
Chapter 6
Circular Complex-valued Extreme Learning
Machine Classifier

Artificial Neural Networks (ANN) were originally inspired by the central nervous
system and its components that constitute the biological neural network, as investi-
gated by the Neuroscience community. Ever since then, several tasks of human ac-
tivity have been emulated by the ANNs. Classification is one such decision making
task that occurs frequently in human activity and one that has been emulated in the
artificial neural network framework. A classification task in the ANN framework is
defined as assigning an object to a predefined group or class based on a set of object
attributes. As the ANNs are capable of constructing complex decision boundaries
without any assumption on the statistics on the input data, they have been used to
perform classification tasks in a large range of applications spanning from business
to medical diagnosis to speech recognition. Over the past twenty years, supervised
learning has become a standard tool of choice to analyze the data in many fields,
particularly in classfication problems. The objective of the classification problem
is to approximate the decision surface described by the training data and predict
the class label of the unknown data as accurately as possible. Recently, it has been
shown by Nitta that the complex-valued neural networks have better computational
power than real-valued networks [1] and they outperform real-valued networks in
their ability to approximate the decision boundaries to solve classification problems.
Moreover, it has been shown by Nitta [2, 3] that a fully complex-valued neural net-
work with a split type of activation function has two decision boundaries that are
orthogonal to each other. These decision boundaries help the complex-valued neural
network to perform classification tasks more efficiently than real-valued networks.
These findings have inspired researchers to develop efficient classifiers in the Com-
plex domain. The ‘Multi Layered neural network based on Multi Valued Neurons
(MLMVN)’ [4] and the single-layered network with phase encoded transformation,
referred to here as, ‘Phase Encoded Complex Valued Neural Network (PE-CVNN)’
[5] are the two such complex-valued classifiers available in the literature. In this
chapter, we briefly discuss these classifiers and show that the complex-valued learn-
ing algorithms described in the previous chapters can be modified to solve real-
valued classification problems. In addition, we present an efficient and fast learning
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complex-valued classifier, referred to as ‘Circular Complex-valued Extreme Learn-
ing Machine (CC-ELM)’ to solve real-valued classification problems. CC-ELM is
a single hidden layer network with a non-linear input and hidden layer and a linear
output layer. A circular transformation with a translational/rotational bias that per-
forms an unique one-to-one transformation of the real-valued feature to the Complex
plane is used as an activation function for the neurons in the input layer. Neurons
in the hidden layer employ a fully complex-valued Gaussian-like (‘sech’) activation
function. The input parameters of the CC-ELM are chosen randomly and the output
weights are computed analytically. This chapter also presents an analytical proof
to show that the decision boundaries of a single complex-valued neuron at the hid-
den and output layer of the CC-ELM consists of two hyper-surfaces that intersect
orthogonally.

6.1 Complex-valued Classifiers in the Literature

In this section, we review the existing complex-valued classifiers. First, we de-
fine the real-valued classification problem in the Complex domain and describe
the learning algorithms of the two complex-valued classifiers, viz., the Multi-Layer
neural network based on Multi-Valued Neurons (MLMVN) and the Phase Encoded
Complex-valued Neural Network (PE-CVNN).

6.1.1 Description of a Real-valued Classification Problem Done
in the Complex Domain

Suppose we have N observations {(x1,c1) , · · · ,(xt ,ct) , · · · ,(xN ,cN)}, where xt ∈
ℜm be the m-dimensional input features of t-th observation, ct ∈ [1,2, · · · ,n] are its
class labels, and n is the number of distinct classes. The observation data (xt ,ct) are
random in nature and the observation xt provides some useful information on the
probability distribution over the observation data to predict the corresponding class
label (ct ) with a certain accuracy.

To solve the real-valued classification problems using complex-valued neural net-
works, the coded class label (yt = [yt

1 · · ·yt
k · · ·yt

n]
T ) is defined in the Complex do-

main as:

yt
k =

{
1+ i1 if ct = k
−1− i1 otherwise

k = 1,2, · · · ,n (6.1)

The real-valued classification problem using complex-valued neural networks can
be viewed as finding the decision function F that maps the real-valued input fea-
tures to the complex-valued coded class labels, i.e., F : ℜm → Cn. For notational
convenience, the superscript t will be dropped in the rest of the chapter.
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6.1.2 Multi-Layer Neural Network Based on Multi-Valued
Neurons (MLMVN)

The complex-valued MLMVN using multi-valued neurons was developed in [4].
A single multi-valued neuron maps m inputs and a single output. The mapping is
described by a multi-valued function of m variables ( fm(x1, · · · ,xm)) with m + 1
complex-valued weights as the parameters, and is given by

fm(x1,x2, · · · ,xm) = P(v0 + v1x1 + · · ·+ vmxm) (6.2)

where P(.) is the activation function of the neuron, given by

P(z) = exp(i(arg(z))) =
z
|z| (6.3)

where z = v0 + v1x1 + · · ·+ vmxm is the weighted sum, and |z| is the modulo of the
complex number z. The function defined in Eq. (6.3) maps the Complex plane into
the whole unit circle and is continuous. It must also be noted that the function is not
differentiable as a function of a complex-valued variable.

However, as the learning in the MLMVN is reduced to the movement along the
unit circle, the derivative of the activation function is not required because it is
impossible to move in an incorrect direction. Any direction of movement along the
circle will lead to the target and the shortest way of this movement is determined by
the error which is the difference between the desired output and the actual output.
The weight update rule for a multi-valued neuron used in an MLMVN is given by:

Vm+1 = Vm +
ηv

m+ 1
δ̃X (6.4)

where δ̃ =
1
|z|

(
y− z

|z|
)

(6.5)

From Eq. (6.4), it can be observed that using this approach, the function is a smooth
function of the weights. Moreover, a small change in the inputs or weights does not
result in a significant change of z. However, as the input features are mapped on
to a full unit circle, this mapping results in the same complex-valued features for
real-valued features with a value of both 0 and 1. Hence, this transformation is not
unique. In addition, the multi-valued neurons map the complex-valued inputs to C
discrete outputs on the unit circle. Thus, as the number of classes (C) increases, the
number of sectors with the unit circle increases. As a result, the region of each sec-
tor (representing each class) within the unit circle decreases, increasing the chances
of misclassification. Furthermore, the output neurons of the MLMVN have multi-
ple discrete values and hence, the MLMVN classifier lacks the orthogonal decision
boundaries that are the main characteristics of complex-valued neural classifiers.

As the transformation used in the MLMVN does not perform an one-to-one map-
ping of the real-valued features onto the Complex plane, Amin et. al. [5] proposed
a phase encoded transformation to convert the real-valued features to the complex
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domain. They also developed a single layered complex-valued classifier using this
phase encoded transformation. We describe the transformation and the learning al-
gorithm of the network developed in the next section.

6.1.3 Phase Encoded Complex-Valued Neural Network
(PE-CVNN)

In PE-CVNN [5], the following phase encoded transformation is used to transform
the real-valued input features to the complex domain:

Let x j ∈ [a,b],wherea,b ∈ ℜ, then φ =
π(x j − a)

b− a
(6.6)

and z j = eiφ = cos(φ)+ isinφ (6.7)

It can be observed from Eq. (6.6) that the the transformation linearly maps the input
features from x ∈ [a,b]→ φ ∈ [0,π ].

The weighted inputs at the output layer of the PE-CVNN are given by:

zok = zR
ok + izI

ok =
m

∑
j=1

vk jz j +θk (6.8)

and the output of the network is

ŷk = fC→ℜ (6.9)

and fC→ℜ =
√
( fR(zR

ok))
2 +( fR(zI

ok))
2 (6.10)

OR fC→ℜ = ( fR(z
R
ok)− fR(z

R
ok))

2

where, fR(z
R
ok) = 1/1+ exp(−(zR

ok)) and

f ′R(z
R
ok) = fR(z

R
ok)(1− fR(z

R
ok)) (6.11)

The residual error of the network output is given as:

ek = yk − ŷk (6.12)

The PE-CVNN uses a gradient descent based learning rule with the mean squared
error criterion to update the weights of the network. The weight update rule is given
by:

Δvk j = z jΔθk

whereΔθk = Δθ R
k + iΔθ I

k (6.13)

If the activation function used in the PE-CVNN is given by Eq. (6.11), then Δθ R
k is

Δθ R
k = 2ηek

(
fR(z

R
ok)− fR(z

I
ok)

)
f ′R(z

R
ok) (6.14)

and Δθ I
k = 2ηek

(
fR(z

I
ok)− fR(z

R
ok)

)
f ′R(z

I
ok) (6.15)
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The transformation used in the PE-CVNN considers only the first two quadrants of
the Complex plane and does not fully exploit the advantages of the orthogonal de-
cision boundaries offered by the complex-valued neural networks. In addition, the
activation functions used in the PE-CVNN are similar to those used in the split-type
complex-valued neural networks, as shown in Eqs. (6.10) and (6.11). Also, the gra-
dients used in the PE-CVNN are not fully complex-valued [6] thereby resulting in a
significant loss of complex-valued information. PE-CVNN uses a gradient-descent
based batch learning algorithm that requires a significant computational effort to
approximate the decision surface.

It is noteworthy that the transformations used in MLMVN and PE-CVNN can be
used to transform the real-valued input features to the Complex domain and any of
the complex-valued learning algorithms discussed in Chapters 2-4 can be used to
solve real-valued classification problems using the transformed features. Two fac-
tors play a vital role in deciding the classification ability of the complex-valued
neural networks:

1. The transformation used to convert the real-valued input features to the Complex
domain

2. The activation function and learning algorithm used in the complex-valued neural
network.

In the next section, we discuss the modifications required to enhance the decision
making ability of FC-MLP, FC-RBF and Mc-FCRBF such that these algorithms can
be used to solve real-valued classification problems.

6.1.4 Modifications in FC-MLP, FC-RBF and Mc-FCRBF
Learning Algorithm to Solve Real-valued Classification
Problems

The learning algorithm of FC-MLP, FC-RBF and Mc-FCRBF described in Chapters
2 and 3 have been used to solve complex-valued function approximation problems
in Chapter 5. Although they can also be used to approximate the decision surface
to solve real-valued classification problems, we modify these algorithms to improve
their classification performance. In this respect, the mean squared error defined in
Eq. (3.14) is replaced with the hinge loss function and the criteria for parameter
update in Mc-FCRBF is modified to incorporate a classification measure also.

Hinge loss error function: Recently, it was shown in [7] and [8] that in real-valued
classifiers, the hinge loss function helps the classifier to estimate the posterior prob-
ability more accurately than the mean squared error function. Hence, while using
FC-MLP, FC-RBF and Mc-FCRBF to solve real-valued classification problems, we
use the hinge loss error function defined as:

et
l =

{
0 if (ytR

l )(ŷtR

l )> 0
yt

l − ŷt
l otherwise

l = 1,2, · · ·n (6.16)

where the superscript R refers to the real-part of the Complex signal.
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Criteria for parameter update: In addition to the hinge loss error function, we
modify the parameter update criteria of Mc-FCRBF to enhance its decision making
ability. While solving real-valued classification problems in the Complex domain,
it has to be ensured that the predicted class label of Mc-FCRBF (ĉt) is the same as
that of the target class label (ct ). Therefore, we have modified the parameter update
conditions to accommodate this class label information also. Accordingly, the sam-
ple learning condition of Mc-FCRBF (Eq. (3.38)) to solve real-valued classification
problems is:

If ĉt �= ct OR
(

Me
t ≥ EM

l AND φ e
t ≥ Eφ

l

)
(6.17)

Then, update the network parameters according to Eqs. (3.31), (3.32), and (3.33).
Here, ĉt is the predicted class label for the sample t defined as:

ĉt = max
l=1,2,··· ,C

real
(
ŷt

l

)
(6.18)

6.2 Circular Complex-valued Extreme Learning Machine
Classifier

In this section, a fast learning fully-complex valued classifier called ‘Circular
Complex-valued Extreme Learning Machine’ is developed to solve real-valued clas-
sification tasks.

6.2.1 Architecture of the Classifier

The circular complex-valued extreme learning machine classifier is a single hid-
den layer network with m input neurons, h hidden neurons and n output neurons,
as shown in Fig. 6.1. The neurons in the input layer employ a non-linear circular
transformation as the activation function, as shown in the inset of Fig. 6.1.

The circular transformation that transforms the real-valued input features into the
Complex domain (ℜ →C) is given by

zl = sin(axl + ibxl +αl) , l = 1,2, · · · ,m (6.19)

where a, b, αl ∈ ℜ+ are non-zero constants and xl is the input feature normalized
in [0,1]. The scaling factors a, and b, and the translational, rotational bias term αl

are randomly chosen such that 0 < a,b ≤ 1, and 0 < αl < 2π . The translational,
rotational bias term αl shifts the origin of the resultant complex-valued feature (zl)
and rotates it to any quadrant of the Complex domain.

The effect of the circular transformation for different values of the translational,
rotational bias term (αl) is shown in Fig. 6.2. It can be observed from this figure that
the randomly chosen bias terms perform the translation/rotation of the feature vector
in different quadrants of the complex-valued feature space. Therefore, the bias term
(αl , l = 1, · · · , m) associated with each input feature ensures that all the input
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Fig. 6.1 The architecture of a circular complex-valued extreme learning machine. The ex-
panded box (inset figure) shows the actual circular transformation function which maps real-
valued input feature to complex-valued feature.

features are not mapped onto the same quadrant of the Complex plane. Thus, as the
input features are well distributed in the Complex plane, the CC-ELM exploits the
orthogonal decision boundaries of the fully complex-valued neural networks more
efficiently.

The essential properties of a fully complex-valued activation function given in
[6] states that for a complex-valued non-linear function to be used as an activation
function, the function has to be analytic and bounded almost everywhere. As the
circular transformation is used as an activation function in the input layer, we need
to ensure that the transformation satisfies the essential properties of a fully complex-
valued activation function. The ‘sine’ activation function is an analytic function with
an essential singularity at ∞. The net input to the ‘sine’ function

axl + ibxl +αl = ∞ if axl +αl = ∞ or bxl = ∞ (6.20)

Since the transformation constants (a,b) and the translational/rotational bias (αl)
are restricted between (0,1] and (0,2π) respectively, the transformation becomes
unbounded only when the input feature is ∞. Since, the real-valued features are
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Fig. 6.2 Significance of translational/rotational bias term (α) in the circular transformation

normalized between [0,1], the circular transformation is analytic and bounded al-
most everywhere. Hence, the circular transformation used in the input layer of the
CC-ELM is a valid activation function.

The neurons in the hidden layer of the CC-ELM employ a fully-complex val-
ued ‘sech’ activation function (Gaussian like) as developed in [9]. The hidden layer
response (z j

h) of the CC-ELM is given by

z j
h = sech

[
σT

j

(
z− cj

)]
, j = 1,2, · · · ,h (6.21)

where σj ∈Cm is the complex-valued scaling factor of the j-th hidden neuron, c j ∈
Cm is the complex-valued center of the j-th hidden neuron and the superscript T
represents the matrix transpose operator.

The neurons in the output layer employ a linear activation function. The output
(ŷ = [ŷ1 · · · ŷn · · · ŷn]

T ) of the CC-ELM network with h hidden neurons is

ŷn =
h

∑
j=1

vk jz
j
h, k = 1,2, · · · ,n (6.22)

where wk j is the output weight connecting the j-th hidden neuron and the k-th output
neuron.

The estimated class label (ĉ) is then obtained using

ĉ = arg max
n=1,2,··· ,n

real-part of ŷk (6.23)
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6.2.2 Learning Algorithm of CC-ELM

The output of CC-ELM given in Eq. (8.17) can be written in matrix form as,

Ŷ = VH (6.24)

where V is the matrix of all output weights connecting hidden and output neurons.
The H is the response of hidden neurons for all training samples and is given as

H (V,U,Z) =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

sech
(
σσσ T

1 ‖z1 − c1‖
) · · · sech

(
σσσT

1 ‖zN − c1‖
)

...
...

...

sech
(

σσσT
j ‖z1 − c j‖

)
· · · sech

(
σσσT

j ‖zN − c j‖
)

...
...

...
sech

(
σσσ T

h ‖z1 − ch‖
) · · · sech

(
σσσT

h ‖zN − ch‖
)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

(6.25)

Note that H is h×N hidden layer output matrix. The j-th row of the H matrix
represents the hidden neuron response (z j

h) with respect to the inputs z1, · · · , zN .
In CC-ELM, the transformation constants (a, b), the translational/rotation bias

term (ααα), center (C) and scaling factor (σσσ) are chosen randomly and the output
weights V are estimated by the least squares method according to:

V = YH† (6.26)

where H† is the generalized Moore-Penrose pseudo-inverse [10] of the hidden layer
output matrix and Y is the complex-valued coded class label.

In short, the CC-ELM algorithm can be summarized as:

• For a given training set (X , Y ), select the appropriate number of hidden neurons
h.

• Randomly select 0 < a, b, 0 < αl < 2π , the neuron scaling factor (σσσ) and the
neuron centers (C).

• Then calculate the output weights V analytically: V = YH†.

Performance of the CC-ELM is influenced by the selection of appropriate number
of hidden neurons. Recently, an incremental constructive method to determine the
appropriate number of hidden neurons for the C-ELM has been presented in [11]. In
this paper, we use a simple neuron incremental-decremental strategy, similar to the
one presented in [12] for real-valued networks. The following steps are followed to
select the appropriate number of hidden neurons for the CC-ELM network:

Step 1. Select a network with a minimum configuration (h = m+ n).
Step 2. Select the input weights randomly and compute the output weights analyti-

cally.
Step 3. Use leave-one cross-validation to determine training/validation accuracy

from the training data.
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Step 4. Increase h until the validation accuracy improves and return to Step 2.
Step 5. If the validation accuracy decreases as h increases, then stop.

From this section, it can be observed that the two important properties of the CC-
ELM classifier are that:

• The CC-ELM classifier uses a unique circular transformation that makes an one-
to-one mapping while transforming the real-valued input features to the Complex
domain (ℜ →C).

• The CC-ELM classifier requires lesser computational effort than other complex-
valued classifiers as the weights are computed analytically.

6.2.3 Orthogonal Decision Boundaries in CC-ELM

In this section, we show that the three layered CC-ELM with the fully complex-
valued sech activation function at the hidden layer exhibits orthogonal decision
boundaries. Since CC-ELM maps the complex-valued input features to the higher
dimensional Complex plane in the hidden layer randomly, we prove the existence
of orthogonal decision boundaries in the output neuron with respect to the hidden
layer output. Next, we also show that the decision boundaries formed by the real and
imaginary parts of the hidden layer response with respect to the input are orthogonal
to each other.

6.2.4 Case (i): Orthogonality of Decision Boundaries in the
Output Layer

The responses of the kth output neuron can be written as:

ŷk =
h

∑
j=1

vk jz
j
h; k = 1, · · · ,n (6.27)

=
h

∑
j=1

(
vR

k j + ivI
k j

)(
z jR

h + iz jI

h

)
(6.28)

where the superscripts R and I represents the real and imaginary parts of the
complex-valued signals, respectively. Therefore,

ŷk = ŷR
k + iŷI

k =
h

∑
j=1

(
vR

k jz
jR

h − vI
k jz

jI

h

)
+ i

(
vR

k jz
jI

h + vI
k jz

jR

h

)
(6.29)
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From the above equation, we can see that the real-part and the imaginary-part of the
kth output neuron forms two decision boundaries with respect to the hidden layer
output (zh). The two decision boundaries are

ŷR
k =

h

∑
j=1

(
vR

k jz
jR

h − vI
k jz

jI

h

)
→ SR (6.30)

and ŷI
k =

h

∑
j=1

(
vR

k jz
jI

h + vI
n jz

jR

h

)
→ SI (6.31)

The real-part decision boundary SR classifies the hidden layer output zh ∈ Ch into
two decision regions

{
zh ∈ C

h, | ŷR
k ≥ SR

}
and

{
zh ∈ C

h, | ŷR
k < SR

}
(6.32)

Similarly, the imaginary-part decision boundary SI classifies the hidden layer output
zh ∈ C

h into two decision regions
{

zh ∈ C
h, | ŷI

k ≥ SI
}

and
{

zh ∈ C
h, | ŷI

k < SI
}

(6.33)

The normal vector (QR(hR,hI) to the real-part of the decision boundary (SR) and the
normal vector (QI(hR,hI) to the imaginary-part of the decision boundary (SI) are:

QR(zR
h ,z

I
h) =

(
∂ ŷR

k

∂ z1R

h

· · · ∂ ŷR
k

∂ zhR

h

∂ ŷR
k

∂ z1I

h

· · · ∂ ŷR
k

∂ zhI

h

)

=
(
vR

k1 · · · vR
kh − vI

k1 · · · − vI
kh

)
(6.34)

QI(zR
h ,z

I
h) =

(
∂ ŷI

k

∂ z1R

h

· · · ∂ ŷI
k

∂ zhR

h

∂ ŷI
k

∂ z1I

h

· · · ∂ ŷI
k

∂ zhI

h

)

=
(
vI

k1 · · · vI
kh vR

k1 · · · vR
kh

)
(6.35)

The decision boundaries (SR and SI) of the kth output neuron are orthogonal i f f the
dot product of their normal vectors is zero.

QR(zR
h ,z

I
h).Q

I(zR
h ,z

I
h) =

(
cR

k1.v
I
k1 + · · ·+ vR

kh.v
I
kh

−vI
k1.v

R
k1 + · · ·− vI

kh.v
R
kh

)
(6.36)

= 0. (6.37)

From the above results, we can say that any output neuron in the CC-ELM has two
decision boundaries with respect to the hidden neuron output and they are orthogo-
nal to each other.
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6.2.5 Case (ii): Orthogonality of Decision Boundaries in the
Hidden Layer

The response of the jth neuron in the hidden layer can be written as

zh j = zR
h j
+ izI

h j
= sech(O j),

where O j = σσσT
j (z− c j) , j = 1,2, · · · ,h (6.38)

O j = OR
j + iOI

j =
(
σσσR

j + iσσσ I
j

)T [(
zR − cR

j

)
+ i

(
zI − cI

j

)]
(6.39)

=
[
σσσR

j

(
zR − cR

j

)−σσσ I
j

(
zI − cI

j

)]
+ i

[
σσσR

j

(
zI − cI

j

)
+σσσ I

j

(
zR − cR

j

)]

(6.40)

Using trigonometric and hyperbolic trigonometric definitions, the sech function can
be written as:

sech(OR
j + iOI

j) =
2
(

cos(OI
j cosh(OR

j )− isin(OI
j)sinh(OR

j )
)

cos(2OI
j)+ cosh(2OI

j)
(6.41)

The two decision boundaries formed by the real and imaginary parts of the jth hid-
den neuron response with respect to the inputs are:

zR
h j

=
2
(

cos(OI
j cosh(OR

j )
)

cos(2OI
j)+ cosh(2OI

j)
→ SR (6.42)

zI
h j

=
2
(
−isin(OI

j)sinh(OR
j )
)

cos(2OI
j)+ cosh(2OI

j)
→ SI (6.43)

Note that here the decision boundaries are shown with respect to the net input to the
hidden neuron O j, which is a linear function of actual input z.

Hence, the complex-valued input z ∈ Cm are classified into two decision regions
with respect to the real and imaginary parts (SR and SI)

{
z ∈C

m, | zR
h j
≥ SR

}
and

{
z ∈C

m, | zR
h j
< SR

}
(6.44)

{
z ∈C

m, | zI
h j
≥ SI

}
and

{
z ∈ C

m, | zI
h j
< SI

}
(6.45)

The normal vectors to the decision boundaries formed by the hidden neuron (given
by Eqs. (6.42) and (6.43)) with respect to the input (z) are given by:

QR
h (z

R,zI) =

(
∂ zR

h j

∂ zR
1
· · ·

∂ zR
h j

∂ zR
k

· · ·
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∂ zR
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∂ zR
h j

∂ zI
1
· · ·

∂ zR
h j

∂ zI
k

· · ·
∂ zR

h j

∂ zI
m

)

(6.46)

QI
h(z

R,zI) =

(
∂ zI

h j

∂ zR
1

· · ·
∂ zI

h j

∂ zR
k

· · ·
∂ zI

h j

∂ zR
m

∂ zI
h j

∂ zI
1

· · ·
∂ zI

h j

∂ zI
k

· · ·
∂ zI

h j

∂ zI
m

)

(6.47)
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The decision boundaries are orthogonal to each other i f f the dot product of these
normal vectors is zero. The dot product of the normal vectors is given by:

QR
h (z

R,zI).QI
h(z

R,zI) =
m

∑
k=1

(
∂ zR

h j

∂ zR
k

.
∂ zI

h j

∂ zR
k

)

+

(
∂ zR

h j

∂ zI
k

.
∂ zI

h j

∂ zI
k

)

(6.48)
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∂OI
j
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=
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∂OR
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∂ z jR

h

∂OI
j
σ I

jk (6.49)
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∂OI
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jk (6.50)
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=
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+
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jk (6.51)

∂ z jI

h
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=
∂ z jI

h

∂OR
j

∂OR
j

∂ zI
k

+
∂ z jI

h

∂OI
j

∂OI
j

∂ zI
k

=
∂ z jI

h

∂OR
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(−σ I
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j
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Using the laws of differentiation, the derivative of the jth hidden layer response with
respect to its net input

∂hR
j

∂OR
j
=

sinh(OR
j )cos(3OI

j)− sinh(3OR
j )cos(OI

j)
(

cos(2OI
j)+ cosh(2OR

j )
)2 ; (6.53)

∂hI
j

∂OI
j
=

sinh(OR
j )cos(3OI

j)− sinh(3OR
j )cos(OI

j)
(

cos(2OI
j)+ cosh(2OR

j )
)2 (6.54)

∂hR
j

∂OI
j
=

cosh(OR
j )sin(3OI

j)− cosh(3OR
j )sin(OI

j)
(

cos(2OI
j)+ cosh(2OR

j )
)2 (6.55)

∂hI
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j
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cosh(3OR
j )sin(OI

j)− cosh(OR
j )sin(3OI
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(

cos(2OI
j)+ cosh(2OR

j )
)2 (6.56)
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From Eqs. (6.53)-(6.56), it can be observed that

∂ z jR

h

∂OR
j
=

∂ z jI

h

∂OI
j

(6.57)

and
∂ z jR

h

∂OI
j
=− ∂ z jI

h

∂OR
j

(6.58)

Hence, it is evident that the sech activation function satisfies the Cauchy Riemann
equations.

Substituting the Cauchy Riemann Equations in Eqs. (6.49)-(6.52), and obtaining
the dot product of the normal vectors, we have,
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(6.59)

= 0. (6.60)

Thus, the decision boundaries formed by the real and imaginary parts of the hidden
layer output are orthogonal. It is also clear that this fact is also valid for any fully
complex-valued activation function that satisfies the Cauchy Riemann equations.

Based on the above results, we state the following lemma:

Lemma 6.1. The decision boundaries formed by the real and imaginary parts of
an output/hidden neuron in a fully complex-valued network with any fully complex-
valued activation function that satisfies the Cauchy Riemann conditions are orthog-
onal to each other.

6.3 Summary

In this chapter, the various complex-valued classifiers available in the literature have
been discussed and a fast learning circular complex-valued extreme learning ma-
chine classifier was described in detail. CC-ELM classifier uses a single hidden
layer network with a non-linear input/hidden layer and a linear output layer. At the
input layer, a unique nonlinear circular transformation is used as the activation func-
tion to make an one-to-one mapping of the real-valued input features to the Com-
plex domain. At the hidden layer, the complex-valued input features are mapped
on to a higher dimensional Complex plane using the ‘sech’ activation function. In
CC-ELM, the input parameters and the parameters of the hidden layer are chosen
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randomly and the output weights are calculated analytically, requiring lesser com-
putational effort to perform classification tasks. The presence of orthogonal decision
boundaries in CC-ELM are proved.
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