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Preface

In recent years, reversible computation has established itself as a very promis-
ing research area and an emerging technology. This is motivated by a widely
supported prediction that the conventional computer hardware technologies are
going to reach their limits in the not-too-distant future.

In particular, the impact of power consumption of electronic devices on the
intended behavior of such devices is becoming a serious problem. While the
unwanted behavior of transistors can be reduced by higher levels of integration
and new fabrication processes, a more fundamental problem exists: As proven
by Landauer in 1961, each time a bit of information is deleted exactly k ·T · log 2
Joule of energy is dissipated, where k is the Boltzmann constant and T is the
temperature. While this amount of energy does not seem presently significant,
it forms potentially a barrier for future technologies. Transistors that perform
millions of operations per second are fairly common these days, and more and
more operations are performed on smaller and smaller transistors. Since these
trends are most likely to continue, dissipation of k · T · log 2 Joule of energy
per bit of information lost will become crucial and may bring the progress of
conventional computer technologies to a halt.

In contrast, reversible computations may reduce or even eliminate this power
dissipation. This holds since n-input n-output functions, for some appropriate
n, can be used to map each possible input vector to a unique output vector.
Data are bijectively transformed in this way without losing any of the original
information, thus avoiding energy dissipation. In fact, computations with zero
power dissipation are only possible provided they are performed in a reversible
manner. Thus, in order to overcome the limitations caused by Landauer’s barrier,
computation has to be reversible.

Moreover, quantum computation has become a major application area for
reversible logic. It uses qubits instead of the conventional bits. Qubits allow one
to represent not only 0 and 1 but also a superposition of both. As a result,
qubits can represent multiple states at the same time theoretically enabling
enormous speed-ups in computation. It has been shown that, for example, using
a quantum circuit it is possible to solve the factorization problem in polynomial
time while for conventional circuits only exponential methods exist. Admittedly,
although the research in the domain of quantum circuits is still in its infancy,
the first simple quantum circuits are being physically implemented. Reversible
computation is therefore essential because every quantum operation is inherently
reversible. Thus, progress in the domain of reversible logic can be directly applied
to quantum logic.

Further applications of reversible computation paradigms can be found in
coding/decoding, program debugging, testing, database recovery, discrete event
simulation, reversible algorithms, reversible specification formalisms, reversible
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programming languages, process algebras and semantics of concurrency, or the
modeling of biochemical systems.

The Workshop on Reversible Computation provides a platform to present and
to discuss new trends and recent developments in this promising area. Previous
events took place in March 2009 in York, UK (with proceedings published as
ENTCS Volume 253, Issue 6) and in July 2010 in Bremen, Germany (with pro-
ceedings published in the Journal of Multiple-Valued Logic and Soft Computing
Volume 18, Issue 1).

The volume at hand covers revised and extended versions of the best papers
presented at the third edition of the Workshop on Reversible Computation which
took place in Gent, Belgium, during July 4–5, 2011. From a total of 25 original
submissions, the Program Committee selected 10 submissions for publication in
this issue (leading to an acceptance rate of 40%). For this purpose, an intensive
double-blind review process was conducted.

The first paper considers a theoretical aspect of reversible computation. The
author H.B. Axelsen studies the time complexity of tape reduction in reversible
Turing machines. While it was already known that the reduction from k tapes
to 1 tape in general leads to a quadratic increase in time, for k to 2 tapes a
reduction to a logarithmic factor is possible.

Ways toward a functional language for reversible computations are described
in the second paper. T. Yokoyama, H.B. Axelsen, and R. Glück identify the basic
concepts such a language has to satisfy and discuss the advantages using several
example programs.

Logic design is considered in the following three papers. M.K. Thomsen, H.B.
Axelsen, and R. Glück describe the design of a purely reversible processor archi-
tecture and its instruction set. Therefore, a simple, yet expressive, locally invert-
ible instruction set, and fully reversible control logic and address calculation, is
applied. Optimization techniques for reversible circuits based on templates are
introduced by M.M. Rahman, G.W. Dueck, and A. Banerjee, who make use of
a newly developed splitting rule. Finally, C. Moraga presents an extension of
the commonly used Toffoli gates enabling one to efficiently realize operations in
GF(2) and lattice operations of a Boolean algebra.

The sixth paper presents a software toolkit called RevKit that assists users
in the design of reversible circuits. RevKit is developed by M. Soeken, S. Frehse,
R. Wille, and R. Drechsler. It provides various functionalities ranging from syn-
thesis and optimization to verification of reversible circuits. Furthermore, RevKit
is open source so that other researchers can use and extend its functionalities.

The application of reversible computation to the domain of quantum circuits
is covered in the seventh and eighth paper. Z. Sasanian and D.M. Miller propose a
mapping of reversible gate into quantum gates using the NCVW library instead
of the previously applied NCV library. Afterwards, quantum circuit synthesis
considering linear nearest neighbor architectures is considered by A. Matsuo
and S. Yamashita.

Finally, physical realizations of reversible circuits in CMOS technologies is the
subject of the last two papers. First, S. Burignat, M. Olczak, M. Klimczak, and
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A. De Vos discuss key questions rising from existing reversible dual-line pass-
transistor technology. Afterwards, a technical solution that allows interfacing
reversible pass-transistor logic with conventional CMOS logic is presented by
S. Burignat, M.K. Thomsen, M. Klimczak, M. Olczak, and A. De Vos.

We would like to thank all the authors for their valuable contributions to
this special issue devoted to RC 2011. Furthermore, many thanks are due to the
members of the Program Committee and all external reviewers for their excellent
work in evaluating the submissions as well as for providing detailed feedback and
further suggestions to the authors. Finally, we wish to thank Alfred Hofmann
of Springer for agreeing to publish these proceedings in the book series Springer
Lecture Notes in Computer Science. Support from the University of Ghent and
the University of Bremen is also gratefully acknowledged.

November 2011 Alexis De Vos
Robert Wille
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Time Complexity of Tape Reduction

for Reversible Turing Machines

Holger Bock Axelsen

DIKU, Department of Computer Science, University of Copenhagen
funkstar@diku.dk

Abstract. Studies of reversible Turing machines (RTMs) often differ
in their use of static resources such as the number of tapes, symbols
and internal states. However, the interplay between such resources and
computational complexity is not well-established for RTMs. In particu-
lar, many foundational results in reversible computing theory are about
multitape machines with two or more tapes, but it is non-obvious what
these results imply for reversible complexity theory.

Here, we study how the time complexity of multitape RTMs behaves
under reductions to one and two tapes. For deterministic Turing ma-
chines, it is known that the reduction from k tapes to 1 tape in general
leads to a quadratic increase in time. For k to 2 tapes, a celebrated result
shows that the time overhead can be reduced to a logarithmic factor. We
show that identical results hold for multitape RTMs.

This establishes that the structure of reversible time complexity
classes mirrors that of irreversible complexity theory, with a similar
hierarchy.

1 Introduction

Turing machines are very robust with respect to variations in static resources:
adding extra symbols, tracks, tapes, or the like does not add any functions or
languages to the computable set. While there is no impact on computability,
the effect on computational complexity can be profound. In a series of classic
papers, Hartmanis, Hennie, and Stearns [4, 5, 6] established the effect on time
complexity of tape reduction for deterministic Turing machines (DTMs). Tape
reduction strictly diminishes the class of problems that we can solve within a
given (asymptotic) time bound, which shows the existence of a time hierarchy
for DTMs. On the other hand, there are also many complexity classes (such as
P) which are themselves robust under tape reduction.

It is known that the reversible Turing machines (RTMs) are equally robust
computability-wise wrt the number of symbols, tracks and tapes [2, 11]. How-
ever, the analogous complexity results are not well-established for RTMs. This
limits the generality of statements regarding reversible complexity. Complexity
classes are (usually) defined for 1-tape machines, but many foundational results
in reversible computing theory use multitape machines. As a familiar example,
the Landauer embedding [8], which is integral to Bennett’s method [3], yields a

A. De Vos and R. Wille (Eds.): RC 2011, LNCS 7165, pp. 1–13, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 H.B. Axelsen

2-tape RTM that recognizes the same language as a given 1-tape TM. Despite
this, it is not at all obvious what the 2-tape machine can tell us about the re-
versible complexities of this language, since this requires a 1-tape machine. Thus,
knowing the complexity-wise effects of varying static resources is both useful and
necessary for developing complexity theory for reversible Turing machines.1

Here, we examine the effect on time complexity of tape reduction for RTMs
(Section 2). By adapting well-known irreversible tape reductions to work re-
versibly, we show that tape reductions can be as time-efficient for RTMs as they
are for DTMs. We give two main results: first, k-to-1 tape reduction (Section 3)
can be done at quadratic cost in running time, in that a t(n) time computation
with k tapes can be performed in O(t(n)2) time with 1 tape. Like with DTMs we
show that this is optimal: some computations are Ω(n2) time for 1-tape RTMs,
but O(n) time for 2-tape RTMs, so the quadratic increase in simulation time
cannot be improved in general. Second, k-to-2 tape reduction (Section 4) can be
done with only a log factor overhead, in that a t(n) time computation with a
k-tape machine can be performed in O(t(n) log t(n)) steps with 2 tapes.

2 Reversible Turing Machines

In this paper we consider multitape reversible Turing machines (RTMs). We
assume familiarity with RTMs, and shall only briefly describe them here. We
refer the reader to [2, 3, 11] for more complete expositions.

A Turing machine is reversible iff it is forward and backward deterministic.
This intuitively means that at most one rule from the machine’s transition func-
tion can be applied to any given configuration (forward determinism), and at
most one rule leads to any given configuration (backward determinism).

We use a triple format for the rules of the k-tape RTMs in this paper, with two
distinct kinds of rule. A symbol rule (q, (s, t), p) says that in state q, if the tape
heads read symbols s ∈ Σk (where Σ is a finite alphabet), write symbols t ∈ Σk

and change into state p. A move rule (q, d, p) says that in state q, move the k
tape heads in the directions given by d ∈ {←, ↓,→}k and change into state p.
A machine is backward deterministic iff for any distinct pair of rules (q1, a1, p1)
and (q2, a2, p2), if p1 = p2 then a1 = (s1, t1), a2 = (s2, t2), and t1 �= t2.

We are mostly concerned with RTMs for decision problems, and in par-
ticular their time complexity. We define the reversible time complexity class
RevTIMEk(t(n)) to be the set of all languages that are decidable2 by an O(t(n))
time RTM with k work tapes, where n is the length of the input given on one of
the work tapes. This is completely analogous to the definition of DTIMEk(t(n))
for deterministic (but not necessarily reversible) TMs. Note that we trivially have
RevTIMEk(t(n)) ⊆ DTIMEk(t(n)) for any number of tapes k and time bound t(·).
For single-tape machines (k = 1) we shall omit the subscript.

1 This is still the case if we instead define time complexity by multitape machines.
2 Decider machines halt in an accepting state ‘yes’ for all strings in some language;
and halt in a reject state ‘no’ for all others. Recognizer machines (sometimes also
called acceptors or semi-deciders) may diverge on strings not in the language.
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[ * ]

[ * ]

track2

head

track1

Fig. 1. Track layout for 1-tape simulation of 2-tape Turing machines. Two tracks
(track1 and track2) simulate the 2 tapes. On auxiliary tracks, delimiters [ and ] give the
extent of the non-blank tape contents (grey squares), and markers ∗ show the simulated
tape head positions. After realigning the tracks, these markers always match up.

3 One-Tape Simulation of Multitape RTMs

Hartmanis and Stearns [4] showed that a k-tape Turing machine Tk with running
time t(n) can be simulated by a 1-tape TM T1 with running time O(t(n)2). The
idea of the simulation is to turn the k tapes into O(k) tracks, with delimiters
for the ‘ends’ of the tapes and markers for the simulated tape heads, as seen in
Figure 1. If a multitape rule has the tape heads move differently, e.g. (q,

[→
←
]
, p),

the simulated rule realigns the tracks such that the markers (*) line up again:

shift track1 left shift track2 rightmove marksq p

The slowdown comes from the fact that shifting the tracks one cell to the left or
right takes time linear in their size, and this is done O(t(n)) times. Recently, we
applied this idea to RTMs [2]. Importantly, the overhead induced by reversibility
does not influence the asymptotic complexities, in that we can still shift the
tracks in linear time.

Proposition 1. A k-tape reversible Turing machine with running time t(n) can
be simulated by a 1-tape reversible Turing with running time O(t(n)2).

This establishes an upper bound for general simulation of multitape RTMs.
For DTMs Hennie [5] provided a lower bound matching the upper bound for

1-tape simulation of just 2 tapes. Hennie considers the language

L = {w2nw ∈ {0, 1, 2}∗ | w ∈ {0, 1}n, n > 0} ,

consisting of strings that repeat a binary word w twice, separated by a block
of 2’s as long as w itself. The first part of the proof shows a 1-tape TM that
decides L in O(n2) time, where n is the length of the input. The second part
proves that the language L requires at least quadratic time for 1-tape TMs3

on the ‘yes’ instances (so the O(n2) upper bound is tight). The third part of

3 In Hennie’s and our TM model the input is given on the single work tape. If the
input is instead given on a separate read-only (left-to-right) input tape, then the
lower bound still holds but is considerably harder to obtain [10].
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start

q p

yes

[
b, b
b, b

] [→
→

]

[
α, α
b, α

]

[
2, 2
b, b

]

[←
↓
]

[
α, α
b, b

][→
←

]

[
2, 2
α, α

]

[
α, α
b, b

]

[←
↓
]

[
2, 2
b, b

] [→
→

]

[
α, α
α, b

]

[
b, b
b, b

]

Fig. 2. State transition diagram for a 2-tape RTM that recognizes the language L.
Edges with the symbolic variable α are used to signify the two rules for α ∈ {0, 1}, and
b is the blank symbol.

the proof shows that the language L is decidable by a 2-tape TM in linear
time (which is also asymptotically optimal). This shows that the simulation by
Hartmanis and Stearns in optimal in general.

This is also the case for RTMs, but in order to prove it we have to replicate
each part of Hennie’s proof for RTMs. First, we remark that the lower bounds
(linear time for 2-tape machines, quadratic time for 1-tape machines) trivially
apply to RTMs as well, because the RTMs are a proper subset of the DTMs.
However, note that this is not in itself sufficient to show the desired result,
because we have not yet established that these lower bounds are tight for RTMs.
Second, if we can find a 2-tape RTM that decides L in linear time, then we
get the quadratic time 1-tape machine for free, simply by applying the 1-tape
simulation of 2-tape RTMs. In fact, because the bounds apply specifically to
the accepted inputs, a recognizer, rather than a decider, is sufficient. Thus, the
entire proof reduces to finding such a machine.

Proposition 2. There exists a 2-tape RTM that recognizes L in time O(n).

Proof. Let the string l ∈ {0, 1, 2}∗ be given on the first tape in standard con-
figuration form, i.e., with the tape head to the immediate left of l, and the rest
of the tape(s) blank. To decide whether l is in L we follow Hennie’s idea: copy
the binary word w to the second tape; rewind the second tape while passing
over the 2’s on the first tape; compare the binary word on the first tape with
the copy on the second. Of course, the machine now has to do this reversibly,
which complicates matters somewhat, but the basic idea holds. Figure 2 shows
an RTM that recognizes L in linear time. �	

We can therefore conclude that 1-tape RTM simulation of multitape RTMs
has exactly the same time complexity bounds as 1-tape DTM simulation of
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T−1

p

yes

r r−1

q−1q nostart

p−1

yes−1

T

Fig. 3. Composition of T and T−1 to eliminate stuck states. The arcs from T to T−1

denote the extra symbol rules we add to avoid getting stuck. Note that the inverse
image of T ’s accept state is unreachable.

multitape DTMs. This opens the door for a host of useful and immediate results
for reversible complexity theory. For instance, since we have multi-tape universal
RTMs that simulate 1-tape machines with constant factor overheads [2,1], stan-
dard techniques can be used to show that the reversible Turing machines have
a time hierarchy, in a manner completely analogous to DTMs [4]. Furthermore,
the Landauer embedding (generalized to k-tape machines) can now be used to
show that

⋃
k DTIMEk(t(n)) ⊆ RevTIME(t(n)2). As a final example, just as P is

robust under tape reduction, so is its reversible analogue RevP (defined in the
obvious manner).

3.1 Eliminating Stuck States from RTMs

The L-recognizer above gets stuck on all strings that are not in L, e.g. at states
p and q, rather than rejecting or diverging (running forever). This means that
there are two kinds of non-halting behavior: infinite loops and stuck states. To
avoid ambiguity it is very often required that machines will never get stuck.

It is only possible to get stuck in a state q in some TM T if q does not have
outgoing symbol rules for all symbols in the tape alphabet. For irreversible DTMs
we can avoid stuck states by simply adding dummy transitions to the reject state
for every such undefined transition. For reversible machines this will not work:
there is only one reject state, and backward determinism limits the number of
transitions into any state to the size of the alphabet. There may be many more
stuck states than we can differentiate in this way. A näıve solution could be to
expand the (internal) alphabet to include enough symbols to differentiate all the
reject transitions we need to add, but this is a somewhat inelegant and wasteful
use of resources.

A key feature of RTMs is that they are very easily inverted, cf. [3,2]. Let T−1

be the inverse of T , but with the convention that all states q are renamed to
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q−1 in T−1. We now compose T and T−1 such that a stuck state in T will lead
to rejection for the composed machine. For each undefined symbol transition for
each state q in T we add dummy transitions to state q−1 in T−1. For example,
if we can get stuck in state p by reading symbol a, then we insert the transition
(p, (a, a), p−1). Because an outgoing action for this symbol was undefined for p,
adding this ingoing edge to p−1 will conserve reversibility. If we cross such an
added transition, the effect will be to rewind the entire computation leading up
to it, leaving us in the state in T−1 corresponding to T ’s starting state. We use
this state as the reject state ‘no’ of the composed machine.4 Figure 3 illustrates
the construction.

A very useful side effect is that rejection now restores the input string exactly.
In fact, by linking T ’s accept state to a second copy of T−1, we can guarantee
that the input string is always restored when halting.

In this way it can be ensured that RTMs never get stuck, so we can assume
wlog that the only non-halting behavior is running forever. An interesting con-
sequence is that we can then also assume that space-bounded RTMs always
halt. Also note that the construction preserves the complexities of the origi-
nal machine. As a final remark, the author used essentially this construction to
implement string comparison in a universal RTM [1].

4 Two-Tape Simulation of Multitape RTMs

Hennie and Stearns [6] showed the beautiful result that a k-tape machine Tk

with running time t(n) can be simulated by a 2-tape Turing machine T2 with
only a logarithmic factor slowdown, so that T2 has running time O(t(n) log t(n)).
Does a similar result hold for the RTMs?

A logarithmic factor is indeed achievable for multitape RTM simulation with
only a fixed number of simulation tapes. We can instrument a 2-tape Hennie-
Stearns simulation of a k-tape RTM with a Landauer embedding: this yields a 3-
tape RTM simulation of the k-tape RTM with only logarithmic factor slowdown.5

Thus, only the time complexity of 2-tape reversible simulation of multitape
RTMs remains undecided. The rest of this paper is devoted to resolving this
problem, by adapting the Hennie-Stearns simulation for reversibility.

4.1 The Hennie-Stearns Simulation

We outline the ideas of the Hennie-Stearns simulation below. For exact details
and proofs we refer to the original paper [6], which is still eminently readable.

Layout. The tapes of Tk are each simulated with two tracks placed on one of
T2’s tapes (the other tape is for scratch space). A simulated tape is ‘horizontally’
divided into two levels (the two tracks), and ‘vertically’ into areas numbered

4 If T already has a reject state a dummy move transition targeting its image state in
T−1 can be added.

5 It is possible to remove the added trace by Bennett’s method for injective functions.
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1, 2, 3, 4, . . . of 1, 2, 4, 8, . . . cells each, on both sides of a designated home column
H (where the simulated heads of Tk point to). Thus, the ith area on either side
has space for 2i symbols in both levels combined.

The contents of a simulated tape consists of each non-empty area in sequence,
first lower levels then upper levels (ignoring empty area levels) reading from the
left towards the home column. Symmetrically, from the home column towards the
right we read upper levels first, followed by lower levels, for each area. Figure 4(a)
shows how to read a simulated tape under this layout.

There are a number of invariants to respect for each simulated tape.

– Each level of each storage area is either completely full or empty.
– The lower level of the home column (the home square) is always full, and

the upper level always empty.
– If the upper level of an area is full, then so is the lower level and the ‘mirror’

area on the other side of the home column must be empty.
– If the lower level of an area is empty, then so is the upper level and the

‘mirror’ area on the other side of the home column must be completely full.
– At the beginning of the simulation, all lower levels are full, and all upper

levels are empty.6

This guarantees that the ith right (left) storage area always has space to accom-
modate the entire non-empty content of the lower-numbered areas to the right
(left) of the home square. (Note that a lower level can be full and the upper level
empty. Also note that we can have filled lower levels in both right and left area
i without breaking the invariants.)

Cleanup. To simulate a move rule, the central idea is to shift only parts of the
simulated tapes around by using the upper levels as extra storage. For the rest
of the paper, assume that we want to simulate rule (q, [←, . . .], p), i.e., that a tape
head moves left. We must then shift the simulated tape to the right, which is
done as follows.

1. From the home column, find the first non-empty left area, number i.
2a. If the upper level of this area is full, move the upper level’s content into the

empty lower levels of the i − 1 first left areas, with the rightmost symbol
going into the home square.

2b. Else, move the lower level of area i in the same way.
3. Collect the original home square symbol and the contents in both levels of

the first i − 1 right areas (these are all full), and place the first half of the
content in the lower levels of the first i− 1 right areas.

4a. If the lower level of the ith right area is empty, place the second half there.
4b. Else, place the remaining symbols in the (empty) upper level of this area.
5. Return to the home column, and continue with the next simulated tape.

This procedure is called a cleanup of order i, and can be executed by the 2-tape
DTM in time O(2i), i.e., linearly in the number of moved symbols. This is key

6 This means that blank squares from Tk are not the same as empty squares in T2.
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(b) Delimiter-free

3 1 1 2 3H2

3 1 1 2 3H2

(a) Original

Fig. 4. Layout of a tape simulated with two tracks. The storage areas are numbered
around the home column H. (a) shows how to read off the contents of the tape in the
original layout by Hennie and Stearns, and (b) shows our modified layout. In both
layouts empty squares should be ignored in the reading.

to proving the time bound: the procedure guarantees that high-order cleanups
will be very rare compared to low-order cleanups, and this leads to a logarithmic
(rather than linear) time factor overhead for the simulation.

4.2 Reversible Cleanup Implementation

Now, can we implement the cleanup procedure reversibly?
The key idea of the implementation is to use the scratch tape for several

purposes. To find the ith left area, we move the simulation tape head to the
left until we encounter a non-empty cell: this cell is the right end of area i.
At the same time, we also move the scratch tape head to mark out 2i−1 cells.
This is exactly the length of area i, and also exactly as many symbols as we
need to move into the lower order areas. We can also recognize the left end of
area i by moving the scratch head back across the markings, while moving the
simulation tape head to the left. Thus, the marked scratch space can be used to
move exactly the number of symbols we need, in each step of the procedure.

Moving n contiguous symbols n places can easily be done in linear time by
RTMs with 2 tapes. It is not difficult to see how to adapt this to the particular
kinds of moves we need, and we assume these for the rest of the implementation.

We have identified three main sources of irreversibility in the cleanup proce-
dure, all of which can be dealt with while preserving the time complexity.

Block delimiters. In step 3, we need delimiters to mark the extent of each
area we visit, in order to move the content from the simulation tape onto the
scratch tape in the correct order. In the original implementation delimiters are
placed at run-time, but we cannot do this reversibly without knowing by other
means whether a delimiter should be placed or not.

Solution. Delimiters can be avoided by changing the tape layout slightly. We
adopt a uniform down/up reading for each cell, rather than for each area level (sym-
metrically, up/down to the right of the home column), as shown in Figure 4(b). It
is now straightforward to move the home square and right areas onto the scratch
tape in the correct order without using delimiters between areas.
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H123

(2a) upper level full (2b) upper level empty

H123

sim. tape

scratch

H123H123

Fig. 5. Resolving intermediate control flow confluence in step 2 of a 3rd order cleanup.
Grey squares are filled, white squares are empty. The two branches are orthogonal by
whether area 3 (identified by markings on the scratch tape) is empty or not.

Intermediate control confluence. There is control flow confluence in step
2, when moving the upper level (2a) or lower level (2b) of the ith left area.
The control flow of these two branches must be merged reversibly before step 3,
which requires finding an orthogonal property to distinguish them by. The same
problem occurs at the end of step 4.

Solution. We can orthogonalize the two branches by examining the rightmost
cell of area i: its lower level is filled if we came from (2a), and empty if we
came from (2b). This requires that we can tell where area i is, which means
remembering the value i somehow. This is done by keeping the marks we placed
on the scratch tape while finding area i, after steps (2a) and (2b), see Figure 5.

Cleanup confluence. The control flow confluence applies to cleanups in gen-
eral: different order cleanups can lead to identical simulated tapes, as shown in
Figure 6, and we can only tell these apart by remembering the order i of the
cleanup. This is an inherent trait of the Hennie-Stearns simulation: the restora-
tion of the standard reading in all the lower order blocks after a high order
cleanup is essential for keeping the time complexity low.

Solution. The marked space on the scratch tape (a unary representation of
2i−1) can be conserved, by always marking space towards the right, for simu-
lating both left and right shifts. This ensures that we never move more than
one cell to the left of the position of the scratch head at the start of a cleanup.
After a cleanup has been performed, we then move the scratch head across the
(conserved) markings and past the following blank square, to prepare for the
next cleanup. Thus, the scratch tape is still used to perform linear time moves,
but also stores a history of the previous markings, which defines the orders of
the cleanups performed, see Figure 7. This is sufficient for reversibility.
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1 1 2H2

1 1 2H 1 1 2H2 2

2nd order cleanup 1st order cleanup

Fig. 6. Confluence of cleanups: 1st and 2nd order cleanups that lead to the same
configuration, if the scratch tape (not shown) is fully cleared between cleanups. This
shows the necessity of conserving some additional information between cleanups.

3 1 1 2 3H2

sim. tape

scratch

Fig. 7. The configuration of the 2-tape simulation after 4 left cleanups (of orders 1, 2,
1 and 3) and then 2 right cleanups (orders 1 and 2). When simulating multiple tapes,
the orders of cleanups from the individual tapes will be interleaved on the scratch tape.

It is only the markings on the scratch tape that we cannot remove—the rest
of the procedure works reversibly. While we do use a partial trace, importantly,
it does not require an extra tape, like the Landauer embedding does. If de-
sired (e.g. for function problems) this order trace can be removed by standard
reversible computing methods, see Appendix A.

4.3 Reversible Time Complexity

None of the above solutions affect the time complexity of an ith order cleanup.
The novel delimiter-free layout requires that we implement the movement of

symbols somewhat differently from the original version: in step (2a) we have to
‘smooth out’ left area i which is completely filled, and in step (4b) we have to
‘fold up’ right area i to fill it completely. By using a two-track scratch tape,
this can be done with a constant number of passes, which conserves complexity.
How this works is shown in Figure 8. Of course, this layout can also be used to
obviate block delimiters in the irreversible simulation.

Conserving the marked space on the scratch tape during a cleanup adds no
time overhead. Finally, passing over these marks to prepare the scratch tape for
the next cleanup is also only linear in the number of marked cells.
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(d)

3

(a) (b)

(c)

H123

sim. tape

scratch

H123

H123

H12

Fig. 8. Smoothing a tape reading in step (2a) of a 3rd order cleanup. To start with
(a), the simulation tape has both levels of area 3 full, so we (b) move the first half
into the lower level of the marked space on the scratch tape. We know when we have
come halfway, because we run out of marks on the scratch tape. Then we (c) move the
second half into the upper level on the scratch tape, and (d) move the upper level of
the scratch level back into the lower level of area 3 of the simulation tape. This requires
three passes of the area, regardless of its length.

We conclude that performing an ith order reversible cleanup takes time O(2i).
This matches the time complexity of the irreversible cleanup. Thus, the same
argument used by Hennie and Stearns for the time complexity of their simulation
applies to our reversible simulation of multitape RTMs.

Proposition 3. A k-tape reversible Turing machine with running time t(n) can
be simulated by a 2-tape reversible Turing machine in O(t(n) log t(n)) time.

This can, again, be used to elicit many further reversible complexity results. For
instance, we now know that adding extra tapes to RTMs at most shaves off a
logarithmic factor on any time bounds for multitape machines. Furthermore, the
reversible Turing machines have an even tighter time hierarchy than before. Also,
by Landauer embedding k-tape DTMs and applying the above 2-tape reversible
simulation we have that

⋃
k DTIMEk(t(n)) ⊆ RevTIME2(t(n) log t(n)).

5 Related Work

Most other work on reversible complexity has focused on space, time and energy
trade-offs for reversible simulations of irreversible computations. Well-known
results includes reversible simulation using pebble games, e.g. [14], and the (sur-
prising) result that RevSPACE(s(n)) = DSPACE(s(n)) [9].
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Kondacs and Watrous [7] proved that any DFA (i.e., any regular language)
can be simulated in linear time by a 2-way reversible DFA (essentially a read-
only, one-tape RTM). As a consequence, DTIME(n) = REG = RevTIME(n), as
noted in [13]. However, few other ‘pure’ reversible complexity results are known
to the author.

As for multitape simulations, Pippenger and Fischer [12] showed that the 2-
tape simulation of multitape DTMs can be made oblivious, such that the move-
ment of the tape heads depends only on the length of the input.

6 Conclusion

In this paper we have shown that tape reduction of reversible multitape Turing
machines (RTMs) incurs the same cost in time complexity as tape reduction
for deterministic Turing machines in general. This can be leveraged to make
statements about the (time) complexity of reversible machines more precise, and
gives us almost direct access to a host of theorems about reversible complexity,
especially for decision problems. We also provided a general method to eliminate
stuck states from RTMs at no cost in complexity.

Adapting the Hennie-Stearns 2-tape simulation for reversibility required the
use of a partial trace. No extra tape was needed for this; it can easily be removed
from the final configuration, and it does not affect the time complexity of the
simulation. However, it adds a time-dependent space overhead to the simulation
that the 1-tape simulation does not. It is almost certainly possible to compress
the trace at runtime, but avoiding a trace altogether appears doubtful.

We close with an open question. It is known that linear reversible and deter-
ministic time are equal. Is reversible time equal to deterministic time in general
for single-tape Turing machines, i.e., is RevTIME(t(n)) = DTIME(t(n))?

Acknowledgements. The author would like to thank Michael Kirkedal Thomsen,
Thomas Pécseli, and Robert Glück for comments on a draft of this paper.
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A Removing the Trace

The order trace is an unwanted side effect of the simulation. There is the ad-
ditional problem that we are not guaranteed that the simulated tapes have a
‘smooth’ contiguous structure at the end of the simulation, with the output
string in only the lower levels of the areas. To solve this problem we can use a
modified version of clean simulation of injective functions [15], as follows.

ic (om, tr1)

oc

(om, tr1)

(im, tr2)

ic

(im, tr2) oc
a

c

b

d

Run the simulation forwards (a) and extract a contiguous output copy oc (placed
on extra tracks) from the ‘messy’ output om. Run the simulation backwards (b),
restoring the input in contiguous form, ic, and removing the (partial) trace tr1.
Now run the simulation of the inverse machine on the contiguous output (c).
The contiguous input ic from (b) can be merged into the resulting ‘messy’ input
im from (c). Finally, run the simulation of the inverse machine backwards (d),
which removes the (partial) trace tr2 resulting in only the contiguous output oc.
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Abstract. We identify concepts of reversibility for a functional language
by means of a set of semantic rules with specific properties. These proper-
ties include injectivity along with local backward determinism, an impor-
tant operational property for an efficient reversible language. We define
a concise reversible first-order functional language in which access to the
backward semantics is provided to the programmer by inverse function
calls. Reversibility guarantees that in this language a backward run (in-
verse interpretation) is as fast as the corresponding forward run itself.
By adopting a symmetric first-match policy for case expressions, we can
write overlapping patterns in case branches, as is customary in ordinary
functional languages, and also in leaf expressions, unlike existing inverse
interpreter methods, which enables concise programs. In patterns, the
use of a duplication/equality operator also simplifies inverse computa-
tion and program inversion. We discuss the advantages of a reversible
functional language using example programs, including run-length en-
coding. Program inversion is seen to be as lightweight as for imperative
reversible languages and realized by recursive descent. Finally, we show
that the proposed language is r-Turing complete.

1 Introduction

Functional languages provide a natural and general mechanism for manipulat-
ing structured data, associated with powerful pattern-matching features and
abstract data types. They also enable higher-level abstractions than imperative
languages and thus more concise programs with the same functionality. For these
reasons it is interesting to apply such a well-established language paradigm to
reversibility. We aim to develop a reversible functional language for studying the
foundations of reversible programming.

From the viewpoint of reversibility, functional programming enforces us to
take a more rigorous and restricted approach than in existing work. For ex-
ample, the imperative reversible language Janus [12,18] allows irreversible arith-
metic and logical operators in expressions, and these do not have bidirectionality
between input and output. In pure functional languages, it is more natural to de-
scribe natural numbers using only declarative fundamental features, e.g. based
on the Peano axioms. This approach forces us to use only purely reversible
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language constructions, which is suitable for developing both basic theory and
general concepts for reversible computing.

The contribution of this paper is to identify a concept of reversibility in a
functional language setting and specify a purely-reversible and purely-functional
language. Reversible computation of injective functions can be regarded as a case
of inverse interpretation [1]. Because general solutions to inverse interpretation,
e.g. McCarthy’s generate-and-test [13], are often inefficient in practice, our in-
terest lies in finding a solution by constructing a programming language which
has efficient inverse computation built in by design.

Injectivity of the function implemented by a program is not sufficient for effi-
cient inverse interpretation; backward deterministic control flow is also required.
Consider the function inc, which takes a natural number n as argument and re-
turns n+1 in the form of Peano numbers, where Z denotes zero and S(n) denotes
the successor of n. A straightforward implementation is:

inc n � case n of

Z → S(Z)

S(n′) → let n′′ = inc n′ in S(n′′)
(1)

For example, inc (S(S(Z))) returns S(S(S(Z))). Since inc is injective, the inverse
function inc−1 exists. But the näıve general inverse interpretation of inc has local
nondeterminism; the underlined expressions can match the same value, S(Z),
and inverse interpretation cannot immediately distinguish between the branches.

A reversible functional languages must guarantee both backward determin-
ism and termination (if the input for a given output exists) without using the
general approach. Here, we propose a reversible functional language which has
these properties. We say that a reversible language has locally forward and back-
ward deterministic semantics. Below, we specify what this means in operational
semantics.

For exploring the theoretical foundations of reversible computing, we focus on
a purely-reversible and side-effect free first-order functional language. There exist
several imperative and pseudo-functional reversible languages. As far as we know,
Janus [12,20] is the first reversible language, and is imperative. We regard Gries’
invertible language [11], R and PISA [8] as also belonging to this category. Baker
proposed Ψ-Lisp [4], reversible linear Lisp; due to the use of a state and a hidden
history stack, it is neither purely reversible nor purely functional. Mu, Hu, and
Takeichi proposed INV [16], a point-free functional language with relational se-
mantics, which essentially includes both forward and backward nondeterminism.
Bowman, James, and Sabry have proposed Π [6], another point-free reversible
functional language. Because of the nature of point-free languages, these do not
have powerful pattern matching, so e.g. overlapping branch patterns in loops is
prohibited. While the above examples all have reversible language features, a
main contribution here is to separate reversibility in functional languages from
other features.
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Grammar:

q ::= d∗ (program)

d ::= f l � e (definition)

l ::= x (variable)

| c(l1, . . . , ln) (constructor)

| �l� (duplication/equality)

e ::= l (left-expression)

| let lout = f lin in e (let-expression)

| rlet lin = f lout in e (rlet-expression)

| case l of {li → ei}mi=1 (case-expression)

Syntax domains:

q ∈ Programs

d ∈ Definitions

f ∈ Functions

l ∈ Left-expressions

e ∈ Expressions

x ∈ Variables

c ∈ Constructors

Fig. 1. Abstract syntax of the first-order functional language (n ≥ 0, m ≥ 1)

2 The Language

The reversible functional language that we present here is simple, yet powerful
enough to be r-Turing complete (see Section 2.6). Both in syntax and semantics,
this language differs from conventional first-order functional languages. For ex-
ample, the language is extended to include inverse function calls, and symmetric
matching for case-expressions serves to make its semantics forward and backward
deterministic. It may serve as a model for designing other, more sophisticated
reversible functional languages.

2.1 Syntax

The first-order functional language (Fig. 1) is tailored to guarantee reversibility
and is a modfied version of a language that was originally defined to investigate
automatic program inversion [10]. A program q is a sequence of function defi-
nitions. A function definition d consists of a pattern l (left-expression) and a
body e (expression). A left-expression l can contain variables, constructors and
duplication/equality operators (
·�). An expression e is a left-, let-, rlet- or case-
expression. An rlet-expression invokes the inverse semantics of a function f . We
call li → ei the i-th branch of a case-expression.

We consider only well-formed programs in the following sense: each variable
in patterns appears at most once, and each variable is bound before its use and
is used linearly in each branch. A value v is recursively defined by a construc-
tor c with arguments vi: v ::= c(v1, . . . , vn) where n ≥ 0. As is customary, a
nullary constructor c() is written as c. A list is constructed by an infix construc-
tor (:) and a nullary constructor [ ] that represents the empty list. The unary
and binary tuples, 〈·〉 and 〈·, ·〉, are a convenient shorthand for two different
constructors.
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2.2 Reversibility and Most General Matcher

Linearity is essential to a reversible language to avoid discarding values. Every
variable defined by a pattern on the left-hand side of a case-expression must be
used once in the expression on the right-hand side, otherwise information is lost.

Sometimes, we want to use a value more than once, but this is not allowed by
linearity. Instead of duplicating the value implicitly by using a variable twice,
we make this operation explicit by requiring that the value is duplicated by the
operator 
·�. For example, rather than syntactically using variable h twice to
duplicate the head of a list, as in expression h : h : t, the value is duplicated by

〈h〉� and bound to two fresh variables h1 and h2 in a case-expression:

Invalid

dbl x � case x of

h : t→ h : h : t

Well-formed

dbl x � case x of

h : t→ case 
〈h〉� of
〈h1, h2〉 → h1 : h2 : t

(2)

Using an explicit duplication operator simplifies the inversion of functional pro-
grams because duplication in one computation direction requires an equality test
in the other direction, and vice versa.

The above duplication/equality operator [9] is defined by


〈v〉� = 〈v, v〉 (duplication) (3)


〈v, v′〉� =

{
〈v〉 if v = v′

〈v, v′〉 otherwise
(equality test) (4)

The operator is self-inverse, which means that it can be used to determine its
input from its output (e.g., 
〈v〉� = 〈v, v〉 and 〈v〉 = 
〈v, v〉�).

We take this idea further and allow the operator to occur also in the patterns
of case-expressions. This simplifies forward and backward computation, and the
inversion of programs. To illustrate this symmetry, consider the following pair-
wise functionally equivalent case-expressions for duplicating and testing values:

case 
〈l〉� of
〈x, y〉 → · · ·

case 〈l〉 of

〈x, y〉� → · · ·

(duplication) (5)

case 
〈l, l′〉� of
〈x〉 → · · ·
〈x, y〉 → · · ·

case 〈l, l′〉 of

〈x〉� → · · ·

〈x, y〉� → · · ·

(equality test) (6)

This extension of patterns has the advantage that the same left-expressions can
be used everywhere, which simplifies inverse computation and program inversion.

The 
·�-operator can occur anywhere in a left-expression (see Fig. 1). Equality
of values in pairs can be tested at the leaf left-expressions in backward compu-
tation, which is useful for case selections, as we shall see in the example function
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v � x � {x �→ v} Var

v1 � l1 � σ1 · · · vn � ln � σn

c(v1, . . . , vn) � c(l1, . . . , ln) � 	n
i=1σi

Con

�v�↓= v′ v′ � l � σ

v � �l� � σ
Dup/Eq

Fig. 2. R-Match: Reversible matching operation (	 denotes disjoint union)

plus (Fig. 4). Left-expressions define a unique composition and decomposition
of values in our language. Pattern matching using left-expressions is formalized
as follows. To define a reversible matching semantics, we use a most general
matcher between left-expressions and values. Given linear left-expression l and
value v, left-exp judgment

v � l� σ (7)

returns σ, the most general matcher of l and v. Figure 2 shows the semantic rules
R-Match that define the most general matcher. A substitution σ is a mapping
of variables xi to values vi: {x1 �→ v1, . . . , xn �→ vn} where n ≥ 0. In particular,
{ } is the identity substitution, σl is the application of σ to l, and l ↓ is the
application of all 
·�-operators in left-expression l by means of Eq. 3 and 4.

Lemma 1 (The Most General Matcher). Given value v and left-expression
l, if left-exp judgment v � l � σ is satisfied, then σ is the most general matcher
of l and v such that

v � l � σ =⇒ (σl)↓= v ∧ ∀σ′.
[
(σ′l)↓= v =⇒ ∃σ′′. σ′ = σ � σ′′

]
. (8)

Proof. By straightforward induction on the derivation of v � l � σ. �	

2.3 Semantics

An expression judgment is a relation of a substitution σ, program q, expression
e, and value v:

σ �q e ↪→ v . (9)

The operational semantics is defined in Fig. 3. LeftExp rule is resolved by a
left-exp judgment. Without loss of generality, to avoid name clashes, we assume
that lf and ef in the FunExp rule contain fresh variables each time f is applied.

LetExp and RLetExp rules have inverse functionality. While both rules
apply function f in the premise, their input and output, as indicated by the
subscripts, are exchanged. The reversible semantics allows us to define the in-
verse functionality by swapping the input and output without invoking program
inversion. Only a reversible semantics enables this rule sharing. We shall see
examples of rlet-expressions later when we define a reversible Turing machine.

The CaseExp rule is more involved. We constrain the semantics of case-
expressions to be symmetric regarding the branch selection by requiring that the
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v � l � σ

σ �q l ↪→ v
LeftExp

f lf � ef ∈ q σ �q l ↪→ v′ v′ � lf � σf σf �q ef ↪→ v

σ �q f l ↪→ v
FunExp

σin �q f lin ↪→ vout vout � lout � σout σout 	 σe �q e ↪→ v

σin 	 σe �q let lout = f lin in e ↪→ v
LetExp

vin � lin � σin σout �q f lout ↪→ vin σout 	 σe �q e ↪→ v

σin 	 σe �q rlet lin = f lout in e ↪→ v
RLetExp

σl �q l ↪→ v′ σlj 	 σt �q ej ↪→ v

j = min{i | v′ � li � σli} = min{i | l′ ∈ leaves(ei) ∧ v � l′ � }
σl 	 σt �q case l of {li → ei}mi=1 ↪→ v

CaseExp

Fig. 3. Operational semantics for the reversible functional language

first-matching branch is the same in both directions. Otherwise, the CaseExp
is undefined. Consider the following case-expression as an example.

case l of

l1 → · · · in l′1
...

li → · · · in l′i
...

ln → · · · in l′n

(10)

The value v of l is matched against the left-hand side of each branch (l1, l2, . . .)
until the first successful match at some li, that is, v�li � σi. As usual, the right-
hand side of the i-th branch is then evaluated in σi and a value v′ is returned by
l′i. Now, for symmetry, we require that v′ does not match any of the preceding
l′1, . . . , l

′
i−1; otherwise, the case-expression is undefined. This symmetric first-

match policy ensures that case-expressions forward and backward deterministic.
Thus, in backward computation, a given value v′ of the whole case-expression

is matched against the leaf left-expressions of each branch (l′1, l
′
2, . . .) until the

first successful match at some l′i, that is, v
′ � l′i � σ′i. The result of the backward

computation of the right hand side of the i-th branch instantiates li to v. Then,
for symmetry, we require that v does not match any of the preceding l1, . . . , li−1;
otherwise, evaluating the case-expression is undefined. (The set leaves(e) con-
tains all left-expressions at the tips of e.1) Therefore, as usual, l1, . . . , ln need
not be syntactically orthogonal and the same holds for l′1, . . . , l′n.

1 leaves(let l1=f l2 in e)=leaves(e), leaves(case l of {pi→ei}mi=1) = ∪m
i=1leaves(ei)

leaves(rlet l1=f l2 in e) = leaves(e), leaves(l) = {l}.
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fib n � case n of

Z → 〈S(Z), S(Z)〉
S(m) → let 〈x, y〉 = fib m in

let z = plus 〈y, x〉 in z

(12)

plus 〈x, y〉 � case y of

Z → �〈x〉�
S(u) → let 〈x′, u′〉 = plus 〈x, u〉 in 〈x′, S(u′)〉

(13)

Fig. 4. Fibonacci-pair function fib and addition plus〈x, y〉 = 〈x, x+ y〉2

Because of the symmetric semantics of case-expressions, we can compute the
increment function from above both forward and backward:

{n �→ Z} �q inc n ↪→ S(Z) (11)

where q is a program which includes the function definition of inc in Eq. 1.
Without the symmetric first-match policy, the value S(Z) could be a consequence
of two different instances of the CaseExp rule because S(Z) matches both of the
underlined left-expressions S(Z) and S(n′′), and we would thus have to search
deeper in the derivation tree to decide which was the right instance. However,
the policy ensures that inverse interpretation is locally deterministic and, in this
example, selects the first branch and never the second.

If a function terminates with an output for a given input, inverse computation
of the function terminates for that output and returns the original input, and
vice versa.

Example program. Given a number n, the Fibonacci-pair function [9] com-
putes a tuple containing the (n + 1)-th and (n + 2)-th Fibonacci number. The
functions fib and plus are defined for Peano numbers in Fig. 4. Note the use of
the 
·�-operator on the right-hand side of the first branch of plus to duplicate
x in forward computation and to check equality of a pair of values in backward
computation. We can relate numbers to the corresponding Fibonacci pairs via
an expression judgment. For example, for the second pair we have:

{n �→ S(S(Z))} �q fib n ↪→ 〈S(S(Z)), S(S(S(Z)))〉 (14)

2.4 Reversibility and Semantics

In this section, we show in what sense the functional language defined above
is reversible. We first examine the matching operation (left-expression judg-
ments) and then continue with the rules of the operational semantics (expression
judgments).

2 For simplicity, x+ y represents the Peano number for the sum of x and y.
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We have local determinism in the left-exp judgment in the sense that l de-
termines uniquely which rule applies, and in the premises each left-expression is
uniquely determined. Here, let be a wildcard value or a wildcard substitution.3

Lemma 2 (The Unique Derivation of Left-Exp Judgments (· � l � ·)).
Any left-exp judgment � l � is the consequence of at most a single rule in
Fig. 2 and in its premises left-expressions are determined uniquely.

Proof. Given linear left-expression l, left-exp judgment �l� determines which
rule to apply because all left-expressions l in the consequences are orthogonal.
Also, all and only the immediate proper sub-left-expressions of l (e.g. l1, . . . , ln
for l = c(l1, . . . , ln)) appear exactly once in the premise left-exp judgments,
which are thus also determined uniquely. �	

This implies efficiency for an implementation of the left-exp judgment, as the
structure of l completely decides the structure of the derivation. We further have
that for any given left-expression l the left-exp judgment is an injective relation
between substitutions and values.

Lemma 3 (The Global Reversibility of Left-Exp Judgments (·�l� ·)).
The R-Match relation · � ·� · (Fig. 2) obeys the following formulas.

∀l∀σ∀v1∀v2. v1 � l � σ ∧ v2 � l� σ =⇒ v1 = v2 (15)

∀l∀v∀σ1∀σ2. v � l � σ1 ∧ v � l� σ2 =⇒ σ1 = σ2 (16)

Proof. By Lemma 2 the derivation tree for any left-expression judgment com-
pletely and uniquely follows the structure of l, so the two derivations in the
antecedents of the implications in formulas (15) and (16) must use the same
rules in both consequence and premises. By induction on these derivations the
lemma then easily follows. �	

Note that Lemma 2 does not imply Lemma 3 for arbitrary rule sets, and
that the inverse direction is also not satisfied: it is possible to satisfy global
reversibility without unique derivations. Also, the rule set in which the Var rule
is replaced with

� x� {x �→ } Var’

still satisfies Lemma 2 but not Lemma 3.
In the operational semantics (Fig. 3) for the exp-judgment, we again have

that the rule selection is locally and uniquely determined.

Lemma 4 (The Unique Derivation of Exp-Judgments (· �q e ↪→ ·)).
Any expression judgment �q e ↪→ is the consequence of at most a single rule
in Fig. 3 and in its premises expressions and left-expressions are determined
uniquely, except for the CaseExp rule where either a substitution σ or value v
is needed for uniqueness.

3 The instances of a wildcard value are arbitrary; two wildcards do not necessarily
have the same value.



22 T. Yokoyama, H.B. Axelsen, and R. Glück

Proof. Analogous to Lemma 2, expression e uniquely determines which rule to
apply because all expressions e in the consequences are orthogonal. For all rules
except CaseExp the syntactic form of the expression in the consequence of the
exp-judgment also determines which rules to apply in the premises by simple
case analysis.

In theCaseExp rule, the symmetric first-match policy determines the premise
for the case chosen, so the value of j depends on the particular substitution σ
(or value v), meaning that ej is not syntactically defined by e alone (as all the
other expressions and left-expressions in the premises are). However, for a given
substitution σ (or value v) uniqueness of ej follows by Lemmas 2 and 3. �	

This sort of local determinism and the reversibility of left-exp judgments leads
to the following lemma.

Lemma 5 (The Global Reversibility of Exp-Judgments (· �q e ↪→ ·)).
The operational semantics (· �q · ↪→ ·) (Fig. 3) obeys the following formulas.

∀e∀v∀σ1∀σ2. σ1 �q e ↪→ v ∧ σ2 �q e ↪→ v =⇒ σ1 = σ2 (17)

∀e∀σ∀v1∀v2. σ �q e ↪→ v1 ∧ σ �q e ↪→ v2 =⇒ v1 = v2 (18)

Proof (Sketch). Similar to Lemma 3, by induction on the derivations of the exp-
judgments in the antecedent of each implication. The reversibility of any left-exp
judgments in the premises of such derivations is ensured by Lemma 3. �	

While property (18) should be recognizable as forward determinism, the re-
versibility of the language semantics is encapsulated by property (17) and is
distinctly non-standard: for any given expression e (including functional calls),
we only need the resulting value v, to determine the unique initial environment
σ wherein e evaluates to v.

Analogous to the relationship between Lemma 2 and Lemma 3, Lemma 4 does
not imply Lemma 5 and the inverse direction is also not satisfied.

Reversibility affects termination analysis as well. Reversibility guarantees that
backward interpretation terminates if forward interpretation terminates, and
vice versa. On the other hand, reversibility does not by itself guarantee termi-
nation. Consider the function

infinite x � let y = infinite x in y . (19)

For example, we can reasonably expect that in an implementation, the function
expression infinite Z is recursively unfolded arbitrary times by the LetExp
and FunExp rules, leading to non-termination. However, the infinite unfolding
process is still locally reversible and the expression (vacuously) satisfies the global
reversibility properties described in Lemma 5.

2.5 Examples

We shall here show how programs are realized in the proposed language, and
how program inversion is lightweight. Run-length encoding is a data compression
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pack s � case s of

[ ] → [ ]

c1 : r → let s = pack r in

case s of

[ ] → 〈c1, S(Z)〉 : [ ]
h : t → case h of

〈c2, n〉 → case �〈c1, c2〉� of

〈c′1, c′2〉 → 〈c′1, S(Z)〉 : (〈c′2, n〉 : t)
〈c〉 → 〈c, S(n)〉 : t

(20)

Fig. 5. Run-length encoding function pack

algorithm in which each contiguous single-character sequence is replaced with
a pair of the character and its count. In the proposed reversible language a
(recursive) program for run-length encoding pack is shown in Fig. 5 (cf. [9]).
For example, pack [A,A,B,C,C,C]4 evaluates to [〈A, 2〉, 〈B, 1〉, 〈C, 3〉],5 which
is realized by an expression judgment

{ } �q pack [A,A,B,C,C,C] ↪→ [〈A, 2〉, 〈B, 1〉, 〈C, 3〉] . (21)

Now, all functions are reversible, and can be inversely applied. Hence, function
unpack can be defined very simply using pack :

unpack x � rlet x = pack y in y . (22)

In general, for any well-formed function f and variables x and y, expression

rlet x = f y in y (23)

returns the same value as f −1 x does where f−1 is an inverse function of f .
In contrast to irreversible languages, program inversion for the reversible lan-

guage is always possible and lightweight in the sense that it does not require
global program analysis. A recursive descent local program inversion for the
language is given in Fig. 6. For the inversion of case expression, unification of
left-expression l and each of the patterns pi is used to generate patterns for the
inverse cases. Failure of unification means that the branch is never selected no
matter what instances of l are provided in the forward interpretation. Even in
such a case, the translation of the branch ei has to continue, as the symmetric
first-match policy enforces us to check the tips of ei during computation.

For example, program inversion of fib in Fig. 4 yields fib−1 in Fig. 7. As in
an ordinary functional language, the first-match policy in the forward direction

4 Following the standard convention, list A :B :C : [ ] is abbreviated as [A,B,C].
5 For brevity, Peano numbers are here represented by ordinary decimal numbers.
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Ip[[d
∗]] = Id[[d]]

∗

Id[[f l � e]] = f−1 x � case x of I[[e, l]]

I[[l, e]] = {l → e}
I[[let l1 = f l2 in e′, e]] = I[[e′, let l2 = f−1 l1 in e]]

I[[rlet l1 = f l2 in e′, e]] = I[[e′, rlet l2 = f−1 l1 in e]]

I[[case l of {pi → ei}mi=1, e]] = ∪m
i=1(if σi �= ⊥ then I[[ei, σie]]

else I[[ei, case pi of l → e]])

where σi is the unification of l and pi

Fig. 6. Program inversion (x is a fresh variable)

fib−1 x1 � case x1 of

〈S(Z), S(Z)〉 → Z

x2 → let 〈y, x〉 = plus−1 x2 in

let m = fib−1 〈x, y〉 in
S(m)

(24)

plus−1 z � case z of

�〈x〉� → 〈x, Z〉
〈x′, S(u′)〉 → let 〈x, u〉 = plus−1 〈x′, u′〉 in 〈x, S(u)〉

(25)

Fig. 7. Inverse functions of fib and plus (x1 and x2 are fresh variables)

ensures x2 only match with values that are not 〈S(Z), S(Z)〉. The subtraction,
plus−1〈x, x + y〉 = 〈x, y〉, is obtained by program inversion of plus from Fig. 4.
Here, we see how it is convenient that the 
·� operator can occur in the pattern
of a case-expression, so that, in this example, the inversion is realized by just
swapping the left- and right-hand sides of branches.

2.6 r-Turing Completeness

We show the proposed language is r-Turing complete [3]; the language can sim-
ulate any reversible Turing machine (RTM).

Definition 1 (Turing Machine). A Turing machine T is a tuple (Q,Σ, b, δ, qs,
qf ) where Q is a finite set of states, Σ is a finite set of tape symbols, b ∈ Σ is
the blank symbol,

δ : Q× [(Σ ×Σ) ∪ {←, ↓,→}]×Q (26)

is a partial relation defining the transition rules, qs ∈ Q is the starting state, and
qf ∈ Q is the final state. Symbols ←, ↓, → represent the three shift directions
(left, stay, right).
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The form of a triple ∈ δ is either 〈q1, 〈s1, s2〉, q2〉 or 〈q1, d, q2〉 where q1, q2 ∈ Q,
s1, s2 ∈ Σ, and d ∈ {←, ↓,→}. The former symbol rule says that in state q1 with
the tape head reading symbol s1, write s2 and change into state q2. The latter
shift rule says that in state q1, move the tape head in direction d and change
the state to q2.

Definition 2 (Reversible Turing Machine [5,3]). A Turing machine T
is forward deterministic iff for any distinct pair of triples 〈q1, a, q2〉 ∈ δ and
〈q′1, a′, q′2〉 ∈ δ, if q1 = q′1 then a = 〈s1, s2〉∧a′ = 〈s′1, s′2〉∧s1 �= s2. A Turing ma-
chine is backward deterministic iff for any distinct pair of triples 〈q1, a, q2〉 ∈ δ
and 〈q′1, a′, q′2〉 ∈ δ, if q2 = q′2 then a = 〈s1, s2〉∧a′ = 〈s′1, s′2〉∧s2 �= s′2. A Turing
machine is reversible iff it is forward and backward deterministic.

If the number of non-blank symbols on the tape is finite, the infinite length
tape can be uniquely represented by a triple 〈l, s, r〉 where l and r hold the left
and right non-blank portions of the tape (in the form of lists) with respect to the
tape head, and s contains the symbol under the tape head. To realize an infinite
tape in finite space in the reversible setting, we require that only non-blank
symbols can be on the bottom of either tape stack, cf. [18].

Let step be an implementation of the transition relation, such that step takes
a configuration (a pair of the current state and tape) and returns the next
configuration. Given a sequence of state transition rules d∗, we obtain

step 〈q, t〉 � case 〈q, t〉 of
T [[d]]∗

(27)

where T is a translator from a state transition rule to the corresponding case
branch in the proposed language, defined as:

T [[〈q1, 〈s1, s2〉, q2〉]] = 〈q1, 〈l, s1, r〉〉 → 〈q2, 〈l, s2, r〉〉
T [[〈q1,←, q2〉]] = 〈q1, t′〉 → let t′ = move l t

′′ in 〈q2, t′′〉
T [[〈q1,→, q2〉]] = 〈q1, t′〉 → rlet t′′ = move l t

′ in 〈q2, t′′〉
T [[〈q1, ↓, q2〉]] = 〈q1, t′〉 → 〈q2, t′〉

(28)

An overlined state or symbol · represents a corresponding constructor in the
language. Because of the reversibility of the source RTM, leaf left-expressions
as well as the patterns appearing in the branches of step are disjoint, leading to
the reversibility of step.

As an example, consider the incrementation of a non-negative binary number
yielding its successor in binary representation (with the least significant digit
first), cf. [18]. An RTM computing this function is shown in Fig. 8. It works as
follows: Initially, the tape head is to the left of the first bit. The tape head then
moves to the right, flipping bits until it flips a 0 to a 1, and then returns to the
original position. It is easily verified that the machine in Fig. 8 is reversible. The
rules given in Fig. 8 are translated into function step in Fig. 9.
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〈qs, 〈b, b〉, q1〉 〈q2, 〈0, 1〉, q3〉 〈q2, 〈b, b〉, q3〉 〈q4, 〈0, 0〉, q3〉
〈q1,→, q2〉 〈q2, 〈1, 0〉, q1〉 〈q3,←, q4〉 〈q4, 〈b, b〉, qf 〉

Fig. 8. Transition rules for binary number incrementation

step 〈q, t〉 � case 〈q, t〉 of
〈qs, 〈l, b, r〉〉 → 〈q1, 〈l, b, r〉〉
〈q1, t′〉 → rlet t′ = movel t

′′ in 〈q2, t′′〉
〈q2, 〈l, 0, r〉〉 → 〈q3, 〈l, 1, r〉〉
〈q2, 〈l, 1, r〉〉 → 〈q1, 〈l, 0, r〉〉
〈q2, 〈l, b, r〉〉 → 〈q3, 〈l, b, r〉〉
〈q3, t′〉 → let t′′ = movel t

′ in 〈q4, t′′〉
〈q4, 〈l, 0, r〉〉 → 〈q3, 〈l, 0, r〉〉
〈q4, 〈l, b, r〉〉 → 〈qf , 〈l, b, r〉〉

Fig. 9. Function step generated from the transition rules in Fig. 8

Function move l moves the tape head one cell to the left. Thus, when it is
called in an rlet-expression, it moves the tape head to the right. Function move l
is defined as:

move l 〈l, s, r〉 � let r′ = pushtape 〈s, r〉 in
rlet l = pushtape 〈s′, l′〉 in
〈l′, s′, r′〉

(29)

where pushtape 〈s, stk〉 pushes symbol s to stack (list) stk :

pushtape 〈s, stk〉 � case 〈s, stk〉 of
〈b, [ ]〉 → [ ]

〈s′, tl〉 → s′ : tl
(30)

When symbol s is a blank and stack stk is empty, pushtape leaves stk empty.
Otherwise, s is pushed on stk . Conversely, when pushtape is inversely invoked
with an empty stack, a blank symbol is popped. This operation can be repeated
arbitrary times. This preserves the condition that the bottom element of a stack
is non-blank, which enables the representation of the infinite length tape in
reversible finite space.

To simulate the RTM we must apply step repeatedly until we reach the
final state qf . If this is näıvely implemented, it results in a many-to-one (non-
invertible) mapping which is not a reversible function. To cope with this problem
we add an extra (intermediate) element to the output. For an RTM running for-
ward, in addition to the result we also return a natural number which counts
the number of applications of step. A simulation of the RTM is defined by the
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function rtmf . Given a pair of the state and tape 〈q, t〉, rtmf returns a triple
containing the state, tape, and counter.

rtmf 〈q, t〉 � case q of

qf → 〈qf , t, Z〉
q1 → let 〈q2, t2〉 = step 〈q1, t〉 in

let 〈q3, t3, n〉 = rtmf 〈q2, t2〉 in
〈q3, t3, S(n)〉

(31)

A simulation of the inverse RTM is similarly defined by rtmb:

rtmb 〈q, t〉 � case q of

qs → 〈qs, t, Z〉
q1 → rlet 〈q1, t〉 = step 〈q2, t2〉 in

let 〈q3, t3, n〉 = rtmb 〈q2, t2〉 in
〈q3, t3, S(n)〉

(32)

Here, rlet allows us to access to the inverse semantics explicitly, so that function
step is used in the backward direction. This unconventional code sharing is a
unique feature of reversible languages. Seeing as the underlying RTM is the same,
rtmf and rtmb will recurse exactly the same number of times when applied to an
input and the corresponding output, respectively. Because of this we can apply
a recent input-erasing reversible simulation which removes the garbage counters,
and which is twice as fast as Bennett’s general method [19]. In fact, we directly
obtain the following optimized RTM simulation:

rtm t � case 
〈t〉� of
〈t1, t2〉 → let 〈qf , t3, n〉 = rtmf 〈qs, t1〉 in

rlet 〈qs, t2, n〉 = rtmb 〈qf , t4〉 in
case 
〈t3, t4〉� of
〈t′〉 → t′

(33)

which is a function of tapes to tapes (without the counter) corresponding exactly
to the RTM defined by step.

For any RTM the above translation is obviously possible, and so the language
is r-Turing complete: it is a universal reversible language.

3 Conclusion

We proposed a simple first-order reversible functional language. We view re-
versibility as both global and local determinism in both execution directions,
and specified corresponding properties for an operational semantics for the func-
tional lanaguage. Reversibility is achieved by reversible matching and syntactic
restrictions (including linearity of variables). Using a novel symmetric first-match
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policy for pattern matching, the backward semantics of the proposed language
is deterministic even in the case of overlapping leaf left-expressions, which en-
ables concise code. The proposed reversible functional language is universal, as
powerful as reversible Turing machines.

Every reversible computation model, be it reversible Turing machines [5,3],
reversible cellular automata [15], or reversible logic circuits [7,17], have their
own languages to describe how computation is organized. It is our hope that
this language can serve as a basis for further research on reversible computing
in the functional setting, similar to how Janus is used in the imperative set-
ting. For example, Janus has been used for partial evaluation of a reversible
language [14], synthesizing reversible circuits [17, Chapter 3] and translation of
reversible languages [2].
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Abstract. We describe the design of a purely reversible computing ar-
chitecture, Bob, and its instruction set, BobISA. The special features
of the design include a simple, yet expressive, locally-invertible instruc-
tion set, and fully reversible control logic and address calculation. We
have designed an architecture with an ISA that is expressive enough to
serve as the target for a compiler from a high-level structured reversible
programming language.

All-in-all, this paper demonstrates that the design of a complete re-
versible computing architecture is possible and can serve as the core of
a programmable reversible computing system.

1 Introduction

Energy consumption is an important aspect of most computing systems today
and this is especially true for embedded systems and battery-dependent comput-
ers. Reversible computing has the potential to reduce power consumption and
heat dissipation [11, 14].

The design of reversible computing systems and programs is, however, not
a trivial extension of the conventional case. Not all problems have simple re-
versible implementations and rethinking the entire problem might be needed for
a solution. Reversible programming languages [15, 28] have special constructs
(e.g. an if-then-else statement also needs a joining assertion that verifies the
computational path) which complicates program development, and the need for
new programming methodologies is evident.

There are, however, specific domains that are clear-cut for reversible comput-
ing: lossless discrete transformations like FFT and wavelets [10] used in com-
pression and analysis of multimedia signals, or simulation of physical systems.
Developments in areas from low-level circuit design [9] and synthesis [16, 19, 25]
to high-level languages such as Janus [27,28] and compilers [1] have also provided
more insight to the design of reversible systems.

Fully reversible computing systems1 are still years of development away from
general purpose computers. In this paper we show the design of a simple re-

1 A first outline of this fully reversible (both abstract machine and implementation)
architecture was presented in Thomsen, Glück, Axelsen, Towards Designing a Re-
versible Processor Architecture, work-in-progress, at the 1st Workshop on Reversible
Computation, 2009 in York.

A. De Vos and R. Wille (Eds.): RC 2011, LNCS 7165, pp. 30–42, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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versible computing architecture for a reversible implementation of a Harvard
architecture, Sect. 2. The architecture has a small instruction set but is still
powerful enough to be Turing-complete in a reversible sense [3] and expressive
enough to be the target for a compiler [1] from the high-level language Janus,
Sect. 3.

The low-level implementation of Bob is designed with elementary reversible
logic gates [5, 13] resulting in a robust technology-independent design, Sect. 4.
It makes use of an extended version of the latest design of reversible arithmetic
logic units [21], Sect. 4.1, and has a novel control structure that simplifies the ad-
dress calculation compared to previous approaches [12,24], Sect. 4.2. As memory
in reversible hardware is still an open question, we shall assume memory that
is operationally reversible, such that the design is independent of any actual fu-
ture memory implementation, regardless of whether this is based on conventional
volatile memory [6] or reversible models like the rotary element [17]. For verifica-
tion we implemented the design in Verilog. The programming was self-restricted
to uphold the conventions of reversible logic design, Sect. 4.3.

2 The Problem of Control

In this section we describe the control logic used in our Harvard architecture,
and the reasoning behind it.

In a conventional processor architecture, the address of the next instruction
to be executed is often found by overwriting the program counter with a static
address. As a result, the information about the old program counter is erased.
If this is the case, then we do not know how to make a backwards step, i.e. ir-
reversibility.

A solution to this problem could be to use the Landauer embedding [14] and
generate a trace of all previous program counters. This approach, suggested by
Cezzar [7], is not satisfactory. The trace, which would be as long as the number
of executed instructions, is not part of the program’s desired result and is an
extremely wasteful use of memory. A processor which accumulates more and
more garbage in this fashion is not practical.

Instead of using only a single register for program control (the program
counter), we shall use an approach developed for the reversible von Neumann
architecture Pendulum [12,24] as formalized in [4], where the address calculation
of the reversible abstract machine relies on three special-purpose registers:

– program counter (pc): points at the current instruction in memory,
– branch register (br): contains information about the offset from the current

to the next instruction, and
– direction bit (dir): specifies the current direction of execution; either FALSE

(forward) or TRUE (backward).

The calculation of the next program counter (pc) now only depends on the
branch register (br) and the direction bit (dir). If the value of the branch register
is zero, then the execution will continue to the next instruction by adding 1



32 M.K. Thomsen, H.B. Axelsen, and R. Glück

program

registersdirbrpc

processorcontrol flow
data
memory memory

Fig. 1. The reversible Harvard architecture

to (or subtracting 1 from) the program counter, depending on the execution
direction given by the direction bit. If the branch register contains a non-zero
value then this is added to (or subtracted from) the program counter. In both
cases the program counter is reversibly updated, and the branch register and
direction bit are preserved. We therefore have enough information to do the
inverse calculation to determine the previous instruction, i.e. reversibility.

Figure 1 shows the abstract reversible Harvard architecture. While a von
Neumann architecture has only one memory containing both the program and
data, they are separated in a Harvard architecture. This separation simplifies
the reversible model by ensuring that a memory instruction cannot update its
own instruction cell, which would lead to irreversibility.

3 A Simple Instruction Set Architecture, BobISA

The choice of the instruction set influences not only the expressiveness of the
assembly language, but also the costs of the underlying hardware realization. A
larger instruction set with many complex operations can increase the expressive-
ness and reduce code size, but will also result in higher costs in terms of gates,
logic depth, ancillae, and so forth. We require that the reversible instruction
set is r-Turing complete [3]; meaning that it can implement an interpreter for
reversible Turing Machines without the use of a history, or other garbage [2].
Furthermore, all instructions are required to be reversible updates [4] and locally
invertible. The rest of this section describes the 17 instructions of BobISA, di-
vided into three types: arithmetic/logic instructions, branch instructions, and
memory instructions.

3.1 Arithmetic-Logic Instructions

Table 1 shows the set of reversible arithmetic/logic instructions. It includes addi-
tion (ADD and ADD1), subtraction (SUB and SUB1), negation (NEG), and exclusive-
or (XOR and XORI); the immediate instruction, XORI, computes exclusive-or with
a given constant value. These are the basic instructions included in our reversible
ALU design [21]. To ensure reversibility we use modular arithmetic.

Conventional processors typically allow multiplication and division by 2, im-
plemented as left or right shifts. These are irreversible operations (e.g. the divi-
sion by 2 deletes the least significant bit), so to circumvent this, left and right
roll operations could be used instead. Here, we propose a novel solution with
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Table 1. Arithmetic-logic instructions, their inverses and effect on registers R

i Inv(i) Effect(i)

ADD regd regs SUB R(regd) ← R(regd) +n R(regs)
SUB regd regs ADD R(regd) ← R(regd)−n R(regs)
ADD1 regd SUB1 R(regd) ← R(regd) +n 1
SUB1 regd ADD1 R(regd) ← R(regd)−n 1
NEG regd NEG R(regd) ← 0−n R(regd)
XOR regd regs XOR R(regd) ← R(regd)⊕R(regs)
XORI regd imm XORI R(regd) ← R(regd)⊕ imm
MUL2 regd DIV2 R(regd) ← mul2n(R(regd))
DIV2 regd MUL2 R(regd) ← div2n(R(regd))

10 2 3 4 5 6 7-1-2-3-4-5-6-7-8

10 2 3 4 5 6 7-1-2-3-4-5-6-7-8

MUL2
DIV 2

Fig. 2. Example of division (DIV2) and multiplication (MUL2) by 2 with 4-bit two’s
complement numbers. The solid blue lines show the inputs that are well defined.

a division/multiplication by 2 that conserves the sign of the two’s complement
numbers, but only returns the division or multiplication by 2 if the input is well-
defined. For division, only the even numbers return the input value divided by
2, and multiplication only returns the input value multiplied by 2 if the input
is small enough for it to double without overflow. The rest of the input values
we map to values such that reversibility and local invertibility is assured and
the instructions are easy to implement in logic. For a more intuitive description,
Fig. 2 shows the mapping for 4-bit two’s-complement numbers.

The multiplication/division operations are formally defined as

mul2n(x) =

⎧⎪⎨
⎪⎩
x · 2 if −2n−2 ≤ x < 2n−2,
x · 2− 2n + 1 if x ≥ 2n−2,
x · 2 + 2n + 1 if x < −2n−2,

(1)

and

div2n(x) =

⎧⎪⎨
⎪⎩
x/2 if x is even,
x−1
2 + 2n−1 if x is odd, and x > 0,

x−1
2 − 2n−1 if x is odd, and x < 0,

(2)

where n is the number of bits used in the representation of x.
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A general restriction in reversible programming languages is that a register
(or variable) must only be updated with a source value does not come from the
register itself. (E.g. a ← a − a is not allowed.) A violation of this will result in
information destruction. The standard way of resolving this is by checking that
the destination register regd and (second) source register regs are syntactically
different. This check is simple at high abstraction levels, but implementing it
at the logic level results in a large overhead. Also, if this check fails the whole
program execution fails; it is hard at the logic circuit level to define the meaning
of a failing architecture execution.

Instead, our solution is to slightly alter the memory model of the registers.
When register regd is read, its value is swapped with 0. Now, if regs is the same
as regd then the value of regs becomes 0 instead of the original value of regd, and
so the value of register regd will not be destroyed. (E.g. a := a− 0 is calculated
instead of a := a − a.) Writing values back to the register file is done in the
opposite order: first the value of regs is swapped into the register regs, then
afterwards the same for regd. In both writing cases the auxiliary value that is
swapped in/out of the registers is 0.

3.2 Branch Instructions

Branch instructions are needed for control flow in programs. For BobISA, we
have chosen four conditional branch, one unconditional branch, and two special
swap-branch-register instructions for the instruction set (see Table 2).

The four conditional branch instructions were chosen for their simple im-
plementation. Because we use two’s complement numbers, both greater-than-
or-equal-to-zero (BGEZ) and less-than-zero (BLZ) are simple checks of the most
significant bit of the value in regd (FALSE for values greater than or equal to zero
and TRUE if the value is less than zero). The other two conditional instructions
are branches on even (BEVN) and odd (BODD) numbers. These are determined
by a simple check of the least significant bit: a FALSE implies an even number
and a TRUE implies an odd number. For all four instructions, if the branch
condition evaluates to true then the offset (off ) is added to the branch register;
else, the branch register is left unchanged. There is also an unconditional branch
instruction (BRA) that always updates the branch register with the given offset.

In conventional ISAs a jump-and-link instruction is used for procedure calls;
it stores the current program counter in a register as a return address and then
jumps to a given address. We know for Bob that the program counter is only
updated by the branch register, so we can simulate the jump-and-link by load-
ing an offset into the branch register, performing the jump and then have an
instruction at the target address saving the branch register as a return offset.

There are two special instructions to support this: SWB and RSWB. The swap-
branch-register (SWB) will swap the value of a given register with the value of the
branch register. The swap-branch-register-and-reverse (RSWB) will do the same,
and furthermore reverse the execution direction by flipping the direction bit.
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This can be used for inverse procedure calls. The use of the RSWB instruction is
novel and was chosen because it simplifies the logic for the pc update significantly,
reducing the gate count and logic depth compared to previous designs [12,24,4].

3.3 Memory Instruction

The usual load/store memory instructions in conventional instruction sets are,
by themselves, irreversible. However, by combining the load and the store in-
structions into a single exchange (EXCH) instruction, the result is a memory
instruction that is reversible and self-inverse (as shown in Table 2), cf. [12, 24].
This takes a register (regd) that contains some value to be exchanged into mem-
ory and a register (rega) that contains the address of the cell in memory that
we want to exchange, as arguments. The value in the register and the value at
the address in the memory are then swapped.

Table 2. Branch and memory instructions, their inverses, and effect on the general
purpose registers R, special purpose registers br and dir, and data memory M

i Inv(i) Effect(i)

BGEZ regd off BGEZ regd −off br ← br +n (R(regd) ≥ 0 ? off : 0)
BLZ regd off BLZ regd −off br ← br +n (R(regd) < 0 ? off : 0)
BEVN regd off BEVN regd −off br ← br +n (even(R(regd)) ? off : 0)
BODD regd off BODD regd −off br ← br +n (odd(R(regd)) ? off : 0)
BRA off BRA −off br ← br +n off
SWB regd SWB regd br ↔ R(regd)
RSWB regd RSWB regd br ↔ R(regd) ; dir ← ¬dir
EXCH regd rega EXCH regd rega R(regd) ↔ M(R(rega))

4 The Architecture of the Reversible Machine, Bob

Based on the ISA above we design an architecture, called Bob, that performs
one instruction within a single clock-cycle. We have chosen a 16-bit architec-
ture, which leads to the following design properties and the defined instruction
encoding shown in Fig. 3.

– Registers - 4 bits for register numbering allows for 16 registers in total, each
with a size of 16 bits. Using two’s complement representation, numbers can
range from −32768 through 32767.

– Memory - We can index 216 words of 16 bits (the maximum size we can load
into the registers). This gives a memory cap of 128 KB.

– Jumps - With an offset length of 8 bits, a branch-jump can not be of more
than 127 lines. However, jumps can be arbitrarily long by the using the SWB
instruction.

– Immediates - With 8 bits, immediate values must range from -128 to 127.
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bits: 15 12 11 8 7 4 3 0

Arith & mem opcode regd regs arith

Branch & imm opcode regd off /imm

ADD 1 1 0 0 regd regs 0 1 0 0

SUB 1 1 0 0 regd regs 1 1 0 1

ADD1 1 1 0 0 regd 0 0 0 0 0 1 1 0

SUB1 1 1 0 0 regd 0 0 0 0 1 1 1 1

NEG 1 1 0 0 regd 0 0 0 0 0 1 1 1

XOR 1 1 0 0 regd regs 0 0 0 0

XORI 0 0 0 0 regd imm

MUL2 1 0 1 0 regd 0 0 0 0 0 0 0 0

DIV2 1 0 0 1 regd 0 0 0 0 0 0 0 0

EXCH 1 0 0 0 regd rega 0 0 0 0

BGEZ 0 0 1 1 regd off

BLZ 0 0 1 0 regd off

BEVN 0 1 0 1 regd off

BODD 0 1 0 0 regd off

BRA 0 0 0 1 0 0 0 0 off

RSWB 0 1 1 1 regd 0 0 0 0 0 0 0 0

SWB 0 1 1 0 regd 0 0 0 0 0 0 0 0

Fig. 3. Instruction formats and instruction set encoding for Bob

– Register zero - Register 0, reg0 is assumes to always contain the value 0. In-
structions with only one register (NEG, ADD1, etc.) are implemented with
this requirement in mind (e.g. ADD1 regd is implemented as R(regd) ←
R(regd) +n R(reg0) +n 1).2

While it is a primary requirement for us to keep the implementation garbage-
free, we also try to reduce the number of ancillae bits, and keep circuit size at a
minimum. We therefore accept that the delay of sub-circuits (e.g., the ALU and
adders) are linear with respect to the number of input bits, as this lowers the
above costs.

Figure 4 shows a detailed design of the processor, and Table 3 shows the gate
count. Even though it has many similarities with the MIPS R2000 processor [18],
there are some significant differences. Notice, for example, that preserving infor-
mation everywhere implies that the control signals from the control logic unit
can not be deleted, but have to be uncomputed using an inverse control logic
unit. Other significantly different parts are the arithmetic logic unit and the
address calculation logic, which will be described below.

2 Breaking the assumption about register 0 will not break reversibility of the architec-
ture, but only result it a processor that do not behave as expected; e.g. the example
with ADD1.
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Fig. 4. The logic design of the reversible processor. The black dots indicate split and
merge of lines, not fan-out and fan-in. The small blue arrows indicates input and output
control lines. The light blue boxes are memory elements, the brown polygons are the
ALU and other adders, and the small green figures are minor combinational circuits.
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Fig. 5. Logic design of the extended reversible ALU. The division and multiplication
by 2 are shown (in red boxes) furthest to the left and right, respectably.

4.1 Reversible Arithmetic-Logic Unit, ALU

The Arithmetic Logic Unit (ALU) is a central part of the processor. In a con-
ventional ALU design all possible arithmetic-logic operations are computed in
parallel, and afterwards a multiplexer chooses the desired result; all other re-
sults are discarded. This is not desirable for a reversible circuit because of the
number of resulting garbage bits. An alternative design for reversible ALU has
therefore been suggested by the authors [21]. A key element in this ALU design
is the V-shaped (forward and backward ripple) reversible binary adder designed
by Vedral et al. [23] and later improved in [8, 22, 20].

The ALU design follows a strategy that places all logical operations in se-
quence and then uses controls to ensure that only the desired operation changes
the input values. Of the arithmetic-logic instructions in the proposed instruction
set, only the division and multiplication by 2 are not supported by this ALU de-
sign. Support for these two instructions are added by new forward and backward
ripples at each side of the ALU. The forward ripple (division) first rolls one bit
from the least to the most significant bit and then uses an exclusive-or to ensure
the sign of the two’s complement number. The backward ripple (multiplication)
is the exact inverse operation. See Fig. 5 for the detailed design.

This sequential ALU design is surprisingly efficient: compared to the reversible
ripple-carry adders it has only constant increase in logic depth and a linear
increase in gate count. The cost of the ALU in various metrics can be found in
Table 3.
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Table 3. Costs in various metrics of the extended n-bit ALU compared to an optimized
reversible ripple-carry adder and the entire Bob design without memory.

Reversible n-bit Extended Bob architecture
adder [22] n-bit ALU without memory

Gate count total 4n− 2 8n− 4 473
Feynman gates 2n 2n 155
Toffoli gates 0 2n+ 2 146
Fredkin gates 2n− 2 4n− 6 172

Ancillae bits 1 0 39
Logic depth 3n− 1 3n+ 3
Logic width 2n+ 1 2n+ 7

4.2 Address Calculation

The address calculation depends both on the semantics of the overall architecture
and the instruction set: the architecture specifies in which order to update the
special purpose registers (pc, br, dir), while the choice of branch instructions
determines the register updates. Adapting the previously described semantics
for reversible control (Sect. 2), the address calculation in Bob has the following
steps, cf. Fig. 4.

1. Branch check. We check if the current instruction is a branch instruction; in
the case of a conditional branch instruction we also check if the condition is
satisfied. If both evaluate to true, a doBranch signal to update the branch
register is sent.

2. Swapping branch register. Now, we decide what to update. Often, it will be
the value in the branch register, but if the current instruction is a swap-
branch-register instruction (SWB or RSWB), then we must update the value of
the given general purpose register instead. To do this we use a 2:2 reversible
multiplexer (implemented using an array of Fredkin gates), where a control
line decides if the inputs are swapped.

3. Updating the branch register. If doBranch is TRUE then the value of the
branch register is updated with the value of the offset. The offset is added if
the direction bit is FALSE (forward execution), otherwise subtracted if the
direction bit is TRUE (backwards execution), using a simplified ALU.

4. Updating the direction bit. In case of an RSWB instruction we must invert the
direction bit; this is done with a controlled-not gate.

5. Updating the program counter. If the updated branch offset equals 0, then the
program counter is updated with 1 to step one instruction ahead. Otherwise
the program counter is updated with the value of the branch register. Again,
the update is either addition or subtraction depending on the direction bit
and implemented with a simplified ALU.



40 M.K. Thomsen, H.B. Axelsen, and R. Glück

module alu
(input [15:0] A, B
,input C_negA, C_carryIn, C_AxorB, C_carryXor, C_negP, C_div2, C_mul2
,output [15:0] P, B_o
,output C_negA_o, C_carryIn_o, C_AxorB_o, C_carryXor_o, C_negP_o, C_div2_o, C_mul2_o
);
wire [15:0] tmp1, tmp2, tmp3, tmp4, tmp5;

// DIV2
assign tmp1[13:0] = (C_div2 ? A[14:1] : A[13:0]);
assign tmp1[15] = A[15];
assign tmp1[14] = (C_div2 ? A[15] ^ A[0] : A[14]);

// ADD, SUB, NEG, XOR
assign tmp2 = (C_negA ? ~tmp1 : tmp1);
assign tmp3 = (C_carryIn ? tmp2 + 1 : tmp2);
assign tmp4 = (C_carryXor ? tmp3 + B : (C_AxorB ? tmp3 ^ B : tmp3));
assign tmp5 = (C_negP ? ~tmp4 : tmp4);

// MUL2
assign P[14:1] = (C_mul2 ? tmp5[13:0] : tmp5[14:1]);
assign P[15] = tmp5[15];
assign P[0] = (C_mul2 ? tmp5[15] ^ tmp5[14] : tmp5[0]);

endmodule

Fig. 6. Verilog module for the ALU. Assignments to unchanged outwires (denoted by
“wirename o”) have been removed for brevity.

6. Inverse branch check. To perform the address calculation more efficiently
some temporary control values are used, and the final step is to uncompute
these. For this, we use the exact inverse of the branch check, explained in
the first step.

Previous designs [12,24], which use an unconditional-branch-and-reverse instruc-
tion to reverse the execution direction, cf. [4], requires two adders in the update
of the branch register, compared to one adder for our design.

4.3 Verification

To test the correctness of the design, a Verilog program was implemented and
simulated using ModelSim. This language and tool has no built-in support for
reversible circuits, but by imposing the Verilog program with the restriction
of only using reversible updates, this simulation verifies the correctness of the
design. As an example, Fig. 6 shows the implementation of the ALU module.
The entire Bob implementation is about 800 lines of pretty-printed code and uses
20 modules. We will not report on timing and other results from this simulation,
as these do not yield any additional insights into the design of the architecture.

A future implementation using a reversible specification language, such as
SyReC [26], is desirable. The effect on the cost of such an implementation com-
pared to custom design of Bob (see Table 3) is hard to predict and depends on
the abstraction level of the implementation.
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5 Conclusion

We have presented the design of a purely reversible computing architecture with
a novel and efficient address calculation and a small, but expressive instruction
set containing 17 locally-invertible instructions.3 The instruction set is r-Turing
complete and well-suited as the target language of a compiler from existing
high-level structured reversible programming languages. The logical design uses
in total only 473 reversible gates (see Table 3), which amounts to 6328 transistors
in the adiabatic dual-line pass-transister technology [9].

This demonstrates that the design of a complete reversible computing ar-
chitecture, as presented in this paper, can serve as the core of a simple pro-
grammable reversible computing system. Even though our reversible computing
architecture does not offer the advanced and sophisticated features of main-
stream general-purpose computers, the simplicity makes our design suited as
part of special-purpose embedded systems that works without user interaction.

Clearly, further work is required both on the hardware side (including the
design and synthesis of reversible circuits with different technologies), as well
as on the software side, for fully reaping the low-power benefits of reversible
computing systems. This is especially true for the implementation or interfacing
of memory.
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Abstract. This paper presents a new method to optimize the quan-
tum costs of reversible circuits. A single quantum implementation of
the Toffoli-3 gate has been used to decompose reversible circuits into
quantum circuits. Reconfigured quantum templates using splitting rules
are introduced. The Controlled-NOT , Controlled-V , and Controlled-V +

gates can be split into two gates – splitting rules are derived from this
fact. Quantum costs of reversible circuits are measured by the number of
two-qubit operations. Therefore, the costs of reconfigured templates will
be unchanged when the splitting rules are applied. Although the num-
ber of quantum gates of reconfigured templates increases, their quantum
cost remains invariant. Experimental results show that significant cost
reductions can be achieved with the proposed method.

Keywords: Logic Synthesis, Reversible Logic, Quantum Circuit, En-
tangled State, Quantum Cost, Quantum Templates.

1 Introduction

Synthesis of reversible logic has gained significant attention due to its potential
application in low power design [1]. Infinite state space of information at the
quantum level can be achieved by transforming information through quantum
gates as well as quantum circuits [2]. Operations in quantum circuits are inher-
ently reversible and the resemblance of a qubit in quantum computing to a bit
in classical logic is obvious [3], as a result, researchers are interested in synthe-
sis of reversible circuits and their quantum implementation. The synthesis of
reversible logic circuits using elementary quantum gates is different from classi-
cal logic synthesis (irreversible) methods. Therefore, different synthesis methods
have been proposed to obtain cascades of reversible gates. These methods in-
clude: transformation based algorithms [4], [5], translating ESOP expression into
Toffoli circuits [6] and others. At the quantum level, reversible gates are decom-
posed into elementary quantum gates [7]. After the decomposition, the quantum
level circuits can still be optimized [8].

Optimization approaches, such as template matching [9], [8] focus on the
reduction of the gate count or quantum cost (number of quantum primitives)
of a Toffoli network by finding gate sequences in circuits that can be replaced
with sequences of lower cost. It has been shown that two 2-qubit elementary
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quantum gates that act on the same two qubit lines can be merged into a new
quantum gate of cost one [10], also referred to as a double gate of unit cost
[11]. A finite set of two-qubit quantum gates has been proposed in [12]. Since a
sequence of quantum primitives acting on the same two qubits can be treated as
a single operation of cost one, quantum circuits can be synthesized considering
this metric. A quantum circuit with minimum number of gates is preferable,
if both circuits have the same number of two-qubit operations. However, if an
identity has two different quantum implementations with the same number of
two-qubit operations then both of these identity circuits can be used as quantum
templates to reduce the number of gates in quantum circuits.

It was observed, that reconfigured quantum templates using splitting rules
play a significant role in optimizing quantum costs of quantum circuits as ex-
plained in detail in subsequent sections. Before the optimization process, re-
versible circuits comprised of Multiple Control Toffoli (MCT) gates are decom-
posed into quantum circuits by the substitution of a unique quantum implemen-
tation of Toffoli-3, and then apply reconfigured templates in the optimization
phase. Finally, the number of two-qubit gates in circuits are found using moving
rules to calculate the quantum costs of the circuits.

The remainder of this paper is structured as follows. Section 2 presents the
necessary background of reversible logic theory, quantum operations as well as
two-qubit operations of unit cost. Section 3 reviews the published quantum tem-
plates and introduces reconfigured templates. Section 4 shows the details of the
new template matching algorithm. Experimental results for benchmark functions
are shown in Section 5. Section 6 concludes the paper.

2 Background

A reversible function is defined as one to one mapping, i.e. each element in
the input vector uniquely maps to an element in the output vector. Reversible
functions can be realized by cascades of reversible gates without feedback and
fan-out. Reversible gates, such as Toffoli [13], Peres [14] and Fredkin [15], are
conventionally used to synthesize reversible circuits. Reversible circuits realized
by the generalized Toffoli-n gate (where 1 ≤ n) are referred to as MCT circuits.

In contrast to the logic representations in classical reversible circuits, the
logic representations in quantum cirucits are quite different. The fundamental
information in quantum computing is a qubit – analogous to a bit in classical
logic. An arbitrary qubit is defined by the state vector |ψ〉 = α|0〉+β|1〉 where α
and β are complex numbers that satisfy: |α|2 + |β|2 = 1. Similarly a generalized
two qubit state can be described as

|ψ〉 = λ1|00〉+ λ2|01〉+ λ3|10〉+ λ4|11〉 =

⎛
⎜⎜⎝

λ1

λ2

λ3

λ4

⎞
⎟⎟⎠ .

This state is separable as tensor product of two states if and only if λ1λ4 =
λ2λ3 otherwise the state is said to be entangled. This condition can be easily
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visualized if the tensor product of two single qubit states are considered; denoted
by α|0〉+β|1〉 and α′|0〉+β′|1〉. The resulting two-qubit state can be represented
as (

α
β

)
⊗
(
α′

β′

)
=

⎛
⎜⎜⎝

αα′

αβ′

βα′

ββ′

⎞
⎟⎟⎠

that satisfies the condition of separability as αα′ββ′ = αβ′βα′.
Moreover, the elementary quantum gatesNOT , Controlled-NOT , Controlled-

V and Controlled-V +are represented by unitary matrices [10] that may include
complex elements. For example, the unitary matrix of the two-qubit Controlled-
V gate is

Mv =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0

0 0 (1+i)
2

(1−i)
2

0 0 (1−i)
2

(1+i)
2

⎤
⎥⎥⎦

Mv will not produce entangled states for binary-valued inputs. Two-qubit quan-
tum primitives Controlled-V and Controlled-V + are the Controlled-sqrt-of-NOT,
where Controlled-NOT is self-inverse and Controlled-V and Controlled-V + are
inverses of each other. Therefore, any one primitive among these three can
be formed by cascading the other two primitives, referred to as splitting rules
that are shown in Fig. 1. Two more splitting rules are obtained by interchang-
ing Controlled-V and Controlled-V + in Fig. 1. In quantum computation, the
splitting of a quantum primitive does not increase the number of two-qubit
operations.

The quantum cost of a circuit is usually defined as the number of quantum
primitives required to realize the circuit. However, here a modified metric is used.
Recall that any two-qubit quantum gate is realizable by an operation of unit cost
[12]. In this paper the quantum costs of circuits is the number of two-qubit oper-
ations rather than the number of quantum primitives. It is clear that the number
of two-qubit operations will never be greater than the number of quantum prim-
itives. According to Lemma 6.1 in [7], the classical reversible Toffoli-3 gate has a
quantum implementation of five quantum primitives as shown in Fig. 2(b). Note
that, the right most Controlled-V gate can move anywhere in the circuit; control
lines x2 and x3 can be swapped; as well as Controlled-V and Controlled-V + can
be replaced with each other in the circuit. Therefore, different arrangements of
quantum implementations of Toffoli-3 are possible. However, any one of these

x2

x1 =

o2

o1V V

(a)

x2

x1 V =

o2

o1V†

(b)

Fig. 1. Splitting of two-qubit quantum primitives
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x3 o3

x2 o2

x1 o1

(a)

x3 o3

x2 o2

x1 o1V V† V

(b)

Fig. 2. Reversible circuits: (a) Toffoli-3, (b) quantum implementation

x2 o2

x1 o1V V

(a)

x2 o2

x1 o1

(b)

x3 o3

x2 o2

x1 o1

(c)

x2 o2

x1 o1

(d)

x3 o3

x2 o2

x1 o1V V†

(e)

x2 o2

x1 o1V V V† V†

(f)

x3 o3

x2 o2

x1 o1V V V† V†

(g)

Fig. 3. Quantum templates

quantum implementations can be used when decomposing reversible circuits.
The quantum costs of reversible Toffoli-3 is five.

3 Quantum Templates

If two quantum circuits C1 and C2 that realize the functions f and f−1 re-
spectively, then C1C2 realize the identity function. The fundamental concepts
of templates come from the quantum realization of the identity function. A
quantum template is a circuit of quantum primitives that realizes the identity
function. The quantum templates published in [8] are shown in Fig. 3.

The general idea of template matching is that, if a sequence of more than
half of the quantum primitives in a template match a sequence of gates in the
circuit to be optimized, then this sequence can be replaced with the inverse of
remaining primitives in the template. The interested reader can find more details
about quantum templates and simplification of quantum circuits in [8]. Here the
template matching algorithm with the incorporation of splitting rules as well as
new cost metrics is to be discussed. In [8], the quantum costs is measured by
the number of quantum primitives required to realize the circuit. However, in
this paper the number of two-qubit operations are used, rather than counting
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quantum primitives. Since a template is an identity circuit, a quantum gate
at any either end of a circuit can move to other end, resulting in an identity
function as well. The quantum costs of all two-qubit templates in Fig. 3(a), (b),
(d) and (e) have costs of 1. However, the quantum costs of the template shown
in Fig. 3(e) is 4 rather than 6 since the last Controlled-NOT gate can move to
the first position resulting in 4 two-qubit operations. According to our new cost
metric, quantum costs of templates in Fig. 3(c) and (g) are 5 and 8 respectively.
Note that, the reverse of an identity circuit is also an identity circuit. Therefore,
the reverse of a template is also a template.

Observation 1. The quantum templates in Fig. 3(c), (e) and (g) can be derived
from two Toffoli-3 gates that realize an identity circuit as shown in Fig. 4(a).

x3 o3

x2 o2

x1 o1

(a)

x3 o3

x2 o2

x1 o1V V† V V V† V

(b)

x3 o3

x2 o2

x1 o1V V† V V† V V†

(c)

x3 o3

x2 o2

x1 o1V V† V V V† V

(d)

Fig. 4. Identity circuits derived from two Toffoli-3 gates

Since the Toffoli-3 has different quantum implementations of cost five, the
identity circuit in Fig. 4(a) can be decomposed in three different ways: by flipping
and inverting the quantum implementation of first Toffoli-3 for 2nd Toffoli-3 and
swapping the control lines of 2nd Toffoli-3 in its quantum decomposition as shown
in Fig. 4(b), (c) and (d) respectively.

For the first case, two Controlled-V gates 4 and 5 (gates are numbered from left
to right starting at 0) in the circuit in Fig. 4(b) can be merged into a Controlled-
NOT gate, gates 3 and 6 can be deleted, gates 0 and 9 can be merged into a
Controlled-NOT , and finally two Controlled-V + gates 2 and 7 can be merged
into a Controlled-NOT gate. The resulting circuit is exactly the same sequence
of quantum gates as in the template in Fig. (c). For the second case, the gates
4 and 9 in the circuit shown in Fig. 4(c) can be moved together and deleted and
the obtained circuit is the same as the quantum template in Fig. 3(g). Finally,
gates 4 and 5 in the circuit shown in Fig. 4(d) can be merged into one, similarly
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x3 o3

x2 o2

x1 o1

(a)

x3 o3

x2 o2

x1 o1V V† V

(b)

Fig. 5. Reversible circuits: (a) MCT realization, (b) Quantum decomposition

x3 o3
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x1 o1V V V† V
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x3 o3

x2 o2

x1 o1V† V† V
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Fig. 6. Quantum circuits: (a) Reconfigured template, (b) Optimized quantum circuit

gates 0 and 9 can be moved together and merged into a Controlled-NOT gate.
After that by applying the template in Fig. 3(c), the resulting circuit is exactly
the same as the template in Fig. 3(e).

Observation 2. Consider the reversible circuit shown in Fig. 5(a).
According to different quantum implementations of Toffoli-3 of costs 5, there

are different quantum decompositions of circuit in Fig. 5(a). However, by using
quantum implementation of Toffoli-3 in Fig. 2(b), the quantum decomposition of
the circuit as shown in Fig. 5(b) can not be optimized by the template matching
method. Whereas the other quantum decomposition of circuit in Fig. 5(a) can be
optimized using templates in Fig. 3.

However, if the last Controlled-V of the template in Fig. 3(g) is split, as
shown in Fig. 6(a), this reconfigured template can be applied to the circuit shown
in Fig. 5(b), and the optimized circuit also has cost 5 as shown in Fig. 6(b).

Observation 3. If the number of two-qubit operations in quantum circuits is
considered as the cost metric, then the splitting rule does not increase the cost
of the template. It can also be noticed that the template of costs 5 as shown in
Fig. 3(c) can be reconfigured by using splitting rules as the circuit of costs 5 shown
in Fig. 7(a). By using the moving rule, the gates sequence can be rearranged as
shown in Fig. 7(b) and the last 4 gates can be replaced by the first 3 gates
reducing the gate count in quantum circuits. Therefore, one of the following
two reconfigured templates along with the template in Fig. 3(c) can be used to
optimize quantum circuits.

From observation 3 it can inferred that splitting rules can be used in either
templates or in circuits. In our work splitting rules are used in templates to gen-
erate reconfigured templates. However, different arrangements of gates sequence
in templates are possible by using splitting and moving rules. This is illustrated
in the applications of reconfigured templates in the subsequent sections.
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x3 o3

x2 o2

x1 o1V† V† V V

(a)

x3 o3

x2 o2

x1 o1V† V V V†

(b)

Fig. 7. Quantum templates: (a) Splitting gate, (b) Reconfigured templates

4 Template Matching Algorithm

In template matching, the first gate of a template can be matched with an
equivalent gate anywhere in the circuit and the subsequent gates of template
can be matched either in forward direction or in backward direction [8],[9]. In
our implementation of template matching algorithm, we considered only the
forward direction procedure for searching the gates sequence to be optimized
into a circuit. A set of reconfigured templates alone with published templates
has been applied in template matching.

Example 1. Consider the function realized by the Toffoli-4 gate. Its decomposi-
tion (using Toffoli-3 gates) with one extra working line, w, is shown in Fig. 8.
The resulting quantum circuit with 20 quantum primitives can be obtained by
substituting the quantum implementation of Toffoli-3 gates shown in Fig. 9.

If the templates from [8] are applied to the circuit in Fig. 9, then a circuit
with 15 quantum primitives is obtained as shown in Fig. 10. However, different
substitutions of Toffoli-3 may lead to sub-optimal circuits. But it is not feasi-
ble to keep track of what specific substitution of quantum implementation of
Toffoli-3 leads to the circuit with the lowest cost. Reconfigured templates offer
an alternative solution. A unique quantum implementation of Toffoli-3 can be
used to decompose reversible circuits into quantum circuits. The reconfigured
template shown in Fig. 7(b) can be applied to circuit in Fig. 10 and this results
in the well known quantum circuit of costs 14 which is also the number of two-
qubit operations into the circuit. The quantum implementation of higher ordered
Toffoli gates with exactly the same number of quantum primitives reported in
[8] were also obtained. In all cases a single quantum implementation of Toffoli-3
has been used in the substitution and reconfigured templates were applied.

x4 o4

x3 o3

x2 o2

x1 o1

(a)

x4 o4

x3 o3

x2 o2

w w

x1 o1

(b)

Fig. 8. Reversible circuits: (a) Toffoli-4, (b) MCT realization
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x4 o4

x3 o3

x2 o2

w w

x1 o1V V† V

V V† V

V V† V

V V† V

Fig. 9. Quantum decomposition of Toffoli-4

x4 o4

x3 o3

x2 o2

w w

x1 o1V V†
V V† V

V† V

V† V V

Fig. 10. After applying the templates in Fig. 3

x4 o4

x3 o3

x2 o2

w w

x1 o1V† V

V V† V

V† V

V† V V

Fig. 11. Best reported quantum realization of Toffoli-4 of costs 14

Example 2. Consider the function 3 17 13 (taken from RevLib [16]). Its MCT
realization and quantum decomposition are shown in Fig. 12(a) and (b) respec-
tively.

Applying the templates in Fig. 3 to the circuit in Fig. 12(b), results in circuit
shown in Fig. 12(c) with 12 quantum primitives. The number of two-qubit op-
erations in the circuit is 8. However, reconfigured templates can be applied for
further optimization. Now, it can be seen that either one of the two reconfigured
templates in Fig. 3(e) and (g) can be applied to the circuit in Fig. 12(c). After
applying these reconfigured templates separately, we have circuits of 11 quantum
gates in both cases. However, the number of two-qubit operations in the circuits
are 7 and 8 respectively. By applying the template from Fig. 3(g) we obtain the
circuit shown in Fig. 12(d).

If the template in Fig. 3(e) is applied to the circuit in Fig. 12(d) then the
resulting optimized circuit has 10 quantum primitives, as shown in Fig. 12(e).
It should also be noted that the number of two-qubit operations in circuit is
7 (moving rules need to be applied), therefore, the quantum cost of reversible
benchmark 3 17 13 is 7 which is the lowest reported cost.
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Fig. 12. (a) Benchmark MCT circuit 3 17 13, (b) its quantum decomposition, (c) after
applying the templates from Fig. 3(e), (d) circuit obtained from 12(c) by applying the
reconfigured template from Fig. 3(g), (e) optimized circuit with quantum costs 7

5 Experimental Results

The template matching algorithm was implemented using RevKit-1.0 [17] tools.
The program was run for several reversible benchmark MCT circuits provided
in RevLib [16]. A small selection of the results are shown in Table 1. The third
column represents the costs of benchmarks reported in RevLib. After decom-
posing higher order Toffoli gates, Toffoli-3 gates were substituted by a unique
quantum implementation of costs five. Before running template matching, 22
reconfigured templates were generated and these were applied together with the
previously reported templates. The fifth column shows the total number of two-
qubit gates in circuits represents the quantum costs of quantum circuits which
is also considered as the quantum costs of original reversible circuits. Moreover,
our implementation reduces the costs of reversible circuits by approximate 30%
on average and in some cases cost reductions of over 50% have been achieved.
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Table 1. Quantum cost reduction using templates

Benchmarks NL C[16] ND
QG NT

QG QC2q CRD(%)

0410184 169 14 90 90 74 62 31
3 17 13 3 14 14 10 7 50
4 49 16 5 60 74 57 51 31
4 49 17 4 32 32 26 23 28
4gt10-v1 81 5 34 48 42 40 17
4gt11 82 5 16 16 14 8 50
4gt4-v0 78 6 53 81 68 64 21
4gt5 76 5 29 36 30 26 28
4mod5-v0 18 5 25 25 11 9 64
4mod5-v0 19 5 13 13 10 9 31
4mod5-v1 23 5 24 24 14 14 42
alu-v2 31 5 101 143 116 111 22
cnt3-5 180 16 120 155 126 126 18
ham3 102 3 9 9 7 5 44
ham7 104 7 83 111 95 91 18
hwb4 49 5 65 79 60 56 29
mini-alu 167 5 62 90 66 64 29
mod10 171 5 58 79 57 54 32
mod10 176 5 43 57 41 41 28
mod5adder 128 6 83 111 99 93 16
mod5d2 70 5 16 16 12 10 38
rd32-v1 68 4 13 13 7 6 54
rd53 135 7 77 98 75 75 23
rd73 140 10 76 76 55 55 28
rd84 142 15 112 112 86 86 23

– NL: Number of lines with extra working lines for decomposition

– C[16]: Reported costs in RevLib pages [16].

– ND
QG: Number of quantum gates after Toffoli decomposition of Benchmarks

– NT
QG: Number of quantum gates after template matching

– QC2q : Quantum costs as the number of 2-qubit quantum gates

– CRD(%): Costs reductions in percentage from decomposition to template matching.

6 Conclusion

In this paper, we have shown the effectiveness of reconfigured templates in reduc-
ing the quantum costs of reversible circuits where a unique quantum implemen-
tation of the Toffoli-3 gate has been used in decomposition of larger Toffoli gates.
We observed that different quantum implementation of Toffoli-3 results different
quantum costs when only templates from [8] are applied. Moreover, the order of
the templates applied to a quantum circuit results in different costs reductions.
However, we use a heuristic approach that the smallest size of templates will
be tried last because of applying reconfigured templates using splitting rules. In
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our experiments, it has also been observed that 3-qubit templates and their cor-
responding reconfigured templates have been used more frequently than other
templates in reducing the quantum gates of benchmark circuits.
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Abstract. An extension of Toffoli gates is proposed, that allows them to 
efficiently realize operations in GF(2) and lattice operations of a Boolean 
algebra. An equivalent extension is introduced into Reed Muller expressions, 
including mixed polarities and lattice operations, to support the design of 
quantum computing circuits with low quantum cost.  

Keywords: Quantum Computing, reversible circuits, extensions on Reed 
Muller expressions.  

1 Introduction 

Quantum computing represents a model of computation within a sphere –(the Bloch 
sphere)- in a high dimensional complex Hilbert space. In analogy to classical digital 
systems, elementary units of information are represented by “quantum bits”, (short: 
qubits). Operations on qubits are done by means of unitary matrices and a 
computation is a sequence of operations. The Kronecker product of basic operations 
allows parallel processing of several qubits. Quantum computing “circuits” have a 
graphical representation based on gates and lines. The lines are not meant to be later 
realized by “wires”. They identify at every stage of a computation, which qubits will 
be affected by the next elementary operations. The transfer function of a gate is a 
unitary matrix, as mentioned earlier. Hence, gates satisfy the important requirement of 
reversibility: they have the same number of inputs and outputs, and they realize a 
bijective function. A quantum computing circuit is reversible if it has the same 
number of inputs and outputs, it is realized only with fanout free reversible gates, and 
has no signal feedback. Readers interested in a deeper insight of the fundamentals of 
reversible and quantum computing may like to refer to some text book (see e.g. [1], 
[2], [3]). 

The basic and possibly most used quantum gates have a support on the set of 
primitives {EXOR, AND}. An EXOR with only one input is interpreted to denote the 
negation NOT. If we use the notation (inputs):(outputs) the controlled-NOT,  (CNOT) 
gate realizes (c, x):(c, c ⊕ x), where c denotes a control variable and x is the controlled 
one. It is fairly obvious that if c = 0, x does not change and the gate behaves as identity, 
meanwhile if c = 1, x will be complemented since 1 . The Toffoli gate [4], 



 Hybrid GF(2) – Boolean Expressions.for Quantum Computing Circuits 55 

also called controlled-controlled NOT (CCNOT), realizes (c1, c2, x):( c1, c2, (c1c2) ⊕ 
x). Notice that setting x = 1, the Toffoli gate realizes (c1c2) ⊕ 1 = NAND(c1, c2). 
Therefore in a binary world, the Toffoli gate is functionally complete. This may 
possibly explain why, much effort has been dedicated to optimize Toffoli gates based 
realizations of quantum circuits. 

The present paper intends to be a contribution to improve realizations of Toffoli 
based quantum circuits, by extending Toffoli gates to accept any number of possibly 
negated control signals. The well known method of generating Reed Muller 
expressions to obtain the quantum realization of a given binary function [5], will be 
extended to work with MPRM expressions of lowest complexity, and to enlarge the 
GF(2) operations of a Reed Muller expression, with the lattice operations of a 
Boolean algebra. The name “Hybrid GF(2) – Boolean” has been chosen for the 
resulting algebraic structures, which allow advantageous realizations with extended 
Toffoli gates. 

2 Hybrid GF(2) – Boolean Expressions 

A zero polarity RM expression is basically a GF(2) expression, where all variables 
appear in a non-complemented form. If the set of operations {⊕, ·} is enlarged with 
complementation, (as independent operation and not as the result of  1 ⊕ x), then 
other fixed polarities as well as mixed polarities are possible.  

The following elementary transformations allow simplifications in the context of 
MPRM expressions: 

(i)     ⊕  
If the complexity of a RM expression is measured by counting its terms or, 

equivalently, by counting the non-zero coefficients of the RM spectrum of the 
corresponding function, then the above elementary transformation allows a reduction 
of the complexity of the expression, possibly changing to a mixed polarity (in the case 
of a larger) expression. The quantum circuits for both expressions are shown in Fig. 1. 
It is simple to calculate that the quantum cost of directly  realizing  x ⊕ xy is 6, (Since 
a quantum technology independent realization of a Toffoli gate with a quantum cost 
of 5 is known [6]), meanwhile the quantum cost of a direct realization of    would 
amount to 7. This simple observation already points out the fact that the number of 
terms of a RM expression is not necessarily representative of the quantum cost of its 
realization.  

 
 

 

 

Fig. 1. Realization of f(x, y) = x ⊕ xy  (left)  and    ,   (right) 
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(ii)   ⊕  ⊕   
     Let , ,    .  A direct realization, as shown in Fig. 2(a), has 
a quantum cost of  20. Since ⊕ is associative and commutative f(x,y,z) may be 

expressed as   ⊕  ⊕   and by using the transformation (i), as  ⊕ . 
This last expression has the realization shown in Fig. 2(b), with a quantum cost of 19. 
If however instead of using the transformation (i), the transformation (ii) is applied 
first to f(x,y,z), the expression  ⊕  ⊕    is obtained; and finally with the 
transformation (i), , ,  ⊕ . As shown in Fig. 2(c), this last 
expression has a realization with a quantum cost of only 15. 
 

 

 

 
 
 

Fig. 2. (a) Direct realization of f(x,y,z); (b) realization after transformation (i); (c) realization 
after transformation (ii) followed by transformation (i) 

(iii)m ⊕  ⊕  

     ⊕  ⊕   
      ⊕   ⊕ 1 ⊕  ⊕   ⊕  
  These simple transformations may also be used to simplify RM expressions and 

to reduce the quantum cost of their realizations. (See example below). 

(iv)mx ⊕ y ⊕ xy = x ∨  y 

    1 ⊕  ⊕  ⊕  ∨  
     ∨  
 

This group of transformations relates GF(2) operations with OR/NOR operations of 
Boolean algebra or makes explicit use of the De Morgan laws. An application of these 
transformations to optimize the realization of quantum circuits obviously depends on 
the availability of an efficient OR-Toffoli gate. Such a gate does exist [7] as a slight 
modification of the seminal quantum Toffoli realization with a cost of 5 introduced by 
Barenco and colleagues [6]. See Fig. 3. 

 

 

 
 

Fig. 3. Left: quantum realization of a Toffoli gate [6] Right: quantum realization of an  
OR-Toffoli gate [7] 
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In Fig. 3, V denotes a unitary matrix such that V2 = NOT, and Va denotes its 
adjoint. The control signals to these matrices are x, y and x ⊕ y. It is easy to see that 
except when x = y = 0, in which case the gate is not activated and realizes an identity, 
two of the control signals will be 1 and the remaining, 0. In the circuit at the left of 
Fig.  3, whenever x ≠ y one of the  V matrices is activated and the other one is not;  x 
⊕ y = 1 and therefore the Va matrix is activated and the transfer function of the circuit 
will be V·Va or Va·V. Since V is unitary, V·Va = Va·V = I. Only when x = y = 1, x ⊕ y 
= 0; the Va matrix will be inhibited, the V matrices will be active and the transfer 
function of the circuit will be V2 = NOT, controlled by x = y = 1. The output of the 
circuit is therefore  z ⊕ xy, which corresponds to the functionality of a Toffoli gate. In 
the circuit at the right of Fig. 3, the same analysis indicates that except when x = y = 
0, two of the V matrices will be active and the transfer function of the circuit will be 
V2 = NOT, controlled by x or y (or both) equal to 1, giving as output z ⊕ (x ∨ y). The 
functionality of the circuit corresponds therefore to an OR-Toffoli gate. It is fairly 
obvious that both circuits have a quantum cost of 5. If the target qubit is free, then by 
setting z = 1, the circuits would realize NAND(x, y) and NOR(x, y), respectively, also 
with a quantum cost of 5. If the target qubit is not free, then the realization of NAND 
and NOR would require one additional inverter at the output, and its quantum cost 
would be 6. Notice however that the last CNOT gate in Fig. 3 left, does not affect the 
function: it only recovers the value of y, the second control variable. If this CNOT 
gate is deleted, a Peres gate [8] is obtained, which is also reversible, realizing  (x, y, 

z):( x, x ⊕ y,  xy ⊕ z)  and has a quantum cost of 4. Obviously, an OR gate based on a 
Peres gate has also a quantum cost of 4. 

Recall  , ,      , which under transformations (ii) and (i) 
became , ,  ⊕  with a realization as shown in Fig. 2(c) and a 
quantum cost of 15.  If now the last of the transformations  (iv) is used,  (which is a 
De Morgan law in the lattice of Boolean algebra), the following is obtained: , ,  ⊕   ∨  . By making use of the above disclosed OR/NOR-Toffoli 
gate, a realization with a quantum cost of 11 is obtained, as shown in Fig. 4. For the 
symbolic representation of  OR-Toffoli gates, black inverted triangles are used, which 
are similar to the ∨ sign that denotes disjunctions in formal expressions. Since the 
output of an ancillary line may be considered as garbage, the last gate could be a 
Peres gate instead of a Toffoli gate, thus reducing the quantum cost to 10. 

      
 

 

 

                               , ,  ⊕   ∨    ; q.c. = 11/(10) 

Fig. 4. Hybrid realizations of f(x,y,z) with a quantum cost of 11 or 10 
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The Barenco-type structure (Fig. 3) allows a further extension of the Toffoli gate to 
obtain efficient realizations of AND(NOT(x), y) as well as of AND(x, NOT(y)). For these 
gates, white dots will be used in the schematic representation of the gate, to indicate that 
an action takes place when the corresponding control variable takes the value 0. Consider 
the circuit at the left hand side of Fig. 5. Should x be 1, the Va gate would be activated. 
Since either y or x ⊕ y will have the value 1, then one of the V gates will be active and 
the transfer function of the circuit will be V·Va = I; therefore the target qubit will not 
change. On the other hand, if x takes the value 0, then the Va gate will be inhibited, 
meanwhile the two V gates  will be activated leading to the desired transfer function V·V 

= NOT. Similarly for the circuit at the right hand side of Fig. 5, which was first disclosed 
in [9]. No explicit complementation of the inhibiting control variable is needed and, 
therefore, a quantum cost of 5 is obtained. As discussed earlier, Peres based realizations 
are also possible, having a quantum cost of 4. 

 

 

                                       [9] 

Fig. 5. Extension of Toffoli gates to be activated by a control variable with value 0 

Notice that , ,  ⊕   1  
and, by using the first expression of the (iv) transformation, zxyzyxf ⋅∨=),,( , which 
has a realization with a quantum cost of 10, as shown in Fig. 6. If the OR gate is 
based on a Peres gate, the quantum cost is reduced to 9. 
 

  

  

 

zxyzyxf ∨=),,(  ; q.c. = 10/(9) 

Fig. 6. Hybrid realization with lowest quantum cost 
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Let ),,,( 0123 xxxxf  be specified by the following truth vector F: 
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Let ⊗ denote the Kronecker product. The zero-polarity Reed Muller basis is given 
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    B = [ 1  x3 ] ⊗ [ 1  x2 ] ⊗ [ 1  x1 ] ⊗ [ 1  x0 ]  

         = [                        1 01313033012120220110 xxxxxxxxxxxxxxxxxxxx  

               012312302323       xxxxxxxxxxxx  ] 

For n = 1, the Reed Muller transform matrix is RM1 = ⎥
⎦

⎤
⎢
⎣

⎡
11

01 , corresponding

 

to the 

numerical values of the basis [1  x]. 

   For n = 4, RM4 = RM1 ⊗ RM1 ⊗ RM1 ⊗ RM1 . 
   The Reed Muller spectrum of F is calculated as  Sf = RM4·F. It has been shown 

[10] that a space efficient calculation may be realized as follows: 

     Sf = RM4·F = vec(RM2·vec-1(F)·(RM2)
 T), 

where RM2 = RM1 ⊗ RM1 and  vec is a vectorizing operation that chains the columns 
of a matrix into a column vector. Similarly, vec-1 splits a column vector into 
subvectors, which are ordered as columns of a matrix of a dimension consistent with 
the matrix operation to be calculated. 

   Therefore, for the function of the example: 
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i.e. Sf = [ 1  1  1  1  1  1  0  0  0  1  1  0  1  0  0  0 ]T 

   The Reed Muller expression for f  is obtained as the inner product B·Sf in GF(2). 

     23130302201101),,( xxxxxxxxxxxxxzyxf ⊕⊕⊕⊕⊕⊕⊕⊕=  

It is easy to see that this expression has 9 terms, meanwhile the DNF has only 8 
minterms. A naïve realization based on the RM expression will achieve a quantum 
cost of 28 (since for every term with two variables a Toffoli gate (q.c. = 5) and for 
every single variable, a CNOT gate (q.c. = 1) will be needed). However just by using 
the associativity, commutativity and distributivity in GF(2) the following expression 
could be obtained: 

   )1())1()((1),,( 303021 ⊕⊕⊕⊕⊕⊕= xxxxxxzyxf , 

and this expression leads to the realization shown in Fig. 7, with a quantum cost of 
only 14. 
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Fig. 7. GF(2) realization of the example function with a quantum cost of 14 

If however only the transformation (i) and the distributive law is used, and after 
that, the transformation (iii) is applied, then an expression with 6 terms is obtained, 
but a simpler realization is possible, with a quantum cost of 14. See Fig. 8. Notice that 
the two gates surrounded by a dotted line may be replaced by a single Peres gate and 
the quantum cost could be further reduced to 12. 

 
     2313030220110 )()()1(),,( xxxxxxxxxxxxxzyxf ⊕⊕⊕⊕⊕⊕⊕⊕=  

            23130302010 )1( xxxxxxxxxxx ⊕⊕⊕⊕⊕⊕=  

            321021030 )()()1( xxxxxxxxx ⊕⊕⊕⊕⊕⊕=  

            ))(()1( 302103 xxxxxx ⊕⊕⊕⊕= ))(()1( 302103 xxxxxx ⊕⊕⊕⊕=  

             
         

 
 
 
 
 
 

                           ))(()1(),,( 302103 xxxxxxzyxf ⊕⊕⊕⊕=  

Fig. 8. Hybrid realization of the example function with a quantum cost of 14/(12) 

The example confirms the early claim that minimizing the number of terms of an 
expression does not necessarily mean that its realization will achieve minimum quantum 
cost. More important is proper use of distributivity to obtain a minimum number of 
products of simple sub-expressions. Hybrid expressions, combining operations in GF(2) 
with lattice operations of Boolean algebra add flexibility to the search for minimal cost 
realizations. However, formal methods to obtain and minimize hybrid expressions must 
still be developed. Small problems may be processed by inspection with the help of the 
elementary transformations disclosed in Section 2. For larger problems this will not be 
efficient, if at all possible. However very effective metaheuristics have lately been 
developed [11], that represent a promising alternative. Moreover, for larger (i.e. more 
complex) problems, higher level extensions of Toffoli/Peres gates, like e.g. symmetric 
functions might be appropriate [12]. 
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3 Higher Number of Mixed Control Signals 

When three or more control variables are used, most authors consider cascading 
Toffoli gates with two control signals. This simplifies the design, but it requires as 
many additional ancillary lines as levels in the cascade, minus 1. The quantum cost of 
the cascade may be optimized if a proper combination of Peres and Toffoli gates is 
used. Recent results [13] that may be traced back to [6], but obtained in a totally 
different way, may be adapted to work with mixed control signals [14], as will be 
shown below. In this case, no additional ancillary lines are required. 
 
Example 2 

Low quantum cost design of 012012 ),,( xxxxxxf =  

(i) The straight forward approach leads to a realization as shown in Fig. 9, with a 
quantum cost of 15 and requiring one additional ancillary line. 
 

 

Fig. 9. Cascade realization of a Toffoli gate with three mixed control inputs 

Notice that if the upper level gates are chosen to be Peres gates, (to reduce the overall 
quantum cost by 2), and at the output also the 0 auxiliary input should be recovered, 
then at the right hand side, the Peres gate would compute  

122122212212 )1()( xxxxxxxxxxxx =⊕⊕=⊕⊕=⊕ . 

and               01212 ≠⊕ xxxx  

A “mirrored” (instead of a straight) Peres gate is needed at the output, to “undo” step 
by step the processing of the input Peres gate and recover the control variables, as 
illustrated in Fig. 10. A more detailed analysis may be found in [15]. 

 

 

 

 
Fig. 10. Quantum model of a Peres gate (left) and of its mirror (right) 
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(ii) A realization with a quantum cost of 13 and no ancillary lines is shown in Fig. 11, 
where W is a unitary matrix such that W4 = NOT and W·Wa = Wa·W = I, the identity 

matrix. A formal method to distribute Ws and W
a
s on the target line to satisfy any 

mixture of direct and negated control signals is presented in [14]. The method is 
scalable to any higher number of mixed control signals, reaching a quantum cost of 
2n+1 – 3. 
 
 
 
 
 
 
 
 
 

Fig. 11. Optimal realization of a Toffoli gate with 3 control signals, one of them negated,  with 
a quantum cost of 13 and without requiring ancillary lines besides the target line 
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Abstract. In recent years, research in the domain of reversible circuit
design has attracted significant attention leading to many different ap-
proaches e.g. for synthesis, optimization, simulation, verification, and
test. The open source toolkit RevKit is an attempt to make these de-
velopments publicly available to other researchers. For this purpose, a
modular and extendable framework has been provided which easily en-
ables the addition of new methods and tools.

In this paper, we introduce the functionality as well as the internals
of RevKit. We provide examples and use cases showing how to apply
RevKit and its components in order to create and execute customized
design flows. Furthermore, we demonstrate how the architecture and the
design concepts of RevKit can be exploited to easily develop new or
improved methods for reversible circuit design.

1 Introduction

The development of computing machines has found great success in the last
decades. Nowadays billions of components are built on a few square centimeters
– and this increasing trend continues. The number of transistors in an integrated
circuit doubles every 18 months – also known as Moore’s Law. However, it is
obvious that such an exponential growth must reach its limits in the future.
Otherwise, the miniaturization would reach a level where transistors consist of
only single atoms. Furthermore, power dissipation more and more becomes a
crucial issue for designing high performance digital circuits.

To further satisfy the need for more computational power, alternatives are
required that go beyond the scope of the conventional (CMOS) technologies.
Reversible logic marks a promising new direction where all operations are per-
formed in an invertible manner. That is, in contrast to conventional logic, only
bijective operations are allowed implying a reversible computation, i.e. the inputs
can be obtained from the outputs and vice versa. This reversibility builds the
basis for emerging technologies that may replace, or at least enhance, conven-
tional computer chips, e.g. in the domain of low-power design [1,2,3], quantum
computation [4,5,6], optical computing [7], DNA computing [8], as well as nan-
otechnologies [9].

A. De Vos and R. Wille (Eds.): RC 2011, LNCS 7165, pp. 64–76, 2012.
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Fig. 1. Reversible gates

The basic concepts of reversible logic are not new and were already introduced
in the 60’s by Landauer [1] and further refined by Bennett [2] and Toffoli [10].
They observed that due to the reversibility fanouts and feedback are not directly
allowed in reversible circuits. As a consequence new libraries of (reversible) gates
have been introduced including e.g. Toffoli gates [10], Fredkin gates [11], and
Peres gates [12]. Figure 1 shows these gates in a cascade. Each gate consists of
control lines (denoted by ) and target lines (denoted by except for the Fredkin
gate where an is used instead). For a Toffoli gate, the value of the target line
becomes inverted, if all control lines are assigned to the logic value 1 while for
the Fredkin gate the target lines are interchanged in this case. The Peres gate is
a cascade of two Toffoli gates. The annotated values in Fig. 1 demonstrate the
computation of the respective gates. As can be seen, the calculation can be done
in both directions, i.e. it is reversible.

Even if this represents the basis for research in the area of reversible cir-
cuits, the topic was not intensively studied by computer scientists before the
year 2000. The main reason for that may be due to the fact that applications of
such circuits have been seen as “dreams of the future”. However, this changed
with recently made achievements. For example, in the domain of low-power de-
sign, first reversible circuits have been built which are powered by their input
signals only and do not need additional power supplies (see e.g. [3]). In quan-
tum computation, factorization has been solved in polynomial time whereas only
exponential solving methods are known for conventional circuits (see e.g. [4,6]).
These achievements (together with others) significantly moved the topic forward
so that nowadays reversible logic is seen as a promising research area. As a con-
sequence, in the last years computer scientists started to develop new methods
for the design of reversible circuits. Among others, these include approaches for
synthesis (see e.g. [13,14,15]), optimization (see e.g. [14]), simulation (e.g. [16]),
verification (e.g. [17,18,19]), and test (e.g. [20,21]).

However, most of the resulting methods are not publicly available1. This
often makes the development of new methods harder since e.g. previous ap-
proaches are not available for comparison. Furthermore, approaches have to be
re-implemented from scratch in order to modify or improve them. The lack of
tools for reversible hardware design makes it hard for beginners to get involved
in the topic.

1 Exceptions are e.g. the RMRLS synthesis approach [22] which is available at
http://www.princeton.edu/~cad/projects.html or the quantum simulator
QuIDDPro [16] which is available at
http://vlsicad.eecs.umich.edu/Quantum/qp/

http://www.princeton.edu/~cad/projects.html
http://vlsicad.eecs.umich.edu/Quantum/qp/
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The open source toolkit RevKit is an attempt to make these developments
publicly available to other researchers. For this purpose, a modular and ex-
tendable framework has been provided which easily enables the addition of new
methods and tools. Besides basic functionality (like parser and export func-
tions), RevKit already provides elaborated methods for synthesis, optimization,
and verification. In this sense, RevKit addresses users who simply want to apply
the framework and its tools as well as developers who actively want to develop
further methods on top of the framework. For this purpose, RevKit is available
online at http://www.revkit.org.

In this paper, we introduce the functionality as well as the internals of RevKit.
We provide examples and use cases showing how to apply RevKit and its com-
ponents in order to create and execute customized design flows. The paper is
structured as follows. First, RevKit and the main approaches are briefly reviewed
in the next section. Section 3 illustrates the application of RevKit by means of
the Python interface and by means of a graphical user interface. Afterwards, the
the architecture as well as the design concepts of RevKit are introduced in Sect. 4
enabling to easily extend or improve the framework with further functionality.
Section 5 concludes the paper.

2 The RevKit Framework

RevKit is an open source toolkit available at www.revkit.org which aims to make
recent developments in the domain of reversible circuit design accessible to other
researchers. It provides core functionality like read-in routines for functions and
reversible circuits (based on the RevLib format introduced in [23]), several export
functions (again into the RevLib format, but LATEX and BLIF dumps are also
available), cost calculations, and more. Furthermore, more elaborated methods
for synthesis, optimization, and verification of reversible (and quantum) circuits
are available including:
Synthesis
– A transformation-based method inspired by the concepts of [24] and the

extension based on the Reed Muller spectra [25]
– The BDD-based synthesis method as introduced in [15]
– The KFDD-based synthesis method as introduced in [26]
– The heuristic synthesis with output permutation method as introduced in [27]
– The ESOP-based synthesis method inspired by the concepts of [28]
– The exact synthesis method as introduced in [29]

Optimization
– The window optimization method as introduced in [30]
– The circuit line reduction method as introduced in [31]
– The adding lines optimization method as introduced in [32]

Verification
– The SAT-based equivalence checker as introduced in [19]
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Further Methods
– A näıve method to embed irreversible functions into reversible ones (needed

e.g. to synthesize irreversible functions using the transformation-based
method)

– A simple simulation engine (for reversible circuits working on Boolean values)
– A simple decomposition method that maps a given reversible circuit (com-

posed of Toffoli, Fredkin, and Peres gates) to its equivalent quantum circuit
(composed of NOT, CNOT, V, and V+ gates) inspired by the concepts of [33]
and [34]

– Support of hierarchical circuitry (i.e. modules, flattening of circuits, etc.),
sequential circuits, annotations, and more

– Visualization of circuits

All these tools and algorithms are written in C++ and directly accessible by
an API. That is, they can be used in other C++ programs. Furthermore, all
functions are also exposed as a Python library2 as well as in a graphical user
interface. This enables the user to create and execute customized design flows
as illustrated in the next sections.

3 The Users’ Perspective: Applying RevKit

Accessing the API of RevKit using C++ requires to write fully executable C++
programs which need to be compiled after every modification. In particular when
using the toolkit for the purpose of evaluation and experimentation, this work
flow is very inflexible.

To overcome this limitation, RevKit offers bindings of all functions and al-
gorithms either to the Python language or to a graphical user interface. This
allows to utilize RevKit without re-compilation. At the same time, the high per-
formance of the algorithms is exploited since both, the Python binding as well
as the graphical user interface, directly invoke the respective assembly code.

3.1 Using the Python Interface

In this section, the advantages of the Python bindings are demonstrated by
means of two use cases. First, an interactive application of the Python shell is
outlined. Afterwards, it is shown how to utilize the expressive Python syntax in
order to create compact scripts defining a customized design flow.

Interactive Application in the Python Shell. A Python shell can be uti-
lized enabling a dynamic interaction with the RevKit functions and algorithms.
Furthermore, sophisticated Python shells such as IPython [35] additionally al-
low syntax highlighting, tab completion, UNIX shell interaction, and integrated
documentation.

2 For this purpose, the Boost.Python library was utilized. For further information visit
http://www.boost.org/doc/libs/1 47 0/libs/python/doc/index.html
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$ ipython

In [�]: from revkit import *

In [�]: circ = circuit(2)

In [�]: append not(circ, 0)

Out[�]: <revkit python.gate object at 0xb7348454>

In [�]: append cnot(circ, 0, 1)

Out[�]: <revkit python.gate object at 0xb734848c>

In [�]: circ

Out[�]:

O*

-O

In [�]: init gui()

Out[�]: <PyQt4.QtGui.QApplication object at 0xb72be26c>

In [�]: w = display circuit(circ)

In [�]: w.simulate([False, True])

Fig. 2. Command line interface

As an example, consider the command line flow as outlined in Fig. 2. After
the RevKit library is imported (see Command 1), a circuit consisting of a NOT
and a CNOT gate is created (see Command 2 for the initialization of the circuit
as well as Command 3 and Command 4 for the addition of the gates). Then, the
resulting circuit is printed out on the console (Command 5), displayed in the
GUI (Command 7), and simulated (Command 8). For this purpose, the last two
commands open the GUI as shown on the right-hand side of Fig. 2.

Overall, using RevKit in the Python shell, the user directly gets feedback
for the invoked actions. Thus, it is ideal e.g. for a first examination in order to
observe the behavior of different design flows.

Python Scripts. An alternative to the interactive application is the use of
scripts. They enable e.g. to define sequences of commands that, afterwards, can
be executed on several instances, several times, or with different parameters.

As an example, Fig. 3 shows a Python script that creates an incrementer
circuit and verifies it using exhaustive simulation. After importing the RevKit
Python library (Line 3), a helper function is defined which maps a list of Boolean
numbers to its natural representation (Line 5). The syntax can almost directly
be mapped to the formula

∑
bi
bi ·2i for a b = (b0 . . . bn−1). The size of the circuit

is configurable by a program argument and defined in Line 7. The incrementer
structure of the circuit is built in Lines 8 and 9 by prepending a gate with a
target on line c and control lines on all preceding lines. In order to verify the
correctness of this circuit, the truth table of it is created (Line 11/12). Then, for
each line of the truth table it is checked whether it adheres the specification (Line
13). More precisely, it is checked whether adding 1 to each input value results in
the desired output value. In case the script generates no output, the verification
was successful. Otherwise, an assertion is thrown which can be further inspected,
e.g. by checking the respective values for the variables in and out.
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1 #!/usr/bin/python
2 import sys
3 from revkit import ∗
4

5 def b2d(bits): return sum([b ∗ 2∗∗i for i, b in enumerate(bits)])
6

7 n = int(sys.argv[1])
8 circ = circuit(n)
9 for c in range(n): prepend toffoli(circ, range(c), c)

10

11 spec = binary truth table()
12 circuit to truth table(circ, spec)
13 for [ in, out] in spec.entries: assert((b2d( in) + 1) % 2∗∗n == b2d( out))

Fig. 3. Python script

Overall, using the RevKit bindings and the syntactical features of Python,
scripts also for complex tasks can be written within few lines of code.

3.2 Using the Graphical User Interface

Besides the Python library, also a graphical user interface (GUI) is available
in RevKit. This enables the creation and execution of customized design flows
without writing any line of code. Instead, the respective steps of a design flow
to be executed can easily put together by means of blocks to be connected by a
graph. Each block performs an operation and may have ports for the respective
input parameters and output results. Input ports can be connected to output
ports forming a channel when they support the same data types.

As an example, a Circuit from file block reads a circuit from a given file-name
and passes the resulting data-structure to its single output port of type Circuit.
Then, this block can be connected to a Line Reduction block which takes this
circuit as a parameter and performs the line reduction approach [31]. Afterwards,
the result is provided at the output port of this block. In this manner, more
complex scenarios can be set up.

When executing the design flow, the graph is sorted in a topologically or-
der and is executed level wise. Visual feedback provides the user with current
progress information, i.e. which steps have already been performed and which
step is currently being executed. In the following, two use cases illustrating pos-
sible applications of the RevKit GUI are presented.

Building Custom Design Flows. An example flow is given in Fig. 4. Here,
a reversible function given as truth table is synthesized utilizing a heuristic [24]
as well as an exact [29] approach. Afterwards, the resulting circuits are checked
for equivalence. Besides that, the results of each synthesis run are passed to a
statistics element which provides information e.g. about the circuit cost and also
visualizes the circuit.
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Fig. 4. Example GUI execution

Benchmarking. The elementary blocks in the RevKit GUI are of different
complexity. While some provide very basic operations such as parsing files, more
powerful blocks exist. As an example, the block RevLib Functions provides access
to the RevLib [23] database. A respective block is depicted in its expanded form
in Fig. 5. The table on the left-hand side lists all benchmarks that meet certain
criteria specified on the right-hand side, i.e. functions with more than 5 but less
than 8 inputs as well as functions with more than 3 outputs. When executing
this block, all these functions can be passed to the successive blocks. Therewith,
a whole set of functions can sequentially be applied e.g. to a synthesis approach.
The results of such a process can afterwards be collected in another block which
enables to export a result table in terms of a CSV or LATEX file.

4 The Developers’ Perspective: Extending RevKit

Besides providing tools and algorithms, RevKit also aims to support researchers
in the development of new or improved methods for reversible circuit design. To
this end, RevKit is based on a very modular and extendable framework which
is introduced in more detail in this section. First, the architecture of RevKit is
described followed by a brief discussion of applied design concepts. Afterwards,
it is illustrated, by means of an example, how new approaches can be added to
the framework.
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Fig. 5. Benchmarking example

4.1 Architecture and Design Concepts

The architecture of RevKit is briefly illustrated in Fig. 6. As can be seen, RevKit
consists of three main parts:

– the core, which provides data-structures (e.g. to store functions or circuits)
and basic functionality (like parsing routines, export functions, cost calcula-
tions, circuit modifications) which can be used by every algorithm,

– the respective approaches and methods for reversible circuit design (e.g. syn-
thesis, optimization, or verification), and

– the different applications built on top of the framework (e.g. the generic usage
by means of the Python bindings or a precise application that combines some
algorithms in a certain way).

Additionally, RevKit makes use of third-party libraries like e.g. the Colorado
University Decision Diagram Package (CUDD) [36], the metaSMT framework [37],
and some C++-libraries.

The core and the corresponding algorithms form the main implementation
of the framework. The respective algorithms are completely independent from
each other, but rely on generic interfaces. In doing so, it is possible to utilize
existing methods without a detailed treatment of them. For example, if a new
optimization approach based on re-synthesis is added, the respective synthesis
calls would be invoked by the generic interface. At run-time (or in a precise
application), the respective synthesis approach can then be chosen by parameters
(denoted by the dashed arrow in Fig. 6). This enables a huge flexibility since the
new optimization approach does not only rely on one single synthesis method,
but can exploit all available ones. This also includes synthesis approaches that
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Fig. 6. Architecture of RevKit

will be added in the future. Furthermore, this modular structure (together with
the interfaces) has the advantage that newly added methods do not affect already
implemented functionality. In fact, even removing one approach will not affect
the overall framework from compiling and operating.

Besides that, being prepared for future developments was an important design
criterion during the implementation of RevKit. This can be illustrated very well
by the support of the respective gate libraries for the considered circuits. So far,
RevKit supports the established Toffoli gate, the Fredkin gate, and the Peres
gate as well as the quantum V gate and the quantum V+ gate. However, in
the future other gate types may be used. This would not only affect the data-
structures of RevKit, but would also have implications for many approaches like
simulation or verification. In order to keep RevKit flexible, generic structures
are applied as well. More precisely, a generic data-structure including a so called
target tag is used. These target tags can be defined separately without modifying
the core of the framework. Having these target tags, new gate types can be easily
supported by extending or overriding the concerned methods. For example, in
the case of simulation, only the treatment of a single gate has to be extended
while the overall simulation engine can remain unaltered.

The usage of these design concepts ensures a high extendability of the frame-
work. Furthermore, several scripts are provided to aid developers in creating
new algorithms from scratch. In particular, they generate basic code skeletons
in order to allow an easy integration of new approaches and to make existing
algorithms accessible. The next section illustrates this by means of an example.

4.2 Adding a New Approach to RevKit

Figure 7 shows the complete source code of an optimization approach that can
be added to RevKit in this form. In fact, a window optimization approach is
realized, where sub-circuits are considered from left to right. In each iteration,
the currently considered sub-circuit is re-synthesized. If a sub-circuit with smaller
cost results, the newly generated sub-circuit is substituted with the original one.

In the first lines of Fig. 7, the respective parameters are given, i.e. the resulting
circuit (circ), the original circuit (base), and some settings (settings), which are
parsed into local variables in Lines 4–7. As can be seen, the simulation and the
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1 bool window optimization(circuit& circ, const circuit& base,
2 properties::ptr settings)
3 {
4 unsigned window length = get(settings, ”window length”);
5 simulation func simulation = get(settings, ”simulation”);
6 truth table synthesis func synthesis = get(settings, ”synthesis”);
7 cost function cf = get(settings, ”cost function”);
8

9 unsigned pos = 0u;
10 while (pos < base.num gates())
11 {
12 unsigned length = std::min(
13 window length, base.num gates() − pos);
14 unsigned to = pos + length;
15

16 subcircuit s(base, pos, to);
17

18 binary truth table spec;
19 circuit to truth table(s, spec, simulation);
20

21 circuit new part;
22 bool ok = synthesis(new part, spec);
23

24 bool cheaper = ok && costs(new part, cf) < costs(s, cf);
25

26 append circuit(circ, cheaper ? new part : s);
27

28 pos = to;
29 }
30

31 return true;
32 }

Fig. 7. Sources for a simple optimization approach

synthesis approach are passed by settings and stored in respective variables. As
discussed above, this employs a generic interface, i.e. no concrete simulation or
synthesis approach is invoked but defined from outside when calling the window
optimization algorithm. Then, the original circuit is traversed from left to right
(Line 10) and a sub-circuit of a certain size (defined in the settings) is extracted
and stored in s (Lines 12–16). Afterwards, the function of the considered sub-
circuit is extracted (Lines 18–19) and passed to the synthesis approach (Lines 21–
22). Finally, the costs of the sub-circuits are compared in Line 24 (using a cost
function again specified in the settings). If the newly synthesized sub-circuit is
cheaper than the original one, then this new one is appended to the resulting
circuit. Otherwise, the original sub-circuit is used (Line 26).
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As can be seen, using RevKit this approach can be implemented in a very
compact and straight-forward way. Existing approaches (in this case synthesis
methods) are utilized. Furthermore, the resulting approach is very flexible since
both, the synthesis method and the considered cost function, can be arbitrarily
selected.

5 Conclusions

In this paper, we reviewed the functionality as well as the internals of RevKit
and provided examples and use cases showing how to apply RevKit and its
components in order to design reversible circuits. For this purpose, several in-
terfaces provided by RevKit (Python bindings, the graphical user interface, or
the C++-API) can be exploited. RevKit itself as well as further documentation
is available at www.revkit.org.
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Abstract. Mapping a circuit of reversible gates to a circuit of elemen-
tary quantum gates is a key step in synthesizing quantum realizations
of Boolean functions. The library containing NOT, controlled-NOT and
controlled square-root-of-NOT gates has been considered extensively. In
this paper, we extend the library to include fourth-root-of-NOT gates.
Experimental results using REVLIB benchmark circuits show that using
this extended library results in smaller quantum circuits.

1 Introduction

Many reversible circuit synthesis methods have been presented in the literature.
A good review can be found in [10]. Most methods produce a circuit composed
of a cascade of basic reversible gates. After, or sometimes during, synthesis the
reversible gates are mapped to elementary quantum gates implemented in the
target technology, a step analogous to technology-mapping in traditional digital
circuit design. Much of the work in this area has focused on the quantum gate
library of NOT , controlled-NOT , controlled-V and controlled-V + gates, which
is termed the NCV library. The last two are square-root-of-NOT gates. The work
here extends the library to include controlled-W and controlled-W+ gates which
are fourth-root-of-NOT gates. The question we seek to address is to what extent
the NCVW library will yield smaller quantum circuits.

Although the paper concentrates on MCT reversible gates, the proposed meth-
ods can be applied to other reversible gates, e.g. Fredkin [2] gates, by transform-
ing them to Toffoli gate realizations. The approach can also be targeted to other
quantum gate libraries.

All circuits described in this paper have been verified using the QMDD circuit
equivalence checker described in [11]. The NCV and NCVW catalogs of circuit
realizations for MCT gates, the programs that generate those catalogs and the
MCT to quantum circuit mapping program (in Python) are available from the
authors.

The rest of the paper is organized as follows. Section 2 gives the necessary
background. Section 3 outlines an approach to finding NCVW realizations of
single MCT gates, and Section 4 shows how that work can be used in finding
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NCVW realizations of MCT circuits. Experimental results are given in Section
5 and the paper finishes with conclusions and suggestions for ongoing work in
Section 6.

2 Background

We here present the background necessary for this paper. Readers interested in
a more detailed introduction should consult the literature.

Definition 1. A multiple-output Boolean function is reversible if it maps each
input assignment to a unique output assignment.

A reversible function is realized by a cascade of reversible gates with no fan-out
or feedback [5]. A completely or incompletely-specified irreversible function can
be embedded into a reversible function, usually with more inputs and outputs,
and then realized by a reversible circuit [3].

Definition 2. A multiple-control Toffoli (MCT) gate with target line xj

and control lines {xi1 , xi2 · · ·xik}, maps (x1 . . . xj . . . xn) to

(x1 . . . (xi1xi2 · · ·xik )⊕ xj . . . xn).

Note that all controls must be 1 for the target to be inverted. An MCT gate with
no control is the well-known NOT gate. An MCT gate with a single control line
is called a controlled-NOT (CNOT) gate. We use T (C; t) to denote the MCT
gate with C being the set of controls and t being the target.

Note that for all circuits considered in this work, MCT gate controls and
controls for the quantum gates discussed below must have binary (0 or 1) and
not quantum values.

Fredkin gates [2], Peres and inverse-Peres gates [6] are also used in reversible
circuits. Each such gate can be substituted by an equivalent sequence of MCT
gates. Indeed, any reversible gate can be substituted by a sequence of MCT gates.
A reversible circuit composed of only MCT gates is thus used as the starting
point for the approach presented in this paper.

Many quantum gates have been defined and studied in the literature [5]. Here
we consider what we term the NCVW library which consist of the NOT and
CNOT gates given above and four single-control gates (V ,V +,W ,W+) defined
below.

It is well known (see [5] for details) that the operation of each gate in an
n-line reversible or quantum circuit can be represented by a square matrix of
dimension 2n. The construction of the matrix depends on which line is the target,
which lines are the control(s) and a 2× 2 matrix defining the operation on the
target line. For example, the target matrix for an MCT gate, including NOT
and CNOT , is N =

(
0 1
1 0

)
.
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Theorem 1. Consider the matrix

Rk =
1

2

(
1 + i2/k 1− i2/k

1− i2/k 1 + i2/k

)
(1)

where k is a power of 2. Rk is a k-th root of N, i.e. (Rk)
k = N.

Proof: Consider

Rp ×Rp =
1

2

(
1 + i2/p 1− i2/p

1− i2/p 1 + i2/p

)
× 1

2

(
1 + i2/p 1− i2/p

1− i2/p 1 + i2/p

)
(2)

=
1

2

(
1 + i4/p 1− i4/p

1− i4/p 1 + i4/p

)
(3)

The matrix in Equation 3 isRp/2 which is verified by setting k = p/2 in Equation
1. Since Rp×Rp = Rp/2 and R1 = N, it follows by induction that for k a power

of 2, (Rk)
k = N. �

Corollary 1.1 Since the conjugate of the product of two matrices is the product
of their conjugates, (Rk)

k = N.

Let V = R2 = 1
2

(
1+i 1−i
1−i 1+i

)
. Clearly, V ×V = N. Let V+ be the conjugate

transpose (adjoint) of V. It follows from Corollary 1.1 that V+ × V+ = N.
further, it is readily verified that V+ = V−1.

Definition 3. A controlled-V gate applies the transformation defined by the
matrix V when the single control line has value 1. Likewise, a controlled-V +

gate applies the transformation defined by the matrix V+ when the single control
line has value 1. Both gates are called square-root-of-NOT gates. They both
pass the target line value through unaltered if the control has value 0.

Definition 4. A controlled-controlled-V gate is the extension of the
controlled-V gate to the case of two controls both of which must be 1 to ap-
ply the transformation to the target. A controlled-controlled-V + gate is the
analogous extension to the controlled-V + gate.

Let W = R4 = 1
2

(
1+
√
i 1−√i

1−√i 1+
√
i

)
. Its adjoint is W+ = 1

2

(
1−i√i 1+i

√
i

1+i
√
i 1−i√i

)
. By

definition, W×W = V. It follows directly that W+ ×W+ = V+. It is readily
verified that W+ = W−1.

Definition 5. A controlled-W gate applies the transformation defined by the
matrix W when the single control line has value 1. Likewise, a controlled-W+

gate applies the transformation defined by the matrix W+ when the single control
line has value 1. Both gates are called fourth-root-of-NOT gates.

The quantum bit operations corresponding to the matrices V , V +, W and
W+ are rotations around the x-axis of the Bloch sphere [5]. V and W define
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rotations by 90◦ and 45◦ in one direction while V + and W+ define rotations
by 90◦ and 45◦ in the opposite direction. Considering computation, we note
from the well-known De Moivre’s theorem that i1/k = cos π

2k + i sin π
2k . Hence√

i = cos π
4 + i sin π

4 .
The above can be extended to gates implementing other roots-of-NOT . Higher

order roots require progressively smaller rotation angles. We do not consider that
option here and, for that reason, we do not consider the case of two-control W
and W+ gates.

The following properties and definitions are useful for simplifying circuits.

Property 1. MCT gates, including NOT, CNOT and Toffoli gates, are self-inverse
and two identical such gates in a row yield the identity mapping. V and V + gates
with the same target and the same control are the inverse of each other. W and
W+ gates with the same target and the same control are the inverse of each
other.

Property 2. Given a cascade of gates G1G2 . . . Gk realizing the reversible func-
tion F , the cascade G−1k . . .G−12 G−11 realizes the function F−1, where G−1i is the
inverse gate for Gi.

Definition 6. Since an MCT gate is self-inverse applying Property 2 to a re-
alization of the gate yields an alternate realization for the same gate. We term
this the reverse realization.

Property 3. In a circuit realizing a reversible function, the functionality is not
changed if for any line, (a) all V gates are replaced by V + gates and all V +

gates are replaced by V gates, or (b) all W gates are replaced by W+ gates and
all W+ gates are replaced by W gates, where both interchanges must be applied
to any line that contains both V -type and W -type gates.

Property 3 is the observation that we can reverse the direction of rotation in
the Bloch sphere so long as we do it consistently.

The methods discussed below produce circuits composed of NOT , CNOT ,
and controlled-V , V +, W and W+ gates. We term such circuits NCVW circuits.
We compare our results to NCV circuits which are similar except they contain
no controlled-W or controlled-W+ gates.

Definition 7. The cost of an NCVW or NCV circuit is taken to be the number
of gates, i.e. we assume NOT , CNOT and single control quantum gates all have
cost 1.

For drawing circuits, we follow the normal conventions of using a ⊕ for an MCT
gate or a box containing the gate name to indicate the operation performed on
the target line, and a • to indicate each control connection.

3 NCVW Circuits for MCT Gates

It is well known [1] that the Toffoli gate T ({c, b}; a) can be realized using 5 NCV
gates as shown in Figure 1(a). This extends to realizing controlled-controlled-V
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c • • •
b �������	 • �������	 •
a V V + V

c • • •
b �������	 • �������	 •
a W W+ W

c • • •
b �������	 • �������	 •
a W+ W W+

(a) (b) (c)

Fig. 1. (a) NCV realization of T ({c, b}; a). (b) NCW realization of V ({c, b}; a). (c)
NCW realization of V +({c, b}; a).

and V + gates using NCW gates as shown in Figure 1(b) and (c), respectively.
Note that the circuit in Figure 1(a) represents 4 distinct realizations since it can
be reversed and V and V + can be interchanged. The circuits in Figure 1(b) and
(c) each represent two realizations by reversal.

Consider realizing T ({d, c, b}; a). The circuit in Figure 2(a) is found by adding
line d to the circuit in Figure 1(a). The correct operation of this circuit is readily
verified by considering the cases of d = 0 and d = 1 in turn.

The circuit in Figure 2(b) is derived from 2(a) by (i) substituting an instance
of the circuit in Figure 1(b) for the V ({d, c}; a) gate, (ii) substituting a reversed
instance of the circuit in Figure 1(c) for the V +({d, b}; a) gate, and (iii) substi-
tuting an instance of the circuit in Figure 1(b) for the V ({d, b}; a) gate. Note
that once substituted two gates from (ii) cancel with two gates from (iii). Hence
the gates V +({d, b}; a) and V ({d, b}; a) map to 3 gates each in the reduced cir-
cuit. The circuit in Figure 2(b) is the circuit given by Barenco et al. [1]. The
construction shown here is quite different.

d • • •
c • • •
b �������	 • �������	 •
a V V + V

d • • • • •
c �������	 • �������	 • • •
b �������	 • �������	 • �������	 • �������	 •
a W W+ W W+ W W+ W

(a) (b)

Fig. 2. (a) NCV realization of T ({d, c, b}; a). (b) NCW circuit for T ({d, c, b}; a).

In [7], we have shown how to decompose an MCT gate into a circuit composed
of controlled-W , controlled-W+ and MCT gates with fewer controls. An example
for 7 controls and 1 ancillary line (labeled 1) is shown in Figure 3. Using the
general form of this decomposition and using the circuits in Figures 1(b), 1(c)
and 2(b) it is possible to build a catalog of MCT realizations for any number
of controls. Further, separate circuits can be derived for differing numbers of
available ancillary lines. See [7] for details.

Table 1(a) shows the costs of the NCVW realizations of MCT gates for up
to 20 controls. Note that no NCVW realizations exist for 0 ancillary lines and
greater than 3 controls. A blank entry at the right end of a row means the cost
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8 •
7 •
6 •
5 •
4 •
3 •
2 •
1

0 �������	

• • 8

• • 7

• • 6

• • 5

• • 4

• • • • 3

• • • • 2

• �������	 • �������	 • �������	 • �������	 • �������	 • �������	 • �������	 • �������	 1

W W+ W W+ W W+ W W+ 0

Fig. 3. Example Decomposition of a 7-control MCT Gate

can not be reduced by adding another ancillary line. For comparison, Table 1(b)
shows the costs of NCV realizations of MCT gates as presented in [4]. Note that
the NCVW are consistently cheaper and for 3 controls and 7 or more controls
one less ancillary line is required to achieve the smallest circuit.

4 NCVW Circuits for MCT Circuits

The previous section addressed finding an NCVW realization for a single MCT
gate and how that can be used to build a catalog of NCVW realizations for
individual MCT gates with particular numbers of controls and ancillary lines.
Here, we consider how such a catalog can be used in transforming a MCT gate
circuit to an NCVW circuit. The approach described here is similar to the one
presented in [8]. The difference is that it uses NCVW realizations of MCT gates
developed in [7] in place of NCV realizations. We outline the approach below.
Readers interested in full details should consult the references.

Our procedure to map a MCT circuit to a NCVW circuit uses a Line La-
beling Procedure (Procedure 1 of [8]) and the Gate Reduction Procedure
(Procedure 2 of [8]). Both are applicable to MCT and quantum gates. The Line
Labeling Procedure traverses a circuit assigning labels to line segments such that
two segments on the same line that are assigned the same label have identical
functionality. This is done by identifying gate sequences that realize the identity
function using a stack of gates for each circuit line. The Gate Reduction Pro-
cedure finds possible cancelations and reductions in the circuit by moving gates
across the circuit and making them adjacent to every gate in their movement
domain. It starts from one end of the circuit and labels one gate at a time. Then
it moves that gate back through the circuit as far as possible to find the best
reduction. The gate either may be canceled with its inverse or may be reduced
to a single gate when combined with other gates.

The key extension to the Gate Reduction Procedure as given in [8] to in-
corporate W and W+ gates, was to modify the gate combining step so that it
considers more than two gates at a time to find possible reductions. As a gate
(Gp) is moved across the circuit, a list is made that contains gates that can be
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Table 1. Cost of MCT gate circuits: (a) NCVW cost, (b) NCV cost

Number of Ancillary Lines

Controls 0 1 2 3 4 5 6 7

0 1

1 1

2 5

3 13

4 20

5 28

6 40

7 52

8 64

9 80 76

10 96 88

11 112 104 100

12 128 120 112

13 152 136 128 124

14 176 158 144 136

15 200 176 160 152 148

16 224 200 176 168 160

17 248 224 200 184 176 172

18 272 248 224 200 192 184

19 296 272 248 224 208 200 196

20 320 296 272 248 224 216 208

Number of Ancillary Lines

Controls 0 1 2 3 4 5 6 7 8

0 1

1 1

2 5

3 14

4 20

5 32

6 44

7 64 56

8 76 68

9 96 88 80

10 108 100 92

11 132 120 112 104

12 156 132 124 116

13 180 156 148 136 128

14 204 180 172 148 140

15 228 204 198 172 160 152

16 252 228 222 196 172 164

17 276 252 246 222 196 184 176

18 300 276 270 246 220 196 188

19 324 300 294 270 246 220 208 200

20 348 324 318 294 270 244 220 212

(a) (b)

adjacent to Gp and have the same target and control as Gp with the same labels
on their controls. Then, the gates in this list are removed from the circuit and an
optimized equivalent sequence is inserted in the position of the left-most removed
gate in the circuit. For example a sequence of V NW+ gates will be replaced by
NW . The optimized equivalent sequence may be empty which indicates that the
corresponding set of gates realizes the identity function.

The MCT to NCVW mapping procedure is similar to Procedure 4 in [8]. It
first optimizes the MCT cascade using the Gate Reduction Procedure described
above. Then, MCT gates are expanded to their equivalent NCVW cascades pair-
wise to find optimizations across gate boundaries. To achieve this, an MCT gate
is made adjacent to all other MCT gates in its movement domain and the pair
that introduces the most reduction when expanding to its NCVW realization
is selected. In pairwise expansion, alternative NCVW realizations such as re-
verse realizations, V −V +, and W −W+ substitutions are examined to find the
best reduction. At the last step of the mapping procedure, the resulting NCVW
circuit is optimized using the Gate Reduction Procedure.

Figure 4 shows the results of applying the above procedures for the NCV and
NCVW libraries for the REVLIB benchmark circuit decod24-v1 24. The MCT
circuit from REVLIB is shown in Figure 4(a). The NCV circuit is shown in
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a �������	

b • �������	 • �������	

c • • �������	

d • • �������	 • �������	 •

(a)

a V + V V + V

b • �������	 • • �������	 • �������	 �������	 • �������	 • �������	

c • • • • • �������	

d • • • • • V V + V • �������	 •
α V + V V + • �������	 • V V + V • �������	 •

(b)

a W W+ W W+ W W+ W

b • • • �������	 • �������	 • �������	 • �������	

c • �������	 • �������	 • �������	 • �������	 • • • �������	

d • • • • V V + V • �������	 •

(c)

Fig. 4. Example decod24-v1 24 circuits: (a) MCT from REVLIB [9], (b) NCV, (c)
NCVW

Figure 4(b) and the NCVW circuit is shown in Figure 4(c). The NCV circuit
has a cost of 23 while the NCVW circuit has a cost of 20. The NCV circuit uses
an added ancillary line labeled α. The NCVW does not need an ancillary line.
This is because the widest gate in the MCT circuit has 3 controls and as shown
in Table 1 such a gate has a 13 gate NCVW realization with no ancillary line.
For a MCT circuit with more than 4 lines with a gate using all lines, an added
ancillary line is required in an NCVW circuit.

The leftmost 14 gates in Figure 4(b) are an NCV realization of the T ({d, c, b}; a)
gate in 4(a). They are followed by the T (d; b) gate and then by a five gate re-
alization of the T (b, c; d) in 4(a). Lastly, the final three gates in 4(a) are copied
over to 4(b).

Figure 4(c) is constructed in a similar way. The first 12 gates are from the
13 gate NCVW realization of T (a, b, c; d). The 13th gate does not appear as it
is T (d; b) and cancels with the existing occurrence of that gate in Figure 4(a).
The final 8 gates in Figure 4(c) are the same as in Figure 4(b).

5 Experimental Results

We have implemented the methods described above using Python 2.6.5. The
circuits considered are from the REVLIB web site [9]. Our experiments were run
on a system with a 3.2 GHz i5-650 CPU and 3.0 GB RAM.
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Table 2. NCVW realizations of selected REVLIB benchmarks

REVLIB Circuit REVLIB Initial MCT Gate Quantum Gate Quantum Gate % Cost CPU
Cost Cost Reduction Substitution Reduction Reduction (sec.)

sym9 148 4368 3612 665 665 659 84.91 25.906
sym6 145 777 543 203 201 199 74.39 4.719
plus63mod8192 164* 45025 22208 19318 18863 18856 58.12 109.157
plus63mod4096 163* 32539 16808 14322 13820 13813 57.55 81.984
plus127mod8192 162* 73357 41002 35550 34193 34178 53.41 218.672
rd32-v0 66 12 12 12 8 6 50.00 0.047
rd32-v1 68 13 13 13 9 7 46.15 0.078
4gt4-v0 73* 89 80 48 48 48 46.07 0.485
rd53 133 128 104 86 78 72 43.75 0.937
cycle10 2 110 1202 694 694 682 682 43.26 3.250
hwb8 114* 14699 9131 8888 8392 8378 43.00 142.516
hwb8 115* 14691 9131 8888 8392 8378 42.97 142.906
hwb8 113* 16530 10736 10282 9804 9787 40.79 78.500
hwb8 118* 16522 10736 10282 9804 9787 40.76 78.469
hwb9 123* 22510 13494 13492 13456 13434 40.32 185.672
rd53 134 120 104 86 78 72 40.00 0.922
ham15 107 1831 1509 1184 1115 1107 39.54 14.188
hwb9 119* 44714 29842 29010 27389 27340 38.86 272.609
hwb9 121* 44665 29805 28982 27359 27311 38.85 258.141
hwb9 120* 44702 29842 29010 27389 27340 38.84 260.406
hwb9 122* 44653 29805 28982 27359 27311 38.84 257.672
4gt12-v0 86* 58 49 38 36 36 37.93 0.328
4gt12-v0 87* 54 45 34 34 34 37.04 0.187
4gt4-v0 72* 54 45 34 34 34 37.04 0.281
hwb7 59* 5236 3772 3613 3363 3352 35.98 58.438
hwb8 116* 7015 4547 4547 4505 4496 35.91 108.171
hwb8 117* 7013 4547 4547 4505 4496 35.89 108.219
4mod5-v1 22 9 9 9 7 6 33.33 0.047
4mod5-v1 23 24 24 18 16 16 33.33 0.172
peres 9 6 6 6 4 4 33.33 0.015
hwb7 60* 4170 2966 2844 2838 2829 32.16 30.234
4mod5-v0 18 25 25 19 17 17 32.00 0.141
4mod5-v0 19 13 13 10 9 9 30.77 0.047
mod5mils 65 13 13 10 9 9 30.77 0.093
mod5mils 71 13 13 10 9 9 30.77 0.094
toffoli double 4 10 10 7 7 7 30.00 0.078
hwb7 61* 3876 2974 2906 2743 2731 29.54 41.891
hwb6 57* 1171 913 845 836 833 28.86 7.671
hwb7 62* 2611 1901 1901 1884 1878 28.07 18.719
rd53 138 44 44 44 35 32 27.27 0.594
4gt12-v0 88* 41 32 32 30 30 26.83 0.172
hwb6 56* 1530 1227 1204 1126 1122 26.67 17.656
rd32-v0 67 8 12 12 8 6 25.00 0.047
rd53 135 77 71 68 59 58 24.68 1.313
hwb4 49* 65 65 57 51 49 24.62 0.438
rd53 131 119 101 95 91 90 24.37 1.125
4gt4-v0 80* 37 28 28 28 28 24.32 0.172
rd73 140 76 76 76 61 58 23.68 1.016
sys6-v0 111 72 72 72 59 55 23.61 1.141
rd53 132 117 101 95 91 90 23.08 1.125
alu-v2 31 101 101 84 78 78 22.77 0.578
rd53 136 75 71 68 59 58 22.67 1.297
4gt4-v0 79* 49 40 40 38 38 22.45 0.375
4mod5-v0 20 9 9 9 7 7 22.22 0.047
decod24-v0 38 18 18 18 14 14 22.22 0.047
decod24-v2 43 18 18 18 14 14 22.22 0.079
ham3 102 9 9 9 7 7 22.22 0.031
hwb4 50* 63 65 57 51 49 22.22 0.437
rd32-v1 69 9 13 13 9 7 22.22 0.062
3 17 13 14 14 14 11 11 21.43 0.125
4gt4-v0 78* 53 44 44 44 42 20.75 0.265
ham15 108 453 387 378 362 360 20.53 5.485
4gt12-v1 89* 45 36 36 36 36 20.00 0.156
fredkin 6 15 15 15 13 12 20.00 0.031
ham3 103 10 10 10 8 8 20.00 0.047
rd84 142 112 112 112 94 90 19.64 2.640
sym9 146 108 108 108 88 87 19.44 1.422
mod5d2 70 16 16 13 13 13 18.75 0.109
4mod7-v0 94 38 38 38 32 31 18.42 0.125
4mod7-v0 95 38 38 38 32 31 18.42 0.125
mod5adder 127 125 107 107 104 102 18.40 1.266
mod5d1 63 11 11 11 10 9 18.18 0.078
4mod7-v1 96 39 39 39 33 32 17.95 0.188
rd53 130 232 196 196 192 191 17.67 2.579
4gt4-v1 74* 57 48 48 47 47 17.54 0.218
4 49 16* 60 60 57 53 50 16.67 0.406
4gt13 91 30 30 27 25 25 16.67 0.157
one-two-three-v0 98 40 40 40 34 34 15.00 0.187

458551 284605 264825 253107 252662 44.90 2555.423
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Table 3. Benchmarks for which the NCVW cost is greater than the NCV cost

REVLIB Circuit NCV Cost [8] NCVW Cost % Cost Increase
4gt4-v1 74* 46 47 -2.17
ham15 108 356 360 -1.12
one-two-three-v0 97 62 63 -1.61
one-two-three-v1 99 31 32 -3.23

Table 2 presents the results for a number of benchmark circuits from REVLIB.
Our program applies the methods above to the circuit in both the forward and
the reverse direction. A * after the circuit name indicates the addition of a single
ancillary line because the circuit contains at least one MCT gate that uses all
lines in the circuit.

The results are reported for each circuit for the better of the two directions.
We report (1) the quantum cost from REVLIB, (2) the initial NCVW cost which
is found by replacing MCT gates by the NCVW catalog circuits corresponding
to Table 1, (3) the NCVW costs after MCT gate reduction is applied, (4) the
NCVW cost after quantum gate expansion, (5) the NCVW cost after quantum
gate reduction which is the NCVW cost of the final circuit, (6) the percentage
cost reduction comparing the final NCVW cost to the REVLIB cost and (7)
the CPU time for all steps. Overall, our methods yield a 44.9% improvement
compared to the costs reported in REVLIB. The majority of the improvement
(37.9%) comes from the catalog circuits. The rest comes from our quantum
expansion and quantum reduction techniques.

Table 3 shows the four cases where the NCVW circuit is more costly than the
NCV circuit. This results from the fact that our methods use many heuristics.

Table 4 shows the benchmarks for which the NCVW circuit is an improvement
over the NCV circuit. The overall improvement for these examples is 4.71%.

As noted, our method adds an extra ancillary line if the MCT circuit includes
a gate that uses all circuit lines. This is not the case for the results reported in
REVLIB. However, the cost model employed in REVLIB is based on the work
in Barenco et al. [1] which assumes a 2c−1-th root-of-NOT gate is available to
realize a c-control MCT gate in a circuit with c + 1 lines. We anticipate that
realizing gates progressively higher roots of NOT may be prohibitive in many
technologies and adding one extra line will be preferable. Also we expect that
synthesis methods can be made to avoid the situation in most cases.

6 Conclusions and Future Work

The benchmark results presented show that the methods described in this paper
can lead to notably smaller quantum circuits than reported in REVLIB and
other work. The results also show that using W and W+ gates leads to smaller
circuits than those using NCV gates. We thus conclude that the approach taken
is quite promising and should be further refined.
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Table 4. Benchmarks where NCVW circuit cost is less than NCV circuit cost

REVLIB Circuit NCV Cost [8] NCVW Cost % Cost Reduction
4 49 16* 55 50 9.09
4gt10-v1 81 35 32 8.57
4gt12-v1 89* 37 36 2.7
4gt13 91 28 25 10.7
4gt4-v0 73* 49 48 2.04
4gt4-v0 78* 45 42 6.67
4gt4-v0 79* 41 38 7.32
4gt5 75 22 21 4.55
4gt5 76 27 26 3.7
4gt5 77 28 26 7.14
4mod7-v0 94 32 31 3.13
4mod7-v0 95 32 31 3.13
4mod7-v1 96 33 32 3.03
alu-v2 30* 103 98 4.85
alu-v2 31 83 78 6.02
alu-v2 32 38 35 7.89
alu-v4 36 28 27 3.57
cycle10 2 110 720 682 5.28
decod24-enable 126 77 75 2.6
decod24-v1 41* 23 20 13
decod24-v3 45* 35 31 11.4
ham15 107 1155 1107 4.16
ham15 109 198 190 4.04
ham7 104 84 76 9.52
ham7 105 64 59 7.81
hwb4 49* 54 49 9.26
hwb4 50* 54 49 9.26
hwb4 51* 73 71 2.74
hwb5 53* 282 270 4.26
hwb5 54* 234 220 5.98
hwb5 55 95 93 2.11
hwb6 56* 1150 1122 2.43
hwb6 57* 872 833 4.47
hwb6 58 132 127 3.79
hwb7 59* 3500 3352 4.23
hwb7 60* 2989 2829 5.35
hwb7 61* 2863 2731 4.61
hwb7 62* 1973 1878 4.82
hwb8 113* 10328 9787 5.24
hwb8 114* 8815 8378 4.96
hwb8 115* 8815 8378 4.96
hwb8 116* 4825 4496 6.82
hwb8 117* 4825 4496 6.82
hwb8 118* 10328 9787 5.24
hwb9 119* 28660 27340 4.61
hwb9 120* 28660 27340 4.61
hwb9 121* 28629 27311 4.6
hwb9 122* 28629 27311 4.6
hwb9 123* 14487 13434 7.27
mod5adder 127 104 102 1.92
mod5adder 128 84 80 4.76
mod5adder 129 76 74 2.63
one-two-three-v0 98 35 34 2.86
plus127mod8192 162* 35348 34178 3.31
plus63mod4096 163* 14652 13813 5.73
plus63mod8192 164* 19566 18856 3.63
rd53 130 195 191 2.05
rd53 135 59 58 1.69
rd53 136 59 58 1.69
rd53 137 59 58 1.69
sym6 145 212 199 6.13
sym9 148 672 659 1.93
Total 265465 252958 4.71
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Our future work in this area will include extending the work to handle negative
controls for MCT gates (controls that are activated by the value 0 and not
1). Other quantum gate libraries will be considered. We will also examine how
various aspects of our methods and certain heuristics in particular might be
changed to optimize the circuits even further. Lastly, except for the case of
two controls, our procedure does not consider the permutation of MCT gate
controls with a view to identifying more quantum gate reductions across MCT
gate boundaries. We are considering how to address this. Exhaustive search is
prohibitive and we have yet to determine how to identify which subset of the
possible orderings will be most effective.

As noted above, two points on a line in a circuit which are assigned the same
label by the line labeling procedure have the same functionality. The converse is
not true, i.e. two points with the same functionality may be assigned different
labels. As a result, our methods can miss certain reductions. We are investigating
replacing the line labels with decision diagrams that will guarantee finding all
functional equivalences. It remain to be seen whether the advantage gained will
justify the added complexity and computational time.
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Abstract. While several physical realization schemes have been proposed for
future quantum information processing, most known facts suggest that quantum
information processing should have intrinsic limitations; physically realizable op-
erations would be only interaction between neighbor qubits. To use only such
physically realizable operations, we need to convert a general quantum circuit
into one for an so-called Linear Nearest Neighbor (LNN) architecture where any
gates should be operated between only adjacent qubits. Thus, there has been much
attention to develop efficient methods to design quantum circuits for an LNN ar-
chitecture. Most of the existing researches do not consider changing the gate order
of the original circuit, and thus the result may not be optimal. In this paper, we
propose a method to convert a quantum circuit into one for an LNN architecture
with the smallest number of SWAP gates. Our method improves the previous re-
sult for Approximate Quantum Fourier Transform (AQFT) by the state-of-the-art
design method.

Keywords: Quantum Circuit, Linear Nearest Neighbor, Adjacent Transposition
Graph.

1 Introduction

Since the invention of the integrated circuit in 1958, the number of transistors on an
integrated circuit has doubled approximately every two years. Moreover, the size of
transistors has been decreased by the advance of the semiconductor technology. How-
ever the size of transistors cannot be smaller than the atomic scale: we are approaching
to the fundamental limits of the advance of the semiconductor technology.

Consequently, much attention has been paid to another computing paradigm such
as quantum computing [1]. A quantum computer is a device to make computations
by exploiting quantum mechanical phenomena, which enables to solve some problems
more efficiently than classical computers such as factoring of numbers [2].

Several impressive researches have been studied for physically implementing quan-
tum computers. With the advance of the quantum computing technology, it is getting
clearer that there should be some intrinsic limitations on implementing quantum com-
puters [3]. One of such limitations is that we cannot interact apart qubits by one basic
operation [4]. By this intrinsic limitation, it is considered very difficult to make an in-
teraction between two far apart qubits for most quantum technologies. For this reason,
quantum circuits may be realized on an so-called Linear Nearest Neighbor (LNN) ar-
chitecture which permits interactions only between adjacent (nearest neighbor) qubits.

A. De Vos and R. Wille (Eds.): RC 2011, LNCS 7165, pp. 89–101, 2012.
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Therefore, for the coming “quantum computing era,” it should be very important
to establish a design technology for quantum circuits on an LNN architecture. Indeed,
there have been many researches for this issue. Some researches designed specific quan-
tum circuits on an LNN architecture manually, e. g., circuits for approximate quantum
Fourier transform [5], Shor’s factorization algorithm [4,6], quantum addition [7], and
quantum error correction [8]. Others have developed methods to design general quan-
tum circuits on an LNN architecture. For example, Hirata et al. proposed a heuristic to
convert any quantum circuits to one for an LNN architecture [9]. Their method inserts
SWAP gates in an initial circuit so that all gates are performed on adjacent qubits. Re-
cently, Saeedi et al. have developed a very efficient design framework that utilizes their
ideas of template matching and reordering strategies. The LNN AQFT circuit designed
manually [5] has been improved by [9], and then successively improved further by [10].
Most of the above-mentioned techniques adopt the insertion of SWAP gates and the re-
order of the initial qubit lines. In their methods, it has not been considered to change
the gate order of the given initial circuit.

Our Contribution. In this paper, we explicitly consider a possibility to change the
initial gate order in a case where the gate reordering is possible. More precisely, we
consider a problem to find the smallest number of added SWAP gates for the LNN
conversion by changing the order of gates if they can commute. Our main contribution
is to formulate such a problem as a search problem on the adjacent transposition graph.
Accordingly we can find the best solution with respect to the number of SWAP gates
to be added. Our method can find an AQFT circuit with the fewest SWAP gates, which
improved the result by [10].

The remainder of this paper is organized as follows. In Section 2, quantum circuits
and LNN architectures are explained. Section 3 describes the adjacent transposition
graph and our proposed method. We then provide experimental results in Section 4.
Finally, we conclude this paper with a summary and future works in Section 5.

2 Preliminaries

In this section, we provide some basics necessary for our paper.

2.1 Quantum Circuit

A quantum circuit is a model of quantum computing. A quantum circuit indicates the
order of basic unitary operators (called quantum gates) corresponding to a given quan-
tum algorithm. Quantum bits and quantum gates are drawn on quantum circuits. An
example of a quantum circuit is shown in Fig. 1, where each horizontal line indicates a
quantum bit (denoted by ”Qubit 1” to ”Qubit 5”), and each dashed circle indicate a spe-
cific unitary operation called a quantum gate. On quantum circuits, time flows from left
to right which means that quantum gates are applied from the leftmost gate in sequence.
We explain quantum bits and quantum gates in detail below.

Quantum Bit. While in classical computers, a bit has to be either 1 or 0, in quan-
tum computer, quantum bits (qubits in short) can be 1, 0 or the superposition state as
|ψ〉 = α|0〉 + β|1〉 which is the any linear combination of 1 and 0.
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Qubit 1

Qubit 2

Qubit 3 Quantum bitsU
Qubit 4

Qubit 5

Quantum gates

Fig. 1. A quantum circuit

Qubit 1

Qubit 2

Qubit 3

Qubit 4

Qubit 1

Qubit 2

Qubit 3

Qubit 4Qubit 4

Qubit 5

Qubit 4

Qubit 5

Qunatum circuit Quantum circuit
for an LNN architecture

convert

Fig. 2. Conversion of a quantum circuit to an
LNN circuit

Quantum Gate. A quantum circuit consists of a cascade of quantum gates. A quantum
gate indicates what unitary operator is applied to which qubit. For example, in Fig. 1,
the leftmost gate indicates that a SWAP gate is applied to Qubits 4 and 5. The following
three gates are mainly used in this paper.

– A SWAP gate is the leftmost gate in Fig. 1. A SWAP gate has two target bits xt1

and xt2, and interchanges the values of the target bits.
– A one-qubit unitary gate is the middle gate in Fig. 1. A one-qubit unitary gate

applies any unitary operations to the target bit.
– A CNOT gate is the rightmost gate in Fig. 1. A CNOT gate has a control bit and a

target bit. In Fig. 1, a control bit of the CNOT gate is Qubit 1 and a target bit of the
CNOT gate is Qubit 5. The following matrices: σx =

(
0 1
1 0

)
is applied to its target bit

iff the state of its control bit is |1〉.
CNOT gates and one-qubit gates are universal so any quantum gates can be decomposed
into a combination of CNOT gates and one-qubit gates.[1]

2.2 LNN Architecture

With the advance of the quantum computing technology, it is getting clearer that there
should be some intrinsic limitations on implementing quantum computers. One of such
limitations is that we cannot interact apart qubits by one basic operation. By this in-
trinsic limitation, it is considered very difficult to make an interaction between two far
apart qubits for most quantum technologies. For this reason, quantum circuits may be
realized on an so-called Linear Nearest Neighbor (LNN) architecture which permits
interactions only between adjacent (nearest neighbor) qubits.

If a gate interacts two far apart qubits, we can make the gate interact two adjacent
qubits by inserting (possibly many) SWAP gates before the gate. Thus by inserting
SWAP gates, it is possible to convert a circuit to one with the same functionality for
an LNN architecture. Fig. 2 shows an example of converting a quantum circuit to one
for an LNN architecture. On the left circuit of Fig. 2, two target bits of the rightmost
gate are apart. By inserting SWAP gates, the quantum circuit is converted to one for
an LNN architecture. The right circuit in Fig. 2 has the same functionality, and it uses
interactions between only adjacent qubits. Hereafter, let an LNN circuit denotes a cir-
cuit for an LNN architecture, and a non-LNN circuit denotes a circuit for a non-LNN
architecture.
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Fig. 3. Quantum gates that are not commutative by Condition 1

3 Changing the Gate Order for Optimal LNN Conversion

3.1 Problem Definition

The problem to convert a circuit into an LNN circuit is formulated as follow.

LNNizing problem. Given a quantum circuit that consists of one-qubit gates and two-
qubit gates and the order of initial qubits, the problem is to convert the given quantum
circuit to an LNN circuit with the smallest number of SWAP gates. The order of qubits
after conversion should be the same as the initial qubits since the circuit may be used
as a sub-circuit for a large quantum circuit. Formally, the input and the output of the
problem are as follows.

Input : a given quantum circuit, and initial qubit order.
Output : an LNN circuit with the same qubit order as the initial one.

3.2 Dependence between Quantum Gates

In a quantum circuit, there is usually dependence between a pair of two gates such that
one gate should be applied before the other gate, i. e., some gates cannot commute.
When we convert a quantum circuit to an LNN circuit, the dependence between quan-
tum gates has to be kept, otherwise the logical functionality of the quantum circuit is
changed after converting it to an LNN circuit.

Quantum gates that satisfy one of the following conditions are not commutative. In
the following two conditions, let two gates be A and B. Let also the control bits and the
target bits of A be Acb and Atb, respectively. Also Bcb and Btb have the same meaning
for the gate B.

Condition 1: The first condition is that Acb = Btb. This means that the control bit of
one gate is the same as the target bit of the other gate. Fig. 3 shows an example of
two quantum gates that are not commutative by Condition 1.

Condition 2: The second condition is Atb = Btb and two unitary matrices that are
applied to Atb and Btb are not commutative. The target bits of two quantum gates
are the same and the unitary matrices that are applied to the target bits are not
commutative, then the two gates are not commutative. Fig. 4 shows an example of
two quantum gates that are not commutative by Condition 2. The gate denoted by
H (in Fig. 4) is called Hadmard gate that apply the following matrix: H = 1√

2

(
1 1
1 −1

)

to its target bit. The matrices σx and H are not commutative so that interchanging
these two gates will change the logical functionality of the quantum circuit.
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Ｈ Ｈ

Fig. 4. Quantum gates that are not commutative by Condition 2

Ｈ Ｈ

A B DC E F

Ｈ Ｈ

Fig. 5. Groups of quantum gates that are com-
mutative

A BD CE F

Ｈ ＨＨ Ｈ

Fig. 6. The interchanged groups of quantum
gates

A pair of quantum gates that satisfies one of the above two conditions is not commuta-
tive. If a quantum circuit has such a pair, we should not change the order of the pair of
gates when we convert the circuit to an LNN circuit.

Two quantum gates cannot be interchanged (with each other) if one of the above
two conditions do hold. Even in such a case, we may swap two groups of quantum
gates. We do not consider such a special case in this paper, but only mention such an
example below. For example, a quantum gate E and a quantum gate D or C in Fig. 5
are not commutative by Condition 2. Two quantum gates C and B in Fig. 5 are not
commutative by Condition 2. Accordingly, we conclude that the two gates, E and B,
cannot be swapped, and thus when we convert the circuit of Fig. 5 to an LNN circuit,
we only consider the case where the gate B should be applied before gate E. However,
we can swap two groups of gates in this example. Namely, the circuit in Fig. 5 can be
transformed to one in Fig. 6, and thus we can also consider the case where the gate E is
applied first when we convert the circuit to an LNN circuit.

In Fig. 6, despite the fact that quantum gates A, B, C and D, E, F are not commutative
by Condition 2, the groups of quantum gates are commutative because interchanging
two groups of the quantum gates will not change the logical functionality of the quan-
tum circuit.

The above example tells us that we may change the order of application of two quan-
tum gates even if either one of the two conditions holds. Considering such a possibility
may reduce the cost of conversion. However it is difficult and almost impractical to
consider a possibility of swapping two groups of gates; we consider only the possibility
of swapping individual gates in this paper.

3.3 Gate Dependence Graph

From a non-LNN circuit, we can construct a gate dependence graph by considering
Condition 1 and 2. A gate dependence graph is a directed graph that shows the depen-
dence of quantum gates in a given quantum circuit. Each node, ni, in a gate dependence
graph corresponds to one specific gate, gi, in the given circuit. An edge between two
nodes ni and n j means that gate gi should be applied before gate g j, i. e., we cannot
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A

B C

root

D

E

Fig. 7. A gate dependence graph

Ｈ

Ｈ

A B C D E

Fig. 8. A quantum circuit before LNN conversion

Ｈ

Ｈ

A B CD E

Fig. 9. A quantum circuit after LNN conversion

change the order of application of gates gi and g j. This can be obviously determined by
Condition 1 and 2. By technical convenience, we have one special root node in a gate
dependence graph. Each node connected to the root node indicates that the correspond-
ing gate does not depend on any other gates, i. e., the gate can be applied first in the
circuit. Fig. 7 shows the gate dependence graph for a quantum circuit in Fig. 8. Fig. 9
shows a quantum circuit after converting the circuit in Fig. 8 to an LNN circuit. By
this conversion, the gate order is changed but the dependences of quantum gates remain
unchanged.

In the following, we will use the following notation: for a set of gates Γ, and a gate
dependence graph G (where we assume each gate gi in Γ has the corresponding node ni

in G), κΓ, G denotes a set of gates g having the following two properties: (1) g is included
in Γ, and (2) there is no g′ in Γ such that the corresponding node of g′ is a predecessor
of the corresponding node of g in G.

3.4 Adjacent Transposition Graph

In this section, adjacent transposition graphs are explained. In an adjacent transposition
graph, a node corresponds to a permutation, and an edge corresponds to a SWAP gate.
The numbers in each node indicates the order of quantum bits. Hereafter, let n denote
the number of qubits of a given quantum circuit. Each node has (n− 1) edges. The total
numbers of the nodes and the edges in an adjacent transposition graph for an n-qubit
circuit are n! and (n−1)n!

2 , respectively. Fig. 10 is an example of an adjacent transposition
graph with n = 4.

By finding the shortest path (in an adjacent transposition graph) corresponding to a
sequence of qubit orders that realizes all quantum gates on an LNN architecture, optimal
conversion that considers the order of the quantum gates is possible. In the following
example, a quantum circuit in Fig. 11 is converted to an LNN circuit by utilizing an
adjacent transposition graph. Fig. 12 is a gate dependence graph of the quantum circuit
in Fig. 11, and Fig. 13 shows how to convert a quantum circuit to an LNN circuit by
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Fig. 10. A adjacent transposition graph with n = 4
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Fig. 11. A non-LNN circuit

A

B C

root

D

Fig. 12. The gate dependence graph for the quan-
tum circuit in Fig. 11

utilizing an adjacent transposition graph. Numbers on the quantum circuit of Fig. 13
indicates the order of the qubits at the indicated point of time.

We will use the following notations:

– A gate is said to be LNN-realizable on the qubit order N if it can be applied by
interacting only adjacent qubits when the qubit order is N. In the following, let λN

be a set of LNN-realizable gates on the qubit order N.

– A gate is said to be applicable with respect to a set of gates Γ, and gate depen-
dence graph G (where we assume each gate gi in Γ has the corresponding node ni

in G), if it is included in κΓ, G defined in Sec. 3. 3.

– A gate is said to be realizable at a qubit order N with a remaining gate set Γ
and a gate dependence graph G, if it is included in λN ∩ κΓ,G. In other words, if
the current situation permits to apply some of the gates in Γ, such gates are called
“realizable”. We will use this terminology in the rest of this paper.
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Fig. 13. Conversion of a quantum circuit to an LNN circuit by utilizing the adjacent transposition
graph

3.5 Overview and an Example of the Proposed Method

Our main idea to convert a non-LNN circuit into an LNN-circuit is to formulate the
problem as finding an optimal path (with respect to some desired property explained
below) on an adjacent transposition graph. The overview is as follows.

We first let Γ be the set of all the gates in the given non-LNN circuit. Then, from Γ,
we remove a gate one by one if the gate is realizable at the current situation. Realizable
gates can be applied in the converted LNN circuit, so we remove all such gates from Γ,
and place them at the end of the converted LNN circuit. In this way, the converted LNN
circuit will grow.

If there is no realizable gates are remained in Γ, we insert (possibly many) SWAP
gates at the end of the converted LNN circuit so that the changed qubit order make some
gates in Γ realizable. We continue this until Γ becomes empty.

Note that putting a SWAP gate at the end of the LNN circuit corresponds to a move
from one node to adjacent node in its adjacent transposition graph. Thus, our problem
is essentially to find “the best” path in the adjacent transposition graph.

Now let us provide with an example to help understanding the above. The quan-
tum circuit in Fig. 11 is composed of four gates A, B, C and D. At first, we set Γ =
{A, B, C, D}.

The initial qubit order is N = 1234, and λ1234 = {A, B}. In Fig. 12, κΓ, G = {A}
at first. Then λ1234 ∩ κΓ, G = {A}, and thus A can be applied in an LNN circuit. After
placing A at the LNN circuit, we remove A from Γ. This can be formally written as
Γ ← Γ \ λ1234 ∩ κΓ, G. By removing A from Γ, Γ will be changed and so does κΓ, G.
The new κΓ, G will be κΓ, G = {B, C}. Therefore new realizable quantum gates will be
λ1234∩κΓ, G = {B}, and B can be applied in the LNN circuit. In Fig. 13, when N = 1234,
quantum gates, A and B, are realized on an LNN architecture.

After realizing quantum gates, the other quantum gates sometimes become realizable
like quantum gates, A and B. For this reason, the operationΓ ← Γ\λN∩κΓ, G is repeated
until λN ∩ κΓ, G becomes φ.

By inserting a SWAP gate, N = 1234 can be changed to N = 1243. Then λ1243 ={D}
and κΓ, G = {C, D}. Therefore λ1243 ∩ κΓ, G ={D} so we remove D from Γ. Again, this
can be written as Γ ← Γ \ λ1243 ∩ κΓ, G. In Fig. 13, when N = 1243, the quantum gate
D is realized on an LNN architecture. Then the new κΓ, G is κΓ, G = {C} and λ1243 ∩ κΓ, G

is φ, and so we go to the next order of the qubits.
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Algorithm 1. BFS by using ATG (Γ, N, G).
1: Γ ← Γ \ λN ∩ κΓ, G
2: if Γ is φ then
3: terminate searching
4: end if
5: M ← φ
6: M[N] ← {Γ}
7: Q.push ( (N, Γ) )
8: while Q is not empty do
9: (N, Γ)← Q.pop()

10: for all N′ ∈ the adjacent nodes of N do
11: while λN′ ∩ κΓ, G is not φ do
12: Γ ← Γ \ λN′ ∩ κΓ, G
13: end while
14: if Γ is φ then
15: terminate searching
16: else
17: if M[N’] has not been registered then
18: M[N′ ]← {Γ}
19: Q.push ( (N′ , Γ) )
20: else
21: if ∃x ∈ M[N′] such that x ⊆ Γ then
22: continue
23: else
24: M[N′ ]← M[N′] ∪ {Γ}
25: Q.push ( (N′ , Γ) )
26: end if
27: end if
28: end if
29: end for
30: end while

By utilizing the adjacent transposition graph in Fig. 10, we can essentially do the
above procedure to convert the quantum circuit in Fig. 11 to the LNN circuit in Fig. 13.
In the next section, we will describe a formal algorithm to do so as the breadth first
search on an adjacent transposition graph.

3.6 The Breadth First Search by Utilizing the Adjacent Transposition Graph

Now we are ready to show our breadth first search algorithm formally as Algorithm 1.
In the algorithm, M is a map from a qubit order to a set of sets of quantum gates that
have not been placed on a converted LNN circuit yet. Q is a queue of pairs of the order
of qubits, and quantum gates that have not been made realizable yet. For a qubit order
(which is a permutation) N, there is the corresponding node in the adjacent transposition
graph, and they are conceptually the same. Therefore, for an easy writing, we will use
the notation N to mean a qubit order, or a node in the adjacent transposition graph,
interchangeably depending on the context.

In the breadth first search, we may get to the same permutation node many times
during the breadth first search. If the search get to the same (permutation) node again
and there is no essential improvement in the set of gates that have not been made realiz-
able, it is useless to continue the further search from the node. The reason is that we can
always find the better solution from the same (permutation) node that has been visited
before.



98 A. Matsuo and S. Yamashita

1234

{ A, B, C, D}

{ C, D }

Start

2134 1324 1243

2314 2143 1342 142331241234 1234 2143 1234

{ C, D }

{ C, D } { D } { D }

{ C }

{ C } { C } { C }

{ C }

{ ∅ }

END

prune

Fig. 14. The breadth first search by utilizing the adjacent transposition graph

We now explain the detail of the Algorithm 1. From lines 1 to 7, variables are ini-
tialized. If a given quantum circuit can be converted to an LNN circuit with no SWAP
gates, we terminate the search at line 2. The breadth first search starts from line 8. At
line 9, we pop a pair of a permutation N and gate set Γ from the queue, and we keep
searching from the permutation node N. To do so, from line 10 to line 13, we move to
the adjacent node, N′, of N one by one, and we remove some gates that become realiz-
able at the move (if any) from Γ. This operation can be formally written at lines 11 to
13.

If Γ becomes empty, we can conclude that we have found the best solution, and thus
we stop the further search at line 14.

The lines after line 17 are for pruning the redundant search (from the same permu-
tation node with no improvement from the previous visit) as mentioned above. In the
algorithm, M is used as a cache to store the previous results not to perform the redundant
search.

The detail is explained in the following. From lines 17 to 19, the case when M[N′]
has not been registered indicates that the node N′ in the adjacent transposition graph
has never bee visited while searching. In such a case, Γ is registered into M[N′], and
the pair of N and Γ is pushed into the queue.

The lines after line 21 deal with the case when M[N′] has already been registered.
This indicates that the node N′ in the adjacent transposition graph has already been
visited while searching. In this case, we need to check whether further search from this
node is useful or not. One searching path is not useful when (previous) another search
path has already visited the same node N′ in the adjacent transposition graph, and the
set of the quantum gates that have not been made realizable yet at that time is the subset
of Γ. This condition is checked at line 21.

In the example as shown in Fig 14, the left most node satisfies the above condition,
and thus the further search from this node is pruned. When N = 1234 is visited at the
first time (the starting node of the graph), the set of the quantum gates that have not been
made realizable yet is {C, D}. When N = 1234 is visited again at the left most node,
the quantum gates that have not been made realizable yet is {C, D}. Accordingly, the
further search is pruned because {C, D} ⊆ {C, D}. This means that there is no possibility
to find the better answer even if the search is continued.
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Table 1. Experimental results

naive method proposed method
Circuit n gc # of SWAP gates Time (sec) # of SWAP gates Time (sec)
3 17 15 3 10 4 0.01 4 0.01
decod24-v0 40 4 9 6 0.01 6 0.01
decod24-v1 42 4 9 6 0.01 6 0.01
decod24-v2 44 4 9 6 0.01 6 0.01
decod24-v3 46 4 9 6 0.01 6 0.01
fredkin 5 3 7 2 0.01 2 0.01
miller 12 3 8 6 0.01 2 0.01
toffoli double 3 4 7 8 0.01 4 0.01
SteaneEncoding 7 14 26 1.43 18 1.85
SteaneErrorDetection 10 12 38 1.42 34 4572.59
add8 173 25 48 46 0.33 – –

A

B C

root

D

E

F G

Fig. 15. The gate dependence
graph of fredkin 5

4 Experimental Results

In this section, we show some experimental results. The proposed method was imple-
mented in C++, and the experiments were done on an Intel Core i7-929 2.66GHz with
24GB memory.

Before showing our results, we would like to note that our method can always find
the best result with respect to the number of SWAP gates. Therefore, we do not need
to show the comparison with respect to the quality of the converted results. The reason
is that our method essentially performs an exhaustive search. Thus, we show (1) how
large problems our method can treat, and (2) how close the results of a naive method
are to the best results (by our method). Also, we would like to show that (3) our method
could indeed find better results compared to the state-of-the-art existing method.

To show the above (1) and (2), we compared the proposed method to the naive ap-
proach, in which the gate order is not considered, i. e., the gate order is not changed from
the original one. The results are shown in Table 1. The first column gives the names of
the circuits in RevLib [11], except for SteaneEncoding and SteaneErrorDetection. The
second and the third columns denote the number of qubits (n), and the gate count (gc)
of the circuits, respectively. The following columns show the number of SWAP gates
and run-time for the conversion by the naive method and the proposed method.

As can be observed from Table 1, in some cases, a naive method cannot find the
best solution. Also, as expected, our method could not deal with a large problem; the
quantum circuit, add8 173, in Table 1 could not be converted to an LNN circuit by the
proposed method because of the memory explosion. Let (the number of qubits-1) be M,
and the depth of the breadth first search to find the best solution be d. Then, the space
complexity of the proposed method is obviously O(Md). Therefore, when the depth of
the breadth first search to find the best solution increases, its space complexity increases
exponentially. By considering this and the experimental results, we can observe that our
method may be able to find the best solution when we need to insert SWAP gates up to
around 35 or so. For this reason, if the converted LNN circuit need many SWAP gates,
it is not practical to use our proposed method; we may need a heuristic search method.

For the quantum circuits, 3 17 15, decode24, fredkin 5 in Table 1, the numbers of
SWAP gates of the naive method and the proposed method are the same. The reason can
be seen in their gate dependence graphs. For example, see the gate dependence graph
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Fig. 16. The LNN AQFT circuit by the method by Saeedi et al. [10]

|x0〉 H • × ×

|x1〉 R2 H • • × • • • × • •

|x2〉 R2 × R3 R4 × R3 H • • × R5 R4 H • × R5 H ×

|x3〉 × × R2 H • × R3 × • × R2 × × × ×

|x4〉 R2 × • × R4 × • × • × × ×

|x5〉 R3 × • × R5 R3 ×× • × • •

|x6〉 R3 × • ×× R4 R3 × R2 H •

|x7〉 R5 × × R2 H

Fig. 17. The LNN AQFT circuit by the proposed method

for fredkin 5 in Fig. 15, it is observed that we can only change the order of B and C,
and/or F and G. Thus, there is no much difference between the naive method and the
proposed method.

To show the above (3), we compared the results of converting the AQFT circuit with
the state-of-the-art existing method by Saeedi et al. [10]. As described in Sec. 1, the
original LNN circuit for AQFT [5] has been improved by the method [9], and then by
Saeedi et al. [10]. Fig. 16 shows the LNN circuit for AQFT by Saeedi et al. [10] which
has been considered to be the best. Fig 17 shows an LNN circuit for AQFT by our
proposed method. As can be seen, the gate order is a bit changed, and the SWAP gates
are reduced; The numbers of SWAP gates used are 20 in the method by Saeedi et al.
and 18 in our proposed method, respectively.

5 Conclusions

In this paper, we have proposed how to convert a non-LNN quantum circuit into an
LNN circuit with the smallest number of SWAP gates by considering the gate order.
When the number of SWAP gates is small, the proposed method is able to find the
optimum conversion easily with considering the gate order. The experiments show that
our method can reduce the number of SWAP gates by two compared to the LNN AQFT
circuit converted by the method by Saeedi et al. .

However, if the number of SWAP gates is large, the space complexity increases expo-
nentially. Thus, to convert a large quantum circuit to an LNN circuit in reasonable time,
we first need to divide the circuit into small partial circuits, and then apply the proposed
method to each partial circuit one by one. Another way to convert a large non-LNN cir-
cuit is a heuristic conversion method; it would be an interesting to develop a heuristic.
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Because our problem formulation can be seen as a search problem on a graph, we may
be able to utilize an idea of the existing traversal algorithms for our purpose.
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Informational Science Advancement.
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Abstract. Several prototypes and proofs of concept of reversible (quan-
tum-inspired) digital circuits have been successfully realized these last
years, proving that digital reversible dual-line pass-transistor technology
may be used for reversible linear computations. In order for this new
technology to be used in commercial applications, several questions have
to be answerd first. In particular, the number of gates possibly cascaded,
the maximum reachable frequency, the maximum acceptable delays and
amplitude drops are the key issues discussed in this paper.

1 Introduction

Because conventional restoring computing is based on logically-irreversible ele-
mentary operations that lead to information destruction and increase of entropy
[1,2], reversible logic has been developed. Different synthesis approaches for re-
versible computation have been developed [3,4,5]. Hardware applying reversible
adiabatic dual-line pass-transistor CMOS circuits have been proved to be en-
ergetically economic, allowing to divide by about a factor twenty, the energy
consumption of a given linear function [6]. In other words, 95 % of the energy
input during computation, is recovered during the uncomputation.

This is made possible, for the biases are only used for substrate and wells
polarization. The necessary energy used for computation is only supplied by the
input signals. Moreover, the complementary signals ensure that all the signals
can be reused in next computation steps, keeping the energy from gate to gate
instead of throwing away a large part of the stored energy, as it is the case in
conventional restoring electronics.

The latter circuits being directly connected to biases, they have access to a
large reservoir of energy, such that, at each clock cycle, fast switches can occur,
boosted by the important quantity of charges injected into the gates. In reversible
circuits, things are different as the goal is to have smooth enough transitions
for the charges to be reinjected in the circuit, such that the computations are
thermodynamically-reversible [1,7].

A. De Vos and R. Wille (Eds.): RC 2011, LNCS 7165, pp. 102–111, 2012.
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Channel 1: 412 mV Channel 1: 412 mV
Channel 2: 412 mV Channel 2: 412 mV
time: 1 ms/div time: 1 ms/div

Fig. 1. Experimental measurements of one dual input and one dual output of the
Cuccaro adder in reverse calculation (subtraction)

Dual-line adiabatic triangular pulses have already been successfully used in
full-adders [8] and in a 4-bits Cuccaro adder [9,10] composed of gates proposed
by [11] and [12]. To have optimal switching, a specific adiabatic pulse shape
is mandatory to accurately perform calculations in an adiabatic dynamics [10].
These pulses may either be triangles as illustated in Fig.1, trapezes or sinus.

In this work, only triangular and sinus pulses are used in order to evaluate the
performance limits of reversible circuits, but some other signals using smooth
enough transitions may be used for applications. As for example, the trapezoidal-
shape signal holding the extreme values of a triangular pulse for a short time,
has been used in one application aiming at interfacing a 4-bits reversible Cuccaro
adder with a Xilinx FPGA [13]. Another interesting shape would be to use sinus
for transitions instead of linear slopes. Of course, to generate such pulse would
be a little bit more complicated but may allow to push away the limits obtained
in this paper as later discussed.

Sinusoidal waveforms have been proposed for the clocking signals in energy-
recovering logic [14,15,16,17]. In the present paper, we discuss reversible circuits
which have no clocking. The sinusoidal pulses used here, are digital input signals
instead.

In the first part, we will discuss the validity of the used signals, according
to their amplitude and relative delays. In the second part, the limit number of
gates possibly cascaded will be evaluated, both when triangular adiabatic or
sinus adiabatic pulses are used.

We stress that both, the numerical simulation and the experimental measure-
ments concern standard CMOS circuits, i.e. circuits in a technology developed
for standard restoring logic. This technology is not optimized for pass-transistor
logic, let alone for reversible logic. As an example, large values of threshold
voltages (VT ) are beneficial for restoring logic, but cause problems in reversible
computing: a large VT reduces the pulse widths of signals and as a consequence,
reduces the window of allowed delays for output signals.
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2 Setting the Criteria for the Validity of a Signal

As stressed by Fig.1, the output signal of a given reversible CMOS circuit is
modified during the computation. First we need to remember that our circuits are
built with dual-line pass-transistor gates. This means that even if the command
signals applied on the gates of the transistors have a triangular shape – thus
having constant slopes – the output signal will be transmitted by the channels
of these complementary transistors. Therefore, the output signal amplitude will
be modulated by their characteristics, especially by the value of their threshold
voltage VT . This will have several consequences already detailed in [10].

2.1 Setting the Limits for Amplitudes

For our present study, let’s remark that the output signal is narrowed, as long as
the command pulse remains lower than the threshold voltage VT of the transis-
tors. The signal will then become significant, only at the moment the command
signal is larger than VT , which unfortunately is about 0.3 V. Then, a sharp
transition occurs, until the output voltage catches up with the input voltage,
reduced by a small voltage drop in the channel impedances of the transmission
gates. The command potential for which the output signal is restored is about
Vc0 = 420 mV, both for the transmission gates and for the Cuccaro adder [10].

As both, the command and the signal to be transmitted are, in the reversible
circuit, coming from the inputs, they should both have about the same initial
amplitude, even if this is not mandatory. In order the circuit to be able to perform
correct calculations, all the signals in the circuit should have an amplitude at
least superior to the minimum defined voltage output Vc0 = 420 mV.

If we consider that some parasitic signals may be superimposed, we should
fix an even larger minimum voltage limit, for the signals to be acceptable for
applications. We will therefore arbitrarily fix this limit to Vomin = 0.5 V, which
allows parasitic signals as large as 80 mV. Let us notice that these values are
set up when a mean value of 0 V is used, and when positive voltages stand for
a logic “1” and negative voltages for a logic “0”. Otherwise, these values will
define the gap to the mean value.

2.2 Setting the Limits for Delays

In a reversible circuit, if the number of transmission gates passed by a signal is
different from the number for another signal, at the end of the computation, some
delay may appear between the two pulses, possibly introducing calculation errors
[10]. This problem is related to the so-called glitches in conventional electronics.
Moreover, high frequencies will also add extra delays making the situation worse.

Exerimentally, the Cuccaro adder is empacked in a dual-in-line package which
is simply placed on a bread-board with unshielded wires used for connecting
the inputs. Such a set-up is of course far from optimal to perform frequency
measurements as a lot of external parasitic capacitances are added to the circuit
itself. Nevertheless, frequencies as high as a few megahertz can still be reached.
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(a) (b)

Channel 1: 500 mV Channel 1: 500 mV
Channel 2: 500 mV Channel 2: 500 mV
time: 10 μs/div time: 10 μs/div

(c) (d)

Fig. 2. (a) Experimental impact of the measurement probe on the computed output
signal when an adiabatic triangular pulse is used, and (b) when an adiabatic sinusoidal
pulse is applied, both at a frequency of 14 kHz. (c) Similar impact of the probe on
the computed output signal obtained by simulation of a higher frequency of 50 kHz
and (d) simulated output without probe at a frequency of 5 MHz; the signal is, in this
latter case, still well defined.

The upper experimental limit for frequency, which can be reached on our
set-up while still having usable signals, is about 14 kHz, as seen in Fig.2a when
an adiabatic triangular pulse is used and Fig.2b using a sinusoidal one. In a
simulation, similar results are obtained only if a virtual probe is placed at output
Fig.2c; otherwise, results are similar to those of Fig.1. This difference is explained
by the introduction, at the measured output, of an extra capacitance of 32 pF
caused by the probe.

In Fig.2d, simulating 5 MHz adiabatic signals without the presence of such
capacitance, the output signal is still triangular adiabatic, as expected. The
impact of the increased frequency can be seen in the delay added to the beginning
time of the transition slope, when the pass-transistor gate starts to conduct the
output signal. The sharply raising slope is delayed, narrowing the output pulse
at its raising side.

Therefore, we can start answering the question of validity of a signal. As we
can see in these latter cases, the computation can still be done without error if
the levels are large enough to be detected without any confusion and if at each
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gate, between the command signal and the transmitted signal, a maximum delay
of 25 % is respected [10].

If the capacitance placed in series at the output is large, this will introduce
important extra capacitance effects as in Fig.2a and b. This would also be the
case if several gates are cascaded or if one circuit is cascaded with another one
presenting a large input capacitance. But, would these output signals be bad
anyway? This capacitance maintains the output voltage above 500 mV for more
than 25 % of the period time, but less than half a period. In effect, the new value
of the output signal will force the output either to switch to the opposite logic
value – as it is the case in these figures –, or to the same value with a transition
in the direction of the mean value – to follow the adiabatic-shape of the injected
input signals, even if the corresponding voltage is not always reached. Moreover,
even if at each single step of the computation the delay between the command
signal of a gate and the signal transmitted by this same gate remains shorter
than 25 %, the total delay between the input signals and the output signals of
a whole circuit – such as the Cuccaro adder – may be substantially larger than
25 %. In this latter case, the output signals would remain still valid and usable if
the delays between them are small enough such that a reading time of the output
values may be defined. This is possible only if this maximum delay between all
the outputs is smaller than the time the first output signal is well defined. This
latter criterion for large circuits, is somewhat more restrictive than the 25 % of
the period previously proposed for simple gates and small circuits.

2.3 Criteria for the Validity of a Signal

As a conclusion, to be valid, the signal should have the following characteristics:

1. each signal should have a minimum amplitude of 500 mV,
2. at each gate, the delay between the command pulse and the transmitted one

should be inferior to the time the command signal is well-defined and in all
cases inferior to 25 % of the period,

3. the maximum delay between all the outputs of a full circuit should be smaller
than the time the first computed output signal, is well defined.

3 The Limit Number of Cascaded Gates

The criteria for good signal defined, we now have the tools to evaluate the effec-
tive numbers of possible cascaded gates. We already experimentally evaluated
that it should be possible to cascade more than 20 Cuccaro adders at a low
frequency of 120 Hz, while a probe is connected to the output [10].

In this section, we will present simulation results performed on a simple chain
of cascaded gates, both pass-transistor gates and controlled-NOT gates and using
triangular adiabatic pulses. The number of cascaded gates used, ranges from
1 up to 80. The frequency range, lays between 1 MHz and 10 MHz. At each
output, an “ideal” probe will be considered, formed by a 1 MΩ resistor placed
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in parallel with a 1 aF capacitor, which is close to an integrated open wire and
that present a cutoff frequency of 1 THz. Simulations are performed using the
Cadence

TM
Spectre c© electrical simulator. The models of the transistors come

from the 350 nm technology standard library from ON Semiconductor, already
successfully used for simulating our Cuccaro adder [10].

Controlled-NOT (CNOT) gates are composed of four transmission gates (TG)
[8]. Each input signal to be transmitted, “sees” two transmission gates in parallel:
one is transmitting the signal and the other one is stopping it, acting as an open
circuit. Each command signal will then “see”, twice as much transistor gates in
the case of CNOT gates than for TG. In other words, at first order, twice as
many capacitances are to be taken into account for CNOT gates. In reality, the
situation is even more complex, as all the equivalent resistors and capacitances
present in the models of the complementary transistors should be taken into
account.

Also, some differences are found depending on the polarity of the signals to be
considered. In effect, the transmission gates are built using two complementary
transistors. Each one of them is transmitting the signal which has the opposite
value than the signal applied on its transistor gate. As for example, the n-type
transistor, which is active when a positive signal is applied on its gate, cannot
conduct a signal of same polarity. Otherwise, the transistor will switch to a non-
active position, as all its contacts are at the same potential. The same is found
for the p-type transistor when negative signals are involved. Therefore, the n-
type transistor will transmit only negative signals whereas the p-type transistor
will pass only positive signals1.

As the two complementary transistors do not have the same sizes, in order to
compensate the difference between the mobility of the carriers involved, the p-
type transistor is at least three times wider than the n-type transistor. Therefore,
larger capacitances are introduced by the p-type transistor. Hence, if we can
consider the transconductance gDS of the two types of transistor as equivalent,
it is definitely not the case for the different capacitance values that are then
larger for the p-type transistors.

We then, can expect some differences between the results obtained with cas-
caded transmission-gates compared to CNOT gates; as the total capacitance
seen by a signal is different in each case.

Simulations of Fig.3, present the variations of the delays between the com-
mand pulse and the transmited signal, and the voltage drop of output signals,
as a function of the number of cascaded gates and of the frequency. The number
N of cascaded gates used for simulations are [ 1, 2, 3, 4, 8, 16, 20, 24, 28, 32,
40 ], whereas the used frequencies f are [ 1, 2, 3.3, 5, 10 ] MHz.

Fig.3a is presenting the simulated variation of the delays obtained between
the transmitted signals and the command pulse, as a function of the number
of cascaded gates. As expected, we found a smaller delay for TG compared to
CNOT gates. The latter are close to be the double of the delays obtained for TG.

1 Positive and negative signals are to be considered relatively to the mean value of the
adiabatic signal. In this discussion, the mean value Vmean is supposed to be 0 V.
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(a) (b)

(c) (d)

Fig. 3. Simulations of cascaded gates:
(- -) controlled-NOT gates.

The used number N of cascaded gates are [ 1, 2, 3, 4, 8, 16, 20, 24, 28, 32, 40 ].
The used frequencies f are [ 1, 2, 3.3, 5, 10 ] MHz.

(a) – Evolution of the delays between outputs, as a function of N, for different f,
(b) – Evolution of the delays between outputs, as a function of f, for different N,
(c) – Evolution of the output voltage as a function of N, for different f,
(d) – Evolution of the output voltage as a function of f, for different N.

As the cascaded gates may be, at first order, modelized by cascaded first-order
low-pass filters – yet dominated by resistive-capacitive effects – this factor 2 may
be related to the digital propagation delay τ = (R.C)/2 of the filters; R is the
equivalent resistor of the gates (filters) and C their equivalent capacitance. The
equivalent capacitance “seen” by the signals passing the CNOT gates being close
to the double of the TG’s ones, the characteristic time τ is then logically found
to be of same proportion.

Also, some differences are found between TG and CNOT, for the variation of
amplitude drop as a function of the number of cascaded gates, as presented in
Fig.3c. Once again, the voltage drop is smaller for TG than for CNOTs.

The delays appear to be function of Nα, with α = 2, as attested by the
linearity of the curves while using log-log scales.

Both the delay and the voltage drop variations, appear to be “quasi”-linear
on a large range of frequencies, as shown respectively in Fig.3b and 3d. This is
true, both for the transmission gates and for the controlled-NOTs.

This is coherent with the model for delays proposed by [18] for RC ladder
circuits. If we consider all the cascade gates as identical, according to [18], we
obtain a time constant τ = R.C. ((N + 1)(2N + 1)) /6, which is a quadratic
function of N , and a total delay proportional to the frequency Δ = Δ0.f.τ ,
where Δ0 is a constant.
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From the physics, another estimation may be done. If we consider the size
of the n-type transistors to be approximately S � 350 x 500 nm2 with an oxide
thickness of about tox � 10 nm, then, the estimated capacitance for each transis-
tor would be about C = (ε0.εox.S)/tox � 6.10−16 F, where ε0 � 8.85.10−12 F/m
is the vaccum permittivity, εox = 3.9 is the dielectric constant of the SiO2,
tox � 10 nm is the oxide thickness. P-type transistor capacitance would be
about three times bigger. Moreover, as each transmission gate has an equivalent
resistor of about R = 8 kΩ [10], the cutoff frequency may be evaluated accord-
ing to physical basis to about 129 MHz for 16 cascaded transmission gates, if
only n-type transistors are involved. On this basis, we can evaluate the theo-
retical cutoff frequency for 16 cascaded CNOT gates around 64 MHz for the
350 nm CMOS technology and divide those two values by a factor 3 to take
into account the limitation brought by the p-type transistor, that has a three
times wider channel – and by the way, a three times larger capacitance. There-
fore, a cutoff frequency of 10 MHz would limitate the number of CNOT gates
to about 57 if only n-type transistors are involved, or 33 if using only p-type
transistors. Actually, 40 is the maximum number of CNOT gates, according to
simulations.

4 Discussion on the Positive Impact of a Lower VT

Non-standard CMOS processes, e.g. the SOI (Silicon On Insulator) technology,
make low-VT circuits possible. Such reduced VT would allow lowering the minimal
necessary voltage for the signals to be well defined. In other words, the amplitude
of a signal needed to be representative of the desired logical data would be
smaller.

Of course, it is possible, even in the context of this study, to allow a signal to
be smaller in amplitude, than the threshold voltage. But this would also increase
the risk of having unwanted pulses when some oscillations appear at the moment
the charges are transferred from one transistor to another or from one gate to
another. These oscillations may be of the two polarities, yet introducing wrong
informations. The moment these oscillations appear is, of course, correlated with
the moment one transistor starts to conduct, i.e. when the command voltage on
the transistor gate reaches the VT

2. Therefore, if very small VT are used, some
extra criteria should be added, in particular for higher frequencies where the
oscillations are getting bigger.

A lower VT would also allow to enlarge the signal pulses, bringing wider win-
dows for synchronizing the signals. The number of possible cascaded gates would
then be augmented both because the minimal amplitude would be reduced and
because the allowed delay would be increased.

2 This phenomenon has not been discussed here, as it is related to the ability of a
circuit to recover, during the uncomputation step, a large part of the energy used
during computation.
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5 Conclusion

In this work, we first discuss in details, the “criteria for good signal” in reversible
computation, in particular, the criteria for allowed delays and amplitudes. We
also pointed out, the fact that the use of threshold voltages smaller than the one
used in conventional restoring technology, would increase the possible number
of cascaded gates, giving the possibility to design even larger reversible circuits.
In the second part, we presented a detailed study on the simulated evolution of
output delays and pulse amplitudes, both as a function of the number of cascaded
gates and of the frequency. This study shows that it is possible to cascade a lot
of reversible gates, but also, that the size of the final circuit will strongly depend
on the frequency at which the computation should be done.
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project and the Technical University of �Lódź for collaboration through
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Abstract. Recent progress on the prototyping of reversible digital cir-
cuits, have shown that adiabatic reversible dual-line pass-transistor logic
can be used for special purpose applications in reversible computation.
This, however, raises new issues regarding the compatibility between this
adiabatic logic implementation and conventional CMOS logic. The great-
est difficulty is brought by the difference in signal shape used by these two
logic families. Whereas standard switching CMOS circuits are operated
by rectangular pulses, dual-line pass-transistor reversible circuits are con-
trolled by triangular or trapezoidal signals to ensure adiabatic switching
of the transistors. This work proposes a simple technical solution that al-
lows interfacing reversible pass-transistor logic with conventional CMOS
logic, represented here by an FPGA embedded in a commercial Xilinx
Spartan-3E board. All proposed solutions have successfully been tested,
which enables the FPGA to perform calculations directly on a reversible
chip.

1 Introduction

Conventional computing is based on logically irreversible elementary operations,
which leads to information destruction and an increase in entropy [1,2]. Elim-
inating the irreversibility of computations is possible. It was first shown by
Bennett [3], whome theoretically enabled calculation processes with zero en-
ergy dissipation at finite speed. At the circuit level, this is only possible using
reversible logical “machines” that perform thermodynamically reversible com-
putations. Such “machines” have been conceptually proposed by Fredkin and
Toffoli [4] and later extended for a quantum mechanics based computational
model by eg. Feynman [5]. CMOS implementations of these logic operators were
proposed by De Vos et al. [6] using dual-line pass-transistor (DLPT) circuits.
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This CMOS dual-line pass-transistor technology is demonstrated to be ener-
getically efficient; results of simulations show energy consumption down to only
5 % of conventional CMOS [7]. In effect, biases are only used for substrate and
wells polarization, while the necessary energy used for computation is brought
only by the input signals. Moreover, the complementary signals ensure that the
charge flowing in the circuits can be reused at next step of the computation,
instead of being thrown away as in conventional restoring electronics. By oppo-
sition, restoring electronics makes use of biases to perform the computation and
restore the signal at the same time, throwing away a large amount of energy at
each clock cycle.

Whereas the classical digital CMOS switching technology uses square-wave
waveforms to define logic “0” and logic “1”, DLPT with adiabatic switching ne-
cessitates two complementary signals. Furthermore, it is mandatory that the two
signals change gradually to ensure accurate adiabatic switching of the circuits [8]
(see Fig. 1(a)). These signals are often triangular or trapezoidal waveforms. We
refer to these signals by the name adiabatic signals.

Another advantage of adiabatic signals, is that these also avoid calculation er-
rors, possibly caused by delays appearing between signals when classical rectan-
gular shape signals involve steep transition slopes. The undesired pulses are then
filtered when the smooth triangular slope amplitude is lower than the threshold
voltage of the pass-transistor gates, thereby lowering the undesired artifacts [8]
(output pulse shown in Fig. 1(b)).

We expect that, in its first “commercial” applications, reversible electronics
will appear in ASICs and will be embedded in an environment of conventional
CMOS circuits. Interfacing irreversible restoring logic and adiabatic logic has
been proposed by Amirante et al. [9]. But their implementation is based on a
different adiabatic logic family, by which their results can not be transfered di-
rectly to the reversible DLPT logic we are using. In this work, we propose a
solution for interfacing a commercial FPGA, first with a reversible CMOS re-
versible binary adder [8,10,11] and then later with a reversible ALU [12]. First,
in Sect. 2 we present the possibilities and the limitations caused by the Xil-
inx Spartan 3E FPGA [13]. Then, in Sect. 3 the proposed technical electronic
solutions are detailed. Finally in Sect. 4 we conclude.

(a) (b)
Channel 1: 412 mV Channel 1: 412 mV
Channel 2: 412 mV Channel 2: 412 mV
time 1 ms time 1 ms

Fig. 1. (a) Typical square-wave and adiabatic dual-line inputs. (b) Experimental
measurements of one dual input and one dual output using the a reversible binary
adder in reverse calculation.
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2 FPGA Capabilities and Limitations

Modern FPGA boards are much more than a simple chip of programmable hard-
ware with a small memory and a parallel port to load the program. Even smaller
FPGA starter-boards include a wide range of connector devices, which can be
interfaced directly from the FPGA in a more or less simple way.

For the purpose of connecting the reversible chip with a digital circuit, it
suffices to use an FPGA with a low number of logic cells. Therefore, the cheap
(less than 200 euros) Xilinx Spartan R©-3E FPGA Starter Kit Board from Digilent
is used for this proof-of-concept. This board has a large number of input and
output devices, a good manual, and, as it is a popular starter board, it is easy
to find example implementations of device interfaces in both VHDL and Verilog.
The on-board devices we are using are

– the clock generator: the standard clock source with a frequency of 50 MHz,

– the DAC: the digital-to-analog convertor, used to generate the adiabatic
signals for the reversible chip inputs,

– the FX2 100-pin expansion connector for connecting the digital inputs and
outputs to the connector board,

– the LCD display, used to show the results of the calculations, and
– the buttons, switches and the knob for controlling the board while executing.

The detailed use of each device will be described in the following sections.

2.1 Signal Generation

The adiabatic signal is normally generated with an accurate full-wave rectifier
connected to a waveform generator [8]. This setup ensures a powerful and precise
signal that is necessary for performing accurate measurements, but the setup is
too big to be used in computers and especially small devices. This work only
focuses on interfacing the reversible chip with classical CMOS circuits. We there-
fore need to ensure that the functionality of the reversible chip is correct, while
the full computing circuit still gains the benefits of the reversible chip and the
adiabatic switching. We use the DAC (included on the FPGA board) to gener-
ate the adiabatic signals. The DAC (presented in Fig. 2) is a Lineal Technology
LTC2624. It has four outgoing pins, that can be controlled individually or all at
once. By default, two of the outputs (pins A and B) have a reference1 voltage
of 3.3 V, while the two other pins (pins C and D) have a reference voltage of
2.5 V. The DAC output voltage is linearly controlled through a Serial Peripheral
Interface (SPI). The accessible voltage values range between 0 V and 3.3 V or
2.5 V depending on the chosen pin and a value represented by a 12 bit number.
The given voltage accuracy is 5 %.

1 The default reference voltages of the DAC can be changed, but this requires desol-
dering of two resistors, and direct interfacing of two pins. Therefore, we have chosen
to use the default settings.
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Fig. 2. Schematic of the digital to analog converter. Figure adapted from [13].

Fig. 3. Generation of the trapezoid signal for adiabatic switching

Often, a triangular waveform is used for adiabatic switching. But, as we will
see in Sect. 2.2, it can be beneficial to use a trapezoidal shape instead. The
steps to generate both these waveforms are illustrated in Fig. 3. First, we make
a saw-tooth by incrementing a value in each clock cycle (1). By doing the incre-
menting modulo some maximum number2 we have the sudden value drop that
is a characteristic of the saw-tooth waveform. Second step, is to make a trian-
gular waveform and this is done by subtracting the most significant half of the
saw-tooth waveform from the least significant half (2). Finally, the trapezoidal
waveform is obtained by removing the tops from the triangular waveform (3).
This is a simple greater-than check and the upper limit can be used to control
the slope of the trapezoid waveform.

The period of the adiabatic signals are, of course, limited by the DAC. For
each change of voltage level by the DAC, we need to send a 32-bit value through
the SPI. Four FPGA clock cycles are needed in order to send each bit. As about
50 points are necessary to generate a well-defined adiabatic waveform for each
of the two DAC outputs, and because the FPGA runs at 50 MHz, then the
maximum reachable frequency for the adiabatic signal is about 4 kHz. This is
not much, but it is fast enough for this proof-of-concept, which aims to show the
possibility to interface the two technologies.

2 The modulo 2n operation is done automatically when using an n-bit adder circuit.
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Fig. 4. Analog signals generated from the DAC

Fig. 5. Two-level memory interfacing the adiabatic input and the digital output signals

2.2 Interfacing and Timing with Internal Clock and Memory

The adiabatic waveforms are periodical and, therefore, have a build-in clock
period. Moreover, both the digital circuits and the reversible chip must commu-
nicate at the same frequency3. Setting the phases between the signals from the
FPGA and the adiabatic signal is not obvious when we want the circuits to run
in a correct adiabatic way. We need to pay particular attention to the interfacing
between the adiabatic signal and the conventional memory.

For the adiabatic signal a logic value is well-defined, either if its amplitude
voltage exceeds the mean value by a quarter of the total signal range, or if it
reduces by the same voltage gap (illustrated in Fig. 4). If trapezoidal waveforms
are used then the signals are best defined during the constant plateau situated
between the raising and falling transitions. If triangular waveforms are used, then
the signal is best defined during a shorter time ranging from half the raising time
to half the falling time of the triangular waveforms.

This is in contrast to digital circuits, where the well-defined logic values are
situated just before the clock ticks and the logic value is changed. It is therefore
not possible to make an interface with a single memory element and an approach
using a two-level memory as in Fig. 5 must be applied.

The idea is that the first flip-flop reads the adiabatic signal at the clearest
logic value, while the second flip-flop is updated at the change of the adiabatic
signal. This interfacing works best if we are using a trapezoidal waveform, as
these can be interpreted at their constant plateau as either digital logic “1” or
a digital logic “0”.

To have an optimal timing between the two flip-flops, we must therefore have
two separate internal clock signals. Using more clock signals to control energy-
efficient circuits with adiabatic switching, is not a new idea. The split-level charge

3 Other parts of the FPGA, such as the generation of the adiabatic signal and control
of devices, will run with the standard 50 MHz clock.
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tS tH

FF1 output

clock signal 1

clock signal 2

FF2 output

adibatic input

tP tS tP tS tP

Fig. 6. Detailed timing of the interface between adiabatic signal and memory. tS is the
setup time, tH the hold time, and tP the propagation time of the memory.

Fig. 7. Simplified interfacing with a single clock signal that is in-phase with the period
of the adiabatic signal. The first flip-flop is updated at rising clock-edge whereas the
second one at falling clock-edge.

recovery logic (SCRL) [14], which was used to implement the Pendulum processor
[15], is controlled with up to 7 different clock signals. Both in SCRL and in our
approach timing of the clock signals are essential. Therefore, we must consider
the setup time, hold time, and propagation delay of the memory.

Fig. 6 illustrates a detailed timing diagram. This diagram does not consider
signal propagation in the combinatorial circuits that has to be added to the
minimum clock period. The figure is only intended to show that the trapezoidal
adiabatic signal can uphold the timing constraint of the digital memory, while
still ensuring adiabatic switching.

In the current setup, the maximum frequency of the adiabatic waveform is
many times larger than the time constraints of the FPGA memory and the
detailed timing is, therefore, not necessary. It is acceptable to make a simplified
implementation with a single clock signal that is in-phase with the period of
the adiabatic signal (shown in Fig. 7). The first flip-flop is updated at the rising
clock-edge, where there is a clear adiabatic signal while the second flip-flop is
updated at the falling clock-edge, where the adiabatic signal is switching.

2.3 I/O Programming

To transfer the input and output values for reversible circuits from/to the FPGA,
a 100-pin Hirose FX2 connector is used. Most of these 100 pins have a special
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purpose, leaving only 38 I/O pins and 5 input-only pins. As the connecting
signals are digital and not complementary dual-line signals, we can control up to
21 inputs and 21 outputs to the reversible chip. The last pin from the connector
will be used to control the execution direction on the chip, such that the FPGA
can exploit the chip’s reversibility, and not only the energy savings.

3 The Interface Board

In the design of the interface board, four electronic challenges have to be ad-
dressed.

– First, to convert classical rectangular signals into dual adiabatic signals, in
order to transmit data to the inputs of the reversible chip.

– Second, the opposite, i.e. to transmit the computed information back to
the FPGA in the form of a classical rectangular signal, starting from the
dual-line adiabatic outputs of the chip.

– Third, to exploit the reversibility of the chip by making computation in both
directions; the same chip may perform both the do-calculation (addition in
this paper) and the undo-calculation (subtraction).

– Fourth, to synchronize the signals at the output interface.

3.1 Bringing the FPGA Commands to the Reversible Inputs

The conversion from classical square-wave signals to dual-line adiabatic signals
(shown in Fig. 8a) can be done using a double 1→ 2 pass-transistor multiplexer:
e.g. the commercial MUX SN74CBTLV3257. As the multiplexer is made of pass-
transistor gates, it can be used in both directions.

The command inputs to the multiplexer are the enable œ input and the
selection bit s. When œ is “1”, the circuit is placed in high-impedance such that
no input signal can be transmitted to output. When œ is “0”, the selection bit s
will act as the control to a switch and redirect the input signal to one of the two
outputs. By applying the logical signal coming from the FPGA as the selection
bit s, it is possible to connect the input to either output A if s = “0” or else
output B if s = “1”. Then, by adequately connecting the four outputs to the
adiabatic logic “1” and logic “0” for the two first outputs and then logic “0”
and logic “1” for the two next, we can obtain the mandatory dual-line adiabatic
signals: logic “0” if s = 0 and logic “1” if s = 1.

The advantage of this solution is that it is already implemented with pass-
transistor gates (Fig. 8b). In total, three pass-transistor gates are needed for each
data signal coming from the FPGA. Therefore, if one wants to use a reversible
circuit as an integrated part of an irreversible restoring logic circuit, this solution
can easily be implemented. It will also reduce the number of contacts in the
packaging. Even the classical enable œ and selection inputs s may be directly
used. One only needs to provide the reversible chip with dual signals built at
the conventional circuit side using, for example, two inverters to obtain the
complementary signal. The two signals s and œ can be either constant values or
adiabatic signals.
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(a) (b)

Fig. 8. (a) Demultiplexer used as signal converter. The adiabatic signals corresponding
to the desired logic value defined by s, are routed from the DACs to the output, by
the multiplexer. (b) Corresponding schematic using pass-transistor gates.

3.2 Bringing the Results of the Calculation to the FPGA

Remodeling the result represented by the adiabatic signal to a digital square-
wave signal for the FPGA is less trivial. It corresponds to implement a threshold
detector, which can be done using an operational amplifier. This solution is ex-
pensive, both in terms of energy consumption and surface area. In effect, if one
of the dual-signal can easily be thrown away or the energy reused by implement-
ing energy-recovering circuits, it will necessitate a buffer for impedance adaption
cascaded to an operational amplifier for each signal to be send to the FPGA.
This may reduce the interest for implementing reversible circuits, as the surface
area or the consumption of this interface becomes bigger than the reversible
circuit itself.

Instead, we can interface the adiabatic signal directly with the FPGA, as
described in Sect. 2.2. This, of course, raises the question of what to do with the
negated value of the dual-line adiabatic signal. To throw it away, as done in the
current implementation, would dissipate energy – so perhaps this energy could
be harvested with energy-recovering circuits.

3.3 The Problem of Reversibility

Controlling execution direction of the computation is essential in order to exploit
the reversibility of the reversible chip, and by this way, choose the function to
be performed; in this case an addition or a subtraction. A technical solution for
controlling execution direction is again to use 1 → 2 multiplexers to route each
line of the adiabatic signals to either an input or an output of the reversible chip.

The schematic in Fig. 9 presents this solution. As previously, the input enable
allows to isolate the outputs from the inputs of the multiplexer. The selection
input s is used as a selection bit for the execution direction. This control comes
directly from the FPGA, as it is a digital signal.

Each dual-line wire of the input information is routed either to an input or
to an output of the reversible chip, depending on the value of s. Our solution is
simply to connect the multiplexer’s first output to the reversible chip’s inputs
and the multiplexer’s second output to the reversible chip’s outputs. The inverse
is done to read the computed information: the multiplexer’s second output is
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Fig. 9. Schematic showing how to use the circuit in reverse calculation. Inputs and
outputs are swapped.

connected to the reversible chip’s inputs and the multiplexer’s first output to the
reversible chip’s outputs. In this configuration, the unused multiplexer outputs
act as high-impedance nodes such that no short circuit occurs between the inputs
and outputs of the reversible chip.

3.4 Clocking the Signals

In classical switching technology an external clock is often used. This clock signal
is in the reversible DLPT technology somewhat “embedded” in the triangular
shape of the input signals. The full computation performed in the reversible
chip is “synchronous”, but the signals propagate in an asynchronous manner
from one gate to the next. In other words, the triangle waves propagate through
the different gates and should arrive at the same time at the next stage of
computation, without the intervention of an external clock. In practice this can
not be completely guaranteed.

The clocking interfacing from the classical CMOS computing stage to the
reversible computing stage, may be done by generating the dual-line triangular
adiabatic signal from the classical clock, by, first, using an integrator circuit to
generate one triangular pulse Vin, followed by a full-wave rectifier to generate
the adiabatic logic ”1” pulses. A simple solution to transform triangular pulses
into dual-line adiabatic ones is presented in Fig. 10 [8]. These pulses are then
redirected afterwards, following the method described in Section 3.1.

To synchronize the adiabatic signals coming out of the reversible stage to
the classical stage is more complicated. As a solution, the amplitude of one
chosen output is detected using a threshold detector and stored until the data
is used. This can be done externally using flip-flops in the classical stage, after
converting the adiabatic signal into classical square-wave signal, as explained in
Section 3.2.
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Fig. 10. Schematic of the simple circuit experimentaly used to generate the dual-line
adiabatic triangular pulses from one simple triangular input

4 Conclusion

We proposed in this paper, several possible answers to the most important ques-
tions regarding the interfacing of reversible adiabatic dual-line pass-transistor
CMOS chips with classical restoring circuits:

– the conversion of the pulse shape,
– the transmission of the computed information back to the FPGA,
– the reversibility of the computation,
– and the synchronization of the signals at the output interface.

For each one of these questions, at least one simple solution has been detailed
and experimented, proving that embedding reversible adiabatic chips into con-
ventional restoring circuits may be a viable yet simple solution for both, energy
saving and reversibility of computation.
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