
Chapter 4
Fully Complex-valued Relaxation Networks

The complex-valued learning algorithms described in the chapters 2 and 3 use a
real-valued mean square error function as the performance measure which explicitly
minimizes only the magnitude error. In addition, the mean squared error function is
non-analytic in the Complex domain (not differentiable in an open set). Therefore,
pseudo-gradients, or isomorphic C1 → ℜ2 transformations are generally used in the
derivation of the learning algorithms. Use of a mean squared error function which
is only an explicit representation of the magnitude error and the the use of pseudo-
gradients will affect the phase approximation capabilities of these algorithms. For
better phase approximation, one needs to use an error function which simultane-
ously minimizes both the magnitude and phase errors [1]. But if such functions are
inseparable into their real and imaginary parts, then the pseudo gradients are in-
valid and one needs to identify a mathematical tool to derive the gradients of such
functions. Hence, there is a need for the development of a fully complex-valued
neural network and its learning algorithm using the fully complex-valued gradients
to overcome the above-mentioned issues.

In this chapter, we present a fully complex-valued single hidden layer neural net-
work with a Gaussian like activation function in the hidden layer and an exponential
activation function in the output layer. For a given training data set and number of
hidden neurons, the network parameters are analytically estimated using a projec-
tion based learning algorithm. The learning algorithm employs a nonlinear logarith-
mic error function as the energy function which explicitly contains both the magni-
tude and phase errors. The problem of finding the optimal weights is formulated as a
nonlinear programming problem. The problem is solved with the help of Wirtinger
calculus [2]. Wirtinger calculus provides a framework for determining gradients of
a non-analytic nonlinear complex (energy) function. The projection based learning
algorithm converts the nonlinear programming problem into solving a system of
linear equations and provides a solution for the optimal weights corresponding to
the minimum energy point of the energy function. This is similar to the relaxation
process, where the system always returns to a minimum energy state from a given
initial condition [3]. Therefore, we refer to the proposed complex-valued network
as a, ‘Fully Complex-valued Relaxation Network (FCRN)’. The projection based
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74 4 FCRN

learning algorithm of FCRN requires minimal computational effort to approximate
any desired function with higher accuracy. In the next sections, we present FCRN
and its learning algorithm in detail.

4.1 Fully Complex-valued Relaxation Networks

Complex-valued neural networks are generally employed to handle applications
where the signals involved are inherently complex-valued. An efficient complex-
valued neural network is required to preserve the nonlinear transformations (both in
magnitude and phase) between the complex-valued inputs and their corresponding
targets with a minimal computational effort. In this section, we present one such
complex-valued neural network and its "projection based learning" algorithm. For
a given training data set and the number of hidden neurons, the network parameters
are estimated as a solution to a nonlinear programming problem using Wirtinger
calculus. The projection based learning algorithm converts the nonlinear program-
ming problem into a system of linear equations and the solution of the same results
in computing the optimal output weights. The system of linear equations is derived
from a nonlinear logarithmic energy function that contains both the magnitude and
phase errors explicitly and the optimal output weights are obtained corresponding
to the minimum energy point of this energy function. This process is analogous to
a relaxation process, where a system always returns to the minimum energy state
from any given initial condition. Hence, the proposed complex-valued neural net-
work is referred to as a, ‘Fully Complex-valued Relaxation Network (FCRN)’. The
architecture and the learning algorithm of FCRN is described in detail below.

4.1.1 FCRN Architecture

The fully complex-valued relaxation network is a single hidden layer complex-
valued neural network having a linear input layer with m neurons, a non-linear hid-
den layer with h neurons and a non-linear output layer with n neurons, as shown in
Fig. 4.1. The neurons in the hidden layer employ a hyperbolic secant function (sech)
whose magnitude response is similar to that of the real-valued Gaussian activation
function.

For a given m-dimensional input zt = [zt
1, · · · ,zt

m]
T ∈Cm, the response of the k-th

hidden neuron (zkt

h ) is given by:

zkt

h = sech
(
σσσT

k

(
zt − ck

))
; k = 1, · · · ,h (4.1)

where σσσ k = [σ1
k , · · · ,σm

k ]T ∈ Cm is the scaling factor of the k-th hidden neuron,
ck = [c1

k , · · · ,cm
k ]

T ∈ Cm is the center of the k-th hidden neuron, the superscript T
represents the transpose operator, and sech(z) = 2

ez+e−z .
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Fig. 4.1 The architecture of FCRN

The n-dimensional output of the network is given by ŷt = [ŷt
1, · · · , ŷt

n]
T ∈ C

n.
The neurons in the output layer employ an exponential activation function and the
response of the l-th output neuron is:

ŷt
l = exp

(
K

∑
k=1

vlkzkt

h

)

; l = 1, · · · ,n (4.2)

where vlk ∈ C is the weight connecting the k-th hidden neuron and the l-th output
neuron.

Given a training data set {(z1,y1
)
, · · · ,(zt ,yt) , · · · ,(zN ,yN

)}, with zt ∈ Cm is
the m-dimensional input and yt ∈ Cn is the n-dimensional target of the t-th training
sample. The main objective of the fully complex-valued relaxation network is to
estimate the free parameters of the network (C, σσσ and V) such that the predicted
output (ŷ) is as close as possible to the target output (y), with a given number of hid-
den neurons (h). In other words, FCRN is required to approximate the underlying
transformation function (F : zt → yt) as accurately as possible. Most of the learning
algorithms reported in the literature use the mean square error deviation between
actual (yt) and predicted output (ŷt) as the performance criterion, which is only an
explicit minimization of the magnitude of error. However, accurate estimation of
both magnitude and phase of the signals are important in many real-world appli-
cations involving complex-valued signals [4]. In this chapter, we use a nonlinear
logarithmic error function as the energy function with an explicit representation of
both the magnitude and phase of the actual and predicted outputs.
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4.1.2 Nonlinear Logarithmic Energy Function

The actual output (yt) of the t-th training sample is represented in polar form as

yt
l = rt

l exp
(
iφ t

l

)
; l = 1,2, · · · ,n (4.3)

where rt
l = ||yt

l || is the magnitude of yt
l and φ t

l = arctan
(

Im(yt
l)

Re(yt
l)

)
1 is the phase of yt

l .
2

Similarly, the predicted output (ŷt) of t-th training sample is represented in polar
form as

ŷt
l = r̂t

l exp
(

iφ̂ t
l

)
; l = 1,2, · · · ,n (4.4)

where r̂t
l = ||ŷt

l || is the estimated magnitude and φ̂ t
l = arctan

(
Im(ŷt

l)

Re(ŷt
l)

)
is the esti-

mated phase.
The energy function Jt should be a monotonically decreasing function that rep-

resents the magnitude and phase quantities explicitly, i.e., Jt → 0 when r̂t → rt and

φ̂φφ
t → φφφ t .
We propose an energy function that uses a logarithmic function for explicit rep-

resentation of both the magnitude and phase of complex signals and is of the form

Jt =
n

∑
l=1

(ln( ŷt
l )−ln(yt

l ))(ln( ŷt
l )−ln(yt

l )) (4.5)

where (.) is the conjugate of the complex signal (.) and ln(.) represents the natural
logarithmic function.

Substituting the polar representation of actual (yt
l) and predicted output (ŷt

l), the
above equation reduces to

Jt =
n

∑
l=1

(

ln

(
r̂t

l

rt
l

)2

+
(

φ̂ t
l −φ t

l

)2
)

(4.6)

It can be observed from Eq. (4.6) that the logarithmic energy function represents the
magnitude and phase quantities explicitly and Jt tends to 0, when ŷt

l → yt
l . It must

also be noted that the energy function is second order continuously differentiable
with respect to the network parameters.

For N training samples, the overall energy is defined as

J(V) =
1
2

N

∑
t=1

Jt

=
1
2

N

∑
t=1

n

∑
l=1

(

ln

(
r̂t

l

rt
l

)2

+
(

φ̂ t
l −φ t

l

)2
)

(4.7)

1 yt
l = Re(yt

l)+ i Im(yt
l), where Re(.) and Im(.) refers to the real and imaginary parts of a

complex number, respectively
2 Note that i =

√−1 is the Complex operator.
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In the next section, we derive the projection based learning algorithm of FCRN such
that J(W) is minimum.

4.1.3 A Projection Based Learning Algorithm for FCRN

For a given initial condition (i.e., N training samples, h hidden neurons), the pro-
jection based learning algorithm finds the network parameters for which the energy
function is minimum, i.e., the network achieves the minimum energy point or relax-
ation point of the energy function.

The hidden neuron centers (ck) and scaling factors (σσσ k) of FCRN are chosen as
random constants and the optimal output weights (V∗ ∈ Cn×h) are estimated such
that the total energy reaches its minimum.

V∗ := arg min
V∈Cn×h

J(V) (4.8)

The problem of estimating the optimal weight is converted to an unconstrained min-
imization problem (J(V) : Cn×h → ℜ) involving minimization of the energy func-
tion J(V). Let V∗ ∈ C

n×h, then V∗ is the optimal output weight corresponding to
the minimum of the energy function if J(V∗) ≤ J(V) ∀ V ∈ Cn×h. The optimal V∗
corresponding to the minimum energy point of the energy function (J(V∗)) is ob-
tained by equating the first order partial derivative of J(V) with respect to the output
weight to zero, i.e.,

∂J(V)

∂vl p
= 0; l = 1, · · · ,n; p = 1, · · · ,h (4.9)

For convenience, we rewrite the energy function as

J(V) =
1
2

N

∑
t=1

n

∑
l=1

(ln( ŷt
l )−ln(yt

l )) (ln( ŷt
l )−ln(yt

l )) (4.10)

By substituting the predicted output (ŷt) from Eq. (8.17) in Eq. (4.10), the energy
function reduces to

J(V) =
1
2

N

∑
t=1

n

∑
l=1

(
K

∑
k=1

vlkzkt

h − ln yt
l

)(
K

∑
k=1

vlkzkt

h − ln yt
l

)

(4.11)

where zkt

h is the response of the k-th hidden neuron for t-th training sample.
Since the energy function is a non-analytic, non-linear real-valued function of the

complex-valued output weights and is inseparable into its real and imaginary parts,
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we use Wirtinger calculus1 [2] to obtain the first order partial derivatives of the
energy function with respect to the complex-valued output weight (vl p). Wirtinger
calculus eliminates the stringent conditions of analyticity for the Complex differ-
entiability imposed by the Cauchy Riemann conditions. They define the Complex
differentiability of almost all functions of interest, including the energy function
that maps (C→ ℜ). Although the derivatives defined by Wirtinger calculus do not
satisfy the Cauchy Riemann equations, they obey all the rules of calculus (like dif-
ferentiation of products, chain rule etc.).

Using the Wirtinger calculus and the commutative property of the Complex con-
jugate operator2, the first order partial derivative of energy function with respect to
wl p (l = 1,2 · · · ,n and p = 1,2, · · · ,h) is given as:

∂J(W)

∂vl p
=

N

∑
t=1

zpt

h

[
h

∑
k=1

vlkzkt

h − ln
(
yt

l

)
]

(4.15)

Equating the first partial derivative to zero and re-arranging the Eq. (4.15), we get

h

∑
k=1

vlk

N

∑
t=1

zpt

h zh
kt
=

N

∑
t=1

ln
(
yt

l

)
zpt

h (4.16)

Eq. (4.16) can be written as

h

∑
k=1

vlkApk = Bl p; p = 1, · · · ,h; l = 1, · · · ,n (4.17)

which can be represented in matrix form as

1 Let fR(zc,zc) be a real-valued function of a complex-valued variable zc = xr + iyr . Then,
the following pair of derivatives are defined by the Wirtinger calculus:

R-derivative of fR(zc,zc) =
∂ fR

∂ zc
|zc=constant (4.12)

R-derivative of fR(z,zc) =
∂ fR

∂ zc
|zc=constant (4.13)

It is proved in [5] that the R−derivative (Eq. (4.12)) and the R−derivative (Eq. (4.13))
can be equivalently written as

∂ fR

∂ zc
=

1
2

(
∂ fR

∂xr
− i

∂ fR

∂yr

)

∂ fR

∂ zc
=

1
2

(
∂ fR

∂xr
+ i

∂ fR

∂yr

)
(4.14)

where the partial derivatives with respect to xr and yr are true partial derivatives of the
function fR(zc) = fR(xr,yr), which is differentiable with respect to the xr and yr.

2 za + zb = za + zb and ln(za) = ln(za)
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VA = B (4.18)

where the projection matrix A ∈ Ch×h is given by

Apk =
N

∑
t=1

zpt

h zh
kt

; p = 1, · · · ,h; k = 1, · · · ,h (4.19)

and the output matrix B ∈ Cn×h is

Bl p =
N

∑
t=1

ln ȳt
lz

kt

h ; l = 1, · · · ,n; p = 1, · · · ,h (4.20)

Eq. (4.17) gives the set of n×h linear equations with n×h unknown output weights
V. Note that the projection matrix is always a square matrix of order h× h.

We state the following propositions to find the closed-form solution for these set
of linear equations.

Proposition 4.1. The responses of the neurons in the hidden layer are unique. i.e.

∀ zt , when k �= p, zkt

h �= zpt

h ; k, p = 1,2 · · ·h, t = 1, · · ·h.

Proof. Let us assume that

For a given zt ,zpt

h = zkt

h ; k �= p (4.21)

This assumption is valid if and only if

sech
(
σσσT

p (z
t − cp)

)
= sech

(
σσσT

k (z
t − ck)

)

OR σσσT
p (z

t − cp) = σσσT
k (z

t − ck) (4.22)

The pair of parameters ck j and cp j (that are elements of the vectors ck and cp, re-
spectively), σk j and σp j (that are elements of the vectors σσσ k and σσσ p, respectively)
are uncorrelated random constants chosen from a ball of radius 1, i.e.,

||ck j ||< 1; ||σk j||< 1; k = 1, · · · ,h; j = 1, · · · ,m (4.23)

Therefore, ck �= cp and σσσ k �= σσσ p for any zt (the t-th random input vector of the
training data with N samples). Hence, the response of the k-th and p-th hidden

neurons are not equal, i.e., zpt

h �= zkt

h ∀ zt ; t = 1, · · · ,N.

Proposition 4.2. The responses of the neurons in the hidden layer are non-zero. i.e
∀ z, zkt

h �= 0; k = 1,2 · · ·h.

Proof. Let us assume that the hidden layer response of the k-th hidden neuron is 0,
i.e.,

zkt

h = 0 (4.24)
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This is possible if and only if

cT
k (z

t −σσσ k) = ∞
z → ∞, or ck → ∞, or σσσ k → ∞ (4.25)

As stated in Eq. (4.23), the hidden layer parameters are random constants chosen
from within a circle of radius 1. The input variables zt are also normalized in a
circle of radius 1 such that

|z j|< 1; j = 1, · · · ,m (4.26)

Hence, the assumption in Eq. (4.24) is not valid for all zt . Thus, the responses of the
neurons in the hidden layer zkt

h �= 0 ∀ zt .

Using the Proposition 4.1 and Proposition 4.2, we state the following theorem.

Theorem 4.1. The projection matrix A is a positive definite Hermitian matrix, and
hence, it is invertible.

Proof. From the definition of the projection matrix A given in Eq. (4.19),

Apk =
N

∑
t=1

zpt

h zh
kt

; p = 1, · · · ,h; k = 1, · · · ,h (4.27)

it can be derived that the diagonal elements of the A for the t-th sample is:

At
kk = zkt

h zh
kt

; k = 1, · · · ,h (4.28)

From Proposition 4.2, the responses of the hidden neurons are non-zero. Hence,
At

kk �= 0. Therefore Eq. (4.28) can be written as

At
kk = |zkt

h |2 > 0 (4.29)

Hence the diagonal elements of the projection matrix are real, and positive, i.e.,
At

kk ∈ ℜ > 0. This can be extended for the entire training sample set as:

Akk =
N

∑
t=1

At
kk ∈ ℜ > 0 (4.30)

The off-diagonal elements of the projection matrix (A) for the t-th sample is:

At
k j = zkt

h zh
jt and At

jk = z jt

h zh
kt

(4.31)

=⇒ At
k j = A

t
jk (4.32)

Using the commutative property of the complex conjugate operator, Eq. (4.31) can
be extended for all the N samples as:
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Ak j =
N

∑
t=1

At
k j =

N

∑
t=1

A jk = A jk (4.33)

From Eqs. 4.30 and 4.33, it can be inferred that the projection matrix A is a Hermi-
tian matrix.

A Hermitian matrix is positive definite iff for any q �= 0, qHAq > 0. Let us con-
sider an unit basis vector q1 ∈ ℜK×1 such that q11 = 1 and q12 · · ·q1K = 0, i.e.,
q1 = [1 · · ·0 · · ·0 · · ·0]T . Therefore,

qH
1 Aq1 = A11 (4.34)

In Eq. (4.30), it was shown that k = 1, · · · ,h,Akk ∈ ℜ > 0. Therefore,

A11 ∈ ℜ > 0 =⇒ qH
1 Aq1 > 0 (4.35)

Similarly, for an unit basis vector qk = [0 · · ·1 · · ·0]T , the product qH
k Aqk is given by

qH
k Aqk = Akk > 0; k = 1, · · · ,h (4.36)

Let p ∈ Ch be the linear transformed sum of h such unit basis vectors, i.e., p =
q1t1 + · · ·+qktk + · · ·+qhth, where tk ∈ C is the transformation constant. Then,

pHAp =
h

∑
k=1

(qktk)
H A

h

∑
k=1

(qktk)

=
h

∑
k=1

|tk|2
(
qH

k Aqk
)

=
h

∑
k=1

|tk|2Akk (4.37)

As shown in Eq. (4.30), Akk ∈ ℜ > 0. Also, that |tk|2 ∈ ℜ > 0 is evident. Hence,

|tk|2Akk ∈ ℜ > 0 ∀ k

=⇒
h

∑
k=1

|tk|2Akk ∈ ℜ > 0 (4.38)

Thus, the projection matrix A is positive definite, and is hence, invertible.

The solution for V obtained as a solution to the set of equations, given in Eq. (4.18)
is minimum, if ∂ 2J

∂vl p
2 > 0. The second derivative of the energy function (J) with

respect to the output weights is given by,

∂ 2J(V)

∂vl p
2 =

N

∑
t=1

zpt

h zh
kt

=
N

∑
t=1

|zpt

h |2 > 0 (4.39)
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As the second derivative of the energy function J(V) is positive, the following ob-
servations can be made from Eq. (4.39):

1. The function J is a convex function.
2. The output weight V ∗ obtained as a solution to the set of linear equations (Eq.

(4.18)) is the weight corresponding to the minimum energy point of the energy
function (J).

Using the Theorem 1, the solution for the system of equations in Eq. (4.18) can be
determined as follows:

V
∗
= BA−1 (4.40)

Applying the commutative law of multiplication of complex-valued conjugates,

V∗ = B A
−1

(4.41)

Thus the estimated output weights (V∗) corresponds to the minimum energy point
of the energy function.

The projection based learning algorithm of FCRN can be summarized as:
Given the training data set:

{
(z1,y1), ...(zt ,yt), ...,(zN ,yN)

}

Step 1: Choose the number of hidden neurons: h and the random hidden layer pa-
rameters: ck,σσσ k; k = 1, · · · ,h
Step 1: Compute the hidden layer responses ht

k using

zkt

h = sech
(
σσσT

k

(
zt − ck

))
; k = 1, · · · ,h (4.42)

Step 2: Compute the projection matrix A using

Apk =
N

∑
t=1

zpt

h zh
kt

; p,k = 1, · · · ,h (4.43)

Step 2: Compute the output matrix B using

Bl p =
N

∑
t=1

ln
(
ȳt

l

)
zpt

h ; l = 1, · · · ,n; p = 1, · · · ,h (4.44)

Step 3: Compute the optimum output weights using

W∗ = B A
−1

(4.45)

4.2 Summary

In this chapter, we have presented a projection based learning algorithm for a fully
complex-valued relaxation network. For a given set of hidden layer neuron and
their associated parameters, the projection based learning algorithm determines the
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output weights corresponding to the minimum energy point of an energy function
which nonlinear, logarithmic and uses an explicit representation of both the magni-
tude and phase of the target and the predicted outputs. Using the Wirtinger calculus,
the output weights of FCRN are determined as a solution to a nonlinear program-
ming problem. The projection based learning algorithm computes the optimal output
weights by converting the nonlinear programming problem to a problem of solving
a set of linear equations. The output weights thus obtained are optimum and the
training time required for learning is minimum.

In the next chapter, we evaluate the performances of the algorithms discussed
in Chapters 2-4: FC-MLP, IC-MLP, FC-RBF, Mc-FCRBF and FCRN on a set of
complex-valued function approximation problems.
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