
Chapter 8
The Newmark Method and a Moving Inertial
Load

The Newmark method (see Section 5.5) is considered here as a representative exam-
ple of a wide family of time integration methods. It is attractive since most of com-
putational procedures in structural dynamics are based on this numerical scheme.

8.1 The Newmark Method in Moving Mass Problems

We must emphasize here that the matrices derived contribute only the point mass ef-
fects. They must be simply added to the classical matrices elaborated for a structure,
i.e., for a string or a beam. The full discrete motion equation is

(M+Mm)ẅi+1 + (C+Cm)ẇi+1 + (K+Km)wi+1 = Fi+1 + ei
m , (8.1)

where M is the inertia matrix of the structure, Mm is the moving mass matrix, added
only to the inertia matrix of the element on which it travels. The same occurs in the
case of the damping matrix of the structure C and the point mass Cm, and in the case
of the stiffness matrix of the structure K and the point mass Km. The vector Fi+1

is the vector of external forces established at time ti+1 and ei
m is the right-hand side

vector resulting from the the mass inertia term, established at the beginning of the
time interval [ti, ti+1]. We will concentrate our attention on the mass influence only,
thus we will derive the matrices Mm, Cm, Km, and ei

m in the following equation

Mmẅi+1 + Cmẇi+1 + Kmwi+1 = ei
m , (8.2)

where the vector of nodal displacements in the case of beams is w= [w1,ψ1,w2,ψ2],
and that in the case of a string is w = [w1,w2].

The matrices of the finite element that carry the inertial particle are composed,
as a sum, of two sets: the matrices describing the element of the structure and the
matrices that incorporate the mass influence. Since the elemental matrices are well
known, below we will consider only the influence of the mass.

The solution of this problem concerns a mass particle moving on a general finite
element. This can be applied to all types of structures: strings, beams, plates, shells,

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 223–240.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



224 8 The Newmark Method and a Moving Inertial Load

t

xm
as

s 
tra

je
ct

or
y

h
b

x0

Fig. 8.1 The mass trajectory in space and time.

etc. Below we will derive the resulting matrices which will then be applied and
tested with a string, an Euler beam, and a Timoshenko beam.

Let us consider a finite element of length b of the edge of the mass trajectory.
The mass particle m passes through the finite element with velocity v in the time
interval h, starting at the point x = x0 (Figure 8.1). The equation of virtual work
which describes the motion of the inertial particle is

Πm =
∫ b

0
w∗(x)δ (x− x0− vt)m

d2w(vt, t)
dt2 dx , (8.3)

where the position of the moving point can be described by the function x = vt. The
virtual displacement function w∗ is given by

w∗(x) =
[
1− x

b
,

x
b

]
w . (8.4)

We take first-order polynomials as the shape functions describing the interpolation
of the displacements:

w(x, t) =
(

1− x
b

)
w1(t) +

x
b

w2(t) . (8.5)

Here, w1(t) and w2(t) are the nodal displacements in time. This is a natural as-
sumption since the finite element edge is straight in cases of simple shape functions
describing linear displacement distributions in the element. In such a case, the third
term of (7.1) reduces to zero. That is why we must write the Renaudot formula (7.1)
at constant speed in a different form:

d2w(vt, t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x=vt

+ v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x=vt

+ v
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]
. (8.6)

The third term of (8.6) is developed in its Taylor series in terms of the time increment
Δ t = h
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[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t+h

=

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t

+

+

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]}t

(1− γ)h+

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]}t+h

γh.

(8.7)

The upper indices indicate the time at which the respective terms are defined. We
assume the backward difference formula (γ = 1). In this case we have

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]}t+h

=
1
h

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t+h

− 1
h

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t

. (8.8)

Using (8.5) and (8.8), the equation (8.6) is given by the difference formula

d2w
dt2 =

(
1− x0 + vt

b

)
ẅi+1

1 +
x0 + vt

b
ẅi+1

2 − v

b
ẇi+1

1 +
v

b
ẇi+1

2 −

− v

bh
wi+1

1 +
v

bh
wi+1

2 +
v

bh
wi

1−
v

bh
wi

2 .

(8.9)

The upper index denotes the time layer. The energy (8.3), with respect to (8.4) and
(8.9) can be written in quadratic form, which, after a classical minimization, results
in the matrix equation (8.2), where

Mm = m

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)2 0 κ(1−κ) 0

0 0 0 0

κ(1−κ) 0 κ2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.10)

Cm =
mv

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.11)

Km =
mv

bh

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.12)

and
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em =
mv

bh

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)(w2−w1)

0

κ(w2−w1)

0

⎤
⎥⎥⎥⎥⎥⎦

, (8.13)

with coefficient κ = (x0 + vh)/b , 0 < κ ≤ 1. κ is a parameter which defines the
position of the mass in the element at the beginning of the time increment.

This determines the position of the mass at time t = h, related to the finite ele-
ment length b. The different terms describe the transverse inertia force related to the
vertical acceleration, the Coriolis force, and the centrifugal force. The matrix factors
Mm, Cm, and Km can be called the mass, the damping, and the stiffness matrices.
The last term em describes the nodal forces at the beginning of the time interval
[ti, ti +Δ t]. We must emphasize here that the matrices (8.10)–(8.12) and the vector
(8.13) contribute only the moving inertial particle effect. The matrices of the mass
influence in a finite element of a structure must be added to the global system of
equations. We notice that the matrices (8.10)–(8.12) differ from the matrices that
result from the solution for the case of direct differentiation of (7.1).

8.2 The Newmark Method in the Vibrations of String

The finite element of a string that carries an inertial particle was tested with the use
of the Newmark method. In each time-step, the global matrices M, C, and K must be
computed since the contributions of (8.10)–(8.12) vary. The string being tested has
dimensionless length l = 1, tensile force N = 1, cross-sectional area A= 1, and mass
density ρ = 1. The travelling mass m = 1 was accompanied by the force P = −1
(Figure 8.2). Figure 8.3 depicts the mass trajectory at various speeds v. This diagram
can be compared with the semi-analytical results depicted in Figure 3.3. We note
good coincidence for a whole range of speeds. Moreover, the discontinuity at the
final support is exhibited in the numerical results. This discontinuity was reported
in [48] and was also obtained by the space–time finite element method [25]. The
mid-span deflections are depicted in Figure 8.4. The method can also be applied to
over-critical speed (Figures 8.5 and 8.6).

w(x,t)

v
P

m A, EIρ NN

l

Fig. 8.2 The scheme of the tested system.
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Fig. 8.3 The mass trajectory at velocities 0.1–1.0 times the wave speed c, computed numeri-
cally by the Newmark method.
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Fig. 8.4 The displacement of the middle of the span at velocities 0.1–1.0 times the wave
speed c.
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Fig. 8.5 The mass trajectory at velocities 1.0–1.1 times the wave speed c, computed numeri-
cally by the Newmark method.
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Fig. 8.6 The displacement of the middle of the span at velocities 1.0–1.1 times the wave
speed c.
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8.3 The Newmark Method in Vibrations of the Bernoulli–Euler
Beam

The solution procedure is relatively simple in the case of the Bernoulli–Euler beam
with third order shape functions. The characteristic matrices can be easily derived
(8.14)–(8.16). We use them in verification of various results from the literature:

Mm = m

⎡
⎢⎢⎣

(2κ3− 3κ2+ 1)2 bκ(κ2− 2κ+ 1)(2κ3− 3κ2 + 1)
bκ(κ2− 2κ+ 1)(2κ3− 3κ2+ 1) b2κ2(κ2− 2κ+ 1)2

κ2(3− 2κ)(2κ3− 3κ2+ 1) bκ3(3− 2κ)(κ2− 2κ+ 1)
bκ2(κ− 1)(2κ3− 3κ2+ 1) b2κ3(κ− 1)(κ2− 2κ+ 1)

κ2(3− 2κ)(2κ3− 3κ2+ 1) bκ2(κ− 1)(2κ3− 3κ2 + 1)
bκ3(3− 2κ)(κ2− 2κ+ 1) b2κ3(κ− 1)(κ2− 2κ+ 1)

κ4(2κ− 3)2 bκ4(1−κ)(2κ− 3)
bκ4(1−κ)(2κ− 3) b2κ4(κ− 1)2

⎤
⎥⎥⎦ ,(8.14)

Cm = 2mv

⎡
⎢⎢⎣

6κ(κ− 1)(2κ3− 3κ2+ 1)/b (3κ2− 4κ+ 1)(2κ3− 3κ2+ 1)
6κ2(κ− 1)(κ2− 2κ+ 1) bκ(κ2− 2κ+ 1)(3κ2− 4κ+ 1)

6κ3(1−κ)(2κ− 3)/b κ2(3− 2κ)(3κ2− 4κ+ 1)
6κ3(κ− 1)2 bκ2(κ− 1)(3κ2− 4κ+ 1)

6κ(1−κ)(2κ3− 3κ2+ 1)/b κ(3κ− 2)(2κ3− 3κ2 + 1)
6κ2(1−κ)(κ2− 2κ+ 1) bκ2(κ2− 2κ+ 1)(3κ− 2)

6κ3(κ − 1)(2κ− 3)/b κ3(3− 2κ)(3κ− 2)
−6κ3(κ − 1)2 bκ3(κ− 1)(3κ− 2)

⎤
⎥⎥⎦ , (8.15)

Km = mv2

⎡
⎢⎢⎣

6(2κ− 1)(2κ3− 3κ2 + 1)/b2 2(3κ− 2)(2κ3− 3κ2+ 1)/b
6κ(κ2− 2κ+ 1)(2κ− 1)/b 2κ(κ2− 2κ+ 1)(3κ− 2)

6κ2(1− 2κ)(2κ− 3)/b2 2κ2(3− 2κ)(3κ− 2)/b
6κ2(κ− 1)(2κ− 1)/b 2κ2(κ − 1)(3κ− 2)

6(1− 2κ)(2κ3− 3κ2 + 1)/b2 2(3κ− 1)(2κ3− 3κ2 + 1)/b
6κ(1− 2κ)(κ2− 2κ+ 1)/b 2κ(κ2− 2κ+ 1)(3κ− 1)

6κ2(2κ− 1)(2κ− 3)/b2 2κ2(3− 2κ)(3κ− 1)/b
6κ2(1−κ)(2κ− 1)/b 2κ2(κ− 1)(3κ− 1)

⎤
⎥⎥⎦ , (8.16)

where the parameter κ = (x0 + vh)/b, x0 is the initial position of the mass moving
with speed v on the spatial element of length b in the time interval h.
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8.4 The Newmark Method in Vibrations of a Timoshenko Beam

The study of wave phenomena is possible by using a more complex model of the
Timoshenko beam in which the vibration equation takes into account the influence
of lateral forces and rotatory inertia on the deflection line of the beam. The angle
formed by the axis of the deformed beam is composed of the pure bending angle and
the angle corresponding to the deformation of the pure shear. Independent interpola-
tion of the displacements and rotation angles of the Timoshenko beam causes serious
problems. Linear interpolation (8.5) of the nodal shape features renders impossible
the determination of the centrifugal acceleration of the moving mass particle. Di-
rect discretization of the terms (7.1), placed in the governing differential equation
of motion, results in the following matrices:

Mm = m

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)2 0 κ(1−κ) 0

0 0 0 0

κ(1−κ) 0 κ2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.17)

Cm =
2mv

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.18)

Km = 0 , (8.19)

with the coefficient

κ =
x0 + vh

b
, 0 < κ ≤ 1. (8.20)

We can apply these to a test problem and then compare the results with those ob-
tained by semi-analytical methods. Unfortunately, the comparison is extremely un-
satisfactory, especially if applied to strictly hyperbolic problems (see for example
[48]). We must emphasize here that the matrices (8.10)–(8.12) and the vector (8.13)
contribute only the moving inertial particle effect. The matrices of a mass influence
in a finite element of the Timoshenko beam must be added to the global system
of equations. Note that the matrices (8.17)–(8.19) differ from the matrices (8.10)–
(8.13). The matrix M is the only matrix that is the same.

8.5 Numerical Results

There are few publications in which an inertial load moving on a Timoshenko beam
are directly considered numerically. One can see that papers published in the litera-
ture describe methods which result in wrong responses. We can show results taken
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from the literature compared with semi-analytical computations. A comparison with
the paper [148] is given in Figure 4.15. In the example, a very low relative veloc-
ity was assumed: v/c1 = 0.002 and v/c2 = 0.001 (shear wave and bending wave,
respectively).

We will compare our diagrams with those of Lee [86]. Therefore, the data in the
example is as follows: length l = 1 m, Young modulus E = 207 GPa, shear modulus
G = 77.6 GPa, mass density ρ = 7700 kg/m3. The velocity v = aπ/l ·√EI/ρ/A
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Fig. 8.7 Normalized deflections under a moving mass particle for β = 0.03: (a) a = 0.11, (b)
a = 0.5 and (c) a = 1.1.



232 8 The Newmark Method and a Moving Inertial Load

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  0.2  0.4  0.6  0.8  1

w
/w

0

vt/L

v=42.78 m/s

analytical
Lee

Newmark

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.2  0.4  0.6  0.8  1

w
/w

0

vt/L

v=192.4 m/s

analytical
Lee

Newmark

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.2  0.4  0.6  0.8  1

w
/w

0

vt/L

v=427.8 m/s

analytical
Lee

Newmark

Fig. 8.8 Normalized deflections under a moving mass particle for β = 0.15: (a) a = 0.11, (b)
a = 0.5 and (c) a = 1.1.

was determined by the parameter a. Another parameter β determines the cross sec-
tional area A = β 2l2/π and cross sectional inertia moment I = β 4l4/4/π3. The
moving mass m took values of 0.441 kg and 11.03 kg. Figure 8.7 exhibits the nor-
malized deflection under the moving mass for β = 0.03 and a = 0.11, 0.5, and
1.1. This corresponds to a mass moving at 8.56, 38.39, 85.55 m/s on a relatively
elastic beam. Figure 8.8 relates to a more rigid beam and velocities of v = 42.78,
194.4, and 427.7 m/s. Lee solved the problem semi-analytically. A fourth order dif-
ferential equation was solved by the Fourier transform and finally integrated by the
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Fig. 8.9 Accuracy of the Newmark method depending on the number of finite elements.
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Fig. 8.10 Comparison of the Newmark and Houbolt methods in the case of a large time step.

Runge–Kutta method. In our test, we compare the results by Lee with our semi-
analytically [49] obtained curves together with our Newmark time integration pro-
cedure applied to the finite element model of the Timoshenko beam. We notice a
perfect coincidence of both solutions and quite good coincidence with Lee’s results.

Figure 8.9 shows the accuracy, which increases with the number of elements in
the structure. Ten to twenty elements is sufficient in our example.

Another comparison was carried out between the Newmark and Houbolt meth-
ods. Both methods are sufficiently accurate. However, the curve for the Newmark
method perfectly coincides with our semi-analytical results (Figure 8.10).

8.6 Accelerating Mass—Numerical Approach

8.6.1 Mathematical Model

Let us consider the differential equations of structures containing a concentrated
mass. We will focus our attention on the term which describes the forces induced by
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a moving inertial particle. In the case of a string, we can write the equation in the
form

−N
∂ 2w(x, t)
∂ x2 +ρA

∂ 2w(x, t)
∂ t2 = δ (x− f (t))P− δ (x− f (t))m

d2w( f (t), t)
dt2 . (8.21)

Here, w(x, t) is the vertical deflection of the mid-line, m is the moving mass, f (t) is
the function giving the distance travelled by the mass, N is the tension of the string,
ρA is the mass density per unit length, P is the external point force, and it usually
contributes a gravitation force mg.

We impose initial conditions w(x,0) = 0, ∂ w(x, t)/∂ t |t=0 = 0 and boundary
conditions w(0, t) = 0, w(l, t) = 0.

The Bernoulli–Euler beam is described by the equation

EI
∂ 4w(x, t)
∂ x4 +ρA

∂ 2w(x, t)
∂ t2 = δ (x− f (t))P− δ (x− f (t))m

d2w( f (t), t)
dt2 , (8.22)

with initial conditions w(x,0) = 0, ∂ w(x, t)/∂ t |t =0 = 0 and boundary conditions
w(0, t) = 0, w(l, t) = 0,∂ 2w(0, t)/∂x2 = 0,∂ 2w(l, t)/∂x2 = 0, and the Timoshenko
beam is

ρA
∂ 2w(x, t)
∂ t2 − GA

k

(
∂ 2w(x, t)
∂x2 − ∂ψ(x, t)

∂x

)
=

= δ (x− f (t))P− δ (x− f (t))m
d2w( f (t), t)

dt2 , (8.23)

ρI
∂ 2ψ(x, t)

∂ t2 −EI
∂2ψ(x, t)
∂x2 − GA

k

(
∂w(x, t)
∂x

−ψ(x, t)
)
= 0 ,

with the same boundary and initial conditions as for the Bernoulli–Euler beam.
Here, EI is the bending stiffness, GA/k is the shear stiffness, ρI is the rotatory
inertia of the cross section of the beam, and ψ is the angle of rotation of the cross
section.

In each type of problem we have the identical inertial term δ (x − f (t))m·
d2w( f (t), t)/dt2. Below we will consider only this term, since the remaining parts
of the equations are treated in the classical way by the finite element method.

Let us follow the direct derivation commonly carried on in the literature. The
acceleration of a mass particle moving at a varying speed v in the space–time domain
is described by the Renaudot formula:

d2w( f (t), t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x= f (t)

+ 2v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x= f (t)

+ v2 ∂ 2w(x, t)
∂x2

∣∣∣∣
x= f (t)

+

+ v̇
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

,

(8.24)
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where f (t) describes the position of the load. The above formula simply represents
the chain rule of differentiation. The corresponding parts of the equation describe
the lateral acceleration, the Coriolis acceleration, the centrifugal acceleration, and
the acceleration associated with the change of particle velocity. These names are
generally not adequate in the case of all structures. Let us compare two different
problems: the vibrations of a string and the longitudinal vibrations of a bar. In both
cases, we have the identical governing equation. However, in the case of longitudinal
displacements we can not call the forces described by the terms of the equation
either centrifugal or Coriolis.

8.6.2 The Finite Element Carrying the Moving Mass Particle

Let us consider a finite element of length b of the edge of the mass trajectory. The
mass particle m passes through the finite element with a varying velocity v in the
time interval h, starting at the point x = x0 (Figure 8.1). The equation of virtual work
which describes the motion of the inertial particle can be written in the following
form

Πm =

∫ b

0
w∗(x)δ (x− f (t))m

d2w( f (t), t)
dt2 dx . (8.25)

The virtual displacement w∗ is expressed by (8.4). The position of the moving point
can be described by a quadratic function in time:

f (t) = x0 + vt +
1
2
v̇t2 . (8.26)

We take first-order polynomials as the shape functions describing the interpolation
of the displacements (8.5). Here, w1(t) and w2(t) are the nodal displacements in
time. This is a natural assumption since the finite element edge is straight for sim-
ple shape functions describing linear displacement distributions in the element. In
such cases, the third term of (8.24) reduces to zero. That is why we must write the
Renaudot formula (8.24) in a different form:

d2w( f (t), t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x= f (t)

+ v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x= f (t)

+ v̇
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

+

+ v
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]
.

(8.27)

The fourth term of (8.27) is developed in a Taylor series in powers of the time
increment Δ t = h
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[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]t+h

=

[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]t

+

+

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]}t

(1− γ)h+

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]}t+h

γh .

(8.28)

The upper indices indicate the time at which the respective terms are defined. Using
(8.8), we assume the backward difference formula (γ = 1). After classical minimiza-
tion of the equation (8.25) with respect to (8.27) and (8.8), we obtain

Mm = m

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)2 0 κ(1−κ) 0

0 0 0 0

κ(1−κ) 0 κ2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.29)

Cm =
mv

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.30)

Km =
m
b

(v
h
+ v̇
)
⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.31)

and

em =
mv

bh

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)(w2−w1)

0

κ(w2−w1)

0

⎤
⎥⎥⎥⎥⎥⎦

, (8.32)

with coefficient κ = (x0 + vh+1/2 v̇h2)/b , 0 < κ ≤ 1. κ is a parameter which de-
fines the position of the mass in the element at the beginning of the time increment.

This determines the position of the mass at time t = h, related to the finite ele-
ment length b. The different terms describe the transverse inertia force related to the
vertical acceleration, the Coriolis force, and the centrifugal force. The matrix factors
Mm, Cm, and Km can be called the mass, damping, and stiffness matrices. The last
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Fig. 8.11 Comparison of displacements of a Bernoulli–Euler beam under a moving contact
point with those published by Lee [84]—acceleration parameter ā = 0,1,5,10.

term em describes the nodal forces at the beginning of the time interval [ti, ti +Δ t].
We must emphasize here that the matrices (8.29)–(8.31) and the vector (8.32) con-
tribute only the moving inertial particle effect. The matrices of the mass influence in
a finite element of a structure must be added to the global system of equations. We
note that the matrices (8.29)–(8.31) differ from the matrices that result in divergence
of the solution in the case of direct differentiation of (8.24)1.

1 Matrices that result in divergence:

Mm = m

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)2 0 κ(1−κ) 0

0 0 0 0

κ(1−κ) 0 κ2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Cm =
2mv

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

Km =
mv̇

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, κ =
x0 +vh+ 1

2 v̇h2

b
, 0 < κ ≤ 1.
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8.6.3 Accelerating Mass—Examples

Now we will compare the displacements under a moving mass obtained from our
approach with the reference results by Lee [84]. The Bernoulli–Euler beam of length
l = 6 m, bending stiffness EI/ρ/A= 275.4408 m4/s2, moving mass m = 0.2ρ/A/l,
initial velocity at x = 0 of v0 = 6 m/s, acceleration a = āEI/ρ/A/l3 was assumed
for dimensionless coefficient ā = 0, 1, 5, and 10 (Figure 8.11).

The Timoshenko beam was also considered in [87]. We compare our results with
those published in the reference paper [86], using the same data, already listed at
the beginning of this section. The acceleration a = v/vcr, where the critical velocity
vcr = π/l

√
EI/ρ/A. The acceleration v̇ is defined by a non-dimensional parameter

κ = v̇ρAl3/E/I. Two cases were considered: First the case of β = 0.03, a = 0.11
was computed and is depicted in Figure 8.12 for the acceleration κ = 1, for a con-
stant speed κ = 0, and for a small retardation (κ =−0.05). Figure 8.13 presents the
case for a higher initial speed a = 0.5 and β = 0.03, for a constant speed κ = 0, and
acceleration with κ = 1.
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Fig. 8.12 Comparison of displacements of a Timoshenko beam under a moving contact point
with those published by Lee [87]—β = 0.03, a = 0.11.
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Fig. 8.13 Comparison of displacements of a Timoshenko beam under a moving contact point
with those published by Lee [87]—β = 0.03, a = 0.5.
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8.7 Conclusions

In this section we proposed a new approach to the vibration analysis of structures
subjected to a moving inertial particle by use of the finite element method in space
and a general time integration method, for example SSpj, in time, here represented
by the Newmark and Houbolt methods. The elements describing a moving massive
particle (7.29)–(7.31) can be commonly used both in the Euler beam and the Tim-
oshenko beam. Their appearances are simpler than those of the classical matrices
(8.14)–(8.16) for the Euler beam. In engineering practice, most dynamic simula-
tions are performed by the Newmark method. An approach which extends a group
of problems that can be directly solved by this commonly used method is valuable.
We showed that these matrices yield accurate and stable solutions for a mass moving
on a structure. Timoshenko beams or other shear resistant structures exhibit discon-
tinuities in their solutions of the differential equations [48, 49]. Although in practice
nonlinear effects smooth the trajectories, large jumps in the physical quantities are
observed. The same computational result should be obtained both by semi-analytical
and numerical tools. There is no reason for saying that numerical solutions converge
to inaccurate results. Our finite element approach proves that even simple elemental
matrices derived from a mathematically correct analysis can give perfect conver-
gence to the analytical expressions.

There are two different ways to numerically treat differential equations in struc-
tural dynamics. The first one requires the separation of the spatial variables and time,
after which two different discretizations are applied to space and to time, and finally
two different solution methods are used. Commonly, the finite element method is
applied to space while the central difference method or the Newmark method is ap-
plied to time. Thus the time marching procedure is established. In this case the equi-
librium of forces is provided a selected time-instants, separated in time by the time
step. This approach is based on a strong form of the problem. It is well elaborated
for problems defined by differential equations with constant coefficients. Variable
coefficients require deriving the time integration method starting from the differ-
ential equation. Classical inertia and stiffness matrices related to space can not be
directly brought to play in a classical time integration method.
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Fig. 8.14 The mass trajectory in space and time.
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The second approach, called the space–time formulation [17, 9, 22], is based
on the equilibrium of the energy of a structure in a time interval (Figure 8.14). It
is based on the weak formulation and allows us to solve much more complicated
problems, including moving concentrated physical parameters. This approach was
successfully applied to the moving mass problem, solved by discrete methods [25,
24, 26].

Although the space–time approach in the case of a differential equation with con-
stant coefficients and stationary discretization results in practically the same algo-
rithms as the classical time integration methods, most engineers select the methods
of the Newmark group for computing. A simple modification of the inertia matrix in
the Newmark algorithm or direct differentiation of the acceleration of the mass par-
ticle according to the equation describing its position in time and then incorporating
the resulting matrices into the solution method fails.

The practice of numerical simulations, however, requires simplicity and effi-
ciency in the procedures. The characteristic matrices for an inertial particle should
be capable of being easily incorporated into computer procedures. Thus all existing
commercial codes would gain new calculating abilities. We will focus our attention
on this aim.

Several classical methods for the numerical integration of the differential equa-
tions of motion can be included in one general formula, derived from the expansion
of the motion function into a Taylor series. The displacements and derivatives are
written in short as follows:

yi+1 =
p−1

∑
q=0

Δ tq

q!
y(q)i +

Δ t p

p!
y(p)

i+α , ẏi+1 =
p−1

∑
q=1

Δ tq−1

(q− 1)!
y(q)i +

Δ t p−1

(p− 1)!
y(p)

i+α . (8.33)

Here, yi are the known values and subsequent derivatives ẏi, ÿi, etc. α (p)
i contains

unknown coefficients in terms of the remainder of the development. The above ex-
pansions allow us to write a family of methods. The general time integration method
is characterized by two parameters: p, the number of terms in the Taylor series, and
j, the order of the differential equation. We can construct more or less complex inte-
gration patterns, choosing the appropriate Taylor series. In the particular case p = 2
and j = 2, the method is identical with the Newmark method, and for p = 3 and
j = 2, it coincides with the Houbolt method. Other well known algorithms are cov-
ered by the formula (8.33) as well. In further tests we will use the Newmark method
and the Houbolt method.
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