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Abstract. Lately, energy efficiency (EE) in mobile communications is re-
ceiving growing attention as its increasing energy consumption raises con-
cern over climate effects. As a stepping stone to improve the situation,
we provide some analytical tools for optimising the EE of a base station
through power control, focusing on elastic traffic in the downlink scenario.
Under certain assumptions, the problem is formulated such that any rate
maximisation algorithm can be incorporated to achieve the optimum EE.
Furthermore, when formulated as a function of one sum power variable,
optimality is illustrated graphically and Pareto optimality is discussed. Fi-
nally, an EE function for a base station in a cellular network is proposed
that captures essential factors of power consumption.

Keywords: energy efficiency, optimisation, cellular network, mobile
communications.

1 Introduction

Following the increasing popularity of mobile cellular communications world-
wide, its rising energy consumption has started to draw the attention of both
regulatory bodies and network operators. It is not only a concern due to opera-
tional costs, but also due to future energy availability and environmental preser-
vation. Currently, about 0.2% of the global CO2 emissions are contributed by
the mobile telecommunication industry [1]. Energy efficiency (EE) will become
an inevitable concern in network design and architecture. Due to restrictions on
power supply on mobile units, their EE is highly optimised to provide customer
satisfaction. However, the power consumption of base stations (BS), which con-
stitutes the major portion of a cellular network [2,3], has been neglected until
lately [4]. Without considering users’ phones, the power consumption of a typical
mobile communications network is estimated to be about 40 MW [5].

One of the first steps for enhancing EE is to adequately model the communi-
cation system and measure its EE. The accurate evaluation of the EE requires
the operational power of the entire access network at different levels to be taken
into account [6]. However, its prohibitive complexity makes idealisation unavoid-
able. There is much research done in EE optimisation for specific system models.
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Algorithms to achieve EE in OFDM systems and frequency-selective channels
were presented in [7] and [8], respectively. Game theory was applied in [9] to
analyse the EE of CDMA systems. In [10], the technique of switching between
SIMO and MIMO to achieve EE in the uplink was investigated.

Our contribution is a framework that provides solutions to a general system
model. In this work, we provide some general analytical tools and insights into
optimising the EE at the BS in a cell of a network through power control,
especially with downlink data transfer at the link and network level in mind.
Nevertheless, the general results presented here can be adapted to include the
uplink as well. Furthermore, we explore the case of elastic traffic, where the
delay constraints are relaxed. This applies especially to data transfer through
the Internet, which is increasingly being accessed through mobile devices [11].

In Section 2 we discuss the EE metric in a general sense. We also show that
if the data rate function is a concave function of the power, we may incorporate
any rate maximisation algorithm into the programme to find the optimum EE.
This is formulated as a problem of a single total power variable, from which we
obtain some useful insights concerning Pareto optimality w.r.t. EE and through-
put. In Section 3 we present an EE function, which the results in the previous
section can be applied to. This function captures essential factors for elastic data
transmission while remaining general. Section 4 concludes the paper.

2 Energy Efficiency

2.1 Energy Efficiency Metric

In a general sense, efficiency can be seen as the ratio of goods produced to the
resources consumed. Here, we focus on the EE in the physical and medium ac-
cess control layers where goods are effective data transmitted measured in the
information unit (bits or nats1) and the resources are the total energy (Joule)
consumed for transmitting data. For static power configuration, EE can be ex-
pressed as the ratio of the sum rate r to the total expended power Ps that
achieves this rate2:

EE =
r(p)

Ps (p)

[
nat

Joule

]
. (1)

We characterise a rate function as being non-negative and r (0) = 0. The power
function Ps can be modelled as an affine function consisting of two terms, namely
the constant power scalar pC and the total input transmission power scalar∑n

i pi, where pi are the components of the non-negative vector p ∈ R
n
+ that

represent input transmission powers e.g. in different subcarriers (as in [7]) or to
different users. This constant or base power can be understood as the requirement
for enabling transmission and is spent independently of the transmission power,
which is justified considering the power consumption model of BSs [2]. It includes
baseband processing, transceiver circuits, and other auxiliary components like
1 A more convenient unit for analytical calculations.
2 Unless otherwise indicated, rate refers to the sum rate hereafter.
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climate control (see [12,13] for more details). This constant may vary depending
on factors like the number of antennas, the traffic load and the computational
efficiency. In Section 3 we show that these variations can be taken into account
by considering them as separate constants in different traffic conditions.

If the powers are functions of time, e.g. adapted according to time-varying
parameters (e.g. the channel coefficients), EE can be expressed as

EE =

´ T

0
r(p(t)) dt

´ T

0
Ps(p (t)) dt

=
ET [r(p(t))]

ET [Ps(p (t))]
(2)

which is the ratio of the total amount of information units transmitted during
a period T , TET [r(p(t))], to the total energy expended TET [Ps(p (t))], where
ET [X (t)] =

´ T

0 X (t) dt is the mean value of X averaged over the period T ,
and p (t) is a vector function of time t. Under the assumption of ergodicity
and stationarity (of the channel distribution), E∞ [x] = lim

T→∞
1
T

´ T

0
x(t) dt is the

expected value of x averaged over time.

2.2 Optimal Energy Efficiency

Our aim is to maximise (1) over p or (2) over p (t). Due to the structure of (1)
and (2), this belongs to a class of nonconvex problems called fractional program-
ming [14,15]. Depending on the objective function EE, we can determine certain
properties with regard to optimality. If it is a semistrictly quasiconcave function3

of the transmit power vector, any local maximum is also the global maximum
[16]. This reduces the problem to finding any local maximum. Additionally, if
the objective function is pseudoconcave4, any stationary point (∇EE = 0) is the
local as well as the global optimum. The Karush-Kuhn-Tucker (KKT) conditions
are then both necessary and sufficient for optimality, which does not necessarily
apply to semistrictly quasiconcave functions.

For a function f (x) /g (x), it is shown in [14] that if the numerator is concave
and the denominator convex, then the function is semistrictly quasiconcave. If
both the numerator and the denominator are differentiable in their domain, the
function is pseudoconcave, implying that the system of equations given by the
KKT conditions yields the global maximum. If in addition either the numerator
or denominator is strictly concave or strictly convex, respectively, the function
is strictly pseudoconcave, which implies that the global maximum, if it exists,
is unique. Clearly, since the sum power is an affine function of its power com-
ponents, the denominator fulfils the condition of being convex in p. If the rate
function r (p) is concave, we have a semistrictly quasiconcave EE function. If
it is differentiable, it is even pseudoconcave. Further, note that the positively
3 A function f : X ⊂ R

n → R is semistrictly quasiconcave on X if
f (λx1 + (1 − λ)x2)> min {f (x1) , f (x2)} for all x1, x2 ∈ X, f (x1) �= f (x2) ,
λ ∈ (0, 1) [16].

4 A differentiable function f : X → R, where X ⊂ R
n is an open set, is pseudoconcave

on X if f (x1) > f (x2)⇒ (x1 − x2)∇f (x2) > 0 for all x1, x2 ∈ X [16].
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weighted sum of (strictly) concave functions is (strictly) concave. This can be
extended to integrals, i.e. the integral of a positively weighted (strictly) concave
function is (strictly) concave [17].

For the case of static power configuration, we can formulate the programming
problem as follows

max.
p

r(p)
Ps(p) . (3)

If r (p) is concave and differentiable, finding any feasible solution that satisfies
the KKT conditions will yield the global optimum. Assume a convex constraint
set of sum and individual power, and the optimal point p∗ is found in it. Thus,
we obtain the stationarity condition by setting the first derivative of (3) to zero,
which after rearrangement yields

∂
∂pi

r (p)
∣∣∣
p=p∗

∂
∂pi

Ps (p)
∣∣∣
p=p∗

=
r(p∗)

Ps (p∗)
= EE∗ (p∗) (4)

for all i = 1, ..., n. The denominator on the left is one, if Ps is an unweighted sum
of powers, pC +

∑
pi. This means that at the vector p∗ where the gradient of the

rate equals its corresponding EE, we have the global optimum. If the optimal
point is not within the constraint set, Lagrangian multipliers are utilised to
obtain the solution.

In the case of time-varying powers, we obtain a similar result. Consider a case
where the powers are adapted according to the channel coefficients α, which vary
with time. We assume that the system has perfect channel information. The pro-
gramming problem is finding the functional p (α) = (p1 (α) , p2 (α) , ..., pn (α))
that maximises the EE as follows:

max.
{∀i, pi(α)≥0}

´
H r(p(α))f (α) dα
´

H
Ps(p (α))f (α) dα

, (5)

where f (α) is the probability density function (PDF) of α, and H is the set of all
values α can have. We assume that Ps is an affine function of p1 (α) , p2 (α) , ...,
pn (α). Consider the case when the function r is concave and differentiable. Then
by treating each pi (α) as an infinitesimal vector where pi (α̂) for a particular
value α̂ and i is a component of it, we derive the objective function with respect
to each component and obtain the following stationarity condition:

∂
∂pi(α̂)r (p (α))

∣∣∣
p(α)=p∗(α)

∂
∂pi(α̂)Ps (p (α))

∣∣∣
p(α)=p∗(α)

=

´
H r(p∗(α))f (α) dα
´

H
Ps(p∗ (α))f (α) dα

, (6)

for all is and all α̂ ∈ H , where p∗ (α) is the functional that maximises the
problem above. Again, the denominator on the left is unity, if Ps is an unweighted
sum of powers, pC +

∑
pi (α). This means that when the differential increment
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of the rate function w.r.t. every component of p (α) for all α̂ is equal to its
corresponding EE, we obtain the optimal function p (α). This is treated in depth
in [18].

Of course perfect channel information is hardly available in real systems.
Moreover the energy needed for the information feedback also needs to be ac-
counted for, so that the true EE may be reflected. However, the solution to this
problem provides us with theoretical knowledge of the upper bound of EE.

2.3 Equivalent Problems

Although we will focus on the EE maximisation problem shown in (3), we men-
tion the variety of problem formulations that yield the same solution. For ex-
ample, the problem can be formulated as the minimisation of the inverse of
EE over power, 1

EE = Ps (p) /R (p). Since EE is non-negative, the solution
p∗ to max . EE (p) is identical to that of min . 1

EE(p) . The optimal value of one
problem is just the reciprocal of the other. This is evident from the fact that
if EE (p∗) ≥ EE (p) for any p in the constraint set, simply inverting it yields

1
EE(p) ≥ 1

EE(p∗) .
In [8], the cost function, energy consumption per bit, corresponding to the

dissipated power divided by the throughput is formulated as a function of rates
r in subcarrier channels 1

EE(r) = Ea = Ps (r) /R (r) where R (r) =
∑

ri here
is the sum of all rates produced in the subcarriers. The cost function is to be
minimised over r. This formulation is only possible if the transmit power can
be written as a function of the individual rate, pi (ri). In this case we have a
bijective power function where each power allocation corresponds to a unique
rate distribution (e.g. across the subcarriers). Because of the bijective property
we know that the solution to the minimisation problem is obtained when the rate
distribution yields the optimal power allocation solved by min . 1

EE(p) . Therefore,
this optimisation problem is equivalent to the previous one.

2.4 Energy Efficiency Optimisation Using Rate Maximisation

The EE optimisation problem can be nested into inner and outer optimisation
problems, namely to maximise the rate given the sum transmit power P and
then to maximise this over the single variable P in the EE function. This allows
the utilisation of any rate maximising algorithm for EE optimisation. Let us
formulate the programming problem as follows:

max .EE (P ) = max
P

.

(
max.∑
i pi=P

R (p)
)

pC + P
(7)

= max
P

.
Rmax (P )
pC + P

. (8)
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Based on the discussion in Section 2.2, a semistrictly quasiconcave objective
function ensures that the local maximum is also the global maximum, which
can then be found efficiently, e.g. using the bisection method or interior-point
methods. This requires Rmax to be concave in P . Using Corollary 1, which is
attained through Lemma 5, we conclude that the objective function of (7) is
semistrictly quasiconcave in P , if R (p) is concave in p. It is also pseudoconcave
if Rmax remains differentiable after the maximisation operation.

Corollary 1. If R (p) is concave in p, Rmax (P ) = max
{
R (p) : 1T p = P

}
is

concave in P .

Note that this result is applicable if we additionally impose individual power
constraints, provided that the set

{
p : 1T p = P, 0 ≤ pi ≤ pi,max ∀i

}
, which is

convex, is feasible.

2.5 Visualisation of Optimal EE Involving One Power Variable

We showed how the problem can be presented as having only one power vari-
able, making it easier to handle. In this section we illustrate some properties
of optimising EE with one power variable. Let us look at a simple example to
obtain some insight. Consider

EE (P ) =
R (P )

pC + P
=

B log
(
1 + α

B P
)

pC + P
, (9)

where the rate R (P ) is only dependent on a single power variable P and is
modelled here as a logarithmic function with parameter α that represents the
channel gain, and B the bandwidth. Since B log

(
1 + α

B P
)

is a strictly concave
function in P , (9) is a strictly pseudoconcave function. Using (4) the maximum
EE is found where

dR (P )
dP

∣∣∣∣
P=P∗

=
B log

(
1 + α

B P ∗)
pC + P ∗ (10)

is fulfilled, P ∗ being the optimal point. This can be solved with the help of the
Lambert-W function5 W (·) such that

P ∗ =
1
α

[
αpC − B

W ((αpC − B) /B exp (1))
− B

]
. (11)

This example is sketched in Fig. 1. Using this figure we illustrate that the solution
can also be obtained graphically for any concave rate function R (P ). The figure
shows the rate as a function of the total power Ps = pC + P . The abscissa
shows the magnitude of the total expended power whereas the ordinate shows
the corresponding rate. pC is the minimum power required for data transmission.
The EE at any point of Ps is given as EE = tan θ (Ps)=R(P )

Ps
. Since R (P ) is

5 i.e. the inverse function of x = W exp(W ) [19].
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R/EE

pC

R(P )

P ∗
Ps = pC + P

θ

EE(P )

I II

R(P ∗)

Fig. 1. Visualisation of the optimal EE. The optimal EE is obtained where the trans-
mission power is P ∗.

concave, we know that the optimal point is where (10) is fulfilled. Rearranging
(10), we obtain

(pC + P ∗)
dR (P )

dP

∣∣∣∣
P=P∗

= R (P ∗) , (12)

which can be interpreted as follows. The linear function (l.h.s.) which has the
slope identical to the slope of R (P ) at point P has to intersect the rate function
(r.h.s.) in order that the optimality criterion is fulfilled. This means that the
tangent of the rate function at P ∗ has to form a line that passes the origin of Ps.
This is shown as the dashed line in Fig. 1. This is similar to the approach in [20],
where the global maximiser is identified graphically for resource management
problems.

Generally, maximising EE is equivalent to finding the point P along R (P )
that maximises θ, even when R (P ) is not concave, e.g. when cross-channel in-
terference exists.

Lemma 2. Given a concave rate function R (P ), the optimal point P ∗ of EE =
R(P )
pC+P increases with pC whereas the optimal value EE∗ = R(P∗)

pC+P∗ decreases with
pC.

Proof. Intuitively, this can be observed graphically in Fig. 1. As pC is increased,
the point of contact P ∗ of the tangent line with the rate function increases and
the angle θ decreases. To show it analytically, consider the following. It is evident
that for any given P , EE decreases with an increasing pC . This implies that the
optimal value of EE also decreases with pC . Recall the stationarity condition

dR (P )
dP

∣∣∣∣
P=P∗

=
R (P ∗)

pC + P ∗ = EE∗.

Since R (P ) is a concave function, its derivative is a non-increasing function of P .
It follows that a lower optimal EE∗ would intersect with dR

dP at a higher P ∗.
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Corollary 3. If pC = 0, the highest possible EE∗ = dR(P )
dP

∣∣∣
P=P∗

is achieved,

where P ∗ = 0. dR(P )
dP

∣∣∣
P=0

can be used as an upper bound for the EE∗.

We say that R1 dominates R2 if R1(P ) > R2(P ) for all P > 0, where R1 and
R2 are two different rate functions. It is easy to see that if R1 dominates R2,
their corresponding EE also follow the same order, such that EE1 = R1(P )

pC+P >
R2(P )

pC+P = EE2 for all P . The same applies to the optimum EE.

Corollary 4. If R1 dominates R2, EE∗
1 > EE∗

2 .

2.6 Pareto Optimality. Trade-Off between Rate and Energy
Efficiency.

It is beneficial if we can achieve both high rates and high EE. This can be
considered as a multiobjective optimisation problem. An efficient operating point
is where neither the rate nor the EE can be further improved without the decline
of the other. Such a point is also said to be Pareto-optimal.

Any point in region I (not shaded) in Fig. 1 is not Pareto-optimal since both
the rate and the EE can simultaneously be increased by applying a higher power.
The points in region II (shaded) are Pareto-optimal because increasing either
the rate or the EE causes the other to decline. This is where there is a trade-off
between the rate and the EE.

Regulatory bodies usually impose constraints on radiation power to prevent
potential damage on people exposed to electromagnetic waves used in commu-
nications, and to mitigate interference among links using the same bandwidth,
which is also a cause of inefficiency. As a result, we may assume a given sum
transmit power constraint Pmax. If Pmax < P ∗ then maximising the EE is the
same as maximising the rate using Pmax. Further improvement is possible with
new solutions to reduce pC or new designs that yields a better (or more domi-
nant) R (P ) function, e.g. by increasing the power amplifier efficiency, but not
through power control. If Pmax > P ∗ EE can be improved by reducing the sum
transmit power. If a sum rate constraint Rcon > Rmax (P ∗) exists such that
Rmax (P ) ≥ Rcon, it will be fulfilled with equality when maximising the EE,
while the optimal EE cannot be achieved. If Rcon ≤ Rmax (P ∗) both the rate
constraint and EE optimality can be simultaneously achievable.

3 Energy Efficiency Function for One Cell

In this section, we present a model for EE optimisation considering different
traffic conditions. Imagine the downlink scenario of a cell in a mobile cellu-
lar network. During the day the links between the BS and the mobile stations
experience higher interference from cells due to greater traffic and thus have
statistically lower signal to interference plus noise ratios (SINR) than at night.
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Assume we have the statistical information of these two traffic conditions,
denoted by i = 1 for day-time and i = 2 for night-time. This stochastic infor-
mation is captured as PDFs fi of the normalised SINR αi, which is the SINR
at a unit transmit power. This can be written as a vector αi to include the
normalised SINR of different components (e.g. subcarriers) of the transmission.
Note that the dimension of vector αi may vary for different is. The PDF yields
the probability that a certain channel realisation αi occurs during traffic con-
dition i. Assume that conditions i = 1, 2 applies to 60% and 40% of a day’s
cycle, respectively. We describe this using weights w1 = 0.6 and w2 = 0.4. One
may choose to have different schemes for day-time and night-time traffic (e.g.
MIMO and SISO as studied in [10] for the uplink) to lower the total base power
during low load period. The variations in the base power can be modelled using
separate constants pC,i.

We generalise this example and describe the EE as follows:

EE =
∑

i wiβi

´∞
0 Ri (αi, Pi, γi, εi, G) fi (αi) dαi∑

i wi (pC,i + Pi)
. (13)

i index for different traffic conditions or schemes at different time in-
tervals.

wi time fraction for traffic condition i such that
∑

i wi = 1 and wi ≥
0, ∀i.

Ri rate produced using scheme employed in i, a concave rate function
of input power components pi with the following parameters.
αi SINR,
Pi sum input power such that 1T pi = Pi

6,
γi SNR gap for scheme i,
G additional imposed constraints such as individual power

constraints.
εi characterises the power amplifier efficiency, εi ∈ [0, 1], i.e.

the output to input power ratio where εipi is the actual
transmit power (more on PA efficiency in [11]).

fi PDF of the SINR αi for traffic condition i.
βi proportion of the rate used for data transfer (without pilot signals

for channel estimation etc.), βi ∈ [0, 1].
pC,i base power required during interval i.

Note again that if Ri for all i is concave, EE is semistrictly quasiconcave (pseu-
doconcave if EE is differentiable), ensuring efficiency in optimisation. The pro-
gramming problem can be written in the form described in (8) as:

max .EE (P) = max .
P

R (P)
PC + P , where (14)

6 The vector 1 = (1, 1, ..., 1)T .
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R (P) = max .∑
i wiPi=P

∑
i

wiβi

ˆ ∞

0

Ri (αi, Pi, γi, εi, G) fi (αi) dαi,

and PC =
∑

i

wipC,i.

Examples of Ri are Ri (Pi) =
{∑N

n=1 log (1 + γiεiαi,npi,n) :
∑

n pi,n = Pi

}
for

OFDM systems with N subcarriers and Ri (Pi) =
{
log det

(
I + γiHQHH

)
: tr (Q) = Pi} for MIMO systems. A rate maximising function can also be chosen
such as Ri (Pi, αi) = max .

{∑N
n=1 log (1 + γiεiαi,npi,n) :

∑
n pi,n = Pi

}
or one

w.r.t. a scheduler that selects best users, as in [21]. The integral
´∞
0 {. . . } dαi im-

plies an integration over all vector components, i.e.
´∞
0 ...

´∞
0 {. . . } dαi,1...dαi,N .

If the SINRs are quantised (e.g. due to channel measurements or signal feed-
back), the integral is to be replaced by a sum, and dαi,n by the quantisation
interval. The variable Pi can be further generalised as a function of αi, such
that

∑
i wi

´∞
0

Pi (αi) fi (αi) dαi = P .
A great energy saving potential lies in deactivating certain components or

putting them to sleep modes during inactivity [6]. This can be modelled by
assigning a certain pC,i at which Pi = 0 with some time fraction wi. In the
elastic traffic scenario, it is even possible to collect enough data so that there
can be continuous transmission at a later period while energy can be saved during
the data collection period by shutting down inactive components. Additionally,
it is more efficient to transmit during the best traffic condition (e.g. at night),
that is, when the power is most effectively used due to low interference. Further
improvements can be achieved by adjusting the weights wi. This has to be done
with caution since fi may be altered by changing the time interval. Pilot and
overhead signals that make channel information available at the receiver and
transmitter, which takes up a fraction of the transmission, are considered in βi.

4 Conclusion

An accurate evaluation of the EE requires adequate modelling of the whole
network. Here, we present some general analytical tools for optimising EE at
the BS, assuming elastic traffic. The optimisation problem can be formulated
utilising rate maximisation algorithms. As a function of a single variable, insights
into EE were illustrated graphically. An EE function that captures essential
factors in one cell of a network is introduced and discussed.

Since this is also an idealised model, further work is needed to refine it, e.g.
to describe the non-linearity of power amplifier efficiency, which has a significant
influence on the EE. A model for inelastic traffic is also necessary, where more
stringent quality of service demands are considered. Other figures of merit like
fairness and coverage can still be incorporated into the model. The relationship
between the base power and system model parameters, such as number of anten-
nas and subcarriers, would also be a future task that enables EE optimisation
over these parameters in addition to power control.
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Appendix

Lemma 5. If f is jointly concave in (x, y) ∈ C, g (x) = max
y∈C(x)

f (x, y) is also

concave where C(x) is a convex set for any x ∈ domg and C = {(x, y) : ∀y ∈ C (x) ,
∀x ∈ dom g} is a convex set for all x ∈ dom g. The domain g is defined as
dom g = {x : (x, y) ∈ dom f for some y ∈ C (x)} . Variables x and y can be
vectors or matrices of identical dimensions.

Proof. The function g (x) is concave if

g (λx1 + (1 − λ) x2) ≥ λg (x1) + (1 − λ) g (x2)

for any λ ∈ [0, 1] and any x1, x2 ∈ dom g. We show that the following holds:

g (λx1 + (1 − λ)x2)
= max

y
{f (λx1 + (1 − λ) x2, y) : y ∈ C (λx1 + (1 − λ) x2)}

(a) = max
y1,y2

{f (λx1 + (1 − λ) x2, λy1 + (1 − λ) y2)

: λy1 + (1 − λ) y2 ∈ C (λx1 + (1 − λ) x2)}
(b) ≥ max

y1,y2
{f (λx1 + (1 − λ) x2, λy1 + (1 − λ) y2) : y1 ∈ C (x1) , y2 ∈ C (x2)}

(c) ≥ max
y1,y2

{λf (x1, y1) + (1 − λ) f (x2, y2) : y1 ∈ C (x1) , y2 ∈ C (x2)}
(d) = λmax

y1
{f (x1, y1) : y1 ∈ C (x1)} + (1 − λ)max

y2
{f (x2, y2) : y2 ∈ C (x2)}

= λg (x1) + (1 − λ) g (x2) .

The variable y is substituted by λy1 + (1 − λ) y2 in (a). We arrive at the in-
equality in (b) because {(y1, y2) : y1 ∈ C (x1) , y2 ∈ C (x2)} forms a subset of
{(y1, y2) : λy1 + (1 − λ) y2 ∈ C (λx1 + (1 − λ) x2)}. The reason for this is under-
stood by considering the following. Assume that (x1, y1) ∈ C and (x2, y2) ∈ C.
Because C is a convex set,(λx1 + (1 − λ) x2, λy1 + (1 − λ) y2) ∈ C also. By def-
inition of C, λy1 + (1 − λ) y2 ∈ C (λx1 + (1 − λ)x2) is automatically satisfied
under these assumptions. Since we now have a more restricted constraint set
for y1 and y2 in the assumptions, a smaller maximum value may be induced.
Using the property of joint concavity of f , we derive the inequality in (c). Since
each summand has independent variables and the constraints can be separately
considered, step (d) is derived.
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