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Abstract. Mapping a circuit of reversible gates to a circuit of elemen-
tary quantum gates is a key step in synthesizing quantum realizations
of Boolean functions. The library containing NOT, controlled-NOT and
controlled square-root-of-NOT gates has been considered extensively. In
this paper, we extend the library to include fourth-root-of-NOT gates.
Experimental results using REVLIB benchmark circuits show that using
this extended library results in smaller quantum circuits.

1 Introduction

Many reversible circuit synthesis methods have been presented in the literature.
A good review can be found in [10]. Most methods produce a circuit composed
of a cascade of basic reversible gates. After, or sometimes during, synthesis the
reversible gates are mapped to elementary quantum gates implemented in the
target technology, a step analogous to technology-mapping in traditional digital
circuit design. Much of the work in this area has focused on the quantum gate
library of NOT , controlled-NOT , controlled-V and controlled-V + gates, which
is termed the NCV library. The last two are square-root-of-NOT gates. The work
here extends the library to include controlled-W and controlled-W+ gates which
are fourth-root-of-NOT gates. The question we seek to address is to what extent
the NCVW library will yield smaller quantum circuits.

Although the paper concentrates on MCT reversible gates, the proposed meth-
ods can be applied to other reversible gates, e.g. Fredkin [2] gates, by transform-
ing them to Toffoli gate realizations. The approach can also be targeted to other
quantum gate libraries.

All circuits described in this paper have been verified using the QMDD circuit
equivalence checker described in [11]. The NCV and NCVW catalogs of circuit
realizations for MCT gates, the programs that generate those catalogs and the
MCT to quantum circuit mapping program (in Python) are available from the
authors.

The rest of the paper is organized as follows. Section 2 gives the necessary
background. Section 3 outlines an approach to finding NCVW realizations of
single MCT gates, and Section 4 shows how that work can be used in finding
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NCVW realizations of MCT circuits. Experimental results are given in Section
5 and the paper finishes with conclusions and suggestions for ongoing work in
Section 6.

2 Background

We here present the background necessary for this paper. Readers interested in
a more detailed introduction should consult the literature.

Definition 1. A multiple-output Boolean function is reversible if it maps each
input assignment to a unique output assignment.

A reversible function is realized by a cascade of reversible gates with no fan-out
or feedback [5]. A completely or incompletely-specified irreversible function can
be embedded into a reversible function, usually with more inputs and outputs,
and then realized by a reversible circuit [3].

Definition 2. A multiple-control Toffoli (MCT) gate with target line xj

and control lines {xi1 , xi2 · · ·xik}, maps (x1 . . . xj . . . xn) to

(x1 . . . (xi1xi2 · · ·xik )⊕ xj . . . xn).

Note that all controls must be 1 for the target to be inverted. An MCT gate with
no control is the well-known NOT gate. An MCT gate with a single control line
is called a controlled-NOT (CNOT) gate. We use T (C; t) to denote the MCT
gate with C being the set of controls and t being the target.

Note that for all circuits considered in this work, MCT gate controls and
controls for the quantum gates discussed below must have binary (0 or 1) and
not quantum values.

Fredkin gates [2], Peres and inverse-Peres gates [6] are also used in reversible
circuits. Each such gate can be substituted by an equivalent sequence of MCT
gates. Indeed, any reversible gate can be substituted by a sequence of MCT gates.
A reversible circuit composed of only MCT gates is thus used as the starting
point for the approach presented in this paper.

Many quantum gates have been defined and studied in the literature [5]. Here
we consider what we term the NCVW library which consist of the NOT and
CNOT gates given above and four single-control gates (V ,V +,W ,W+) defined
below.

It is well known (see [5] for details) that the operation of each gate in an
n-line reversible or quantum circuit can be represented by a square matrix of
dimension 2n. The construction of the matrix depends on which line is the target,
which lines are the control(s) and a 2× 2 matrix defining the operation on the
target line. For example, the target matrix for an MCT gate, including NOT
and CNOT , is N =

(
0 1
1 0

)
.
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Theorem 1. Consider the matrix

Rk =
1

2

(
1 + i2/k 1− i2/k

1− i2/k 1 + i2/k

)
(1)

where k is a power of 2. Rk is a k-th root of N, i.e. (Rk)
k = N.

Proof: Consider

Rp ×Rp =
1

2

(
1 + i2/p 1− i2/p

1− i2/p 1 + i2/p

)
× 1

2

(
1 + i2/p 1− i2/p

1− i2/p 1 + i2/p

)
(2)

=
1

2

(
1 + i4/p 1− i4/p

1− i4/p 1 + i4/p

)
(3)

The matrix in Equation 3 isRp/2 which is verified by setting k = p/2 in Equation
1. Since Rp×Rp = Rp/2 and R1 = N, it follows by induction that for k a power

of 2, (Rk)
k = N. �

Corollary 1.1 Since the conjugate of the product of two matrices is the product
of their conjugates, (Rk)

k = N.

Let V = R2 = 1
2

(
1+i 1−i
1−i 1+i

)
. Clearly, V ×V = N. Let V+ be the conjugate

transpose (adjoint) of V. It follows from Corollary 1.1 that V+ × V+ = N.
further, it is readily verified that V+ = V−1.

Definition 3. A controlled-V gate applies the transformation defined by the
matrix V when the single control line has value 1. Likewise, a controlled-V +

gate applies the transformation defined by the matrix V+ when the single control
line has value 1. Both gates are called square-root-of-NOT gates. They both
pass the target line value through unaltered if the control has value 0.

Definition 4. A controlled-controlled-V gate is the extension of the
controlled-V gate to the case of two controls both of which must be 1 to ap-
ply the transformation to the target. A controlled-controlled-V + gate is the
analogous extension to the controlled-V + gate.

Let W = R4 = 1
2

(
1+

√
i 1−√

i
1−√

i 1+
√
i

)
. Its adjoint is W+ = 1

2

(
1−i

√
i 1+i

√
i

1+i
√
i 1−i

√
i

)
. By

definition, W×W = V. It follows directly that W+ ×W+ = V+. It is readily
verified that W+ = W−1.

Definition 5. A controlled-W gate applies the transformation defined by the
matrix W when the single control line has value 1. Likewise, a controlled-W+

gate applies the transformation defined by the matrix W+ when the single control
line has value 1. Both gates are called fourth-root-of-NOT gates.

The quantum bit operations corresponding to the matrices V , V +, W and
W+ are rotations around the x-axis of the Bloch sphere [5]. V and W define
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rotations by 90◦ and 45◦ in one direction while V + and W+ define rotations
by 90◦ and 45◦ in the opposite direction. Considering computation, we note
from the well-known De Moivre’s theorem that i1/k = cos π

2k + i sin π
2k . Hence√

i = cos π
4 + i sin π

4 .
The above can be extended to gates implementing other roots-of-NOT . Higher

order roots require progressively smaller rotation angles. We do not consider that
option here and, for that reason, we do not consider the case of two-control W
and W+ gates.

The following properties and definitions are useful for simplifying circuits.

Property 1. MCT gates, including NOT, CNOT and Toffoli gates, are self-inverse
and two identical such gates in a row yield the identity mapping. V and V + gates
with the same target and the same control are the inverse of each other. W and
W+ gates with the same target and the same control are the inverse of each
other.

Property 2. Given a cascade of gates G1G2 . . . Gk realizing the reversible func-
tion F , the cascade G−1

k . . .G−1
2 G−1

1 realizes the function F−1, where G−1
i is the

inverse gate for Gi.

Definition 6. Since an MCT gate is self-inverse applying Property 2 to a re-
alization of the gate yields an alternate realization for the same gate. We term
this the reverse realization.

Property 3. In a circuit realizing a reversible function, the functionality is not
changed if for any line, (a) all V gates are replaced by V + gates and all V +

gates are replaced by V gates, or (b) all W gates are replaced by W+ gates and
all W+ gates are replaced by W gates, where both interchanges must be applied
to any line that contains both V -type and W -type gates.

Property 3 is the observation that we can reverse the direction of rotation in
the Bloch sphere so long as we do it consistently.

The methods discussed below produce circuits composed of NOT , CNOT ,
and controlled-V , V +, W and W+ gates. We term such circuits NCVW circuits.
We compare our results to NCV circuits which are similar except they contain
no controlled-W or controlled-W+ gates.

Definition 7. The cost of an NCVW or NCV circuit is taken to be the number
of gates, i.e. we assume NOT , CNOT and single control quantum gates all have
cost 1.

For drawing circuits, we follow the normal conventions of using a ⊕ for an MCT
gate or a box containing the gate name to indicate the operation performed on
the target line, and a • to indicate each control connection.

3 NCVW Circuits for MCT Gates

It is well known [1] that the Toffoli gate T ({c, b}; a) can be realized using 5 NCV
gates as shown in Figure 1(a). This extends to realizing controlled-controlled-V
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c • • •
b �������	 • �������	 •
a V V + V

c • • •
b �������	 • �������	 •
a W W+ W

c • • •
b �������	 • �������	 •
a W+ W W+

(a) (b) (c)

Fig. 1. (a) NCV realization of T ({c, b}; a). (b) NCW realization of V ({c, b}; a). (c)
NCW realization of V +({c, b}; a).

and V + gates using NCW gates as shown in Figure 1(b) and (c), respectively.
Note that the circuit in Figure 1(a) represents 4 distinct realizations since it can
be reversed and V and V + can be interchanged. The circuits in Figure 1(b) and
(c) each represent two realizations by reversal.

Consider realizing T ({d, c, b}; a). The circuit in Figure 2(a) is found by adding
line d to the circuit in Figure 1(a). The correct operation of this circuit is readily
verified by considering the cases of d = 0 and d = 1 in turn.

The circuit in Figure 2(b) is derived from 2(a) by (i) substituting an instance
of the circuit in Figure 1(b) for the V ({d, c}; a) gate, (ii) substituting a reversed
instance of the circuit in Figure 1(c) for the V +({d, b}; a) gate, and (iii) substi-
tuting an instance of the circuit in Figure 1(b) for the V ({d, b}; a) gate. Note
that once substituted two gates from (ii) cancel with two gates from (iii). Hence
the gates V +({d, b}; a) and V ({d, b}; a) map to 3 gates each in the reduced cir-
cuit. The circuit in Figure 2(b) is the circuit given by Barenco et al. [1]. The
construction shown here is quite different.

d • • •
c • • •
b �������	 • �������	 •
a V V + V

d • • • • •
c �������	 • �������	 • • •
b �������	 • �������	 • �������	 • �������	 •
a W W+ W W+ W W+ W

(a) (b)

Fig. 2. (a) NCV realization of T ({d, c, b}; a). (b) NCW circuit for T ({d, c, b}; a).

In [7], we have shown how to decompose an MCT gate into a circuit composed
of controlled-W , controlled-W+ and MCT gates with fewer controls. An example
for 7 controls and 1 ancillary line (labeled 1) is shown in Figure 3. Using the
general form of this decomposition and using the circuits in Figures 1(b), 1(c)
and 2(b) it is possible to build a catalog of MCT realizations for any number
of controls. Further, separate circuits can be derived for differing numbers of
available ancillary lines. See [7] for details.

Table 1(a) shows the costs of the NCVW realizations of MCT gates for up
to 20 controls. Note that no NCVW realizations exist for 0 ancillary lines and
greater than 3 controls. A blank entry at the right end of a row means the cost
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8 •
7 •
6 •
5 •
4 •
3 •
2 •
1

0 �������	

• • 8

• • 7

• • 6

• • 5

• • 4

• • • • 3

• • • • 2

• �������	 • �������	 • �������	 • �������	 • �������	 • �������	 • �������	 • �������	 1

W W+ W W+ W W+ W W+ 0

Fig. 3. Example Decomposition of a 7-control MCT Gate

can not be reduced by adding another ancillary line. For comparison, Table 1(b)
shows the costs of NCV realizations of MCT gates as presented in [4]. Note that
the NCVW are consistently cheaper and for 3 controls and 7 or more controls
one less ancillary line is required to achieve the smallest circuit.

4 NCVW Circuits for MCT Circuits

The previous section addressed finding an NCVW realization for a single MCT
gate and how that can be used to build a catalog of NCVW realizations for
individual MCT gates with particular numbers of controls and ancillary lines.
Here, we consider how such a catalog can be used in transforming a MCT gate
circuit to an NCVW circuit. The approach described here is similar to the one
presented in [8]. The difference is that it uses NCVW realizations of MCT gates
developed in [7] in place of NCV realizations. We outline the approach below.
Readers interested in full details should consult the references.

Our procedure to map a MCT circuit to a NCVW circuit uses a Line La-
beling Procedure (Procedure 1 of [8]) and the Gate Reduction Procedure
(Procedure 2 of [8]). Both are applicable to MCT and quantum gates. The Line
Labeling Procedure traverses a circuit assigning labels to line segments such that
two segments on the same line that are assigned the same label have identical
functionality. This is done by identifying gate sequences that realize the identity
function using a stack of gates for each circuit line. The Gate Reduction Pro-
cedure finds possible cancelations and reductions in the circuit by moving gates
across the circuit and making them adjacent to every gate in their movement
domain. It starts from one end of the circuit and labels one gate at a time. Then
it moves that gate back through the circuit as far as possible to find the best
reduction. The gate either may be canceled with its inverse or may be reduced
to a single gate when combined with other gates.

The key extension to the Gate Reduction Procedure as given in [8] to in-
corporate W and W+ gates, was to modify the gate combining step so that it
considers more than two gates at a time to find possible reductions. As a gate
(Gp) is moved across the circuit, a list is made that contains gates that can be
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Table 1. Cost of MCT gate circuits: (a) NCVW cost, (b) NCV cost

Number of Ancillary Lines

Controls 0 1 2 3 4 5 6 7

0 1

1 1

2 5

3 13

4 20

5 28

6 40

7 52

8 64

9 80 76

10 96 88

11 112 104 100

12 128 120 112

13 152 136 128 124

14 176 158 144 136

15 200 176 160 152 148

16 224 200 176 168 160

17 248 224 200 184 176 172

18 272 248 224 200 192 184

19 296 272 248 224 208 200 196

20 320 296 272 248 224 216 208

Number of Ancillary Lines

Controls 0 1 2 3 4 5 6 7 8

0 1

1 1

2 5

3 14

4 20

5 32

6 44

7 64 56

8 76 68

9 96 88 80

10 108 100 92

11 132 120 112 104

12 156 132 124 116

13 180 156 148 136 128

14 204 180 172 148 140

15 228 204 198 172 160 152

16 252 228 222 196 172 164

17 276 252 246 222 196 184 176

18 300 276 270 246 220 196 188

19 324 300 294 270 246 220 208 200

20 348 324 318 294 270 244 220 212

(a) (b)

adjacent to Gp and have the same target and control as Gp with the same labels
on their controls. Then, the gates in this list are removed from the circuit and an
optimized equivalent sequence is inserted in the position of the left-most removed
gate in the circuit. For example a sequence of V NW+ gates will be replaced by
NW . The optimized equivalent sequence may be empty which indicates that the
corresponding set of gates realizes the identity function.

The MCT to NCVW mapping procedure is similar to Procedure 4 in [8]. It
first optimizes the MCT cascade using the Gate Reduction Procedure described
above. Then, MCT gates are expanded to their equivalent NCVW cascades pair-
wise to find optimizations across gate boundaries. To achieve this, an MCT gate
is made adjacent to all other MCT gates in its movement domain and the pair
that introduces the most reduction when expanding to its NCVW realization
is selected. In pairwise expansion, alternative NCVW realizations such as re-
verse realizations, V −V +, and W −W+ substitutions are examined to find the
best reduction. At the last step of the mapping procedure, the resulting NCVW
circuit is optimized using the Gate Reduction Procedure.

Figure 4 shows the results of applying the above procedures for the NCV and
NCVW libraries for the REVLIB benchmark circuit decod24-v1 24. The MCT
circuit from REVLIB is shown in Figure 4(a). The NCV circuit is shown in
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a �������	

b • �������	 • �������	

c • • �������	

d • • �������	 • �������	 •

(a)

a V + V V + V

b • �������	 • • �������	 • �������	 �������	 • �������	 • �������	

c • • • • • �������	

d • • • • • V V + V • �������	 •
α V + V V + • �������	 • V V + V • �������	 •

(b)

a W W+ W W+ W W+ W

b • • • �������	 • �������	 • �������	 • �������	

c • �������	 • �������	 • �������	 • �������	 • • • �������	

d • • • • V V + V • �������	 •

(c)

Fig. 4. Example decod24-v1 24 circuits: (a) MCT from REVLIB [9], (b) NCV, (c)
NCVW

Figure 4(b) and the NCVW circuit is shown in Figure 4(c). The NCV circuit
has a cost of 23 while the NCVW circuit has a cost of 20. The NCV circuit uses
an added ancillary line labeled α. The NCVW does not need an ancillary line.
This is because the widest gate in the MCT circuit has 3 controls and as shown
in Table 1 such a gate has a 13 gate NCVW realization with no ancillary line.
For a MCT circuit with more than 4 lines with a gate using all lines, an added
ancillary line is required in an NCVW circuit.

The leftmost 14 gates in Figure 4(b) are an NCV realization of the T ({d, c, b}; a)
gate in 4(a). They are followed by the T (d; b) gate and then by a five gate re-
alization of the T (b, c; d) in 4(a). Lastly, the final three gates in 4(a) are copied
over to 4(b).

Figure 4(c) is constructed in a similar way. The first 12 gates are from the
13 gate NCVW realization of T (a, b, c; d). The 13th gate does not appear as it
is T (d; b) and cancels with the existing occurrence of that gate in Figure 4(a).
The final 8 gates in Figure 4(c) are the same as in Figure 4(b).

5 Experimental Results

We have implemented the methods described above using Python 2.6.5. The
circuits considered are from the REVLIB web site [9]. Our experiments were run
on a system with a 3.2 GHz i5-650 CPU and 3.0 GB RAM.
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Table 2. NCVW realizations of selected REVLIB benchmarks

REVLIB Circuit REVLIB Initial MCT Gate Quantum Gate Quantum Gate % Cost CPU
Cost Cost Reduction Substitution Reduction Reduction (sec.)

sym9 148 4368 3612 665 665 659 84.91 25.906
sym6 145 777 543 203 201 199 74.39 4.719
plus63mod8192 164* 45025 22208 19318 18863 18856 58.12 109.157
plus63mod4096 163* 32539 16808 14322 13820 13813 57.55 81.984
plus127mod8192 162* 73357 41002 35550 34193 34178 53.41 218.672
rd32-v0 66 12 12 12 8 6 50.00 0.047
rd32-v1 68 13 13 13 9 7 46.15 0.078
4gt4-v0 73* 89 80 48 48 48 46.07 0.485
rd53 133 128 104 86 78 72 43.75 0.937
cycle10 2 110 1202 694 694 682 682 43.26 3.250
hwb8 114* 14699 9131 8888 8392 8378 43.00 142.516
hwb8 115* 14691 9131 8888 8392 8378 42.97 142.906
hwb8 113* 16530 10736 10282 9804 9787 40.79 78.500
hwb8 118* 16522 10736 10282 9804 9787 40.76 78.469
hwb9 123* 22510 13494 13492 13456 13434 40.32 185.672
rd53 134 120 104 86 78 72 40.00 0.922
ham15 107 1831 1509 1184 1115 1107 39.54 14.188
hwb9 119* 44714 29842 29010 27389 27340 38.86 272.609
hwb9 121* 44665 29805 28982 27359 27311 38.85 258.141
hwb9 120* 44702 29842 29010 27389 27340 38.84 260.406
hwb9 122* 44653 29805 28982 27359 27311 38.84 257.672
4gt12-v0 86* 58 49 38 36 36 37.93 0.328
4gt12-v0 87* 54 45 34 34 34 37.04 0.187
4gt4-v0 72* 54 45 34 34 34 37.04 0.281
hwb7 59* 5236 3772 3613 3363 3352 35.98 58.438
hwb8 116* 7015 4547 4547 4505 4496 35.91 108.171
hwb8 117* 7013 4547 4547 4505 4496 35.89 108.219
4mod5-v1 22 9 9 9 7 6 33.33 0.047
4mod5-v1 23 24 24 18 16 16 33.33 0.172
peres 9 6 6 6 4 4 33.33 0.015
hwb7 60* 4170 2966 2844 2838 2829 32.16 30.234
4mod5-v0 18 25 25 19 17 17 32.00 0.141
4mod5-v0 19 13 13 10 9 9 30.77 0.047
mod5mils 65 13 13 10 9 9 30.77 0.093
mod5mils 71 13 13 10 9 9 30.77 0.094
toffoli double 4 10 10 7 7 7 30.00 0.078
hwb7 61* 3876 2974 2906 2743 2731 29.54 41.891
hwb6 57* 1171 913 845 836 833 28.86 7.671
hwb7 62* 2611 1901 1901 1884 1878 28.07 18.719
rd53 138 44 44 44 35 32 27.27 0.594
4gt12-v0 88* 41 32 32 30 30 26.83 0.172
hwb6 56* 1530 1227 1204 1126 1122 26.67 17.656
rd32-v0 67 8 12 12 8 6 25.00 0.047
rd53 135 77 71 68 59 58 24.68 1.313
hwb4 49* 65 65 57 51 49 24.62 0.438
rd53 131 119 101 95 91 90 24.37 1.125
4gt4-v0 80* 37 28 28 28 28 24.32 0.172
rd73 140 76 76 76 61 58 23.68 1.016
sys6-v0 111 72 72 72 59 55 23.61 1.141
rd53 132 117 101 95 91 90 23.08 1.125
alu-v2 31 101 101 84 78 78 22.77 0.578
rd53 136 75 71 68 59 58 22.67 1.297
4gt4-v0 79* 49 40 40 38 38 22.45 0.375
4mod5-v0 20 9 9 9 7 7 22.22 0.047
decod24-v0 38 18 18 18 14 14 22.22 0.047
decod24-v2 43 18 18 18 14 14 22.22 0.079
ham3 102 9 9 9 7 7 22.22 0.031
hwb4 50* 63 65 57 51 49 22.22 0.437
rd32-v1 69 9 13 13 9 7 22.22 0.062
3 17 13 14 14 14 11 11 21.43 0.125
4gt4-v0 78* 53 44 44 44 42 20.75 0.265
ham15 108 453 387 378 362 360 20.53 5.485
4gt12-v1 89* 45 36 36 36 36 20.00 0.156
fredkin 6 15 15 15 13 12 20.00 0.031
ham3 103 10 10 10 8 8 20.00 0.047
rd84 142 112 112 112 94 90 19.64 2.640
sym9 146 108 108 108 88 87 19.44 1.422
mod5d2 70 16 16 13 13 13 18.75 0.109
4mod7-v0 94 38 38 38 32 31 18.42 0.125
4mod7-v0 95 38 38 38 32 31 18.42 0.125
mod5adder 127 125 107 107 104 102 18.40 1.266
mod5d1 63 11 11 11 10 9 18.18 0.078
4mod7-v1 96 39 39 39 33 32 17.95 0.188
rd53 130 232 196 196 192 191 17.67 2.579
4gt4-v1 74* 57 48 48 47 47 17.54 0.218
4 49 16* 60 60 57 53 50 16.67 0.406
4gt13 91 30 30 27 25 25 16.67 0.157
one-two-three-v0 98 40 40 40 34 34 15.00 0.187

458551 284605 264825 253107 252662 44.90 2555.423
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Table 3. Benchmarks for which the NCVW cost is greater than the NCV cost

REVLIB Circuit NCV Cost [8] NCVW Cost % Cost Increase
4gt4-v1 74* 46 47 -2.17
ham15 108 356 360 -1.12
one-two-three-v0 97 62 63 -1.61
one-two-three-v1 99 31 32 -3.23

Table 2 presents the results for a number of benchmark circuits from REVLIB.
Our program applies the methods above to the circuit in both the forward and
the reverse direction. A * after the circuit name indicates the addition of a single
ancillary line because the circuit contains at least one MCT gate that uses all
lines in the circuit.

The results are reported for each circuit for the better of the two directions.
We report (1) the quantum cost from REVLIB, (2) the initial NCVW cost which
is found by replacing MCT gates by the NCVW catalog circuits corresponding
to Table 1, (3) the NCVW costs after MCT gate reduction is applied, (4) the
NCVW cost after quantum gate expansion, (5) the NCVW cost after quantum
gate reduction which is the NCVW cost of the final circuit, (6) the percentage
cost reduction comparing the final NCVW cost to the REVLIB cost and (7)
the CPU time for all steps. Overall, our methods yield a 44.9% improvement
compared to the costs reported in REVLIB. The majority of the improvement
(37.9%) comes from the catalog circuits. The rest comes from our quantum
expansion and quantum reduction techniques.

Table 3 shows the four cases where the NCVW circuit is more costly than the
NCV circuit. This results from the fact that our methods use many heuristics.

Table 4 shows the benchmarks for which the NCVW circuit is an improvement
over the NCV circuit. The overall improvement for these examples is 4.71%.

As noted, our method adds an extra ancillary line if the MCT circuit includes
a gate that uses all circuit lines. This is not the case for the results reported in
REVLIB. However, the cost model employed in REVLIB is based on the work
in Barenco et al. [1] which assumes a 2c−1-th root-of-NOT gate is available to
realize a c-control MCT gate in a circuit with c + 1 lines. We anticipate that
realizing gates progressively higher roots of NOT may be prohibitive in many
technologies and adding one extra line will be preferable. Also we expect that
synthesis methods can be made to avoid the situation in most cases.

6 Conclusions and Future Work

The benchmark results presented show that the methods described in this paper
can lead to notably smaller quantum circuits than reported in REVLIB and
other work. The results also show that using W and W+ gates leads to smaller
circuits than those using NCV gates. We thus conclude that the approach taken
is quite promising and should be further refined.
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Table 4. Benchmarks where NCVW circuit cost is less than NCV circuit cost

REVLIB Circuit NCV Cost [8] NCVW Cost % Cost Reduction
4 49 16* 55 50 9.09
4gt10-v1 81 35 32 8.57
4gt12-v1 89* 37 36 2.7
4gt13 91 28 25 10.7
4gt4-v0 73* 49 48 2.04
4gt4-v0 78* 45 42 6.67
4gt4-v0 79* 41 38 7.32
4gt5 75 22 21 4.55
4gt5 76 27 26 3.7
4gt5 77 28 26 7.14
4mod7-v0 94 32 31 3.13
4mod7-v0 95 32 31 3.13
4mod7-v1 96 33 32 3.03
alu-v2 30* 103 98 4.85
alu-v2 31 83 78 6.02
alu-v2 32 38 35 7.89
alu-v4 36 28 27 3.57
cycle10 2 110 720 682 5.28
decod24-enable 126 77 75 2.6
decod24-v1 41* 23 20 13
decod24-v3 45* 35 31 11.4
ham15 107 1155 1107 4.16
ham15 109 198 190 4.04
ham7 104 84 76 9.52
ham7 105 64 59 7.81
hwb4 49* 54 49 9.26
hwb4 50* 54 49 9.26
hwb4 51* 73 71 2.74
hwb5 53* 282 270 4.26
hwb5 54* 234 220 5.98
hwb5 55 95 93 2.11
hwb6 56* 1150 1122 2.43
hwb6 57* 872 833 4.47
hwb6 58 132 127 3.79
hwb7 59* 3500 3352 4.23
hwb7 60* 2989 2829 5.35
hwb7 61* 2863 2731 4.61
hwb7 62* 1973 1878 4.82
hwb8 113* 10328 9787 5.24
hwb8 114* 8815 8378 4.96
hwb8 115* 8815 8378 4.96
hwb8 116* 4825 4496 6.82
hwb8 117* 4825 4496 6.82
hwb8 118* 10328 9787 5.24
hwb9 119* 28660 27340 4.61
hwb9 120* 28660 27340 4.61
hwb9 121* 28629 27311 4.6
hwb9 122* 28629 27311 4.6
hwb9 123* 14487 13434 7.27
mod5adder 127 104 102 1.92
mod5adder 128 84 80 4.76
mod5adder 129 76 74 2.63
one-two-three-v0 98 35 34 2.86
plus127mod8192 162* 35348 34178 3.31
plus63mod4096 163* 14652 13813 5.73
plus63mod8192 164* 19566 18856 3.63
rd53 130 195 191 2.05
rd53 135 59 58 1.69
rd53 136 59 58 1.69
rd53 137 59 58 1.69
sym6 145 212 199 6.13
sym9 148 672 659 1.93
Total 265465 252958 4.71
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Our future work in this area will include extending the work to handle negative
controls for MCT gates (controls that are activated by the value 0 and not
1). Other quantum gate libraries will be considered. We will also examine how
various aspects of our methods and certain heuristics in particular might be
changed to optimize the circuits even further. Lastly, except for the case of
two controls, our procedure does not consider the permutation of MCT gate
controls with a view to identifying more quantum gate reductions across MCT
gate boundaries. We are considering how to address this. Exhaustive search is
prohibitive and we have yet to determine how to identify which subset of the
possible orderings will be most effective.

As noted above, two points on a line in a circuit which are assigned the same
label by the line labeling procedure have the same functionality. The converse is
not true, i.e. two points with the same functionality may be assigned different
labels. As a result, our methods can miss certain reductions. We are investigating
replacing the line labels with decision diagrams that will guarantee finding all
functional equivalences. It remain to be seen whether the advantage gained will
justify the added complexity and computational time.
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