
Chapter 1
Introduction

Signals occurring in applications like medical imaging and telecommunications are
inherently complex-valued, and processing them in their natural form preserves the
physical characteristics of these signals. Therefore, there is a widespread research
interest in developing efficient complex-valued neural networks along with their
learning algorithms. However, operating in the Complex domain presents new chal-
lenges; foremost among them being the choice of an appropriate complex-valued ac-
tivation function. Basically, an activation function for a neural network is required to
be nonlinear, bounded and differentiable in every point on the considered plane [1].
This implies that in the Complex domain, the function has to be nonlinear, bounded
and entire. However, Liouville’s theorem states that an entire and bounded func-
tion in the Complex domain is a constant (function) [2]. As neither the analyticity
and boundedness can be compromised, nor is a constant function acceptable as an
activation function as it cannot project the input space to a non-linear higher dimen-
sional space, choices for activation functions for complex-valued neural network are
limited. In this chapter, the different complex-valued neural networks existing in the
literature are discussed in detail, along with their limitations.

Complex-valued neural networks can be broadly classified into different
categories as shown below:

• Nature of Complex-valued Neural Networks

– Split complex-valued neural network
– Fully complex-valued neural network

• Type of Learning

– Supervised learning
– Unsupervised learning
– Reinforcement learning

• Mode of Learning

– Batch learning
– Sequential learning

S. Suresh et al.: Supervised Learning with Complex-valued Neural Networks, SCI 421, pp. 1–29.
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2 1 Introduction

• Applications

– Array signal processing
– Wireless communication: QAM equalization
– Memories
– Real-valued classification and other applications

1.1 Nature of Complex-valued Neural Networks

Based on the nature of signals (i.e., the inputs signals/features, the output sig-
nals/variables and the weight parameters), which are real-valued or complex-valued,
the complex-valued neural networks are classified into split complex-valued neural
networks and fully complex-valued neural networks.

1.1.1 Split Complex-valued Neural Network

Initially, split complex-valued networks [3] were used to operate on complex-valued
signals. The split complex-valued networks are further divided into two types based
on the nature of weights, namely, split complex networks with real-valued weights
and real-valued activation functions and split complex networks with complex-
valued weights and real-valued activation functions.

1.1.1.1 Real-Valued Weights and Real-Valued Activation Functions

The neural network architecture is similar to the classical Multi-Layer Percep-
tron (MLP) network with the real-valued back propagation algorithm. Here, the
complex-valued inputs and targets are split into two real-valued quantities ( the real
and imaginary components ), based on either a rectangular (real-imaginary) or polar
(magnitude-phase) coordinate system. For example, two complex-valued inputs and
one complex-valued output problem is converted into four real-valued inputs and
two real-valued outputs problem such as:
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where z1R and z1I are the real and imaginary parts of the complex-valued signal
z1 and r1 and φ1 are its magnitude and phase components, respectively. Similarly,
z2R, z2I , r2 and φ2 are the real part, imaginary part, magnitude and phase of the
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complex-valued signal z2. The input and output weights of such a network are also
real-valued. The architecture of a such split complex-valued multi-layer perceptron
network with a single hidden layer is shown in Fig. 1.1.
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Fig. 1.1 Architecture of a Split Complex-valued Multi-Layer Perceptron Network

In the figure,

• x∈R2m = [x1, x2, · · · , x2m] = [z1R, z1I , · · · zmR, zmI ]
T are the real-valued inputs.

• W 0 ∈ Rh×2m =

⎡

⎢
⎣

w0
11 · · · w0

12m
...

w0
h1 · · · w0

h2m

⎤

⎥
⎦ are the real-valued weights connecting the

input layer and hidden layer.
• yh ∈ Rh = [y1

h, y2
h, · · · , yh

h]
T are the real-valued response of the hidden neurons

given by yk
h = σ(∑2m

j=1 wk jx j); σ(.) is a unipolar or bipolar sigmoidal activation
function.
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• W 1 ∈ R2n×h =

⎡

⎢
⎣

w1
11 · · · w1

12m
...

w1
h1 · · · w1

h2m

⎤

⎥
⎦ are the real-valued weights connecting the

hidden layer and output layer.
• ô ∈ R2n = [ô1, · · · , ô2n]

T are the real-valued outputs of the network. The
complex-valued predicted output of a split complex-valued multi-layer percep-
tron is reconstructed as ŷ1 = ô1 + iô2.

Hence, it can be observed that the network is in fact an MLP network operating
on real-valued signals. As each complex-valued signal is split into two real-valued
signals, the number of neurons in the input and output layers are twice the number of
inputs and outputs (of the function to be approximated). This results in an increased
network size and hence, more parameters to be estimated. Also, irrespective of the
kind of splitting the complex-valued signal, real-valued gradients are used to update
the network parameters of such a split complex-valued network. These real-valued
gradients do not reflect the true complex-valued gradient, as stated by Kim and Adali
[4]. Hence, approximation using the split complex-valued neural networks results
in inaccurate approximations and introduces phase distortion in the complex-valued
function that is approximated. Moreover, from the sensitivity analysis on the split
complex-valued networks presented by Yang et al. [5] and from the convergence
study on split complex-valued networks presented by Zhang et al. [6], it can be
observed that the convergence of split complex-valued network with real-valued
weights depends on proper initialization and the choice of the learning rate [7].

1.1.1.2 Complex-Valued Weights and Real-Valued Activation Functions

To overcome the problem of phase distortions due to the splitting of complex-valued
signal, complex-valued weights with real-valued activation functions have been pre-
sented by Deng et al. [8, 9] and Benvenuto et al., [10]. The Gaussian function that
maps the Complex domain into the Real domain, f : Cn → R is used as the basis of
the activation function in these networks. Hence, these networks also use real-valued
activation functions and the response of the hidden layer is real-valued. In [8, 10],
the product of complex-valued error and its conjugate is used to update the weights
during error-correction learning. As the Real part of error is used to update the Real
part of the free parameters, and Imaginary part of error to update Imaginary part of
the free parameters, the correlation between the real and imaginary components of
the weight and error is lost during learning. Hence the gradients, used to update the
parameters during learning are not true representation of the complex-valued gradi-
ents [4]. Therefore, approximation using such a network is also not very accurate.

1.1.2 Fully Complex-valued Neural Networks

The fully complex-valued network with a fully complex-valued activation function
is capable of handling complex-valued inputs and outputs efficiently. The architec-
ture of a fully complex-valued neural network is given in Fig. 1.2.
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Fig. 1.2 Architecture of a Fully Complex-valued Neural Network

In the figure,

• z ∈ Cm = [z1, z2, · · · , zm]
T are the complex-valued inputs to the network.

• V 0 ∈ Ch×m =

⎡

⎢
⎣

v0
11 · · · v0

1m
...

v0
h1 · · · v0

hm

⎤

⎥
⎦ are the complex-valued weights connecting the

input layer and hidden layer.
• zh ∈ Ch = [z1

h, z2
h, · · · , zh

h]
T are the complex-valued response of the hidden neu-

rons given by yk
h = fa(∑m

j=1 v0
k jz j; k = 1,2, · · ·h). Here, fa(.) is a complex-valued

activation function with sigmoidal characteristics.

• V 1 ∈ Cn×h =

⎡

⎢
⎣

v1
11 · · · v1

1m
...

w1
h1 · · · w1

hm

⎤

⎥
⎦ are the complex-valued weights connecting the

hidden layer and output layer.
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• ŷ ∈Cn = [ŷ1, · · · , ŷn]
T are the complex-valued outputs of the network given by

ŷl =
K

∑
k=1

v1
lkzk

h (1.3)

It can be observed from the figure that unlike the split complex-valued networks, the
fully complex-valued networks operate on the complex-valued signals, and hence
use only a fewer neurons in the input and output layers. The learning algorithm
used in the fully complex-valued neural network relies on well-defined complex-
valued gradients1. Thus, the main issue in a fully complex-valued neural network
is the proper selection of the complex-valued activation function and the compu-
tation of its derivatives. For the activation function selection, the complex-valued
function should satisfy the following essential properties stated by Georgiou and
Koutsougeras in [12] :

• fa(z) = fa(x + iy) = u(x,y) + iv(x,y). u(x,y) and v(x,y) should be non-
linear and bounded in x and y.

• The partial derivatives ∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y exist and are bounded.

• fa(z) is not entire2.
• ∂u

∂x
∂v
∂y �= ∂v

∂x
∂u
∂y unless ∂u

∂x = ∂v
∂x = 0 and ∂v

∂y = ∂u
∂y = 0

These conditions were, then reduced and relaxed by Kim and Adali [4] as:

In a bounded domain of complex plane C, a fully complex nonlinear activation func-
tion fa(z) needs to be analytic3 and bounded almost everywhere.

The fully complex-valued neural network is classified further based on the nature of
the complex-valued activation function used.

1.1.2.1 Elementary Transcendental Activation Functions

Kim and Adali introduced a Fully Complex-valued MLP neural network with any
of the Elementary Transcendental Functions (ETF’s) as an activation function and
derived its fully complex-valued back propagation weight update rule [4]. The learn-
ing algorithm presented in [4] is a complex-valued version of the real-valued back-
propagation algorithm. For complete details on the properties of different ETF’s and
the complex-valued back propagation algorithm, refer to [4]. The ETF’s satisfy the
properties needed for complex activation functions, but they along with their deriva-
tives have essential, removable or isolated singularities at different locations in the
complex domain [13]. For example, asinh is a simple ETF, which has a branch
cut singularity along the imaginary axis. The derivative of asinh has an isolated

1 If z = x+ iy and fa(z) = u(x,y)+ iv(x,y), ∂ fa
∂ z = 1

2

(
∂ fa
∂ x − i ∂ fa

∂ y

)
as defined in [11].

2 In complex analysis, an entire function, also called an integral function, is a complex-
valued function that is analytic over the whole complex plane.

3 A complex function is said to be analytic on a region C if it is complex differentiable at
every point in C.
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Table 1.1 ETF’s and their singularities

Activation Singular Derivative Singular point
Function Point of the derivative

tanh Pointwise: (1/2+ n)pi sech2 Pointwise: (1/2+ n)π

tan Pointwise: (1/2+ n)pi sec2 Pointwise: (1/2+ n)π

atanh Isolated: ± 1 1/1− z2 Isolated: ± 1

atan Isolated: ± i 1/1+ z2 Isolated: ± i

asinh Branch Cut: 1/
√
(1+ z2) Isolated: ± i

along imag axis ≥ i

asin Branch Cut: 1/
√
(1− z2) Isolated: ± 1

along real axis ≥ 1

singularity at ± i. The list of various ETF’s, and their derivatives, along with the
singularities associated with the ETF and its derivative are presented in Table 1.1.

If the learning algorithm operates in the region of singularity, the parameter
updates exhibit undesirable behavior affecting the convergence. Hence, the fully
complex-valued algorithm is sensitive to the singularities of the activation functions,
sample population distribution, weight initialization and the choice of the learning
rate. It is also noteworthy that the convergence effects are different for different
ETF’s and they also depend on the nature of the problem, the initial weights and
the learning rate. Hence, it is essential to identify a fully complex-valued activa-
tion function that is less sensitive to initial weights, learning rate and the the prob-
lem considered. One such activation function is proposed for FC-MLP networks
in Chapter 2. Besides, there is also a need to develop a fully complex-valued acti-
vation function for a fully complex-valued radial basis function network. Such an
activation function and its learning algorithm are presented in Chapter 3.

1.1.2.2 Axially Symmetric Activation Function

To overcome the difficulty of boundedness and analyticity of the complex-valued
activation function, You and Hong introduced an axially symmetric complex-valued
function to deal with QAM signals [14]. The general form of the axially-symmetric
activation function is given by

fa(z) = faR(x)+ i faI(y) (1.4)
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where z ε C, zR = real(z), zI = imag(z) and faR(.)and faI(.) are any continuous
functions. You and Hong used

faR(x) = x + αsin(πx); and faI(y) = y + αsin(πy) (1.5)

where α is the slope factor that determines the degree of non-linearity. Here,
0 < α < 1

π . The axially symmetric function satisfies the essential properties of an
activation function to be used in the Complex domain. The axially symmetric func-
tion is suitable for problems, which have symmetric targets, such as equalization in
telecommunication. Even though the axially symmetric activation function does not
have the singularity, it does not consider the correlation between the real and imag-
inary parts of a complex-valued signal. Also, selection of appropriate continuous
activation function for a given problem is difficult [15, 7].

1.2 Types of Learning

As in real-valued networks, complex-valued networks can also be classified into
supervised learning and unsupervised learning types, depending on the presence or
absence of a teacher.

1.2.1 Supervised Learning

If the learning in a neural network occurs with a teacher, it is called Supervised
Learning. In supervised learning, the teacher has a knowledge of the environment,
with the knowledge being represented by a set of input-output samples, called the
training dataset [1]. The objective of learning is to estimate the free parameters of
the network, such that the output errors are minimized. Several supervised learn-
ing schemes are available for complex-valued networks in the framework of feed-
forward neural networks and recurrent neural networks.

1.2.1.1 Feed-forward Neural Networks

Neural networks in which signals are transmitted from input nodes to output nodes,
with no feedback or memory are defined as feed-forward neural networks [1].
Two well-known topologies of complex-valued feed-forward networks are complex-
valued Multi-Layer Perceptron (cMLP) networks and complex-valued Radial Basis
Function (cRBF) networks.

Complex-valued MLP networks: Similar to the real-valued networks, complex-
valued MLP networks are popular learning paradigms based on error correction
learning. The training/learning is based on a set of inputs-outputs, and learning oc-
curs based on the minimization of the error functions. Complex-valued Back Prop-
agation (CBP) algorithm for the complex-valued MLP network was first presented
by Leung and Haykin [3]. Georgiou and Koutsougeras [12] listed the essential prop-
erties of a fully complex-valued activation function and presented an improved
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version of the complex-valued back-propagation algorithm. Later, Kim and Adali
[4] relaxed these conditions and presented an improved version of the CBP using
the Cauchy Riemann’s equations4. Besides these, the Fully Complex-valued Ex-
treme Learning Machine (C-ELM) presented by Li et al. [16] is also a direct exten-
sion of the real-valued Extreme Learning Machine (ELM) presented by Huang et
al. [17, 18]. C-ELM algorithm determines the free parameters of the network in an
analytical way and does learning faster compared to other algorithms. Similarly, the
complex-valued resilient propagation network presented by Kantsila et al. [19] is a
direct extension of the real-valued resilient propagation network [20].

In all these CBP algorithms, the activation functions are bounded almost every-
where (a.e). This is because, according to Liouville’s theorem,a bounded entire ac-
tivation function in the Complex domain is a constant function . To overcome the
controversy of boundedness and analyticity of complex-valued activation function,
an axially symmetric complex-valued function is introduced, to deal with QAM
signals, by You and Hong [14]. However, the issue here, is the selection of appro-
priate functions for the real and imaginary parts of the function ( faR and faI (1.5)).
Therefore, there is a need to identify a fully complex-valued activation function,
which is bounded in the bounded domain of the Complex plane, with its singular
point away from the operating region of the fully complex-valued neural network.
In other words, a fully complex-valued activation function with its singularity at ±∞
is preferred. One such activation function is discussed in Chapter 2. book.

Complex-valued RBF networks: As the real-valued radial basis function networks
form another popular architecture and are well-known for their localization prop-
erties, several real-valued RBF networks and their supervised learning algorithms
have been extended to the Complex domain. In [21, 22], Chen et al. first presented
the Complex-valued RBF (CRBF) networks, which are direct extensions of the real-
valued RBF networks. The structure of such a complex-valued RBF network is pre-
sented in Fig. 1.3.

In the figure,

• z ∈ C
m = [z1z2 · · · zm]

T are the complex-valued inputs to the network.
• yh ∈ Rh = [y1

h, y2
h, · · · , yh

h]
T are the real-valued response of the hidden neurons

given by

yk
h = fg(z) = exp

(−z− c)H(z− c)
2σ2 ; k = 1,2, · · · ,h (1.7)

where, c ∈ C
m is the m-dimensional complex-valued centers of the Gaussian

function in the hidden neurons and σ ∈ R is the width of the Gaussian function
in the hidden neuron and H denotes the Hermitian operator.

4 For a function f (z) = u(x,y)+ iv(x,y); z = x+ iy, the Cauchy Riemann equations are
given by:

∂u
∂x

=
∂v
∂y

;
∂v
∂x

= − ∂u
∂y

(1.6)
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Fig. 1.3 Architecture of a Complex-valued RBF Network

• V 1 ∈ Cn×h =

⎡

⎢
⎣

v1
11 · · · v1

1m
...

w1
h1 · · · w1

hm

⎤

⎥
⎦ are the complex-valued weights connecting the

hidden layer and output layer.
• ŷ ∈ Cn = [ŷ1, · · · , ŷl , · · · , ŷn]

T are the complex-valued outputs of the network,
given by: ŷl = ∑K

k=1 v1
lkyk

h; l = 1, ..., l, ...,n.

It can be seen that as the activation function maps Cm → R, the responses of the
neurons in the hidden layer are real-valued. Similarly, Complex-valued Minimal Re-
source Allocation Network (CMRAN), presented by Deng et al. [8] and Complex-
valued Growing and Pruning Network (CGAP-RBF) proposed by Li et al. [23] are
also direct extensions of the real-valued Minimal Resource Allocation Network
(MRAN) proposed by Yingwei et al. [24] and Growing and Pruning RBF Net-
work (GAP-RBF) presented by Huang et al. [25] respectively. However, in all these
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algorithms, the Gaussian function that maps Cm → R is used as the basis of the
activation function. Hence, despite the centers of the RBF function being complex-
valued, the response at the hidden layer is real-valued, resulting in inaccurate phase
approximation. Therefore, developing a fully complex-valued RBF network with
a fully complex-valued symmetric activation function, capable of better phase ap-
proximation, is very important. To address this need, chapter 3 of this book presents
a fully complex-valued RBF learning algorithm.

1.2.1.2 Recurrent Neural Networks

A recurrent neural network is a class of neural network where connections between
units form a directed cycle. This creates an internal state of the network which al-
lows it to exhibit dynamic temporal behavior. Wang [26] presented a split com-
plex valued recurrent neural network to solve complex-valued linear equations. The
complex-valued coefficients were split into their real and imaginary parts and real-
valued recurrent neural networks were used to solve the equations. Later, similar
to the MLP and RBF framework, the algorithm for the real-valued recurrent neural
network [27] is also extended to the Complex domain. Li et al. [28] presented a
new algorithm for complex-valued recurrent neural network, where each recurrent
neuron is modelled as an infinite impulse response filter. Goh and Mandic [29] intro-
duced an augmented complex-valued extended Kalman filter algorithm for the class
of nonlinear adaptive filters realized as fully connected recurrent neural networks.
The structure of a complex-valued recurrent neural network which consists of Nf

neurons, with p external inputs and N feedback connections is shown in Fig. 1.4
[29]. The network has two distinct layers- a feedback layer and a layer of process-
ing elements. Let ŷl,k denote the complex-valued output of a neuron, l = 1, ...,n at
time index k and s be the (1×m) external complex-valued input vector (i.e., s∈Cm).
The overall input to the network uk then represents a concatenation of vectors ŷk , s
and the bias input (1+ i), and is given by

uk = [sk−1, · · · sk−m, 1+ i, ŷ1,k−1 · · · ŷn,k−1]
T (1.8)

For the lth neuron, its weights form a (m+ n+ 1)× 1 dimensional weight vector
vT

l = [vl,1, · · · ,vl,m+n+1], l = 1, · · · ,Nf , which are encompassed in the complex-
valued weight matrix of the network V = [v1, ...,vNf ]

T . The output of every neuron
can be expressed as

yl,k = fa(netl,k), l = 1, · · · ,n (1.9)

where fa(.) is a complex-valued nonlinear activation function of a neuron and

netl,k =
m+n+1

∑
d=1

wldud,k (1.10)

is the net input to the lth neuron at time index k, where wld is the weight connecting
the lth output neuron and the dth input neuron and ud,k is the dth input at time index
k.
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Fig. 1.4 Architecture of a Fully Connected Complex-valued Recurrent Neural Network

Mandic [30] also presented a recurrent neural network based on nonlinear autore-
gressive moving average models, suitable for processing the generality of complex
signals. Later, Zhou and Zurada [31] addressed the boundedness, global attractivity
and complete stability of the recurrent neural networks and derived some condi-
tions for those properties. An important application of the complex-valued recur-
rent neural networks is the estimation of wind profile and wind power as shown by
Goh et al. [32]. In their work, a complex-valued pipelined recurrent neural network
architecture is used, and the network is trained by the complex-valued real-time re-
current learning algorithm with a fully complex-valued activation function to fore-
cast wind signal in its complex form (speed and direction).

1.2.1.3 Error Functions for Supervised Learning

Another area of research interest in CVNN is to identify an efficient error function
that minimizes both the magnitude and phase of the complex-valued error signals
during learning. The mean squared error function that considers only the magnitude
of the complex-valued error is the most commonly used error function. As it is an
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explicit representation of only the magnitude of the complex-valued error, using this
error function results in inaccurate phase approximation. A list of possible choices
of error functions for the complex-valued networks is presented by Gangal et al.
[33]. Chen et al. [34] presented a modified error back propagation algorithm for
CVNN. They added a term, corresponding to the hidden layer error, to the conven-
tional error function to speed up the learning process. In chapter 2 of this book, we
propose a logarithmic error function that uses an explicit representation of both the
magnitude and phase of the complex-valued error as an error function for FC-MLP.
This makes learning efficient and hence results in more accurate approximation of
both the magnitude and phase of the complex-valued signals.

1.2.2 Unsupervised Learning

In unsupervised learning or self-organized learning, there is no external teacher to
oversee the learning process [1]. The goal of unsupervised learning techniques is to
build representations of the inputs that can be used for decision making, predicting
future inputs etc. The Principal Component Analysis (PCA) and the Independent
Component Analysis (ICA) are the two commonly used techniques to address this
representation. In this section, we discuss the PCA and ICA learning algorithms,
available in the literature.

1.2.2.1 Complex-valued Principal Component Analysis

Principal component analysis is an unsupervised learning technique used to reduce
the dimensionality of a data set consisting of a large number of interrelated variables,
while retaining the variation present in the data as much as possible. In a PCA,
the multi-variate data is transformed to a new co-ordinate system using a linear
orthogonal transformation.

Rattan and Hsieh [35] extended the real-valued PCA [1] to the Complex-domain.
They presented a complex-valued PCA and a Non-linear Complex-valued PCA
(NLCPCA) for extraction of nonlinear features from the dataset. The complex-
valued neural network model for NLCPCA is an auto-associative feed-forward
multi-layer perceptron model. A structure of this NLCPCA is presented in Fig. 1.5
[35].

There are m input and output neurons or nodes corresponding to the m variables.
Sandwiched between the input and output layers are 3 hidden layers (starting with
the encoding layer, then the bottleneck layer and finally the decoding layer) contain-
ing q, 1 and q neurons respectively. The network is composed of two parts: The first
part from the input to the bottleneck maps the input z tothe single nonlinear com-
plex principal component f (z). The second part from the bottleneck to the output
z0 is the inverse mapping g( f (z)). Here, the higher dimensional space (m) of the
input is reduced linearly to a one-dimensional space at the bottleneck layer given by
f : Cm →C

1 and a linear inverse mapping g : C1 →C
m maps from bottleneck layer

to the m-dimensional output z′, such that the least squares error function (E).
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E =
n

∑
j=1

|| z j − z′j ||2=|| z j − g( f (z j)) ||2 (1.11)

is a minimum (with z j the jth column of Z). For any input vector z,

f (z) = vHz (1.12)

where vH is the weight vector between the inputs and the bottleneck layer. For auto-
associative networks, the target for the output neurons are simply the input data.
Increasing the number of neurons in the encoding and decoding layers increases the
nonlinear modelling capability of the network.

A review of the various complex-valued principal, minor components/subspace
linear/nonlinear rules for complex-weighted neural structures are presented [36].
Several applications of the various unsupervised learning paradigms in the complex
domain are also presented in [36].

1.2.2.2 Complex-valued Independent Component Analysis

Independent Component Analysis (ICA) is a signal-processing method used to ex-
tract independent sources given only the observed data which is a mixture of the
unknown sources. The goal of the ICA can be defined as finding a linear representa-
tion of the non-Gaussian data such that the components are statistically independent
or as independent as possible [37]. A number of real-valued ICA algorithms are
available in the literature and a survey of the real-valued ICA algorithms and their
applications are presented in [38].

Complex-valued signals arise frequently in a wide range of applications like com-
munications [39], [40], [41], [42], [43], radar, and biomedicine [44], [45], [46], as
most practical modulation formats are of complex type and applications such as
radar and magnetic resonance imaging lead to data that are inherently complex-
valued. The non-Gaussian nature of the complex-valued data in these applications
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require the development of the complex-valued ICA algorithms. Bingham et. al.,
[47, 48] first presented the fast fixed-point type ICA algorithm that is capable of
separating the complex-valued linearly mixed source signals, assuming that the orig-
inal, complex-valued source signals are mutually statistically independent. Fiori et.
al., [49] presented an ICA algorithm to solve problems involving complex-valued
signals using the maximum-mismatch learning principle. Yang et. al., [50] presented
an ICA method for suppression of image and co-channel interference in wireless re-
ceivers such that the channel capacity is increased and the receiver’s front end is
simplified.

The conditions for identifiability, separability and the uniqueness of the linear
complex-valued ICA models are established in [51] by extending the well-known
condition for the real-valued ICA models. Sallberg et. al., presented the complex-
valued ICA with the Kurtosis contrast function in [52]. This ICA algorithm does not
exhibit the divergent behavior for Gaussian-only sources that occurs in the Fast ICA
method. Later, Li et. al., [53] derived the kurtosis maximization using a gradient up-
date, kurtosis maximization using a fixed-point update, and kurtosis maximization
using a Newton update algorithms to perform the complex independent component
analysis based on the maximization of the complex kurtosis cost function. The com-
plex maximization of the non-Gaussian cost function (Novey et. al., [54]) and the
entropy bound minimization (Li et. al., [55]) are some of the other cost functions
used in developing the ICA.

The above works focus on the development and application of the complex-
valued ICA to signals of circular sources. The circularity property or properness is
an important feature of many complex random signals. At the complex signal level,
circularity means that the signal is statistically uncorrelated with its own complex-
conjugate. In case of complex random vectors it means that the so-called com-
plementary covariance matrix or pseudo-covariance matrix vanishes. Many widely
used signals such as M-QAM and 8-PSK signals and standard complex AWGN pos-
sess this circularity property. However, practical imperfections in transmitters and
receivers such as I/Q imbalance may cause departures from that property. Moreover,
some well known modulation schemes such as BPSK and GMSK are non-circular.
Therefore, complex-valued ICA algorithms have been developed to address the non-
circularity of the complex-valued signals [56], [57]. As the conventional covariance
matrix does not completely describe the second order properties of the non-circular
components, Ollilaa et. al., [56] used the generalized uncorrelating transformation
instead of the conventional whitening transformation to develop an ICA algorithm
for non-circular signals.

The ICA algorithms presented in the above-mentioned papers have been devel-
oped for holomorphic functions5, that satisfy the Cauchy Riemann conditions. The
Cauchy Riemann equations were earlier given in Section 1.2.1, Eq. (1.6) and are
reproduced here for convenience .

Consider a function
5 A complex-valued function f(z) of a complex variable z is said to be holomorphic at a point

a if it is differentiable at every point within some open disk centered at a.
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f (z) = u(x,y)+ iv(x,y); z = x+ iy. (1.13)

Then the Cauchy Riemann equations are given by:

∂u
∂x

=
∂v
∂y

;
∂v
∂x

= − ∂u
∂y

(1.14)

The holomorphic function f (z) that satisfies the Cauchy Riemann equations requires
that the functions u(x,y) and v(x,y) are harmonic6. But, some commonly encoun-
tered useful functions like

fm(z) = z (1.16)

fn(z) =
z+ z

2
(1.17)

fe(z) = |z|2 = zz = x2 + y2 (1.18)

fp(z) = |z|=√
zz =

√
x2 + y2 (1.19)

are not harmonic functions and are not differentiable in the standard complex vari-
ables sense. It can be noted here that the derivative of the squared error func-
tion, which is similar to fe (Eq. (1.18)), usually employed in gradient descent
based/analytical optimization algorithms does not exist in the conventional sense of
the complex derivative [58],[59], [60], [61]. However, the functions in Eqs. (1.16),
(1.17), (1.18) and (1.19) can be represented in the form of f (z,z), where they are
holomorphic in z = x+ iy for fixed z and are holomorphic in z = x− iy for fixed z.
i.e.,

R-derivative of f (z,z) =
∂ f
∂ z

|z=constant (1.20)

R-derivative of f (z,z) =
∂ f
∂ z

|z=constant (1.21)

This fact underlies the development of the CR- calculus or the Wirtinger calculus
[2], [62]. Eq. (4.12) is called the R− derivative (the real − derivative) and Eq.
(4.13) is called the R−derivative (the con jugateR−derivative). It is proved in [2]
and [11] that the R− derivative and the R− derivative can be equivalently written
as

∂ f
∂ z

=
1
2

(
∂ f
∂x

− j
∂ f
∂y

)

∂ f
∂ z

=
1
2

(
∂ f
∂x

+ j
∂ f
∂y

)
(1.22)

6 Functions u(x,y) and v(x,y) are harmonic functions, if they satisfy the Laplace equations
given by

∂ 2u(x,y)

∂x2 +
∂ 2u(x,y)

∂y2 = 0 and
∂ 2v(x,y)

∂x2 +
∂ 2v(x,y)

∂y2 = 0 (1.15)
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where the partial derivatives with respect to x and y are true partial derivatives of
the function f (z) = f (x,y), which is differentiable with respect to x and y. The
R−derivative and the R−derivative are both linear differential operators that obey
the product rule of differentiation and the differential rule [2]. Therefore, the R−
derivative of fe(z) (Eq. (1.18)) with respect to a complex-valued variable a can be
derived as:

∂ fe

∂a
=

∂ (zz)
∂a

=

(
∂ z
∂a

)
z+

(
∂ z
∂a

)
z (1.23)

Thus the pair of partial derivatives of a non-holomorphic functions, defined by
Eq. (1.22), is the natural generalization of the single Complex derivative (C−
derivative) of a complex-valued holomorphic function. Therefore, the following
fact is an easy consequence of the definition in Eq. (1.22), as discussed in [11]:

• A necessary and sufficient condition for a real-valued function f (z) = f (x,y); z=
x+ iy to have a stationary point with respect to the real-valued parameters r =
(x,y)T ∈ R2 is that its R vanishes.

• A necessary and sufficient condition for a real-valued function f (z) = f (x,y); z=
x+ iy to have a stationary point with respect to the real-valued parameters r =
(x,y)T ∈ R2 is that its R vanishes.

This approach that is used to apply the calculus of real variables to make statements
about functions of complex variables is known as Wirtinger Calculus. Differenti-
ation of a complex function using the Wirtinger derivatives has been extensively
discussed in [63].

Adali et. al., [64] established the theory for Complex Independent Compo-
nent Analysis (CICA) for nonlinear complex-valued signal processing based on
Wirtinger calculus, such that all computations can be directly carried out in the
complex domain. Two main approaches for performing ICA within the framework
of Wirtinger calculus: maximum likelihood and maximization of non-Gaussianity,
have been developed in [64]. The stability of the maximum likelihood complex ICA
derived presented in [64] is studied in [64].

1.3 Mode of Learning

In this section, the various complex-valued neural network algorithms available in
the literature are classified based on the mode of the learning algorithm. Depending
on the sequence in which samples are presented to the network, a learning algorithm
can be either a batch-learning algorithm or a sequential learning algorithm.

1.3.1 Complex-valued Batch Learning Algorithms

Batch learning is a learning scheme where all the samples in the training set are pre-
sented repeatedly to the network. The free parameters of the network are estimated
gradually, over a series of epochs until a specified mean squared error of all the sam-
ples is achieved. Such a learning scheme requires the complete training dataset to be
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available apriori. Several real-valued batch learning algorithms have been extended
to the Complex domain. Complex-valued batch learning algorithms are available
in the framework of feedforward MLP and RBF networks. Initially, split complex-
valued MLP neural networks [3, 65], which treat the complex-valued signals and
weights as two real-valued signals were used to operate on complex-valued sig-
nals, and the real-valued back propagation algorithm was used to estimate the free
parameters of the network. In [66], a neural network based on adaptive activation
functions for SC-MLP is presented. But, from the analytical study on sensitivity
and initial values of the SC-MLP [5, 67], it is observed that, the process of splitting
the complex-valued signals into real and imaginary components introduces phase
distortions in complex-valued approximations.

The complex-valued back-propagation algorithm based on the squared error cri-
terion for the complex-valued feedforward network was first derived by Nitta [68],
by Benvenuto and Piazza [10], and by Hirose [69]. Ever since, several activation
functions have been presented for the feedforward network and the complex-valued
back propagation algorithm has been modified accordingly. In [12], Georgiou and
Koutsougeras listed the conditions required for a function to serve as a complex-
valued activation function and proposed few activation functions for the batch learn-
ing MLP network. Later, Kim and Adali [4, 13] relaxed these conditions and sug-
gested elementary transcendental functions as activation functions for FC-MLP. As
these functions satisfy Cauchy Riemann conditions, the complex-domain back prop-
agation algorithm was altered with the inclusion of the Cauchy Riemann conditions.
Similarly, Chen et al. [34] developed a modified error back back-propagation algo-
rithm to solve the problem of local minima, which is inherent to MLP networks.
Kim and Guest [70] modified the complex-valued back propagation algorithm to
suit to complex-valued signal processing in the frequency domain. You and Hong
[14] presented an axially symmetric activation function for solving the QAM equal-
ization problem. However, the axially symmetric activation function is specific to
the application considered and choosing the axially symmetric functions for each
application is a cumbersome procedure.

There are also other batch learning algorithms in the complex-domain which
are direct extensions of their real-valued counterparts. For example, Li et al. [16]
presented the Complex-valued Extreme Learning Machines (C-ELM), which is the
complex-valued extension of the real-valued extreme learning machines. However,
all these algorithms compromise either on the analyticity or boundedness or are ap-
plication specific. Besides, the CBP algorithm presented in all these networks are
derived based on the squared error function which does not consider the phase of
the complex-valued error explicitly. Hence, one needs to identify an error function
which is indicative of both the magnitude and phase error explicitly. In chapter 2 of
this book, one such error function is proposed for the complex-valued MLP networks
and an Improved Complex-valued MLP (IC-MLP) has been developed in [7] .

On the other hand, although several real-valued RBF learning algorithms [71,
72, 73, 74] have been developed for different applications, only a few of these
real-valued neural networks have been extended to the Complex domain. Complex-
valued RBF networks, which are direct extensions of the real-valued RBF network,
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was first presented by Chen et al. [21, 22]. For regression problems, [75], Chen et
al. extended the locally regularized orthogonal least squares of the real-valued RBF
network to the Complex domain. Chen [76] presented two training algorithms for
symmetrical complex-valued RBF network. These algorithms have been applied to a
non-linear beamforming problem. While one of the methods is based on a modified
version of the cluster-variation enhanced algorithm, the other method is derived by
modifying the orthogonal-forward-selection procedure based on the Fisher ratio of
class separability measure. These networks used the Gaussian RBF with Euclidean
norm ‖(x− c)‖ to process complex-valued signals. However, in these networks, the
input is not efficiently transmitted to the output, as the activation functions maps
Cm →R. Hence, all these networks do not approximate phase accurately. Therefore,
it is imperative that a fully complex-valued symmetric function that maps Cm → C
be used as a basis for the activation function of a complex-valued RBF network. In
chapter 3 of this book, one such function is proposed as a fully complex-valued ac-
tivation function, based on which a fully complex-valued RBF network is presented
and its gradient descent based learning algorithm is derived in [77] .

However, all the aforementioned batch learning algorithms have the following
drawbacks:

• Training dataset: The batch learning algorithms require the training/testing
dataset to be available apriori, hence the network can be trained over several
epochs. However, training data may not be available apriori in most real world
applications. A few applications like the cancer classification allow temporal
changes to the task being learnt.

• Network structure: Another critical issue in batch learning algorithms is that the
network structure has to be fixed apriori before learning occurs. While fewer neu-
rons in the network result in inaccurate approximation, large network size may
result in poor generalization performance and increased computational effort.

These issues in batch learning algorithms motivated the development of sequential
learning schemes for neural networks. A few of these sequential learning algorithms
are also extended to the Complex domain, and they are discussed briefly in the next
section.

1.3.2 Complex-valued Sequential Learning Algorithms

In sequential/online learning algorithms, samples are presented one-by-one and only
once to the network. They are discarded after they are presented and learnt by the
network. Also, the network structure may evolve during learning, by adding and
deleting neurons, as it acquires information from the training sample dataset. Few
sequential learning algorithms of the above type have been extended from the Real
domain to the Complex domain.

The complex-valued minimal resource allocation network [8] is the first of the
kind to be extended from the real-valued minimal resource allocation network [24]
sequential learning algorithm. In the CMRAN algorithm, the samples in the training
dataset are used to either add a neuron or to delete a neuron, based on the magnitude
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error of the sample. If neither of these conditions are satisfied, the sample is used to
update the parameters of the network using the real-valued extended Kalman filter.

Similarly, the complex-valued growing and pruning (CGAP-RBF) algorithm [23]
is another sequential learning algorithm extended from the real-valued growing and
pruning RBF [25] learning algorithm. The major differences between the CMRAN
and the CGAP-RBF algorithms are:

• In CMRAN, only the sample error and its distance from the nearest neuron is
considered for addition of a neuron. However, in the CGAP-RBF, in addition to
these parameters, the significance of the sample to the learning accuracy is also
considered for addition of a neuron. Thus while the CMRAN uses only the past
history of the samples defined by the sliding window, the CGAP-RBF uses the
entire past history of the samples.

• While in CMRAN, all the parameters of all the hidden neurons are updated dur-
ing learning, in the CGAP-RBF algorithm, only the parameters of the nearest
neuron are updated.

However, these algorithms are similar in that they use the Gaussian activation func-
tion that maps C

m → R and a real-valued EKF for the parameter updates during
learning. Though the centers and weights are complex-valued, these algorithms
use real-valued Real and Imaginary components of the complex-valued error and
weights during the parameter update. Thus, it does not preserve the correlation be-
tween the Real/Imaginary components of the complex-valued error/weight infor-
mation. Recently, Huang et al. [78] extended the Incremental Extreme Learning
Machine (I-ELM) from the Real domain to the Complex domain. The algorithm
randomly adds hidden nodes incrementally and analytically determines the output
weights. It has been shown that in spite of the hidden nodes being generated ran-
domly, the network constructed by I-ELM remains as an universal approximator.
They show that as long as the hidden layer activation function is complex contin-
uous discriminatory or complex bounded nonlinear piecewise continuous, I-ELM
can still approximate any target functions in the complex domain [78]. However,
in I-ELM, a few ETFs are used as activation functions at the hidden layer. As the
ETFs and their derivatives are known to have their singularities in the finite region of
the Complex domain that might interfere with the operating region of the network,
identifying a suitable activation function becomes a challenging task. Therefore,
there is a need to develop a fully complex-valued sequential learning algorithm, that
preserves the complex-valued information, with good generalization performance
and approximates phase more accurately. In chapter 7 of this book, we propose one
such fully complex-valued sequential learning algorithm called the Complex-valued
Self-regulatory Resource Allocation Network [79].

1.4 Applications

In this section, the various applications of the CVNNs are discussed in detail. The
applications of CVNNs range from wireless communication to medical imaging.
Several complex-valued memories have also been reported in the literature. A com-
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plete survey of the various applications of CVNN is discussed by Akira Hirose [80],
[81]. In this section, some of the most common applications are highlighted.

1.4.1 Digital Communication: QAM Equalization

Quadrature amplitude modulation is an analog/digital modulation scheme that con-
veys two message signals by modulating the amplitudes of two carrier waves
(quadrature carriers) that are 90◦ out of phase with each other. Thus, the signals
in the QAM schemas are complex-valued. When the QAM signals are transmitted
over a channel, the nonlinear characteristics of the channel cause spectral spreading,
inter-symbol interference and constellation warping. Hence, an equalizer is essential
at the receiver of the communication channel to reduce the precursor inter-symbol
interference without any substantial degradation in the signal-to-noise ratio.

In the literature, several works where the complex-valued neural networks are
used to solve the QAM equalization problem are reported. Many complex-valued
batch learning and sequential learning schemes are used to solve the non-linear,
communication channel equalization problems. For example, Chen et al. [22] used
the batch learning complex-valued RBF network, presented in [21] to solve a dig-
ital communication channel equalization. Cha and Kassam [82] used the complex-
valued radial basis function network to solve the QAM equalization problem which
is considered as a non-linear classification problem. Rajoo Pandey [83] used the
complex-valued feed forward neural network for blind equalization with M-ary
phase shift keying signals. You and Hong [14] developed an axially symmetric acti-
vation function for solving the QAM equalization problem using a complex-valued
feed-forward neural network. Deng et al. [9], used the sequential learning complex-
valued minimal resource allocation network to solve the equalization problem. Li
et al. [23] used the complex-valued growing and pruning RBF algorithm to solve
the equalization of several models, like the Patra model [84], complex-valued lin-
ear Chen’s model [22], the complex-valued non-linear Cha and Kassam model [82].
As complex-valued neural networks approximate phase more accurately than real-
valued neural networks [4, 15, 7], they are more efficient in classifying the complex-
valued signals in their quadrants than other real-valued algorithms. In chapter 4 of
this book, the different complex-valued neural network based equalizers are used to
solve the QAM equalization problem.

1.4.2 Array Signal Processing

The classical problem in array signal processing is to determine the location of an
energy radiating planar source relative to the location of the receiver array. Array
signal processing comprises of two components viz., Direction of arrival estimation
and beam forming. A brief review of the various neural network based antenna array
processing is presented by Du et al. [85]. As the signals involved in the array signal
processing are complex enveloped signals, employing complex-valued neural net-
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works is a wise choice to estimate the direction of arrival and to form the transmitted
beam at the receiver.

With the evolution of complex-valued neural networks, they have been employed
to solve the array signal processing problems. Bregains and Ares [86] showed that
complex-valued neural networks can be incorporated as a very powerful and ef-
fective tool in the analysis, synthesis, and diagnostics of antenna arrays. Several
works are reported in the literature using complex-valued neural networks for ar-
ray signal processing applications. For example, Yang et al. [87] used the CVNN
to solve the array signal processing problem of direction of arrival estimation.
Chen et al. [75] used a complex-valued RBF network to solve a nonlinear beam
forming for multiple-antenna aided communication systems that employ complex-
valued quadrature phase shift keying modulation scheme. Chen et al. [88] developed
a novel complex-valued symmetric radial basis function network based detector,
which is capable of approaching the optimal Bayesian performance using channel-
impaired training data. They presented a nonlinear beamforming assisted detector
for multiple-antenna-aided wireless systems employing complex-valued quadrature
phase shift-keying modulation. Similarly, Suksmono and Hirose [89] solved the
beamforming problem using the fully complex-valued MLP network. In chapter 4
of this book, we use the fully complex-valued algorithms developed herein to solve
the adaptive beam forming problem.

1.4.3 Real-Valued Classification

Nitta [68] showed that the linearly inseparable XOR problem in the Real domain
can be easily solved linearly with a single hidden neuron in the Complex domain.
As this shows the improved classification ability of the CVNNs, they are also used
to solve real-valued classification problems, by phase encoding the real-valued sig-
nal, such as the one presented by Amin and Murase [90]. Buchholz and Bihan [91]
classified the polarized signals using complex-valued and quaternionic multi-layer
perceptron networks. Ozbay et al. [92] and Ceylan et al. [93] used complex-valued
neural networks to classify Doppler signals, which are important in medical appli-
cations. On the other hand, Sinha et al. [94] used the split complex-valued MLP
networks in parallel magnetic resonance image reconstruction which is another im-
portant application in medical imaging application.

The multi-layer feed-forward network based on multi-valued neurons has been
developed by Aizenberg and Moraga [95]. It is observed that using a traditional ar-
chitecture of multi-layer feed forward neural network and the high functionality of
the multi-valued neurons, it is possible to obtain a new powerful neural network.
Its training does not require a derivative of the activation function and its function-
ality is higher than the functionality of multi-layer feed forward neural network
containing the same number of layers and neurons. These advantages of multi-layer
feed-forward network based on multi-valued neurons are confirmed by testing using
parity n, two spirals, sonar benchmarks and the Mackey-Glass chaotic time series
prediction problem. With the introduction of complex-valued multi-valued neurons,
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Aizenberg et al. [96] extended these multi-valued neurons to solve several real-
valued classification problems such as in bio-informatics as shown by Aizenberg
and Zurada [95], pattern recognition as shown by [97], blur identification as shown
by Aizenberg et al. [98] etc.

Amin and Murase [90, 99] presented complex-valued neuron models for real-
valued classification problems by phase encoding the real-valued inputs. Activation
functions that map complex-valued input to real-valued outputs are presented and
the gradient descent based learning rules for the activation functions are derived.
It is observed that the classification efficiency of such networks are comparable to
that of real-valued networks, and the convergence of these networks are faster than
real-valued networks.

1.4.4 Memories

As neural networks are good at learning by example, they are used as memories
to learn and recall information/signals [1]. As complex-valued neural networks are
also capable of learning and recalling, research focus is also on developing efficient
complex-valued logic gates and memory. Complex-valued associative memory,
which is a complex-valued Hopfield associative memory, was first introduced by
Noest [100]. The capacity of the complex-valued associative memory was improved
using the pseudo-relaxation algorithm developed by Kobayashi [101]. Muezzinoglu
et al. [102] introduced a method to store each element of an integral memory set
M subset of 1, 2, ..., K(n) as a fixed point into complex-valued multistate Hopfield
network. This method employs a set of inequalities to render each memory pattern
as a strict local minimum of a quadratic energy landscape. A novel logic gate is sug-
gested by Kawata and Hirose [103]. This logic gate is capable of learning multiple
functions at frequencies different from each other, and analyzing the frequency-
domain multiplexing ability in the learning based on complex-valued Hebbian rule.
Associative memory based on quaternionic Hopfield network are investigated by
Isokawa et al. [104]. Quaternion is a class of hypercomplex number systems, and the
networks used in [104] are composed of quaternionic neurons and the input, output,
threshold and connection weights are all represented in quaternions. The concept of
associative memories were then extended to the complex domain by Tanaka Gouhei
and Aihara Kazuyuki [105] and are used in gray level image reconstruction.

1.4.5 Other Applications

Another important application of the complex-valued neural networks is the estima-
tion of wind profile and wind power by Goh et al. [32]. A complex-valued pipelined
recurrent neural network architecture is developed, and the network is trained by
the complex-valued real-time recurrent learning algorithm with a fully complex-
valued activation function to forecast wind signal in its complex form (speed and
direction). The complex-valued neural networks are also used in real-valued image
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processing applications like image recognition as shown by Pande and Goel [106],
blur identification as shown by Aizenberg in [98] etc.

In this chapter, a brief survey of the existing literature on complex-valued neural
networks has been presented. The CVNNs can be classified based on various pa-
rameters like the nature of signals, the type of learning, the mode of learning and
the applications in which they were used. These different classes of complex-valued
neural networks have been discussed in this chapter.
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