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Preface

Recent developments in complex-valued feed-forward neural networks have found
a number of applications like adaptive array signal processing, medical imaging,
communication engineering, etc. However, these applications demand an accurate
phase approximation in addition to accurate magnitude approximation, which has
not been well addressed in the existing literature. To fill this gap, this book focuses
on the development of novel fully complex-valued feed-forward neural networks
and their supervised batch and sequential learning algorithms with an emphasis on
better phase approximation.

The classical approach to handle complex-valued signals is to split each complex-
valued signal into two real-valued signals, either the real/imaginary components or
magnitude/phase components, and then use existing real-valued neural networks. In
such a split complex-valued network, real-valued activation functions and real val-
ued weights are used to estimate the network parameters. Thus, the gradients used
in updating the free parameters of the network do not represent the true complex-
valued gradients resulting in poor approximation of complex-valued functions, es-
pecially the phase of the complex-valued signals. This clearly shows a need for
developing fully complex-valued neural networks and their learning algorithms.

The critical issue in a fully complex-valued neural network is the selection of
an appropriate activation function, as Liouville’s theorem suggests that an entire
and bounded function is a constant in Complex domain. However, a constant is not
acceptable as an activation function as it cannot project the input space to a non-
linear higher dimensional space. Also, neither analyticity nor boundedness of the
activation function can be compromised, owing to the need for a stable operation
of a neural network. To overcome these difficulties, Kim and Adali proposed Ele-
mentary Transcendental Functions (ETF’s), which are analytic and bounded almost
everywhere (a. e), as activation functions for Fully Complex-valued Multi-Layer
Perceptron (FC-MLP) networks and a complex-valued back-propagation learning
algorithm. However, the singular points of these functions and their derivatives may
interfere with the operating region of the network, thereby, affecting the perfor-
mance of the network. On further investigation, we also found that the mean squared
error function used to derive the gradients is only indicative of the magnitude and
does not explicitly indicate the phase of the complex-valued error signal.
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To overcome these difficulties, in this book, we propose an Improved Complex-
valued MLP (IC-MLP) algorithm using an “exponential” activation function in the
output layer, any ETF’s as an activation function in the hidden layer and a loga-
rithmic error function to derive the gradients. The “exponential” activation function
ensures more stable operation of the network, as both the activation function and
its derivative have their singularities at ±∞. The logarithmic error function ensures
better phase approximation, as it explicitly represents both the magnitude and phase
error of the function to be approximated.

Due to their localization properties, radial basis function networks exhibit good
function approximation characteristics and these have been shown in real-valued
applications. Therefore, we next investigate the existing complex-valued radial basis
function networks in the literature. Existing complex-valued radial basis function
networks use the Gaussian function as an activation function. The Gaussian function
maps Cm →R, and hence, projects the inputs from complex-valued space to a higher
dimensional real-valued space in the hidden layer. Here, the centers of Gaussian
neurons and output weights are complex numbers. The width of the neurons is a real
number. Since the Gaussian function maps complex-valued signal to real-valued
signal, real part of the error is used to update the real part of the free parameters
and the imaginary part of the error is used to update the imaginary part of the free
parameters. Thus, the correlation between the real and imaginary components is
lost, and hence, this projection results in inaccurate phase approximation. This issue
arises due to the absence of a fully complex-valued symmetric activation function.

In this book, we present a new Fully Complex-valued RBF (FC-RBF) network
with a fully complex-valued activation function and its supervised learning algo-
rithm. The fully complex-valued activation function uses the “sech” function as its
basis function, which is symmetric about the real axis. This function maps Cm → C

and the learning algorithm uses the fully complex-valued gradient. Existing batch
learning algorithms are based on the assumption of a uniform distribution of training
samples in the input space. This is not always true, especially in real-world prob-
lems. Thus, to ensure bettergeneralization ability of the network, an algorithm to
select samples to participate in learning, so as to avoid over-training with similar
samples, becomes essential. In this book, we develop a new self-regulatory learning
system for the FC-RBF network to select samples to participate in learning in each
epoch. The self-regulatory learning system chooses samples in each epoch that add
significant information to the network. It also deletes samples that contain infor-
mation similar to that already acquired by the network. Thus, the algorithm selects
samples to be learnt or deleted in each epoch. Besides these, samples that are neither
learnt nor deleted are just skipped in the present epoch, to be learnt/deleted in future
epochs. The control parameters of the learning systems are also adapted based on
the residual error (self-regulatory) and are independent of the problem considered.

FC-RBF and Mc-FCRBF are batch learning algorithms that use a gradient de-
scent based learning to estiamate the free parameters of the network. Moreover,
learning in these networks is based on the mean-squared error function that is only
an explicit representation of the magnitude of error. While the former increases the
computational complexity of the learning process, the latter may compromise on
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the phase approximating abilities of these networks. To address these issues, in this
book, we present a novel Fully Complex-valued Relaxation Network (FCRN) with
its projection based learning algorithm. FCRN is a single hidden layer network with
a Gaussian-like sech activation function in the hidden layer and an exponential acti-
vation function in the output layer. The output weights are estimated by minimizing
a nonlinear logarithmic function (called as an energy function) that contains an ex-
plicit representation of both the magnitude and phase error components. The projec-
tion based learning algorithm computes the optimal output weights corresponding
to the minimum energy point of the energy function for a given training data set,
number of hidden neurons and input weights by converting the solving of a nonlin-
ear programming problem into that of solving a set of linear simultaneous equations.
The resultant FCRN approximates the desired output more accurately with a mini-
mal computational effort.

The performances of the proposed learning algorithms are studied in detail on
two synthetic complex-valued function approximation problems, namely, Complex-
valued Function Approximation Problem I (CFAP-I) and Complex-valued Function
Approximation Problem II (CFAP-II). In these problems, the performances are com-
pared with existing complex-valued learning algorithms, FC-MLP, Complex-valued
Radial Basis Function network (CRBF), Complex-valued Extreme Learning Ma-
chines (CELM) and Complex-valued Minimal Resource Allocation Network (CM-
RAN). Next, the proposed algorithms are also evaluated in comparison to existing
algorithms in the literature using two real-world problems, namely, complex-valued
Quadrature Amplitude Modulation (QAM) equalization problem and an adaptive
beam-forming problem. These problems involve complex-valued signals and re-
quire accurate phase approximation. It is observed that while the proposed algo-
rithms, viz., the IC-MLP, the FC-RBF and the CSRAN are good in performing
QAM equalization with lesser symbol error rates, the FC-MLP, the IC-MLP and the
FC-RBF with the self-regulatory learning system perform better for beam-forming
with better isolation of nulls and desired signals. Although a strict proof for stabil-
ity and convergence of all the proposed algorithms are still under study, simulation
studies conducted on a number of problems indicate that the proposed algorithms
are more efficient (in accurate phase approximations with a compact structure) than
other existing complex-valued neural network learning algorithms.

Recently, it has been proved in the literature that the orthogonal decision bound-
aries of the complex-valued neural networks provide them with an exceptional
ability to perform real-valued classification tasks. The Multi-layer network using
Multi-valued Neurons (MLMVN) and the single layer complex-valued neural net-
work, referred to as, Phase Encoded Complex-valued Neural Network (PE-CVNN)
are the two complex-valued classifiers available in the literature. The transforma-
tions used to convert the real-valued features to the Complex domain in these classi-
fiers, do not completely exploit the advantages of orthogonal decision boundaries or
are not unique (do not perform one-to-one mapping of feature from Real to Complex
domain). Moreover, these algorithms iteratively update the parameters of the classi-
fier and hence, suffer from slow convergence.Hence there is a need for a fast learning
fully complex-valued classifier and a transformation that uniquely maps (one-to-one
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mapping) the real-valued input features to the four quadrants of the Complex domain
to fully exploit the advantages of the orthogonal decision boundaries.

In this book, we present the circular complex-valued extreme learning machine
classifier for performing real-value classification tasks in the Complex domain.
The CC-ELM classifier uses a single hidden layer network with a non-linear in-
put/hidden layer and a linear output layer. At the input layer, a unique nonlinear
circular transformation is used as the activation function to make a one-to-one map-
ping of the real-valued input features to the Complex domain. At the hidden layer,
the complex-valued input features are mapped on to a higher dimensional Complex
plane, using the ‘sech’ activation function. In CC-ELM, the input parameters and the
parameters of the hidden layer are chosen randomly and the output weights are cal-
culated analytically, requiring lesser computational effort to perform classification
tasks. Existence of orthogonal decision boundaries in the hidden and output layers
of the CC-ELM has been proven analytically. The advantages of these orthogonal
decision boundaries and the activation function used in the input layer are studied
by comparing the performance of the CC-ELM classifier with other real-valued and
complex-valued classifiers using benchmark classification problems from the UCI
machine learning repository and two practical classification problems. Performance
of CC-ELM on these data sets clearly shows that it performs better than the exist-
ing (well-known) real-valued and other complex-valued classifiers, especially for
unbalanced data sets.

Complex-valued sequential learning algorithms have been developed to handle a
large training data set or when the data is subject to temporal changes or when the
complete training dataset is not available a priori. In a sequential learning algorithm,
samples are presented one-by-one, only once and are deleted after being learnt. In
such a sequential mode of learning, the network can be made to grow and prune
itself, until it achieves a compact structure. Thus, it does not require the network
size to be fixed a priori. However, complex-valued sequential learning algorithms,
available in the literature, use the Gaussian function that maps C

m → R, as the
activation function. Hence, they suffer from drawbacks similar to that of the CRBF
networks stated above.

In this book, we propose a new Complex-valued Self-regulatory Resource Al-
location Network (CSRAN), using the above self-regulatory learning scheme in a
sequential framework. CSRAN alters the training sequence, and evolves the net-
work to achieve compact structure with a desired performance. The basic building
block of CSRAN is the FC-RBF structure. In a sequential framework, the self-
regulatory learning system, deletes the sample, learns the samples (add neuron or
update the parameters) or shifts the sample to the rear end of the data stream for
future use. Similar to the batch learning framework, the control parameters are also
self-regulatory. The influence of the various control parameters on the performance
of the CSRAN is studied. Based on this study, we present a guideline on the initial-
ization of the control parameters of the CSRAN. The performance study on a set
of function approximation and classification problems clearly indicates the advan-
tage of the CSRAN over other complex-valued learning algorithms existing in the
literature.
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ô Real-valued output of a split complex-valued neural network

v0
j Complex-valued input weight vector connecting the jth hidden neuron of

the fully complex-valued neural network

s1 Sensitivity of the hidden layer

s2 Sensitivity of the output layer

v1
j Complex-valued output weight vector connecting the jth hidden neuron

of the fully complex-valued neural network

w0
j Real-valued input weight vector connecting the jth hidden neuron of the

split complex-valued neural network

w1
j Real-valued output weight vector connecting the jth hidden neuron of the

split complex-valued neural network

y complex-valued target vector to the fully complex-valued neural network
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Chapter 1
Introduction

Signals occurring in applications like medical imaging and telecommunications are
inherently complex-valued, and processing them in their natural form preserves the
physical characteristics of these signals. Therefore, there is a widespread research
interest in developing efficient complex-valued neural networks along with their
learning algorithms. However, operating in the Complex domain presents new chal-
lenges; foremost among them being the choice of an appropriate complex-valued ac-
tivation function. Basically, an activation function for a neural network is required to
be nonlinear, bounded and differentiable in every point on the considered plane [1].
This implies that in the Complex domain, the function has to be nonlinear, bounded
and entire. However, Liouville’s theorem states that an entire and bounded func-
tion in the Complex domain is a constant (function) [2]. As neither the analyticity
and boundedness can be compromised, nor is a constant function acceptable as an
activation function as it cannot project the input space to a non-linear higher dimen-
sional space, choices for activation functions for complex-valued neural network are
limited. In this chapter, the different complex-valued neural networks existing in the
literature are discussed in detail, along with their limitations.

Complex-valued neural networks can be broadly classified into different
categories as shown below:

• Nature of Complex-valued Neural Networks

– Split complex-valued neural network
– Fully complex-valued neural network

• Type of Learning

– Supervised learning
– Unsupervised learning
– Reinforcement learning

• Mode of Learning

– Batch learning
– Sequential learning

S. Suresh et al.: Supervised Learning with Complex-valued Neural Networks, SCI 421, pp. 1–29.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013



2 1 Introduction

• Applications

– Array signal processing
– Wireless communication: QAM equalization
– Memories
– Real-valued classification and other applications

1.1 Nature of Complex-valued Neural Networks

Based on the nature of signals (i.e., the inputs signals/features, the output sig-
nals/variables and the weight parameters), which are real-valued or complex-valued,
the complex-valued neural networks are classified into split complex-valued neural
networks and fully complex-valued neural networks.

1.1.1 Split Complex-valued Neural Network

Initially, split complex-valued networks [3] were used to operate on complex-valued
signals. The split complex-valued networks are further divided into two types based
on the nature of weights, namely, split complex networks with real-valued weights
and real-valued activation functions and split complex networks with complex-
valued weights and real-valued activation functions.

1.1.1.1 Real-Valued Weights and Real-Valued Activation Functions

The neural network architecture is similar to the classical Multi-Layer Percep-
tron (MLP) network with the real-valued back propagation algorithm. Here, the
complex-valued inputs and targets are split into two real-valued quantities ( the real
and imaginary components ), based on either a rectangular (real-imaginary) or polar
(magnitude-phase) coordinate system. For example, two complex-valued inputs and
one complex-valued output problem is converted into four real-valued inputs and
two real-valued outputs problem such as:

{
z1

z2

}
→

⎧
⎪⎪⎨

⎪⎪⎩

z1R

z1I

z2R

z2I

⎫
⎪⎪⎬

⎪⎪⎭
(1.1)

{
z1

z2

}
→

⎧
⎪⎪⎨

⎪⎪⎩

r1

φ1

r2

φ2

⎫
⎪⎪⎬

⎪⎪⎭
(1.2)

where z1R and z1I are the real and imaginary parts of the complex-valued signal
z1 and r1 and φ1 are its magnitude and phase components, respectively. Similarly,
z2R, z2I , r2 and φ2 are the real part, imaginary part, magnitude and phase of the
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complex-valued signal z2. The input and output weights of such a network are also
real-valued. The architecture of a such split complex-valued multi-layer perceptron
network with a single hidden layer is shown in Fig. 1.1.
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Fig. 1.1 Architecture of a Split Complex-valued Multi-Layer Perceptron Network

In the figure,

• x∈R2m = [x1, x2, · · · , x2m] = [z1R, z1I , · · · zmR, zmI ]
T are the real-valued inputs.

• W 0 ∈ Rh×2m =

⎡

⎢
⎣

w0
11 · · · w0

12m
...

w0
h1 · · · w0

h2m

⎤

⎥
⎦ are the real-valued weights connecting the

input layer and hidden layer.
• yh ∈ Rh = [y1

h, y2
h, · · · , yh

h]
T are the real-valued response of the hidden neurons

given by yk
h = σ(∑2m

j=1 wk jx j); σ(.) is a unipolar or bipolar sigmoidal activation
function.
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• W 1 ∈ R2n×h =

⎡

⎢
⎣

w1
11 · · · w1

12m
...

w1
h1 · · · w1

h2m

⎤

⎥
⎦ are the real-valued weights connecting the

hidden layer and output layer.
• ô ∈ R2n = [ô1, · · · , ô2n]

T are the real-valued outputs of the network. The
complex-valued predicted output of a split complex-valued multi-layer percep-
tron is reconstructed as ŷ1 = ô1 + iô2.

Hence, it can be observed that the network is in fact an MLP network operating
on real-valued signals. As each complex-valued signal is split into two real-valued
signals, the number of neurons in the input and output layers are twice the number of
inputs and outputs (of the function to be approximated). This results in an increased
network size and hence, more parameters to be estimated. Also, irrespective of the
kind of splitting the complex-valued signal, real-valued gradients are used to update
the network parameters of such a split complex-valued network. These real-valued
gradients do not reflect the true complex-valued gradient, as stated by Kim and Adali
[4]. Hence, approximation using the split complex-valued neural networks results
in inaccurate approximations and introduces phase distortion in the complex-valued
function that is approximated. Moreover, from the sensitivity analysis on the split
complex-valued networks presented by Yang et al. [5] and from the convergence
study on split complex-valued networks presented by Zhang et al. [6], it can be
observed that the convergence of split complex-valued network with real-valued
weights depends on proper initialization and the choice of the learning rate [7].

1.1.1.2 Complex-Valued Weights and Real-Valued Activation Functions

To overcome the problem of phase distortions due to the splitting of complex-valued
signal, complex-valued weights with real-valued activation functions have been pre-
sented by Deng et al. [8, 9] and Benvenuto et al., [10]. The Gaussian function that
maps the Complex domain into the Real domain, f : Cn → R is used as the basis of
the activation function in these networks. Hence, these networks also use real-valued
activation functions and the response of the hidden layer is real-valued. In [8, 10],
the product of complex-valued error and its conjugate is used to update the weights
during error-correction learning. As the Real part of error is used to update the Real
part of the free parameters, and Imaginary part of error to update Imaginary part of
the free parameters, the correlation between the real and imaginary components of
the weight and error is lost during learning. Hence the gradients, used to update the
parameters during learning are not true representation of the complex-valued gradi-
ents [4]. Therefore, approximation using such a network is also not very accurate.

1.1.2 Fully Complex-valued Neural Networks

The fully complex-valued network with a fully complex-valued activation function
is capable of handling complex-valued inputs and outputs efficiently. The architec-
ture of a fully complex-valued neural network is given in Fig. 1.2.
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Fig. 1.2 Architecture of a Fully Complex-valued Neural Network

In the figure,

• z ∈ Cm = [z1, z2, · · · , zm]
T are the complex-valued inputs to the network.

• V 0 ∈ Ch×m =

⎡

⎢
⎣

v0
11 · · · v0

1m
...

v0
h1 · · · v0

hm

⎤

⎥
⎦ are the complex-valued weights connecting the

input layer and hidden layer.
• zh ∈ Ch = [z1

h, z2
h, · · · , zh

h]
T are the complex-valued response of the hidden neu-

rons given by yk
h = fa(∑m

j=1 v0
k jz j; k = 1,2, · · ·h). Here, fa(.) is a complex-valued

activation function with sigmoidal characteristics.

• V 1 ∈ Cn×h =

⎡

⎢
⎣

v1
11 · · · v1

1m
...

w1
h1 · · · w1

hm

⎤

⎥
⎦ are the complex-valued weights connecting the

hidden layer and output layer.
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• ŷ ∈Cn = [ŷ1, · · · , ŷn]
T are the complex-valued outputs of the network given by

ŷl =
K

∑
k=1

v1
lkzk

h (1.3)

It can be observed from the figure that unlike the split complex-valued networks, the
fully complex-valued networks operate on the complex-valued signals, and hence
use only a fewer neurons in the input and output layers. The learning algorithm
used in the fully complex-valued neural network relies on well-defined complex-
valued gradients1. Thus, the main issue in a fully complex-valued neural network
is the proper selection of the complex-valued activation function and the compu-
tation of its derivatives. For the activation function selection, the complex-valued
function should satisfy the following essential properties stated by Georgiou and
Koutsougeras in [12] :

• fa(z) = fa(x + iy) = u(x,y) + iv(x,y). u(x,y) and v(x,y) should be non-
linear and bounded in x and y.

• The partial derivatives ∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y exist and are bounded.

• fa(z) is not entire2.
• ∂u

∂x
∂v
∂y �= ∂v

∂x
∂u
∂y unless ∂u

∂x = ∂v
∂x = 0 and ∂v

∂y = ∂u
∂y = 0

These conditions were, then reduced and relaxed by Kim and Adali [4] as:

In a bounded domain of complex plane C, a fully complex nonlinear activation func-
tion fa(z) needs to be analytic3 and bounded almost everywhere.

The fully complex-valued neural network is classified further based on the nature of
the complex-valued activation function used.

1.1.2.1 Elementary Transcendental Activation Functions

Kim and Adali introduced a Fully Complex-valued MLP neural network with any
of the Elementary Transcendental Functions (ETF’s) as an activation function and
derived its fully complex-valued back propagation weight update rule [4]. The learn-
ing algorithm presented in [4] is a complex-valued version of the real-valued back-
propagation algorithm. For complete details on the properties of different ETF’s and
the complex-valued back propagation algorithm, refer to [4]. The ETF’s satisfy the
properties needed for complex activation functions, but they along with their deriva-
tives have essential, removable or isolated singularities at different locations in the
complex domain [13]. For example, asinh is a simple ETF, which has a branch
cut singularity along the imaginary axis. The derivative of asinh has an isolated

1 If z = x+ iy and fa(z) = u(x,y)+ iv(x,y), ∂ fa
∂ z = 1

2

(
∂ fa
∂ x − i ∂ fa

∂ y

)
as defined in [11].

2 In complex analysis, an entire function, also called an integral function, is a complex-
valued function that is analytic over the whole complex plane.

3 A complex function is said to be analytic on a region C if it is complex differentiable at
every point in C.
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Table 1.1 ETF’s and their singularities

Activation Singular Derivative Singular point
Function Point of the derivative

tanh Pointwise: (1/2+ n)pi sech2 Pointwise: (1/2+ n)π

tan Pointwise: (1/2+ n)pi sec2 Pointwise: (1/2+ n)π

atanh Isolated: ± 1 1/1− z2 Isolated: ± 1

atan Isolated: ± i 1/1+ z2 Isolated: ± i

asinh Branch Cut: 1/
√
(1+ z2) Isolated: ± i

along imag axis ≥ i

asin Branch Cut: 1/
√
(1− z2) Isolated: ± 1

along real axis ≥ 1

singularity at ± i. The list of various ETF’s, and their derivatives, along with the
singularities associated with the ETF and its derivative are presented in Table 1.1.

If the learning algorithm operates in the region of singularity, the parameter
updates exhibit undesirable behavior affecting the convergence. Hence, the fully
complex-valued algorithm is sensitive to the singularities of the activation functions,
sample population distribution, weight initialization and the choice of the learning
rate. It is also noteworthy that the convergence effects are different for different
ETF’s and they also depend on the nature of the problem, the initial weights and
the learning rate. Hence, it is essential to identify a fully complex-valued activa-
tion function that is less sensitive to initial weights, learning rate and the the prob-
lem considered. One such activation function is proposed for FC-MLP networks
in Chapter 2. Besides, there is also a need to develop a fully complex-valued acti-
vation function for a fully complex-valued radial basis function network. Such an
activation function and its learning algorithm are presented in Chapter 3.

1.1.2.2 Axially Symmetric Activation Function

To overcome the difficulty of boundedness and analyticity of the complex-valued
activation function, You and Hong introduced an axially symmetric complex-valued
function to deal with QAM signals [14]. The general form of the axially-symmetric
activation function is given by

fa(z) = faR(x)+ i faI(y) (1.4)
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where z ε C, zR = real(z), zI = imag(z) and faR(.)and faI(.) are any continuous
functions. You and Hong used

faR(x) = x + αsin(πx); and faI(y) = y + αsin(πy) (1.5)

where α is the slope factor that determines the degree of non-linearity. Here,
0 < α < 1

π . The axially symmetric function satisfies the essential properties of an
activation function to be used in the Complex domain. The axially symmetric func-
tion is suitable for problems, which have symmetric targets, such as equalization in
telecommunication. Even though the axially symmetric activation function does not
have the singularity, it does not consider the correlation between the real and imag-
inary parts of a complex-valued signal. Also, selection of appropriate continuous
activation function for a given problem is difficult [15, 7].

1.2 Types of Learning

As in real-valued networks, complex-valued networks can also be classified into
supervised learning and unsupervised learning types, depending on the presence or
absence of a teacher.

1.2.1 Supervised Learning

If the learning in a neural network occurs with a teacher, it is called Supervised
Learning. In supervised learning, the teacher has a knowledge of the environment,
with the knowledge being represented by a set of input-output samples, called the
training dataset [1]. The objective of learning is to estimate the free parameters of
the network, such that the output errors are minimized. Several supervised learn-
ing schemes are available for complex-valued networks in the framework of feed-
forward neural networks and recurrent neural networks.

1.2.1.1 Feed-forward Neural Networks

Neural networks in which signals are transmitted from input nodes to output nodes,
with no feedback or memory are defined as feed-forward neural networks [1].
Two well-known topologies of complex-valued feed-forward networks are complex-
valued Multi-Layer Perceptron (cMLP) networks and complex-valued Radial Basis
Function (cRBF) networks.

Complex-valued MLP networks: Similar to the real-valued networks, complex-
valued MLP networks are popular learning paradigms based on error correction
learning. The training/learning is based on a set of inputs-outputs, and learning oc-
curs based on the minimization of the error functions. Complex-valued Back Prop-
agation (CBP) algorithm for the complex-valued MLP network was first presented
by Leung and Haykin [3]. Georgiou and Koutsougeras [12] listed the essential prop-
erties of a fully complex-valued activation function and presented an improved
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version of the complex-valued back-propagation algorithm. Later, Kim and Adali
[4] relaxed these conditions and presented an improved version of the CBP using
the Cauchy Riemann’s equations4. Besides these, the Fully Complex-valued Ex-
treme Learning Machine (C-ELM) presented by Li et al. [16] is also a direct exten-
sion of the real-valued Extreme Learning Machine (ELM) presented by Huang et
al. [17, 18]. C-ELM algorithm determines the free parameters of the network in an
analytical way and does learning faster compared to other algorithms. Similarly, the
complex-valued resilient propagation network presented by Kantsila et al. [19] is a
direct extension of the real-valued resilient propagation network [20].

In all these CBP algorithms, the activation functions are bounded almost every-
where (a.e). This is because, according to Liouville’s theorem,a bounded entire ac-
tivation function in the Complex domain is a constant function . To overcome the
controversy of boundedness and analyticity of complex-valued activation function,
an axially symmetric complex-valued function is introduced, to deal with QAM
signals, by You and Hong [14]. However, the issue here, is the selection of appro-
priate functions for the real and imaginary parts of the function ( faR and faI (1.5)).
Therefore, there is a need to identify a fully complex-valued activation function,
which is bounded in the bounded domain of the Complex plane, with its singular
point away from the operating region of the fully complex-valued neural network.
In other words, a fully complex-valued activation function with its singularity at ±∞
is preferred. One such activation function is discussed in Chapter 2. book.

Complex-valued RBF networks: As the real-valued radial basis function networks
form another popular architecture and are well-known for their localization prop-
erties, several real-valued RBF networks and their supervised learning algorithms
have been extended to the Complex domain. In [21, 22], Chen et al. first presented
the Complex-valued RBF (CRBF) networks, which are direct extensions of the real-
valued RBF networks. The structure of such a complex-valued RBF network is pre-
sented in Fig. 1.3.

In the figure,

• z ∈ C
m = [z1z2 · · · zm]

T are the complex-valued inputs to the network.
• yh ∈ Rh = [y1

h, y2
h, · · · , yh

h]
T are the real-valued response of the hidden neurons

given by

yk
h = fg(z) = exp

(−z− c)H(z− c)
2σ2 ; k = 1,2, · · · ,h (1.7)

where, c ∈ C
m is the m-dimensional complex-valued centers of the Gaussian

function in the hidden neurons and σ ∈ R is the width of the Gaussian function
in the hidden neuron and H denotes the Hermitian operator.

4 For a function f (z) = u(x,y)+ iv(x,y); z = x+ iy, the Cauchy Riemann equations are
given by:

∂u
∂x

=
∂v
∂y

;
∂v
∂x

= − ∂u
∂y

(1.6)
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Fig. 1.3 Architecture of a Complex-valued RBF Network

• V 1 ∈ Cn×h =

⎡

⎢
⎣

v1
11 · · · v1

1m
...

w1
h1 · · · w1

hm

⎤

⎥
⎦ are the complex-valued weights connecting the

hidden layer and output layer.
• ŷ ∈ Cn = [ŷ1, · · · , ŷl , · · · , ŷn]

T are the complex-valued outputs of the network,
given by: ŷl = ∑K

k=1 v1
lkyk

h; l = 1, ..., l, ...,n.

It can be seen that as the activation function maps Cm → R, the responses of the
neurons in the hidden layer are real-valued. Similarly, Complex-valued Minimal Re-
source Allocation Network (CMRAN), presented by Deng et al. [8] and Complex-
valued Growing and Pruning Network (CGAP-RBF) proposed by Li et al. [23] are
also direct extensions of the real-valued Minimal Resource Allocation Network
(MRAN) proposed by Yingwei et al. [24] and Growing and Pruning RBF Net-
work (GAP-RBF) presented by Huang et al. [25] respectively. However, in all these
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algorithms, the Gaussian function that maps Cm → R is used as the basis of the
activation function. Hence, despite the centers of the RBF function being complex-
valued, the response at the hidden layer is real-valued, resulting in inaccurate phase
approximation. Therefore, developing a fully complex-valued RBF network with
a fully complex-valued symmetric activation function, capable of better phase ap-
proximation, is very important. To address this need, chapter 3 of this book presents
a fully complex-valued RBF learning algorithm.

1.2.1.2 Recurrent Neural Networks

A recurrent neural network is a class of neural network where connections between
units form a directed cycle. This creates an internal state of the network which al-
lows it to exhibit dynamic temporal behavior. Wang [26] presented a split com-
plex valued recurrent neural network to solve complex-valued linear equations. The
complex-valued coefficients were split into their real and imaginary parts and real-
valued recurrent neural networks were used to solve the equations. Later, similar
to the MLP and RBF framework, the algorithm for the real-valued recurrent neural
network [27] is also extended to the Complex domain. Li et al. [28] presented a
new algorithm for complex-valued recurrent neural network, where each recurrent
neuron is modelled as an infinite impulse response filter. Goh and Mandic [29] intro-
duced an augmented complex-valued extended Kalman filter algorithm for the class
of nonlinear adaptive filters realized as fully connected recurrent neural networks.
The structure of a complex-valued recurrent neural network which consists of Nf

neurons, with p external inputs and N feedback connections is shown in Fig. 1.4
[29]. The network has two distinct layers- a feedback layer and a layer of process-
ing elements. Let ŷl,k denote the complex-valued output of a neuron, l = 1, ...,n at
time index k and s be the (1×m) external complex-valued input vector (i.e., s∈Cm).
The overall input to the network uk then represents a concatenation of vectors ŷk , s
and the bias input (1+ i), and is given by

uk = [sk−1, · · · sk−m, 1+ i, ŷ1,k−1 · · · ŷn,k−1]
T (1.8)

For the lth neuron, its weights form a (m+ n+ 1)× 1 dimensional weight vector
vT

l = [vl,1, · · · ,vl,m+n+1], l = 1, · · · ,Nf , which are encompassed in the complex-
valued weight matrix of the network V = [v1, ...,vNf ]

T . The output of every neuron
can be expressed as

yl,k = fa(netl,k), l = 1, · · · ,n (1.9)

where fa(.) is a complex-valued nonlinear activation function of a neuron and

netl,k =
m+n+1

∑
d=1

wldud,k (1.10)

is the net input to the lth neuron at time index k, where wld is the weight connecting
the lth output neuron and the dth input neuron and ud,k is the dth input at time index
k.
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Fig. 1.4 Architecture of a Fully Connected Complex-valued Recurrent Neural Network

Mandic [30] also presented a recurrent neural network based on nonlinear autore-
gressive moving average models, suitable for processing the generality of complex
signals. Later, Zhou and Zurada [31] addressed the boundedness, global attractivity
and complete stability of the recurrent neural networks and derived some condi-
tions for those properties. An important application of the complex-valued recur-
rent neural networks is the estimation of wind profile and wind power as shown by
Goh et al. [32]. In their work, a complex-valued pipelined recurrent neural network
architecture is used, and the network is trained by the complex-valued real-time re-
current learning algorithm with a fully complex-valued activation function to fore-
cast wind signal in its complex form (speed and direction).

1.2.1.3 Error Functions for Supervised Learning

Another area of research interest in CVNN is to identify an efficient error function
that minimizes both the magnitude and phase of the complex-valued error signals
during learning. The mean squared error function that considers only the magnitude
of the complex-valued error is the most commonly used error function. As it is an
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explicit representation of only the magnitude of the complex-valued error, using this
error function results in inaccurate phase approximation. A list of possible choices
of error functions for the complex-valued networks is presented by Gangal et al.
[33]. Chen et al. [34] presented a modified error back propagation algorithm for
CVNN. They added a term, corresponding to the hidden layer error, to the conven-
tional error function to speed up the learning process. In chapter 2 of this book, we
propose a logarithmic error function that uses an explicit representation of both the
magnitude and phase of the complex-valued error as an error function for FC-MLP.
This makes learning efficient and hence results in more accurate approximation of
both the magnitude and phase of the complex-valued signals.

1.2.2 Unsupervised Learning

In unsupervised learning or self-organized learning, there is no external teacher to
oversee the learning process [1]. The goal of unsupervised learning techniques is to
build representations of the inputs that can be used for decision making, predicting
future inputs etc. The Principal Component Analysis (PCA) and the Independent
Component Analysis (ICA) are the two commonly used techniques to address this
representation. In this section, we discuss the PCA and ICA learning algorithms,
available in the literature.

1.2.2.1 Complex-valued Principal Component Analysis

Principal component analysis is an unsupervised learning technique used to reduce
the dimensionality of a data set consisting of a large number of interrelated variables,
while retaining the variation present in the data as much as possible. In a PCA,
the multi-variate data is transformed to a new co-ordinate system using a linear
orthogonal transformation.

Rattan and Hsieh [35] extended the real-valued PCA [1] to the Complex-domain.
They presented a complex-valued PCA and a Non-linear Complex-valued PCA
(NLCPCA) for extraction of nonlinear features from the dataset. The complex-
valued neural network model for NLCPCA is an auto-associative feed-forward
multi-layer perceptron model. A structure of this NLCPCA is presented in Fig. 1.5
[35].

There are m input and output neurons or nodes corresponding to the m variables.
Sandwiched between the input and output layers are 3 hidden layers (starting with
the encoding layer, then the bottleneck layer and finally the decoding layer) contain-
ing q, 1 and q neurons respectively. The network is composed of two parts: The first
part from the input to the bottleneck maps the input z tothe single nonlinear com-
plex principal component f (z). The second part from the bottleneck to the output
z0 is the inverse mapping g( f (z)). Here, the higher dimensional space (m) of the
input is reduced linearly to a one-dimensional space at the bottleneck layer given by
f : Cm →C

1 and a linear inverse mapping g : C1 →C
m maps from bottleneck layer

to the m-dimensional output z′, such that the least squares error function (E).
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E =
n

∑
j=1

|| z j − z′j ||2=|| z j − g( f (z j)) ||2 (1.11)

is a minimum (with z j the jth column of Z). For any input vector z,

f (z) = vHz (1.12)

where vH is the weight vector between the inputs and the bottleneck layer. For auto-
associative networks, the target for the output neurons are simply the input data.
Increasing the number of neurons in the encoding and decoding layers increases the
nonlinear modelling capability of the network.

A review of the various complex-valued principal, minor components/subspace
linear/nonlinear rules for complex-weighted neural structures are presented [36].
Several applications of the various unsupervised learning paradigms in the complex
domain are also presented in [36].

1.2.2.2 Complex-valued Independent Component Analysis

Independent Component Analysis (ICA) is a signal-processing method used to ex-
tract independent sources given only the observed data which is a mixture of the
unknown sources. The goal of the ICA can be defined as finding a linear representa-
tion of the non-Gaussian data such that the components are statistically independent
or as independent as possible [37]. A number of real-valued ICA algorithms are
available in the literature and a survey of the real-valued ICA algorithms and their
applications are presented in [38].

Complex-valued signals arise frequently in a wide range of applications like com-
munications [39], [40], [41], [42], [43], radar, and biomedicine [44], [45], [46], as
most practical modulation formats are of complex type and applications such as
radar and magnetic resonance imaging lead to data that are inherently complex-
valued. The non-Gaussian nature of the complex-valued data in these applications
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require the development of the complex-valued ICA algorithms. Bingham et. al.,
[47, 48] first presented the fast fixed-point type ICA algorithm that is capable of
separating the complex-valued linearly mixed source signals, assuming that the orig-
inal, complex-valued source signals are mutually statistically independent. Fiori et.
al., [49] presented an ICA algorithm to solve problems involving complex-valued
signals using the maximum-mismatch learning principle. Yang et. al., [50] presented
an ICA method for suppression of image and co-channel interference in wireless re-
ceivers such that the channel capacity is increased and the receiver’s front end is
simplified.

The conditions for identifiability, separability and the uniqueness of the linear
complex-valued ICA models are established in [51] by extending the well-known
condition for the real-valued ICA models. Sallberg et. al., presented the complex-
valued ICA with the Kurtosis contrast function in [52]. This ICA algorithm does not
exhibit the divergent behavior for Gaussian-only sources that occurs in the Fast ICA
method. Later, Li et. al., [53] derived the kurtosis maximization using a gradient up-
date, kurtosis maximization using a fixed-point update, and kurtosis maximization
using a Newton update algorithms to perform the complex independent component
analysis based on the maximization of the complex kurtosis cost function. The com-
plex maximization of the non-Gaussian cost function (Novey et. al., [54]) and the
entropy bound minimization (Li et. al., [55]) are some of the other cost functions
used in developing the ICA.

The above works focus on the development and application of the complex-
valued ICA to signals of circular sources. The circularity property or properness is
an important feature of many complex random signals. At the complex signal level,
circularity means that the signal is statistically uncorrelated with its own complex-
conjugate. In case of complex random vectors it means that the so-called com-
plementary covariance matrix or pseudo-covariance matrix vanishes. Many widely
used signals such as M-QAM and 8-PSK signals and standard complex AWGN pos-
sess this circularity property. However, practical imperfections in transmitters and
receivers such as I/Q imbalance may cause departures from that property. Moreover,
some well known modulation schemes such as BPSK and GMSK are non-circular.
Therefore, complex-valued ICA algorithms have been developed to address the non-
circularity of the complex-valued signals [56], [57]. As the conventional covariance
matrix does not completely describe the second order properties of the non-circular
components, Ollilaa et. al., [56] used the generalized uncorrelating transformation
instead of the conventional whitening transformation to develop an ICA algorithm
for non-circular signals.

The ICA algorithms presented in the above-mentioned papers have been devel-
oped for holomorphic functions5, that satisfy the Cauchy Riemann conditions. The
Cauchy Riemann equations were earlier given in Section 1.2.1, Eq. (1.6) and are
reproduced here for convenience .

Consider a function
5 A complex-valued function f(z) of a complex variable z is said to be holomorphic at a point

a if it is differentiable at every point within some open disk centered at a.
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f (z) = u(x,y)+ iv(x,y); z = x+ iy. (1.13)

Then the Cauchy Riemann equations are given by:

∂u
∂x

=
∂v
∂y

;
∂v
∂x

= − ∂u
∂y

(1.14)

The holomorphic function f (z) that satisfies the Cauchy Riemann equations requires
that the functions u(x,y) and v(x,y) are harmonic6. But, some commonly encoun-
tered useful functions like

fm(z) = z (1.16)

fn(z) =
z+ z

2
(1.17)

fe(z) = |z|2 = zz = x2 + y2 (1.18)

fp(z) = |z|=√
zz =

√
x2 + y2 (1.19)

are not harmonic functions and are not differentiable in the standard complex vari-
ables sense. It can be noted here that the derivative of the squared error func-
tion, which is similar to fe (Eq. (1.18)), usually employed in gradient descent
based/analytical optimization algorithms does not exist in the conventional sense of
the complex derivative [58],[59], [60], [61]. However, the functions in Eqs. (1.16),
(1.17), (1.18) and (1.19) can be represented in the form of f (z,z), where they are
holomorphic in z = x+ iy for fixed z and are holomorphic in z = x− iy for fixed z.
i.e.,

R-derivative of f (z,z) =
∂ f
∂ z

|z=constant (1.20)

R-derivative of f (z,z) =
∂ f
∂ z

|z=constant (1.21)

This fact underlies the development of the CR- calculus or the Wirtinger calculus
[2], [62]. Eq. (4.12) is called the R− derivative (the real − derivative) and Eq.
(4.13) is called the R−derivative (the con jugateR−derivative). It is proved in [2]
and [11] that the R− derivative and the R− derivative can be equivalently written
as

∂ f
∂ z

=
1
2

(
∂ f
∂x

− j
∂ f
∂y

)

∂ f
∂ z

=
1
2

(
∂ f
∂x

+ j
∂ f
∂y

)
(1.22)

6 Functions u(x,y) and v(x,y) are harmonic functions, if they satisfy the Laplace equations
given by

∂ 2u(x,y)

∂x2 +
∂ 2u(x,y)

∂y2 = 0 and
∂ 2v(x,y)

∂x2 +
∂ 2v(x,y)

∂y2 = 0 (1.15)
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where the partial derivatives with respect to x and y are true partial derivatives of
the function f (z) = f (x,y), which is differentiable with respect to x and y. The
R−derivative and the R−derivative are both linear differential operators that obey
the product rule of differentiation and the differential rule [2]. Therefore, the R−
derivative of fe(z) (Eq. (1.18)) with respect to a complex-valued variable a can be
derived as:

∂ fe

∂a
=

∂ (zz)
∂a

=

(
∂ z
∂a

)
z+

(
∂ z
∂a

)
z (1.23)

Thus the pair of partial derivatives of a non-holomorphic functions, defined by
Eq. (1.22), is the natural generalization of the single Complex derivative (C−
derivative) of a complex-valued holomorphic function. Therefore, the following
fact is an easy consequence of the definition in Eq. (1.22), as discussed in [11]:

• A necessary and sufficient condition for a real-valued function f (z) = f (x,y); z=
x+ iy to have a stationary point with respect to the real-valued parameters r =
(x,y)T ∈ R2 is that its R vanishes.

• A necessary and sufficient condition for a real-valued function f (z) = f (x,y); z=
x+ iy to have a stationary point with respect to the real-valued parameters r =
(x,y)T ∈ R2 is that its R vanishes.

This approach that is used to apply the calculus of real variables to make statements
about functions of complex variables is known as Wirtinger Calculus. Differenti-
ation of a complex function using the Wirtinger derivatives has been extensively
discussed in [63].

Adali et. al., [64] established the theory for Complex Independent Compo-
nent Analysis (CICA) for nonlinear complex-valued signal processing based on
Wirtinger calculus, such that all computations can be directly carried out in the
complex domain. Two main approaches for performing ICA within the framework
of Wirtinger calculus: maximum likelihood and maximization of non-Gaussianity,
have been developed in [64]. The stability of the maximum likelihood complex ICA
derived presented in [64] is studied in [64].

1.3 Mode of Learning

In this section, the various complex-valued neural network algorithms available in
the literature are classified based on the mode of the learning algorithm. Depending
on the sequence in which samples are presented to the network, a learning algorithm
can be either a batch-learning algorithm or a sequential learning algorithm.

1.3.1 Complex-valued Batch Learning Algorithms

Batch learning is a learning scheme where all the samples in the training set are pre-
sented repeatedly to the network. The free parameters of the network are estimated
gradually, over a series of epochs until a specified mean squared error of all the sam-
ples is achieved. Such a learning scheme requires the complete training dataset to be
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available apriori. Several real-valued batch learning algorithms have been extended
to the Complex domain. Complex-valued batch learning algorithms are available
in the framework of feedforward MLP and RBF networks. Initially, split complex-
valued MLP neural networks [3, 65], which treat the complex-valued signals and
weights as two real-valued signals were used to operate on complex-valued sig-
nals, and the real-valued back propagation algorithm was used to estimate the free
parameters of the network. In [66], a neural network based on adaptive activation
functions for SC-MLP is presented. But, from the analytical study on sensitivity
and initial values of the SC-MLP [5, 67], it is observed that, the process of splitting
the complex-valued signals into real and imaginary components introduces phase
distortions in complex-valued approximations.

The complex-valued back-propagation algorithm based on the squared error cri-
terion for the complex-valued feedforward network was first derived by Nitta [68],
by Benvenuto and Piazza [10], and by Hirose [69]. Ever since, several activation
functions have been presented for the feedforward network and the complex-valued
back propagation algorithm has been modified accordingly. In [12], Georgiou and
Koutsougeras listed the conditions required for a function to serve as a complex-
valued activation function and proposed few activation functions for the batch learn-
ing MLP network. Later, Kim and Adali [4, 13] relaxed these conditions and sug-
gested elementary transcendental functions as activation functions for FC-MLP. As
these functions satisfy Cauchy Riemann conditions, the complex-domain back prop-
agation algorithm was altered with the inclusion of the Cauchy Riemann conditions.
Similarly, Chen et al. [34] developed a modified error back back-propagation algo-
rithm to solve the problem of local minima, which is inherent to MLP networks.
Kim and Guest [70] modified the complex-valued back propagation algorithm to
suit to complex-valued signal processing in the frequency domain. You and Hong
[14] presented an axially symmetric activation function for solving the QAM equal-
ization problem. However, the axially symmetric activation function is specific to
the application considered and choosing the axially symmetric functions for each
application is a cumbersome procedure.

There are also other batch learning algorithms in the complex-domain which
are direct extensions of their real-valued counterparts. For example, Li et al. [16]
presented the Complex-valued Extreme Learning Machines (C-ELM), which is the
complex-valued extension of the real-valued extreme learning machines. However,
all these algorithms compromise either on the analyticity or boundedness or are ap-
plication specific. Besides, the CBP algorithm presented in all these networks are
derived based on the squared error function which does not consider the phase of
the complex-valued error explicitly. Hence, one needs to identify an error function
which is indicative of both the magnitude and phase error explicitly. In chapter 2 of
this book, one such error function is proposed for the complex-valued MLP networks
and an Improved Complex-valued MLP (IC-MLP) has been developed in [7] .

On the other hand, although several real-valued RBF learning algorithms [71,
72, 73, 74] have been developed for different applications, only a few of these
real-valued neural networks have been extended to the Complex domain. Complex-
valued RBF networks, which are direct extensions of the real-valued RBF network,
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was first presented by Chen et al. [21, 22]. For regression problems, [75], Chen et
al. extended the locally regularized orthogonal least squares of the real-valued RBF
network to the Complex domain. Chen [76] presented two training algorithms for
symmetrical complex-valued RBF network. These algorithms have been applied to a
non-linear beamforming problem. While one of the methods is based on a modified
version of the cluster-variation enhanced algorithm, the other method is derived by
modifying the orthogonal-forward-selection procedure based on the Fisher ratio of
class separability measure. These networks used the Gaussian RBF with Euclidean
norm ‖(x− c)‖ to process complex-valued signals. However, in these networks, the
input is not efficiently transmitted to the output, as the activation functions maps
Cm →R. Hence, all these networks do not approximate phase accurately. Therefore,
it is imperative that a fully complex-valued symmetric function that maps Cm → C
be used as a basis for the activation function of a complex-valued RBF network. In
chapter 3 of this book, one such function is proposed as a fully complex-valued ac-
tivation function, based on which a fully complex-valued RBF network is presented
and its gradient descent based learning algorithm is derived in [77] .

However, all the aforementioned batch learning algorithms have the following
drawbacks:

• Training dataset: The batch learning algorithms require the training/testing
dataset to be available apriori, hence the network can be trained over several
epochs. However, training data may not be available apriori in most real world
applications. A few applications like the cancer classification allow temporal
changes to the task being learnt.

• Network structure: Another critical issue in batch learning algorithms is that the
network structure has to be fixed apriori before learning occurs. While fewer neu-
rons in the network result in inaccurate approximation, large network size may
result in poor generalization performance and increased computational effort.

These issues in batch learning algorithms motivated the development of sequential
learning schemes for neural networks. A few of these sequential learning algorithms
are also extended to the Complex domain, and they are discussed briefly in the next
section.

1.3.2 Complex-valued Sequential Learning Algorithms

In sequential/online learning algorithms, samples are presented one-by-one and only
once to the network. They are discarded after they are presented and learnt by the
network. Also, the network structure may evolve during learning, by adding and
deleting neurons, as it acquires information from the training sample dataset. Few
sequential learning algorithms of the above type have been extended from the Real
domain to the Complex domain.

The complex-valued minimal resource allocation network [8] is the first of the
kind to be extended from the real-valued minimal resource allocation network [24]
sequential learning algorithm. In the CMRAN algorithm, the samples in the training
dataset are used to either add a neuron or to delete a neuron, based on the magnitude
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error of the sample. If neither of these conditions are satisfied, the sample is used to
update the parameters of the network using the real-valued extended Kalman filter.

Similarly, the complex-valued growing and pruning (CGAP-RBF) algorithm [23]
is another sequential learning algorithm extended from the real-valued growing and
pruning RBF [25] learning algorithm. The major differences between the CMRAN
and the CGAP-RBF algorithms are:

• In CMRAN, only the sample error and its distance from the nearest neuron is
considered for addition of a neuron. However, in the CGAP-RBF, in addition to
these parameters, the significance of the sample to the learning accuracy is also
considered for addition of a neuron. Thus while the CMRAN uses only the past
history of the samples defined by the sliding window, the CGAP-RBF uses the
entire past history of the samples.

• While in CMRAN, all the parameters of all the hidden neurons are updated dur-
ing learning, in the CGAP-RBF algorithm, only the parameters of the nearest
neuron are updated.

However, these algorithms are similar in that they use the Gaussian activation func-
tion that maps C

m → R and a real-valued EKF for the parameter updates during
learning. Though the centers and weights are complex-valued, these algorithms
use real-valued Real and Imaginary components of the complex-valued error and
weights during the parameter update. Thus, it does not preserve the correlation be-
tween the Real/Imaginary components of the complex-valued error/weight infor-
mation. Recently, Huang et al. [78] extended the Incremental Extreme Learning
Machine (I-ELM) from the Real domain to the Complex domain. The algorithm
randomly adds hidden nodes incrementally and analytically determines the output
weights. It has been shown that in spite of the hidden nodes being generated ran-
domly, the network constructed by I-ELM remains as an universal approximator.
They show that as long as the hidden layer activation function is complex contin-
uous discriminatory or complex bounded nonlinear piecewise continuous, I-ELM
can still approximate any target functions in the complex domain [78]. However,
in I-ELM, a few ETFs are used as activation functions at the hidden layer. As the
ETFs and their derivatives are known to have their singularities in the finite region of
the Complex domain that might interfere with the operating region of the network,
identifying a suitable activation function becomes a challenging task. Therefore,
there is a need to develop a fully complex-valued sequential learning algorithm, that
preserves the complex-valued information, with good generalization performance
and approximates phase more accurately. In chapter 7 of this book, we propose one
such fully complex-valued sequential learning algorithm called the Complex-valued
Self-regulatory Resource Allocation Network [79].

1.4 Applications

In this section, the various applications of the CVNNs are discussed in detail. The
applications of CVNNs range from wireless communication to medical imaging.
Several complex-valued memories have also been reported in the literature. A com-
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plete survey of the various applications of CVNN is discussed by Akira Hirose [80],
[81]. In this section, some of the most common applications are highlighted.

1.4.1 Digital Communication: QAM Equalization

Quadrature amplitude modulation is an analog/digital modulation scheme that con-
veys two message signals by modulating the amplitudes of two carrier waves
(quadrature carriers) that are 90◦ out of phase with each other. Thus, the signals
in the QAM schemas are complex-valued. When the QAM signals are transmitted
over a channel, the nonlinear characteristics of the channel cause spectral spreading,
inter-symbol interference and constellation warping. Hence, an equalizer is essential
at the receiver of the communication channel to reduce the precursor inter-symbol
interference without any substantial degradation in the signal-to-noise ratio.

In the literature, several works where the complex-valued neural networks are
used to solve the QAM equalization problem are reported. Many complex-valued
batch learning and sequential learning schemes are used to solve the non-linear,
communication channel equalization problems. For example, Chen et al. [22] used
the batch learning complex-valued RBF network, presented in [21] to solve a dig-
ital communication channel equalization. Cha and Kassam [82] used the complex-
valued radial basis function network to solve the QAM equalization problem which
is considered as a non-linear classification problem. Rajoo Pandey [83] used the
complex-valued feed forward neural network for blind equalization with M-ary
phase shift keying signals. You and Hong [14] developed an axially symmetric acti-
vation function for solving the QAM equalization problem using a complex-valued
feed-forward neural network. Deng et al. [9], used the sequential learning complex-
valued minimal resource allocation network to solve the equalization problem. Li
et al. [23] used the complex-valued growing and pruning RBF algorithm to solve
the equalization of several models, like the Patra model [84], complex-valued lin-
ear Chen’s model [22], the complex-valued non-linear Cha and Kassam model [82].
As complex-valued neural networks approximate phase more accurately than real-
valued neural networks [4, 15, 7], they are more efficient in classifying the complex-
valued signals in their quadrants than other real-valued algorithms. In chapter 4 of
this book, the different complex-valued neural network based equalizers are used to
solve the QAM equalization problem.

1.4.2 Array Signal Processing

The classical problem in array signal processing is to determine the location of an
energy radiating planar source relative to the location of the receiver array. Array
signal processing comprises of two components viz., Direction of arrival estimation
and beam forming. A brief review of the various neural network based antenna array
processing is presented by Du et al. [85]. As the signals involved in the array signal
processing are complex enveloped signals, employing complex-valued neural net-



22 1 Introduction

works is a wise choice to estimate the direction of arrival and to form the transmitted
beam at the receiver.

With the evolution of complex-valued neural networks, they have been employed
to solve the array signal processing problems. Bregains and Ares [86] showed that
complex-valued neural networks can be incorporated as a very powerful and ef-
fective tool in the analysis, synthesis, and diagnostics of antenna arrays. Several
works are reported in the literature using complex-valued neural networks for ar-
ray signal processing applications. For example, Yang et al. [87] used the CVNN
to solve the array signal processing problem of direction of arrival estimation.
Chen et al. [75] used a complex-valued RBF network to solve a nonlinear beam
forming for multiple-antenna aided communication systems that employ complex-
valued quadrature phase shift keying modulation scheme. Chen et al. [88] developed
a novel complex-valued symmetric radial basis function network based detector,
which is capable of approaching the optimal Bayesian performance using channel-
impaired training data. They presented a nonlinear beamforming assisted detector
for multiple-antenna-aided wireless systems employing complex-valued quadrature
phase shift-keying modulation. Similarly, Suksmono and Hirose [89] solved the
beamforming problem using the fully complex-valued MLP network. In chapter 4
of this book, we use the fully complex-valued algorithms developed herein to solve
the adaptive beam forming problem.

1.4.3 Real-Valued Classification

Nitta [68] showed that the linearly inseparable XOR problem in the Real domain
can be easily solved linearly with a single hidden neuron in the Complex domain.
As this shows the improved classification ability of the CVNNs, they are also used
to solve real-valued classification problems, by phase encoding the real-valued sig-
nal, such as the one presented by Amin and Murase [90]. Buchholz and Bihan [91]
classified the polarized signals using complex-valued and quaternionic multi-layer
perceptron networks. Ozbay et al. [92] and Ceylan et al. [93] used complex-valued
neural networks to classify Doppler signals, which are important in medical appli-
cations. On the other hand, Sinha et al. [94] used the split complex-valued MLP
networks in parallel magnetic resonance image reconstruction which is another im-
portant application in medical imaging application.

The multi-layer feed-forward network based on multi-valued neurons has been
developed by Aizenberg and Moraga [95]. It is observed that using a traditional ar-
chitecture of multi-layer feed forward neural network and the high functionality of
the multi-valued neurons, it is possible to obtain a new powerful neural network.
Its training does not require a derivative of the activation function and its function-
ality is higher than the functionality of multi-layer feed forward neural network
containing the same number of layers and neurons. These advantages of multi-layer
feed-forward network based on multi-valued neurons are confirmed by testing using
parity n, two spirals, sonar benchmarks and the Mackey-Glass chaotic time series
prediction problem. With the introduction of complex-valued multi-valued neurons,
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Aizenberg et al. [96] extended these multi-valued neurons to solve several real-
valued classification problems such as in bio-informatics as shown by Aizenberg
and Zurada [95], pattern recognition as shown by [97], blur identification as shown
by Aizenberg et al. [98] etc.

Amin and Murase [90, 99] presented complex-valued neuron models for real-
valued classification problems by phase encoding the real-valued inputs. Activation
functions that map complex-valued input to real-valued outputs are presented and
the gradient descent based learning rules for the activation functions are derived.
It is observed that the classification efficiency of such networks are comparable to
that of real-valued networks, and the convergence of these networks are faster than
real-valued networks.

1.4.4 Memories

As neural networks are good at learning by example, they are used as memories
to learn and recall information/signals [1]. As complex-valued neural networks are
also capable of learning and recalling, research focus is also on developing efficient
complex-valued logic gates and memory. Complex-valued associative memory,
which is a complex-valued Hopfield associative memory, was first introduced by
Noest [100]. The capacity of the complex-valued associative memory was improved
using the pseudo-relaxation algorithm developed by Kobayashi [101]. Muezzinoglu
et al. [102] introduced a method to store each element of an integral memory set
M subset of 1, 2, ..., K(n) as a fixed point into complex-valued multistate Hopfield
network. This method employs a set of inequalities to render each memory pattern
as a strict local minimum of a quadratic energy landscape. A novel logic gate is sug-
gested by Kawata and Hirose [103]. This logic gate is capable of learning multiple
functions at frequencies different from each other, and analyzing the frequency-
domain multiplexing ability in the learning based on complex-valued Hebbian rule.
Associative memory based on quaternionic Hopfield network are investigated by
Isokawa et al. [104]. Quaternion is a class of hypercomplex number systems, and the
networks used in [104] are composed of quaternionic neurons and the input, output,
threshold and connection weights are all represented in quaternions. The concept of
associative memories were then extended to the complex domain by Tanaka Gouhei
and Aihara Kazuyuki [105] and are used in gray level image reconstruction.

1.4.5 Other Applications

Another important application of the complex-valued neural networks is the estima-
tion of wind profile and wind power by Goh et al. [32]. A complex-valued pipelined
recurrent neural network architecture is developed, and the network is trained by
the complex-valued real-time recurrent learning algorithm with a fully complex-
valued activation function to forecast wind signal in its complex form (speed and
direction). The complex-valued neural networks are also used in real-valued image
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processing applications like image recognition as shown by Pande and Goel [106],
blur identification as shown by Aizenberg in [98] etc.

In this chapter, a brief survey of the existing literature on complex-valued neural
networks has been presented. The CVNNs can be classified based on various pa-
rameters like the nature of signals, the type of learning, the mode of learning and
the applications in which they were used. These different classes of complex-valued
neural networks have been discussed in this chapter.
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Chapter 2
Fully Complex-valued Multi Layer Perceptron
Networks

This chapter focuses specifically on the study of different Complex-valued MLP
(CMLP) networks and their learning algorithms in detail. Complex-valued MLPs
can be broadly classified into two types depending on the way in which the complex-
valued signal is handled. They are viz., Split Complex-valued MLP (SC-MLP)
and Fully Complex-valued MLP (FC-MLP). In a split complex-valued MLP, the
complex-valued inputs and outputs are split into two real-valued inputs using rectan-
gular or polar coordinate systems, though the rectangular co-ordinate based splitting
is the most commonly used one. On the other hand, FC-MLP neural networks pro-
cess the complex-valued input signals, using fully complex-valued activation func-
tions and weights to give fully complex-valued output signals.

First, we present the SC-MLP network, where the complex-valued inputs and
outputs are split into two real-valued inputs/outputs, i.e., real and imaginary values
of complex-valued inputs/outputs. Here, the well-known real-valued MLP and its
real-valued gradient descent based learning algorithm are used to update the free
parameters of the network. After learning is complete, the complex-valued output
(ŷ) is reconstructed by a complex summation of the two output nodes (ŷR +iŷI).
However, SC-MLP uses real-valued representation of the complex-valued signals
and weights, the gradients used in the learning algorithm are also real-valued which
do not reflect the true complex-valued gradient.

Next, we present an FC-MLP network that uses complex-valued activation func-
tions and complex-valued weights. As all the signals and weights of an FC-MLP are
complex-valued, the gradient of such a network represents the true gradient of the
complex-valued function and hence improves the phase approximation ability. But,
the challenge in an FC-MLP is the proper selection of an activation function, which
is analytic and bounded almost everywhere. This is because, according to Liouville’s
theorem, a bounded entire function must be a constant in C [1]. In [1], a set of ele-
mentary transcendental functions like “asinh”, “atan”, “cos”, “sin”, “atanh”, “asin”,
“tan”, “tanh” etc, which are almost everywhere bounded functions were suggested
as possible choices of activation functions for FC-MLP and the learning algorithm
was also derived. It was observed from the complex-valued gradient based update
rule that the complex-valued gradients of the free parameters are similar to that of

S. Suresh et al.: Supervised Learning with Complex-valued Neural Networks, SCI 421, pp. 31–47.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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the real-valued gradient based updates, except for the complex conjugate of the ac-
tivation functions and the inputs of each layer. Although there are other activation
functions reported in the literature for FC-MLP, they are mostly specific to the ap-
plications considered [2] and only ETFs are studied in this book. As the singularities
of the ETFs and their derivatives strongly influence the performance of a FC-MLP,
it is necessary to identify a new activation function which is analytic and bounded
almost everywhere and one that does not interfere with the region of operation of
the network. Moreover, FC-MLP uses the mean-squared error function that repre-
sents only the magnitude of the complex-valued error explicitly. Hence, there is a
need to identify an error function that explicitly represents both the magnitude and
phase, one which approximates both magnitude and phase explicitly in a simulta-
neous way. These issues are addressed in this chapter with a new proposal of an
Improved Complex-valued MLP (IC-MLP) with an ‘exp’ activation function and a
logarithmic error function.

2.1 Complex-valued Multi-Layer Perceptron Networks

In this section, a description of existing complex-valued MLP networks in the liter-
ature are presented along with their problems.

2.1.1 Split Complex-valued Multi-Layer Perceptron

Let {(z1,y1), · · · (zt ,yt), · · · (zN ,yN)} be the observation data/training data, where
zt ∈ Cm is the m-dimensional input features of observation t,yt ∈ Cn is the n-
dimensional target of observation t. For notational convenience, the subscript t is
dropped in future discussions.

Let z = [z1 z2 · · · zm]
T be the complex-valued signal, split into its real and imag-

inary components as: z = zR + izI , where zR ∈ Rm is the real part of the m-
dimensional input feature, and zI ∈ R

m is the imaginary part of the m-dimensional
input feature. Similarly, the target vector can be split into y = yR + iyI , where
yR ∈ Rn is the real part of the n dimensional target vector, and yI ∈ Rn is the imag-
inary part of the n dimensional target vector. The m-dimensional complex-valued
input vector z is split into its real and imaginary parts and the 2m dimensional
input signal is used as input to SC-MLP. Thus, the input to SC-MLP network is
described by: x ∈ R2m = [zR zI ]

T and the targets to the network described by:
o ∈ R2n = [yR yI]

T and the network output described by: ô ∈ R2n = [ŷR ŷI]
T .

Thus, the split complex-valued MLP network uses the same architecture as that
of the real-valued MLP. In general, a multi layer perceptron has an input layer,
hidden layers and an output layer. In this book, we consider only a single hidden
layer network. The architecture of the single hidden layer split complex-valued MLP
network is shown in Fig. 2.1. From the figure, we can see that the architecture has 2m
input neurons in the input layer, h hidden neurons in the hidden layer, and 2n output
neurons in the output layer. Hence, the network can be represented by N 2m:h:2n.
In SC-MLP discussed in this chapter, the hidden neurons use bipolar sigmoidal
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Fig. 2.1 Architecture of an SC-MLP Network

activation and the output neuron use a linear activation function. The output of the
kth hidden neuron yk

h is given by

yk
h = σ

(
2m

∑
j=1

w0
k jx j

)

; k = 1, 2, · · · h (2.1)

where w0
k j is the real-valued input weight connecting the kth hidden neuron and the

jth input neuron, and σ(.) is the real-valued bipolar sigmoidal activation function
(σ(.) : Rm →R).

Similarly, the predicted output of the kth output neuron of SC-MLP ôk is given
by

ôk =
h

∑
j=1

w1
k jy

j
h; k = 1, 2, · · · 2n (2.2)
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where w1
k j is the real-valued output weight connecting the jth hidden neuron and the

kth output neuron.
The objective is to estimate the free parameters (W 0 and W 1) of the network,

such that the error is minimized. To ensure this, the error function defined by

E =
1
2

n

∑
k=1

e2
k where ek = ok − ôk (2.3)

is used. Minimizing the error function is achieved by updating the input and output
weights for each sample of the training data set repeatedly until the error converges
to the required training accuracy or over fixed number of epochs. The adjustments
of weight matrices (W 0 and W 1) are done in accordance with the standard back
propagation algorithm. The gradient based error correction rule for the weights are
given below:

• The gradient based error correction Δw1
i j for the weight connecting the jth hidden

neuron and the kth output neuron is given by

Δw1
k j = ηδ 1

k y j
h; where δ 1

k = ek (2.4)

• Similarly, for the weight w0
k j connecting the kth hidden neuron and the jth input

neuron, the gradient based error correction is given by

Δw0
k j = ηδ 0

k x j; where δ 0
k = σ ′(W 0x)∑

l

w1′
lkel′ (2.5)

Since back propagation is a batch learning algorithm, the training samples are
presented for a number of times (number of epochs) till the desired accuracy is
achieved.

Finally, the actual complex-valued output is reconstructed as the Complex sum
of the Real and Imaginary components of the predicted output.

ŷk = ôk + iôn+k; k = 1,2, · · ·n (2.6)

Another common method is to split the complex-valued inputs and outputs based on
polar co-ordinates, that is, the magnitude and phase of the complex-valued signals.
The real-valued MLP is used in this method, and the learning algorithm also follows
the real-valued back propagation algorithm.

Issues in SC-MLP: Either way, the structure of the network is: N 2m:h:2n. Usually,
h > (2m+ 2n). Thus, it is computationally expensive to estimate the parameters
of an SC-MLP network. Besides, in an SC-MLP network, the gradients are real-
valued and hence, do not reflect the true complex-valued gradients. Also, the con-
vergence of an SC-MLP network is highly sensitive to the choice of the learning rate
parameter.

In the next section, a FC-MLP [1] network is presented in detail.
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2.1.2 Fully Complex-valued Multi-Layer Perceptron

Fully complex-valued MLP (FC-MLP) networks operate on the complex-valued
signal as a single entity. The architecture of an FC-MLP is similar to its real-
valued counterpart except that the inputs/outputs, weights and activation functions
are complex-valued. As described earlier, let {(z1,y1), · · · (zt ,yt), · · · (zN ,yN)}
be the set of complex-valued inputs and outputs of the training data set, where
zt ∈ C

m is the m dimensional complex-valued inputs and yt ∈ C
n is the n dimen-

sional complex-valued targets to FC-MLP network.
FC-MLP operates on the m dimensional complex-valued inputs (subscript t is

dropped for notational convenience) z = [z1 z2 · · · zm], using the complex-valued ac-
tivation function fa(.), complex-valued input weight matrix V 0 and complex-valued
output weight matrix V 1 to generate the n dimensional complex-valued outputs
ŷ = [ŷ1 ŷ2 · · ·yn]. The architecture of a three layered FC-MLP network is shown in
Fig. 2.2.

FC-MLP network has m input neurons, h hidden neurons and n output neurons
and is represented by N m:h:n. The activation function, at the hidden and output layer
of the FC-MLP neural network is also fully complex-valued. The selection of an
appropriate complex-valued activation function is a very challenging problem in the
context of a FC-MLP neural network because according to Liouville’s theorem, an
entire and bounded function is a constant function in the Complex domain. Hence,
the conditions for a fully complex-valued activation have been relaxed and reduced
in [1] as: In a bounded domain of a complex plane C, a fully complex nonlinear
activation function f(z) needs to be analytic and bounded almost everwhere. In [1],
a set of elementary transcendental functions were also suggested as fully complex-
valued activation function for a fully complex-valued MLP. The list of possible ETF
function are given in chapter 2, section 1.1.2.1. Let fa : Cm → C be the activation
function,( that is, one of the ETF’s presented in 1.1.2.1). Then,

fa(z) = fa(zR + izI) (2.7)

where z = zR + izI . Then, the output of the jth hidden neuron of an FC-MLP network
is given by

zk
h = fa

(
m

∑
j=1

v0
k jz j

)

; k = 1, 2, · · ·h (2.8)

where v0
k j is the complex-valued weight connecting the kth input neuron and the jth

hidden neuron.
Similarly, the output of the lth output neuron of the network is given by

ŷl = fa

(
h

∑
k=1

v1
lkzk

h

)

; l = 1,2, · · ·n (2.9)
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where v1
lk is the complex-valued weight connecting the kth hidden neuron and the lth

output neuron.
The objective, here is to estimate the free parameters of the network, V 0 and V 1

such that the error is minimized

E =
1
2

eHe =
1
2

n

∑
k=1

ekek; (2.10)

where ek = yk − ŷk, ek is the complex conjugate of ek and H denotes the complex
Hermitian operator. The free parameters of FC-MLP network are estimated using
the complex-valued back propagation algorithm, which was discussed in detail in
[1] and has been reproduced here for completeness.

Assuming that the complex-valued function considered satisfies the relaxed de-
sired conditions needed for a fully complex-valued activation function, that is, if it
is analytic almost everywhere, the Cauchy Riemann equations defined by
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If fa(z) = p(zR,zI)+ i q(zR,zI), where z = zR + i zI ,

p(zR,zI) and q(zR,zI)are the real and imaginary parts

of the complex-valued activation function fa(z)

then,
∂ p
∂ zR

=
∂q
∂ zI

and
∂q
∂ zR

= − ∂ p
∂ zI

(2.11)

can be used to simplify the fully complex-valued back propagation algorithm, orig-
inally derived in [3]. The simplification uses the following expression:

f ′a(z) = fzR =−i fzI (2.12)

where fzR and fzI are partial derivatives with respect to Real and Imaginary compo-
nents, zR and zI , respectively. Here, If z = zR + izI and fa(z) = p(zR,zI)+ iq(zR,zI),

∂ fa

∂ z
=

1
2

(
∂ fa

∂ zR
− i

∂ fa

∂ zI

)
. (2.13)

With these definitions, the complex-valued back propagation learning algorithm can
be derived as given below.

The output of the l-th output neuron of FC-MLP can be written as:

ŷl = ∑
k

v1
lkzk

h; l = 1, · · · ,n

Let zk
h = pk + i qk

Then, ŷl = ∑
k

(v1R

lk + i v1I

lk ) (pk + i qk)

=⇒ ŷR
l + iŷI

l = ∑
k

(v1R

lk pk − v1I

lk qk)+ i(v1R

lk qk + v1I

lk pk) (2.14)

where the superscripts R and I represent the real and imaginary components of the
complex-valued signals, respectively.

The derivative of the error function with respect to the output weight v1
lk is given

by:

∂E

∂v1
lk

= ∇v1
lk E =

∂E

∂v1R

lk

+ i
∂E

∂v1I

lk

(2.15)

∂E

∂v1R

lk

=
∂E

∂ ŷR
l

∂ ŷR
l

∂v1R

lk

+
∂E

∂ ŷI
l

∂ ŷI
l

∂v1R

lk

(2.16)

∂E

∂v1I

lk

=
∂E

∂ ŷR
l

∂ ŷR
l

∂v1I

lk

+
∂E

∂ ŷI
l

∂ ŷI
l

∂v1I

lk

(2.17)

Letting ∂E
∂ ŷR

l
= δ R

l and ∂E
∂ ŷI

l
= δ I

l , we have,
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∂E

∂v1R

lk

= δ R
l

∂ ŷR
l

∂v1R

lk

+ δ I
l

∂ ŷI
l

∂v1R

lk

(2.18)

∂E

∂v1I

lk

= δ R
l

∂ ŷR
l

∂v1I

lk

+ δ I
l

∂ ŷI
l

∂v1I

lk

(2.19)

From Eq. (2.14), we can see that

∂ ŷR
l

∂v1R

lk

= pk;
∂ ŷR

l

∂v1I

lk

=−qk;
∂ ŷI

l

∂v1R

lk

= qk;
∂ ŷI

l

∂v1I

lk

= pk (2.20)

Substituting the inferences from Eq. (2.20) into Eqs. (2.18) and (2.22),

∂E

∂v1R

lk

= δ R
l (pk)+ δ I

l (qk) (2.21)

∂E

∂v1I

lk

= δ R
l (−qk)+ δ I

l (pk) (2.22)

Hence,

∂E

∂v1
lk

=
∂E

∂v1R

lk

+ i
∂E

∂v1I

lk

= (δ R
l (pk)+ δ I

l (qk))+ i(δ R
l (−qk)+ δ I

l (pk))

= δ R
l (pk − i qk)+ δ I

l (i pk + qk) = δ R
l (pk − i qk)+ iδ I

l (i pk − i qk)

= (δ R
l + i δ I

l ) (pk − i qk) =⇒ ∂E

∂v1
lk

= − δl zk
h (2.23)

Therefore, the update rule for the output weight connecting the k-th hidden neuron
and the l-th output neuron is given by:

Δvlk = ηv δl zk
h (2.24)

where δl = yl − ŷl and ηv is the learning rate that can be a real-valued or complex-
valued scalar.

Similarly, the input weight update rule can be derived from the first derivative
of the mean squared error function in Eq. (2.10) with respect to the input weights
v0

k j; k = 1, · · · ,h, j = 1,cdots,m. For this purpose, let us consider

zk
h = ak + i bk = fa

(
m

∑
j=1

v0
k j z j

)

= fa (pk + i qk)

wherepk + i qk =
m

∑
j=1

v0
k j z j =

m

∑
j=1

(
v0R

k j + iv0I

k j

)(
zR

j + i zI
j

)

=⇒ pk + i qk =
m

∑
j=1

(
v0R

k j .z
R
j − v0I

k j .z
I
j

)
+ i

(
v0I

k j.z
R
j + v0R

k j .z
I
j

)
(2.25)
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where the superscripts R and I represent the real and imaginary components of the
complex-valued signals, respectively.

The first derivative of the mean squared error function with respect to the input
weights v0

k j is given by:

∂E

∂v0
k j

=
∂E

∂v0R

k j

+ i
∂E

∂v0I

k j

(2.26)

∂E

∂v0R

k j

=
∂E

∂ ŷR
l

[
∂ ŷR

l

∂ak

∂ak

∂ pk

∂ pk

∂v0R

k j

+
∂ ŷR

l

∂ak

∂ak

∂qk

∂qk

∂v0R

k j

+
∂ ŷR

l

∂bk

∂bk

∂ pk

∂ pk

∂v0R

k j

+
∂ ŷR

l

∂bk

∂bk

∂qk

∂qk

∂v0R

k j

]

+
∂E

∂ ŷI
l

[
∂ ŷI

l

∂ak

∂ak

∂ pk

∂ pk

∂v0R

k j

+
∂ ŷI

l

∂ak

∂ak

∂qk

∂qk

∂v0R

k j

+
∂ ŷI

l

∂bk

∂bk

∂ pk

∂ pk

∂v0R

k j

+
∂ ŷI

l

∂bk

∂bk

∂qk

∂qk

∂v0R

k j

]

(2.27)

∂E

∂v0I

k j

=
∂E

∂ ŷR
l

[
∂ ŷR

l

∂ak

∂ak

∂ pk

∂ pk

∂v0I

k j

+
∂ ŷR

l

∂ak

∂ak

∂qk

∂qk

∂v0I

k j

+
∂ ŷR

l

∂bk

∂bk

∂ pk

∂ pk

∂v0I

k j

+
∂ ŷR

l

∂bk

∂bk

∂qk

∂qk

∂v0I

k j

]

+
∂E

∂ ŷI
l

[
∂ ŷI

l

∂ak

∂ak

∂ pk

∂ pk

∂v0I

k j

+
∂ ŷI

l

∂ak

∂ak

∂qk

∂qk

∂v0I

k j

+
∂ ŷI

l

∂bk

∂bk

∂ pk

∂ pk

∂v0I

k j

+
∂ ŷI

l

∂bk

∂bk

∂qk

∂qk

∂v0I

k j

]

(2.28)

From Eq. (2.25), the following can be observed:

∂ pk

∂v0R

k j

= zR
j ;

∂ pk

∂v0I

k j

= − zI
j;

∂qk

∂v0R

k j

= zI
j; and

∂qk

∂v0I

k j

= zR
j (2.29)

Further, since the elementary transcendental function satisfies the essential proper-
ties of a complex-valued activation function, the Cauchy Riemann conditions can
be used to derive the fully complex-valued BP algorithm. Hence,

∂ak

∂ pk
=

∂bk

∂qk
; and

∂ak

∂qk
= − ∂bk

∂ pk
(2.30)

Thus, identifying the partial derivatives of Eqs. (2.27) and (2.28) from Eqs. (2.14),
(2.29) and (2.30), we can obtain the gradient of the error function with respect to
the input weights as:

∇v0
k j = − δl v1

lk f a

(

∑
j

v0
k j z j

)

z j (2.31)

andΔv0
k j = ηv δl

(
n

∑
l=1

v1
lk f

′
a(

m

∑
j=1

v0
k jz j)

)

z j; k = 1, · · · ,h, j = 1, · · · ,m; (2.32)
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It can be observed from the gradient based weight update rules derived in [1] and
reproduced here, that the weight update rule for the fully complex-valued BP algo-
rithm is the complex conjugate form of the real weight update formula. The net-
work has m input neurons, h hidden neurons and n output neurons, all complex-
valued signals. Hence, unlike SC-MLP network, FC-MLP network is compact and
all the weights and neuron signals are complex-valued. Also, the network uses a
fully complex-valued activation function, hence, it uses a complex-valued gradients
that reflect the true gradients. Hence, they approximate the complex-valued signal
better than SC-MLP networks, thereby, improving the phase approximation ability
of FC-MLP network.

Apart from the ETF’s, there are also other fully complex-valued activation func-
tions discussed in the previous chapter [2]. One of them is

fa(z) = f R
a (z

R)+ i f I
a(z

I) (2.33)

Such functions overcome the singularity issues of the ETF’s. However as the choice
of f R

a (.) and f I
a(.) is difficult, in this work,only the ETF’s are considered as acti-

vation functions. It must be noted that irrespective of the activation function used,
FC-MLP uses a complex-valued gradient descent based backpropagation learning
algorithm. The performance of the algorithm is affected by the proper choice of the
region and magnitude of weight initialization, the influence of learning rate param-
eter and the choice of number of neurons. In the next section, issues exisiting in the
SC-MLP and FC-MLP networks are discussed.4

2.2 Issues in Fully Complex-valued Multi-Layer Perceptron
Networks

In the MLP framework of the complex-valued network, two network configurations
are available, viz., the SC-MLP network and the FC-MLP network. In general, both
the SC-MLP network and FC-MLP network use a gradient based learning algo-
rithm. The convergence of SC-MLP network depends largely on the learning rate
parameter and the number of hidden neurons. On the other hand, the convergence of
FC-MLP network depends on the magnitude and region of weight initialization, the
learning rate parameter, the activation function used, the number of hidden neurons
used and the error function/minimization function used in deriving the gradients. In
this section, the convergence issues in the existing complex-valued MLP networks
are discussed briefly.

4 Note: The derivation of the complex-valued back propagation algorithm in this section
assumes that the neurons in the output layer use a complex-valued activation function. In
our study, we assume linear output neurons.
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2.2.1 Split Complex-valued MLP

SC-MLP networks are similar in architecture to the real-valued MLPs and hence all
real-valued activation functions are applicable here. These functions are bounded
and analytic, thereby, the network has no singularity issues. However, SC-MLP net-
works suffer from their inability to approximate non-linear phase accurately [4].
This is because the gradients of a SC-MLP network are not truly complex-valued
and do not represent the true complex-valued gradient. In other words, the deriva-
tives in an SC-MLP network cannot fully exploit the correlation between the real
and imaginary components of the weighted sum of input vectors [1]. Thereby, it
may be inefficient in approximating the non-linear phase accurately.

2.2.2 Fully Complex-valued MLP

FC-MLP networks use fully complex-valued activation functions and complex-
valued weights. The performance of a fully complex-valued MLP is affected by
the complex-valued activation function used, the learning rate parameter, number of
hidden neurons and the performance index used for minimization and to derive the
gradients. In this section, we discuss in detail each of above mentioned issues.

2.2.2.1 Activation Function

According to Liouville’s theorem [1], an entire and bounded function in the com-
plex domain is a constant function. This makes the selection of activation function
for an FC-MLP difficult. A set of ETF’s which are bounded almost everywhere is a
possible choice of activation functions. However, these functions have singularities
associated with themselves and their derivatives. For example, the “asinh”activation
function has two continuous branch cut singularities: one along the positive imagi-
nary axis above i (inclusive) in quadrant I and another along the negative imaginary
axis below −i (inclusive) in quadrant III. During training if the weights are initial-
ized such that the network operates in the singular region of the activation function,
then the network fails to converge. Therefore, sufficient care has to be taken to en-
sure that the singular point of the activation functions or their singularities are not
hit during the learning process.

The learning rate parameter: The learning rate parameter affects the convergence
of the FC-MLP network. Too high a learning rate parameter results in faster con-
vergence initially, but ends up with oscillating errors during learning. On the other
hand, using a smaller value for the learning rate parameter results in a slower con-
vergence also with a possibility of converging to local minima. Therefore, for an
FC-MLP to successfully converge, a careful choice of the learning rate parame-
ter becomes essential. Besides, for an FC-MLP, the learning rate parameter can
be either real-valued or complex-valued. It will be an interesting future study to
understand how a complex-valued learning rate interacts with the complex-valued
gradients of the network.
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Number of hidden neurons: In general, selection of the network size is a critical
issue in a neural network model. One has to find a minimal architecture that ac-
curately fits the true function described by the training data. A large network may
accurately fit the training data, but may have poor generalization performance due
to over-fitting. On the other hand, a smaller network requires lesser computational
effort, but may not be able to approximate the given function. A heuristic proce-
dure, similar to the one presented in [5] can be used to find the optimal network
size. However, this is a time consuming procedure.

2.2.2.2 Performance Index

Another important aspect in a complex-valued back propagation algorithm is the
selection of an appropriate performance index . ( here the error function or the mini-
mization criterion ). In most of the algorithms presented in the literature, this product
of the error and its conjugate (Euclidean norm), as given below, is used as an error
function/performance measure for minimization.

E =
1

2n
(eHe). (2.34)

where e = eR + ieI = y − ŷ = (yR − ŷR) + i(yI − ŷI) , eH is the complex-
conjugate transpose of error, ŷ is predicted output, eR is the Real part of error and eI

is the Imaginary part of error.
From Eq. (2.34), one can see that the error function considers only the square

magnitude error and does not consider the phase quantity of the error (e) directly.
Hence, the network evolved using such a error function may not tend to minimize
the phase error directly and the network may not approximate the phase accurately,
which is important for problems in the domain of telecommunication and image
reconstruction. In general, for better approximation of complex-valued functions
(i.e., both in magnitude and phase), one should find an appropriate complex-valued
activation function and a suitable error function.

2.3 An Improved Fully Complex-valued Multi-Layer
Perceptron (IC-MLP)

In the section 2.2.2.2, the issues in FC-MLP due to the mean squared error function
were discussed. In this section, a new activation function for the FC-MLP is pro-
posed and a new logarithmic error function/minimization criterion to aid better ap-
proximation of both the magnitude and phase of FC-MLP is developed. The network
using logarithmic error function as the performance index and employing “exp” ac-
tivation function at the output layer is termed as the Improved Complex-valued MLP
(IC-MLP).
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2.3.1 A New Activation Function: exp

The elementary transcendental functions available as activation functions for FC-
MLP in the literature are sensitive to weight initializations and the learning rate pa-
rameter and suffer from issues arising due to the singularities in the finite region of
the Complex plane. In this section, an exponential function is proposed as an activa-
tion function for the nonlinear processing of complex-valued data. The exponential
function, fa(z) = exp(z), is entire in C since fa(z) = f ′a(z) = exp(z). The complex-
valued exponential function has an essential singularity at ±∞. By restricting the
weights of the network to a small ball of radius (vr) and the number of hidden neu-
rons to a finite value, the bounded behavior in an FC-MLP network can be ensured.

Fig. 2.3 shows the magnitude and phase response plots for the “exp” activation
function. From the plot, it can be seen that the activation function is continuous, an
increasing function and is bounded in a bounded region of the Complex domain.
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Fig. 2.3 Magnitude and Phase Response Plots of “exp” Activation Function

For illustration, the structure of the three layered IC-MLP network as shown in
Fig. 2.4 is considered here.1 As discussed earlier, let the number of neurons in the
input, hidden and output layers are m, h and n respectively. Let z ∈ Cm be the m
dimensional complex-valued input to the network. The signals of each neuron in the
input layer is denoted by zk; k = 1, 2, ... m where m is the dimension of the input.

1 This can be easily extended with multiple hidden layers for multi-layer networks.
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Let the targets be denoted by y ∈ Cn = y j; j = 1,2, ...n where n is the dimension
of the output vector. The response of the neurons in the hidden layer is given by:

zk
h = fa(∑

j
v0

k jz j); k = 1, · · · ,h (2.35)

It is notable that unlike the FC-MLP network, all the neurons in the output layer
of IC-MLP network employ “exp” activation function. Therefore, the output of the
l-th output neuron is given by:

ŷl = exp

(

∑
k

v1
lkzk

h

)

; l = 1, · · · ,n (2.36)
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2.3.2 Logarithmic Performance Index

In the literature, mean squared error function is often used aas the minimization cri-
terion. For complex-valued signals, the squared error represents only the magnitude
of error explicitly and does not include the phase error directly. Hence, a function
that includes both the magnitude and phase errors directly becomes essential. There-
fore, we propose a new error function which includes both the magnitude and phase
errors directly and a fully complex-valued error gradient. The new error function is
defined as

Enew =
1
2

[

log

[
y
ŷ

]
log

[
y
ŷ

]]

; ŷ = [ŷ1, · · · , ŷl , · · · , ŷn]
T (2.37)

where log
[ y

ŷ

]
is the complex-conjugate of log

[ y
ŷ ]. This is different from eq. (2.34)

(section 2.2.2) in that eq. (2.34) includes only the magnitude of the complex-valued
signal explicitly, while eq. (2.37) includes both the error in magnitude and phase,
explicitly. The above equation can be written as

Enew =
1
2

[

log

[ || y ||
|| ŷ ||

]2

+[∠(y)−∠(ŷ)]2
]

(2.38)

Constants k1 and k2 can be included as weighting factors for the magnitude error
and phase error, respectively to accelerate the convergence of the magnitude/phase
component of the output. With the introduction of constants k1 and k2, eq.(2.38)
becomes

Enew =
1
2

[

k1log

[ || y ||
|| ŷ ||

]2

+ k2[arg(y)− arg(ŷ)]2
]

(2.39)

From the above equation, one can see that the performance index (Enew) approaches
zero when ŷ approaches y. Here, the targets are all scaled into first and fourth quad-
rants. k1 and k2 are weights applied to the logarithmic magnitude error and phase
error respectively. It should be noted here that while any of the ETF’s or “exp” ac-
tivation function may be employed at the hidden layer, all the neurons in the output
layer employ “exp” activation function. The “exp” activation function at the out-
put layer helps to avoid ( 1

ŷ ) term that is a part of the derivative of logarithmic error
in the backward computation. Thus, the output of neurons in the hidden layer are
computed as

z j
h = fa

[
m

∑
k=1

(v0
jkz j)

]

, j = 1,2, ....h, (2.40)
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where fa : Cm → C,is any ETF or the “exp” activation functions and v0
jk is the

complex-valued weight between jth neuron in hidden layer and kth neuron in in-
put layer. The output of the network is computed as

ŷ j = exp

[
h

∑
k=1

(v1
jkzk

h)

]

, j = 1,2, ....n, (2.41)

2.3.3 Learning Algorithm

The derivation of the complex-valued back propagation algorithm based on the log-
arithmic error function is similar to the complex-valued back propagation algorithm
derived in section 2.1.2, except for the term δl , the error at the output layer. Here,

δl =

(
k1 log

( | yl |
| ŷl |

)
+ ik2∠yl −∠ŷl

)
(2.42)

For the update of v1
lk, the weight connecting the lth output neuron and the kth hidden

neuron, . Hence,

Δv1
lk = η zk

h

(
k1 log

( | yl |
| ŷl |

)
+ ik2∠yl −∠ŷl

)
; l = 1, · · · ,n (2.43)

and the update of v0
k j, the weight connecting the kth hidden neuron and the jth input

neuron is given by

Δv0
jk = η

(
n

∑
l=1

v1
lk f

′
a(

m

∑
j=1

v0
k jz j)

)(
k1log

( | yl |
| ŷl |

)
+ ik2∠yl −∠ŷl

)
z j; l = 1, · · ·n

(2.44)
As the logarithmic error function includes both the magnitude and phase error ex-
plicitly and tends to minimize both simultaneously, the algorithm can improve the
magnitude and phase approximation performance of FC-MLP.

2.4 Summary

In this chapter, different types of complex-valued MLP networks, viz., SC-MLP
networks and FC-MLP networks were presented in detail. The issues in SC-MLP
and FC-MLP were highlighted and the influence of the singularities of the acti-
vation functions on the performance of FC-MLP was discussed. It was also noted
that the mean-squared error criterion that is usually used to minimize errors is not
an appropriate performance measure in complex-valued networks. To overcome
these issues, we have proposed the exp(.) activation function with its singularity at
±∞ as an activation function for complex-valued MLP networks and a logarithmic
error function which minimized both the magnitude and phase of the error
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simultaneously. We have also developed an IC-MLP with the exp activation function
at the output layer and the logarithmic error function.
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Chapter 3
A Fully Complex-valued Radial Basis Function
Network and Its Learning Algorithm

Radial basis function networks are the most popular neural network architecture
due its simpler structure and better approximation ability owing to the localization
property of the Gaussian function. in this chapter, we study complex-valued RBF
networks and their learning algorithms. First, we present a complex-valued RBF
network which is a direct extension of the real-valued RBF network. CRBF network
is a single hidden layer network which computes the output of the network as a linear
combination of the hidden neuron outputs. The hidden neurons map the input space
to a nonlinear space using a radially symmetric basis function (’Gaussian function’).
The CRBF network uses the real-valued Gaussian activation function that maps
Cm → R as a basis function. Hence, despite the centers of the Gaussian neurons
and the output weights being complex-valued, the response of the hidden neurons
remains real-valued. Moreover, during the backward learning, the real part of the
error is used to update the real part of the network parameters and the imaginary part
of the error is used to update the imaginary part of the network parameters. Hence,
the gradients used are not a true representation of the gradient of the target function
and hence, will not approximate phase accurately, as explained in[1]. Hence, there
is a need to develop a fully complex Gaussian like symmetric function, which maps
Cm →C. In this chapter, we address this issue by proposing a fully complex-valued
RBF network with “sech” function as the basis function. The “sech” activation
function is symmetric about the real axis and maps Cm → C. The gradient descent
based learning algorithm of the FC-RBF network with “sech” is also derived for
tuning the free parameters of the network.

In most of the batch learning algorithms available in the literature, it is implicitly
assumed that the training samples are uniformly distributed in the input space. This
assumption is not always true especially in real-world problems and hence affects
the generalization ability of the trained network. Therefore, we need to enable a
scheme for selective participation of the samples in the learning process in order to
improve the generalization ability of the network. Since most of the machine learn-
ing paradigms are inspired from the principles of human learning, in this chapter,
we emulate the principles of human meta-cognition in a neural network framework

S. Suresh et al.: Supervised Learning with Complex-valued Neural Networks, SCI 421, pp. 49–71.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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by developing a ’Meta-cognitive Fully Complex-valued Radial Basis Function (Mc-
FCRBF) Network’ . Mc-FCRBF is developed based on the Nelson and Narens [2]
model of meta-cognition in the context of human learning . This chapter describes
the architecture and learning algorithm of Mc-FCRBF in detail.

3.1 Complex-valued RBF Networks

In this section, a discussion on different existing complex-valued RBF networks is
presented first. Complex-valued RBF networks [3, 4] are the extensions of real-
valued RBF networks for operating on complex-valued signals. As described in
chapter 2, let {(z1, y1), (z2, y2), · · · , (zt , yt ), · · · (zN , yN)}, where zt ∈ Cm; t =
1,2, · · ·N, where N is the total number of observations in the training data set and
yt ∈ Cn be the observation/training data set. For notational convenience, the sub-
script t is being dropped in future discussions.

CRBF network has m input neurons, h hidden neurons, and n output neurons. The
input neurons are linear and just relay the inputs/features to the hidden layer. The
neurons in the hidden layer of CRBF employ Gaussian activation function ( fg(.)).
Each hidden neuron estimates the localized response for a given input. Finally, the
n neurons in the output layer of CRBF obtain the weighted sum of the hidden layer
responses to generate the n-dimensional complex-valued output (ŷ = [ŷ1 ŷ2 · · · ŷn]).

Fig. 3.1 shows the architecture for a complex-valued RBF network. It can be
observed from figure 3.1 that the CRBF network maps Cm → Cn. However, at the
hidden neurons, Gaussian function is employed as the activation function. The re-
sponse of the jth hidden neuron is given by eq. (3.1)

y j
h = φ (z, c j,σ j) = exp

(

− (z− c j)
H(z− c j)

2σ2
j

)

; j = 1,2, · · ·h; (3.1)

where, H denotes the Hermitian of the complex-valued signal, c j ∈ Cm is the
complex-valued center of the jth hidden neuron employing the Gaussian function.
σ j ∈ R is width of the jth hidden neuron employing the Gaussian function. It can
be observed from eqn. (3.1) that the activation function considers the product of the
hermitian of a complex-valued vector (z− c j) and the vector itself. Hence, despite
the center of the radial basis function and the output weights being complex-valued,
the output of the hidden neurons are real.

The output of the CRBF network, ŷi is given by eq. (3.2).

ŷk =
h

∑
j=1

vk jy
j
h, k = 1,2, ....n. (3.2)

where vk j is the complex-valued weight connecting the jth hidden neuron and the
kth output neuron. Now, we present the gradient based update rules for the CRBF
network.
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Fig. 3.1 Architecture of a Complex-valued RBF Network

The error for the CRBF network is given by:

e = eR + ieI = y− ŷ (3.3)

Let eR and eI be the real and imaginary components of the complex-valued error
e. In [5], a stochastic gradient training algorithm that adapts all the free parameters
(c, σσσ and V ) of the network has been presented, where, the update rules are derived
based on the mean squared error as given by:

E =
1
2

n

∑
k=1

ekek (3.4)

The update rules for the free parameters of the network are given by Eqs. (3.5), (3.6)
and (3.7).
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Δvk j = μv ek y j
h; k = 1,2, · · ·n; j = 1,2, · · · ,h (3.5)

Δσ j = μσ y j
h

[
n

∑
k=1

(
vR

k j eR
k + vI

k j eI
k

)
]

.
|| z− c j ||2

σ3
j

(3.6)

Δc j = μc y j
h

⎡

⎣
∑n

k=1

[
vR

k j eR
k re(z− cj)+ ivI

k j eI
k im(z− cj)

]

σ2
j

⎤

⎦ (3.7)

where μv, μσ and μc are the learning rate parameters for weight, width and the
centers of Gaussian function, respectively. vR

k j and vI
k j are the Real and Imaginary

components of this weight vk j respectively.
From eq. (3.1) and eq. (3.2) one can note that though the centers and weights

of the CRBF network are all complex-valued, the response of the hidden neuron
is real-valued, and hence, does not transmit the complex-valued input signal to the
output neurons fully. This affects the phase approximation ability of the network.
Besides, it may also be observed from eqs. (3.5)-(3.7) that the gradients use the Real
and Imaginary components of the complex-valued error and the output weights to
update the free parameters of the network. This does not capture the correlation
between the Real-Imaginary components of the complex-valued gradient. Hence,
the gradient thus derived, is not a true representation of the true complex-valued
gradient. This is also due to the fact that the responses at the hidden neurons are
real-valued.

In the literature, this CRBF network has been used in several applications like
channel equalization, adaptive beam forming [4, 5, 6] etc. Also, several real-valued
batch and sequential learning algorithms have been extended to the Complex do-
main in this framework using a Gaussian activation function. For example, complex-
valued extreme learning machine [7] is a direct extension of the real-valued extreme
learning machine. Real-valued extreme learning machine assumes random real-
valued input weights and estimates the output weights analytically. Similarly, the
C-ELM algorithm with Gaussian activation function also assumes random complex-
valued centers and estimates the complex-valued output weights analytically. The
least-squared solution of V , of the linear system yhV = Y with minimum norm of
output weights V , which usually tend to have good generalization performance [7].
If yh ∈ Rh (RBF hidden neurons employing Gaussian activation function) is the
vector of hidden neuron outputs, the output weights (V ∈Cn×h) are estimated using

V = y+h Y (3.8)

where y+h is the Moore-Penrose generalized inverse of the complex-valued vector
yh and Y = [y1, y2, · · · yN ] . Similarly, the complex-valued minimal resource allo-
cation network [8] and the complex-valued growing and pruning RBF network [9]
are direct extensions of the real-valued sequential learning algorithms, the minimal
resource allocation network [10, 11] and growing and pruning network-radial basis
function networks [12], respectively. As these algorithms have been extended to the
complex domain in the framework of the CRBF network, the gradients used in these
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algorithms also use the Real and Imaginary components of the complex-valued sig-
nal. Hence, the correlations between the Real-Imaginary components is lost and
hence, the gradients are not true representations of the complex-valued gradients.
Hence, these algorithms are also ineffective in approximating phase accurately. In
the next section, the issues related to the CRBF networks are summarised briefly.

3.2 Factors Influencing the Performance of Complex-valued
RBF Networks

Existing complex-valued RBF networks suffer from the following issues:

• Activation function: As shown in the section 3.1, the Gaussian function is used
as the activation function and the response of the hidden neuron is given by:

y j
h = φ

(
z− c j

σ j

)
= exp

(

− (z− c j)
H(z− c j)

2σ2
j

)

; (3.9)

This function maps Cm → R, due to the presence of the Hermitian operator in
the activation function. Hence, despite the inputs, weights, and centers being
complex-valued, the response at the hidden node is still real-valued. This af-
fects the phase approximation performance of the network. Also, as seen from
eqs. (3.5)-(3.7), the gradients that are used in updating the free parameters of
the network are not fully complex-valued. Instead, they use the real-valued Real
and Imaginary components of the complex-valued error and weights. Thus, as
the correlation between the Real and Imaginary components of the weights and
errors (and their products) is lost, this representation does not reflect the true
complex-valued gradient. As these gradients lack vital data about the complex-
valued error signal, the approximation of a complex-valued function using the
network is inefficient.

• Number of hidden neurons: The selection of the number of hidden neurons for
the network is done by a heuristic procedure that is similar to the procedure pre-
sented in [13] for real-valued networks. Accordingly, the search begins with a
smaller number of hidden neurons, and observing the performances for different
network sizes. For a given initialization and learning rate parameters, the optimal
number of neurons is chosen as the network size at which both the training and
generalization performance of the network is better than other choices of network
size. Selection of fewer neurons result in insufficient neurons and hence, poor ap-
proximation performance. Larger network structure results in poor generalization
performance and also adds to the computational cost.

• Initialization: The initialization of centers and weights affects the performance
of the CRBF network significantly. If the centers are located either sparsely or
closely, the input space is not efficiently projected onto the Gaussian space, re-
sulting in poor approximation/classification performance.



54 3 FC-RBF

In the next section, a fully complex-valued RBF network with a fully complex-
valued activation function “sech”whose magnitude response is similar to that of
the real-valued Gaussian activation function is presented. The activation function
maps Cm → C. Hence, it ensures that the gradients are also fully complex-valued,
thus, improving the phase approximation performance. The issues due to the net-
work structure and initialization are overcome with an K-Means Clustering (KMC)
algorithm for the selection of neurons, initial centers and weights of the FC-RBF
network.

3.3 A Fully Complex-valued RBF Network (FC-RBF)

In this section, we propose a fully complex-valued RBF network with a fully
complex-valued activation function. As will be seen, the activation function is sym-
metric and has a magnitude response similar to that of the real-valued Gaussian
activation function.

3.3.1 Network Architecture

Similar to the CRBF network, the FC-RBF network has one input layer, one hid-
den layer and one output layer. The architecture of FC-RBF network is given in Fig
3.2. As can be observed from the figure, the network has m input neurons, h hidden
neurons and n output neurons. The weights between the input layer and the hidden
layer are unity. At the hidden layer, the localized response of the inputs are com-
puted with the non-linear fully complex-valued activation function for the neuron
“sech” function. The activation function used in the hidden neurons is described in
eq. (3.10).

z j
h = fa(z) = sech(σσσT

j .(z− c j)) , j = 1,2, ....,h. (3.10)

where σσσ j ∈ C
m is the complex-valued scaling factor1 and c j ∈ C

m the center of the
jth hidden neuron. h is the number of hidden neurons. The scaling factor σσσ j plays
a role similar to the deviation σ in the real-valued Gaussian function. The output of
the network ŷk is given by eq. (3.11).

ŷk =
h

∑
j=1

vk j z j
h, k = 1,2, · · ·n. (3.11)

where the vk j ∈ C are the complex-valued output weights.

3.3.2 The Activation Function

The network uses “sech” as a basis for a fully complex-valued activation function
and the functional unit of the hidden neuron using “sech” is the form shown in eq.

1 σσσ j is a complex-valued vector.
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Fig. 3.2 Architecture of a Fully Complex-valued RBF Network

(3.12). The Gaussian like response of the “sech” function can be seen from Fig.
3.3(a).

z j
h = sech(σσσT

j . (z− c j)); j = 1,2, · · ·h (3.12)

The activation function “sech” satisfies the desired properties for a complex-valued
activation function stated in [14], namely,

In a bounded domain of complex plane C, a fully complex nonlinear activation func-
tion f (z) needs to be analytic and bounded almost everywhere.

“sech” has periodic isolated singularities at (1/2+ n)π i where n ∈ N. Therefore,
it is analytic and bounded almost everywhere in a bounded domain of the Complex
plane. The proof for the approximation capability of “sech” activation, with isolated
singularities, is straightforward from [15], i.e., the isolated singularity of “sech” can
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provide uniformly converging approximation in the deleted annulus of the singular-
ity in the region of convergence defined by the Laurent series. Figs. 3.3(a) and 3.3(b)
give the magnitude and phase response plots of this function over the complex plane.
It can be seen from the figures that the magnitude response of the fully complex-
valued “sech” activation function is similar to that of the Gaussian activation func-
tion, i.e., the magnitude of the topological neighborhood of z j

h decreases mono-
tonically with increasing difference z− c j, the magnitude being the highest when
z− c j = 0. Also, the phase response of the function (Fig. 3.3(b)) is close to zero
when both the real and imaginary parts of the complex-valued signal σσσT

j .(z− c j)
are zero. Thus the activation function response is the highest when the inputs are
located closer to the center, making the function a good choice for a radial basis
function.

In the next section, the gradient descent based learning algorithm for the FC-RBF
network is presented in detail. The gradient descent based parameter updates for the
free parameters of the network are derived.

3.4 Learning Algorithm for the FC-RBF Network

The complex-valued “sech” in section 3.3 satisfies the desirable properties of
complex-valued activation functions presented in [14]. It is analytic and bounded
almost everywhere. Therefore, the Cauchy-Riemann equations defined in eq. (2.11)
can be used to simplify the fully complex-valued RBF algorithm. i.e.,

f
′
a(z) = f R

a =−i f I
a (3.13)

The sum-squared error at the output layer can be written as

E =
1
2

eH e = ∑
k

ek ek; where ek = yk − ŷk; k = 1,2, · · ·n, (3.14)

where ek is the conjugate of error of the k-th output neuron.
With h neurons in the hidden layer, let z j

h = a j + ib j be the response of the jth

hidden neuron,

ŷk =
h

∑
j=1

(vk jz
j
h) =

h

∑
j=1

(vR
k j + i vI

k j)(a j + jb j)

=
h

∑
j=1

(vR
k j a j − vI

k j b j)+ i (vR
k j b j + vI

k j a j); k = 1,2, · · ·n (3.15)

where the superscripts R and I indicate the real and imaginary components, respec-
tively.

The output weight update rule requires the computation of the gradient ∂E
∂vk j

.

Since the cost function is a real-valued function of a complex-valued variable, the
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gradient of the error function with respect to the Real and Imaginary components of
the vk j are given by

∂E
∂vk j

= ∇vk jE =
∂E

∂vR
k j

+ i
∂E

∂vI
k j

(3.16)

Using the chain rule, the derivative of the cost function with respect to (w.r.t) the
real part of vk j is given by:

∂E

∂vR
k j

=
∂E

∂ ŷR
k

∂ ŷR
k

∂vR
k j

+
∂E

∂ ŷI
k

∂ ŷI
k

∂vR
k j

(3.17)

and the derivative of the cost function w.r.t the imaginary part of vk j is given by

∂E

∂vI
k j

=
∂E

∂ ŷR
k

∂ ŷR
k

∂vI
k j

+
∂E

∂ ŷI
k

∂ ŷI
k

∂vI
k j

(3.18)

Defining δ R
k ≡ − ∂E/∂ ŷR

k and δ I
k ≡ − ∂E/∂ ŷI

k and using the following partial
derivatives obtained from eq. (3.15),
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From (3.19) the gradient of the error can be written as

∇vk jE = (−δ R
k a j − δ I

k b j)+ i (δ R
k b j − δ I

k a j) =−(δ R
k + iδ I

k ) z j
h (3.20)


vk j = ηv z j
h δk (3.21)

where z j
h denotes the complex-conjugate of z j

h and ηv is the learning rate for the
output weight and can be either real-valued, imaginary-valued or complex-valued.

Similarly, letting p j + jq j = σσσT
j .(z− c j), the update for the weights σσσ j requires

the gradient of the real cost function with respect to the real and imaginary compo-
nents of σσσ j.

∂E
∂σσσ j

= ∇σσσ jE =
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∂σσσR
j
+ i

∂E

∂σσσ I
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(3.22)

where the derivative of the cost function w.r.t the real part of σσσ j is given by eq.
(3.23).
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and the derivative of the cost function w.r.t the imaginary component of σ j is given
by eq. (3.24)
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∂ ŷR

k

∂b j

∂b j

∂ p j

∂ p j

∂σσσ I
j

+
∂ ŷR
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Identifying the partial derivatives of eq.(3.23) and (3.24) from eq. (3.13), (3.15) and
(3.19), leads to

∂E
∂σσσ j

= δk vk j fa
′(σσσT

j .(z− c j)) (z− c j) (3.25)

where, fa
′ is the conjugate of the derivative of the function fa, and hence


σσσ j = ησσσ δk vk j fa
′(σσσT

j .(z− c j)) (z− c j) (3.26)

where (z− c j) is the conjugate of the distance between the input z and center c j and
ησσσ is the learning rate for the weight parameter σσσ j. This learning rate parameter
can be real-valued, imaginary-valued or complex-valued, as the parameter σσσ jjj is a
complex-valued parameter.

Similar derivation for the update of centers of the hidden neurons gives
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where the derivative ∂E
∂cR

j
is given by
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(3.28)

and ∂E
∂cI

j
is given by
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∂ ŷI
k

[
∂ ŷI
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Identifying the partial derivatives of eq. (3.28) and (3.29) from eq. eq. (3.13), (3.15)
and (3.19), it can be derived that


c j =−ηc δk vk j fa
′(σσσT

j .(z− c j)) σσσ j (3.30)

where ηc is the learning rate parameter for the neuron centers, which can be real-
valued, imaginary valued or complex-valued.

Thus, the complex-valued gradient update rule for the three parameters, (V , C
and σσσ ) of FC-RBF network discussed in section 3.3 can be summarized as


vk j = ηv z j
h δk (3.31)


σσσ j = ησσσ δk vk j fa
′(σσσT

j (z− c j)) (z− c j) (3.32)


c j = −ηc δk vk j fa
′(σσσT

j (z− c j)) σσσ j (3.33)

As stated earlier, the learning rates ηv, ηc and ησσσ can be either real-valued or imag-
inary valued or complex-valued . However, in this study, we only consider real-
valued learning rates. As FC-RBF learning algorithm is a batch learning algorithm,
the size of the network, the initial values of the free parameters and the learning
rates have to be fixed a priori. In our study, initially, the number of hidden neurons
were arbitrarily chosen and the initial centers were chosen using a procedure similar
to that given in [13]. The search for the size of the network and the initial centers
for the best performance using this method is an extensive, laborious procedure. To
improve the performance with a lesser search time and effort, the K-means cluster-
ing algorithm, which is widely used in the selection of the centers for RBF networks
[16] is presented in the next section.

3.4.1 Network Initialization: K-means Clustering Algorithm

The K-means clustering algorithm used in this study can be summarized as:

• Begin with h neurons.
• Choose h random samples from the training set and assign them as the neuron

centers.
• For each complex-valued input of the training set, find the Euclidean distance

from each of the randomly chosen centers

d j =

√
(z− c j)(z− c j) (3.34)

where z is the input and c j is the center of the jth hidden neuron.
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• The training samples are clustered depending on the minimum d j from the cen-
ters.

• Calculate the center of each hidden neuron as the average of the samples belong-
ing to that particular cluster. The width of each cluster is also calculated.

• After clustering, if the distance between two neuron centers is lesser than the
width of either of the cluster, then merge them into a single neuron.

• Repeat steps 3 to 6 until there is no change in cluster center.

In this section, a FC-RBF network and its gradient-descent based learning algorithm
have been presented in detail. The performance of the FC-RBF algorithm was com-
pared against the CRBF, C-ELM (RBF) and the sequential CMRAN algorithms.
Irrespective of the activation functions used, all these algorithms are based on the
assumption of non-recurrent, uniformly distributed training samples. However, in
most practical problems, this assumption is not normally satisfied. Therefore, proper
selection of the training data set is required to obtain a good generalization perfor-
mance. In the next section, we present one such system capable of sample selection
to achieve a better generalization performance. The system selects a sample for
learning/deletion based on the knowledge acquired by the network at the time of
presentation of the sample. This selective participation of samples during training
ensures that the network is not overtrained for the training data set and also reduces
the computation time.

3.5 Meta-cognitive Fully Complex-valued Radial Basis
Function Network

Recent works on human learning by [17, 18, 19] suggest that meta-cognition which
empowers the learner with a self-regulated learning mechanism is the best learn-
ing strategy. Meta-cognition provides a means to accurately assess one’s current
knowledge, identify when new knowledge is needed as well as provide strate-
gies to acquire that new knowledge ([20]). In this section, we introduce one such
meta-cognitive learning algorithm for the FC-RBF network. The FC-RBF network
with the meta-cognitive learning algorithm is referred to as a "Meta-cognitive Fully
Complex-valued Radial Basis Function (Mc-FCRBF)" network.

First, we briefly explain the concept of meta-cognition in the context of human
learning proposed by [2]. Nelson and Narens proposed a simple model of meta-
cognition as shown in Fig. 3.4(a). This model has two components, namely, a cog-
nitive component and a meta-cognitive component. The cognitive component repre-
sents the knowledge and the meta-cognitive component has a dynamic model of the
cognitive component (a mental simulation of the cognitive component) ([2]). The
information flow from the cognitive component to the meta-cognitive component
is considered as a monitory signal, while the information flow in the reverse direc-
tion is considered as a control signal. In particular, the information flowing from the
meta-cognitive component to the cognitive component (control) either changes the
state of the cognitive component or changes the cognitive component itself. As a
result, one of the following three actions could occur at the cognitive component:
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Fig. 3.4 Analogy between Model of meta-cognition by [2] and Mc-FCRBF

(a) initiate an action, (b) continue an action, or (c) terminate an action. However, as
the control signal does not yield any information from the cognitive component, a
monitory signal is needed. The basic notion of monitoring is that the meta-cognitive
component is informed about the cognitive component. This changes the state of
the meta-cognitive component’s model of the cognitive component, including “no
change in state". It must be noted that the monitory signal is logically independent
of the control signal.

Similar to the [2] model of meta-cognition described above, the meta-cognitive
FC-RBF also has two components as shown in the Fig. 3.4(b): FC-RBF network
is the cognitive component of Mc-FCRBF and a self-regulatory learning mecha-
nism is its meta-cognitive component. The self-regulatory learning mechanism has
a dynamic model of FC-RBF network and controls its learning ability by decid-
ing what-to-learn, when-to-learn, and how-to-learn. As a result, when a training
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sample is presented, one of the following actions occur in FC-RBF network: (a)
sample deletion, (b) sample learning, or (c) sample skip. Thus, during the entire
training process, the self-regulatory learning mechanism enables selective partici-
pation of samples in the training process. Moreover, as each sample is presented,
the self-regulatory learning mechanism is informed of the current state of FC-RBF
network (monitor) through the instantaneous magnitude error and phase error of the
sample.

The self-regulatory learning mechanism controls the learning process of FC-RBF
network to enable the samples with higher information content to be learnt first and
samples with lower information content to be learnt during the later stages of the
training process. Samples with similar information content are deleted during the
training process. Thus, the meta-cognitive component of Mc-FCRBF prevents learn-
ing similar samples in every epoch of the batch learning process, thereby avoiding
overtraining and improving the generalization performance of FC-RBF network.

3.5.1 Cognitive Component of Mc-FCRBF: The FC-RBF
Network

The cognitive component of Mc-FCRBF is the FC-RBF network with m input neu-
rons, h hidden neurons and n output neurons, as shown in Fig. 3.2. The neurons at
the input and output layers are linear, while the neurons at the hidden layer employ
the fully complex-valued sech activation function. The responses of the neurons in
the hidden layer are given by Eq. (3.10). The update rules for the free parameters of
the FC-RBF network (v j, σσσ j and c j) are as given in Eqs. (3.31), (3.32) and (3.33).

3.5.2 Meta-cognitive Component of Mc-FCRBF: Self-regulatory
Learning Mechanism

In this section, we describe the working principles of the meta-cognitive compo-
nent of Mc-FCRBF. As shown in Fig. 3.4(b), the meta-cognitive component of Mc-
FCRBF controls the learning ability of FC-RBF network (cognitive component) by
selecting suitable learning strategies for each sample (control signal) in each epoch
of the training process. The instantaneous magnitude and phase errors based on the
residual error of FC-RBF network (defined in Eq. (3.14)) for each sample acts as
the monitory signal (information flow from cognitive to meta-cognitive component).
They are defined by:

• The instantaneous magnitude error:

Me
t =

1
n

√
etH

.et (3.35)

• The instantaneous phase error:

φ e
t =

1
n

n

∑
l=1

∣
∣arg(yt

l)− arg(ŷt
l)
∣
∣ (3.36)
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where, the function arg(.) returns the phase of a complex-valued number in [−π , π ],
and is given by:

arg(z) = atan

(
imag(z)
real(z)

)
(3.37)

When a sample is presented to FC-RBF network, the meta-cognitive component de-
cides what-to-learn, when-to-learn, and how-to-learn by taking one of the following
three actions (control signals):
Action (a) Sample Deletion: Delete those samples from the training data set that
contain information similar to that already learnt by the network. This action ad-
dresses the what-to-learn component of the meta-cognition.
Action (b) Sample Learning: Use the sample to update the network parameters in
the current epoch. This represents how-to-learn the sample in the meta-cognitive
framewor .
Action (c) Sample Skip: Skip the sample from learning in the current epoch and
retain the sample in the training data set, thereby, deciding when-to-learn the sample
in the context of meta-cognition.

These three actions of the meta-cognitive learning are described in detail below:

• Sample Deletion: IF Me
t <EM

d AND φ e
t < Eφ

d , where EM
d is the delete magnitude

threshold and Eφ
d is the delete phase threshold, then the sample t is deleted from

the training data set. The thresholds EM
d and Eφ

d are chosen based on the desired
accuracy.

• Sample Learning: If the sample learning condition given by:

IF Me
t ≥ EM

l OR φ e
t ≥ Eφ

l (3.38)

is satisfied in the current epoch, then the parameters of the network are updated
using the gradient descent based parameter update rules (given in Eq. (3.31), Eq.
(3.32), Eq. (3.33)) in the current epoch only. Here, EM

l is the parameter update

magnitude threshold and Eφ
l is the parameter update phase threshold. It must be

noted that the parameter update magnitude threshold (EM
l ) and parameter update

phase threshold (Eφ
l ) are not fixed. They are self-regulating based on the residual

error of the sample in the current epoch, according to the following conditions:

IF Me
t ≥ EM

l , THEN EM
l := δEM

l − (1− δ )Me
t (3.39)

IF φ e
t ≥ Eφ

l , THEN Eφ
l := δEφ

l − (1− δ )φ e
t (3.40)

where δ is the slope at which the thresholds are self-regulated. Larger value of δ
results in a slow decay of the thresholds from their initial values. This helps fewer
samples with significant information to be learnt first, and samples containing
less significant information to be learnt last. Therefore, larger values of δ ensures
that the meta-cognitive principles are emulated efficiently. Usually, δ is set close
to 1.
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• Sample Skip: If a sample does not satisfy the sample deletion or sample learning
condition in the current epoch, then the sample is skipped in the current epoch
and is retained in the training data set as such. Due to the self-regulating na-
ture of the parameter update thresholds, the sample might be used in learning in
subsequent epochs.

The learning algorithm of Mc-FCRBF is summarized in the Pseudocode 1.

Pseudocode 1 Pseudocode: A meta-cognitive Fully Complex-valued Radial Basis
Function (Mc-FCRBF) Network.

Input: The data set{(z1,y1),(z2,y2),..,(zN,yN)}
of the function to be approximated.

Output: Parameters of the network: c j, vk and σσσ j.
START

Initialization:
Choose the number of hidden neurons.
Initialize c j, vk and σσσ j; k = 1,2, ...,h, j = 1,2, ...,n.
Initialize the number of epochs OR
Specify the error based stopping criterion.

WHILE STOPPING CRITERION(Epoch)
FOR t = 1,2,..,N(Sample)

Compute the network output using Eq. (3.11).
Compute the instantaneous Magnitude error (Me

t )
using Eqs.(8.19) and Phase error (φ e

t ) using (8.20).
IF Me

t < EM
d AND φ e

t < Eφ
d THEN

Delete the sample from the training data set.
ELSEIF Me

t ≥ EM
l OR φ e

t ≥ Eφ
l THEN

Update the network parameters
using Eqs. (3.31), (3.32) and (3.33).
The thresholds EM

l and Eφ
l are self-regulated

according to Eqs. (3.39) and (3.40), respectively.
ELSE

Reserve the sample in the training data set.
It may be used in learning/deleted in the
subsequent epochs.

ENDIF
END FOR(Sample)

END WHILE(Epoch)
STOP

Next, we describe the working principle of Mc-FCRBF using a synthetic
complex-valued function approximation problem. The synthetic complex-valued
function to be approximated is defined as
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f1(z) =
1
6
(z2

1 + z2
2) (3.41)

where z1 and z2 are complex-valued variables chosen from within the unit circle and
z is a complex-valued vector (z ∈ C2). For this study, 3000 samples were randomly
chosen and used.

We first show the self-regulating nature of the parameter update magnitude (EM
l )

and phase threshold (Eφ
l ). Fig. 3.5 shows the instantaneous magnitude and phase

errors, the parameter update magnitude and phase thresholds, the delete magnitude
and phase thresholds over a window of 50 samples (sample instants 1,050-1,100)
during epoch 50. Fig. 3.5(a) gives a snapshot of the instantaneous magnitude error,
the parameter update and delete magnitude thresholds. The figure clearly shows the
self-regulating nature of the parameter update thresholds and the selective partici-
pation of samples in the learning process. For example,

• A few samples whose instantaneous magnitude error is greater than the parameter
update magnitude threshold (EM

l ) at the time of their presentation to the network
are selected for participation in the learning process. (e.g., sample instant 1,067).

• A few samples whose instantaneous magnitude error is less than the delete mag-
nitude threshold (EM

d ) are deleted from the training data set. (e.g., sample instant
1,069).

• There are a few samples whose instantaneous magnitude error is greater than EM
d

and lesser than EM
l (e.g., sample instant 1,081). These samples neither take part in

parameter update, nor are deleted in the current epoch. Instead, they are skipped
in the current epoch and retained in the training sample set to be presented to the
network in future epochs.

Similarly, Fig. 3.5(b) gives the snapshot of instantaneous phase error, the parameter
update phase threshold (Eφ

l ) and the delete phase threshold (Eφ
d ) over 50 samples

(sample instants 1,050-1,100) during the learning process in epoch 50. The effect of
self-regulation based on the instantaneous phase error of the samples is clearly seen
from this plot.

• A few samples whose instantaneous magnitude error is greater than the param-
eter update magnitude threshold (Eφ

l ) participated in the learning process. (e.g.,
sample instant 1,065).

• A few samples whose instantaneous phase errors are less than the delete phase
threshold (Eφ

d ) are deleted from the training data set. (e.g., sample instant 1,069).

• There are a few samples whose instantaneous magnitude error is greater than Eφ
d

and less than Eφ
l (e.g., sample instant 1,068). These samples neither took part

in learning, nor are deleted in the current epoch. Instead, they are skipped in the
current epoch and retained in the training data set, to be presented to the network
in the future epochs.

Fig. 3.6 gives the sample history for the number of samples that participated in learn-
ing and those that are not used during the learning process over 5,000 epochs. From
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Fig. 3.6 Sample History of Used and Unused Samples

Fig. 3.6, it can be observed that on an average, only 600 samples participated in the
learning process in each epoch. The remaining samples are redundant samples that
are deleted or samples that do not contribute significantly to the learning process and
are reserved in the training sample set without being learnt. Thus, from the discus-
sion in this section, it is evident that the meta-cognitive components of Mc-FCRBF
control the learning process of FC-RBF by selecting samples for participation in the
learning process of FC-RBF network.

Fig. 3.7 gives the magnitude and phase error convergence plots of FC-RBF net-
work for the CFAP, with and without the meta-cognitive component, over a window
of 1,000 epochs. It can be observed from the plots that the meta-cognitive com-
ponent of Mc-FCRBF has accelerated the convergence of both the magnitude and
phase errors of FC-RBF network. The faster convergence also contributes to the
overall generalization performance as will be shown later, where the errors of Mc-
FCRBF is lower at least by an order compared to that of FC-RBF network. It must
be noted here that like any other batch learning algorithm, the performance of Mc-
FCRBF is also influenced by the presence of outliers. However, such outliers can
be detected by amending the self-regulating conditions suitably. If the current sam-
ple error is greater than, say, 6σ (where σ is the standard deviation), then we can
classify such samples as outliers. These samples will not participate in the learning
process (current epoch). In addition, such samples that consistently produce more
than 6σ errors over L consecutive epochs can be deleted from the data set.
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Fig. 3.7 Error convergence plots for CFAP

3.6 Summary

To summarise, in this chapter we have studied complex-valued RBF networks in
detail as given below :

• The complex-valued RBF network available in literature uses the real-world
Gaussian function that maps Cm → R as the basis and lacks a fully complex-
valued activation function. As the activation function is not fully complex-
valued, the gradients used to update the free parameters of the learning algo-
rithm do not consider the complex-valued error/weights. Rather, they consider
the real/imaginary components of the error/weights. In doing this, the correlation
between the real and imaginary components is lost, and hence, approximation
using such a learning algorithm affects the phase approximation of the network
significantly.

• Hence, we developed a new fully complex-valued RBF network with a sym-
metric “sech” activation function and derived its gradient descent based learning
algorithm. As the activation function and the gradients used in the learning are all
fully complex-valued, approximation using FC-RBF network is more accurate.

• A K-Means clustering algorithm chooses the number of neurons, the initial clus-
ter centers and the width of the FC-RBF and this has been presented.

• All the aforementioned algorithms are based on the assumption that the train-
ing data is uniformly distributed in the input space. In most practical problems,
it is difficult to get uniformly distributed training data with non-recurrent train-
ing samples. Hence, a Mc-FCRBF has been developed with the FC-RBF as the
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cognitive component and a self-regulatory learning system as the meta-cognitive
component. The meta-cognitive component of Mc-FCRBF selects appropriate
samples to participate in training in each epoch and also delete samples with
similar information.
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Chapter 4
Fully Complex-valued Relaxation Networks

The complex-valued learning algorithms described in the chapters 2 and 3 use a
real-valued mean square error function as the performance measure which explicitly
minimizes only the magnitude error. In addition, the mean squared error function is
non-analytic in the Complex domain (not differentiable in an open set). Therefore,
pseudo-gradients, or isomorphic C1 → ℜ2 transformations are generally used in the
derivation of the learning algorithms. Use of a mean squared error function which
is only an explicit representation of the magnitude error and the the use of pseudo-
gradients will affect the phase approximation capabilities of these algorithms. For
better phase approximation, one needs to use an error function which simultane-
ously minimizes both the magnitude and phase errors [1]. But if such functions are
inseparable into their real and imaginary parts, then the pseudo gradients are in-
valid and one needs to identify a mathematical tool to derive the gradients of such
functions. Hence, there is a need for the development of a fully complex-valued
neural network and its learning algorithm using the fully complex-valued gradients
to overcome the above-mentioned issues.

In this chapter, we present a fully complex-valued single hidden layer neural net-
work with a Gaussian like activation function in the hidden layer and an exponential
activation function in the output layer. For a given training data set and number of
hidden neurons, the network parameters are analytically estimated using a projec-
tion based learning algorithm. The learning algorithm employs a nonlinear logarith-
mic error function as the energy function which explicitly contains both the magni-
tude and phase errors. The problem of finding the optimal weights is formulated as a
nonlinear programming problem. The problem is solved with the help of Wirtinger
calculus [2]. Wirtinger calculus provides a framework for determining gradients of
a non-analytic nonlinear complex (energy) function. The projection based learning
algorithm converts the nonlinear programming problem into solving a system of
linear equations and provides a solution for the optimal weights corresponding to
the minimum energy point of the energy function. This is similar to the relaxation
process, where the system always returns to a minimum energy state from a given
initial condition [3]. Therefore, we refer to the proposed complex-valued network
as a, ‘Fully Complex-valued Relaxation Network (FCRN)’. The projection based

S. Suresh et al.: Supervised Learning with Complex-valued Neural Networks, SCI 421, pp. 73–83.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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learning algorithm of FCRN requires minimal computational effort to approximate
any desired function with higher accuracy. In the next sections, we present FCRN
and its learning algorithm in detail.

4.1 Fully Complex-valued Relaxation Networks

Complex-valued neural networks are generally employed to handle applications
where the signals involved are inherently complex-valued. An efficient complex-
valued neural network is required to preserve the nonlinear transformations (both in
magnitude and phase) between the complex-valued inputs and their corresponding
targets with a minimal computational effort. In this section, we present one such
complex-valued neural network and its "projection based learning" algorithm. For
a given training data set and the number of hidden neurons, the network parameters
are estimated as a solution to a nonlinear programming problem using Wirtinger
calculus. The projection based learning algorithm converts the nonlinear program-
ming problem into a system of linear equations and the solution of the same results
in computing the optimal output weights. The system of linear equations is derived
from a nonlinear logarithmic energy function that contains both the magnitude and
phase errors explicitly and the optimal output weights are obtained corresponding
to the minimum energy point of this energy function. This process is analogous to
a relaxation process, where a system always returns to the minimum energy state
from any given initial condition. Hence, the proposed complex-valued neural net-
work is referred to as a, ‘Fully Complex-valued Relaxation Network (FCRN)’. The
architecture and the learning algorithm of FCRN is described in detail below.

4.1.1 FCRN Architecture

The fully complex-valued relaxation network is a single hidden layer complex-
valued neural network having a linear input layer with m neurons, a non-linear hid-
den layer with h neurons and a non-linear output layer with n neurons, as shown in
Fig. 4.1. The neurons in the hidden layer employ a hyperbolic secant function (sech)
whose magnitude response is similar to that of the real-valued Gaussian activation
function.

For a given m-dimensional input zt = [zt
1, · · · ,zt

m]
T ∈Cm, the response of the k-th

hidden neuron (zkt

h ) is given by:

zkt

h = sech
(
σσσT

k

(
zt − ck

))
; k = 1, · · · ,h (4.1)

where σσσ k = [σ1
k , · · · ,σm

k ]T ∈ Cm is the scaling factor of the k-th hidden neuron,
ck = [c1

k , · · · ,cm
k ]

T ∈ Cm is the center of the k-th hidden neuron, the superscript T
represents the transpose operator, and sech(z) = 2

ez+e−z .
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Fig. 4.1 The architecture of FCRN

The n-dimensional output of the network is given by ŷt = [ŷt
1, · · · , ŷt

n]
T ∈ C

n.
The neurons in the output layer employ an exponential activation function and the
response of the l-th output neuron is:

ŷt
l = exp

(
K

∑
k=1

vlkzkt

h

)

; l = 1, · · · ,n (4.2)

where vlk ∈ C is the weight connecting the k-th hidden neuron and the l-th output
neuron.

Given a training data set {(z1,y1
)
, · · · ,(zt ,yt) , · · · ,(zN ,yN

)}, with zt ∈ Cm is
the m-dimensional input and yt ∈ Cn is the n-dimensional target of the t-th training
sample. The main objective of the fully complex-valued relaxation network is to
estimate the free parameters of the network (C, σσσ and V) such that the predicted
output (ŷ) is as close as possible to the target output (y), with a given number of hid-
den neurons (h). In other words, FCRN is required to approximate the underlying
transformation function (F : zt → yt) as accurately as possible. Most of the learning
algorithms reported in the literature use the mean square error deviation between
actual (yt) and predicted output (ŷt) as the performance criterion, which is only an
explicit minimization of the magnitude of error. However, accurate estimation of
both magnitude and phase of the signals are important in many real-world appli-
cations involving complex-valued signals [4]. In this chapter, we use a nonlinear
logarithmic error function as the energy function with an explicit representation of
both the magnitude and phase of the actual and predicted outputs.
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4.1.2 Nonlinear Logarithmic Energy Function

The actual output (yt) of the t-th training sample is represented in polar form as

yt
l = rt

l exp
(
iφ t

l

)
; l = 1,2, · · · ,n (4.3)

where rt
l = ||yt

l || is the magnitude of yt
l and φ t

l = arctan
(

Im(yt
l)

Re(yt
l)

)
1 is the phase of yt

l .
2

Similarly, the predicted output (ŷt) of t-th training sample is represented in polar
form as

ŷt
l = r̂t

l exp
(

iφ̂ t
l

)
; l = 1,2, · · · ,n (4.4)

where r̂t
l = ||ŷt

l || is the estimated magnitude and φ̂ t
l = arctan

(
Im(ŷt

l)

Re(ŷt
l)

)
is the esti-

mated phase.
The energy function Jt should be a monotonically decreasing function that rep-

resents the magnitude and phase quantities explicitly, i.e., Jt → 0 when r̂t → rt and

φ̂φφ
t → φφφ t .
We propose an energy function that uses a logarithmic function for explicit rep-

resentation of both the magnitude and phase of complex signals and is of the form

Jt =
n

∑
l=1

(ln( ŷt
l )−ln(yt

l ))(ln( ŷt
l )−ln(yt

l )) (4.5)

where (.) is the conjugate of the complex signal (.) and ln(.) represents the natural
logarithmic function.

Substituting the polar representation of actual (yt
l) and predicted output (ŷt

l), the
above equation reduces to

Jt =
n

∑
l=1

(

ln

(
r̂t

l

rt
l

)2

+
(

φ̂ t
l −φ t

l

)2
)

(4.6)

It can be observed from Eq. (4.6) that the logarithmic energy function represents the
magnitude and phase quantities explicitly and Jt tends to 0, when ŷt

l → yt
l . It must

also be noted that the energy function is second order continuously differentiable
with respect to the network parameters.

For N training samples, the overall energy is defined as

J(V) =
1
2

N

∑
t=1

Jt

=
1
2

N

∑
t=1

n

∑
l=1

(

ln

(
r̂t

l

rt
l

)2

+
(

φ̂ t
l −φ t

l

)2
)

(4.7)

1 yt
l = Re(yt

l)+ i Im(yt
l), where Re(.) and Im(.) refers to the real and imaginary parts of a

complex number, respectively
2 Note that i =

√−1 is the Complex operator.
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In the next section, we derive the projection based learning algorithm of FCRN such
that J(W) is minimum.

4.1.3 A Projection Based Learning Algorithm for FCRN

For a given initial condition (i.e., N training samples, h hidden neurons), the pro-
jection based learning algorithm finds the network parameters for which the energy
function is minimum, i.e., the network achieves the minimum energy point or relax-
ation point of the energy function.

The hidden neuron centers (ck) and scaling factors (σσσ k) of FCRN are chosen as
random constants and the optimal output weights (V∗ ∈ Cn×h) are estimated such
that the total energy reaches its minimum.

V∗ := arg min
V∈Cn×h

J(V) (4.8)

The problem of estimating the optimal weight is converted to an unconstrained min-
imization problem (J(V) : Cn×h → ℜ) involving minimization of the energy func-
tion J(V). Let V∗ ∈ C

n×h, then V∗ is the optimal output weight corresponding to
the minimum of the energy function if J(V∗) ≤ J(V) ∀ V ∈ Cn×h. The optimal V∗
corresponding to the minimum energy point of the energy function (J(V∗)) is ob-
tained by equating the first order partial derivative of J(V) with respect to the output
weight to zero, i.e.,

∂J(V)

∂vl p
= 0; l = 1, · · · ,n; p = 1, · · · ,h (4.9)

For convenience, we rewrite the energy function as

J(V) =
1
2

N

∑
t=1

n

∑
l=1

(ln( ŷt
l )−ln(yt

l )) (ln( ŷt
l )−ln(yt

l )) (4.10)

By substituting the predicted output (ŷt) from Eq. (8.17) in Eq. (4.10), the energy
function reduces to

J(V) =
1
2

N

∑
t=1

n

∑
l=1

(
K

∑
k=1

vlkzkt

h − ln yt
l

)(
K

∑
k=1

vlkzkt

h − ln yt
l

)

(4.11)

where zkt

h is the response of the k-th hidden neuron for t-th training sample.
Since the energy function is a non-analytic, non-linear real-valued function of the

complex-valued output weights and is inseparable into its real and imaginary parts,
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we use Wirtinger calculus1 [2] to obtain the first order partial derivatives of the
energy function with respect to the complex-valued output weight (vl p). Wirtinger
calculus eliminates the stringent conditions of analyticity for the Complex differ-
entiability imposed by the Cauchy Riemann conditions. They define the Complex
differentiability of almost all functions of interest, including the energy function
that maps (C→ ℜ). Although the derivatives defined by Wirtinger calculus do not
satisfy the Cauchy Riemann equations, they obey all the rules of calculus (like dif-
ferentiation of products, chain rule etc.).

Using the Wirtinger calculus and the commutative property of the Complex con-
jugate operator2, the first order partial derivative of energy function with respect to
wl p (l = 1,2 · · · ,n and p = 1,2, · · · ,h) is given as:

∂J(W)

∂vl p
=

N

∑
t=1

zpt

h

[
h

∑
k=1

vlkzkt

h − ln
(
yt

l

)
]

(4.15)

Equating the first partial derivative to zero and re-arranging the Eq. (4.15), we get

h

∑
k=1

vlk

N

∑
t=1

zpt

h zh
kt
=

N

∑
t=1

ln
(
yt

l

)
zpt

h (4.16)

Eq. (4.16) can be written as

h

∑
k=1

vlkApk = Bl p; p = 1, · · · ,h; l = 1, · · · ,n (4.17)

which can be represented in matrix form as

1 Let fR(zc,zc) be a real-valued function of a complex-valued variable zc = xr + iyr . Then,
the following pair of derivatives are defined by the Wirtinger calculus:

R-derivative of fR(zc,zc) =
∂ fR

∂ zc
|zc=constant (4.12)

R-derivative of fR(z,zc) =
∂ fR

∂ zc
|zc=constant (4.13)

It is proved in [5] that the R−derivative (Eq. (4.12)) and the R−derivative (Eq. (4.13))
can be equivalently written as

∂ fR

∂ zc
=

1
2

(
∂ fR

∂xr
− i

∂ fR

∂yr

)

∂ fR

∂ zc
=

1
2

(
∂ fR

∂xr
+ i

∂ fR

∂yr

)
(4.14)

where the partial derivatives with respect to xr and yr are true partial derivatives of the
function fR(zc) = fR(xr,yr), which is differentiable with respect to the xr and yr.

2 za + zb = za + zb and ln(za) = ln(za)
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VA = B (4.18)

where the projection matrix A ∈ Ch×h is given by

Apk =
N

∑
t=1

zpt

h zh
kt

; p = 1, · · · ,h; k = 1, · · · ,h (4.19)

and the output matrix B ∈ Cn×h is

Bl p =
N

∑
t=1

ln ȳt
lz

kt

h ; l = 1, · · · ,n; p = 1, · · · ,h (4.20)

Eq. (4.17) gives the set of n×h linear equations with n×h unknown output weights
V. Note that the projection matrix is always a square matrix of order h× h.

We state the following propositions to find the closed-form solution for these set
of linear equations.

Proposition 4.1. The responses of the neurons in the hidden layer are unique. i.e.

∀ zt , when k �= p, zkt

h �= zpt

h ; k, p = 1,2 · · ·h, t = 1, · · ·h.

Proof. Let us assume that

For a given zt ,zpt

h = zkt

h ; k �= p (4.21)

This assumption is valid if and only if

sech
(
σσσT

p (z
t − cp)

)
= sech

(
σσσT

k (z
t − ck)

)

OR σσσT
p (z

t − cp) = σσσT
k (z

t − ck) (4.22)

The pair of parameters ck j and cp j (that are elements of the vectors ck and cp, re-
spectively), σk j and σp j (that are elements of the vectors σσσ k and σσσ p, respectively)
are uncorrelated random constants chosen from a ball of radius 1, i.e.,

||ck j ||< 1; ||σk j||< 1; k = 1, · · · ,h; j = 1, · · · ,m (4.23)

Therefore, ck �= cp and σσσ k �= σσσ p for any zt (the t-th random input vector of the
training data with N samples). Hence, the response of the k-th and p-th hidden

neurons are not equal, i.e., zpt

h �= zkt

h ∀ zt ; t = 1, · · · ,N.

Proposition 4.2. The responses of the neurons in the hidden layer are non-zero. i.e
∀ z, zkt

h �= 0; k = 1,2 · · ·h.

Proof. Let us assume that the hidden layer response of the k-th hidden neuron is 0,
i.e.,

zkt

h = 0 (4.24)
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This is possible if and only if

cT
k (z

t −σσσ k) = ∞
z → ∞, or ck → ∞, or σσσ k → ∞ (4.25)

As stated in Eq. (4.23), the hidden layer parameters are random constants chosen
from within a circle of radius 1. The input variables zt are also normalized in a
circle of radius 1 such that

|z j|< 1; j = 1, · · · ,m (4.26)

Hence, the assumption in Eq. (4.24) is not valid for all zt . Thus, the responses of the
neurons in the hidden layer zkt

h �= 0 ∀ zt .

Using the Proposition 4.1 and Proposition 4.2, we state the following theorem.

Theorem 4.1. The projection matrix A is a positive definite Hermitian matrix, and
hence, it is invertible.

Proof. From the definition of the projection matrix A given in Eq. (4.19),

Apk =
N

∑
t=1

zpt

h zh
kt

; p = 1, · · · ,h; k = 1, · · · ,h (4.27)

it can be derived that the diagonal elements of the A for the t-th sample is:

At
kk = zkt

h zh
kt

; k = 1, · · · ,h (4.28)

From Proposition 4.2, the responses of the hidden neurons are non-zero. Hence,
At

kk �= 0. Therefore Eq. (4.28) can be written as

At
kk = |zkt

h |2 > 0 (4.29)

Hence the diagonal elements of the projection matrix are real, and positive, i.e.,
At

kk ∈ ℜ > 0. This can be extended for the entire training sample set as:

Akk =
N

∑
t=1

At
kk ∈ ℜ > 0 (4.30)

The off-diagonal elements of the projection matrix (A) for the t-th sample is:

At
k j = zkt

h zh
jt and At

jk = z jt

h zh
kt

(4.31)

=⇒ At
k j = A

t
jk (4.32)

Using the commutative property of the complex conjugate operator, Eq. (4.31) can
be extended for all the N samples as:
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Ak j =
N

∑
t=1

At
k j =

N

∑
t=1

A jk = A jk (4.33)

From Eqs. 4.30 and 4.33, it can be inferred that the projection matrix A is a Hermi-
tian matrix.

A Hermitian matrix is positive definite iff for any q �= 0, qHAq > 0. Let us con-
sider an unit basis vector q1 ∈ ℜK×1 such that q11 = 1 and q12 · · ·q1K = 0, i.e.,
q1 = [1 · · ·0 · · ·0 · · ·0]T . Therefore,

qH
1 Aq1 = A11 (4.34)

In Eq. (4.30), it was shown that k = 1, · · · ,h,Akk ∈ ℜ > 0. Therefore,

A11 ∈ ℜ > 0 =⇒ qH
1 Aq1 > 0 (4.35)

Similarly, for an unit basis vector qk = [0 · · ·1 · · ·0]T , the product qH
k Aqk is given by

qH
k Aqk = Akk > 0; k = 1, · · · ,h (4.36)

Let p ∈ Ch be the linear transformed sum of h such unit basis vectors, i.e., p =
q1t1 + · · ·+qktk + · · ·+qhth, where tk ∈ C is the transformation constant. Then,

pHAp =
h

∑
k=1

(qktk)
H A

h

∑
k=1

(qktk)

=
h

∑
k=1

|tk|2
(
qH

k Aqk
)

=
h

∑
k=1

|tk|2Akk (4.37)

As shown in Eq. (4.30), Akk ∈ ℜ > 0. Also, that |tk|2 ∈ ℜ > 0 is evident. Hence,

|tk|2Akk ∈ ℜ > 0 ∀ k

=⇒
h

∑
k=1

|tk|2Akk ∈ ℜ > 0 (4.38)

Thus, the projection matrix A is positive definite, and is hence, invertible.

The solution for V obtained as a solution to the set of equations, given in Eq. (4.18)
is minimum, if ∂ 2J

∂vl p
2 > 0. The second derivative of the energy function (J) with

respect to the output weights is given by,

∂ 2J(V)

∂vl p
2 =

N

∑
t=1

zpt

h zh
kt

=
N

∑
t=1

|zpt

h |2 > 0 (4.39)
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As the second derivative of the energy function J(V) is positive, the following ob-
servations can be made from Eq. (4.39):

1. The function J is a convex function.
2. The output weight V ∗ obtained as a solution to the set of linear equations (Eq.

(4.18)) is the weight corresponding to the minimum energy point of the energy
function (J).

Using the Theorem 1, the solution for the system of equations in Eq. (4.18) can be
determined as follows:

V
∗
= BA−1 (4.40)

Applying the commutative law of multiplication of complex-valued conjugates,

V∗ = B A
−1

(4.41)

Thus the estimated output weights (V∗) corresponds to the minimum energy point
of the energy function.

The projection based learning algorithm of FCRN can be summarized as:
Given the training data set:

{
(z1,y1), ...(zt ,yt), ...,(zN ,yN)

}

Step 1: Choose the number of hidden neurons: h and the random hidden layer pa-
rameters: ck,σσσ k; k = 1, · · · ,h
Step 1: Compute the hidden layer responses ht

k using

zkt

h = sech
(
σσσT

k

(
zt − ck

))
; k = 1, · · · ,h (4.42)

Step 2: Compute the projection matrix A using

Apk =
N

∑
t=1

zpt

h zh
kt

; p,k = 1, · · · ,h (4.43)

Step 2: Compute the output matrix B using

Bl p =
N

∑
t=1

ln
(
ȳt

l

)
zpt

h ; l = 1, · · · ,n; p = 1, · · · ,h (4.44)

Step 3: Compute the optimum output weights using

W∗ = B A
−1

(4.45)

4.2 Summary

In this chapter, we have presented a projection based learning algorithm for a fully
complex-valued relaxation network. For a given set of hidden layer neuron and
their associated parameters, the projection based learning algorithm determines the
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output weights corresponding to the minimum energy point of an energy function
which nonlinear, logarithmic and uses an explicit representation of both the magni-
tude and phase of the target and the predicted outputs. Using the Wirtinger calculus,
the output weights of FCRN are determined as a solution to a nonlinear program-
ming problem. The projection based learning algorithm computes the optimal output
weights by converting the nonlinear programming problem to a problem of solving
a set of linear equations. The output weights thus obtained are optimum and the
training time required for learning is minimum.

In the next chapter, we evaluate the performances of the algorithms discussed
in Chapters 2-4: FC-MLP, IC-MLP, FC-RBF, Mc-FCRBF and FCRN on a set of
complex-valued function approximation problems.
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Chapter 5
Performance Study on Complex-valued
Function Approximation Problems

In this chapter, we evaluate the approximation performances of the fully complex-
valued multi-layer perceptron network and the improved fully complex-valued
multi-layer perceptron network described in Chapter 2, the fully complex-valued
radial basis function network and the meta-cognitive fully complex-valued radial
basis function network described in Chapter 3, and the fast learning fully complex-
valued relaxation network described in Chapter 4. The performances of these net-
works are studied in comparison with existing complex-valued learning algorithms
like the complex-valued extreme learning machine and the complex-valued minimal
resource allocation network using two synthetic, complex-valued function approx-
imation problems and two real-world problems. The real world problems consist
of a Quadrature Amplitude Modulation (QAM) channel equalization problem with
circular signals and an adaptive beam-forming problem with non-circular signals.

5.1 Synthetic Function Approximation Problems

In this section, we define two synthetic complex-valued function approximation
problems which were used to study different activation functions and also the per-
formances of the algorithms presented in chapters xxxx , viz., IC-MLP, FC-RBF
and Mc-FCRBF in comparison with other existing complex-valued learning algo-
rithms. Hereafter, the two complex function approximation problems are referred to
as CFAP-I and CFAP-II,. In these problems, all the function variables are chosen
from within a circle of radius of 2.5. The following performance metrics are used to
compare the performances of the different complex-valued learning algorithms:

To evaluate the performances of different complex-valued networks, we define
the root mean square magnitude error (JMe) and the average absolute phase error
(φe) as

S. Suresh et al.: Supervised Learning with Complex-valued Neural Networks, SCI 421, pp. 85–107.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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JMe =

√√
√√ 1

N

N

∑
t=1

[
1
n

n

∑
k=1

(et
k.e

t
k)

]

(5.1)

φe =
1
N

N

∑
t=1

[
1
n

[
n

∑
k=1

| [arg(yt
k)− arg(ŷt

k)] |
]]

in deg. (5.2)

where, N is number of samples in the training set. For each initializing value, the root
mean square magnitude error JMe and average absolute phase error φe are computed
along with a statistical analysis on different runs. It should be noted that in eq.
(5.2), the arg operator returns the angle of the complex-valued signal as: arg(yt

k) =

tan−1 imag(yt
k)

real(yt
k)

in rad., where real(yt
k) and imag(yt

k) are the Real and Imaginary

components of yt
k respectively.

Since the algorithms described in Chapters 2, 3 and 4 are batch learning algo-
rithms, the following procedure is used to decide the number of neurons at the
hidden layer:

Procedure for selection of network configuration

Step 1. Select a network with a minimum configuration (h = m + n).
Step 2. Initialize the network parameters with uniform distribution (zero mean and

low variance) of the parameters in the all the four quadrants.
Step 3. Train the network until the training magnitude error (JMe) < 0.002 and phase

error (φe) < 0.3o or until 5000 epochs.
Step 4. Calculate the magnitude (JMe) and phase (φe) error for the testing samples.
Step 5. If JMe > 0.002 and φe > 0.3o,

• If h < hmax, then increase the number of hidden neurons by 2 and return to
step 2.

Else, stop.

5.1.1 Synthetic Complex-valued Function Approximation
Problem I (CFAP-I)

The synthetic complex-valued function to be approximated is defined as

f1(z) =
1
6
(z2

1 + z2
2) (5.3)

where z1 and z2 are complex-valued variables chosen from within the unit circle
and z is a complex-valued vector (z ∈ C2). For performance study using the CFAP-
I, 3000 samples for training and 1000 samples for testing are randomly generated
and used.
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Table 5.1 presents the results of the performance study on CFAP-I. From the
results, it can be observed that the proposed algorithms, viz., IC-MLP, FC-RBF,
and Mc-FCRBF outperforms the existing complex-valued learning algorithms in
the literature, viz., CRBF, CMRAN, C-ELM and FC-MLP. Based on the results, the
following observations emerge:

• Although the magnitude approximation ability of IC-MLP is similar to that of
FC-MLP, its phase approximation ability has improved drastically (testing phase
error of IC-MLP is at least 40% lower than that of FC-MLP).

• The magnitude and phase approximation performances of FC-RBF is better than
other complex-valued radial basis function networks available in the literature,
viz., CRBF, CMRAN and C-ELM with a RBF activation function. Further, FC-
RBF requires only a fewer neurons to achieve this higher performance.

• FC-RBF with KMC selects the right number of neurons and initialization to
achieve an approximation performance better than that of FC-RBF. The network
size is also smaller than that of FC-RBF.

• The meta-cognitive component of Mc-FCRBF boosts the magnitude and phase
approximation performance of FC-RBF. Moreover, it uses only 520 samples per
epoch on an average to achieve this performance. This also results in considerable
reduction of training time.

Table 5.1 CFAP-I: Performance comparison of various complex-valued learning algorithms

Network h∗ Training Error Testing Error
JMe φe (deg.) JMe φe (deg.)

CRBF 20 0.592 45.32 0.623 47.15
CMRAN 27 0.0594 13.88 0.0614 18.83

C-ELM (RBF) 20 0.6886 34.89 0.704 36.15
FC-MLP 15 0.002 0.29 0.003 0.163

IC-MLP@ 15 0.002 0.05 0.003 0.09
FC-RBF 15 0.0019 0.338 0.003 0.3438

FC-RBF with KMC 11 0.00142 0.5563 0.00137 0.1941
Mc-FCRBF@@ 15 0.005 0.3 0.0016 0.18

∗ Number of hidden neurons @ k1 = 25; k2 = 2
@@ On an average, 520 samples participated in learning in all the epochs.

From the results in Table 5.1, it may be noted that the fully complex-valued neu-
ral networks with fully complex-valued activation functions outperform existing al-
gorithms. Next, we evaluate the performance of FCRN and other algorithms using
another synthetic complex-valued function approximation problem.
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5.1.2 Synthetic Complex-valued Function Approximation
Problem II (CFAP-II)

For this problem, the function to be approximated is given by eq. (5.4).

f2(z) =
1

1.5
(z3 + 10z1z4 +

z2
2

z1
) (5.4)

where z1, z2, z3 and z4 are complex-valued variables chosen from within the unit
circle and z is a complex-valued vector (z ∈ C

4). A training sample set with 3000
samples and testing sample set with 1000 samples were randomly generated for this
study.

Table 5.2 presents the performance results of the complex-valued learning algo-
rithms considered in this study on the CFAP-II. From the results, it can be observed
that the proposed algorithms, viz., IC-MLP, FC-RBF, and Mc-FCRBF outperform
existing complex-valued learning algorithms in the literature, viz., CRBF, CMRAN,
C-ELM and FC-MLP. The following observations emerge:

• The magnitude and phase approximation abilities of IC-MLP are better than that
of FC-MLP (testing phase error of IC-MLP is at least 80% lower than that of
FC-MLP).

• The magnitude and phase approximation performance of FC-RBF is better than
other complex-valued radial basis function networks available in the literature,
viz., CRBF, CMRAN and C-ELM with a RBF activation function.

• FC-RBF with KMC chooses the lowest number of neurons and best initializa-
tion to achieve an approximation performance better than that of FC-RBF. The
network size is also smaller than that of FC-RBF.

• The meta-cognitive component of Mc-FCRBF boosts the magnitude and phase
approximation performance of FC-RBF. Moreover, on an average, it uses only

Table 5.2 CFAP-II: Performance comparison of various complex-valued learning algorithms

Algorithm h∗ Training Error Testing Error
JMe φe (deg.) JMe φe (deg.)

CRBF 15 0.1465 51.18 0.18155 51.96
C-ELM (RBF) 15 0.1917 90.06 0.22974 88.17

CMRAN 14 0.0257 2.23 0.476 18.68
FC-MLP 15 0.027 15.74 0.0544 15.6
IC-MLP 15 0.02 0.46 0.04 1.14
FC-RBF 20 0.0196 15.87 0.0478 15.83

FC-RBF with KMC 11 0.0114 3.12 0.0909 13.59
Mc-FCRBF 15 0.0009 0.53 0.0009 0.56

FCRN 10 0.03 1.38 0.06 3.22

∗ Number of hidden neurons
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600 samples in each epoch of the training process to achieve a much better per-
formance. This also results in a considerable reduction of the training time.

• The phase approximation performance of FCRN is much better than that of FC-
RBF without the meta-cognitive component, although the magnitude approxima-
tion performance is comparable to that of FC-RBF.

5.2 Real-World Problems

5.2.1 Complex Quadrature Amplitude Modulation Channel
Equalization Problem

Quadrature amplitude modulation is both an analog and a digital modulation scheme.
It conveys two analog message signals, or two digital bit streams, by changing
(modulating) the amplitudes of two carrier waves, using the amplitude-shift key-
ing digital modulation scheme or amplitude modulation analog modulation scheme.
These two waves, usually sinusoids, are out of phase with each other by 90◦ and are
thus called quadrature carriers or quadrature components. The modulated waves are
summed, and the resulting waveform is a combination of both phase-shift keying
and amplitude-shift keying, or in the analog case of phase modulation and ampli-
tude modulation. In the digital QAM case, a finite number of at least two phases
and at least two amplitudes are used. Thus, the signals in the QAM schemas are
complex-valued. When the QAM signals are transmitted over a channel, the non-
linear characteristics of the channel cause spectral spreading, inter-symbol interfer-
ence and constellation warping. Hence, an equalizer is essential at the receiver of the
communication channel to reduce the precursor inter-symbol interference without
any substantial degradation in the signal-to-noise ratio.

As the signals are all complex-valued, of equal magnitude, differing only by the
phase, accurate phase approximation of the signals becomes essential. Hence, the
equalization ability of the different complex-valued neural networks and their learn-
ing algorithm are studied in detail. The efficiency of each equalizer to isolate noisy
signals from the data symbol is measured in terms of its Symbol Error Rate (SER)
that is defined as the percentage of symbols that have errors relative to the total
number of symbols received in a transmission system, usually expressed as ten to a
negative power.

SER =

(
Number of errors in predicted symbols

Total number of symbols

)
(5.5)

Problem formulation: Consider the base band discrete time model of a data trans-
mission system [1] given by

yq(n) = ŷq(n)+ eq(n) = fh(s(n),s(n− 1), · · ·s(n− nh + 1))+ eq(n) (5.6)
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where a complex-valued digital sequence s(n) is transmitted through a dispersive
Complex channel, the channel output yq(n) is corrupted by an additive complex-
valued noise eq(n) and ŷq(n) is the function (which may be linear or nonlinear) of
the digital sequence and the channel given by fh(s(n),s(n−1), · · · s(n−nh +1)), nh

is the order of the finite impulse response channel. The task of the symbol decision
equalizer is to reconstruct the transmitted symbols s(n− τ) based on noisy channel
observation vector yq(n) = [yq(n) · · ·yq(n−m+1)]T , where m is the equalizer delay
(the number of past observations required for reconstruction), or the input dimension
of the equalizer.

Assume a 4-QAM input sequence with alphabet α = {α{1}}, α{2}, α{3}, α{4}}
where α{1} = a+ ja, α{2} = a− ja, α{3} =−a+ ja, α{4} =−a− ja going through
a noiseless channel of order nh. The input sequence: s(n) = [s(n) · · · s(n−m+
2− nh)]

T would result in ns points or values of noise-free channel output vector
ŷq(n) = [ŷq(n) · · · ŷq(n−m + 1)]T where ns = 4nh+m−1. These output vectors
are referred to as the desired channel states and are partitioned into four different

classes Y ( j)
q,{m,τ},(1 ≤ j ≤ 4), according to the value of s(n−τ). The number of states

in Y (1)
q,{m,τ}, Y (2)

q,{m,τ}, Y (3)
q,{m,τ}, Y (4)

q,{m,τ} are denoted as n1
s , n2

s , n3
s and n4

s respectively.
Due to the additive white Gaussian noise, the channel outputs will form clusters
around each of these desired channel states. Therefore, the noisy observation vector
yq(n) = [yq(n) · · ·yq(n−m+1)]T is a random process with a conditional Gaussian
density function centered at each of the desired channel states. The noisy observa-
tion vector is used as the input to the equalizer to determine the transmitted symbol
s(n− τ). The objective of the equalizer in QAM problem is to retrieve the symbols
at the receiver from the past observations (yq). Since here, magnitudes are equal
and the symbols differ only in the phase, phase approximation is more important
than magnitude approximation. As the complex-valued neural networks are capa-
ble of better phase approximations, they are a good choice to solve the problem
of QAM equalization. The schematic diagram of a complex-valued neural network
based equalizer is presented in Fig. 5.1. Assume that the real and imaginary part of
transmitted symbol s(k) is equiprobable and independent sequences. Let λ be the

apriori probability of y{ j}
qi , where y{ j}

qi ∈Y ( j)
q,{m,τ},(1 ≤ j ≤ 4). The conditional prob-

ability density function ( f { j}
b ) of yq(n) given s(n− t) = α{ j} takes the following

form:

f { j}
b = λ

n j
s

∑
i=1

exp(−(yq − y{ j}
qi )H(yq − y{ j}

qi )/2σ2
e ) 1 ≤ j ≤ 4 (5.7)

where H (Hermitian) denotes the complex conjugate transposition. The optimal
Bayesian equalizer solution is defined as

ŝ(n− τ) = α{ j} where j = argmax j

{
f { j}
b

}
(5.8)

This equation also defines the optimum decision boundaries for the partition of
equalizer inputs sets. It is clear that these optimum decision boundaries are
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Fig. 5.1 Complex-valued Neural Network Equalization Scheme

nonlinear hyper surfaces in the Complex observation space and realizing such a non-
linear boundary will require the equalizer to have non-linear mapping capabilities.
Since neural networks are well-known for their non-linear mapping capabilities,
they are a good choice for equalizer. Also, since a good equalizer requires accurate
phase approximations to classify the signal points in their respective quadrants effi-
ciently, complex-valued neural networks, which are capable of better phase approx-
imations are an excellent choice for non-minimum phase equalization. There are
several channel models available to transmit the QAM signals like the real-valued
Patra’s model [2], complex-valued linear Chen’s model [3], the complex-valued
non-linear Cha and Kassam channel model [4] etc. The complex-valued non-linear
Cha and Kassam channel model is a well-known non-linear channel model for trans-
mission of 4-QAM signals, and to study the non-minimum phase equalizing ability
of different equalizers.

In this chapter, we evaluate the performances of various complex-valued neural
networks in reconstructing the transmitted symbols from the noisy channel observa-
tions, for the Cha and Kassam model [4]. In the next section, we present this model
in detail.
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5.2.2 Cha and Kassam Channel Model

A well known Complex QAM channel model, the Cha and Kassam model [4] is used
to evaluate the performances of various equalizers. Here, the complex-valued neural
network based equalizers are used to retrieve one of the 4-QAM signals {−1− i, −
1+ i, 1− i, 1+ i} transmitted through the Cha and Kassam channel model. The
equalizer uses the channel output at three consecutive instants (n−2), (n−1) and n
to predict the transmitted symbol at the time instant n− 1. Thus, the equalizer uses
the channel outputs zn−2, zn−1 and zn to predict the transmitted symbol sn−1. Hence,
it is understandable that the equalizer delay is set at τ = 1 as done in [5] and the
order of the equalization model is chosen as 3. The output of the Cha and Kassam
channel zn (which is also the input to the equalizer) is given by:

zn = on + 0.1o2
n+ 0.05o3

n+ vn, (5.9)

where

on = (0.34− 0.27i)sn+(0.87+ 0.43i)sn−1+(0.34− 0.21i)sn−2 (5.10)

The model is assumed to be affected by a white Gaussian noise (vn) with zero mean
and a variance of 0.01, hence vn in eq. (5.9) is given by ℵ(0,0.01). As the inverse
mathematical relationship between zn and sn−τ does not exist, neural networks can
be trained to retrieve the transmitted symbols from the channel output. Thus, a neu-
ral network with three input neurons and one output neuron is used in the QAM
equalization of the Cha and Kassam model considered. The inputs to the neural
network are zn−2, zn−1 and zn, and the targets are sn−1.

In the next section, we present the equalization ability of different complex-
valued neural network algorithms presented in chapters 3, 4 and 5 on the channel
model presented by Cha and Kassam [4]. Their efficiencies to reject noisy data and
to avoid inter-symbol interferences are measured in terms of their symbol error rates.
The SER of different complex-valued neural network algorithm based equalizers are
plotted at different noise levels, and compared for best equalization performance.

In this section, first we present how the training and testing dataset were gener-
ated. Then the various CVNN equalizers are evaluated on the basis of the equal-
izer framework, i.e., CMLP equalizers, CRBF equalizers and the complex-valued
sequential algorithm based equalizers. Finally, the best performance of the best al-
gorithms in the three frameworks are compared and discussed.

Dataset: The different complex-valued neural network equalizers are trained with
a pilot sequence of of 5000 randomly generated samples at 20dB SNR. The equal-
ization performances of these equalizers are then tested on a testing sample set of
100000 randomly generated samples for each of the AWGN noise levels ranging
between 4dB and 16dB. The generalization ability and the SER performances of the
different CVNN equalizers are studied and presented.
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Network structure: As mentioned in section 5.2.2, the equalizer input dimension is
chosen to be 3. Hence the complex-valued neural networks considered, have 3 input
neurons, and as the network is supposed to estimate the input symbol sn−τ , τ = 1,
the network was assigned one output neuron. For all the batch learning algorithms
considered, viz., SC-MLP, FC-MLP, CRBF and FC-RBF, 15 neurons were chosen
for the hidden layer. This was chosen and fixed based on the heuristic procedure
discussed in section 5.1 that is similar to the one presented in [6].

Performance measure: The equalization performance of each of the complex-
valued neural network algorithm is measured in terms of its symbol error rate per-
formance on the test dataset, i.e., its ability to isolate noisy symbol and inter-symbol
interference at different noise levels. Also, the various complex-valued neural net-
work algorithms were evaluated based on the training and testing RMS magnitude
error (eq. (5.1)) and average phase errors (eq. (5.2)) in approximating the QAM
equalization problem on the Cha and Kassam model [4].

To begin with, the complex-valued equalizers are divided into three categories
and their performances studied separately. First, the performances of the various
complex-valued MLP equalizers, viz., SC-MLP, FC-MLP and IC-MLP equalizers
are presented, followed by the various complex-valued RBF equalizers, viz., CRBF,
C-ELM (Gaussian), FC-RBF and Mc-FCRBF equalizers.

5.2.2.1 Complex-valued MLP Equalizers

First, we study the performance of the different complex-valued MLP based equal-
izers in the batch learning mode. In Table 5.3, the performances of different CMLP
based equalizers, viz., SC-MLP [7], FC-MLP [8] with “asinh” activation function
and IC-MLP (chapter 3) with “exp” activation function [9] are tabulated and com-
pared with respect to training and testing magnitude and phase errors, training time
and number of neurons required for training. The number of neurons were chosen
based on a heuristic procedure discussed in section 5.1, similar to the one presented
in [6] for real-valued networks. It is observed that for the QAM problem, the best
performances of the network for the three CMLP based algorithms are observed
when 15 hidden neurons were used for training. From the table, it can be observed
that though the training magnitude and phase error is lesser for FC-MLP equalizer,
the testing magnitude and phase errors are high. The testing magnitude error is at
least 60% lesser than that of FC-MLP equalizer and the testing phase error is nearly
one-third that of FC-MLP. Also, of the three algorithms considered for the complex-
valued MLP network, IC-MLP required lesser time for training (atleast 100 seconds
lesser than FC-MLP equalizer). Hence, it can be inferred that IC-MLP has better
generalization performance than the other MLP learning algorithms considered for
this QAM channel equalization problem. The SER plot of the various complex-
valued MLP equalizers are presented in Figure 5.2. It can be observed from the
figure that the symbol classification efficiency of IC-MLP equalizer is better than
that of FC-MLP equalizer, at least by 25% at 16dB SNR. Hence, it can be inferred
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Table 5.3 Performance comparison of CMLP equalizers for QAM equalization problem

Algorithm N∗
S Time h Training Error Testing Error

(sec) JMe φe (deg.) JMe φe (deg.)
SC-MLP 5000 4731.25 15 0.377 23.84 0.5502 31.56
FC-MLP 5000 3862.5 15 0.2153 6.47 0.7198 31.1
IC-MLP 1 5000 3734.4 15 0.228 11.37 0.2278 11.32

∗ Number of samples used in training
1 With “exp” activation function in the hidden layer.
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Fig. 5.2 Error Probability Curve for the Complex-valued MLP Based Equalizers

that IC-MLP algorithm proposed in chapter 2 performs better equalization of the
channel model considered, than the other CMLP equalizers considered.

5.2.2.2 Complex-valued RBF Equalizers

Next, the performance of the different complex-valued RBF equalizers, viz., CRBF
[10] with Gaussian activation function, C-ELM[5] with Gaussian activation function
and FC-RBF network [11] with “sech” activation function, in batch learning mode,
are evaluated for the non-minimal phase equalization of the Cha and Kassam model
[4].
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In Table 5.4, the QAM equalizer approximation performance of the different
complex-valued RBF learning algorithms are evaluated with respect to their training
and testing magnitude and phase errors, number of neurons required and the time
taken for approximation.

The number of neurons required for training CRBF network and the C-ELM
equalizers were chosen based on the heuristic procedure presented in Section 5.1
([6]). For FC-RBF network, the hidden neurons and the initial centers and weights
were chosen using the K-means clustering algorithm presented in section 3.4.1.
With proper initialization using the K-means clustering algorithm, the network re-
quired only 14 neurons to approximate the QAM equalizer for the Cha and Kassam
channel model.

It can be observed from the Table 5.4 that the training and testing magnitude
and phase error for FC-RBF network is the least of the three complex-valued RBF
algorithms considered. While the testing magnitude error of FC-RBF algorithm is
atleast 40% lesser than that of CRBF and C-ELM algorithms, the phase error is
nearly about one-third that of the other complex-valued RBF leaning algorithms.

Considering the effect of the self-regulatory system on FC-RBF network, it can
be seen that the improvement in phase generalization performance is about 16% and
the magnitude approximation performance has improved by nearly 50%. Besides
these, the computational time has reduced by nearly one-fourth. This is because, the
self-regulatory system chooses only those samples with significant information for
learning in each epoch.

Table 5.4 Performance comparison of CRBF equalizers for QAM equalization problem

Algorithm Time h Training Error Testing Error
(sec) JMe φe (deg.) JMe φe (deg.)

CRBF 8106.6 15 0.5630 35.1911 0.5972 39.86
C-ELM 0.3605 15 0.572 34.14 0.5772 35.11
FC-RBF 3840 15 0.4 31.17 0.41 14.69

Mc-FCRBF 1281.4 15 0.1428 9.57 0.1664 9.539
FCRN 0.998 14 0.3 22.1 0.35 12.62

∗ Number of samples used in training

In Fig. 5.3, the SER plot for all the complex-valued RBF equalizers are presented,
for noise levels ranging from 4dB to 16dB, in order of 1dB increase. It can be
observed from this figure also that FC-RBF network presented in chapter 4 classified
the QAM signal points efficiently (atleast an advantage of 20% in the SER at 16dB
noise level) than the other complex-valued RBF algorithms considered.
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Fig. 5.3 Error Probability Curve for the Complex-valued RBF Based Equalizers

5.2.3 Adaptive Beam-Forming Problem

The demand for wireless mobile communication services is growing at a higher
rate. However, the number of users for mobile and internet services is limited by
the bandwidth of the wireless frequency spectrum. Increasing the channel capac-
ity to accommodate many users without causing interference is a challenging task.
Adaptive antennas, also referred as smart antennas is rapidly emerging as a solution
to increase the system capacity within the limited spectrum to reduce interference
as well as to enhance the overall wireless communication system performance. The
beam pattern of an adaptive array can be adjusted to direct nulls in the direction of
interference and main beam pointing to the desired signal directions as the adaptive
array can differentiate the desired signals and unwanted co-channel interferences
based on their different locations. The two basic parts of design for an adaptive
antenna array are the direction of arrival estimation and the beam-forming. Adap-
tive beam-forming is a process in which the antenna array adapts its weights to the
changing interference environment such that the antenna will receive only the de-
sired signal and reject the interference and noise. It has found wide applications in
a large diverse areas suc as radar, sonar, seismology, radio astronomy, speech, and
biomedicine, besides wireless communications.

Over decades, many algorithms have been developed for this adaptive processes.
They consist of the basic Sample Matrix Inversion algorithm (SMI) [12], uncon-
strained as well as constrained Least Mean Square (LMS) algorithm [13], structured



5.2 Real-World Problems 97

gradient algorithm [14], recursive least squares method [12], constant modulus algo-
rithm [15], conjugate gradient method [16] and neural network approach [17]. The
beam-forming problem can be solved exactly for beam- pointing and null-steering
by the SMI method. However, in practical cases when dealing with a large array,
the matrix inversion is computationally expensive . Also, when the direction of ar-
rival is not known, this method is of little use [18]. Widrow etal [13] showed that
the variable weights of a signal processor can be automatically adjusted by a simple
adaptive technique based on the least mean squares algorithm. But, the least mean
squares algorithm uses a noisy estimate of the required gradient to adaptively esti-
mate the weights of an optimal antenna array. Hence the estimation of weights is not
accurate. In [14], a structured gradient algorithm, which used a structured estimate
of the array co-relation matrix to estimate the gradient was suggested. However,
it was later shown in [19] that the the covariance of the gradient estimated by the
structured method is less sensitive to the look direction signal than that estimated
by the standard method. A recursive least mean square algorithm and an improved
LMS algorithm was developed in [20] and it was shown that while the recursive
LMS algorithm is applicable for an array of arbitrary geometry, the improved LMS
algorithm is useful for a linear array of equi-spaced elements.

Recently, neural networks have been widely employed for adaptive beam-forming
problem and the focus of these works has been in the selection of an appropriate
neural network along with a proper activation functions for handling the complex
signals.

In [17], [21], a three-layer radial basis function network is used in the computa-
tion of the optimum weights of the fast tracking system which is used for constantly
tracking the users. The radiation pattern of the antenna is then adapted to direct mul-
tiple narrow beams to the desired users and null the interfering sources. In [22], a
comprehensive and detailed overview of the beam-forming problem along with dif-
ferent adaptive algorithms to adjust the required weights on the antennas have been
presented. A complete overview of the neural network methods used in solving the
adaptive beam-forming problem is given in [23]. In all these neural network meth-
ods, real-valued networks have been used, while, as will be shown in section 5.2.3.1,
the beam-former has to deal inherently with complex-valued signals. Moreover, it
has been shown in literature that fully complex-valued neural networks preserve the
magnitude and phase information of complex-valued signals [8, 8, 24, 10, 25] and
are hence, very efficient in approximating the complex-valued signals, compared to
split complex-valued networks. Fully complex-valued multi-layer perceptron net-
works have been employed for adaptive beam-forming in [18], where it is shown
that the beam-former based on FC-MLP steer the nulls better than the complex-
valued least mean square method. In [26], the complex-valued radial basis function
network is used for nonlinear beam-forming in multiple antenna aided communica-
tion systems that employ complex-valued quadrature phase shift keying modulation
scheme.
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5.2.3.1 The Beam-Forming Problem Formulation

Consider a coherent wireless communication system with M single-transmit-antenna
users of the same carrier frequency ω and a receiver equipped with a linear antenna
array consisting of N uniformly spaced elements. Fig. 5.4 gives the typical structure
of a uniform linear array of sensor elements. The inter-element spacing, d, is equal
to half the wavelength of the signal received in the senor array. Let θ be the angle
of incidence that an incoming signal makes with the receiver array broadside.

2

n

1
θ

θ

Δ

d

Fig. 5.4 The Sensor Array

The signal travels an additional distance of Δ between successive elements, i.e.,
for example, if the signal impinges on element 1, travelling a distance of D, it travels
a distance of D+Δ to reach element 2. It can easily derived from the figure and with
basic trigonometric identities that

Δ = d sin θ (5.11)

Hence, the expression for time delay between two successive elements can be de-
rived as
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δ1 =
d sin θ

f λ

and the time delay between the reference element and the nth element can be derived
as

δn =
n

f λ
d sin θ (5.12)

Assuming the transmitted signal can be represented by a complex-valued sinusoid,
and modulated at a frequency ω , the signal impinging at the array element n can be
expressed as

zn(t) = e− j ω (t − δn) (5.13)

Demodulating this signal will give

zn = e j ω δn (5.14)

Replacing for δn from eq. (5.12) and simplifying, the signal received at the nth ele-
ment of the receiver antenna array is given by eq. (5.15),

zn = e
j 2 π n

λ d sinθ (5.15)

Therefore, signals induced at the n receiver array elements due to the m sources will
be

z = [z0 z1 z2 . . . zn]
T (5.16)

Considering that a noise of ηn is added to signals impinging on each array element,

z = [z0 +η0 z1 +η1 z2 +η2 . . . zn +ηn]
T (5.17)

is the input to the beam-former. In eqs. (5.16) and (5.17), the superscript T repre-
sents the transpose of the vector.

Let wk is the weight of the kth sensor, wb f be the array of weights such that,
wb f = [w1w2 . . . wk]

T and wb f be the gain of the beam-former array for the signal
from source m.

g =
n

∑
k=1

xk wk = zT wb f (5.18)

wk can now be computed by setting g = 0 for null-steering and g = 1 for beam
pointing. The optimum weight vector wb f would, now, be:

wb f = z−1 g (5.19)

This analytical method of computing the optimum weight is known as the matrix
method [12]. The matrix method is the exact method to estimate the weights of the
beam-former, hence the beams and nulls can be steered in the desired directions.
However, the computational complexity [27] of this method in dealing with large
arrays, calls for a dynamic adaptive method. Therefore neural networks, being more
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adaptive [23], are employed to estimate the weights wb f . The objective is to train
the neural network, such that the weights wb f of eq. (5.20) are estimated.

In the adaptive method, there is a reference signal to be learnt by the adaptive
processor, through adjustment of the weighting factor wb f . Here, y is the signal
transmitted, and z is the signal received at the sensor array, given by eq. (5.17).

y = wH
b f z (5.20)

It should be noted that the signals involved in an adaptive beam-forming problem
are complex-valued. Hence, the fully complex-valued neural networks are a better
choice to ensure accurate magnitude and phase approximation. In this section, we
study the beam-forming performances of the complex-valued learning algorithms
considered in this study. The performances of these algorithms are evaluated on the
5-antenna array configuration [18].

Array Configuration: A uniform linear array of 5 sensors is considered [18]. The
array is trained to look at the desired signals coming from −30◦ and +30◦, and to
suppress interferences from −15◦, 0◦ and +15◦ directions.

• Desired signal angles: −30◦ and +30◦
• Angles of nulls: −15◦,0◦ and + 15◦

Dataset: The input to the neural network is given by eq. (5.17), with an additive
Gaussian noise of 50dB SNR. Training dataset consists of 250 randomly chosen
samples (50 for each signal/interference angles). The results were then compared
with the beam pattern of the optimum matrix method.

Initial beampattern and the beampattern by matrix method: Fig 5.5(a) shows
the beampattern before beam-forming and Fig. 5.5(b) gives the beam pattern us-
ing matrix method [12] for {−30◦, +30◦} beams-pointing and {−15◦, 0◦, +15◦}
nulls-steering. From the figure, it can be observed that signal power was the least at
the nulls at {−15◦, 0◦, +15◦}, thus the matrix method [12] provides excellent null
suppression and beam pointing characteristics.

5.2.3.2 Complex-valued MLP Beam-Formers

In this section, we present the performance of the complex-valued MLP networks
and learning algorithms, viz., SC-MLP, FC-MLP and IC-MLP in performing beam-
forming of the adaptive array configuration discussed in section 5.2.3.1. In Table 5.5,
the signal power of the different complex-valued MLP beam-formers, at the various
signal angles (−30◦ and +30◦) and nulls (−15◦, 0◦ and +15◦) are presented. In
all these algorithms, the network structure was fixed at 5 hidden neurons, before
training. This was based on the heuristic procedure that is presented in Section 5.1
[6].

It can be observed from the table that the signal power of FC-MLP beam-former
was the lowest at the nulls. In other words, FC-MLP beam-former did better sup-
pression of nulls, compared to SC-MLP and IC-MLP beam-formers. However, the
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(a) Initial Beampattern: Beampattern of
the Five Sensor Array
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(b) Beampattern using the Matrix
Method

Fig. 5.5 Initial Beampattern and Beampattern Using Matrix Method

signal power at nulls of IC-MLP was only about 1dB greater than that of FC-MLP
beam-former. But, the signal power of the SC-MLP beam-former was at least 3dB
greater than that of FC-MLP beam-former. Further, considering the signal power at
the desired signal angles (i.e., the beampointing ability of the MLP beam-formers),
the performance of IC-MLP beam-former is the best, though the SC-MLP and FC-
MLP beam-formers are short of IC-MLP beam-former signal power only by 0.1dB.
Hence, it can be inferred that both FC-MLP and IC-MLP are better choices for
beam-formers, among the complex-valued MLP beam-formers.

In Fig. 5.6, the beam-forming performances of the various MLP based beam-
formers are presented. It can be observed from the fig. that all the three MLP based
beam-formers performed better suppression of nulls and direction of beams at de-
sired angles. The signal power at other directions/angles are very similar to that of
the signal power of the matrix method beam-former, as seen from Fig. 5.5(b). Thus,



102 5 Function Approximation Problems

Table 5.5 Performance comparison of CMLP beam-formers

Direction of arrival Signal Power(dB)
SC-MLP FC-MLP IC-MLP MM∗

Beam-1:-30◦ -13.98 -13.97 -13.87 -13.98
Null-1:-15◦ -53.99 -57.2 -55.4 -57.02
Null-2:0◦ -53.99 -57.34 -56.99 -57
Null-3:15◦ -53.99 -57.33 -56 -57.02

Beam-2:30◦ -13.98 -13.98 -13.86 -13.98

∗ Matrix Method

it can be deduced that all the complex-valued MLP beam-formers perform good
beampointing and null suppression, though FC-MLP and IC-MLP beam-formers
are better than SC-MLP beam-formers.

5.2.3.3 Complex-valued RBF Beam-Formers

In this section, we present the performance of various complex-valued RBF net-
works discussed in chapter 4, viz., CRBF with Gaussian activation function, C-
ELM with Gaussian activation function and FC-RBF with the fully complex-
valued “sech” activation function. In Table 5.6, the signal power/gain at different
signal angles and nulls of the complex-valued RBF based beam-formers are tab-
ulated. The signal power of the various CRBF beam-formers are also compared
against the optimum matrix method beam-former. For the three networks shown,
the number of hidden neurons was chosen to be 5, based on the heuristic procedure
presented in Section 5.1 [6].

It can be observed from the table that the signal power of CRBF beam-former at
the nulls is too large. Though the signal power of C-ELM beam-former at the nulls
is quite less, it is still greater than -50dB. However, FC-RBF based beam-former
outperforms both the CEBF and C-ELM (RBF) beam-former in the isolation of
nulls and directing the beams in the desired direction. Signal power at the nulls are
lesser than those of CRBF and C-ELM (RBF) based beam-formers. Although at
a signal angle of +30◦, the C-ELM performs better beam-pointing than FC-RBF
beam-former, FC-RBF falls short of C-ELM only by 0.3dB. However at a signal
angle of −30◦, the signal power of FC-RBF beam-former is highest.

Comparing the performances of the complex-valued RBF based beam-formers,
Mc-FCRBF and FCRN beam-formers perform excellent null suppression. Although
the signal power at the desired angles of −30◦ and +30◦ of the Mc-FCRBF and
FCRN beam-formers are nearly 3dB lesser than that of the matrix method based
beam-former, its signal power at the nulls are lesser than the matrix method based
beam-former, which is highly desirable. Hence, it can be inferred that, of the
complex-valued RBF learning algorithms available in literature, Mc-FCRBF and
FCRN are good in their beam-forming performance.
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(a) Beampattern using SC-MLP Beam-
former
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(b) Beampattern using FC-MLP Beam-
former
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(c) Beampattern using IC-MLP Beam-
former

Fig. 5.6 Beampattern Using Complex-valued MLP Based Beam-formers
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Table 5.6 Performance comparison of CRBF beam-formers

Direction of arrival Signal Power(dB)
CRBF C-ELM FC-RBF Mc-FCRBF FCRN MM∗

Beam-1:-30◦ -17.94 -18.1 -16.99 -16.98 -14.27 -13.98
Null-1:-15◦ -27.53 -48.29 -58.45 -60.54 -59.68 -57.02
Null-2:0◦ -27 -41.6 -57.23 -59.6 -60.4 -57

Null-3:15◦ -28.33 -47.5 -56.32 -59.6 -59.68 -57.02
Beam-2:30◦ -17.92 -16.7 -17.00 -16.9 -14.1 -13.98

∗ Matrix Method

In Fig. 5.7, the beam-forming of various complex-valued RBF beam-formers are
presented.

From the figure, it can be observed that the signal power of the CRBF beam-
former at the signal angles and nulls differ only by 10dB. Hence, the CRBF beam-
former is not efficient in suppressing the nulls and in directing the beams to the
desired direction. Besides, at other signal angles, too, the signal power of the CRBF
beam-former is not similar to that of the beampattern generated by the optimum
matrix method. Hence, it can be inferred that CRBF beam-formers are not a good
choice to suppress nulls and direct beams in desired directions in a beam-forming
application. From the fig. 5.7, it can also be observed that C-ELM beam-former
provides better isolation of nulls. The signal power at the nulls and desired signals
are very distinct. However, the signal power at nulls are greater than -50dB, which
is atleast 7dB greater than the power of the matrix method beam-former.

From Fig. 5.7, it can be observed that the beampattern of FC-RBF, FCRN and
Mc-FCRBF beam-formers are very similar to the optimum matrix method beam-
former. The signal power at nulls are very similar to that of the optimum matrix
method beam-former, while at the desired signal angles, the signal power is 3dB
lesser than that of the matrix method beam-former. However, it provides better
null suppression and beampointing, compared to the CRBF and C-ELM beam-
formers. Hence, it can be inferred that the FC-RBF beam-former performs better
than the other complex-valued RBF beam-formers in the beam-forming application.
Similarly, comparing the performance of FC-RBF beam-former to that of the Mc-
FCRBF beam-former, the Mc-FCRBF beam-former has better null suppression per-
formance, which is even better than that of the matrix method based beam-former,
although, its signal power at the signal angles are a little less than that of the matrix
method based beam-former.
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(a) Beampattern using CRBF Beam-
former
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(b) Beampattern using C-ELM (RBF)
Beam-former
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(c) Beampattern using FC-RBF Beam-
former
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(d) Beampattern using Mc-FCRBF
Beam-former

Fig. 5.7 Beampattern Using Complex-valued RBF Based Beam-formers

5.3 Summary

In this chapter, the function approximation performances of FC-MLP, IC-MLP, FC-
RBF, Mc-FCRBF and FCRN algorithms have been studied in comaprison with
CRBF and C-ELM learning algorithms on two synthetic complex-valued function
approximation problems and two practical problems consisting of a QAM channel
equalization problem and an adaptive beam-forming problem. Performance results
show that the phase approximation ability of IC-MLP is better than that of FC-MLP
by at least 60% with better magnitude approximation. Similarly, the approximation
ability of FC-RBF is better than C-RBF and C-ELM by at least 25%, which is fur-
ther improved by the meta-cognitive component of Mc-FCRBF. It is also observed
that FCRN performs better approximation of both the mangitude and phase of the
complex-valued signals with reduced computational effort.
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Chapter 6
Circular Complex-valued Extreme Learning
Machine Classifier

Artificial Neural Networks (ANN) were originally inspired by the central nervous
system and its components that constitute the biological neural network, as investi-
gated by the Neuroscience community. Ever since then, several tasks of human ac-
tivity have been emulated by the ANNs. Classification is one such decision making
task that occurs frequently in human activity and one that has been emulated in the
artificial neural network framework. A classification task in the ANN framework is
defined as assigning an object to a predefined group or class based on a set of object
attributes. As the ANNs are capable of constructing complex decision boundaries
without any assumption on the statistics on the input data, they have been used to
perform classification tasks in a large range of applications spanning from business
to medical diagnosis to speech recognition. Over the past twenty years, supervised
learning has become a standard tool of choice to analyze the data in many fields,
particularly in classfication problems. The objective of the classification problem
is to approximate the decision surface described by the training data and predict
the class label of the unknown data as accurately as possible. Recently, it has been
shown by Nitta that the complex-valued neural networks have better computational
power than real-valued networks [1] and they outperform real-valued networks in
their ability to approximate the decision boundaries to solve classification problems.
Moreover, it has been shown by Nitta [2, 3] that a fully complex-valued neural net-
work with a split type of activation function has two decision boundaries that are
orthogonal to each other. These decision boundaries help the complex-valued neural
network to perform classification tasks more efficiently than real-valued networks.
These findings have inspired researchers to develop efficient classifiers in the Com-
plex domain. The ‘Multi Layered neural network based on Multi Valued Neurons
(MLMVN)’ [4] and the single-layered network with phase encoded transformation,
referred to here as, ‘Phase Encoded Complex Valued Neural Network (PE-CVNN)’
[5] are the two such complex-valued classifiers available in the literature. In this
chapter, we briefly discuss these classifiers and show that the complex-valued learn-
ing algorithms described in the previous chapters can be modified to solve real-
valued classification problems. In addition, we present an efficient and fast learning

S. Suresh et al.: Supervised Learning with Complex-valued Neural Networks, SCI 421, pp. 109–123.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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complex-valued classifier, referred to as ‘Circular Complex-valued Extreme Learn-
ing Machine (CC-ELM)’ to solve real-valued classification problems. CC-ELM is
a single hidden layer network with a non-linear input and hidden layer and a linear
output layer. A circular transformation with a translational/rotational bias that per-
forms an unique one-to-one transformation of the real-valued feature to the Complex
plane is used as an activation function for the neurons in the input layer. Neurons
in the hidden layer employ a fully complex-valued Gaussian-like (‘sech’) activation
function. The input parameters of the CC-ELM are chosen randomly and the output
weights are computed analytically. This chapter also presents an analytical proof
to show that the decision boundaries of a single complex-valued neuron at the hid-
den and output layer of the CC-ELM consists of two hyper-surfaces that intersect
orthogonally.

6.1 Complex-valued Classifiers in the Literature

In this section, we review the existing complex-valued classifiers. First, we de-
fine the real-valued classification problem in the Complex domain and describe
the learning algorithms of the two complex-valued classifiers, viz., the Multi-Layer
neural network based on Multi-Valued Neurons (MLMVN) and the Phase Encoded
Complex-valued Neural Network (PE-CVNN).

6.1.1 Description of a Real-valued Classification Problem Done
in the Complex Domain

Suppose we have N observations {(x1,c1) , · · · ,(xt ,ct) , · · · ,(xN ,cN)}, where xt ∈
ℜm be the m-dimensional input features of t-th observation, ct ∈ [1,2, · · · ,n] are its
class labels, and n is the number of distinct classes. The observation data (xt ,ct) are
random in nature and the observation xt provides some useful information on the
probability distribution over the observation data to predict the corresponding class
label (ct ) with a certain accuracy.

To solve the real-valued classification problems using complex-valued neural net-
works, the coded class label (yt = [yt

1 · · ·yt
k · · ·yt

n]
T ) is defined in the Complex do-

main as:

yt
k =

{
1+ i1 if ct = k
−1− i1 otherwise

k = 1,2, · · · ,n (6.1)

The real-valued classification problem using complex-valued neural networks can
be viewed as finding the decision function F that maps the real-valued input fea-
tures to the complex-valued coded class labels, i.e., F : ℜm → Cn. For notational
convenience, the superscript t will be dropped in the rest of the chapter.
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6.1.2 Multi-Layer Neural Network Based on Multi-Valued
Neurons (MLMVN)

The complex-valued MLMVN using multi-valued neurons was developed in [4].
A single multi-valued neuron maps m inputs and a single output. The mapping is
described by a multi-valued function of m variables ( fm(x1, · · · ,xm)) with m + 1
complex-valued weights as the parameters, and is given by

fm(x1,x2, · · · ,xm) = P(v0 + v1x1 + · · ·+ vmxm) (6.2)

where P(.) is the activation function of the neuron, given by

P(z) = exp(i(arg(z))) =
z
|z| (6.3)

where z = v0 + v1x1 + · · ·+ vmxm is the weighted sum, and |z| is the modulo of the
complex number z. The function defined in Eq. (6.3) maps the Complex plane into
the whole unit circle and is continuous. It must also be noted that the function is not
differentiable as a function of a complex-valued variable.

However, as the learning in the MLMVN is reduced to the movement along the
unit circle, the derivative of the activation function is not required because it is
impossible to move in an incorrect direction. Any direction of movement along the
circle will lead to the target and the shortest way of this movement is determined by
the error which is the difference between the desired output and the actual output.
The weight update rule for a multi-valued neuron used in an MLMVN is given by:

Vm+1 = Vm +
ηv

m+ 1
δ̃X (6.4)

where δ̃ =
1
|z|

(
y− z

|z|
)

(6.5)

From Eq. (6.4), it can be observed that using this approach, the function is a smooth
function of the weights. Moreover, a small change in the inputs or weights does not
result in a significant change of z. However, as the input features are mapped on
to a full unit circle, this mapping results in the same complex-valued features for
real-valued features with a value of both 0 and 1. Hence, this transformation is not
unique. In addition, the multi-valued neurons map the complex-valued inputs to C
discrete outputs on the unit circle. Thus, as the number of classes (C) increases, the
number of sectors with the unit circle increases. As a result, the region of each sec-
tor (representing each class) within the unit circle decreases, increasing the chances
of misclassification. Furthermore, the output neurons of the MLMVN have multi-
ple discrete values and hence, the MLMVN classifier lacks the orthogonal decision
boundaries that are the main characteristics of complex-valued neural classifiers.

As the transformation used in the MLMVN does not perform an one-to-one map-
ping of the real-valued features onto the Complex plane, Amin et. al. [5] proposed
a phase encoded transformation to convert the real-valued features to the complex
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domain. They also developed a single layered complex-valued classifier using this
phase encoded transformation. We describe the transformation and the learning al-
gorithm of the network developed in the next section.

6.1.3 Phase Encoded Complex-Valued Neural Network
(PE-CVNN)

In PE-CVNN [5], the following phase encoded transformation is used to transform
the real-valued input features to the complex domain:

Let x j ∈ [a,b],wherea,b ∈ ℜ, then φ =
π(x j − a)

b− a
(6.6)

and z j = eiφ = cos(φ)+ isinφ (6.7)

It can be observed from Eq. (6.6) that the the transformation linearly maps the input
features from x ∈ [a,b]→ φ ∈ [0,π ].

The weighted inputs at the output layer of the PE-CVNN are given by:

zok = zR
ok + izI

ok =
m

∑
j=1

vk jz j +θk (6.8)

and the output of the network is

ŷk = fC→ℜ (6.9)

and fC→ℜ =
√
( fR(zR

ok))
2 +( fR(zI

ok))
2 (6.10)

OR fC→ℜ = ( fR(z
R
ok)− fR(z

R
ok))

2

where, fR(z
R
ok) = 1/1+ exp(−(zR

ok)) and

f ′R(z
R
ok) = fR(z

R
ok)(1− fR(z

R
ok)) (6.11)

The residual error of the network output is given as:

ek = yk − ŷk (6.12)

The PE-CVNN uses a gradient descent based learning rule with the mean squared
error criterion to update the weights of the network. The weight update rule is given
by:

Δvk j = z jΔθk

whereΔθk = Δθ R
k + iΔθ I

k (6.13)

If the activation function used in the PE-CVNN is given by Eq. (6.11), then Δθ R
k is

Δθ R
k = 2ηek

(
fR(z

R
ok)− fR(z

I
ok)

)
f ′R(z

R
ok) (6.14)

and Δθ I
k = 2ηek

(
fR(z

I
ok)− fR(z

R
ok)

)
f ′R(z

I
ok) (6.15)
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The transformation used in the PE-CVNN considers only the first two quadrants of
the Complex plane and does not fully exploit the advantages of the orthogonal de-
cision boundaries offered by the complex-valued neural networks. In addition, the
activation functions used in the PE-CVNN are similar to those used in the split-type
complex-valued neural networks, as shown in Eqs. (6.10) and (6.11). Also, the gra-
dients used in the PE-CVNN are not fully complex-valued [6] thereby resulting in a
significant loss of complex-valued information. PE-CVNN uses a gradient-descent
based batch learning algorithm that requires a significant computational effort to
approximate the decision surface.

It is noteworthy that the transformations used in MLMVN and PE-CVNN can be
used to transform the real-valued input features to the Complex domain and any of
the complex-valued learning algorithms discussed in Chapters 2-4 can be used to
solve real-valued classification problems using the transformed features. Two fac-
tors play a vital role in deciding the classification ability of the complex-valued
neural networks:

1. The transformation used to convert the real-valued input features to the Complex
domain

2. The activation function and learning algorithm used in the complex-valued neural
network.

In the next section, we discuss the modifications required to enhance the decision
making ability of FC-MLP, FC-RBF and Mc-FCRBF such that these algorithms can
be used to solve real-valued classification problems.

6.1.4 Modifications in FC-MLP, FC-RBF and Mc-FCRBF
Learning Algorithm to Solve Real-valued Classification
Problems

The learning algorithm of FC-MLP, FC-RBF and Mc-FCRBF described in Chapters
2 and 3 have been used to solve complex-valued function approximation problems
in Chapter 5. Although they can also be used to approximate the decision surface
to solve real-valued classification problems, we modify these algorithms to improve
their classification performance. In this respect, the mean squared error defined in
Eq. (3.14) is replaced with the hinge loss function and the criteria for parameter
update in Mc-FCRBF is modified to incorporate a classification measure also.

Hinge loss error function: Recently, it was shown in [7] and [8] that in real-valued
classifiers, the hinge loss function helps the classifier to estimate the posterior prob-
ability more accurately than the mean squared error function. Hence, while using
FC-MLP, FC-RBF and Mc-FCRBF to solve real-valued classification problems, we
use the hinge loss error function defined as:

et
l =

{
0 if (ytR

l )(ŷtR

l )> 0
yt

l − ŷt
l otherwise

l = 1,2, · · ·n (6.16)

where the superscript R refers to the real-part of the Complex signal.
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Criteria for parameter update: In addition to the hinge loss error function, we
modify the parameter update criteria of Mc-FCRBF to enhance its decision making
ability. While solving real-valued classification problems in the Complex domain,
it has to be ensured that the predicted class label of Mc-FCRBF (ĉt) is the same as
that of the target class label (ct ). Therefore, we have modified the parameter update
conditions to accommodate this class label information also. Accordingly, the sam-
ple learning condition of Mc-FCRBF (Eq. (3.38)) to solve real-valued classification
problems is:

If ĉt �= ct OR
(

Me
t ≥ EM

l AND φ e
t ≥ Eφ

l

)
(6.17)

Then, update the network parameters according to Eqs. (3.31), (3.32), and (3.33).
Here, ĉt is the predicted class label for the sample t defined as:

ĉt = max
l=1,2,··· ,C

real
(
ŷt

l

)
(6.18)

6.2 Circular Complex-valued Extreme Learning Machine
Classifier

In this section, a fast learning fully-complex valued classifier called ‘Circular
Complex-valued Extreme Learning Machine’ is developed to solve real-valued clas-
sification tasks.

6.2.1 Architecture of the Classifier

The circular complex-valued extreme learning machine classifier is a single hid-
den layer network with m input neurons, h hidden neurons and n output neurons,
as shown in Fig. 6.1. The neurons in the input layer employ a non-linear circular
transformation as the activation function, as shown in the inset of Fig. 6.1.

The circular transformation that transforms the real-valued input features into the
Complex domain (ℜ →C) is given by

zl = sin(axl + ibxl +αl) , l = 1,2, · · · ,m (6.19)

where a, b, αl ∈ ℜ+ are non-zero constants and xl is the input feature normalized
in [0,1]. The scaling factors a, and b, and the translational, rotational bias term αl

are randomly chosen such that 0 < a,b ≤ 1, and 0 < αl < 2π . The translational,
rotational bias term αl shifts the origin of the resultant complex-valued feature (zl)
and rotates it to any quadrant of the Complex domain.

The effect of the circular transformation for different values of the translational,
rotational bias term (αl) is shown in Fig. 6.2. It can be observed from this figure that
the randomly chosen bias terms perform the translation/rotation of the feature vector
in different quadrants of the complex-valued feature space. Therefore, the bias term
(αl , l = 1, · · · , m) associated with each input feature ensures that all the input
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Fig. 6.1 The architecture of a circular complex-valued extreme learning machine. The ex-
panded box (inset figure) shows the actual circular transformation function which maps real-
valued input feature to complex-valued feature.

features are not mapped onto the same quadrant of the Complex plane. Thus, as the
input features are well distributed in the Complex plane, the CC-ELM exploits the
orthogonal decision boundaries of the fully complex-valued neural networks more
efficiently.

The essential properties of a fully complex-valued activation function given in
[6] states that for a complex-valued non-linear function to be used as an activation
function, the function has to be analytic and bounded almost everywhere. As the
circular transformation is used as an activation function in the input layer, we need
to ensure that the transformation satisfies the essential properties of a fully complex-
valued activation function. The ‘sine’ activation function is an analytic function with
an essential singularity at ∞. The net input to the ‘sine’ function

axl + ibxl +αl = ∞ if axl +αl = ∞ or bxl = ∞ (6.20)

Since the transformation constants (a,b) and the translational/rotational bias (αl)
are restricted between (0,1] and (0,2π) respectively, the transformation becomes
unbounded only when the input feature is ∞. Since, the real-valued features are
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Fig. 6.2 Significance of translational/rotational bias term (α) in the circular transformation

normalized between [0,1], the circular transformation is analytic and bounded al-
most everywhere. Hence, the circular transformation used in the input layer of the
CC-ELM is a valid activation function.

The neurons in the hidden layer of the CC-ELM employ a fully-complex val-
ued ‘sech’ activation function (Gaussian like) as developed in [9]. The hidden layer
response (z j

h) of the CC-ELM is given by

z j
h = sech

[
σT

j

(
z− cj

)]
, j = 1,2, · · · ,h (6.21)

where σj ∈Cm is the complex-valued scaling factor of the j-th hidden neuron, c j ∈
Cm is the complex-valued center of the j-th hidden neuron and the superscript T
represents the matrix transpose operator.

The neurons in the output layer employ a linear activation function. The output
(ŷ = [ŷ1 · · · ŷn · · · ŷn]

T ) of the CC-ELM network with h hidden neurons is

ŷn =
h

∑
j=1

vk jz
j
h, k = 1,2, · · · ,n (6.22)

where wk j is the output weight connecting the j-th hidden neuron and the k-th output
neuron.

The estimated class label (ĉ) is then obtained using

ĉ = arg max
n=1,2,··· ,n

real-part of ŷk (6.23)
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6.2.2 Learning Algorithm of CC-ELM

The output of CC-ELM given in Eq. (8.17) can be written in matrix form as,

Ŷ = VH (6.24)

where V is the matrix of all output weights connecting hidden and output neurons.
The H is the response of hidden neurons for all training samples and is given as

H (V,U,Z) =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

sech
(
σσσ T

1 ‖z1 − c1‖
) · · · sech

(
σσσT

1 ‖zN − c1‖
)

...
...

...

sech
(

σσσT
j ‖z1 − c j‖

)
· · · sech

(
σσσT

j ‖zN − c j‖
)

...
...

...
sech

(
σσσ T

h ‖z1 − ch‖
) · · · sech

(
σσσT

h ‖zN − ch‖
)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

(6.25)

Note that H is h×N hidden layer output matrix. The j-th row of the H matrix
represents the hidden neuron response (z j

h) with respect to the inputs z1, · · · , zN .
In CC-ELM, the transformation constants (a, b), the translational/rotation bias

term (ααα), center (C) and scaling factor (σσσ) are chosen randomly and the output
weights V are estimated by the least squares method according to:

V = YH† (6.26)

where H† is the generalized Moore-Penrose pseudo-inverse [10] of the hidden layer
output matrix and Y is the complex-valued coded class label.

In short, the CC-ELM algorithm can be summarized as:

• For a given training set (X , Y ), select the appropriate number of hidden neurons
h.

• Randomly select 0 < a, b, 0 < αl < 2π , the neuron scaling factor (σσσ) and the
neuron centers (C).

• Then calculate the output weights V analytically: V = YH†.

Performance of the CC-ELM is influenced by the selection of appropriate number
of hidden neurons. Recently, an incremental constructive method to determine the
appropriate number of hidden neurons for the C-ELM has been presented in [11]. In
this paper, we use a simple neuron incremental-decremental strategy, similar to the
one presented in [12] for real-valued networks. The following steps are followed to
select the appropriate number of hidden neurons for the CC-ELM network:

Step 1. Select a network with a minimum configuration (h = m+ n).
Step 2. Select the input weights randomly and compute the output weights analyti-

cally.
Step 3. Use leave-one cross-validation to determine training/validation accuracy

from the training data.
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Step 4. Increase h until the validation accuracy improves and return to Step 2.
Step 5. If the validation accuracy decreases as h increases, then stop.

From this section, it can be observed that the two important properties of the CC-
ELM classifier are that:

• The CC-ELM classifier uses a unique circular transformation that makes an one-
to-one mapping while transforming the real-valued input features to the Complex
domain (ℜ →C).

• The CC-ELM classifier requires lesser computational effort than other complex-
valued classifiers as the weights are computed analytically.

6.2.3 Orthogonal Decision Boundaries in CC-ELM

In this section, we show that the three layered CC-ELM with the fully complex-
valued sech activation function at the hidden layer exhibits orthogonal decision
boundaries. Since CC-ELM maps the complex-valued input features to the higher
dimensional Complex plane in the hidden layer randomly, we prove the existence
of orthogonal decision boundaries in the output neuron with respect to the hidden
layer output. Next, we also show that the decision boundaries formed by the real and
imaginary parts of the hidden layer response with respect to the input are orthogonal
to each other.

6.2.4 Case (i): Orthogonality of Decision Boundaries in the
Output Layer

The responses of the kth output neuron can be written as:

ŷk =
h

∑
j=1

vk jz
j
h; k = 1, · · · ,n (6.27)

=
h

∑
j=1

(
vR

k j + ivI
k j

)(
z jR

h + iz jI

h

)
(6.28)

where the superscripts R and I represents the real and imaginary parts of the
complex-valued signals, respectively. Therefore,

ŷk = ŷR
k + iŷI

k =
h

∑
j=1

(
vR

k jz
jR

h − vI
k jz

jI

h

)
+ i

(
vR

k jz
jI

h + vI
k jz

jR

h

)
(6.29)
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From the above equation, we can see that the real-part and the imaginary-part of the
kth output neuron forms two decision boundaries with respect to the hidden layer
output (zh). The two decision boundaries are

ŷR
k =

h

∑
j=1

(
vR

k jz
jR

h − vI
k jz

jI

h

)
→ SR (6.30)

and ŷI
k =

h

∑
j=1

(
vR

k jz
jI

h + vI
n jz

jR

h

)
→ SI (6.31)

The real-part decision boundary SR classifies the hidden layer output zh ∈ Ch into
two decision regions

{
zh ∈ C

h, | ŷR
k ≥ SR

}
and

{
zh ∈ C

h, | ŷR
k < SR

}
(6.32)

Similarly, the imaginary-part decision boundary SI classifies the hidden layer output
zh ∈ C

h into two decision regions
{

zh ∈ C
h, | ŷI

k ≥ SI
}

and
{

zh ∈ C
h, | ŷI

k < SI
}

(6.33)

The normal vector (QR(hR,hI) to the real-part of the decision boundary (SR) and the
normal vector (QI(hR,hI) to the imaginary-part of the decision boundary (SI) are:

QR(zR
h ,z

I
h) =

(
∂ ŷR

k

∂ z1R

h

· · · ∂ ŷR
k

∂ zhR

h

∂ ŷR
k

∂ z1I

h

· · · ∂ ŷR
k

∂ zhI

h

)

=
(
vR

k1 · · · vR
kh − vI

k1 · · · − vI
kh

)
(6.34)

QI(zR
h ,z

I
h) =

(
∂ ŷI

k

∂ z1R

h

· · · ∂ ŷI
k

∂ zhR

h

∂ ŷI
k

∂ z1I

h

· · · ∂ ŷI
k

∂ zhI

h

)

=
(
vI

k1 · · · vI
kh vR

k1 · · · vR
kh

)
(6.35)

The decision boundaries (SR and SI) of the kth output neuron are orthogonal i f f the
dot product of their normal vectors is zero.

QR(zR
h ,z

I
h).Q

I(zR
h ,z

I
h) =

(
cR

k1.v
I
k1 + · · ·+ vR

kh.v
I
kh

−vI
k1.v

R
k1 + · · ·− vI

kh.v
R
kh

)
(6.36)

= 0. (6.37)

From the above results, we can say that any output neuron in the CC-ELM has two
decision boundaries with respect to the hidden neuron output and they are orthogo-
nal to each other.
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6.2.5 Case (ii): Orthogonality of Decision Boundaries in the
Hidden Layer

The response of the jth neuron in the hidden layer can be written as

zh j = zR
h j
+ izI

h j
= sech(O j),

where O j = σσσT
j (z− c j) , j = 1,2, · · · ,h (6.38)

O j = OR
j + iOI

j =
(
σσσR

j + iσσσ I
j

)T [(
zR − cR

j

)
+ i

(
zI − cI

j

)]
(6.39)

=
[
σσσR

j

(
zR − cR

j

)−σσσ I
j

(
zI − cI

j

)]
+ i

[
σσσR

j

(
zI − cI

j

)
+σσσ I

j

(
zR − cR

j

)]

(6.40)

Using trigonometric and hyperbolic trigonometric definitions, the sech function can
be written as:

sech(OR
j + iOI

j) =
2
(

cos(OI
j cosh(OR

j )− isin(OI
j)sinh(OR

j )
)

cos(2OI
j)+ cosh(2OI

j)
(6.41)

The two decision boundaries formed by the real and imaginary parts of the jth hid-
den neuron response with respect to the inputs are:

zR
h j

=
2
(

cos(OI
j cosh(OR

j )
)

cos(2OI
j)+ cosh(2OI

j)
→ SR (6.42)

zI
h j

=
2
(
−isin(OI

j)sinh(OR
j )
)

cos(2OI
j)+ cosh(2OI

j)
→ SI (6.43)

Note that here the decision boundaries are shown with respect to the net input to the
hidden neuron O j, which is a linear function of actual input z.

Hence, the complex-valued input z ∈ Cm are classified into two decision regions
with respect to the real and imaginary parts (SR and SI)

{
z ∈C

m, | zR
h j
≥ SR

}
and

{
z ∈C

m, | zR
h j
< SR

}
(6.44)

{
z ∈C

m, | zI
h j
≥ SI

}
and

{
z ∈ C

m, | zI
h j
< SI

}
(6.45)

The normal vectors to the decision boundaries formed by the hidden neuron (given
by Eqs. (6.42) and (6.43)) with respect to the input (z) are given by:

QR
h (z

R,zI) =

(
∂ zR

h j

∂ zR
1
· · ·

∂ zR
h j

∂ zR
k

· · ·
∂ zR

h j

∂ zR
m

∂ zR
h j

∂ zI
1
· · ·

∂ zR
h j

∂ zI
k

· · ·
∂ zR

h j

∂ zI
m

)

(6.46)

QI
h(z

R,zI) =

(
∂ zI

h j

∂ zR
1

· · ·
∂ zI

h j

∂ zR
k

· · ·
∂ zI

h j

∂ zR
m

∂ zI
h j

∂ zI
1

· · ·
∂ zI

h j

∂ zI
k

· · ·
∂ zI

h j

∂ zI
m

)

(6.47)
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The decision boundaries are orthogonal to each other i f f the dot product of these
normal vectors is zero. The dot product of the normal vectors is given by:
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Using the laws of differentiation, the derivative of the jth hidden layer response with
respect to its net input
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From Eqs. (6.53)-(6.56), it can be observed that
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Hence, it is evident that the sech activation function satisfies the Cauchy Riemann
equations.

Substituting the Cauchy Riemann Equations in Eqs. (6.49)-(6.52), and obtaining
the dot product of the normal vectors, we have,
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= 0. (6.60)

Thus, the decision boundaries formed by the real and imaginary parts of the hidden
layer output are orthogonal. It is also clear that this fact is also valid for any fully
complex-valued activation function that satisfies the Cauchy Riemann equations.

Based on the above results, we state the following lemma:

Lemma 6.1. The decision boundaries formed by the real and imaginary parts of
an output/hidden neuron in a fully complex-valued network with any fully complex-
valued activation function that satisfies the Cauchy Riemann conditions are orthog-
onal to each other.

6.3 Summary

In this chapter, the various complex-valued classifiers available in the literature have
been discussed and a fast learning circular complex-valued extreme learning ma-
chine classifier was described in detail. CC-ELM classifier uses a single hidden
layer network with a non-linear input/hidden layer and a linear output layer. At the
input layer, a unique nonlinear circular transformation is used as the activation func-
tion to make an one-to-one mapping of the real-valued input features to the Com-
plex domain. At the hidden layer, the complex-valued input features are mapped
on to a higher dimensional Complex plane using the ‘sech’ activation function. In
CC-ELM, the input parameters and the parameters of the hidden layer are chosen
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randomly and the output weights are calculated analytically, requiring lesser com-
putational effort to perform classification tasks. The presence of orthogonal decision
boundaries in CC-ELM are proved.
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Chapter 7
Performance Study on Real-valued
Classification Problems

As mentioned in Chapter 5, the orthogonal decision boundaries of fully complex-
valued neural networks help them to perform classification tasks efficiently. There-
fore, in this chapter, we study the classification performance of FC-MLP and IC-
MLP described in Chapter 2, FC-RBF and Mc-FCRBF explained in Chapter 3,
FCRN and CC-ELM described in the chapters 5 and 6 respectively. First, the study
is conducted on a set of benchmark real-valued classification problems from the
UCI machine learning repository [1] and then, using a practical acoustic emission
signal classification problem for health monitoring [2].

7.1 Descriptions of Real-valued Benchmark Classification
Problems

We consider a set of real-valued benchmark problems (both multi-category/binary
classification problems) from the UCI machine learning repository [1]. Based on a
wide range of Imbalance Factors (I. F.) (as defined in [3]) of the data set, three multi-
category and four binary data sets are chosen for this study. To recap, the imbalance
factor is defined as

(I. F.) = 1− C
N

min
j=1,··· ,C

Nj (7.1)

where Nj is the total number of samples belonging to the class j.
The detailed description of these data sets including the number of classes, the

number of input features, the number of samples in the training/testing and the im-
balance factor are presented in Table 7.1. From the table, one can see that the prob-
lems chosen for this study have both balanced and unbalanced data sets and also
that the imbalance factors of the data sets vary over a wide range.

S. Suresh et al.: Supervised Learning with Complex-valued Neural Networks, SCI 421, pp. 125–133.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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Table 7.1 Description of benchmark data sets selected from [1] for performance study

Type of Problem No. of No. of No. of samples I. F.
data set features classes Training Testing Training Testing

Image 19 7 210 2100 0 0
Segmentation (IS)

Multi- Vehicle 18 4 424 422 0.1 0.12
Classification (VC)

Category Glass 9 7 109 105 0.68 0.73
Identification (GI)
Liver 6 2 200 145 0.17 0.145
Disorder

Binary PIMA 8 2 400 368 0.225 0.39
Data
Breast 9 2 300 383 0.26 0.33
Cancer
Ionosphere 34 2 100 251 0.28 0.283

7.2 Performance Study

First we present the performance study results on three real-valued multi-category
benchmark classification problems. Next, we consider four binary benchmark clas-
sification problems.

7.2.1 Performance Measures

The classification/confusion matrix Q is used to obtain the statistical measures for
both the class-level and global performance of the various classifiers. Class-level
performance is measured by the percentage classification (η j) which is defined as:

η j =
q j j

Nj
× 100% (7.2)

where q j j is the total number of correctly classified samples in the class c j.
The global measures used in the evaluation are the average per-class classification

accuracy (ηa) and the over-all classification accuracy (ηo) defined as:

ηa =
1
C

C

∑
j=1

η j

ηo =
∑C

j=1 q j j

∑C
j=1 Nj

× 100% (7.3)
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The performance of the classifiers are compared using these class-level and global
performance measures.

7.2.2 Multi-category Real-valued Classification Problems

As the complex-valued networks are shown to have better computational power than
the real-valued networks [4], the classification performance of the complex-valued
learning algorithms are compared against well-known real-valued classifiers, avail-
able in the literature for these problems. The real-valued classifiers used for compar-
ison are the Support Vector Machines (SVM) [5], the minimal resource allocation
network (MRAN) [6], the growing and pruning radial basis function network (GAP-
RBFN) [7], the online sequential extreme learning machine (OS-ELM) [8], the real
coded genetic algorithm based extreme learning machine [9], the Sequential Multi-
Category Radial Basis Function (SMC-RBF) [10] and the Self-adaptive Resource
Allocation Network (SRAN) [11]. The “asinh” and “atan” activation functions are
observed to be better than the other ETF’s and they are chosen as activation func-
tions in the hidden layer for the FC-MLP and IC-MLP. The results of the RCGA-
ELM is reproduced from [9], while those of the other real-valued classifiers are
reproduced from [10]. The classification results for the PE-CVNN are reproduced
from [12], while the results of the MLMVN are generated using the software simu-
lator available in the author’s web site 1.

Table 7.2 presents the overall and average testing efficiencies of the various clas-
sifiers on the three multi-category benchmark classification problems chosen for this
study. In this study, the complex-valued input features (z) for FC-MLP, IC-MLP, FC-
RBF and Mc-FCRBF are obtained by phase encoding the real-valued input features
(x) in [0,π ] [13] using the transformation:

z= exp(iφ) = cos φ + isin φ , where φ =
π(x− a)

b− a
; a,b∈R and x∈ [a,b]. (7.4)

The input features for CC-ELM and FCRN classifiers are obtained by using the
circular transformation defined in Eq. (6.19).

From the table, it is clear that the complex-valued classifiers outperform all the
existing real-valued classifiers. The superior performance of the complex-valued
classifiers can be attributed to their orthogonal decision boundaries. The higher per-
formance of the complex-valued classifiers is very obvious in the glass identification
problem which has a highly unbalanced data set.

Following observations emerge from the Table 7.2:

• FC-MLP, IC-MLP, FC-RBF, Mc-FCRBF, FCRN and CC-ELM classifiers out-
perform other complex-valued classifiers: MLMVN and PE-CVNN The perfor-
mances of MLMVN [14] and PE-CVNN [13] may be limited because of the
following factors:

1 http://www.eagle.tamut.edu/faculty/igor/Downloads.htm
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– The activation functions used in the PE-CVNN are similar to those used in
the split complex-valued neural networks. Therefore, the correlation between
the real and imaginary parts of the error are not considered in the network
parameter update and the gradients are not fully complex-valued [15]. The
limitations of using the split complex-valued activation functions have been
discussed in detail in section 2.1.1.

– The complex-valued Multi Layer Multi Valued Network (MLMVN) that em-
ploys the multi-valued neurons uses a derivative free global error correcting
learning rule to update the network parameters [14]. In MLMVN, the normal-
ized real-valued input features (x) are mapped on to a full unit circle using
exp(i2πx) and the class labels are encoded by the roots of unity in the Com-
plex plane. However, as the input features are mapped on to a full unit circle,
this mapping results in the same complex-valued features for the real-valued
features with values 0 and 1 (transformation is not unique). In addition, the
multi-valued neurons map the complex-valued inputs to C discrete outputs on
the unit circle. As number of classes (C) increases, the areas of the sectors per
class within the unit circle decreases which results in a higher misclassifica-
tion rate.

• Comparing the performances of FC-MLP and IC-MLP classifiers, IC-MLP clas-
sifier outperforms FC-MLP classifier in all the three benchmark problems con-
sidered. While the “atan” activation function resulted in a better classification of
the IS data set, the “asinh” activation function outperforms the “atan ” activation
function in the classification of the unbalanced VC and GI data sets.

• FC-RBF classifier performs better than FC-MLP and IC-MLP classifiers in all
the three problems. This is because the sech(.) function used in FC-RBF has
a magnitude response that is similar to that of the Gaussian function and has
similar localization properties of the Gaussian activation function. This aids in
improving the classification ability of FC-RBF classifier compared to that of the
FC-MLP/IC-MLP classifiers.

• Mc-FCRBF classifier performs better than FC-RBF classifier along with a re-
duced computational effort. The self-regulatory system chose 155 of the total
210 samples for classification of the image segmentation problem which has a
well-balanced data set. The self-regulatory system selects 358 of the total 422
samples and 272 of the total 336 samples to train Mc-FCRBF classifier for the
vehicle classification and glass identification problems, respectively.

• CC-ELM classifier outperforms all the real-valued/complex-valued classifiers
used in this study. It also requires the lowest computational effort in all the three
real-valued benchmark classification problems. This can be attributed to the pres-
ence of the circular transformation that transforms the real-valued input features
to all the four quadrants of the Complex domain uniquely and the learning algo-
rithm that finds the optimum solution to the set of linear equations formed at the
output layer. The best performance of CC-ELM can be distinctively seen in the
glass identification problem which has a highly unbalanced data set.
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• The performance of FCRN is slightly better than CC-ELM and is much better
than the other classifiers. This can be attributed to the fact that FCRN uses the
logarithmic error function, while the other classifiers use the mean squared error
function.

7.2.3 Binary Real-valued Classification Problems

Next, we present the results of the binary benchmark classification problems listed
in Table 7.1. Since it has been observed from the study on multi-category bench-
mark problems that FC-RBF and Mc-FCRBF outperform the FC-MLP and IC-MLP
classifiers, we only compare the classification performances of FC-RBF and Mc-
FCRBF classifiers in comparison with other real-valued classifiers. Performance re-
sults of SVM, ELM, SRAN, FC-RBF, Mc-FCRBF, FCRN and CC-ELM classifiers
are presented in Table 7.3. From the results, one can see that the complex-valued
classifiers, FC-RBF, Mc-FCRBF and CC-ELM classifiers outperformed the real-
valued classifiers (SVM, ELM and SRAN) available in the literature. Among the
complex-valued classifiers, CC-ELM and FCRN classifiers perform better than the
other complex-valued classifiers considered in the study with the lower computa-
tional effort.

7.3 Performance Study Using a Real-world Acoustic Emission
Classification Problem

Acoustic emission signals are the electrical versions of the stress or pressure waves
produced by sensitive transducers. These waves are produced due to the transient
energy release caused by the irreversible deformation processes in the material [2].
Different sources of acoustic emission exist and these sources can be characterized
by the acoustic signals. The classification of acoustic emission signals based on their
sources is a very difficult problem, especially in the real world where ambient noise
and pseudo acoustic emission signals exist. Even in a noise free environment, super-
ficial similarities exist between the acoustic emission signals produced by different
sources making the classification task cumbersome.

In the study conducted in [2], noise free burst type acoustic emission signal from
a metal surface is assumed. The data set presented in [2] uses 5 input features to
classify the acoustic signals to one of the 4 sources, ı.e., the pencil source, the pulse
source, the spark source and the noise. A training data set with 62 samples and
testing data set with 137 samples are used for the acoustic emission signal classifi-
cation problem. For details of the input features and the experimental set up used in
the data collection, refer to [2].

Table 7.4 presents the performance results of the complex-valued FC-RBF, Mc-
FCRBF, FCRN and CC-ELM classifiers in comparison to the best results available
in the literature for the acoustic emission signal classification problem, viz., the
Fuzzy K-means clustering algorithm [2], ant colony optimization algorithm [16]
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Table 7.2 Benchmark classification problems: Performance comparison of the SR-FC-RBF
classifier with other classifiers

Problem Domain Classifier h Time Testing
(sec.) ηo ηa

SVM 96 721 90.62 90.62
MRAN 76 783 86.52 86.52

GAP-RBFN 83 365 87.19 87.19
Real OS-ELM 100 21 90.67 90.67

RCGA-ELM 50 - 91 91
IS SMC-RBF 43 142 91 91

SRAN 47 22 92.3 92.3
PE-CVNN - - 93.22 -
MLMVN 80 1384 83 -

FC-MLP(asinh) 80 374 91.57 91.57
FC-MLP(atan) 75 359 90.48 90.48
IC-MLP(asinh) 80 390 91.81 91.81

Complex IC-MLP(atan) 80 385 92.81 92.81
FC-RBF 38 421 92.33 92.33

Mc-FCRBF 36 362 92.9 92.9
FCRN 70 0.4 93.3 93.3

CC-ELM 60 0.03 93.2 93.2
SVM 234 550 68.72 67.99

MRAN 100 520 59.94 59.83
GAP-RBFN 81 452 59.24 58.23

Real OS-ELM 300 36 68.95 67.56
VC SMC-RBF 75 120 74.18 73.52

SRAN 113 55 75.12 76.86
PE-CVNN - - 78.73 -
MLMVN 90 1396 78 77.25

FC-MLP(asinh) 75 530 76.07 77.49
FC-MLP (atan) 70 462 73.22 73.83

Complex IC-MLP(asinh) 75 612 79.62 80.38
IC-MLP (atan) 70 574 74.17 74.26

FC-RBF 70 678 77.01 77.46
Mc-FCRBF 70 638 77.72 77.58

FCRN 90 0.8 82.62 82.46
CC-ELM 85 0.1084 82.23 82.52

SVM 102 320 64.23 60.01
MRAN 51 520 63.81 70.24

GAP-RBFN 75 410 58.29 72.41
Real OS-ELM 60 15 67.62 70.12

GI SMC-RBF 58 97 78.09 77.96
SRAN 59 28 86.21 80.95

PE-CVNN - - 65.5b -
MLMVN 85 1421 73.24 66.83

FC-MLP(asinh) 70 338 80.95 79.60
Complex FC-MLP(atan) 70 346 80 79.09

IC-MLP(asinh) 80 390 82.86 80.55
IC-MLP(atan) 70 356 81.90 82.97

FC-RBF 90 452 83.76 80.95
Mc-FCRBF 85 364 83.91 80

FCRN 90 0.25 94.5 88.3
CC-ELM 100 0.08 94.44 84.52
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Table 7.3 Performance comparison on benchmark binary classification problems

Problem Classifier Classifier h Training Testing
Domain Time (s) Efficiency

(ηo)

Breast Real-valued SVM 190 0.1118 94.20
ELM 65 0.1442 96.28

cancer SRAN 7 0.17 96.87
Complex-valued FC-RBF 10 158.3 97.12

Mc-FCRBF 10 125 97.4
FCRN 15 0.16 97.4

CC-ELM 15 0.0811 97.39
Iono- Real-valued SVM 30 0.0218 90.18

ELM 25 0.0396 88.78
sphere SRAN 21 3.7 90.84

Complex-valued FC-RBF 10 186.2 89.48
Mc-FCRBF 10 152 90

FCRN 15 0.0624 92.03
CC-ELM 15 0.0312 92.43

Liver Real-valued SVM 158 0.0972 68.24
ELM 132 0.1685 71.79

disorders SRAN 91 3.38 66.9
Complex-valued FC-RBF 20 133 74.6

Mc-FCRBF 20 112 76.6
FCRN 10 0.05 75.86

CC-ELM 10 0.059 75.5
PIMA Real-valued SVM 209 0.205 76.43

ELM 218 0.2942 76.54
data SRAN 97 12.24 78.53

Complex-valued FC-RBF 20 130.3 78.53
Mc-FCRBF 20 103 79.89

FCRN 15 0.125 80.71
CC-ELM 20 0.073 81.25

and genetic programming [17]. The results show that the complex-valued classifiers
outperform the real-valued classifiers considered in this study. It can also be seen
that CC-ELM and FCRN classifiers required only 10 neurons to achieve an over-all
testing efficiency of 99.27%, which is about 6% better than the best results reported
in the literature for this problem. Thus, CC-ELM and FCRN perform an efficient
classification of the acoustic emission signals using a compact network.
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Table 7.4 Performance comparison results for the acoustic emission problem

Classifier Classifier Testing
domain ηo ηav

Real- Fuzzy
valued C-Means 93.34

Clustering

Complex- FC-RBF 96.35 95.2
valued

Mc-FCRBF 98.54 97.83

FCRN 99.27 98.91

CC-ELM 99.27 99.17

7.4 Summary

In this chapter, we studied the decision making ability of FC-MLP, IC-MLP, FC-
RBF, Mc-FCRBF, FCRN and CC-ELM learning algorithms in comparison to other
complex-valued classifiers, MLMVN and PE-CVNN. The study was performed us-
ing a set of multi-category and binary benchmark classification data sets from the
UCI machine learning repository and a practical acoustic emission classification
problem. Performance results show that the performance of the complex-valued
classifiers are better than the real-valued classifiers available in the literature. The or-
thogonal decision boundaries of the complex-valued classifiers help them to outper-
form the real-valued classifiers. However, the performance of the complex-valued
classifiers are affected due to the transformation used to convert the real-valued input
features to the Complex domain, the activation function used at the hidden layer, and
the nature of the learning algorithm. It was also observed that the circular transfor-
mation, which maps the real-valued input features to the Complex domain uniquely,
is better than the phase encoded transformation and the bilinear transformation.
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Chapter 8
Complex-valued Self-regulatory Resource
Allocation Network (CSRAN)

All the algorithms described in the chapters 2, 3, 4 and 6, viz., FC-MLP, IC-MLP,
CRBF, FC-RBF, Mc-FCRBF, FCRN and CC-ELM are batch learning algorithms.
These algorithms require the complete training data set and the network structure
has to be fixed a priori. However

• In most practical applications, either the complete training data set may not be
available a priori, or the training data set may be too large. Some of the prac-
tical problems like the cancer classifications, human action recognition human
behavior prediction etc allow temporal changes to the task being learnt. Hence,
these batch learning algorithms may not be usable and one have to look for on-
line/sequential learning algorithms for these applications.

• Another important issue in a neural network learning scheme is the selection of
network architecture. One has to find a minimal architecture that accurately fits
the true function described by the training data. A large network may accurately
fit the training data, but may have poor generalization performance due to over-
training and also resulting in an increased computation time. On the other hand,
a smaller network requires lesser computational effort but might not be able to
approximate the true function accurately. The complexity is further increased
when the training data set is not available a priori. Hence, sequential learning
algorithms that evolve the network architecture by themselves during the learning
process are preferred over batch learning schemes.

These issues in the batch learning algorithms have motivated the development of se-
quential learning schemes for neural networks. In a sequential/online learning mode,
samples are trained one-by-one and are discarded after they are learnt. Also, the net-
work structure evolves during the learning process by adding and deleting neurons
as it acquires information from the training data set.

Some of the complex-valued sequential learning algorithms available in the lit-
erature include the Complex-valued Minimal Resource Allocation Network (CM-
RAN) [1], and the Complex-valued Growing And Pruning Network (CGAP-RBF)
[2]. They are the direct extensions of the real-valued Minimal Resource Alloca-
tion Network (MRAN) [3], and the Growing And Pruning Radial Basis Function

S. Suresh et al.: Supervised Learning with Complex-valued Neural Networks, SCI 421, pp. 135–168.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013
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network (GAP-RBF) [4] to the Complex domain, respectively. These algorithms
add and prune neurons to the network until they achieve a parsimonious structure.
Though these algorithms are complex-valued learning algorithms, Gaussian activa-
tion function (whose response is real-valued for complex-valued inputs) is employed
at the hidden layer and they lack fully complex-valued activation functions. Besides,
these algorithms use the real-valued extended Kalman filter for parameter updates
during learning. In addition, these algorithms use the split complex-valued Real and
Imaginary parts of the error to update the Real and Imaginary parts of the network
parameters, respectively. Hence, the gradients used in these algorithms are not fully
complex-valued. This results in a significant loss of complex-valued information
during the backward computation, due to the loss of correlation between the real
and imaginary parts of the signals, thereby affecting the magnitude and phase ap-
proximation performance of the network. Another important invalidated assumption
that these algorithms rely on is that the inputs are uniformly distributed, which is not
always true, especially in real world problems. Training a network with similar sam-
ples might result in overtraining of the training dataset, affecting the generalization
ability of the network.

Generalization performance of the complex-valued neural networks are influ-
enced by the following two major factors:

• In general, the learning algorithms are based on the assumption that the training
data is uniformly distributed in the input space which is not always true, espe-
cially, in practical problems. Learning similar samples repeatedly may result in
overtraining, thereby, affecting the generalization capability with an increased
computational effort. Hence, there is a need to develop a learning algorithm that
is capable of deciding when-to-learn, what-to-learn and how-to-learn the sam-
ples in the training data set.

• In all the above complex-valued networks, the mean square magnitude error has
been used as a minimization criterion for the parameter updates in the learning
algorithms. In the context of complex-valued signals, though the minimization
of magnitude error implicitly minimizes the phase error to some extent, it will be
advantageous to use the phase error explicitly in the minimization criterion for a
better phase approximation [5].

When the complete training data set is not available for batch learning and the
data arrives sequentially, the above mentioned issues complicate the problem fur-
ther. To address these issues, in this chapter, we present a sequential learning al-
gorithm for complex-valued neural network with a self-regulating mechanism. The
self-regulating scheme controls the learning process and uses the magnitude/phase
errors explicitly for better performances in both complex-valued function approxi-
mation and classification problems.

To overcome these issues in the complex-valued sequential learning algorithms,
in this chapter, we develop a “Complex-valued Self-regulating Resource Alloca-
tion Network (CSRAN)" and its sequential learning algorithm. CSRAN algorithm
handles the training samples one-by-one and discards them after learning. The
basic building block of CSRAN is a fully complex-valued radial basis function
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network with a ‘sech’ activation function. The network parameters are updated us-
ing a fully Complex-valued Extended Kalman Filter (C-EKF) scheme presented
in [6]. CSRAN starts with no hidden neuron and adds/prunes neurons based on
criteria involving both the magnitude and phase errors. CSRAN employs a self-
regulating scheme to control the learning process. The self-regulating scheme in
CSRAN decides what-to-learn, when-to-learn and how-to-learn based on the in-
formation present in the training samples. When the training samples arrive one-
by-one, the self-regulating scheme performs one of the following three actions: a)
Sample deletion without learning b) Sample learning (either add/prune the hidden
neuron or update the network parameters) and c) Sample reserve ( shift the sam-
ple for future use). Thus, CSRAN algorithm efficiently addresses three key issues
namely, when-to-learn, what-to-learn and how-to-learn.

Performance of CSRAN algorithm is evaluated using a synthetic complex-valued
function approximation problem and two real-world problems. First, we highlight
the key features of CSRAN algorithm in detail using a synthetic Complex function
approximation problem. Next, we present the performance comparison based on
a complex-valued Quadrature Amplitude Modulation (QAM) non-minimum, non-
linear phase equalization problem [7] and an adaptive beam-forming problem [8].
In these problems, the performance of CSRAN is compared with existing complex
valued neural networks. The results indicate that CSRAN algorithm provides bet-
ter magnitude and (especially) phase approximation and generalization with fewer
samples for training and a compact network structure.

As mentioned earlier, the better computational ability and the orthogonal decision
boundaries of the complex-valued neural networks render them with an exceptional
ability to perform classification tasks. Hence, to evaluate the classification ability
of CSRAN, we study the performance of CSRAN in solving two real-valued multi-
category benchmark classification problems with unbalanced data sets. To solve the
real-valued classification problem, the complex-valued input features are obtained
by phase encoding the real-valued input features as explained in [9]. Here, we com-
pare the performance of CSRAN with existing complex-valued and best-performing
real-valued neural classifiers.

In this chapter, we first review the existing complex-valued sequential learning
algorithms , viz., the complex-valued minimal resource allocation network (CM-
RAN) [1], the complex-valued growing and pruning Network (CGAP-RBF) [2] and
the incremental (fully complex-valued) extreme learning machines (I-ELM) [10],
highlight their disadvantages and then explain the CSRAN learning algorithm in
detail.

8.1 A Brief Review of Existing Complex-valued Sequential
Learning Algorithms

In sequential learning algorithms, the samples in the training dataset are presented
one-by-one and only once. Once presented and learnt, the samples are deleted
from the training dataset. The size of the network evolves, as learning continues.
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Neurons are added and deleted from the hidden layer, until the network achieves a
compact network structure. Several sequential learning algorithms are available for
real-valued networks. Some of these real-valued sequential learning algorithms have
been extended to the Complex domain. Complex-valued minimal resource alloca-
tion network (CMRAN) [1], complex-valued growing and pruning (CGAP-RBF)
[2] and the incremental fully complex-valued extreme learning machines (I-ELM
(complex-valued)) [10] algorithm are a few sequential learning algorithms for the
complex-valued RBF (CRBF) network, which are direct extension of the MRAN
algorithm [3], GAP-RBF algorithm [4] and the Incremental Extreme Learning Ma-
chine (I-ELM) [11] for the real-valued RBF network, respectively. In this section,
we briefly present these algorithms, first.

8.2 Complex-valued Minimal Resource Allocation Network
(CMRAN)

The basic block for the CMRAN [1] sequential learning algorithm is the complex-
valued RBF network. The structure of the CRBF network is shown earlier in Fig.
8.1. Let the training sample set of the function to be approximated be represented by
{(z1, y1), (z2, y2), · · · , (zt , yt), · · ·}, where zt ∈ Cm and yt ∈ Cn. For the CMRAN
algorithm, the neurons in the hidden layer employ the Gaussian activation function
as the basis function, while the neurons in the output layer are linear. The response
of neurons in the hidden layer is given by eq. (8.1).

y j
h = φ

(
zt − c j

σ j

)
= exp

(

− (zt − c j)
H(zt − c j)

2σ2
j

)

; j = 1,2, · · ·h (8.1)

and the output of the CMRAN is given by

ŷk =
h

∑
j=1

vk jy
j
h; where k = 1, 2, · · ·n (8.2)

where zt ∈Cm are the set of complex-valued inputs at the input node, c j ∈Cm is the
complex-valued centers of the jth hidden neuron, σ j ∈R is the width of the Gaussian
function for the jth neuron and vk j is the complex-valued weight connecting the
kth output neuron and the jth hidden neuron. In sequential learning algorithms, the
network evolves during training, to finally achieve a compact structure, with neither
too many nor too few neurons in the hidden layer. The CMRAN algorithm is one
such complex-valued sequential learning algorithm that adds and prunes neurons,
until it achieves a parsimonious network structure. As each sample is presented to
the network, according to the CMRAN algorithm, the sample is either

• Used for adding a neuron to the network or
• Used to delete a neuron from the hidden layer of the network or
• Used in learning to update the network parameters
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Fig. 8.1 Architecture of a CRBF Network

The CMRAN algorithm begins with zero hidden neurons. As each input-output
training data (zt , yt ) is received, the error et = yt − ŷt , where ŷt = [ŷ1 ŷ2 · · · ŷn]T is
calculated. The algorithm adds or deletes hidden neurons, or adjusts the parameters
of the existing network, according to the responses of the data received.

Growing condition: Let us consider cnr is the center (of the hidden neuron) which
is closest to zt (the input of the data that was just received). If a sample presented to
the network satisfies the following conditions, a new neuron is added to the network:

1. The squared distance between the sample and the nearest center must be greater
than a threshold εn, as shown in eq. (8.3). This condition ensures that the new
neuron that is added, is sufficiently far from all the existing neurons.

(zt − cnr)
H(zt − cnr) > εn (8.3)

where cnr is the center of the neuron nearest to the sample considered and εn is
appropriately chosen threshold.
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2. The squared error of the sample presented must be greater than emin (which is
another threshold), as shown in eq. (8.4). This condition ensures that the existing
neurons are insufficient to obtain a network output that meets the error specifica-
tion.

etH
et > emin (8.4)

3. The root mean squared error over a window of M samples must be greater than a
threshold emin1, as shown in eq. (8.5). This condition checks whether the network
has met the required sum squared error specification for the past M outputs of the
network.

ermst =

√√
√
√ 1

M

t

∑
i=t−(M−1)

etH et > emin1 (8.5)

Only when all these criteria (eqs. (8.3), (8.4), (8.5)) are met, will a new hidden
neuron be added to the network. Each new hidden neuron added to the network will
have the following parameters associated with it:

vh+1 = et ; σ2
h+1 = κ(zt − cnr)

H(zt − cnr); ch+1 = zt (8.6)

where κ is the real valued overlap factor which determines the overlap of the re-
sponses of the hidden neurons in the input space.

Network learning: When an input to the network does not meet the criteria for
adding a new hidden neuron, the network parameters

wt−1 = [re(v1), im(v1),re(cT
1 ), im(cT

1 ),σ1, · · · re(vh), im(vh),re(c
T
h ), im(cT

h ),σh]
T

(8.7)

are adapted using the extended Kalman filter as shown below:

wt = wt−1 +klrt × [Re(et), Im(et)]T (8.8)

where Re(et) denotes the Real part of the complex-valued error signal and Im(et)
denotes the Imaginary part of the complex-valued error signal. In the EKF, a com-
plex value is treated as a 2-dimensional real vector. KLrt is the real-valued Kalman
gain vector given by

KLrt = Pt−1at [r+ atT
Pt−1at ]−1 (8.9)

where r is the variance of the measurement noise, at is the gradient vector and has
the following form

[
Δv1,Δc1,Δσ1, · · ·Δvh,Δch,Δσh

]T

where Δv1, Δc1 and Δσ1 are the gradient descent based updates for the three free
parameters of the first neuron. Hence, the vector at is given by:
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I2×2,φ1(zt)I2×2

,φ1(zt)(2β1/σ2
1 )[Re(zt − c1)

T , Im(zt − c1)
T ],

φ1(zt)(2β1/σ3
1 )(z

t − c1)
H(zt − c1), · · · ,

φh(zt)I2×2

,φh(zt)(2βh/σ2
h )[Re(zt − ch)

T , Im(zt − ch)
T ],

φh(zt)(2βh/σ3
h )(z

t − ch)
H(zt − ch)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here, β1 = [Re(v1), Im(v1)], · · · , βh = [Re(vh), Im(vh)]. Pt is the error covariance
matrix which is updated by

Pt = [I − KLrt atT
]Pt−1 + qI (8.10)

where q is a scalar that determines the allowed random step in the direction of the
gradient vector and I is an identity matrix. If the number of parameters to be adjusted
is l then Pt is an l× l positive definite symmetric matrix. When a new hidden unit is
allocated, the dimensionality of Pt increases to

(
Pt−1 0

0 p0I0

)

where p0 initializes the new rows and columns. p0 is an estimate of the uncertainty
in the initial values assigned to the parameters. The dimension of the identity matrix
I0 is equal to the number of new parameters introduced by the new hidden unit.

Pruning criterion: The algorithm also incorporates a pruning strategy which is
used to prune hidden neurons that do not contribute significantly to the output of
the network. This is done by observing the output of each of the hidden neurons for
a pre-defined period and then removing the neuron that has not been producing a
significant output for that period. Consider the output zk

h of the kth hidden neuron:

yk
h = exp

(
− (zt − ck)

H(zt − ck)

2σ2
k

)
; k = 1,2, · · ·h, σk ∈ R (8.11)

The response of a neuron k is small, if either σk of the above equation is small or
if (zt − ck)

H(zt − ck) is large. This would mean that the input is far away from the
center of this hidden neuron. In any case, a small yk

h means that its real part and
imaginary part are both small. To reduce inconsistency caused by using the absolute
values, both the real value and imaginary value of yk

h are normalized with respect
to the maximum (Real and Imaginary component of) output value among all the
hidden neurons according to the following equation:

rk
hRe =

|| yk
hRe ||

|| ymax
hRe || ; rk

hIm =
|| yk

hIm ||
|| ymax

hIm || (8.12)
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|| ymax
hRe || is the largest absolute real component of the hidden neuron output and

|| ymax
hIm || is the largest absolute imaginary component of the hidden neuron output.

If both rk
hRe and rk

hIm of a normalized output of yk
h (k < h) are less than a threshold,

EP, for Sw consecutive observations (where Sw is the width of the sliding window
defining the number of samples to be considered), i. e.,

If rk
hRe < EP rk

hIm < EP for Sw consecutive observations (8.13)

then it indicates that the hidden neuron k makes insignificant contribution to the
network output and can be removed from the network. The dimensions of the EKF
are then adjusted to suit the reduced network. Thus, the algorithm ensures that the
network has sufficient neurons in the hidden layer, and none of the neurons in the
hidden layer is redundant. This gives a compact structure to the network.

The pseudocode for the CMRAN learning algorithm is presented in Pseudocode
2.

Pseudocode 2 Pseudo code for the CMRAN Algorithm.
Input: Present the training data one-by-one to the network

from datastream.
Output: Size of the network, parameters of the network.

START
Initialization: Assign the first sample as the first neuron($h=1$).

The parameters of the neuron are chosen as shown in eq. (8.6).
Start learning for samples t=2,3,...
DO

Compute the network output ŷt.
Find the neuron nearest to the sample presented.

IF eq. (8.3) & eq. (8.4) & eq. (8.5) are satisfied THEN
Add a Neuron to the network (h=h+1).
Choose the parameters of the network as in eq. (8.6).

ELSE
Update the parameters of the network using EKF (eq. (8.8)).
Update the EKF parameters accordingly eq. (8.9), eq. (8.10)).
Pruning Criteria:

Calculate rk
hRe and rk

hIm according to eq. (8.12).
If rk

hRe < EP and rk
hIm < EP for Sw

consecutive observations, delete the neuron.
ENDIF

ENDDO
Stopping Strategy: Training stops when t = N

END
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8.2.1 Drawbacks of the CMRAN Algorithm

However, the CMRAN algorithm suffers from the following drawbacks:

• The Gaussian function eq. (8.1) is used as the basis of the activation function
of the network, used in these algorithms. This results in inaccurate phase ap-
proximations, despite the weights and centers being complex-valued, as shown
in the simulation studies in [5, 12]. This results from the fact that the activation
response of the network remains real-valued.

• The real-valued EKF is used for parameter updates. This uses the real and imag-
inary components of the complex-valued error and weights. This is not a true
representation of the complex-valued error/weights and hence, approximation
using the learning algorithm is not accurate.

• Proper selection of training dataset is an important task in the neural network
training algorithms. In general, it is assumed that the training data is uniformly
distributed in the input space with non-recurrent training samples. For most prac-
tical problems, it is difficult to satisfy this assumption. Hence, one needs to de-
velop a learning algorithm which can select proper samples for learning. How-
ever, the CMRAN algorithm does not ensure that the samples are uniformly dis-
tributed in the input space. This affects the generalization ability of the network.

• The control parameters of the algorithm are problem dependent. A heuristic ap-
proach is used to choose the parameters of the algorithm.

8.3 Complex-valued Growing and Pruning RBF (CGAP-RBF)
Networks

In this section, we present the CGAP-RBF learning algorithm [2] briefly. In the
CGAP-RBF learning algorithm, the growing and pruning criteria for the hidden
neurons is based on the concept of significance. When there is no growing or prun-
ing, parameter adjustments using the EKF is done. The significance of a neuron is
calculated as:

Esig(k) =
||αk||2

S(Z)1/2

(
π3/2
√
(2)

σk

)m/2

(8.14)

where αk is the weight connecting the kth hidden neuron to the output neurons,
S(Z) is the size of the input sampling space, assuming uniform distribution (in the
input space) and σk ∈R is the real-valued Gaussian width of the hidden neuron con-
sidered. For complete derivation of Esig(k), one must refer to [2]. During training,
if Esig(k) < egoal, where egoal is the target accuracy, then the average contribution
made by the neuron h is less than the expected accuracy. This means that neuron k
is insignificant and it can be removed. Similarly, for a newly added neuron h+ 1, if
Esig(h+ 1)< egoal, it means that the newly added neuron makes insignificant con-
tribution to the overall performance of the network (although it may make sense to
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that single-input observation). Hence, this neuron should not be added. An enhanced
growing criterion of the CGAP-RBF algorithm is given by:

• Growing criterion: For a new training data observation (zt ,yt), if

|| zt − cnr || > εn

andEsig(h+ 1) > egoal (8.15)

where εn is a distance threshold for adding neurons, a new neuron h+ 1 should
be added, and the parameters associated with the new hidden neuron are selected
as follows

vh+1 = et

ch+1 = zt

σh+1 =
√

κ(zt − cnr)H(zt − cnr) (8.16)

where et is the network error given by yt − ŷt , cnr is the center of the nearest
neuron to the sample considered and κ is the overlap factor that determines the
overlap of the responses of the hidden neurons in the input space. It can be ob-
served from eq. (8.15) that the selection of network parameters for a new hidden
neuron added to is exactly similar to that of the CMRAN algorithm, as seen in
eq. (8.6).

• Pruning criterion: If the significance of neuron k; k < h is less than the accu-
racy egoal, neuron k is insignificant and should be removed, otherwise, neuron
k is significant and should be retained. The earlier mentioned condition implies
that after learning each observation, the significance for all neurons should be
computed and checked for possible pruning. This will be a computationally in-
tensive task. However, only the nearest neuroncan possibly be insignificant and
need to be checked for pruning, and there is no need to compute the significance
for all neurons.

• Learning criterion: When no neuron is added or pruned from the network, in
CGAP-RBF, only the parameters of the neuron nearest to the latest incoming
observation will be adjusted using the EKF algorithm.

The CGAP-RBF algorithm is summarized in pseudocode 3.
It can be observed from this section that the CGAP-RBF algorithm is similar

to the CMRAN learning algorithm. The differences between the CMRAN and the
CGAP-RBF learning algorithms are:

• In the CMRAN, a new neuron is added only based on the distance between the
sample and the neurons of the network. In the CGAP-RBF algorithm, in addition
to the distance criterion, a new neuron will be added only if its significance is
more than the chosen learning accuracy. Also, if during training, the significance
for a neuron becomes less than the learning accuracy, then that neuron will be
pruned.
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• In the CMRAN, the free parameters of all the neurons are updated, if the add
criterion is not satisfied. In the CGAP-RBF, if the input data does not require a
new hidden neuron to be added, then the parameters of only the nearest neuron
are adjusted, resulting in a reduction in the overall computations and thereby
increasing the learning speed.

Pseudocode 3 Pseudo code for the CGAP-RBF Algorithm.
Input: Present the training data one-by-one to the

network from datastream.
Output: Size of the network, parameters of the network.

START
Initialization: Assign the first sample as the first neuron(h = 1).

The parameters of the neuron are chosen as shown in eq. (8.16).
Start learning for samples t = 2, 3, ...
DO

Compute the network output ŷt.
Find the neuron nearest to the sample presented.

IF eq. (8.15) are satisfied THEN
Add a Neuron to the network (h = h+1).
Choose the parameters of the network as in eq. (8.16).

ELSE
Adjust the network parameters of the nearest neuron
(vnr, cnr and σnr) only.
Check the criterion for pruning the adjusted hidden
neuron:

If Esig(nr) < egoal
Remove the hidden neuron(nr) that is nearest
to the sample considered.

ENDIF
ENDDO
Stopping Strategy: Training stops when t = N

END

However, the CGAP-RBF algorithm also suffers from all the issues stated in section
8.2 for the CMRAN, as it also uses the Gaussian activation function at the hid-
den layer, and the real-valued EKF for updating the free parameters of the network.
Hence, approximation, especially phase approximation using the CGAP-RBF learn-
ing algorithm is also inaccurate, owing to these issues. Besides this, the calculation
of significance of a hidden neuron assumes uniform distribution of samples in the
input space, which is not always true, especially, in real-world problems. Hence, a
fully complex-valued sequential learning algorithm with selective participation of
samples in learning becomes essential. In this chapter, we present one such fully
complex-valued sequential learning algorithm.
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8.4 Incremental Fully Complex-valued Extreme Learning
Machines (I-ELM)

Incremental fully complex-valued extreme learning machines [10] are direct ex-
tensions of the real-valued incremental extreme learning machines, available in lit-
erature. This algorithm assumes random initial weights and estimates the output
weights analytically, similar to the extreme learning machines. In addition, the I-
ELM algorithm adds and prunes neurons, until a desired accuracy is achieved, thus
selecting the number of hidden neurons during learning. As the algorithm estimates
the output weights analytically, the speed of learning is high. A brief summary of
the I-ELM algorithm is presented in pseudocode 4.

Pseudocode 4 Pseudo code for the I-ELM Algorithm.
Input: Present the training data one-by-one

to the network from datastream,
maximum number of hidden nodes (h_max)
and expected learning accuracy (ε).

Output: Size of the network, parameters of the network.
START

Initialization: Assign h = 0 and error E = Y , Y = [y1, y2, ...yN ].
DO

while h < hmax and ||E||> ε
a. Increase the number of hidden nodes h = h+1.
b. Assign the hidden node parameters (ch,σh)

for the new hidden node randomly.
c. Calculate the output weight ( vh) for the new hidden

neuron using

vh =
E.zh∗

h

zh
h .zh∗

h
d. Calculate the residual error E after adding the

new hidden neuron $h$:
E = E − vh.zh

h
ENDDO

END

8.5 Complex-valued Self-regulatory Resource Allocation
Network Learning Algorithm (CSRAN)

In this section, we first describe CSRAN network architecture and then the princi-
ples behind the self-regulating learning scheme.

8.5.1 Network Architecture

The basic building block of CSRAN is a single hidden layer fully complex-valued
radial basis function network as shown in Fig. 8.2. CSRAN is a sequential learning



8.5 CSRAN 147

z
h
1

w11z
h
2

x1
t

x m
t

ŷ1
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Fig. 8.2 Architecture of CSRAN

algorithm and starts with no hidden neuron and builds the necessary number of
hidden neurons based on the information contained in the training samples. CSRAN
has a self-regulating scheme which controls the learning process by proper selection
of the training samples.

Let the sequence of training data drawn randomly be {(z1,y1), (z2,y2),· · · ,
(zt ,yt),· · ·}, where zt = [zt

1, · · · , zt
m]

T ∈ Cm is an m-dimensional input vector and
yt = [yt

1, · · · , yt
n]

T ∈ Cn is its n-dimensional desired output.
Without loss of generality, we assume that after sequentially learning t − 1 ob-

servations, CSRAN has built a network with h hidden neurons. For a given input,
the predicted output is given by (ŷt = [ŷt

1, · · · , ŷt
n]

T ∈ Cn) of CSRAN with h hidden
neurons is given by

ŷt
j =

h

∑
k=1

v jkzk
h; j = 1, · · · ,n (8.17)

zk
h = sech

[
σσσT

k (z
t − ck)

]
; k = 1,2, · · ·h
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where v jk ∈C is the complex-valued weight connecting the kth hidden neuron to the
jth output neuron, σσσ k = [σk1, · · · ,σkm]

T ∈ Cm is the complex-valued scaling factor
of the kth hidden neuron, ck = [ck1, · · · ,ckm]

T ∈ Cm is the center of the kth hidden
neuron, the superscript T denotes the transpose operator and sech(z) = 2/(ez+e−z).

The magnitude response of the ‘sech(σσσT
k (z

t − ck))’ activation function is similar
to that of the Gaussian activation function. Also, the phase response of this function
is close to zero when both the real and imaginary parts of the complex-valued signal
(σσσT

k (zt − ck)) are zero. Thus the activation function response is highest when the
inputs are located closer to the center, making the function a good choice for a
radial basis function.

The residual error (et) of CSRAN for the current observation (zt , yt) is defined
by

et = yt − ŷt (8.18)

From the above residual error, we estimate the instantaneous magnitude error (Me
t )

and the normalized absolute phase error (φ e
t ) as

Me
t =

1
n

√
etH

.et (8.19)

φ e
t =

1
nπ

n

∑
l=1

∣
∣arg(yt

l)− arg(ŷt
l)
∣
∣ (8.20)

where the superscript H denotes the Complex Hermitian operator and arg(.) is a
function that returns the phase of a complex-valued number in [−π , π ], given by:

arg(z) = atan

(
imag(z)
real(z)

)
(8.21)

8.5.2 Sequential Self-regulating Learning Scheme of CSRAN

In a sequential learning framework, the observation data/samples arrive one-by-
one and one at a time. Most of the sequential learning algorithms (both in real-
valued/complex-valued) learn all the training samples in the sequence as they are
presented, whereas the proposed CSRAN algorithm regulates the sequential learn-
ing process by selecting appropriate samples for learning. The schematic diagram
of the self-regulating scheme is shown in Fig. 8.3 and the basic working principles
of the above scheme are explained in the following paragraphs.

Based on the instantaneous magnitude (Me
t ) and absolute phase error (φ e

t ) of
each sample in the training sequence, the self-regulating scheme performs one of
the following three actions:

Action (a) Sample Deletion: Samples are deleted without being used in the learning
process.
Action (b) Sample Learning: Learning the sample which includes growing/pruning
the hidden neurons or updating the existing network parameters.
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Action (c) Sample Reserve: The samples are pushed to the rear end of the training
sequence and can be used at a later stage.

The concepts behind these actions representing each block in Fig. 8.3 are de-
scribed in detail below:
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Fig. 8.3 Schematic Diagram of CSRAN and Its Self-regulating Learning Scheme

Action (a) Sample Deletion: When both the instantaneous magnitude error (Me
t )

(given in Eq. (8.19)) and the absolute phase error (φ e
t ) (given in Eq. (8.20)) of a

sample are lesser than their fixed ( deletion) thresholds, the self-regulating scheme
deletes the sample without using it in the learning process. The sample deletion
criterion is given by

Me
t ≤ EM

d AND φ e
t ≤ Eφ

d (8.22)

where EM
d is the sample deletion magnitude threshold and Eφ

d is the sample deletion
phase threshold. The ‘sample deletion’ criterion removes similar samples from the
training sequence. Hence, it avoids over-training and also reduces the computational
effort.

Action (b) Sample Learning: In a self-regulating scheme, the learning process
involves the allocation of new hidden neurons (‘growing’) or updating of network
parameters (‘update’) and removing redundant neurons (‘pruning’).

Neuron Growing Criterion: As training samples arrive sequentially, some of the
selected samples will be used to ‘add’ a new hidden neuron based on the following
criterion
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Me
t ≥ EM

a OR φ e
t ≥ Eφ

a (8.23)

where EM
a is the neuron growing magnitude threshold and Eφ

a is the neuron growing
phase threshold.

It should be pointed out here that the neuron growing thresholds (EM
a , Eφ

a ) are
not kept constant. They are adaptively varied based on the current residual error as
given below

IF Me
t ≥ EM

a THEN EM
a := δEM

a − (1− δ )Me
t

IF φ e
t ≥ Eφ

a THEN Eφ
a := δEφ

a − (1− δ )φ e
t (8.24)

where the slope parameter (δ ) controls the rate at which the neuron growing thresh-
olds (EM

a , Eφ
a ) are regulated and hence influence the neuron growth. In general, the

slope parameter is initialized close to 1.
When a new hidden neuron (h+1) is added to the network, the parameters asso-

ciated with it are initialized as

vh+1 = et ; ch+1 = zt ; σσσh+1 = κ(zt − cnr) (8.25)

where nr is the nearest neuron, defined as that neuron with the smallest Euclidean
distance from the current sample. The scaling factor κ determines the overlap be-
tween the samples in the input space. As κ increases, the overlap between the re-
sponses of the hidden neurons also increases. Network Parameter Update Cri-
terion: If a new observation (zt ,yt ) arrives and the parameter update criterion is
satisfied then the parameters of the network are updated using a C-EKF [6]. The
parameter update criterion is given by

Me
t ≥ EM

l OR φ e
t ≥ Eφ

l (8.26)

where EM
l is the parameter update magnitude threshold and Eφ

l is the parameter

update phase threshold. The parameter update thresholds (EM
l , Eφ

l ) are also adapted
based on the residual error of the current sample as given below

IF Me
t ≥ EM

l THEN EM
l := δEM

l − (1− δ )Me
t

IF φ e
t ≥ Eφ

l THEN Eφ
l := δEφ

l − (1− δ )φ e
t (8.27)

where δ is a slope that controls the rate of self-adaptation of the parameter update
magnitude and phase thresholds. Usually, δ is set close to 1.

The main advantage of the self-regulating thresholds is that it helps in selecting
appropriate samples to add neuron or update the network parameters, i.e., CSRAN
algorithm uses sample with higher error to either add a new hidden neuron or update
the network parameters first and the remaining samples later for fine tuning the
network parameters.

The network parameters (αααt = [c1, · · · ,ch,
bmσ1, · · · ,σσσh,v1, · · · ,vh]

T ) are updated for the current sample (t) as
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ααα t = αααt−1 +Gt et (8.28)

where et is the residual error and Gt is complex-valued Kalman gain matrix given
by

Gt = Pt−1at
[
R+ atH

Pt−1 at
]−1

(8.29)

where at is the complex-valued gradient vector, R = r0In×n is the variance of the
measurement noise and Pt is the error covariance matrix.

The gradient vector (at) (set of partial derivatives of output with respect to ααα t) is
defined as

at =

⎡

⎢⎢
⎣

∂ ŷt
1

∂c11
· · · ∂ ŷt

1
∂chm

∂ ŷt
1

∂σ11
· · · ∂ ŷt

1
∂σhm

∂ ŷt
1

∂v11
· · · ∂ ŷt

1
∂vnh

...
...

...
...

...
...

∂ ŷt
n

∂c11
· · · ∂ ŷt

n
∂chm

∂ ŷt
n

∂σ11
· · · ∂ ŷt

n
∂σhm

∂ ŷt
n

∂v11
· · · ∂ ŷt

n
∂vnh

⎤

⎥⎥
⎦

T

where,

∂ ŷt
l

∂c jk
= vl j u j

h σ jk; u j
h = − z j

h.tanh(σσσT
j (z

t − c j))

∂ ŷt
l

∂σ jk
= vl j u j

h (z
t
k − c jk)

∂ ŷt
l

∂vl j
= z j

h; k = 1, · · · ,m; j = 1, · · · ,h; l = 1, · · · ,n (8.30)

uj
h is the conjugate of the derivative of the jth hidden neuron output and z j

h is the
conjugate of the jth hidden neuron output. The error covariance matrix is updated
as

Pt =
[
I −GtatH

]
Pt−1 + qI (8.31)

where q is a process noise covariance usually set close to 0 and I is an identity matrix
of dimension h(2m+ n)× h(2m+n).

Neuron Pruning Criterion: Similar to CMRAN, the proposed CSRAN algorithm
also uses the contribution of the hidden neuron to delete superfluous neurons. The
contribution of the jth hidden neuron is defined as

rk =
zk

h

max j z j
h

(8.32)

If ‖rk‖ < Ep AND arg(rk) < Ep for Nw consecutive samples, then the kth neuron
is superfluous and is removed from the network. Here, Ep is the neuron pruning
threshold. If the neuron pruning threshold (Ep) is set at a lower value, then pruning
seldom occurs and all the added neurons will remain in the network irrespective
of their contribution to the network output. On the other hand, higher value of Ep
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results in frequent pruning, resulting in oscillations and insufficient neurons to ap-
proximate the function.

When a neuron is added to the network, the error covariance matrix (Pt ) is up-
dated according to:

Pt =

[
Pt−1 0

0 p0I(2m+n)×(2m+n)

]
(8.33)

where p0 is the estimated uncertainty of the initial parameters. On the other hand,
when a neuron (say, kth neuron) is removed from the network, the dimensionality of
the error covariance matrix is reduced by removing the respective rows and columns
of the Pt matrix, i.e. remove (k− 1)(2m+ n)+ 1 to k(2m+ n) rows and columns of
the Pt matrix. The values of p0, q and r0 in the C-EKF are usually set close to 1.

Action (c) Sample Reserve: If the current observation (zt ,yt) does not satisfy the
sample deletion criterion or the neuron growing criterion or the parameter update
criterion, then the sample is pushed to the rear end of the data stream for a later use.
Due to the self-adaptive nature of the thresholds, these reserve samples may also
contain some useful information and will be used later in the learning process.

These three actions of self-regulating learning are repeated for all the samples in
the training sequence.

CSRAN algorithm is summarised and given below in Pseudocode 5form.

8.5.3 Guidelines for the Selection of the Self-regulatory
Thresholds

In this section, we explain the influence of the fixed and self-regulatory thresholds
on the approximation ability of CSRAN and provide some guidelines for their ini-
tialization. It should be noted that the instantaneous sample magnitude error (Me

t )
and the normalized absolute sample phase error (φ e

t ) are defined such that their val-
ues are in the range [0,2]. The self-regulatory learning algorithm works by dividing
the sample error region into three different sub-regions, namely the sample deleting
region, the network parameters updating region and the neuron addition region as
shown in Fig. 8.4.

When the sample magnitude and phase errors fall within the sample deleting
region, the corresponding sample is deleted from the training sequence without be-
ing used in the learning process. The area of this region depends on the expected
approximation accuracy and are controlled by the fixed sample deleting magnitude
(EM

d ) and phase (Eφ
d ) thresholds. Increasing EM

d and Eφ
d above the desired accuracy

results in deletion of many samples from the training sequence. But, the resultant
network may not satisfy the desired performance. Hence, they are fixed at the ex-
pected accuracy level.

The basic principle behind the CSRAN algorithm is that the sample with a higher
residual error contains significant information and must be used first to add a new
hidden neuron. The significant information is identified using the self-regulatory
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Pseudocode 5 Pseudo code for CSRAN Algorithm.
Input: Present the training data one-by-one to the network

from the data stream.
Output: Size of the network, parameters of the network.

START
For each input (zt) compute the network output (ŷt)

ŷt
l = ∑h

j=1 vl j sech
[
σσσT

j (z
t − c j)

]
; l = 1, · · · n;

Using residual error (et = yt − ŷt),
estimate Me

t and φ e
t using Eqs. (8.19) and (8.20).

Sample Deletion: If Me
t ≤ EM

d AND φ e
t ≤ Eφ

d
then delete the sample from the sequence without learning.

Sample Learning: During learning, either a hidden neuron is
added or pruned or the network parameters are updated.
Neuron Growing Criterion: If Me

t ≥ EM
a OR φ e

t ≥ Eφ
a ,

then allocate new hidden neuron with vh+1 = et,ch+1 = zt,
and σσσh+1 = κ (zt − cnr). Also, update the neuron growing
thresholds using Eq. (8.24) and
increase the dimensionality of Pt.
Parameter Update Criterion: If Me

t ≥ EM
l OR φ e

t ≥ Eφ
l

then update CSRAN network parameters using
the C-EKF. Also, update the learning thresholds
using Eq. (8.27).
Neuron Pruning Criterion: Identify the non-contributing
neuron for Nw consecutive samples and remove it.
The dimensionality of Pt is reduced by removing
the rows/columns corresponding to the pruned neuron.

Sample Reserve: When a sample does not satisfy deletion,
growing and update criteria, it is pushed to the rear end
of data stream.
Continue steps 1 to 5 until there are no more samples in the
training data stream.

END

thresholds EM
a and Eφ

a . If these thresholds are chosen closer to the maximum resid-
ual error, then very few neurons will be added to the network. Such a network will
not approximate the function properly. If a lower value is chosen, the resultant net-
work may contain many neurons with poor generalization ability. Hence, the range
for the growing control parameters can be selected in the interval of 50%− 95% of
the maximum residual error. Since the growing thresholds are self-regulatory, they
will be decreasing based on the current sample error. Hence, the lower limit on the
growing thresholds can be taken as the initial value of the learning thresholds.

Intuitively, one can see that the learning thresholds (EM
l and Eφ

l ) can be cho-
sen lower than the growing thresholds. The learning thresholds are initialized at a
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value that is at most equal to the lowest value of the growing thresholds after self-
regulation, i.e., between 10%-40% of the maximum error values. If these thresholds
are chosen closer to 50% of maximum residual error, then very few samples will be
used for adapting the network parameters and most of the samples will be pushed
to the end of the training sequence. The resultant network will not approximate the
function accurately. If a lower value is chosen, then all samples will be used in
updating the network parameters with-out altering the training sequence. Learning
similar samples repeatedly results in over-training, thereby, affecting the generaliza-
tion ability of the network. Similar to the growing thresholds, the learning thresholds
are also self-regulatory in nature. As the learning thresholds undergo self-regulation,
the lowest values these thresholds can reach will be their respective sample deleting
control parameters.

The process of self-regulation is controlled by the slope parameter δ . The slope
parameter controls the rate at which the self-regulatory thresholds reach its min-
imum. In general, the slope parameter is initialized close to 1. Larger the slope,
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Fig. 8.5 Sample magnitude error and self-regulating magnitude growing and update thresh-
olds history for SCFAP-I.

slower will be the rate at which the neuron growing thresholds will reach their min-
imum value and hence this will result in fewer neurons being added to the network.

Another important parameter which remove the non-contributing neurons is the
neuron pruning control parameter (Ep). Similar to CMRAN, the CSRAN algorithm
removes non-contributing neurons for Nw consecutive samples. The only difference
is that the CMRAN uses the neuron’s contribution in real and imaginary part for
deletion, where as the CSRAN uses the contribution in magnitude and phase. If the
pruning control parameter (Ep) is set at a higher value, pruning seldom occurs, and
all the added neurons will remain in the network irrespective of their contribution to
the network output. This might result in a larger network structure. Contrarily, lower
value of Ep results in frequent pruning, resulting in oscillations and insufficient
neurons to the network.

It is to be noted that, for the CSRAN, all thresholds except the growing (EM
a and

Eφ
a ) and learning control parameters (EM

l and Eφ
l ) are fixed for all problems.
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8.5.4 Illustration of the Self-regulatory Learning Principles
Using a Complex-valued Function Approximation Problem

Here, we use the Synthetic Complex Function Approximation Problem I (SCFAP-
I) given in Chapter 5 to illustrate the key features (especially the self-regulating
part) of CSRAN. The thresholds in CSRAN are initialized as: Magnitude thresholds:
{EM

d = 0.002, EM
a = 0.9; EM

l = 0.2}; Phase thresholds: {Eφ
d = 0.002; Eφ

a = 1.8;

Eφ
l = 0.4}, and other parameters: {δ = 0.9995; Ep = 0.08; Nw = 50; κ = 0.83;

p0 = 1.05 and q = 0.005}.
Fig. 8.5 shows the sample magnitude error (Me

t ), the neuron growing magnitude
threshold (EM

a ) and the parameter update magnitude threshold (EM
l ) for the 3000

uniformly sampled training data. From the figure, we can see that the sample mag-
nitude error is always lesser than 0.6 (< EM

a ) and hence no neurons are added based
on the magnitude error (i.e., no regulation in the neuron growing magnitude thresh-
old). The influence of Me

t in the adaptation of the network parameters can be seen
from the history of the EM

l (shown as dashed line in Fig.8.5). Few sample points
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used for the network parameter update are highlighted (using the symbol ‘�’ in Fig.
8.5). Since Me

t is greater than EM
l at these points, the samples are used for param-

eter updates and the EM
l is adapted. After approximately 300 points, EM

l reaches a
minimum threshold value (EM

d ).

The absolute phase error (φ e
t ), the neuron growth (Eφ

a ) and the parameter update
(Eφ

l ) thresholds are shown in Fig. 8.6. From the figure, we can observe that the φ e
t at

some sample instants (highlighted using symbol ‘�’) is greater than Eφ
a and hence

new hidden neurons are added at these sample instants. Also, the threshold (Eφ
a ) is

adapted based on the error as shown using the ‘dash-dot’ line. From Figs. 8.5 and
8.6, we can observe that the magnitude and absolute phase errors for the first 179
sample instants are lower than the neuron growing thresholds (EM

a and Eφ
a ) and are

either used in network parameter update or shifted to the rear-end of the training
data stream.
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Fig. 8.7 A snapshot of magnitude error, absolute phase error, and self-regulating magni-
tude/phase update thresholds history between 50−100 samples.
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In order to clearly highlight the ‘sample learning’ and the ‘sample reserve’ mech-
anisms, we present a snap-shot of the sample instants 50−100 in Fig. 8.7. From the
snap-shot, we can see that the parameter update magnitude and phase thresholds are
self-regulating, if and only if Me

t is greater than EM
l or φ e

t is greater than Eφ
l . Oth-

erwise, the current sample is skipped from learning and is pushed to the rear-end of
the training sequence. For example, at sample instants 57− 59, Me

t is greater than
EM

l and hence these samples are used to update the network parameters. Also, EM
l

is self-adapted using the Eq. (8.27) at these sample instants. At the sample point 90,
even though Me

t is less than EM
l , the sample is used for a network parameter update

as φ e
t > Eφ

l . At samples 78−79 (marked with ‘�’ symbol in Fig. 8.7), both Me
t and

φ e
t are lower than their respective thresholds and are therefore, shifted to the rear

end of the training data sequence.
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Fig. 8.8 A snapshot of magnitude error, phase error, and CSRAN magnitude/phase delete
thresholds between 1100-1120 samples.

Next, we present another snap-shot between sample instants 1100−1120 in Fig.
8.8 to illustrate the ‘sample deletion’ mechanism. From Fig. 8.8, we can see that
Me

t and φ e
t are lower than their deletion thresholds at sample points marked with

‘♦’ symbol. These samples are deleted without being used for updating the network
parameters. Even though Me

t in sample points 1106, and 1118 are smaller than EM
d ,
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they are used in the parameter update as φ e
t at these sample instants are greater than

Eφ
d .

The neuron history for samples that are used for learning is shown in Fig. 8.9.
Out of the 3000 training samples, only 1726 samples are used for the learning pro-
cess, 230 samples are deleted from the training set and 1044 samples are shifted
to the rear-end of the training data stream. Out of these 1044 samples, only 197
samples are used for fine tuning the network parameters and the remaining samples
are deleted from the sequence. At the end of the training stage, only 1923 samples
are used in the learning process and 1077 samples are deleted from the training
sequence.
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Fig. 8.9 Neuron history for SCFAP-I.

Thus, one can clearly see the sel-regulating mechanism of CSRAN from the
above discussion and in the next section we present a detailed performance eval-
uation of CSRAN.
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8.6 Performance Study: Complex-valued Function
Approximation Problems

8.6.1 Complex-valued Function Approximation Problem I

First, we present the performance of CSRAN using the CFAP-I defined in the previ-
ous section and compare it with existing complex-valued learning algorithm in the
literature. The results for CMRAN, FC-MLP, CRBF and FC-RBF are reproduced
from [5, 12].

Table 8.1 presents the training and testing performance measures (JMe and Φe),
number of neurons (h) and training time used for sequential and batch learning al-
gorithms considered in this study. From the table, it can be seen that CSRAN algo-
rithm outperforms the existing sequential learning CMRAN. With only 12 neurons,
the magnitude and phase errors are at least 20 times lower than that of CMRAN
results. Due to the self-regulating scheme, CSRAN uses only 1923 samples of the
total 3000 samples, and hence the computational effort is much lower than that of
the CMRAN algorithm.

From the table, one can also note that CSRAN outperforms CRBF and C-ELM,
whereas the performance of FC-RBF is similar to that of CSRAN. Since CSRAN
is a sequential learning algorithm with a self-regulating scheme, it requires lesser
number of neurons and computational effort. Also, it can be inferred from the table
that the C-ELM, being analytical, requires the lowest computation time to approxi-
mate the function. However, its magnitude and phase errors are significantly higher
than that of CSRAN algorithm.

8.6.2 Complex-valued Function Approximation Problem II

We consider another synthetic Complex Function Approximation Problem II
(CFAP-II) as defined in Chapter 5. Similar to CFAP-I, training samples are pre-
sented for 5000 epochs for the batch learning FC-MLP, CRBF, and FC-RBF algo-
rithms. The best learning rate, initial weights and number of neurons for
FC-MLP, CRBF, FC-RBF are chosen as discussed in [12, 5]. The growing and

Table 8.1 Performance Comparison for CFAP-I

Nature of Algorithm Time h Training Error Testing Error
Algorithm (sec.) JMe Φe JMe Φe

(deg.) (deg.)
Sequential CSRAN 31 12 0.003 0.7 0.003 0.31

CMRAN 84 27 0.068 12.6 0.07 15.81

Batch CRBF 5020 20 0.59 45.3 0.62 47.15
C-ELM 0.22 20 0.69 34.9 0.704 36.15
FC-RBF 1341 15 0.0019 0.3 0.003 0.34
FC-MLP 1423 15 0.005 0.4 0.006 0.61
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update thresholds of the proposed CSRAN have been initialized as: Magnitude
thresholds: {EM

a = 0.9; EM
l = 0.2} and Phase thresholds: {Eφ

a = 1.8; Eφ
l = 0.4}.

Figure 8.10 shows the neuron growth history for CSRAN as the samples are
learnt sequentially from the training data. From the figure, we can see that 2 hid-
den neurons are added first and two additional neurons are added from the samples
pushed to the rear end of data stream.
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Fig. 8.10 Neuron history for CFAP-II.

Out of the 3000 randomly chosen samples, only 1512 samples are used in the
learning process, 34 samples are deleted from the training set and the remaining
1454 samples are shifted to the rear-end of the data stream. The 1454 samples are
used again to fine tune the network parameters. Here, only 338 samples are used for
fine tuning the network parameters and 2 samples are used for adding new hidden
neurons. The rest 1114 are deleted from the training sequence. At the end of the
training stage, only 1852 samples are used for training and 1148 samples are deleted
from the training sequence.

Table 8.2 gives the quantitative performance comparison of the proposed CSRAN
with CMRAN and also other well-known batch learning complex-valued learning
algorithms. For CFAP-II, the proposed CSRAN algorithm uses only 1852 samples
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Table 8.2 Performance Comparison for CFAP-II

Nature of Algo. Time h Training Testing
Algorithm (sec) JMe Φe JMe Φe

Sequential CSRAN 18 4 0.008 2.2 0.02 2.8
CMRAN 52 14 0.0257 2.2 0.5 19

Batch CRBF 9686 15 0.1465 51.2 0.2 52
C-ELM 0.2 15 0.1917 90 0.2 88.2
FC-RBF 1909 20 0.0196 15.9 0.05 15.8
FC-MLP 1857 15 0.029 15.7 0.05 15.6

out of the 3000 training samples. Here CSRAN requires only 4 neurons to approx-
imate the function, whereas the existing CMRAN requires 14 neurons to approxi-
mate the function. The training and generalization performances of CSRAN clearly
indicate that it outperforms the CMRAN and the other well-known batch learning
algorithms.

Next, we compare the performance of the proposed CSRAN algorithm with the
well known batch learning algorithms available in literature, viz., the C-ELM, the
I-ELM, the FC-RBF and the FC-MLP. Comparing the performance of CSRAN with
that of the other batch learning algorithms, in general, the average absolute phase
error of CSRAN algorithm is at least 5 times smaller than the other well-known
algorithms. Next, we evaluate the performance of CSRAN on two real world prob-
lems.

8.6.3 QAM Channel Equalization Problem

The performance of CSRAN equalizer is evaluated in comparison to the various
complex-valued neural equalizers are evaluated using the magnitude error (JMe), the
average absolute phase error (Φe) and the symbol-error-rate (SER). The thresholds
of CSRAN are initialized as: {EM

a = 1.8, Eφ
a = 1.8}; {EM

l = 0.2, Eφ
l = 0.2}; and

the other parameters are same as in CFAP-I. For the batch learning networks used
in the study, the training sample set is presented 1000 times repeatedly. Finally, the
results of all these algorithms are also compared with the Bayesian equalizer, which
is optimal (the best result one can achieve) [2].

From the results, we find that there are no reserve samples. Out of 5000 samples,
4710 samples are used for learning and the remaining 290 samples are deleted.
For QAM problem, CSRAN used 7 neurons to capture the nonlinear relationship
between the channel output and the transmitted symbol.

Table 8.3 summarizes the training/testing performances of the different complex-
valued neural equalizers, the number of hidden neurons (h) used and the training
time. From the table, it can be seen that JMe and Φe of CSRAN is lower than all the
other equalizers chosen for the comparison, except that I-ELM has lower magnitude
error than CSRAN. However, I-ELM requires 100 neurons to achieve this magnitude
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Table 8.3 Performance Comparison for the Nonlinear Non-Minimum Complex Phase Equal-
ization Problem at 20dB

Nature of Algorithm Time h Training Testing
(sec) JMe Φe JMe Φe

(deg.) (deg.)
Sequential CSRAN 45 7 0.2 6.4 0.38 7.09

CMRAN 555 40 0.4 17.47 0.43 21.17

Batch CRBF 8107 15 0.6 35.19 0.6 39.86
C-ELM 0.36 15 0.6 34.14 0.58 35.11
FC-RBF 3840 15 0.4 31.17 0.41 14.69
FC-MLP 3862 15 0.2 6.47 0.72 31.1

error, whereas CSRAN requires 7 neurons to obtain a comparable magnitude error
and a minimum phase error. Fig. 8.11 gives the SER plot for the different equalizers.
It can be observed that CSRAN has a lower SER at a SNR of 20dB. However, at
lower SNR, the effects of all the equalizers are almost similar. CSRAN equalizer
achieves an SER performance of −3 (approximately) at 17dB SNR whereas the
optimal Bayesian equalizer achieves the same SER performance at 15dB. Other
complex-valued neural equalizers attain the same performance at a higher SNR.

8.6.4 Adaptive Beam Forming Problem

The results for the CRBF, C-ELM, FC-RBF and FC-MLP beam-formers are re-
produced from [12]. The self-regulating thresholds of CSRAN for the adaptive
beam-forming problem are initialized as: {EM

a = 1.0, Eφ
a = 1.5} and {EM

l = 0.1,

Eφ
l = 0.1}. The other parameters are same as in CFAP-I.

CMRAN [13] uses 32 neurons to perform beam-forming while CSRAN requires
only 6 neurons to perform beam-forming. Moreover, CSRAN beam-former uses
only 234 samples in the learning process. The gains for the signals and interference
nulls for the various beam-formers are summarized in Table 8.4. From the table,
it can be observed that CSRAN beam-former outperforms all the other complex-
valued beam-formers and its performance is also slightly better than the conven-
tional optimal matrix method [14].

As the orthogonal decision boundaries of a complex-valued network makes them
well suited for solving real-valued classification problems. Hence, we also study the
classification performance of CSRAN using real-valued benchmark problems from
the UCI machine learning repository [15].
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Fig. 8.11 Error Probability Curve for Various Complex-valued Neural Equalizers

Table 8.4 Performance Comparison of Various Complex-valued Neural Network Based
Beam-formers

DOAa Gain (dB)
CSRAN CMRAN CRBF C-ELM FC-RBF FC-MLP MMb

Beam-1: −30o -13.83 -16.84 -17.94 -18.05 -16.99 -13.98 -13.98
Null-1: −15o -59.56 -49.77 -27.53 -48.28 -58.45 -53.99 -57.02
Null-2: 0o -57.37 -49.6 -27 -41.64 -57.23 -53.99 -57
Null-3: 15o -57.93 -48.18 -28.33 -47.5 -56.32 -53.99 -57.02
Beam-2: 30o -13.93 -17.52 -17.92 -16.68 -17.00 -13.98 -13.98

a Direction of Arrival (DoA)
b Matrix Method (MM)
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Table 8.5 Performance comparison for the multi-category classification problems.

Problem Classifier Learning No. of Training Training η Testing η
Domain Model neurons time (Sec.) ηo ηa ηo ηa

Real SVM 127 721 94.28 94.28 91.38 91.38
ELM 49 0.25 92.86 92.86 90.23 90.23

Image valued SRAN 48 22 97.62 97.62 93 93
Segmentation Complex FC-RBF 38 421 96.19 96.19 92.33 92.33

valued BB-CELM 65 0.3 96.19 96.19 92.5 92.5
CSRAN 54 339 92 92 88 88

Real- SVM 340 550 79.48 79.82 70.62 68.51
ELM 150 0.4 85.14 85.09 77.01 77.59

Vehicle valued SRAN 113 55 91.45 90.25 75.12 76.86
Classification Complex FC-RBF 70 678 88.67 88.88 77.01 77.46

valued BB-CELM 100 0.11 90.33 90.16 80.3 80.4
CSRAN 80 352 84.19 84.24 79.15 79.16

Real- SVM 183 320 86.24 93.23 70.47 75.61
ELM 80 0.05 92.66 96.34 81.31 87.43

Glass valued SRAN 59 28 94.49 96.28 86.2 80.95
Identification Complex FC-RBF 90 452 95.6 95.54 83.76 80.95

valued BB-CELM 70 0.08 93.58 82.92 88.16 81
CSRAN 80 452 87.16 93.67 83.5 78.09

8.7 Performance Study: Real-valued ClassificationProblems

Next, the performance of CSRAN is studied on 3 multi-category and 5 binary bench-
mark real-valued classification problems. In all these problems, the performance of
CSRAN is compared with the complex-valued FC-RBF, and BB-CELM classifiers.
In addition, performances are also compared with the real-valued SVM, ELM, and
SRAN classifiers. For the classification problems, the various self-regulating thresh-
olds of CSRAN are initialized as: {EM

a = 1.6, Eφ
a = 1.0}; {EM

l = 0.6, Eφ
l = 0.6}.

The performance results of CSRAN classifier on the three benchmark multi-
category classification problems are presented in Table 8.5. It can be observed from
the table that the performance of CSRAN classifier is comparable to those of the
other classifiers in all the three problems. It must be noted here that CSRAN has
been originally developed to solve function approximation problems, while SRAN,
FC-RBF and BB-CELM have been developed to solve classification problems. How-
ever, the performance of CSRAN can be further improved by developing the classi-
fier using the hinge loss error function defined in Eq. (6.16).

Next, the performance of CSRAN on the four binary benchmark classification
problems is presented in Table 8.6. From the results in the table, it can be observed
that the performance of CSRAN is almost similar to those of the other complex-
valued and best performing real-valued classifiers considered in this study.
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Table 8.6 Performance comparison on benchmark binary classification problems.

Problem Classifier Classifier K Training Training Testing
Domain Time (s) Efficiency Efficiency

(ηo) (ηa) (ηo) (ηa)

Liver SVM 141 0.0972 79.5 77.93 71.03 70.21(5)

Real-valued ELM 100 0.1685 88.5 87.72 72.41 71.41
disorders SRAN 91 3.38 92.5 91.8 66.9 65.8

Complex-valued FC-RBF 20 133 77.25 75.86 74.46 75.41
BB-CELM 15 0.06 77.5 75.69 75.17 74.64

CSRAN 20 38 71 72.41 67.59 69.24
PIMA SVM 221 0.205 77 74.71 77.45 76.33

Real-valued ELM 100 0.2942 84.3 82.64 76.63 75.25
data SRAN 97 12.24 89 87.35 78.53 74.9

Complex-valued FC-RBF 20 130.3 72 65.77 78.53 68.49
BB-CELM 10 0.15 76.5 74.77 78.8 77.31

CSRAN 20 64 75.5 73.13 77.99 76.73
Breast SVM 24 0.1118 98.67 98.76 96.6 97.06

Real-valued ELM 66 0.1442 100 100 96.35 96.5
cancer SRAN 7 0.17 98 97.5 96.87 97.3

Complex-valued FC-RBF 10 158.3 99 99.02 97.12 97.45
BB-CELM 15 0.06 94.33 94.39 92.69 91.78

CSRAN 20 60 98.67 98.57 96.08 96.86
Iono- SVM 43 0.0218 97 95.83 91.24 88.51

Real-valued ELM 32 0.0396 94 92.27 89.64 87.52
sphere SRAN 21 3.7 99 98.6 90.84 91.88

Complex-valued FC-RBF 10 186.2 98 97.83 89.64 88.01
BB-CELM 25 0.17 95 94.27 88.85 85.67

CSRAN 3 86 94 91.67 88.05 85.78
Heart SVM 42 0.038 87.14 86.69 75.5 75.1

Real-valued ELM 36 0.15 90 89.58 76.5 75.9
Disease SRAN 28 0.534 91.43 90.83 78.5 77.525

Complex-valued FC-RBF 20 45.6 94.29 94.17 78 77.78
BB-CELM 5 0.03 84.3 82.5 83 82.53

CSRAN 20 26 100 100 76.5 76.21

Hence, it can be inferred from the study that the performance of CSRAN is almost
similar to other complex-valued and real-valued classifiers used in the study.

8.8 Summary

To summarize, a sequential learning algorithm with a self-regulating scheme has
been developed in this chapter for a complex-valued resource allocation network.
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The self-regulating scheme uses both the explicit magnitude and phase thresholds
to control the ‘sample deletion’, ‘sample learning’ and ‘sample reserve’ mecha-
nisms. The sample learning includes growing/pruning the hidden neurons and up-
dating the network parameters using a complex-valued extended Kalman filter al-
gorithm. The self-regulating scheme in CSRAN helps in achieving better general-
ization performance with a compact network structure. A complex-valued synthetic
function approximation has been used to clearly describe the various key features of
CSRAN algorithm. The performance of CSRAN has been evaluated using two syn-
thetic complex-valued function approximation problems, a complex-valued QAM
channel equalization problem and an adaptive beam-forming problem. The results
indicate the superior performance of CSRAN algorithm. From a set of real-valued
benchmark classification problems, we have shown the decision making ability of
the proposed CSRAN.
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