, 177 (1999)
20. M. Schubert, T. Hofmann, J. Opt. Soc. Am. A 20, 347 (2003)
21. M.C. Nuss, J. Orenstein, G. Grüner, in Terahertz Time-Domain Spectroscopy. Topics in Applied

Physics, Vol. 74 (Springer, Berlin Heidelberg, 1998), Chap. 3, p. 7
22. T.-I. Jeon, D. Grischkowsky, Appl. Phys. Lett. 72, 3032 (1998)
23. Y. Ino, R. Shimano, Y. Svirko, M. Kuwata-Gonokami, Phys. Rev. B 70, 155101 (2004)
24. Y. Svirko, N. Zheldev, Polarization of Light in Nonlinear Optics (Wiley, Hoboken, 1998)
25. M. Born and E. Wolf, Principles of Optics, 6th edn. (Pergamon, Oxford; Tokyo, 1980), Chap. 1
26. P.M. Oppeneer, Magneto-optical Kerr Spectra, Handbook of Magnetic Materials, Vol. 13

(Elsevier Science, Amsterdam, 2001), Chap. 3, p. 229
27. K. Sato, Jpn. J. Appl. Phys. 20, 2403 (1981)
28. R. Shimano, Y. Ino, Y.P. Svirko, M. Kuwata-Gonokami, Appl. Phys. Lett. 81, 199 (2002)
29. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn.

(Cambridge University Press, Cambridge, 1992), Chap. 9.7
30. E.M. Vartiainen, Y. Ino, R. Shimano, M. Kuwata-Gonokami, Y.P. Svirko, K.-E. Peiponen,

J. Appl. Phys. 96, 4171 (2004)
31. Y. Ino, J.B. Heroux, T. Mukaiyama, M. Kuwata-Gonokami, Appl. Phys. Lett. 88, 041114 (2006)
32. B. Lax, G.B. Wright, Phys. Rev. Lett. 4, 16 (1960)
33. N. Kanda, K. Konishi, M. Kuwata-Gonokami, Opt. Lett 19, 3000 (2009)
34. D.E. Aspnes, J.B. Theeten, J. Electrochem. Soc. 127, 1359 (1980)


	11 Terahertz Spectroscopy: Ellipsometry and Active Polarization Control of Terahertz Waves
	11.1 Introduction
	11.2 Transmission-Mode Time Domain Ellipsometry
	11.2.1 Method of Polarization State Measurement with Wire-Grid Polarizers
	11.2.2 Calculation of Dielectric Tensor
	11.2.3 Example of Polarization Measurements

	11.3 Reflection Mode Time Domain Magneto-Optical Ellipsometry
	11.3.1 MOKE Signal at Oblique Incidence
	11.3.2 Analysis Based on Intensity Measurements
	11.3.3 Analysis Based on the Time Domain THz Ellipsometry
	11.3.4 Analysis Example

	11.4 Active Polarization Control of Terahertz Wave
	11.5 Conclusion
	References


