
Chapter 7
Performance Study on Real-valued
Classification Problems

As mentioned in Chapter 5, the orthogonal decision boundaries of fully complex-
valued neural networks help them to perform classification tasks efficiently. There-
fore, in this chapter, we study the classification performance of FC-MLP and IC-
MLP described in Chapter 2, FC-RBF and Mc-FCRBF explained in Chapter 3,
FCRN and CC-ELM described in the chapters 5 and 6 respectively. First, the study
is conducted on a set of benchmark real-valued classification problems from the
UCI machine learning repository [1] and then, using a practical acoustic emission
signal classification problem for health monitoring [2].

7.1 Descriptions of Real-valued Benchmark Classification
Problems

We consider a set of real-valued benchmark problems (both multi-category/binary
classification problems) from the UCI machine learning repository [1]. Based on a
wide range of Imbalance Factors (I. F.) (as defined in [3]) of the data set, three multi-
category and four binary data sets are chosen for this study. To recap, the imbalance
factor is defined as

(I. F.) = 1− C
N

min
j=1,··· ,C

Nj (7.1)

where Nj is the total number of samples belonging to the class j.
The detailed description of these data sets including the number of classes, the

number of input features, the number of samples in the training/testing and the im-
balance factor are presented in Table 7.1. From the table, one can see that the prob-
lems chosen for this study have both balanced and unbalanced data sets and also
that the imbalance factors of the data sets vary over a wide range.
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Table 7.1 Description of benchmark data sets selected from [1] for performance study

Type of Problem No. of No. of No. of samples I. F.
data set features classes Training Testing Training Testing

Image 19 7 210 2100 0 0
Segmentation (IS)

Multi- Vehicle 18 4 424 422 0.1 0.12
Classification (VC)

Category Glass 9 7 109 105 0.68 0.73
Identification (GI)
Liver 6 2 200 145 0.17 0.145
Disorder

Binary PIMA 8 2 400 368 0.225 0.39
Data
Breast 9 2 300 383 0.26 0.33
Cancer
Ionosphere 34 2 100 251 0.28 0.283

7.2 Performance Study

First we present the performance study results on three real-valued multi-category
benchmark classification problems. Next, we consider four binary benchmark clas-
sification problems.

7.2.1 Performance Measures

The classification/confusion matrix Q is used to obtain the statistical measures for
both the class-level and global performance of the various classifiers. Class-level
performance is measured by the percentage classification (η j) which is defined as:

η j =
q j j

Nj
× 100% (7.2)

where q j j is the total number of correctly classified samples in the class c j.
The global measures used in the evaluation are the average per-class classification

accuracy (ηa) and the over-all classification accuracy (ηo) defined as:

ηa =
1
C

C

∑
j=1

η j

ηo =
∑C

j=1 q j j

∑C
j=1 Nj

× 100% (7.3)
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The performance of the classifiers are compared using these class-level and global
performance measures.

7.2.2 Multi-category Real-valued Classification Problems

As the complex-valued networks are shown to have better computational power than
the real-valued networks [4], the classification performance of the complex-valued
learning algorithms are compared against well-known real-valued classifiers, avail-
able in the literature for these problems. The real-valued classifiers used for compar-
ison are the Support Vector Machines (SVM) [5], the minimal resource allocation
network (MRAN) [6], the growing and pruning radial basis function network (GAP-
RBFN) [7], the online sequential extreme learning machine (OS-ELM) [8], the real
coded genetic algorithm based extreme learning machine [9], the Sequential Multi-
Category Radial Basis Function (SMC-RBF) [10] and the Self-adaptive Resource
Allocation Network (SRAN) [11]. The “asinh” and “atan” activation functions are
observed to be better than the other ETF’s and they are chosen as activation func-
tions in the hidden layer for the FC-MLP and IC-MLP. The results of the RCGA-
ELM is reproduced from [9], while those of the other real-valued classifiers are
reproduced from [10]. The classification results for the PE-CVNN are reproduced
from [12], while the results of the MLMVN are generated using the software simu-
lator available in the author’s web site 1.

Table 7.2 presents the overall and average testing efficiencies of the various clas-
sifiers on the three multi-category benchmark classification problems chosen for this
study. In this study, the complex-valued input features (z) for FC-MLP, IC-MLP, FC-
RBF and Mc-FCRBF are obtained by phase encoding the real-valued input features
(x) in [0,π ] [13] using the transformation:

z= exp(iφ) = cos φ + isin φ , where φ =
π(x− a)

b− a
; a,b∈R and x∈ [a,b]. (7.4)

The input features for CC-ELM and FCRN classifiers are obtained by using the
circular transformation defined in Eq. (6.19).

From the table, it is clear that the complex-valued classifiers outperform all the
existing real-valued classifiers. The superior performance of the complex-valued
classifiers can be attributed to their orthogonal decision boundaries. The higher per-
formance of the complex-valued classifiers is very obvious in the glass identification
problem which has a highly unbalanced data set.

Following observations emerge from the Table 7.2:

• FC-MLP, IC-MLP, FC-RBF, Mc-FCRBF, FCRN and CC-ELM classifiers out-
perform other complex-valued classifiers: MLMVN and PE-CVNN The perfor-
mances of MLMVN [14] and PE-CVNN [13] may be limited because of the
following factors:

1 http://www.eagle.tamut.edu/faculty/igor/Downloads.htm
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– The activation functions used in the PE-CVNN are similar to those used in
the split complex-valued neural networks. Therefore, the correlation between
the real and imaginary parts of the error are not considered in the network
parameter update and the gradients are not fully complex-valued [15]. The
limitations of using the split complex-valued activation functions have been
discussed in detail in section 2.1.1.

– The complex-valued Multi Layer Multi Valued Network (MLMVN) that em-
ploys the multi-valued neurons uses a derivative free global error correcting
learning rule to update the network parameters [14]. In MLMVN, the normal-
ized real-valued input features (x) are mapped on to a full unit circle using
exp(i2πx) and the class labels are encoded by the roots of unity in the Com-
plex plane. However, as the input features are mapped on to a full unit circle,
this mapping results in the same complex-valued features for the real-valued
features with values 0 and 1 (transformation is not unique). In addition, the
multi-valued neurons map the complex-valued inputs to C discrete outputs on
the unit circle. As number of classes (C) increases, the areas of the sectors per
class within the unit circle decreases which results in a higher misclassifica-
tion rate.

• Comparing the performances of FC-MLP and IC-MLP classifiers, IC-MLP clas-
sifier outperforms FC-MLP classifier in all the three benchmark problems con-
sidered. While the “atan” activation function resulted in a better classification of
the IS data set, the “asinh” activation function outperforms the “atan ” activation
function in the classification of the unbalanced VC and GI data sets.

• FC-RBF classifier performs better than FC-MLP and IC-MLP classifiers in all
the three problems. This is because the sech(.) function used in FC-RBF has
a magnitude response that is similar to that of the Gaussian function and has
similar localization properties of the Gaussian activation function. This aids in
improving the classification ability of FC-RBF classifier compared to that of the
FC-MLP/IC-MLP classifiers.

• Mc-FCRBF classifier performs better than FC-RBF classifier along with a re-
duced computational effort. The self-regulatory system chose 155 of the total
210 samples for classification of the image segmentation problem which has a
well-balanced data set. The self-regulatory system selects 358 of the total 422
samples and 272 of the total 336 samples to train Mc-FCRBF classifier for the
vehicle classification and glass identification problems, respectively.

• CC-ELM classifier outperforms all the real-valued/complex-valued classifiers
used in this study. It also requires the lowest computational effort in all the three
real-valued benchmark classification problems. This can be attributed to the pres-
ence of the circular transformation that transforms the real-valued input features
to all the four quadrants of the Complex domain uniquely and the learning algo-
rithm that finds the optimum solution to the set of linear equations formed at the
output layer. The best performance of CC-ELM can be distinctively seen in the
glass identification problem which has a highly unbalanced data set.
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• The performance of FCRN is slightly better than CC-ELM and is much better
than the other classifiers. This can be attributed to the fact that FCRN uses the
logarithmic error function, while the other classifiers use the mean squared error
function.

7.2.3 Binary Real-valued Classification Problems

Next, we present the results of the binary benchmark classification problems listed
in Table 7.1. Since it has been observed from the study on multi-category bench-
mark problems that FC-RBF and Mc-FCRBF outperform the FC-MLP and IC-MLP
classifiers, we only compare the classification performances of FC-RBF and Mc-
FCRBF classifiers in comparison with other real-valued classifiers. Performance re-
sults of SVM, ELM, SRAN, FC-RBF, Mc-FCRBF, FCRN and CC-ELM classifiers
are presented in Table 7.3. From the results, one can see that the complex-valued
classifiers, FC-RBF, Mc-FCRBF and CC-ELM classifiers outperformed the real-
valued classifiers (SVM, ELM and SRAN) available in the literature. Among the
complex-valued classifiers, CC-ELM and FCRN classifiers perform better than the
other complex-valued classifiers considered in the study with the lower computa-
tional effort.

7.3 Performance Study Using a Real-world Acoustic Emission
Classification Problem

Acoustic emission signals are the electrical versions of the stress or pressure waves
produced by sensitive transducers. These waves are produced due to the transient
energy release caused by the irreversible deformation processes in the material [2].
Different sources of acoustic emission exist and these sources can be characterized
by the acoustic signals. The classification of acoustic emission signals based on their
sources is a very difficult problem, especially in the real world where ambient noise
and pseudo acoustic emission signals exist. Even in a noise free environment, super-
ficial similarities exist between the acoustic emission signals produced by different
sources making the classification task cumbersome.

In the study conducted in [2], noise free burst type acoustic emission signal from
a metal surface is assumed. The data set presented in [2] uses 5 input features to
classify the acoustic signals to one of the 4 sources, ı.e., the pencil source, the pulse
source, the spark source and the noise. A training data set with 62 samples and
testing data set with 137 samples are used for the acoustic emission signal classifi-
cation problem. For details of the input features and the experimental set up used in
the data collection, refer to [2].

Table 7.4 presents the performance results of the complex-valued FC-RBF, Mc-
FCRBF, FCRN and CC-ELM classifiers in comparison to the best results available
in the literature for the acoustic emission signal classification problem, viz., the
Fuzzy K-means clustering algorithm [2], ant colony optimization algorithm [16]
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Table 7.2 Benchmark classification problems: Performance comparison of the SR-FC-RBF
classifier with other classifiers

Problem Domain Classifier h Time Testing
(sec.) ηo ηa

SVM 96 721 90.62 90.62
MRAN 76 783 86.52 86.52

GAP-RBFN 83 365 87.19 87.19
Real OS-ELM 100 21 90.67 90.67

RCGA-ELM 50 - 91 91
IS SMC-RBF 43 142 91 91

SRAN 47 22 92.3 92.3
PE-CVNN - - 93.22 -
MLMVN 80 1384 83 -

FC-MLP(asinh) 80 374 91.57 91.57
FC-MLP(atan) 75 359 90.48 90.48
IC-MLP(asinh) 80 390 91.81 91.81

Complex IC-MLP(atan) 80 385 92.81 92.81
FC-RBF 38 421 92.33 92.33

Mc-FCRBF 36 362 92.9 92.9
FCRN 70 0.4 93.3 93.3

CC-ELM 60 0.03 93.2 93.2
SVM 234 550 68.72 67.99

MRAN 100 520 59.94 59.83
GAP-RBFN 81 452 59.24 58.23

Real OS-ELM 300 36 68.95 67.56
VC SMC-RBF 75 120 74.18 73.52

SRAN 113 55 75.12 76.86
PE-CVNN - - 78.73 -
MLMVN 90 1396 78 77.25

FC-MLP(asinh) 75 530 76.07 77.49
FC-MLP (atan) 70 462 73.22 73.83

Complex IC-MLP(asinh) 75 612 79.62 80.38
IC-MLP (atan) 70 574 74.17 74.26

FC-RBF 70 678 77.01 77.46
Mc-FCRBF 70 638 77.72 77.58

FCRN 90 0.8 82.62 82.46
CC-ELM 85 0.1084 82.23 82.52

SVM 102 320 64.23 60.01
MRAN 51 520 63.81 70.24

GAP-RBFN 75 410 58.29 72.41
Real OS-ELM 60 15 67.62 70.12

GI SMC-RBF 58 97 78.09 77.96
SRAN 59 28 86.21 80.95

PE-CVNN - - 65.5b -
MLMVN 85 1421 73.24 66.83

FC-MLP(asinh) 70 338 80.95 79.60
Complex FC-MLP(atan) 70 346 80 79.09

IC-MLP(asinh) 80 390 82.86 80.55
IC-MLP(atan) 70 356 81.90 82.97

FC-RBF 90 452 83.76 80.95
Mc-FCRBF 85 364 83.91 80

FCRN 90 0.25 94.5 88.3
CC-ELM 100 0.08 94.44 84.52
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Table 7.3 Performance comparison on benchmark binary classification problems

Problem Classifier Classifier h Training Testing
Domain Time (s) Efficiency

(ηo)

Breast Real-valued SVM 190 0.1118 94.20
ELM 65 0.1442 96.28

cancer SRAN 7 0.17 96.87
Complex-valued FC-RBF 10 158.3 97.12

Mc-FCRBF 10 125 97.4
FCRN 15 0.16 97.4

CC-ELM 15 0.0811 97.39
Iono- Real-valued SVM 30 0.0218 90.18

ELM 25 0.0396 88.78
sphere SRAN 21 3.7 90.84

Complex-valued FC-RBF 10 186.2 89.48
Mc-FCRBF 10 152 90

FCRN 15 0.0624 92.03
CC-ELM 15 0.0312 92.43

Liver Real-valued SVM 158 0.0972 68.24
ELM 132 0.1685 71.79

disorders SRAN 91 3.38 66.9
Complex-valued FC-RBF 20 133 74.6

Mc-FCRBF 20 112 76.6
FCRN 10 0.05 75.86

CC-ELM 10 0.059 75.5
PIMA Real-valued SVM 209 0.205 76.43

ELM 218 0.2942 76.54
data SRAN 97 12.24 78.53

Complex-valued FC-RBF 20 130.3 78.53
Mc-FCRBF 20 103 79.89

FCRN 15 0.125 80.71
CC-ELM 20 0.073 81.25

and genetic programming [17]. The results show that the complex-valued classifiers
outperform the real-valued classifiers considered in this study. It can also be seen
that CC-ELM and FCRN classifiers required only 10 neurons to achieve an over-all
testing efficiency of 99.27%, which is about 6% better than the best results reported
in the literature for this problem. Thus, CC-ELM and FCRN perform an efficient
classification of the acoustic emission signals using a compact network.
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Table 7.4 Performance comparison results for the acoustic emission problem

Classifier Classifier Testing
domain ηo ηav

Real- Fuzzy
valued C-Means 93.34

Clustering

Complex- FC-RBF 96.35 95.2
valued

Mc-FCRBF 98.54 97.83

FCRN 99.27 98.91

CC-ELM 99.27 99.17

7.4 Summary

In this chapter, we studied the decision making ability of FC-MLP, IC-MLP, FC-
RBF, Mc-FCRBF, FCRN and CC-ELM learning algorithms in comparison to other
complex-valued classifiers, MLMVN and PE-CVNN. The study was performed us-
ing a set of multi-category and binary benchmark classification data sets from the
UCI machine learning repository and a practical acoustic emission classification
problem. Performance results show that the performance of the complex-valued
classifiers are better than the real-valued classifiers available in the literature. The or-
thogonal decision boundaries of the complex-valued classifiers help them to outper-
form the real-valued classifiers. However, the performance of the complex-valued
classifiers are affected due to the transformation used to convert the real-valued input
features to the Complex domain, the activation function used at the hidden layer, and
the nature of the learning algorithm. It was also observed that the circular transfor-
mation, which maps the real-valued input features to the Complex domain uniquely,
is better than the phase encoded transformation and the bilinear transformation.
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