
Changing the Gate Order for Optimal LNN Conversion

Atsushi Matsuo and Shigeru Yamashita

Graduate School of Science and Engineering Ritsumeikan University
1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan

comp@ngc.is.ritsumei.ac.jp, ger@cs.ritsumei.ac.jp

Abstract. While several physical realization schemes have been proposed for
future quantum information processing, most known facts suggest that quantum
information processing should have intrinsic limitations; physically realizable op-
erations would be only interaction between neighbor qubits. To use only such
physically realizable operations, we need to convert a general quantum circuit
into one for an so-called Linear Nearest Neighbor (LNN) architecture where any
gates should be operated between only adjacent qubits. Thus, there has been much
attention to develop efficient methods to design quantum circuits for an LNN ar-
chitecture. Most of the existing researches do not consider changing the gate order
of the original circuit, and thus the result may not be optimal. In this paper, we
propose a method to convert a quantum circuit into one for an LNN architecture
with the smallest number of SWAP gates. Our method improves the previous re-
sult for Approximate Quantum Fourier Transform (AQFT) by the state-of-the-art
design method.

Keywords: Quantum Circuit, Linear Nearest Neighbor, Adjacent Transposition
Graph.

1 Introduction

Since the invention of the integrated circuit in 1958, the number of transistors on an
integrated circuit has doubled approximately every two years. Moreover, the size of
transistors has been decreased by the advance of the semiconductor technology. How-
ever the size of transistors cannot be smaller than the atomic scale: we are approaching
to the fundamental limits of the advance of the semiconductor technology.

Consequently, much attention has been paid to another computing paradigm such
as quantum computing [1]. A quantum computer is a device to make computations
by exploiting quantum mechanical phenomena, which enables to solve some problems
more efficiently than classical computers such as factoring of numbers [2].

Several impressive researches have been studied for physically implementing quan-
tum computers. With the advance of the quantum computing technology, it is getting
clearer that there should be some intrinsic limitations on implementing quantum com-
puters [3]. One of such limitations is that we cannot interact apart qubits by one basic
operation [4]. By this intrinsic limitation, it is considered very difficult to make an in-
teraction between two far apart qubits for most quantum technologies. For this reason,
quantum circuits may be realized on an so-called Linear Nearest Neighbor (LNN) ar-
chitecture which permits interactions only between adjacent (nearest neighbor) qubits.

A. De Vos and R. Wille (Eds.): RC 2011, LNCS 7165, pp. 89–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

90 A. Matsuo and S. Yamashita

Therefore, for the coming “quantum computing era,” it should be very important
to establish a design technology for quantum circuits on an LNN architecture. Indeed,
there have been many researches for this issue. Some researches designed specific quan-
tum circuits on an LNN architecture manually, e. g., circuits for approximate quantum
Fourier transform [5], Shor’s factorization algorithm [4,6], quantum addition [7], and
quantum error correction [8]. Others have developed methods to design general quan-
tum circuits on an LNN architecture. For example, Hirata et al. proposed a heuristic to
convert any quantum circuits to one for an LNN architecture [9]. Their method inserts
SWAP gates in an initial circuit so that all gates are performed on adjacent qubits. Re-
cently, Saeedi et al. have developed a very efficient design framework that utilizes their
ideas of template matching and reordering strategies. The LNN AQFT circuit designed
manually [5] has been improved by [9], and then successively improved further by [10].
Most of the above-mentioned techniques adopt the insertion of SWAP gates and the re-
order of the initial qubit lines. In their methods, it has not been considered to change
the gate order of the given initial circuit.

Our Contribution. In this paper, we explicitly consider a possibility to change the
initial gate order in a case where the gate reordering is possible. More precisely, we
consider a problem to find the smallest number of added SWAP gates for the LNN
conversion by changing the order of gates if they can commute. Our main contribution
is to formulate such a problem as a search problem on the adjacent transposition graph.
Accordingly we can find the best solution with respect to the number of SWAP gates
to be added. Our method can find an AQFT circuit with the fewest SWAP gates, which
improved the result by [10].

The remainder of this paper is organized as follows. In Section 2, quantum circuits
and LNN architectures are explained. Section 3 describes the adjacent transposition
graph and our proposed method. We then provide experimental results in Section 4.
Finally, we conclude this paper with a summary and future works in Section 5.

2 Preliminaries

In this section, we provide some basics necessary for our paper.

2.1 Quantum Circuit

A quantum circuit is a model of quantum computing. A quantum circuit indicates the
order of basic unitary operators (called quantum gates) corresponding to a given quan-
tum algorithm. Quantum bits and quantum gates are drawn on quantum circuits. An
example of a quantum circuit is shown in Fig. 1, where each horizontal line indicates a
quantum bit (denoted by ”Qubit 1” to ”Qubit 5”), and each dashed circle indicate a spe-
cific unitary operation called a quantum gate. On quantum circuits, time flows from left
to right which means that quantum gates are applied from the leftmost gate in sequence.
We explain quantum bits and quantum gates in detail below.

Quantum Bit. While in classical computers, a bit has to be either 1 or 0, in quan-
tum computer, quantum bits (qubits in short) can be 1, 0 or the superposition state as
|ψ〉 = α|0〉 + β|1〉 which is the any linear combination of 1 and 0.

Changing the Gate Order for Optimal LNN Conversion 91

Qubit 1

Qubit 2

Qubit 3 Quantum bitsU
Qubit 4

Qubit 5

Quantum gates

Fig. 1. A quantum circuit

Qubit 1

Qubit 2

Qubit 3

Qubit 4

Qubit 1

Qubit 2

Qubit 3

Qubit 4Qubit 4

Qubit 5

Qubit 4

Qubit 5

Qunatum circuit Quantum circuit
for an LNN architecture

convert

Fig. 2. Conversion of a quantum circuit to an
LNN circuit

Quantum Gate. A quantum circuit consists of a cascade of quantum gates. A quantum
gate indicates what unitary operator is applied to which qubit. For example, in Fig. 1,
the leftmost gate indicates that a SWAP gate is applied to Qubits 4 and 5. The following
three gates are mainly used in this paper.

– A SWAP gate is the leftmost gate in Fig. 1. A SWAP gate has two target bits xt1

and xt2, and interchanges the values of the target bits.
– A one-qubit unitary gate is the middle gate in Fig. 1. A one-qubit unitary gate

applies any unitary operations to the target bit.
– A CNOT gate is the rightmost gate in Fig. 1. A CNOT gate has a control bit and a

target bit. In Fig. 1, a control bit of the CNOT gate is Qubit 1 and a target bit of the
CNOT gate is Qubit 5. The following matrices: σx =

(
0 1
1 0

)
is applied to its target bit

iff the state of its control bit is |1〉.
CNOT gates and one-qubit gates are universal so any quantum gates can be decomposed
into a combination of CNOT gates and one-qubit gates.[1]

2.2 LNN Architecture

With the advance of the quantum computing technology, it is getting clearer that there
should be some intrinsic limitations on implementing quantum computers. One of such
limitations is that we cannot interact apart qubits by one basic operation. By this in-
trinsic limitation, it is considered very difficult to make an interaction between two far
apart qubits for most quantum technologies. For this reason, quantum circuits may be
realized on an so-called Linear Nearest Neighbor (LNN) architecture which permits
interactions only between adjacent (nearest neighbor) qubits.

If a gate interacts two far apart qubits, we can make the gate interact two adjacent
qubits by inserting (possibly many) SWAP gates before the gate. Thus by inserting
SWAP gates, it is possible to convert a circuit to one with the same functionality for
an LNN architecture. Fig. 2 shows an example of converting a quantum circuit to one
for an LNN architecture. On the left circuit of Fig. 2, two target bits of the rightmost
gate are apart. By inserting SWAP gates, the quantum circuit is converted to one for
an LNN architecture. The right circuit in Fig. 2 has the same functionality, and it uses
interactions between only adjacent qubits. Hereafter, let an LNN circuit denotes a cir-
cuit for an LNN architecture, and a non-LNN circuit denotes a circuit for a non-LNN
architecture.

92 A. Matsuo and S. Yamashita

Fig. 3. Quantum gates that are not commutative by Condition 1

3 Changing the Gate Order for Optimal LNN Conversion

3.1 Problem Definition

The problem to convert a circuit into an LNN circuit is formulated as follow.

LNNizing problem. Given a quantum circuit that consists of one-qubit gates and two-
qubit gates and the order of initial qubits, the problem is to convert the given quantum
circuit to an LNN circuit with the smallest number of SWAP gates. The order of qubits
after conversion should be the same as the initial qubits since the circuit may be used
as a sub-circuit for a large quantum circuit. Formally, the input and the output of the
problem are as follows.

Input : a given quantum circuit, and initial qubit order.
Output : an LNN circuit with the same qubit order as the initial one.

3.2 Dependence between Quantum Gates

In a quantum circuit, there is usually dependence between a pair of two gates such that
one gate should be applied before the other gate, i. e., some gates cannot commute.
When we convert a quantum circuit to an LNN circuit, the dependence between quan-
tum gates has to be kept, otherwise the logical functionality of the quantum circuit is
changed after converting it to an LNN circuit.

Quantum gates that satisfy one of the following conditions are not commutative. In
the following two conditions, let two gates be A and B. Let also the control bits and the
target bits of A be Acb and Atb, respectively. Also Bcb and Btb have the same meaning
for the gate B.

Condition 1: The first condition is that Acb = Btb. This means that the control bit of
one gate is the same as the target bit of the other gate. Fig. 3 shows an example of
two quantum gates that are not commutative by Condition 1.

Condition 2: The second condition is Atb = Btb and two unitary matrices that are
applied to Atb and Btb are not commutative. The target bits of two quantum gates
are the same and the unitary matrices that are applied to the target bits are not
commutative, then the two gates are not commutative. Fig. 4 shows an example of
two quantum gates that are not commutative by Condition 2. The gate denoted by
H (in Fig. 4) is called Hadmard gate that apply the following matrix: H = 1√

2

(
1 1
1 −1

)

to its target bit. The matrices σx and H are not commutative so that interchanging
these two gates will change the logical functionality of the quantum circuit.

Changing the Gate Order for Optimal LNN Conversion 93

Ｈ Ｈ

Fig. 4. Quantum gates that are not commutative by Condition 2

Ｈ Ｈ

A B DC E F

Ｈ Ｈ

Fig. 5. Groups of quantum gates that are com-
mutative

A BD CE F

Ｈ ＨＨ Ｈ

Fig. 6. The interchanged groups of quantum
gates

A pair of quantum gates that satisfies one of the above two conditions is not commuta-
tive. If a quantum circuit has such a pair, we should not change the order of the pair of
gates when we convert the circuit to an LNN circuit.

Two quantum gates cannot be interchanged (with each other) if one of the above
two conditions do hold. Even in such a case, we may swap two groups of quantum
gates. We do not consider such a special case in this paper, but only mention such an
example below. For example, a quantum gate E and a quantum gate D or C in Fig. 5
are not commutative by Condition 2. Two quantum gates C and B in Fig. 5 are not
commutative by Condition 2. Accordingly, we conclude that the two gates, E and B,
cannot be swapped, and thus when we convert the circuit of Fig. 5 to an LNN circuit,
we only consider the case where the gate B should be applied before gate E. However,
we can swap two groups of gates in this example. Namely, the circuit in Fig. 5 can be
transformed to one in Fig. 6, and thus we can also consider the case where the gate E is
applied first when we convert the circuit to an LNN circuit.

In Fig. 6, despite the fact that quantum gates A, B, C and D, E, F are not commutative
by Condition 2, the groups of quantum gates are commutative because interchanging
two groups of the quantum gates will not change the logical functionality of the quan-
tum circuit.

The above example tells us that we may change the order of application of two quan-
tum gates even if either one of the two conditions holds. Considering such a possibility
may reduce the cost of conversion. However it is difficult and almost impractical to
consider a possibility of swapping two groups of gates; we consider only the possibility
of swapping individual gates in this paper.

3.3 Gate Dependence Graph

From a non-LNN circuit, we can construct a gate dependence graph by considering
Condition 1 and 2. A gate dependence graph is a directed graph that shows the depen-
dence of quantum gates in a given quantum circuit. Each node, ni, in a gate dependence
graph corresponds to one specific gate, gi, in the given circuit. An edge between two
nodes ni and n j means that gate gi should be applied before gate g j, i. e., we cannot

94 A. Matsuo and S. Yamashita

A

B C

root

D

E

Fig. 7. A gate dependence graph

Ｈ

Ｈ

A B C D E

Fig. 8. A quantum circuit before LNN conversion

Ｈ

Ｈ

A B CD E

Fig. 9. A quantum circuit after LNN conversion

change the order of application of gates gi and g j. This can be obviously determined by
Condition 1 and 2. By technical convenience, we have one special root node in a gate
dependence graph. Each node connected to the root node indicates that the correspond-
ing gate does not depend on any other gates, i. e., the gate can be applied first in the
circuit. Fig. 7 shows the gate dependence graph for a quantum circuit in Fig. 8. Fig. 9
shows a quantum circuit after converting the circuit in Fig. 8 to an LNN circuit. By
this conversion, the gate order is changed but the dependences of quantum gates remain
unchanged.

In the following, we will use the following notation: for a set of gates Γ, and a gate
dependence graph G (where we assume each gate gi in Γ has the corresponding node ni

in G), κΓ, G denotes a set of gates g having the following two properties: (1) g is included
in Γ, and (2) there is no g′ in Γ such that the corresponding node of g′ is a predecessor
of the corresponding node of g in G.

3.4 Adjacent Transposition Graph

In this section, adjacent transposition graphs are explained. In an adjacent transposition
graph, a node corresponds to a permutation, and an edge corresponds to a SWAP gate.
The numbers in each node indicates the order of quantum bits. Hereafter, let n denote
the number of qubits of a given quantum circuit. Each node has (n− 1) edges. The total
numbers of the nodes and the edges in an adjacent transposition graph for an n-qubit
circuit are n! and (n−1)n!

2 , respectively. Fig. 10 is an example of an adjacent transposition
graph with n = 4.

By finding the shortest path (in an adjacent transposition graph) corresponding to a
sequence of qubit orders that realizes all quantum gates on an LNN architecture, optimal
conversion that considers the order of the quantum gates is possible. In the following
example, a quantum circuit in Fig. 11 is converted to an LNN circuit by utilizing an
adjacent transposition graph. Fig. 12 is a gate dependence graph of the quantum circuit
in Fig. 11, and Fig. 13 shows how to convert a quantum circuit to an LNN circuit by

Changing the Gate Order for Optimal LNN Conversion 95

Fig. 10. A adjacent transposition graph with n = 4

Qubit 1

Qubit 2

Qubit 3

Qubit 4

A B C

Ｈ

D

Qub t

Fig. 11. A non-LNN circuit

A

B C

root

D

Fig. 12. The gate dependence graph for the quan-
tum circuit in Fig. 11

utilizing an adjacent transposition graph. Numbers on the quantum circuit of Fig. 13
indicates the order of the qubits at the indicated point of time.

We will use the following notations:

– A gate is said to be LNN-realizable on the qubit order N if it can be applied by
interacting only adjacent qubits when the qubit order is N. In the following, let λN

be a set of LNN-realizable gates on the qubit order N.

– A gate is said to be applicable with respect to a set of gates Γ, and gate depen-
dence graph G (where we assume each gate gi in Γ has the corresponding node ni

in G), if it is included in κΓ, G defined in Sec. 3. 3.

– A gate is said to be realizable at a qubit order N with a remaining gate set Γ
and a gate dependence graph G, if it is included in λN ∩ κΓ,G. In other words, if
the current situation permits to apply some of the gates in Γ, such gates are called
“realizable”. We will use this terminology in the rest of this paper.

96 A. Matsuo and S. Yamashita

Qubit 1

Qubit 2

Qubit 3

Qubit 4 4

3

2

1

3

4

2

1

3

4

1

2

A B C

Ｈ

D

1234 1243 2143Node

Non-realizable gate { A, B, C, D } { C, D } { C } { ∅ }

Start END

Fig. 13. Conversion of a quantum circuit to an LNN circuit by utilizing the adjacent transposition
graph

3.5 Overview and an Example of the Proposed Method

Our main idea to convert a non-LNN circuit into an LNN-circuit is to formulate the
problem as finding an optimal path (with respect to some desired property explained
below) on an adjacent transposition graph. The overview is as follows.

We first let Γ be the set of all the gates in the given non-LNN circuit. Then, from Γ,
we remove a gate one by one if the gate is realizable at the current situation. Realizable
gates can be applied in the converted LNN circuit, so we remove all such gates from Γ,
and place them at the end of the converted LNN circuit. In this way, the converted LNN
circuit will grow.

If there is no realizable gates are remained in Γ, we insert (possibly many) SWAP
gates at the end of the converted LNN circuit so that the changed qubit order make some
gates in Γ realizable. We continue this until Γ becomes empty.

Note that putting a SWAP gate at the end of the LNN circuit corresponds to a move
from one node to adjacent node in its adjacent transposition graph. Thus, our problem
is essentially to find “the best” path in the adjacent transposition graph.

Now let us provide with an example to help understanding the above. The quan-
tum circuit in Fig. 11 is composed of four gates A, B, C and D. At first, we set Γ =
{A, B, C, D}.

The initial qubit order is N = 1234, and λ1234 = {A, B}. In Fig. 12, κΓ, G = {A}
at first. Then λ1234 ∩ κΓ, G = {A}, and thus A can be applied in an LNN circuit. After
placing A at the LNN circuit, we remove A from Γ. This can be formally written as
Γ ← Γ \ λ1234 ∩ κΓ, G. By removing A from Γ, Γ will be changed and so does κΓ, G.
The new κΓ, G will be κΓ, G = {B, C}. Therefore new realizable quantum gates will be
λ1234∩κΓ, G = {B}, and B can be applied in the LNN circuit. In Fig. 13, when N = 1234,
quantum gates, A and B, are realized on an LNN architecture.

After realizing quantum gates, the other quantum gates sometimes become realizable
like quantum gates, A and B. For this reason, the operationΓ ← Γ\λN∩κΓ, G is repeated
until λN ∩ κΓ, G becomes φ.

By inserting a SWAP gate, N = 1234 can be changed to N = 1243. Then λ1243 ={D}
and κΓ, G = {C, D}. Therefore λ1243 ∩ κΓ, G ={D} so we remove D from Γ. Again, this
can be written as Γ ← Γ \ λ1243 ∩ κΓ, G. In Fig. 13, when N = 1243, the quantum gate
D is realized on an LNN architecture. Then the new κΓ, G is κΓ, G = {C} and λ1243 ∩ κΓ, G

is φ, and so we go to the next order of the qubits.

Changing the Gate Order for Optimal LNN Conversion 97

Algorithm 1. BFS by using ATG (Γ, N, G).
1: Γ ← Γ \ λN ∩ κΓ, G
2: if Γ is φ then
3: terminate searching
4: end if
5: M ← φ
6: M[N] ← {Γ}
7: Q.push ((N, Γ))
8: while Q is not empty do
9: (N, Γ)← Q.pop()

10: for all N′ ∈ the adjacent nodes of N do
11: while λN′ ∩ κΓ, G is not φ do
12: Γ ← Γ \ λN′ ∩ κΓ, G
13: end while
14: if Γ is φ then
15: terminate searching
16: else
17: if M[N’] has not been registered then
18: M[N′]← {Γ}
19: Q.push ((N′ , Γ))
20: else
21: if ∃x ∈ M[N′] such that x ⊆ Γ then
22: continue
23: else
24: M[N′]← M[N′] ∪ {Γ}
25: Q.push ((N′ , Γ))
26: end if
27: end if
28: end if
29: end for
30: end while

By utilizing the adjacent transposition graph in Fig. 10, we can essentially do the
above procedure to convert the quantum circuit in Fig. 11 to the LNN circuit in Fig. 13.
In the next section, we will describe a formal algorithm to do so as the breadth first
search on an adjacent transposition graph.

3.6 The Breadth First Search by Utilizing the Adjacent Transposition Graph

Now we are ready to show our breadth first search algorithm formally as Algorithm 1.
In the algorithm, M is a map from a qubit order to a set of sets of quantum gates that
have not been placed on a converted LNN circuit yet. Q is a queue of pairs of the order
of qubits, and quantum gates that have not been made realizable yet. For a qubit order
(which is a permutation) N, there is the corresponding node in the adjacent transposition
graph, and they are conceptually the same. Therefore, for an easy writing, we will use
the notation N to mean a qubit order, or a node in the adjacent transposition graph,
interchangeably depending on the context.

In the breadth first search, we may get to the same permutation node many times
during the breadth first search. If the search get to the same (permutation) node again
and there is no essential improvement in the set of gates that have not been made realiz-
able, it is useless to continue the further search from the node. The reason is that we can
always find the better solution from the same (permutation) node that has been visited
before.

98 A. Matsuo and S. Yamashita

1234

{ A, B, C, D}

{ C, D }

Start

2134 1324 1243

2314 2143 1342 142331241234 1234 2143 1234

{ C, D }

{ C, D } { D } { D }

{ C }

{ C } { C } { C }

{ C }

{ ∅ }

END

prune

Fig. 14. The breadth first search by utilizing the adjacent transposition graph

We now explain the detail of the Algorithm 1. From lines 1 to 7, variables are ini-
tialized. If a given quantum circuit can be converted to an LNN circuit with no SWAP
gates, we terminate the search at line 2. The breadth first search starts from line 8. At
line 9, we pop a pair of a permutation N and gate set Γ from the queue, and we keep
searching from the permutation node N. To do so, from line 10 to line 13, we move to
the adjacent node, N′, of N one by one, and we remove some gates that become realiz-
able at the move (if any) from Γ. This operation can be formally written at lines 11 to
13.

If Γ becomes empty, we can conclude that we have found the best solution, and thus
we stop the further search at line 14.

The lines after line 17 are for pruning the redundant search (from the same permu-
tation node with no improvement from the previous visit) as mentioned above. In the
algorithm, M is used as a cache to store the previous results not to perform the redundant
search.

The detail is explained in the following. From lines 17 to 19, the case when M[N′]
has not been registered indicates that the node N′ in the adjacent transposition graph
has never bee visited while searching. In such a case, Γ is registered into M[N′], and
the pair of N and Γ is pushed into the queue.

The lines after line 21 deal with the case when M[N′] has already been registered.
This indicates that the node N′ in the adjacent transposition graph has already been
visited while searching. In this case, we need to check whether further search from this
node is useful or not. One searching path is not useful when (previous) another search
path has already visited the same node N′ in the adjacent transposition graph, and the
set of the quantum gates that have not been made realizable yet at that time is the subset
of Γ. This condition is checked at line 21.

In the example as shown in Fig 14, the left most node satisfies the above condition,
and thus the further search from this node is pruned. When N = 1234 is visited at the
first time (the starting node of the graph), the set of the quantum gates that have not been
made realizable yet is {C, D}. When N = 1234 is visited again at the left most node,
the quantum gates that have not been made realizable yet is {C, D}. Accordingly, the
further search is pruned because {C, D} ⊆ {C, D}. This means that there is no possibility
to find the better answer even if the search is continued.

Changing the Gate Order for Optimal LNN Conversion 99

Table 1. Experimental results

naive method proposed method
Circuit n gc # of SWAP gates Time (sec) # of SWAP gates Time (sec)
3 17 15 3 10 4 0.01 4 0.01
decod24-v0 40 4 9 6 0.01 6 0.01
decod24-v1 42 4 9 6 0.01 6 0.01
decod24-v2 44 4 9 6 0.01 6 0.01
decod24-v3 46 4 9 6 0.01 6 0.01
fredkin 5 3 7 2 0.01 2 0.01
miller 12 3 8 6 0.01 2 0.01
toffoli double 3 4 7 8 0.01 4 0.01
SteaneEncoding 7 14 26 1.43 18 1.85
SteaneErrorDetection 10 12 38 1.42 34 4572.59
add8 173 25 48 46 0.33 – –

A

B C

root

D

E

F G

Fig. 15. The gate dependence
graph of fredkin 5

4 Experimental Results

In this section, we show some experimental results. The proposed method was imple-
mented in C++, and the experiments were done on an Intel Core i7-929 2.66GHz with
24GB memory.

Before showing our results, we would like to note that our method can always find
the best result with respect to the number of SWAP gates. Therefore, we do not need
to show the comparison with respect to the quality of the converted results. The reason
is that our method essentially performs an exhaustive search. Thus, we show (1) how
large problems our method can treat, and (2) how close the results of a naive method
are to the best results (by our method). Also, we would like to show that (3) our method
could indeed find better results compared to the state-of-the-art existing method.

To show the above (1) and (2), we compared the proposed method to the naive ap-
proach, in which the gate order is not considered, i. e., the gate order is not changed from
the original one. The results are shown in Table 1. The first column gives the names of
the circuits in RevLib [11], except for SteaneEncoding and SteaneErrorDetection. The
second and the third columns denote the number of qubits (n), and the gate count (gc)
of the circuits, respectively. The following columns show the number of SWAP gates
and run-time for the conversion by the naive method and the proposed method.

As can be observed from Table 1, in some cases, a naive method cannot find the
best solution. Also, as expected, our method could not deal with a large problem; the
quantum circuit, add8 173, in Table 1 could not be converted to an LNN circuit by the
proposed method because of the memory explosion. Let (the number of qubits-1) be M,
and the depth of the breadth first search to find the best solution be d. Then, the space
complexity of the proposed method is obviously O(Md). Therefore, when the depth of
the breadth first search to find the best solution increases, its space complexity increases
exponentially. By considering this and the experimental results, we can observe that our
method may be able to find the best solution when we need to insert SWAP gates up to
around 35 or so. For this reason, if the converted LNN circuit need many SWAP gates,
it is not practical to use our proposed method; we may need a heuristic search method.

For the quantum circuits, 3 17 15, decode24, fredkin 5 in Table 1, the numbers of
SWAP gates of the naive method and the proposed method are the same. The reason can
be seen in their gate dependence graphs. For example, see the gate dependence graph

100 A. Matsuo and S. Yamashita

Fig. 16. The LNN AQFT circuit by the method by Saeedi et al. [10]

|x0〉 H • × ×

|x1〉 R2 H • • × • • • × • •

|x2〉 R2 × R3 R4 × R3 H • • × R5 R4 H • × R5 H ×

|x3〉 × × R2 H • × R3 × • × R2 × × × ×

|x4〉 R2 × • × R4 × • × • × × ×

|x5〉 R3 × • × R5 R3 ×× • × • •

|x6〉 R3 × • ×× R4 R3 × R2 H •

|x7〉 R5 × × R2 H

Fig. 17. The LNN AQFT circuit by the proposed method

for fredkin 5 in Fig. 15, it is observed that we can only change the order of B and C,
and/or F and G. Thus, there is no much difference between the naive method and the
proposed method.

To show the above (3), we compared the results of converting the AQFT circuit with
the state-of-the-art existing method by Saeedi et al. [10]. As described in Sec. 1, the
original LNN circuit for AQFT [5] has been improved by the method [9], and then by
Saeedi et al. [10]. Fig. 16 shows the LNN circuit for AQFT by Saeedi et al. [10] which
has been considered to be the best. Fig 17 shows an LNN circuit for AQFT by our
proposed method. As can be seen, the gate order is a bit changed, and the SWAP gates
are reduced; The numbers of SWAP gates used are 20 in the method by Saeedi et al.
and 18 in our proposed method, respectively.

5 Conclusions

In this paper, we have proposed how to convert a non-LNN quantum circuit into an
LNN circuit with the smallest number of SWAP gates by considering the gate order.
When the number of SWAP gates is small, the proposed method is able to find the
optimum conversion easily with considering the gate order. The experiments show that
our method can reduce the number of SWAP gates by two compared to the LNN AQFT
circuit converted by the method by Saeedi et al. .

However, if the number of SWAP gates is large, the space complexity increases expo-
nentially. Thus, to convert a large quantum circuit to an LNN circuit in reasonable time,
we first need to divide the circuit into small partial circuits, and then apply the proposed
method to each partial circuit one by one. Another way to convert a large non-LNN cir-
cuit is a heuristic conversion method; it would be an interesting to develop a heuristic.

Changing the Gate Order for Optimal LNN Conversion 101

Because our problem formulation can be seen as a search problem on a graph, we may
be able to utilize an idea of the existing traversal algorithms for our purpose.

Acknowledgement. This research was partially supported by Kayamori Foundation of
Informational Science Advancement.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press (2000)

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

3. Ross, M., Oskin, M.: Quantum computing. Commun. ACM 51(7), 12–13 (2008)
4. Fowler, A.G., Devitt, S.J., Hollenberg, L.C.: Implementation of shor’s algorithm on a linear

nearest neighbour qubit array. Quantum Information and Computation 4(4), 4:237–4:251
(2004)

5. Takahashi, Y., Kunihiro, N., Ohta, K.: The quantum fourier transform on a linear nearest
neighbor architecture. Quantum Information and Computation 7(4), 383–391 (2007)

6. Kutin, S.A.: Shor’s algorithm on a nearest-neighbor machine. Technical report, Asian Con-
ference on Quantum Information Science (2007)

7. Choi, B.S., Meter, R.V.: Effects of interaction distance on quantum addition circuits. ArXiv
e-prints (September 2008)

8. Fowler, A.G., Hill, C.D., Hollenberg, L.C.L.: Quantum-error correction on linear-nearest-
neighbor qubit arrays. Phys. Rev. A 69(4), 042314 (2004)

9. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient coversion o quan-
tum circuits to a linear nearest neighbor architecture. Qnantum Information and Compu-
tation 11(1), 142–166 (2011)

10. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor
architectures. Quantum Information Processing, 1–23 (2010), 10.1007/s11128-010-0201-2

11. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for
reversible functions and reversible circuits. In: International Symposium on Multiple Valued
Logic, pp. 220–225 (May 2008)

	Changing the Gate Order for Optimal LNN Conversion
	Introduction
	Preliminaries
	Quantum Circuit
	LNN Architecture

	Changing the Gate Order for Optimal LNN Conversion
	Problem Definition
	Dependence between Quantum Gates
	Gate Dependence Graph
	Adjacent Transposition Graph
	Overview and an Example of the Proposed Method
	The Breadth First Search by Utilizing the Adjacent Transposition Graph

	Experimental Results
	Conclusions
	References

