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Abstract. In the present paper we compute the geometric minimum
mean square error for the vector linear estimation problem. We do this
by proving that the vector linear estimator that minimizes the mean
square error (MSE) also minimizes the geometric MSE.
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1 Introduction

The linear estimation of a random vector from another random vector, which,
at first sight, may seem to be a very particular case of vector linear estimation,
represents, in fact, a very general framework, which includes, as it will be shown
in the appendix, vector linear prediction, vector linear interpolation, multiple-
input multiple-output (MIMO) linear equalization and MIMO decision-feedback
equalization (DFE).

As we are dealing with random vectors, the definition of mean square error
(MSE) is not unique. Here we will consider two possible definitions, which will be
called MSE and geometric MSE (GMSE), respectively. We will name the former
simply MSE because it is the definition commonly used [1,2]. The latter was
introduced in [3] for MIMO DFE. The interest in using one or the other error
measure depends on the problem considered.

In this paper we will prove that the vector linear estimator that minimizes
the MSE also minimizes the GMSE. This fact was proved in [4] for MIMO
DFE, and it was assumed true, but not proved, in [5] for MIMO linear
prediction.
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2 General Framework

2.1 Vector Linear Estimation Problem Considered

Let x and y be two complex random vectors of dimensions N and M , respec-
tively. We assume that the correlation matrix of y is invertible, and we estimate
x from y in the following manner:

x̂ = Wy, (1)

where W ∈ �N×M and �N×M is the set of all N × M complex matrices. We
denote by e the error vector x− x̂, and by R its correlation matrix, that is,

R = E [ee∗]
= E [(x−Wy) (x∗ − y∗W ∗)]
= E [xx∗]− E [xy∗]W ∗ −WE [yx∗] +WE [yy∗]W ∗, (2)

where ∗ indicates complex conjugate transpose. MSE and GMSE are defined as
the trace and the determinant of R, respectively.

2.2 Principle of Orthogonality

We now compute the matrices W and R associated with the linear estimator x̂
that satisfies the following condition that is called principle of orthogonality:

0N×M = E [ey∗] , (3)

where 0N×M is the N × M zero matrix. We denote these two matrices by W0

and R0. From (3) we have

0N×M = E [xy∗]−W0E [yy∗] , (4)

and consequently,
W0 = E [xy∗] (E [yy∗])−1

. (5)

Combining (2) and (4) we obtain

R0 = E [xx∗]−W0E [yx∗] , (6)

and applying (5) yields

R0 = E [xx∗]− E [xy∗] (E [yy∗])−1E [yx∗] . (7)

Observe that (4) and (6) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

R0 = (IN −W0)

(
E [xx∗]
E [yx∗]

)

,

0N×M = (IN −W0)

(
E [xy∗]
E [yy∗]

)

,
(8)
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where IN is the N × N identity matrix. The system of two equations (8) is
equivalent to the following single equation:

(R0 0N×M ) = (IN −W0) E[zz
∗], (9)

with z =

(
x
y

)

. As in the theory of linear prediction [1], we can call equations

(4) and (9) normal equation and augmented normal equation, respectively.

2.3 Relation between R and R0

Since R and R0 are Hermitian1, S = R−R0 is Hermitian. In this subsection we
prove that S is also positive semidefinite. Using (2) and (7) we have

S = E [xy∗] (E [yy∗])−1E [yx∗]− E [xy∗]W ∗ −WE [yx∗] +WE [yy∗]W ∗.

Thus
S = BE [yy∗]B∗, (10)

with
B = E [xy∗] (E [yy∗])−1 −W.

From the expression given in (10) for the matrix S, we can now show that S is
positive semidefinite:

v∗Sv = E [v∗Byy∗B∗v] = E
[|v∗By|2] ≥ 0 ∀v ∈ �N×1.

2.4 MMSE

If A is an N × N diagonalizable matrix, then tr(A) =
∑N

k=1 λk(A), where tr
denotes trace and λ1(A), . . . , λN (A) are the eigenvalues of A counted with their
multiplicities. Since S is a Hermitian positive semidefinite matrix, S is diago-
nalizable and all its eigenvalues are non-negative, and consequently, tr(S) ≥ 0.
Therefore using that tr(S) = tr(R)− tr(R0) we conclude that

tr(R) ≥ tr(R0). (11)

Thus we have proved that the minimum MSE (MMSE) is

MMSE = tr (R0) .

2.5 Geometric MMSE

In this subsection we assume that the Hermitian positive semidefinite matrix R0

is invertible (or equivalently, positive definite) and we show that (11) is also true
when trace is replaced by determinant.

1 Any correlation matrix is Hermitian and positive semidefinite.
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Let R0 = V diag (λ1 (R0) , . . . , λN (R0))V
∗ be an eigenvalue decomposition of

the Hermitian matrix R0. Since R0 is positive definite, all its eigenvalues are
positive, and consequently, we can define the following two Hermitian matrices:

R
1
2
0 := V diag

(
(λ1 (R0))

1
2 , . . . , (λN (R0))

1
2

)
V ∗,

and

R
− 1

2
0 := V diag

(
(λ1 (R0))

− 1
2 , . . . , (λN (R0))

− 1
2

)
V ∗ =

(
R

1
2
0

)−1

.

Hence the determinant of the matrix R can be expressed as

det(R) = det (R0 + S)

= det
(
R

1
2
0 (R0 + S)R

− 1
2

0

)

= det
(
R0 +R

1
2
0 SR

− 1
2

0

)

= det
(
R0

(
IN +R

− 1
2

0 SR
− 1

2
0

))

= det (R0) det

(

IN +R
− 1

2
0 S

(
R

− 1
2

0

)∗)
.

Therefore if R
− 1

2
0 S

(
R

− 1
2

0

)∗
= UDU∗ is an eigenvalue decomposition of the

Hermitian matrix R
− 1

2
0 S

(
R

− 1
2

0

)∗
, then

det(R)

det(R0)
= det (IN + UDU∗)

= det (UU∗ + UDU∗)
= det (U(IN +D)U∗)
= det (IN +D)

=

N∏

k=1

(

1 + λk

(

R
− 1

2
0 S

(
R

− 1
2

0

)∗))
. (12)

Since S is positive semidefinite, R
− 1

2
0 S

(
R

− 1
2

0

)∗
is also positive semidefinite:

v∗R− 1
2

0 S
(
R

− 1
2

0

)∗
v =

((
R

− 1
2

0

)∗
v

)∗
S
(
R

− 1
2

0

)∗
v ≥ 0 ∀v ∈ �N×1.

Consequently, all the eigenvalues of R
− 1

2
0 S

(
R

− 1
2

0

)∗
are non-negative, and from

(12) we obtain
det(R)

det (R0)
≥ 1.

Finally, since det (R0) =
∏N

k=1 λk(R0) > 0 we conclude that

det(R) ≥ det (R0) .
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Thus we have proved that the geometric MMSE (GMMSE) is

GMMSE = det (R0) .
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Appendix A: Some Specific Cases

A.1 Vector Linear Interpolation and Prediction

Consider m, d ∈ �, with 1 ≤ d ≤ m. Let {xn;n ∈ �} be a complex N -
dimensional random process. We estimate xd from x1, . . . ,xd−1,xd+1, . . . ,xm

in the following manner:

x̂d =
∑

1≤k≤m
k �=d

Wkxk, (13)

where Wk ∈ �N×N .
The estimator given in (13) is called linear interpolator when 1 < d < m,

forward linear predictor when d = m, and backward linear predictor when d = 1.
The estimation scheme (13) can be obtained as a particular case of (1) by

taking: ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂ = x̂d,

y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1

...
xd−1

xd+1

...
xm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

W = (W1 . . . Wd−1 Wd+1 . . . Wm) .

A.2 Vector Wiener Filtering

Let {xn;n ∈ �} and {yn;n ∈ �} be two complex vector random processes
of dimensions N and M , respectively. Given m ∈ � we estimate xn from
yn,yn−1, . . . ,yn−m+1 in the following manner:

x̂n =
m∑

k=1

Wkyn−k+1, (14)

where Wk ∈ �N×M .
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The filter given in (14) is called the vector Wiener filter when it minimizes
the MSE. We have proved in this paper that the vector Wiener filter can also
be defined as the filter that minimizes the GMSE.

The estimation scheme (14) can be obtained as a particular case of (1) by
taking:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x̂ = x̂n,

y =

⎛

⎜
⎝

yn

...
yn−m+1

⎞

⎟
⎠ ,

W = (W1 . . . Wm) .

Observe that (1) can also be obtained as a particular case of (14) by taking:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂n = x̂,

m = 1,

W1 = W,

yn = y.

That is, the estimation schemes (1) and (14) are equivalent.

A.3 MIMO DFE

We consider a MIMO communication system given by

yn =

p∑

k=0

Hkxn−k + sn,

where p is a non-negative integer, Hk ∈ �M×N , the input {xn;n ∈ �} is a
discrete complex vector random process of dimension N , and the noise {sn;n ∈
�} is a complex vector random process of dimension M .

We estimate xn−d from m output vectors yn,yn−1, . . . ,yn−m+1, and l input
vectors xn−1−d,xn−2−d, . . . ,xn−l−d in the following manner:

x̂n−d =
m∑

k=1

Wkyn−k+1 +
l∑

k=1

Vkxn−k−d, (15)

where Wk ∈ �N×M , Vk ∈ �N×N , d is the decision delay, and m, l ∈ � should
satisfy d+ l + 1 = m+ p.

The estimator given in (15) is called MIMO decision-feedback equalizer except
when Vk = 0 with 1 ≤ k ≤ l. In that other case it is called MIMO linear equalizer.
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The estimation scheme (15) can be obtained as a particular case of (1) by
taking: ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂ = x̂n−d,

y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yn

...
yn−m+1

xn−1−d

...
xn−l−d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

W = (W1 . . . Wm V1 . . . Vl) .
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