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Preface

Computer methods and simulations allow engineers to study complex problems in
detail. They can take into account various factors that influence the investigated
phenomenon. Moreover, they can examine problems throughout a wide range of
parameters. Such cases occur when the existing or designed structures are to carry
heavier loads and should optimally resist external forces that involve static displace-
ments or vibrations. Generally, vibrational or wave problems in structural dynamics
require a detailed study of numerous cases.

Moving inertial loads are applied to structures in civil engineering, robotics, and
mechanical engineering. Some fundamental books exist, as well as thousands of
research papers. Well known is the book by L. Frýba, Vibrations of Solids and
Structures Under Moving Loads, which describes almost all problems concerning
non-inertial loads. Unfortunately, this wide literature is rarely reflected in computer
codes. Well known commercial packages enable the analysis of complex mechani-
cal problems, with material and geometrical non-linearities, but they fail in the case
of moving loads.

This book presents broad description of numerical tools successfully applied to
structural dynamic analysis. Unfortunately none of the classical methods can be
directly applied to non-classical problems. Moving mass problems are an exam-
ple of such a group of problems. It can be generally considered as problems with
distributed parameters. Physically we deal with non-conservative systems. Math-
ematically they are described by linear partial differential equations with variable
coefficients. We will focus our discussion on the moving inertial particle rather than
on the structure carrying the massless load. The discrete approach formulated with
the use of the classical finite element method (FEM) results in elemental matrices,
which can be directly added to global structure matrices. The classical approach is
considered in the simplest case in our book as the finite element method applied to
space with another method applied to integration of the time derivatives. A more
general approach is carried out with the space-time finite element method. It can
be considered as an extension, to the time domain, of the well known finite element
method: the spatial finite element gains an additional time dimension. In such a case,
a trajectory of the moving concentrated parameter in space and time can be simply
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defined. What is more, elemental characteristic matrices can easily be derived and
the formulation is relatively clear. The crucial point, however, is the uniform treat-
ment of the space and time dependent terms in the differential equations. Discussion
and the experience gained then allow of a better understanding of a formulation in
the case of the Newmark method, central difference method, and other time integra-
tion methods commonly used in structural dynamics.

We consider structures described by pure hyperbolic differential equations such
as strings and structures described by hyperbolic–parabolic differential equations
such as beams and plates. More complex structures such as frames, grids, shells,
and three-dimensional objects, can be treated with the use of the solutions given in
this book.

The problems treated in the monograph can be related to problems of mathemati-
cal physics. The resulting matrices that describe the influence of the moving inertial
particle can be directly implemented in computer codes.

This monograph would not have been possible without the support of the project
Lider/26/40/L-2/10/NCBiR/2011 and project of Foudation for Polish Science –
START.

Warsaw, Czesław I. Bajer
February 2012 Bartłomiej Dyniewicz
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Chapter 1
Introduction

Computer methods are commonly used now in engineering design, manufacturing,
and applications. They replace experimental methods of verification, especially if
experiments are expensive, time consuming, or difficult to perform. Static analysis,
plastic deformations, optimization, and free vibrations are fields sufficiently well
explored, and now possess efficient numerical procedures implemented in commer-
cial software. But the case of moving loads is not represented in such computer
codes. Design engineers use simplifications and approximations known from ana-
lytical solutions. These are often adequate if the load does not change the dynamical
properties of the structure, i.e. is massless. In the case of an inertial load we do not
have adequate tools.

In this book we will present numerical methods which enable us to solve prob-
lems of the vibrations of structures subjected to inertial moving loads. Only simple
and particular cases of problems with moving inertial load can be solved analyti-
cally. Such problems usually require numerical computations at the final stage or, if
we use discrete methods, during the whole analysis. Analytical and semi-analytical
solutions are indispensable when we verify our numerical results. Therefore we will
present semi-analytical solutions as a base for a better understanding of both the
differential equations that govern the motion of these structures, and features and
properties of solutions. Engineers, researchers and students will find here matrices
and algorithms ready for use, material which will enable them understanding me-
chanical problems, and an elaboration of the software procedures for basic or more
complex structural elements.

Inertial loads moving on strings, beams, and plates at sub- or super-critical speed
are of special interest. Theoretical solutions are applied to many practical prob-
lems: train–track interaction, vehicle–bridge interaction, pantograph collectors in
railways, magnetic rails, guideways in robotic solutions, etc. Such problems have
been widely treated in the literature. Attempts at solving such problems began in
the middle of the 19th century. However, up to now we have not had a complete and
closed analytical solution. The term describing the concentrated mass motion is the
reason for the difficulties. Systems of differential equations of variable coefficients,
which, except in a few cases, do not have analytical solution, are serious roadblocks

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 1–20.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

to obtaining closed-form solutions. These types of equations are finally solved by
numerical means.

Structures subjected to moving loads are often encountered in engineering prac-
tice. Such are the bridges and viaducts loaded with vehicles [147], flyovers for
traditional or magnetically lifted trains, road or airfield plates, sliding robot ma-
nipulators, machine tools, weapon firing barrels, ropes of transporting systems, and
current collectors for power supply systems for rail vehicles (Figure 1.1). They are
exposed to much larger displacements than when under static loads or slowly slid-
ing loads. This becomes obvious if we look at the undeformed structure at rest,
which is suddenly subjected to a force. Such a structure starts to vibrate around its

Fig. 1.1 Examples of problems with moving mass.
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equilibrium position in the unladen state, through the state of static equilibrium
under load, to obtain an amplitude equal to twice the static deflection under load.
Therefore, the rapid entry of a loading force has a similar effect. The passage of the
load, if takes place cyclically with a certain frequency, will increase the deflection.
If its frequency is associated with the passage speed in such a way that at the exit
of one load the next will enter, then we obtain the dependence of the maximum
deflection of the structure under load on the speed of the travel of the load wmax(v).

The maximum deflection occurs at the point located generally around 0.5–0.7 of
the span, depending on the speed of travel. Proceeding further, we can examine the
speed at which the maximum deflection of the journey will be greatest. This speed
is called the critical speed. In the case of a string, the critical velocity corresponds
to the wave propagation velocity c. The critical speed is the important feature from
a practical point of view. It determines the most unfavorable value of the deflection,
to which the structure must be made resistant. For this reason, the study of a struc-
ture under a moving load is an important engineering problem. Unfortunately, the
existing commercial packages do not perform computational simulations of such
tasks. As we will see, the problem is difficult and this can be ascribed to the lack of
appropriate computerized procedures.

Here, attention should be given to the classification of the loads. The simplest
case is shown in Figure 1.2a. It is irrelevant that the force applied directly to the
structure is replaced with an oscillator, which will have non-zero mass. Although
the mass effect will be visible in the results, it will not be the result of a task with
the inertial load [112]. Moreover, although the impact of the mass of the oscillator
will increase with increasing spring stiffness, then the solution does not tend uni-
formly to the solution for the case of an inertial load. Additional degree of freedom
oscillations introduce additional artificial effects in the form of resonance: the in-
crease or decrease in amplitude at certain speeds. A mass load is shown in Figure
1.2b. The mass motion affects the outcome at non-zero displacements w(x, t) when
0≤ t < l/v. Otherwise, the participation of factors causing displacement is required,
such as the pulse force (Figure 1.2).

Let us take a railway wheel with mass 500 kg. Together with the axle and the
axle box its inertia exceeds a ton. The rail has a linear mass density of 60 kg/m. The
influence of this concentrated mass significantly changes the dynamic properties of
a structure (Figure 1.3). We claim that a significant part of the rail wheel should be

m v

vm

P

vm

Pv

a b c
Fig. 1.2 Loads: a) massless, b) inertial, c) inertial and gravity.
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Fig. 1.3 The wheel inertia influencing the rail motion

unsprung. In engineering practice we wish to take into account a real structure, with
all the atypical elements for an analytical model, i.e. ballast as an elastic foundation,
sleepers as periodic supports, elastic pads, influence of several wheelsets, coupling
and interacting with a boogie, etc. Accurate results are fundamental for decisions
at the design stage. An accurate estimation of the dynamic influence is essential for
proper modelling. Accurate results are important not only for increasing the dura-
bility and reliability of systems: predicting the level of the dynamic response of
structures under a moving load facilitates the protection of the environment, espe-
cially populated urban centres or historic places.

Existing finite element (FEM) modelling software allows us to perform compu-
tations in several stages grouped into a batch procedure. In such a case, one can split
the dynamic problem into a sequence of static problems with structures subjected to
gravitational and inertial forces. Such a solution corresponds to the simple lumping
of a moving mass into nodal points, as depicted in Figure 1.4. Such an approach is
correct only at extremely low speeds of the mass, practically quasistatic. Problems
containing beams as a supporting structure in the case of a moderate speed of a mass

xΔ

m

P

2

2

P

m

P

m1

1

Fig. 1.4 Ad-hoc mass lumping to nodes.
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usually give limited solutions. Unfortunately they are neither convergent nor stable.
Even a small variation in the parameters produces significant alterations of the re-
sults. The pure hyperbolic differential equation describing the string motion results
in divergent solutions.

Travelling loads are generally unlikely to be solved by commercial codes. Most
of the existing systems for dynamic simulations usually do not allow us to solve even
simple problems comprising travelling massless point forces, travelling distributed
non-inertial loads, or even travelling and elastically joined moving substructures.
Inertial moving loads are completely unimplemented by computer systems. The in-
tuitive approach to discrete analysis with ad-hoc lumping of forces and masses to
neighbouring nodes always fails. Sometimes, especially in the case of beams, nu-
merical solutions are limited, but significantly inaccurate. We emphasize here that
the travelling mass problem is not trivial, even if at first sight it seems to be.

1.1 Literature Review

In the literature, numerous historical reviews concerning the moving load problem
exist (for example Panovko [106], Yakushev [146], Dmitrijev [43]). In most cases
the moving massless constant force was considered as a moving load. This type of
problem results in closed solutions. Unfortunately, the problem of inertial loads is
still open. Saller in [123] considered a moving mass for the first time. He proved,
in spite of essential simplifications, the significant influence of the moving mass
on the beam dynamics. In the 1930s, two contributions appeared, important for re-
searchers working in the field of moving loads. Inglis [70] applied simplifications
and the solution was expressed by only the first term of a trigonometric series. The
time function fulfilled a second order differential equation with variable coefficients.
This equation was derived by considering the acceleration under the moving mass,
expressed by the so-called Renaudot formula. In fact it is the derivative computed
with the chain rule. The final solution of the differential equation with variable co-
efficients was proposed as an infinite series. It results in an approached solution.

Schallenkamp [124] proposed another approach to the problem of a moving
mass. However, his attempt only allows us to describe the motion under the mov-
ing mass. The method of separation of variables by the expansion of the unknown
function into a sine Fourier series was applied. Boundary conditions in the beam
were taken into account in a natural way. The ordinary differential equation, which
describes the motion under the moving mass, was expressed in generalized coordi-
nates by using the second Lagrange equations. The generalized force was derived
from the virtual work principle. Schallenkamp’s consideration is relatively complex
and converges slowly since the final solution is expressed in terms of a triple infinite
series.

The works of Inglis and Schallenkamp can be considered as the basis for the anal-
ysis of the problem of a moving mass in the succeeding works of Bolotin [36, 35],
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Morgajewskij [101] and others. An excellent and important monograph in this field
was written by Szcześniak [133]. One can find there hundreds of references con-
cerning moving loads on beams and strings. In [138] the authors consider a simply
supported beam modelled by the Bernoulli–Euler theory. The equation of motion is
written in an integral-differential form with Green’s function terms. In order to solve
this equation, a dual numerical scheme was used. A backward difference technique
was applied to treat the time parameter and numerical integration was used for the
spatial parameter. This method of solution, though applied to higher velocities, still
requires complex mathematical operations. Each solution enables us to determine
only the displacements under the moving load and does not give solutions for a wide
range of parameters x and t. Only one closed analytical solution can be found in the
literature. Smith [127] proposed a purely analytical solution for the inertial moving
load, however, only in the case of a massless string. The basic motion equation,
without the term which describes the inertia of the string, was transformed to the
hyper-geometrical equation. It has an analytical solution in terms of infinite series.
Frýba [56] applied the same approach and found a closed analytical solution for the
particular case. However, the formula given in [56] has mistakes.

Recent papers have contributed analyses of complex problems of structures sub-
jected to moving inertial loads [144] or oscillators [29, 97, 112]. Variable speeds
were analysed in [3, 58, 99]. The equivalent mass influence is analysed in [57].
An infinitely long string subjected to a uniformly accelerated point mass was also
treated [121] and analytical solution of the problem concerning the motion of an
infinite string on a Winkler foundation subjected to an inertial load moving at a con-
stant speed was given [74].

In one of our papers [48], we considered small vibrations of the massless and
massive string subjected to a moving inertial load. We proposed an analytical–
numerical solution of the problem. The final equation has the form of a matrix
differential equation of the second order. Numerical integration results in a solu-
tion over a wide range of the velocity: under-critical and over-critical. It exhibits
a discontinuity of the mass trajectory at the end support point. This new feature
had not yet been reported in the literature. A closed-form solution in the case of
a massless string was analysed and its discontinuity was proved mathematically.
Fully numerical results obtained for the inertial string had a similar property. Since
small vibrations are analysed, the discontinuity effect discussed in the paper was of
purely mathematical interest.

The results are compared with the approximate numerical solutions obtained by
the finite element method (FEM). The string is subjected to a moving oscillator. In
the case of a rigid spring, we approach the analytical solution. However, in the case
of higher speeds (greater than 20% of the critical wave speed), the accuracy of the
FEM solution is poor.

A review of the literature devoted to numerical methods applied to moving mass
problems will be given in Chapter 4.
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1.2 Solution Methods

In the early period of the rapid development of computer methods, falling in the
eighties of the last century, researchers analysed and described the basic properties
of discrete methods of calculation. These included:

• the impact of the finite element mesh density on the results, the estimation of the
error of approximation,

• reducing the size of the task by using techniques of static and dynamic conden-
sation, the division into subsystems, etc.

• creation and study of the properties of new, more accurate finite element models,
mainly bending elements, the analysis of the locking of degrees of freedom, over-
stiffening, the inclusion of complex constitutive relations,

• the development of methods for the integration of the differential equations of
motion, characterized by unconditional stability, low computational cost, and ap-
propriately matched characteristics of spurious damping.

The capabilities of the known techniques were combined (finite difference and fi-
nite element method) and new methods were formulated (the boundary element
method, moving elements, meshless methods). The limited computational ability
of computers still forced work on improving the performance of the computing al-
gorithms. With the increasing power of processors and reductions in the costs of
memory, the effort of software developers has shifted to improve the utilisation of
existing computational programs: improved data input methods and attractive forms
of visualisation of the results. Computer programs were widely used in engineering
practice.

Today, computer modelling generally involves the phenomenon of change over
time. Both knowledge and computer tools allow you to take into account many fac-
tors influencing the processes in structures with complex shape. At the same time,
less and less importance is attached to the evaluation of the correctness of the results,
and attention is focused on a faithful reproduction of the geometry. Geometric mod-
elling, an appropriate choice of the type of finite elements, and then imaging the
stress fields, are the activities which usually limit the operation engineer, i.e., the
user of the computing package. Less time is devoted to understandng the numerical
and mechanical properties of the models created. Hence, in many cases, the results
obtained are difficult to interpret. Effects arising from properties of the numerical
model emerge. Sometimes they may be mistakenly regarded as the characteristic
features of the phenomenon studied. Differences in the results obtained with two
different commercial packages are no longer a cause for concern. Knowledge and
experience is slowly being replaced by knowledge about the flaws in package de-
sign and how to overcome the technical difficulties encountered. Packages designed
for crashworthiness analysis can be a good example. The explicit time integration
method of differential equations used in the computations turns out to be unstable in
the case of lightweight discrete elements, or those with small dimensions, or which
are relatively rigid. In this case, there is a way to prevent instability by artificially
increasing the weight of selected points. A stable solution is obtained, and then the
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resulting graphs are scaled to partially offset the impact of such operations and to
match the experimental results. Such activities become more random, and the re-
sults less reliable. There are a large number of degrees of freedom in the numerical
model, reaching the millions, and one can attain an attractive visualisation of the
results, but engineers no longer pay due attention to the substantive aspects of the
task, leaving such issues to the software developers.

Insight into the reports related to computer modelling shows that we usually seek
to illustrate the calculations and provide a narrative summary of the quantitative
findings. Very rarely are users able to substantively address results of analysis to
the phenomena of structural mechanics and mentally categorise the problem with
respect to simple, well-known phenomena such as wave propagation, reflection, sta-
bility of motion, relevant feedback, etc. Only the insights and skills in isolating such
aspects can lead to improved research, by means of at least methodological changes
in the task. Otherwise you are condemned to the path of successive trials and er-
rors. Improvement of the job is done largely by accident. We can not expect good
engineering effects in such a case.

In subsequent chapters, we will select a group of tasks related to the dynamics
and vibrations caused by moving loads. In particular, we will show the applicability
of the space-time finite element method to the dynamics of structures. There are
characteristics and properties of this method which are attractive from the stand-
point of a researcher or engineer. We will also briefly discuss selected classical
computational methods. We will discuss their differences and similarities with the
space-time finite element method. The information provided will help readers gain
some useful experience in the computer calculations of the dynamics of structures
and the interpretation of the results.

The current level of development of computational and simulation techniques
definitely altered the balance between the engineer’s own creative contribution to
the computational process, led by a deliberate plan, developed algorithm, a com-
puter program written by his own mathematical knowledge, versus the use of al-
gorithmic solutions catalogued in computer packages, about which usually little is
know. In the first case we must have appropriate knowledge, especially mathemat-
ical, and the appropriate ability to use and program computer methods, as well as
in the interpretation of the results. In the second, we have to rely on available com-
mercial computing packages, which usually do not fully correspond to our needs.
In both cases, we need knowledge of calculation methods, the mathematical models
and numerical methods most suited to our situation, and their properties and even
their curiosities.

The most frequent problem we encounter in writing our own programss or using
ready-made computational computer tools is the selection of the material data. For
example, it is easy to take the elastic modulus of steel or concrete, but the real
challenge is the value of the damping coefficients of these materials in the chosen
construction. Without experimental studies it is impossible to determine the stiffness
of the attachment joints, the stiffness of the elastic rubber spacers in the accepted
range of work, or the stiffness of the rail anchors. What is worse, the data obtained
in a particular case, is only to a limited extent suitable for use in other cases.
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The potentially wide range of topics for this book was limited to groups of prob-
lems mainly related to dynamic phenomena in transportation and robotics. In this
area, much has changed in recent years.

The observed increased speed of vehicles in rail traffic in passenger transportation
and the increased capacity in freight traffic involves increases in the dynamic load of
the wheel–rail system. At the same time, the aim is to reduce noise and improve the
safety of travel. We are looking for new solutions for both track and vehicle design.
A tendency to use the optimum parameters of the system can be observed. Resonant
states and dynamic critical states cause overloading. One phenomenon of this type
is the self-excited vibration. This is directly related to the problem of stability of
the interaction and the motion of rolling wheelsets. Such phenomena in rail traffic
should be strictly eliminated.

1.3 Approximate Methods

The computational methods used in practice do not allow of an accurate representa-
tion of the phenomena occurring in the processes described. Despite the effort and
engagement of the knowledge from many disciplines (Figure 1.5) we can not de-
scribe all the phenomena which occurr. For this reason, we will try to separate them
from each other and focus our attention on one single phenomenon. But in this case
we are forced to go back even further and accept the solution of simpler problems,

Fig. 1.5 Fields of knowledge involved in modelling.
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which significantly deviates from our initial expectations. We make simplifications
every step of the calculation. one can pay attention to some of them.

Statics or dynamics? This selection requires a decision as to whether any time-
varying phenomena, especially the dynamic effects arising from the motion of the
construction and acting inertia forces, are large enough that we must decide on a dy-
namic analysis. In simple analyses, we assume that the processes varying in time are
slow and treat the problem as quasi-static. Such is the case with subsidence, the ma-
terial plastic flow in strain rate-dependent phenomena or the fatigue of periodically
loaded material.

Linear or nonlinear description? In the phenomena of a linear system, the response
is linearly dependent on the cause. The question arises to what extent the relation-
ship between cause and effect can be regarded as linear. Can we replace the nonlin-
ear characteristics with segments of linear dependencies? If so, how do we estimate
the resulting error?

What method of calculation? As a rule, we simplify the mathematical description
of the phenomenon and adapt it to the available computational tools. We agree that
the differential equations are not exactly satisfied throughout the area, but only at
the selected points. We assume that beyond these points the solution is sufficiently
smooth. We replace the solution, a continuous function: we represent the solution
and its derivatives by derivatives continuous which are piece-wise continuous. We
discretize the test area. Other ways of proceeding need to replace the infinite series
representing the solution with a sum of only the first few terms. We discretize the
assumed form of the solution. Figure 1.6 shows successive phases of transition from
the problem to the solution. The final result differs from a perfect one, i.e. from a re-
sult in full compliance with the originally posed task.

While many of these simplifications are intuitive and the degree of approximation
is assessed in a rather arbitrary manner, the degree of approximate validity of these
mathematical methods can usually be estimated well. Hence, there are a large variety
of computational tools. Mathematical methods that lead to numerical schemes can
be divided into three groups, as shown in Figure 1.7.

Strong form – description of the equations of motion is represented by a system
of differential equations in space and time, supplemented by boundary and initial
conditions. Some computational methods reduce a strong system to a system of
algebraic equations.
Weak form – presents a problem in the form of a weighted integral equation.
This leads to a description of averaging over the field considered.
Variational form – presents a problem in the form of functional whose station-
arity conditions lead to a weak or strong form. The transition from one form to
another is done using the rules of the variational calculus.

Strong forms of description of phenomena have been used for a long time. Newton’s
second law is an example. Solutions of the tasks described by strong forms consist
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(weak form, variational form)

(strong form)
finite difference method

finite element method

usually do not fit

verification

solution

idealisation

discretisation

correction
(based on the error analysis)

Fig. 1.6 Dependencies in the solution process.

path possible

path possible

path possible
path possible

usually impossible

usually impossible

Fig. 1.7 The transition between different mathematical formulations.
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of a direct discretization of the differential equation, such as the finite difference
method. Suitable differences replace the differential quotients. The basic defect is
the difficulty of its application for non-rectangular or non-circular areas, and for
problems which take into account the boundary conditions.

Therefore, formulations based on weak forms and variational forms have gained
greater popularity. The advantages of such a course of action are as follows:

• unification of procedures in various theoretical and engineering problems; func-
tionals are scalars, and as such do not depend on the reference system, which in
turn facilitates appropriate transformations,

• weak forms and variational forms are the basis for effective computer methods,
• with variational forms and weak forms the basic principles of mechanics, such

as energy conservation, conservation of mass, conservation of momentum and
angular momentum can easily be expressed,

• the error estimation is facilitated, and so is the determination of the stability and
the convergence of the numerical method employed.

Variational methods of solutions dominate methods based on strong forms. The lat-
ter are slowly beginning to address the conservation problems involved with historic
sites.

1.4 Review of Analytical-Numerical Methods in Moving Load
Problems

In academic textbooks devoted to differential equations one can find various solution
methods. Special types of equations have dedicated solution schemes. In structural
mechanics we limit our interest for the most part to elliptic equations in terms of
the spatial variables and parabolic or hyperbolic equations in terms of time. Only
a few equations can be solved analytically. A small number of them have closed
solutions. Others must be solved numerically at the final stage, since solutions are
usually given in the form of a series. Nowadays computational effort decreases when
we use mathematical software, for example Mathematica, Matlab, Maple, etc. Nu-
merical computations can be performed with the use of algebra packages such as
Lapack. The Octave package allows us to automate computations. However, the
physical model and its mathematical counterpart must still be elaborated by engi-
neers. Proper simplification of a real task, classification of the phenomena, elab-
oration of the mathematical model, and finally an effective and accurate solution,
must be accomplished by a human. Mathematical and mechanical knowledge must
be properly advanced to verify solutions. In relatively simple cases we can compare
the results of our solution procedures with known classical analytical solutions. In
more complex problems we must rely on our experience.

Below we will present some solution methods as a background, to perform some
simple tasks. The method of d’Alembert and Fourier methods are commonly ap-
plied. We will indicate the basic steps for the exemplary case of the string equation.
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We will also show an alternate use of the Lagrange equation to derive the differential
equations of motion of a structure.

1.4.1 d’Alembert Method

In 1713–15 B. Taylor elaborated the equation of small transverse vibrations of an
infinitely thin, uniform string of length l, fixed at both ends, inclined from the equi-
librium state. Only in 1747 did d’Alembert express this mechano-geometric formu-
lation in the form of a second order partial differential equation:

∂ 2y
∂x2 =

1
c2

∂ 2y
∂ t2 , (1.1)

where x and y are the coordinates of the material point of a string, t is time, and c is
a constant depending on the tension and mass density of the string.

The general solution of (1.1) can be obtained by introducing new variables ξ =
x− ct and η = x+ ct. Applying the chain rule we obtain

∂
∂x

=
∂
∂ξ

∂ξ
∂x

+
∂
∂η

∂η
∂x

=
∂
∂ξ

+
∂
∂η

, (1.2)

∂
∂ t

=
∂
∂ξ

∂ξ
∂ t

+
∂
∂η

∂η
∂ t

=−c
∂
∂ξ

+ c
∂
∂η

. (1.3)

We use (1.2) and (1.3) to compute the left and right sides of (1.1). We obtain

∂ 2y
∂x2 =

(
∂
∂ξ

+
∂
∂η

)(
∂y
∂ξ

+
∂y
∂η

)
=

∂ 2y
∂ξ 2 + 2

∂ 2y
∂ξ∂η

+
∂ 2y
∂η2 , (1.4)

∂ 2y
∂ t2 =

(
−c

∂
∂ξ

+ c
∂
∂η

)(
−c

∂y
∂ξ

+ c
∂y
∂η

)
= c2 ∂ 2y

∂ξ 2 − 2c2 ∂ 2y
∂ξ∂η

+ c2 ∂ 2y
∂η2 ,

(1.5)
respectively. Finally (1.1) reduces to

∂ 2y
∂ξ∂η

= 0 . (1.6)

This partial differential equation has the general solution

y(x, t) = f (ξ )+ g(η) = f (x− ct)+ g(x+ ct) , (1.7)

where f and g are arbitrary functions, with f representing a wave travelling to the
right and g a wave travelling to the left.

The solution of the initial value problem of a string located at the position
y(x,0) = y0(x) as a function of distance along the string x, and with vertical speed
∂y/∂ t|t=0 = v0(x), can be found as follows.
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From the initial conditions and the general solution (1.7) we have,

y0(x) = f (x)+ g(x) . (1.8)

Differentiating the displacement y with respect to t we have

v0(x) = f ′(x)
∂ (x− ct)

∂ t
+ g′(x)

∂ (x+ ct)
∂ t

=−c f ′(x)+ cg′(x) . (1.9)

Integration gives us ∫ x

a
v0(s)ds =−c f (x)+ cg(x) . (1.10)

Solving (1.8) and (1.10) simultaneously for f and g we have

f (x) =
1
2

y0(x)− 1
2c

∫ x

a
v0(s)ds , (1.11)

g(x) =
1
2

y0(x)+
1
2c

∫ x

a
v0(s)ds . (1.12)

Plugging them into (1.8), we obtain the solution of the wave equation with specified
initial conditions

y(x, t) =
1
2

y0(x− ct)+
1
2

y0(x+ ct)+
1
2c

∫ x+ct

x−ct
v0(s)ds . (1.13)

Later, d’Alembert proposed looking for solutions in the form of a product of
two functions of one variable, i.e. with the method of separation of variables:
y = f (x)g(t). At the beginning of the 19th century this idea was extensively de-
veloped by J.-B. Fourier.

1.4.2 Fourier Method

The method of Fourier is one of the most widely used methods for solving partial
differential equations. This method is described in detail in many books about vi-
brations and waves. The following is a brief description of the Fourier method for
one-dimensional structures.

Let us consider the one-dimensional wave equation

∂ 2w(x, t)
∂ t2 − c2 ∂ 2w(x, t)

∂x2 = 0 . (1.14)

In the case of an axially vibrating rod, the wave speed c is given by the equation

c =

√
E
ρ

, (1.15)
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where E is the Young modulus and ρ is the mass density. We take a rod clamped on
its left side, so the boundary conditions are

w(0, t) = 0
∂w(x, t)
∂x

∣∣∣∣
x=0

= 0 . (1.16)

Also we assume the initial conditions

w(x,0) = w0(x),
∂w(x, t)
∂ t

∣∣∣∣
t=0

= v0(x) . (1.17)

The solution of this initial-boundary problem can be obtained in the classical way
of integration of a differential equation by grouping variables and proposing the
solution in the form of a series of harmonic functions

w(x, t) = X(x)T (t) . (1.18)

Substituting (1.18) into the equation of motion (1.14) we obtain

T̈ (t)X(x)− c2T (t)X ′′(x) = 0 , (1.19)

or in separated form
T̈ (t)
T (t)

= c2 X ′′(x)
X(x)

. (1.20)

Since the left-hand side of equation (1.20) is only a function of time, while the right-
hand side is only a function of the spatial variable, to ensure the equality at any time
and at any point of the rod, both sides must be constant. Let us denote this constant
by −ω2. This gives us

T̈ (t)
T (t)

= c2 X ′′(x)
X(x)

=−ω2 . (1.21)

The equation (1.21) can be written in the following form

T̈ (t)+ω2T (t) = 0 , (1.22)

X ′′(x)+
ω2

c2 X(x) = 0 . (1.23)

Applying the boundary conditions (1.16) to (1.18) and using the fact that T (t) �≡ 0,
we obtain

X(0) = 0, X ′(x)
∣∣
x=0 = 0 . (1.24)

The solution of equation (1.21) satisfying the conditions (1.24) is called the solu-
tion of the boundary problem. Solutions of the boundary problem are called eigen-
functions, and the values of ω called eigenvalues. The solution of (1.21) is in the
following form
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X(x) = A sin
(ω

c
x
)
+B cos

(ω
c

x
)
, (1.25)

for ω �= 0, where A and B are constants. According to the boundary conditions
(1.24), the constants A and B take the form

B = 0, A
ω
c

cos
(ω

c
l
)
−B

ω
c

sin
(ω

c
l
)
= 0 . (1.26)

The existence of nonzero solutions is proved by equating to zero the determinant of
the characteristic system of equations (1.26)

∣∣∣∣∣
0 1

ω
c cos ωl

c −ω
c sin ωl

c

∣∣∣∣∣= 0 . (1.27)

After transformation, we obtain the characteristic equation in the form

ω
c

cos
ω l
c

= 0 . (1.28)

Since ω = 0 leads to the trivial solution X(x) ≡ 0, the eigenvalues are solutions of
the characteristic equation (1.28)

cos
ω l
c

= 0 . (1.29)

Thus ωn

c
l = (2n− 1)

π
2
, (1.30)

where n is an integer describing the number of the term. Equation (1.30) defines an
infinite sequence of eigenvalues ωn. Each eigenvalue corresponds to the eigenfunc-
tion

Xn(x) = An sin
(ωn

c
x
)
+Bn cos

(ωn

c
x
)
. (1.31)

Assuming in equation (1.26) ω = ωn and A = An, B = Bn, we obtain

Bn = 0, n = 1,2, ... , (1.32)

consequently

Xn(x) = An sin
(ωn

c
x
)
= An sin

{
(2n− 1)

π
2

x
l

}
. (1.33)

Let us specify a particular integral of equation (1.14). For the nth particular integral
the function Tn(t) satisfies the equation (1.22), where ω = ωn. We have a solution
for Tn in the following form

Tn(t) = Kn cos(ωnt)+Ln sin(ωnt) . (1.34)
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In this way an infinite series of particular integrals has been specified

wn(x, t) = Xn(x)Tn(t) = [Kn cos(ωnt)+Ln sin(ωnt)] An sin
(ωn

c
x
)
, (1.35)

where ωn is given by equation (1.30).

1.4.3 Lagrange Formulation

If the position of the mass is known at two instants of time t1 and t2, then its motion
during this interval of time can be represented by a curve. A slightly different curve
or path is obtained if, at any instant, a small variation in position δξ is allowed
with no associated change in time; that is, we assume δ t=0. The stipulation is made,
however, that at times t1 and t2 the two paths coincide, that is,

δξ = 0 at t = t1 and t = t2 . (1.36)

The problem is to choose the true path from ξ1 to ξ2 out of all possible ones.
According to Hamilton’s principle for a conservative system, we can write

∫ t2

t1
δ (Ek−Ep)dt = 0 . (1.37)

Ek and Ep are the kinetic energy and the potential energy, respectively. The above
formula describes the energy balance in the system. Equation (1.37) with respect to
Ek= f (ξ , ξ̇ ) is transformed to

∫ t2

t1

(
∂Ek

∂ ξ̇
δ ξ̇ +

∂Ek

∂ξ
δξ − ∂Ep

∂ξ
δξ
)

dt = 0 . (1.38)

Integration by parts allows us to rewrite one of the terms (1.38) as follows

∫ t2

t1

∂Ek

∂ ξ̇
δ ξ̇ dt =

∂Ek

∂ ξ̇
δξ
∣∣∣∣
t2

t1

−
∫ t2

t1

d
dt

(
∂Ek

∂ ξ̇

)
δξ dt . (1.39)

Substituting (1.39) into (1.38) and employing the assumption (1.36), we can write

∫ t2

t1

[
− d

dt

(
∂Ek

∂ ξ̇

)
+
∂Ek

∂ξ
− ∂Ep

∂ξ

]
δξ dt = 0 . (1.40)

In the case of a system with many degrees of freedom, the deformation of which is
described by n independent displacements, the general form of Lagrange’s equation
of the second kind is

d
dt

(
∂Ek

∂ ξ̇ j

)
− ∂Ek

∂ξ j
+
∂Ep

∂ξ j
= 0 , j = 1,2, ...,n . (1.41)
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1.5 Examples

Let us look at simple examples of a string and a beam vibrating under a moving load.
We will treat the case of a massless load as well as the case with non-zero mass. We
intuitively expect that differences in the results should occur and these results vary
with the ratio of the moving mass to the mass of the structure. The second parameter
that influences the process is the velocity of the load. Two types of diagrams are used
for the analysis of such a problem: the displacements in time of the contact point
moving together with the load, and displacements of the midpoint of the span.

Figure 1.8 depicts the displacements in time of the string motion. The left hand
column shows the displacements under a travelling inertial particle and the right
hand column depicts the displacements of the midpoint. The case of a massless force
is plotted with a continuous line while the inertial load is plotted with a dashed line.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  0.2  0.4  0.6  0.8  1

w
/w

0

vt/L

v=0.1

gravitation force
inertial force

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  0.2  0.4  0.6  0.8  1

w
/w

0

vt/L

v=0.1

gravitation force
inertial force

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w
/w

0

vt/L

v=0.3

gravitation force
inertial force

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w
/w

0

vt/L

v=0.3

gravitation force
inertial force

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.2  0.4  0.6  0.8  1

w
/w

0

vt/L

v=0.5

gravitation force
inertial force

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  0.2  0.4  0.6  0.8  1

w
/w

0

vt/L

v=0.5

gravitation force
inertial force

a b

Fig. 1.8 Point load travelling along a string: a) – under a travelling load, b) – at the midpoint.
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In the first case, the only force acting on the string is equal to the weight of the
corresponding mass. In the case of a massive load, the point mass also increases the
inertia of the string. The comparison of both curves exhibits a smooth form in the
case of the travelling mass. Moreover, the maximum of the displacement is shifted,
exhibiting an elongation of the period of vibrations.

Identical features are observed in the case of a Bernoulli–Euler beam. The sim-
plest model of a beam results in similar diagrams to those of even the more complex
Timoshenko model, presented later. Differences in displacements can reach 50%
and, although the mass trajectory is smooth, the acceleration values differ (Figure
1.9). Accelerations at the final stage of the process are significantly higher in the
case of the moving inertial particle.
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Fig. 1.9 Point load travelling along the Bernoulli–Euler beam: a) – under the travelling load,
b) – at the midpoint.



20 1 Introduction

The Timoshenko beam exhibits similar properties to those in the case of a string.
We use dimensionless data in the example. The vertical acceleration of the travelling
mass is high and noticeable jumps must be taken into account in engineering cal-
culations. Although in real structures described by nonlinear equations we observe
a smooth response, we should expect high vertical acceleration to be a physical
feature of the problem. We should emphasize a significant difference in the case
of both types of a load (Figure 1.10). Generally we can say that in the case of an
inertial load, displacements are lower while accelerations are higher.
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Fig. 1.10 Point load travelling along the Timoshenko beam: a) – under the travelling load, b)
– at the midpoint.



Chapter 2
Analytical Solutions

A concentrated load acting on a continuous medium is usually described by a Dirac
delta function. The point force or mass whose area of influence is limited, must be
described in the entire spatial domain of the structure, for example 0≤ x≤ l. Multi-
plication of the force by the Dirac delta function δ (x) leads to such an effect. Then
we have the load terms δ (x− x0)P or δ (x− x0)md2w/dt2 described in the domain
of the problem. Unfortunately, the mathematical treatment of the term of the first
type is relatively simple. It does not contain the solution variable. The treatment of
a term of the second type, which describes the inertial force induced by the material
particle, is much more complex. It includes the acceleration of the selected point x0

as the second derivative of the solution of the differential equation w. What is more,
the argument x0 = vt moves with velocity v and the inertial term is a function of
both x and t:

δ (x− vt)m
d2w
dt2 .

Due to the presence of the Dirac delta function in this result, the solutions obtained
to these partial differential equations are not solutions in the classical sense, but are
called ‘weak’ or ‘distributional’ solutions. So we must extend the concept of solu-
tion, arranging that any limit of an almost uniformly convergent sequence of classi-
cal solutions will be regarded as a generalized solution in the sense of a distribution.
Distributions are therefore defined as the limit of sequences of continuous functions.
This is called the sequential theory of distributions [4], in contrast to the functional
theory [125]. For each distribution in the sense of L. Schwartz (functional) there is
exactly one distribution in the sense of Mikusiński–Sikorski (sequential), and vice
versa, so there is a mutual uniqueness [152]. Distributions are thus a generaliza-
tion of functions. The purpose of the concept of a distribution is to give the correct
meaning qua mathematical concept to objects such as the Dirac delta δ (x), which
is much used in mathematical physics. An important feature of a distribution is
that it ensures the posibility of differentiation, which is not always allowed for an
arbitrary set of functions. The starting point for the sequential theory of distribu-
tions is the set of functions which are continuous on some fixed interval A < x < B
(−∞ ≤ A < B ≤ ∞). If a sequence fn(x) of such continuous functions converges

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 21–30.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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almost uniformly to a function f (x), it is also convergent in the sense of distributions
to f (x) [4]. Every convergent sequence of distributions can be differentiated term
by term (analogous to a uniformly convergent series). Of course, every uniformly
convergent sequence is convergent almost uniformly. This allows, in the distribution
sense, the differentiation of any function, changing the order of differentiations, and
passing to the limit, without any restrictions. Such a statement in classical analysis
is in general not true and is only possible under additional assumptions.

2.1 A Massless String under a Moving Inertial Load

Mathematically, a string is the simplest structure to be analysed. Engineering solu-
tions frequently require the application of elements that resist tension but are flexible
to bending, for example fibres, ropes, chains, or cables. Moreover, the same equation
governs other physical problems such as the longitudinal vibrations of rods. First we
will consider a massless string. The analysis will follow the solution of Frýba [56].

Assuming ρ = 0, the equation of motion of a string under a moving mass can be
put into the following form:

−N
∂ 2w(x, t)
∂x2 = δ (x− vt)P− δ (x− vt)m

d2w(vt, t)
dt2 . (2.1)

We impose boundary conditions

w(0, t) = 0 , w(l, t) = 0 (2.2)

and initial conditions

w(x,0) = 0 ,
∂ w(x, t)
∂ t

∣∣∣∣
t =0

= 0 . (2.3)

Here, w(x, t) is the transverse displacement of the string, N is the tensile force, P
and m are the point force and the point mass, respectively, and δ is the Dirac delta
function.

To solve this equation we use the convolution property

w(x, t) = G(x,s)∗ p(s, t) =
∫ l

0
G(x,s) p(s, t)ds , (2.4)

where G(x,s) is the Green’s function obtained by solving the so-called basic equa-
tion by replacing the right-hand side of (2.1) with the Dirac delta function, δ (x− s).
Finally, the displacements of the massless string according to (2.4) are the convolu-
tion of G(x,s) and heterogeneity (2.1)

p(x, t) = δ (x− vt)

(
P − m

d2w(vt, t)
dt2

)
. (2.5)
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A simple integration, based on the assumed boundary conditions (2.2) with the fol-
lowing notation

x = vt and w1(t) = w(vt, t) (2.6)

according to (2.4), (2.5), (2.6), and (2.2–2.3) results in the differential equation of
motion of a moving massless string under a moving inertial load

w1(t) =

(
P − m

d2w1(t)
dt2

) [
1
N

(
1 − vt

l

)
vt

]
. (2.7)

We assume dimensionless displacements of the string y and dimensionless time τ

y(τ) =
w1(t)

w0
and τ =

vt
l
, (2.8)

where

w0 =
Pl
4N

(2.9)

is the static deflection in the middle of the string. Substituting (2.8) into (2.7), we
obtain the ordinary differential equation, heterogeneous with variable coefficients

τ (1 − τ) ÿ(τ) + 2α y(τ) = 8α τ (1 − τ) , (2.10)

where

α =
N l

2mv2 . (2.11)

The solution of (2.10) depends on the parameter α .

2.1.1 Case of α �=1

We accept the equation being a solution of equation (2.10)

y(τ) = τ (1 − τ)ν(τ) . (2.12)

Substituting (2.12) and its second derivative into (2.10) we obtain

τ (1 − τ) ν̈(τ) + (2 − 4τ) ν̇(τ) − 2(1 − α)ν(τ) = 8α . (2.13)

The homogeneous part (2.13) is the hypergeometric equation [126] of the general
form shown below

τ (1 − τ) ν̈(τ) + [c − (a + b + 1)τ] ν̇(τ) − abν(τ) = 0 . (2.14)

In the first step, we solve the homogeneous part of (2.13) where the coefficients a,
b, and c have the following form

a1,2 =
3 ± √1 + 8α

2
, b1,2 =

3 ∓ √1 + 8α
2

, c = 2 . (2.15)



24 2 Analytical Solutions

The solution of the hypergeometric equation, when the number c is a positive integer
c = 1+m and a �= m, b �= m, takes the form

ν1(τ) = F(a,b,c,τ) ,

ν2(τ) = F(a,b,c,τ) lnτ +
∞

∑
k=1

{
(ak)(bk)

(ck)
[h(k) − h(0)]

τk

k!
+

+
1

(1 − a)(1 − b)τ

}
, (2.16)

where F(a,b,c,τ) is a hypergeometric series:

F(a,b,c,τ) = 1 +
∞

∑
k=1

(ak)(bk)

(ck)

τk

k!
, (2.17)

and (ak), (bk) i (ck) are the so called Pochhammer symbols:

(ak) = a(a+ 1) . . .(a+ k− 1) ,

(bk) = b(b+ 1) . . .(b+ k− 1) ,

(ck) = c(c+ 1) . . .(c+ k− 1) . (2.18)

The particular solution (2.13) on the basis of its heterogeneity takes the form

νs(τ) =
4α
α − 1

. (2.19)

According to (2.12) for α �= 1 the equation (2.10) is the following

y(τ) = [A1 ν1(τ) + A2 ν2(τ) + νs(τ)]τ (1 − τ) . (2.20)

Based on the initial conditions (2.3) we calculate the constants A1 and A2:

A1 =
−4α
α − 1

, A2 = 0 . (2.21)

The constant A2 = 0 greatly simplifies the formula (2.20). Finally, the displacements
of the string under a moving load for α �= 1 are of the form

y(τ) =
4α
α − 1

τ (1 − τ) [1 − ν1(τ)] =

=
4α
α − 1

τ (1 − τ) [1 − F(a,b,c,τ)] , (2.22)

where F(a,b,c,τ) is given by equation (2.17). In Figure 2.1 we can see the impact
of the accuracy on the solution near the end supports.
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Fig. 2.1 Trajectory of a mass travelling over a massless string at different speeds.
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Fig. 2.2 The trajectory of the mass in the case of a massless string (case α = 1) described by
(2.24).

2.1.2 Case of α =1

In this case, equation (2.10) becomes

τ (1 − τ) ÿ(τ) + 2y(τ) = 8τ(1 − τ) . (2.23)

The above equation has a closed-form analytical solution. The displacements of the
string when α = 1, under the conditions (2.2–2.3) are given below:
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y(τ) =
4
3
τ(1− τ)− 4

3
τ (1+ 2τ ln(1− τ)− 2ln(1− τ)) . (2.24)

Let us look at Figure 2.2 in which (2.24) is depicted in terms of time vt/l.

2.2 Discontinuity of the Solution

The advantages of the analytical method allowed us to exhibit an interesting feature
of the solution of the differential equation governing the motion of the string near
an end support. It is visible in Figures 2.1 and 2.2. The diagrams exhibit jumps of
the mass displacement in time. Let us consider the physical nature of these jumps.
The simplest explanation can be based on the force equilibrium (Figure 2.3). We
must remember that a constant string tension N is the fundamental assumption in
our problem. Moreover, in Figure 2.3 the horizontal force pushing the mass to hold
the speed v must be seen in the scheme. At the final stage (as depicted in Figure
2.3), the remaining distance d will be traversed in time d/v. In this period, the mass
m must be lifted from the position wB to zero. If the deflection wB is high enough,
compared to the other parameters, the necessary acceleration applied to the mass
must result in high forces on the string F ∼ wmv2/d2. In such a case, F can exceed
N if m or v is sufficiently high. This fact violates our assumptions and the condition
of applicability of the small vibration equation (∂w/∂x)2 << 1. A mathematical
proof can be given only in the particular case. In the general case, only numerical
simulations can be carried out.

Let us consider a massless string, which is a particular case of our problem. The
solution is given by a sum (2.22)

y(τ) =
4α
α − 1

τ (τ − 1)
∞

∑
k=1

k

∏
i=1

(a+ i− 1)(b+ i−1)
c+ i− 1

τk

k!
, (2.25)

where τ = vt/l > 0 is the time parameter, andα =Nl/(2mv2)> 0 determines the di-
mensionless parameter. The parameters a, b and c are given by the equations (2.15).

v
N

N

B

wB

m

d

P+mw
..

Fig. 2.3 Final stage of the moving mass.
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In the case of α = 1, the initial problem has a closed-form solution given by (2.24).
The mass position near x = l, i.e. with τ = 1−, tends to -4/3.

Below we will consider the case of α �= 1. In Figure 2.4 we can notice the strong
influence of the precision on the solution near the end support. Let us consider the
solution given by (2.25). The first term τ(τ−1) results in zero at τ = 1. The expres-
sion

∞

∑
k=1

k

∏
i=1

(a+ i− 1)(b+ i−1)
c+ i− 1

τk

k!
(2.26)

tends to ∞ if τ → 1. We have an indefinite solution at τ = 1−.
The same result can be obtained on the basis of Abel’s theorem. The power series,

as a part of (2.25), can be written in the form

∞

∑
k=1

Ak τk , Ak =
k

∏
i=1

(a+ i− 1)(b+ i−1)
(c+ i− 1) i

. (2.27)

In this case lim
τ→1−

Ak τk = ∞ and y(1−) = 0 ·∞ .

In the case a+b< c, the series (2.27) is convergent and there are no singularities.
However, this is not our case since it does not fulfill (2.15). In the case a+b> c, the
series diverges (the sum tends to ∞). We have an indefinite value 0 ·∞ while testing
the function.

We can also carry out another scheme of analysis. Below we will include the term
τ(τ− 1) in the sum of (2.25). Thus it can be reduced to the following form:

(1− τ)
∞

∑
k=1

(ak)(bk)

(ck)

τk

k!
=

=
abτ

c
+

∞

∑
k=2

(ak−1)(bk−1)

(ck−1)

(
(a+ k− 1)(b+ k− 1)

k(c+ k− 1)
− 1

)
τk

(k− 1)!
, (2.28)
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Fig. 2.4 Trajectories of the mass moving on a massless string: lower number of terms in
a sum (left diagram) and higher number of terms (right diagram).
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where
(ak) = a(a+ 1) . . .(a+ k− 1) ,

(bk) = b(b+ 1) . . .(b+ k− 1) ,

(ck) = c(c+ 1) . . .(c+ k− 1) .

By using the Rabbe criterion one can show that for a+ b < c+ 2 the limit

lim
τ→1

[
(1− τ)

∞

∑
k=1

k

∏
i=1

(a+ i− 1)(b+ i− 1)
c+ i− 1

τk

k!

]
(2.29)

is finite. Now we can estimate the value of the sum (2.28). The sum of the first
two or three terms, depending on parameters, including abτ/c, is positive. The next
terms are all positive. This proves that the sum (2.28) is finite and is greater than 0.
The scheme of the function (2.25) is depicted in Figure 2.5. The case a+b = c+1
is special (our set of parameters), for which the convergence is faster.

Let us look at the boundary condition at τ = 1. We can say that it is fulfilled,
however. We can imagine a symmetrical problem, with the mass moving from τ = 2
towards τ = 1 (with opposite direction of the force P) (Figure 2.6). Then we have
two analogous problems at τ = 1. Both limits result in zero value at τ = 1:

1
2

(
lim
τ→1−

y(τ)+ lim
τ→1+

y(τ)
)
= 0 .

We can also consider the derivative dy/dτ . The resulting formula can be derived.
For negative P the result is

lim
τ→1−

dy
dτ

= ∞ . (2.30)

1
τ

Fig. 2.5 Discontinuity of the function (2.25) at τ = 1.

1
τ

Fig. 2.6 Left and right limits at τ = 1.
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The above limit shows that the angle of the string line at the final point is infinite. In
practice the string vertically approaches the support. Mathematically the function is
discontinuous there.

2.3 Conclusions

In this chapter we presented a global analytical formulation of the vibration prob-
lem for a string subjected to a moving mass. The numerical solution of the resulting
matrix differential equation of the second order is relatively simple and is valid for
the whole range of speeds v: sub-critical, critical, and over-critical. The analysis of
the results exhibits a jump of the mass in the neighborhood of the end support. The
force acting on the mass is, however, limited to the tensile force N. A discontinuity
of the mass trajectory at x = l exists in the case of 0 < v ≤ c. In the case of a mass-
less string this discontinuity is mathematically proved. In case v > c, there is no
discontinuity, since for x≥ vt the deflection w(vt, t) = 0.

Unfortunately, we can not give an answer to the question of whether the string
is continuous in the case that the discontinuity of the particle’s trajectory occurs.
The massless or massive string shape is not determined in the analytical form. We
can only expect such a discontinuity on the basis of numerical results. The particle
motion is continuous only in the trivial case of m = 0. The expression in parenthesis
in (2.28) is equal to zero, and since α = 0 in (2.25), finally y(1−) = 0 and y(1) = 0.

We consider small vibrations. The discontinuity in this case is a feature of math-
ematical interest rather than any practical one. However, in various analytical or
numerical investigations of problems with travelling inertial load, one can find poor
convergence of the solutions in the places where the boundary conditions are im-
posed. Our analysis can explain the anomalies in such cases.

Figure 2.1 shows the mass trajectory moving along the massless string at a speed
of from 0.1–1.0 of the wave speed c in the case of the inertial speed. Practically,
each curve exhibits ia strong discontinuity of the trajectory.

We can observe the same properties of the solution in the case of an inertial string.
A comparative plot is presented in Figure 2.7. We should consider three parameters:
the moving mass value, the massless force, and the mass of the string in the case of
an inertial string. The plots depend on the ratios of these parameters. The curves for
a massless string in Figure 2.7 were compared with the plots computed when the
ratio of the moving mass to the string mass was equal to one. We can emphasize
that in the case of a lower m/ρ/A/l ratio, the coincidence of each pair of curves is
higher. However, an analytical proof of the discontinuity in the case of the inertial
string is impossible, because of the complexity of the differential equation and the
necessity of a numerical integration stage.



30 2 Analytical Solutions

-2

-1.5

-1

-0.5

 0

 0  0.2  0.4  0.6  0.8  1

w
/w

0

vt/L

massless string
inertial string

v=0.8

v=0.5

v=0.2

Fig. 2.7 Comparison of particle trajectory for massless and inertial strings.



Chapter 3
Semi-analytical Methods

Problems of the dynamics of moving loads can be divided into three main groups
depending on the nature of the load. The first is called the Willis–Stokes [131, 140]
problem, describing the motion of an inertial point load travelling along a massless
Euler beam. We know its complete analytical solution. The second case is related
to the load of a constant amplitude moving along an inertial beam. This task was
first solved by Krylov [75]. Further works discussed the influence of the elastic
foundation [1, 129] and subcritical and critical velocities of the moving force [53].
Also in the case of a moving force with periodic amplitude, the complete analyt-
ical solutions are known [30, 94, 96, 137]. An excellent summary of these works
is given by Frýba in his monograph [56]. He discusses in detail the majority of
types of such problems. An inertial load moving along a beam is the third problem.
Closed analytical solutions of this case do not exist. In the literature we can find
approximate analytical solutions [70, 71, 93, 124, 130]. A review of the most im-
portant analytical contributions was given by Ayre et al. [8]. The authors performed
an experiment, of which the results were compared with other approximate analyt-
ical solutions published in the literature. Other papers have been devoted to semi-
analytical solutions [25, 69, 86, 98, 111, 122, 138, 151]. The equation of motion is
transformed analytically to a relatively simple form and then numerical methods are
used for its integration. These solutions are much more accurate, but unfortunately
they can not be investigated analytically. Our previous research led to the discovery
of interesting properties of solutions for the string and Timoshenko beam [48]. The
discontinuity of the trajectory of a moving material point near the end supports was
exhibited. In the case of a massless string, this feature was mathematically proved.
Semi-analytical solutions are not versatile. Altering the imposed boundary condi-
tions requires finding a new method of calculation. Thus semi-analytical solutions
are unsuitable for engineering practice. However, they are well-suited for the verifi-
cation of numerical solutions.

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 31–76.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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w(x,t)

v
P

m Aρ NN

l

Fig. 3.1 Moving inertial load.

3.1 String

Let us consider a string of length l, cross-sectional area A, mass density ρ , and ten-
sile force N, subjected to a mass m accompanied by a force P (Figure 3.1), moving
with constant speed v. The equation of motion of the string under a moving inertial
load with constant speed v has the form

−N
∂ 2w(x, t)
∂ x 2 + ρA

∂ 2w(x, t)
∂ t 2 = δ (x− vt)P − δ (x− vt)m

d 2w(vt, t)
d t 2 . (3.1)

We impose boundary conditions

w(0, t) = 0, w(l, t) = 0 (3.2)

and initial conditions

w(x,0) = 0,
∂ w(x, t)
∂ t

∣∣∣∣
t =0

= 0 . (3.3)

The first term in equation (3.1) describes the forces that resist the external load in
a neighbourhood of the application of the load. The second term introduces the iner-
tia of the material point of the string. The right-hand side of the equation contributes
the external force and the inertial force induced by the material inertial point m. The
boundary conditions describe the constant zero position of both ends of the string.
The initial conditions in turn establish the straight zero initial position and stationary
state, i.e. zero velocity, at the initial time.

3.1.1 Fourier Analysis

In order to reduce the partial differential equation to an ordinary differential equa-
tion, we apply the Fourier sine integral transformation in a finite range (i.e. a finite
length of the string)
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w(x, t) =
2
l

∞

∑
j=1

V ( j, t) sin
jπx
l

, (3.4)

V ( j, t) =

∫ l

0
w(x, t) sin

jπx
l

dx . (3.5)

We can present each of the functions as an infinite sum of sine functions (3.4) with
coefficients (3.5). Then the expansion of the moving mass acceleration in a series
has a form

d 2w(vt, t)
d t 2 =

2
l

∞

∑
k=1

[
V̈ (k, t) sin

kπvt
l

+
2kπv

l
V̇ (k, t) cos

kπvt
l
−

−k2π2v2

l2 V (k, t) sin
kπvt

l

]
. (3.6)

The integral transformation (3.5) of equation (3.1) with consideration of (3.6) can
be performed

N
j2 π2

l2 V ( j, t) + ρA V̈ ( j, t) =

= P sin
jπvt

l
−m

d 2w(vt, t)
dt 2

∫ l

0
δ (x− vt) sin

jπx
l

dx . (3.7)

The integral with the Dirac delta function in the above equation is as follows

∫ l

0
δ (x− vt) sin

jπx
l

dx = sin
jπvt

l
. (3.8)

Let us consider now (3.6) and (3.8):

N
j2π2

l2 V ( j, t)+ρAV̈( j, t) =

=P sin
jπvt

l
− 2m

l

∞

∑
k=1

V̈ (k, t) sin
kπvt

l
sin

jπvt
l
−

− 2m
l

∞

∑
k=1

2kπv
l

V̇ (k, t) cos
kπvt

l
sin

jπvt
l

+

+
2m
l

∞

∑
k=1

k2π2v2

l2 V (k, t) sin
kπvt

l
sin

jπvt
l

.

(3.9)

Finally, the equation of motion, after a Fourier transformation, can be written
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ρA V̈ ( j, t)+α
∞

∑
k=1

V̈ (k, t) sinωkt sinω jt+

+2α
∞

∑
k=1

ωk V̇ (k, t) cosωkt sinω jt +Ω 2 V ( j, t)−

−α
∞

∑
k=1

ω2
k V (k, t) sinωkt sinω jt = P sinω jt ,

(3.10)

where

ωk =
kπv

l
, ω j =

jπv
l

, Ω 2 = N
j2π2

l2 , α =
2m
l

. (3.11)

The analytical solution of this problem is unknown. We must solve this final sys-
tem of differential equations numerically. Thus we obtain a semi-analytical solution.
Equation (3.10) can be written in matrix form, where M, C and K are square matri-
ces:

M

⎡
⎢⎢⎢⎣

V̈ (1, t)
V̈ (2, t)

...
V̈ (n, t)

⎤
⎥⎥⎥⎦+C

⎡
⎢⎢⎢⎣

V̇ (1, t)
V̇ (2, t)

...
V̇ (n, t)

⎤
⎥⎥⎥⎦+K

⎡
⎢⎢⎢⎣

V (1, t)
V (2, t)

...
V (n, t)

⎤
⎥⎥⎥⎦= P (3.12)

or
MV̈+CV̇+KV = P , (3.13)

where

M =

⎡
⎢⎢⎢⎣
ρA 0 · · · 0
0 ρA · · · 0
...

...
. . .

...
0 0 · · · ρA

⎤
⎥⎥⎥⎦+

+α

⎡
⎢⎢⎢⎢⎢⎣

sin 1πvt
l sin 1πvt

l sin 1πvt
l sin 2πvt

l · · · sin 1πvt
l sin nπvt

l

sin 2πvt
l sin 1πvt

l sin 2πvt
l sin 2πvt

l · · · sin 2πvt
l sin nπvt

l

...
...

. . .
...

sin nπvt
l sin 1πvt

l sin nπvt
l sin 2πvt

l · · · sin nπvt
l sin nπvt

l

⎤
⎥⎥⎥⎥⎥⎦

, (3.14)

C = 2α

⎡
⎢⎢⎢⎢⎣

1πv
l sin 1πvt

l cos 1πvt
l

2πv
l sin 1πvt

l cos 2πvt
l · · · nπv

l sin 1πvt
l cos nπvt

l

1πv
l sin 2πvt

l cos 1πvt
l

2πv
l sin 2πvt

l cos 2πvt
l · · · nπv

l sin 2πvt
l cos nπvt

l
...

...
. . .

...
1πv

l sin nπvt
l cos 1πvt

l
2πv

l sin nπvt
l cos 2πvt

l · · · nπv
l sin nπvt

l cos nπvt
l

⎤
⎥⎥⎥⎥⎦ , (3.15)
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K =

⎡
⎢⎢⎢⎢⎣

12π2

l2 N 0 · · · 0

0 22π2

l2 N · · · 0
...

...
. . .

...

0 0 · · · n2π2

l2 N

⎤
⎥⎥⎥⎥⎦− (3.16)

−α

⎡
⎢⎢⎢⎢⎣

12π2v2

l2 sin 1πvt
l sin 1πvt

l
22π2v2

l2 sin 1πvt
l sin 2πvt

l · · · n2π2v2

l2 sin 1πvt
l sin nπvt

l

12π2v2

l2 sin 2πvt
l sin 1πvt

l
22π2v2

l2 sin 2πvt
l sin 2πvt

l · · · n2π2v2

l2 sin 2πvt
l sin nπvt

l
...

...
. . .

...
12π2v2

l2 sin nπvt
l sin 1πvt

l
22π2v2

l2 sin nπvt
l sin 2πvt

l · · · n2π2v2

l2 sin nπvt
l sin nπvt

l

⎤
⎥⎥⎥⎥⎦ ,

P = P

⎡
⎢⎢⎢⎢⎣

sin 1πvt
l

sin 2πvt
l

...
sin nπvt

l

⎤
⎥⎥⎥⎥⎦ . (3.17)

When the coefficients V ( j, t), j = 1, ...,n are computed, the displacements of the
string can be determined as a solution of (3.4). This gives the solution for a full
range of parameters. We can calculate the displacements at each point of the string
and for all values of v. We see that assuming ρ = 0 in (3.14) we have the formulation
for a massless string.

Numerical computations were carried out for unitary dimensionless data: length,
tensile force and mass density. The Newmark scheme was used for integration. In
such a way both the problem and the solution were scaled to normalized values. The
wave speed in this case is unity (c = 1). First we present the moderate convergence
rate of the series which constitutes the solution (Figure 3.2). We denote the wave
speed in the unloaded string as c (c2 =N/ρ/A). Further diagrams exhibit the vertical
deflection of the string w related to the deflection in quasi-static mass motion in the
middle of the span w0. We can notice that the first term is already close to the exact
solution. Three or five terms are sufficient for an accurate result in the engineering
sense. We must emphasize here that a higher speed of the mass, for example equal
to 0.9c or c requires even a hundred terms and a short time step for time integration
of the differential equation, since the solution exhibits small jumps near the final
support. An accurate plot for different velocities v is given in Figure 3.3.

Let us look at the diagrams of the displacements of the string at the point under
the moving mass. The diagram for various mass values related to the string mass,
for the speed v= 0.2c, is depicted in Figure 3.4. We see that even a small mass equal
to 0.2 of the string mass smooths the trajectory. A more detailed presentation of the
string motion is given in Figures 3.5 and 3.6. We can notice the sharp edge of the
wave and the reflection from both supports. The case of v = c is interesting since
it gives a sharp, practically vertical, surface of the plot at the mass trajectory. The
space-time subdomain x > vt of the plot is not affected by the process if v ≥ c.
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Fig. 3.2 Convergence of the solution for v = 0.2c depending on the number of terms in the
trigonometric series.
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Fig. 3.3 Inertial string — displacements computed semi-analytically at different speeds.

Here we must also focus our attention on the final stage of the path of the inertial
particle, which is better exhibited in Figure 3.7. Especially in the case of v = 0.5c
we notice that the travelling mass does not reach the end with the expected position
w = 0, imposed by the boundary conditions. This problem was discussed in detail
in Section 2.2.

The convergence to the discontinuous solution near the end point is depicted in
Figure 3.8. The mass trajectory is plotted for increasing numbers of terms at the
speed v = 0.5c. We notice that the function tends slowly to the jump at x = l. All
characteristic lines are smooth, since a limited number of terms was assumed in the
computations. The convergence rate is slow, and especially near x= l, the number of
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Fig. 3.4 Displacements under the mass for different mass values at the speed v = 0.2c.

terms taken must be at least 50. At high velocities (in our case v>0.8c) a sufficiently
small time step for the integration of (3.13) must be applied (even 10−5) to avoid
small oscillations of the solution in the last stage.

Figure 3.9 exhibits very good convergence of the deflected axis of the string, even
with a small number of terms in a series, for almost entire time of the process. Un-
fortunately, at the final stage of the process the oscillations of the numerical solution
appear. At t = 0.8 and 0.9 l/v the resulting curves are accurate even if plotted with
100 terms. All the curves coincide with those obtained for 400 terms. At t = 0.99 l/v
the accuracy increases with the the number of terms. Figure 3.9d corresponds to the
mass position x = l. The mass reaches the support. In this particular case we proba-
bly do not have convergence. The result is convergent at x = l− 0 and t = l/v− 0.
Although we cannot prove mathematically the discontinuity of the inertial string
matter, we can say that for practical use the differential equation of the string mo-
tion under the assumption of small displacements involves the discontinuity of the
structure in the neighbourhood of the support. Such a phenomenon is observed in
real structures (a track or bridge plates) in the form of high value impacts.

The supersonic motion of the mass results in zero displacement. In the diagram
obtained numerically this value oscillates with low amplitude. The amplitude de-
creases with the increase of the number of terms in a sum (Figure 3.10). From this
point of view we can say that the solution is accurate for under and over critical
speed of the mass motion.

3.1.2 The Lagrange Equation

Let us consider a string of the length l, cross-sectional area A, mass density ρ ,
tensile force N, subjected to a mass m accompanied by a force P (as in the Sec-
tion 3.1 and in Figure 3.1), moving with a constant speed v. We impose the same
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Fig. 3.5 Simulation of the string motion under the mass moving at v= 0.1c, 0.2c, 0.3c, 0.4c,
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Fig. 3.6 Simulation of the string motion under the mass moving at v= 0.7c, 0.8c, 0.9c, 1.0c,
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Fig. 3.7 Last stage of the mass motion at v = 0.2c, 0.5c, 1.0c and 1.2c.
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for various numbers of terms (25, 50, ..., 1000) in Eq. (3.105).
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boundary conditions (3.2) and initial conditions (3.3). The kinetic energy of a string
and a travelling mass is described by the equation

Ek =
1
2
ρA
∫ l

0

[
∂w(x, t)
∂ t

]2

dx + Ekm , (3.18)

where

Ekm =
1
2

m

[
dw(vt, t)

dt

]2

(3.19)

contributes the kinetic energy of the moving mass. The potential energy of the string
can be determined by computing of the δx to δ s change of its infinitesimal segment.
The work N (δx− δ s) integrated in space allow us to compute the potential energy
of the string

Ep =
∫ l

0
N (δ s− δx) = N

∫ l

0

⎧⎨
⎩
√

1+

[
∂w(x, t)
∂x

]2

− 1

⎫⎬
⎭dx . (3.20)

We apply the expansion of (3.20) into the Maclaurin series and we consider only the
first term of it

Ep = N
∫ l

0

⎧⎨
⎩
√

1+

[
∂w(x, t)
∂x

]2

− 1

⎫⎬
⎭dx ≈ 1

2
N
∫ l

0

[
∂w(x, t)
∂x

]2

dx . (3.21)

If we neglect next terms of the series, we assume higher powers of ∂w(x, t)/∂x to
be nearly equal to zero. The equation (3.21) can be applied to the problem of small
displacements of the string only. Finally the potential energy of the system, i.e. the
string and the moving constant force P gains a form

Ep =
1
2

N
∫ l

0

[
∂w(x, t)
∂x

]2

dx − Pw(vt, t) . (3.22)

The examined string has a finite length l. It is convenient to use standing waves for
description of its displacements. We assume the solution in the following form:

w(x, t) =
∞

∑
i=1

Ui(x)ξi(t) . (3.23)

ξi(t) are the generalized coordinate functions. In order to compute both the kinetic
and the potential energy and to determine its derivatives required, we express them
by generalized coordinates. We derive first the Eqn. (3.23) with respect to t

∂w(x, t)
∂ t

=
∞

∑
i=1

Ui(x)ξ̇i(t) , (3.24)
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and with respect to spatial variable x

∂w(x, t)
∂x

=
∞

∑
i=1

U ′i (x)ξi(t) . (3.25)

The displacement of the string in the contact point with a travelling mass is given
by the equation

w(vt, t) =
∞

∑
i=1

Ui(vt)ξi(t) . (3.26)

The transverse velocity of the moving mass is expressed by a composite derivative.
It expresses the load travelling along the string

dw(vt, t)
dt

= v
∞

∑
i=1

U ′i (x)ξi(t)

∣∣∣∣∣
x=vt

+
∞

∑
i=1

Ui(x)ξ̇i(t)

∣∣∣∣∣
x=vt

. (3.27)

According to the above equation the velocity dw(vt, t)/dt is expressed as a function
of both generalized coordinates and the derivative of generalized coordinates with
respect to time

dw(vt, t)
dt

= f
(
ξi, ξ̇i

)
. (3.28)

After rearrangement of the equation (3.18), with respect to (3.24), the total energy
is given the by the following form

Ek =
1
2
ρA

∞

∑
i, j=1

ξ̇i(t)ξ̇ j(t)
∫ l

0
Ui(x)Uj(x)dx +

1
2

m

[
dw(vt, t)

dt

]2

. (3.29)

We assume orthogonal functions which fulfill boundary conditions (3.2)

Ui(x) = sin
iπx

l
. (3.30)

The orthogonality of functions Ui(x) allows us to write

∫ l

0
Ui(x)Uj(x)dx =

{
1
2 l if i = j,

0 if i �= j .
(3.31)

The kinetic energy of the system (3.29) according to (3.30) and (3.31) is described
by the relation

Ek =
1
4
ρAl ξ̇ 2

i (t) +
1
2

m

[
dw(vt, t)

dt

]2

. (3.32)

In the case of the potential energy the Eqn. (3.25), with respect to the Eqn. (3.22)
integrated by parts, has the following form:
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Ep =
1
2

Nξi(t)ξ j(t)
∫ l

0
U ′i (x)U

′
j(x)dx − Pw(vt, t) =

= −1
2

Nξi(t)ξ j(t)
∫ l

0
U ′′i (x)Uj(x)dx − PUi(vt)ξi(t) .

(3.33)

We can derive the function (3.30)

U ′′i (x) = −
i2π2

l2 Ui(x) . (3.34)

The equation (3.33) with respect to (3.34) can be written in the form

Ep =
1
2

N
i2π2

l2 ξi(t)ξ j(t)
∫ l

0
Ui(x)Uj(x)dx − PUi(vt)ξi(t) . (3.35)

Finally the potential energy of the string, with respect to (3.31) can be described by
the equation

Ep =
1
4

Nl
i2π2

l2 ξ 2
i (t) − Pξi(t)sin

iπvt
l

. (3.36)

Now, when we have kinetic and potential energy described in generalized coordi-
nates and the derivative of generalized coordinates with respect to time, we can
formulate the Lagrange equation, which general form is given by the equation

d
dt

(
∂Ek

∂ ξ̇i

)
− ∂Ek

∂ξi
+
∂Ep

∂ξi
= 0 . (3.37)

In order to obtain the Lagrange equation describing our problem, we must compute
the required terms.

From (3.19) and (3.28) we have the derivatives of the kinetic energy of the trav-
elling mass Ekm with respect to ξi and ξ̇i

∂Ekm

∂ξi
= m

dw(vt, t)
dt

d
dξi

(
dw(vt, t)

dt

)
, (3.38)

∂Ekm

∂ ξ̇i
= m

dw(vt, t)
dt

d

dξ̇i

(
dw(vt, t)

dt

)
. (3.39)

We compute the derivatives of the kinetic energy for the whole system (3.32) with
respect to ξi and ξ̇i, taking into account (3.38) and (3.39):

∂Ek

∂ξi
=

∂Ekm

∂ξi
=

=m

[
v2

∞

∑
j=1

i jπ2

l2 cos
iπvt

l
cos

jπvt
l

ξ j(t) + v
∞

∑
j=1

iπ
l

cos
iπvt

l
sin

jπvt
l

ξ̇ j(t)

]
,

(3.40)
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∂Ek

∂ ξ̇i
=

1
2
ρAl ξ̇i(t) +

∂Ekm

∂ ξ̇i
=

1
2
ρAl ξ̇i(t)+

+m

[
v

∞

∑
j=1

jπ
l

sin
iπvt

l
cos

jπvt
l

ξ j(t) +
∞

∑
j=1

sin
iπvt

l
sin

jπvt
l

ξ̇ j(t)

]
.

(3.41)

The derivative of the potential energy (3.36) with respect to generalized coordinates
ξi is

∂Ep

∂ξi
=

1
2

Nl
i2π2

l2 ξi(t) − Psin
iπvt

l
. (3.42)

The derivative of (3.41) with respect to t is

d
dt

(
∂Ek

∂ ξ̇i

)
=

1
2
ρAl ξ̈i(t) + m

{
∞

∑
j=1

jπv
l

d
dt

[
sin

iπvt
l

cos
jπvt

l
ξ j(t)

]
+

+
∞

∑
j=1

d
dt

[
sin

iπvt
l

sin
jπvt

l
ξ̇ j(t)

]}
.

(3.43)

Finally, the Lagrange equation (3.37) in the case of our problem of an inertial string
subjected to a moving inertial force has the following form:

1
2
ρAl ξ̈i(t) + m

∞

∑
j=1

jπv
l

d
dt

[
sin

iπvt
l

cos
jπvt

l

]
ξ j(t)+

+ m
∞

∑
j=1

jπv
l

sin
iπvt

l
cos

jπvt
l

ξ̇ j(t) + m
∞

∑
j=1

d
dt

[
sin

iπvt
l

sin
jπvt

l

]
ξ̇ j(t)+

+ m
∞

∑
j=1

sin
iπvt

l
sin

jπvt
l

ξ̈ j(t) +
1
2

Nl
i2π2

l2 ξi(t)−

−m

[
v2

∞

∑
j=1

i jπ2

l2 cos
iπvt

l
cos

jπvt
l

ξ j(t)+v
∞

∑
j=1

iπ
l

cos
iπvt

l
sin

jπvt
l

ξ̇ j(t)

]
=

= Psin
iπvt

l
, (3.44)

where

d
dt

[
sin

iπvt
l

cos
jπvt

l

]
=

iπv
l

cos
iπvt

l
cos

jπvt
l
− jπv

l
sin

iπvt
l

sin
jπvt

l
, (3.45)

d
dt

[
sin

iπvt
l

sin
jπvt

l

]
=

iπv
l

cos
iπvt

l
sin

jπvt
l

+
jπv
l

sin
iπvt

l
cos

jπvt
l

. (3.46)

We have a differential equation with variable coefficients. Finally (3.44) can be writ-
ten in the following form
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ξ̈i(t)+
2m
ρAl

∞

∑
j=1

ξ̈ j(t)sin
iπvt

l
sin

jπvt
l

+
4m
ρAl

∞

∑
j=1

jπv
l
ξ̇ j(t)sin

iπvt
l

cos
jπvt

l
+

+
N
ρA

i2π2

l2 ξi(t)− 2m
ρAl

∞

∑
j=1

j2π2v2

l2 ξ j(t)sin
iπvt

l
sin

jπvt
l

=
2P
ρAl

sin
iπvt

l
.

(3.47)

These two methods lead us to the identical differential equation with variable coef-
ficients (3.47) as in (3.10)–(3.11).

3.2 Bernoulli–Euler Beam

The problem of bridge spans under a moving inertial load has existed since the
beginning of the development of railways. The turning point in the literature was
established by two historical publications [70, 124]. These analytical papers were
elaborated with significant mathematical simplifications. The authors considered
a complex acceleration of the moving mass. Its geometrical interpretation was pre-
sented by Renaudot [118]. Although the number of publications on the moving mass
problem has exceeded a thousand items, still we do not have its detailed and fully
analytical solutions. The approach given by Smith [127] seems to be a positive ex-
ception. He considered, however, the massless string only. There exist numerous re-
view papers [106, 146, 43, 133] which discuss the problems treated in hundreds of
other publications. For a long time the mainstream of works treated the problem in
an analytical-numerical way [122, 138, 48, 47] or strictly numerically [52, 120, 24].

w(x,t)

v
P

m A, EIρ NN

l

Fig. 3.11 A string-beam under a moving mass.

Together with the increasing velocity of trains, the influence of the wave phe-
nomenon is rising as well. Dynamic effects are generated by the load of train current
collectors, travelling through the power supply cable of the overhead contact line.
In this chapter we consider a cable as a string-beam model, since it has a certain
flexible stiffness. The Bernoulli–Euler beam with an additional tensile effect com-
prises this phenomenon (Figure 3.11). The differential equation of the motion of
a string-beam is derived from the Lagrange equation of the second kind.
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3.2.1 Fourier Solution

Let us consider a simply supported Bernoulli–Euler beam (B–E) with additional
tensile effect, of length l under a moving point mass m travelling with constant
speed v. EI, N, and ρA are, respectively, the beam stiffness, tensile force, and the
string-beam mass density. The differential equation of motion describing the string-
beam B–E under a moving mass point is

EI
∂ 4w(x, t)
∂x4 −N

∂ 2w(x, t)
∂x2 +ρA

∂ 2w(x, t)
∂ t2 = δ (x− vt)P− δ (x− vt)m

d2w(vt, t)
dt2 .

(3.48)
We assume a simply supported beam, and therefore assume the following boundary
conditions

w(0, t) = 0 , w(l, t) = 0 ,
∂ 2w(x, t)
∂ x 2

∣∣∣∣
x=0

= 0 ,
∂ 2w(x, t)
∂x 2

∣∣∣∣
x=l

= 0 . (3.49)

In addition, we assume zero initial conditions

w(x,0) = 0 ,
∂w(x, t)
∂ t

∣∣∣∣
t=0

= 0 . (3.50)

Using the sine Fourier transform in a finite interval < 0, l >, we can write

V ( j, t) =
∫ l

0
w(x, t)sin

jπx
l

dx , (3.51)

where

w(x, t) =
2
l

∞

∑
j=1

V ( j, t)sin
jπx
l

, (3.52)

which fulfills the boundary conditions. Using equation (3.52), we can determine the
vertical acceleration of the moving mass at the point x = vt

d2w(vt, t)
dt2 =

2
l

∞

∑
k=1

[
V̈ (k, t)sin

kπvt
l

+
2kπv

l
V̇ (k, t)cos

kπvt
l
−

− k2π2v2

l2 V (k, t)sin
kπvt

l

]
.

(3.53)

The Fourier transformation allows us to transform a partial differential equation
(3.48) into a system of ordinary differential equations as follows

EI
j4π4

l4 V ( j, t)+N
j2π2

l2 V ( j, t)+ρAV̈( j, t) = Psin
jπvt

l
−

−m
d2w(vt, t)

dt2

∫ l

0
δ (x− vt)sin

jπx
l

dx ,

(3.54)
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where ∫ l

0
δ (x− vt)sin

jπx
l

dx = sin
jπvt

l
. (3.55)

Equation (3.54) for the vertical acceleration of the moving mass (3.53) can be writ-
ten in the following form:

EI
j4π4

l4 V ( j, t)+N
j2π2

l2 V ( j, t)+ρAV̈( j, t) = Psin
jπvt

l
−

− 2m
l

∞

∑
k=1

V̈ (k, t)sin
kπvt

l
sin

jπvt
l
−

− 2m
l

∞

∑
k=1

2kπv
l

V̇ (k, t)cos
kπvt

l
sin

jπvt
l

+

+
2m
l

∞

∑
k=1

k2π2v2

l2 V (k, t)sin
kπvt

l
sin

jπvt
l

.

(3.56)

After re-arranging the above equation, we obtain the simpler form

V̈ ( j, t)+α
∞

∑
k=1

V̈ (k, t)sinωkt sinω jt + 2α
∞

∑
k=1

ωkV̇ (k, t)cosωkt sinω jt+

+Ω 2V ( j, t)−α
∞

∑
k=1

ω2
k V (k, t)sinωkt sinω jt =

P
ρA

sinω jt ,

(3.57)

using the following notation

ωk =
kπv

l
, ω j =

jπv
l

, Ω 2 =
EI
ρA

j4π4

l4 +
N
ρA

j2π2

l2 , α =
2m
ρAl

. (3.58)

As in the case of a string, no full analytical solution of the system of equations (3.57)
is yet known. In a further step, we integrate the system of differential equations
numerically. For this purpose, we write (3.57) in matrix form:

M

⎡
⎢⎢⎢⎣

V̈ (1, t)
V̈ (2, t)

...
V̈ (n, t)

⎤
⎥⎥⎥⎦+C

⎡
⎢⎢⎢⎣

V̇ (1, t)
V̇ (2, t)

...
V̇ (n, t)

⎤
⎥⎥⎥⎦+K

⎡
⎢⎢⎢⎣

V (1, t)
V (2, t)

...
V (n, t)

⎤
⎥⎥⎥⎦= P , (3.59)

or in short
MV̈+CV̇+KV = P . (3.60)

The matrices of inertia, damping and stiffness, and the vectors on the right sides
take the following forms
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M =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦+ (3.61)

+α

⎡
⎢⎢⎢⎢⎢⎣

sin 1πvt
l sin 1πvt

l sin 1πvt
l sin 2πvt

l · · · sin 1πvt
l sin nπvt

l

sin 2πvt
l sin 1πvt

l sin 2πvt
l sin 2πvt

l · · · sin 2πvt
l sin nπvt

l

...
...

. . .
...

sin nπvt
l sin 1πvt

l sin nπvt
l sin 2πvt

l · · · sin nπvt
l sin nπvt

l

⎤
⎥⎥⎥⎥⎥⎦

, (3.62)

C = 2α

⎡
⎢⎢⎢⎢⎣

1πv
l sin 1πvt

l cos 1πvt
l

2πv
l sin 1πvt

l cos 2πvt
l · · ·nπvl sin 1πvt

l cos nπvt
l

1πv
l sin 2πvt

l cos 1πvt
l

2πv
l sin 2πvt

l cos 2πvt
l · · ·nπvl sin 2πvt

l cos nπvt
l

...
...

. . .
...

1πv
l sin nπvt

l cos 1πvt
l

2πv
l sin nπvt

l cos 2πvt
l · · ·nπvl sin nπvt

l cos nπvt
l

⎤
⎥⎥⎥⎥⎦ , (3.63)

K =

⎡
⎢⎢⎢⎢⎢⎣

14π4

l4
EI
ρA + 12π2

l2
N
ρA 0 · · · 0

0 24π4

l4
EI
ρA + 22π2

l2
N
ρA · · · 0

...
...

. . .
...

0 0 · · · n4π4

l4
EI
ρA + n2π2

l2
N
ρA

⎤
⎥⎥⎥⎥⎥⎦
− (3.64)

−α

⎡
⎢⎢⎢⎢⎢⎣

12π2v2

l2 sin 1πvt
l sin 1πvt

l
22π2v2

l2 sin 1πvt
l sin 2πvt

l · · ·n
2π2v2

l2 sin 1πvt
l sin nπvt

l

12π2v2

l2 sin 2πvt
l sin 1πvt

l
22π2v2

l2 sin 2πvt
l sin 2πvt

l · · ·n
2π2v2

l2 sin 2πvt
l sin nπvt

l
...

...
. . .

...
12π2v2

l2 sin nπvt
l sin 1πvt

l
22π2v2

l2 sin nπvt
l sin 2πvt

l · · ·n
2π2v2

l2 sin nπvt
l sin nπvt

l

⎤
⎥⎥⎥⎥⎥⎦

,

P =
P
ρA

⎡
⎢⎢⎢⎢⎣

sin 1πvt
l

sin 2πvt
l

...
sin nπvt

l

⎤
⎥⎥⎥⎥⎦ . (3.65)

All the matrices are time–dependent. The inertia matrix M is symmetric, while the
remaining damping matrix C and stiffness matrix K are unsymmetrical. Calculating
numerically at each time step the vector V and substituting into the series (3.52)
describes the displacement at any point on the beam. Figures 3.12 and 3.13 represent
the solution obtained. The critical velocity in the Euler beam is equal to vcr = π/l ·√

EI/ρ/A = 0.314 .
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3.2.2 The Lagrange Equation of the Second Kind

The kinetic energy of a string-beam and a travelling mass is described by

Ek =
1
2
ρA
∫ l

0

[
∂w(x, t)
∂ t

]2

dx +
1
2

m

[
dw(vt, t)

dt

]2

. (3.66)

The potential energy of a string-beam and a moving force is

Ep =
1
2

N
∫ l

0

[
∂w(x, t)
∂x

]2

dx +
1
2

EI
∫ l

0

[
∂ 2w(x, t)
∂x2

]2

dx − Pw(vt, t) . (3.67)

In order to separate variables, the displacement can be written in the form of an
infinite series and then the integrals in space x in equations (3.66) and (3.67) can be
computed

w(x, t) =
∞

∑
i=1

Ui(x)ξi(t) . (3.68)

According to (3.68) the displacement under a moving load has the following form:

w(vt, t) =
∞

∑
i=1

Ui(vt)ξi(t) . (3.69)

The velocity of the displacement is determined by the chain rule

dw(vt, t)
dt

= v
∞

∑
i=1

U ′i (x)ξi(t)

∣∣∣∣∣
x=vt

+
∞

∑
i=1

Ui(x)ξ̇i(t)

∣∣∣∣∣
x=vt

. (3.70)
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Fig. 3.12 Trajectories of the moving mass travelling along Bernoulli–Euler beam at different
speeds v (for N = 0).
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Fig. 3.13 Vibrations of Bernoulli–Euler beam under inertial load in the velocity v =0.1, 0.2,
0.3, 0.4, 0.5 and 0.6.
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It is a function of general coordinates as well as their velocities

dw(vt, t)
dt

= f
(
ξi, ξ̇i

)
. (3.71)

After calculation of the required derivatives of (3.68) with respect to t and x, the
kinetic and potential energy can be written in the following forms

Ek =
1
2
ρA ξ̇i(t)ξ̇ j(t)

∫ l

0
Ui(x)Uj(x)dx +

1
2

m

[
dw(vt, t)

dt

]2

, (3.72)

Ep =
1
2

Nξi(t)ξ j(t)
∫ l

0
U ′i (x)U

′
j(x)dx+

+
1
2

EIξi(t)ξ j(t)
∫ l

0
U ′′i (x)U

′′
j (x)dx−P

∞

∑
i=1

Ui(vt)ξi(t) . (3.73)

We assume orthogonal functions which fulfil simply supported boundary conditions

Ui(x) = sin
iπx

l
. (3.74)

The orthogonality of the Ui(x) allows us to write

∫ l

0
Ui(x)Uj(x)dx =

{
1
2 l if i = j,

0 if i �= j.
(3.75)

With respect to (3.68), (3.74) and (3.75) the kinetic energy of the hole system is
given by the following equation

Ek =
1
4
ρAl ξ̇ 2

i (t) +
1
2

m

[
dw(vt, t)

dt

]2

. (3.76)

The term of the moving mass is not an integral, so we can’t use the property of
orthogonality. At this stage, the kinetic energy of the travelling load is left in the
original form. According to (3.74) we have

U ′′i (x) = −
i2π2

l2 Ui(x) . (3.77)

After integration by parts and taking into account (3.77), the potential energy (3.73)
can be written in the form

Ep =
1
2

N
i2π2

l2 ξi(t)ξ j(t)
∫ l

0
Ui(x)Uj(x)dx+

+
1
2

EI
i2 j2π4

l4 ξi(t)ξ j(t)
∫ l

0
Ui(x)Uj(x)dx − PUi(vt)ξi(t) .

(3.78)
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Finally, the orthogonality of (3.75) allows us to write

Ep =
1
4

Nl
i2π2

l2 ξ 2
i (t) +

1
4

EIl
i4π4

l4 ξ 2
i (t) − Pξi(t)sin

iπvt
l

. (3.79)

The equation of motion of the string-beam under a moving inertial load is obtained
from the Lagrange equation of the second kind, of which the general form is given
by equation (3.37). This method results in the differential equation with variable
coefficients

ρAξ̈i(t)+
2m
l

∞

∑
j=1

ξ̈ j(t)sin
iπvt

l
sin

jπvt
l

+
4m
l

∞

∑
j=1

jπv
l
ξ̇ j(t)sin

iπvt
l

cos
jπvt

l
+

+N
i2π2

l2 ξi(t) + EI
i4π4

l4 ξi(t)− 2m
l

∞

∑
j=1

j2π2v2

l2 ξ j(t)sin
iπvt

l
sin

jπvt
l

=

=
2P
l

sin
iπvt

l
.

(3.80)

The system of equations (3.80) can not be easily solved and we must integrate it
numerically. We use here the matrix notation

M

⎡
⎢⎢⎢⎣
ξ̈1(t)
ξ̈2(t)

...
ξ̈n(t)

⎤
⎥⎥⎥⎦+C

⎡
⎢⎢⎢⎣
ξ̇1(t)
ξ̇2(t)

...
ξ̇n(t)

⎤
⎥⎥⎥⎦+K

⎡
⎢⎢⎢⎣
ξ1(t)
ξ2(t)

...
ξn(t)

⎤
⎥⎥⎥⎦= P (3.81)

which results in the short form Mξ̈ +Cξ̇ +Kξ = P, where M, C and K are square
matrices for i = j = 1,2, ...,n.

Then we calculate the value of the general coordinates ξi(t) for each i to n. Finally
we can compute the displacements of the string-beam w(x, t)

w(x, t) =
∞

∑
i=1

ξi(t)sin
iπx

l
. (3.82)

The displacements given in the example below are dimensionless. They were calcu-
lated in relation to the static deflection w0 of the string-beam loaded at the midpoint
by the point force P: w0 = w0s w0b/(w0s+w0b). w0s and w0b are static deflections in
the case of a string and a beam, respectively.

Example Let us assume the following data: E = 1, I = 0.01, N = 1, ρ = 1, A = 1,
l = 1, P =−1 and m = 1. We solve the problem for different speeds v of the moving
load. The mass trajectory is depicted in Figure 3.14. The simulation of the string-
beam motion is depicted in Figure 3.15.

Let us look at Figure 3.16. The bending stiffness smooths the load trajectory. In
the case of lower bending stiffness, the acceleration near the end support increases
significantly. It tends to infinity in the limit case of a pure string. Although the
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Fig. 3.14 Mass trajectory for different speeds v.
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Fig. 3.15 Simulation of the string-beam motion under a mass moving at speeds v =0.1, 0.2,
0.3 and 0.4.

plots exhibit high jumps in all cases, we can not say whether the mathematical
discontinuity occurs only in the case of a lack of bending or whether it can be
demonstrated in the cases of mixed tensile-bending deformation. The question is:
whether the introduced string effects result in discontinuity or whether bending ef-
fects eliminate the discontinuity? Further mathematical analysis could clarify this.
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Fig. 3.16 Influence of bending on the discontinuity of the mass trajectory.

3.2.3 Conclusions

The above presented the Bernoulli–Euler beam with an additional tensile effect un-
der a moving inertial load. The proposed semi-analytical approach can be applied
in through the entire range of speeds and for all points of the string-beam span. The
accuracy of the solution (3.82) depends on the number of terms taken in the infinite
series (Figure 3.16). The examined series of displacements is convergent, so we may
limit the number of terms in our example to n = 130.

If we reduce the flexible stiffness of the system, we observe a discontinuity near
the end support. This was broadly presented and proved in [48]. The discontinuity
had appeared also in the case of the Timoshenko beam [47]. In the matrix form
(3.81), we can use classical numeric methods for the integration of the final differ-
ential equation of the motion, for example the Newmark method.

3.3 Timoshenko Beam

In this chapter we derive the solution of the mass particle travelling on a Timoshenko
beam. The problem is complex since the product of the Dirac delta function with
the vertical acceleration commonly used in the literature to problems with a moving
point mass contributes certain discontinuities to the governing differential equation.
The Lagrange equation of the second kind allowed us to solve the problem and to
prove the correctness of the results. They are identical with the direct transformation
of the differential equations of motion.
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3.3.1 Fourier Solution

The two coupled equations of motion for the Timoshenko beam under a moving
mass particle are

ρA
∂ 2w(x, t)
∂ t2 − GA

k

(
∂ 2w(x, t)
∂x2 − ∂ψ(x, t)

∂x

)
= q(x, t) ,

ρI
∂ 2ψ(x, t)

∂ t2 −EI
∂ 2ψ(x, t)
∂x2 − GA

k

(
∂w(x, t)
∂x

−ψ(x, t)
)
= 0 ,

(3.83)

where

q(x, t) = δ (x− vt)m

(
g− d2w(vt, t)

dt2

)
. (3.84)

The acceleration of the mass particle at a constant speed v is called the Renaudot
formulation

d2w(vt, t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x=vt

+ 2v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x=vt

+ v2 ∂ 2w(x, t)
∂x2

∣∣∣∣
x=vt

. (3.85)

The solution by Fourier transformation starts from the partial differential equa-
tion (3.83) and by direct mathematical transformation is reduced to a second or-
der matrix ordinary differential equation. In the case of a simply supported Timo-
shenko beam we apply the sine transform to w and the cosine transform to ψ . The
last stage is performed numerically and for this reason we call this solution semi-
analytical. This solution has one disadvantage. The formulation (3.84) contains the
term δ (x− vt)md2w(vt, t)/dt2 which defines the inertial force of the mass particle
in space x and time t. The Dirac delta contributes discontinuities to the formulation.
Although the solution can be defined, we can not prove that it verifies the equa-
tion of the problem. That is why we intend to apply another method which avoids
this discontinuous formulation. In this way we can eliminate a weak point of the
investigation.

The problem of a moving mass is important since in the case of a string and
simply supported Timoshenko beam, the results exhibit a discontinuity in the mass
trajectory at the end support. This phenomenon in the case of a string was presented
and discussed for the first time in our previous paper [48], and in the case of the
massless string it was mathematically proved. It can also be noticed in engineering
practice. In railway traction systems cables are broken just before the end support.
Also road plates are destroyed at their ends.

3.3.2 The Lagrange Equation

The energetic description of the issue removes a weak point of the analysis. The
kinetic energy of a moving mass particle m travelling with a constant speed v is
described by the equation
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Ekm =
1
2

m

(
dw(vt, t)

dt

)2

+
1
2

mv2 . (3.86)

The effect of the moving force of gravity mg can be written as the potential energy

Epm = mgw(vt, t) . (3.87)

A moving mass is always in a pure rigid contact with the beam. The displacement
of the point of a beam in contact with the mass particle is described by the same
relation as a travelling point mass motion.

Let us consider a simply supported Timoshenko beam with constant cross-
sectional area A, mass density ρ , and moment of area I. The examined beam has
a finite length l. The kinetic and potential energy of the beam take the form

Ek =
1
2
ρA
∫ l

0

(
∂w(x, t)
∂ t

)2

dx+
1
2
ρI
∫ l

0

(
∂ψ(x, t)

∂ t

)2

dx , (3.88)

Ep =
1
2

EI
∫ l

0

(
∂ψ(x, t)
∂x

)2

dx+
1
2

GA
k

∫ l

0

(
∂w(x, t)
∂x

−ψ(x, t)
)2

dx . (3.89)

Here, E is Young’s modulus, G is the shear modulus, and k is the shear coefficient,
which depends on the shape of cross-section of the beam.

We impose boundary conditions

w(x, t)|x=0 = 0 , w(x, t)|x=l = 0 ,
∂ψ(x, t)
∂x

∣∣∣∣
x=0

= 0 ,
∂ψ(x, t)
∂x

∣∣∣∣
x=l

= 0 ,

(3.90)
and initial conditions

w(x, t)|t=0 = 0 ,
∂w(x, t)
∂ t

∣∣∣∣
t=0

= 0 ,

ψ(x, t)|t=0 = 0 ,
∂ψ(x, t)

∂ t

∣∣∣∣
t=0

= 0 . (3.91)

We assume a general solution in the following form

w(x, t) =
n

∑
j=1

X1 j(x)ξ j(t) , ψ(x, t) =
n

∑
j=1

X2 j(x)γ j(t) , (3.92)

where X1 j(x) and X2 j(x) are orthogonal functions which fulfil the boundary condi-
tions (3.90):

X1 j(x) = sin
jπx
l

, X2 j(x) = cos
jπx
l

. (3.93)



58 3 Semi-analytical Methods

The displacement of the beam at the contact point with a travelling mass is

w(vt, t) =
n

∑
j=1

ξ j(t)sin
jπvt

l
. (3.94)

According to the rules of differentiation, we then obtain the following formula

dw(vt, t)
dt

=
n

∑
j=1

ξ̇ j(t)sin
jπvt

l
+

n

∑
j=1

ξ j(t)
jπv
l

cos
jπvt

l
. (3.95)

The kinetic energy of the moving inertial point (3.86) is expressed as a function of
both the generalized coordinates and the derivatives of the generalized coordinates
with respect to time

Ekm = f
(
ξ , ξ̇

)
. (3.96)

The required derivation of the above quantity has important consequences. Accord-
ing to the formula for kinetic and potential energy of the beam we obtain two cou-
pled equations of motion. These two equations can be reduced to two uncoupled
equations with ξ and γ . Let us focus our attention on the displacement case

¨̈ξ j(t)+β
n

∑
k=1

f1( j,k, t) ¨̈ξk(t)+ 2β
n

∑
k=1

(ω j f2( j,k, t)+ 2 f3( j,k, t)) ˙̈ξk(t)+

+
A
I

c2
1ξ̈ j(t)+

ω2
j

v2

(
c2

1 + c2
2

)
ξ̈ j(t)+

n

∑
k=1

[g( j) f1( j,k, t)+ 6β (ω jωk f4( j,k, t)−

−ω2
k f1( j,k, t)

)]
ξ̈k(t)+ 2

n

∑
k=1

[
g( j)ωk f3( j,k, t)−β (3ω jω2

k f2( j,k, t)+

+2ω3
k f3( j,k, t)

)]
ξ̇k(t)+

ω4
j

v4 c2
1c2

2ξ j(t)−
n

∑
k=1

[
g( j)ω2

k f1( j,k, t)+

+β
(
2ω jω3

k f4( j,k, t)−ω4
k f1( j,k, t)

)]
ξk(t) =

mg
ρAβ

g( j)sinω jt , (3.97)

where

c1 =

√
G
kρ

, c2 =

√
E
ρ

, β =
2m
ρAl

, ωk =
kπv

l
, ω j =

jπv
l

, (3.98)

f1( j,k, t) = sinω jt sinωkt ,

f2( j,k, t) = cosω jt sinωkt ,

f3( j,k, t) = sinω jt cosωkt ,

f4( j,k, t) = cosω jt cosωkt ,

(3.99)

g( j) = β
[

A
I

c2
1 +ω2

j

(
c2

2

v2 − 1

)]
. (3.100)
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The coefficients c1 and c2 are the shear and bending wave velocity in a Timoshenko
beam, respectively.

Lagrangian methods lead us to the system of differential equations (3.97) with
variable coefficients. This system of equations can not be easily solved in an analyt-
ical way and we must integrate it numerically. We perform this integration with the
use of the Runge–Kutta method. Equations (3.97) can be written in the short form

G ¨̈ξ +U ˙̈ξ +Mξ̈ +Cξ̇ +Kξ = P . (3.101)

The matrices G, U, M, C, K and the vector P are given as follows in Table 3.1.
Formula (3.101) constitutes a system of ordinary differential equations of the

fourth order with respect to time, so we need two additional initial conditions [54]:

∂ 2w(x, t)
∂ t2

∣∣∣∣
t=0

=
1
ρA

q(x, t)

∣∣∣∣
t=0

,
∂ 3w(x, t)
∂ t3

∣∣∣∣
t=0

=
1
ρA

∂q(x, t)
∂ t

∣∣∣∣
t=0

, (3.102)

where q(x, t) is given by equation (3.84). By the sine Fourier transformation over
a finite range of the initial conditions (3.91) and (3.102), we can write initial sub-
vectors for displacements in the following form

ξ j(t)
∣∣
t=0 = 0 , ξ̇ j(t)

∣∣∣
t=0

= 0 , (3.103)

ξ̈ j(t)
∣∣∣
t=0

= 0 , ˙̈ξ j(t)
∣∣∣
t=0

=
mgω j

ρA
. (3.104)

Finally, the displacements of an arbitrary point of the beam can be determined from
the following relation (see equation 3.92):

w(x, t) =
n

∑
i=1

ξi(t)sin

(
iπx

l

)
. (3.105)

3.3.3 Examples

We use dimensionless data l = 1, ρ = 1, A = 1, I = 0.01, E = 1, G = 0.4 and
k = 1. These data result in a shear wave speed of c1 = 0.63 and a bending wave
speed of c2 = 1.0 (equation 3.98). Results of the semi-analytical solution are de-
picted in Figure 3.17. The displacements are related to the amplitude of the quasi-
static displacement of the beam mid-point w0. A more detailed presentation of the
Timoshenko beam motion is given in Figure 3.18. Both types of waves are notice-
able. We emphasize the sharp edge of the wave and the reflections from the support
and from the moving mass point. The velocity v = 0.5c2 is characteristic in our
example since the discontinuity of the mass trajectory is quite visible. Further tests
will be performed with this velocity. The convergence is slow and we examined it in
relation to the number of terms (Figure 3.19) taken in the equation (3.105). The plot
with a small number of terms is smooth in the neighbourhood of the support. Taking
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Fig. 3.17 Semi-analytical solution of the mass trajectory moving along the Timoshenko beam
at various velocities (c1 = 0.63, c2 = 1.00).
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Fig. 3.19 The convergence of the mass trajectory travelling with v = 0.5c2 near the end
point, for various numbers of terms (10, 20, ..., 200) in Eq. (3.105).

an increasing number of terms sharpens the plot of the last 1% of the trajectory. This
can be compared with the same phenomenon obtained for a string [48]. Examples
show the same type of discontinuity of the solution in the case of the Timoshenko
beam. Although we can not mathematically establish the presence of this feature in
the case of an inertial Timoshenko beam, we can say that for practical purposes, the
differential equation of the Timoshenko beam motion under the assumption of small
displacements involves a discontinuity of the structure in the neighbourhood of the
support. Such a phenomenon is observed in real structures (a track or a bridge plate)
in the form of impacts of high magnitude. Figure 3.20 depicts the deflection of the
Timoshenko beam in time and reflections of the transverse wave c1 and longitudinal
wave c2 at subcritical and critical speed.

3.3.4 Conclusions and Discussion

The solution of the problem discussed here can not be simply applied to complex
problems, for example strings, beams, or three dimensional bodies, subjected to
a system of masses or composed of segments with variable rigidity. In such cases
discrete methods should be applied. However, it enables us to exhibit the qualitative
features and validate numerical solutions. The existing numerical approaches fail in
the case of inertial loads. Although the solutions converge in some cases, the error
in the case of mass motion, near the critical speed, is significant.
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3.4 Bernoulli–Euler Beam vs. Timoshenko Beam

The Bernoulli–Euler beam does not exhibit the discussed discontinuity of the solu-
tion. Figure 3.21 compares of the trajectories of the moving inertial point travelling
along the Euler beam and the Timoshenko beam.
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Fig. 3.21 Trajectory of a mass travelling at different speeds: (a) v = 0.1, (b) v = 0.2, (c)
v = 0.3, (d) v = 0.4, (e) v = 0.5, and (f) v = 0.6 (c1 = 0.63, c2 = 1.00).
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Although a discontinuity of the trajectory is a characteristic feature of the differ-
ential equations used in modelling the Timoshenko beam, high jumps of the travel-
ling contact point are observed also in the case of the Bernoulli–Euler beam (Figure
3.21 e) and f). The final stage of the load trajectory’s exhibiting a discontinuity is
a feature which is important in practice. This is especially true for short spans with
high cross sections and, what is important, in the case of higher travelling speed,
regardless of the type of beam.

An identical problem occurs for plates. Further chapters will present semi-
analytical solutions. The numerical results given in Chapter 7.4.2, especially Figure
7.26, illustrate the same effect. In the case of plates, the sharpness of the trajectory
is reduced by the influence of the stiffness of the plate in the direction perpendicular
to the load path. The effect can vary with the proportion of the plate edges.

3.5 Plate

Let us consider a simply supported rectangular plate subjected to an inertial moving
load. We employ the notations used in Figure 3.22. Thus, lx and ly are the dimensions
of the plate. We, then, consider a moving point mass m with accompanying force P
travelling with speed v based on function f . The plate thickness is denoted by h.

In order to simplify the writing of the equations, we write the plate displacement
at the point with coordinates (x,y) as w = w(x,y, t) and the functions describing
the position of a moving load fx = fx(t) and fy = fy(t). The equation of motion of
a Kirchhoff plate under a moving inertial load can be written in the following form

x

y

x

yf

P

m

v

w

l

l

Fig. 3.22 The scheme of the Kirchhoff plate under an inertial load.
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D

[
∂ 4w
∂x4 + 2

∂ 4w
∂x2∂y2 +

∂ 4w
∂y4

]
+ μ

∂ 2w
∂ t2 =

= δ (x− fx)δ (y− fy)P− δ (x− fx)δ (y− fy)m
d2w( fx, fy, t)

dt2 ,

(3.106)

where D is the plate stiffness, described by

D =
Eh3

12(1−ν2)
. (3.107)

Here, μ is the mass per unit area, E is the Young modulus for the plate, and ν is
the Poisson ratio. As mentioned at the beginning, the considered plate is simply
supported at the edges, and thus the boundary conditions take the following form

w(0,y, t) = 0 ,

(
∂ 2w(x,y, t)

∂x2 +ν
∂ 2w(x,y, t)

∂y2

)∣∣∣∣
x=0

= 0 ,

w(lx,y, t) = 0 ,

(
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x=lx

= 0 ,
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y=ly

= 0 . (3.108)

The displacements and bending moments at the edges of plates are zero. We also
assume zero initial conditions:

w(x,y,0) = 0 ,
∂w(x,y, t)

∂ t

∣∣∣∣
t=0

= 0 . (3.109)

The inertia of the moving mass can be described by the material derivative. Writing
d2w/dt2 = d2w( fx, fy, t)/dt2, we obtain

d2w
dt2 =

∂ 2w
∂ t2 + 2 ḟx

∂ 2w
∂x∂ t

+ 2 ḟy
∂ 2w
∂y∂ t

+ 2 ḟx ḟy
∂ 2w
∂x∂y

+ ḟ 2
x
∂ 2w
∂x2 + ḟ 2

y
∂ 2w
∂y2 +

+ f̈x
∂w
∂x

+ f̈y
∂w
∂y

.

(3.110)

This is a general form of the equation describing the inertia of a moving mass, taking
into account the changes of velocity both in the direction of x and y.
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In order to solve the partial differential equation of motion (3.106), we use the
Fourier method and separation of variables. In the case of a simply supported plate,
we use the following integral transformation

V ( j,k, t) =
∫ lx

0

∫ ly

0
w(x,y, t)sin

jπx
lx

sin
kπy
ly

dxdy , (3.111)

w(x,y, t) =
4

lxly

∞

∑
j=1

∞

∑
k=1

V ( j,k, t) sin
jπx
lx

sin
kπy
ly

, (3.112)

which satisfies the imposed boundary conditions (3.108). As a result of the Fourier
transformation of equation (3.106), we obtain an infinite system of ordinary differ-
ential equations:

D

(
j2π2

l2
x

+
k2π2

l2
y

)2

V ( j,k, t)+ρAV̈ ( j,k, t) =

(
P−m

d2w
dt2

)
sin

jπ fx

lx
sin

kπ fy

ly
.

(3.113)
Limit the task to a finite system of equations of dimension n. In order to solve equa-
tions (3.113), we need to represent the vertical acceleration of the moving mass by
the series (3.112). Writing Vpq = V (p,q, t), and using (3.112), the equation (3.110)
can be re-written:

d2w
dt2 =

4
lxly

∞

∑
p=1

∞

∑
q=1

{
V̈pq sin

pπ fx

lx
sin

qπ fy

ly
+ 2 ḟxV̇pq

pπ
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cos
pπ fx

lx
sin

qπ fy

ly
+

+ 2 ḟyV̇pq sin
pπ fx

lx

qπ
ly

cos
qπ fy

ly
+ 2 ḟx ḟyVpq

pπ
lx

cos
pπ fx

lx

qπ
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cos
qπ fy

ly
−

− ḟ 2
x Vpq

p2π2

l2
x

sin
pπ fx

lx
sin

qπ fy

ly
− ḟ 2

y Vpq sin
pπ fx

lx

q2π2

l2
y

sin
qπ fy

ly
+

+ f̈xVpq
pπ
lx

cos
pπ fx

lx
sin

qπ fy

ly
+ f̈yVpq sin

pπ fx

lx

qπ
ly

cos
qπ fy

ly

}
.

(3.114)

Using (3.114), the system of equations (3.113) can be written in matrix form:

MV̈pq +CV̇pq+KVpq = P , (3.115)

where M, C and K are, respectively, the matrices of inertia, damping, and stiffness.
Each matrix is full and time-dependent, thus the matrix equation (3.115) is a system
of differential equations with variable coefficients. Because there are no methods
for solving the system of equations (3.115) in an analytical way, we have to solve
it numerically. As a result, we obtain the vector Vpq. Finally, the displacement at
a given point of the plate is described by a series (3.112).

Let us consider a point mass travelling parallel to the edge of a plate defined by
the axis x, with mass m and accompanying force P travelling with speed v along the
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Fig. 3.23 The mass travelling along a straight line over the plate.

line defined by η and φ (Figure 3.23). This passage is described by the following
parameters

fx(t) = vt , fy(t) = η , φ = 0 . (3.116)

The vertical acceleration of an inertial moving point (3.114) takes the simple form,
written as follows

d2w
dt2 =

4
lxly

∞

∑
p=1

∞

∑
q=1

{
V̈pq sin

pπvt
lx

sin
qπη

ly
+ 2V̇pq

pπv
lx

cos
pπvt

lx
sin

qπη
ly
−

− Vpq
p2π2v2

l2
x

sin
pπvt

lx
sin

qπη
ly

}
.

(3.117)

3.6 The Renaudot Approach vs. The Yakushev Approach

In most papers devoted to dynamics of structures subjected to moving loads, the
load term q(x, t) is written in the following form

q(x, t) = δ (x− vt)m

(
g− d2w

dt2

)
. (3.118)

In most analytical and numerical solutions, the authors do not care about the correct
solution process. In practice, neither the Renaudot nor the Yakushev approach have
been much employed, since engineering computations are simplified in practice.
However, an extensive discussion took place in the literature on the correctness of
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these approaches [83]. We can reasonably conclude that both formulations describe
different mechanical problems. Let us look at the details.

3.6.1 The Renaudot Approach

Modelling a moving load with constant force of gravity is a significant simplification
of reality. Nevertheless, its relatively simple mathematical apparatus is often used
in both analytical solutions and numerical calculations. These problems yield to
complete analytical solutions in the form of a series. In the case of a computer
simulation of a moving force with a fixed value, the task leads to modifying the right
hand side vector of the dynamic layout, step by step. However, literature reports say
that with increasing speed of the travelling load, the inertial effects of the moving
mass start to dominate, which changes the dynamic response of the entire system.
Omission of of these effects leads to qualitative and quantitative deviations in the
resulting solution. So we should take into account the inertia of moving masses,
especially for higher speeds of the travelling load. Taking into account the inertia
of the moving point mass leads to a component expressing the inertial d’Alembert
force [133]. For m = const we obtain

δ (x− vt)
d
dt

[
m

dw(vt, t)
dt

]
= δ (x− vt)m

d2w(vt, t)
dt2 . (3.119)

The second derivative of the vertical acceleration of the point of the structure w
under a moving mass can be written using a material derivative. Assuming a constant
velocity v of the travelling mass, we obtain the Renaudot formula [118]

d2w(vt, t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x=vt

+ 2v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x=vt

+ v2 ∂ 2w(x, t)
∂x2

∣∣∣∣
x=vt

. (3.120)

The reasoning given in the paper [118] is as follows According to Figure 3.24, at
time t, the moving load is at the point N. After a time dt, the moving load has shifted
to the point N′, if the deflection of the beam line AB remains unchanged. In fact, after
an elapse of time dt, the line deflection of the beam passes to a new position, and
the moving load is at N′′. For this reason, determining the vertical acceleration of
the moving point mass or continuous load requires taking the full derivative of the
function of w.

A B x

w

N
N’

N’’

Fig. 3.24 Renaudot’s reasoning to determine the acceleration of the moving mass.
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3.6.2 The Yakushev Approach

In 1974, Yakushev published the paper [146], in which he proposed a new model for
the inertial moving load. The Renaudot approach is there reformulated and refined
in order to more accurately take into account the effect of a moving inertial load on
the dynamic deflection of the beam. The foundation of that approach is to describe
the effect of inertia in the following form:

d
dt

[
δ (x− vt)m

dw(vt, t)
dt

]
=−δ ′(x− vt)mv

dw(vt, t)
dt

+ δ (x− vt)m
d2w(vt, t)

dt2 .

(3.121)
In this approach, the Dirac δ describes the location of a moving load and directly
affects the momentum of the beam at the point x = vt. This leads to changes in
the description of the load compared to the Renaudot assumptions. In the Yakushev
approach, the inertia of a point mass is described by not only the members of the
second derivative of (3.120), but also a member of the first derivative

dw(vt, t)
dt

=
∂w(x, t)
∂ t

∣∣∣∣
x=vt

+ v
∂w(x, t)
∂x

∣∣∣∣
x=vt

. (3.122)

Equation (3.121) has a definite physical interpretation. Almost ten years later, in
1993, Sześniak [134] reviewed and analysed Yakushev’s approach. In 1995, Langer
and Klasztorny [83] discussed the correctness of the approach. They concluded that
the Renaudot approach is the only correct formulation.

Two years later the differential equation term describing the moving inertial par-
ticle was also treated in the paper [41]. The effect of a moving mass is determined
by Newton’s second law:

F =
dp
dt

=
dm
dt

u̇+m
du̇
dt

. (3.123)

The resultant force F , acting on an inertial particle m, is defined as equal to the first
derivative of impulse p, equivalent to the product of the velocity u̇ by the variation of
mass dm/dt augmented by the product of the mass m and the acceleration ü= du̇/dt.

Unfortunately, the authors of the last paper make no reference to any of the nu-
merous papers devoted to the Yakushev approach. The authors illustrate their com-
putations with several figures. They consider four types of load. Type I (3.124) de-
scribes the static problem. Type II (3.125) corresponds to the dynamic problem,
however, it does not contain the mass of the moving load. Such a mass is considered
in type III (3.126). Type IV (3.127), in turn, includes the damping resulting from the
time dependence of the masses.
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Ku = Ft(t) (3.124)

Mü+Ku = Ft(t) (3.125)

(M+MR)ü+Ku = Ft(t) (3.126)

(M+MR)ü+ ṀRu̇+Ku = Ft(t) (3.127)

The computations were carried out with the following data:
– mass M1 = 0.135 kg,
– forces F1 = 0.147 N,
– number of elements = 20,
– time step Δ t = 0.00215 s,
– length of beam = 1000 mm,
– height of beam = 1 mm,
– width of beam = 20 mm,
– mass density = 7.85·106 kg mm−2,
– Young’s modulus = 204 833 N mm−2,
– speed = 2320 mm s−1.
Figure 3.25 depicts the results given in [41] compared to accurate analytical results.
We can compare the results obtained by Delgado with our results. We depict only the
moving mass case and compare it with the Bernoulli–Euler semi-analytical solution
(Figure 3.26).

The Renaudot approach and the Yakushev approach are independent. Each ver-
sion is based on certain assumptions in a certain way theoretically justified. Any
demonstration of the superiority of one variant of the theory over the other, lead-
ing to a more accurate description of physical phenomena, requires experimental
verification. The difference between both approaches is depicted in Figure 3.27.
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Fig. 3.25 Comparison of four load types based on [41].
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Fig. 3.26 Comparison of the displacement under the moving mass.

Fig. 3.27 Yakushev (a) and Renaudot (b) model of the moving mass problem.

Let us look at the diagrams that exhibit the differences in the results of the Yaku-
shev and the Renaudot approaches. The first two figures (3.28) depict vertical dis-
placements of the string under the moving load. The displacements were related
to the static deflection of the string subjected to a load placed at the middle of the
span. We notice that the Yakushev formulation results in lower displacements than
the Renaudot approach. The highest amplitudes are obtained for the simple massless
force, which exhibit the lowest inertial resistance.

The analogous plots obtained with the Bernoulli–Euler beam also exhibits sig-
nificant differences (Figure 3.29). Both the above examples were solved with the
following dimensionless data: length l = 1, cross section area A = 1, mass density
ρ = 1, tensile force N = 1, vertical point load P = −1, concentrated mass m = 1,
Young modulus E = 1, and cross section moment I = 0.01.
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Fig. 3.28 Vertical displacements of the string under the load for the massless load, the Yaku-
shev approach and the Renaudot approach, in the case of the speed of the moving load: 0.1c
(upper), 0.5c (lower), c =

√
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Fig. 3.29 Vertical displacements of the Bernoulli–Euler beam under a massless load, the
Yakushev approach, and the Renaudot approach, for speeds of the moving load: 0.1c (upper),
0.5c (lower), vcr = π/l ·√EI/ρ/A = 0.314.



Chapter 4
Review of Numerical Methods of Solution

In this chapter we will discuss the numerical approaches to the moving load prob-
lem given in the literature. Most of them concern beam deflection. Unfortunately,
comparison with exact analytical or semi-analytical results are rarely given. In most
cases the authors compare their results with curves published by other researchers.
The authors compute examples using different data and boundary conditions. They
usually emphasize the agreement of their results with other computational methods.
Unfortunately, results which coincide with an approximate method are not neces-
sarily accurate as well. We should relate the results to analytical solutions or at least
to solutions which fulfill the governing differential equations with possibly the low-
est error. In this chapter we will compare the curves presented in these publications
with semi-analytical results.

First we will consider a string, although this type of a structure is not frequently
studied in the literature. Then we will describe the Bernoulli–Euler beam and the
Timoshenko beam. The approaches in the literature deal with a moving non-inertial
force and an inertial force. Some of them are devoted to a system with a point load
or a distributed load.

Some published papers, even ones extensively cited by other authors, do not give
an objective measure of the error. The authors claim that a slight visual coincidence
with other curves proves its correctness. Moreover, they expect that differences in
the results justify the advantages of the published approach and should convince one
of its correctness.

First of all, we must warn against using an ad-hoc inertia lumping in neighbour-
ing nodes of the mesh. The mass distribution proportional to the distances to the
nodal points fails, and the results can not be accepted. In the case of a beam we are
dealing with a parabolic differential equation in space. This fact results in smooth
and infinitely fast bending of the entire structure. The local deformation is strongly
influenced by other parts of the beam. The influence of a concentrated load of a dif-
ferent type is lower than in the case of a string or a membrane.

The development of computer methods has led to a series of works on numeri-
cal calculations, especially using the finite element method (FEM). This method is
much more comprehensive than the analytical or semi-analytical methods. Papers

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 77–93.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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discussing moving loads with constant or periodic amplitude [91, 145] are simple
and rely on modifying the vector on the right hand side, step by step. The resulting
work is presented in papers devoted to modelling the motion of a vehicle as a group
of oscillators [37, 65, 89, 92, 135]. These problems require the coincidence of the
displacements and forces of two subsystems: the main structure and the moving os-
cillator. For balancing the respective quantities in both systems a simple iterative
procedure is applied. This method also involves a modification of the right-hand
side vector. At the first stage the structure is loaded by dynamic forces at the contact
points corresponding with the oscillators. As a result, the nodal displacements of
a discrete structure are obtained. This allows us to determine the vertical displace-
ment of a beam or a plate at the contact points with the oscillators. Displacements
assumed as boundary conditions force the motion of the oscillator. This iterative
procedure results in force–displacement equilibrium in a single time step. Unfortu-
nately, the convergence of such a scheme is limited to a certain range of parameters,
such as the travelling velocity, stiffness of the structure, inertia, and especially—
the time step. Otherwise the iterative procedure must be more complex and time
consuming.

The insertion of the inertia of the moving load effect requires not only a mod-
ification of the right-hand side vector, but also selected parts of the global inertia,
damping, and stiffness matrices of the system, in every time step. The first study
discussing the influence of the inertia of the moving mass was reported in [150].
An inertial load moving at a constant speed on the Euler beam was considered.
Further works [38, 52, 120] are also related to beams or plates in which the nodal
displacements and angles are interpolated by cubic polynomials. In these papers
the derived matrices are not general. They are not suitable for use for the string or
Timoshenko beam in which the nodal displacements and angles are interpolated by
a linear function independently. In the literature, you can also find examples of the
discrete element method for moving loads [100, 149]. This consists of replacing
a beam by a system of rigid rods, connected among themselves on the basis of the
compatibility of the rotation of adjacent elements.

The acceleration of a mass particle in the space-time domain is described by the
Renaudot formula [118]. The different parts of the equation describe the lateral ac-
celeration, Coriolis acceleration and centrifugal acceleration. The interpolation of
the nodal displacements by a third order polynomial allows us to derive the matrices
responsible for the travelling mass particle. Unfortunately, the Euler beam equation
is not a wave equation. The study of a wave phenomena is possible by using a more
complex model of the Timoshenko beam in which the vibration equation takes into
account the influence of lateral forces and rotatory inertia on the deflection line of
the beam. The angle formed by the axis of the deformed beam is composed of the
pure bending angle and the angle corresponding to the deformation of the pure shear.
Independent interpolation of displacements and rotation angles of the Timoshenko
beam causes serious problems. Linear interpolation of nodal shape features renders
impossible the designation of the centrifugal acceleration of a moving mass parti-
cle. In the previous works [24, 25, 26], we presented a method for determining the
matrices responsible for the description of the moving mass by the space-time finite
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element method with the use of a linear interpolation. We developed unique finite
elements carrying a moving mass particle. It was not yet the general solution for
practitioners. In engineering practice real structures possess a characteristic critical
speed (of the load) in a range of about 200 km/h (in the case of railway tracks) and
this can vary depending on structural details and environmental conditions.

4.1 Oscillator

The main advantage of computations based on the idea of only the spring elements
being in contact with the main structure is the simplicity of the algorithms involved.
Let us discuss the main features of this method.

First of all we can avoid the need to include the matrices resulting from time
derivation of the displacement in the follower point. Incorporation of such matrices
may cause serious problems. The matrices corresponding to the transverse accelera-
tion and centrifugal acceleration are symmetric. Unfortunately the matrix describing
the Coriolis acceleration is unsymmetrical. This fact may complicate the procedure,
especially if we intend to use existing code which was prepared for symmetric matri-
ces. Moreover we can not decompose the system of equations by using the diagonal
inertia matrix and explicit time integration procedure. The main advantage of the
massless spring’s being in contact with the structure are having constant matrices
in the system of algebraic equations. The right hand side vector is modified. How-
ever, this modification must be performed in an iterative way at each time step and
convergence in the case of a complex structure can be poor or even lost in some
circumstances.

The use of the oscillator instead of a rigid contact of the mass with a structure
simplifies the computer codes and allows of performing computations in two sepa-
rate threads, which enables a simple mutual exchange of displacements and forces.
An example of such computations is presented in Algorithm 1.

4.1.1 String Vibrations under a Moving Oscillator

The simplest way of modelling a moving inertial load is an oscillator placed at the
travelling contact point. In the case of a sufficiently rigid spring, we can consider
the system as mass placed at a point. Unfortunately, the rigidity can not be assumed
to be arbitrarily high. A low value does not ensure sufficient accuracy, while high
values do not assure convergence. The algorithm to solve this has two stages. In the
first one, we compute the point contact force on the base of the displacements of
both ends of the spring of the oscillator. Then the string is subjected to this force,
proportionally distributed to two neighbouring nodal points. In the second stage,
the string displacements are computed. The displacements of the two subjected
points allow of interpolating the vertical displacement at the intermediate points
of the contact with the oscillator. This displacement, in turn, is imposed on the os-
cillator and determines the nodal contact force. Iteratively, we can equilibrate the
forces in the two separate systems: the string and the oscillator (Algorithm 1). The
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Algorithm 1. Solution of one time step performed for two structures in contact with
mutual exchange of information
• Define the initial state at t = ti:

– external load applied to oscillator (substructure A),
– displacements of the main structure (substructure B),
– boundary condition at the contact point (c) of the oscillator (A), obtained with

the interpolation formula, based on displacements of the substructure (B),

• execute one step of the calculations of the motion of the oscillator,
• determine the reaction (R) at point (c) of the oscillator,
• distribute the action force (−R) at the contact point (c) among the neighbouring

nodes in the mesh by using a simple interpolation formula,
• solve one step of the motion of the structure (B) subjected to the forces resulting

from the action (−R),
• select transverse displacements of the structure (B) in nodes neighbouring to the

contact point (c),
• interpolate the displacements at point (c) based on the selected displacements at

the neighbouring nodes in the mesh of the structure (B),
• use these displacements as the boundary conditions imposed on the contact points

(c) of the oscillator (A),
• modify the external load to which is subjected the oscillator (A), if required,
• repeat the loop starting from the second point of this table until convergence is

achieved,
• go to the next time step ti+1 and return to the beginning of this table.

convergence of the iterations will allow us to proceed to the next time step. How-
ever, wise choice of the solution methods applied to both stages of time integration
is essential. Below we will present the results of a simple test. A moving oscillator
forces the string motion.

In the first approach, we use the central difference method for the time integration
of the equation of motion of the oscillator and the Newmark method for the remain-
ing part, i.e. the string. We write: m – mass of the oscillator, k – oscillator stiffness,

yc – forced contact displacement of the bottom point of the oscillator, equal to y(2)i ,

y( j)
i – the jth component of the displacement vector at time ti, ie. y(1)i is the displace-

ment of the point which is in contact and y(2)i is the displacement of the free end of
the spring of the oscillator. We use the following formula for the oscillator:

yi+1 =

⎧⎨
⎩

y(1)i+1

y(2)i+1

⎫⎬
⎭=

{
q0h2/m+(2− kh2/m)y(1)i + kh2/m · y(2)i − y(1)i−1

yc

}
. (4.1)
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The contact force q is proportional to the spring elongation

q = k
(

y(1)i+1− y(2)i+1

)
. (4.2)

Simulations allowed us to verify the iterative procedure and its efficiency. We have
two ways to fit the displacements of a contact point of the oscillator with the respec-
tive points of the string or beam. The first one is direct coincidence of the displace-
ments of both points. In the second approach, we compare the velocities and we
expect that if the time sequences of the velocities of both contact points are equal,
the resulting contact of the two bodies is ensured. Still the influence of the spring
rigidity on results may be severe. We performed this test with the hypothesis of the
agreement of the displacements. The spatial domain of the string was divided into
100 finite elements. Dimensionless data was assumed: l = 1, N = 1, ρA = 1. An ex-
tremely short time step was used (h= 10−6). With the velocity v= 0.1, this requires
a large number, 107, of time steps. The spring stiffness k = 102 – 104 was assumed.
The stiffness k = 104 resulted in divergence for a longer time step, h = 10−4. The
results are depicted in Figure 4.1. The displacements are scaled by the maximum
static deflection w0. We must emphasize that both in the above case and in the next
example, the computations were performed at the limit of stability and convergence
because of the values of the time step and spring stiffness. We notice that the ac-
cepted set of both parameters, i.e. time step and spring stiffness, gives procedures
which are in practice ineffective.

Figure 4.2 shows the displacements of both ends of the oscillator spring. The
mutual displacements are proportional to the contact force. We see that the contact
force oscillates and is influenced by the spatial partition of the structure.
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Fig. 4.1 Oscillator with k= 102, k = 103, and k= 104, moving on the string at various speeds.
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Fig. 4.2 Displacements of the upper and lower point of the spring of the oscillator at the
speed v = 0.5c, k = 103, h = 10−5.
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Fig. 4.3 Oscillator with k= 104, moving on the string at the speeds v= 0.05, 0.10, and 0.15c.

In the next approach, we apply the velocity formulas both to the oscillator and
to the string. We assume that the equality of velocities of both substructures at the
contact points ensures the equality of the displacements. The stages of the solution
method are similar to the first case. Unfortunately, the convergence is unsatisfactory.
First, we can not assume a sufficiently high rigidity of the spring. Decreasing the
time step does not improve the situation. Neither can we complete the computations
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for a higher velocity range. Figure 4.3 shows that sufficiently accurate results are
obtained for the low speed of v ≤ 0.1c.

4.1.2 Beam Vibrations under a Moving Oscillator

Filho [52] considers a simple supported beam subjected to a moving oscillator com-
posed of two masses: one supported with a Kelvin–Voigt spring–damper system m1

and one placed at the contact point m2 (Figure 4.4). The oscillator moves at a vari-
able speed v(t) and constant horizontal acceleration a0. The dynamic equilibrium
equation of the mass m1 is of the form

m1ÿ+ c(ẏ− ẇ)+ k(y−w) = 0 . (4.3)

The dynamic equilibrium of the mass m2 and the structure was written in the matrix
form

md̈+ cḋ+kd = NT f0 . (4.4)

In the above equations, m, c, and k are the inertia, damping, and stiffness matri-
ces of the structure, respectively, d is the nodal displacement vector, and f0 is the
point load. The matrix N has zeros in all places except those corresponding to the
degrees of freedom of the element with the positioned point force. N in fact is the
interpolation matrix which distributes the point load between both element’s nodes.

��
��
��

��
��
��

������ ������

�����
�����
�����

�����
�����
�����

k c

m

m

2

1

y

l
X

x
w

Fig. 4.4 Scheme of the discretized beam [52].

The force f0 acting at the loaded element is composed of the gravity load of
both masses, the inertial force of m2, the damping force, and the spring force of the
oscillator:

f0 = (m1 +m2)g−m2ẅ+ c(ẏ− ẇ)+ k(y−w) . (4.5)

Here, the deflection w is determined at the moving contact point x = vt. Its time
derivatives are given by
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dw
dt

=
∂w
∂ t

+ v
∂w
∂x

, (4.6)

d2w
dt2 =

∂ 2w
∂ t2 + 2v

∂ 2w
∂x∂ t

+ v2 ∂ 2w
∂x2 +

dv
dt
∂w
∂x

. (4.7)

The deflection w is interpolated by nodal displacements

w(x, t) = N(x)d(t) . (4.8)

The respective derivatives are computed

∂ 2w
∂x2 = N′′d,

∂ 2w
∂x∂ t

= N′ḋ,
∂w
∂x

= N′d,
∂ 2w
∂ t2 = Nd̈ , (4.9)

and the distance is determined by integration x = v0t + a0t2/2. In such a case, ẋ =
v0 + a0t and ẍ = a0.

When we substitute the above formulas into (4.6) and (4.7), we obtain

ẇ = (v0 + a0t)N′+Nḋ ,

ẅ = (v0 + a0t)2N′′d+ 2(v0 + a0t)N′ḋ+ a0N′d+Nd̈ .
(4.10)

We put (4.10) into (4.8) and into the equilibrium equation (4.3). Finally we have
⎡
⎢⎢⎢⎣

M+

+m2NT N 0

0T m1

⎤
⎥⎥⎥⎦
{

d̈
ÿ

}
+

⎡
⎢⎢⎢⎣

C+ cNT N+

+2m2(v0 + a0t)NT N′ −cN

−cNT c

⎤
⎥⎥⎥⎦
{

ḋ
ẏ

}
+

+

⎡
⎢⎢⎢⎢⎢⎢⎣

K+m2(v0t + a0t2)2NT N′′+

+m2a0NT N′+ kNT N+

+c(v0 + a0t)NT N′ −kNT

−c(v0 + a0t)N′ − kN k

⎤
⎥⎥⎥⎥⎥⎥⎦

{
d
y

}
=

[
(m1 +m2)gNT

0

]
.

(4.11)

The matrix equation (4.11) is a linear equation with variable coefficients depending
on t. In the particular case of k = 0, c = 0, and f0 = (m1 +m2)g, we have a problem
with a non-inertial force.

4.2 Inertial Load

In this section we will discuss numerical approaches to inertial loads given in the lit-
erature. Most of them concern beams. Unfortunately, in the literature, comparisons
with exact analytical results are rarely given. In most cases, the authors compare
their results with other published curves obtained from other approximate methods.
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Let us look at the simple ad-hoc mass insertion: the mass is added proportionally
to the distance from the element joints. Such a procedure can be performed by finite
element analysis software if we can only push the load through the spatial element.
A string vibration analysis enables plotting curves only in the case of a low string
inertia and a low speed of the motion.

Plots for the inertial load in the case of the mass moving over the string differ
from the analytical ones. Figure 4.5 shows the results at various speeds for the mass
m = 10. Figure 4.6 presents the results for m = 1 and v = 0.1, for m = 1000 and
v = 0.2, and for low values of both parameters: m = 0.01 and v = 0.1. We notice
that only in the case of low mass, i.e. almost a non-inertial load and at the low speed
v = 0.1 do we have agreement with the semi-analytical results.

4.2.1 A Bernoulli–Euler Beam Subjected to an Inertial Load

The solution procedure is relatively simple in the case of the Bernoulli–Euler beam
with third order shape functions.

Consider Figure 4.7. Results in the literature [2] were compared with our results
obtained with the space-time finite element method. The displacements of a free
and of a cantilever beam subjected to a moving inertial point load are depicted.
The velocity v of the moving load was equal to 0.27 of the critical speed vcr =
π/l ·√EI/ρ/A. The following data was assumed: l = 7.62 m, E = 20.68 ·1010 Pa,
I = 4.58 ·10−5 m2, and v = 50.8 m/s. Notice that the curve exhibiting the influence
of the mass does not coincide with the numerical results (Figure 4.7a). On the other
hand, the massless load in the same example has a perfect coincidence (Figure 4.7b).

Although Figure 4.7 was plotted for relatively high speed, other examples in the
literature present results at low speeds around 0.01—0.05 of the wave speed. Unfor-
tunately, in practice, we have a significantly higher ratio of the travelling velocity
to the wave velocity. Such occurs in track dynamics, with a ballast that significantly
increases the inertia and reduces the wave speeds. In such cases, the ratio can reach
0.1—0.5. Moreover, the existence of a point mass of a relatively high magnitude,
compared with the beam mass, instead of a spring–mass system, increases the dif-
ferences between the results obtained with the various methods at high speeds. That
is why a simple, efficient, and accurate numerical tool is essential for engineering
practice.

We next show results of numerical analyses of the Bernoulli–Euler beam taken
from the literature. We have taken data from Sadiku [122] and Stanisic [128]. They
are as follows: l = 6 m, v = 6 m/s, EI/ρ/A = 275.4408 m4/s2, m/ρ/A/l=0.2, g =
9.81 m/s2.

We present a plot with displacements under a mass moving along a simply sup-
ported Bernoulli–Euler beam (Figure 4.8). The results given by Stanisic practically
coincide with the precise finite element solution. The data for creating the figure was
taken from a digitalized article’s plot and may not be accurate. This could explain
the slight differences visible between both curves.
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Fig. 4.5 Comparison of the ad-hoc finite element solution with semi-analytical results for
a ratio of the moving mass to the string mass equal to 10, and at velocities 0.1c, 0.2c, and
0.5c (c = 1).
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Fig. 4.6 Comparison of the ad-hoc finite element solution with semi-analytical results at
various masses and velocities in the case of a string.
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Fig. 4.7 Deflection at the end point of a Bernoulli–Euler cantilever beam subjected to (a) an
inertial and (b) a non-inertial load for mass m = 525.35 kg and, respectively, (c) and (d) for
m = 2626.75 kg [2].

Fig. 4.8 Deflection un-
der the moving mass.
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The same data was used in Lee [85]. The clamped–clamped beam has been
solved. Also, these results were assumed for comparison (Figures 4.9 and 4.10).

Fig. 4.9 The dimen-
sionless deflection
under a moving load
for a clamped–clamped
Euler beam at speed
0.5v.
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Fig. 4.10 The dimen-
sionless deflection
under a moving load
for a clamped–clamped
Euler beam at speed
1.2v.
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In further chapters we will see that a correct derivation of the term describing
the displacement of the moving point is essential. These results differ and do not
coincide with the analytical results. What is more, the analytical curves given in the
literature are also doubtful. In this book we will show both the correct analytical or
semi-analytical and numerical solutions which coincide precisely with them.

4.2.2 A Timoshenko Beam Subjected to an Inertial Load

Mackertish in [95] presents the dynamic response of a simply supported Timo-
shenko beam excited by a moving mass that moves at a constant speed. The solution
was obtained analytically and then the final results were computed numerically. The
shear deformation and rotatory inertia effects were included.

The following data were assumed: l = 50 m, ρ = 2400 kg/m3, E = 3.36 ·1010 Pa,
G = 1.40 · 1010 Pa, A = 2 m2, I = 1.042 m4, and the shape factor k = 1.2. The
moving mass m0 =50,000 kg was moving with speeds v = 25 m/s, 50 m/s, and
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Fig. 4.11 Comparison
of results given in [95]
with semi-analytical
results at the speed
v = 25 m/s.
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Fig. 4.12 Comparison
of results given in [95]
with semi-analytical
results at the speed
v = 50 m/s.
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Fig. 4.13 Comparison
of results given in [95]
with semi-analytical
results at the speed
v = 100 m/s.
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Fig. 4.14 Deflection in the middle of the beam [148] compared with semi-analytical results
— rigid beam.
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Fig. 4.15 Deflection in the middle of the beam [148] compared with semi-analytical results
— soft beam.

100 m/s. The shear wave speed was c1 = 2200 m/s and the bending wave speed was
c2 = 3740 m/s. All three Figures 4.11, 4.12, and 4.13 exhibit significant underes-
timation of the displacements in comparison with the semi-analytical results. The
amplitudes were underestimated by more than a factor of two.

Yavari, Noufi, and Mofid in 2002 [148] solved the problem with a discrete
method. They called the method the discrete element technique. The continuous
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flexible beam elements were replaced by a system of rigid bars and flexible joints.
The authors compared their results with those obtained by Esmailzadeh and Gorashi
[50]. We compare the displacements in the middle of the span with the theoreti-
cal, semi-analytical results. The following data were assumed: l = 435.2 cm, ρ =
15.267 g/cm3, E = 2.02 ·1011 Pa, G = 0.77 ·1011 Pa, A = 13.1 cm2, I = 57.1 cm4,
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Fig. 4.16 Displacements under a moving mass: a) – A = 2.865 cm2, I = 0.653 cm4,
v = 8.56 m/s, b) – A = 2.865 cm2, I = 0.653 cm4, v = 38.89 m/s, c) – A = 2.865 cm2,
I = 0.653 cm4, v = 85.55 m/s, d) – A = 71.62 cm2, I = 408.18 cm4, v = 42.78 m/s, e)
– A = 71.62 cm2, I = 408.18 cm4, v = 192.4 m/s, f) – A = 71.62 cm2, I = 408.18 cm4,
v = 427.8 m/s.
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and the shape factor k = 1.43. The mass of the span was M = 87.04 kg and the mov-
ing mass was m0 = 21.83 kg. The speed of the motion was v = 27.49 m/s. We can
also give the shearing and bending wave speed: c1 = 1878 m/s, c2 = 3637 m/s. In
Figure 4.14, we compare the results from the literature. We notice that the moving
mass is relatively small and the speed v, related to the wave speed, is low. In such
a case the influence of the moving mass on the beam dynamics is slight. Even in this
case, both results are underestimated in comparison to the semi-analytical results.
These last we assume to be accurate.

The second example presented in the same paper was computed for the following
data: l = 435.2 cm, ρ = 0.0988 g/cm3, E = 2.02 ·1011 Pa, G = 0.77 ·1011 Pa, A =
2025 cm2, I = 3.42 ·105 cm4, and the shape factor k = 1.18. The mass of the span
was M = 200 kg and the moving mass was m0 = 87.04 kg. The speed of the motion
was v = 50 m/s. The shearing and bending wave speeds are equal to, respectively,
c1=2570 m/s and c2 = 4522 m/s. In Figure 4.15, the mid-span displacements are
depicted and compared with the semi-analytical results. Notice that although the
maximum amplitude does not differ significantly, the shapes of the curves do not fit.

Lee in [86] expressed the bending and shear energy as a sine and cosine series.
The Lagrangian formulation was used. He applied the following data to his exam-
ples: l = 1 m, E = 2.07 ·1011 Pa, G = 0.776 ·1011 Pa, and the shape factor k = 1.11.
The mass density of the span was ρ = 7700 kg/m3. In the first three tests (Figure
4.16a, b, c) the cross sectional area was A = 2.865 cm2 and the cross sectional in-
ertia moment was I = 0.653 cm4. The velocity was increased in each of the three
cases and was equal to 8.56, 38.89, and 85.55 m/s, respectively.

Next tests were performed for the following data: A = 71.62 cm2 and I =
408.18 cm4. The velocities were, respectively, 42.78, 192.4, and 427.8 m/s. The
moving mass was 0.2 of the mass of the beam in each case. The results are pre-
sented in Figure 4.16d, e, f.



Chapter 5
Classical Numerical Methods of Time
Integration

The development of electronics and the dissemination of computer technology has
led to the development of methods for computational mechanics. First, previously
published methods were implemented. Then, more effective solutions were sought.
New methods were created incomparably faster. With the increasing computational
power of computers, new and more complex issues were studied: the problems of
geometric and material non-linearities in the dynamics of structures and problems
with complex geometry.

Let us try to outline the group of methods used in the dynamics of structures. It is
essential to look at the computational methods of the statics of structures, because
most of the methods for the simulation of the dynamics can be reduced to a series
of static tasks. Good knowledge of the former allows of better understanding the
results of computer simulations of problems of structural dynamics.

The traditional methods of computational dynamics are described in many aca-
demic books. Classical methods such as the central difference method and the New-
mark method, are widely used. Others, despite undeniable advantages over tradi-
tional methods, did not gain suitable popularity. In this chapter, in addition to brief
descriptions of the central difference method and the Newmark method, we will
present the advantages of the Newmark–Bossak method, the Park–Hausner method,
and the Adams method. In the next chapter we will focus only on the space-time
element method.

Figure 5.1 shows a systematic classification of computational methods. Approx-
imate numerical methods will be the area of our interest. They are used in engineer-
ing practice. A sufficient accuracy allows us to solve complex tasks. The efforts of
researchers and users are moving towards understanding the properties of computer
methods in order to apply them to new categories of problems, such as in our case
a moving mass problem.

The computational methods of dynamics can be divided into two main groups:
explicit and implicit. They differ in their arguments. All of them are determined in
a previous time step in the case of explicit methods. In the case of implicit methods,
the derivatives of the unknown quantities can be defined in the final time level.
This idea is shown in Figure 5.2. Explicit methods are performed with relatively

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 95–122.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 5.1 Classification of computational mechanics methods.

Fig. 5.2 Calculation methods of dynamics.

low costs, since they can be reduced to the solution of simple systems of algebraic
equations. Implicit methods require supplementary equations to compute the right-
hand side derivatives of the unknowns in the succeeding time level. The cost is thus
increased. However, such methods have a higher accuracy in solving the reference
equation q̈+ q = 0. Moreover they are have no limitations imposed by stability
criteria.
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5.1 Integration of the First Order Differential Equations

We should mention here the methods of integrating differential equations of the first
order. The second order equations can simply be reduced to a first order equation
by the simple substitution of a new variable for the first derivative of the unknown.
In this way we double the number of unknowns. In the same way, we can lower
the level of each higher order differential equation. Methods developed for solving
first order equations, for example of parabolic type, can be used for solving the
hyperbolic type. Although the computational cost of a single time step is higher,
this way of reduction of the problem to a first order matrix equation is attractive
because of the availability of numerical procedures and extensive descriptions of
the equations of the first order.

First, the second-order Runge–Kutta method will be described. It is also called
the midpoint method or a modified method of trapezia. Stability analysis shows that
the scheme of integration applied to the equations of motion, is divergent for Δ t > 0.
Although the pace of discrepancy is small, a vibration analysis of the issues with this
method is not suitable. The fourth order Runge–Kutta method is definitely better,
although the analysis of its convergence in the problem of vibration is difficult to
implement for the general case.

In order not to groundlessly reject the second order Runge–Kutta method as un-
suitable for our task, we will briefly present an analysis of its accuracy and stability.
The method is usually written in the form of the following algorithm:

yi+1 = yi + h f (ȳi+1/2, ti+1/2),

ȳi+1/2 = yi + h/2 f (yi, ti), ti+1/2 = ti + h/2 .
(5.1)

The scheme (5.1) is obtained by the development of the derivative ẏ in the neigh-
bourhood of ti in a Taylor series and truncating it after the first term. The function y
is developed in a Taylor series, but now including the second term.

From both expansions, the member ÿ is eliminated with the use of the definition
of the tasks, we then get

yi+1 = yi +
h
2
[f(yi, ti)+ f(yi+1, ti+1)] . (5.2)

In the case of a system of ordinary differential equations, the right-hand side of the
equation ẏ(t) = f(y, t), y(0) = y0 can be re-written

f(y, t) = Ay(t) , (5.3)

where A is independent of time. Then the Runge–Kutta method takes the form

yi+1 = yi + hf
(

yi +
h
2

f(yi, ti), ti+1/2

)
= yi + hA

(
yi +

h
2

Ayi

)
. (5.4)
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Finally, we have

yi+1 =

(
I+ hA+

h2

2
A2
)

yi . (5.5)

In the general case, instead of ẏ(ti) = (yi+1− yi)/h, we use the approximation

ẏ(ti +αh) =
yi+1− yi

h
. (5.6)

Then the primary equation reduces to

yi+1 = yi + hf(yi+α , ti+α) . (5.7)

The value of the function f at intermediate points of time is interpolated:

f(yi+α , ti+α) = (1−α)f(yi, ti)+αf(yi+1, ti+1) = yi+h(1−α)Ayi+hαyi+1 . (5.8)

At α = 1/2, we get the scheme (5.1). After reordering (5.8), we obtain

(I− hαA)yi+1 = (I+ h(1−α)A)yi . (5.9)

The matrix coefficients of the above system of equations with α > 0 must be non-
singular. Then we obtain the solution which corresponds to the transition matrix

yi+1 = (I− hαA)−1(I+ h(1−α)A)yi . (5.10)

Modal analysis allows us to separate variables, and the differential equations un-
couple. Although the variables in the generalized vector y(t) are replaced by the
appropriate ones from the revised database, one can ask whether the stability of this
system of differential equations is reduced to the problem of the stability of the n
single differential equations.

Positively defined matrix A is diagonalized by using the substitution y = Φ z.
The matrix Φ is composed of eigenvectors of the matrix A. Then we have

ż =Φ−1AΦz , Λ =Φ−1AΦ . (5.11)

We substitute (5.11) into (5.9) and we obtain

(I− hαΛ)zi+1 = (I+ h(1−α)Λ)zi . (5.12)

The system of equations (5.12) is decoupled, and can be written as a set of n single
equations

(1− hαλk)zi+1 = (1+ h(h(1−α)λk) zi, k = 1,2, ...,n . (5.13)

Getting rid of the index k, we write a single equation with the ratio of the transition

zi+1 =
1+ h(1−α)λ

1− hαλ
zi . (5.14)
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The passage rate modulus should be no greater than one
∣∣∣∣1+ h(1−α)λ

1− hαλ

∣∣∣∣≤ 1 . (5.15)

When h→ ∞, the condition (5.15) is fulfilled at α ≥ 1/2. The case α = 0 diverges
then.

Single-step methods, well described in the literature for first-order equations,
are also applicable to equations of the second order. The second-order equation is
converted into two equations of the first order. In the case of matrix equations with
many degrees of freedom, the size of the task dramatically increases. Single step
methods allow the use of a variable integration step. Nor does this require taking
off procedures to generate an adequate set of solutions in the initial moments. The
calculations consist of several operations performed as intermediates and one then
calculates the final result of a single time step. The accuracy of the method can
be changed by changing the number of intermediate steps. In many cases, the use
of the fourth order Runge–Kutta method avoids the need for a non-linear iterative
procedure for solving nonlinear equations. Runge–Kutta can be used to solve stiff
equations. In static problems, this corresponds to ill-conditioned matrices of systems
of equations.

The Euler method is inaccurate because we go to the next time ti+1 through a tan-
gent drawn at the point (yi, ti). The idea is that the solution does not use the tan-
gent f(yi, ti), but the secant defined by the points (yi, ti) and (yi+1, ti+1). The second
point is set in an approximate manner using the Euler method and determined by y,
and is called the predictor. Appropriate calculations are carried out using the secant
1/2 [(f(yi, ti) + f(y0

i+1, ti+1)]. Ultimately, therefore, the corrector has the following
form (Figure 5.3):

yi+1 = yi +
1
2

[
(f(yi, ti)+ f(y0

i+1, ti+1)
]
. (5.16)

Note that the method of Runge–Kutta is a method of order 2 type predictor–
corrector. The prediction is made in the mid-step h, and then this value is used
in the correction stage (Figure 5.4).

Now we present a simple algorithm for solving the problem using the fourth
order Runge–Kutta method (Algorithm 2). The integration step is limited by the
criteria of stability and accuracy. In the case of rigid equations, the integration step
must be particularly short. The cost of the supporting steps and a short integration
step makes this method attractive enough compared to multistep methods. Single
step methods are normally applied to the initial stages of non-selfstarting multistep
procedures.

Table 5.1 presents the results of sample calculations ẏ+ y2 = 0 of the equation,
with initial condition y(0) = 1. The solution is obtained for a step h = 0.1. The strict
solution is y = 1/(1+ t).

Below we will present selected methods in Butcher’s tableau form. The simplest
Euler method is represented by the tableau
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The second order Runge–Kutta method has the following form:
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Heun’s variant of the method is
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Fig. 5.3 Predictor and corrector in the two-stage method.
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Fig. 5.4 Stage of prediction and correction in the second order Runge–Kutta method.
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Algorithm 2. The fourth-order Runge–Kutta method.

• we calculate the auxiliary:

¯̈y0 = ÿ(ti,yi),

¯̈y1 = ÿ(ti+1/2,yi +
h
2 ẏi),

¯̈y2 = ÿ(ti+1/2,yi +
h
2 ẏi +

h2

4
¯̈y0),

¯̈y3 = ÿ(ti+1,yi +h ẏi +
h2

2
¯̈y1)

• we calculate:

yi+1 = yi +hẏi +
h2

3 (
¯̈y0 + ¯̈y1 + ¯̈y2)+O(h5)

• ẏi+1 = ẏi +
h
4(

¯̈y0 + ¯̈y1 + ¯̈y2 + ¯̈y3)+O(h5)

Table 5.1 Results of solutions of the equation ẏ+y2 = 0 with chosen methods.

step Euler method RK 2nd order RK 4th order exactly

0 1.000000 1.000000 1.000000 1.000000
1 0.900000 0.909750 0.909091 0.909091
2 0.819000 0.834344 0.833334 0.833333
3 0.751924 0.770418 0.769231 0.769231
4 0.695385 0.715548 0.714286 0.714286
5 0.647029 0.667945 0.666667 0.666667
6 0.605164 0.626261 0.625000 0.625000
7 0.568542 0.589458 0.588236 0.588235
8 0.536218 0.556730 0.555556 0.555556
9 0.507465 0.527437 0.526316 0.526316

10 0.481713 0.501066 0.500000 0.500000

Another two-stage Runge–Kutta method has the following form:

0
2
3

2
3
1
4

3
4

The example of the integration of ẏ = f (x, t) is depicted in Figure 5.5.
In addition to the previously listed methods, we can meet in the literature a lot of

expressions from which we have reproduced a few:

Trapezoidal method. It is also known as the method of average acceleration.
In parabolic problems it is known as the Cranck–Nicolson method. It is
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Fig. 5.5 Accuracy of the Runge–Kutta methods.

unconditionally stable. The following compounds are used: un+1 = un+h/2(vn+
vn+1) and vn+1 = vn + h/2(an+ an+1).

θ -Wilson method. We assume here a linear variation of the acceleration dur-
ing the time interval [tn;tθΔ t ]: an+τ = an + τ/(θh)(at+θΔ t − at). It is an im-
plicit method, unconditionally stable at θ ≥ 1.37. Usually we apply the value
of θ = 1.40.

Houbolt method. The accelerations an+1 and velocities vn+1 are replaced with
the expressions an+1 = (2un+1−5un +4un−1−un−2)/h2 and vn+1 = (11un+1−
18un+9un−1−2un−2)/6h2. They are in fact backward differences with the error
order (Δ t)2. The idea of the method is similar to the central difference method.
The application, in turn, configures it to the methods of Adams. The balance of
power in the equation of motion is fixed at ti+1 (in the central difference method,
at time ti) and hence in the final scheme a calculation system of algebraic equa-
tions with coefficients determined by the stiffness matrix K is obtained. The
Houbolt method is classified as an implicit one. Also here, there is not a criti-
cal step of integration Δ t. An interesting fact is that the in the case of zero inertia
and damping matrices the scheme of calculation reduces to the solution of a prob-
lem of statics. A similar feature is shown in the space-element method in Chapter
6.4.3.

Additionally, one may consult the reviews [44, 45, 108, 119].

5.2 Single-Step Method SSpj

This method is described in [142, 154]. In special cases, you can turn it into a well-
known classic methods of integration of the differential equation of motion.

We will expand the displacements at the end of the time step in the form of Taylor
series
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yi+1 = yi +Δ t ẏi +
1
2
Δ t2ÿi + . . .+

1
p!
α(p)

i Δ t p . (5.17)

Known values are the values yi and the subsequent derivatives ẏi, ÿi etc. α(p)
i con-

tains unknown coefficients in terms of the remainder of the development. The de-
velopment of (5.17) and the derivative are written in short as follows:

yi+1 =
p−1

∑
q=0

Δ tq

q!
y(q)i +

Δ t p

p!
α(p)

i , (5.18)

ẏi+1 =
p−1

∑
q=1

Δ tq−1

(q− 1)!
y(q)i +

Δ t(p− 1)
(p− 1)!

α (p)
i .

The SSpj method (single-step) is characterized by two parameters: p – the number of
words in a Taylor series, and j – the order of the differential equation. The unknown

parameters α(p)
i are determined based on the postulate of fulfillment of the global

equations of motion in a weighted form:

∫ Δ t

0
W(Mÿ+Cẏ+Ky)dt = 0 . (5.19)

We define the quotient

∫ Δ t
0 Wtqdt∫ Δ t
0 Wdt

= θqΔ tq , q = 1,2, ..., p, 0≤ θq ≤ 1 . (5.20)

Using the definition (5.20), we can define the following integrals:

∫ Δ t
0 Wydt∫ Δ t
0 Wdt

=
p−1

∑
q=0

Δ tq

q!
y(q)i θq +

Δ t p

p!
α(p)

i θp ,

∫ Δ t
0 Wẏdt∫ Δ t
0 Wdt

=
p−1

∑
q=1

Δ tq−1

(q− 1)!
y(q)i θq−1 +

Δ t p−1

(p− 1)!
α (p)

i θp−1 , (5.21)

∫ Δ t
0 Wÿdt∫ Δ t
0 Wdt

=
p−1

∑
q=2

Δ tq−2

(q− 2)!
y(q)i θq−2 +

Δ t p−2

(p− 2)!
α (p)

i θp−2 ,

∫ Δ t
0 WFdt∫ Δ t
0 Wdt

= F̄ .

We divide the equation (5.19) by
∫ Δ t

0 and we use (5.21). We obtain
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M

(
p−1

∑
q=2

Δ tq−2

(q− 2)!
y(q)i θq−2 +

Δ t(p− 2)
(p− 2)!

α(p)
i θp−2

)
+ (5.22)

+C

(
p−1

∑
q=1

Δ tq−1

(q− 1)!
y(q)i θq−1 +

Δ t(p− 1)
(p− 1)!

α(p)
i θp−1

)
+ (5.23)

+K

(
p−1

∑
q=0

Δ tq

q!
y(q)i θq +

Δ t p

p!
α (p)

i θp

)
− F̄ = 0 . (5.24)

Hence, we determine the coefficients α (p)
n :

α(p)
n =

(
Δ t p−2

(p− 2)!
θp−2M+

Δ t p−1

(p− 1)!
θp−1C+

Δ t p

p!
θpK

)
·

·(F̄−M ¨̃yi+1−C ˙̃yi+1−Kỹi+1
)
. (5.25)

Quantities ỹ, ˙̃y and ¨̃y mean the average value of predictors in time interval and are
defined as follows:

ỹi+1 =
p−1

∑
q=0

Δ tq

q!
y(q)i θq ,

˙̃yi+1 =
p−1

∑
q=1

Δ tq−1

(q− 1)!
y(q)i θq−1 , (5.26)

¨̃yi+1 =
p−1

∑
q=2

Δ tq−2

(q− 2)!
y(q)i θq−2 .

For starting the computations, we require the values y0 and the derivatives y(q)0 up to
order p− 1. The simplified scheme of computations is depicted in Algorithm 3. It
is important to select the coefficients θq and adopt an appropriate step Δ t. You can
construct more or less complex integration patterns, choosing the appropriate devel-
opment (5.17). The study [154] shows in which cases the SSpj method becomes one
of the methods of Newmark, Newmark–Bossak, Wilson, Houbolt, et al.

Algorithm 3. Scheme of computations with the SSpj method.

• Determine ỹi+1, ˙̃yi+1 and ¨̃yi+1 from (5.26).

• Compute α(p)
i from (5.25).

• Compute yi+1, ẏi+1, ... from equation (5.18).
• Repeat the computations in the successive step.
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5.3 Central Difference Method

This is the most commonly practiced method of integrating the differential equa-
tions of motion. What’s more, it has been applied to almost all problems of the
numerical resolution of initial value problems. The simplicity of its formulation is
its main feature.

Let us consider the differential equation describing the motion of a simple oscil-
lator:

mq̈(t)+ cq̇(t)+ kq(t) = f (t) . (5.27)

The derivatives are replaced with difference quotients:

q̇i =
qi+1− qi−1

2Δ t
, (5.28)

q̈i =
q̇i+1/2− q̇i−1/2

Δ t
=

qi+1− 2qi+ qi−1

Δ t2 . (5.29)

We define the equation (5.27) at time t = ti, then apply the difference quotients de-
fined above (5.28) and (5.29). After re-arranging the terms, we obtain the following
stepping formula

qi+1 =

(
m+

h
2

c

)−1 [(
2m− kΔ t2) qi +

(
h
2

c−m

)
qi−1 +Δ t2 fi

]
. (5.30)

With solutions at two successive moments, i−1 and i, we can determine the solution
for the next time-step i+ 1. A difficulty may occur in the first step of calculations,
during the taking into account of the initial conditions. Assume that the equation
(5.27) can be solved with the following initial conditions: q(0) = q0, q̇(0) = q̇0. In
this case, we introduce the first condition directly into the equation (5.30). In the
second condition, the derivative is replaced with the backward difference quotient
q̇0 = (qo− q−1)/Δ t. So we have a missing value of q−1 = q0− q̇0h. This auxiliary
quantity is formally required to run the calculation procedure. The Algorithm 4
shows the computational process in the case with initial displacement value q0 and
the velocity q̇0.

Let us now turn to the matrix form of 5.30. In the case of the full matrix of inertia,
we obtain the following equation

Algorithm 4. Central difference method.

1. Using the initial condition q̇(0) = q̇0 we determine the missing value q−1 = q0−
q̇0h.

2. Knowing the values of q−1 and q0 we determine q1 (i.e. qi+1 at i = 0):
qi+1 =

(
2− k

m h2
)

qi− qi−1 +
h2

m fi.
3. We go to the next step and we repeat the calculation on p. 2, with i = 1,2,3....,n.
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Mqi+1 = (2M− h2K)qi−Mqi−1 + h2Fi . (5.31)

If the inertia of the structure can be represented as a diagonal matrix, then the in-
version of M is immediate and simplifies the calculation scheme to the following
form:

qi+1 =
(
2I−M−1Kh2) qi−qi−1 . (5.32)

We obtain a system of algebraic equations with the separated equations. We solve
it equation after equation, at minimal numerical cost. We see that for a full inertia
matrix M, we have to solve the system of equations with a full or band coefficient
matrix. Therefore, the central difference method is usually used with a diagonal in-
ertia matrix. The method of constructing the diagonal matrix of inertia is relatively
simple. The easiest way to obtain a diagonal matrix is by placing the material parti-
cles of respective masses mi, so that their sum is equal to the total mass of the object
m. Material particles have no rotational inertia. The rotational inertia can be included
in the matrix of inertia of beams or plates, adding quite freely diagonal coefficients,
corresponding to the rotational inertia of the part of the discretized structure. In the
case of a beam, it will be a moment of rotational inertia relative to the mid-element
node with mass m/2 and length l/2, so I = (m/2) · (l/2)2/3.

This method of mass granulation is sufficient for most tasks. In a situation where
we deal with both translational and rotational degrees of freedom, these first deter-
mine the displacements and stresses of structural elements. An imprecise descrip-
tion of the rotational inertia only affects the results minimally. Natural frequencies
can be determined with an error not exceeding a few percent. Higher frequencies,
with a large share of bending in the corresponding modes, have a double-digit error.
For this reason, more accurate ways of substituting consistent matrices by diagonal
inertia ones have been sought. The method proposed in [66] (the HRZ method) is
equally simple. The principle is to take into account only the diagonal values of the
full matrix. They are appropriately scaled. The procedure can be summarized in the
following steps:

1. We calculate only the diagonal terms of the consistent inertia matrix.
2. We calculate the total mass m of the discrete element.
3. We calculate the value s equal to the sum of the diagonal terms mii, corresponding

only to translational degrees of freedom in the direction of motion. We omit here
rotational degrees of freedom.

4. We scale all diagonal coefficients by multiplying by the number m/s. Thus we
keep the total weight of the element.

Example 5.1. The consistent inertia matrix of the Bernoulli–Euler beam element has
the following form:

M =
m

420

⎡
⎢⎢⎣

156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

⎤
⎥⎥⎦ .
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Here, m is the total mass element m = ρAl. The matrix diagonalized directly has the
form

M =
m
2

diag[1, l2/12, 1, l2/12] ,

and diagonalized by the HRZ method

M =
m
2

diag[1, l2/78, 1, l2/78] .

The HRZ method allows obtaining better results for the higher natural frequencies
and related phenomena. We note that the coefficients corresponding to the rotary
degrees of freedom in two ways of mass granulation vary considerably.

5.3.1 Stability of the Method

The problem of stability was already discussed in Chap. 5 for the method of 2nd
order Runge–Kutta and generally – trapezoidal methods. Now consider the problem
of stability of the central difference method. Let us write (5.30) as a single-layer
scheme based on the double number of degrees of freedom:

{
qi+1

qi

}
=

[
2− k

m h2 −1
1 0

]{
qi

qi−1

}
(5.33)

or in short
qi+1 = Tqi . (5.34)

Using the above record we create a solution after n computing steps

q1 = Tq0 ,

q2 = Tq1 = T ·Tq0 = T2 q0 , (5.35)

.....

qn = Tn q0 .

The stability of the system (5.34) requires that the total energy of the system does not
grow from step to step, and therefore the amplitude of vibration as n→ ∞ remains
limited. This in turn leads to the necessary condition of stability,

|λi| ≤ 1, i = 1,2, (5.36)

where, with the notation ω2 = k/m, we have the eigenvalues of the matrix T

λ1/2 =
ωh
2

√
ω2h2− 4∓ ω2h2

2
± 1 . (5.37)
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The condition (5.36) allows of determining the maximum integration step

hmax =
2
ω

. (5.38)

This criterion applies to a single degree of freedom. In a system with many degrees
of freedom the determining frequency is the highest frequency ωmax of the system,
as this frequency increases the spectral radius of T. The eigenvalue appears outside
the unit circle on the complex plane. We see that with an increase of the eigenfre-
quency ω , associated with the selected degree of freedom, the allowable time step h
decreases. In practice, this happens with an increase in the stiffness or a reduction of
the inertia of the finite elements. An important tip is provided by a simple analysis
of the stiffness and inertia of the finite element rod of length l oscillating axially.
The frequency of vibrations ω is proportional to the expression

√
E/ρ/l. We see

that with a refining of the grid of the spatial partition, the element length decreases
and the frequency ω increases. In the same way, the critical time step value hmax

decreases.
Let us apply this stability criterion to the finite element of an axially vibrating

rod. The nonzero eigenvalue is the number ω2 = 4E/ρ/l2, and c2 = E/ρ is the
velocity of wave propagation in the rod. Then ω = 2c/l. Let us now consider the
condition (5.38) in the form of the inequality h≤ 2/ω . We obtain the stability crite-
rion, determining the ratio of the spatial size of the mesh grid l to the length of the
time step h:

l/h≥ c . (5.39)

This criterion is known as the Courant condition [40].

5.3.2 Accuracy of the Method

Consider two basic problems about the vibrations of an oscillator with parameter
values k = 1 and m = 1, with different initial conditions: q0 = 0, q̇0 = 1 and q0 = 1,
q̇0 = 0. The solution of the first of these problems is the function sin(t), and the
second, the function cos(t). In every other case, the solution is a combination of
these two.

The conditions q0 = 0, q̇0 = 1 can be reduced, at step Δ t = h, to the displacement
conditions q−1 = −h, q0 = 0. The solution is y(h) = q1 = h. We can develop an
accurate solution in Taylor series

sin(h) = h− 1
3!

h3 + ... . (5.40)

The maximum error in this case is

ε1(h) = |sin(x)− y(h)|= 1
3!

h3− ... . (5.41)

In the second case, q0 = 1, q̇0 = 0, the initial conditions are reduced to the follow-
ing displacement conditions: q−1 = q1, q0 = 1. Their inclusion in (5.30) gives the
solution y(h) = 1− h2/2.
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Knowing that cos(h) = 1− 1/2!h2+ 1/4!h4− ..., we can determine in this case
the maximum error:

ε2(h) = |cos(x)− y(h)|= 1
4!

h4− ... . (5.42)

The conclusion is: the maximum error of the method of the central difference
method, depending on the integration step h, is

ε(h) =
1
6

h3 . (5.43)

The error of one step is 1/6ω3h3. The number of steps is proportional to 1/h (i.e.
n = T/h). Hence the error of the result after time T is ε = 1/6ω3h3 · T/h. It is
therefore proportional to h2. The method is second order.

5.4 The Adams Methods

The group of Adams methods, well known and used in recent years, is becoming
less common. Although characterized by attractive properties, is slowly disappear-
ing from academic textbooks. We will briefly present the basic algorithms of the
methods of Adams and their advantages. An essential advantage is the possibility
of applying the method of high order (k) without an increase in the cost of com-
puting. The calculations require storage in the memory of a sufficient number of
solutions from previous steps of the calculations, specifically, the functions f(yi, ti).
The current calculation step requires only a single computation of such a function
and its summation, with the relevant factors, with the k− 1 values of the functions
determined in the previous steps and stored in memory. With an adequate number of
stored values of f, counting backwards, we can completely freely choose the order
of the method. What’s more, we can use a different accuracy with selected degrees
of freedom or for the entire sub-area of a structure. These advantages were used to
study the dynamics of engineering problems.

Consider the differential equation
⎧⎨
⎩

dy
dt = f (y, t) ,

y(0) = y0 .
(5.44)

After expansion of y(t) in a Taylor series, we obtain

y(t +Δ t) = y(t)+Δ t y′(t)+
Δ t2

2!
y′′(t)+

Δ t3

3!
y′′′(t)+ . . . . (5.45)

Then (5.44) results in

y′(t) = f (y, t), y′′(t) = f ′(y, t), . . . . (5.46)
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The development of (5.45) at ti can be written

yi+1 = yi +Δ t fi +
Δ t2

2!
f ′i +

Δ t3

3!
f ′′i + . . . . (5.47)

Depending on the number of terms of the expansion, we obtain the next Taylor’s
formula of higher order.

5.4.1 Explicit Adams Formulas (Open)

Explicit formulas for the Adams methods are also called Adams–Bashord formulas.
Below we will show the idea of obtaining the formulas up to the third order, together
with a general formula and coefficients given in a table.

First order formula

Leaving the two terms in the series (5.47), we obtain the Adams formula of first
order, identical to the Euler formula:

yi+1 = yi +Δ t fi . (5.48)

Second order formula

We include three terms of the development (5.47)

yi+1 = yi +Δ t fi +
Δ t2

2!
f ′i +O(Δ t)3 . (5.49)

We replace the derivative f ′i by the backward difference quotient

f ′i =
fi− fi−1

Δ t
. (5.50)

Finally we obtain the second order formula

yi+1 = yi +
Δ t
2
(3 fi− fi−1)+O(Δ t)3 , (5.51)

with the error of a single step being of the order of Δ t3.

Third order formula

We proceed as in the case of the lower-order formulas. We include four terms of the
expansion (5.47)

yi+1 = yi +Δ t fi +
Δ t2

2!
f ′i +

Δ t3

3!
f ′′i +O(Δ t)4 . (5.52)
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After replacing derivatives by differences and then rearranging the relevant factors,
we obtain the third-order Adams formula

yi+1 = yi +
Δ t
12

(23 fi− 16 fi−1 + 5 fi−2)+O(Δ t)4 . (5.53)

Explicit Adams method of arbitrary order

The explicit Adams method of order n+ 1 is described by the scheme

yi+1 = yi +Δ t
n

∑
k=0

fi−kαnk . (5.54)

The coefficients of the formulas are placed in Table 5.2.

Table 5.2 Coefficients of explicit Adams methods.

k
n method’s order

0 1 2 3 4 5

0 1 1

1 3
2 − 1

2 2

2 23
12 − 16

12
5
12 3

3 55
24 − 59

24
37
24 − 9

24 4

4 1901
720 − 2774

720
2616
720 − 1274

720
251
720 5

5 4277
1440 − 7923

1440
9982
1440 − 7298

1440
2877
1440 − 475

1440 6

The beginning of the calculation of Adams formulas of higher order than the
first requires the use of other computational methods for its first step. The first order
Adams method can be used, or else the first order, the second order and so on succes-
sively, until all values fi, fi−1, ... required to continue the calculation are obtained.
Table 5.3 presents the results of the solution of the elementary differential equation
ẏ+ y2 = 0, with initial condition y(0) = 1, by the Adams methods. The first steps
were performed by lower order Adams methods. Hence, the final accuracy does not
fully depend on the accuracy of the formulas of higher order, and is burdened with
a higher error in its initial steps.

Figure 5.6 gives an example of the results for the displacements of an oscillator as
a function of time obtained with the Adams method of the first and the second order.
We see that the first order method is divergent, although the degree of accumulation
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Table 5.3 Sample results of calculation with Adams methods.

step order of the method
1 2 3 4 5 6

1 0.900000
2 0.819000 0.835124
3 0.751924 0.771831 0.768758
4 0.695385 0.717345 0.713642 0.714436
5 0.647029 0.669943 0.665892 0.666860 0.666612
6 0.605164 0.628349 0.624185 0.625246 0.624933 0.625022
7 0.568542 0.591567 0.587412 0.588480 0.588143 0.588261
8 0.536218 0.558815 0.554749 0.555804 0.555474 0.555595
9 0.507465 0.529472 0.525538 0.526552 0.526227 0.526344

10 0.481713 0.503034 0.499257 0.500227 0.499923 0.500038

of the error is moderate. A shorter time step improves the results. We recall at this
point that the popular Runge–Kutta method of the second order is also not stable.
The second-order Adams method with an appropriately selected time step allows us
to obtain a stable solution.
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Fig. 5.6 Oscillator displacements obtained by explicit Adams first and second order methods.

5.4.2 Implicit Adams Formulas (Closed)

The function y(t) can be expanded in a backward Taylor series at the point t +Δ t

y(t) = y(t +Δ t−Δ t) =y(t +Δ t)+ (−Δy)y′(t +Δ t)+
Δ t2

2!
y′′(t +Δ t)+

+
−Δ t3

3!
y′′′(t +Δ t)+ . . . .

(5.55)
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Assuming the formulas y′ = f , y′′ = f ′, etc. at ti, we can write

yi = yi+1−Δ t fi+1 +
Δ t2

2!
f ′ − Δ t3

3!
f ′′i+1 + . . . . (5.56)

After re-arranging terms, we obtain the final form of the implicit Adams formulas:

yi+1 = yi +Δ t fi+1− Δ t2

2!
f ′i+1 +

Δ t3

3!
f ′′i+1 + . . . . (5.57)

First order formula

Already in its simplest form, the Adams implicit formula differs from the explicit
formula (5.48)

yi+1 = yy +Δ t fi+1 . (5.58)

The formula is called closed, because to obtain the unknown value of yi+1 we must
determine fi+1 = f (yi+1, ti+1), depending on yi+1. We use this iterative process:

• we define the first approximate value y(0)i+1 of the quantity yi+1,

• we consider it in the equation and we compute the new value y(1)i+1

y(1)i+1 = yi +Δ t f (y(0)i+1, ti+1) ,

• iterate.

The implicit Adams method of arbitrary order

The implicit Adams method of order n+1, as in the case of the explicit methods, is
described by the scheme

yi+1 = yi +Δ t
n

∑
k=0

fi+1−k βnk +O(Δ t)n+2 . (5.59)

The coefficients of the formulas are placed in Table 5.4.
The Adams methods are characteristized by their simplicity of use. A place in

the memory is created for each of the vectors fi of solutions at k successive times.
Then, depending on the order k of the method, the solution at time ti is calculated,
for which a vector yi was determined. Each time step is a summation of vectors fi

with the relevant factors and then a calculation of the vector fi+1. At each stage of
the calculation, we can change the order of the method. The method of a higher
order, applied at any stage, does not result in an increase of the cost of calculation,
if a sufficient number of consecutive vectors fi is kept in memory. This is important
especially at the early stage, when the calculations start using the first order method
and continue increasing the method’s order from step to step, until the required
accuracy is reached.
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Table 5.4 Factors of implicit Adams methods.

k
n method’s order

0 1 2 3 4 5

0 1 1

1 1
2

1
2 2

2 5
12 − 8

12 − 1
12 3

3 9
24

19
24 − 5

24
1
24 4

4 251
720

646
720 − 264

720
106
720 − 19

720 5

5 475
1440

1427
1440 − 798

1440
482

1440 − 173
1440

27
1440 6

5.5 The Newmark Method

This method was published in 1959 [103]. Its description can now be found in any
book devoted to discrete structure vibrations. It is also the most commonly used
method in commercial computing packages. Its advantage is clearly its uncondi-
tional stability with properly selected parameters. The Newmark method was mod-
ified [64, 143] to improve some properties of the original. Despite this, the original
version of the method is usually chosen for integrating differential equations of mo-
tion. This choice is without a doubt determined, in addition to its good numerical
property, by its simplicity and the availability of its procedures.

The derivation of the equations of the method is simple. We develop the functions
of displacements u(t) and velocities v(t) in Taylor series. The remainder, as the last
component of the expansion of displacement u, is determined at an intermediate
point tβ = (1− 2β )tn + 2β tn+1, 0 ≤ β ≤ 1/2. In turn, the remainder of the devel-
opment of the velocity v is determined for time tγ = (1− γ)tn + γtn+1. Algorithm
5 formulates the Newmark method. Suitable simple transformations lead to a com-
putational step scheme. The parameter γ affects the numerical damping properties
(Figure 5.7) and the parameter β affects the stability of the method. Both parame-
ters are coupled together and must be selected with caution if we decide to select
values other than those commonly used and described in the literature. γ = 1/2
provides no numerical damping. In this case, with β ≥ 1/4, we obtain an uncon-
ditionally stable scheme. The maximum damping of high frequencies is obtained
with β = 1/4(γ+ 1/2)2 and γ > 1/2. The eigenvalues of the transfer matrix are as
follows:

λ1/2 =
1
4

∣∣∣∣4β − 2γ− 1±
√
−16β + 4γ2 + 4γ+ 1
β

∣∣∣∣ . (5.60)
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Algorithm 5. The Newmark method.

Formulation

• un+1 = un + hvn + h2(1/2−β )an+ h2βan+1 ,
• vn+1 = vn + h(1− γ)an+ hγan+1 ,
• Man+1 +Cvn+1 +Kun+1 = Fn+1 .

Solution

• Build a system of equations
(

K+ 1
βh2 M+ γ

βh C
)

ui+1 = Fi+1 +M
(

1
βh2 ui +

1
βh vi +( 1

2β − 1)ai

)
+

+C
(

γ
βh ui +( γβ − 1)vi+

h
2(

γ
β − 2)ai

)
,

• Solve the system of equations in calculating ui+1 ,
• Calculate the missing accelerations and velocities

ai+1 =
1
βh2 (ui+1−ui)− 1

βh vi− ( 1
2β − 1)ai ,

vi+1 = vi + h(1− γ)ai+ γhai+1 .
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Fig. 5.7 Numerical damping of the Newmark method with different parameters γ .

The influence of both parameters on the value of the spectral radius (and thus the
stability or divergence of the method) is shown in Figure 5.8.

In the group of Newmark methods we can include several derived methods,
brought out for special values of parameters β .
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Fig. 5.8 Eigenvalues depending on the parameters β and γ .

The constant acceleration method. Is also called the average acceleration
method. This is the case of β = 1/4. The method is implicit, unconditionally
stable, and second order in accuracy. This is the most popular variant of the
Newmark method, much used in practice. It is also known by the name of the
trapezoid method.

Linear acceleration method. This is the case of β = 1/6. The method is implicit,
with an accuracy of the second order, and conditionally stable.

The Fox–Goldwin method. Here, β = 1/12, and an implicit method is obtained,
with second order accuracy, conditionally stable. In the absence of damping, i.e.
with C = 0, we obtain a fourth order method.

The central difference method. This is the simplest case of the Newmark
method, with β = 0. The method is explicit.
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5.6 The Bossak Method

Most of the schemes of integration of differential equation of motion are or are
derived from the expansion of the functions of displacements and speed in Taylor
series, or can be expressed in terms of such an expansion. Several methods were
established by modifying the equations of motion. An example of such a way is the
modification introduced by Bossak [143]. The forces of inertia are here modified.
The Bossak–Newmark method is an extension of the Newmark method. In the equa-
tion of motion we take into account the acceleration a before time ti+1. The inertial
forces are interpolated in the interval [ti, ti+1]. The formulation of the methods is
shown below (Algorithm 6). In the case of αB = 0, we obtain the Newmark method.

Algorithm 6. The Bossak method.

Formulation

• un+1 = un + hvn + h2(1/2−β )an+ h2βan+1 ,
• vn+1 = vn + h(1− γ)an+ hγan+1 ,
• M(1−αB)an+1 +MαBan +Cvn+1 +Kun+1 = Fn+1 .

Solution

• Build a system of equations(
K+ 1−αB

βh2 M+ γ
βh C

)
ui+1 = Fi+1 +

+M
(

1−αB
βh2 ui +

1−αB
βh vi +( 1

2β − αB
2β − 1)ai

)
+

+C
(

γ
βh ui +( γβ − 1)vi+

h
2(

γ
β − 2)ai

)
,

• Solve the equations by calculating ui+1 ,
• Calculate the missing acceleration and velocity

ai+1 =
1
βh2 (ui+1−ui)− 1

βh vi− ( 1
2β − 1)ai ,

vi+1 = vi + h(1− γ)ai+ γhai+1 .

The stability conditions are satisfied at

αB ≤ 1/2 , βB ≥ γB/2≥ 1/4 , αB + γB ≥ 1/4 .

The Bossak method is characterized by the very important property of absorbing the
higher frequency vibrations.

Another modification, based on a similarly simple concept, was introduced by the
authors of [64]. In this case, a change of potential forces was introduced, shifting the
period of time at which they are defined in the equation of motion. The equation of
motion takes the form listed in the Algorithm 7. Algorithms based on this modifica-
tion are very sensitive to the parameters chosen. Despite the theoretical possibility
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Algorithm 7. Hilber, Hughes, and Taylor method, according to [64].

Formulation

• un+1 = un + hvn + h2(1/2−β )an+ h2βan+1 ,
• vn+1 = vn + h(1− γ)an+ hγan+1 ,
• Man+1 +Cvi+1+(1+αH)Kun+1−αHKun = Fn+1 .

Solution

• Build a system of equations(
(1+αH)K+ 1

βh2 M+ γ
βh C

)
ui+1 = Fi+1 +

+M
(

1
βh2 ui +

1
βh vi +( 1

2β − 1)ai

)
+

+C
(

γ
βh ui +( γβ − 1)vi+

h
2(

γ
β − 2)ai

)
+αHKi ui ,

• Solve the equations by calculating ui+1 ,
• Calculate the missing acceleration and velocity

ai+1 =
1
βh2 (ui+1−ui)− 1

βh vi− ( 1
2β − 1)ai ,

vi+1 = vi + h(1− γ)ai+ γhai+1 .

of influencing the properties of the method by selecting these parameters, a stable
solution is obtained only within a very narrow range of values, given by the authors.
For this reason, its application has not spread very widely.

5.7 The Park Method

The method described by Park, [107], is designed for stiff equations. Differential
equations are called stiff, when, despite the very small step in integrating computa-
tional numerical methods, they present unstable solutions. The primary task of the
method of calculation in this case is to adequately accurately integrate the variables
responsible for the behaviour of a rigid body, i.e. one characterized by high fre-
quencies of vibration, without loss of computational efficiency of the process. The
construction of methods for resolving these issues began with Gear [59].

5.8 The Park–Housner Method

The Park–Housner method [110] is an example of a semi-implicit method. It com-
bines the advantages of both explicit methods (low numerical cost, low memory
consumption) and implicit methods (unconditional stability). In this method, the di-
agonal form of the matrix M is assumed. We underline this assumption here, because
it can considerably simplify the procedure and increase its efficiency. The method
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in the general case can also be applied with a full matrix M. In this case, however,
an expansive inversion of it is required. The matrix K is decomposed into the sum
of triangular matrices. As a result we obtain two systems of algebraic equations to
solve. Finally we compute the displacement and velocity vectors (Algorithm 8).

Algorithm 8. Park–Housner method

• Construction of the matrix K and the diagonal matrix M ,
• Decomposition of K into KL and KU (K = KL +KU , KL = KU ),
• Construction of the matrix of coefficients of the system of equations:

L = M(I+αβh2M−1KL),

U = (I+αβh2M−1KU),

gn+1 = αβh2[β fn+1 +(1−β )fn]+M(un +βhvn) .
• The solution of the system of equations (with triangular matrices):

Lyn+1 = gn+1, Uūn+1 = yn+1 .
• Final solution:

un+1 = 1/β [ūn+1− (1−β )un],

vn+1 = 1/(αh) (un+1−un)− (1−α)/α vn .

5.8.1 Stability of the Park–Housner Method

The analysis of the eigenvalues of the transition matrix gives a graph shown in
Figure 5.9. The eigenvalues of the transfer matrix are as follows:

λ1/2 =
1
2

∣∣∣∣αβ
2− 2α2β 2∓

√
α2β 2(α−β )2 +α2β
α2β 2

∣∣∣∣ . (5.61)

Values shown in both graphs have a value equal to one only at the pointα =β = 1/2.
Moreover, when α , β > 1/2, the method exhibits damping. In the remaining range
of parameters, it is divergent (Figure 5.10). Figure 5.11 shows the time function of
the axial displacements of the free end of the rod, subjected to an initial impulse. The
initial conditions were imposed as a zero displacement and zero velocity, with the
exception of the free end, at which the initial velocity v0 was imposed. The graph of
displacements suffers from a large share of parasitic oscillations. Their amplitudes
reach values of 100% of the amplitude of the theoretical result. Although the av-
eraged, smoothed graph coincides quite well with the theoretical line, this example
of the numerical analysis of undamped vibration shows the trap in a situation when
some local destruction of the material may occur.
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Fig. 5.9 Eigenvalues of the Park–Housner method, depending on the parameters α and β .
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Fig. 5.11 Displacements of the free end of the rod, obtained by the Park–Housner method.

5.9 The Trujillo Method

The method developed by Trujillo [139] is also based on the concept of decompos-
ing the damping C and stiffness K matrices to sums of upper and lower triangular
matrices. The inertia matrix M may be full, although in the case of a diagonal form
the resulting algebraic equations simplify, and their matrices of coefficients take
triangular form. Then the alternating system of equations is solved with a lower tri-
angular matrix (Algorithm 9 p. 1) and an upper triangular matrix (see p. 3). Each of
the solutions allows of computing the speed, and then the displacements at a time
after Δ t from the previously considered time. As a result, the implementation of
both phases of the calculations shifts the time of analysis by h = 2Δ t.

The method usually operates with triangular matrices of coefficients of equa-
tions. It significantly accelerates the calculations. The Trujillo method is an explicit
method. Unconditional stability is obtained if the decomposition of the matrix is
symmetric. In the case of an asymmetrical decomposition, the algorithm is condi-
tionally stable, but has higher accuracy.

An additional important advantage is the possibility of using only finite element
matrices. There is no need for the formation of the global matrix. This significantly
imporves the effectiveness of the Trujillo method. Another advantage is its lack of
control parameters needing to have their values set. The disadvantage is a two-stage
algorithm and the need to use, for reasons of efficiency of calculations, the diagonal
mass matrix.

Figure 5.12 shows the displacements in time of the free end of a rod, under the
initial impulse. The Trujillo method better reflects the theoretical rectangular plot of
vibration than the Park–Housner method. The data in the task were chosen so that
the period of oscillation is equal to 80. In the respective moments the theoretical
graph should be vertical, because the solution is discontinuous there. In subsequent
cycles, parasitic oscillations have slightly smaller amplitudes and preserve the rect-
angular nature of the plot. Unfortunately, we observe a worsening performance with
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Algorithm 9. The Trujillo method.

1.
(

M+CL
h
2 +KL

h2

8

)
v j+1/2 =

=
(

M−CU
h
2 −KL

h2

8

)
v j−K h

2u j +
(
f j + f j+1

)
h
4 ,

2. u j+1/2 = u j +
h
4

(
v j + v j+1

)
,

3.
(

M+CU
h
2 +KU

h2

8

)
v j+1 =

=
(

M−CL
h
2 −KU

h2

8

)
v j+1/2−K h

2u j+1/2 +
(
f j + f j+1/2

)
h
4 ,

4. u j+1 = u j+1/2 +
h
4

(
v j+1/2 + v j+1

)
,

K = KL +KU , C = CL +CU , t = jh = 2 jΔ t .
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Fig. 5.12 Displacements of the free end of a rod obtained by the Trujillo method.

increasing time steps. This is due to the limited speed of information flow in a single
step of calculation, in comparison with the fully explicit methods (see Chapter 6.2).



Chapter 6
Space–Time Finite Element Method

In the previous section we discussed some classical methods for the time integration
of the differential equations of motion. They have interesting properties, not appre-
ciated by researchers and software developers. In this section we will present the
space–time element method. We will give its basic concepts and how to derivate the
stepwise equations for this method. We will present the displacement formulation,
used in the early stages of the development of the method, and the velocity formu-
lation, which is currently being successfully used for difficult or atypical tasks.

An essential feature which differentiates the space–time element method from
traditional approaches to solving initial-boundary problems is its discretization of
the differential equation. Classically, two-step interpolation is used, the spatial vari-
ables separately from the time. Therefore, in the first stage, the system of partial
differential equations is transformed into a system of ordinary differential equations
in time of the basic state variables, and further purely numerical procedures are ap-
plied for the integration of the differential equations in the time. This approach has
its advantages, mainly due to the possibility of selecting the most effective tools
separately for each stage, including strict methods. In addition, the passage from the
static to the dynamic solution is simpler. Most numerical procedures for static anal-
ysis are easy to use in this situation. In fact, the solution of the dynamics reduces to
the solution of a set of static tasks (Figure 6.1). The control of the estimation error
and the unconditional stability of the solution due to the time step involved in the
integration of the differential equation are also significant. All this makes the most
popular methods, i.e., the finite element method combined with the method of in-
tegration over time, e.g. the Newmark method, a permanent part of the practice of
simulation calculations.

One of the drawbacks of the classical approach is the need for partition (dis-
cretization) of the considered spatial area which is constant in time (stationary). In
this case, the local adaptation of the mesh to the processes involved (e.g., the de-
velopment of plastic zones, zones of contact, propagation of cracks, the movement
of the load) is very difficult. The existing methods of adaptation, including multi-
grid methods, or moving meshes, are an attempt to adapt a numerical process to a
phenomenon, and to remove this defect. However, the first of these techniques is

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 123–180.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 6.1 Dynamic problem as a series of static tasks.

generally used for static tasks, while the other, at the present stage of development,
can effectively model the task of transport of heat, mass, etc. Certain couplings of
the concept of the moving mesh method presented here by space elements should
be noted.

The second major drawback is usually the use of the same procedure in time in-
tegration for all mesh nodes of the structure. Although it is possible to use locally
procedures for the time integration of differential equations with higher accuracy,
in order to describe all variables of the physical phenomena within the same time
interval (time step), we do not improve the numerical model of the problem. An
unconditionally stable scheme of integration of the equations of motion allows of
increasing the efficiency of the calculations by lengthening the time step, but at the
same time introduces significant amplitude and phase errors, which vary in different
zones of the area of the structure. Mesh refining brings, on the one hand, an im-
provement of the spatial accuracy, but on the other hand can worsen the results of
the integration over time. Local interference in the ways of integration in time at the
level of a finite element, depending on its size and the characteristics of the material,
usually produces difficulties.

Of course all the complexities of the calculations can not categorically deter-
mine the advantages and disadvantages of the different groups of methods. Artificial
damping of higher frequency vibrations by one method of calculation is a defect in
wave problems, but an advantage in the analysis of structural vibrations. The selec-
tion of a computational tool is carried out based on the type of task, the phenomena
under examination, the required accuracy of the arithmetical operations which can
be performed on the computer, and non-substantive factors (e.g., the availability of
numerical procedures, one’s own experiences, etc.).

The space–time approximation of solutions of dynamic problems lacks some of
these drawbacks of the classical numerical methods. However, the method is not
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Fig. 6.2 Continuous representation time of a dynamic problem.

perfect. In essence, it reduces to the fact that functions w, characterizing a solution,
are described in space–time sub-areas through nodal parameters qe (Figure 6.2)

w(x, t) = N(x, t)qe. (6.1)

The matrix N(x, t) is a matrix of interpolation functions, depending on the spatial
variables and the time1. This approach assumes a continuous distribution of charac-
teristic functions, such as displacement or velocity, in the whole space–time domain
Ω = {x, t : x ∈ V (t),0 ≤ t < ∞} where the structure is considered. In discrete time
ti, i =0, 1, 2, . . . , you can use different bases of nodes (with certain restrictions), and
therefore adapt the mesh to current requirements. This has the following possibili-
ties, also shown in Figure 6.3:

• the possibility of redistributing the mesh, depending on the changing distribution
of the approximation error,

• moving the zone of a mesh refinement together with a travelling load,
• the ability to adjust the sides of the elements to characteristic lines determined

in the space–time domain: the front of the plastic area, the front of the material
phase change, in particular—the possibility of modelling a moving edge of a
body,

• the use of mesh shapes other than the space-mesh multiplexed meshes: multi-
plexed networks are the result of an evolution of the spatial grid in the layer of
time and the corresponding elements have the same number of nodes in the initial
and final time; other meshes, such as simplices, have new, important properties;
simplex elements with dimension n have n+ 1 nodes at the initial time and i+ 1
nodes at the final time (i = 0,1, . . . ,n),

1 For the purpose of comparison, the spatial discretization uses the interpolation formula
u(x, t) = N(x)qe(t).
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Fig. 6.3 Examples of problems solved in a time-space.

• the possibility of individual formulation of the time integration in an active man-
ner for each spatial element,

• the particular case of space–time approximation can give a classical method of
solution, based on fixed grid nodes (evolving only with the material).

This last point can be expanded to a statement that space–time approximation and
the resulting space–time element method are a generalization of the finite element
method, classically referred to a real space. By real space we mean the space of
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spatial variables x, y, z, in contrast to space–time, which is described by the spatial
variables x, y, z, and the time t.

The first attempts at space–time modelling of physical problems were published
in 1964 by Gurtin [60, 61] and Herrera [63]. Defining a minimized functional, result-
ing from the theory of convolution, enabled the derivation of relationships between
the time variable and spatial variables in space–time domains. These areas can be
interpreted as space–time finite elements. Later, in 1969, Oden [105] proposed a
generalization of the finite element method. He extended the interpretation of the
image of the structure over the time domain. Unfortunately, the interesting idea of a
non-stationary partition of a structure into sub-domains proposed in that paper was
not continued later on. Fried [55] and Argyris, Scharpf, and Chan [5, 6, 7] began to
treat the temporal and spatial variables equally in the formulation of problems. Nev-
ertheless, in the papers of Kuang and Atluri [76] the final digitization in space and
time were conducted separately. Dynamic problems were solved with the separation
of the temporal and the spatial variables. The physical area of a structure was dis-
cretized by one method (finite element method, finite difference method), while the
temporal derivatives were integrated with other methods (central difference method,
Newmark method, etc.). Numerous papers appeared on the direct integration of the
differential equations of motion, assuming a stationary discretization.

Regardless of this direction of research, some elaborations by Kączkowski ap-
peared [77, 79], in which for the first time physical interpretations of certain mean-
ings previously considered in real space were introduced to structural mechanics.
This is for example the time-work equation, a mass as a vector, or a space–time
stiffness. Simple cases of the vibration of a rod axis and strings were considered.

Another issue raised was the problem of stability [18] and an attempt at synthesis
of the space–time formulation [81]. A major contribution was the indication of pos-
sibilities for building an unconditionally stable solution by modifying virtual shape
functions [73]. Unfortunately, the use of that technology is confined to rectangu-
lar space–time elements, whose shape functions can be expressed as a product of
terms defining the interpolation functions in space and in time. Further studies were
focused on elements other than space–time rectangular shapes. The next important
step was to move away from the stationary partition of the spatial structure, and
thus to introduce non-rectangular elements in time [17, 18]. This step allowed the
application of the method to an entirely new group of issues: contact problems [10]
and processes with an adaptation of the mesh [19].

In addition to work on developing the same method, there were many attempts
to assess its accuracy and efficiency and to use the space-time element method in
various technical issues [12, 13, 14, 114, 136]. In addition to problems of mechanics,
issues of heat propagation have been treated [15].

The next step was to incorporate nonlinear effects: geometrical [33, 115, 141]
and material nonlinearities [21, 116]. It is also worth mentioning [62], in which the
authors use harmonic functions for interpolation in time.

In the paper by Podhorecki [117], rectangular space–time elements known from
the paper of Kączkowski (e.g. [79]) were applied to viscoelastic problems. Their
considerations were limited to one-dimensional structures. Models of Hooke,
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Kelvin–Voigt, Maxwell, and Zener material were used. However, no concrete pro-
posals supported by real examples were given. A group of reviews on the space–time
element method are [16, 23].

In this large number of papers, not one has tried to use the opportunities that exist
in the method of space–time elements. The considerations were limited to the use of
STEM as a method of integration of differential equations. The following sections
will demonstrate the equivalence of such procedures using other methods, such as
for example the Newmark method. Furthermore, further development of the use of
the STEM for modelling dynamic problems is reasonable.

In this chapter, we will present the new opportunities created by changing the
spatial approximation continuously in time. In Chapters 6.1 and 6.3, the formula-
tion of the space–time element method will be presented. The resulting equation can
be expressed both through displacements and velocities. However, the formulation
differs between the two cases. The displacement description leads ultimately to the
Galerkin method, applied to space and time, and the velocity description does not
lead directly to the Galerkin method. This needs emphasizing. The two formulations
have different properties and have different utilities. The derivation of the character-
istic matrices of space–time finite elements in the velocity formulation was given.
They allow users to easily change the number of nodes in the spatial mesh, and thus
to use adaptive techniques. The topological properties of this group of elements al-
low us to obtain significant computational benefits, thoroughly discussed in the next
chapter.

Another, separate, characteristic group of space–time elements are the elements
with simplicial shape. The properties of derived with their use in the solutions will
be discussed in Chapters 6.7 and 6.8. The most important feature here is to obtain
the final triangular matrix of the system of algebraic equations. This results in some
interesting applications, such as the possibility of limiting the speed of propagation
of information in a discrete system. This allows us in some cases to restrict an in-
finite domain to a small number of finite elements. An example of this approach is
presented in [11].

The space–time formulation was used to model contact zones variable in time
[20, 34]. Dynamic contact conditions were written, which were applied to
lightweight engineering tasks. A dense digitization of time was used. This allowed
an accurate determination of the contact forces. A way of eliminating discontinuities
of the velocity function at the ends of the time domain of a contact was presented.
The experience gained was used to model the rail–wheel contact area and the gener-
ation of corrugations. With material nonlinearities, iterative solutions of a nonlinear
equation of motion were linked with the integration of this equation in time. Rele-
vant numerical schemes were presented.

Examples of calculations of both test and real engineering problems confirm the
effectiveness of the techniques described. However, many issues will certainly arise.
This is not the final state of the development of the space–time description of the
dynamics of structure.

In numerical examples, as the primary system of units we use the SI system. In
order to improve the conditioning the of resulting matrices of algebraic equations
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in computer calculations, the respective multipliers were scaled by multipliers: the
length by 10−2, the mass by 10−3, and time by 10−6. This allowed us to avoid severe
range differences in solid material properties and thus get rid of certain numerical
difficulties. Due to the fact that many numerical examples are only illustrative,we
used non-dimensional values. In the comparative examples and more complex tasks,
complete, actual values of all parameters are given.

6.1 Formulation of the Method—Displacement Approach

Although the first mention of the possibility of nonstationary discretization of a
structure appeared in the paper of Oden[105], the truly systematic introduction of
the space–time element method was by Kączkowski [77, 78]. He introduced terms
which look unusual in engineering. A material point appearing in the discussion
at time t0 and at place x0, moves to the position x1 at time t1. In the system of
coordinates (x, t), these two positions of the material point designate the section.
To describe the motion of the mass as part of the oscillator, at both ends of the so
called vector imaging the life of the mass, we define some physical quantities such
as momentum or force from an elastic element, and between the two ends we take
into account the impact of external effects. Writing the corresponding equation of
virtual work, we can make the state at t1 depend on the state at t0. This way we get
the stepping scheme of calculating the differential equation of motion.

Described in a series of new papers, one look at the dynamics detects a fault—it
was conceptually complicated. The dynamics was not seen as a process of binding
phenomenon in both space and time. While spatial discretization could be performed
relatively easily, even in complex problems, time was treated with great care. Dur-
ing the rapid development of the process automation of the calculation, when the
resulting classic finite element models took into account increasingly complex phys-
ical phenomena, it was difficult to produce adequate interest in a new and difficult
technique.

The failure by the scientific world to model difficult tasks of structural dynamics
and wave phenomena in the full sense of the time-space, and the underdevelopment
of efficient algorithms in some types of problems, had for many years left undone
tasks such as the description of continuous problems involving a point mass moving
over an assumed trajectory or alterations in the local rigidity.

Further on we will derive the basic equations of the displacement version of the
space–time finite element method as presented in papers published slightly later. We
will show the typical course of treatment of an axially vibrating rod. We will obtain
sample solutions and show the simplicity of the numerical calculations. Anticipating
the content, we will show the identity of some solutions with the solutions obtained
using the finite difference method applied to the spatial derivatives when the central
difference method is applied to the velocity and acceleration. We will describe the
finite space–time elements of some selected types of structures. Taking these de-
scriptions as a point of departure one could, repeating these procedures, determine
the characteristic matrices according to one’s own needs.
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We will consider a continuous solid, closed in the domain V , and being a sub-area
of the Euclidean space E3. V denotes the interior of the area, and ∂V its boundary,
which, in turn, is the sum of ∂Vt and ∂Vu, where, respectively, the displacement
and stress boundary conditions will be imposed. We will consider the motion of the
body during the interval [0,T ]. The variables included in the description, such as the
displacement vector u, the velocity v, the vector of mass forces ρf, the symmetric
tensor of the stress field σ , and the deformation field ε , are defined on the Cartesian
product set V × [0,T ]. The vector of surface forces t̂ is defined on the product ∂V ×
[0,T ]. We assume that all functions are sufficiently continuous. Geometrically and
physically linear problems are described by the following system of equations:

• geometric equations

ε(x, t) =
1
2

(
grad w+ gradT w

)
, (x, t) ∈V × [0,T ], (6.2)

• physical equations
σ(x, t) = Eε, (x, t) ∈V × [0,T ], (6.3)

• equations of dynamical equilibrium

divσT +ρf = ρ
∂v
∂ t

, (x, t) ∈V × [0,T ], (6.4)

• boundary conditions

σ n = t̂(x, t), (x, t) ∈ ∂Vt × [0,T ], (6.5)

w(x, t) = û(x, t), (x, t) ∈ ∂Vu× [0,T ], (6.6)

• initial conditions
w(x, t) = w0, (x, t) ∈V ×{0}, (6.7)

ẇ(x, t) = v0, (x, t) ∈V ×{0}. (6.8)

In the above relationship, w0 and v0 define the initial displacement and the velocity,
respectively, and ŵ0, the displacements on the boundary ∂Vu. This system is a local
formulation. The existence and uniqueness of the solution can be proved as in [104].
A global formulation can be achieved by multiplying (6.4) by the variation of the
virtual function of displacements δw(x, t)

δw(x, t) =
{

0, (x, t) ∈ ∂Vu× [0,T ] ,
any, (x, t) ∈ (V − ∂Vu)× [0,T ] .

(6.9)

After integration we obtain

∫ t1

t0

∫
V

(
divσT +ρf−ρ v̇

)
δw dV dt +

∫ t1

t0

∫
∂Vt

t̂δw d(∂V )dt = 0. (6.10)
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Integrating by parts, we obtain

∫ t1

t0

∫
V
ρ (fδw+ ẇδ ẇ) dV dt +

∫ t1

t0

∫
∂Vt

t̂δwd(∂V )dt =
∫ t1

t0

∫
V
σδε dV dt. (6.11)

The area in which (6.11) is described should now be discretized. The area {V ,0 ≤
t ≤ T} is divided into subareas, which are in fact space–time finite elements. The
simplest possible divisions are shown in Figure 6.4a. The space–time layers [ti ≤
t ≤ ti+1], i =0, 1, . . . , n− 1, are cut in a semi infinite band, where n is the number
of layers in the interval [0, T], and inside them there are isolated elements of the
geometry, fixed in time. A more complex partitioning of the space–time layer is
also possible (Figure 6.4b). We will return to this issue in later chapters.

The simplest element is separated from the time-space by planes t = ti and t =
ti+1. They are hyper-prisms (hyper-prisms are prisms in space of dimension higher
than 3), which are finite elements, stretched in time (Figure 6.5). The values of the
unknowns, in our case the displacements w and their derivatives (ẇ, ε , σ ), real and

Fig. 6.4 Examples of space–time element mesh: (a) stationary, (b) nonstationary.

Fig. 6.5 Space–time element, separated from the time-space.
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virtual, in the area of the space–time element are interpolates on the basis of the
values of the nodal displacements q:

w(x, t) = N(x, t)q , δw(x, t) = N∗(x, t)δq ,

ẇ(x, t) = Ṅ(x, t)q , δ ẇ(x, t) = Ṅ∗(x, t)δq , (6.12)

ε(x, t) = B(x, t)q , δε(x, t) = B∗(x, t)δq ,

σ(x, t) = EB(x, t)q .

These relationships apply separately to each element of time-space. Quantities
marked by (.)∗ refer to a virtual state. The matrix B can easily be created by letting
a suitable differential operator D act on the matrix of shape functions N: B = D N,
where D = 1

2

(
grad+ gradT

)
. It should be emphasized that the vector q consists of

the displacements in the space–time element nodes. These nodes have different time
coordinates.

Linear (affine) shape functions N(x, t) express the boundary conditions on the
free end ∂w/∂n = 0 in a natural way. In the case of the element of length b, with
time step Δ t, they are satisfied approximately. Refining the digitization (b→ 0) in
the extreme element ∂w/∂n→ 0 (∂w/∂n∼ 1/N, where N is the number of nodes
in the mesh).

Taking into account (6.12) in (6.11) gives a quadratic form, expressing the equal-
ity of the work of the internal and external forces in the interval [t0, t1]:

NE

∑
e=1

(
(ΠT

e δqe)
TΠT

e K∗eΠ e ·ΠT
e qe− (ΠT

e δqe)
TΠT

e Qe
)
= 0. (6.13)

Here, NE is the number of space–time elements in the structure. The matrices Π e

are zero–one matrices assigning the places of the elemental matrices and vectors
to places in the global matrix and vector of the structure. Their form depends on
the topology of the mesh discretization. The number of rows equals the number of
unknowns associated with a single element, and the number of columns equals the
number of unknowns in the structure. These matrices define an aggregation of the
matrix elements.

The matrix K∗e is the space–time stiffness element matrix

K∗e = Ke +Me. (6.14)

We give here the form of the stiffness matrix Ke and the inertia matrix Me of the
element

Ke =

∫ t1

t0

∫
V
(DN)T EDN dV dt, (6.15)

Me =−
∫ t1

t0

∫
V

(
∂N
∂ t

)T

R
∂N
∂ t

dV dt, (6.16)

where E is a matrix of elasticity, D is a matrix of differential operators, and R is the
unitary matrix of inertia.
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If we assume a viscoelastic body described by the Kelvin–Voigt model, where
the relationship between the stress and the strain is written

σ =

(
E+ηw

∂
∂ t

)
ε (6.17)

(ηw—viscous damping coefficient) and if into the equation (6.10) we introduce a
dissipative term, depending on the speed of displacement [17], then (6.14) takes the
form

K∗e = Ke +Me +We +Ze, (6.18)

where We and Ze are the terms of internal damping and external damping, respec-
tively:

We =

∫ t1

t0

∫
V
(DN)Tηw

∂
∂ t

DN dV dt, (6.19)

Ze =
∫ t1

t0

∫
V

NTηz
∂
∂ t

N dV dt. (6.20)

Qe is the vector of the external load acting on the space–time element e:

Qe =

∫ t1

t0

∫
V

Ne(x, t) t̂(x, t)dV dt. (6.21)

It can be obtained from (6.5). Since (6.13) must be satisfied with any variation of
displacements and for the entire space–time area, we can write

E

∑
e=1

(
ΠT

e KeΠ e ·ΠT
e qe−ΠT

e Qe
)
= 0. (6.22)

The above system of algebraic equations includes the entire space–time domain
[0,T ]. The solution is obtained using the initial conditions (6.7) and (6.8). The dis-
placement condition (6.7) can easily be discretized:

q0 =
E

∑
e=1

ΠT
e

∫
Ve

Ne(x,0) w(x,0)dVe. (6.23)

In turn, the velocity condition (6.8 requires the use of an additional difference for-
mula to express velocities at the initial moment by means of two displacement vec-
tors q0 given by the expression (6.23) and q−1 (when t = −h), for example, as
follows:

q−1 = q0− q̇0 h, q̇0 =
E

∑
e=1

ΠT
e

∫
Ve

Ne(x,0) ẇ(x,0)dVe. (6.24)

Consider now one time layer, ti ≤ t ≤ ti+1. Divide the unknown displacements by
the displacements with respect to time ti and the displacements with respect to time
ti+1. Then the coefficients matrix of equation (6.22)) can be divided into four sub-
matrices, separating a submatrix Ai with rows and columns relating to the time ti,
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the submatrix Bi with rows relating to time ti and columns relating to time ti+1 and
similarly Ci and Di, but with rows relating to time ti+1. We can therefore write

[
Ai Bi

Ci Di

]{
qi

qi+1

}
=

{
Qi

Qi+1

}
. (6.25)

Now the process of summation in (6.22) refers to the addition of the matrix (6.25).
A tridiagonal block matrix of a system of equations is formed, with size correspond-
ing to the number of moments into which the space–time region was partitioned. The
following is the block form corresponding to (6.22)

⎡
⎢⎢⎢⎢⎢⎣

A1 B1
C1 D1+A2 B2 0

C2 D2+A3 B3
. . . . . . . . .

0 Ci−1 Di−1+Ai Bi
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1
q2
q3
...

qi−1
qi

qi+1
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1
Q2
Q3
...

Qi−1
Qi

Qi+1
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6.26)

The system (6.26) can be solved in stages, with one line of this system for each step.
So we have to solve

Ci−1 qi−1 +(Di−1 +Ai)qi +Bi qi+1 = Qi, i = 1,2, . . . . (6.27)

We can now return to the conditions (6.23) and (6.24) and to the solutions of the
system (6.26) in the first steps. At q0 �= 0 and q̇0 �= 0 we have:

C−1q−1 +(D−1 +A0)q0 +B0 q1 = Q0, C−1 = C0, D−1 = D0. (6.28)

The simplest case occurs when q0 = 0 and q̇0 = 0. Then we have:

B1 q2 = 0. (6.29)

The only unknown displacement vector in (6.27) is qi+1. The vectors qi−1 and qi

were obtained in the previous steps, i.e., i− 2 and i− 1. An efficient construction
of the system of equations and its solution can be carried out following the scheme
below, using the auxiliary vector r:

r = Ci−1 qi−1 +Di−1 qi , (6.30)

Aiqi +Bi qi+1 = Qi− r .

Here we must mention [72], in which the author gives a way of constructing the
so-called space–time macroelement. It consists of eliminating every second (or,
more generally, every 2n) layer of nodes, by removing every second row in the sys-
tem (6.26). In this way, the time step increases to 2n h. This technique requires the
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inversion of a submatrix and is effective only in the case of constant matrices Ai,
. . . , Di. par The stability of numerical schemes with a stationary mesh, based on
the displacements, is described in [73, 88]. Depending on the selection of the virtual
shape functions we can obtain unconditionally or conditionally stable variants of the
method. These considerations can be summarized by saying that the formulations
in the papers cited above are equivalent to Newmark methods, and have all their
properties, including those concerning stability.

6.1.1 Space–Time Finite Elements in the Displacement
Description

6.1.1.1 Bar Element

We will deal with the derivation of the fundamental equations of the equilibrium
of forces in the space–time element method with a stationary spatial mesh. This
issue will be treated for the example of the simplest equation describing the axial
vibration of a bar. The differential equation of an axially vibrating bar is identical to
the equation of a vibrating string

ρA
∂ 2w(x, t)
∂ t2 = EA

∂ 2w(x, t)
∂x2 + p(x, t) . (6.31)

Here, E is the elastic modulus, A—the cross sectional area, ρ—mass density, and
p—external load. Multiplying this equation by a virtual displacement function
w∗(x, t) and integrating over the present area x ∈ [0,b] and 0 ≤ t ≤ h we get the
equation of virtual work

∫ h

0

∫ b

0
w∗(x, t)ρA

∂ 2w(x, t)
∂ t2 dxdt=

∫ h

0

∫ b

0
w∗(x, t)EA

∂ 2w(x, t)
∂x2 dxdt +

+

∫ h

0

∫ b

0
w∗(x, t)p(x, t)dxdt . (6.32)

We lower the degree of the derivative by integrating the first term by parts with
respect to t and the second term with respect to x. We recall that w∗ has equals zero
at the points x = 0 and x = b and also t = 0 and t = h. We do not need to do so,
if at a later stage we can provide a non-zero second derivative of the solutions, and
in practice a sufficiently high degree polynomial for approximation of the solutions.
Then we can write

∫ h

0

∫ b

0

∂w∗(x, t)
∂x

EA
∂w(x, t)
∂x

dxdt−
∫ h

0

∫ b

0

∂w∗(x, t)
∂ t

ρA
∂w(x, t)
∂ t

dxdt =

=
∫ h

0

∫ b

0
w∗(x, t)p(x, t)dxdt . (6.33)
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Now we suggest a way of interpolating the values of w(x, t) and its virtual equiva-
lent, w∗(x, t), based on the nodal values of qe in the element. Take a linear interpo-
lation in the form

w(x, t) = [N1(x, t), N2(x, t), N3(x, t), N4(x, t)]

⎧⎪⎨
⎪⎩

q1
...
q4

⎫⎪⎬
⎪⎭= Nqe . (6.34)

The real shape functions can be written in local coordinates (ξ ,τ). Then Ni =
1/4 (1+ ξ ξi)(1+ τ τi), where ξi,τi are the coordinates of the vertices of the rect-
angle {ξ ,τ : −1 ≤ ξ ≤ 1,−1 ≤ τ ≤ 1}. The transition between a local and global
coordinate system is defined by x = ∑4

i=1 Ni xi and t = ∑4
i=1 Ni ti. Then we assume

virtual shape functions in the same way. After the substitution of w and w∗ into
(6.33), we get the total energy of the system, comprising terms describing the in-
ternal energy, the kinetic energy, and the work of the external forces on the virtual
displacements. The energy minimization condition reduces to zero the derivatives
with respect to all unknowns qi, i = 1, . . . ,4. In the end, we obtain a system of four
equations

⎛
⎜⎜⎝EAh

6b

⎡
⎢⎢⎣

2 −2 1 −1
−2 2 −1 1

1 −1 2 −2
−1 1 −2 2

⎤
⎥⎥⎦− ρab

6h

⎡
⎢⎢⎣

2 1 −2 −1
1 2 −1 2
−2 −1 2 1
−1 −2 1 2

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

q1

q2

q3

q4

⎫⎪⎪⎬
⎪⎪⎭

=

=

⎧⎪⎪⎨
⎪⎪⎩

F1

F2

F3

F4

⎫⎪⎪⎬
⎪⎪⎭

. (6.35)

The first matrix is the stiffness matrix, with coefficients

Ki j =
EAh
12b

ξiξ j(3+ τiτ j) , (6.36)

and the second matrix is the inertia matrix, with coefficients

Mi j =−ρAb
12h

τiτ j(3+ ξiξ j) . (6.37)

By introducing the notation k = c2h2/b2 and c2 = E/ρ , we can write the symmetric
space–time stiffness matrix Ke contained in the equation (6.35) in parentheses

Ke =
ρab
6h

⎡
⎢⎢⎣

2k− 2 −2k− 1 k+ 2 −k+ 1
2k− 2 −k+ 1 k+ 2

2k− 2 −2k− 1
2k− 2

⎤
⎥⎥⎦ . (6.38)



6.1 Formulation of the Method—Displacement Approach 137

6.1.1.2 Beam Element

Consider a rectangular beam element of medium thickness. Nodes may be in the
general case shifted in space within time interval. One case is when the element is a
rectangle in space.

Assume a linear displacement
{

w
θ

}
=

{
a1xt + a2x+ a3t + a4

b1xt + b2x+ b3t + b4

}
=

{
ag
bg

}
, (6.39)

where g(x, t) = [xt,x, t,1] is a vector of monomials. If we denote by G the matrix
composed of the vectors g(xi, ti) defined at element nodes, then we can extract from
the inverse matrix G−1 the columns marked by ri:

G−1 =

⎡
⎢⎢⎣

g(x1, t1)
g(x2, t2)
g(x3, t3)
g(x4, t4)

⎤
⎥⎥⎦
−1

=

⎡
⎢⎢⎣

x1t1 x1 t1 1
x2t2 x2 t2 1
x3t3 x3 t3 1
x4t4 x4 t4 1

⎤
⎥⎥⎦
−1

= [r1,r2,r3,r4] . (6.40)

We obtain the shape functions N as

N = [N1,N2,N3,N4] , Ni = gri

[
1 0
0 1

]
. (6.41)

The differential operator D describes deformations depending on displacements

D =

[ ∂
∂x 1
0 ∂

∂x

]
, ε = DNq . (6.42)

The corresponding matrix of elasticity, in turn, is

E =

[
GA
K 0
0 EI

]
. (6.43)

In the particular case where the space–time element is a rectangle, the shape func-
tions are simpler:

N =
[(

1− x
b

)(
1− t

h

)
,

x
b

(
1− t

h

)
,
(

1− x
b

) t
h
,

x
b

t
h

]
. (6.44)

The stiffness matrix K and the inertia matrix M are determined as integrals over the
element Ω (see (6.15), (6.16), (6.19), and (6.20))

K =

∫
Ω
(DN)T EDNdΩ , (6.45)

M =

∫
Ω

(
∂
∂ t

N
)T

E
∂
∂ t

NdΩ . (6.46)
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6.2 Properties of the Integration Schemes

The classic methods of the analysis of the vibrations of structures usually use one
and the same method of integration for the whole structure and all its degrees of free-
dom. Often, some sub-areas, or some kinds of degrees of freedom do not require a
high accuracy in the calculations and a small step-size for the integration. An exam-
ple might be the axial movement of frames of tall buildings. From the engineering
point of view, it is important to analyse the flexural motion of the rod components.
In this direction, the stiffness of the structural elements is much lower than the axial
stiffness. The axial vibrations of bars have minimal amplitudes and less practical
importance. Therefore, we can analyse them with less accuracy. The same occurs
for structures placed on the ground, for the interaction between the structure and the
ground or with a surrounding fluid. The inertia and stiffness of the two subdomains
differ significantly. A short time step in the explicit procedures, chosen accouding
to the criterion of stability or accuracy, greatly lengthens the calculations. A rea-
sonable procedure would be to use explicit methods for modelling the ground and
implicit methods for modelling the structure. The application of mixed operators
to integration opens new opportunities for improving the accuracy efficiency of the
solving of complex tasks. A description of the issues concerning both the statics and
dynamics are presented, for example, in [109]. Techniques based on the algebraic
partition of the operator are called operator splitting techniques and based on the
structure partition – domain splitting.

Operator splitting methods and semi-implicit methods can be classified as being
part of the same group of methods. A characteristic feature here is a willingness
to preserve the unconditional stability of the integration, or a desire to achieve a
significant lengthening of the critical step of integration. Such an increase in the
integration step can be achieved by, for example, macro-elements, where in the de-
scription of consecutive time layers, intermediate algebraic degrees of freedom are
eliminated. In this way, the time span of the integration step increases. The same
technique applies to spatial variables.

6.2.0.3 Information Flow

Calculation methods may differ in another important feature: the information flow
diagram in a mesh in space and time. Consider, for example, the system of algebraic
equations arising (at every step of the calculation) from the method of central dif-
ferences with a diagonal inertia matrix. An external impulse acting as a load on the
last degree of freedom in the mesh produces a non-zero displacement of this degree
of freedom (Figure 6.6). In the next step, the product of the matrix 2M− h2K with
the vector of displacements qi results in a vector with nonzero last two entries. This
in turn gives the nonzero last two entries of the solution vector qi+1. In this way, in
each successive step in the calculation, the influence of the initial single pulse of the
external force F0 propagates to the neighbouring nodes in the finite element mesh at
a rate of one node in one step. The speed of the information flow is thus the average
of Δx/Δ t, where Δx is the spatial distance between neighbouring nodes.
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Fig. 6.6 Mechanism for information flow between successive steps in the central difference
method.
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Fig. 6.7 Flow of information in various calculation methods.

In the case of implicit methods we deal with the solution of algebraic equations
with a full matrix of coefficients. A single external impulse transfers immediately to
all unknowns of the system. In turn, as will be discussed in subsequent chapters, the
space–time finite element method with simplicially shaped elements has a reduced
speed of information flow to the sloping sides of the space–time mesh. The Trujillo
method has a limited speed of information flow among the grid nodes. A schematic
of the flow of information in selected calculation methods is given in Figure 6.7.
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6.2.1 Accuracy of Methods

In Table 6.1, the global error of the selected computational methods is estimated. In
principle, all methods have a global error of the second order. The estimates included
in Chapters 6.3.4 and 6.4.1, especially Equation (6.103), are relevant here.

Table 6.1 Global error of the calculation methods.

method error degree coefficient

Runge–Kutta 2nd order h2 1/6

central difference m. h2 1/6

space–time elem. m. h2 1/12

space–time elem. m.
higher order formulae (6.103) h3 1/12

Newmark m. β=1/4 h2 (
√

2− 1)/2

Runge–Kutta 4th order h4 1/120

6.3 Velocity Formulation of the Method

The method in terms of displacements has many features similar to those of the cen-
tral difference method. The schematic calculation is based on displacements in three
consecutive moments of time. Depending on the features of the virtual displacement
functions adopted, the method in its displacement variant may be conditionally or
unconditionally stable. The solution scheme for the equation of motion can be ob-
tained using velocities as the basic quantities for description of the system. This
solution method does not differ from obtaining the solution in terms of displace-
ments. We create a virtual work equation, which takes its minimum value subject
to the given velocities at the beginning and end of the time interval. In this way, we
associate known quantities at the earlier time with those at the later time.

In the following sections, we will present a procedure in the case of a single
degree of freedom. Then we will repeat it for the case of a string. We will use
a variety of shapes for the velocity virtual functions. We will compare the schemes
obtained from the Newmark time integration method with those from other methods
of calculation.

6.3.1 One Degree of Freedom System

Let us elaborate a solution scheme for the vibrations of a material point described
by

m
dv
dt

+ kx = 0 . (6.47)
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We assume a linear distribution of the real velocity v in the time interval h (0≤ t ≤ h)

v =
(

1− t
h

)
v0 +

t
h

v1 . (6.48)

The displacement x(t) is described by the integral

x(t) =
∫ t

0
vdt = x0 +

h
2

[
1−
(

1− t
h

)2
]

v0 +
t2

2h
v1 . (6.49)

Displacement x(t) is linearly dependent on the speed v0 and v1 set at the ends of
the interval [0,h]. Now we take the form of the virtual function. We can choose
it among many possible functions. The selected function at the ends of the time
interval must have value equal to zero. Below we take a virtual velocity function as
Dirac distribution, depending on parameters α (0≤ α ≤ 1) and speed v1:

v∗ = v1 ·δ
( t

h
−α

)
. (6.50)

If we multiply the differential equation of motion (6.47), which in fact is the equa-
tion of equilibrium of forces acting on a material point, by the virtual velocity (6.50),
we get the equation of virtual power. After integration it in time interval [0,h] we
obtain the equation of virtual work

∫ h

0
v∗

1
h
(v1− v0)dt +

∫ h

0
v∗

k
m

x(t)dt = 0 . (6.51)

Finally we get the equation which allows us to determine the speed at the next while,
based on the velocity and displacement at the previous while

v1 =
1− kh2

2m [1− (1−α)2]

1+ kα2h2

2m

v0− k
m

h(
1+ kα2h2

2m

)x0 . (6.52)

The same can be written symbolically

v1 = T v0 +Bx0 . (6.53)

It remains to determine from the velocity v0 and v1 the missing displacement x1. We
use the relationship

x1 = x0 + h[(1−β )v0+βv1] . (6.54)

A little further on we shall show that the stable solution is obtained in a certain range
of parameter α at β = 1−α . Taking it into account we can write the final formula

x1 = x0 + h[αv0 +(1−α)v1] . (6.55)

In the particular case α = 1/2 the equation (6.55) is identical to the equation (6.49)
adopted at t = h, i.e., x1 = x0 + h(v0 + v1)/2.
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Introducing the notation κ = h2k/m we can describe the transition to the next
moment as follows:

{
v1

x1

}
=

⎡
⎢⎣

1− 2ακ
2+α2κ − 2κ

h(α2κ+2)

3h− 2h(ακ+2)
α2κ+2

2κ(α−1)
α2κ+2

+ 1

⎤
⎥⎦
{

v0

x0

}
. (6.56)

The transition matrix T is a 2× 2 matrix. We can use it to determine the stability
criterion for any value of the time step, and so as h → ∞. Let us determine the
eigenvalues of this matrix:

lim
h→∞

λ1/2 =
α2− 1
α2 ± i

√
2α2− 1
α2 , (6.57)

and their moduli:

lim
h→∞
|λ1/2|=

{
1, if

√
2/2≤ α ≤ 1 ,

1
α2

√
α4− 4α2 + 2, if 0≤ α <

√
2/2 .

(6.58)

Both eigenvalues have modulus unity when α ≥√2/2. In this range of the param-
eter α , we obtain an unconditionally stable solution scheme. This important feature
allows us to safely carry out the calculations for systems with a large number of
degrees of freedom, or for systems with evolving material properties and geometry.
In such cases, the unconditional stability of the method is necessary.

The ability to damp higher frequency vibrations while leaving the basic frequen-
cies undamped is also important. Many authors have devoted papers to this problem
(for example [64, 67]). If we modify the formula (6.54) so that the speed will be
determined at a slightly later time than α−1, we get this damping effect. The pa-
rameter β should be modified to

β = 1− α
1+ γ

, 0≤ γ ≤ 1. (6.59)

Figure 6.8 shows the value of the spectral radius in its dependence on γ with increas-
ing values of relative the time step h/T . They are made with α = 0.8 and α = 0.9.
The bold lines are the levels plotted for each increment of 0.02. With γ = 0.0, the
spectral radius ρ is unity, by the previous considerations. The next Figure 6.9 shows
the logarithmic damping decrement at α = 0.8 and 0.9, depending on the size of the
relative time step h/T . The levels of both figures are plotted for each increment of
0.05.

Sample calculations of the vibrations of a single point, with the initial conditions
x0 = 0 and v0 = 1 and at α = 0.5 are shown in Figure 6.10, and at α = 1.0 in Figure
6.11.
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Fig. 6.8 Spectral radius ρ depending on the parameter γ for α = 0.8 and α = 0.9.

Fig. 6.9 Logarithmic damping decrement Λ depending on the parameter γ at α = 0.8 and
α = 0.9.

Fig. 6.10 Velocity v determined with various time step, at α = 0.5.
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Fig. 6.11 Velocity v determined with various time step, at α = 1.0.

6.3.2 Discretization of the Differential Equation of String
Vibrations

The differential equation of string vibration is as follows:

N
∂ 2w
∂x2 −ρA

∂ 2w
∂ t2 −η

∂w
∂ t
− q(x, t) = 0 . (6.60)

Here, N is the string tension, A is the cross sectional area, ρ is the mass density, η
is the damping coefficient, and q is the external load. The wave speed in the string
at η = 0 is c =

√
N/ρ .

Consider the equation in the region Ω = {(x, t): 0 ≤ x ≤ b, 0 ≤ t ≤ h}. The
virtual power equation is created by multiplying (6.60) by the virtual speed v∗(x, t)

∫ b

0
v∗(x, t)

(
∂ 2w
∂x2 −

1
c2

∂ 2w
∂ t2 −η

∂w
∂ t

+ q̃(x, t)

)
dx = 0 . (6.61)

q̃ denotes the load scaled by N: q̃ = q/N. The total virtual work in the area Ω is

∫ h

0

∫ b

0
v∗(x, t)

(
∂ 2w
∂x2 −

1
c2

∂ 2w
∂ t2 −η

∂w
∂ t

+ q̃

)
dxdt = 0 . (6.62)

Integrating (6.62) by parts with respect to x and t we obtain

∫ ∫
Ω

v∗
∂v
∂ t

dΩ +
∫ ∫

Ω

∂v∗

∂x
∂w
∂x

dΩ +
∫ ∫

Ω

∂v∗

∂x
ε0 dΩ −η

∫ ∫
Ω

v∗vdΩ = 0 . (6.63)

Here, ε0 is the initial strain.
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We assume a linear variation in velocity v = ∂w/∂ t in terms of x and t:

v(x, t) =
4

∑
i=1

Ni(x, t)vi . (6.64)

In the area of Ω , the shape functions N = [N1, . . . ,N4] have the form

N1 =
1

bh
(x− b)(t− h) ,

N2 =− 1
bh

x(t− h) ,

N3 =− 1
bh

(x− b)t ,

N4 =
1

bh
xt .

(6.65)

The displacements are determined by integration:

w(x, t) = w(x,0)+
∫ t

0
(N1v1 + . . .+N4v4)dt . (6.66)

The result is

w(x, t) = w(x,0)+
xt2

2bh
(v1− v2− v3 + v4)+

xt
b
(−v1 + v2)+

t2

2h
(−v1 + v3)+ v1t .

(6.67)
The derivative ∂w/∂x is obtained from (6.67):

∂w
∂x

=
t2

2bh
(v1− v2− v3 + v4)+

t
b
(−v1 + v2)+

dw
dx

∣∣∣∣
t=0

, (6.68)

where ε0 = dw/dx|t=0. It is essential to select the appropriate virtual velocity func-
tion. Following the derivation for the oscillator, we assume

v∗(x, t) = δ (t−αh)
((

1− x
b

)
v3 +

x
b

v4

)
. (6.69)

Here, δ is the Dirac delta function. The required derivatives of the virtual function
v∗ and real function v are obtained from (6.69) and (6.64)

∂v∗

∂x
=

1
b
(−v3 + v4) , (6.70)

∂v
∂ t

=
x

bh
(v1− v2− v3 + v4)+

1
h
(−v1 + v3) . (6.71)

We note that due to the Dirac delta function part of the integrand, the integration
over Ω is, in terms of x, reduced to an integration over the interval [0, b]. Taking
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into account the above relationships, the final form of the equation (6.63) can be
written in matrix form:⎧⎪⎪⎨

⎪⎪⎩
ρA
∫ b

0

⎡
⎢⎢⎣

0
0

−( x
b − 1

)
x
b

⎤
⎥⎥⎦
[

x
bh
− 1

h
, − x

bh
, − x

bh
+

1
h
,

x
bh

]
dx +

+N
∫ b

0

⎡
⎢⎢⎣

0
0
− 1

b
1
b

⎤
⎥⎥⎦
[

t2

2bh
− t

b
, − t2

2bh
+

t
b
, − t2

2bh
,

t2

2bh

]
dx

∣∣∣∣
t=αh
−

−η
∫ b

0

⎡
⎢⎢⎣

0
0

−( x
b − 1)

x
b

⎤
⎥⎥⎦
[
(x− b)(t− h)

bh
, −x(t− h)

bh
, − (x− b)t

bh
,

xt
bh

]
dx

∣∣∣∣
t=αh

+

(6.72)

+ N ε0

∫ b

0

⎡
⎢⎢⎣

0
0
− 1

b
1
b

⎤
⎥⎥⎦dx

⎫⎪⎪⎬
⎪⎪⎭
·

⎧⎪⎨
⎪⎩

v1
...

v4

⎫⎪⎬
⎪⎭= Q .

We see that the first two rows of all the matrix products are zero. From now on, we
will operate only with the lower half of the matrix obtained after integration. The
resulting matrices take the following form:

M =
ρAb

h

[− 1
3 − 1

6

− 1
6 − 1

3

∣∣∣∣∣
1
3

1
6

1
6

1
3

]
=

1
h
[−Mstat |Mstat ] , (6.73)

K =
Nh
b

[
α(1− α

2 ) −α(1− α
2 )

−α(1− α
2 ) α(1− α

2 )

∣∣∣∣∣
α2

2 −α2

2

−α2

2
α2

2

⎤
⎦=

= h

[
α
(

1− α
2

)
Kstat | α

2

2
Kstat

]
, (6.74)

C = ηb

[
1−α

3
1−α

6

1−α
6

1−α
3

∣∣∣∣∣
α
3

α
6

α
6

α
3

]
= [(1−α)Cstat | αCstat ] , (6.75)

e = Nε0

{−1

1

}
. (6.76)
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Fig. 6.12 Displacements of the free end of the bar, obtained by the space–time elements of
the full matrix of mass coefficients at α = 0.5 and α = 1.0 at α = 0.5 and α = 1.0.

The final form of the equations of motion describes the balance of forces on the
boundary of the domain Ω

(M+C+K)

{
q̇a

q̇p

}
+ e = Q . (6.77)

The nodal velocity vector q̇ contains the velocities q̇a at the initial time t = 0 and q̇p,
those at the final time t = h. We get a matrix equation in which q̇p is the unknown.
Figure 6.12 shows a graph of the axial displacement plotted over time at the free end
of the rod, forced with the initial pulse. Figure 6.13 shows the result of an identical
task, but using a diagonal inertia matrix.
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Fig. 6.13 Displacements of the free end of the bar obtained by the space–time element
method with a diagonal mass matrix, for α = 0.5 and α = 1.0.

6.3.2.1 Example of a Vibrating String Loaded with a Moving Force

The diagram of the task (Figure 6.14) and the results for comparison are taken
from [31]. The authors performed calculations using the methods of Fourier and
of d’Alembert. Below, the same problem is solved by the with the velocity formula-
tion of the space–time finite element method.

The following values were assumed: length of string l = 100 m, tension T0 =
10 kN, mass density ρA = 0.89 kg/m, point force P0 = 90 N, concentrated mass
m = 10 kg, damping c1 = c2 = 0. A conditionally stable variant of the method, with
parameter α = 0.5 and numerical damping γ = 0.1, was assumed.
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Fig. 6.14 String loaded by a moving force.

In the first case we assumed m = c1 = c2 = 0. The force P(t) = P0sinωt was
harmonic with a frequency of ω = 0.4 (this corresponds to 40 cycles over 200 m).
The velocity v was 79.5 m/s (corresponding to 0.75c). Figure 6.15 shows the lateral
displacement at selected moments. The vertical lines on the first three graphs mark
the position of the force. The thick line shows the results obtained by the space–time
element method, and the thin lines those by the Fourier method. We can see a very
good agreement of both solutions.

The second example is more complex. In the mid-span it includes a support con-
sisting of two springs, k1, k2, and a mass m, which are non-zero. The force is con-
stant and moves with the speed v = 79.5 m/s. Figure 6.16 presents the results, a
thick vertical bar indicates a support. The solutions obtained using the space–time
element method and the Fourier method coincide. In the cited paper [31], the results
obtained by qualitatively different wave methods differ from both the results shown
in Figure 6.16.

Fig. 6.15 Lateral displacements of the string at moments equal to 0.3, 0.7, 1.0, 1.2, and 1.5 of
the total time of passage of the load (thin line: Fourier method, thick line: space–time element
method).
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Fig. 6.16 Lateral displacements of the string at each 0.2 of the total time of passage of the
load (thin line: Fourier method [32], thick line: space–time element method).

6.3.3 General Case of Elasticity

We now turn to a more general approach that allows the discretization of any dy-
namics problem of a continuous system.

If we define the deformations ε by

ε = Dw , (6.78)

where D is a differential operator, and the tension σ by

σ = Eε , (6.79)

and if we assume a certain distribution of virtual velocity v∗, the equation of virtual
work, expressed in terms of velocities, takes the following form

∫
Ω
(v∗)Tρ

∂v
∂ t

dΩ +

∫
Ω
(ε̇∗)TσdΩ +

∫
Ω
(v∗)TηzvdΩ = 0 . (6.80)

The inertia of the system is given by the matrix ρ and the damping is described by
η . The displacements w(t) are given by the integral

w(t) = w0 +

∫ t

0
v dt . (6.81)
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After taking into account (6.78), (6.79), and (6.81), we get

∫
Ω
(v∗)Tρ

∂v
∂ t

dΩ+
∫
Ω
(Dv∗)T EDw0︸︷︷︸

ε0

dΩ +
∫
Ω

[
(Dv∗)T ED

∫ t

0
v dt

]
dΩ +

+

∫
Ω
(v∗)TηzvdΩ = 0 . (6.82)

Now we introduce the interpolation formula

v = Nq̇ and v∗ = N∗q̇ . (6.83)

Finally we have
{∫

Ω

[
(DN∗)T ED

∫ t

0
N dt

]
dΩ +

∫
Ω
(N∗)Tρ

∂N
∂ t

dΩ +
∫
Ω
(N∗)Tηz N dΩ

}
q̇+

+

∫
Ω
(DN∗)T Eε0 dΩ = 0 . (6.84)

We assumed before the distribution of virtual displacements depending on nodal
parameters in which t = h. In such a case, the expression (6.84) has zeroes in the
upper halves of the matrices M, K and of the vector e. As before, we can control the
properties of the procedure by choosing the parameter α .

Concerning the cost of computing the resulting formula, we need to go back to the
given virtual distributions of the nodal parameters. A Dirac distribution with respect
to time reduces the problem of integration in the space–time element volume Ω to
an integral on the surface which is the section in time t = αh, in terms of spatial
variables x,y,z. This reduces the calculational cost in comparison with the cost of
the procedures obtained by the classical, linear interpolation of virtual parameters
with respect to time.

In the case of (6.84), the areas of integration are reduced, from the space–time
volume Ω to the space–time surface (real spatial domain) V (αh). The first integral
contains a component integrated within the limits [0,αh]. Due to the above conclu-
sion concerning the integrals of the distribution, it is sufficient to integrate within
the limits [0,αh]. Assuming linearity of the integrands N we can determine the av-
erage value of the integrand at t = αh/2 and multiply by the length of the interval
αh. Then the stiffness, inertia, and damping matrices, and the initial stress vector
describing the space–time element have the following forms:

K =

∫
Vαh

(DNαh(x))
T E DN(x,αh/2)dV ·αh , (6.85)

M =

∫
Vαh

NT
αh(x)ρ

∂N(x,αh)
∂ t

dV , (6.86)

Z =

∫
Vαh

NT
αh(x)ηz N(x,αh)dV , (6.87)

e =

∫
Vαh

(DNαh(x))
T E ε0 dV . (6.88)
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Here, Vαh is the element which is the cross-space at t = αh, Nαh is the matrix of the
interpolated functions defined on the surface Vαh, and N(x, ·) is the matrix interpo-
lation function in Ω established at a specific time. Changing the limits of integration
makes the formula even simpler for numerical calculation of the characteristic ma-
trices. The matrices (6.85), (6.86), and (6.87) have dimensions N×2N (N is the total
number of degrees of freedom). They bind together the time-moments ti and ti+1.

If the actual velocity distribution functions are linear, this formulation is approx-
imately equivalent to the procedure previously discussed when α = 0.5. Identical
compounds are obtained for small deformations, when xi = xi+1. For large defor-
mations the spatial geometry is taken at a time coinciding with the centre of gravity
of the space–time element, and thus for positive deformations, i.e., extensions of the
domain in time, above α = 0.5, and for negative, below α = 0.5.

6.3.4 Other Functions of the Virtual Velocity

The procedure here is the same as in the case of the virtual functions assumed ac-
cording to (6.50). We review and examine the properties of different types of virtual
functions. The accuracy and stability of the solution depend on the shape functions.
In the following, we will give the stiffness and inertia matrices of the rod element
obtained with different virtual functions. We will estimate the discretization error of
the method [26].

6.3.4.1 Global Equilibrium (Hat Function)

We postulate a global equilibrium in the interval [0,h]. We assume a constant func-
tion (for example equal to 1) in the time interval (Figure 6.17a)

v∗(x, t) =
(

1− x
b

)
v3 +

x
b

v4 . (6.89)

The resulting stiffness and inertia matrices have the form

K =
EAh

b

[
1
3 − 1

3

− 1
3

1
3

∣∣∣∣∣
1
6 − 1

6

− 1
6

1
6

]
, (6.90)
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Fig. 6.17 Virtual functions: a – hat-type, b – triangular, c – roof-type.
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M =
ρAb

h

[− 1
3 − 1

6

− 1
6 − 1

3

∣∣∣∣∣
1
3

1
6

1
6

1
3

]
. (6.91)

The displacements at the next point in time are determined based on the average
speed rule qi+1 = qi+h(vi+vi+1)/2. In practice it is the expression (6.54) at 1/2≤
β ≤ 1.

6.3.4.2 Triangular Function

In the interval [0,h] we assume a virtual distribution time function in the shape of a
triangle (Figure 6.17b)

v∗(x, t) =
(

1− x
b

) t
h

v3 +
x
b

t
h

v4 . (6.92)

The stiffness and inertia matrices in this case have the form

K =
EAh

b

[
5
24 − 5

24

− 5
24

5
24

∣∣∣∣∣
1
8 − 1

8

− 1
8

1
8

]
, (6.93)

M =
ρAb

h

[ − 1
6 − 1

12

− 1
12 − 1

6

∣∣∣∣∣
1
6

1
12

1
12

1
6

]
. (6.94)

From the condition of stability we obtain the parameter 2/3≤ β ≤ 1.

6.3.4.3 Roof Function

In this case, we assume a distribution of the virtual time function in the shape of a
double triangle as shown in Figure 6.17c

v∗(x, t) =

⎧⎨
⎩

(1− x
b)

2t
h v3 +

x
b

2t
h v4, at 0≤ t ≤ t/2 ,

(1− x
b)(− 2t

h + 2)v3 +
x
b (− 2t

h + 2)v4, at t/2 < t ≤ h .
(6.95)

The stiffness and inertia matrices have in this case the form

K =
EAh

b

[ 17
96 − 17

96

− 17
96

17
96

∣∣∣∣∣
7

96 − 7
96

− 7
96

7
96

]
, (6.96)

M =
ρAb

h

[ − 1
6 − 1

12

− 1
12 − 1

6

∣∣∣∣∣
1
6

1
12

1
12

1
6

]
. (6.97)

The stability condition requires the parameter 3/4≤ β ≤ 1.
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6.3.4.4 Point Equilibrium

Using the Dirac delta function as the virtual velocity distribution was described
in Chapter 6.3.1. We will analyse the process described by equation (6.56). The
velocity and displacement can be developed in Taylor series:

vi+1 =

(
1−αω2h2 +

1
2
α3ω4h4 +O(h6)

)
vi +

+

(
−ω2h+

1
2
α2ω4h3 +O(h5)

)
wi , (6.98)

wi+1 =
(

h−ω2h3α(1−α)+O(h5)
)

vi +

+

(
1−ω2h2(1−α)+ 1

2
ω4h4α2(1−α)+O(h6)

)
wi .

The parameter ω2 = k/m is the square of the eigenfrequency. Considering the ex-
pansions of the trigonometric functions, we can estimate the error of the method. To
do this we must take into account two cases of initial conditions: v(0) = 0, w(0) = 1
and v(0) = 1, w(0) = 0, and compare the results (6.98) with the exact expansions of
the solutions. We then obtain the velocity error εv

εv
11 = ω2h2

(
α− 1

2

)
+ω4h4

(
1
24
− α3

2

)
+O(h6) , (6.99)

εv
12 = ω4h3

(
1
6
− α2

2

)
+O(h5) , (6.100)

and displacements error εu

εu
21 = ω2h3

(
α(1−α)− 1

6

)
+O(h5) , (6.101)

εu
22 = ω2h2

(
1
2
−α

)
+ω4h4

(
1

24
− α2

2
(1−α)

)
+O(h6) . (6.102)

The lower indices indicate elements of the transition matrix (6.56). We see that when
α = 1/2, the second degree terms vanish. The error is in this case 1/12 h3 +O(h4).

A similar error analysis can be carried out also in the case of the other virtual
velocity functions, shown previously. Estimating this is left to the reader.

The results of the sample calculations are shown in Figure 6.18. The string is
loaded by a force moving with constant speed. The graphs were plotted in the range
of 0.1c to 1.0c, for each tenth of the wave speed c. The vertical displacement at the
point of the moving force and the vertical displacement in the centre of the string
are depicted. We see that spurious vibrations occur in the case v = 1.0c. This is the
extreme case since the force moves with the speed of the wave. In the remaining
cases, all the plots practically coincide with the theoretical results.
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Fig. 6.18 Dimensionless displacements under the force (upper) and in the centre of the string
(lower).

6.4 Space–Time Element Method and Other Time Integration
Methods

6.4.1 Convergence

The error of the method is estimated as the difference between the exact and the
approximate solution. The exact solution of the equation (6.47) is the sine wave x =
Asinωt +Bcosωt, with constants A and B derived from the initial conditions. Just
subtract the development of our solution (6.56) from the exact solution developed in
a Maclaurin series to determine the step error [0,h]. The case most preferred from the
viewpoint of convergence is when α = 1/2. The approximate solution converges to
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Table 6.2 The convergence of the methods.

method error degree coefficient

s-t.e.m. α = 0 Δ t2 1
2

s-t.e.m. α = 1
4 Δ t2 1

4

s-t.e.m. α = 1
2 Δ t3 1

12

s-t.e.m. α =
√

2
2 Δ t2

√
2−1
2

s-t.e.m. α = 3
4 Δ t2 1

4

s-t.e.m. α = 1 Δ t2 1
2

s-t.e.m. v∗ = 1 (6.104) Δ t2 1
12

Runge–Kutta 2nd order Δ t3 1
6

Runge–Kutta 4th order Δ t5 1
120

the exact solution with an error proportional to the third power of the step Δ t. Table
6.2 summarizes the different variants of the method. Using a linear combination
of these variants defined with different α allows of improving the accuracy. Using
virtual functions of the form ∑ j χ jδ (t/h−α j), where the α j are the coordinates of
the peaks, and χ j the size (weight) of these peaks, the speed vi+1 is determined by

vi+1 =
∑ j

(
1− kh2

2m

[
1− (1−α j)

2
])

χ j

∑ j

(
1+

kh2α2
j

2m

)
χ j

vi−
k
m h

∑ j

(
1+

kh2α2
j

2m

)
χ j

xi . (6.103)

If we take α1 = 0, α2 = 1/2, and α3 = 1, then we obtain the appropriate coeffi-
cients χ j: χ1 = 1/6, χ2 = 2/3, χ3 = 1/6. The solution has an error O(h4) (exactly
h4/12+O(h5)). Choosing the location of successive peaks we can reset more terms
describing the local solution error. In this way we can construct a system of alge-
braic equations in which the unknowns will be shares of Dirac peaks in the final
function of the virtual velocity. Another problem is the selection of the location αi

in the function δ (t −αih). This can be done optimally, reducing the error and yet
enabling the meeting of a specific criterion for the resulting factors (e.g. that they
have equal sign). This issue will not be further dealt with here.

In a similar manner as in Chapter 6.3.1, one can define a family of computational
schemes, differing in the shape of the virtual function adopted on exit, and thus dif-
fering in the points where equilibrium is established. Yet noteworthy is the scheme
expressing the global equilibrium, when the speed of a virtual function is equal to
unity throughout the period of time h, except for the ends of the interval, where the
values are zero. The resulting formula is the following:
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vi+1 =
1− k

m
h2

3

1+ k
m

h2

6

vi−
k
m h

1+ k
m

h2

6

xi, xi+1 = xi +
1
2

h(vi + vi+1) . (6.104)

The scheme (6.104) has a local error of O(h3) (exactly h3/12) and is conditionally
stable. The stability condition imposes in this case the restriction ωh≤ 2

√
3.

The operators a1 of the difference formula yi+1 = a1yi + a2yi−1 for the selected
methods are presented in Table 6.3. a2 is equal to minus one. Figure 6.19 illustrates
the phase error of the chosen methods of integration of the differential equation of
motion: the space-time element method (STEM), displacement formulation, with
the parameter η , the space-time element method, velocity formulation, with the
parameter α , the Newmark method (NM), and the trapezoidal method (TM). It can
be shown that when α =

√
2β (where β is the parameter of the Newmark method)

the scheme (6.56) corresponds to the Newmark method. It should be noted that the
identity of the Newmark method and the space–time element method is limited to
the case of a zero damping matrix. In general, a full analogy has so far failed to
show.

Table 6.3 Operators of the difference schemes of the integration of the differential equation.

method operator

central difference m. 2−κ
trapezoidal m. 2(4−κ)

4+κ

Newmark m.: β=1/4, γ=1/2 2(4−κ)
4+κ

β=1/6, γ=1/2 4(3−κ)
6+κ

β=1/12, γ=1/2 2(12−5κ)
12+κ

β=0, γ=1/2 2−κ
STEM—displacement formula: classical (η=0) 4(3−κ)

6+κ

η=5/4 2(4−κ)
4+κ

η=5/2 6−κ
3+κ

STEM—velocity formula: α=0 2−κ
α=1/2 16−6κ

8+κ

α=
√

2/2 2(4−κ)
4+κ

α=1 4
2+κ

formula with v∗=1 (6.104) 4(3−κ)
6+κ
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Fig. 6.19 The phase error of the time integration methods: CDM – central difference method,
NM – Newmark method, TM – trapezoidal method, STEM – space–time element method.

6.4.2 Phase Error

The phase error in the integration scheme expressed in velocities is determined by
the ratio

P =
T ′

T
=

ω
ω ′

. (6.105)

The characteristic equation of the scheme described by (6.56) has the form

λ 2− (T11 +T22)λ +(T12T21−T11T22) = 0 , (6.106)

where Ti j are the elements of the transition matrix (6.56). The solution of (6.106)
gives

λ1/2 =
α2κ+ 2−κ± i

√
κ(2α2κ+ 4−κ)

α2κ+ 2
, κ =

k
m

h2 . (6.107)

Since the frequency in the numerical scheme is determined by

tgω ′h =
ℑ(λ )
ℜ(λ )

, ω ′ =
1
h

arctg
ℑ(λ )
ℜ(λ )

, (6.108)

the phase error is

P =

√
κ

arctg

(√
κ(2α2κ+4−κ)
α2κ+2−κ

) , (6.109)

and in the limit
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lim
κ→0

P = 0 . (6.110)

There remains the question, which variant of the method, explicit or implicit, should
be adopted in computations? The following is a summary which partially character-
izes the basic features of both these groups.

Implicit methods

• Implicit methods are usually unconditionally stable. The size of the time step
depends only on the required accuracy.

• The calculations require a greater number of arithmetic operations per one com-
putational step, and more memory.

• The precision criteria require that the time step be approximately one hundredth
of the basic period of oscillation.

• The algorithms require the decomposition of the matrix into factors (factoriza-
tion).

• Implicit methods are convenient in the analysis of inertial issues.
• Implicit methods are recommended for bent structures due to the high value of

the highest vibration frequency compared to the basic period.
• The efficiency of this group of methods is lower in the analysis of multidimen-

sional systems.

Explicit methods

• Stability conditions limit the time step of explicit methods.
• Calculations are effective with diagonal mass matrices. Consistent mass matrix

improves the accuracy of bent structures but overestimates the frequency, while
a diagonal matrix lowers the frequency. A diagonal modified matrix [66] (when
the total mass of the finite element is distributed on the diagonal elements with
the ratio of the consistent matrix) has the most advantageous properties.

6.4.3 Non-inertial Problems

Now let us look at the solution of massless tasks. We will apply the space–time
element method. We will consider in fact static problems, although the process of
material deformation is kinematically induced. This way we can obtain illustrative
results for quasistatic deformation processes. We can apply this approach to the
material shaping processes in forms, car stringers crushing, etc.

Let us examine the stability of the solution scheme based on the velocity space–
time element method with zero inertia coefficients. In this scheme we use the Dirac
delta function for the virtual speed. Assuming m = 0, we calculate the moduli of
the eigenvalues of the transition matrix T for the problem of a single degree of
freedom. Figure 6.20 shows the dependence of the two eigenvalues on the value of
the parameter α for the massive and the massless tasks. In the case of an inertial
system, the modulus of an eigenvalue does not exceed 1 when α ≥ √2/2. In non-
inertial problems, the moduli of both eigenvalues are equal to 1 only when α = 1.
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Fig. 6.20 Eigenvalues of the transition matrix for the massive (m > 0) and massless (m = 0)
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Fig. 6.21 Solution process for the massless spring subjected to a constant force, with time
steps h = 0.02 and 0.1.

This is the only parameter of the procedure for which the solution is unconditionally
stable when m = 0.

The space–time scheme applied to massless systems is advantageous since the
same code can be applied both to inertial and non-inertial structures. Without need-
ing reprogramming, the quasi-static problem can be transformed into a dynamic
one. Below, the massless algorithm will be applied with the aim of comparing the
numerical results for simple statical or quasi-statical problems. Let us look at the
example.

Example 6.1. Let us consider an oscillator with zero mass. In practice, we consider a
simple massless spring with stiffness k = 1, subjected to a force P = −1. All initial
parameters, i.e., the velocity and displacement, are equal to zero. The system has
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one degree of freedom. We can write the equilibrium equation with formulas for
displacement xi+1 and nodal force ei+1

[
α
(

1− α
2

)
vi +

α2

2
vi+1

]
+ ei = Pi ,

xi+1 = xi +[αvi +(1−α)vi+1]h ,

ei+1 = xi+1 .

(6.111)

The results forα = 1 are presented in Figure 6.21. Other values ofα , lower than one,
involve divergence of the time stepping process. We can notice that the computed
displacement converges to the exact value, equal to one.

6.5 Space–Time Finite Element Method vs. Newmark Method

We link the vector composed of velocities and displacements at the next time with
the same vector at the present time. We will deal with the simplified case. Assuming
a zero value for the load function and a lack of damping, we will consider free
undamped vibrations. Using Algorithm 5 after appropriate transformations we can
write the transition matrix for the Newmark method

T =

⎡
⎢⎣

1
2β (h2ω2β+1)

− 1
2β + 1 − hω2(h2ω2(4β−1)+4)

4(h2ω2β+1)

h
1+h2ω2β

1−h2ω2( 1
2−β )

1+h2ω2β

⎤
⎥⎦ . (6.112)

If we expand the terms of the matrix (6.112) into Taylor series and act similarly to
the matrix (6.56), then for the parameter α = 1/2 in the space–time element method
and for β = 1/2 we obtain the compatibility of both matrices with the error level
ΔT of the range O(h3)

ΔT =

⎡
⎣ 0 h3ω4

8

− h3ω2

4 0

⎤
⎦ . (6.113)

Only in the case of the application of the virtual hat function, and C = 0, can one
easily compare the Newmark method with the space–time element method and see
their identity. We obtain the transition matrix of the space–time element method in
the form (6.104). We then easily see that both arrays (6.104) and (6.112) are equal
if β = 1/6 and γ = 1/2 in the Newmark method. Therefore, unless we take into
account a damping described by the damping matrix C, we obtain the identity of
both methods.

Identical considerations hold for comparing the central difference method with
the method of trapezoids. They are a particular case of the group of Newmark
methods.
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6.6 Simplex Elements

The diagrams of finite element solutions reduce to systems of algebraic equations.
Their solution has a large share in the cost of the whole process of calculation. The
number of arithmetic operations increases significantly in non-linear tasks that re-
quire multiple solving of the system of equations at each time step. There are two
groups of methods for solving systems of equations: direct and iterative. The first
one leads to a solution with a single engagement of the matrix coefficients. The ma-
trix can be split into a product of two triangular matrices, or directly triangularized.
The calculation of the unknowns in the system with the triangular matrix is immedi-
ate. We can use the classical decomposition LU on the matrix product of lower and
upper triangular matrices, the Cholesky–Banachiewicz decomposition UTU on the
product of a triangular matrix and its transposed form, the decomposition of Doolit-
tle or LU Croute with ones on the diagonal of the matrix L or U and decomposition
LDLT , with the diagonal matrix D and the lower triangular matrix L. These methods
are characterized by relatively low computational cost. The decomposition LDLT

and the Croute and Doolittle decomposition require n3/6 multiplications, and the
Gaussian decomposition requires n3/3 operations. The computational cost in a real
practical case depends on the bandwidth of the coefficient matrix of the system of
equations. The disadvantage of the group of matrix decomposition methods is the
need to first use special algorithms to reduce the bandwidth of the matrix. In the
case of two-dimensional problems discretized with a mesh with the same number of
nodes in both directions, the cost of the solution is proportional to the fourth power
of the number of nodes in one direction of the grid. And in the case of a three-
dimensional cube-shaped domain, covered with a mesh evenly in three directions,
this cost increases with the seventh power of the number of nodes on one edge.
Nonlinear effects and the need for iteration, slowed by an increase in the number
of nodes, achieving the balance of forces, prolongs even more the computational
process.

The second group, a group of iterative methods (e.g., Jacobi, Gauss–Jordan),
rarely used in practice, allows the incorporation of nonlinear effects of the task into
an iterative solving process. In this way, the approach to the solution is based on
simultaneously updated matrix elements. This process can be carried out without
forming a global matrix (or even part of it). This is the procedure performed ‘ele-
ment by element’. Although these are undoubtedly advantageous features, the whole
computation process is very expensive and vulnerable to problems with its conver-
gence and stability.

Another group of iterative methods of the ‘element by element’ type are pre-
sented, e.g., in the papers [68]. Their computational cost, however, is large and
methods of this type start to be attractive only in sufficiently large tasks. Their con-
vergence is relatively slow and depends on the conditioning of the matrix (and thus
the bandwidth of the matrix, the shape of the test object, and the material parame-
ters of the elements). It was concluded that they had a high sensitivity to nonlinear
effects. The increase of the time step in nonlinear tasks worsens the convergence
dramatically.
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Fig. 6.22 Examples of multiplex and simplex elements of one-, two-, and three-dimensional
objects.

The above drawbacks and particularly the difficulty in predicting the rate of con-
vergence of iterative methods make direct methods more likely to be applied in
practice.

The space–time approximation opens up new opportunities by applying simpli-
cial space–time subdomains (Figure 6.22). These elements in one-dimensional real
space and in time have the shapes of triangles. The elements of this shape can model
axially vibrating rods, bending rods, or strings. Two-dimensional objects such as
discs, plates, and shells in space are discretized with triangular spatial elements, and
in time–space tetrahedra, created from these triangles. Three-dimensional blocks in
space translate into hyper-tetrahedral simplices in time-space. Hyper-tetrahedra are
creations in the n+ 1 dimensional space, and have 5− i (i = 1, . . . ,4) nodes in time
ti and i nodes in time ti+1.

6.6.1 Property of Space Division

A space–time layer bounded by planes ti and ti+1 can be filled with simplicial el-
ements in many ways. The special filling of the space–time layer with simplices
allows of gaining a triangular coefficient matrix for the system of equations di-
rectly in forming the global matrix (Figure 6.23). The creation of a space partition
by triangles should be guided by the principle that skew edges run from the point
(xi,Δ t) to the point (x j,0), if i< j. In this way, we obtain skew edges in time-space.
Otherwise, i.e., i ≥ j, we obtain the edges parallel to the time axis. We proceed
similarly in a task of higher spatial dimensionality. The procedure is described in
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Fig. 6.23 Filling up the global matrix in the one-dimensional domain with a triangular grid
of space–time elements.

Fig. 6.24 Filling in the two-dimensional time-space.

Algorithm 10. The example of filling the volume of the space–time layer in a one-
dimensional task is shown in Figure 6.24. In this way, a lower triangular matrix of
coefficients is obtained.

In the same way, we create a layer of tetrahedral elements in two-dimensional
spatial areas. This is illustrated in Figure 6.24. We can also obtain an upper trian-
gular matrix of coefficients. When creating the space–time grid and constructing
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Algorithm 10. The method of partitioning the time-space into simplex-shaped ele-
ments.
1. We consider successive nodes of the mesh of the space–time partition (for exam-

ple node i).
2. We number the nodes of spatial elements which are in topological contact with

the node considered:

• if the number of the node of the element surrounding node i is greater than i,
then the time coordinate of the new space–time node is equal to 0,

• if the number of the node surrounding node i is smaller than i, then the time
coordinate in the new space–time node is equal to h,

• if it is the node i, then two nodes of the space–time element are created with
the coordinates 0 and h.

the matrix of coefficients, we should proceed oppositely to Algorithm 10. We can
extend the principle of filling the space–time layer with simplex elements by the
following statement: any partition of the space–time layer with simplicial elements
enables solving the resulting system of equations node by node. This should be
done by choosing the appropriate sequence of nodes resulting from the method of
filling the space–time layer with elements. This is obvious because the reordering
of equations and variables in the vector of unknowns always brings such a system
of equations to triangular form (upper or lower).

Solving the system of equations with a triangular matrix of coefficients is ef-
fective because we can proceed directly to solving it equation after equation. The
characteristic property of such a procedure can be underlined. Is the flow of infor-
mation in time in one spatial direction only: from the first equation to the last, i.e.,
from the spatial point associated with the first degree of freedom to the spatial point
governed by the last degree of freedom in the system of algebraic equations (or vice
versa, if we are dealing with an upper triangular matrix). In the time stepping process
it is expressed in this way: the flow of information between the nodes of the spatial
grid in one direction has a limited speed, but is unlimited in the opposite direction
(Figure 6.25a). Numerical tests have shown that in the initial phase of the calcula-
tion, some differences in the results are observed. In the long term simulation, these
differences are dominated by the errors arising from the discrete model, properties
of the method of calculation of parasitic vibrations. Space–time anisotropy affects
the performance of wave problems (shock, reflections, etc.). There is no significant
effect of anisotropy on the results of the structural dynamics. An anisotropy can be
removed by introducing a special division of the layer, without preference for any
direction (Figure 6.25b).

Another practical property of having simplices for elements is the possibility of
separating the parts of the system of equations. It allows sub-dividing the construc-
tion into substructures and solving the system of equations in separate batches. The
whole structure, with the exception of nodes common to neighbouring substruc-
tures, can be modelled with elements of ‘multiplex’ type, and so in the classical
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Fig. 6.25 Limit of the speed of information flow (a) and isotropic properties of time-space
(b).

way. Only elements connecting substructures should be simplicial (Figure 6.26).
The solution is obtained in two stages: first the subsystem No. I is solved and then
using the known solution in the node at the junction of two subdivisions is sub-
system No. II solved. Thanks to this, the calculation can be carried out on parallel
processors. Figure 6.27 shows for the example of the simplest element mesh, how
the computational process can be divided between four processors. Their areas of
involvement are outlined. Starting from the node nearest the origin of the coordinate
system, we can move with time, carrying out calculations for the selected subsys-
tems of elements. A larger number of processors allows even greater acceleration of
the computational process.

Fig. 6.26 The division of the domain into sub-areas using simplices.

The elements of higher order, with intermediate nodes both along the x-axis and
the t-axis, also allow us to construct a system of equations which can be solved ‘node
after node’. This means that we can separate groups of nodes (Figure 6.28) that
enter into the calculations sequentially. In this way, properties similar to the basic,
low order elements are achieved, where the nodes are taken into the computations
individually.
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Fig. 6.27 Areas of activity of individual processors in a multiprocessor solution.
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Fig. 6.28 Constructing and solving the system of equations for higher order space–time
elements.

Another kind of division of the time-space is proposed in the papers [80, 114].
The nodes are arranged alternately every second time (Figure 6.29). The advantage
of this approach is its lengthening of the integration step (although the stability of
such a scheme has not yet been fully explored), isotropy, and above all decomposi-
tion of the system of equations. This helps reduce the number of iterative processes
(such as at material nonlinearities) to each node, without having to manipulate en-
tire arrays. A major drawback is the difficulty in practically applying such a division.
Problems arise in covering even simple flat areas with such elements. At the edges
and corners of the area we need to build three-dimensional objects of unusual shape,
differing from the rest of the grid. The amount of work in the programming phase is
so large that it can be profitable only for repeatedly performed structural calculations
for huge meshes.
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Fig. 6.29 Staggered arrangement of the element nodes.

6.6.2 Numerical Efficiency

Numerical efficiency is one of basic features that should be sought for when solving
non-linear problems. Finding solutions in a single computational step consists of
two phases: building the global matrix of coefficients, with prior modification of the
geometric and material properties, and solving the algebraic equations. The com-
putational cost of the process of integrating the equations of motion is significantly
affected by the form of the matrix of inertia and the damping. A diagonal inertia
matrix and numerical damping, described by a combination of stiffness and inertia
matrix, allows shortening and simplifying the computations. The use of explicit in-
tegration schemes in time results in decoupling the system of equations. However,
in some cases, consistent mass and damping matrices are required. In such cases,
the need to solve the full system of equations raises the cost significantly.

The simplest assessment of the quality of the algorithm is to estimate the number
of arithmetic operations necessary to carry out the calculation in one step. It can
be assumed that the share of operations of multiplication M in the total number of
arithmetic operations is constant. In the space–time element method the number of
multiplications needed to solve the system of equations (not including the setting up
the coefficients of the system) depends on the amount of memory used for collecting
the coefficients. It is

M = 2sN(c+ 1) (6.114)

if we engage 3.5sN(c+ 1)+ 1.5sN memory units, and it is

M = 3sN(c+ 1) (6.115)

if we engage 1.5sN(c+ 1)+ 1.5sN memory units. By memory unit, we mean that
portion of memory that stores a real number. By c we denote the number of nodes
adjacent to a single node in the mesh, N denotes the total number of degrees of
freedom, and s denotes the number of nodal degrees of freedom.
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Comparing the full cost of computing one step in the space–time element method
and in the finite element method combined with the method of central differences
requires making certain assumptions. In the finite element method and in the central
difference method we assumed

• creating a matrix of coefficients at each computing step,
• symmetry of the element matrices and the global matrix,
• regular band edge of the global matrix (filled with zeros),
• consistent inertia matrix,
• negligible damping (zero damping matrix),
• optimal numbering of the nodes to narrow the bandwidth of the matrix in the

finite element method,
• perform multiplications by zero within the band,
• plane stress/strain elastic task as a model task adopted in estimation.

The comparison of the cost calculations is shown in Figure 6.30. We can compare
the above estimates, (6.114) and (6.115), with [102]. The Newmark method requires
M = Nb2/2n+N(4b+ 3) multiplications per one step of calculations (where n is
the number of time steps and b is the width of the half band). The Trujillo method
[102, 139] for a matrix stored in band form requires M = N(4b+6) operations, and
for storage in block form, M = 2sN(c+1)+10N. A summary of the computational
cost of each method is given in Table 6.4. It should be noted that the width of the
matrix half band b is usually proportional to N1/2 in plane tasks and to N1/3 in three-
dimensional tasks. In the comparison, the entire group of methods using diagonal
matrices of inertia and damping were omitted. They give decoupled equations and
the cost of solving is then low.
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Fig. 6.30 Comparison of computational costs of the finite element method and the method
of central differences with the space–time element method.
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Table 6.4 Computational cost of numerical methods.

method number of multiplications

Gauss m. (symmetric matrices) N3

6 + N2

4 + N
12

Gauss m. (symmetric and band matrices) 1
2 b2N

STEM (higher memory) 2sN(c+ 1)

STEM (lower memory) 3sN(c+ 1)

Newmark m. [102] 4bN + 3N

Trujillo m. (with half band) [102] 4bN + 6N

Trujillo m. (with block notation) [102] 2bN + 10N

Conclusions

• The computational cost of the space–time element method grows linearly with
the number of grid nodes.

• The number of operations in the space–time element method does not depend on
the method of numbering the nodes (mesh topology).

• In classical methods, the half band width b increases with the size of the task.
The number of arithmetic operations per one time step is then proportional to
bN ≈ N3/2.

• Estimates are rough and may vary considerably for different specific tasks.

6.7 Simplex Elements in the Displacement Description

In the following sections we will derive the stiffness, inertia, and damping matrices
of the basic simplicial space–time finite elements. We will deal with a rod or string
element, the element of a beam of medium thickness, the slab, and a plate of medium
thickness and three-dimensional body. The way to build a matrix is simple. We use
the well-known procedure from the finite element method. The only difference is
the inclusion of time as an additional coordinate of the coordinate system in which
we describe a discrete element.

6.7.1 Triangular Element of a Bar Vibrating Axially

We use a linear displacement distribution inside the triangular element

w(x, t) = a1x+ a2t + a3 , (6.116)
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where a1, a2, a3 are constants dependent on the geometry of the element and the
values of the nodal displacements. It can be written in another way in surface coor-
dinates Li

w = L1u1 +L2u2 +L3u3 , (6.117)

where

Li =
1

2Δ
det

⎡
⎣ x t 1

xk tk 1
xl tl 1

⎤
⎦ , (6.118)

where i, k, l and j, m, n are the permutations of the numbers of the vertices in the
triangle, and Δ is the surface area of a triangle.
The shape functions Ni(x, t) are directly expressed by coordinates Li

N = [L1,L2,L3] . (6.119)

The differential operator can be considered as a matrix containing a single element
D = ∂/∂x. If we take the origin to be the centre of gravity of the triangle, the
stiffness K and inertia M matrices are

Ki j =
EA
4Δ

(tk− tl)(tm− tn) , (6.120)

Mi j =−ρA
4Δ

(xk− xl)(xm− xn) . (6.121)

The external damping Z has the form

Zi j =
ηz

4Δ
(xktl− xltk)(xn− xm) , (6.122)

and the internal, due to the double differentiation of (6.116), is equal to zero.

6.7.2 Space–Time Finite Element of the Beam of Moderate
Height

In a beam of moderate height, we take into account the effects of shear. Both the
deflection w and the rotation θ are expressed by independent linear functions

{
w
θ

}
=

{
a1x+ a2t + a3

b1x+ b2t + b3

}
. (6.123)

The coefficients ai and bi depend on the geometry of the space–time element. In sur-
face coordinates L1, L2, and L3, we can write the dependencies of the displacements
on the nodal values:
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{
w
θ

}
=

{
L1w1 +L2w2 +L3w3

L1θ1 +L2θ2 +L3θ3

}
, (6.124)

where

Li =
1

2Δ

∣∣∣∣∣∣
x t 1
x j t j 1
xk tk 1

∣∣∣∣∣∣ , (6.125)

and Δ is the surface area of a triangular element. The coefficients ai can then be
determined:

a1 =
1

2Δ
(t23w1 + t31w2 + t12w3) ,

a2 =
1

2Δ
(x32w1 + x13w2 + x21w3) , (6.126)

a3 =
1

2Δ
(x2t3w1 + x3t1w2 + x1t2w3) ,

where xi j = xi− x j, ti j = ti− t j. The coefficients bi are computed in the same way.
They contain the parameters of rotation θk instead of transverse displacements wk.
Total decoupling of the deflections and rotations results in the shape function matrix
becoming diagonal:

Ni =

[
Li 0
0 Li

]
, i = 1,2,3 . (6.127)

The strains ε are described by the average share angle β and curvature κ

ε =
{
β
κ

}
=

{ ∂w
∂x +θ
∂θ
∂x

}
. (6.128)

The differential operator D contains two derivatives in terms of the variable x and
has the form

D =

[
∂
∂x 1

0 ∂
∂x

]
. (6.129)

The constitutive relationship is described by the matrix of elasticity E

σ =

{
Q
M

}
= Eε =

[
GA
k 0

0 EI

]
ε . (6.130)
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The next step is to determine the products, using the general formulas (6.15), (6.16),
(6.19), and (6.20), and then integrate them in the area of the triangle. If we take the
origin at the centre of gravity of the triangle, we can use the known rules

∫
Δ

dxdt = Δ ,
∫
Δ

xdxdt = 0,
∫
Δ

x2 dxdt =
Δ
12
Σx2

i ,

∫
Δ

xt dxdt =
Δ
12
Σxiti . (6.131)

The resulting space–time stiffness matrix consists of 36 elements, in 2×2 frames, in
each of the nodes. One of these frames K∗i j is given below

K∗i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GA
4kΔ tkltmn−
− ρA

4Δ xklxmn+

+ ηz
4Δ xmn(xktl− x jtk)

...
GA
4kΔ tkl(xmtn− xntm)+

+ ηz
4Δ tklxmn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GA
4kΔ tmn(xktl− xltk)

...

EI
4Δ tkltmn− ρI

4Δ xklxmn+

+ηw+ηz
4Δ (xktl− xltk)xmn+

+ GA
4kΔ

[
tkltmn

Σx2

12 + xklxnm
Σt2

12 +

+(tklxnm + xlktmn)
Σxt
12

]
+

GA
4kΔ (xktl− xltk)(xmtn− xntm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.132)

Here we have used the following notation: xi j = xi−x j, ti j = ti− t j, Σx2 = x2
1+x2

2+
x2

3, Σt2 = t2
1 + t2

2 + t2
3 , Σxt = x1t1 + x2t2 + x3t3.

Figure 6.31 shows the amplitude of the displacements of the free end of a can-
tilever loaded with a concentrated force with a Heaviside distribution, in relation to
the value determined analytically. With the increase in the length of the elements
b compared to the height H of the cross section, the accuracy decreases. With the
length of the element equal to the height of the element’s cross-section, the ampli-
tude error reaches 24%.

6.7.3 Tetrahedral Space–Time Element of a Plate

We assume linear interpolation functions to describe the distribution of the gener-
alized displacements in the space–time element domain. The vertical displacement
w and the rotations in both x and y directions, i.e., θx and θy, will be expressed in
terms of nodal parameters. The following polynomials of the first order are used
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Fig. 6.31 The accuracy of the calcu-
lated displacements of the free end of
the beam depending on the length of
the spatial elements.
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⎧⎨
⎩

w
θx

θy

⎫⎬
⎭=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1x+ b1y+ c1t + d1

a2x+ b2y+ c2t + d2

a3x+ b3y+ c3t + d3

a4x+ b4y+ c4t + d4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (6.133)

The constants ai, bi, ci, and di, i = 1,2,3 are determined from the relationships
⎧⎪⎪⎨
⎪⎪⎩

a1

b1

c1

d1

⎫⎪⎪⎬
⎪⎪⎭

= P−1

⎧⎪⎪⎨
⎪⎪⎩

w1

w2

w3

w4

⎫⎪⎪⎬
⎪⎪⎭
,

⎧⎪⎪⎨
⎪⎪⎩

a2

b2

c2

d2

⎫⎪⎪⎬
⎪⎪⎭

= P−1

⎧⎪⎪⎨
⎪⎪⎩

θx1

θx2

θx3

θx4

⎫⎪⎪⎬
⎪⎪⎭
,

⎧⎪⎪⎨
⎪⎪⎩

a3

b3

c3

d3

⎫⎪⎪⎬
⎪⎪⎭

= P−1

⎧⎪⎪⎨
⎪⎪⎩

θy1

θy2

θy3

θy4

⎫⎪⎪⎬
⎪⎪⎭

, (6.134)

where wi, θxi, θyi are nodal displacements at node i. The matrix P then has the form

P =

⎡
⎢⎢⎣

x1 y1 t1 1
x2 y2 t2 1
x3 y3 t3 1
x4 y4 t4 1

⎤
⎥⎥⎦ . (6.135)

If we denote by ri, i = 1, . . . ,4, the columns of the matrix P−1 and by g the vector
of monomials

g = [x,y, t,1] , (6.136)

then the shape functions of the tetrahedron are

N = [N1,N2,N3,N4] , Ni = g ri, i = 1, . . . ,4. (6.137)
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We define the strain vector ε by

ε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κx

κy

κxy

βx

βy

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∂
∂x 0

0 0 ∂
∂x

0 ∂
∂y

∂
∂x

∂
∂x 1 0
∂
∂y 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩

w
θx

θy

⎫⎬
⎭= D w . (6.138)

Here, w is the vector of displacements. The stress vector σ contains the bending
moments mx, my, and mxy and shear forces qx and qy per unit length:

σ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mx

my

mxy

qx

qy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (6.139)

The elasticity matrix,

E =

⎡
⎢⎢⎢⎢⎢⎣

D νD 0 0 0

D 0 0 0
1−ν

2 D 0 0

H 0

H

⎤
⎥⎥⎥⎥⎥⎦
, D =

t3

12
E

1−ν2 , H =
5
6

Gt , (6.140)

where E is the Young modulus, ν is the Poisson coefficient, G is the shear modulus,
and t is the thickness of the plate, allows us to write the stress–strain relation:

σ = Eε . (6.141)

The integration over the space–time tetrahedron is simplified if the origin of the
coordinate system is placed at the centre of gravity of the element. We denote the
entries of the matrix P−1 (6.135) by pi j. Moreover, ρ is the mass density, ηw is the
internal damping coefficient of the Kelvin–Voight model, ηz is the external damp-
ing coefficient, and V is the volume of the tetrahedral space–time element. Then
the space–time stiffness matrix entries derived in terms of the displacements are as
follows
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Ki j11 =HV (p1i p1 j + p2i p2 j)−ρhp3ip3 j ,

Ki j12 =HV p1i p4 j +ηwV p1i p3 j ,

Ki j13 =HV p2i p4 j +ηwV p2i p3 j ,

Ki j21 =HV p4i p1 j ,

Ki j22 =DV p1i p1 j +
1− nu

2
DV p2i p2 j +

HV
20

p1i p1 j∑x2
k +

HV
20

p2i p2 j∑y2
k+

+
HV
20

p3i p3 j∑t2
k +

HV
20

(p1i p2 j + p2i p1 j)∑xkyk+

+
HV
20

(p2i p3 j + p3ip2 j)∑yktk +
HV
20

(p1i p3 j + p3ip1 j)∑xktk+

+HV p4i p4 j− p3i p3 j
ρh3

12
V +(ηw +ηz)V p4i p3 j ,

Ki j23 =νDV p1i p2 j +
1− nu

2
DV p2i p1 j ,

Ki j31 =HV p4i p2 j ,

Ki j32 =νDV p2i p1 j +
1− nu

D
V2p1i p2 j ,

Ki j33 =DV p2i p1 j +
1− nu

2
DV p1i p1 j +

HV
20

p1i p1 j∑x2
k +

HV
20

p2i p2 j∑y2
k+

+
HV
20

p3i p3 j∑t2
k +

HV
20

(p1i p2 j + p2i p1 j)∑xkyk+

+
HV
20

(p2i p3 j + p3ip2 j)∑yktk +
HV
20

(p1i p3 j + p3ip1 j)∑xktk+

+HV p4i p4 j− p3i p3 j
ρh3

12
V +(ηw +ηz)V p4i p3 j .

(6.142)

The test problem depicted in Figure 6.32 results in amplitudes which are there com-
pared with other results collected in Table 6.5.
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Fig. 6.32 Test problem — a cantilever plate.

Table 6.5 Summary results of calculations of test analysis of a disc.

mesh No. of nodes deflection w period T Dw
QL2

ω√
D/ρtL4

2× 1 6 318. 109. 0.564 4.84
4× 2 15 537. 133. 0.953 3.97
8× 4 45 720. 157. 1.277 3.37

Other results for comparison∗:
— Ritz method 3.47
— experimental 3.42
— Plunkett’e experiments 3.50
— finite elements (modal analysis)
— 2× 1 (4 triangular elements) 3.39
— 4× 2 (16 triangular elements) 3.44
∗O.C. Zienkiewicz, The Finite Element Method in Engineering Science,
2nd edition, McGraw-Hill, 1971

6.8 Triangular Elements Expressed in Velocities

The final system of equations obtained using the velocity formulation has the same
features as when the displacement formulation is used. We will try to construct a
model of a triangular element of an axially vibrating rod and investigate its proper-
ties. The accuracy of the calculated amplitudes, the periods of the free vibrations,
and the stability of solutions obtained by using these elements will be important
when we evaluate the velocity simplex elements.

The virtual power equation (6.61) is used to build a recursive matrix equation.
Below we will use triangular elements. In the beginning, let us take two comple-
mentary triangles, shown in Figure 6.33. The principle of virtual work (6.62) allows
us to write
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Fig. 6.33 Triangular system of elements
described with velocities.

∫
Ω
(N∗)T ρA

∂v
∂ t

dΩ +

∫
Ω

∂ (N∗)T

∂x
EA

∂
∂x

[∫ t

t0
vdt

]
dΩ = 0 . (6.143)

Here, N∗ is the matrix of virtual shape functions, v is the velocity at the point (x,t),
Ω is the domain of the triangle A or B, and E , ρ , A are the Young modulus, mass
density and cross sectional area, respectively. In the element A the real velocity is
described by

vA(x,y) = NA(x, t)v =
[
1− t

h
,

x
b
,− x

b
+

t
h

]
v , (6.144)

and the virtual functions in nodes 3 and 4 have the form

N∗A(x, t) =
[
− x

b
+

t
h
,

x
b

]
. (6.145)

Inertia matrix is then determined from the relation

MA =
∫ b

0

∫ h

hx
b

(NA)
TρA

∂
∂ t

NA dt dx = ρA
b
6

[−1 0 1
−1 0 1

]
. (6.146)

The real shape functions and the virtual function of the node 4 in the element B have
the following forms

NB =
[
1− x

b
,

x
b
− t

h
,

t
h

]
, N∗B =

t
h

. (6.147)

The mass matrix is thus

MB = ρA
b
6
[0,−1,1] . (6.148)

The stiffness matrices described in the second part of the equation (6.143) have the
following form

KA=

∫ b

0

∫ h

hx
b

∂ (N∗A)T

∂x
EA

∂
∂x

[∫ t

0
NAdt

]
dt dx = EA

h2

3b

[
0 −1 1
0 1 −1

]
,

KB=0 . (6.149)
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The initial force vector in the element is

s = EA
∫ b

0

∫ h

hx
b

∂ (N∗A)T

∂x
∂w(t0)
∂x

dt dx = EAε0
h
2

[−1
1

]
. (6.150)

We can use the transformed form of (6.143):

1
4Δ

(xmtn− xntm)∑
i

xk j vi +
tmn

2
ε0− 1

4Δ
tmnt0∑

i
x jk vi = 0 , (6.151)

where Δ is the surface area of the triangle, tmn = tm− tn, xk j = xk− x j, and t0 is the
time location of the node with the lowest coordinate ti in the coordinate system with
origin at the centre of gravity of the triangle.

The global arrays of the system allow us to write a recursive equation:

(
1
6

[−1 0 1 0
−1 −1 1 1

]
+

c2h2

3b2

[
0 0 1 −1
0 0 −1 1

])
v+

h
2b

c2ε0

[−1
1

]
= 0 . (6.152)

If we fix the right degree of freedom, we obtain an oscillating system with one
degree of freedom, described by the system of equations

⎧⎨
⎩

vi+1 =
(1−2κ2)vi+3εi

1+κ2 , κ = ch
b ,

εi+1 = εi− ( 2
3 vi +

1
3 vi+1)

h
b .

(6.153)

The period of oscillations of the oscillator modelled by the system (6.153) (with unit
values for E , S, ρ , b) is 3.628, whereas the exact value is 2π/

√
3≈ 3.6276.

The derived matrices were tested by examples. The task was an axially vibrating
rod, divided into 20 spatial elements. The meshes of type a and b are shown in
Figure 6.34. In order to compare the results, the task was solved with the use of
a mesh of rectangular elements, with parameter α = 1/2. In all cases, the time
step was h = 0.01. The displacements of the free end of the bar in time, as the
system response, are shown in Figure 6.34. Comparing the graphs, one can see the
correct behaviour of the given system. The amplitudes of the parasitic frequencies
are small. The difference illustrated in Figures 6.34a and 6.34b results from the
manner in which the initial conditions were introduced. In the case of a, the initial
speed v0 = 1 was applied to the extreme node, which belongs to only one triangle.
In case b, the extreme node at t = 0 joins two triangular elements. Finally, in this
way of loading, the grid b better models the propagation of pulses. The stiffness
matrices in the case of a grid consisting of two triangles (e.g. Figure 6.33) can also
be derived in a simpler manner. We must calculate the work of the internal forces
on the virtual displacements in the domain 0≤ x≤ b, 0≤ t ≤ h. For example, if we
take the system shown in Figure 6.34a, the increment of deformations in the interval
[0,h], calculated at x = b/3, and thus at the centre of gravity of the left triangle, is

Δε =
2
3

h
v2− v1

b
+

1
3

h
v4− v3

b
. (6.154)
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Fig. 6.34 Displacements in time of the free end of the rod with triangular and rectangular
meshes (20 spatial elements).

Finally, we get the matrix

EAh2

6b

⎡
⎣ 2 −2
−2 2

1 −1
−1 1

⎤
⎦ . (6.155)

The displacements at the end of the interval [0,h] are determined by the formula
x1 = x0 +hv0. The system response does not depend on which time we calculate the
strain increment or on how situated the time interval of length h along which the in-
tegration is carried out. Sample diagrams with the corresponding stiffness matrices
are given in Table 6.6. The first set of options there is conditionally stable. Others
are unconditionally stable due to the time step. Assuming the inertia matrix given in
(6.146) and (6.148), summed in (6.152), and the stiffness matrix of the system ac-
cording to the first system in Table 6.6, we obtain triangular matrices of coefficients
(right submatrix, associated with vi+1).

Triangular elements are ideal for refining and coarsening the grid over time. We
can also modify the mesh in selected spatial areas and decrease the time step (Figure
6.35). A subintegration in time carried out in selected areas enables us, for example,
to easilydescribe the contact. In Figure 6.35b, two joints are introduced: tc is the
entry of the point into contact and t f is the end of the contact interval. In practice,
the whole space–time layer, i.e., all the nodes placed at ti+1 and the supplementary
nodes (sub–division), are treated in the same stage of calculations, in one matrix
equation.
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Table 6.6 Stiffness matrices in the different schemes.

scheme stiffness matrix

����

����

����
EAh2

6b

⎡
⎣ 3 −3
−3 3

0 0
0 0

⎤
⎦

����

����

����
EAh2

6b

⎡
⎣ 2 −2
−2 2

1 −1
−1 1

⎤
⎦

����

����

����
EAh2

6b

⎡
⎣ 1 −1
−1 1

2 −2
−2 2

⎤
⎦

����

����

����
EAh2

6b

⎡
⎣ 0 0

0 0
3 −3
−3 3

⎤
⎦

t

x

a b

Fig. 6.35 Examples of grid refinement in time-space using triangular elements: a) general
idea, b) scheme used for contact problems.



Chapter 7
Space–Time Finite Elements and a Moving Load

Non-classical problems are usually poorly treated by classical and commonly known
solution methods. Time dependent problems, especially vibrations, described by
partial differential equations are classically treated with the finite element method
in space and the family of Newmark methods in time. Such time integration meth-
ods were described in Chapter 5. We discussed in the introduction to Chapter 6 the
disadvantages of such an approach and the necessity for a more general treatment
of phenomena in space and time. The space–time finite element method extends the
finite element approximation of the differential equation over the time domain. The
main advantage in our moving mass problems concerns its facility in treating the
partial derivatives obtained from the chain rule applied to the acceleration of the
inertial particle in a moving coordinate system, equations (3.119) or (3.121).

First we will consider a string subjected to a moving mass accompanying a mov-
ing point force. We will derive the matrices that concern only the mass particle. The
rest of the structure, i.e., the string and its space–time elements, were described
in Section 6.3.2. Then a Bernoulli–Euler beam will be considered. In this case,
the resulting matrices are relatively complex, although their derivation is simple.
The Timoshenko beam exhibits, in turn, simple matrices of the elements carrying
the inertial particle. The plate space–time element will show the approach to two-
dimensional structures. In the next chapter, the string, a Bernoulli–Euler beam, and
a Timoshenko beam will also be considered with the use of the Newmark time inte-
gration method. In this case we will propose mass matrices which would be applied
to a general structure. This is an advantageous solution since most computer codes
involve only the Newmark method.

In this chapter, the velocity formulation will be used since it, with its two-level
scheme, is a more efficient approach. The displacement formulation is a three-level
scheme and is not sufficiently advantageous for our purpose.

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 181–221.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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7.1 Space–Time Finite Element of a String

We will here treat the matrices derived from various terms of the differential equa-
tion called the inertia matrix, the damping matrix, and the stiffness matrix. When
multiplied by the nodal velocities, they give the vertical transverse forces, the Cori-
olis forces, and the centrifugal forces, respectively. We will also give the algorithm
for the solution of the vibrating string subjected to a moving mass.

7.1.1 Discretization of the String Element Carrying a Moving
Mass

The last term δ (x− vt)md 2w(vt, t)/d t 2 in the equation of motion, (3.1), describes
an inertial moving mass. d 2w(vt, t)/d t 2 is the vertical acceleration of the moving
mass and at the same time the acceleration of the point of the string at which
the mass is temporarily placed (it is x = x0 + vt). The acceleration of the mass
d 2w(vt, t)/d t 2 moving with a constant velocity v, according to the Renaudot for-
mula (which in fact is the chain rule for differentiation), results in three terms:

d2w(vt, t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x=vt

+ 2v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x=vt

+ v2 ∂ 2w(x, t)
∂x2

∣∣∣∣
x=vt

. (7.1)

Thus we can separate the transverse acceleration, the Coriolis acceleration, and the
centrifugal acceleration. This is the so-called Renaudot notation for the constant
speed v.

In our space–time finite element method we formulate equations in terms of ve-
locities. The mass acceleration d2w(vt, t)/d t 2 is expressed in terms of velocities as
well

d2w(vt, t)
dt2 =

dv(vt, t)
dt

=
∂v(x, t)
∂ t

∣∣∣∣
x=vt

+ v
∂v(x, t)
∂x

∣∣∣∣
x=vt

+ v2 ∂ 2w0

∂x2 . (7.2)

The first term on the right-hand side states the real inertia (when multiplied by m),
the second term (multiplied by m) expresses forces similar to damping forces and
the third term (also multiplied by m) expresses forces similar to stiffness forces.

In the final stage three resulting matrices are responsible for transverse inertia (the
matrix has the form of the inertia matrix), damping forces (the matrix multiplied by
the velocity vector has a form similar to the Coriolis forces) and stiffness (potential)
forces (the matrix, if multiplied by the velocity vector, has a form similar to the
centrifugal forces). The third matrix appears as the result of initial displacements in
the time interval.

Let us now follow this idea and treat numerically the right-hand side inertial term
of (7.2). The same mathematical steps as in the case of pure string enables us to
integrate the inertial term

∫ h

0

∫ b

0
v∗δ (x− vt)m

d 2w(x0 + vt, t)
d t 2 dxdt . (7.3)
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We use the same linear interpolation of the velocity (6.64). The virtual velocity v∗:

v∗(x, t) = N∗ q̇p = δ (t−αh)
[
1− x

b
,

x
b

]
q̇p . (7.4)

Consequent integration results in two matrices: the moving mass inertia matrix Mm

Mm =
m
h

[ −(1−κ)2 −κ (1−κ)
−κ (1−κ) −κ2

∣∣∣∣∣
(1−κ)2 κ (1−κ)
κ (1−κ) κ2

]
, (7.5)

where κ = (x0 + vαh)/b, x0 is a starting position of the mass in the space–time
element (at t = t0) (see Figure 7.1), and the moving mass damping matrix Cm

x

b

t

x

h h
α

x

o

o α+v   h

Fig. 7.1 Mass path in the space–time finite element.

Cm =
mv

b

[−(1−κ)(1−β ) (1−κ)(1−β )
−κ (1−β ) κ (1−β )

∣∣∣∣∣
−(1−κ)β (1−κ)β
−κβ κβ

]
. (7.6)

Let us now consider the contribution of w(x,0) in (7.2). We integrate by parts the
virtual work

v2
∫ h

0

∫ b

0
v∗
∂ 2w(x,0)
∂x2 dxdt =−v2

∫ h

0

∫ b

0

∂v∗

∂x
∂w(x,0)
∂x

dxdt . (7.7)

Since displacements of the left and right node of the element are expressed by
wL = w0

L + h[βv1 +(1− β )v3] and wR = w0
R + h[βv2 +(1− β )v4], we can derive

the required ∂w0/∂x

∂w0

∂x
=

wR−wL

b
=

w0
R−w0

L

b
+

h
b
[−βv1 +βv2− (1−β )v3+(1−β )v4] . (7.8)

The numbering of the nodes is presented in Figure 7.1. The matrix Km is the stiffness
mass matrix

Km =
hmv2

b2

[
β −β
−β β

∣∣∣∣∣
1−β −(1−β )
−(1−β ) 1−β

]
, (7.9)
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The term (w0
R−w0

L)/b in (7.8) multiplied by mv2/b results in initial nodal forces em

in the space–time layer.

7.1.1.1 Technical Remarks

Even in the simplest case of uni-dimensional structures, we must be careful as to
in what time the respective terms should be poosed. This issue arises for the inter-
element zones. Let us look at Figure 7.2. In step 1 we proceed from nodes 1 and
2 to nodes 3 and 4. After solving the system of equations for the displacements at
the final time in the time layer, we must compute the nodal forces introduced by the
mass, aside from the nodal forces resulting from the classical space–time analysis of
the string. In practice, we must add the term −mv2/b · ε0 to the respective element,
corresponding with the degree of freedom of nodes 1 and 3 in the vector em, located
on the left-hand side of the equilibrium equation (6.84)–(6.88). The same term with
a positive sign mv2/b · ε0 must be added to the element corresponding with the
degree of freedom of nodes 2 and 4 in the vector em. In step 2 we compute the nodal
forces based on nodes 6 and 7 and we put them in the places that correspond with
the degrees of freedom of nodes 4 and 5 or of nodes 6 and 7. This procedure is
presented in Algorithm 11.

7.1.2 Numerical Results

The numerical results obtained with the proposed space–time approach can be com-
pared with the semi-analytical solution. Moreover, the spring–mass finite element
solution can also be plotted. In our tests, the string was discretized by a set of 200
finite elements. The time step h was equal to b/40v. This means that the mass passes

x0

tp

ta

t

x

h b

3

1

6 7

4
5

2

step 2

step 1

Fig. 7.2 Inter-element zones.
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Algorithm 11. The solution for the vibrating string with concentrated moving mass.
1. Set the problem data: length L, number of spatial elements ne, number of nodes

np = ne + 1, element length b = L/ne, mass density ρ , tension N, concentrated
moving mass m, speed v, point force P, time step h.

2. Compute global space–time matrices of the string: left-hand side square matrix
A and right-hand side matrix B, both of dimension np× np.

3. Initialize the nodal force vector e = 0.
4. Initialize time of the process: t = 0.
5. Increment time t := t + h (which is the final time in time layer).

• Determine the element iel on which the load travels:
iel = INT(vt/b− eps)+ 1, eps = 0.0001,
ε is a small number, significantly smaller than vh/b (for example vh/b/100).

• Determine the load position on the element at the beginning of the time step
x0:
x0 = (t− h)v− (iel− 1)b.

• Compute κ = (x0 + vαh)/b.
• Compute matrices Mm, Cm, and Km of the mass placed on the element. These

are np× 2np matrices:
Mm = [MA

m|MB
m], Cm = [CA

m|CB
m], Km = [KA

m|KB
m].

• Add the mass matrices to the global string matrices: A :=A+MA
m+CA

m+KA
m,

B := B+MB
m +CB

m +KB
m .

• Set the external load vector Q, which has two non-zero components, at the
places iel and iel + 1:
Qiel = P · (−vt/b+ iel), Qiel+1 = P · (vt/b− iel + 1).

• Compute the right-hand side vector of the system of algebraic equations: f =
Q− e.

• Solve the system of equations for velocities vi+1:
Avi +Bvi+1 = Q− e.

• Compute the displacements:
wi+1 = wi +((1−β )vi+βvi+1)h, β = 1−α .

• Compute two elements of the vector e:
eiel =−mv2/b · ε0, eiel+1 = mv2/b · ε0, ε0 = (wiel+1−wiel )/b.

6. Repeat the time loop until the end of the simulation time.

from joint to joint in 40 time steps. We assume m = 1.0, ρA = 1.0, l = 1.0, N = 1,
and P =−1. The results obtained by the space–time finite element method are pre-
sented in Figure 7.3. We notice that at lower speeds, up to 0.3–0.4c, the coinci-
dence with the semi-analytical results is almost perfect. We observe the conver-
gence of the results to the semi-analytical solution with decreasing time steps and
increasing numbers of spatial elements. Unfortunately, the convergence is slow. At
higher speeds, the total time of the simulation is shorter and only a lesser num-
ber of time steps is required to reach the end support during the mass motion. All
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Fig. 7.3 Displacements under a moving mass using the space–time finite element solution for
α = 0.5 (upper) and α = 1.0 (lower), compared with the semi-analytical solution at different
speeds v (c = 1).

the important features of the resulting curves, especially the high gradients of dis-
placement near the end support, are then represented with lower accuracy. The error
analysis of this method allows us to say that in the general case the error is equal
to h2(1/2−α) +Oh3. In the particular case α = 0.5, the error is 1/12h3 +Oh4.
However, in this case the time integration scheme of the space–time finite element
method is conditionally stable. The gap between the numerical and semi-analytical
results is visible in both diagrams. The plot for α = 1/2 is visually better in the
higher speed range.
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Fig. 7.4 Displacements under a moving mass for v equal to 0.9c, 1.0c, 1.1c, and 1.2c.
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Fig. 7.5 Finite element solution—displacements of a string under an oscillator for speeds
v = 0.1c–1.0c.

Higher velocities can also be considered. Figure 7.4 presents the displacements
in time of the particle for 0.9≤ v/c≤ 1.2. We notice a good coincidence of the plot
with the expected zero line. Further examples prove the efficiency and accuracy
of this approach. One can plot the displacements of selected fixed points of the
string. In such a case, there results a very good coincidence with the semi-analytical
approach.
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We can compare our results with the displacements of the contact point of a string
under a travelling oscillator (Figure 7.5). Note the significant difference, especially
for the higher speed range, between the semi-analytical results or the space–time
finite element approach and the curves obtained for the oscillator. A pure mass can
not be replaced in computations by an oscillator for problems with a large moving
mass influence, i.e., for velocities higher than 0.3–0.5 times the wave speed and for
a ration of the moving mass to the string mass higher than 0.2.

7.1.3 Conclusions

In this section, we dealt with the numerical analysis of string vibrations under a
moving inertial load. We derived a matrix formula for the time integration proce-
dure using the space–time finite element method. The solutions presented in the
literature are derived from classical time integration schemes. The published results
are acceptable for low speeds of the travelling mass. In such a case, the errors in the
formulations do not contribute visible differences to the results. In common practice,
a massless force acting on a string in the form of an oscillator is applied. Such re-
sults are gross underestimates, and for a velocity higher than 0.2c–0.3c they cannot
be relied on.

The approach presented in this book can be applied to the whole range of speeds,
up to the wave speed itself: v= c. The precision of the results is high. In the case of a
speed higher than the wave speed, the particle’s trajectory is close to the theoretical
zero line. The discontinuities at x = l which have been exhibited and proved analyt-
ically for a massless string are easily visible in the figures presenting the numerical
trajectories.

The method presented in this section can be successfully applied to other struc-
tures subjected to an inertial load: beams, frames, and plates. Moreover, the space–
time finite element approach can be adapted to classical time integration schemes
(Newmark, etc.).

7.2 Space–Time Elements for a Bernoulli–Euler Beam
Carrying a Moving Mass

A discrete beam element, in both the classical finite element method and space–time
finite element method, is more complicated than A string element. The derivation of
the matrices by using Dirac delta virtual time functions are conceptually difficult.
The product of a Dirac-type virtual function and a Dirac distribution of the mass
in space, with the argument varying in time, causes mathematical problems. In this
section we use hat-shaped virtual functions in our analysis. They are simple to anal-
yse and have a lower error rate. The value of this function is constant in time and its
respective derivatives and double integrals can be computed relatively simply.

The mathematical steps will be performed here in another way than for the string
element carrying a mass. The beam element results in larger matrices with signifi-
cantly more complicated expressions. In the following, we will consider mathemat-
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ically the first element of the inertia matrix only. All remaining elements of Mm can
be computed matricially. Other matrices, i.e., Cm, Km, and em in (6.77), are obtained
in the same way. The matrices of the element carrying the mass differ in each time
step since the position of the mass particle varies in time. Thus the global matrices
must be established for each time step.

We remember that a hat-shaped virtual time function v∗ is constant in time and
in the case of the Bernoulli–Euler beam it has the following form:

v∗(x) =
[

1− 3
x2

b2 + 2
x3

b3 , x− 2
x2

b
+

x3

b2 , 3
x2

b2 − 2
x3

b3 , −
x2

b
+

x3

b2

]
v . (7.10)

We recognize here the well-known shape functions that describe displacements (or
velocities) in terms of the nodal displacements and the nodal rotations. The same
interpolation formulas are used as for real spatial shape functions. In the case of the
Euler beam, the nodal displacements are closely related to the rotation angles, hence
the velocity approximation in the finite element is given by the following formula:

v(x, t) = N1v1 +N2θ̇1 +N3v2 +N4θ̇2 +N5v3 +N6θ̇3 +N7v4 +N8θ̇4 . (7.11)

As in (7.11), we use a linear interpolation in time and third order polynomials rela-
tive to space:

N1 =
(

1− 3 x2

b2 + 2 x3

b3

)(
1− t

h

)
, N5 =

(
1− 3 x2

b2 + 2 x3

b3

)
t
h ,

N2 =
(

x− 2 x2

b + x3

b2

)(
1− t

h

)
, N6 =

(
x− 2 x2

b + x3

b2

)
t
h ,

N3 =
(

3 x2

b2 − 2 x3

b3

)(
1− t

h

)
, N7 =

(
3 x2

b2 − 2 x3

b3

)
t
h ,

N4 =
(
− x2

b + x3

b2

)(
1− t

h

)
, N8 =

(
− x2

b + x3

b2

)
t
h .

(7.12)

The assumed shape functions allow us to derive all terms of the Renaudot formula
(7.1). Then the elements of the matrix Mm can be computed. We present here only
the analysis of the first element (·)11 of the inertia matrix

(Mm)11 = −m
h

∫ h

0

∫ b

0
δ (x− x0− vt)

(
1− 3

x2

b2 + 2
x3

b3

)2(
1− t

h

)
dxdt =

= −m
h

∫ h

0

∫ b

0

[
1− 3

(x0 + vt)2

b2 + 2
(x0 + vt)3

b3

]2(
1− t

h

)
dxdt .

(7.13)
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Taking into account the integration limits, we have the following:

(Mm)11 =−
m

560b6

[
560b6

(
4κ6− 12κ5+ 9κ4+ 4κ3− 6κ2+ 1

)
+

+ 280b4v2h2 (10κ4 − 20 κ3 + 9κ2 + 2κ− 1
)
+

+21b2v4h4 (20κ2− 20κ+ 3
)
+ 5v6hh

]
,

(7.14)

where

κ =
x0 + vh/2

b
. (7.15)

The complete matrices carrying mass particles Mm, Cm, Km, and em are large. They
are listed in Tables 7.1–7.7. We must remember that the first three matrices join ve-
locity vectors at two successive times and are composed of two square submatrices,
left and right. They have dimensions n×2n, where n is the total number of degrees
of freedom of the structure. The matrix em has dimension n×n. All matrices are
established for m = 1, so they must be multiplied by the actual value of m. We have
also introduced ξ = vh/b and κ given by (7.15).

7.2.1 Numerical Results

The numerical results for the displacements in time of the Bernoulli–Euler simply-
supported beam are presented in Figure 7.6. The following parameter values were
employed: E = 1.0, A= 1.0, I = 0.01, l = 1.0, ρ = 1.0, m = 1.0, and P=−1.0. The
following boundary conditions were assumed in this example: w(0, t) = w(l, t) = 0.
Additionally, natural boundary conditions were supplied by element interpolation
functions: w′′(0, t) =w′′(l, t) = 0. The vertical displacements are related to the static
deflection (w0 = Pl3/48/E/I) of the middle of the span under the force placed at
x = l/2. We note the perfect coincidence of the numerical analysis with the hat-
shape virtual functions and semi-analytical curves. The Dirac-shape virtual func-
tions result in a small error. A significant decrease in the time step reduces the dif-
ference, however, and all three curves coincide.

In the next example, a cantilever beam was subjected to a travelling inertial
load. The data were taken from the previous example. The boundary conditions
are w(0, t) = w′(0, t) = 0. Additionally, natural boundary conditions were supplied
by element interpolation functions: w′′(l, t) = w′′′(l, t) = 0. Figure 7.7a shows the
deflection of the point following the mass and Figure 7.7b is the deflection of the
free end of the beam. The displacements are related to the static deflection of the
free end of the beam under a force placed at x = l.
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Fig. 7.6 Displacements of a Bernoulli–Euler simply-supported beam under a moving mass
at speeds v = 0.1c,0.2c, . . . ,0.5c (space–time and semi-analytical results); vcr = 0.314.
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Fig. 7.7 Displacements under a mass moving on the Bernoulli–Euler cantilever beam (a)
and displacements of the free end (b) at speeds v = 0.1c,0.2c, . . . ,0.5c, with hat-shape and
Dirac-shape virtual functions.

7.3 Space–Time Element of Timoshenko Beam Carrying a
Moving Mass

Applying this numerical scheme to a moving inertial point requires modifying the
global matrices describing our step-by-step scheme. We must change not only the
inertia matrix, but also the matrices that express the damping and stiffness.

The vertical point acceleration of the moving inertial particle is computed from
the displacement of the contact point determined on the supporting structure w(vt, t).
We must apply the chain rule (for the time derivative) twice. The result is called the
Renaudot formulation:
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d2w(vt, t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x=vt

+ 2v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x=vt

+ v2 ∂ 2w(x, t)
∂x2

∣∣∣∣
x=vt

. (7.16)

The coordinate increment of the time, dt, is, in consequence, the increment of the
spatial coordinates x as well as of the time coordinates t. As a result, we have three
terms: the vertical acceleration, the Coriolis acceleration, and the centrifugal accel-
eration.

The equation for the virtual power in the space–time region Ω={(x, t): 0 ≤ x≤
b, 0≤ t ≤ h} (Figure 7.8) describing a moving material point can be written in the
form

t
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m
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tra

je
ct

or
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Fig. 7.8 Space–time element.

Πm =

∫ h

0

∫ b

0
v∗(x, t)δ (x− x0− vt)m

d2w(vt, t)
dt2 dxdt . (7.17)

We assume a linear distribution of the nodal velocity in x and t

v(x, t) =
4

∑
i=1

Ni(x, t)vi . (7.18)

In the domain Ω , the shape function N = [N1, . . . ,N4] has the form

N =

[
1

bh
(x− b)(t− h) , − 1

bh
x(t− h) , − 1

bh
(x− b)t ,

1
bh

xt

]
. (7.19)

In this case, it is not possible, in interpolating the nodal velocity, to determine all
the required term in (7.16). Due to the distribution in (7.17), it is not possible to
reduce the order of the derivative by integrating by parts. The Renaudot formula can
be written in the equivalent form

d2w(vt, t)
dt2 =

∂v(x, t)
∂ t

∣∣∣∣
x=vt

+ v
∂v(x, t)
∂x

∣∣∣∣
x=vt

+ v
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]
. (7.20)
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Fig. 7.9 The transition mass between elements.

Using (7.18) and (7.19), we obtain

∂v(x, t)
∂ t

=−1
h

(
1− x

b

)
v1− 1

h
x
b

v2 +
1
h

(
1− x

b

)
v3 +

1
h

x
b

v4 , (7.21)

∂v(x, t)
∂x

=−1
b

(
1− t

h

)
v1 +

1
b

(
1− t

h

)
v2− 1

b
t
h

v3 +
1
b

t
h

v4 . (7.22)

In the case of the third part of the equation (7.20), we use the backward difference
formula. In this case we have

d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]
=

1
h

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t+h

− 1
h

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t

. (7.23)

The upper indices indicate the time at which the respective terms are defined. At the
time of transition of the moving load between the elements k and k+ 1, Figure 7.9,
the current displacements are calculated in the element k+ 1:

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t+h

=
1
b

(
wk+1

4 −wk+1
3

)
. (7.24)

However, the initial displacement in the element k is

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t

=
1
b

(
wk

2−wk
1

)
. (7.25)

Using (6.54), (7.24), and (7.25), the finite difference scheme (7.23) can be written
as follows

d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]
=

1
bh

(
wk+1

2 −wk
2−wk+1

1 +wk
1

)
+

+
1
b

[
−βvk+1

1 +βvk+1
2 − (1−β )vk+1

3 +(1−β )vk+1
4

]
.

(7.26)
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Fig. 7.10 Dirac delta virtual function.

The exact solution is obtained by β = 1−α [9]. Therefore, we can write

d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]
=

1
bh

(
wk+1

2 −wk
2−wk+1

1 +wk
1

)
+

+
1
b

[
−(1−α)vk+1

1 +(1−α)vk+1
2 −αvk+1

3 +αvk+1
4

]
.

(7.27)

In order to calculate the virtual power describing a moving inertial point (7.17), we
use the virtual impulse function, Figure 7.10,

v∗(x, t) = δ (t−αh)
[(

1− x
b

)
v3 +

x
b

v4

]
. (7.28)

We can control the properties of the procedure with the parameter α . As a result
of minimizing the virtual value of power Πm, we obtain the matrices describing the
inertial moving load:

Mm =
m
h

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ)2 0 −κ(1−κ) 0 (1−κ)2 0 κ(1−κ) 0

0 0 0 0 0 0 0 0

−κ(1−κ) 0 −κ2 0 κ(1−κ) 0 κ2 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (7.29)
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Cm =
2mv

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ)(1−α) 0 (1−κ)(1−α) 0

0 0 0 0

−κ(1−α) 0 κ(1−α) 0

0 0 0 0

−(1−κ)α 0 (1−κ)α 0

0 0 0 0

−κα 0 κα 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

(7.30)

and

em =
mv

bh

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)(wk+1
2 −wk

2−wk+1
1 +wk

1

)
0

κ
(
wk+1

2 −wk
2−wk+1

1 +wk
1

)
0

⎤
⎥⎥⎥⎥⎥⎦

, (7.31)

with the coefficient

κ =
x0 + vαh

b
, 0 < κ ≤ 1. (7.32)

On the basis of the actual position of the moving load matrix (7.29) and (7.30) fall
into the appropriate cells of the global inertia and damping matrices describing the
structure under consideration. An important component is the vector of nodal forces
(7.31), which is calculated based on the displacements from the current and the
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Fig. 7.11 Space–time finite element solution—displacements of the Timoshenko beam under
a moving load.
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previous step and increases the vector on the right-hand side describing the gravita-
tional moving load.

The numerical results are depicted in Figure 7.11. The data were taken from [86],
the speed being v = 85.55 m/s. Algorithm 12 presents the computational steps.

Algorithm 12. Space–time element method applied to a Timoshenko beam.
1. Define geometric and material data, velocity v, length of the element b, time step

h, etc.
2. Compute element matrices of repeated structural elements and formulate global

coefficient matrix.
3. Initialize loop parameters: number of elements carrying the mass ielrem = 1.
4. Perform computations of a single time step:

• Number of the current step it = 0, current time of the beginning of the time
interval t = 0.

• Number of the element carrying the load iel = INT(t · v/b− eps)+ 1, eps =
0.0001.

• Position of the mass on the element x0 = t · v− (iel− 1) · b, parameter κ =
(x0 + vαh)/b.

• Compute mass space–time element and load vector.
• Compute the nodal force vector of the mass element:

em = mv
bh (w

ielmem
r −wielmem

l −wielmem
r +wielmem

l ) (lower index is left of right
node of the element, upper index is number of element; notice that iel =
ielmem always except in the passage from element to element.

• Formulate the system of algebraic equations.
• Solve the system of equations for velocities v.
• Compute displacements at time t + h.
• Compute nodal forces provided by the mass:

(B+Bm)vi+1 = F− e− em− (A+Am)vi .
• Remember the number of element ielrem = iel.
• Shift displacements and velocities: wi← wi+1, vi← vi+1.

5. Increment time step.

7.3.1 Conclusions

The presented matrices (7.29)–(7.31) describe the moving mass in the space–time
formulation in generality. They can be applied to all type of structures. The numer-
ical results perfectly coincide with the semi-analytical solution within a wide range
of velocities of the mass. We applied non-dimensional speeds v up to 0.5, which
corresponds with 0.3 times the critical speed. The critical speed means the speed of
the force travelling in a cyclic way through a beam, when the vertical deflection in-
creases to infinity. In the case of a moving mass, the critical speed has a considerably
lower value, and in our example we come close to it.



204 7 Space–Time Finite Elements and a Moving Load

The classical finite element approach does not allow us to obtain satisfactory
results. They fail in the case of a string and exhibit very large errors in the case of
beams. The typically applied methods of time integration, for example the Newmark
method, fail since the moving inertial term cannot be considered in a continuous
way in the time interval. Complex analysis could be performed with the space–
time approach. Various virtual functions in time can be applied. They result in a
solution scheme having a different accuracy. This is clearly demonstrated by the
mass trajectory plots. At the final stage of the motion, the trajectories exhibit jumps
(see [48]). In Figure 3.8 we showed the convergence of the semi-analytical solution
with an increasing number of terms in the series. The jump of the trajectory should
also be sufficiently accurate in numerical representations. The jumps in every case of
numerical analyses are poorly portrayed by the numerical solutions. In our problem,
in the higher speed range, the jumps are visible in the solutions with a sufficiently
small error. A shorter time step increases the accuracy.

Figure 7.3 demonstrates that the hat-shaped virtual function results in better con-
vergence. The choice of the virtual time step having the shape of a hat, instead of the
Dirac delta type of this function, significantly improves the quality of the solution.
Both cases, i.e., the Dirac delta virtual function with α = 1/2 and the hat-shaped
virtual function, exhibit theoretically the same estimated error of the method. How-
ever, the two sets of results differ. We can say that the error is contributed by and
accumulated with different speeds because of other stages of the solution scheme:
the velocity computation or displacement restitution.

The solutions given above are efficient in discrete vibration analysis with a trav-
elling mass. Although this problem deals with a mass moving with a constant speed,
the same mathematical procedure can be used to derive the characteristic matrices
in the case of a mass moving with a varying speed. In this case, only the additional
terms describing the influence of the acceleration along the structure need be taken
into account. In this section, the horizontal acceleration of the mass is equal to zero.

The perfect coincidence with the semi-analytical solutions proves the efficiency
of the space–time approach. The solution method can be easily implemented in code
designed for the classical finite element method.

7.4 Space–Time Finite Plate Element Carrying a Moving Mass

In engineering practice, plate structures are as common as beams. In general, bend-
ing elements resist most types of load. In most cases, plates carry a static or dynamic
load placed at fixed points, for example supporting vibrating machines, placed on an
elastic foundation, or ceilings covering gaps. In some cases, the plates are subjected
to moving loads: road plates, airfield plates, plates under subway tracks, etc.

7.4.1 Thin Plate

First we will consider a thin plate. The appropriate finite element formulation can
be found, for example, in [153]. Let us consider a 2a× 2b rectangular plate (Figure
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7.12). In a rectangular area, we assume the displacement is distributed according to
the polynomial

w(x,y) = [1,x,y,x2,xy,y2,x3,x2y,xy2,y3,x3y,xy3]c . (7.33)

The coefficients c1, . . . ,c12 collected in the vector c are determined in terms of the
nodal generalized displacements, i.e., the vertical displacements wi and rotations θxi

and θyi, i = 1,2,3,4, and describes the number of a node.
The final static stiffness matrix ke is the sum of four matrices:

ke =
1

60ab
L(Dxk1 +Dyk2 +D1k3 +Dxyk4)L , (7.34)

where

k1 =
b2

a2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

60 30 0 30 15 0 -60 30 0 -30 15 0
30 20 0 15 10 0 -30 10 0 -15 5 0

0 0 0 0 0 0 0 0 0 0 0 0
30 15 0 60 30 0 -30 15 0 -60 30 0
15 10 0 30 20 0 -15 5 0 -30 10 0

0 0 0 0 0 0 0 0 0 0 0 0
-60 -30 0 -30 -15 0 60 -30 0 30 -15 0
30 10 0 15 5 0 -30 20 0 -15 10 0

0 0 0 0 0 0 0 0 0 0 0 0
-30 -15 0 -60 -30 0 30 -15 0 60 -30 0
15 5 0 30 10 0 -15 10 0 -30 20 0

0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.35)

k2 =
a2

b2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

60 0 -30 -60 0 -30 30 0 -15 -30 0 -15
0 0 0 0 0 0 0 0 0 0 0 0

-30 0 20 30 0 10 -15 0 10 15 0 5
-60 0 30 60 0 30 -30 0 15 30 0 15

0 0 0 0 0 0 0 0 0 0 0 0
-30 0 10 30 0 20 -15 0 5 15 0 10
30 0 -15 -30 0 -15 60 0 -30 -60 0 -3

0 0 0 0 0 0 0 0 0 0 0 0
-15 0 10 15 0 5 -30 0 20 30 0 10
-30 0 15 30 0 15 -60 0 30 60 0 30

0 0 0 0 0 0 0 0 0 0 0 0
-15 0 5 15 0 10 -30 0 10 30 0 20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.36)
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k3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

30 15 -15 -30 -15 0 -30 0 15 30 0 0
15 0 -15 -15 0 0 0 0 0 0 0 0

-15 -15 0 0 0 0 15 0 0 0 0 0
-30 -15 0 30 15 15 30 0 0 -30 0 -15
-15 0 0 15 0 15 0 0 0 0 0 0

0 0 0 15 15 0 0 0 0 -15 0 0
-30 0 15 30 0 0 30 -15 -15 -30 15 0

0 0 0 0 0 0 -15 0 15 15 0 0
15 0 0 0 0 0 -15 15 0 0 0 0
30 0 0 -30 0 -15 -30 15 0 30 -15 15

0 0 0 0 0 0 15 0 0 -15 0 -15
0 0 0 -15 0 0 0 0 0 15 -15 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.37)

k4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

84 6 -6 -84 -6 -6 -84 6 6 84 -6 6
6 8 0 -6 -8 0 -6 -2 0 6 2 0

-6 0 8 6 0 -2 6 0 -8 -6 0 2
-84 -6 6 84 6 6 84 -6 -6 -84 6 -6
-6 -8 0 6 8 0 6 2 0 -6 -2 0
-6 0 -2 6 0 8 6 0 2 -6 0 -8

-84 -6 6 84 6 6 84 -6 -6 -84 6 -6
6 -2 0 -6 2 0 -6 8 0 6 -8 0
6 0 -8 -6 0 2 -6 0 8 6 0 -2

84 6 -6 -84 -6 -6 -84 6 6 84 -6 6
-6 2 0 6 -2 0 6 -8 0 -6 8 0
6 0 2 -6 0 -8 -6 0 -2 6 0 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.38)

L = diag[1,2a,2b,1,2a,2b,1,2a,2b,1,2a,2b] . (7.39)

The node numbering is taken as in Figure 7.12. The coefficients in the elasticity
matrix D are shown below

D =

⎡
⎣Dx D1 0

D1 Dy 0
0 0 Dxy

⎤
⎦ . (7.40)

1

2

3

4

x

y

2a

2b

Fig. 7.12 Node numbering in a plate element.
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load trajectory x

y

Fig. 7.13 Trajectory of the load along element edges.

In isotropic material, we have Dx = Dy = D, D1 = νD, and Dxy = (1− ν)/2 ·D,
where D is the plate stiffness: D = Et3/12/(1−ν2).

Let us assume a concentrated load composed of a point with mass m and a force
equivalent to the force of gravity, mg. For simplicity, the trajectory of the load coin-
cides with the edge line of the finite elements (Figure 7.13). We use thin plate ele-
ments in the simulation of plate vibrations under a mass which moves along the sym-
metry axis of the plate. The data are: thickness t = 40 cm, dimensions lx = ly = 12
m, Young modulus E = 30 MPa, Poissone coefficient ν = 0.2, mass density ρ = 2.4
g/cm3. The moving load is composed of the mass m = 104 kg and the related force
P = 9.81 ·104 N.

The next figures (7.14, 7.15, and 7.16) are obtained for the thicknesses t = 1, 40,
and 100 cm. Comparisons of the displacements of the contact point and the cen-
tre of the plate are depicted in Figures 7.17 and 7.18. The excellent coincidence is
exhibited. The numerical analysis of the thicker plate subjected to an inertial load
moving with the lower speed also coincides with the analytical results, see Figures
7.19 and 7.20.
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Fig. 7.14 Vertical displacements at the contact point and at the middle of the plate
(thickness=10 cm, v = 360 km/h).
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Fig. 7.15 Vertical displacements at the contact point and at the middle of the plate
(thickness=40 cm, v = 360 km/h).
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Fig. 7.16 Vertical displacements at the contact point and at the middle of the plate
(thickness=100 cm, v = 360 km/h).

Now let us look at the acceleration of the mass. The plots can be obtained by
differentiating the velocity or by double differentiating of the displacements. In both
cases, high value peaks appear at the interfaces of the elements. They are induced by
nodal forces that act only when the load passes the edge of an element. The values
of the nodal forces are high if the number of elements in the mesh is low. If the mesh
is sufficiently fine and the number of elements tends to infinity, the peak magnitudes
tend to smooth to low values. Figures 7.21 and 7.22 show the accelerations at the
contact point and at the mid-point. A large jump in the acceleration at the contact
point is noticeable near the final edge of the plate.

We can compare these results with the acceleration in the massless force case,
see Figures 7.23 and 7.24. In this case, the accelerations at the exit of the plate are
lower than when under an inertial load.
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Fig. 7.17 Vertical displacements at the contact point (thickness=40 cm, v = 360 km/h).
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Fig. 7.18 Vertical displacements at the centre of the plate (thickness=40 cm, v= 360 km/h).
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Fig. 7.19 Vertical displacements at the contact point of the plate (thickness=100 cm, v =
160 km/h).
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Fig. 7.21 Vertical accelerations at the contact point of the plate (thickness=10 cm, v =
360 km/h) is the inertial load.
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Fig. 7.22 Vertical accelerations at the mid-point of the plate (thickness=10 cm, v =
360 km/h) is the inertial load.
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Fig. 7.23 Vertical accelerations at the contact point of the plate (thickness=10 cm, v = 360
km/h) is the massless force.
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7.4.2 Thick Plate

We consider here the Mindlin model of a plate. We use the formulation given for
example in [39, 113]. We assume a linear distribution of both displacements and
rotations along the element, according to the interpolation functions

N(ξ ,η) =
1
4
(1+ ξ ξi)(1+ηηi) . (7.41)

Here, ξ and η are local dimensionless coordinates in the square reference element
given by −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1. The nodal coordinates ξi, ηi, i = 1, . . . ,4
therefore assume the values ±1.

The strain–stress relations are given in Chapter 6.7.3, equations (6.138–6.141).
Here we split the strain vector into the part governing bending [κx,κy,κxy] and that
governing sharing [βx,βy].

The bending strain matrix B f = [B f
1 |B f

2 |B f
3 |B f

4 ] has the following components:

B f
i =

⎡
⎣0 0 −∂Ni/∂x

0 ∂Ni/∂y 0
0 ∂Ni/∂x −∂Ni/∂y

⎤
⎦ , i = 1, . . . ,4 . (7.42)

The shear strain matrix Bs = [Bs
1 | . . . |Bs

4] equals

Bs
i =

[
∂Ni/∂x 0 Ni

∂Ni/∂y −Ni 0

]
, i = 1, . . . ,4 . (7.43)

The derivation of (7.41), assuming that x = ξa and y = ηb, via the chain rule (dif-
ferentiating with respect to x and y) and then integrating over the element domain
−a≤ x≤ a,−b≤ y≤ b, results in the final stiffness matrices. We integrate the bend-
ing part B f analytically or numerically using 2× 2 Gauss points, while the shear
component Bs uses only one Gauss point. Thus we avoid the locking phenomenon.
The final matrix is obtained as the sum k = k f +ks, where

k f =

∫ a

−a

∫ b

−b

t3

12
B f T

D f B f dxdy , (7.44)

ks =

∫ a

−a

∫ b

−b
κtBsT DsBsdxdy . (7.45)

The matrices Ds and D f can be taken from (6.140) as submatrices

Ds = Gt · I2 . (7.46)

Here, G is the shear modulus, κ = 5/6 is the shape factor, and t is the thickness of
the plate. The matrix D f has the form
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D f =

⎡
⎢⎣

D νD 0

νD D 0

0 0 1−ν
2 D

⎤
⎥⎦ , D =

t3

12
· E

1−ν2 . (7.47)

Here, E is the Young modulus and ν is the Poisson coefficient. The stiffness matrices
describing the bending and shear part have the final form:

Kb =
Et3

192ab

⎡
⎢⎢⎢⎢⎣

0 0 0

0
ξiξ jb

2a(ν+1) +
ηiη ja

b(1−ν2)

2ηiξ jν+ξiη j(1−ν)
2(ν2−1)

0
ηiξ j(ν−1)−2ξiη jν

2(1−ν2)

ξiξ jb
a(1−ν2)

+
ηiη ja

2b(ν+1)

⎤
⎥⎥⎥⎥⎦ , (7.48)

Ks =
Eab

2(1+ν)

⎡
⎢⎢⎢⎣

ξiξ j

16a2 +
ηiη j

16b2 − ηi
16b

ξi
16a

− ηi
16b

1
16 0

ξi
16a 0 1

16

⎤
⎥⎥⎥⎦ . (7.49)

The static problem was analysed first to determine the rate of subdivision required
for adequate accuracy. The square plate simply supported at all four edges is sub-
jected in its centre to a point force. The deflection of the loaded point is related to the
static deflection of the thin plate. Figure 7.25 shows that even a coarse mesh gives
sufficiently accurate results. Subdivision into 10–40 elements in both directions was
used in the consequent dynamic tests.

The results are presented in Figures 7.26, 7.27, and 7.28. Three different thick-
nesses were used: 10 cm, 40 cm, and 100 cm. The plate was square, with edges
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Fig. 7.25 The accuracy of the deflection of the centre of a Mindlin plate compared to the
deflection of a thin plate.
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of 12 m. The inertial load was compared with a massless load. The displacements
depicted are of the follower point and of the centre of the plate. In the case of the
thickness 10 cm, differences between both curves are visible, especially at the higher
speed v= 360 km/h. The case of thickness equal 40 cm, both at low and high speed,
exhibits a smooth response in the case of an inertial load. Moreover, the mass trajec-
tory at v = 180 km/h oscillates with a higher amplitude than for the case of a pure
massless load. This phenomenon is confirmed at the higher speed v= 360 km/h. The
plate of thickness 100 cm is more rigid and its vibrations have higher frequency. The
computer program listed in Appendix A.3 was used for these computations.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.2  0.4  0.6  0.8  1  1.2

w
(v

t,t
)/

w
0

vt/L

v=160 km/h

mass load
massless load

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1  1.2

w
(L

/2
,L

/2
,t)

/w
0

vt/L

v=160 km/h

mass load
massless load

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.2  0.4  0.6  0.8  1  1.2

w
(v

t,t
)/

w
0

vt/L

v=360 km/h

mass load
massless load

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  0.2  0.4  0.6  0.8  1  1.2

w
(L

/2
,L

/2
,t)

/w
0

vt/L

v=360 km/h

mass load
massless load

Fig. 7.26 Vertical displacements of the contact point of the plate of thickness h = 10 cm (left
column) and of the centre of the plate (right column), at the speeds v= 160 km/h and v= 360
km/h.

7.4.3 Plate Placed on an Elastic Foundation

The Winkler type elastic foundation can be simply added to the elemental plate
matrices. In the simplest case, we add the respective coefficients kz multiplied by
the fourth part of the area of the spatial finite element to the diagonal coefficients
of the stiffness matrix. In a more complex approach, we should integrate the dis-
placement shape functions with the coefficient kz to obtain the consequent stiffness
matrix instead of a granular one. In this case, the influence of the foundation is ex-
pressed also by off-diagonal coefficients. However, in our problem such a complex
modelling does not influence the results significantly. Below we will perform the
computations with the simplest, lumped effect of the foundation.
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Fig. 7.27 Vertical displacements of the contact point of the plate of thickness h = 40 cm (left
column) and of the centre of the plate (right column), at the speeds v= 160 km/h and v= 360
km/h.
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Fig. 7.28 Vertical displacements of the contact point of the plate of thickness h = 100 cm
(left column) and of the centre of the plate (right column), at the speeds v = 160 km/h and
v = 360 km/h.
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We can also say that aside from the elasticity or visco–elastic effect of the foun-
dation, we can also consider precisely its inertia. However, the final effect is similar
to a direct increase of the mass density of the plate. That is why we will neglect the
inertia of the foundation.

Let us look at the results of simulations. We consider a square plate of dimensions
12 m × 12 m, discretized by a mesh with 40 × 20 elements. The data is taken as
in the previous chapters. The stiffness of the foundation is low (kz = 105 Pa). We
compare the deflections obtained with the thin plate model and with the thick plate
model in the case of slow (v = 160 km/h) and fast (v = 360 km/h) mass passage
velocities. Two thicknesses of the plate are considered: 10 cm in Figure 7.29 and
100 cm in Figure 7.30. In the case of a small thickness of the plate and a low velocity
of the travelling mass, both curves practically coincide. This is clearly visible in the
follower contact point. The centre of the plate exhibits a good agreement between
both plate models, although the thick plate vibrates with higher frequency more
intensively. The Mindlin plate model is more rigid and it is clearly visible for higher
velocity (Figure 7.29, lower row of plots). The thicker plates (t = 100 cm), no matter
in which model, vibrate with higher frequency, especially the thin plate.
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Fig. 7.29 Deflection of the moving contact point (left) and the middle of the plate (right) for
thickness t = 10 cm.
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Fig. 7.30 Deflection of the moving contact point (left) and the middle of the plate (right) for
thickness t = 100 cm.

7.5 Problems with Zero Mass Density

Now we will discuss a massless structure subjected to a moving inertial load. On
page 34, the mass matrix M (3.14) with ρ = 0 gives the solution for the massless
string.

Here we will assume zero mass density of the string in the space–time finite
element model. We must recall Section 6.4.3. The only case for the time integration
of the differential motion equation is possible with α = 1. We must remember that
this condition concerns the stationary geometry of the structure. The structure with
a moving mass is not such a case. Our further examples will demonstrate that the
moving mass violates the stability limitation for the massless space–time solution
scheme. We will consider two cases: first with an inertial moving point load and the
second with a moving massless point force. In both cases we consider a massless
string.

Figure 7.31 presents the mass trajectories computed with the space–time element
method. We assumed the parameter of the method α = 1. The plot resembles the
plot obtained for the inertial string subjected to a moving mass accompanied with
the force. The shape of curves depends on the force to mass ratio. In our example
this ratio is equal one. The figure perfectly corresponds with Figure 2.1 obtained
with analytical computations.
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Fig. 7.31 Displacements under a moving mass: space–time finite element solution for mass-
less string with α = 1.
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Fig. 7.32 Displacements under a moving mass—space–time finite element solution com-
pared with the analytical results.
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Fig. 7.33 Displacements at the midpoint—space–time finite element solution for a massless
string with α = 0.9.
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Fig. 7.34 Displacements at the midpoint—space–time finite element solution for a massless
string with α = 1.0.

In Figure 7.32, we compare the displacement trajectories of a massless string
under a moving mass computed with the space–time element method at different
speeds, with the analytical results. We took four values of the velocity: 0.1, 0.2,
0.5, and 1.0 times the wave speed evaluated for the inertial string in the previous
chapters. The coincidence is practically perfect. We also compare the plots obtained
with the space–time element method with the analytical curves.

Other test examples were computed with α = 0.9 (Figure 7.33) and α = 1.0
(Figure 7.34).
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Fig. 7.35 Displacements in the case of a massless system (m = 0 and ρ = 0)—space–time
finite element solution with α = 1.0

The totally massless system, with zero mass density and zero moving mass, sub-
jected to only massless forces, gives results as in the static solution, see Figure 7.35.



Chapter 8
The Newmark Method and a Moving Inertial
Load

The Newmark method (see Section 5.5) is considered here as a representative exam-
ple of a wide family of time integration methods. It is attractive since most of com-
putational procedures in structural dynamics are based on this numerical scheme.

8.1 The Newmark Method in Moving Mass Problems

We must emphasize here that the matrices derived contribute only the point mass ef-
fects. They must be simply added to the classical matrices elaborated for a structure,
i.e., for a string or a beam. The full discrete motion equation is

(M+Mm)ẅi+1 + (C+Cm)ẇi+1 + (K+Km)wi+1 = Fi+1 + ei
m , (8.1)

where M is the inertia matrix of the structure, Mm is the moving mass matrix, added
only to the inertia matrix of the element on which it travels. The same occurs in the
case of the damping matrix of the structure C and the point mass Cm, and in the case
of the stiffness matrix of the structure K and the point mass Km. The vector Fi+1

is the vector of external forces established at time ti+1 and ei
m is the right-hand side

vector resulting from the the mass inertia term, established at the beginning of the
time interval [ti, ti+1]. We will concentrate our attention on the mass influence only,
thus we will derive the matrices Mm, Cm, Km, and ei

m in the following equation

Mmẅi+1 + Cmẇi+1 + Kmwi+1 = ei
m , (8.2)

where the vector of nodal displacements in the case of beams is w= [w1,ψ1,w2,ψ2],
and that in the case of a string is w = [w1,w2].

The matrices of the finite element that carry the inertial particle are composed,
as a sum, of two sets: the matrices describing the element of the structure and the
matrices that incorporate the mass influence. Since the elemental matrices are well
known, below we will consider only the influence of the mass.

The solution of this problem concerns a mass particle moving on a general finite
element. This can be applied to all types of structures: strings, beams, plates, shells,

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 223–240.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 8.1 The mass trajectory in space and time.

etc. Below we will derive the resulting matrices which will then be applied and
tested with a string, an Euler beam, and a Timoshenko beam.

Let us consider a finite element of length b of the edge of the mass trajectory.
The mass particle m passes through the finite element with velocity v in the time
interval h, starting at the point x = x0 (Figure 8.1). The equation of virtual work
which describes the motion of the inertial particle is

Πm =
∫ b

0
w∗(x)δ (x− x0− vt)m

d2w(vt, t)
dt2 dx , (8.3)

where the position of the moving point can be described by the function x = vt. The
virtual displacement function w∗ is given by

w∗(x) =
[
1− x

b
,

x
b

]
w . (8.4)

We take first-order polynomials as the shape functions describing the interpolation
of the displacements:

w(x, t) =
(

1− x
b

)
w1(t) +

x
b

w2(t) . (8.5)

Here, w1(t) and w2(t) are the nodal displacements in time. This is a natural as-
sumption since the finite element edge is straight in cases of simple shape functions
describing linear displacement distributions in the element. In such a case, the third
term of (7.1) reduces to zero. That is why we must write the Renaudot formula (7.1)
at constant speed in a different form:

d2w(vt, t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x=vt

+ v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x=vt

+ v
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]
. (8.6)

The third term of (8.6) is developed in its Taylor series in terms of the time increment
Δ t = h
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[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t+h

=

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t

+

+

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]}t

(1− γ)h+

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]}t+h

γh.

(8.7)

The upper indices indicate the time at which the respective terms are defined. We
assume the backward difference formula (γ = 1). In this case we have

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]}t+h

=
1
h

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t+h

− 1
h

[
∂w(x, t)
∂x

∣∣∣∣
x=vt

]t

. (8.8)

Using (8.5) and (8.8), the equation (8.6) is given by the difference formula

d2w
dt2 =

(
1− x0 + vt

b

)
ẅi+1

1 +
x0 + vt

b
ẅi+1

2 − v

b
ẇi+1

1 +
v

b
ẇi+1

2 −

− v

bh
wi+1

1 +
v

bh
wi+1

2 +
v

bh
wi

1−
v

bh
wi

2 .

(8.9)

The upper index denotes the time layer. The energy (8.3), with respect to (8.4) and
(8.9) can be written in quadratic form, which, after a classical minimization, results
in the matrix equation (8.2), where

Mm = m

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)2 0 κ(1−κ) 0

0 0 0 0

κ(1−κ) 0 κ2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.10)

Cm =
mv

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.11)

Km =
mv

bh

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.12)

and
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em =
mv

bh

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)(w2−w1)

0

κ(w2−w1)

0

⎤
⎥⎥⎥⎥⎥⎦

, (8.13)

with coefficient κ = (x0 + vh)/b , 0 < κ ≤ 1. κ is a parameter which defines the
position of the mass in the element at the beginning of the time increment.

This determines the position of the mass at time t = h, related to the finite ele-
ment length b. The different terms describe the transverse inertia force related to the
vertical acceleration, the Coriolis force, and the centrifugal force. The matrix factors
Mm, Cm, and Km can be called the mass, the damping, and the stiffness matrices.
The last term em describes the nodal forces at the beginning of the time interval
[ti, ti +Δ t]. We must emphasize here that the matrices (8.10)–(8.12) and the vector
(8.13) contribute only the moving inertial particle effect. The matrices of the mass
influence in a finite element of a structure must be added to the global system of
equations. We notice that the matrices (8.10)–(8.12) differ from the matrices that
result from the solution for the case of direct differentiation of (7.1).

8.2 The Newmark Method in the Vibrations of String

The finite element of a string that carries an inertial particle was tested with the use
of the Newmark method. In each time-step, the global matrices M, C, and K must be
computed since the contributions of (8.10)–(8.12) vary. The string being tested has
dimensionless length l = 1, tensile force N = 1, cross-sectional area A= 1, and mass
density ρ = 1. The travelling mass m = 1 was accompanied by the force P = −1
(Figure 8.2). Figure 8.3 depicts the mass trajectory at various speeds v. This diagram
can be compared with the semi-analytical results depicted in Figure 3.3. We note
good coincidence for a whole range of speeds. Moreover, the discontinuity at the
final support is exhibited in the numerical results. This discontinuity was reported
in [48] and was also obtained by the space–time finite element method [25]. The
mid-span deflections are depicted in Figure 8.4. The method can also be applied to
over-critical speed (Figures 8.5 and 8.6).

w(x,t)

v
P

m A, EIρ NN

l

Fig. 8.2 The scheme of the tested system.
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Fig. 8.3 The mass trajectory at velocities 0.1–1.0 times the wave speed c, computed numeri-
cally by the Newmark method.

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w
/w

0

vt/L

v=0.1c
v=0.2c
v=0.3c
v=0.4c
v=0.5c
v=0.6c
v=0.7c
v=0.8c
v=0.9c
v=1.0c
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speed c.



228 8 The Newmark Method and a Moving Inertial Load

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w
/w

0

vt/L

v=1.00c
v=1.05c
v=1.10c

Fig. 8.5 The mass trajectory at velocities 1.0–1.1 times the wave speed c, computed numeri-
cally by the Newmark method.
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8.3 The Newmark Method in Vibrations of the Bernoulli–Euler
Beam

The solution procedure is relatively simple in the case of the Bernoulli–Euler beam
with third order shape functions. The characteristic matrices can be easily derived
(8.14)–(8.16). We use them in verification of various results from the literature:

Mm = m

⎡
⎢⎢⎣

(2κ3− 3κ2+ 1)2 bκ(κ2− 2κ+ 1)(2κ3− 3κ2 + 1)
bκ(κ2− 2κ+ 1)(2κ3− 3κ2+ 1) b2κ2(κ2− 2κ+ 1)2

κ2(3− 2κ)(2κ3− 3κ2+ 1) bκ3(3− 2κ)(κ2− 2κ+ 1)
bκ2(κ− 1)(2κ3− 3κ2+ 1) b2κ3(κ− 1)(κ2− 2κ+ 1)

κ2(3− 2κ)(2κ3− 3κ2+ 1) bκ2(κ− 1)(2κ3− 3κ2 + 1)
bκ3(3− 2κ)(κ2− 2κ+ 1) b2κ3(κ− 1)(κ2− 2κ+ 1)

κ4(2κ− 3)2 bκ4(1−κ)(2κ− 3)
bκ4(1−κ)(2κ− 3) b2κ4(κ− 1)2

⎤
⎥⎥⎦ ,(8.14)

Cm = 2mv

⎡
⎢⎢⎣

6κ(κ− 1)(2κ3− 3κ2+ 1)/b (3κ2− 4κ+ 1)(2κ3− 3κ2+ 1)
6κ2(κ− 1)(κ2− 2κ+ 1) bκ(κ2− 2κ+ 1)(3κ2− 4κ+ 1)

6κ3(1−κ)(2κ− 3)/b κ2(3− 2κ)(3κ2− 4κ+ 1)
6κ3(κ− 1)2 bκ2(κ− 1)(3κ2− 4κ+ 1)

6κ(1−κ)(2κ3− 3κ2+ 1)/b κ(3κ− 2)(2κ3− 3κ2 + 1)
6κ2(1−κ)(κ2− 2κ+ 1) bκ2(κ2− 2κ+ 1)(3κ− 2)

6κ3(κ − 1)(2κ− 3)/b κ3(3− 2κ)(3κ− 2)
−6κ3(κ − 1)2 bκ3(κ− 1)(3κ− 2)

⎤
⎥⎥⎦ , (8.15)

Km = mv2

⎡
⎢⎢⎣

6(2κ− 1)(2κ3− 3κ2 + 1)/b2 2(3κ− 2)(2κ3− 3κ2+ 1)/b
6κ(κ2− 2κ+ 1)(2κ− 1)/b 2κ(κ2− 2κ+ 1)(3κ− 2)

6κ2(1− 2κ)(2κ− 3)/b2 2κ2(3− 2κ)(3κ− 2)/b
6κ2(κ− 1)(2κ− 1)/b 2κ2(κ − 1)(3κ− 2)

6(1− 2κ)(2κ3− 3κ2 + 1)/b2 2(3κ− 1)(2κ3− 3κ2 + 1)/b
6κ(1− 2κ)(κ2− 2κ+ 1)/b 2κ(κ2− 2κ+ 1)(3κ− 1)

6κ2(2κ− 1)(2κ− 3)/b2 2κ2(3− 2κ)(3κ− 1)/b
6κ2(1−κ)(2κ− 1)/b 2κ2(κ− 1)(3κ− 1)

⎤
⎥⎥⎦ , (8.16)

where the parameter κ = (x0 + vh)/b, x0 is the initial position of the mass moving
with speed v on the spatial element of length b in the time interval h.
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8.4 The Newmark Method in Vibrations of a Timoshenko Beam

The study of wave phenomena is possible by using a more complex model of the
Timoshenko beam in which the vibration equation takes into account the influence
of lateral forces and rotatory inertia on the deflection line of the beam. The angle
formed by the axis of the deformed beam is composed of the pure bending angle and
the angle corresponding to the deformation of the pure shear. Independent interpola-
tion of the displacements and rotation angles of the Timoshenko beam causes serious
problems. Linear interpolation (8.5) of the nodal shape features renders impossible
the determination of the centrifugal acceleration of the moving mass particle. Di-
rect discretization of the terms (7.1), placed in the governing differential equation
of motion, results in the following matrices:

Mm = m

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)2 0 κ(1−κ) 0

0 0 0 0

κ(1−κ) 0 κ2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.17)

Cm =
2mv

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.18)

Km = 0 , (8.19)

with the coefficient

κ =
x0 + vh

b
, 0 < κ ≤ 1. (8.20)

We can apply these to a test problem and then compare the results with those ob-
tained by semi-analytical methods. Unfortunately, the comparison is extremely un-
satisfactory, especially if applied to strictly hyperbolic problems (see for example
[48]). We must emphasize here that the matrices (8.10)–(8.12) and the vector (8.13)
contribute only the moving inertial particle effect. The matrices of a mass influence
in a finite element of the Timoshenko beam must be added to the global system
of equations. Note that the matrices (8.17)–(8.19) differ from the matrices (8.10)–
(8.13). The matrix M is the only matrix that is the same.

8.5 Numerical Results

There are few publications in which an inertial load moving on a Timoshenko beam
are directly considered numerically. One can see that papers published in the litera-
ture describe methods which result in wrong responses. We can show results taken
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from the literature compared with semi-analytical computations. A comparison with
the paper [148] is given in Figure 4.15. In the example, a very low relative veloc-
ity was assumed: v/c1 = 0.002 and v/c2 = 0.001 (shear wave and bending wave,
respectively).

We will compare our diagrams with those of Lee [86]. Therefore, the data in the
example is as follows: length l = 1 m, Young modulus E = 207 GPa, shear modulus
G = 77.6 GPa, mass density ρ = 7700 kg/m3. The velocity v = aπ/l ·√EI/ρ/A
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Fig. 8.7 Normalized deflections under a moving mass particle for β = 0.03: (a) a = 0.11, (b)
a = 0.5 and (c) a = 1.1.
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Fig. 8.8 Normalized deflections under a moving mass particle for β = 0.15: (a) a = 0.11, (b)
a = 0.5 and (c) a = 1.1.

was determined by the parameter a. Another parameter β determines the cross sec-
tional area A = β 2l2/π and cross sectional inertia moment I = β 4l4/4/π3. The
moving mass m took values of 0.441 kg and 11.03 kg. Figure 8.7 exhibits the nor-
malized deflection under the moving mass for β = 0.03 and a = 0.11, 0.5, and
1.1. This corresponds to a mass moving at 8.56, 38.39, 85.55 m/s on a relatively
elastic beam. Figure 8.8 relates to a more rigid beam and velocities of v = 42.78,
194.4, and 427.7 m/s. Lee solved the problem semi-analytically. A fourth order dif-
ferential equation was solved by the Fourier transform and finally integrated by the
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Fig. 8.9 Accuracy of the Newmark method depending on the number of finite elements.
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Fig. 8.10 Comparison of the Newmark and Houbolt methods in the case of a large time step.

Runge–Kutta method. In our test, we compare the results by Lee with our semi-
analytically [49] obtained curves together with our Newmark time integration pro-
cedure applied to the finite element model of the Timoshenko beam. We notice a
perfect coincidence of both solutions and quite good coincidence with Lee’s results.

Figure 8.9 shows the accuracy, which increases with the number of elements in
the structure. Ten to twenty elements is sufficient in our example.

Another comparison was carried out between the Newmark and Houbolt meth-
ods. Both methods are sufficiently accurate. However, the curve for the Newmark
method perfectly coincides with our semi-analytical results (Figure 8.10).

8.6 Accelerating Mass—Numerical Approach

8.6.1 Mathematical Model

Let us consider the differential equations of structures containing a concentrated
mass. We will focus our attention on the term which describes the forces induced by
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a moving inertial particle. In the case of a string, we can write the equation in the
form

−N
∂ 2w(x, t)
∂ x2 +ρA

∂ 2w(x, t)
∂ t2 = δ (x− f (t))P− δ (x− f (t))m

d2w( f (t), t)
dt2 . (8.21)

Here, w(x, t) is the vertical deflection of the mid-line, m is the moving mass, f (t) is
the function giving the distance travelled by the mass, N is the tension of the string,
ρA is the mass density per unit length, P is the external point force, and it usually
contributes a gravitation force mg.

We impose initial conditions w(x,0) = 0, ∂ w(x, t)/∂ t |t=0 = 0 and boundary
conditions w(0, t) = 0, w(l, t) = 0.

The Bernoulli–Euler beam is described by the equation

EI
∂ 4w(x, t)
∂ x4 +ρA

∂ 2w(x, t)
∂ t2 = δ (x− f (t))P− δ (x− f (t))m

d2w( f (t), t)
dt2 , (8.22)

with initial conditions w(x,0) = 0, ∂ w(x, t)/∂ t |t =0 = 0 and boundary conditions
w(0, t) = 0, w(l, t) = 0,∂ 2w(0, t)/∂x2 = 0,∂ 2w(l, t)/∂x2 = 0, and the Timoshenko
beam is

ρA
∂ 2w(x, t)
∂ t2 − GA

k

(
∂ 2w(x, t)
∂x2 − ∂ψ(x, t)

∂x

)
=

= δ (x− f (t))P− δ (x− f (t))m
d2w( f (t), t)

dt2 , (8.23)

ρI
∂ 2ψ(x, t)

∂ t2 −EI
∂2ψ(x, t)
∂x2 − GA

k

(
∂w(x, t)
∂x

−ψ(x, t)
)
= 0 ,

with the same boundary and initial conditions as for the Bernoulli–Euler beam.
Here, EI is the bending stiffness, GA/k is the shear stiffness, ρI is the rotatory
inertia of the cross section of the beam, and ψ is the angle of rotation of the cross
section.

In each type of problem we have the identical inertial term δ (x − f (t))m·
d2w( f (t), t)/dt2. Below we will consider only this term, since the remaining parts
of the equations are treated in the classical way by the finite element method.

Let us follow the direct derivation commonly carried on in the literature. The
acceleration of a mass particle moving at a varying speed v in the space–time domain
is described by the Renaudot formula:

d2w( f (t), t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x= f (t)

+ 2v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x= f (t)

+ v2 ∂ 2w(x, t)
∂x2

∣∣∣∣
x= f (t)

+

+ v̇
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

,

(8.24)
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where f (t) describes the position of the load. The above formula simply represents
the chain rule of differentiation. The corresponding parts of the equation describe
the lateral acceleration, the Coriolis acceleration, the centrifugal acceleration, and
the acceleration associated with the change of particle velocity. These names are
generally not adequate in the case of all structures. Let us compare two different
problems: the vibrations of a string and the longitudinal vibrations of a bar. In both
cases, we have the identical governing equation. However, in the case of longitudinal
displacements we can not call the forces described by the terms of the equation
either centrifugal or Coriolis.

8.6.2 The Finite Element Carrying the Moving Mass Particle

Let us consider a finite element of length b of the edge of the mass trajectory. The
mass particle m passes through the finite element with a varying velocity v in the
time interval h, starting at the point x = x0 (Figure 8.1). The equation of virtual work
which describes the motion of the inertial particle can be written in the following
form

Πm =

∫ b

0
w∗(x)δ (x− f (t))m

d2w( f (t), t)
dt2 dx . (8.25)

The virtual displacement w∗ is expressed by (8.4). The position of the moving point
can be described by a quadratic function in time:

f (t) = x0 + vt +
1
2
v̇t2 . (8.26)

We take first-order polynomials as the shape functions describing the interpolation
of the displacements (8.5). Here, w1(t) and w2(t) are the nodal displacements in
time. This is a natural assumption since the finite element edge is straight for sim-
ple shape functions describing linear displacement distributions in the element. In
such cases, the third term of (8.24) reduces to zero. That is why we must write the
Renaudot formula (8.24) in a different form:

d2w( f (t), t)
dt2 =

∂ 2w(x, t)
∂ t2

∣∣∣∣
x= f (t)

+ v
∂ 2w(x, t)
∂x∂ t

∣∣∣∣
x= f (t)

+ v̇
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

+

+ v
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]
.

(8.27)

The fourth term of (8.27) is developed in a Taylor series in powers of the time
increment Δ t = h
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[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]t+h

=

[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]t

+

+

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]}t

(1− γ)h+

{
d
dt

[
∂w(x, t)
∂x

∣∣∣∣
x= f (t)

]}t+h

γh .

(8.28)

The upper indices indicate the time at which the respective terms are defined. Using
(8.8), we assume the backward difference formula (γ = 1). After classical minimiza-
tion of the equation (8.25) with respect to (8.27) and (8.8), we obtain

Mm = m

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)2 0 κ(1−κ) 0

0 0 0 0

κ(1−κ) 0 κ2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.29)

Cm =
mv

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.30)

Km =
m
b

(v
h
+ v̇
)
⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (8.31)

and

em =
mv

bh

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)(w2−w1)

0

κ(w2−w1)

0

⎤
⎥⎥⎥⎥⎥⎦

, (8.32)

with coefficient κ = (x0 + vh+1/2 v̇h2)/b , 0 < κ ≤ 1. κ is a parameter which de-
fines the position of the mass in the element at the beginning of the time increment.

This determines the position of the mass at time t = h, related to the finite ele-
ment length b. The different terms describe the transverse inertia force related to the
vertical acceleration, the Coriolis force, and the centrifugal force. The matrix factors
Mm, Cm, and Km can be called the mass, damping, and stiffness matrices. The last
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Fig. 8.11 Comparison of displacements of a Bernoulli–Euler beam under a moving contact
point with those published by Lee [84]—acceleration parameter ā = 0,1,5,10.

term em describes the nodal forces at the beginning of the time interval [ti, ti +Δ t].
We must emphasize here that the matrices (8.29)–(8.31) and the vector (8.32) con-
tribute only the moving inertial particle effect. The matrices of the mass influence in
a finite element of a structure must be added to the global system of equations. We
note that the matrices (8.29)–(8.31) differ from the matrices that result in divergence
of the solution in the case of direct differentiation of (8.24)1.

1 Matrices that result in divergence:

Mm = m

⎡
⎢⎢⎢⎢⎢⎣

(1−κ)2 0 κ(1−κ) 0

0 0 0 0

κ(1−κ) 0 κ2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Cm =
2mv

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

Km =
mv̇

b

⎡
⎢⎢⎢⎢⎢⎣

−(1−κ) 0 1−κ 0

0 0 0 0

−κ 0 κ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, κ =
x0 +vh+ 1

2 v̇h2

b
, 0 < κ ≤ 1.
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8.6.3 Accelerating Mass—Examples

Now we will compare the displacements under a moving mass obtained from our
approach with the reference results by Lee [84]. The Bernoulli–Euler beam of length
l = 6 m, bending stiffness EI/ρ/A= 275.4408 m4/s2, moving mass m = 0.2ρ/A/l,
initial velocity at x = 0 of v0 = 6 m/s, acceleration a = āEI/ρ/A/l3 was assumed
for dimensionless coefficient ā = 0, 1, 5, and 10 (Figure 8.11).

The Timoshenko beam was also considered in [87]. We compare our results with
those published in the reference paper [86], using the same data, already listed at
the beginning of this section. The acceleration a = v/vcr, where the critical velocity
vcr = π/l

√
EI/ρ/A. The acceleration v̇ is defined by a non-dimensional parameter

κ = v̇ρAl3/E/I. Two cases were considered: First the case of β = 0.03, a = 0.11
was computed and is depicted in Figure 8.12 for the acceleration κ = 1, for a con-
stant speed κ = 0, and for a small retardation (κ =−0.05). Figure 8.13 presents the
case for a higher initial speed a = 0.5 and β = 0.03, for a constant speed κ = 0, and
acceleration with κ = 1.
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Fig. 8.12 Comparison of displacements of a Timoshenko beam under a moving contact point
with those published by Lee [87]—β = 0.03, a = 0.11.
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Fig. 8.13 Comparison of displacements of a Timoshenko beam under a moving contact point
with those published by Lee [87]—β = 0.03, a = 0.5.
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8.7 Conclusions

In this section we proposed a new approach to the vibration analysis of structures
subjected to a moving inertial particle by use of the finite element method in space
and a general time integration method, for example SSpj, in time, here represented
by the Newmark and Houbolt methods. The elements describing a moving massive
particle (7.29)–(7.31) can be commonly used both in the Euler beam and the Tim-
oshenko beam. Their appearances are simpler than those of the classical matrices
(8.14)–(8.16) for the Euler beam. In engineering practice, most dynamic simula-
tions are performed by the Newmark method. An approach which extends a group
of problems that can be directly solved by this commonly used method is valuable.
We showed that these matrices yield accurate and stable solutions for a mass moving
on a structure. Timoshenko beams or other shear resistant structures exhibit discon-
tinuities in their solutions of the differential equations [48, 49]. Although in practice
nonlinear effects smooth the trajectories, large jumps in the physical quantities are
observed. The same computational result should be obtained both by semi-analytical
and numerical tools. There is no reason for saying that numerical solutions converge
to inaccurate results. Our finite element approach proves that even simple elemental
matrices derived from a mathematically correct analysis can give perfect conver-
gence to the analytical expressions.

There are two different ways to numerically treat differential equations in struc-
tural dynamics. The first one requires the separation of the spatial variables and time,
after which two different discretizations are applied to space and to time, and finally
two different solution methods are used. Commonly, the finite element method is
applied to space while the central difference method or the Newmark method is ap-
plied to time. Thus the time marching procedure is established. In this case the equi-
librium of forces is provided a selected time-instants, separated in time by the time
step. This approach is based on a strong form of the problem. It is well elaborated
for problems defined by differential equations with constant coefficients. Variable
coefficients require deriving the time integration method starting from the differ-
ential equation. Classical inertia and stiffness matrices related to space can not be
directly brought to play in a classical time integration method.
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Fig. 8.14 The mass trajectory in space and time.
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The second approach, called the space–time formulation [17, 9, 22], is based
on the equilibrium of the energy of a structure in a time interval (Figure 8.14). It
is based on the weak formulation and allows us to solve much more complicated
problems, including moving concentrated physical parameters. This approach was
successfully applied to the moving mass problem, solved by discrete methods [25,
24, 26].

Although the space–time approach in the case of a differential equation with con-
stant coefficients and stationary discretization results in practically the same algo-
rithms as the classical time integration methods, most engineers select the methods
of the Newmark group for computing. A simple modification of the inertia matrix in
the Newmark algorithm or direct differentiation of the acceleration of the mass par-
ticle according to the equation describing its position in time and then incorporating
the resulting matrices into the solution method fails.

The practice of numerical simulations, however, requires simplicity and effi-
ciency in the procedures. The characteristic matrices for an inertial particle should
be capable of being easily incorporated into computer procedures. Thus all existing
commercial codes would gain new calculating abilities. We will focus our attention
on this aim.

Several classical methods for the numerical integration of the differential equa-
tions of motion can be included in one general formula, derived from the expansion
of the motion function into a Taylor series. The displacements and derivatives are
written in short as follows:

yi+1 =
p−1

∑
q=0

Δ tq

q!
y(q)i +

Δ t p

p!
y(p)

i+α , ẏi+1 =
p−1

∑
q=1

Δ tq−1

(q− 1)!
y(q)i +

Δ t p−1

(p− 1)!
y(p)

i+α . (8.33)

Here, yi are the known values and subsequent derivatives ẏi, ÿi, etc. α (p)
i contains

unknown coefficients in terms of the remainder of the development. The above ex-
pansions allow us to write a family of methods. The general time integration method
is characterized by two parameters: p, the number of terms in the Taylor series, and
j, the order of the differential equation. We can construct more or less complex inte-
gration patterns, choosing the appropriate Taylor series. In the particular case p = 2
and j = 2, the method is identical with the Newmark method, and for p = 3 and
j = 2, it coincides with the Houbolt method. Other well known algorithms are cov-
ered by the formula (8.33) as well. In further tests we will use the Newmark method
and the Houbolt method.



Chapter 9
Meshfree Methods in Moving Load Problems

9.1 Meshless Methods (Element-Free Galerkin Method)

The idea of meshless methods is to eliminate the mesh generation stage, which
is the main disadvantage of the finite element method (or other classical discrete
methods). In a meshless method, the set of separated points is placed in the domain
of the structure. Interpolation functions (shape functions) are then generated not in
element subdomains, but in arbitrarily placed nodal points.

In the case of very large deformations it is necessary to modify the mesh of finite
elements step by step. In order to minimize this significant cost of computation,
researchers are trying to use meshfree methods, e.g., [27, 28, 46, 90]. These methods
also seem to be appropriate for the task of a moving inertial load.

The shape functions are stretched on points which are in the neighbourhood of
the given point, in the stepping subdomain Ω (Figure 9.1). We determine the shape
function on the basis of the moving least squares criterion (MLS) [82]. This method
consists in minimizing the differences between the exact and approximate solution.
The sum of squared errors of the approximation at all the nodes (i = 1, . . . ,m) is a
functional:

J =
m

∑
i=1

W (x− xi)
[
wh(x,xi) − wi

]2
, (9.1)

Fig. 9.1 The set Ω moving along a string.
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where W (x− xi) is the weight function, wh(x,xi) is an approximation function, and
the wi are the nodal values. We assume exponential shape functions:

W (x− xi) =

⎧⎨
⎩e
−
(

x−xi
α

)2

if (x− xi)≤ 1,

0 if (x− xi)> 1 .
(9.2)

The coefficient α depends on the size of the domain Ω and the number of points in
the domain.

In this case, the exact solution has been approximated by an nth degree polyno-
mial

wh(x,xi) =
n

∑
j=1

p j(xi)a j(x) = pT(xi)a(x) , (9.3)

where the monomials in the interpolation polynomial are

pT =
[
1,x,x2, . . .

]
, (9.4)

with approximation coefficients

aT(x) = [a0(x),a1(x),a2(x), . . .] . (9.5)

The functional (9.1) can be written in matrix form:

J = (Pa−w)T W(Pa−w) , (9.6)

where P is a full matrix of dimension (n×m)

P =

⎛
⎜⎜⎜⎝

p0(x1) p1(x1) · · · pm(x1)
p0(x2) p1(x2) · · · pm(x2)

...
...

. . .
...

p0(xn) p1(xn) · · · pm(xn)

⎞
⎟⎟⎟⎠ , (9.7)

and W is a diagonal matrix of dimension (n× n)

W =

⎛
⎜⎜⎜⎝

W (x− x1) 0 · · · 0
0 W2(x− x2) · · · 0
...

...
. . .

...
0 0 · · · W (x− xn)

⎞
⎟⎟⎟⎠ . (9.8)

As a result of minimizing the functional (9.6) at the coefficients of the approxi-
mating polynomial (∂J/∂ai = 0) we obtain the sought form of the vector a from
equation (9.3)

a(x) = A−1Bw , (9.9)

where A = PTWP and B = PTW. Eqs (9.3) and (9.9) lead to:
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wh(x,xi) = pT(xi)A−1 Bw =
n

∑
j=1

φm
j (x) wj , (9.10)

where φm
j (x) is the shape function and m is the degree of the approximation polyno-

mial
φm

j (x) = pT(xi)A−1 B = [φm
1 (x),φm

2 (x), . . .φm
n (x)] . (9.11)

The general criterion of MLS approximation requires differentiation of the equation
pT(xi)A−1B. In order to simplify this task, we apply a zero degree polynomial ap-
proximation (m = 0). This leads to the shape functions called the Shepard functions,
dependent only on a weight function of the nodes

φ0
i =

W (x− xi)

∑n
j=1 W (x− x j)

. (9.12)

Selecting these functions is a significant problem when the nodes are irregularly
distributed. In the general case, the designation of the matrix describing the test
structure requires numerical integration, resulting in additional computational costs.

The resulting shape function (9.12) was used for discretization of a string. Using
virtual work, we can obtain the stiffness and inertia matrices:

ki j =

∫
Ω

BT
i N B j dΩ ,

mi j =

∫
Ω
φT

i ρAφ j dΩ , (9.13)

where B = ∂φ/∂x, N is the tensile force, and ρA is the mass of the string. The nodal
matrices k and m computed for domains Ω are assembled into global matrices K
and M. The proper choice of the parameter α is still the fundamental problem of
the weight function (9.2). In the case of a regular distribution of points in the set
Ω , where the distance between the nodes is denoted by b, the coefficient α can
described with high accuracy by α = b/

√
π .

9.2 Results

The numerical results will be compared with the analytical results. We used the
following data: length of the string l = 1, tensile force N = 1, mass of the a string
ρA = 1, external force P =−1 travelling with constant speed v = 0.1c (where c, as
usual, is the wave speed in the string).

In Figure 9.2 we plot the displacements under a moving force and at the middle of
the string length. The analytical solution coincides well with the one obtained by the
finite element method or the central difference method. The meshless method results
in a good approximation to the accurate solution. In this method we can notice the
phase error, visible especially in the second half of the observation period. This
means that the rigidity is higher than required. However, the smoothing effect is
the main reason for the differences in the results. A significantly lower number of
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Fig. 9.2 Displacements under constant moving force: (1) under moving force, (2) at the mid-
dle of the string (number of points in Ω is 10).

points in the moving domain (2 instead of 10 as in the previous case) (Figure 9.3)
results in quite similar plots. Both the amplitude and the period of the vibrations are
acceptable.

The numerical approach in the case of a Winkler foundation does not differ from
the analytical solution. We must emphasize here that a continuously moving force
in the numerical application is replaced by a sequence of marching pairs of forces,
applied to nodal points. In such a case we neglect the mixed derivatives of the for-
mulation. We can notice that such an analysis does not introduce a significant error
(Figure 9.4).
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Fig. 9.3 Displacements under constant moving force: (1) under moving force, (2) at the mid-
dle of the string (number of points in Ω is 2).



246 9 Meshfree Methods in Moving Load Problems

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w

vt/L

(1)

analytically
numerically(FEM)

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w

vt/L

(2)

analytically
numerically(FEM)

Fig. 9.4 Displacements under constant moving force—string put on a Winkler foundation:
(1) under moving force, (2) at the middle of the string.



Chapter 10
Examples of Applications

The examples of the calculations of the selected engineering problems given in this
Chapter demonstrate the practice of numerical solutions. In real structures we al-
ways ask questions as to what geometry and what values of the material data are
appropriate to pass from the physical model of the structure to the numerical one.
Real shapes are usually complex and we try to simplify them, replacing curves
with straight lines, non-uniformly distributed material parameters with homoge-
neous material, material damping with a numerical decay of the amplitude. Let us
consider, as a first example, a track subjected to a moving vehicle. We can build a
detailed three-dimensional model using cubes or tetrahedra with many degrees of
freedom describing the foundation, ballast, track elements, rails, wheels, and the re-
maining part of the vehicle. We can include contact phenomena, friction, material
nonlinearities, thermo-mechanical coupling, etc. However, such a model nowadays
would be a challenge even for a static problem. Calculating the solution can last even
a quarter of an hour. That is relatively long considering the computational power of
multi-core processors. In a dynamic analysis, such a computation must be repeated
thousands of times. The duration of the task exceeds any reasonable length of time.
That is why we must still simplify our numerical models and improve the compu-
tational tools. Fortunately, a coarse discretization and a simplified mesh does not
influence the frequencies significantly. The amplitudes are worse.

In vibration analysis of structures under moving loads we often search for the in-
teraction of the moving vehicle and the load-carrying structure. In the case of multi-
point contact of a base with a multi degree-of-freedom vehicle, such interactions are
essential.

The problem of ill-conditioned systems of algebraic equations is well known
in computer analysis. Especially, the assumption of constants whose ranges vary
several times may cause problems. If the commercial software recalculates the given
data to scaled values, we can partly trust the solutions. This issue is essential since
in dynamic simulations the computational error can occur at least once during each
step of the computations and, in an initially invisible way, affect severly the final
results. In complex problems, we will not be able to detect such incorrect solutions.
In the case of custom-written computer programs we ourselves should ensure that

C.I. Bajer and B. Dyniewicz: Numerical Analysis of Vibrations of Structures, LNACM 65, pp. 247–270.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012
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Table 10.1 Material data of structural elements.

parameter
value

[SI units]
value

[cm, g, μs]
rail

E 210 GPa 2.1
A 7.7·10−3 m2 77.
ν 0.2 0.2
ρ 7860 kg/m3 7.86
G 77 GPa 0.77
I 30.55·10−6 m4 3055.

elastic pad
E 0.25–0.50 GPa 2.5·10−3–5.0·10−3

A 22.5·10−3 m2 225.
ρ 1800 kg/m3 1.8

sleeper (concrete)
E 30 GPa 0.3
G 7.7 GPa 0.077
A 15·10−3 m2 150.
ρ 2400 kg/m3 2.4

sleeper (wooden)
E 11 GPa 0.11
A 35·10−3 m2 350.
ρ 0.65 g/cm3 0.65

Y-type sleeper (steel)
E 210 GPa 2.1
A 21.6·10−3 m2 216.
ρ 7860 kg/m3 7.86

ground
kz (soft) 105 Pa 10−6

kz (sand compacted) 108 Pa 10−3

kz (rigid) 1010 Pa 10−1

ν 0.3 0.3

ballast
E 500 MPa 5·10−3

ρ >1200 kg/m3 >1.2
ν 0.3 0.3

the matrices in our systems of equations are well-conditioned. The simplest way
is to deliver the data, both geometric and material, within a similar range. For this
purpose, it is better to replace the SI system of units by another one, more suitable.
We chose the following system of units: cm, g, μs. This results in most of data’s
having almost the same range, especially the Young modulus and the time step.
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Table 10.2 Data assumed in simulation.

rail UIC-60 bending stiffness EI 6.42 MN/m2

mass density per unit length ρA 60 kg/m
damping loss factor of rail ηr 0.02
stiffness of elastic pad per unit length 300 MN/m2

damping loss factor of a pad ηp 0.2
sleeper mass per unit length of a track (per one rail) 250 kg/m
ballast stiffness per unit length of a track (one rail) 100 MN/m2

ballast damping loss factor ηb 1.0
foundation damping loss factor η f 0.1

Below we will give the material data useful for simulations of railway problems.
All the values are given both in the SI system and in our system of units. In Table
10.1 one can find the data for the fundamental types of elements of the track. The
material and structural data assumed in the further simulation is collected in Table
10.2.

10.1 Dynamics of the Classical Vehicle–Track System

Now let us have a look at the real example of vibrations of a carriage moving on a
classical track. The custom computer software used here was written by the authors,
implementing the numerical approaches given in this book. We use the geometric
and material data from [42].
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Fig. 10.1 Theoretical scheme of the problem and the scheme assumed for computations.

The replacement of the real physical load with the computational load is ex-
plained in Figure 10.1. The finite element is subjected at the intermediate point to
the force with the inertia parameter, i.e., the concentrated mass. This force, usu-
ally placed in a numerical model at the right-hand side of the resulting system of
algebraic equations, can be simply distributed over the neighbouring nodes. The
bending moments in the case of a beam must appear at the finite element joints
as well. The concentrated mass is incorporated directly into the left-hand side ma-
trices. Their coefficients vary in each time step and this requires the solution of a
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Fig. 10.2 Substructures assumed in analysis.
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Fig. 10.3 Vertical accelerations of the axle box at a speed of 290 km/h with the inertial and
non-inertial loads assumed in the model.

system of equations at every time step. No iterations are required, unless unilateral
contact is assumed. There are two advantages of such a solution: accurate and faster
computations.

The track model is composed of plates, beams, grid or frame elements, and
springs. A simple track structure can be considered in the same manner as a
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Fig. 10.4 Vertical accelerations of the axle box at a speed of 290 km/h with the inertial and
non-inertial loads assumed in the model with soft ballast.

complex one. Let us look at the simplest classical track (Figure 10.2), built of sleep-
ers as grid elements placed on an elastic Winkler foundation, springs which model
elastic pads, and grid elements which describe rails, both straight and curved. In
both Figures 10.3 and 10.4 in the case of a non-inertial load (lower diagrams) we
can notice the strong influence of the sleepers. With an inertial load (upper plots),
this influence is moderate and the dynamic response is more realistic.

We can compare our results with the reference paper [42] (Figure 10.5). Both
Figures 10.3 and 10.5, obtained for an inertial load, exhibit a similar range of ac-
celerations of the axle box. The signal in Figure 10.5 shows a low frequency mode
which is difficult to explain. The response of our numerical simulation has the same
magnitude of accelerations and has more realistic higher frequency oscillations. The
model analysis of the plotted signal is depicted in Figure 10.6. Figure 10.7 shows
the accelerations of the car’s body at a speed of 290 km/h.
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Fig. 10.5 Accelerations of the axle box at a speed of 290 km/h taken from [42].
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Fig. 10.6 Modal analysis of the acceleration signal from Figure 10.5 [42].
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Fig. 10.7 Accelerations of the body of an ETR500 car at a speed of 290 km/h taken from
[42]—deformable bodies model.
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10.2 Dynamics of the System Vehicle—Y-Type Track

Ballastless tracks and steel sleeper wedge tracks (also called Y-type sleepers) are
an example of a dynamic track–vehicle system. Modernization, for reasons of the
security of the suspension system and due to the high demands of railway rules, is
rarely applied and requires a long and costly research of its prototypes. The modern-
ization of old railway tracks using new technologies gives a noticeable improvement
in the dynamic collaboration of the wheel–rail system. The line Plaszow Cracov–
Auschwitz is an example where part of the track was made with steel Y-type sleep-
ers. This type of sleeper is also used by the funicular railway to Gubałówka in Za-
kopane (Figure 10.8) and in Krynica Górska. This scheme compared with a classical
track is depicted in Figure 10.9.

Fig. 10.8 Y-type track.

The advantage of Y-type sleepers is an increase in the lateral stiffness and inertia
of the track by including ballast which collaborates with the steel sections (Figure
10.10). This is especially important on curves and in mountain areas. The disad-
vantage is its higher implementation cost. Measurements on experimental sections
show a significant reduction in noise at train crossings.

While the construction of trial road maintenance sections is time-consuming,
computer simulations can be done quickly. They are valuable when the analysed
model corresponds to the physical model as closely as possible [132, 51]. In its de-
velopment, the issue is to determine what portion of the wheel weight in contact
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Fig. 10.9 The track with classical and Y-type sleepers.

Fig. 10.10 Wedge steel sleeper.
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with the rail dynamically interacts with it. Other parameters of the model can be rel-
atively well-chosen on the basis of the technical documentation. It is certain that at
high speeds, the track should not be loaded by only nonlinertial spring elements, and
the mass should be taken into account, on which we can then place even a complex
vehicle model.

Fig. 10.11 Model of the track and rail vehicle scheme adopted in numerical computations.

The task of passing a rail vehicle over the track of a classic or Y-type is considered
as a problem of two subsystems. The first one is a track consisting of rails, sleepers,
viscoelastic pads, and viscoelastic soil. The second subsystem is a rail vehicle, built
in a simple way of oscillators, connected by a deformable frame (Figure 10.11). We
assume that vibrations of both rails are coupled by the wheelsets, and that the el-
ement which couples the vibrations that propagate along the rail is the rail vehicle
boogie frame. Rails, sleepers, and the boogie frame, are taken as the grid elements,
with three degrees of freedom at a node. Elastic spacers were adopted for the finite
elements of a rod. The soil was taken as an inertial Winkler foundation. The frame
rigidity and inertia of the individual elements were suitably chosen. In the case of a
simplified model of the vehicle in which the wheels are granulated masses, the mass
of the wheel, which is accompanied by transverse displacements of the rails, were
chosen within the range of 15%–50% by weight of the wheel. Both dynamical sys-
tems were solved independently, by building and solving the corresponding systems
of algebraic equations. The grid nodes of both discrete systems moved relative to
each other and therefore a simple iterative procedure of balancing the forces in both
systems was natural to begin with. In the first stage, the track was subjected at the
contact points of the wheels with the rails, to forces corresponding to the pressure of
the dynamic forces of the boogie wheels. The result was a vertical displacement of
a discretized rail element. This allowed of determining the vertical displacements of
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the rail at the points of contact with the wheels. These displacements were taken into
account as the boundary conditions in the solution of the boogie subjected to exter-
nal forces, such as its own weight and the weight of the wagon body. The reactions
at the points of contact with the rails were the result of solving this stage. These re-
actions, with opposite signs, were used again to load the track. Iteratively repeating
the procedure conducted us in several steps to balance the static system and then let
go to the next while in a dynamic process. The procedure worked correctly within
a certain range of parameters. In our case, in practice, no loss of stability of the
solution occured unless the time step was too large.

Figure 10.12 compares the vertical displacements during the passage of a
wheelset at different speeds. The results obtained by the space–time element method
were compared with the results of the Medyna package. Despite the strongly differ-
ing approaches for creating numerical models, similar results were obtained. One
of the exceptions observed, at a speed of 72 km/h and higher, was a beat. We can
expect the occurrence of this phenomenon in the results of Medyna at a different
speed. This difference may result from a rejection in Medyna of the weight of the
wheels associated with the transverse motion of the rails. The three-dimensional
image of distorted rail axes at successive moments are shown in Figure 10.13. We
see higher amplitudes of displacements of the classical track, especially visible at
a distance from the rail vehicle wheels. In order to make a comparison, the results
of the measurements recorded in Germany are depicted in Figure 10.14. In addition
to the displacements in time showing the average values, similar to the quasistatic
case, the values diminished by static deflection are also presented.

Two characteristic cases of the analysis of Y-type sleepers were selected. The
rolling of a vehicle with regular, perfect wheels was the first. A vehicle with poly-
gonised, corrugated wheels, which subjected the track to oscillating forces, was the
second. The initial stage of rolling on the rails was an excitation of the system. The
response of the wheelset/track system depends on the velocity. In the higher veloc-
ity range, in the case of perfect wheels, the sleeper type has a significant influence
(Figure 10.15).

The second case of the problem is depicted in Figure 10.16. We notice a higher
level of oscillations for the Y-type sleepers. However, the average level of displace-
ments is considerably lower. Moreover, with increasing train velocity the amplitudes
in both cases start to become similar.

In addition to the improved dynamic properties registered at the rail level, one
can see that there are smaller amplitudes of the selected point on the frame of a rail
vehicle. The differences between passage on the classical track and the Y-type track
is significant and amounts to tens of percent (Figure 10.17).
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Fig. 10.12 Vertical displacements of the contact point of the wheel and the rail computed with
the package Medyna (left column) and by the space–time element method (right column) at
36, 54, 72 and 100 km/h.
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Fig. 10.13 Vertical displacements of a classical (left) and Y-type track (right) in time-space,
loaded by a boogie moving at a speed of 40 m/s.
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Fig. 10.16 Vertical displacements recorded at distance of (a) 120 cm, (b) 140 cm, (c) 160
cm, (d) 180 cm, (e) 200 cm, and (f) 220 cm from the contact point of the first wheelset of the
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10.3 Dynamics of Subway Track

Analysis of the passage of subways aims at assessing the harmful effects of vibra-
tions on the environment. This applies to both passengers and residents of nearby
buildings. Harm can be on the one hand loud and annoying sounds at low frequen-
cies, and on the other hand, vibrations causing uneven settling of the foundations
of buildings and plaster scratch. For the human ear, the sound of two modal com-
ponents, with frequencies close to each other, is more annoying than a single fre-
quency, even one with a higher amplitude. The increase in travel speed of subway
carriages increases the amplitudes of the vibrations transmitted to the surround-
ings. Existing subway tunnels can not be rebuilt. We also can not institute any pro-
found vibroacoustic isolation. However, we can try to influence the dynamics of the
vehicle–track system by modifying the dynamic characteristics of the rail vehicle or
by changing the foundation of the track in the underground tunnel. One such attempt
to modify the tracks is presented below.

The idea of the computations was to estimate the influence of different types of
vibration isolation on the level of vibrations transmitted to environment. The effi-
ciency of vibration damping together with an analysis of the economic cost of the
foundation could indicate the proper treatment of the problem to engineers. Two
methods of isolation of the rails from the outer part of the subway tunnel are de-
picted in Figures 10.18 and 10.19. In the first one, a large area of the cross section
of the concrete base is isolated by a viscoelastic mat. We call this, deep isolation.
This solution can only be implemented during construction of the tunnel. Later than
that, only a second solution can be applied: part of the concrete base can be re-
placed with a longitudinally placed reinforced beam, isolated by a viscoelastic mat.

Fig. 10.18 Subway track with deep isolation.
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Fig. 10.19 Subway track with shallow isolation.

A B
C D

Fig. 10.20 Model of subway track.

This method is called shallow isolation. The idea is to transfer the dynamic effects
from the points of local contact of the wheels with the rails to a larger area of the
track. The arrangement of the longitudinal beams under the sleepers so as to be iso-
lated from the foundation further increases the inertia of the vehicle–rail–sleepers
interfaces and is a kind of dynamic absorber. The selection of the cross-section of
the longitudinal beam and the shallow insulation should take into account, in addi-
tion to the dynamic properties of the system components (especially the suspension,
mass distribution, stiffness of elastic pads, or rail fastening), also the speed of travel
on particular intervals of track.
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Fig. 10.21 Shallow isolation of the subway track.
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Fig. 10.22 Modification of the subway track.

The basic simplified numerical model is built as shown in Figure 10.20. Then
the model is modified according to the type of isolation. The scheme has been ex-
tended to a bar situated under the sleepers, insulated from the substrate with an
elastic layer. Such a scheme has allowed of analysing the possibility of isolating the
basic layout of the track from the environment. The vibrations caused by passing
vehicles, and especially the coupling of the vibrations caused by successive axles,
can thus be significantly reduced. In the particular case of adopting a little stiff-
ness of the longitudinal beam, one can reduce the extended problem to the basic
scheme. The numerical model was described by the following types of elements:
the grid—applied to the rails and sleepers, beams—as applied to the longitudinal
beams, plates—describing the foundation and the elastic-viscous Winkler substrate
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Fig. 10.23 The reaction under the foundation slab with various types of vibration isolation,
at speeds of 10, 15, and 20 m/s.
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which describes the type of soil. The spacers were modelled by visco-elastic el-
ements. The plates of the foundation of the track were combined with the spring
elements with the possibility of elastic rotation. A relatively simple model of the
track describes the real task well. The moving (driving) mass associated with the
beam (rail) was taken into account. This is important for correctly formulating the
model and the numerical values of the results. The computational model of shallow
isolation is depicted in Figures 10.21 and 10.22.

Examples of the reaction at the nodal point under the foundation slab are shown
in Figure 10.23. The values of the forces in the case of deep vibration isolation,
shallow isolation, and without isolation, are compared. At low speeds, the shallow
mat does not make a visible change. At higher speeds, its role begins to emerge.
A deep mat improves performance throughout the range of speeds.

10.4 Vibrations of Airport Runways

Runways plates are unusual structures. Their thickness reaches 2 m. Moreover, this
is a layered structure, consisting of two plates separated by a thin layer of insulation.
The load is a set of point-applied forces, moving at high speed. The problem is the
distortion caused by temperature changes (Figure 10.24) which cause stresses and
by the dynamically applied external load. The temperature gradient reaches 0.08 ◦C
per mm of plate thickness. The heating and cooling of the surface on sunny days
causes changes in the altitude of up to several centimeters (Figure 10.25). A plate
loaded by deformations induced by heating of the top layer, located on a unilateral
elastic foundation, deforms upward. Under the influence of its own weight, long
plates fall and break at a certain distance from their ends because of the stress accu-
mulation due to thermal deformations and the load induced by the aircraft (Figure
10.26). This process is repeated, breaking off subsequent segments at the ends. In
this way, a continuous plate breaks at regular intervals. The figure shows that a con-
tinuous plate will break at each 6 m. To streamline the process, plates are incised at
fixed distances to stimulate cracking in the weakened sections. Finally, short plates
resist temperature and load stresses and so are considered in the simulations. The
problem of dynamic calculations is important because of the large aircraft takeoff
weight (for example the mass can reach 600 tons).

It’s easy to imagine the physical object, but it is difficult, at the stage of numerical
description, to decide how to begin constructing the numerical model. One should
consider, e.g., the mutual contact of both concrete slabs. This can be dealt with lo-
cally, in the neighbourhood of the point of application of the force. A thick layer
of the surface of the concrete slab can be considered as a three-dimensional block.
Then, too, there is the ground base, which is usually treated as a set of unilateral
constraints. The dilation layer placed between the concrete layers may be grafted
adhesively with plates. The plate system is loaded by a system of moving concen-
trated forces. We should also take into account the air pressure, which is especially
important when trying to bond off sealed plate edges from each other and from the
ground. We will not go into details of the study of the problem, but will only include
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Fig. 10.24 Annual changes in temperature gradients in the airfield plate during the day (upper
graph) and during the night (lower graph).

Fig. 10.25 Deformation of plate segments due to diurnal changes in temperature.

the range of accepted data. The task was described as a pair of plates of medium
thickness, bonded with viscoelastic dampers, resting on a Winkler viscoelastic foun-
dation. Vibrations of plates of dimensions 8×8 m were studied. A symmetric half
of the task was considered. The loading was performed by an oscillator subjected to
a force of 1 MN, moving at speeds of 180–360 km/h (Figure 10.27). The top plate
had a thickness of 40 cm, and the lower, 130 cm. Figure 10.28 presents the casting
process of the upper plate. The viscoelastic foundation has a stiffness of kz = 4 ·107

N/m2, and the dilation mat E =(0.2–2.0)·1011 N/m2. The replacement thickness of
the mat equal to 8 cm was assumed in order to take into account the deformation
of the concrete block panels in the vertical direction. Figure 10.29 shows the ini-
tial state of the simulation. The wave propagation from the source is visible. Let us
recall that the symmetric half being considered has dimensions 4×8 m and is rel-
atively narrow. Our figures have disproportionate dimensions. Figure 10.30 shows
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Fig. 10.27 Diagram of the airfield plate.
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Fig. 10.28 Upper plate construction.
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Fig. 10.29 Wave in the plate in the initial state of the motion.
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Fig. 10.30 Successive stages of the passing load.

six phases of the displacement of the system. The loosening of the upper plate is
apparent. Two factors determine the image of the displacements: the strength of the
dilation layer, i.e., the stress value at which the bonds between the two plates are
broken, and the way in which the contact in the zone of force application and stress
concentration is modelled. The factors that play a role in a zone limited to a very
small loaded area, virtually decide the outcome. That is why the task can not be
analysed by limiting attention to a pair of plates. Proper selection of the parameters
describing the two decisive factors must be preceded by a three-dimensional static
analysis of the strain state.



Appendix A
Computer Programs

The computer programs for our test simulations and for real track and airfield plate
simulations were written in Fortran, C, and the C# programming language. In further
sections, listings of the programs will be given in Fortran 77, since this seems to be
the most efficient tool for numerical analyses. The important feature in favour of
this language is a free Lapack library with highly efficient procedures for linear
algebra. For our purpose, the solution of the system of equations must be efficient
and should allow operating with a minimum number of coefficients. A band matrix
enables solving with a highly discretized spatial domain in a reasonable time. We
must apply procedures for non-symmetric matrices since the contribution of the
non-symmetric matrix C of the moving point mass makes the symmetric matrices
of the structure non-symmetric.

These computer programs are written in a relatively clear form. The global ma-
trices are collected as band matrices. The code can be shortened and the execution
made more efficient if we rearrange some procedures. However, we intend here to
keep a clear form of the code.

A.1 String—Space–Time Element Method

The program for string analysis uses the space–time finite element method. The pa-
rameters alpha and gamma control the space–time element method with a Dirac
virtual function. The next data describe the length of the string (xl), tensile force
(xf), mass density (ro), cross sectional area (a), external force (q0), and the moving
mass (xm0). The number of points ne is declared as a parameter, the speed of the
mass vm and time step h are declared in the text. The procedure for solving the sys-
tem of equations DGESV is taken from the Lapack library. The subroutine maska
computes the moving mass matrices.
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A.2 Timoshenko Beam—Newmark Method

The Timoshenko beam is computed with the Newmark method. Subintegrated finite
element matrices were assumed. The program beam is built up in the following
way. First, the elemental beam stiffness and inertia matrices are computed (elemk
and elemm). Then the global matrices are assembled (dodkm). The time stepping
scheme is started and the element carrying the mass is determined (iel). The portion
of the mass assigned to both nodes of the element iel is computed. The procedure
matk computes the matrix of coefficients for the Newmark method. In the same part,
the moving mass is added to the global matrix and to the right-hand side vector. The
boundary conditions are taken into account in warbrz and the system of equations
is solved by solve. Finally, the velocity and acceleration vector is computed and the
execution returns to the beginning of the time loop.

The program is autonomous, i.e., it does not require external library procedures.
The Gauss procedure is included.
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A.3 Mindlin Plate—Space–Time Element Method

The theory of this model of the plate is given in Section 7.4.2, page 213. The pro-
gram is written in Fortran 77. It uses the Lapack library procedure dpbsv. It solves
the system of algebraic equations. The coefficient matrix is formed as a band non-
symmetric matrix.

The input data set is listed below. Two first lines with values are read by the
program as a file plate.cmm (lines 23–26). The remaining lines are comments and
are omitted.

20 10 1200. 1200. 10. .5d0 .01 9.81d-3 0.08 10d6
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The data is given in the [cm, g, μs] system.
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A.4 Kirchhoff Plate — Space-Time Element Method

Below we show the code for thin plate element, siutable for the program from
Appendix A.3. The matrices for thin plate element are given in the section 7.4.1,
page 204.
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132. Strzyżakowski, Z.: Modelling of dynamic phenomena in tranportation systems (in Pol-

ish). Politechnika Radomska, Radom (2006)



References 291
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134. Szcześniak, W.: Comparison of the mathematical models of the moving inertial load on
Euler and Timoshenki beams (in Polish). In: VIII Symp. Dyn., Konstr. Zeszyty Naukowe
Politechniki Rzeszowskiej, Mechanika, vol. 117(38), pp. 363–368 (1993)

135. Taheri, M.R., Ting, E.C.: Dynamic response of plates to moving loads: finite element
method. Comput. and Struct. 34(3), 509–521 (1990)

136. Taltello, F., Burkhardt, G.: Zur Anwendung der Methode der Raum–Zeit–Elemente auf
die dynamische Untersuchung von Stahlbetonbauteilen. Tech. Rep. 68, Hochschule fűr
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