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Abstract. The problem of conflict measurement between information sources knows
a regain of interest. In most works related to this issue, Dempter’s rule plays a cen-
tral role. In this paper, we propose to revisit conflict from a different perspective.
We do not make a priori assumption about dependencies and start from the defini-
tion of conflicting sets, studying its possible extensions to the framework of belief
functions.
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1 Introduction

In this paper, we revisit the notion of conflict and its quantification in Dempster-
Shafer theory (DST), in which it plays an essential role. In particular, its uses in
merging rules is the matter of lively debates [1]. Recently, some researchers have
questioned the validity of the usual conflict measure (i.e., the mass attributed to the
empty set after combination) [2,3]. To solve the issue, they have mostly proposed to
complement the usual measure with others. In this work, we take a rather different
approach. Two main ideas have motivated this study:

1. First, the idea that conflict between belief functions should be an extension of
conflict between sets: when belief functions reduce to sets, the conflict measure
should be a binary value that is maximum in case of disjoint sets, minimum
otherwise.

2. Second, the idea that conflict between sources should not a priori depend on
a specific independence assumption between the sources. This is coherent with
the least commitment principle.
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After recalling some basics (Section 2), Section 3 investigates how consistency de-
gree of a single mass assignment can be defined. Then, in Sections 4 and 5, we
investigate the case of conflict between sets, and the case of conflict between mass
functions. This study leads us to two different propositions of conflict measures,
whose differences are briefly discussed in Section 6.

2 Preliminaries

We assume the reader to be familiar with DST [4, 5], and we only present nota-
tions and unusual definitions. A mass assignment m over Ω is a mapping m :
℘(Ω) → [0, 1], with ℘(Ω) the power set of Ω and s.t.

∑
A∈℘(Ω) m(A) = 1.

MΩ denote the set of all mass assignments over Ω. A subset A ⊆ Ω is a fo-
cal element of m if m(A) �= 0. The set of focal elements of m is noted F . m
is normalised if m(∅) = 0. From m, in addition to the classical belief, plausi-
bility and commonality functions [4], respectively denoted Bel, Pl and Q we use
the contour function pl : Ω → [0, 1] of a mass assignment that corresponds to
its plausibility on singletons. Recall that m can be associated to a probability set
Pm := {Pr(.) | ∀A ⊆ Ω,Bel(A) ≤ Pr(A)}.

Among the existing interpretations of belief functions, we focus on Shafer’s
view [4], extensively taken over by Smets in his Transferable Belief Model [5]. In
this view,m(A) is the mass of belief exactly committed to the hypothesis {ω0 ∈ A},
whereω0 is the true value of an ill-known variableW . A difference between Shafer’s
view and the TBM is that the latter allows m(∅) �= 0. Note that in the TBM original
exposure, m(∅) is not related to conflict itself, but to the open-world assumption in
which m(∅) quantifies the belief that the true value does not lie in Ω.

A main source of conflict comes from the conjunctive combination of informa-
tion coming from not fully agreeing sources. The most classical conjunctive combi-
nation is the conjunctive rule [5], or Dempster’s [6] unnormalised rule, that assumes
that the sources of information are independent. In this paper, we consider a more
general framework [7] where other dependency structures are considered. Given
two mass assignments m1 and m2 defined on Ω, we consider that a conjunctive
combination is achieved in two steps:

1. A joint mass assignment m : ℘(Ω)× ℘(Ω) → [0, 1] is built s.t.

∑

B⊆Ω

m(A×B) = m1(A) ;
∑

A⊆Ω

m(A×B) = m2(B) ∀A,B ∈ ℘(Ω). (1)

2. A mass m∩ : ℘(Ω) → [0, 1] such that m∩(C) =
∑

A∩B=C m(A×B).

The joint mass m encodes the dependence structure between the two sources
m1,m2. The conjunctive rule, whose result is denoted m⊕, corresponds to choose
m(A×B) = m1(A)m2(B) in step 1. We denote by M12 the set of all mass m∩ ob-
tainable by a conjunctive combination ofm1 andm2. Note that all mass assignments
in M12 are specialisations of both m1 and m2. Recall that a mass m with F =
{E1, . . . , Eq} is a specialisation of m′ with F ′ = {E′

1, . . . , E
′
p} if and only if there

exists a non-negative matrix G = [gij ] such that for j = 1, . . . , p,
∑q

i=1 gij =
1, gij > 0 ⇒ Ei ⊆ E′

j , and for i = 1, . . . , q,
∑p

j=1 m
′(E′

j)gij = m(Ei), where
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gij is the proportion of E′
j that "flows down" to Ei. In other words, m1 is s-included

in m2 (m1 
s m2) if the mass of any focal element Ej of m2 can be redistributed
among subsets of Ej in m1. In fact, s-inclusion is a direct extension of the relation
of inclusion between sets. As for set inclusion, s-inclusion can therefore be used
to compare informative contents, m1 
s m2 meaning that m1 is less informative
than m2.

3 Consistent Mass Assignments

We first define the notion of consistent set, before extending it to mass assignment.
When information is provided as a single set ω0 ∈ A, this information is consistent
if and only if A �= ∅. A can be seen, for instance, as the set of models of a logic base
that could be inconsistent. In this case, either a set is consistent (i.e. non-empty) or it
is not, and a degree of consistency φ can only takes two values. Moreover, it should
obey the following properties:

Property 1 (Bounded). φ should be bounded.

Property 2 (Extreme consistency). φ should be maximal iff information is totally
consistent, and minimal iff information is totally inconsistent.

For simplicity, we assume that the bounds are [0, 1]. In the case of sets, we define
the consistency degree as φ : ℘(Ω) → {0, 1} such that

φ(A) = 1 if A �= ∅, 0 otherwise (2)

which satisfies Properties 1 and 2. We now extend it to generic mass functions.
We consider first extreme cases of totally consistent and totally inconsistent mass
functions: It is natural to associate totally inconsistent information with the mass
m(∅) = 1. On the other hand, the totally consistent information on sets can be
extended in two main different ways. A first definition of consistent belief functions
(see [7, 8]) is the following:

Definition 1. A mass assignment m is said to be logically consistent if and only if⋂
E∈F E �= ∅.

That is, a (normalized) mass m whose focal elements have a non-empty intersection.
Next lemma characterizes these masses in terms of contour function.

Lemma 1.
⋂

E∈F E �= ∅ ⇔ ∃ω ∈ Ω s.t. pl(ω) = 1

m is logically consistent iff its contour function is normalized. This form of con-
sistency is in accordance with the TBM interpretation, as a source is logically con-
sistent if it considers at least one state of the world to be totally plausible. Among
logically consistent mass assignments, consonant ones play a particular role, dis-
playing an even stronger form of consistency: the intersection of any two focal sets
is still a focal set of this mass assignment (since if A ⊂ B, A ∩ B = A), which is
not the case for general logically consistent mass assignments. The next definition
provides a weaker form of consistency:
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Definition 2. A mass assignment m is said to be probabilistically consistent if and
only if m(∅) = 0.

The name probabilistic consistency comes from the fact that requiring m(∅) = 0 is
equivalent to requiring that the probability set Pm induced by m is non-empty. It is
also in accordance with logic-based interpretation of belief functions [9].

Definitions 1 and 2 each suggests a different measure of consistency. The follow-
ing measures φpl, φm from MΩ to [0, 1], such that:

φpl(m) = max
ω∈Ω

pl(ω), (3)

φm(m) = 1−m(∅) (4)

do satisfy Property 2 for totally inconsistent information and for Definitions 1 and 2
of totally consistent information, respectively. When ∃A ∈ Ω/m(A) = 1, then both
φm and φpl reduce to Eq. (2).

Although Definition 2 and Eq. (4) appear less adapted to the TBM interpretation
than Definition 1, we will see in further sections that Eq. (4) can be useful in the
TBM interpretation as well. Also, let us note that the inequality φpl ≤ φm always
holds, and φpl = φm if and only if

⋂
E∈F\∅E �= ∅. Moreover, for consonant masses

φpl, φm are the consistency degree of possibility theory [10].

4 Conflict between Sets

We can now study conflict between sources, starting with sets. Similar to possibil-
ity theory [10], we measure conflict as the inconsistency (inconsistency being the
inverse of consistency) resulting from the conjunctive merging of information. Con-
sidering two sources of information (extensionN > 2 is straightforward), we define
the conflict of sets as κ : ℘(Ω)× ℘(Ω) → {0, 1} embedding the combination step.

In the case of sources assessing that ω0 ∈ A and ω0 ∈ B, two extreme cases
may occur: they are conflicting (A ∩ B = ∅) or not (A ∩ B �= ∅). As for the
consistency measure, a (bounded) measure of conflict κ should take its maximal /
minimal values in such cases, giving

Property 3 (Extreme conflict). A conflict measure should be maximal value iff
sources are totally conflicting, and minimal iff sources are non-conflicting.

In other words, conflict κ for sets should be such that

κ(A,B) = 1− φ(A ∩B) = 1 if A ∩B = ∅, 0 otherwise (5)

Other desirable properties may be formulated by observing sets. A first property
should be symmetry, as we consider the two sources of equal importance.

Property 4 (Symmetry). A measure of conflict should be symmetric.

This translates into κ(A,B) = κ(B,A). The other properties concern the behaviour
of the measure with respect to some changes in the information.
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Property 5 (Imprecision monotonicity). A measure of conflict should be non-
increasing if a source becomes less informative.

If A ∩ B �= ∅, then considering A′ ⊇ A implies A′ ∩ B �= ∅, hence κ should not
increase. In contrast, we may have A ∩ B = ∅ but A′ ∩ B �= ∅, in which case κ
should decrease. This translates by the constraint κ(A′, B) ≤ κ(A,B).

Property 6 (Ignorance is bliss). A measure of conflict should be insensitive to com-
bination with ignorance.

If B = Ω, then A ∩ B �= ∅ unless A = ∅, and a state of ignorance should not
conflict with any information, unless the latter is inconsistent. This translates by the
constraint κ(A,Ω) = 1− φ(A).

5 Conflict between Mass Assignments

In the case of mass assignments m1,m2, the conjunctive combination is no longer
unique (Eq. (1)), unless a specific (in)dependence structure is given. In our opinion,
conflict measurement should reflect our knowledge of dependence. In particular,
m⊕ should not be used to measure conflict, unless independence assumption be-
tween sources holds. This results in the following property.

Property 7 (Independence to dependence). A conflict measure should not depend
on a dependence assumption not supported by evidence.

5.1 Characterising Total Conflict and Conflict Absence

It is natural to say that two sources are totally conflicting if none of their focal
elements intersect (i.e., only ∅ can have positive mass after merging). Let Di =
∪A∈FiA, then

Definition 3. m1 and m2 are totally conflicting when D1 ∩D2 = ∅.

If m1(A) = 1 and m2(B) = 1, we retrieve the set definition. To extend the notion
of non-conflicting sets, we see two main ways fitting the TBM interpretation, given
here from the most to the least constraining.

Definition 4. m1,m2 are strongly non-conflicting iff
⋂

A∈Fm1∪Fm2
A �= ∅.

Definition 5. m1,m2 are non-conflicting iff ∀(A,B) such that A ∈ Fm1 , B ∈
Fm2 , we have A ∩B �= ∅.

Definition 4 requires all focal elements to have a non-empty intersection, and is
stronger than requiring that all pairs of focal elements from m1 and m2 have a non-
empty intersection (Definition 5). Ifm1(A) = 1 andm2(B) = 1, the two definitions
reduce to non-empty intersecting sets. The next proposition shows that strongly non-
conflicting masses are related to plausibility measures, hence to consistency given
by Eq. (3).
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Proposition 1.
⋂

A∈{Fm1∪Fm2}A �=∅ iff ∀m∩ ∈ M12, ∃ω ∈ Ω s.t. plm∩(ω) = 1

This suggests to use the contour function to evaluate the conflict when conflict ab-
sence corresponds to Definition 4 (Strong non-conflict). Proposition 1 says that two
sources are strongly non-conflicting iff there is at least one state of the world ω that
they both consider "normal" or totally plausible. This is in agreement with the TBM
interpretation and similar to Daniel [3] proposal. Definition 5, on the other hand, is
related to the consistency measure given by Eq. (4) and we have

Proposition 2. A ∩B �= ∅ ∀A ∈ Fm1 , ∀B ∈ Fm2 iff m∩(∅) = 0 ∀m∩ ∈ M12

This suggests to use m∩(∅) to measure conflict under Definition 5 (Non-conflict).
It is by far the most common value used to estimate conflict between information
sources in Dempster-Shafer theory.

5.2 Measuring Conflict between Mass Assignments

We now propose different measure of conflicts corresponding to each notion of con-
flict absence, some of them being imprecise (reflecting a possible lack of knowledge
about source dependencies). First, we reformulate some properties of conflict mea-
surement κ in the vocabulary of mass assignments:

• Prop. 3 (Extreme conflict): κ(m1,m2) = 0 if and only if m1 and m2 are non-
conflicting (according to the considered definition);

• Prop. 4 (Symmetry): κ(m1,m2) = κ(m2,m1);
• Prop. 5 (Imprecision monotonicity): if m1 �s m′

1, then κ(m′
1,m2) ≤

κ(m1,m2);
• Prop. 6 (Ignorance is bliss): if m2(Ω) = 1, then κ(m1,m2) = 1− φ(m1);

Measures for strong non-conflict: Given Proposition 1, it is natural to use φpl

(Eq. (3)) to measure conflict from strong non-conflict. We propose to distinguish
three cases:

• the case where dependence is unknown, and where one accepts imprecise con-
flict. In this case, if I([0, 1]) denote intervals of [0, 1], the measure of conflict is
an application κ1

pl : MΩ ×MΩ → I([0, 1]) such that

κ1
pl(m1,m2) = [ min

m∩∈M12

1− φpl(m∩), max
m∩∈M12

1− φpl(m∩)] (6)

= [ min
m∩∈M12

1−max
ω∈Ω

pl∩(ω), max
m∩∈M12

1−max
ω∈Ω

pl∩(ω)];

• the case where dependence is unknown, but the least commitment principle is
followed to get a unique conflict value. In this case, we propose to select the
minimal conflicting situation and κ2

pl : MΩ ×MΩ → [0, 1] is such that

κ2
pl(m1,m2) = min

m∩∈M12

1− φpl(m∩) = min
m∩∈M12

1−max
ω∈Ω

pl∩(ω) (7)

• the case where dependence is known (i.e., a joint mass m is specified) and where
the result of conjunction is a single m∩: We propose to simply use
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κ3
pl(m1,m2) = 1− φpl(m∩) = 1−max

ω∈Ω
pl∩(ω) (8)

They all satisfy properties 3- 6, and can deal with unknown dependence. Note that
both κ3

pl and κ2
pl are straightforward to compute (the latter using results from [7]),

and only the upper bound of κ1
pl requires the use of linear programming techniques.

Measures for non-conflict: As Proposition 2 is linked to Definition 2, we use
φm (Eq.(4)) to derive three measures under non-conflict:

κ1
m(m1,m2) = [ min

m∩∈M12

1− φm(m∩), max
m∩∈M12

1− φm(m∩)] (9)

κ2
m(m1,m2) = min

m∩∈M12

1− φm(m∩) = min
m∩∈M12

m∩(∅) (10)

κ3
m(m1,m2) = 1− φm(m∩) = m∩(∅) (11)

κ1
m(m1,m2), κ2

m(m1,m2) corresponding to unknown dependence (without and
with least commitment principle, respectively) and κ3

m(m1,m2) corresponding to
known dependence. They all satisfy properties 3- 6 and can deal with unknown
dependence. Classical conflict measure m⊕(∅) is captured by κ3

m(m1,m2) when
independence between sources can be assumed. Computing the two bounds of κ1

m

require the use of linear programs, while κ3
m remains straightforward to evaluate.

6 Short Exemplified Discussion

Let us take two different examples, showing that the proposed measures of conflict
behave differently, and each have their own interest.

First, let us consider m1,m2 on Ω = {ω1, ω2, ω3} such that m1({ω1, ω2}) =
0.6, m1({ω1, ω3}) = 0.4 and m2({ω2, ω3}) = 0.5, m2(Ω) = 0.5. Both are logi-
cally and probabilistically consistent, and we have κ1

pl(m1,m2) = [0.4, 0.4] = 0.4

while κ1
m(m1,m2) = [0, 0] = 0. According to the measure based on the contour

functions, there is some conflict, whereas according to the one based on m(∅) there
is not. While each source is consistent, they disagree on which state of the world is
the most plausible (ω1 for m1 and ω2 or ω3 for m2). Hence, in some sense (mean-
ingful in a TBM interpretation), the two sources can be considered as conflicting.
Clearly, only the measure based on contour functions is able to detect it.

As a second example, consider two identical masses on Ω = {ω1, ω2} such that
m1({ω1}) = m2({ω1}) = 0.5 and m1({ω2}) = m2({ω1}) = 0.5. First, note that
φpl(mi) = 0.5 for i = 1, 2, a rather low score indicating some internal inconsis-
tency for each source. Also, the conflict measures are κ1

pl(m1,m2) = [0.5, 1] and
κ1
m(m1,m2) = [0, 1]. The highest and lowest conflict value being obtained for the

combination m(ω1 × ω2) = 0.5 and m(ω2 × ω1) = 0.5 and for the combination
m(ω1×ω1) = 0.5 and m(ω2×ω2) = 0.5 (idempotent merging), respectively. Note
that every possible dependency between these extremes may be considered. This ex-
ample shows that some conflict is generated from the combination, but that contour-
function based measures tend to mix it with some initial inconsistency, while κm

does detect that sources can totally agree in case of dependence. Hence, contrar-
ily to the first example, here, measures based on m(∅) provide some interesting
information which are not captured by measures based on contour functions. This
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short discussion shows that the measures have different behaviors, and that an ex-
tended discussion would be interesting. A first quick conclusion is that m(∅) based
measures identify conflict arising from combination only, while contour-function
based measures also capture some internal inconsistency. Hence, m(∅) seems better
fitted to measure conflict between sources.

7 Conclusion

We have considered conflict as the inconsistency resulting from conjunctive com-
bination. Starting from sets, we have derived a number of results regarding consis-
tency and conflict on mass assignments. Then, we have proposed several conflict
measurements not relying on Dempster’s rule and able to cope with unknown (or
partially known) dependencies. Our findings show that using the contour function
may be a better conflict measure within the TBM interpretation, but that using m(∅)
may be useful to characterise conflict between mass assignments.

The next step is to relate this study with other works. For instance, how it can be
used to differentiate between internal and external conflict [3]. Our approach should
also be compared to conflict measurements based on distances [2, 11], however we
can already notice that dissimilarities based on distances do not generally satisfied
the properties required here (e.g., Prop. 3 and 5), hence the two approaches are likely
to give different conclusions in some cases.
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