
Towards a Reversible Functional Language

Tetsuo Yokoyama1, Holger Bock Axelsen2, and Robert Glück2

1 Department of Software Engineering, Nanzan University
tyokoyama@acm.org

2 DIKU, Department of Computer Science, University of Copenhagen
funkstar@diku.dk, glueck@acm.org

Abstract. We identify concepts of reversibility for a functional language
by means of a set of semantic rules with specific properties. These proper-
ties include injectivity along with local backward determinism, an impor-
tant operational property for an efficient reversible language. We define
a concise reversible first-order functional language in which access to the
backward semantics is provided to the programmer by inverse function
calls. Reversibility guarantees that in this language a backward run (in-
verse interpretation) is as fast as the corresponding forward run itself.
By adopting a symmetric first-match policy for case expressions, we can
write overlapping patterns in case branches, as is customary in ordinary
functional languages, and also in leaf expressions, unlike existing inverse
interpreter methods, which enables concise programs. In patterns, the
use of a duplication/equality operator also simplifies inverse computa-
tion and program inversion. We discuss the advantages of a reversible
functional language using example programs, including run-length en-
coding. Program inversion is seen to be as lightweight as for imperative
reversible languages and realized by recursive descent. Finally, we show
that the proposed language is r-Turing complete.

1 Introduction

Functional languages provide a natural and general mechanism for manipulat-
ing structured data, associated with powerful pattern-matching features and
abstract data types. They also enable higher-level abstractions than imperative
languages and thus more concise programs with the same functionality. For these
reasons it is interesting to apply such a well-established language paradigm to
reversibility. We aim to develop a reversible functional language for studying the
foundations of reversible programming.

From the viewpoint of reversibility, functional programming enforces us to
take a more rigorous and restricted approach than in existing work. For ex-
ample, the imperative reversible language Janus [12,18] allows irreversible arith-
metic and logical operators in expressions, and these do not have bidirectionality
between input and output. In pure functional languages, it is more natural to de-
scribe natural numbers using only declarative fundamental features, e.g. based
on the Peano axioms. This approach forces us to use only purely reversible

A. De Vos and R. Wille (Eds.): RC 2011, LNCS 7165, pp. 14–29, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Towards a Reversible Functional Language 15

language constructions, which is suitable for developing both basic theory and
general concepts for reversible computing.

The contribution of this paper is to identify a concept of reversibility in a
functional language setting and specify a purely-reversible and purely-functional
language. Reversible computation of injective functions can be regarded as a case
of inverse interpretation [1]. Because general solutions to inverse interpretation,
e.g. McCarthy’s generate-and-test [13], are often inefficient in practice, our in-
terest lies in finding a solution by constructing a programming language which
has efficient inverse computation built in by design.

Injectivity of the function implemented by a program is not sufficient for effi-
cient inverse interpretation; backward deterministic control flow is also required.
Consider the function inc, which takes a natural number n as argument and re-
turns n+1 in the form of Peano numbers, where Z denotes zero and S(n) denotes
the successor of n. A straightforward implementation is:

inc n � case n of

Z → S(Z)

S(n′) → let n′′ = inc n′ in S(n′′)
(1)

For example, inc (S(S(Z))) returns S(S(S(Z))). Since inc is injective, the inverse
function inc−1 exists. But the näıve general inverse interpretation of inc has local
nondeterminism; the underlined expressions can match the same value, S(Z),
and inverse interpretation cannot immediately distinguish between the branches.

A reversible functional languages must guarantee both backward determin-
ism and termination (if the input for a given output exists) without using the
general approach. Here, we propose a reversible functional language which has
these properties. We say that a reversible language has locally forward and back-
ward deterministic semantics. Below, we specify what this means in operational
semantics.

For exploring the theoretical foundations of reversible computing, we focus on
a purely-reversible and side-effect free first-order functional language. There exist
several imperative and pseudo-functional reversible languages. As far as we know,
Janus [12,20] is the first reversible language, and is imperative. We regard Gries’
invertible language [11], R and PISA [8] as also belonging to this category. Baker
proposed Ψ-Lisp [4], reversible linear Lisp; due to the use of a state and a hidden
history stack, it is neither purely reversible nor purely functional. Mu, Hu, and
Takeichi proposed INV [16], a point-free functional language with relational se-
mantics, which essentially includes both forward and backward nondeterminism.
Bowman, James, and Sabry have proposed Π [6], another point-free reversible
functional language. Because of the nature of point-free languages, these do not
have powerful pattern matching, so e.g. overlapping branch patterns in loops is
prohibited. While the above examples all have reversible language features, a
main contribution here is to separate reversibility in functional languages from
other features.



16 T. Yokoyama, H.B. Axelsen, and R. Glück

Grammar:

q ::= d∗ (program)

d ::= f l � e (definition)

l ::= x (variable)

| c(l1, . . . , ln) (constructor)

| �l� (duplication/equality)

e ::= l (left-expression)

| let lout = f lin in e (let-expression)

| rlet lin = f lout in e (rlet-expression)

| case l of {li → ei}mi=1 (case-expression)

Syntax domains:

q ∈ Programs

d ∈ Definitions

f ∈ Functions

l ∈ Left-expressions

e ∈ Expressions

x ∈ Variables

c ∈ Constructors

Fig. 1. Abstract syntax of the first-order functional language (n ≥ 0, m ≥ 1)

2 The Language

The reversible functional language that we present here is simple, yet powerful
enough to be r-Turing complete (see Section 2.6). Both in syntax and semantics,
this language differs from conventional first-order functional languages. For ex-
ample, the language is extended to include inverse function calls, and symmetric
matching for case-expressions serves to make its semantics forward and backward
deterministic. It may serve as a model for designing other, more sophisticated
reversible functional languages.

2.1 Syntax

The first-order functional language (Fig. 1) is tailored to guarantee reversibility
and is a modfied version of a language that was originally defined to investigate
automatic program inversion [10]. A program q is a sequence of function defi-
nitions. A function definition d consists of a pattern l (left-expression) and a
body e (expression). A left-expression l can contain variables, constructors and
duplication/equality operators (�·�). An expression e is a left-, let-, rlet- or case-
expression. An rlet-expression invokes the inverse semantics of a function f . We
call li → ei the i-th branch of a case-expression.

We consider only well-formed programs in the following sense: each variable
in patterns appears at most once, and each variable is bound before its use and
is used linearly in each branch. A value v is recursively defined by a construc-
tor c with arguments vi: v ::= c(v1, . . . , vn) where n ≥ 0. As is customary, a
nullary constructor c() is written as c. A list is constructed by an infix construc-
tor (:) and a nullary constructor [ ] that represents the empty list. The unary
and binary tuples, 〈·〉 and 〈·, ·〉, are a convenient shorthand for two different
constructors.



Towards a Reversible Functional Language 17

2.2 Reversibility and Most General Matcher

Linearity is essential to a reversible language to avoid discarding values. Every
variable defined by a pattern on the left-hand side of a case-expression must be
used once in the expression on the right-hand side, otherwise information is lost.

Sometimes, we want to use a value more than once, but this is not allowed by
linearity. Instead of duplicating the value implicitly by using a variable twice,
we make this operation explicit by requiring that the value is duplicated by the
operator �·�. For example, rather than syntactically using variable h twice to
duplicate the head of a list, as in expression h : h : t, the value is duplicated by
�〈h〉� and bound to two fresh variables h1 and h2 in a case-expression:

Invalid

dbl x � case x of

h : t→ h : h : t

Well-formed

dbl x � case x of

h : t→ case �〈h〉� of
〈h1, h2〉 → h1 : h2 : t

(2)

Using an explicit duplication operator simplifies the inversion of functional pro-
grams because duplication in one computation direction requires an equality test
in the other direction, and vice versa.

The above duplication/equality operator [9] is defined by

�〈v〉� = 〈v, v〉 (duplication) (3)

�〈v, v′〉� =

{
〈v〉 if v = v′

〈v, v′〉 otherwise
(equality test) (4)

The operator is self-inverse, which means that it can be used to determine its
input from its output (e.g., �〈v〉� = 〈v, v〉 and 〈v〉 = �〈v, v〉�).

We take this idea further and allow the operator to occur also in the patterns
of case-expressions. This simplifies forward and backward computation, and the
inversion of programs. To illustrate this symmetry, consider the following pair-
wise functionally equivalent case-expressions for duplicating and testing values:

case �〈l〉� of
〈x, y〉 → · · ·

case 〈l〉 of
�〈x, y〉� → · · ·

(duplication) (5)

case �〈l, l′〉� of
〈x〉 → · · ·
〈x, y〉 → · · ·

case 〈l, l′〉 of
�〈x〉� → · · ·
�〈x, y〉� → · · ·

(equality test) (6)

This extension of patterns has the advantage that the same left-expressions can
be used everywhere, which simplifies inverse computation and program inversion.

The �·�-operator can occur anywhere in a left-expression (see Fig. 1). Equality
of values in pairs can be tested at the leaf left-expressions in backward compu-
tation, which is useful for case selections, as we shall see in the example function



18 T. Yokoyama, H.B. Axelsen, and R. Glück

v � x � {x �→ v} Var

v1 � l1 � σ1 · · · vn � ln � σn

c(v1, . . . , vn) � c(l1, . . . , ln) � �n
i=1σi

Con

�v�↓= v′ v′ � l � σ

v � �l�� σ
Dup/Eq

Fig. 2. R-Match: Reversible matching operation (� denotes disjoint union)

plus (Fig. 4). Left-expressions define a unique composition and decomposition
of values in our language. Pattern matching using left-expressions is formalized
as follows. To define a reversible matching semantics, we use a most general
matcher between left-expressions and values. Given linear left-expression l and
value v, left-exp judgment

v � l � σ (7)

returns σ, the most general matcher of l and v. Figure 2 shows the semantic rules
R-Match that define the most general matcher. A substitution σ is a mapping
of variables xi to values vi: {x1 �→ v1, . . . , xn �→ vn} where n ≥ 0. In particular,
{ } is the identity substitution, σl is the application of σ to l, and l ↓ is the
application of all �·�-operators in left-expression l by means of Eq. 3 and 4.

Lemma 1 (The Most General Matcher). Given value v and left-expression
l, if left-exp judgment v � l � σ is satisfied, then σ is the most general matcher
of l and v such that

v � l � σ =⇒ (σl)↓= v ∧ ∀σ′.
[
(σ′l)↓= v =⇒ ∃σ′′. σ′ = σ � σ′′] . (8)

Proof. By straightforward induction on the derivation of v � l � σ. ��

2.3 Semantics

An expression judgment is a relation of a substitution σ, program q, expression
e, and value v:

σ �q e ↪→ v . (9)

The operational semantics is defined in Fig. 3. LeftExp rule is resolved by a
left-exp judgment. Without loss of generality, to avoid name clashes, we assume
that lf and ef in the FunExp rule contain fresh variables each time f is applied.

LetExp and RLetExp rules have inverse functionality. While both rules
apply function f in the premise, their input and output, as indicated by the
subscripts, are exchanged. The reversible semantics allows us to define the in-
verse functionality by swapping the input and output without invoking program
inversion. Only a reversible semantics enables this rule sharing. We shall see
examples of rlet-expressions later when we define a reversible Turing machine.

The CaseExp rule is more involved. We constrain the semantics of case-
expressions to be symmetric regarding the branch selection by requiring that the



Towards a Reversible Functional Language 19

v � l � σ

σ 
q l ↪→ v
LeftExp

f lf � ef ∈ q σ 
q l ↪→ v′ v′ � lf � σf σf 
q ef ↪→ v

σ 
q f l ↪→ v
FunExp

σin 
q f lin ↪→ vout vout � lout � σout σout � σe 
q e ↪→ v

σin � σe 
q let lout = f lin in e ↪→ v
LetExp

vin � lin � σin σout 
q f lout ↪→ vin σout � σe 
q e ↪→ v

σin � σe 
q rlet lin = f lout in e ↪→ v
RLetExp

σl 
q l ↪→ v′ σlj � σt 
q ej ↪→ v

j = min{i | v′ � li � σli} = min{i | l′ ∈ leaves(ei) ∧ v � l′ � }
σl � σt 
q case l of {li → ei}mi=1 ↪→ v

CaseExp

Fig. 3. Operational semantics for the reversible functional language

first-matching branch is the same in both directions. Otherwise, the CaseExp
is undefined. Consider the following case-expression as an example.

case l of

l1 → · · · in l′1
...

li → · · · in l′i
...

ln → · · · in l′n

(10)

The value v of l is matched against the left-hand side of each branch (l1, l2, . . .)
until the first successful match at some li, that is, v�li � σi. As usual, the right-
hand side of the i-th branch is then evaluated in σi and a value v′ is returned by
l′i. Now, for symmetry, we require that v′ does not match any of the preceding
l′1, . . . , l

′
i−1; otherwise, the case-expression is undefined. This symmetric first-

match policy ensures that case-expressions forward and backward deterministic.
Thus, in backward computation, a given value v′ of the whole case-expression

is matched against the leaf left-expressions of each branch (l′1, l
′
2, . . .) until the

first successful match at some l′i, that is, v
′ � l′i � σ′

i. The result of the backward
computation of the right hand side of the i-th branch instantiates li to v. Then,
for symmetry, we require that v does not match any of the preceding l1, . . . , li−1;
otherwise, evaluating the case-expression is undefined. (The set leaves(e) con-
tains all left-expressions at the tips of e.1) Therefore, as usual, l1, . . . , ln need
not be syntactically orthogonal and the same holds for l′1, . . . , l′n.

1 leaves(let l1=f l2 in e)=leaves(e), leaves(case l of {pi→ei}mi=1) = ∪m
i=1leaves(ei)

leaves(rlet l1=f l2 in e) = leaves(e), leaves(l) = {l}.



20 T. Yokoyama, H.B. Axelsen, and R. Glück

fib n � case n of

Z → 〈S(Z), S(Z)〉
S(m) → let 〈x, y〉 = fib m in

let z = plus 〈y, x〉 in z

(12)

plus 〈x, y〉 � case y of

Z → �〈x〉�
S(u) → let 〈x′, u′〉 = plus 〈x, u〉 in 〈x′, S(u′)〉

(13)

Fig. 4. Fibonacci-pair function fib and addition plus〈x, y〉 = 〈x, x+ y〉2

Because of the symmetric semantics of case-expressions, we can compute the
increment function from above both forward and backward:

{n �→ Z} �q inc n ↪→ S(Z) (11)

where q is a program which includes the function definition of inc in Eq. 1.
Without the symmetric first-match policy, the value S(Z) could be a consequence
of two different instances of the CaseExp rule because S(Z) matches both of the
underlined left-expressions S(Z) and S(n′′), and we would thus have to search
deeper in the derivation tree to decide which was the right instance. However,
the policy ensures that inverse interpretation is locally deterministic and, in this
example, selects the first branch and never the second.

If a function terminates with an output for a given input, inverse computation
of the function terminates for that output and returns the original input, and
vice versa.

Example program. Given a number n, the Fibonacci-pair function [9] com-
putes a tuple containing the (n + 1)-th and (n + 2)-th Fibonacci number. The
functions fib and plus are defined for Peano numbers in Fig. 4. Note the use of
the �·�-operator on the right-hand side of the first branch of plus to duplicate
x in forward computation and to check equality of a pair of values in backward
computation. We can relate numbers to the corresponding Fibonacci pairs via
an expression judgment. For example, for the second pair we have:

{n �→ S(S(Z))} �q fib n ↪→ 〈S(S(Z)), S(S(S(Z)))〉 (14)

2.4 Reversibility and Semantics

In this section, we show in what sense the functional language defined above
is reversible. We first examine the matching operation (left-expression judg-
ments) and then continue with the rules of the operational semantics (expression
judgments).

2 For simplicity, x+ y represents the Peano number for the sum of x and y.



Towards a Reversible Functional Language 21

We have local determinism in the left-exp judgment in the sense that l de-
termines uniquely which rule applies, and in the premises each left-expression is
uniquely determined. Here, let be a wildcard value or a wildcard substitution.3

Lemma 2 (The Unique Derivation of Left-Exp Judgments (· � l � ·)).
Any left-exp judgment � l � is the consequence of at most a single rule in
Fig. 2 and in its premises left-expressions are determined uniquely.

Proof. Given linear left-expression l, left-exp judgment �l � determines which
rule to apply because all left-expressions l in the consequences are orthogonal.
Also, all and only the immediate proper sub-left-expressions of l (e.g. l1, . . . , ln
for l = c(l1, . . . , ln)) appear exactly once in the premise left-exp judgments,
which are thus also determined uniquely. ��

This implies efficiency for an implementation of the left-exp judgment, as the
structure of l completely decides the structure of the derivation. We further have
that for any given left-expression l the left-exp judgment is an injective relation
between substitutions and values.

Lemma 3 (The Global Reversibility of Left-Exp Judgments (·�l � ·)).
The R-Match relation · � ·� · (Fig. 2) obeys the following formulas.

∀l∀σ∀v1∀v2. v1 � l � σ ∧ v2 � l � σ =⇒ v1 = v2 (15)

∀l∀v∀σ1∀σ2. v � l � σ1 ∧ v � l � σ2 =⇒ σ1 = σ2 (16)

Proof. By Lemma 2 the derivation tree for any left-expression judgment com-
pletely and uniquely follows the structure of l, so the two derivations in the
antecedents of the implications in formulas (15) and (16) must use the same
rules in both consequence and premises. By induction on these derivations the
lemma then easily follows. ��

Note that Lemma 2 does not imply Lemma 3 for arbitrary rule sets, and
that the inverse direction is also not satisfied: it is possible to satisfy global
reversibility without unique derivations. Also, the rule set in which the Var rule
is replaced with

� x � {x �→ } Var’

still satisfies Lemma 2 but not Lemma 3.
In the operational semantics (Fig. 3) for the exp-judgment, we again have

that the rule selection is locally and uniquely determined.

Lemma 4 (The Unique Derivation of Exp-Judgments (· �q e ↪→ ·)).
Any expression judgment �q e ↪→ is the consequence of at most a single rule
in Fig. 3 and in its premises expressions and left-expressions are determined
uniquely, except for the CaseExp rule where either a substitution σ or value v
is needed for uniqueness.

3 The instances of a wildcard value are arbitrary; two wildcards do not necessarily
have the same value.



22 T. Yokoyama, H.B. Axelsen, and R. Glück

Proof. Analogous to Lemma 2, expression e uniquely determines which rule to
apply because all expressions e in the consequences are orthogonal. For all rules
except CaseExp the syntactic form of the expression in the consequence of the
exp-judgment also determines which rules to apply in the premises by simple
case analysis.

In theCaseExp rule, the symmetric first-match policy determines the premise
for the case chosen, so the value of j depends on the particular substitution σ
(or value v), meaning that ej is not syntactically defined by e alone (as all the
other expressions and left-expressions in the premises are). However, for a given
substitution σ (or value v) uniqueness of ej follows by Lemmas 2 and 3. ��

This sort of local determinism and the reversibility of left-exp judgments leads
to the following lemma.

Lemma 5 (The Global Reversibility of Exp-Judgments (· �q e ↪→ ·)).
The operational semantics (· �q · ↪→ ·) (Fig. 3) obeys the following formulas.

∀e∀v∀σ1∀σ2. σ1 �q e ↪→ v ∧ σ2 �q e ↪→ v =⇒ σ1 = σ2 (17)

∀e∀σ∀v1∀v2. σ �q e ↪→ v1 ∧ σ �q e ↪→ v2 =⇒ v1 = v2 (18)

Proof (Sketch). Similar to Lemma 3, by induction on the derivations of the exp-
judgments in the antecedent of each implication. The reversibility of any left-exp
judgments in the premises of such derivations is ensured by Lemma 3. ��

While property (18) should be recognizable as forward determinism, the re-
versibility of the language semantics is encapsulated by property (17) and is
distinctly non-standard: for any given expression e (including functional calls),
we only need the resulting value v, to determine the unique initial environment
σ wherein e evaluates to v.

Analogous to the relationship between Lemma 2 and Lemma 3, Lemma 4 does
not imply Lemma 5 and the inverse direction is also not satisfied.

Reversibility affects termination analysis as well. Reversibility guarantees that
backward interpretation terminates if forward interpretation terminates, and
vice versa. On the other hand, reversibility does not by itself guarantee termi-
nation. Consider the function

infinite x � let y = infinite x in y . (19)

For example, we can reasonably expect that in an implementation, the function
expression infinite Z is recursively unfolded arbitrary times by the LetExp
and FunExp rules, leading to non-termination. However, the infinite unfolding
process is still locally reversible and the expression (vacuously) satisfies the global
reversibility properties described in Lemma 5.

2.5 Examples

We shall here show how programs are realized in the proposed language, and
how program inversion is lightweight. Run-length encoding is a data compression



Towards a Reversible Functional Language 23

pack s � case s of

[ ] → [ ]

c1 : r → let s = pack r in

case s of

[ ] → 〈c1, S(Z)〉 : [ ]
h : t → case h of

〈c2, n〉 → case �〈c1, c2〉� of
〈c′1, c′2〉 → 〈c′1, S(Z)〉 : (〈c′2, n〉 : t)
〈c〉 → 〈c, S(n)〉 : t

(20)

Fig. 5. Run-length encoding function pack

algorithm in which each contiguous single-character sequence is replaced with
a pair of the character and its count. In the proposed reversible language a
(recursive) program for run-length encoding pack is shown in Fig. 5 (cf. [9]).
For example, pack [A,A,B,C,C,C]4 evaluates to [〈A, 2〉, 〈B, 1〉, 〈C, 3〉],5 which
is realized by an expression judgment

{ } �q pack [A,A,B,C,C,C] ↪→ [〈A, 2〉, 〈B, 1〉, 〈C, 3〉] . (21)

Now, all functions are reversible, and can be inversely applied. Hence, function
unpack can be defined very simply using pack :

unpack x � rlet x = pack y in y . (22)

In general, for any well-formed function f and variables x and y, expression

rlet x = f y in y (23)

returns the same value as f −1 x does where f−1 is an inverse function of f .
In contrast to irreversible languages, program inversion for the reversible lan-

guage is always possible and lightweight in the sense that it does not require
global program analysis. A recursive descent local program inversion for the
language is given in Fig. 6. For the inversion of case expression, unification of
left-expression l and each of the patterns pi is used to generate patterns for the
inverse cases. Failure of unification means that the branch is never selected no
matter what instances of l are provided in the forward interpretation. Even in
such a case, the translation of the branch ei has to continue, as the symmetric
first-match policy enforces us to check the tips of ei during computation.

For example, program inversion of fib in Fig. 4 yields fib−1 in Fig. 7. As in
an ordinary functional language, the first-match policy in the forward direction

4 Following the standard convention, list A :B :C : [ ] is abbreviated as [A,B,C].
5 For brevity, Peano numbers are here represented by ordinary decimal numbers.



24 T. Yokoyama, H.B. Axelsen, and R. Glück

Ip[[d∗]] = Id[[d]]∗

Id[[f l � e]] = f−1 x � case x of I[[e, l]]

I[[l, e]] = {l → e}
I[[let l1 = f l2 in e′, e]] = I[[e′, let l2 = f−1 l1 in e]]

I[[rlet l1 = f l2 in e′, e]] = I[[e′, rlet l2 = f−1 l1 in e]]

I[[case l of {pi → ei}mi=1, e]] = ∪m
i=1(if σi �= ⊥ then I[[ei, σie]]

else I[[ei, case pi of l → e]])

where σi is the unification of l and pi

Fig. 6. Program inversion (x is a fresh variable)

fib−1 x1 � case x1 of

〈S(Z), S(Z)〉 → Z

x2 → let 〈y, x〉 = plus−1 x2 in

let m = fib−1 〈x, y〉 in
S(m)

(24)

plus−1 z � case z of

�〈x〉� → 〈x, Z〉
〈x′, S(u′)〉 → let 〈x, u〉 = plus−1 〈x′, u′〉 in 〈x, S(u)〉

(25)

Fig. 7. Inverse functions of fib and plus (x1 and x2 are fresh variables)

ensures x2 only match with values that are not 〈S(Z), S(Z)〉. The subtraction,
plus−1〈x, x + y〉 = 〈x, y〉, is obtained by program inversion of plus from Fig. 4.
Here, we see how it is convenient that the �·� operator can occur in the pattern
of a case-expression, so that, in this example, the inversion is realized by just
swapping the left- and right-hand sides of branches.

2.6 r-Turing Completeness

We show the proposed language is r-Turing complete [3]; the language can sim-
ulate any reversible Turing machine (RTM).

Definition 1 (Turing Machine). A Turing machine T is a tuple (Q,Σ, b, δ, qs,
qf ) where Q is a finite set of states, Σ is a finite set of tape symbols, b ∈ Σ is
the blank symbol,

δ : Q× [(Σ ×Σ) ∪ {←, ↓,→}]×Q (26)

is a partial relation defining the transition rules, qs ∈ Q is the starting state, and
qf ∈ Q is the final state. Symbols ←, ↓, → represent the three shift directions
(left, stay, right).



Towards a Reversible Functional Language 25

The form of a triple ∈ δ is either 〈q1, 〈s1, s2〉, q2〉 or 〈q1, d, q2〉 where q1, q2 ∈ Q,
s1, s2 ∈ Σ, and d ∈ {←, ↓,→}. The former symbol rule says that in state q1 with
the tape head reading symbol s1, write s2 and change into state q2. The latter
shift rule says that in state q1, move the tape head in direction d and change
the state to q2.

Definition 2 (Reversible Turing Machine [5,3]). A Turing machine T
is forward deterministic iff for any distinct pair of triples 〈q1, a, q2〉 ∈ δ and
〈q′1, a′, q′2〉 ∈ δ, if q1 = q′1 then a = 〈s1, s2〉∧a′ = 〈s′1, s′2〉∧s1 �= s2. A Turing ma-
chine is backward deterministic iff for any distinct pair of triples 〈q1, a, q2〉 ∈ δ
and 〈q′1, a′, q′2〉 ∈ δ, if q2 = q′2 then a = 〈s1, s2〉∧a′ = 〈s′1, s′2〉∧s2 �= s′2. A Turing
machine is reversible iff it is forward and backward deterministic.

If the number of non-blank symbols on the tape is finite, the infinite length
tape can be uniquely represented by a triple 〈l, s, r〉 where l and r hold the left
and right non-blank portions of the tape (in the form of lists) with respect to the
tape head, and s contains the symbol under the tape head. To realize an infinite
tape in finite space in the reversible setting, we require that only non-blank
symbols can be on the bottom of either tape stack, cf. [18].

Let step be an implementation of the transition relation, such that step takes
a configuration (a pair of the current state and tape) and returns the next
configuration. Given a sequence of state transition rules d∗, we obtain

step 〈q, t〉 � case 〈q, t〉 of
T [[d]]∗

(27)

where T is a translator from a state transition rule to the corresponding case
branch in the proposed language, defined as:

T [[〈q1, 〈s1, s2〉, q2〉]] = 〈q1, 〈l, s1, r〉〉 → 〈q2, 〈l, s2, r〉〉
T [[〈q1,←, q2〉]] = 〈q1, t′〉 → let t′ = move l t

′′ in 〈q2, t′′〉
T [[〈q1,→, q2〉]] = 〈q1, t′〉 → rlet t′′ = move l t

′ in 〈q2, t′′〉
T [[〈q1, ↓, q2〉]] = 〈q1, t′〉 → 〈q2, t′〉

(28)

An overlined state or symbol · represents a corresponding constructor in the
language. Because of the reversibility of the source RTM, leaf left-expressions
as well as the patterns appearing in the branches of step are disjoint, leading to
the reversibility of step.

As an example, consider the incrementation of a non-negative binary number
yielding its successor in binary representation (with the least significant digit
first), cf. [18]. An RTM computing this function is shown in Fig. 8. It works as
follows: Initially, the tape head is to the left of the first bit. The tape head then
moves to the right, flipping bits until it flips a 0 to a 1, and then returns to the
original position. It is easily verified that the machine in Fig. 8 is reversible. The
rules given in Fig. 8 are translated into function step in Fig. 9.



26 T. Yokoyama, H.B. Axelsen, and R. Glück

〈qs, 〈b, b〉, q1〉 〈q2, 〈0, 1〉, q3〉 〈q2, 〈b, b〉, q3〉 〈q4, 〈0, 0〉, q3〉
〈q1,→, q2〉 〈q2, 〈1, 0〉, q1〉 〈q3,←, q4〉 〈q4, 〈b, b〉, qf 〉

Fig. 8. Transition rules for binary number incrementation

step 〈q, t〉 � case 〈q, t〉 of
〈qs, 〈l, b, r〉〉 → 〈q1, 〈l, b, r〉〉
〈q1, t′〉 → rlet t′ = movel t

′′ in 〈q2, t′′〉
〈q2, 〈l, 0, r〉〉 → 〈q3, 〈l, 1, r〉〉
〈q2, 〈l, 1, r〉〉 → 〈q1, 〈l, 0, r〉〉
〈q2, 〈l, b, r〉〉 → 〈q3, 〈l, b, r〉〉
〈q3, t′〉 → let t′′ = movel t

′ in 〈q4, t′′〉
〈q4, 〈l, 0, r〉〉 → 〈q3, 〈l, 0, r〉〉
〈q4, 〈l, b, r〉〉 → 〈qf , 〈l, b, r〉〉

Fig. 9. Function step generated from the transition rules in Fig. 8

Function move l moves the tape head one cell to the left. Thus, when it is
called in an rlet-expression, it moves the tape head to the right. Function move l
is defined as:

move l 〈l, s, r〉 � let r′ = pushtape 〈s, r〉 in
rlet l = pushtape 〈s′, l′〉 in
〈l′, s′, r′〉

(29)

where pushtape 〈s, stk〉 pushes symbol s to stack (list) stk :

pushtape 〈s, stk〉 � case 〈s, stk〉 of
〈b, [ ]〉 → [ ]

〈s′, tl〉 → s′ : tl
(30)

When symbol s is a blank and stack stk is empty, pushtape leaves stk empty.
Otherwise, s is pushed on stk . Conversely, when pushtape is inversely invoked
with an empty stack, a blank symbol is popped. This operation can be repeated
arbitrary times. This preserves the condition that the bottom element of a stack
is non-blank, which enables the representation of the infinite length tape in
reversible finite space.

To simulate the RTM we must apply step repeatedly until we reach the
final state qf . If this is näıvely implemented, it results in a many-to-one (non-
invertible) mapping which is not a reversible function. To cope with this problem
we add an extra (intermediate) element to the output. For an RTM running for-
ward, in addition to the result we also return a natural number which counts
the number of applications of step. A simulation of the RTM is defined by the



Towards a Reversible Functional Language 27

function rtmf . Given a pair of the state and tape 〈q, t〉, rtmf returns a triple
containing the state, tape, and counter.

rtmf 〈q, t〉 � case q of

qf → 〈qf , t, Z〉
q1 → let 〈q2, t2〉 = step 〈q1, t〉 in

let 〈q3, t3, n〉 = rtmf 〈q2, t2〉 in
〈q3, t3, S(n)〉

(31)

A simulation of the inverse RTM is similarly defined by rtmb:

rtmb 〈q, t〉 � case q of

qs → 〈qs, t, Z〉
q1 → rlet 〈q1, t〉 = step 〈q2, t2〉 in

let 〈q3, t3, n〉 = rtmb 〈q2, t2〉 in
〈q3, t3, S(n)〉

(32)

Here, rlet allows us to access to the inverse semantics explicitly, so that function
step is used in the backward direction. This unconventional code sharing is a
unique feature of reversible languages. Seeing as the underlying RTM is the same,
rtmf and rtmb will recurse exactly the same number of times when applied to an
input and the corresponding output, respectively. Because of this we can apply
a recent input-erasing reversible simulation which removes the garbage counters,
and which is twice as fast as Bennett’s general method [19]. In fact, we directly
obtain the following optimized RTM simulation:

rtm t � case �〈t〉� of
〈t1, t2〉 → let 〈qf , t3, n〉 = rtmf 〈qs, t1〉 in

rlet 〈qs, t2, n〉 = rtmb 〈qf , t4〉 in
case �〈t3, t4〉� of
〈t′〉 → t′

(33)

which is a function of tapes to tapes (without the counter) corresponding exactly
to the RTM defined by step.

For any RTM the above translation is obviously possible, and so the language
is r-Turing complete: it is a universal reversible language.

3 Conclusion

We proposed a simple first-order reversible functional language. We view re-
versibility as both global and local determinism in both execution directions,
and specified corresponding properties for an operational semantics for the func-
tional lanaguage. Reversibility is achieved by reversible matching and syntactic
restrictions (including linearity of variables). Using a novel symmetric first-match



28 T. Yokoyama, H.B. Axelsen, and R. Glück

policy for pattern matching, the backward semantics of the proposed language
is deterministic even in the case of overlapping leaf left-expressions, which en-
ables concise code. The proposed reversible functional language is universal, as
powerful as reversible Turing machines.

Every reversible computation model, be it reversible Turing machines [5,3],
reversible cellular automata [15], or reversible logic circuits [7,17], have their
own languages to describe how computation is organized. It is our hope that
this language can serve as a basis for further research on reversible computing
in the functional setting, similar to how Janus is used in the imperative set-
ting. For example, Janus has been used for partial evaluation of a reversible
language [14], synthesizing reversible circuits [17, Chapter 3] and translation of
reversible languages [2].

Acknowledgments. This work is in part supported by Nanzan University
Pache Research Subsidy I-A-2 for the 2011 academic year.

References

1. Abramov, S.M., Glück, R.: Principles of Inverse Computation and the Universal
Resolving Algorithm. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.)
The Essence of Computation. LNCS, vol. 2566, pp. 269–295. Springer, Heidelberg
(2002)

2. Axelsen, H.B.: Clean Translation of an Imperative Reversible Programming Lan-
guage. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer, Hei-
delberg (2011)

3. Axelsen, H.B., Glück, R.: What Do Reversible Programs Compute? In: Hofmann,
M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

4. Baker, H.G.: NREVERSAL of Fortune — The Thermodynamics of Garbage Col-
lection. In: Bekkers, Y., Cohen, J. (eds.) IWMM 1992. LNCS, vol. 637, pp. 507–524.
Springer, Heidelberg (1992)

5. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (1973)

6. Bowman, W.J., James, R.P., Sabry, A.: Dagger traced symmetric monoidal cate-
gories and reversible programming. In: De Vos, A., Wille, R. (eds.) 3rd Workshop
on Reversible Computation, pp. 51–56. University of Gent. (2011)

7. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Ap-
plications. Wiley-VCH (2010)

8. Frank, M.P.: Reversibility for efficient computing. Ph.D. thesis, EECS Dept. MIT,
Cambridge, Massachusetts (1999)

9. Glück, R., Kawabe, M.: A Program Inverter for a Functional Language with Equal-
ity and Constructors. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 246–
264. Springer, Heidelberg (2003)

10. Glück, R., Kawabe, M.: A method for automatic program inversion based on LR(0)
parsing. Fundamenta Informaticae 66(4), 367–395 (2005)

11. Gries, D.: Inverting Programs. In: The Science of Programming. Texts and Mono-
graphs in Computer Science, ch. 21, pp. 265–274. Springer, Heidelberg (1981)

12. Lutz, C.: Janus: a time-reversible language. Letter to R. Landauer (1986),
http://www.tetsuo.jp/ref/janus.html

http://www.tetsuo.jp/ref/janus.html


Towards a Reversible Functional Language 29

13. McCarthy, J.: The inversion of functions defined by Turing machines. In: Shannon,
C.E., McCarthy, J. (eds.) Automata Studies, pp. 177–181. Princeton University
Press (1956)

14. Mogensen, T.Æ.: Partial evaluation of the reversible language Janus. In: Proceed-
ings of Partial Evaluation and Program Manipulation, pp. 23–32. ACM Press
(2011)

15. Morita, K.: Reversible computing and cellular automata — A survey. Theoretical
Computer Science 395(1), 101–131 (2008)

16. Mu, S.C., Hu, Z., Takeichi, M.: An Injective Language for Reversible Computation.
In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 289–313. Springer, Heidelberg
(2004)

17. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer,
Heidelberg (2010)

18. Yokoyama, T., Axelsen, H., Glück, R.: Principles of a reversible programming lan-
guage. In: Proceedings of Computing Frontiers, pp. 43–54. ACM Press (2008)

19. Yokoyama, T., Axelsen, H.B., Glück, R.: Optimizing clean reversible simulation of
injective functions. Journal of Multiple-Valued Logic and Soft Computing 18(1),
5–24 (2012)

20. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-
interpreter. In: Proceedings of Partial Evaluation and Semantics-Based Program
Manipulation, pp. 144–153. ACM Press (2007)


	Towards a Reversible Functional Language
	Introduction
	The Language
	Syntax
	Reversibility and Most General Matcher
	Semantics
	Reversibility and Semantics
	Examples
	r-Turing Completeness

	Conclusion
	References




