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Preface

The theory of belief functions, also known as evidence theory or Dempster-Shafer
theory, was first introduced by Arthur P. Dempster in the context of statistical in-
ference, and was later developed by Glenn Shafer as a general framework for mod-
eling epistemic uncertainty. These early contributions have been the starting points
of many important developments, including the Transferable Belief Model and the
Theory of Hints. The theory of belief functions is now well established as a general
framework for reasoning with uncertainty, and has well understood connections to
other frameworks such as probability, random set, possibility and imprecise proba-
bility theories.

This edited volume contains the proceedings of the 2nd International Conference
on Belief Functions that was held in Compiègne, France on 9–11 May, 2012, under
the auspices of the Belief Functions and Applications Society.

The book starts with an invited contribution by Prof. Hung T. Nguyen, outlining
the connections between belief functions and random sets. This connection, which
was first pointed out in Prof. Nguyen’s seminal paper published in 1978, still has
important implications today in relation to decision making, among other topics.

The remaining 50 chapters are selected peer-reviewed papers describing recent
developments both on theoretical issues (including approximation methods, con-
flict management, combination rules, continuous belief functions, graphical models,
causality and independence concepts) and applications in various areas including
classification, image processing, statistics and intelligent vehicles. Overall, the large
number of high quality contributions to this volume demonstrates the vitality and
topicality of this research area.

The editors would like to thank Professor Janusz Kacprzyk for his kind invitation
to prepare this book. We also thank all those who have contributed with their papers
to this volume, as well as the program committee members for reviewing the large
number of received submissions.

April 2012 Thierry Denœux
Compiègne, France Marie-Hélène Masson



Contents

Invited Paper

On Belief Functions and Random Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Hung T. Nguyen

Classification

Evidential Multi-label Classification Using the Random k-Label Sets
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Sawsan Kanj, Fahed Abdallah, Thierry Denœux

An Evidential Improvement for Gender Profiling . . . . . . . . . . . . . . . . . . . . 29
Jianbing Ma, Weiru Liu, Paul Miller

An Interval-Valued Dissimilarity Measure for Belief Functions Based
on Credal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Alessandro Antonucci

An Evidential Pattern Matching Approach for Vehicle Identification . . . 45
Anne-Laure Jousselme, Patrick Maupin

A Comparison between a Bayesian Approach and a Method Based on
Continuous Belief Functions for Pattern Recognition . . . . . . . . . . . . . . . . . 53
Anthony Fiche, Arnaud Martin, Jean-Christophe Cexus, Ali Khenchaf

Prognostic by Classification of Predictions Combining
Similarity-Based Estimation and Belief Functions . . . . . . . . . . . . . . . . . . . 61
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On Belief Functions and Random Sets

Hung T. Nguyen

Dedicated to Lotfi Zadeh

Abstract. We look back at how axiomatic belief functions were viewed as distribu-
tions of random sets, and address the problem of joint belief functions in terms of
copulas. We outline the axiomatic development of belief functions in the setting of
incidence algebras, and some aspects of decision-making with belief functions.

1 Introduction

Just few weeks after I arrived at the University of California, Berkeley, in the late
winter of 1975, Professor Lotfi Zadeh handed to me two interesting research doc-
uments. The first one is a handwritten letter of I.R. Goodman, later appeared in
Goodman (1982), showing that fuzzy sets can be viewed as equivalence classes of
random sets. The second one is a fresh Ph.D. thesis of G. Shafer entitled ”A math-
ematical theory of evidence” which appeared a year later as a book (Shafer, 1976).
Also, the very first book treating rigorously the theory of random sets appeared in
1975 (Matheron, 1975).

Perhaps the appearance of random sets in Goodman’s letter and in Matheron’s
book was on my mind when I read Shafer’s thesis! I reported to Professor Zadeh
few weeks later that the concept of belief functions in Shafer’s thesis is nothing
else than the distribution function, not of a random variable or vector, but of a ran-
dom set (on a finite space). Professor Zadeh clearly reacted that he was not at all
happy with my remark, since being working at that time on his theory of possibil-
ity (for some background, see, e.g., Nguyen and Walker, 2006), which is a kind of
uncertainty different than randomness modeled quantitatively by probability, he ex-
pected Shafer’s concept of belief should be somewhat related to possibility, but in
any case, there should be no randomness around the concept of belief. I explained
that from the mathematical definition of a belief function, it is a bona fide distribu-
tion function operating on sets rather than on points, and which can be rigorously
interpreted as the probability law of a random set (which is a random element),
so that Shafer’s theory can be placed within the standard framework of probabil-
ity theory, but at the level of random sets, i.e., random elements taking sets as
values.

Hung T. Nguyen
New Mexico State University (USA) and Chiang Mai University (Thailand)

T. Denœux & M.-H. Masson (Eds.): Belief Functions: Theory & Appl., AISC 164, pp. 1–19.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012



2 H.T. Nguyen

Just few days later, Professor Zadeh walked into my office in Cory Hall and
said ”Could you write up what you told me the other day about Shafer’s belief
functions?”. Seeing the surprise on my face, Professor Zadeh said ”I just come
back from a seminar at Stanford University where Patrick Suppes was present-
ing something very similar to what you told me”. What Professor Zadeh referred
to was a talk given by Professor Suppes, later appeared in Suppes and Zanotti
(1977).

So I wrote a memorandum (an internal publication forum) for the Electronics
Research Laboratory, UCB, in 1976, later appeared as ”On random sets and belief
functions”, Nguyen (1978).

Thirty six years later, I was asked to speak about the connections between
random sets and belief functions as well as their implications. In the history of
science in general, and mathematics in particular, connections between two differ-
ent fields should not be just formal relationships, but should provide benefits to
both fields. This is exemplified by the important work of G. Hunt relating Potential
Theory to Markov Processes in 1957. Here, the relation between belief functions
and random sets (”the point of view is everything”) does not have that grandeur.
The hope was that by viewing belief functions as distributions of random sets,
inference based on belief functions could gain some firm footing within proba-
bility and statistics theories. Anyway, I will speak about it, but while in 1976,
the focus was on ”random sets” so the title was ”On random sets and belief
functions”, but this time, the focus is on ”belief functions”, so that the title of
my present lecture is the other way around, namely ”On belief functions and
random sets”!

After all these years, both the theories of belief functions and random sets have
gone a long way, in theoretical developments as well as in applications. In this
lecture, I restrict myself to only one topic, namely, decision-making with be-
lief functions, where I think the connections with random sets are somewhat
significant.

2 Belief Functions

Let’s start out with the standard framework from which the concept of belief func-
tions was introduced (Dempster,1967; Shafer 1976). A ”true state of nature” uo is
known to be in some finite set U , although it is not known which element of U is that
true state. For each subset A ⊆U , we express our ”belief” that A contains uo by a
number, denoted as F(A). Such a number F(A) could come from some ”evidence”.
We are talking about modeling/quantifying information provided by evidence, i.e.,
some mathematical theory of evidence. Here we are talking about information of
localization.

A belief function on a finite set U is a set-function F : 2U → [0,1] such that

(i) F(∅) = 0, F(U) = 1
(ii) For any n ≥ 2, and any A1,A2, ...,An ∈ 2U
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F(∪n
i=1Ai)≥ ∑

∅ �=I⊆{1,2,...,n}
(−1)|I|+1F(∩ j∈IA j)

where |I| denotes the cardinality of the set I.

Remarks
a) The interpretation of the concept of belief has been widely discussed in the

literature.
b) When F(∪n

i=1Ai)≥ ∑∅ �=I⊆{1,2,...,n}(−1)|I|+1F(∩ j)∈IA j), for a given n, we say
that F is monotone of order n. The property (ii) is referred to as monotonicity of
infinite order. It is a weakening of the Poincaré equality of probability measures.

c) Note that, here we take the range of F to be [0,1] and F(∅) = 0 which is the
minimum value of F . As such, F(.) is monotone, i.e., A ⊆ B =⇒ F(A) ≤ F(B). If
F : 2U → R, then monotonicity of F should be added to the set of axioms, unless
F(∅) is the minimum value of F . In fact, if F is monotone of order 2, then it is
monotone if and only if F(∅) is the minimum value of F(.). Indeed, if F(.) is
monotone, then clearly F(∅) is its minimum value. Conversely, suppose that F(∅)
is its minimum value, for A ⊆ B, we write B = A∪ (B\A). By 2− monotonicity,
we have F(B) = F(A∪ (B\A)) ≥ F(A) + F((B\A))− F(∅). But, by hypothesis,
F(∅)≤ F((B\A)), we have F(B)≥ F(A).

Example 1 (belief functions induced by probabilities)
Suppose the true probability measure Po : 2U → [0,1] is only known by its values

on a partition Θ1,Θ2, ...,Θk of the finite set U , say, Po(Θi) = αi, i = 1,2, ...,k. What
is the uncertainty of an arbitrary A ⊆ U? Suppose we quantify the uncertainty of
any A by

F(A) = inf{P(A) : P ∈P}
where P denotes the set of all probability measures P on U satisfying the con-
straints P(Θi) = αi, i = 1,2, ...,k. Then, formally, F(.) is a belief function. Indeed,
clearly F(∅) = 0 and F(U) = 1, by construction. For A ∈ 2U , we approximate it
by A∗ = ∪Θi⊆AΘi. Clearly, P(A∗) is the same for any P ∈ P , so that we can con-
sider the function G : 2U → [0,1], G(A) = P(A∗) for any P ∈ P . Now, G(∅) = 0,
G(U) = 1, and infinitely monotone:

G(∪n
i=1Ai) = P(∪n

i=1Ai)
∗ ≥ P(∪n

i=1A∗i ) = ∑
∅ �=I⊆{1,2,...,n}

(−1)|I|+1P(∩ j∈IA
∗
j)

∑
∅ �=I⊆{1,2,...,n}

(−1)|I|+1P((∩ j∈IA j)
∗) = ∑

∅ �=I⊆{1,2,...,n}
(−1)|I|+1G(∩ j∈IA j)

since ∪(Ai)
∗ ⊆ (∪Ai)

∗ and ∩ j∈IA∗j = (∩ j∈IA j)
∗.

Now, for any A ∈ 2U , there is a PA ∈ P such that PA(A) = PA(A∗) and hence
G(.) = F(.). Note also that P = {P : G ≤ P}.
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Example 2 (belief functions as distributions of random sets)
Let (Ω ,A ,P) be a probability space, and (V,V ) be an arbitrary measurable

space. A map X : Ω → V is called a random element if X−1(V ) ⊆ A , and its
probability law is the probability measure PX = PX−1 on V . For U a finite set,
and V = 2U , V being the power set of 2U , X : Ω → 2U is called a non empty ran-
dom set whose probability law is completely determined by its distribution function
F : 2U → [0,1], defined by

F(A) = P(X ⊆ A)

Now, clearly F(∅) = 0 and F(U) = 1. Moreover, F(.) is infinitely monotone. In-
deed, for B ∈ 2U , and Ai ∈ 2U , i = 1,2, ...,n, let

J(B) = {i : such that B ⊆ Ai}
We have

F(∪n
i=1Ai) = ∑

B⊆∪n
i=1Ai

F(B)≥ ∑
B⊆U,J(B) �=∅

F(B)

Now observe that, when J(B) �=∅, ∑B⊆J(B)(−1)|B|+1 = 1, we can write

∑
B⊆U,J(B) �=∅

F(B) = ∑
B⊆U,J(B) �=∅

[ ∑
∅ �=I⊆J(B)

(−1)|I|+1]F(B)

= ∑
∅ �=I⊆J(B)

(−1)|I|+1 ∑
B⊆U,I⊆J(B)

F(B)

= ∑
∅ �=I⊆{1,2,...,n}

(−1)|I|+1 ∑
B⊆∩ j∈IA j

F(B) = ∑
∅ �=I⊆{1,2,...,n}

(−1)|I|+1F(∩ j∈IA j)

As expected, as in the case of random vectors, the properties of belief functions
can be used as axioms for distribution functions of (finite) random sets: if F is a
belief function on a finite set U , then it must be the distribution of some non empty
random set, i.e., there exist a probability space (Ω ,A ,P) and a non empty random
set X : Ω → 2U such that F(A) = P(X ⊆ A). For that, it suffices to show that there
exists a function f : 2U → [0,1] with ∑A⊆U f (A) = 1 (called the density function of
the random set X) such that F(A) = ∑B⊆A f (B).

For that purpose, define

f (A) = ∑
B⊆A

(−1)|A\B|F(B)

where A\B = A∩Bc.
f (.) is nonnegative, indeed, f (∅) = F(∅) = 0, and by construction, f ({u}) =

F({u}) ≥ 0. For A ∈ 2U with |A| ≥ 2, say, A = {u1,u2, ...,uk}, let Ai = A\{ui},
i = 1,2, ...,k. Then,
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f (A) = F(A)−
k

∑
i=1

F(Ai)+∑
i< j

F(Ai∩A j)+ ...+(−1)k−1
k

∑
i=1

F(∩ j �=iA j)≥ 0

by infinite monotonicity of F , noting that ∩k
i=1Ai =∅, and A = ∪k

i=1Ai.
Next,

∑
B⊆A

f (B) = ∑
B⊆A

∑
C⊆B

(−1)|B\C|F(C) = ∑
C⊆B⊆A

(−1)|B\C|F(C)

If C = A, the last term is F(A). If C �= A, then A\C has 2|A\C| subsets, so there are
an even number of subsets B with C ⊆ B ⊆ A, exactly half of which have an even
number of elements. The half of the numbers (−1)|B\C| are 1 and half are −1. Thus,
for each C �= A, we have

∑
C⊆B⊆A

(−1)|B\C|F(C) = 0

with the summation taken over B. Hence, ∑B⊆A f (B) = F(A). In particular,

1 = F(U) = ∑
B⊆U

f (B)

Remarks
a) In the context of finite random sets,

f (A) = P(X = A) = ∑
B⊆A

(−1)|A\B|F(B)

which is just a fact from combinatorial theory (Möbius transforms). For a compre-
hensive study of belief functions as set-functions, we outline, in the next section the
setting of incidence algebras.

b) The probability law of a random set X on finite U can be also characterized by
a dual concept of distribution function, namely, capacity functional: T : 2U → [0,1],

T (A) = P(X ∩A �=∅) = 1−F(Ac)

While T (∅) = 0 and T (U) = 1, T is alternating of infinite order, i.e.,

T (∩n
i=1Ai)≤ ∑

∅ �=I⊆{1,2,...,n}
(−1)|I|+1T (∪ j∈IA j)

Set functions ϕ : 2U →R which are maxitive, i.e.,

ϕ(A∪B) = max{ϕ(A),ϕ(B)}

are alternating of infinite order. For general random sets, the concept of capacity
functionals is more convenient to work with. Capacity functionals play the role of
distribution functions of random vectors, characterizing probability laws of random
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sets via the well-known Choquet theorem (counterpart of the classical Lebesgue-
Stieltjes theorem characterizing probability measures on Euclidean spaces by distri-
bution functions).

c) A quantitative concept of degrees of belief can be also justified in the context
of coarse data in statistics. Coarse data are data with low quality, due, e.g., to its
imprecision. If Y : Ω → U is a random variable, then a coarsening of Y is a non
empty random set X : Ω → 2U such that P(Y ∈ X) = 1, i.e., Y is an almost sure
selector of X . Without observing the (latent) random variable of interest Y , we rely
on the observable X to conduct statistical inference. The distribution F of X is a
belief function, and any possible probability law Q of Y on U should be compatible
with F , i.e., Q ≥ F , i.e., is in the core of F , namely C (F) = {Q : Q ≥ F}. This is
so, since, for any A ∈ 2U , {ω ∈ Ω : X(ω)⊆ A} ⊆ {ω ∈ Ω : Y (ω) ∈ A} and hence

F(A) = P(X ⊆ A)≤ P(Y ∈ A) = PY−1(A)

It is interesting to note that humans often use coarsening schemes in decision-
making, a fact which can be attributed to ”intelligence”. I have once ”argued” with
Professor Zadeh that fuzziness in perception information appears as consequences
of using fuzzy coarsening schemes, i.e., fuzzy partitions, in order to make decisions.
When facing a decision, or a question, with not enough information to act, humans
use a coarsening of the domain, such as in if...then rules in fuzzy control (see, e.g.,
Nguyen and Walker, 2006).

d) In current literature, when referring to belief functions, you see typical state-
ments as follows. Let Θ be a parameter space in a statistical model. The Bayesian
probability theory treats the parameter θ as a random variable with a prior probabil-
ity distribution over Θ . In the Dempster-Shafer belief functions theory, information
about the unknown true value of the parameter is described by the probability dis-
tribution of a non empty random set on Θ .

The theory of belief functions was introduced as a mathematical theory of evi-
dence. Since in a given problem, there might exist several sources of evidence, each
represented by a belief function, there is a need to combine them. In random set
language, if we have two random sets X and Y on the same finite set U , then the
random set X ∩Y is a natural candidate for a combined evidence. Clearly, the dis-
tribution of X ∩Y depends on the joint distribution of (X ,Y ). From the knowledge
of the marginal distributions, say, FX ,FY , we seek some possible joint distribution
H for (X ,Y ). This sounds like an old problem of Maurice Fréchet! If X and Y are
random vectors, then the problem is solved by A. Sklar (1959) via the concept of
copulae (see also, Nelsen (1999)). However, here, not only we are facing discrete
variables, but also these variables are not random vectors, they are random sets. The
extension of Sklar’s work from random vectors to multivariate random sets (random
sets in n dimensions) is an open problem. Some efforts in extending Sklar’s results
from distribution functions on euclidean spaces to more general infinitely dimen-
sional Polish spaces (for probability measures and Choquet capacities) have been
partially carried out by Scarsini (1989, 1996), but the specific case of random sets,
finite or not (especially random closed sets on Hausdorff, locally compact spaces)
has not been touched upon.
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While X and Y are non empty random sets, X ∩Y might not be a non empty
random set, i.e., P(X ∩Y = ∅)> 0. However, the ”conditional random set” X ∩Y |
(X ∩Y �=∅) is a non empty random set. Indeed, its density is

ψ(A) = P(X ∩Y = A|X ∩Y �=∅) = P(X ∩Y = A,X ∩Y �=∅)
P(X ∩Y �=∅)

from which we see that ψ(∅) = 0 (since then (X ∩Y =∅,X ∩Y �=∅) =∅).
The approach to combination of evidence, known as the Dempster’s rule of com-

bination, assumes in addition that the random sets X and Y are independent, i.e.,
P(X = A,Y = B) = P(X = A)P(Y = B), for any A,B in 2U , so that ψ(.) is reduced
to, for A �=∅,

ψ(A) =
∑C∩D=A P(X =C)P(Y = D)

∑S∩T=∅P(X = S)P(Y = T )

We refer the reader to discussions concerning the independence assumption of X ,Y
in this rule of combination and its incompatibility with the condition X∩Y �=∅. But
if we drop the independence assumption on X ,Y , then we face Frechet’s problem:
how to specify a joint distribution from its marginals? (here in the context of random
sets!). Using maximum entropy principle? Then we need to consider the concept of
entropy of random sets. See Section 4 below.

Example 3 (belief functions on arbitrary sets)
The definition of belief functions on finite sets can be kept for arbitrary sets. Let

U be an arbitrary set (finite or not). Since a priori, there is nothing random around
(!), we can ”commit” our belief to any subsets of U (subjective assignments of
degrees of belief to subsets of U are possible from an intuitive viewpoint), so that,
F : 2U → [0,1] as in the finite case. Here is an example.

Let (U,U ,P) be a probability space. P induces a belief function F : 2U → [0,1]
as follows. Define

F(A) = sup{P(B) : B ∈U ,B ⊆ A}

Clearly, F(∅) = 0 and F(U) = 1. The fact that F is infinitely monotone can be seen
as follows. First, the above sup is attained, i.e., for each A ∈ 2U , there is an B ∈ U
such that B ⊆ A and F(A) = P(B). Indeed, for each positive integer n, let Bn ⊆ A
with Bn ∈U and P(Bn)≥ P(A)− 1

n . It follows readily that B = ∪nBn ∈ U , B ⊆ A
and F(A) = F(B). Such B is called a measurable kernel of A. Now, observe that if
Bi is a measurable kernel of Ai, then ∩iBi is a measurable kernel of ∩iAi. Thus,

F(∪n
i=1Ai)≥ P(∪n

i=1Ai) = ∑
∅ �=I⊆{1,2,...,n}

(−1)|I|+1P(∩i∈IAi)

= ∑
∅ �=I⊆{1,2,...,n}

(−1)|I|+1P(∩i∈IBi) = ∑
∅ �=I⊆{1,2,...,n}

(−1)|I|+1F(∩i∈IBi)
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Remarks
a) For relations between belief functions and general random sets, see Matheron

(1975), Wasserman (1987), Molchanov (2005), and Nguyen (2006).
b) When U is infinite, a question of independent interest is whether there exist

Möbius tranforms (in the non locally finite case)? Marinacci (1996) gave a formu-
lation of a such counterpart.

Example 4 (Belief functions and possibility measures)
We discuss now some relations between belief functions and Zadeh’s possibility

measures. Let U be a nonempty set. A set function π : 2U → [0,1] is called a possi-
bility measure on U when it satisfies

(i) π(∅) = 0, π(U) = 1
(ii) For any collection of subsets S ⊆ 2U , π(∪A∈SA) = sup{π(A) : A ∈ S}

The dual of π is defined as π∗(A) = 1−π(Ac). Then π∗(∅) = 0, π∗(U) = 1. Clearly,
π∗ satisfies: π∗(∩A∈SA) = inf{π∗(A) : A∈ S}, and hence monotone of infinite order,
i.e., the dual π∗ of a possibility measure is a belief function of a special type. The
special type of belief functions F satisfying F(A∩B) = min{F(A),F(B)} can be
characterized as follows, a result due to Dubois and Prade (1986), where we rephrase
as: A belief function F on a finite U satisfies F(A∩B) = min{F(A),F(B)} if and
only if the support of F ∗ μ is a chain, i.e., if and only if the support of the Möbius
inverse of F is a chain (see a proof in the next section).

3 Belief Functions and Incidence Algebras

In the above section we simply recall the definition of a belief function and provide
some typical examples of belief functions. We outline now an axiomatic develop-
ment of belief functions in a convenient setting, and develop some methods for
computations with them.

Let U be a finite set. We will study belief functions in the context of the set F
of all functions from 2U to the real line R. Our goal is to establish some mathe-
matical facts of use in the study and application of various kinds of set-functions in
reasoning under uncertainty.

Let F = { f : 2U → R}. With addition and scalar (R) multiplication pointwise,
F is a vector space over R:

( f + g)(A) = f (A)+ g(A), (r f )(A) = r f (A)

One basis of F is

{ fA : A ⊆U : fA(A) = 1, fA(B) = 0 for B �= A}
so that F has dimension 2|U|.

Let I be the set of functions α : {(A,B) : A ⊆ B ⊆U} → R. Addition on I is
defined pointwise, and multiplication is defined as a convolution
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(α ∗β )(A,B) = ∑
A⊆C⊆B

α(A,C)β (C,B)

I is an algebra called the incidence algebra over the fieldR in combinatorial theory
(from the work of Gian-Carlo Rota beginning in 1964, for locally finite posets).
Here, we are in the simple case of the poset of subsets of a finite set U , with set
inclusion as partial order relation.

The following facts are useful.
(i) The incidence algebra I is a ring with identity which is

δ (A,B) =
{

1 if A = B
0 if A ⊂ B

Remark
Thus, I , with addition + is an Abelian group. However, while the ring I has

an identity, not every nonzero element has an inverse.
(ii) An element α ∈ I has an inverse if and only if for all A ∈ 2U , α(A,A) �= 0.

In this case, the inverse of α is given by

α−1(A,B) =

{
1

α(A,A) if A = B
−1

α(A,A) ∑A⊆C⊆B α(A,C)α−1(C,B) if A ⊂ B

Proof
a) Necessity. If α has β as inverse, then (α ∗ β )(A,A) = α(A,A)β (A,A) =

δ (A,A) = 1, implying that α(A,A) �= 0.
b) Sufficiency. Suppose for all A ∈ 2U , α(A,A) �= 0. We seek β ∈ I such that

α ∗β = β ∗α = δ . Define β (A,B) inductively on the number of subsets C between A
and B, donoted as #(A,B). If #(A,B) = 1 (i.e., when A= B), we let β (A,A) = 1

α(A,A) .

Assume β (A,D) has been defined for A,D for which #(A,D)< n. Then, for A,B with
#(A,D) = n (> 1), we want

0 = (α ∗β )(A,B) = ∑
A⊆C⊆B

α(A,C)β (C,B)

= α(A,A)β (A,B)+ ∑
A⊂C⊆B

α(A,C)β (C,B)

which can be solved for β (A,B) since α(A,A) �= 0, yielding

β (A,B) =
−1

α(A,A) ∑
A⊆C⊆B

α(A,C)α−1(C,B)

Similarly, there is γ ∈I such that γ ∗α = δ , and hence,

(γ ∗α)∗β = δ ∗β = β = γ ∗ (α ∗β ) = γ ∗ δ = γ
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For example, elements of the ring I which have an inverse are called units,
e.g., the Möbius function μ(A,B) = (−1)(B\A), and the Zeta function ζ (A,B) = 1.
Note that, convolution with δ is analogous to integration, whereas ”multiply-
ing” by μ is analogous to differentiation (resulting what is called the Möbius
inversion).

(iii) The Möbius and Zeta functions are inverses of each other.
(iv) There is a natural operation on the elements of the vector space F by the

elements of the incidence algebra I which is common in combinatorics and will
simplify some of the computations with belief functions. For f ∈ F and α ∈ I ,
define, for each A ∈ 2U ,

( f ∗α)(A) = ∑
B⊆A

f (B)α(B,A)

With this operation, F is a right module over I . Note that, ( f ∗α) ∈F . The maps
f ∈F →F : f → f ∗μ , and f → f ∗ζ are one to one maps and are inverses of one
another. The set-function f ∗ μ is referred to as the Möbius inverse of f .

We focus now on belief functions in this setting. A density on 2U is a function
f : 2U → [0,1] such that ∑A⊆U f (A) = 1. Then, it can be checked that ( f ∗ ζ )(∅) =
0, ( f ∗ ζ )(U) = 1, and f ∗ ζ is monotone of infinite order (which is equivalent to
f (A)≥ 0 for |A| ≥ 2).

The precise correspondence between belief functions and densities is this.
g is a belief function if and only if g ∗ μ is a density such that (g ∗ μ)(∅) = 0.

Proof
If g ∗ μ is a density such that (g ∗ μ)(∅) = 0, then (g ∗ μ) ∗ ζ = g is a belief

function. Conversely, if g is a belief function, then

∑
A⊆U

(g ∗ μ)(A) = ((g ∗ μ)∗ ζ )(U) = g(U) = 1

It remains to check that g ∗ μ ≥ 0.

(g ∗ μ)(∅) = g(∅)μ(∅,∅) = g(∅) = 0

For A = {u},

(g ∗ μ)({u}) = g(∅)μ(∅,{u})+ g({u})μ({u},{u})= g({u})≥ 0

Finally, since g is monotone of infinite order, (g ∗ μ)(A)≥ 0 for |A| ≥ 2.
As a consequence, there is a one to one correspondence between densities with

value 0 at ∅ and belief functions ( f → f ∗ ζ ) with inverse μ (g → g ∗ μ).
There is a natural way to construct densities on U from a density f on 2U

with f (∅) = 0. A function τ : U × 2U → [0,1] is called an allocation of f if
∑u∈A τ(u,A) = f (A) for all A ∈ 2U . Clearly, the function u ∈U → ∑{A:u∈A} τ(u,A)
is a density on U .
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Examples
(i) Let g be a belief function on U and f = g ∗ μ its Möbius inverse. For A �=∅,

let τ(u,A) = f (A)
|A| for u ∈ A. Then τ is an allocation of f .

(ii) For |U | = n, let u1,u2, ...,un be an ordering of U . Let f be a density on 2U .
Consider the allocation τ of f such that τ(u,A) = f (A) if u is the largest element in
A, and zero otherwise. The associated density on U is described in terms of g as

fτ(ui) = g({u1,u2, ...,ui})− g({u1,u2, ...,ui−1})

for i= 1,2, ...,n (noting that, for i= 1, g({u1,u2, ...,ui−1})= g(∅)= 0). The density
fτ on U gives rise to the probability measure Qτ on 2U . Since there are n! orderings
of U , and hence n! such probability measures. The average of the densities on U
obtained this way is the Shapley value in coalition games.

The core of a belief function g on U , denoted as C (g), is the set of probability
measures Q on (U,2U) such that g≤Q. If g is is a probability measure, then C (g) =
{g}. If g(A) = 0 for A �= U , and g(U) = 1, then C (g) is the set of all probability
measures on 2U .

We are going to show that g = inf{Q : Q ∈ C (g)}.
Let f = g ∗ μ . Let τ be an allocation of a density f on 2U , and let Qτ be the

probability measure on 2U induced by τ , i.e., Qτ(A) = ∑u∈A ∑{B:u∈B} τ(u,B). We
have

g(A) = ( f ∗ ζ )(A) = ∑
B⊆A

f (B) = ∑
{B:B⊆A}

∑
{u:u∈B}

τ(u,B)≤ Qτ (A)

Next, for each A ∈ 2U , let τA be an allocation of f such that for u ∈ A, and for
all B not contained in A, allocate 0 to u. Then, g(A) = QA(A), where QA(.) is the
probability measure induced by τA. It follows that g(A) = inf{Q(A) : Q ∈ C (g)}.

From the above, we see that if τ is an allocation of the density (on 2U ) f = g∗μ ,
then Qτ ∈ C (g). An elementary proof of the converse seems difficult to find: if
Q ∈ C (g), then Q = Qτ for some τ . However, it can be obtained by the follow-
ing considerations. Write U = {u1,u2, ...,un}. We identify C (g) with the subset
of the simplex S = {(x1,x2, ...,xn) ∈ [0,1]n : ∑n

i=1 xi = 1} consisting of the n-tuple
(x1,x2, ...,xn) corresponding to xi = Q({ui}) for Q ∈ C (g). It can be shown that,
with this identification, C (g) is a closed, convex subset of S whose extreme points
are those n! densities in example (ii) above. Elements of C (g) are convex combina-
tions of its extreme points.

We close this section with the following information.
Let g be a belief function on a finite set U . Then g(A∩B) = min{g(A),g(B)} if

and only if the support of g ∗ μ is a chain.

Proof
a) Necessity. Suppose g(A∩B) = min{g(A),g(B)} for any A,B. Let A,B be such

that A� B and B� A (so that A∩B �= A), and g(A∩B) = min{g(A),g(B)}= g(A).
Then
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g(A∩B) = ∑
D⊆A∩B

(g ∗ μ)(D) = g(A) = ∑
D⊆A

(g ∗ μ)(D)

implying that (g∗μ)(A) = 0. Thus, if (g∗μ)(A) �= 0 and (g∗μ)(B) �= 0, then either
A ⊆ B or B ⊆ A, i.e., the support of g ∗ μ is a chain.

b) Sufficiency. Suppose the support of g ∗ μ is a chain.
From

g(A) = ∑
D⊆A

(g ∗ μ)(D), g(B) = ∑
D⊆B

(g ∗ μ)(D)

we see that those D above such that (g∗μ)(D) �= 0 must all be contained in A or all
contained in B. Thus, g(A∩B) = min{g(A),g(B)} for any A,B.

4 Decision-Making with Belief Functions

In the context of incomplete information, a standard framework for decision-making
is this. Consider decision problems consisting of choosing an action in a set A to
maximize some utility function u :A×U →R. When the probabilistic information
on the set of ”states” of nature U is given by a probability Q on it, then EQu(a, .) is
used as a criterion. We address this decision-making problem when the probabilistic
information is in a weaker form, namely, it is given by a belief function (the knowl-
edge about U is supported by some evidence whose mathematical representation is
a belief function on it).

4.1 Entropy

Entropy is a mysterious term in Thermodynamics used by L. Boltzmann (Vorlesun-
gen uber Gastheorie, 2 vol. Leipzig, 1895-1898):

H =−
∫ ∫ ∫

f (u,v,w) log f (u,v,w)dudvdw

to define the entropy of a gas, when the velocities of molecules are distributed ac-
cording to a probability density f .

Nowadays, thanks to N. Wiener and Cl. Shannon’s works on information theory,
we know its meaning! ”The uncertainty on the state of a monoatomic gas, when it
is maximal, is equal to the entropy of that gas, computed by elementary methods of
Thermodynamics; this maximum of uncertainty corresponds precisely to the statis-
tical equlibrium of the gas, where the distribution of the velocities is the distribution
of J.C. Maxwell (1859)” (from Théorie de l’Information, Cours de Monsieur Joseph
Kampé de Feriet, Publ. Laboratoire de Calcul, Univ. de Lille, France, 1961-1962).

Specifically, entropy is used to designate a macro aspect of uncertainty of a
stochastic system. If X is a random element (e.g., a random variable, or a random
set) taking values in a finite set V (V = U = {u1,u2, ...,un} for random variables;
V = 2U for random sets), with probability density f (on U for random variables; on
2U , for random sets), then the (macro) uncertainty about X is taken to be
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H(X) = H( f ) =− ∑
v∈V

f (v) log f (v)

Note that, like Shannon, we use the letter H to denote uncertainty, since it was the
letter used by Boltzmann, to remind us of the relation with entropy in Thermody-
namics, although, the concept of uncertainty here came from probability theory, and
has nothing to do with Thermodynamics!

Since the function x ∈ [0,1]→ h(x) = x logx is convex (since h′′(x) = 1
x , noting

that we set x logx = 0 when x = 0, since limx→0(x logx) = 0), 0 ≤ H( f ) ≤ logn.
Now, logn = −n[ 1

n log 1
n ], the uncertainty (entropy) of X is maximum when f is

the uniform density. This corresponds to Laplace’s insufficiency principle: if there
is no additional information about the distribution of a random element, then the
states v ∈ V should be treated equally, so that the uniform distribution (which has
maximum entropy) is plausible to use.

The analogue of entropy for continuous variables (not derivable from the discrete
case through a limiting process) is

H( f ) =−
∫

f (x) log f (x)dx

For example, if f (x) = 1
b−a 1[a,b](x), then H( f ) = log(b−a) which could be negative

if b− a < 1.
Consider the maximization problem

maxH( f ) = max[−
∫

f (x) log f (x)dx]

over f ∈F . It is well-known that, using the calculus of variation,
a) if F consists of all probability densities f : R→ R+ with support [a,b], then

the above maximum is attained at the uniform density on [a,b],
b) if F consists of distributions with mean μ and variance σ2, then N(μ ,σ2) has

maximum entropy.
In view of the above, and just like the Maximum Likelihood principle, E.T. Jaynes

avocated, in 1957, the Maximum Entropy Principle (Maxent) as a statistical infer-
ence principle: Subject to known constraints, the probability distribution which best
represents the current state of knowledge is the one with maximum entropy. See
Jaynes, (1957).

Remark on principles
MLE and Maxent are among commonly used principles of inference. Another

principle related to random set data is Hartigan’s excess mass (Hartigan, 1987).
Let X be a random vector with values inRd with unknown density f . Having only

some appropriate analytic properties of f , we estimate f (pointwise) nonparametri-
cally, using, say, a random sample X1,X2, ...,Xn drawn from X . When the dimension
d is high, conventional methods such as kernel and orthogonal functions seem inef-
ficient. For each α > 0, the α− level set of f is

Aα = {x ∈ Rd : f (x)≥ α}
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Since,

f (x) =
∫ ∞

0
1Aα (x)dα

where 1Aα (.) is the indicator function of the set Aα , we could first estimate the sets
Aα , say by a random set estimator Aα ,n(X1,X2, ...,Xn), then use the plug-in estimator

fn(x,X1,X2, ...,Xn) =

∫ ∞

0
1Aα,n(X1,X2,...,Xn)(x)dα

to estimate f (x).
The question is: which Aα ,n(X1,X2, ...,Xn) to use? Hartigan proposed a method

in which the concept of likelihood is replaced by the concept of excess mass.
Let dF , λ (dx) denote the probability law of X and the Lebesgue measure on the

Borel σ−field B(Rd), respectively. Then, (dF −αλ )(Aα) is the ”excess mass” of
the level set Aα . If we consider the signed measure εα (.) = (dF−αλ )(.) on B(Rd),
then, for any A ∈ B(Rd), and α > 0, we have εα(A) ≤ εα(Aα). Thus, the excess
mass principle is this. Aα has the largest excess mass at level α . This suggests to
estimate Aα by using the empirical counterpart of the signed measure εα (.), namely
εα ,n(.) = (dFn−αλ )(.) where dFn =

1
n ∑n

i=1 δXi , with δXi being the Dirac (random)
probability measure at Xi. Specifically, Aα ,n(X1,X2, ...,Xn) is taken to be the solution
of the maximization problem of the (set-function) objective function εα ,n(A) over
A ∈ B(Rd). It is easier said than done! This is an optimization problem, neither
for vector nor for functions, but for sets. For a suggested variational calculus of
set-functions, see Nguyen and Kreinovich (1999).

The entropy of a random set X describes the uncertainty about X , and hence can be
used to ”compare” different sources of evidence. Yager (1983) defined entropy of
a belief function, slightly different than Nguyen (1987), as well as specificity mea-
sures in order to judge the quality of evidence. In the context of sampling designs
(e.g., Hajek, 1981), a random set X in a finite population U is a sampling design.
Thus, to design a sampling plan, it suffices to specify a density f on 2U , whose en-
tropy is used as a measure of spread for sampling probabilities and it is well-known
that every conditional Poisson sampling design maximixes the entropy in the class
of designs having the same carrier and same covering function, i.e., πX : U → [0,1]

πX(u) = P(u ∈ X) = ∑
u∈A

f (A)

As we will see, in general, the constraints F in entropy maximization of random
sets are sets of densities on U . But here is a maximization problem where, as in the
case of random variables, the constraints are in the form of known moments.

Just like the case of random vectors, it is often possible to know some ”moments”
of a random set, either by statistical estimation or other computing methods. By
”moments” of a random set X we really mean the moments of its measure, here,
in the finite case, the counterpart of the first moment is the expected value of its
cardinality
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E(|X |) = ∑
u∈U

∑
{A:u∈A}

f (A) = ∑
u∈U

πX(u)

The above expression for E(|X |) is a special case of Robbins’ formula (Robbins,
1944) for random closed sets in Rd . Here are the details. Let F denote the space of
all closed subsets of Rd , and B(F ) its Borel σ− field, generated by the hit-or-miss
topology (see Matheron, 1975). A random closed set X is a map from Ω to F such
that X−1(F ) ⊆A , and its probability measure on B(F ) is PX = PX−1, as usual.

Remark
Just like in probability theory, the case of finite sets is a simple starting point.

Evidence can induce belief functions on more general parameter spaces, where it is
more convenient to work with their duals, namely, Choquet capacity functionals (on
locally compact, Hausdorff spaces, but not on infinitely dimensional Polish spaces,
however, see Nguyen and Nguyen, 1998). It is also possible to treat belief functions,
or equivalently, random sets (including random fuzzy sets), in a unified manner
using the setting of continuous lattices (see Gierz et al, 1980; Nguyen and Tran,
2008).

Let ϕ :Rd ×F → [0,1] be

ϕ(x,F) =

{
1 if x ∈ F
0 if x /∈ F

Then the restriction of the Lebesgue measure λ on Rd to F is

λ (F) =

∫
Rd

ϕ(x,F)λ (dx)

so that, by Fubini’s theorem, the map λ : F ∈F →
−
R is B(F )−B(

−
R)− measur-

able. It follows that λ ◦X = λ (X) is A −B(
−
R)− measurable, i.e., the Lebesgue

measure of the random closed set X is a bona fide (nonnegative) random variable.
On the other hand, ϕ(.) is measurable since

ϕ−1({0}) = {(x,F) : x /∈ F}= ∪B∈B(B×FB) ∈F (R)⊗B(F )

whereB is a countable base for the topology ofRd , and FB = {F ∈F : F∩B=∅}.
As such, by Fubini,∫

Rd×F
ϕ(x,F)d(λ ⊗PX) =

∫
Rd

∫
F

ϕ(x,F)dPX(F)dλ (x)

=

∫
F

∫
Rd

ϕ(x,F)dλ (x)dPX(F) =

∫
Rd

P(x ∈ F)dλ (x)

=
∫

F
λ (F)dPX(F) = E[λ (X)]
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which yields Robbins’ formula

E[λ (X)] =

∫
Rd

πX(x)dλ (x)

where πX(x) = P(x ∈ X), the one-point coverage function of X . Robbins’ formula
is interesting since, as far as the expected value of the measure of a random set is
concerned, there is no need to derive the distribution of λ (X) from that of X (not an
easy task!), but it suffices to derive its one-point coverage function (a much easier
task).

Since Fubini theorem is valid for σ− finite measures, we have E(|X |) = ∑u∈U
πX(u) for a random set X on a finite set U , with the counting measure |.|.

Consider the maximization problem

Maximize− ∑
A⊆U

f (A) log f (A)

subject to

(i) f is a density on 2U

(ii) E f (|X |) = ∑u∈U ∑{A:u∈A} f (A) = θ ∈ (1, |U |)

Observe that E(|X |) = ∑n
j=1 jq j, where n = |U |, q j = ∑ f (A) where the sum is over

A ⊆U such that |A| = j. If we let pi, i = 1,2, ...,2n − 1 = m, be f (A), A ⊆U (ex-
cluding ∅) and let ai ∈ {1,2, ...,n} be such that E(|X |) is written as ∑m

i=1 ai pi, then
the above problem becomes

Maximize−
m

∑
i=1

pi log pi

subject to (i) pi ≥ 0, ∑m
i=1 pi = 1 and (ii) ∑m

i=1 ai pi = θ
Using Lagrange multiplier technique, the solution is found to be pi =

1
φ(β )e

−β ai

where φ(β ) = ∑m
i=1 e−β ai , and β is the unique solution of the equation φ ′(β ) +

θφ(β ) = 0.
For another maximum entropy problem related to belief functions, see Jaffray

(1997).

4.2 Maximum Entropy Principle

In the context of belief functions, we address the problem of maximizing the en-
tropy H( f ) over the the class F of densities on U compatible with a given belief
function g. Specifically, given g, its Möbius inverse g ∗ μ is a density on 2U . If α is
an allocation of g ∗ μ , then

fα (u) = ∑{A:u∈A}α(u,A) is a density on U . This density on U gives rise to a
probability measure Qα(A) = ∑u∈A fα (u), defined on 2U , such that Qα ≥ g. In fact,
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all probability measures Q on U (i.e., on (U,2U)), such that Q ≥ g come from allo-
cations. In other words,

C (g) = {Qα ≥ g : α allocations}
Then,

F = { fα : α allocations}
We seek

max− ∑
u∈U

f (u) log f (u)

subject to f ∈F .
The solution to this general problem is given in Meyerowitz et al. (1994).

Remark
The approach to expected utility in decision-making can be also carried out, in

the context of belief functions, by using expectation of a function of a random set
X on U . Specifically, let ϕ : 2U → R, then E(ϕ(X)) = ∑A⊆U ϕ(A)P(X = A). Now,
for each f ∈F , we can find many ϕ : 2U →R such that E f (u) = E(ϕ(X)). Indeed,
for any ϕ : 2U → R, we modify it to ϕA, for some chosen A ⊆U with P(X = A) =
(g ∗ μ)(A) �= 0, as

ϕA(B) =

{
ϕ(B) for B �= A

E f (u)−∑B�=A ϕ(B)(g∗μ)(B)
(g∗μ)(A) for B = A

The point is this. Selecting ϕ and considering E(ϕ(X)) as expected utility
seems to be a more general procedure. For more details, see Nguyen and Walker
(1994).

4.3 Minimax

Let u = A×U → R be a utility function, and P be the set of probability measures
on U compatible with a given belief function F on U , i.e., P = {P : P ≥ F}. The
minimax procedure consists of choosing the action a∈A to maximize inf{EPu(a, .) :
P ∈P}.

It turns out that the above infimum (for each fixed a) is attained and is equal to
the Choquet integral of u(a, .) with respect to the belief function F . This can be seen
as follows.

Suppose U = {u1,u2, ...,un} with u(u1) ≤ u(u2) ≤ ... ≤ u(un) (we drop a for
simplicity). Then

n

∑
i=1

u(ui)[F({ui,ui+1, ...,un})−F({ui+1,ui+2, ...,un})] = EF(u)
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where

EF(u) =
∫ ∞

0
F(u > t)dt +

∫ 0

−∞
[F(u > t)− 1]dt

If we let

f (ui) = F({ui,ui+1, ...,un})−F({ui+1,ui+2, ...,un})
then f is a density on U and f ∈F . Indeed, let Ai = {ui,ui+1, ...,un}, then

f (ui) = F(Ai)−F(Ai\{ui}) =
∑

B⊆Ai

(F ∗ μ)(B)− ∑
B⊆Ai\{ui}

(F ∗ μ)(B) = ∑
ui∈B⊆Ai

(F ∗ μ)(B)

so that f ∈F . Next, for each t ∈ R and g ∈F , it can be checked that Pf (u > t)≤
Pg(u > t) since (u > t) is of the form {ui,ui+1, ...,un}. Hence, EPf (u)≤ EPg(u).

Remark
For a comprehensive treatment of Choquet integral, see Sriboonchitta et al

(2010).

References

1. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann.
Probability 38, 325–339 (1967)

2. Dubois, D., Prade, H.: A set-theoretic view of belief functions: logical operations and
approximations by fuzzy sets. Intern. J. General Systems 12, 193–226 (1986)

3. Gierz, G., Hofman, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Com-
pendium of Continuous Lattices. Springer (1980)

4. Goodman, I.R.: Fuzzy sets as equivalence classes of random sets. In: Yager, R. (ed.)
Fuzzy Sets and Possibility Theory, pp. 327–343 (1982)

5. Hajek, K.: Sampling from a Finite Population. Marcel Dekker, New York (1981)
6. Hartigan, J.A.: Estimation of a convex densoty contour in two dimensions. JASA 82,

267–270 (1987)
7. Jaffray, J.Y.: On the maximum of conditional entropy for upper/lower probabilities gener-

ated by random sets. In: Goutsias, J., et al. (eds.) Random Sets: Theory and Applications,
pp. 107–127. Springer (1997)

8. Hartigan, J.A.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630
(1957)

9. Marinacci, M.: Decomposition and representation of coalitional games. Math. Oper.
Res. 21, 1000–1015 (1996)

10. Matheron, G.: Random Sets and Integral Geometry. John Wiley (1975)
11. Meyerowitz, A., Richman, F., Walker, E.A.: Calculating maximum entropy probability

densities for belief functions. Intern. J. Uncertainty, Fuzziness and Knowledge-Based
Systems 2, 377–390 (1994)

12. Molchanov, I.: Theory of Random Sets. Springer (2005)
13. Molchanov, I.: An Introduction to Copulas. LNCS. Springer (1999)



On Belief Functions and Random Sets 19

14. Nguyen, H.T.: On random sets and belief functions. J. Math. Anal. Appl. 65, 531–542
(1978); reprinted in Yager, R., Liu, L. (eds.): Classical Works of the Dempster-Shafer
Theory of belief Functions, pp. 105–116. Springer (2008)

15. Nguyen, H.T.: On the entropy of random sets and possibility distributions. In: Bezdek, J.
(ed.) The Analysis of Fuzzy Information, pp. 145–156. CRC Press (1987)

16. Nguyen, H.T., Walker, E.A.: On decision -making using belief functions. In: Yager, R.,
et al. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 312–330. John
Wiley (1994)

17. Nguyen, H.T., Nguyen, N.T.: A negative version of Choquet theorem for Polish spaces.
East- West J. Math. 1, 61–71 (1998)

18. Nguyen, H.T., Kreinovich, V.: How to divide a territory? A new simple differential for-
malism for optimization of set-functions. Intern. J. Intell. Systems 14, 223–251 (1999)

19. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic, 3rd edn. Chapman and
Hall/CRC (2006)

20. Nguyen, H.T.: An Introduction to Random Sets. Chapman and Hall/CRC (2006)
21. Nguyen, H.T., Tran, H.: On a continuous lattice approach to modeling of coarse data in

system analysis. J. Uncertain Systems 1(1), 62–73 (2007)
22. Robbins, H.E.: On the measure of a random set. Ann. Math. Statist. 14, 70–74 (1944)
23. Scarsini, M.: Copulae of probability measures on product spaces. J. Multi. Anal. 31,

201–219 (1989)
24. Scarsini, M.: Copulae of capacities on product spaces. In: Distributions with Fixed

Marginals and Related Topics. IMS Lecture Notes, vol. 28, pp. 307–318 (1996)
25. Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press (1976)
26. Sklar, A.: Fonctions de repartition a n dimensions et leur marges. Publ. Inst. Statist. Univ.

Paris 8, 229–231 (1959)
27. Sriboonchitta, S., Wong, W.K., Dhompongsa, S., Nguyen, H.T.: Stochastic Dominance

and Applications to Finance, Risk and Economics. Chapman and Hall/CRC (2010)
28. Suppes, P., Zanotti, A.: On using random relations to generate upper and lower probabil-

ities. Synthese 36, 427–440 (1977)
29. Wasserman, L.A.: A Some Applications of Belief Functions to Statistical Inference.

Ph.D. Thesis, University of Toronto, Canada (1987)
30. Yager, R.: Entropy and specificity in a mathematical theory of evidence. Intern. J. Gen-

eral Systems 9(4), 249–269 (1983)



Evidential Multi-label Classification
Using the Random k-Label Sets Approach

Sawsan Kanj, Fahed Abdallah, and Thierry Denœux

Abstract. Multi-label classification deals with problems in which each instance can
be associated with a set of labels. An effective multi-label method, named RAkEL,
randomly breaks the initial set of labels into smaller sets and trains a single-label
classifier in each of this subset. To classify an unseen instance, the predictions
of all classifiers are combined using a voting process. In this paper, we adapt
the RAkEL approach under the belief function framework applied to set-valued
variables. Using evidence theory makes us able to handle lack of information by
associating a mass function to each classifier and combining them conjunctively.
Experiments on real datasets demonstrate that our approach improves classification
performances.

1 Introduction

Multi-label classification considers problems in which an object may belong
simultaneously to multiple classes [4, 5, 10]. Several applications may be subscribed
under the multi-label classification problem. In semantic scene classification, each
image can be separated into semantic classes as beaches, sunsets or parties [1]. In
text categorization, each document may belong to multiple categories such as gov-
ernment, arts and health [6]. In music classification, each song can evoke more than
one emotion at the same time, such as amazed, happy, excited, etc. [7].

A lot of algorithms have been proposed for multi-label learning. The existing
methods can be categorized into two groups: the indirect methods and the direct
ones [8]. The former one transforms the multi-label classification problem into one
or more single-label classification problems, while the latter handles directly the
multi-label classification problem.

This paper focuses on an effective multi-label learning method introduced in [9].
This method, named RAkEL (RAndom-k-labEL sets), aims at solving the multi-
label classification problem while taking into consideration the correlation between
labels. It randomly breaks the set of labels into smaller sets and learns a single-label
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Université de Technologie de Compiègne, CNRS, UMR 7253 Heudiasyc, France
e-mail: firstname.lastname@hds.utc.fr

T. Denœux & M.-H. Masson (Eds.): Belief Functions: Theory & Appl., AISC 164, pp. 21–28.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

firstname.lastname@hds.utc.fr


22 S. Kanj, F. Abdallah, and T. Denœux

classifier for each subset. To make a decision, the different predictions for each label
are aggregated via voting. In this approach, the user has to identify the number of
random label sets, the size of these sets and an adequate threshold in the voting
process.

Our goal in this paper is to alleviate the loss of information inherent in the
RAkEL method (as each base classifier only considers a subset of labels) while
accounting for label correlation in a more efficient way. For this purpose, we
propose to retain the basic principle of the RAkEL approach but to combine
the different classifiers in the belief function framework. In [3], a formalism for
representing uncertain information has been proposed for manipulating knowl-
edge about set-valued variables. We use this formalism in order to represent and
combine information about an unseen instance and to predict its set of labels.
To show the effectiveness of this strategy even when using simple classifiers
structure, we use Linear Discriminant Analysis (LDA) as the base-level learning
method for each classifier. In LDA, each classifier provides information about the
object to classify on the form of estimated posterior probabilities. Due to the fact
that these outputs can be expressed as set-valued variables, we encode them as
mass functions and combine them conjunctively. To make a final decision, we
compute the belief function for each label or the maximum of commonality in
order to find the whole set of labels to be assigned. The proposed method, called
Evidential-Rakel-LDA has the advantage of reducing the number of parameters
since the decision making process is automatically performed under the belief
function framework.

The rest of this paper is organized as follows. Section 2 recalls the background
on belief functions for set-valued variables. Section 3 introduces the Rakel-LDA
method. Section 4 presents experiments on two real datasets and discusses the
results. Finally, section 5 concludes the paper.

2 Belief Functions on Set-Valued Variables

Let X be a variable taking zero, one or several values in a finite set Ω . Such a
variable is said set-valued [3].

To express partial knowledge about a set-valued variable X , we may specify a set
A of values that are certainly taken by X and a set B of values that are certainly not
taken by X . The set of subsets of Ω that contain A and have an empty intersection
with B is denoted by ϕ(A,B). Let C(Ω) be the set of all subsets of Θ = 2Ω of the
form ϕ(A,B), completed by the empty set of Θ .

The theory of belief functions can be applied to describe partial knowledge about
set-valued variables by defining a mass function on Θ = 2Ω . It is clear that the
cardinality of C(Ω) is equal to 3K + 1.

The belief and commonality functions are defined, respectively, as follows:

bel(A,B) = ∑
ϕ(C,D)⊆ϕ(A,B)

m(C,D)− /0Θ , (1)
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q(A,B) = ∑
ϕ(C,D)⊇ϕ(A,B)

m(C,D), (2)

where m(A,B) is a notation for m(ϕ(A,B)).
As shown in [3], Dempster’s rule can be expressed as follows:

(m1⊕m2)(A,B) =
∑ϕ(C,D)∩ϕ(E,F)=ϕ(A,B)m1(C,D)m2(E,F)

∑ϕ(C,D)∩ϕ(E,F) �= /0Θ m1(C,D)m2(E,F)
. (3)

Even if the evidential approach reduces the number of focal elements to 3K +1, this
method still has high complexity for large numbers of labels. As an example, if we
have 20 labels in the multi-label problem, we may have to handle up to 3.4868e+
009 focal elements. The method proposed in the next section aims to overcome this
problem by applying the Evidential formalism to several partitions of the label set
and to combine the results under the belief functions framework.

3 Evidential-Rakel-LDA

Let X = Rd denote the input space, and let Ω = {ω1,ω2, . . . ,ωQ} be the finite set
of labels. The multi-label classification problem can be described as follows. Given
a training set D = {(x1,Y1), . . . ,(xN ,YN)}, of N instances drawn from X ×2Ω , and
identically distributed, where xi is a feature vector describing instance i, and Yi ⊆Ω
is the set of labels for that instance, the goal of the multi-label learning is to find a
multi-label classifier H : X → 2Ω that can associate a set of labels to each unseen
instance.

As in the standard RAkEL method, we randomly split the initial set of labels Ω
into a number of smaller label sets Ω j. For each one, the training set of instances,
denoted D j, is deduced from the original dataset D by replacing the label sets of
training instances by their intersections with Ω j. Inside D j, each combination of
labels is considered as a new class (or group of classes).Using D j , we train an LDA
classifier, denoted h j (here h j is a single-label classifier). Note that LDA is used
to generate a set of linear functions, one for each group. These functions are built
by maximizing the ratio of the between-class variance to the within-class variance.
In order to make a decision for an unseen instance x, LDA estimates the posterior
probability for each group of the set Ω j.

In the frame of discernment Ω , the individual classifier outputs are considered as
items of evidence. Each output is represented by a mass function on a focal set, noted
by ϕ(Aq,Bq) where Aq,Bq ⊆ Ω j. In other words, Aq is the set of labels assigned to
one group and Bq is its complement in Ω j.

After considering all the items of evidence as items on Ω , we combine them
using the Dempster’s rule (3) to form the resulting BBA m for an unseen instance.
To determine the set of estimated label Ŷ of the unseen instance, we compare the
two degrees of belief bel(ω , /0) and bel( /0,ω) for each label in Ω [3]:

Ŷ = {ω ∈ Ω/bel({ω}, /0)≥ bel( /0,{ω})}. (4)
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Note here that the decision making process is automatically performed without hav-
ing to define threshold. As shown by Denœux and Masson [2], we can also calculate
the communality function and the maximum of this function can be determined
by solving an integer programming problem with non-linear constraints. In this
case, another way to calculate Ŷ is to select the set of labels with the largest
communality.

4 Experiments

4.1 Evaluation Metrics

To evaluate the performance of our method, we calculate different metrics used in
the multi-label literature [8].

Hamming Loss: The Hamming Loss metric refers to the percentage of labels that
are misclassified, i.e., incorrect labels that are predicted or true labels that are not
predicted:

H Loss =
1
N

N

∑
i=1

|Yi�Ŷi|
Q

, (5)

where � denotes the symmetric difference between two sets.
Accuracy: Accuracy measures the degree of closeness between the predicted and

the ground truth label sets:

A ccuracy =
1
N

N

∑
i=1

|Yi∩ Ŷi|
|Yi∪ Ŷi|

. (6)

F1 measure: The F1 measure is defined as the harmonic mean of two other metrics
called precision and recall. Precision is the fraction of predicted labels that are true,
while recall is the fraction of true labels that are predicted.

Precision =
1
N

N

∑
i=1

|Yi∩ Ŷi|
|Ŷi|

, (7)

Recall =
1
N

N

∑
i=1

|Yi∩ Ŷi|
|Yi| , (8)

and

F1 = 2.
Precision.Recall

Precision+Recall
. (9)

The smaller the value of the Hamming Loss, the better the performance. For the
other metrics, higher values correspond to better classification quality.
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4.2 Datasets

Our method was experimented using the emotions and scene datasets 1.
The Emotion dataset contains 593 songs described by eight rhythmic features and

64 timbre features. There are six classes, and each song can belong to more than one
label according to the emotions generated.

The Scene dataset consists of 2407 natural scene images. There are six different
semantic classes. Spatial color moments are used as features. Each image is divided
into 49 blocks using 7× 7 grid. The mean and variance of each band are computed
corresponding to a low-resolution image and to computationally inexpensive texture
features, respectively. Each image is then described by 49× 2× 3 features [1].

4.3 Results and Discussions

We compared our method to the classical RAkEL approach based on the LDA
method with different threshold values. The number k of labels in each subset was
fixed to three for all experiments and the number of classifiers was ranging from 2
to 2 ∗Q. Experiments on Rakel-ADL were done with all meaningful values for the
threshold (0.1, 0.5 and 0.9).

Due to randomization of label space, results are very sensitive to the selected
combination of labels. To deal with this negative aspect, we grouped results in
batches of 10 classifiers calculated for the same value of k, and we computed the
average.

Figures 1 to 3 show the box plots for the different metrics obtained for the emo-
tion and scene datasets. From Figure 1, we can notice that our method performs

Fig. 1 Accuracy box plots with the Rakel-LDA method using a threshold values 0.1, 0.5, 0.9,
and the Evidential-Rakel-LDA method using the belief and the maximum of communality
principles. Left figure: for the emotion dataset; right figure: for the scene dataset

1http://mulan.sourceforge.net/datasets.html
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better than Rakel-ADL for different values of threshold in term of Accuracy on the
two datasets.

Figure 2 shows the performance of the F1 measure metric. As we can see on the
scene dataset, the proposed method yields good performances and it is competitive
with the two versions of decision. On the emotion dataset, Rakel-ADL performs bet-
ter for a threshold value equal to 0.1. This is due to the fact that the emotion dataset
is more labelled than the scene one (the average number of labels per instance is
1.87 for the former, while it is 1.07 for the latter). Decreasing the threshold value
can result in taking into account all positive true labels and increasing the value of
the recall metric.

Fig. 2 F1 box plots with the Rakel-LDA method using a threshold values 0.1, 0.5, 0.9, and the
Evidential-Rakel-LDA method using the belief and the maximum of communality principles.
Left figure: for the emotion dataset; right figure: for the scene dataset

Fig. 3 Hamming Loss box plots with the Rakel-LDA method using a threshold values 0.1, 0.5,
0.9, and the Evidential-Rakel-LDA method using the belief and the maximum of communality
principles. Left figure: for the emotion dataset; right figure: for the scene dataset
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Table 1 Experimental results (mean±std) of the compared algorithms on the emotions
dataset

Rakel-LDA Rakel-LDA Rakel-LDA E-Rakel-LDA E-Rakel-LDA
thr = 0.1 thr = 0.5 thr = 0.9 bel max of com

Accuracy 0.508±0.006(4) 0.509±0.009(3) 0.409±0.009(5) 0.519±0.009(1) 0.516±0.007(2)

F1 0.621±0.004(1) 0.598±0.011(4) 0.479±0.011(5) 0.607±0.012(2) 0.605±0.009(3)

HLoss 0.301±0.006(5) 0.239±0.003(4) 0.236±0.003(2) 0.235±0.006(1) 0.238±0.004(4)

Table 2 Experimental results (mean±std) of the compared algorithms on the scene dataset

Rakel-LDA Rakel-LDA Rakel-LDA E-Rakel-LDA E-Rakel-LDA
thr = 0.1 thr = 0.5 thr = 0.9 bel max of com

Accuracy 0.538±0.004(5) 0.601±0.006(3) 0.564±0.004(4) 0.611±0.005(1) 0.607±0.005(2)

F1 0.612±0.004(4) 0.632±0.006(3) 0.576±0.004(5) 0.636±0.005(2) 0.637±0.005(1)

HLoss 0.184±0.002(5) 0.132±0.003(4) 0.117±0.001(1) 0.129±0.002(2) 0.131±0.002(3)

Figure 3 shows the box plot of the minimum Hamming Loss for different meth-
ods. On the emotion dataset, our approach shows good performances, while on the
scene dataset and for a threshold equal to 0.9 we get the best result. This is due to
the fact that increasing the threshold is followed by reducing the number of predic-
tion errors (number of incorrect predicted labels), especially with the scene dataset
(80% of instances have a single label).

Tables 1 and 2 show that our approach is suitable to multi-label classification prob-
lems under the Rakel approach where we have missing information due to lack of
knowledge given by each classifier. Note that the intuitive threshold (t = 0.5) gives
in average better performances on the Rakel-ADL over different values of threshold.

5 Conclusion

A variant of the RAkEL method for multi-label classification has been proposed,
based on the theory of belief functions. Our approach uses the formalism developed
in [3] to define belief functions for set-valued variables. This framework allows
us to combine the outputs from base classifiers in a more efficient way than the
voting process used in the reference method. Experimental results demonstrate the
effectiveness of the approach.
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An Evidential Improvement for Gender Profiling

Jianbing Ma, Weiru Liu, and Paul Miller

Abstract. CCTV systems are broadly deployed in the present world. To ensure in-
time reaction for intelligent surveillance, it is a fundamental task for real-world ap-
plications to determine the gender of people of interest. However, normal video
algorithms for gender profiling (usually face profiling) have three drawbacks. First,
the profiling result is always uncertain. Second, for a time-lasting gender profiling
algorithm, the result is not stable. The degree of certainty usually varies, sometimes
even to the extent that a male is classified as a female, and vice versa. Third, for
a robust profiling result in cases were a person’s face is not visible, other features,
such as body shape, are required. These algorithms may provide different recogni-
tion results - at the very least, they will provide different degrees of certainties. To
overcome these problems, in this paper, we introduce an evidential approach that
makes use of profiling results from multiple algorithms over a period of time. Ex-
periments show that this approach does provide better results than single profiling
results and classic fusion results.

1 Introduction

During the last decade, there has been massive investment in CCTV technology in
the UK, e.g., e.g., the First Glasgow Bus Surveillance [10], Intelligent Surveillance
Project [3, 4, 5, 6, 7, 8], Airport Corridor Surveillance [9], etc. Currently, there are
approximately four million CCTV cameras operationally deployed. Despite this,
the impact on anti-social and criminal behaviour has been minimal. For example,
assaults on bus and train passengers are still a major problem for transport oper-
ators. Although most incidents, also called events, are captured on video, there is
no response because very little of the data is actively analyzed in real-time. Con-
sequently, CCTV operates in a passive mode, simply collecting enormous volumes
of video data. For this technology to be effective, CCTV has to become active by
alerting security analysts in real-time so that they can stop or prevent the undesirable
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behaviour. Such a quantum leap in capability will greatly increase the likelihood of
offenders being caught, a major factor in crime prevention.

A key requirement for active CCTV systems is to automatically determine the
threat posed by each individual to others in the scene. Most of the focus of the com-
puter vision community has been on behaviour/action recognition. However, expe-
rienced security analysts profile individuals in the scene to determine their threat.
Often they can identify individuals who look as though they may cause trouble be-
fore any anti-social behaviour has occurred. From criminology studies, the vast ma-
jority of offenders are young adolescent males. Therefore, key to automatic threat
assessment is to be able to automatically profile people in the scene based on their
gender and age. In this paper, we focus on the former.

The most obvious cue in determining a person’s gender is the appearance of
their face. However, for automatic classifiers this usually requires cooperative sub-
jects who are directly looking at the camera and at close range. For most security
scenarios one cannot assume this, as the person’s face may not be visible as they
are facing away from the camera, or they may be too far away - the resulting low
resolution making gender discrimination difficult or impossible. Another obvious
cue that can help overcome these issues is that of body shape. However, generally
automatic classifiers of body shape are a less reliable indicator of gender than face-
based classifiers. Furthermore, for both types of classifiers, the output result always
has some degree of uncertainty. Secondly, when such classifiers are applied to video
sequences, their output can vary significantly with time - even to the extent that a
person’s gender is incorrectly classified. Thirdly, the key to a robust solution is to
use both face and body shape classifiers. Ideally, we would like to use the face clas-
sifier result, provided it is detected, otherwise we should resort to using the body
shape result. However, this raises the issue of what to do when the outputs of both
classifiers are different.

Imperfect information frequently occurs in video analytic processes. For exam-
ple, a person may be classified as male with a certainty of 85% by a gender profiling
algorithm. However, this does not imply that the person is female with a 15% cer-
tainty, rather, we say that the 15% represents what is unknown about the gender,
i.e., we do not know how to distribute the remaining 15% between male and female.
From probability theory, this information can only be represented as p(male)≥ 0.85
and p( f emale) ≤ 0.15 (or interval probabilities), which is difficult to use for rea-
soning. Imperfect information is usually caused by ignorance or unreliability of the
information sources. For example, a camera may have a faulty gain control setting,
illumination could be poor, or the classifier training set may be unrepresentative.
Any, or all, of these can result in imperfect information which cannot be repre-
sented by probability measures. On the other hand, such imperfect information can
be easily handled using an evidential approach, namely, the Dempster-Shafer (DS)
theory of evidence.

To address all of the above issues, we investigate whether a DS framework can
combine uncertain profiling results from face and body shape classifiers over an
extended time period, to provide robust gender profiling of subjects in video. Exper-
iments show that this approach provides better results than a probabilistic approach.
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DS theory [1, 11] is a popular framework to deal with uncertain or incomplete in-
formation from multiple sources. This theory is capable of modelling incomplete
information through ignorance. For combining difference pieces of information, DS
theory distinguishes two cases, i.e., whether pieces of information are from distinct,
or non-distinct, sources. Many combination rules are proposed for information from
distinct sources, among which are the well-known Dempster’s rule [11] and Smets’
rule [12]. In [2], two combination rules, i.e., the cautious rule and the bold disjunc-
tive rule, for information from non-distinct sources are proposed. Thus, we view
gender profiling results from the same classifier, e.g. face-based, at different times
as being from non-distinct sources. For profiling results from different classifiers,
they are naturally considered as being from distinct sources. Therefore, all of the
problems mentioned above can be handled within the DS framework.

To the best of our knowledge, our approach is the first that addresses imperfect
information from multiple sources for gender profiling. We demonstrate the signifi-
cance and usefulness of our framework with experimental results on sample videos
and by comparison to a probabilistic approach.

The rest of the paper is organized as follows. Section 2 provides the preliminaries
on Dempster-Shafer theory. In Section 3, we discuss the difficulties in gender pro-
filing in terms of scenarios. Section 4 provides experimental results which shows
our method is better than a classic fusion approach and single profiling approaches.
Finally, we conclude the paper in Section 5.

2 Dempster-Shafer Theory

For convenience, we recall some basic concepts of Dempster-Shafer’s theory of
evidence. Let Ω be a finite, non-empty set called the frame of discernment, denoted
as, Ω = {w1, · · · ,wn}.

Definition 1. A basic belief assignment(bba) is a mapping m : 2Ω → [0,1] such that
∑A⊆Ω m(A) = 1.

If m( /0) = 0, then m is called a mass function. If m(A) > 0, then A is called a focal
element of m. Let Fm denote the set of focal elements of m. A mass function with
only a focal element Ω is called a vacuous mass function.

From a bba m, belief function (Bel) and plausibility function (Pl) can be defined
to represent the lower and upper bounds of the beliefs implied by m as follows.

Bel(A) = ∑B⊆A m(B) and Pl(A) = ∑C∩A �= /0 m(C). (1)

One advantage of DS theory is that it has the ability to accumulate and combine
evidence from multiple sources by using Dempster’s rule of combination. Let m1

and m2 be two mass functions from two distinct sources over Ω . Combining m1 and
m2 gives a new mass function m as follows:

m(C) = (m1⊕m2)(C) =
∑A∩B=C m1(A)m2(B)

1−∑A∩B= /0 m1(A)m2(B)
(2)
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In practice, sources may not be completely reliable, to reflect this, in [11], a discount
rate was introduced by which the mass function may be discounted in order to reflect
the reliability of a source. Let r (0 ≤ r ≤ 1) be a discount rate, a discounted mass
function using r is represented as:

mr(A) =

{
(1− r)m(A) A ⊂Ω
r+(1− r)m(Ω) A = Ω (3)

When r = 0 the source is absolutely reliable and when r = 1 the source is completely
unreliable. After discounting, the source is treated as totally reliable.

Definition 2. Let m be a bba on Ω . A pignistic transformation of m is a probability
distribution Pm over Ω such that ∀w ∈ Ω ,Pm(w) = ∑w∈A

1
|A|

m(A)
1−m( /0) where |A| is the

cardinality of A.

Let ⊕ be the conjunctive combination operator (or Smets’ operator [12]) for any
two bbas m,m′ over Ω such that

(m⊕m′)(C) = ∑
A⊆Ω ,B⊆Ω ,A∩B=C

m(A)m′(B),∀ C ⊆ Ω . (4)

A simple bba m such that m(A) = x,m(Ω) = 1−x for some A �=Ω will be denoted as
Ax. The vacuous bba can thus be noted as A0 for any A⊂Ω . Note that this notation,
i.e., Ax, is a bit different from the one defined in [2] in which Ax in our paper should
be denoted as A1−x in [2].

Similarly, for two sets A,B ⊂ Ω , A �= B, let AxBy denote a bba m such that m =
Ax ⊕By where ⊕ is the conjunctive combination operator defined in Equation (4).
For these kinds of bbas, we call them bipolar bbas. A simple bba Ax could be seen
as a special bipolar bba AxB0 for any set B ⊆ Ω , B �= A.

It is easy to prove that any m = AxBy is:

m( /0) = xy,m(A) = x(1− y),m(B) = y(1− x),m(Ω) = (1− x)(1− y) (5)

In addition, when normalized, m in Equation 5 is changed to m′ as follows.

m′(A) =
x(1− y)
1− xy

,m′(B) =
y(1− x)
1− xy

,m′(Ω) =
(1− x)(1− y)

1− xy
(6)

For two bipolar bbas Ax1 By1 and Ax2 By2 , the cautious combination rule proposed in
[2] is as follows.

Lemma 1 (Denœux’s Cautious Combination Rule). Let Ax1By1 and Ax2By2 be two
bipolar bbas, then the combined bba by Denœux’s cautious combination rule is also
a bipolar bba AxBy such that: x = max(x1,x2),y = max(y1,y2).

Also, according to [2], for m1 = Ax1By1 and m2 = Ax2By2 , the combined result by
Equation (2) is

m12 = Ax1x2By1y2 (7)
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3 Gender Recognition Scenario

In this section, we provide a detailed description of a gender profiling scenario,
which lends itself naturally to a DS approach.

Figure 1 shows three images taken from a video sequence that has been passed
through a video analytic algorithm for gender profiling. In this sequence, a female
wearing an overcoat with a hood enters the scene with her back to the camera. She
walks around the chair, turning, so that her face becomes visible, and then sits down.

Fig. 1(a) shows that the subject is recognised by the full body shape profiling as a
male. Note that her face is not visible. In Fig. 1(b), the subject is classified as female
by the full body shape profiling algorithm. In Fig. 1(c), as she sits down, with her
face visible, the face profiling algorithm classifies her as female, whilst the full body
profiling classifies her as male. Note that the full body profiling algorithm is not as
reliable as the face profiling algorithm. Conversely, full body profiling is always
possible whilst the face information can be missing. That is why these two profil-
ing algorithms should be considered together. In addition, as full body profiling is
not as robust, discount operations should be performed on the algorithm output (cf.
Equation (3)). The discount rate is dependent on the video samples and the training
efficiency. For every video frame in which a body (face) is detected, gender recog-
nition results are provided. The full body profiling algorithm and the face profiling
algorithm, provided a person’s face is detected, report their recognition results for
every frame of the video, e.g., male with 95% certainty.

For a frame with only a body profiling result, for instance Fig. 1(a), the corre-
sponding mass function m for body profiling will be Mx where M denotes that the
person is classified as a male and x is the mass value of m({M}). The corresponding
mass function for face profiling is M0F0 where F denotes that the person is classi-
fied as a female, or the vacuous mass function. Alternatively, we can refer to this as
the vacuous mass function.

Similarly, for a frame with both body profiling and face profiling, for instance
Fig. 1(c), the corresponding mass function for body profiling will be Mx (or in a
bipolar form MxF0) and the mass function for face profiling is Fy (or in a bipolar
form M0Fy) where x,y are the corresponding mass values. As time elapses, fusion
of bipolar bbas by the cautious rule is reduced, as shown by Lemma 1. And when

(a) (b) (c)

Fig. 1 Three images taken from a video sequence
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it comes to present the final profiling result, we use Dempster’s rule to combine the
two fused bipolar mass functions from the two recognition algorithms, respectively.
Namely, for the two bipolar bbas m1 = Mx1 Fy1 and m2 = Mx2 Fy2 , it is easy to get
that the combined result m12 by Dempster’s rule is (normalized from the result of
Equation 7):

m12({M}) = m1({M}m2({M}))(1−m1({F})m2({F}))
1−m1({M})m2({M})m1({F})m2({F}) ,

m12({F}) = m1({F}m2({F}))(1−m1({M})m2({M}))
1−m1({M})m2({M})m1({F})m2({F}) ,

m12(Ω) =
(1−m1({M})m2({M}))(1−m1({F})m2({F}))

1−m1({M})m2({M})m1({F})m2({F}) .

Finally, we use the pignistic transformation (Def. 2) for the final probabilities. That
is, p({M}) = m12({M})+m12(Ω)/2 and p({F}) = m12({F})+m12(Ω)/2

Example 1. Let us illustrate the approach by a simple scenario with two frames. In
the first frame, we have both body profiling (m1

b) and face profiling (m1
f ) results as

m1
b = M0.7F0.3 and m1

f = M0.4F0.6. In the second frame, we have the body profiling

(m2
b) result only, where m2

b = M0.8F0.2. By Lemma 1, the fusion results by the cau-
tious rule is mb = M0.8F0.3 and m f = M0.4F0.6. Then by Equation 7, we get mb f =

M0.32F0.18, which, when normalized, is equivalent to mb f ({M}) = 0.32(1−0.18)
1−0.32∗0.18 =

0.28, mb f ({F}) = 0.18(1−0.32)
1−0.32∗0.18 = 0.13, mb f (Ω) = (1−0.32)(1−0.18)

1−0.32∗0.18 = 0.59. And finally
we get p({M}) = 0.58 and p({F}) = 0.42.

4 Experimental Results

In this section we compare fusion results obtained by Dempster-Shafer theory and
a classic approach. As there are no benchmark datasets for both body and face
profiling, we simulate the output of both body and face classifiers on a sequence
containing a male subject. For the body classifier, the probability of any frame
being correctly classified as male/female is roughly 60-90%. For the face classi-
fier, only 75% of the available frames are randomly allocated as containing a face.
For each of these frames the probability of the frame being correctly classified as
being male/female is 85-100%. In both cases the values for m({M}) and m({F})
are uniformly sampled from the ranges 0.6-0.9 and 0.85-1.0 for the body and face
classifiers outputs respectively.

As mentioned before, for gender profiling results from the same classifier at dif-
ferent time points, we use the cautious rule (Lemma 1) to combine them. For pro-
filing results from different classifiers (i.e., face profiling and full body profiling),
we use Dempster’s rule (Equation (2)) to combine them. And finally, we apply the
pignistic transformation (Def. 2) to get the probabilities of the subject being male or
female.

Classic fusion in the computer vision community [13] takes the degrees of
certainty as probabilities, i.e., they consider the face profiling and the full body
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profiling output pt
f and pt

b indicating the probabilities of faces and full bodies being
recognized as males at time t. Then it uses pt

b, f = ct
f pt

f + ct
b pt

b to calculate the final
probability pt

b, f at time t, where ct
f and ct

b are the weights of the face and full body
profiling at time t, proportional to the feasibility of the two algorithms in the last
twenty frames. As full body profiling is always feasible, suppose face profiling can
be applied n times in the last twenty frames, then we have:

cb =
20

20+ n
,c f =

n
20+ n

.

For this experiment, the performance of the DS and classic fusion schemes were
characterised by the true positive rate:

TPR =
NPR

N

where NPR is the number of frames in which the gender has been correctly classified
and N is the total number of frames in which the body/face is present. According to
the training on the sample videos, the discount rate r for the full body profiling is
set to 0.3. For comparison, we calculate the TPR value for the body classifier alone,
the face classifier, the DS fusion scheme and the classic fusion scheme.

When applying the methods on the randomly-generated simulation data, the
comparison results are presented as follows.

Table 1 Comparison of TPR for body classification, face classification, DS fusion and classic
fusion

Methods TotalFrame N NPR TPR (%)
Full Body 3100 3100 1872 60.4

Face 3100 2321 2178 93.8
Classic Method 3100 3100 2658 85.7
DS Approach 3100 3100 3014 97.2

From Table 1, we can see that the DS fusion scheme gives an increase of approx-
imately 11% in TPR compared to the classic fusion scheme.

5 Conclusion

In this paper, we have proposed how to combine gender profiling classifier results
by utilizing DS theory. We have used the cautious rule to combine gender profiling
results from the same classifier at different time points and used Dempster’s rule to
combine profiling results from different classifiers. Experimental results show that
the introduction of the DS theory indeed improves profiling performance.

We have mentioned that there are three problems that a classic gender profil-
ing system should deal with, i.e., uncertain profiling results, unstable results over
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time for a gender profiling classifier, and different classifiers capturing different
features. We have shown that a DS-based approach handles these three issues in a
seamless way.

For future work, we plan to apply the fusion schemes to profiling classifier results
generated from real video sequences.
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and EP/H049606/1 (the CSIT project).
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An Interval-Valued Dissimilarity Measure
for Belief Functions Based on Credal Semantics

Alessandro Antonucci

Abstract. Evidence theory extends Bayesian probability theory by allowing for a
more expressive model of subjective uncertainty. Besides standard interpretation of
belief functions, where uncertainty corresponds to probability masses which might
refer to whole subsets of the possibility space, credal semantics can be also consid-
ered. Accordingly, a belief function can be identified with the whole set of proba-
bility mass functions consistent with the beliefs induced by the masses. Following
this interpretation, a novel, set-valued, dissimilarity measure with a clear behavioral
interpretation can be defined. We describe the main features of this new measure
and comment the relation with other measures proposed in the literature.

1 Introduction

Evidence theory [4, 7] generalizes classical Bayesian theory of probability by pro-
viding a more robust, and hence reliable, model of subjective uncertainty. While the
Bayesian framework models uncertainty with probability masses assigned to sin-
gle outcomes of a variable, evidence theory allows these masses to be associated
to whole, not necessarily disjoint, sets of outcomes. The probabilities for the sin-
gle states might be therefore not precisely specified, being only characterized by
their lower and upper bounds, corresponding to beliefs and plausibilities. In other
words, in general, there are multiple probability mass functions consistent with a
single belief function specification. This is an equivalent characterization of a belief
function, which can be identified with the credal set of its consistent mass func-
tions. This provides a clear behavioral interpretation, based on Walley’s theory of
imprecise probability [8], where de Finetti’s fair prices (associated to single mass
functions) are extended to maximum buying/minimum selling prices.
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Although already present in the first formalization of evidence theory [4], these
credal semantics received relatively little attention.1 In this paper we exploit these
semantics to define a novel, interval-valued, dissimilarity measure for belief func-
tions.2 Given a distance for probability mass functions, we evaluate the bounds when
the two mass functions vary in the credal sets consistent with the belief functions
to be compared. Notably, with the Manhattan (one-norm) distance, the evaluation
of these bounds maps to linear programming and, the bounds can be equivalently
evaluated by only comparing the extreme mass functions of the credal sets. Besides
such a computational advantage, the behavioral semantics of credal sets can be used
to provide a clear interpretation of the proposed measure.

Many dissimilarity measures for belief functions have been proposed [5], and
some of them have been already based on comparisons of probability mass func-
tions (e.g., the pignistic). The novelty of our approach consists in taking an interval-
valued descriptor, which might provide a more cautious, and hence reliable, model
of the (dis)similarity for belief functions.3

The paper is organized as follows. In Section 2, we review the basics of evidence
theory and set the notation. Section 3 details the credal semantics of belief functions,
while the interval-valued measure we propose is described in Section 4. Conclusions
and outlooks are finally summarized in Section 6.

2 Basics

Let X denote a variable taking values in a finite set X := {x1, . . . ,xn}. We consider
two models of the uncertainty about the actual state of X .

A probability mass function P over X is a map P : X → R, such that P(x) ≥ 0
for each x ∈ X and ∑x∈X P(x) = 1. This models subjective uncertainty accord-
ing to the following behavioral interpretation: the number P(x) is regarded as the
highest price a subject is willing to pay for buying a gamble which pays one unit
if X = x and zero otherwise (or equivalently the lowest price for which he/she
sells it).

A basic belief assignment m over X is a map m : 2X →R, such that m(A)≥ 0 for
each A ∈ 2X and ∑A∈2X m(A) = 1.4 Given A,B ∈ 2X , inc(B,A) and int(B,A) are
indicator functions which are equal to one, being zero otherwise, if B is, respectively,
included in A or has non-empty intersection with A. For each A∈ 2X , the belief and
plausibility of A corresponding to the mass m are:

1 A remarkable exception is the work of Cuzzolin (e.g., [2]), where these semantics
have has been exploited to define new, consistent, Bayesian approximations of belief
functions.

2 Although the focus of the paper is on the special class of credal sets associated to belief
functions, the measure we present can be considered also for general credal sets.

3 We agree with [6] in emphasizing the difficulties of capturing the level of dissimilarity
between two belief functions with a single scalar indicator.

4 The set of all the possible subsets of X is denoted by 2X . Notation | · | will be used to
denote the cardinality of the set in the argument. E.g., |X |= n, and |2X |= 2n.
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bm(A) := ∑
B∈2X

inc(B,A) ·m(B), (1)

plm(A) := ∑
B∈2X

int(B,A) ·m(B). (2)

It is trivial to check that beliefs and plausibilities are conjugated by the relation
b(A) = 1− pl(X \A), for each A∈ 2X . Similarly, the masses can be obtained from
the beliefs through the so-called Möbius transform:

m(A) = ∑
B∈2X

mob(B,A) · inc(B,A) ·bm(B), (3)

where mob(B,A) is minus one if the difference between the cardinality of A and B is
odd and one otherwise. Masses, beliefs and plausibilities can be therefore regarded
as equivalent specifications of a single uncertainty model. In the following we refer
to this model as a belief function (BF), independently of the particular way this has
been specified. Given a BF, a probability distribution Pm(X) can be obtained by
simply considering the pignistic transformation:

Pm(x) := ∑
B∈2X

inc({x},B)m(B)
|B| . (4)

Finally note that a probability mass function can be regarded as a special belief
function whose masses are defined only on the singletons. Note that, in this case,
(4) returns the original mass function.

3 Credal Semantics of Belief Functions

Classical BFs semantics can be easily reduced to the interpretation of probability
mass functions provided in the previous section. Exactly as P assigns mass P(x) to
event X = x, m assigns mass m(A) to event X ∈ A. Yet, as the different elements of
2X are not exclusive, the masses associated to two or more subsets can contribute
to determine the total amount of probability of an event. In particular, the sum as
in (1) can be regarded as the minimum amount of probability associated to event
X ∈ A (and the sum in (2) the maximum). Multiple probability mass functions can
be therefore consistent with a BF specification.

We denote by Km(X) the set of probability mass functions consistent with m:5

Km(X) :=

{
P(X)

∣∣∣∣∑x∈X P(x) = 1
∑x∈A P(x)≥ bm(A) ∀A ∈ 2X

}
. (5)

5 As a consequence of the conjugation between beliefs and plausibility, this set of probability
mass functions can be equivalently defined in terms of plausibilities (with the inequalities
inverted).
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As a trivial consequence of (1), the pignistic as in (4) satisfies constraints in (5),
being therefore included in Km(X). This implies that Km(X) cannot be empty. Sim-
ilarly, the inequality constraints in (5) are tight, i.e., for each A ∈ 2X , a probability
distribution satisfying the strict equality always exists. Different BFs should there-
fore induce different sets and vice versa. In other words, Km(X) is an equivalent
specification for BFs.

Being defined by linear constraints, Km(X) is a closed and convex set of proba-
bility mass functions, i.e., a credal set.6 Accordingly, Walley’s behavioral interpre-
tation of credal sets [8] can refer to BFs: the bounds with respect to Km(X) of the
probability for an event A, which are respectively to b(A) and pl(A), can be regarded
as the lowest selling price and the maximum buying price a subject is willing to pay
for a gamble which pays one if X ∈ A and zero otherwise.7

The credal semantics of m based on Km(X) also provides a direct geometric in-
terpretation (see Figure 1). Being defined by linear constraints, Km(X) is a poly-
tope over the probabilistic simplex, which can be equivalently described by the set
ext[Km(X)] of its (finite-number) extreme points. These can be obtained from the
plausibilities by a simple combinatorial formula. Let σ denote a permutation of the
first n integers and (xσ(1), . . . ,xσ(n)) the corresponding permutation of X ; the cor-
responding extreme point Pσ (X) of Km(X) is such that:8

Pσ (xσ( j)) = Pl({xσ(1), . . . ,xσ( j)})−Pl({xσ(1), . . . ,xσ( j−1)}), (6)

for each j = 2, . . . ,n, while Pσ (xσ(1)) = Pl({xσ(1)}). Being indexed by the per-
mutations of the first n integers, the number of extreme probability mass func-
tions in Km(X) cannot exceed the factorial of n = |X |. Yet, most of the times,
this is only an upper bound to the actual number of extremes: the less are the
focal elements (i.e., events with non-zero mass), the less will be the distinct ex-
treme mass functions returned by (6). As an example, if the non-zero masses are
only the singletons and the universe, the distinct extremes will be only n (see
Figure 1.a and 1.b). Finally, let us note that the average in the definition of the
pignistic (4) corresponds to the computation of the center of mass of Km(X) (see
references in [2]).9

As an example, the vacuous BF m0 assigning all the mass to the universe
(i.e., m0(X ) = 1 and, hence, zero on any other subset) models a complete lack
of information. The corresponding credal set coincides with the whole probabil-
ity simplex, which will be denoted by Km0(X) and its pignistic is uniform (see
Figure 1.a).

6 Note that there are credal sets which cannot be associated BFs. In this sense, credal set are
a more general class of models of uncertainty.

7 The behavioral counterpart of the non-emptiness and bounds tightness of Km(X), which
has been proved in the previous paragraph, is that the subject obeys the rationality criteria
of avoiding sure loss and coherence [8].

8 This formula, formalized in [3], was rewritten in terms of the masses in [2]. Yet, such a
characterization was already implicitly present in [4].

9 This is true even if we consider only the extreme mass functions.
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Fig. 1 Credal sets associated to BFs over a ternary variable X (dark gray) and their pig-
nistic mass functions (black points). We consider: (a) the vacuous specification m0; (b)
a specification whose focal elements are only the singletons and on the universe with
m({x1}) = .05, m({x2}) = .15, m({x3}) = .6, m(X ) = .2, and (c) a generic specifica-
tion with m({x1}) = .05, m({x2}) = .2, m({x3}) = .1, m({x1,x2}) = .1, m({x1,x3}) = .35,
m({x2,x3}) = .1, m({X }) = .1.

4 A New Dissimilarity Measure for Belief Functions

The credal semantics introduced in the previous section is exploited here to de-
fine a new dissimilarity measure for BFs. This problem has been studied by many
authors, and we point the reader to [5] for a survey. Yet, as emphasized by [6],
scalar descriptors generally used for that can be unable to properly model the
(dis)similarity between two BFs. This supports our idea of using an interval-valued
measure.

Consider BFs m1 and m2 modeling two subjects’ uncertainty about X . Our goal
is define a measure of the (dis)similarity between the two subjects’ beliefs based on
the corresponding credal sets Km1(X) and Km2(X). Following a sensitivity analysis
approach, we might assume that a true probability mass function (or, in behavioural
terms, a true fair price), modeling the subjective uncertainty about X , exists for both
subjects. Yet, due to partial lack of information, the subjects are only able to identify
that these mass functions belong to their corresponding credal sets. As an example,
the two credal sets in Figure 2.a partially overlap, and we cannot exclude that the two
subjects’ uncertainty corresponds to the same mass function. Yet, it could also be
that they refer to completely different mass functions. To characterize this maximal
dissimilarity case (and maximal similarity when the credal sets do not overlap) a
measure to compare probability mass functions is needed.

To formalize these ideas, let us therefore consider a distance δ (P1,P2) model-
ing the level of (dis)similarity for any pair of mass functions P1(X) and P2(X).
In particular, we consider a non-degenerate measure, i.e., the minimum distance
δ (P1,P2) = 0 is achieved if and only if P1 = P2, while its maximum value is
normalized to one. The maximal dissimilarity should refer to a situation where
both functions are deterministic, i.e., all the mass is assigned to a single out-
come, which is different for the two functions. These desirable properties are,
among others, satisfied by the so-called “Manhattan” distance, i.e., the one-norm
measure:
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δ (P1,P2) :=
1
2 ∑

x∈X

|P1(x)−P2(x)|. (7)

We also provide an interpretation for this measure. Given variables X1 and X2, both
with possibility space X , we generate two samples of size m based on P1(X1) and
P2(X2). The elements common to both samples are removed, and k elements remain.
Then δ (P1,P2) coincides with k/m in the limit of large m. E.g., if both P1 and P2

are deterministic and referred to different outcomes, the two samples cannot have
common elements and the distance should be one, while, if the two mass functions
coincide, k should tend to zero.

Following the above discussion, we extend δ to cope with BFs by simply consid-
ering the bounds:10

δ (m1,m2) := min
P1(X)∈Km1 (X),P2(X)∈Km2 (X)

δ (P1,P2), (8)

δ (m1,m2) := max
P1(X)∈Km1 (X),P2(X)∈Km2 (X)

δ (P1,P2). (9)

With overlapping credal sets, (8) is zero, which means that the two models of un-
certainty can refer to the same probability mass functions, while, because of the
non-degeneracy, (9) is zero only if both the credal sets are made of a single mass
function, this being the same for both. In fact, we cannot exclude that the two sub-
jects refer to different mass functions. This is the case even when we compare a BF
with itself. The result is a (scalar) descriptor of the level of Bayesianity for BFs,
which we call radius:

ρ(m) := δ (m,m). (10)

Only probability mass functions have zero radius, while the maximum value of one
is reached by credal sets include (at least) two degenerate probability mass functions
(i.e., we could sample completely disjoint data from mass functions consistent with
the two BFs) corresponding to BFs assigning mass one to a non-singleton. Note also
that, if the mass are assigned only to the singletons and to the universe, the radius is
the mass of the universe.

5 Computational Issues and Preliminary Tests

Consider the optimization tasks required to compute (8) and (9), when based on (7).
The feasible region is defined by linear constraints as in (5). Apart from the absolute
values in (7), this is a linear program. Yet, the problem can be reduced to a linear
task by introducing 2n auxiliary variables. Let us show this for the minimum of a
single term of the objective function, say |P1(x)−P2(x)|. Introduce two nonnegative

10 Notably (8) has been already proposed in [1] as a possible descriptor of the level of sim-
ilarity for credal sets. Yet, we emphasize here the novelty and importance of considering
both the bounds for a reliable modeling of the similarity level.
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Fig. 2 Lower (dotted) and upper (dashed) distances and radiuses (continuous). Lines con-
nect the extremes corresponding to the optima. As the distance is not Euclidean, lengths are
not proportional to the actual distances. (a) compares the BFs in Figures 1, (b) a BF with
m({x2}) = .15, m({x3}) = .6, m({x2,x3}) = .05, m(X ) = .2 and the BF obtained by swap-
ping x3 and x1.

variables Δ+ and Δ− such that:

Δ++Δ− = |P1(x)−P2(x)|. (11)

This allows to rewrite the objective function in a linear form. We also set:

Δ+−Δ− = P1(x)−P2(x), (12)

this being an additional (linear) constraint. Let (P1(x)∗,P2(x)∗,Δ∗
+,Δ∗−) denote

the solution of the corresponding linear task. It should be Δ∗
+ · Δ∗− = 0, because

otherwise it would be possible to subtract min{Δ∗
+,Δ∗−} > 0 to both the (nonneg-

ative) auxiliary variables without violating (12), and thus obtain a smaller mini-
mum. But if Δ∗− = 0, Δ− = 0 can be assumed in the problem, which therefore
coincides with the original one (similarly with Δ∗

+ = 0). Overall, the computation
of (8) and (9) maps to a linear program, whose solution is known to be on the
extremes:

δ (m1,m2) := min
P1(X)∈ext[Km1 (X)],P2(X)∈ext[Km2 (X)]

δ (P1,P2). (13)

The measure we presented can be therefore computed by pairwise comparison
of the extremes as in (13) or by solving the above derived linear program. Re-
garding complexity, linear programming is (roughly) cubic in the number of con-
straints/variables, which is at most 2n, while the evaluation based on the extreme
points is quadratic in the number of vertices (which are at most n!). Thus, for worst
case scenarios, linear programming is faster for large n, while pairwise comparison
is faster for small values (the threshold being around n = 6).

Some preliminary numerical tests on randomly generated BFs were performed
to compare our interval-valued measure with other, singly-valued, descriptors.
The results, summarized in Figure 3, suggests that our intervals are seemingly
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Fig. 3 Comparison between the bounds of the interval valued measure proposed in this pa-
per, the Manhattan distance of the pignistic distributions and the distance based on the inner
product of the masses with the Jaccard index [5]. The distances are computed on 1000 ran-
domly generated pairs BFs defined over a ternary variable and with radius smaller than .3.
Results are sorted by increasing values of the pignistic distance.

effective in including the single-valued descriptors we consider, without increas-
ing too much their size. Thus, the desired cautiousness in the estimates is achieved
without compromising the informativeness of the results.

6 Conclusions and Outlooks

A new interval-valued dissimilarity measure, together with a measure of the level
of Bayesianity, has been proposed within the framework of evidence theory. The
development of similar results for measures other than the Manhattan distance (KL
and Euclidean in particular) should be regarded as a necessary future work. A more
systematic experimental comparison with other measures should be also considered.
Finally, we want to extend k-NN classification to interval-valued distances, and then
apply the ideas developed in this paper to classifiers modeling instances by BFs.
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An Evidential Pattern Matching Approach
for Vehicle Identification

Anne-Laure Jousselme and Patrick Maupin

Abstract. In this paper, we propose a novel pattern matching approach for vehicle
identification based on belief functions. Distances are computed within a belief de-
cision space rather than directly in the feature space as traditionally done. The main
goal of the paper is to compare performances obtained when using several distances
between belief functions recently introduced by the authors. Belief functions are
modeled using the outputs of a set of modality-based 1-NN classifiers, two distinct
uncertainty modeling techniques and are combined with Dempster’s rule. Results
are obtained on real data gathered from sensor nodes with 4 signal modalities and
for 4 classes of vehicles (pedestrian, bicycle, car, truck). Main results show the im-
portance of the uncertainty technique used and the interest of the proposed pattern
matching approach in terms of performance and expressiveness.

1 Introduction

Sensor networks are widely used for monitoring and surveillance applications in
which the vehicle identification task plays a crucial role (e.g. [3]). Although acous-
tic sensors are often used [1, 3] other modalities can also be considered and in par-
ticular seismic sensors. The local fusion of these modalities can be done within the
evidence theory as for instance in [5]. Nevertheless, one rarely finds in the literature
papers in which more than 3 modalities are used.

Pattern matching techniques have successfully been applied to vehicle identifica-
tion using for instance a one-class classifier as in [7] or an evidence theory based
approach as in [6]. Other examples of similar approaches can also be found in the
recent survey compiled by [1]. The advantage of a pattern matching approach over
a standard pattern recognition scheme is that it retrieves the closest individual ob-
jects (observed in the past) to the one currently observed. Hence, besides the class
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estimation of the observed object, the user has access to contextual information
which has not necessary been considered in the classification process. For instance,
among the k individuals retrieved by the pattern matching algorithm, 90% were
white cars. An higher-level analysis would then be possible based on the retrieved
cases rather than on the estimated class alone.

In this paper, we propose an evidential pattern matching (EPM) scheme for ve-
hicle identification. The idea is to evaluate the distances between objects within
the class label space considering the classification uncertainty rather than directly
computing the distances in the feature space as traditionally done in pattern match-
ing. Uncertainty patterns are then compared rather than feature patterns directly,
meaning that two quite distinct feature patterns may have a quite similar uncertainty
regarding their belonging to a given class or set of classes. The idea behind the pro-
posed approach is to abstract away the measures together with their possible errors
and rather consider the uncertainty patterns these measures induce within the class
space.

We are particularly interested in this paper in comparing distances’ behaviour
on the practical use case of pattern matching for vehicle identification. The aim
is to highlight some common and distinct characteristics of distances between be-
lief functions according to two dimensions that are (1) the weighting matrices
and (1) the family to which the distances belong. We test several distances re-
cently proposed in [4]. The choice of a specific distance measure is in general not
trivial as it can be governed by either axomatic or semantic properties, or by an
optimization process aiming at maximizing a given system performance. Depend-
ing on the application, some formal properties are required while others are su-
perfluous. Our position is that none of the dissimilarity measures is better than
an another in the absolute, but rather that its choice should be directed by the
practical use.

Section 2 sets the basic notation for evidence theory as well as the general for-
mulations of distances proposed in [4]. Section 3 first presents the real dataset of
vehicle features obtained by a sensor node with 4 modalities followed by the de-
scription of the classification scheme based on a pattern matching approach. Finally
Section 3.3 presents some preliminary results obtained for the Area Under Curve
(AUC) measure of performance. Section 4 draws some conclusions and outlines
some future work.

2 Background

In the upcoming presentation, we use a geometrical interpretation of evidence theory
together with matrix-vector notation. X is a frame of discernment of N distinct ob-
jects, x denoting any element of X . 2X is the power set of X and EX is the associated
2N-dimensional Cartesian space. Basic Probability Assignments, belief, plausibility
and communality functions are all vectors of EX with specific properties, that we
will denote by m, Bel, Pl and q respectively. In particular, m is a vector which first
coordinate is 0 and its coordinates sum up to 1.
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The intersection and inclusion indexes Int and Inc are defined respectively as
Int(A,B) = 1 if A∩ B �= ∅ and 0otherwise and Inc(A,B) = 1 if A ⊆ B and 0 oth-
erwise. The dual index of Int is 1− Int which is such that 1− Int(A,B) = 1 if
A∩B = ∅ and 1 otherwise. If we denote by Int and Inc the 2N − 1 binary ma-
trices whose elements are respectively Int(A,B) and Inc(A,B), A in rows and B in
columns, we can then define the belief, plausibility and communality by their ma-
trix notation as Bel = Inc′.m Pl = Int.m q = Inc.m where Inc′ is the transpose
matrix of Inc. In a recent survey paper of the distances between belief functions,
we identified 3 main families of distances namely (1) the Minkowski family Lp in-
cluding Manhattan (p = 1), Euclidean (p = 2) and Chebyshev distances (p = ∞),
(2) the inner product family including the direct inner product itself (IP) and the co-
sine measure (cos), and (3) Fidelity family based on the Bhattacharyya coefficient
which only considered measure is the Hellinger distance. We also proposed general
formulations for each of these families:

Minkowski d(p)
W (m1,m2) =

([
(Um1−Um2)

p
2

]′ [
(Um1−Um2)

p
2

]) 1
p

Inner product ⊗W (m1,m2) = a−m′
1Wm2

Cosine cos(d)W (m1,m2) = 1− m′
1W m2

||m1||W ·||m2||W

Fidelity 0.5 d(H)
W (m1,m2) =

(
b−⊗

1
2
W(m1,m2)

) 1
2

where W is a weighting matrix as exemplified in the second column of Table 1. a
and b maximum values of the general inner product and Bhattacharyya coefficient
respectively guaranteeing that the measure is positive. ||m||W =

√⊗W (m,m) is the
norm of m.

Table 1 summarizes the distances between belief functions defined so far (gray
cells) and provides the natural generalizations (white cells) hence new distances1.
The Minkowski L2 family is the most populated while L1 and L∞ have been less
used. Extending the L2 distances to the study of L1 and L∞ distances requires in
some cases a Cholesky decomposition of the weighting matrices W. A single cosine

Table 1 Distances between belief functions in their respective family according to several
definitions of the weighting matrix W. The distances defined so far are in gray cells while
new ones are in white cells. See [4] for the complete table.

Lp Inner product Fidelity
W = U′U W(A,B)/U(A,B) p = 1 p = 2 p = ∞ IP cos (Hellinger)

I 1 iff A = B (W ) d(1)
I d(2)

I d(∞)
I ⊗s

I cosI d(H)
I

Jac |A∩B|
|A∪B| (W ) d(1)

J d(2)
J d(∞)

J ⊗s
J cosJ d(H)

J

IncInc′ 1 iff A ⊆ B (U ) d(1)
Inc d(2)

Inc d(∞)
Inc ⊗s

Inc cosInc d(H)
Inc

Int′Int 1 iff A∩B �=∅ (U ) d(1)
Int2 d(2)

Int2 d(∞)
Int2 ⊗s

Int2 cosInt2 d(H)
Int

Bet′xBetx
|x∩A|
|A| (U ) d(1)

Betx d(2)
Betx d(∞)

Betx ⊗s
Betx cosBetx d(H)

Betx

Bet′Bet |A∩B|
|B| (U ) d(1)

Bet d(2)
Bet d(∞)

Bet ⊗s
Bet cosBet d(H)

Bet

1 A more complete table is proposed in [4] where other weighting matrices are considered.
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measure has been defined so far but a multitude of measures of this kind remains
to be explored. This comment also applies to the Hellinger distance and to other
distances of the Fidelity family which are based on Bhattacharyya’s coefficient
involving the squared-root of the BPAs.

3 Evidential Pattern Matching for Vehicle Identification

3.1 Data Description

The sensor network considered is the SASNet sensor network, designed at DRDC-
Valcartier [8] (see Fig. 1). At each sensing node location, four modalities come
into play. The acoustic sensor (noise detector) helps mainly in distinguishing be-
tween motorized and non-motorized objects. Among the class of non-motorized
objects, the seismic sensor (vibration detector) helps to distinguish between jogging
and walking pedestrians, or between either tracked or wheeled vehicles. The mag-
netic sensor (ferric metals detector) helps to distinguish bicycles from pedestrians
or within a pedestrian group, dismounted soldiers from civilians. Generally a sin-
gle sensing modality will not be sufficient to design an efficient surveillance system
aimed at the detection and identification of passing by objects and a combination
of them will rather be required. For instance, a high value for the three modalities
generally corresponds to a truck (high noise, high vibrations, and high magnetic re-
sponse). An experiment has been conducted in which 17 types of vehicles, ranging
from pedestrians to trucks, transited through the sensor network for a total of 372
recorded events.

Fig. 1 The SASNet sensor
node developed by DRDC-
Valcartier provided the data
exploited in this paper [8].
Each sensor node is sensing
in four modalities: acoustic,
seismic, magnetic and py-
roelectric passive infrared
(PIR, a motion detector).
On each of the 4 types of
signal, a series of 28 energy
and Fourier transform-based
features are computed for a
total of 112 features.

3.2 Classification Scheme

Let X be the frame of discernment, i.e. the set of class labels possibly assigned
to an observed sample. We consider the following partition as the frame of
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discernment X = {P,B,C,T} where P stands for Pedestrian, B for Bicycle, C for
Car and T for Truck. The basic classification architecture is composed of 4 paral-
lel 1-Nearest Neighbour (1-NN) classifiers ga, gs, gm and gp differing in their set
of 28 features extracted from the acoustic (a), seismic (s), magnetic (m) and PIR
(p) modality respectively. The output of each classifier is transformed into a belief
function Bela, Bels, Belm and Belp and then combined through Dempster’s rule,
i.e. Bel = Bela ⊗Bels ⊗Belm ⊗Belp. Two different uncertainty modelers (i.e. be-
lief function constructors) are considered at the output of the classifiers, namely the
Consonant Likelihood Based model (CLB) proposed by Shafer in [9], and the q-
Least Committed belief function (q-LC) (e.g. [2]). The dataset of samples is split
into a training set XR which will serve as reference, as well as a test set XQ. Accord-
ing to the model above, each sample xr of XR and xq of XQ is assigned with a belief
function Belr for r = 1, . . . , |XR| and Belq for q = 1, . . . , |XQ|. For each sample xq of
XQ to be classified, the purpose of the pattern matching approach is then to find the
best fit between its representative belief function Belq and one of the reference set
Belr. The decision function is then:

Class(xq) = arg min
r=1,...,|XR|

d(Belr,Belq) (1)

where d is a distance measure. Note that rather than a minimum function in (1) a
majority voting could be considered, the observed object being thus assigned the
class represented as a majority among k known objects. Further analysis may be
then performed on the set of the retrieved individuals, no decision being required in
this case.

3.3 Results

All the results provided in the three tables below show the Area Under Curve (AUC)
transformed into a measure of error (i.e. the lower the better) obtained over 30 itera-
tions of an hold-out procedure with 90% of data for training and 10% for testing. As
a reference, standard classification results are presented in Table 22: Each of the first
four columns of the top most part of the table corresponds to a 1-NN classifier built
upon each of the four modalities; the 6 following bottom most columns correspond
to the outputs of these 4 previous classifiers combined according to 6 classical fu-
sion schemes; the last column corresponds to an Oracle3. Finally, the last column
of the top most part of the table is a raw combination of the 112 features through
a 1-NN and corresponds to the pattern matching scheme in the feature space (PM

2 Other classification schemes could have been considered such as evidential ones but this
kind of study is out of the scope of this paper which main purpose is to setup the bases of
a pattern matching approach.

3 The Oracle is an ideal combiner which outputs the true class as soon as the latter appears
in at least one of the decisions of the 4 classifiers to be combined. These results should
thus not read as genuine classifier results, but rather used for comparison purposes to an
ideal situation.
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Table 2 AUC in standard classification. The best mean value is in bold.

Single modalities All features
Acoustic Seismic Magnetic PIR (PM in FS)

Minimum 0.259 0.197 0.237 0.429 0.247
Maximum 0.363 0.326 0.342 0.489 0.345
Mean 0.299 0.255 0.306 0.459 0.304

Combiners
Product Mean Median Maximum Minimum Majority ORACLE

Minimum 0.183 0.176 0.182 0.300 0.213 0.161 0.025
Maximum 0.317 0.314 0.333 0.386 0.317 0.249 0.063
Mean 0.257 0.253 0.267 0.323 0.267 0.200 0.044

in FS) which should be considered as the pattern matching results of reference. The
best result (in bold) is obtained by combining the outputs of the 4 modality-based
classifiers by a majority vote.

Tables 3 and 4 show results for the EPM scheme, one table for each of the two
uncertainty modelisation CLB and q-LC respectively. The results are obtained over
30 iterations of an hold-out procedure with 90% of data for training (i.e. the refer-
ence set) and 10% for testing (set of queries). In the tables, the minimum, maximum
and mean values are provided for each of the 36 distances considered in Table 1. We
highlighted in bold the best weighting matrix (according to the mean) for a fixed
kind of distance, while underlined the best kind of distance for a fixed weighting
matrix.

In the light of these statistics ventilated into Tables 3 and 4, it seems that the
uncertainty modeling method plays a crucial role in the improvement of the AUC

performance figures. The best result of Table 3 is 0.272 obtained for both d(2)
J and

cosJ , while for Table 4 it is 0.265 obtained for both ⊗(d)
Betx and ⊗(d)

Bet .
If we adopt an optimistic analysis of the results above and look at the minimum

values of AUC obtained over 30 replications, we observe that the overall minimum

value for the CLB uncertainty modeling (Tab. 3) is obtained for ⊗(d)
Inc with 0.241,

Table 3 AUC for the EPM scheme with CLB uncertainty modelisation.

Minkowski family
L1 L2 L∞

min max mean min max mean min max mean
I 0.266 0.333 0.291 0.266 0.333 0.302 0.266 0.350 0.308
Jac 0.249 0.333 0.291 0.249 0.315 0.272 0.269 0.315 0.285
IncInc′ 0.252 0.315 0.279 0.252 0.333 0.285 0.249 0.333 0.285
Int′Int 0.252 0.315 0.279 0.252 0.333 0.285 0.249 0.333 0.285
Bet′xBetx 0.271 0.315 0.291 0.271 0.315 0.291 0.271 0.315 0.291
Bet′Bet 0.271 0.315 0.291 0.271 0.315 0.291 0.271 0.315 0.291

Inner product family Fidelity family
IP cos Hellinger

min max mean min max mean min max mean
I 0.281 0.368 0.335 0.249 0.333 0.285 0.252 0.333 0.279
Jac 0.259 0.381 0.325 0.249 0.315 0.272 0.253 0.333 0.285
IncInc′ 0.241 0.354 0.283 0.252 0.333 0.285 0.252 0.333 0.279
Int′Int 0.384 0.512 0.454 0.269 0.315 0.285 0.315 0.464 0.406
Bet′xBetx 0.252 0.315 0.274 0.253 0.315 0.285 0.252 0.333 0.279
Bet′Bet 0.252 0.315 0.274 0.271 0.315 0.291 - - -
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Table 4 AUC for the EPM scheme with q-LC uncertainty modelisation.

Minkowski family
L1 L2 L∞

min max mean min max mean min max mean
I 0.269 0.299 0.289 0.286 0.299 0.294 0.286 0.320 0.303
Jac 0.278 0.337 0.301 0.269 0.354 0.308 0.249 0.299 0.273
IncInc′ 0.249 0.333 0.278 0.266 0.354 0.297 0.266 0.303 0.279
Int′Int 0.249 0.333 0.278 0.266 0.354 0.297 0.266 0.303 0.279
Bet′xBetx 0.249 0.354 0.291 0.266 0.354 0.297 0.249 0.354 0.285
Bet′Bet 0.249 0.354 0.291 0.266 0.354 0.297 0.249 0.354 0.291

Inner product family Fidelity family
IP cos Hellinger

min max mean min max mean min max mean
I 0.347 0.498 0.398 0.266 0.303 0.283 0.252 0.354 0.292
Jac 0.347 0.410 0.387 0.269 0.320 0.296 0.283 0.336 0.309
IncInc′ 0.241 0.315 0.276 0.266 0.354 0.297 0.305 0.340 0.317
Int′Int 0.401 0.485 0.454 0.266 0.354 0.297 0.430 0.460 0.447
Bet′xBetx 0.227 0.315 0.265 0.249 0.354 0.291 0.297 0.304 0.300
Bet′Bet 0.227 0.315 0.265 0.249 0.354 0.291 - - -

whereas the overall minimum value for the q-LC uncertainty modeling (Tab. 4) is

0.227 obtained for ⊗(d)
Betx and ⊗(d)

Bet . Again, the q-LC uncertainty modeling together

with the ⊗(d)
Betx and ⊗(d)

Bet outperform the results of Tab. 3.
When comparing results from tables 3 and 4 to the ones of Table 2, one might

argue that a simple majority vote on individual modality trained classifiers (0.2)
outperforms the best EPM result (0.265). But we should rather compare two pattern
matching approaches one in the feature space, and the other in class labels belief
space, and we indeed observe an improvement of the performance.

4 Conclusions and Future Works

We presented a preliminary study of distances’ behaviour on an evidential pat-
tern matching (EPM) scheme performed on real data. These preliminary results
are encouraging as the basic scheme for the EPM approach may be improved by
for instance (1) considering other individual classifiers than 1-NNs, (2) improv-
ing the feature selection part, (3) exploring other uncertainty modeling methods as
we observed its impact on the performances. Beyond the proposed pattern match-
ing scheme, we highlighted the fact (1) that the choice of a distance measure is
application-dependent and that no prior evaluation is really valid; and (2) that other
measures than the ones traditionally used may be of interest, in particular the inner
product family would be worth to be studied more deeply, as its computational cost
is lower than the other families.

Besides the maybe not so convincing classification results, the EPM offers the
advantage to retrieve past known cases on the basis of their associated uncertainty
profile together with their contextual information for a higher-level analysis. Con-
sidering that humans are monitoring wide areas through the SASNet sensor network,
providing them a richer uncertainty representation together with contextual infor-
mation is of great interest for building a human-machine interface with the SASNet
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sensor system. In future works, we intend to apply this EPM scheme to information
retrieval (IR) problems and use IR performance measures to assess the distances’
behaviour.
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A Comparison between a Bayesian Approach
and a Method Based on Continuous Belief
Functions for Pattern Recognition

Anthony Fiche, Arnaud Martin, Jean-Christophe Cexus, and Ali Khenchaf

Abstract. The theory of belief functions in discrete domain has been employed
with success for pattern recognition. However, the Bayesian approach performs
well provided that once the probability density functions are well estimated. Re-
cently, the theory of belief functions has been more and more developed to the con-
tinuous case. In this paper, we compare results obtained by a Bayesian approach
and a method based on continuous belief functions to characterize seabed sedi-
ments. The probability density functions of each feature of seabed sediments are
unimodal and estimated from a Gaussian model and compared with an α-stable
model.

1 Introduction

The theory of belief functions, introduced by Dempster [4] and formalized by
Shafer [13], has found in these recent years many applications especially in pattern
recognition. The Bayesian approach performs well provided that once the proba-
bility density functions (pdfs) are well estimated. However, the Bayesian approach
introduces the notion of prior probabilities. It is possible to avoid this problem by
using the theory of belief functions. The theory of belief functions is often pre-
sented as an extension of the probability theory. However, the theory of belief func-
tions is not often been used in problem of estimation. Recently, many papers [5, 16]
have been proposed to extend the theory of belief functions in discrete domain to
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22302 Lannion Cedex, France
e-mail: arnaud.martin@univ-rennes1.fr

T. Denœux & M.-H. Masson (Eds.): Belief Functions: Theory & Appl., AISC 164, pp. 53–60.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

arnaud.martin@univ-rennes1.fr


54 A. Fiche et al.

continuous domain. In [1, 11], the authors proposed solutions to solve problem of
pattern recognition from continuous belief functions.

We propose a supervised classification of seabed sediments based on a Bayesian
approach and compared with a method based on the theory of continuous belief
functions. The pdfs of each seabed sediment are bell-shaped 1. Many distributions
can have this property: Gaussian, Weibull, K . . . . However, the pdfs from seabed
sediments have the properties of skewness and heavy tails. A distribution is said to
have heavy tails if the tails decays slower than the tail of the Gaussian distribution.
Therefore, the property of skewness means that it is impossible to find a mode where
the curve is symmetric. It is possible to consider these contraints from α-stable dis-
tribution. Consequently, we use two models of estimation during the classification:
Gaussian and α-stable distributions.

The remainder of this paper is organized in the following manner. In section 2,
we introduce the theory of continuous belief functions. In section 3, we describe
the data set, the model of estimation and compare results between the Bayesian
approach and the method based on continuous belief functions.

2 Background on Continuous Belief Functions

2.1 Basic Belief Density

Recently, Smets [16] extended the definition of belief functions to the set of reals
R=R∪{−∞,+∞} and basic belief assignment (bbd) are only attributed to intervals
of R. Let us consider I = {[x,y],(x,y], [x,y),(x,y);x,y ∈R} as a set of closed, half-
opened and opened intervals of R. A bbd mI (x,y) linked to a specific pdf is a non
negative function on I such that mI (x,y) = 0 if the interval defined by (x,y) is not
closed in I . The closed intervals [x,y] which satisfy the relation mI (x,y) > 0 are
called focal elements. From the definition of the bbd, it is possible to define others
belief functions [16] as in the discrete case credibility function belR, plausibility
function plR and communality function qR. A bbd is said to be “consonant” when
focal elements are nested. Focal elements Iu can be labeled as an index u such that
Iu ⊆ I′u with u′ > u.

2.2 Least Commitment bbd Induced by an Unimodal pdf

The definition of pignistic probability [14] for a < b is:

Bet f ([a,b]) =
∫ x=+∞

x=−∞

∫ y=+∞

y=x

min(y,b)−max(x,a)
y− x

mI (x,y)dxdy (1)

It is possible to calculate pignistic probabilities to have basic belief densities. How-
ever, many basic belief densities exist for one same pignistic probability. To resolve

1 i.e. the probability density function is unimodal with a mode μ , continuous and strictly
monotonous increasing (decreasing) at left (right) of the mode
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this issue, we can use the consonant basic belief density. This definition is used to
apply the least commitment principle [15], which consists in choosing the least in-
formative belief function when a belief function is not totally defined and is only
known to belong a family of functions. The function Bet f can be induced by a set
of isopignistic belief functions Biso(Bet f ). Many papers [12, 16, 1] deal with the
particular case of continuous belief functions with nested focal elements. The least
commitment principle proposes to choose the least informative mass function, i.e.
the mass functions must be ordered. An order relation is given in equation 2, but
there are other order relations.

(∀A ⊆R,qR1 (A)≤ qR2 (A))⇒ (mR
1 ≤ mR

2 ) (2)

For example, Smets [16] proved that the basic belief assignment mR attributed to an
interval I = [x,y] with y > μ related to a bell-shaped pignistic probability function
with a mode μ is determined by 2:

mR([x,y]) = θ (y)δ (x− γ(y)) (3)

with x = γ(y) satisfying Bet f (γ(y)) = Bet f (y) and θ (y):

θ (y) = (γ(y)− y)
dBet f (y)

dy
(4)

The build basic belief assignment mR is consonant and belongs to the set Biso(Bet f ).

2.3 Link between Pignistic Probability Function and Plausibility
Function in R

The available information are the conditioned pignistic density Bet f [Ci] with Ci ∈Θ ,
where Θ is called the frame of discernement. The function Bet f [Ci] is supposed to
be bell-shaped. The plausibility function from a bbd mR with x > μ is obtained by
an integral of equation (4) between [x,+∞[:

plR[Ci](I) =
∫ +∞

x
(γ(t)− t)

dBet f (t)
dt

dt (5)

By assuming that Bet f is symmetrical, an integration by parts can simplified the
equation (5):

plR[Ci](I) = 2(x− μ)Bet f (x)+ 2
∫ +∞

x
Bet f (t)dt (6)

We can calculate
∫ +∞

x
Bet f (t)dt in a particular case of symmetrical Bet f by using

the Chasles’ theorem. Consequently, the equation (6) can be simplified [7]:

2 δ refers to the Dirac’s measure.
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plR[Ci](I) = 2(x− μ)pd f (x)+ 2(1− cd f (x)) (7)

If x < μ , we use the variable modification x = 2μ − y. In the particular case of
Gaussian pdf, Caron et al. [1] propose the plausibility function:

plR[Ci](I) = 1−F3((x− μ)(Σ)−1(x− μ)) (8)

The function Fd+2 is a cumulative density function of the χ2 distribution with 3
degrees of freedom, μ the mean and Σ the standard-deviation of a Gaussian pdf.
It is difficult to generalize in the case of asymmetric pdf because the function
γ(y) = x satisfying Bet f (γ(y)) = Bet f (y) is not trivial. The plausibility function re-
lated to an interval I1 = [x1,y1] is defined by the area defined under the α-cut such as
α = Bet f (x1) (Figure 1):

plR[Ci](I1) =

∫ x1

−∞
Bet f (t)dt +(y1− x1)Bet f (x1)+

∫ +∞

y1

Bet f (t)dt (9)

In general, we know only one point y1. We estimate numerically x1 such that
pd f (y1) = pd f (x1). Finally, the plausibility function related to the interval I1 is:

plR[Ci](I1) = 1+ cd f (x1)− cd f (y1)+ (y1− x1)pd f (x1) (10)

In classification, we assume that we have several pdfs associated to a class Ci. We
can calculate a plausibility function related to its pdfs by using the least com-
mitment principle. Several plausibility functions can be combined by using the
general Bayes theorem [15, 3] to calculate mass functions allocated to A of an
interval I:

mR[x](A) = ∏
Cj∈A

pl j(x) ∏
Cj∈Ac

(1− pl j(x)) (11)
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Fig. 1 Plausibility function in the case of asymmetric pdf.
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3 Application to Pattern Recognition

3.1 Data Set

The data set are picked up by the Service Hydrographique et Océanique de la Ma-
rine (SHOM) with the Daurade Autonomous Underwater Vehicle (AUV) from the
Atlas DESO 35 mono-beam echo sounder in the Mediterranean Sea off the coast
of Toulon. Raw data represents an echo signal amplitude according to time. These
data are processed to obtain some features, which have been normalized between
[0,1] (defined and used in the Quester Tangent Corporation (QTC) software [2]).
The frame of discernment is Θ = {rock,sand,silt}, with 6017 samples from rock,
7338 samples from sand and 4853 samples from silt. From the data, we choose
the features called the “third quantile calculated on echo signal amplitude” and the
“75th quantile calculated on cumulative energy”. The authors would like to thank
the Service Hydrographique et Océanique de la Marine (SHOM) for the data and G.
Le Chenadec for his advices about the data.

3.2 Models of Estimation

We use two models of estimation: Gaussian and α-stable distributions. The
Gaussian distribution is a particular case of α-stable distribution [10]. Several equiv-
alent definitions have been suggested in the literature to parametrize an α-stable
distribution from its characteristic function [17, 18]. Zolotarev [18] proposed the
following:

φ(t) =

⎧⎨⎩ exp(itν−|γt|α [1+ iβ tan(
πα
2

)sign(t)(|t|1−α − 1)]) if α �= 1

exp(itν−|γt|[1+ iβ
2
π

sign(t) log |t|]) if α = 1
(12)

with α ∈]0,2] is the characteristic exponent, β ∈ [−1,1] is the skewness parameter,
γ ∈ R+∗ represents the scale parameter and ν ∈ R is the location parameter. In
general, the notation Sα(β ,γ,ν) refers to α-stable distributions.

The α-stable pdf, noticed pd fα , is obtained by calculating the Fourier transform
of its characteristic function (cf. [9] for the implementation). An α-stable random
variable can be estimated by using methods based on quantiles or moments. For the
rest of the paper, we use a method based on moments developed by Koutrouvelis [8]
in order to estimate the parameters α , β , γ and ν .

To implement the classification with the belief functions, we firstly need to es-
timate the parameters of distribution from the learning base. For each feature of
vectors belonging to the test base, the plausibility functions for each class are then
calculated from equation (10). These plausibility functions are combined from equa-
tion (11) to obtain two mass functions. These two mass functions are combined
by the conjunctive combination (we stay in open-world). Indeed, m1 and m2 and
∀X ∈ 2Θ :
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m(X) = ∑
Y1∩Y2=X

m1(Y1)m2(Y2) (13)

The decision is finally made by using the maximum of the pignistic probabilities.

3.3 Results

The two features are considered as a source of information. 5000 samples are ran-
domly selected for the data set. Half the samples are used for the learning base and
the rest for the test base. For the two approaches, the parameters of each model are
estimated from the learning base. For the Bayesian approach, we need to estimate
the prior probabilities p(Ci) from the learning base approach. For each seabed sedi-
ment, the prior probabilities correspond to the proportion of seabed sediments in the
learning base. The application of Bayes theorem gives posterior probabilities:

p(Ci/x) =
p(x/Ci)p(Ci)

n

∑
i=1

p(x/Ci)p(Ci)

(14)

Finally, the decision is chosen by using the maximum of the posterior probabilities.
We can observe that the assumption of the α-stable model can easily

accommodate the data compared to the Gaussian model (Figure 2). For each
model and each method, we can observe that there is confusion between sand
and silt (Table 1,2,3,4). Indeed, these sediments have similar properties. With the
Gaussian models, we can observe that the theory of belief functions (Table 2)
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Fig. 2 Empirical pdfs and its estimations (The first row corresponds to the feature called
“third quantile calculated on echo signal amplitude” and the second row corresponds to the
feature called “25th quantile calculated on cumulative energy”).
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Table 1 Confusion matrix of seabed clas-
sification results based on the Bayesian
approach with the Gaussian model

Ground truth Predicted Seabed Type

seabed type rock sand silt

rock 8.48 % 23.00 % 1.28 %

sand 0.00 % 37.32 % 2.80 %

silt 0.36 % 11.32 % 15.44 %

Table 2 Confusion matrix of seabed classi-
fication results based on the theory of belief
functions with the Gaussian model

Ground truth Predicted Seabed Type

seabed type rock sand silt

rock 32.40 % 0.00 % 0.36 %

sand 12.44 % 20.92 % 6.76 %

silt 7.20 % 2.32 % 17.60 %

Table 3 Confusion matrix of seabed clas-
sification results based on the Bayesian
approach with the α-stable model

Ground truth Predicted Seabed Type

seabed type rock sand silt

rock 28.28 % 0.04 % 4.44 %

sand 0.00 % 34.88 % 5.24 %

silt 0.84 % 6.76 % 19.52 %

Table 4 Confusion matrix of seabed classi-
fication results based on the theory of belief
functions with the α-stable model

Ground truth Predicted Seabed Type

seabed type rock sand silt

rock 26.48 % 0.00 % 6.28 %

sand 0.00 % 29.84 % 10.28 %

silt 0.52 % 2.48 % 24.12 %

(classification accuracy of 70.92 %) give better results compared to the Bayesian
approach (Table 1) (classification accuracy of 61.24 %). The belief functions take
into account the imprecision of data introduced by the Gaussian model. The α-
stable model gives better results compared to the Gaussian model because the α-
stable can easily accommodate the data compared the Gaussian model. However,
the Bayesian approach (Table 3) (classification accuracy of 82.68 %) gives better
results than the belief functions (Table 4) (classification accuracy of 80.44 %) with
the α-stable model but not significantly. We can explain these phenomena by the fact
we introduce more information with the prior probability. The Bayesian approach
performs well provided that once the probability density functions are well esti-
mated. However, the probability density functions are poorly estimated. The theory
of belief functions takes into account of imprecision/uncertainty during the learning
step.

3.4 Conclusion

In this paper, we show the interest in using the theory of belief functions compared
to a Bayesian approach in classification, especially to model imprecision of data.
The problem with the Bayesian approach is that we introduce the prior probability
We show the interest to use the α-stable model compared to the Gaussian model to
estimate data from a mono-beam echo sounder. However, the proposed approach is
limited to the unimodal case. In [6], the authors deal with the problem of the belief
functions linked to a multimodal pdf.
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Prognostic by Classification of Predictions
Combining Similarity-Based Estimation
and Belief Functions

Emmanuel Ramasso, Michèle Rombaut, and Noureddine Zerhouni

Abstract. Forecasting the future states of a complex system is of paramount impor-
tance in many industrial applications covered in the community of Prognostics and
Health Management (PHM). Practically, states can be either continuous (the value
of a signal) or discrete (functioning modes). For each case, specific techniques exist.
In this paper, we propose an approach called EVIPRO-KNN based on case-based
reasoning and belief functions that jointly estimates the future values of the con-
tinuous signal and of the future discrete modes. A real datasets is used in order to
assess the performance in estimating future break-down of a real system where the
combination of both strategies provide the best prediction accuracies, up to 90%.

1 Introduction

Forecasting the future states of a complex system is a complicated task that arised
in many industrial applications covered in the community of Prognostics and Health
Management (PHM) such as locomotive’s health prediction [1], analysis of fleet of
vehicles [2] and turbofan engine monitoring [3]. Continuous states generally rep-
resent the value of a signal (an observation or a feature) and their prediction can
be made by Kalman-like procedures or by neural networks [4, 5], Discrete states
generally depict functioning modes reflecting the current degradation and its pre-
diction can be performed by state machines such as Hidden Markov Models [6]. In
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e-mail: emmanuel.ramasso@femto-st.fr,

noureddine.zerhouni@ens2m.fr

M. Rombaut
GIPSA-lab, UMR CNRS 5216 - UJF, Signal and Images Department, 38000 Grenoble,
France
e-mail: michele.rombaut@gipsa-lab.inpg.fr

T. Denœux & M.-H. Masson (Eds.): Belief Functions: Theory & Appl., AISC 164, pp. 61–68.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

emmanuel.ramasso@femto-st.fr,
michele.rombaut@gipsa-lab.inpg.fr


62 E. Ramasso, M. Rombaut, and N. Zerhouni

both cases, data-driven prognostics generally involves a training procedure where
statistical models of the degradation are built. To cope with the problem of lack of
knowledge in PHM, case-based reasoning (CBR) was proposed as an alternative to
perform prognostics. For example, the method described in [3] demonstrated better
performance than neural network for continuous state prediction in a turbofan en-
gine. For that, historical instances of the system - with condition data and known
failure time - were used to create a library of degradation models. Then, for a test
instance of the same system, the similarity between it and the degradation models
was evaluated generating a set of Remaining Useful Life (RUL) estimates which
were finally aggregated by a density estimation method. The main problem with the
approach described in [3] is the number of parameters that has to be estimated in or-
der to apply it. Moreover, several parts of the algorithm relied on statistical learning
procedures requiring large amount of data.

In this paper, we propose an algorithm called EVIPRO-KNN that requires a
training dataset composed of trajectories (historical information) plus uncertain
knowledge about the possible states and has the following characteristics:

EVIPRO-KNN is a new prognostics approach based on belief functions: A trajec-
tory similarity-based approach based on belief functions is proposed for prog-
nostics. Belief functions were justly proposed to cope with lack of data in data
representation, combination and decision-making [7, 8, 9].

EVIPRO-KNN takes into account partial labelling on states: In some applications,
the training dataset is composed of continuous trajectories and of a set of labels
reflecting the current system state. If these labels are known only partially, then
belief functions can be used [10].

EVIPRO-KNN manages trajectories with different temporal length: The weighted
sum of trajectories used to compute the prediction of observations requires tra-
jectories with the same length, that is generally false in most of applications. We
described two approaches to solve it.

EVIPRO-KNN is able to predict jointly continuous and discrete states: The predic-
tion of the future sequence of states is performed jointly with the prediction of
continuous observations. These sequences allow the user to have access to the
online segmentation of the current observed data and generate accurate estimate
of the Remaining Useful Life (RUL) of the system. As far as we know, the joint
prediction of discrete states and of continuous observations was not considered
jointly in PHM applications nor in CBR-based prediction.

2 Background

At each time t, an observation vector Xt can be extracted from the observed system.
This system can be in one of the possible discrete states ω belonging to a set of S
exhaustive and exclusive states Ω = {ω1, . . . ,ωS}. The states can be imprecise and
uncertain due to aleatory uncertainty induced by the variability in observations and
to epistemic uncertainty induced by lack of knowledge. For that, we describe the
knowledge of states at time t by a belief function [7, 8, 9].
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The basis in the theory of belief functions is the basic belief assignment (BBA)
defined by: mt : 2Ω → [0,1], S �→ mt(S), with ∑A⊆Ω mt(A) = 1. The belief mass
mt(A) represents the uncertainty (since mt(A) ∈ [0,1]) and imprecision (since A is
a subset with cardinality |A| ≥ 1) about the possible state of the system at t. Subset
A is composed of unions of singletons (ω ∈ Ω ) and thus represents explicitly the
doubt concerning the value of the state.

The training dataset used in EVIPRO-KNN is denoted L = {Ti}N
i=1 and is com-

posed of N trajectories Ti defined by both a sequence of Q-dimensional observation

vectors Xt ∈ ℜQ and their associated states Ti = {(Xi
t ,m

i
t)}ti+|Ti |

t=ti . The i-th (continu-
ous) trajectory begins at time ti and finishes at time ti + |Ti| where |Ti| is the length
of Ti. With each trajectory Ti is associated a set of blocks Bi where each block

B j
i in this set corresponds to a sub-trajectory of length W : Bi

j = {(Xi
t ,m

i
t)}c j+W

t=c j
,

where c j ∈ [ti,(ti + |Ti|−W )] is the starting time of the j-th block. The number of
blocks (and the range of index j) in the i-th trajectory depends on the length of the
latter.

In some applications, the training dataset is composed of features and of a set
of labels reflecting the current system’s state. If the labels are known only partially,
then belief functions can be used [10]. The state can thus be known with uncertainty
and imprecision and can be described by a belief mass denoted mi

t ,∀i = 1 . . .N and
defined on the set of states Ω .

3 EVIPRO-KNN Algorithm

Let now consider that a block of data Yt ∈ ℜQ of length W is available (obtained
from sensors located on the system). Given the training dataset and this observa-
tion, the goal is to predict an observation trajectory T̂t = {(X̂t′ , m̂t′)}t+H

t′=t where H is
an horizon of prediction. The value of H will be set automatically as shown in the
sequel.

Step 1 - K-best Trajectories Determination: In this step, the K nearest trajec-
tories to observations Yt are determined. For that, all trajectories in the training
dataset L are scanned. For each trajectory Ti, the nearest block Bi

j∗ ∈ Bi to the

observation block Yt is found. Index j∗ of the best block Bi
j∗ in the i-th trajec-

tory is given by: j∗ = argmin j,Bi
j∈Bi

D(Yt ,Bi
j). Note that all distances D are mea-

sured using the Euclidean one as in most of the KNN-based algorithms [3]. Let
denote c∗i the starting time of best block Bi

j∗ in the i-th trajectory. When the best
block in each trajectory has been found, all best blocks are sorted by ascend-

ing order according to their distance: D i
j∗ ≡ D(Yt ,Bi

j∗). Let D
(i)
j∗ denote one ele-

ment of this partial ordering with D
(1)
j∗ ≤ D

(2)
j∗ ≤ . . .D

(i)
j∗ ≤ . . .D

(N)
j∗ . Finally, the

K best trajectories Tk,k = 1 . . .K are simply the ones associated to the K best

and sorted blocks: D
(1)
j∗ ≤ D

(2)
j∗ ≤ . . .D

(k)
j∗ ≤ . . .D

(K)
j∗ . The K selected trajectories

Tk = {(Xk
t ,m

k
t )}|Tk|

t=ck
,k = 1 . . .K are composed of both a set of features Xt ∈ ℜQ and
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knowledge mt about the state. The next steps of the algorithm consists in aggregating
trajectories Tk,k = 1 . . .K where two problems arised: 1) How to aggregate the fea-

tures {Xk
t }|Tk |

t=ck
,k = 1 . . .K in order to obtain a predicted set of features X̂t (Step 2)?,

and 2) How to aggregate the knowledge about states {mk
t }|Tk|

t=ck
,k = 1 . . .K in order

to obtain a predicted knowledge m̂t (Step 3)?

Step 2 - Predicted Observation Trajectory: A simple and usual way to define a
predicted observation trajectory X̂t linked to the observation block Yt is to compute
the weighted average of the K sets of features:

X̂t+h =
K

∑
k=1

Fk ·Xk
l , l = ck . . . |Tk|,h = 1 . . .P (1)

where P = |Tk| − ck + 1 defines the set of instants of prediction. The normalized
weights Fk are obtained by the softmax function of the sorted distances:

Fk =
exp(−D

(k)
j∗ )

∑K
k′=1

exp(−D
(k′ )
j∗ )

,k = 1 . . .K (2)

Equations 1 and 2 are directly used if the length of trajectories Tk,k = 1 . . .K are the
same. If it is not the case (and generally it is not), one can use a strategies consisting
in selecting an horizon of prediction equal to the length of the smallest trajectory.
For that, first, the trajectory with the smallest size is found: Ht = minK

k=1 |Tk|, where
Ht can be seen as the horizon of prediction at time t. Then, for all trajectories,
only samples from ck to Ht are kept. After removal of samples located beyond Ht ,
Equations 1 and 2 can be directly used:

X̂CS
t+h =

K

∑
k=1

Fk ·Xk
l , l = ck . . .Ht ,h = 1 . . .Ht (3)

where CS stands for “Cautious Strategy” and Xk
h is the value of features in trajectory

Tk taken at time h. The value of Fk is given by Eq. 2. The main advantage of this
strategy is simplicity and efficiency since the horizon is gene rally shortened (to the
smallest trajectory) and thus providing more reliable predictions. The main draw-
back is that the horizon of prediction is justly made shorter and therefore reducing
forecasting capability.

At the end of step 2, the prediction of observation trajectory X̂t is known accord-
ing to the observation block Yt and to the training dataset L . Note that exponential
smoothing using past prediction (X̂t−1) can be performed to improve temporal con-
sistency [1] (not used in this paper).

Step 3 - Predicted Sequence of States: It is concerned by the prediction of future
states. Two strategies are proposed: 1) Classification of predictions (CPS) and 2)
Direct projection of future state sequence (DPS).
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Classification of predictions strategy (CPS): This strategy consists in classify-
ing the predicted observations given by step 2 into states. It requires the training of
classifiers able to discriminate the different states. For the sake of simplicity, we con-
sider the multiclass classifier called Evidential K-nearest neighbours (EvKNN) [11].
This classifier is able to generate a belief mass on the possible states in Ω given
an observation. The main feature of this classifier is the possibility to manage
belief functions mi

t provided in the training dataset L (partially-supervised
classification).

Given both a block of data B̂h centered around the predicted observation X̂t+h and
the training dataset L , the classifier provides a belief mass on the possible states:

mCPS
t+h ← EvKNN classifier(L , B̂h) (4)

From this belief mass, a hard decision can be made to estimate the state of the
current block by using the pignistic transform [9] which computes a probability
distribution (suited for decision-making) from the belief mass mCPS

t+h . Repeating this
process on blocks composing the predicted observation X̂t , one simply obtains a
sequence of states.

Direct projection of future state sequence (DPS): In order to avoid the depen-
dency between state sequence prediction to observation prediction as in CPS, we
propose to exploit another strategy that is the direct projection of future state se-
quence. This second strategy draws benefits directly from the training dataset. The
main idea is to apply a similar reasoning as for features Xt but now for belief mass
mt . To go further in details, let consider the set of belief masses for the K nearest
neighbours, i.e. mk

t ,k = 1 . . .K, t = ck . . . |Tk|. These K belief masses can be con-
sidered as coming from distinct pieces of evidence so that the conjunctive rule of
combination ⊕ can be used:

m̂DPS
t+h =⊕K

k=1 mk
l , l = ck . . . |Tk|,h = 1 . . .P (5)

where DPS stands for “direct projection strategy” and P = |Tk|−ck+1. To decrease
the amount of conflict during the fusion process, we propose to use a discounting us-
ing the weights estimated in the KNN. The highest the weight, the less the discount,
meaning that the related BBA is trusted. Once the BBAs have been discounted, the
estimated belief mass at time t in DPS is given by Eq. 5.

Step 4 - Remaining Useful Life Estimation: CPS and DPS fusion: To draw ben-
efits from both CPS and DPS approaches, the BBAs mCPS

t+h (Eq. 4) and mDPS
t+h (Eq. 5)

are combined and the resulting BBA is converted into a probability distribution from
which a decision can be made [12]. Dempster’s rule is not adapted for the fusion of
CPS and DPS’s BBAs because mCPS

t+h and mDPS
t+h can not be considered as coming

from distinct bodies of evidence. Indeed: 1) CPS is a classification of predictions
resulting from the weighted combination of continuous predictions, and 2) DPS
generates belief masses discounted by the weights, and therefore, both approaches
depend on the weights. Moreover, both rely on the BBAs in the training dataset L .
Thus, the fusion may be performed using the cautious rule [13]:
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m̂t+h = mCPS
t+h ∧©mDPS

t+h (6)

from which a decison concerning the state at time t + h can be made and the re-
sult is the estimation of a sequence of states ω̂t+h. Note that the neutral element is
not always the vacuous BBA [13], except for separable BBAs as the ones used in
evidential KNN exploited in CPS. In this case, if BBAs in the training dataset are
vacuous, then the fusion equals CPS.

RUL estimates: Let consiser this sequence of states but also all previous pre-
dicted sequences. Since each sequence is composed of possible transitions between
some states q and r, the set of time instants of transitions between both states is:
Iq→r = {t : ω̂t−1 = q and ω̂t = r}. To estimate the Remaining Useful Life (RUL) of
the system, it is sufficient to determine the location of the critical transition from
state q = “degrading state” to state r = q+ 1 = “fault state”:

transition q → r critical ⇒ RUL = μq,r − t (7)

where μq,r is the estimated time from t to the transition between the degrading state
q and the faulty state r that can be computed by a median. It can be associated to a
dispersion σq→r that we computed using the interquartile range:

μq→r = median (Iq→r)
σq→r = Q3−Q1

(8)

where Qi is the i-th quartile and nI = |Iq→r| is the number of elements in the set of
time instants of transition Iq→r.

Therefore, both methods for sequence prediction, CPS (classification) and DPS
(direct projection), assume that each trajectory in the training dataset is made of at
least two states, say “normal state” and “abnormal state”, and knowledge on these
states can be uncertain and imprecise and represented by belief functions.

4 First Results, Conclusion and Further Work

Illustration : We considered the PHM’08 challenge data [14] that we segmented
into four states (available at http://www.femto-st.fr/∼emmanuel.
ramasso/PEPS INSIS 2011 PHM by belief functions.html). The
first features and the segmentation are depicted in Fig. 1 which underlines the
difficulty of using a statistical approach based on durations for degradation mod-
elling [15].

Figure 2 depicts the sensitivity of the EVIPRO-KNN algorithm with respect to
the parameters K (number of neighbours) and W (window’s size). With K = 3 and
W = 30, one can expect results close to 90% on the considered dataset. The pre-
diction was considered as correct when falling in the interval [−10,+13] around
the ground truth, and the beginning of the prediction was taken as the time-instant
corresponding to 75% of the length of the analysed trajectory (e.g. if the trajectory’s
length is equal to 240 then the starting time of the prediction was set to 180).

http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
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Fig. 1 Left: Evolution of the first feature for all trajectories in the training dataset, and right:
the state sequences after decision-making based on the belief masses.
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Fig. 2 Left: Sensitivity to W and K.
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Fig. 3 The prediction appears in continuous bold line, while the real value is in dashed line.

Figure 3 illustrates the evolution of the differences at each time-step between
the estimated RUL and the real RUL for W = 30 and K = 3 where a convergence
to the real value is observed as expected: a good estimate of the RUL (in interval
[−10,13]) is obtained at t = 90, so 180 time-units in advance.
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Conclusion and further work : EVIPRO-KNN is an online algorithm for prognos-
tics and health detection working as case-based reasoning but managing uncertain
knowledge about the states that could be provided as belief functions in the train-
ing dataset. EVIPRO-KNN can predict sequence of continuous observations jointly
with discrete states enabling the user to have access to the online segmentation of
the current observed data and of predictions which is then used to estimate the RUL.
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Adaptive Initialization of a EvKNN
Classification Algorithm

Stefen Chan Wai Tim, Michèle Rombaut, and Denis Pellerin

Abstract. The establishment of the learning data base is a long and tedious task that
must be carried out before starting the classification process. An Evidential KNN
(EvKNN) has been developed in order to help the user, which proposes the ”best”
samples to label according to a strategy. However, at the beginning of this task, the
classes are not clearly defined and are represented by a number of labeled samples
smaller than the k required samples for EvKNN. In this paper, we propose to take
into account the available information on the classes using an adapted evidential
model. The algorithm presented in this paper has been tested on the classification of
an image collection.

1 Problem Positionning

1.1 Classification Problem

The classification process needs some a priori knowledge for the class definition.
This knowledge can be modeled for the classes (neural network, bayesian classi-
fier) or can be limited to a learning set composed of labeled samples (KNN, SVM).
In any case, the classifier needs a learning set to manage the classification of un-
labeled samples from the collection and this learning set must be representative of
the classes. When it is the case, the classical approaches are very efficient and are
used in numerous applications. However, setting up such learning database can be a
laborious task for the user.

We proposed in a previous paper [1], an assistance system for image collection
classification presented Fig. 1. The first part of the system, based on Evidential KNN
(EvKNN), models all available knowledge provided by the already labeled images
in order to structure the unlabeled ones. The second part is a user assistance sys-
tem (based on active learning) that proposes an ordered list of images to be labeled
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Fig. 1 Labeling process of the
training set. At the begin-
ning, the training set is almost
empty. The EvKNN classi-
fier takes all available labeled
samples to propose to the user
a label for an unlabeled sam-
ple. With agreement of the
user, the new labeled sample
is stored in the labeled set.

according to a specific strategy and assign a possible label. Using a suitable inter-
face, the user agrees or disagrees with the proposal, and the global knowledge is
updated.

This paper deals with the beginning of the first part of the labeling process, when
the training set is almost empty, with only some labeled samples. In this case, there
are generally less than k samples that belong to each known class and the samples
are not completely representative of a class. Therefore, EvKNN algorithm cannot be
used directly without adaptations. The adaptations are presented in Section 2, and
the adapted algorithm is tested on an image collection (Section 3).

1.2 Evidential KNN

In [2], T. Denœux explains that ”voting KNN” procedures show several limitations
and he proposes to take into account the distance from the neighbors to model
uncertainty and imprecision in class labels. It is assumed that the set of training
samples is composed of enough samples for each class of decision. In the KNN al-
gorithm, when there are at least k known samples of each class, there are enough
training neighbors to model the membership of every incoming unlabeled sample
to each class. T. Denœux proposes to model these memberships by belief functions
(see Eq. 1).

We assume that xs is the incoming unlabeled sample, and xi
q is a labeled sample

belonging to class Cq, one of the Q known classes. ds,i is the distance between
these two samples in the parameter space. The knowledge of the xi

q label gives

information about the class of xs. The basic belief assignment (BBA) m
Ωq
i is defined

on Ωq = {Hq,Hq}, where hypothesis Hq means “sample xs belongs to class Cq”,
whereas Hq is the opposite hypothesis:

m
Ωq
i (Hq) = αq.e

−
(

ds,i
σq

)β

m
Ωq
i (Ωq) = 1−m

Ωq
i (Hq)

(1)

This model is very interesting when a class is represented by several samples in the
parameter space. It means that two distant samples in this space can still belong to
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the same class. It can be noticed that for a particular class Cq, the proposed BBA
form will not cause conflict.

If there are k neighbors xi
q, we can define k BBAs on the same frame of dis-

cernment Ωq that can be conjunctively combined to give the BBA mΩq concerning
the sample xs on membership to class Cq. In our previous paper [1], we proposed
some adaptations in the combination. Contrary to Denœux’s propositions in [2],
we assumed that the Q classes are not exclusive. The combination of the Q BBAs
mΩq extended to the space Ω = Ω1 ×Ω2× . . .×ΩQ gives one BBA with possible
multi-labeling. The combination architecture is described in [1].

1.3 Initialisation Step

The EvKNN method is very efficient if the number of classes Q is known, and if
the training set is representative enough. If not, the performance of the classifier is
reduced. In the later case, the goal is to model the poor information efficiently and
possibly to ask an expert to validate the decision. It is also important to take into
account the difference of available samples for each class, as well as the relative
properties of the classes. The Belief Function Model is particularly well adapted to
model such poor information, and given a large mass of belief for sets Ωq.

In this paper, we describe an adaptive method to propose a decision to an expert.
At each step, the choice of the expert is used to improve the knowledge to get a
labeled sample and to adapt the information model for the class Cq. At the begining,
the training set is only composed of some labeled samples, for instance less than k
samples for each known class. The problem is to model this knowledge about the
belonging of xs to a known class. Then, a proposition is made that is validated by
the operator.

2 Adaptive Model of Knowledge

The labeled neighbor xi
q gives information on the belonging of xs to the class Cq that

can be modeled by the equations 1. The parameter σq weights the distance ds,i
q be-

tween the sample xs and the labeled sample xi
q. The parameter αq is the discounting

parameter that models the unreliability of the source of information. In the classifi-
cation step, if the distance between two samples is null then it is not completely sure
that xs belongs to the same class Cq of xi

q. Generally, the two parameters σq and αq

are constant, at least for each class. We propose to adapt them using the knowledge
from known classes Cq, that is to adapt them according to number and position of
labeled samples in the parameter space.

2.1 Adaptation of σq

For one unlabeled sample xs, the k neighbors xi
q of each class Cq are extracted if

they exist. If not, all labeled samples of the class Cq are used. We propose to adapt
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the distance ds,i
q between xs and xi

q by defining a relative distance
(

ds,i

σq

)
. The idea

is to take into account the mean distance ds,i
q′ of xs from all samples xi

q′ ∈Cq′ for all
classes Cq′ . We propose to define σq where Cq′ and Cq are known classes and γ is a
tuning parameter:

σq = γ ·minq′(meanq′ �=q(d
s,i
q′ )) (2)

Therefore in equation 1, the distance ds,i
q is weighted by mean distance to the nearest

class Cq′ . The consequence of this definition is :

• if the near class Cq′ has a mean distance comparable to the distance ds,i
q , the doubt

is high. This can be modeled with a large mass attributed to each m
Ωq
i (Ωq), given

a small value to σq.
• if the near class Cq′ has a mean distance higher than the distance ds,i

q , the doubt is

low. This can be modeled with a larger mass attributed to m
Ωq
i (Hq), given a large

value to σq.

2.2 Adaptation of αq

The number of known neighbors has a great influence on the BBA’s values. If one
class Cq contains a lot of labeled samples (more than k), due to the definition of the

BBA (Eq. 1), the conjonctive combination of k BBAs reinforce the m
Ωq
i (Hq). On the

contrary, if the class Cq is underepresented (kq < k), then BBA is less informative.
This can induce an imbalance between the classes.

We propose to adapt the parameter αq to the number of known neighbors for each

class Cq. The idea is to reinforce the mass m
Ωq
i (Hq) when kq < k. The definition of

αq is:

αq = α
1

1+k−kq
0 (3)

where α0 = 0.8. In equation 3, αq > α0 when the number of neighbors kq is less
than k, to reinforce the mass of the Hq hypothesis. It is equal to α0 when kq = k.

3 Application to Image Classification

The automatic classification problem is very complex for image (and video) collec-
tions because the user interprets the semantic content. The extracted attributes from
the images are not directly connected to the classes wished by the user. During the
labeling process of the learning set, the classification system must take into account
the knowledge of the user in order to ”learn” the classes Cq. In the KNN approach,
the system requires samples of images (or videos) that are labeled by the user. The
operation is long and tedious. In a previous work [1], we developed an assistance
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classification system based on the fact that it is difficult for a user to a priori define
all the classes, and manage all the images from the database simultaneously.

3.1 Global Architecture of the Classification System

It could be difficult for a user to classify a set of images, particularly when the
set is large and the classes are not defined a priori. This is the case, for instance,
when somebody wants to store his holiday images, not only by time stamp, but
also by themes (actions: visit, drive..., locations: at home, outdoor...). The im-
ages can be multi-labeled. Rather than submitting all the images simultaneously,
or one by one in random order, the idea is to propose an ”adequate” order fol-
lowing a sampling strategy by an active learning process, rarely used for multi-
labeling [3]. We retain the main elements of the developed system. The main
idea is to select images for the user which are ”interesting” to classify accord-
ing to a specific strategy and to propose a label. The user can accept the pro-
posed label, or change the label or create a new class. The automatic image
selection is carried out from the accumulated knowledge from the previous image
classification.

The framework is divided into two main parts [4]: a fully automatic part for
“modeling the knowledge” presented in this paper, and another part that concerns
the user interactions in order to select the images to be labeled via a graphic user
interface. The entire framework is presented as three modules in Fig. 2.

3.2 Sampling Strategies

A small set of chosen images is proposed to the user to classify. These could be
very similar to labeled images (Most Positive unlabeled images) or very different
from labeled images (Most Rejected unlabeled images). We chose the Most Positive
strategy for the test because it introduces an imbalance of number of neighbors
between classes during the process.

We define a positive hypothesis ωq
p ∈ ΩP ⊂ Ω composed of only one local pos-

itive hypothesis such as Hq, the others corresponding to local negative ones such
as Hn:

Fig. 2 Architecture of the system of classification
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ωq
p = (Hq,Hn1 ,Hn2 , · · · ,HnN ) (4)

This positive hypothesis ωq
p means that the unlabeled image belongs to the single

class Cq. The strategy, sometimes named ”most relevant” [5], selects the unlabeled
images that obtain the highest pignistic probability [6] computed on ΩP, subset of
Ω made up of only positive hypotheses ωq

p (Eq. 4). It corresponds to the selection
of ”easy to classify” images, because the visual content is very similar to already
labeled images.

3.3 Results

The classification algorithm has been tested on a Corel database of 321 images
(Examples in Fig. 3). The database contains 9 classes (’Monuments’, ’Bus’, ’Din-
ausors’, ’Elephants’, ’Mountains’, ’Flowers’, ’Horses’, ’Meals’, ’Faces’), and each
class has between 15 to 46 images. Some classes are very heterogeneous from the
color point of view.

For each image, two kinds of features (color and orientation) have been extracted.
For color, classic 3D histograms in HSV domain have been used with 8 bins in each
dimension, giving 512 components. For orientation, we used horizontal and vertical
gradient filters that give a histogram of 64 bins.

At any time, an unlabeled image is proposed to the user according to the chosen
strategy (here the Most Positive) as well as a proposed label. The user can accept
the proposed label or reject it. In the later case the proposal is recognized as false
proposal. The objective is to limit such false proposals in order to make the task easier
for the user. The test is performed automatically since the ground truth is known.

Fig. 3 Examples of color images belonging to the collection

3.3.1 Effect of the Parameter σq

An example of comparison is given in Fig. 4. We chose σ = 0.5 (best result) in the
constant case, whereas σq adapted case follows Eq. 2.
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Fig. 4 Comparison of classification for σ
constant and σq adapted (α constant)

Fig. 5 Comparison of classification results
for α constant and αq adapted (σ constant)

Compared to σ constant, σq adapted resulted in a reduced number of false classi-
fication proposals. Indeed, if σq is too small, the mass goes to the doubt and part of
information disappears. If σq is too large, the mass m(Hq) tends towards αq. Here we
are too categorical comparatively to the complexity of the content. For σq adapted,
if the class is far from any other one then σq is large, otherwise σq is small.

3.3.2 Effect of the Parameter αq

An example of comparison is given in Fig. 5. We chose α = 0.8 (best result) in the
constant case, whereas αq adapted follows Eq. 3 with α0 = 0.8.

Compared to α constant, αq adapted resulted in reduced number of false clas-
sification proposals. This result is due to the reduction of imbalance on the masses
during the search of neighbors. The value of αq is close to 1 when the number of
neighbors is 1, giving more mass to the Hq hypothesis. It is equal to α0 when kq = k.

4 Conclusion

The adapted EvKNN proposed in this paper makes the task of the user easier during
long and tedious labeling of the training set. The algorithm takes into account the
real known neighbors (less than k) and the relative distances of the classes. Because
the user is in the loop, a new class can be added when a sample arrives, and in this
case, the proposed adapted EvKNN is particularly efficient. The algorithm has been
tested on an image collection. The image classification process is very complex
because the user attaches semantic interpretation for an image that an automatic
system can not manage using simple image attributes.
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Classification Trees Based on Belief Functions

Nicolas Sutton-Charani, Sébastien Destercke, and Thierry Denœux

Abstract. Decision tree classifiers are popular classification methods. In this paper,
we extend to multi-class problems a decision tree method based on belief func-
tions previously described for two-class problems only. We propose three possible
extensions: combining multiple two-class trees together and directly extending the
estimation of belief functions within the tree to the multi-class setting. We provide
experiment results and compare them to usual decision trees.

1 Introduction

Decision trees [2] (classification trees for categorical labels and regression trees for
numerical ones) are popular classifiers, due to their simplicity, efficiency and read-
ability. The construction of usual decision trees relies on probability theory. How-
ever, classical methods are not always fully adequate to deal with some problems.
Among these problems are (1) the fact that all kinds of uncertainties (either in inputs
or outputs) cannot be modeled faithfully by classical probabilities and (2) the fact
that frequencies of occurrence are only sensible to proportions in a sample and not
to its size.

Beyond the fact that the relationship between inputs and outputs may be non-
deterministic, a classifier may have to deal with three different possible levels of
uncertainty: in inputs, in outputs, and uncertainty due to the fact that the trained
classifier is an estimation of the ideal one, due to a limited amount of knowledge or
data. In this work, we mainly address the third issue, where the estimation quality
translates into imprecision of belief functions.

Belief function theory [13] offers a convenient framework to deal with all these
problems. For instance, Elouedi et al. [9] propose different ways to adapt decision
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trees in the Transferable Belief model (TBM) framework to deal with uncertain
outputs during the tree construction. In this work, we extend another approach also
using belief functions proposed by Denœux and Skarstein Bjanger [8] that can cope
with uncertain outputs and imprecision arising from limited sample size. In this
sense, this approach is closer to some imprecise probabilistic approaches [1] that
naturally integrate sample size information in their construction.

As Skarstein Bjanger’s method only concerns two-class problems, we extend this
methodology to any number of classes. For multi-class problems, we propose three
ways of doing such an extension:

• combining belief functions provided by sets of two-class trees [12];
• building multinomial belief functions using the Imprecise Dirichlet Model

(IDM) [14];
• building multinomial predictive belief functions using Denœux’s approach [6].

Section 2 presents the needed background about decision trees and Skarstein
Bjanger’s method. Section 3 then extends this methodology to the multi-class case.
Finally, in Section 4 we compare new classifiers with the usual CART algorithm and
discuss the effects of parameters on experiment results.

2 Background

2.1 Decision Trees

Let (X ,Y ) be a random vector where X = (X1, ...,XJ) ∈ X = X1 × . . .×XJ rep-
resents the features (continuous or discrete) and Y ∈ Y = {Y1, . . . ,YK} the class to
predict. From a sample E = {(X1,Y 1), . . . ,(Xn,Y n)}, decision tree methods build
iteratively a model of (X ,Y ) by building a partition of X . Here, we consider binary
trees (i.e., CART-like models), where each split provides two children.

The method works as follows: from a root node containing the whole learning
sample, the optimal split (among all the variables and their values) in term of in-
formation gain is searched. The information gain IG corresponding to splitting on
variable Xk with value α is computed as follows:

IG(k,α) = i(t0)− pLi(t1)− pRi(t2), (1)

where i(t) is an impurity measure of a node t, t0 the root node, t1 and t2 its child
nodes, pL is the proportion of the samples in t0 verifying the condition Xk < α
(i.e., pL = nL/n where n is the sample size in t0 and nL the number of cases such that
Xk <α). pR = 1− pL is the sample proportion not verifying it. The selected splitting
value (k,α) is then the one maximizing IG (resulting in a gain in purity).

The method is then applied recursively to each child nodes until no possible
information gain greater than a pre-established threshold can be made. In this case,
the node becomes a leaf predicting the most frequent class of the leaf sample.

The information gain (or impurity measure) is calculated using the Gini-index
for the CART algorithm or Shanon entropy for C4.5’s (Quinlan [11]). Both of these
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functions measure the homogeneity in term of classes. They both use the frequen-
cies of the different classes in the node samples; however, these frequencies do not
depend on the sample size (provided class proportions remain the same). In contrast,
Skarstein Bjanger’s method impurity measure do change with the sample size.

2.2 Skarstein Bjanger’s Method for Two-class Datasets

This method shares CART principles, but differs in the computation of information
gain: it uses mass functions instead of simple frequencies and the used impurity
measure combines nonspecifity (imprecision) and conflict (variability).

To build the mass functions, Dempster’s inference method applied to Bernoulli
trials [5] induces the following mass function:⎧⎨⎩

mDaBt({Y1}) = n1
n+1

mDaBt({Y2}) = n2
n+1

mDaBt(Y ) = 1
n+1 ,

(2)

where n is the number of samples and n1, n2 are the number of samples whose
class is Y1,Y2, respectively. Denœux and Skarstein Bjanger then propose to use the
following impurity measure [10], applied to mDaBt :

Uλ (m) = (1−λ )N(m)+λ D(m) (3)

where N(m) = ∑
A⊆Y

m(A) log2 |A| measures the non-specificity and

D(m) =− ∑
A⊆Y

m(A) log2 BetP(A)

the variability. The two parts are weighted by hyperparameter λ ∈ [0,1]. Note that as
the size n of the sample increases, m(Y ) (the imprecision) decreases. When using
Uλ as impurity measure i(t), the information gain (1) can be negative. This gives
a natural stopping criterion when building the tree, that is, no split is done if all
possible information gains are negative. Usually, λ can be fixed by cross-validation
(see Section 4).

Table 1 shows results obtained with CART-classification trees and with classi-
fication trees based on Skarstein Bjanger’s method. The stopping criteria was the
following: keep splitting while IG > β for usual CART-trees (IG > 0 for the one
based on Uλ ) and while the children nodes of the split contains a minimum of 10
samples. The usual CART procedure and the Uλ -based algorithm were optimized
with respect to the threshold β and parameter λ , respectively, using 10-fold cross-
validation. Results show that the methods achieve comparable accuracies.

Dempster’s method of inference cannot be easily extended from the binomial to
the multinomial case. Therefore, we propose three ways to handle multiple classes:
break up the classification problem containing K classes (K ≥ 3) into C2

K two-class
problems using Quost’s method for combining binary classifiers [12] and use the
Imprecise Dirichlet Model (IDM) approach or Denœux’s multinomial model.
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Table 1 Error rates of trees depending of the used impurity measure

Data set Number of features standard CART trees based on Uλ
Blood transfusion 4 23.5% 24.2%

Statlog heart 13 28% 25.7%
Tic-tac 9 21.5% 11.5%

Breast-cancer 10 5.9% 4.7%
Pima 8 27.3% 25.1%

3 Multi-class Cases

3.1 Combinations of Binary Classifiers

In [12], Quost presents a method to handle multi-class classification problems by
combining classifiers built on sub-samples containing only two classes. He proposes
to learn (from the corresponding sub-sample) a conditional belief function for each
pair {Yi,Yj}, 1 ≤ i < j ≤ K of classes and to combine them into a global belief
function over Y using an optimisation procedure.

Here, we propose to use this method with decision trees issued from Skarstein
Bjanger’s method, using the latter as base classifier to learn conditional belief func-
tions. This method is different from the one proposed by Vannoorenberghe and
Denœux [15] in which K two-class trees corresponding to a “one vs all strategy”
are built, their output being then combined by an averaging of obtained massess.

Decision trees are well adapted to this kind of combination, since they are sim-
ple classifiers. However, note that the optimization of λ becomes an issue, as
K(K− 1)/2 classifiers have to be learned at each optimization step.

3.2 IDM

The IDM was introduced in the “imprecise probability” framework by Walley [16].
Note that, although belief functions can be interpreted as imprecise probabilities, it
is not their only possible interpretation. However, the IDM turns out to yield a belief
function as output, hence it can be used in our framework. The IDM imprecision is
controlled by a hyperparameter s ∈ R+. From a random sample Y 1, ...,Y n, Walley
showed that the lower predictive probability distribution on Y is P(Yk|N,s) = nk/n+s

where nk is the number of times Yk has been observed. The corresponding mass
function is such that: {

mIDM(Yj) = n j/(n+ s) j = 1, ...,K
mIDM(Y ) = s/(n+ s)

(4)

Note that we recover equation (2) for K = 2 and s = 1. Using mIDM , Uλ can be
applied to measure the impurity in a node and multi-class trees can thus be created.
The analytical form of Uλ applied to mIDM can be derived as:
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Uλ (mIDM) =
(1−λ )s

n+ s
log2(K)− λ

n+ s

K

∑
k=1

nk log2

[
Knk + S
K(n+ s)

]
(5)

However, even if this model is simple, it is not easy to interpret it within the belief
function framework. Also, the IDM imprecision only depends on the sample size n,
and not on its distribution over Y . This is not the case for Denœux’s multinomial
predictive belief function that offers an interesting alternative.

3.3 Denœux’s Multinomial Model

Denœux [6] proposes to use Goodman’s confidence intervals to build a predictive
belief function. The first step is to build probability intervals [4] (probability lower
and upper bounds over singletons) and then to transform them into belief functions.

Let (X1,Y 1), ...,(Xn,Y n) be an iid sample where Y k ∈ Y = {Y1, ...,YK}, those
probability intervals [P−k ,P+

k ] are given, for Yk (k=1,...,n), as:

P−k =
q+ 2nk−

√
Δk

2(n+ q)
and P+

k =
q+ 2nk+

√
Δk

2(n+ q)
, (6)

where q is the quantile of order 1−α of the chi-square distribution with one degree
of freedom, and where Δk = q(q+ 4nk(n−nk)

n ). As shown in [6], the lower confidence
measure (i.e., P−(A) = max( ∑

Yk∈A
P−k ,1− ∑

Yk /∈A
P−k )) built using these regions in the

case where K = 2 or 3 is a belief function.
Note that the built belief functions follow Hacking’s principle (see [6] for details),

but the solution for K = 2 is not equivalent to that of Eq. (2).
In the case K > 3, the Möbius inverse of P− may take negative values, so P−

is not a belief function in general. Different methods involving linear programming
are proposed in [6] to approximate it into a belief function. Also, in the special case
where the classes are ordinal, Denœux proposes an algorithm restricted to a certain
set of focal elements. A valid predictive bba is obtained. These belief functions can
then be used with Uλ to build multi-class trees.

4 Experiments

We start by comparing the classifier performances, and then discuss the effect of λ .

4.1 Comparison between classifiers

We compares the three proposed extensions with the usual CART algorithm. Table 2
shows three multi-class UCI datasets characteristics. Table 3 presents experimental
results on the previous datasets comparing the accuracy of four types of classifiers:

• Standard CART trees based on Gini index (CART);
• Trees based on Uλ with mIDM (IDM);
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Table 2 UCI data sets used in experiments

Data set Number of features Number of classes learning sets size test sets size
Iris 4 3 113 37

Balance scale 4 3 469 156
Wine 13 3 134 44
Car 6 4 1152 576

Page blocks 10 5 3649 1824
Forest-fires 12 6 345 172

Table 3 Accuracies (R=error rate T =time computation in seconds) of trees depending of the
masses assignment model

CART IDM Combi Multinomial
datasets R T R T R T R T

iris 2.0% 0 2.0% 0 2.0% 1 2.0% 6
balance-scale 20.2% 0 25.0% 0 17.8% 2 15.9% 29

wine 11.9% 0 8.5% 0 13.6% 1 13.6% 19
car 17.7% 1 17.7% 1 15.6% 9 32.3% 8

pageblocks 4.8% 53 4.7% 38 5.0% 140 5.2% 1801
forests-fire 43.6% 1 43.0% 1 43.0% 15 43.0% 81

• Combination of two-class trees based on Uλ (combination);
• Trees based on Uλ with mMultinomial (multi).

The tree growing strategy is the following: keep splitting while IG > β for CART
and IG > 0 for the tree based on Uλ , the children nodes sample size is greater than
10 and the depth of the tree is smaller or equal to 5.

Because the aim of this experiment was to compare the different methods, none
of the trees were optimized: for CART we fixed the threshold β = 0 and for trees
based on Uλ we fixed λ = 0.5. None of the trees were post-pruned, as we are only
interested in accuracies of each model, and not in their simplicity (defining a proper
pruning strategy for Uλ based decision trees remains the matter of further research).

For the datasets with 3 classes we used the belief function induced by P− whereas
the linear programming and the ordinal approaches were used for Page blocks and
Forest− f ires, respectively.

The classifiers are competitive; however, as expected, computation times are
longer with the multinomial model, due to its higher complexity.

4.2 Discussion about λ

Figure 1 shows the impact of λ in terms of tree complexity (using the usual number
of leaf criterion) and in terms of accuracy on the UCI dataset ”Pima”. We can see
that this complexity increases with λ , confirming that 1− λ can be interpreted as
the importance given to the lack of samples in a node (i.e., to non-specifity N(m))
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Fig. 1 Number of nodes as a function of λ (left) and error rate as a function of λ (right) for
the PIMA dataset

and to the propensity of IG to be negative. This suggests that optimization (here,
a 10-fold cross-validation) should also integrate tree complexity as a criterion. The
parameter λ seems to have only a small influence on accuracy.

5 Conclusion

In this paper, we have extended Skarstein Bjanger’s method for building decision
trees to the multi-class case, proposing three ways to do so. The IDM is not really
based on the belief function theory and may result in too simple belief functions;
Denœux’s multinomial model is more elaborated, fits better with a belief function
approach, but requires heavier computational efforts; two-class decomposition is
efficient, but makes the interpretation of results possibly harder (and, in any case,
longer), as it builds a quadratic number of decision trees.

We have shown that the presented methods have a prediction power comparable
to usual methods. However the present work is only a starting point with many per-
spectives: one of the major interest of using belief functions is the ability to handle
uncertain data in inputs or outputs, a feature we shall integrate to the present meth-
ods in future works (using, for example, extensions of EM-algorithm to learn trees
[3] [7]). Another interesting extension would be to adapt this model to continuous
outputs and to regression problems.
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Combination of Supervised and Unsupervised
Classification Using the Theory of Belief
Functions

Fatma Karem, Mounir Dhibi, and Arnaud Martin

Abstract. In this paper, we propose to fuse both clustering and supervised clas-
sification approach in order to outperform the results of a classification algorithm.
Indeed the results of the learning in supervised classification depend on the method
and on the parameters chosen. Moreover the learning process is particularly diffi-
cult which few learning data and/or imprecise learning data. Hence, we define a
classification approach using the theory of belief functions to fuse the results of
one clustering and one supervised classification. This new approach applied on real
databases allows good and promising results.

1 Introduction

Behind the term of classification, one distinguishes two types of classification: the
supervised and unsupervised one. The unsupervised classification is also called clus-
tering. In clustering, from given data representing some object, we try to find groups
or clusters which are the most compact and separated as possible. Then, we can try
to affect one of the found cluster to a new observed object [2]. Generally, we make
such decision based on the analysis of the dispersion of the objects in the data set.
In the supervised context, the process can also be divided in two steps: the learn-
ing one and the classification. The learning step build a discriminate function based
on labeled data, an unknown information in clustering. From this function, in the
classification step, a new observed object is affected to one of the classes given by
the fixed labels. Whatever the type of classification, we face up to many problems.
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We are always looking for the appropriate method for a given problem without to
be sure to achieve it. Indeed, the obtained results depend on the method and on
parameters; the no-free lunch theorem assures us that there is no better algorithm.
Therefore, the choice of the appropriate method and parameters is not easy for a
given application. Furthermore in the supervised context, the learning data do not
generally represent perfectly the real data we have to classify. For example, all real
classes are not systematically well represented in the learning database. As a result,
a possible solution to some of these classification problems is the fusion of cluster-
ing and supervised classification. The goal of this fusion is to reduce the imprecision
of results by trying to make a compromise between both classifications.

Studying classification fusion approaches, most of them are dealing with the fu-
sion of either supervised [9, 12] or unsupervised classification [3, 4, 11, 7, 8]. The
unsupervised classification fusion approaches are more complex due to the absence
of class labels: an association between the clusters coming from the different algo-
rithms must be found. The researches made on the fusion between the clustering
and the classification were used essentially in order to deploy the unsupervised in
the learning of the supervised classification [6, 10, 13].

In this article, we propose a fusion approach combining supervised and unsuper-
vised classification results. As framework, we choose the theory of belief functions
which have been used with success to fuse supervised classification results [12].
This framework allows to represent the uncertainty and imprecision of the results of
the clustering and supervised classification and to combine the results managing the
conflict.

This paper is organized as follow: in the next section, we present the cluster-
ing and the supervised classification principles. In the third section, we explain the
fusion based on the theory of belief functions. In section four, we present the pro-
posed fusion approach and finally the last section presents the results given by an
experimental study on real data.

2 Classification

The goal of the classification task is to identify the classes to which belong the
objects representing by theirs characteristics or attributes. We distinguish two types
of classification: supervised and unsupervised one.

2.1 Unsupervised Classification or Clustering

In the clustering, we want to group the similar objects of a population in clusters.
Let’s assume, we dispose of an ensemble of objects noted by
X = {x1,x2, .....,xN} characterized by an ensemble of descriptors D. Therefore, the
data are D-multidimensional. The aim is to find the groups (or cluster) to which each
object x belongs. Hereafter, the clusters are noted by C = {C1,C2, .....,Cn}. The clus-
tering can be formalized by a function noted by Ys̄, that associates each element of
X to one or more elements of C. Generally, the clustering is essentially based on the
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dispersion analysis to find the real clusters. Many difficulties can arise in this task.
The main difficulty is to find the borders of the clusters. To evaluate the results, we
have to find some evaluation criteria measuring the quality of results. Usually, we
use indexes called validity indexes. There is no standard or general index. Among
the clustering methods, we mention for example K-means and the hierarchical
classification.

2.2 Supervised Classification

In the supervised context, the classification is based on two steps: the learning step
and the classification step. In the learning step, we consider the objects in X already
labeled, i.e. each object is associated to a known label belonging to an ensemble
of classes noted by Θ = {θ1,θ2, .....,θn}. This is the conceptual difference with the
clustering. The goal of the learning step is to find the best discriminate function Cl
associating each data of the learning database x using the descriptor set (noted by
D) to the correct class in Θ . The classification step consists to predict the class of
a new object based on the learning function. Among the classification methods, we
mention the k-nearest neighbors (k-NN), the decision tree, the neural network, the
support vector machine (SVM) [2]. In the supervised context, the lack of learning
data or the availability of inappropriate one make problems. In this case, we can
consider that the learning function to discriminate data is imprecise and uncertain
and leads to bad results. The confusion matrices are generally used to evaluate su-
pervised classification results.

In this paper, a new approach is proposed to overcome the classification problems
identified previously. This approach is based on the fusion between the supervised
classification and the clustering results using the theory of belief functions.

3 Information Fusion Using the Theory of Belief Functions

The fusion of classifiers can be made in three levels of the classification process:
data, characteristic and decision. The third level is the level of the classification
results and is the most interesting for our study. Many framework have been used
for information fusion, such as vote theory, theory of possibilities or theory of be-
lief functions. The last one, also called Dempster-Shafer theory, allows to repre-
sent both imprecision and uncertainty through two functions: plausibility and be-
lief. Both functions are derived from a function called mass function defined on
all the subsets of the frame of discernment Θ , noted 2Θ . That is the difference
with the theory of probabilities where only singletons are considered. Let’s design
by m j the mass function associated to the source S j. The mass functions are de-
fined on 2Θ and affect a value from [0,1]. Moreover, the mass functions verify the
constraint:

∑
A∈2Θ

m j(A) = 1 (1)
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Hence, the power set 2Θ is the set of all the disjunctions of decisions θi in the clas-
sification context: 2Θ = { /0,{θ1},{θ2},{θ1∪θ2}, . . . ,Θ}. The decisions or classes
θi must be exclusive but not necessarily exhaustive. The definition of mass func-
tions depend on the context, but generic approaches can be used. We will use here a
model based on probabilities proposed in [1]. There are many rules of combination
in the theory of belief functions such as the conjunctive and the disjunctive one. The
conjunctive combination, introduced by Dempster in its normalized form, combines
the mass functions considering the intersections between the elements of 2Θ [9, 12].
This combination is formulated as follows for M mass functions, ∀A ∈ 2T heta:

m(A) = ∑
B1∩B2,...∩BM=A

M

∏
j=1

m j(B j)

The obtained mass is the combination of the mass functions of each different
sources. Form this mass function, the decision to find the best class θi for the con-
sidered observation can be made with the pignistic probability. The pignistic proba-
bility is defined by:

bet(θi) = ∑
A∈2Θ ,θi∈A

m(A)
|A|(1−m( /0))

(2)

where |A| is the cardinality of A. This criterion is employed in a probabilistic context
of decision. In the next section, we present the proposed approach to fuse the results
of clustering and supervised classification.

4 Fusion of Supervised Classification and Clustering Results
Using the Theory of Belief Functions

The most researches made in fusion are dealing with unsupervised classification
(such as in [3]) or with supervised classification (such as in [12]). For the fusion of
supervised classification and clustering was essentially done to deploy the unsuper-
vised classification to make the learning of the supervised one [6, 10]. That is not
the goal in this paper.

The proposed approach in this article fuses both types of classification to im-
prove the results. Our approach is based on two main steps: the first one is to apply
the clustering and the supervised classification on the learning database separately;
the second step consists to fuse the results of classification approaches. Based on
the two different outputs, we try to make a compromise between both classifiers.
We must take into account the bad representation of the cluster’s borders in clus-
tering and the bad learning in supervised classification. We model that through the
theory of belief functions. Therefore, as inputs of our process, we must define the
mass functions of both sources: supervised and unsupervised classification. How
to model these mass functions? First, to define the mass function for the super-
vised source, we choose the probabilistic model of Appriou [1] previously used with
success.
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Therefore, we define a mass function for each object x belonging to a class θ j,
we have n classes. We have for each class θ j:

m j
s(θ j) =

αs jRs p(θ f
j |θi)

1+Rsp(θ f
j |θi)

(3)

m j
s(θ

c
j ) =

αs j

1+Rsp(θ f
j |θi)

(4)

m j
s(Θ) = 1−αs j (5)

We note by θ f
j the class affected by the supervised classifier to the object x, by θi

the real class and by αs j the reliability coefficient of the supervised classification

for the class θ f
j . The conditional probabilities are estimated through the confusion

matrix on the learning database:

αs j = max p(θ f
j |θi)∀i = {1, ...,n} (6)

and

Rs = max
θ f

j

(p(θ f
j |θi))

−1 (7)

For the unsupervised source, mass functions must also be defined on the discernment
space Θ . However, the classes of Θ are unknown in clustering. We only dispose
of clusters without any labels. Therefore the definition of mass function is made
by measuring the similarities between clusters and classes found by the supervised
classification. If the found clusters are more similar to the classes, the clustering and
supervised classification agree with each other. The similarity is calculated using
recovery between clusters and classes. A class is considered similar to a cluster if it
is recovered totally by the cluster. Therefore the biggest is the number of objects in
common the biggest is the similarity. We look for the proportions of found classes
θ f

1 , . . . ,θ
f

n by the supervised classifier in each cluster [4, 3]. ∀x ∈ Ci with c the
number of clusters found. The mass function for an object x to be in the class θ j is
as follows:

mns(θ j) =
|Ci∩θ f

j |
|Ci| (8)

where |Ci| is the number of elements in the cluster Ci and |Ci ∩θ f
j |, the number of

elements in the intersection between Ci and θ f
j . Then we discount the mass functions

as follows, ∀A ∈ 2Θ by:

mns
αi(A) = αimns(A) (9)

mαi
ns(Θ) = 1−αi(1−mns(Θ)) (10)
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The discounting coefficient αi depends on objects. We can not discount in the same
way all the objects. An object situated in the center of cluster is considered more
representative of the cluster than another one situated on the border for example.
The coefficient αi is defined as (vi is the center of cluster Ci):

αi = e−‖x−vi‖2
(11)

After calculating the mass functions for the two sources, we can combine using
the conjunctive rule and we adopt as decision criterion the maximum of pignistic
probability. Based on the construction of our mass functions for the non-supervised
classifier, both mass functions cannot be considered cognitively independent. Other
combination rules could be used. In our problem we look for known singletons
thanks to the use of supervised classification. Each object is affected to a precise
class. The pignistic probability is employed because we are in probabilistic context.

5 Experimental Study

In this section we present the obtained results for our fusion approach between
supervised classification and unsupervised classification. We conduct our experi-
mental study on different databases coming from generic databases without missing
values obtained from the U.C.I repository of Machine Learning databases. The aim
is to demonstrate the performance of the proposed method and the influence of the
fusion on the classification results. The experience is based on three unsupervised
methods such as the fuzzy C-Means (FCM), the k-Means and the Mixture Model.
For the supervised classification, we use the k-Nearest Neighbors and the Bayes
Classifier. We show in the Tables 1 and 2 the obtained classification rates on the
data before and after the fusion respectively for the k-NN with the FCM, the k-
Means and the mixture model and the Bayes classifier with the FCM, the k-Means
and the mixture model.

The number of clusters may be equal to the number given by the supervised
classification or fixed by the user. The values shown in both tables 1 and 2 are
obtained after cross-validation with ten trials of experiments. In each trial, we test

Table 1 Results obtained with k-NN and FCM, k-Means and Mixture Model. NbC: number
of classes, NbCl: number of clusters, NbA: Number of attributes, CR-BF: classification rate
obtained before fusion, CR-AF classification rate obtained after fusion

Data NbC NbCl NbA CR-BF CR-AF
FCM k-Means Mixture Model

Iris 3 3 5 96.67 100.00 100.00 100.00
Breast- Cancer wisconsin 2 2 11 64.52 80.00 80.00 80.00

Sensor-readings-24 4 4 5 84.00 100.00 100.00 100.00
Habeman 2 2 4 75.17 100.00 100.00 99.34
Abalone 2 2 8 53.10 61.70 61.27 59.42
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Table 2 Results obtained with Bayes Classifier and FCM, k-Means and Mixture Model. NbC:
number of classes, NbCl: number of clusters, NbA: Number of attributes, CR-BF: Classifica-
tion rate obtained before fusion, CR-AF Classification rate obtained after fusion

Data NbC NbCl NbA CR-BF CR-AF
FCM k-Means Mixture Model

Iris 3 3 5 95.33 100.00 100.00 100.00
Breast- Cancer wisconsin 2 2 11 96.00 100.00 100.00 100.00

Sensor-readings-24 4 4 5 52.57 100.00 100.00 100.00
Habeman 2 2 4 73.83 77.74 77.74 77.41
Abalone 2 2 8 51.95 73.08 73.59 66.62

with a test database taken from 10 databases. The fusion effect is remarkable in the
table 1. In fact, we obtain a rate greater than 90% for the databases: iris, sensor-
readings24 and haberman, a rate equal to 80% for breast-cancer and a rate about
60% for abalone database. In the table 2, we obtain a rate of 100% for iris, breast-
cancer, sensor-readings24 and a rate greater than 70% for abalone and haberman.
The error rate does not exceed 30% after fusion. We note that the obtained rate after
fusion are better than before fusion.

6 Conclusion

This paper proposes a new approach allowing the fusion between supervised classi-
fication and clustering. Both methods have limits and problems. The fusion is estab-
lished to improve the performance of the classification. We make the fusion with the
belief function theory. The proposed approach showed encouraging results on classi-
cal and real databases. This work can be spread by studying results on imprecise and
uncertain databases and on database with missing data. The final goal of this work is
to apply the approach in very difficult applications such as sonar and medical images
where the learning is difficult due to an incomplete knowledge of the reality.
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Continuous Belief Functions: Focal
Intervals Properties

Jean-Marc Vannobel

Abstract. The set of focal elements resulting from a conjunctive or disjunc-
tive combination of consonant belief functions is regretfully not consonant
and is thus very difficult to represent.

In this paper, we propose a graphical representation of the cross prod-
uct of two focal sets originating from univariate Gaussian pdfs. This rep-
resentation allows to represent initial focal intervals as well as focal inter-
vals resulting from a combination operation. We show in case of conjunctive
or disjunctive combination operations, that the whole domain can be sepa-
rated in four subsets of intervals having same properties. At last, we focus
on identical length focal intervals resulting from a combination. We show
that such intervals are organized in connected line segments on our graphical
representation.

1 Introduction

1.1 Sources of Information

Consider a source of information Si with knowledge modeled by a univari-
ate convex (unimodal and consonant) probability density function betfi of a
continuous random variable X . The support of betfi is called Ωi = [Ω−

i , Ω+
i ]

with Ω−
i , Ω+

i ∈ R [4] . The mode and the variance of betfi are respectively
noted μi and σ2

i . Suppose now Ei = (Fi, mi), the piece of evidence deduced
from betfi. Ei is totally described by the pair composed of mi, the Least
Commited isopignistic basic belief density (bbd) deduced from betfi [1] [4]
and Fi = {I ⊆ Ωi|mi(I) > 0}, the focal set of intervals with elements
in Ωi.
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1.2 Focal Intervals

An interval A = [A−, A+] with A−, A+ ∈ R such as mi(A) �= 0 is called
focal interval of Ei thus A ∈ Fi. All elements of Fi are nested intervals in
case of a consonant pdf betfi and correspond to horizontal cuts of betfi as
shown in figure 1(a). It is convenient to label the elements of Fi according
to their inclusion order by a continuous index. This can be done for instance
wrt the pdf value at focal interval bounds [2] or wrt the half-length of the
focal interval [3]. This last option allows in general to define a single bbd’s
expression for a whole family of pdfs [6]. In case of symmetrical pdfs like
Gaussian ones as well as Laplace ones, focal intervals can be labeled by an
index z such as Az = [Az−, Az+] with:

z =
|x − μ|

σ
, z ∈ R+, (1)

Az− = μ − σz, Az− ∈ [Ω−, μ], (2)

Az+ = μ + σz, Az+ ∈ [μ, Ω+]. (3)
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0 �i x

Betfi ( )
�i

zk

FiFi

Ai

z
Ai

z
Betfi ( )

Ai

z
Ai

z

= [ , ]Ai

z
Ai

z
Ai

z

z

zk

�i-
=

�i

Ai

zk

k

k

k k k

k

k

(a) Focal intervals domain Fi resulting from
a Gaussian pdf.
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Fig. 1 Focal intervals graphical representation relatively to the z label value.
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2 Focal Sets Graphical Representations

2.1 General Considerations

We consider in what follows two pieces of evidence Ei = (Fi, mi) and Ej =
(Fj , mj) deduced respectively from the Gaussian pdfs betfi(x; μi, σ

2
i ) and

betfj(x; μj , σ
2
j ) with μi ≤ μj . Focal intervals are denoted by Azk

i with zk the
value taken by zi the label obtained using relation (1). We assume the use
of Gaussian pdfs since many sensors model uncertainty by such pdfs but any
other symmetrical bell shaped pdfs like Laplace or Cauchy ones would also
serve the purpose. Fi,j is the focal set resulting from a conjunctive (resp.
disjunctive) combination of Ei and Ej . Elements of Fi,j correspond to the
non empty intersection (resp. union) of pairs in Fi ×Fj. The content of Fi,j

and the length dependencies between its elements depend of course on the
chosen combination rule.

2.2 Bell Shaped Probability Density Functions

The graphical representation proposed in figure 1(a) shows the focal set Fi

obtained from a Gaussian pdf Betfi. Elements of Fi are ordered wrt label z,
differing in that point from the graphical representation proposed by Strat [5].
When labeling focal intervals wrt their length as defined in (1), the focal
set Fi is encompassed by two symmetrical half-lines defining an isosceles
triangle. Equations of these half-lines are deduced from relations (2) and (3)
and correspond to: ⎧⎨

⎩ z = |Az−
i −μi|

σi
,

z = |Az+
i −μi|

σi
.

(4)

As shown in figure 1(b), this is a convenient way to graphically compare focal
intervals coming from different focal sets. One can see in this figure the result
of the intersection or union of two intervals Azk

i ∈ Fi and Bzl
j ∈ Fj which are

indexed resp. by zk and zl. For instance, it also allows to show the domain of
intervals Bj ∈ Fj that do not intersect with Azk

i (if any). It is obvious from

relation (1) that the label value of these Bj intervals is in [0,
|Azk+

i −μj |
σj

).

2.3 Bounds Relations of Fi × Fj Elements

Figure 2(a) shows the pairs of intervals (Azx
i

i , B
zx

j

j ) ∈ Fi × Fj having a
common bound x ∈ Ω. The index pairs (zx

i , zx
j ) ∈ R+2 corresponding to
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Fig. 2 Graphical representations of focal intervals properties.

(Azx
i

i , B
zx

j

j ) draw the lines ①, ② and ③ as shown in Figure 2(a). These lines are
defined by1: ⎧⎪⎪⎨⎪⎪⎩

① : zx
j = |μi−μj |

σj
+ σi

σj
zx

i , x ∈ [−∞, μi],

② : zx
j = |μi−μj |

σj
− σi

σj
zx

i , x ∈ [μi, μj ],

③ : zx
j = −|μi−μj |

σj
+ σi

σj
zx

i , x ∈ [μj , +∞].

(5)

1 Proof is not given here due to lack of space.
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Pairs (zx
i , zx

j ) on the half line called ① lead to x ≤ μi such as:

{
A

zx
i −

i = B
zx

j −
j = x,

A
zx

i +
i ≤ B

zx
j +

j .
(6)

Pairs (zx
i , zx

j ) on line segment ② correspond to x ∈ [μi, μj ] such as:

A
zx

i +
i = B

zx
j −

j = x. (7)

At last, pairs (zx
i , zx

j ) on the half line ③ correspond to x ≥ μ2 such as:

{
A

zx
i +

i = B
zx

j +

j = x,

A
zx

i −
i ≤ B

zx
j −

j .
(8)

To outline existing partial conflict ki,j between the agents Ei and Ej [6], the
z label values of the modes are denoted by Ki and Kj:{

Ki = |μj−μi|
σi

,
Kj = |μj−μi|

σj
.

(9)

Relations (5) show that the absolute value of line directions of ①, ② and
③ are equal to |arctg( σi

σj
)| and correspond to angles α1, α2 and α3 in

figure 2(a).

2.4 Focal Intervals Intersection or Union Overview

As shown in figure 2(b), focal intervals Azk

i ∈ Fi and Bzl

j ∈ Fj can di-
rectly be drawn on the chart by respectively vertical and horizontal line
segments since ①, ② and ③ correspond to the focal intervals bounds. The
path defined by half-lines ①, ② and ③ covers Ω. It becomes thus easy to
analyze pairs in Fi × Fj to deduce their intersection or union. For instance,
intervals shown in figure 2(b) are such as Azk

i ∩ Bzl

j =
[
Bzl−

j , Azk+
i

]
and

Azk

i ∪ Bzl

j =
[
Azk−

i , Bzl+
j

]
. When considering zk and zl respectively as hori-

zontal and vertical cursors it is also possible to find the z limits of intervals
intersecting or including one another or not.

2.5 Particular Domains

Figure 2(b) shows also that the ①, ② and ③ lines separate Fi × Fj in four
domains called D1,D2,D3 ans D4. For μi < μj , zi ≥ 0, zj ≥ 0, defining pairs
(Azi

i , B
zj

j ) ∈ Fi ×Fj , we have:
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zj > Kj + σi

σj
zi ⇒ Azi

i ⊂ B
zj

j (D1),
zj < −Kj + σi

σj
zi ⇒ Azi

i ⊃ B
zj

j (D2),
zj < Kj + σi

σj
zi, zj > Kj − σi

σj
zi, zj > −Kj + σi

σj
zi

⇒ Azi

i ∩ B
zj

j /∈ {∅, Azi

i , B
zj

j

}
(D3),

zj < Kj − σi

σj
zi, ⇒ Azi

i ∩ B
zj

j = ∅ (D4).

(10)

When μ1 = μ2 only D1 and D2 exist and are separated by the half-line
z2 = σ1

σ2
z1.

2.6 Consonant Subsets of Fi,j

The focal set Fi,j obtained after a conjunctive or a disjunctive combination
operation of Ei and Ej is composed of an infinite number of nested focal
intervals subsets. These consonant subsets appear both in D1, D2 and D3

shown in figure 2(b) and are partially represented in figure 1(b) with the
dark gray area. These subsets are not disjoint and consequently if the same
interval belongs to several of them, it is necessary to integrate to get its total
weight. The domain D4 differs from the other ones as it is empty in case
of a conjunctive combination operation and composed of nested non convex
intervals in case of a disjunctive one.

3 Same Length Intervals Resulting from Intersection
and Union Operations of Focal Ones

3.1 Intersection of Focal Intervals

The length l of the intersection of the pairs (Azi

i , B
zj

j ) ∈ Fi × Fj can be
deduced from the characteristics of D1,D2,D3 and D4 given by relations (10).
l only depends on the pdfs betfi and betfj parameters and the focal intervals
indexes zi and zj:

⎧⎪⎪⎨⎪⎪⎩
D1 : Azi

i ∩ B
zj

j = Azi

i , l(Azi

i ∩ B
zj

j ) = 2σizi,
D2 : Azi

i ∩ B
zj

j = B
zj

j , l(Azi

i ∩ B
zj

j ) = 2σjzj,
D3 : Azi

i ∩ B
zj

j = [Bzj−
j , Azi+

i ], l(Azi

i ∩ B
zj

j ) = −|μ2 − μ1| + σizi + σjzj ,
D4 : Azi

i ∩ B
zj

j = ∅, l(Azi

i ∩ B
zj

j ) = 0.
(11)

We can find the elements of Fi × Fj having an identical intersection length
L = l(Azi

i ∩ B
zj

j ) with the help of relations (11). For instance, the z indexes
of these elements in D3 are:

σjzj = L + |μ2 − μ1| − σizi (12)
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thus:
zj = A − σi

σj
zi with A =

L

σj
+ Kj. (13)

This is graphically represented in figure 2(c) by the line segment ⑥ bounded
by points (F, C) and (D, E) and crossing the point (zi, zj) = (0, A) with A
as defined in relation (13). Pairs (Azi

i , B
zj

j ) in D1 having also an intersection
length equal to L correspond to the points of the half-line ⑤ crossing (F, C)
since Azi

i ∩ B
zj

j = Azi

i in D1. Pairs of intervals on the half line ⑦ crossing
(D, E) in figure 2(c) have an intersection length equal to L too since Azi

i ∩
B

zj

j = B
zj

j in D2.
At last, values A to F are quite interdependent depending on Ki and Kj

values. This is due to the symmetry properties of straight lines ① to ⑦ in
figures 2(b) and 2(c). Many relations depending on these parameters lead to
the value of L such as L = 2σj(C − Kj) = 2σi(D − Ki) for instance.

3.2 Union of Focal Intervals

One can deduce from the relations (10) related to the domains D1,D2,D3,D4

that for the union operation of pairs (Azi

i , B
zj

j ) ∈ Fi ×Fj , we have:⎧⎪⎪⎨⎪⎪⎩
D1 : Azi

i ∪ B
zj

j = B
zj

j , l(Azi

i ∪ B
zj

j ) = 2σjzj,
D2 : Azi

i ∪ B
zj

j = Azi

i , l(Azi

i ∪ B
zj

j ) = 2σizi,
D3 : Azi

i ∪ B
zj

j = [Bzj−
j , Azi+

i ], l(Azi

i ∪ B
zj

j ) = |μ2 − μ1| + σizi + σjzj,
D4 : Azi

i ∩ B
zj

j = ∅, l(Azi

i ∪ B
zj

j ) = 2(σizi + σjzj).
(14)

As expressed in (14), concerning D3, one can write:

l(Azi

i ∪ B
zj

j ) − |μ2 − μ1| = σizi + σjzj . (15)

From (15), pairs (Azi

i , B
zj

j ) ∈ D3 having a constant union length L = l(Azi

i ∪
B

zj

j ) satisfy thus:

zj = A − σi

σj
zi with A =

L

σj
− Kj. (16)

This relation corresponds in figure 2(d) to the line segment ⑥ bounded by
points (F, C) and (D, E) and crossing the point (zi, zj) = (0, A) with A
as defined in relation (16). Pairs in D1 having a union length equal to L
correspond to the points of the line segment ⑧. This is also the case in D2

for the points of the line segment ⑨. As in the case of intersection operation,
many relations link the value of L to the parameters of pdfs betfi and betfj.
For instance we have L = 2σjC = 2σiD.
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4 Conclusion and Acknowledgment

As we have seen, the focal set Fi,j obtained in case of a conjunctive (resp.
disjunctive) combination of two pieces of evidence Ei and Ej with consonant
focal domains is not as heterogeneous as it seems to be. Intervals belonging
to Fi,j are sorted into only four domains. In each of these domains, pairs
(Ai ∈ Fi, Bj ∈ Fj) of focal intervals share common properties regarding
intersection Ai∩Bj and union Ai∪Bj . These four domains can be graphically
represented in a linear space where they are separated by straight lines when
the focal sets Fi and Fj are composed of centered and consonant intervals.

At last, elements of Fi,j having a same length are linked by linear relations.
This can be useful in problems where interval lengths have to be taken into
account.

Authors are indebted to J. Klein for the review of this work.
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Game-Theoretical Semantics of Epistemic
Probability Transformations

Fabio Cuzzolin

Abstract. Probability transformation of belief functions can be classified into dif-
ferent families, according to the operator they commute with. In particular, as they
commute with Dempster’s rule, relative plausibility and belief transforms form one
such “epistemic” family, and possess natural rationales within Shafer’s formula-
tion of the theory of evidence, while they are not consistent with the credal or
probability-bound semantic of belief functions. We prove here, however, that these
transforms can be given in this latter case an interesting rationale in terms of optimal
strategies in a non-cooperative game.

1 Introduction

The theory of evidence (ToE) [21] extends classical probability theory through the
notion of belief function (b.f.), a mathematical entity which independently assigns
probability values to sets of possibilities rather than single events. A belief func-
tion b : 2Θ → [0,1] on a finite set or frame Θ has the form b(A) = ∑B⊆A mb(B),
where the function mb : 2Θ → [0,1] (called basic probability assignment or ba-
sic belief assignment b.b.a.) is both non-negative mb(A) ≥ 0 ∀A ⊆Θ and normal-
ized ∑A⊆Θ mb(A) = 1. Subsets A ⊂Θ associated with non-zero basic probabilities
mb(A) �= 0 are called focal elements. Different operators have been proposed for the
combination of two or more belief functions, starting from the orthogonal sum orig-
inally formulated by A. Dempster [15]. Special belief functions assigning non-zero
masses to singletons only (mb(A) = 0 whenever |A|> 1, A⊆Θ ) are called Bayesian
b.f.s, and are in 1-1 correspondence with probability distributions on Θ .

Belief functions possess a number of alternative semantics in terms of multi-valued
mappings, random sets [19], inner measures [17], transferable beliefs [25] or hints
[18]. In some of his papers [15], Dempster claimed that the mass mb(A) associated
with a non-singleton event A ⊆ Θ could be understood as a “floating probability
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mass”. This has originated a popular but controversial interpretation of belief func-
tions b as convex sets P [b] of probabilities (often called consistent with b) deter-
mined by sets of lower and upper bounds on their probability values: P [b]

.
=

{
p ∈

P : b(A) ≤ p(A) ≤ plb(A) ∀A ⊆ Θ
}
, where the plausibility function plb : 2Θ →

[0,1], plb(A) = 1− b(Ac) carries the same evidence as b. In [22] Shafer disavowed
any probability-bound interpretation, also criticized by Walley as incompatible with
Dempster’s rule of combination [31], a position later seconded by Dempster [14].

Probability Transformation of Belief Functions. Nevertheless, the relation be-
tween belief and probability in the theory of evidence has been an important subject
of study, and a number of papers have been published on the issue of probabil-
ity transform [13]. A decision based approach to the problem is the foundation of
Smets’ “Transferable Belief Model” [25], in which belief functions are defined di-
rectly in terms of basis belief assignments (“credal” level), while decisions are made
via the pignistic probability BetP[b](x) = ∑A⊇{x}

mb(A)
|A| , generated by what he calls

the pignistic transform: BetP : B → P , b �→ BetP[b]. The pignistic probability is
the result of a redistribution process in which the mass of each focal element A is
re-assigned to all its elements x ∈ A on an equal basis, and is perfectly compatible
with the upper-lower probability semantics of b.f.s, as it is the center of mass of the
polytope P[b] of consistent probabilities [4].

Other proposals have been recently brought forward by Dezert et al. [16], Burger
[3], Sudano [27] and others, based on redistribution processes similar to that of
the pignistic transform. In addition, two new Bayesian approximations of belief
functions have been derived from purely geometric considerations [7] in the context
of the geometric approach to the ToE [8], in which belief and probability measures
are represented as points of a Cartesian space.

Relative Plausibility and Belief Transforms. Originally developed by Voor-
braak [29] as a probabilistic approximation intended to limit the computational cost
of operating with belief functions in the Dempster-Shafer framework, the plausi-
bility transform [5] has later been supported by Cobb and Shenoy in virtue of its
commutativity properties with respect to Dempster’s sum. Initially defined in terms
of commonality values, the plausibility transform p̃l : B→P , b �→ p̃l[b] maps each
belief function b to the probability distribution p̃l[b] = p̃lb obtained by normalizing

the plausibility values plb(x)1 of the element of Θ : p̃lb(x) =
plb(x)

∑y∈Θ plb(y)
.

We call the output p̃lb of the plausibility transform relative plausibility of single-
tons. Voorbraak proved that his (in our terminology) relative plausibility of single-
tons is a perfect representative of b when combined with other probabilities p ∈P
through Dempster’s rule ⊕: p̃lb⊕ p = b⊕ p for all p ∈P .

Dually, a relative belief transform b̃ : B→P , b �→ b̃[b]mapping each belief func-

tion to the corresponding relative belief of singletons b̃(x) = b(x)
∑y∈Θ b(y) can be defined.

The notion of relative belief transform (under the name of “normalized belief of
singletons”) has first been proposed by Daniel [13]. Some preliminary analyses of

1 With a harmless abuse of notation we denote the values of b.f.s and pl.f.s on a singleton x
by b(x), plb(x) rather than b({x}), plb({x}).
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the relative belief transform and its close relationship with the (relative) plausibility
transform have been presented in [9, 10]. A detailed discussion of the geometrical
properties of b̃ and p̃l has been given in [11]. In [10], in particular, the author has
shown that plausibility and belief transforms both commute with Dempster’s rule of
combination, and meet a number of dual properties with respect to the orthogonal
sum, therefore forming what we call the “epistemic” family of transforms. In op-
position, an “affine” family can be defined which groups together those transforms
which commute with affine combination, and fit in the probability-bound interpre-
tation of belief functions.

Paper Contribution. In this paper, instead, we point out that, even though they
are not consistent with the credal set of probabilities dominated by the original be-
lief function, plausibility and belief transforms can be provided in this interpretation
with an interesting betting semantics within an adversarial game theory scenario
[28]. In this scenario, inspired by Wald’s minimax/maximin model [30], an oppo-
nent representing the uncertainty encoded by a b.f. is free to pick any probability
function in the set determined by the latter: the decision maker’s goal is to max-
imize their minimal expected reward (or minimize their maximal expected loss).

2 A Game/Utility Theory Interpretation

It can be proven that a probability distribution on Θ is consistent with a belief func-
tion b iff it is the result of a redistribution process, in which the mass of each focal
element is shared between its elements in an arbitrary proportion [12]. However,
neither the relative belief of singletons nor the relative plausibility of singletons
(unlike Smets’ pignistic function) are consistent in this sense: indeed, it is easy to
prove that they are not the result of such a redistribution process [12]. Nevertheless,
an interesting interpretation for them under the probability-bound semantic can be
provided in a game/utility theory context [28, 26].

Strat’s Carnival Wheel Scenario. Consider the following scenario, inspired by
Strat’s expected utility approach to decision making with belief functions [26, 20].

In a country fair, by paying a fixed fee c, people get the chance to spin a carnival
wheel divided into a number of sectors labeled, say, Θ = {♣,♦,♥,♠}. In return,
they get an amount r(x) which varies with the label x ∈Θ of the sector that stops at
the top, so that the gain or “utility” of each outcome for the player is u(x) = r(x)−c,
while their loss is, dually, l(x) =−u(x) = c− r(x).

The game amounts to a “lottery” (probability distribution), in which the prob-
ability of each outcome is proportional to the area covered on the wheel. People
are asked to make a binary decision: to play/not to play. A rational behavior on the
player’s side consists on computing their expected utility ∑x∈Θ u(x)p(x) and decide
to play if the latter is positive: the decision, lacking any uncertainty, is trivial.

Cloaked Carnival Wheel. Strat therefore introduces a more challenging sce-
nario, in which the fair’s manager decides to make the game more interesting by
covering part of the wheel. People are still asked whether they want to spin the
wheel or not, knowing that the manager is allowed to rearrange the hidden sector
of the wheel as they pleases (see Figure 1). Clearly, this new situation amounts to
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Fig. 1 The modified carnival wheel: part of the spinning wheel is cloaked.

a set of possible lotteries which can be described as a belief function, in particular
one in which the fraction of area associated with the hidden sector is assigned as
mass to the whole decision space {♣,♦,♥,♠}. If additional (partial) information
is provided, for instance that ♦ cannot appear in the hidden sector, different belief
functions must be chosen instead. Regardless the particular belief function b (seen
as a set of probabilities) at hand, the rule allowing the manager to pick an arbitrary
distribution of outcomes in the hidden section mathematically translates into allow-
ing them to choose any probability distribution p ∈P [b] consistent with b in order
to damage the player. Strat uses this situation as a way of introducing upper and
lower bounds to the expected utility [28]

E(u) = ∑
x∈Θ

u(x)p(x),

of the player, induced by the upper and lower bounds to probabilities associated
with the belief function describing the set of lotteries [26].

A Modified Carnival Wheel Scenario. Let us consider, instead, a modified sce-
nario in which players are asked (after paying the usual fee c) to bet on a single
outcome x ∈Θ . What is the expected utility of the player in this case? Clearly:

E(u) = ∑
y∈Θ

p(y)u′(y), u′(y) =
{

0 y �= x
u(x) = r(x)− c y = x

so that E(u) = ∑y∈Θ p(y)u′(y) = p(x)u(x).
Suppose that the aim of the player is to play conservatively, and maximize their

worst case expected utility p(x)u(x), under the uncertainty given by the counter-
move by the fair’s manager: which outcome (singleton) should they pick?

Wald’s Minimax Model. This situation can be naturally described by Wald’s
maximin model [30], a non-probabilistic, robust decision making model in which
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the optimal decision is one whose worst outcome is at least as good as the worst
outcome in any other case. Mathematically, it reads as follows:

f ∗ = max
a∈A

min
s∈S (a)

f (a,s) (1)

where A denotes the set of alterative actions/decisions/strategies, S (a) denotes
the set of states associated with action s, and f (a,s) denotes the return of strategy a
taking place in the state s. The model represents a 2-person game in which the max
player plays first, making a move a: in response, the second (min) player selects the
available state (s ∈S (a)) which minimizes the return for the first player.

Wald’s model (1) represents a major simplification of the classic 2-person zero
sum game [2], in which the two players decide without being aware of the other’s
choice, while in this case the players choose sequentially.

A Minimax Model of the Carnival Wheel, and Relative Beliefs. Clearly, our
scenario can be described by a maximin model (1), in which: the set of possible
actions corresponds to the set of outcomes of the lottery A =Θ ; the set of possible
states the second player can pick from does not depend on a = x, and is the set
S (a) = S = P[b] of probability distributions consistent with b; and finally, the
return is the player’s expected utility E(u) = p(x)u(x) under the constraint of having
to pick a single outcome: f (a,s) = f (x, p) = p(x)u(x) which is a function of the
lottery outcome only. The problem may therefore be described as:

xmaximin = argmax
x∈Θ

min
p∈P[b]

u(x)p(x). (2)

Now, in the probability-bound interpretation of belief functions, the belief value of
each singleton x∈Θ measures the minimal support x can receive from a distribution
of the family associated with b: b(x) = minp∈P[b] p(x). Therefore

xmaximin = argmax
x∈Θ

min
p∈P[b]

u(x)p(x) = argmax
x∈Θ

(
u(x) min

p∈P[b]
p(x)

)
= argmax

x∈Θ
u(x)b(x) = argmax

x∈Θ
u(x)b̃(x)

is the optimal decision for the player since, by normalizing b(x) to obtain the relative
belief of singletons, the maximal decision is obviously preserved.

If, in particular, the utility function is constant (i.e., no element of Θ can be
preferred over the others), the best possible defensive strategy xmaximin aimed at
maximizing the minimal return of the possible outcomes is/are the peak(s) of the
relative belief of singletons. In the example of Figure 1, as ♣ is the outcome which
occupies the largest share of the visible part of the wheel, the safest bet (the one
which guarantees the best expected return in the worst case) is indeed ♣.

Dual Maximin Model, and Relative Plausibilities. The dual maximin model
describes the case in which the player moves first again, but this time to minimize the
worst possible expected loss. In the modified carnival wheel scenario, once again,
when people are asked to bet on a single outcome, their expected loss is E(l) =
l(x)p(x) so that:
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xminimax = argmin
x∈Θ

max
p∈P[b]

l(x)p(x) = argmin
x∈Θ

l(x) max
p∈P[b]

p(x) = argmin
x∈Θ

l(x)plb(x),

(3)

as plb(x) = maxp∈P[b] p(x) measures the maximal possible support to x by a distri-
bution consistent with b. Since l(x) = c−r(x) =−u(x), and after noting that normal-
izing the plausibility of singletons does not alter the above optimization problem,
the outcome/action which minimizes the maximal expected loss is:

xminimax = argmin
x∈Θ

−u(x)p̃lb(x) = argmax
x∈Θ

u(x)p̃lb(x).

Once again, if in particular the loss (utility) function is constant, then the elements
whose relative plausibility is maximal are the best possible defensive strategies
aimed at minimizing the maximum possible loss.

In both the maximin and the minimax scenarios, relative belief and plausibility
of singletons play a crucial role in determining the safest betting strategy in an ad-
versarial game in which the decision maker has to minimize their maximal expected
loss/maximize their minimal expected return under uncertainty representable as a
belief function, interpreted as a set of lower/upper bounds to probability values.

The Role of Expected Utility in Pignistic Transform. It can be useful to com-
pare our scenario based on the maximin/minimax model with classical expected
utility theory [28]. There, a decision maker can choose between a number of “lot-
teries” (probability distributions) pi(x), in order to maximize the expected return
or utility E(pi) = ∑x u(x)pi(x) of the lottery. Here, the “lottery” is chosen by their
opponent (given the available partial evidence), and the decision maker is left with
betting on the safest strategy (element of Θ ).

However, a look at how expected utilities are employed in the justification of
Smets’ pignistic transform provides a useful hint on a natural generalization of the
proposed scenario. In [24], the author proves the necessity of the linearity axiom
(and therefore of the pignistic transform) by maximizing the following expected util-
ity (our notation), where p=BetP is the pignistic function: E[u]=∑x∈Θ u(a,x)p(x).
In this case, the set of possible actions (decision) A and the set Θ of possible out-
comes of the problem are distinct, and the utility function is defined on A ×Θ .

A Generalization of the Proposed Scenario. We can then wonder what happens
if we generalize our scenario to the more general case in which the second player
still impersonates the uncertainty on the lottery represented by a belief function, but
the set of actions A is fully distinct from Θ , so that a utility function u : A ×Θ →
R+ can be defined. Let us focus on the maximin form, while forgetting the carnival
wheel situation to move to a more abstract setting.

In this case, once again, the max player moves first and picks an action ā ∈ A .
This fixes a utility profile u(ā,x), x ∈Θ for the elements of Θ : the first player now
has a non-zero utility u(ā,x) for any possible outcome x of the problem, so that their
expected utility is obviously given by ∑x∈Θ u(ā,x)p(x), which depends on the actual
probability distribution describing the problem. The min player at this point selects
the admissible probability distribution p ∈P [b] which minimizes the expected re-
turn of the max player. The overall model is in this more general case:
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amaximin = argmax
a∈A

min
p∈P[b]

(
∑

x∈Θ
u(a,x)p(x)

)
. (4)

We can notice that, in this new situation, argmaxa∈A minp∈P[b](∑x∈Θ u(a,x)p(x)) �=
argmaxa∈A

(
∑x∈Θ u(a,x)minp∈P[b] p(x)

)
= argmaxa∈A

(
∑x∈Θ u(a,x)b(x)

)
=

argmaxa∈A

(
∑x∈Θ u(a,x)b̃(x)

)
for the worst case probability distribution

p∗(x) = argminp∈P[b] p(x) is, in general, different for each x ∈ Θ , and we can-
not simply swap the min and ∑ operators. As a consequence, the generalization of
Wald’s maximin/minimax model to the case in which the second player represents
the uncertainty associated with a belief function (in the probability-bound interpre-
tation), but actions/decisions are distinct from the outcomes of the problem is no
more a function of belief and plausibility values on singletons, and cannot be solved
by using only the knowledge encoded by relative plausibilities and beliefs of single-
tons. A deeper study of this and more general settings is in order.

3 Conclusions

Epistemic transforms commute with Dempster’s rule but they are not consistent with
the probability bound interpretation of belief functions. Nevertheless, in this paper
we proposed an interesting, novel interpretation of relative belief and plausibility of
singletons as tools to provide optimal conservative strategies in a maximin/minimax
2-person game scenario derived from Wald’s model, in which a player has to op-
timize their minimal expected gain/maximal expected loss under epistemic uncer-
tainty in the form of a belief function. The study of more general models will be the
goal of further research in the near future.
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Generalizations of the Relative Belief Transform

Fabio Cuzzolin

Abstract. Probability transformation of belief functions can be classified into dif-
ferent families, according to the operator they commute with. In particular, as they
commute with Dempster’s rule, relative plausibility and belief transforms form one
such “epistemic” family, and possess natural rationales within Shafer’s formulation
of the theory of evidence. However, the relative belief transform only exists when
some mass is assigned to singletons. We show here that relative belief is only a
member of a class of “relative mass” mappings, which can be interpreted as low-
cost proxies for both plausibility and pignistic transforms.

1 Introduction

The theory of evidence (ToE) [14] extends classical probability theory through the
notion of belief function (b.f.), a mathematical entity which independently assigns
probability values to sets of possibilities rather than single events. A belief function
b : 2Θ → [0,1] on a finite set or frame Θ has the form b(A) =∑B⊆A mb(B), where the
function mb : 2Θ → [0,1] (called basic probability assignment or basic belief assign-
ment b.b.a.) is both non-negative mb(A)≥ 0 ∀A⊆Θ and normalized ∑A⊆Θ mb(A) =
1. Subsets A ⊂Θ associated with non-zero basic probabilities mb(A) �= 0 are called
focal elements. A basic probability assignment mb can be uniquely recovered from
a belief function b by Moebius transform: mb(A) = ∑B⊆A(−1)|A−B|b(B). Special
belief functions assigning non-zero masses to singletons only (mb(A) = 0 when-
ever |A| > 1, A ⊆Θ ) are called Bayesian b.f.s, and are in 1-1 correspondence with
probability distributions on Θ . Different operators have been proposed for the com-
bination of two or more belief functions, starting from the orthogonal sum originally
formulated by A. Dempster [10].
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Probability Transformation of Belief Functions. The relation between belief
and probability, in particular, has been an important subject of study in the theory
of evidence, and a number of papers have been published on the issue of probability
transform [9]. Many of these proposals, such as [13] or [18], seek efficient imple-
mentations of the rule of combination. A different, decision based approach to prob-
ability transformation is the foundation of Smets’ “Transferable Belief Model” [15],
in which decisions are made via the pignistic probability BetP[b](x)=∑A⊇{x}

mb(A)
|A| ,

justified via a number of rationality principles. Other proposals have been recently
brought forward by Dezert et al. [11], Burger [1], Sudano [17] and others, based on
redistribution processes similar to that of the pignistic transform. Two new Bayesian
approximations of belief functions have been derived from purely geometric consid-
erations [4] in the context of the geometric approach to the ToE [5], in which belief
and probability measures are represented as points of a Cartesian space.

Relative Plausibility and Belief Transforms. Following the efficient imple-
mentation approach, Voorbraak [19] has developed a probabilistic approximation
intended to limit the computational cost of operating with belief functions in the
Dempster-Shafer framework, the plausibility transform. Initially defined in terms of
commonality values, the plausibility transform p̃l : B → P , b �→ p̃l[b] maps each
belief function b onto the probability distribution p̃l[b] = p̃lb obtained by normaliz-
ing the plausibility values plb(x)1 of the element of Θ :

p̃lb(x) =
plb(x)

∑y∈Θ plb(y)
. (1)

We call the output (1) of the plausibility transform relative plausibility of singletons
(r.pl.s.). Voorbraak proved that his (in our terminology) relative plausibility of sin-
gletons p̃lb is a perfect representative of b when combined with other probabilities
p ∈P through Dempster’s rule ⊕: p̃lb⊕ p = b⊕ p ∀p ∈P .

Dually, a relative belief transform b̃ : B → P , b �→ b̃[b] mapping each belief
function to the corresponding relative belief of singletons (r.b.s.) b̃[b] = b̃ [6, 8, 12, 9]

b̃(x) =
b(x)

∑y∈Θ b(y)
(2)

can be defined. Unlike (1), however, (2) exists iff b assigns some mass to singleton
focal sets: ∑x∈Θ mb(x) �= 0. The notion of relative belief transform (under the name
of normalized belief of singletons) has first been proposed by Daniel [9]. Some pre-
liminary analyses of the relative belief transform and its close relationship with the
(relative) plausibility transform have been presented in [6, 8]. A detailed discussion
of the geometrical properties of b̃ and p̃l has been given in [7].

The Epistemic Family of Probability Transforms. Cobb and Shenoy [3] have
argued in favor of the plausibility transform as a link between Shafer’s theory of ev-
idence (endowed with Dempster’s rule) and Bayesian reasoning. They have proved

1 With a harmless abuse of notation we denote the values of b.f.s and pl.f.s on a singleton x
by b(x), plb(x) rather than b({x}), plb({x}).
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[2] that the plausibility transform commutes with Dempster’s rule, and meets a num-
ber of additional properties which they claim “allow an integration of Bayesian and
D-S reasoning that takes advantage of the efficiency in computation and decision-
making provided by Bayesian calculus while retaining the flexibility in modeling
evidence that underlies D-S reasoning”:

b⊕ p = p̃lb⊕ p ∀p; p̃lb[b1⊕ b2] = p̃lb[b1]⊕ p̃lb[b2];
b⊕ b = b  p̃l[b]⊕ p̃l[b] = p̃l[b].

On our side, we have proved [8] that a similar set of (dual) properties hold for the
relative belief transform:

plb⊕ p = b̃⊕ p ∀p; b̃[plb1 ⊕ plb2] = b̃[plb1 ]⊕ b̃[plb2 ];
plb⊕ plb = plb  b̃[plb]⊕ b̃[plb] = b̃[plb],

where plb⊕ denotes the extension of Dempster’s rule to plausibility measures [8]
(seen as pseudo belief functions, i.e., sum functions plb(A) = ∑B⊆A μb(B) on 2Θ

whose Moebius transform μb(B) can be negative for some B ⊂Θ ). This supports
the existence of a family of probability transformations strongly linked to Shafer’s
interpretation of the theory of evidence via Dempster’s rule, which includes relative
belief and relative plausibility transforms, and which we call epistemic family, in
opposition to the affine family of mappings which commute with affine combination
[4] (a property that Smets calls “linearity” [15]).

Paper Contribution and Outline. The symmetry/duality between (relative)
plausibility and belief is, unfortunately, broken, as the existence of the relative belief
of singletons is subject to a strong condition. This stresses the issue of its applicabil-
ity for, in practice, the situation in which the mass of all singletons is nil is common.
However, in Section 2 we point out that relative belief is only a member of a class
of relative mass transformations which generalize it, are computable even when rel-
ative belief is not, and can be interpreted as low-cost proxies for both plausibility
and pignistic transforms (Section 3). We discuss their applicability as approximate
transformations in two significant scenarios (Section 4).

2 Generalizing the Relative Belief Transform

No matter its semantics and that of its sister plausibility transform, a serious issue
with the relative belief of singletons is its applicability. In opposition to relative
plausibility, b̃ does not exist for a large class of belief functions (those which assign
no mass to singletons). Indeed, in many practical applications there is a bias towards
some particular models which are the most exposed to the problem. For example, in
“consonant” belief functions [14] at most one focal element is a singleton, therefore
the vast majority of the useful information in the b.b.a. is contained in the non-
singleton focal elements.

Relative belief is in fact only one element of an entire family of probability trans-
formations. Indeed, b̃ can be thought of as the transform which, given a b.f. b:
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1. retains the focal elements of size 1 only, yielding an unnormalized b.f.;
2. computes (indifferently) the latter’s relative plausibility/pignistic transformation:

b̃(x) =
∑A⊇x,|A|=1 mb(A)

∑y ∑A⊇x,|A|=1 mb(A)
=

mb(x)
kmb

=
∑A⊇x,|A|=1

mb(A)
|A|

∑y ∑A⊇x,|A|=1
mb(A)
|A|

.

Accordingly, a family of natural generalizations of the relative belief transform is
obtained by, given an arbitrary b.f. b:

1. retaining the focal elements of size s only;
2. computing either the resulting relative plausibility ...
3. ... or the associated pignistic transformation.

Now, both alternatives 2) or 3) yield the same probability distribution. Indeed, the

application of the relative plausibility transform yields: p(x)=
∑A⊇{x}:|A|=s mb(A)

∑y∈Θ ∑A⊇{y}:|A|=s mb(A)
=

∑A⊇{x}:|A|=s mb(A)

∑A⊆Θ :|A|=s mb(A)|A| =
∑A⊇{x}:|A|=s mb(A)
s∑A⊆Θ :|A|=s mb(A)

, while applying the pignistic transform yields:

p(x) =
∑A⊇{x}:|A|=s

mb(A)
|A|

∑y∈Θ ∑A⊇{y}:|A|=s
mb(A)
|A|

=
s∑A⊇{x}:|A|=s mb(A)

s∑y∈Θ ∑A⊇{y}:|A|=s mb(A)
, (3)

i.e., the same result. The following natural extension of the relative belief operator
is therefore well defined.

Definition 1. Given any b.f. b : 2Θ → [0,1] with b.b.a. mb, we call relative mass
transformation of level s the transform M̃s[b] which maps b to the probability (3).
We denote by m̃s the output of the relative mass transform of level s.

3 Approximation of Pignistic and Plausibility Transform

It is easy too see that both relative plausibility of singletons and pignistic probability
are convex combinations of all the (n) relative mass probabilities {m̃s,s = 1, ...,n}.
Namely, let us we denote by:

kb,s = ∑
A⊆Θ :|A|=s

mb(A), plb(x;s) = ∑
A⊇{x}:|A|=s

mb(A)

the total mass of focal elements of size s, and the contribution to the plausibility of x
of size-s focal elements, respectively. Immediately: ∑y plb(y) = ∑y ∑A⊇{y}mb(A) =
∑A⊆Θ mb(A)|A| = ∑n

r=1 r(∑A⊆Θ ,|A|=r mb(A)) = ∑n
r=1 rkb,r. Therefore, we obtain for

the relative plausibility of singletons the following convex decomposition into rela-
tive mass probabilities m̃s: p̃lb(x) =

=
plb(x)

∑y plb(y)
=

∑s plb(x;s)

∑r rkb,r
=∑

s

plb(x;s)

∑r rkb,r
= ∑

s

plb(x;s)
skb,s

skb,s

∑r rkb,r
= ∑

s
αsm̃s(x),

(4)
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as m̃s(x) =
plb(x;s)

skb,s
, with coefficients αs =

skb,s

∑r rkb,r
∝ skb,s = ∑y plb(y;s) measuring for

each level s the total plausibility contribution of the focal elements of size s.
In the case of the pignistic probability we get:

BetP[b](x) = ∑
A⊇{x}

mb(A)
|A| = ∑

s
∑

A⊇{x},|A|=s

mb(A)
s

= ∑
s

1
s ∑

A⊇{x},|A|=s

mb(A)

= ∑
s

1
s

plb(x;s) = ∑
s

kb,s
plb(x;s)

skb,s
= ∑

s
kb,sm̃s(x),

(5)

with coefficients βs = kb,s measuring for each level s the mass contribution of the
focal elements of size s.

Accordingly, the relative mass probabilities can be seen as basic components of
both the pignistic and the plausibility transform, associated with the evidence carried
by focal elements of a specific size.

As such transforms can be computed just by considering size-s focal elements,
they can also be thought of as low-cost proxies for both relative plausibility and
pignistic probability, since only the

(n
s

)
size-s focal elements (instead of the ini-

tial 2n) have to be stored, while all the others can be dropped without further
processing.

We can think of two natural criteria for such an approximation of p̃l, BetP via
the relative mass transforms.

• (C1) in the convex decompositions (4) and (5) associated with p̃l and BetP, re-
spectively, we retain the component s whose coefficient (αs in the first case, βs

in the second) is the largest;
• (C2) we retain the component associated with the minimal size focal elements.

Clearly, the relative belief transformation coincides with the approximation pro-
duced by (C2) if ∑x mb(x) �= 0. When the mass of singletons is nil, instead, the
second criterion delivers a natural extension of the relative belief operator:

b̃ext(x)
.
=

∑A⊇{x}:|A|=min mb(A)

|A|min ∑A⊆Θ :|A|=min mb(A)
. (6)

The two approximation criteria favor different aspects of the original belief func-
tion. (C1) focuses on the strength of the evidence carried by focal elements of equal
size, by selecting those whose cardinality s is such that the total plausibility contri-
bution of the focal elements of size s, kb,s = ∑y plb(y;s), is the greatest. Note that,
however, the optimal (C1) approximations of plausibility or pignistic transform are
in principle quite distinct, as: ŝ[p̃l] = argmaxs skb,s, while ŝ[BetP] = argmaxs kb,s.
The best approximation for the pignistic probability will not necessarily be the best
approximation of the relative plausibility of singletons. Criterion (C2) favors in-
stead the precision of such pieces of evidence, measured by the size of the cor-
responding focal elements. Let us compare these two approaches in two simple
scenarios.
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4 Two Scenarios

While C1 is (at least superficially) a sensible, rational principle (the selected proxy
must be the greatest contributor to the actual classical probability transformation),
C2 seems harder to justify. Why should one retain only the smallest focal elements,
regardless their mass?

The attractive feature of the relative belief of singletons, among C2 approxima-
tions, is its simplicity: the original mass is directly re-distributed onto the singletons.
What about the “extended” operator (6)?

4.1 Scenario 1

Consider a scenario in which we want to approximate the plausibility/pignistic
transform of a b.f. b : 2Θ → [0,1], with b.b.a. mb(A) = mb(B) = ε , |A| = |B| = 2,
and mb(Θ) = 1− 2ε ! mb(A) (Figure 1-left). Its relative plausibility of singletons
is given by:

p̃lb(x) ∝ mb(A)+mb(Θ), p̃lb(y) ∝ mb(A)+mb(B)+mb(Θ),
p̃lb(z) ∝ mb(B)+mb(Θ), p̃lb(w) ∝ mb(Θ) ∀w �= x,y,z.

Its pignistic probability values are:

BetP(x) = mb(A)
2 + mb(Θ )

n , BetP(y) = mb(A)+mb(B)
2 + mb(Θ )

n ,

BetP(z) = mb(B)
2 + mb(Θ )

n , BetP(w) = mb(Θ )
n ∀w �= x,y,z.

Assuming mb(A)> mb(B), both transformations have a profile as in Figure 1-right.
Now, according to (C1), the best approximation (among all relative mass transor-

mations) of both p̃lb and BetP[b] is given by selecting the focal elements of size n,
i.e., Θ , as the greatest contributor to both the convex sums (4) and (5).

However, it is easy to see that this yields as an approximation the average prob-
ability m̃1(w) = 1/n ∀w ∈Θ , which carries no information at all. In particular, the
fact that the available evidence supports to a limited extent the singletons x,y and z
is completed discarded, and no decision is possible.

Fig. 1 Left: the original b.f. in the first scenario discussed in the text. Right: corresponding
profile of both relative plausibility of singletons and pignistic probability.
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If, on the other hand, we operate according to the criterion (C2), we end up se-
lecting the size-2 focal elements A and B. The resulting approximation is

m̃2(x) ∝ mb(A), m̃2(y) ∝ mb(A)+mb(B), m̃2(z) ∝ mb(B),

m̃2(w) = 0 ∀w �= x,y,z. This has the same profile as that of p̃lb or BetP[b] (Figure
1-right): the decision made corresponds to that made based on p̃lb or BetP[b].

In a decision-making sense, therefore, m̃2 = b̃ext is the best approximation of
both plausibility and pignistic transforms. We end up making the same decision, at
a much lower (in general) computation cost.

4.2 Scenario 2

Consider however a second scenario, in which a b.f. has only two focal elements A
and B, with |A|> |B| and mb(A)! mb(B) (Figure 2-left). Both relative plausibility
and pignistic probability have the following values:

p̃lb(w) = BetP(w) ∝ mb(A) w ∈ A, p̃lb(w) = BetP(w) ∝ mb(B) w ∈ B,

and correspond to the profile of Figure 2-right.
In this second case, (C1) and (C2) generate the uniform probability on

elements of A (as mb(A) ! mb(B)) and the uniform probability on elements
of B (as |B| < |A|), respectively. Therefore, it is (C1) that yields the best app-
roximation of both plausibility and pignistic transforms in a decision-making
perspective.

Fig. 2 Left: the b.f. of the second scenario. Right: corresponding profile of both relative
plausibility of singletons and pignistic probability.

5 Conclusions

In this paper we tried and enrich our understanding of the family of epistemic trans-
forms of belief functions. We showed that relative belief is only a member of a class
of relative mass transformations which generalize it, are computable even when
the mass of singletons is nil, and can be interpreted as low-cost proxies for both



116 F. Cuzzolin

plausibility and pignistic transforms. We discussed their applicability as approxi-
mate transformations in two significant scenarios.
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Choquet Integral as Maximum of Integrals
with Respect to Belief Functions

Mikhail Timonin

Abstract. We study the problem of representing the Choquet integral w.r.t. an
arbitrary capacity as maximum of integrals w.r.t. belief functions. We propose an
algorithm and prove that for 2-additive capacities it allows to obtain a decomposi-
tion with the lowest number of elements.

1 Introduction

In applications of the Choquet integral to decision making problems it is often
desirable to find the solution of the following optimization problem

C(ν, f ) → max
f

f ∈F ,
(1)

where C(ν, f ) is the Choquet integral with respect to some capacity ν , and F
is the set of admissible “acts” or “alternatives”. The solution can thus be in-
terpreted as the “optimal” decision. According to the theorem of Lovász (1983)
the Choquet integral is concave iff the capacity ν is 2-monotone. In the oppo-
site case, the integral is not concave, can have several local maxima on F and is
therefore hard to optimize. One potential solution to this problem is to find a par-
tition of ν into a set of 2-monotone measures ν =

∨
i β Ti such that C(ν, f ) =∨

i C(β Ti , f ). Maxima of the integrals C(β Ti , f ) (which are concave) can then be
easily found(Timonin 2011). It turns out that it is actually easier to partition the
capacity into totally monotone measures (belief functions). Moreover, at least for
2-additive capacities doing so does not increase the number of elements in the
partition.
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2 Basic Definitions

Definition 1. Let N be a finite set and 2N its power set. Capacity (non-additive mea-
sure, fuzzy measure) is a set function ν : 2N → R+ such that:

1. ν(∅) = 0;
2. A ⊆ B ⇒ ν(A)≤ ν(B), ∀A,B ∈ 2N.

In this article, it is assumed that capacity is normalized, i.e. ν(N) = 1.

Definition 2. The Choquet integral of a function Φ : N →R+ with range { f1, . . . , fn}
with respect to a capacity ν is defined as

C(ν,( f1, . . . , fn)) =
n

∑
i=1

( f(i)− f(i−1))ν( j|Φ( j) � f(i))

where f(1), . . . , f(n) is a permutation of f1, . . . , fn such that f(1) ≤ f(2) ≤ ·· · ≤ f(n),
and f(0) = 0.

Definition 3. The Mobius transform mν of a capacity ν is given by:

mν(A) = ∑
B⊂A

(−1)|A\B|ν(B).

Accordingly, the reverse of this operation is (zeta-transform):

ν(A) = ∑
B⊂A

mν(B), (2)

Definition 4. The capacity ν is called k-monotone for some k � 2, if, for all families
k of subsets A1, . . . ,Ak, it holds that

ν
( k⋃

i=1

Ai

)
� ∑

/0 �=I⊂1,...,k

(−1)|I|+1ν
(⋂

i∈I

Ai

)
.

The capacity is called totally monotone if it is k-monotone for all k � 2. A 2-
monotone capacity is called supermodular. If the inequality is reversed, the capacity
is called 2-alternating (respectively infinitely alternating) or submodular.

An important property of totally monotone capacities (also called belief functions) is
that their Mobius transform includes only non-negative coefficients. A belief func-
tion whose Mobius transform coefficients are distinct from zero only on elements
of some maximal chain /0 ⊂ Y1 ⊂ ·· · ⊂ Yn = N is called a necessity measure.

Definition 5 (Grabisch (1997)). Capacity ν is called k-additive, if its Mobius coef-
ficients m(A) = 0 for all A ⊂ N, |A| > k, and there exists A ⊂ N, |A| = k such that
m(A) �= 0.

Note, that for 2-additive capacities total monotonicity is equivalent to
2-monotonicity.
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3 Disjunctive Representations of the Choquet Integral

For a capacity ν denote the set all pairs {i, j}, i, j ∈ N such that mν({i, j}) < 0 as
K. Construct an undirected graph from these pairs, connecting two vertices i and j
with an edge if mν ({i, j})< 0. The following theorem holds:

Theorem 1. The Choquet integral w.r.t. a 2-additive capacity ν can be represented
as maximum of

|B|= (−1)pχ(−1) (3)

Choquet integrals w.r.t. totally monotone measures β Ti ∈ B,ν =
∨

i β Ti , where p
is the number of vertices in the graph, and χ(·) is its chromatic polynomial. This
decomposition is optimal, i.e. it is not possible to construct a representation with
number of partitions less then |B|. Moreover, it is not possible to obtain a lower
number even when using 2-monotone measures.

The Algorithm

The decomposition of an arbitrary capacity into disjunction of n! necessity measures
has been proposed by Denneberg (2000). These measures are defined as:

mN =

{
m(A) = 0, A /∈ C

m(Ki) = ν(Yi)−ν(Yi−1), otherwise,
(4)

where C = { /0 ⊂ Y1 ⊂ ·· · ⊂ Yn = N} is a maximal chain. Note that

N (A) =

{
ν(A), A ∈ C∨

B�A,B∈C ν(B), A /∈ C .
(5)

Also, C(ν, f ) = C(
∨

i Ni, f ) =
∨

i C(Ni, f ) where Ni belong to the set of all ne-
cessity measures corresponding to maximal chains and are given by (5). Such rep-
resentation fulfils our requirements but is not very convenient, since the number of
elements in the partition is always n!. In order to find a coarser partition we elaborate
on the bijection between three sets of power n!:

• Permutations f(1) ≤ ·· · ≤ f(n);
• Maximal chains /0 ⊂ Y1 ⊂ ·· · ⊂ Yn = N;
• Necessity measures Ni : 2N → [0,1] such that ν =

∨n!
i=1 Ni.

The Choquet integral w.r.t capacity ν can be also expressed using its Mobius trans-
form:

C(ν, f ) = ∑
A⊆X

m(A)
∧
i∈A

fi. (6)

An important property of totally monotone measures is the non-negativity of their
Mobius transform coefficients, m(A) ≥ 0,∀A ⊂ X . This property allowed to create
an algorithm presented in Fig. 1. The principal idea of the algorithm is in locating
the negative Mobius coefficients m(A) in (6) and eliminating them. For a set of pairs
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Input: Results = [ ] // Results array (global)

Input: T = /0 // Constraints fi < f j
begin Split(m,T,S) // The function forms t.m. ‘‘reduced’’ capacities

for f ∈ S do
T = T ∩{⋂ j( fi < f j), j ∈ A\ i} // fi < f j

T = Closure(T)
mT = Reduced(m,T)
S = MinNegSet(mT )

if S �= NULL then
Split(mT ,T,S) // Recursive call

end
else

Results ← mT ,T // Save the capacity and the set

end
end

end
begin MinNegSet(m) // Search for A : m(A)< 0 with the least

cardinality

for i ∈ 2, . . . ,n do
for A ⊂ N, |A|== i do

if m(A)< 0 then
return S

end
end

end
return NULL

end
S = MinNegSet(m)

if S �= NULL then
Split(m,T,S)

end
for T ∈ Results do

BetaT(ν,T)
end

Fig. 1 Capacity decomposition algorithm

fi < f j , i, j = 1, . . . ,k the function Closure(T ) finds all pairs which follow from
transitivity of the relation “<”.1 The function MinNegSet(m) searches for the least-
cardinality subset of N with a negative Mobius coefficient. Note the use of a stronger
relation “<”. This is done in order to simplify the definitions and theorems to follow
by removing ambiguity in simplification of

∧
i∈A fi terms of (6). Since the integral

values for two adjacent partitions coincide at points where fi = f j, i.e.

1 This is required since in numerical algorithms transitivity is not “automatically” en-
forced. For practical implementation we have used the Floyd-Warshall algorithm (see e.g.
Korte and Vygen (2008)). Also, it is convenient to store constraints fi < f j as pairs (i, j).
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C(ν,( f(1), . . . , f(i), f(i+1), . . . , f(n))) =C(ν,( f(1), . . . , f(i+1), f(i), . . . , f(n)))

whenever f(i) = f(i+1), nothing is lost due to such change, and partition elements Ti

can be trivially extended afterwards so that their union is equal to R.
Consider the following example. Let the integral be given as:

0.1 f1+0.1 f2+0.1 f3+0.6( f1∧ f2)+0.6( f1∧ f3)+0.6( f2∧ f3)−1.1( f1∧ f2∧ f3).
(7)

The expression contains an element with a negative coefficient: m({1,2,3}) =
−1.1 < 0. To eliminate it the algorithm forms the sets ( f1 < f2) ∩ ( f1 < f3),
( f2 < f1)∩ ( f2 < f3), ( f3 < f1)∩ ( f3 < f2), which allows to transform the expres-
sion (7):

νT1 : 0.2 f1 + 0.1 f2 + 0.1 f3 + 0.6( f2∧ f3) ∼ f1 < f2, f1 < f3;

νT2 : 0.1 f1 + 0.2 f2 + 0.1 f3 + 0.6( f1∧ f3) ∼ f2 < f1, f2 < f3;

νT3 : 0.1 f1 + 0.1 f2 + 0.2 f3 + 0.6( f1∧ f2) ∼ f3 < f1, f3 < f2

Observe, that the obtained expressions can be viewed the Choquet integrals with
respect to some new capacities νTi . In Fig. 1 the generation of these capacities is
performed by the function Reduced(m,T ). In the following definitions and the-
orems for a set T formed as an intersection of some open hyperplanes of form
fi < f j , i, j ∈ N, we denote as N2

T a set of ordered pairs (i, j) such that (i, j) ∈ N×N,
and T =

⋂
(i, j)∈N2

T
( fi < f j).

Definition 6 (Reduced(m,T )). For a set T =
⋂

(i, j)∈N2
T
( fi < f j) �= /0, the reduced

capacity νT is given by:

mT (A) =

⎧⎨⎩0, ∃(i, j) ∈ N2
T : i ∈ A, j ∈ A

∑
B⊂{ j|i∈A, j/∈A,(i, j)∈N2

T }
mν(A∪B) �(i, j) ∈ N2

T : i ∈ A, j ∈ A. (8)

Theorem 2. C(ν, f ) =C(νT , f ) for all f ∈ T.

Proof. Follows directly from (6).

The obtained capacities νTi are totally monotone, but do not allow to obtain the
required disjunctive decomposition. However, they are still very useful as Theorem
5 will show.

Definition 7 (BetaT(ν,T )). For a set T =
⋂

(i, j)∈N2
T
( fi < f j) �= /0 define the β T -

measure in a following way. Its coefficients are computed iteratively starting with
the singletons of 2N:

β T (A) =

⎧⎨⎩
∨

B�A
β T (B), ∃(i, j) ∈ N2

T : i ∈ A, j /∈ A

ν(A), otherwise.
(9)
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Theorem 3 (Properties of β T -measure).

1. For a set T corresponding to a permutation f(1) ≤ . . . . . . f(n), β T -measure coin-
cides with a necessity measure defined in (4).

2. Let C1 and C2 be two maximal chains corresponding to (single permutation) sets
T1 and T2, and necessity measures N1 and N2. Then, the β T -measure, corre-
sponding to the set T = T1∪T2 is equal to:

β T (A) = N1(A)∨N2(A), ∀A ⊂ N. (10)

3. For some partition 2 ⋃
i Ti = Rn, where the sets Ti are unions of some single

permutation subsets ν(A) =
∨

i β Ti(A), ∀A ⊂ N.
4. Relation to the Choquet integral w.r.t. ν:

C(ν, f ) =C(β T , f ), f ∈ T

C(ν, f ) ≥C(β T , f ), f �∈ T.
(11)

Proof. Properties 1 and 2 follow directly from the definition (9) (see also (5)), while
3 and 4 can be easily derived therefrom. $%
Theorem 4. The Mobius transform coefficients of β T , where T =

⋂
(i, j)∈N2

T
( fi < f j)

are given by:

mβ (A) =

⎧⎨⎩0, ∃(i, j ∈ N2
T ) : i ∈ A, j /∈ A

∑
B⊂{ j|i∈A, j∈A,(i, j)∈N2

T}
mν(A\B), �(i, j) ∈ N2

T : i ∈ A, j /∈ A. (12)

Proof. Sketch: show that for mβ thus defined zeta-transform (2) allows to obtain
(9).For full proof refer to (Timonin 2011).

Theorem 5. If for some set T =
⋂

(i, j)∈N2
T
( fi < f j) the reduced capacity νT is totally

monotone, then β T is also totally monotone.

Proof. Show that (12) is a permutation of (8).

k-Additive Case

A formal characterization of resulting decomposition in the k-additive case is left
for the future research. Here we would only point out some differences with the
results above. For k > 2 the algorithm in Fig. 1 can lead to a suboptimal result. This
happens when the integral retains concavity within non-convex unions of permu-
tation regions. This causes the algorithm to perform undesirable “over-splitting”,
since it is only capable of producing convex sets Ti. Note, that over-splitting does
not affect the correctness of the results, i.e. a desired disjunctive decomposition is
still obtained, albeit with a larger number of partition elements. More details and
examples can be found in (Timonin 2011).

2 For equality to hold Ti must be accordingly extended by switching back to “≤” from “<”.
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4 Proof of Theorem 1

A full proof of Theorem 1 can be found in (Timonin 2011). The proof is built upon
three fundamental lemmas which we present here. Capacities Ni are those from (4)
and form a disjunctive decomposition of the capacity ν .

Definition 8. We will call capacities N1 and N2 non-∨2m-joinable, if the capacity
N1 ∨N2 is not 2-monotone, and there do not exist capacities Ni, i = 1, . . . ,k such
that (N1∨N2)

∨
i=1,...,k Ni is 2-monotone.

Since we analyze 2-additive capacities, their Mobius transform can have negative
coefficients only for sets of the form {a,b}, i.e. for sets of power 2. Denote the set
of all unordered pairs {a,b} having a negative Mobius coefficient as K. In other
words,

K = {{a,b}|mν({a,b})< 0}. (13)

To simplify the notation we will write ab instead of {a,b} and Ya instead of Y ∪{a}.
Denote the subset of N comprised of elements that are included in at least one pair
from K as NK . In the following proofs we will denote partial orders over NK induced
by various combinations of orderings (with relation <) on each of the pairs from
K as Pi. Note, that not every combination induce a partial order, but only those
which correspond to acyclic orientations of the corresponding graph(see Theorem
1). The total number of such orientations is due to Stanley (1973). The elements of
N not included into at least one pair in K do not influence the 2-monotonicity of
the capacity, and therefore will be excluded from the analysis. We prove that it is
possible to find at least (−1)pχ(−1) necessity measures which are pairwise non-
∨2m-joinable. In particular, it will be shown that it is possible to pick a necessity
measure corresponding to each partial order so that these measures are pairwise
non-∨2m-joinable. We assume here that the graph made of the pairs from K does not
contain disconnected parts. Otherwise, the proof below can be applied to each part
separately. In this case the number of resulting measures would be equal to product
of numbers generated by each part (recall also Theorem 1 and the fact that the
chromatic polynomial of a disconnected graph equals to the product of chromatic
polynomials of its connected parts (e.g. (Read 1968))).

Lemma 1. Capacities N1 and N2 are non-∨2m-joinable, if there exist Ya∈C1,Yb∈
C2, where C1,C2 - are maximal chains such that N1 ∼ C1,N2 ∼ C2, {a,b} ∈ K.

Proof. The 2-monotonicity condition is

ν(A∪B)−ν(A)−ν(B)+ν(A∩B)≥ 0, ∀A,B ⊂ N. (14)

We will write it down for the element Yab:

ν(Yab)−ν(Ya)−ν(Yb)+ν(Y). (15)

Since ν is 2-additive for all A ⊂ N holds(Grabisch 1997):

ν(A) = ∑
i, j∈A

ν(i j)− (|A|− 2)∑
i∈A

ν(i) (16)
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Thus,

ν(Yab)−ν(Ya)−ν(Yb)+ν(Y) = ν(ab)−ν(a)−ν(b) = m(ab)< 0. (17)

And according to the definition of the N measures (see (5)) and the conditions
of the lemma (N1 ∨N2)

∨
i=1,...,k Ni, i.e. (N1 ∨N2)

∨
i=1,...,k Ni(Yab)− (N1 ∨

N2)
∨

i=1,...,k Ni(Ya)− (N1∨N2)
∨

i=1,...,k Ni(Yb)+(N1∨N2)
∨

i=1,...,k Ni(Y )< 0

Note: since {a,b} ∈ K, conditions of the lemma imply that C1 and C2 correspond to
different partial orders.

Lemma 2. N1 ∨ N2 is not 2-monotone if there exist Ya ∈ C1,Y b ∈ C2,Yab /∈
C1,Yab /∈ C2,{a,b} /∈ K, where N1 ∼ C1,N2 ∼ C2,C1 ∼ P1,C2 ∼ P2, and P1 and
P2 are different partial orders.

Proof. Similar to the proof of Lemma 1.

Lemma 3. N1 and N2 are non-∨2m-joinable if there exist Ya ∈ C1,Yb ∈ C2,Yab /∈
C1,Yab /∈ C2,{a,b} /∈ K, where N1 ∼ C1,N2 ∼ C2,C1 ∼ P1,C2 ∼ P2, and P1 and
P2 are different partial orders.

Proof. Sketch: Show that either Lemma 1 or 2 can be applied. If Lemma 2 applies
then it is possible to find N3 : Yab ∈ C3 such that N1 ∨N2 ∨N3 is 2-monotone.
However, conditions of lemmata 1,2 would then be met for at least one of pair of sets
(Yab,Yax1) or (Yab,Ybz1), where Yax1 and Y bz1 are the next elements in chains,
corresponding to capacities N1 and N2. Continuing to add more necessity measures
we will eventually obtain a distributive lattice generated by joins of all elements
from chains Y ⊂Ya⊂ . . .⊂NK (sub-chain of C1) and Y ⊂Y b⊂ . . .⊂ NK(sub-chain
of C2 ) and Lemma 1 applies.
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Consonant Approximations in the Belief Space

Fabio Cuzzolin

Abstract. In this paper we solve the problem of approximating a belief measure
with a necessity measure or “consonant belief function” by minimizing appropriate
distances from the consonant complex in the space of all belief functions. Partial
approximations are first sought in each simplicial component of the consonant com-
plex, while global solutions are obtained from the set of partial ones. The L1, L2

and L∞ consonant approximations in the belief space are here computed, discussed
and interpreted as generalizations of the maximal outer consonant approximation.
Results are also compared to other classical approximations in a ternary example.

1 Introduction

The theory of evidence [14] is a popular approach to uncertainty description in
which probabilities are replaced by belief functions (b.f.s), functions b : 2Θ → [0,1]
on the power set 2Θ = {A ⊆ Θ} of the sample space Θ of the form b(A) =
∑B⊆A mb(B), where mb : 2Θ → [0,1] is a non-negative, normalized set function
called “basic probability assignment” (b.p.a.) or “mass assignment”, and plb(A)

.
=

1−b(Ac) is the plausibility function (pl.f.) associated with b. Belief functions assign
values b(A) between 0 and 1 to subsets of the sample space Θ rather than to single
elements. Possibility theory [8], instead, studies possibility measures, i.e., functions
Pos : 2Θ → [0,1] on the power set such that Pos(

⋃
i Ai) = supi Pos(Ai) for any family

of subsets {Ai|Ai ∈ 2Θ , i ∈ I}, where I is an arbitrary set index. Given a possibility
measure Pos, the dual necessity measure is defined as Nec(A) = 1−Pos(Ac).

Interestingly, necessity measures have as counterparts in the theory of evi-
dence consonant belief functions (co.b.f.s), i.e., b.f.s whose non-zero mass sub-
sets mb(A) �= 0 or “focal elements” (f.e.s) are nested [14] and form a chain (totally
ordered collection) of subsets A1 ⊂ ·· · ⊂ Am, Ai ⊆ Θ , in which case Pos({x}) =
plb({x}).
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Approximating a b.f. with a necessity measure amounts therefore to mapping it
to a consonant b.f. [9, 11, 2]. As possibilities are completely determined by their
values on the singletons (Pos({x}), x ∈Θ ), they are less computationally expensive
than b.f.s, making the approximation process interesting for many applications. Ap-
plications to the approximate computation of belief functions on Cartesian products
and combinations by Dempster’s rule have indeed been proposed in [9], while ar-
guments for inferring consonant belief functions from data available in the form of
likelihoods have been brought forward by Shafer [14].

A Geometric Approach to Consonant Approximation. Dubois and Prade, in
particular, have proposed the notion of “outer consonant approximations” [9] of be-
lief functions. Their work has been later extended by Baroni [2] to capacities, while,
in [6], the author has provided a description of the geometry of the set of outer con-
sonant approximations. A different “isopignistic” approximation has been proposed
as the unique consonant b.f. whose pignistic probability BetP(x) = ∑A⊇{x}mb(A)
is identical to that of the original b.f. b [10, 17, 1]. In more recent times, the op-
portunity of seeking probability or consonant approximations / transformations of
belief functions by minimizing appropriate distance functions has been explored
[3, 4]. Any dissimilarity measure could be in principle employed to define condi-
tional b.f.s, or to approximate b.f.s by necessity or probability measures [12, 15, 13].
We focus here on Lp norms, which have been successfully applied in the past [5].

Contribution. The goal of this paper is to conduct an analytical study of all the
consonant approximations induced by minimizing L1, L2 or L∞ distances between
the original belief function and the consonant region, in the vector space they form
or belief space B, as a stepping stone of a more extensive theoretical study of the
nature of consonant approximations induced by geometric distance minimization.

As it turns out, all “partial” Lp consonant approximations in B (having a de-
sired maximal chain of subsets A1 � · · ·� An, n = |Θ | as focal elements) amount to
picking different representatives from the n lists of belief values: L i = {b(A),A ⊇
Ai,A �⊃ Ai+1} ∀i = 1, ...,n, as they have mass m′(Ai) = f (L i)− f (L i−1), where
f is a simple function of the belief values in the list, such as max, average, or me-
dian. Classical maximal outer and “contour-based” approximations can also be ex-
pressed in the same way. As they would all reduce to the maximal outer approxima-
tion m′(Ai) = min(L i)−min(L i−1) = b(Ai)−b(Ai−1) if the power set was totally
(rather than partially) ordered, all these consonant approximations can be consid-
ered as generalization of the latter. Sufficient conditions on their admissibility can
be given in terms of the (partial) plausibility values of the singletons. Due to lack of
space, the reader is referred to [7] for the proofs of all main results.

2 Geometry of Consonant Belief Functions

Given a domain Θ , each belief function b : 2Θ → [0,1] is completely specified by
its N−2 belief values {b(A), /0� A�Θ}, N

.
= 2n (n

.
= |Θ |), (as b( /0) = 0, b(Θ) = 1

for all b.f.s), and can therefore be represented as a vector b = [b(A), /0 � A � Θ ]′
of RN−2. We can prove that [4] the set of points of RN−2 which correspond to a
b.f. or belief space B is the convex closure B = Cl(bA, /0 � A ⊆Θ), where bA is
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Fig. 1 Left: the belief space B2 for a binary frame is a triangle in R2 whose vertices are the
vectors bx = [1,0]′, by = [0,1]′, bΘ = [0,0]′ associated with the categorical belief functions
focused on {x},{y} and Θ , respectively. Consonant b.f.s live in the union of the segments
CO{x,Θ} and CO{y,Θ}. The unique L1 = L2 consonant approximation (circle) and the set of
L∞ consonant approximations (dashed segment) on CO{x,Θ} are shown. Right: To minimize
the distance of a point from a simplicial complex, we need to find all the partial solutions
on all the simplices in the complex (empty circles), and compare them to select a global one
(black circle).

the categorical [18] belief function assigning all the mass to a single subset A ⊆Θ
and Cl denotes the convex closure operator: Cl(b1, ...,bk) = {b ∈ B : b = α1b1 +
· · ·+αkbk,∑i αi = 1, αi ≥ 0 ∀i}. The belief space B is a simplex1 [4], and each
vector b ∈ B representing a belief function b can be written as a convex sum as:
b=∑ /0�A⊆Θ mb(A)bA. The set P of all “Bayesian” b.f.s (assigning non-zero masses
to singletons only: mb(A) = 0 if |A|> 1) is the simplex2 P =Cl(bx,x ∈Θ).

In the case of a domain Θ2 = {x,y} of cardinality 2, each b.f. b is completely
determined by its mass values mb(x), mb(y), as mb(Θ) = 1−mb(x)−mb(y) and
mb( /0) = 0, and is represented by a vector b = [b(x) = mb(x),b(y) = mb(y)]′ ∈ R2.

Since mb(x)≥ 0, mb(y)≥ 0, and mb(x)+mb(y)≤ 1, the set B2 of all the possible
b.f.s on Θ2 can be depicted as the triangle in the Cartesian plane of Figure 1-left.
The region P2 of all Bayesian b.f.s on Θ2 is the diagonal line segment Cl(bx,by).
On Θ2 = {x,y} consonant belief functions can have as chain of focal elements either
{{x} ⊂Θ2} or {{y} ⊂Θ2}. Therefore, they live in the union of two segments (see
Figure 1-left): CO2 = CO{x,Θ} ∪CO{y,Θ} =Cl(bx,bΘ )∪Cl(by,bΘ ).

Approximation in the Consonant Complex. In the general case the region
CO of consonant belief functions in the belief space is a simplicial complex

1 The convex closure Cl(x1, ...,xn+1) of n + 1 (affinely independent) points x1, ...,xn+1
of Rn [4].

2 We will use here the notation x to denote both an element x ∈ Θ of the frame and the
set {x}.
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[6], i.e., the union of a collection of (maximal) simplices, each associated with a
maximal chain C = {A1 ⊂ ·· · ⊂ An}, |Ai| = i, An = Θ of subsets of Θ : CO =⋃

C COC =
⋃

C=A1⊂···⊂An
Cl(bA1 , · · · ,bAn). Given a belief function b, we call con-

sonant approximation of b induced by a distance function d in B the b.f.(s) COd [b]
which minimize(s) the distance d(b,C O) between b and the consonant simpli-
cial complex in B. We use the notation cod[b] when the solution is unique, or
to denote the barycenter of the set of solutions C Od [b]. As the consonant com-
plex CO is a collection of simplices which generate distinct linear spaces, solv-
ing the approximation problem involves finding first a number of partial solutions:
coC

Lp
[b] = argminco∈COC ‖b− co‖Lp (see Figure 1-right), one for each maximal

chain C of subsets of Θ . Then, the distance of b from all partial solutions has
to be assessed in order to select a global optimum. Lp norms have been recently
employed in the probability transformation problem [3] and for conditioning [5].
For vectors b, b′ ∈ B representing two belief functions b, b′, such norms read
as: ‖b− b′‖L1

.
= ∑ /0�B�Θ |b(B)− b′(B)|; ‖b− b′‖L2

.
=
√

∑ /0�B�Θ (b(B)− b′(B))2,
and ‖b− b′‖L∞

.
= max/0�B�Θ |b(B)− b′(B)|. Clearly, however, a number of other

norms can be picked [12]: this paper is as just a first step of a long line of
research.

3 Consonant Approximation in the Belief Space

3.1 Calculation of Lp Approximations in the Belief Space

L1 approximation. The set of partial L1 consonant approximations in B can be ex-
pressed in terms of a list of belief values very much related to the maximal (partial)
outer consonant approximation [9] with maximal chain C :

mcoC
max[b]

(Ai) = ∑
B⊆Ai,B �⊂Ai−1

mb(B) = b(Ai)− b(Ai−1). (1)

Theorem 1. Given a b.f. b : 2Θ → [0,1], its partial L1 consonant approximations
COC

L1
[b] in B with maximal chain of focal elements C = {A1 ⊂ ·· · ⊂ An, |Ai|= i}

are the co.b.f.s co whose mass vectors [mco(A1), ...,mco(An)]
′ live in:

Cl
([

b1,b2− b1, · · · ,bi− bi−1, · · · ,1− bn−1]′ ∣∣∣ bi ∈ {
γ i

int1,γ
i
int2

} ∀i
)
, (2)

where γ i
int1,γ

i
int2 are the innermost (median) elements of the list of belief values:

Li = {b(A),A⊇ Ai,A �⊃ Ai+1}. (3)

As bn−1 = γn−1
int1 = γn−1

int2 = b(An−1), (2) is a polytope of 2n−2 vertices. Note that we
present our results in terms of mass assignments, as they are simpler and easier to
interpret. Due to the nature of partially ordered set of 2Θ , the innermost values of
the above lists (3) cannot be analytically identified in full generality (even though
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they can be easily computed numerically), but can be derived in some simple (e.g.
ternary) cases. As for the global L1 approximation(s):

Theorem 2. Given a belief function b : 2Θ → [0,1], its global L1 consonant ap-
proximations COL1 [b] in B live in the collection of partial such approximations
associated with the maximal chain(s) A1 ⊂ ...⊂ An which maximize the cumulative
lower halves of the lists of belief values Li (3): argmaxC ∑i ∑b(A)∈Li,b(A)≤γ i

int1
b(A).

L2 approximation. To find the partial consonant approximation(s) at minimal L2

distance from b in B we need to impose the orthogonality of the difference vector
b− co with respect to any given simplicial component COC of the complex CO:
〈b−co,bA j −bΘ 〉= 〈b−co,bA j〉= 0 ∀A j ∈C ,1≤ j≤ n−1, as bΘ = 0 is the origin
of the Cartesian space in B, and bA j −bΘ for j = 1, ...,n− 1 are the generators of

COC (compare the binary case of Figure 1-left). The L2 partial approximation of b
is unique, and a function of the list of belief values (3) as well.

Theorem 3. Given a b.f. b : 2Θ → [0,1], its partial L2 consonant approximation
coC

L2
[b] in B with maximal chain C = {A1 ⊂ ·· · ⊂ An} is unique, and has b.p.a.:

mcoC
L2
[b](Ai) = ave(Li)− ave(Li−1) ∀i = 1, ...,n, (4)

where ave(Li)=
1

2
|Ac

i+1| ∑A⊇Ai,A �⊃Ai+1
b(A) is the average of the list Li (3), L0

.
= {0}.

The problem of finding the global L2 approximation is not trivial, and has not been
addressed yet. L∞ approximations also form a polytope, with 2n−1 vertices.

Theorem 4. Given a b.f. b : 2Θ → [0,1], its partial L∞ consonant approximations
COC

L∞ [b] in B with maximal chain of focal elements C = {A1 ⊂ ·· · ⊂ An, |Ai|= i}
are the co.b.f.s co whose mass vectors [mco(A1), ...,mco(An)]

′ live in:

Cl
([

b1, · · · ,bi− bi−1, · · · ,1− bn−1
]′ ∣∣∣bi =

b(Ai)+b({xi+1}c)
2 + {−b(Ac

1),b(A
c
1)} ∀i

)
.

(5)

The barycenter coC
L∞ [b] of (5) has b.p.a.: mcoC

L∞ [b](A1) =
b(A1)+b({x2}c)

2 , mcoC
L∞ [b](Ai)=

b(Ai)−b(Ai−1)
2 +

plb(xi)−plb(xi+1)
2 , 2 ≤ i ≤ n− 1, while mcoC

L∞ [b](An) = 1− b(An−1).

Now, let us call contour-based consonant approximation of a b.f. b with maxi-
mal chain of focal elements C = {A1 ⊂ ·· · ⊂ An} the co.b.f. with mass assignment:
mcocon[b](A1) = 1− plb(x2), mcocon[b](Ai) = plb(xi)− plb(xi+1) for i= 2, ...,n−1, and
mcocon[b](An) = plb(xn), where {xi} .

= Ai \Ai−1 for all i = 1, ...,n. Such an approx-
imation uses the (unnormalized) contour function of an arbitrary b.f. b to generate
a consonant b.f., as if it was a possibility distribution. Then, by (1) and the above
definition, it is clear that the barycenter of the partial L∞ approximations in B is
the average of the maximal outer consonant approximation and what we called
“contour-based” consonant approximation.

As the distance from b of the partial solutions (5) is b(Ac
1) (see the proof of

Theorem 4, [7]), the global L∞ consonant approximations of b in B are
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associated with the chains of focal elements: argminC b(Ac
1) = argminC

(1− plb(A1)) = argmaxC plb(A1), which are nested around the maximal plausibility
singleton.

3.2 Interpretation as Generalized Maximal Outer Approximations

From Theorems 1, 3 and 4, the b.p.a.s of all Lp partial approximations in the belief
space are differences of simple functions of belief values taken from the list (3):

mcoC
max[b]

(Ai) = min(Li)−min(Li−1); mcoC
con[b]

(Ai) = max(Li)−max(Li−1);
mcoC

L1
[b](Ai) = (int1(Li)+ int2(Li))/2− (int1(Li−1)+ int2(Li−1))/2;

mcoC
L2
[b](Ai) = ave(Li)− ave(Li−1);

mcoC
L∞ [b](Ai) = (max(Li)+min(Li))/2− (max(Li−1)+min(Li−1))/2.

(6)
The maximal outer approximation coC

max[b] is obtained by picking as representative
min(Li), coC

con[b] amounts to picking max(Li), the barycenter of the L1 approxi-
mations to choosing the average innermost (median) value, the barycenter of the L∞
approximations to the average outermost value, L2 to picking the overall average
value of the list. Each vertex of the L1 solution set (2) amounts to selecting, for each
component, either one of the innermost values; each vertex of the L∞ polytope (5),
either one of the outermost values.

Belief functions are defined on a partially ordered set, the power set 2Θ = {A ⊆
Θ}, of which a maximal chain is a maximal totally ordered subset. Therefore,
given two elements of the chain Ai ⊂ Ai+1, there are a number of “intermediate”
focal elements A which contain the latter but not the former. If 2Θ were to be a
totally ordered set, the list Li would contain a single element b(Ai) and all the
Lp approximations (6) would reduce to the function coC

max[b] (1): they can all be
seen as different generalizations of the maximal outer consonant approximation.
It should be noted, however, that such approximations are not, in general, outer
approximations in the sense of the former (as it is confirmed by the following
example).

3.3 Graphical Comparison in a Ternary Example

It can be useful to compare the different approximations in the toy case of a ternary
frame, Θ = {x,y,z}. Let the desired maximal chain be C = {{x} ⊂ {x,y} ⊂ Θ}.
Figure 2 illustrates the different partial Lp consonant approximations in B in
the simplex of consonant b.f.s with chain C , for a b.f. b with masses: mb(x) =
0.2, mb(y) = 0.3, mb(x,z) = 0.5. The analogous Lp approximations in the
mass space M [7] (in which b.f.s are represented by their mass vectors) for the
same b.f. are depicted for comparison. Its isopignistic approximation mcoiso[b](Ai) =

i · (BetP[b](xi)− BetP[b](xi+1)
)
, {xi} .

= Ai \ Ai−1∀i [10] is also plotted. For the
comparison to be homogeneous, we plot both sets of approximations (in B and
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Fig. 2 Comparison between Lp partial consonant approximations in the mass M and belief
B spaces for the b.f. of the example. The L2,B approximation is plotted as a red square,
as the barycenter of both the sets of L1,B (blue segment) and L∞,B (green quadrangle)
approximations. Contour-based and maximal outer approximations are in this example the
extreme of the segment L1,B (blue squares). The partial outer consonant approximations
(yellow), the isopignistic approximation (star) and the various Lp partial approximations in
M (in gray levels) are also drawn.

M ) as vectors m of mass values. As for the approximations (6) in B, we have
L1 = {b(x),b(x,z)} and L2 = {b(x,y)}, so that min(L1) = int1(L1) = b(x),

max(L1) = int2(L1) = b(x,z), ave(L1) =
b(x)+b(x,z)

2 , while min(L2) = int1(L2) =
max(L2)= int2(L2) = ave(L2) = b(x,y). Therefore, the set of L1 partial consonant
approximations is, by Equation (2), a segment with vertices: [b(x),b(x,y)−b(x),1−
b(x,y)]′, [b(x,z),b(x,y)− b(x,z),1− b(x,y)]′ (the blue segment in Figure 2). The
partial L2 approximation in B is, by Equation (6), unique (red square) and coin-
cides (in this special case) with the barycenter of the set of partial L∞ approxima-
tions (green quadrangle): mcoC

L2
[b] = mcoC

L∞ [b] = [(b(x)+b(x,z))/2,b(x,y)− (b(x)+

b(x,z))/2,1− b(x,y)]′. The set of partial L∞ approximations has the following four
vertices (5): [(b(x) + b(x,z))/2− b(y,z),b(x,y)− (b(x) + b(x,z))/2,1− b(x,y) +
b(y,z)]′, [(b(x) + b(x,z))/2 − b(y,z),b(x,y) − (b(x) + b(x,z))/2 + 2b(y,z),1 −
b(x,y)− b(y,z)]′, [(b(x)+ b(x,z))/2+ b(y,z),b(x,y)− (b(x)+ b(x,z))/2− 2b(y,z),
1− b(x,y) + b(y,z)]′, [(b(x) + b(x,z))/2 + b(y,z),b(x,y)− (b(x) + b(x,z))/2,1−
b(x,y)− b(y,z)]′.

Admissibility. Geometric approximation in the belief space generates solutions
which are in general only partially admissible, i.e., they may contain approxima-
tions with negative masses. However, sufficient conditions on the desired maxi-
mal chain under which they are indeed admissible can be given in terms of the
list of belief values (3). As min(Li−1) = b(Ai−1) ≤ b(Ai) = min(Li), the max-
imal partial outer approximation comax is admissible for all maximal chains C .
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As for the contour-based approximation cocon, max(Li) = b(Ai+Ac
i+1) = b(xc

i+1) =
1− plb(xi+1) (when once again xi

.
= Ai \Ai−1), while max(Li−1) = 1− plb(xi), so

that max(Li)−max(Li−1) = plb(xi)− plb(xi+1), which is guaranteed non-negative
if and only if the chain C is generated by singletons sorted by their plausibility
values. As a consequence, the barycenter of the set of L∞ approximations is also
admissible on the same chain(s). A similar condition holds in the L1, L2 cases [7].

4 Conclusions

From the example of Figure 2 geometric approximations in mass and belief spaces
do not appear to be strongly linked. Indeed, their semantic is different, as in the
mass space [7] Lp consonant approximations are associated with different but
related mass redistribution processes: the mass outside the desired chain of focal
elements is re-assigned in some way to the elements of the chain. As for the isopig-
nistic approximation, it naturally fits in the context of the Transferable Belief Model
and is quite unrelated to approximations in both the mass and the belief space. It
would be interesting, in this respect, to study the property of geometric consonant
approximations (which seem to be related the plausibilities of the singletons) with
respect to other major probability transforms, such as the intersection probability or
relative plausibility and belief of singletons. In conclusion then, isopignistic, mass-
space and belief-space consonant approximations form three distinct families of ap-
proximations, with fundamentally different rationales: which approach to use will
therefore vary according to the chosen framework, and the problem at hand.
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Controling the Number of Focal
Elements
Some Combinatorial Considerations

Christophe Osswald

Abstract. A basic belief assignment can have up to 2n focal elements, and
combining them with a simple conjunctive operator will need O(22n) opera-
tions. This article proposes some techniques to limit the size of the focal sets
of the bbas to be combined while preserving a large part of the information
they carry.

The first section revisits some well-known definitions with an algorithmic
point of vue. The second section proposes a matrix way of building the least
committed isopignistic, and extends it to some other bodies of evidence. The
third section adapts the k-means algorithm for an unsupervized clustering of
the focal elements of a given bba.

Keywords: Basic belief assignments, Combinatorial complexity, Focal ele-
ments, k-means, Pignistic probability, Body of evidence, Least commitment.

1 General Considerations on Basic Belief Assignments

Let the finite set X = {x1, . . . , xn} be our frame of discernment. The size of
X will be noted n = |X |. The set of all the subsets of X will be noted 2X .

Definition 1. [Shafer(1976)] The application m from 2X to [0, 1] is a basic
belief assignment (bba) if : ∑

A⊆X

m(A) = 1 (1)

The constraint of closed world is modeled by m(∅) = 0. If m(∅) is greater
than 0, we either have an open world or a conflict within the information.
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Definition 2. Let m be a bba on X. A ⊆ X is a focal element of m if
m(A) > 0. The focal set of m is composed of all its focal elements :

F (m) = {A ⊆ X | m(A) > 0} (2)

The size of m is noted |m| = Card(F (m)).

Of course, |m| � 2n. In most applications, |m| will be very small compared
to 2n when a bba is constructed from a source’s information, but after some
steps of combination, this limit can be reached.

Definition 3. Let m be a bba on X. The most usual bodies of evidence are :

• The belief:
bel(A) =

∑
B⊆A,

B �=∅

m(B) =
∑

B⊆A,

B �=∅,

B∈F (m)

m(B) (3)

• The plausibility:

pl(A) =
∑

B∩A �=∅
m(B) =

∑
B∩A �=∅,

B∈F (m)

m(B) (4)

• The commonality:

q(A) =
∑
B⊇A

m(B) =
∑

B⊇A,

B∈F (m)

m(B) (5)

• The pignisitic probability, which is additive (knowing betP({x}) for all
x ∈ X is sufficient):

betP(A) =
1

1 − m(∅)
∑

B⊆X

|A ∩ B|
|B| m(B) =

1
1 − m(∅)

∑
B∈F (m)

|A ∩ B|
|B| m(B) (6)

When the context is not obvious, the bba used to define the body of evidence
will be placed as an index : betPm(A) instead of betP(m).

In the definition 3, the first expression concerns all the subsets of X , and the
second expression concerns only the focal elements. Therefore, if f is either
of the bodies of evidence, and A a subset of X , a natural implementation of
the equation brings an algorithm which calculates f(A) in O(2n) operations
with the first expression. As the second expression only browses the focal set
of m, its complexity is O(|m|), for the same result.

The most popular combination operator is the non-normalized conjunctive
rule, also known as Smet’s rule. It is a quite simple operator to implement;
it is associative, and therefore allows to combine many sources.
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Definition 4. Let m1 and m2 be two bbas on X. The conjunctive combina-
tion of m1 and m2 is a bba on X, m1 ⊕ m2, defined by :

(m1 ⊕ m2)(A) =
∑

B⊆X,

C⊆X,

B∩C=A

m1(B)m2(C) =
∑

B∈F (m1),

C∈F (m2),

B∩C=A

m1(B)m2(C) (7)

The cost for calculating B ∩ C is O(n). The first expression brings an algo-
rithm in O (n22n

)
operations for calculating (m1 ⊕ m2)(A), and O (n23n

)
for determining m1 ⊕ m2. The second expression brings an algorithm in
O (n|m1||m2|) operations for calculating (m1 ⊕ m2)(A) = (m1 ⊕ m2)(A),
and O (n2n|m1||m2|) for determining m1 ⊕ m2.

Smets [Smets(2002)] proposed a nice implementation in O(n2n) operations
for transformations between bba and commonality. The conjunctive combina-
tion of the commonality functions is a simple multiplication, which is linear,
but on vectors having a size of 2n.

The expression (7), nor the commonality, can prevent us from making
operations on non-focal elements of m1⊕m2. Let the bba be implemented by
an adaptive structure that contains information only for its focal elements. A
hashtable is a convenient way for it. The algorithm 1 uses only O(n|m1||m2|)
to build m1 ⊕ m2.

The size of m∩ is at most |m1||m2|. The algorithm coming from (7) needs to
be executed for all the subsets of X , but the algorithm 1 only works on the fo-
cal elements of m∩, and does not compute useless intersections [Smets(1994)].
Using a hashtable for the focal elements, with a hashcode calculation in O(n)
operations, the conjunctive combination takes O(n|m1||m2|) operations.

Data: bbas m1, m2

Result: bba m∩
forall the B ∈ m1 do

forall the C ∈ m2 do
if B ∩ C ∈ m∩ then

m∩(B ∩ C) ← m∩(B ∩ C) + m1(B)m2(C)
else

Add B ∩ C to m∩
m∩(B ∩ C) ← m1(B)m2(C)

Algorithm 1: Conjunctive combination

However, the very nature of the combination operator brings a combinato-
rial explosion of the focal set. Let mi be the bba defined by mi(X) = 1

2 and
mi(X\{xi}) = 1

2 : |mi| = 2. Let m∩ be the conjunctive combination of all
those bbas : m∩ = m1 ⊕ . . . ⊕ mn. For any A ⊆ X , m∩(A) = 1

2n . Therefore,
F (m∩) = 2X and |m∩| = 2n.
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The objective of the following sections will be to guarantee that the size
of a bba cannot be too large, and to respect its nature as much as possible.

2 Linear Algebra for bbas

The definition 3 builds the bodies of evidence bel, pl, betP and q as linear
transformations of m. Considering a bba m on X and an integer K, our
objective will be to build an bba m′ on X such that |m′| � K and fm′(A) =
fm(A) for some bodies of evidence f and some subsets A of X .

Within this section, we forbid ∅ to be a focal element of m, and we do
not allow it to become a focal element of m′. As convenient consequences, we
have bel(A) � betP(A) � pl(A), bel(X) = 1, and pl(X) = 1.

A popular and efficient way to build a bba from a probability or another
source of uncertain information is to build a least committed bba having the
same pignistic probability than the source [Smets(1990)].

Definition 5. Let m be a bba on X. A bba m′ is an isopignisitic of m if

∀x ∈ X, betPm(x) = betPm′(x) (8)

The bba m′ is the least committed isopignistic of m if for any isopignistic
m′′ of m and for any A ⊆ X, plm′(A) � plm′′(A).

The algorithm 2 builds the least committed isopignistic in O(n2 + n|m|) op-
erations. It contains at most n focal elements.

Data: bba m on X
Result: bba m′ on X
forall the x ∈ X do

Calculate p[i] = betP(x)
A ← X ; k ← |X |
while max(p) �= 0 do

i ← argmin(p)
m′(A) ← kp[i]
forall the j ∈ p do

p[j] ← p[j] − p[i]
Delete element i from p
A ← A\{xi}; k ← k − 1

Algorithm 2: Building the least committed isopignistic

If we calculate betP(x) for all x ∈ X , and order the elements of X such
that pi = betP(xi) � betP(xi+1) = pi+1, the focal elements of the least
committed isopignistic are a subset of the Ai = {x1, . . . , xi}.
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We have

pi = betP(xi) =
n∑

k=i

1
k

m′(Ak) (9)

Let p be the vector of the pi and y be the vector of the m′(Ai). We have
p = Bety with Bet a n × n matrix, triangular and inversible. Therefore
y = Bet−1p, with

Bet =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2

1
3 · · · 1

n−1
1
n

0 1
2

1
3 · · · 1

n−1
1
n

... 0 1
3 · · · 1

n−1
1
n

...
. . . . . .

...
...

. . . 1
n−1

...
0 · · · · · · · · · 0 1

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Bet−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · · · · 0

0 2 −2 0
...

0 0 3 −3
. . .

...
...

. . . . . . . . . 0
...

. . . (n−1) −(n−1)
0 · · · · · · · · · 0 n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

As Bet−1 is a triangular band matrix, we can compute all the m′(Ai) from
pi in O(n) operations.

With O(n|m|) operations for computing betP, O(n ln n) operations for
sorting X , O(n) operations for building the sets Ai (with an adapted data
structure) and O(n) operations for solving the linear system, building the
least committed isopignistic costs O(n(ln n+|m|)) operations. Usually, |m| �
ln n, and the cost of the least committed isopignistic is not greater than the
cost of computing betP(x) for the elements of X .

The interval [bel(A), pl(A)], containing betP(A), can be interpretated as
an uncertainty on A [Janez and Appriou(1996)]. For singletons, bel is trivial:
bel(x) = m(x). For sets of size n − 1, pl is trivial: pl(X\{x}) = 1 − m({x}).
Considering the non-trivial bodies of evidence on the sets of interest {x1},
. . . , {xn}, B1 = X\{x1}, . . . , Bn = X\{xn}, we search a bba m′ with those
focal elements, forming a vector

y = (m′({x1}), . . . , m′({xn}), m′(B1), . . . , m′(Bn))T (11)

which verifies:

∀i ∈ �1, n�, plm′({xi}) = plm({xi}) (12)

∀i ∈ �1, n�, belm′(Bi) = belm(Bi) (13)

We have:

plm′({xi}) = m′({xi}) +
∑
j �=i

m′(Bj) (14)

belm′(Bi) =
∑
j �=i

m′({xj}) + m′(Bi) (15)
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As ∀i, plm′({xi}) + belm′(Bi) =
∑

i m′({xi}) +
∑

i m′(Bj), there are only
n+1 independent equations among the 2n listed above: we cannot guarantee
to kep at the same time plm({xi}) and belm(Bi) on those 2n focal elements.

As q(Bi) = m(Bi) + m(X) and q({xi}) = pl({xi}), introducing common-
ality does not bring any new independent equation.

2.1 Mixing Bet with Other Bodies of Evidence

Here we search a bba with 2n focal elements which is an isopignistic of m and
respects an other body of evidence on some focal elements. In the following
examples, we allow the Ai obtained in section 2 to be focal elements, and we
complete them with ({xi})i∈
1,n� or the (Bi)i∈
1,n�.

With plausibility, we should use the focal elements ({xi})i∈
1,n�. We
build a vector

y = (m′({x1}), . . . , m′({xn}), m′(A1), . . . , m′(An))T (16)

The constraints are:

betP(xi) = m′({xi}) +
n∑

k=i

1
k

m′(Ak) (17)

pl({xi}) = m′({xi}) +
n∑

k=i

m′(Ak) (18)

As A1 = {x1}, we cannot have m′(A1) �= m′({x1}); we have only 2n−1 focal
elements. We drop the term m′({x1}) in y, and the constraint on pl({xi}) to
obtain a matrix P such that

Py = (plm({x2}), . . . , plm({x2}), betP(x1), . . . , betP(xn))T (19)

The matrix P4 and more generally Pn are:

P4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1
2

1
3

1
4

1 0 0 0 1
2

1
3

1
4

0 1 0 0 0 1
3

1
4

0 0 1 0 0 0 1
4

1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Pn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

In−1
Betn

In−1

0
... Un−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

where Betn is matrix obtained in the section 2 and Un−1 the upper triangular
(n−1)×(n−1) matrix full of 1.

The matrix Pn is inversible, and we can solve this system in O(n3) oper-
ations. Overall, we can reduce the focal set of m to 2n − 1 focal elements in
O(n(n2 + |m|)) operations, respecting betP and pl on the singletons.

With commonality, we obtain the same results : q({xi}) = pl({xi}).
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With belief, we should use (Bi)i∈
1,n� as focal elements instead of ({xi}).
As bel(Bi)+pl({xi}) = 1, we obtain another – but similar – (2n−1)×(2n−1)
inversible matrix.

3 Optimatization by k-Means

[Denoeux and Yaghlane(2002)] proposed to reduce a bba by adapting the sin-
gle linkage hierarchical clustering algorithm to coarsen its focal set. Another
interesting family of unsupervized clustering algorithm are the k-means tech-
niques, born from the ISODATA method of [Ball and Hall(1965)]. One can
adapt this method to find a subset K of 2X limited in size: |K| � k.

Usual k-means does not guarantee an optimal choice of centers: finding
them is equivalent to the minimum-k center, which is a NP-Complete prob-
lem [Garey and Johnson(1979)]. The convergence of the k-means algorithm
is guaranteed, but only to a local minimum of the intra-cluster variance.

Data: bba m, integer k with k � |m|
Result: bba mk

Let C[1], . . . , C[k] be k focal elements of m [1]
repeat

forall the j � k do C[j] ← ∅
forall the A ∈ m do [2]

C[argmin(dist(A, Cj))] ← C[argmin(dist(A, Cj))] ∪ {A}
forall the j � k do C[j] ← center of C[j]; [3]

until ending condition reached [4]
forall the j � k do

mk(C[j]) ←∑
A∈C[j] m(A)

Algorithm 3: k-means, in a general way that applies to focal elements.

[1] It is natural to initialize the algorithm with the k focal elements with
the greatest masses. But, as the algorithm converges – if it converges – to
a local minimum, it should be a good idea to execute various instances,
with random starting sets.

[2] The focal element A is affected to the center C[j] such that

dist(A, C[j]) =
∣∣∣(A ∩ C[j]

)
∪ (A ∩ C[j]

)∣∣∣ (21)

is minimal. It corresponds to a natural L1 distance based on an exclusive
or. In case of equal distances to different centers, it is possible to:

• choose a random one (the algorithm is no longer deterministic)
• use a lexicographical order (elements are no longer equivalent)
• try to build balanced clusters (the underlying problem is NP-complete)
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[3] The usual k-means technique uses the geometrical barycenter of the
focal sets of C[j] seen as points of [0, 1]n : C[j] ←∑

A∈C[j] m(A)A.
It would build fuzzy focal elements, which is not the way the definition 2
accepts them. Therefore, we put x in the new C[j] if and only if :∑

A∈C[j],x∈A

m(A) >
∑

A∈C[j],x �∈A

m(A) (22)

[4] As we “move” the centers of the classes to the nearest sharp subset of
X , the total intra-cluster variance is not necessarily decreasing. Therefore,
the ending condition must include a maximum steps number, and/or test
the cycles it should encounter.

A step of the algorithm 3 costs O(kn|m|) operations. A reasonable num-
ber of steps before ending the loop is k, and we obtain an algorithm in
O(k2n|m|) operations. If we want to compare this approach with the ones of
the section 2.1, we should use k = 2n− 1, and get an algorithm in O(n3|m|)
operations.

4 Conclusion

In a general way, dealing with basic belief assignments on large frames of
discernment need a proper encoding of the focal sets. We propose to use
hashtables for this purpose, but this not the only way. We propose two
categories of methods for restricting any bba to a bba modest in focal
set size.

We extend the principle of isopignistic to other bodies of evidence to build
a bba with only 2n−1 focal elements, respecting both the pignistic probability
and another body of evidence of the original bba. We first determine the value
of the bodies of evidence on some simple elements, and then determine the
restricted focal set. A linear equation gives the restricted bba.

Trying to restrict the focal set to a number of respresentative elements
leads to a NP-Complete problem. We adapt the k-mean algorithm to build
a heuristical solution. It is more expensive, but it does not need to define a
priori a focal set, and can adapt to more situations.
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Random Generation of Mass Functions: A Short
Howto

Thomas Burger and Sébastien Destercke

Abstract. As Dempster-Shafer theory spreads in different applications fields
involving complex systems, the need for algorithms randomly generating mass func-
tions arises. As such random generation is often perceived as secondary, most pro-
posed algorithms use procedures whose sample statistical properties are difficult
to characterize. Thus, although they produce randomly generated mass functions,
it is difficult to control the sample statistical laws. In this paper, we briefly review
classical algorithms, explaining why their statistical properties are hard to character-
ize, and then provide simple procedures to perform efficient and controlled random
generation.

1 Introduction

In this paper, we concentrate on the question of simulating and sampling belief
functions, or equivalently mass distributions, which are the central elements of
Dempster-Shafer theory [1, 2]:

Let Ω be a finite space, P(Ω) its power set, and let m be a mass function on Ω,
i.e. an application from P(Ω) �→ [0, 1] such that

∑
A∈P(Ω)m(A) = 1. Let MΩ be

the set of mass functions defined on Ω. Classically, mass functions are distinguished
according to their support Fm, i.e., the set of all its focal elements. A focal element
is a subset A ⊆ Ω such that m(A) > 0.

Although it is often overlooked (for the reason that the theory has to face many
other algorithmic issues), the problem of random generation of mass functions is
useful and necessary in many problems: First, mass functions are complex un-
certainty representations often summarized by some descriptors (information mea-
sures [3], distances [4], conflict, . . . ) in practical methods, and the efficiency of these
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descriptors has to be evaluated from a statistical point of view (see, e.g. [4]). Second,
simulations can be helpful to test some conjectures prior to demonstrating it. Third,
simulation and sampling are useful tools to produce data sets to test and calibrate
data fusion methods or learning algorithms [5, 6].

The problem of simulating mass functions is equivalent to randomly sampling
elements out of MΩ, according to a particular distribution D. In theory, D could
be any distribution, but in practice such generality is seldom required. Three main
situations occur:

1. the behavior of some descriptor over MΩ has to be tested. In this case, it is
necessary to perform a uniform sampling over all MΩ;

2. mass functions are assumed to be restricted to some specific form, i.e. an expert
providing consonant mass functions, a classifier providing simple mass assign-
ments such as 2-additive, etc. In this case, the restriction describes a subregion
S of MΩ , and it is necessary to sample uniformly from S.

3. mass functions can be general (belong toMΩ) but should follow some tendency
while still being pervaded with some randomness. This can happen, for instance,
when one wants to simulate a training set of data with uncertain labels from a
training set with known labels. In such a case, sampling procedure should (on
the long run) give higher masses to sets containing the true label but still allow
wrong masses to be sampled with lower probability.

From a mathematical point of view, the first case is the simplest, and the two others
are generalizations of the first (the second requires a selection of focal elements and
the third requires the definition of D). Note that depending on S, the second may
be rather complicated, and so is the combination of the second and third cases (non-
uniform sampling on arbitrary domain). Thus, in this paper, we completely deal with
the first and third cases, while only giving clues for the more complex simulation
problems. The paper is organized as follow: Section 2 is a state of the art, where one
recalls the main method used to sample mass functions and where one explains why
its statistical properties are hard to characterize. Section 3 details the mathematical
framework needed to develop a more controllable algorithm. Finally, in Section 4
we derive algorithms for the various cases stated above.

2 State of the Art

In practice, the most used (see e.g. [7]) algorithm is based on the following intuitive
procedure (see Algorithm 1): (1) select a set of N elements of P(Ω) (possibly the
entire power set, i.e., N = |P(Ω)|) to form Fm, (2) uniformly and independently
sample N values in [0, 1] corresponding to the N focal elements, and (3) perform
a normalization enforcing the constraint

∑
A∈P(Ω) m(A) = 1. Usually, the binary

representation is used to order elements of P(Ω) and sampling of subsets consists
in drawing a number between 0 and 2|Ω| − 1 and associate to it the subset corre-
sponding to its binary conversion.

The main problem with Algorithm 1 is that the distribution D it generates on
MΩ is difficult to characterize1. At first sight, one may think that it generates a

1 This is also the case in [6], even if the author does not aim to control the distributions.
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Algorithm 1: A classical algorithm to randomly generate a mass function.
Input: frame Ω, number of focal elements N
Output: random mass function m

1 P ← generatePowerSetof(Ω);
2 F ← getFocalElements(N , P);
3 foreach 1 ≤ i ≤ N do
4 mi ← randomlySample(U([0, 1]));
5 foreach 1 ≤ i ≤ N do
6 m(Fi) ← mi/

∑N
k=1 mk;

uniform distribution, however this is not what happens. The reason is that although
(at Line 5) values are independently sampled from U([0, 1]) (i.e. the uniform law on
[0, 1]), they are normalized afterward (Line 6). Since the normalization of each value
involves all the other values, they are not realizations of i.i.d. random variables.
Thus, if uniform sampling is sought, other algorithms are required. These latter
are based on well-known probability distributions which are presented in the next
section.

3 Mathematical Tools

In this section, we recall the mathematics behind the algorithms: we briefly
explain the correspondence between mass functions and categorical distributions
(Section 3.1), which are well-known in Bayesian statistics. Then (Section 3.2), we
recall that Dirichlet distributions can be used to sample categorical distributions
(hence mass functions in MΩ). Finally, we use the relation between Dirichlet and
gamma distributions to build efficient algorithms (Section 3.3).

3.1 The Categorical Family and MΩ

The k-way categorical distribution is just a (discrete) probability distribution de-
fined on k exhaustive and exclusive outcomesOk = {O1, . . . Ok}with probabilities
p1, . . . , pk, the well-known Bernouilli distribution corresponding to k = 2. As well
as the binomial distribution is the probability of the number of successes among
n Bernouilli trials, the multinomial distribution is the probability distribution that
describes the repartition amongst categories O1, . . . Ok of n categorical trials.

A categorical distribution is defined by the probabilities pi = P(X = Oi), i =
1, . . . , k, with

∑k
i=1 pi = 1 and pi ≥ 0. This means the vector (p1, . . . , pk) is in

the (k − 1)-dimensional simplex, denoted Ck and called here the k-way categorical
family. Clearly, the probabilities pi can act as masses given to focal elements, as
illustrates the example.

Example 1. Consider Ω = {ω1, ω2, ω3}, and a mass function m ∈ MΩ such that
m({ω1}) = 0.2, m({ω2}) = 0.3 and m({ω1, ω3}) = 0.5. The vector modelling
m ∈ MΩ is {0, 0.2, 0.3, 0, 0, 0.5, 0, 0}. It is equivalent to the 8-way categorical
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distribution defined on O8 and formalized as a vector (p1, . . . , p8) such that
outcome O2, O3 and O6 have probabilities of 0.2, 0.3 and 0.5 of happening,
respectively.

Theorem 1. MΩ is isomorphic to C(2|Ω|).

Proof (sketch). There are two ways to show this simple theorem, each shedding
different light on the related problem.

In the first demonstration, let us simply show that the elements of MΩ and the
elements of C(2|Ω|) are in one to one correspondence. A compact notation for a mass
function m on Ω is the binary ordered list {p1, . . . , p2|Ω|} of 2|Ω| values such that
the jth value pj is m(Aj), where Aj has j for binary representation. Moreover,

as m(A2|Ω|) = 1 − ∑2|Ω|−1
�=1 m(A�), any mass function m is uniquely identified

by {p1, . . . , p2|Ω|−1}, which uniquely defines a (2|Ω|)-way categorical distribution.
Conversely, any (2|Ω|)-way categorical distribution can be seen as a mass function,
hence MΩ is isomorphic to C|P(Ω)| = C(2|Ω|).

The second demonstration relies on more geometric arguments: C(2|Ω|) is known

to be the standard 2|Ω|−1 simplex, while Cuzzolin [8] established in his geometrical
interpretation of Dempster-Shafer theory that MΩ is also the standard 2|Ω| − 1
simplex. �
Thus sampling uniformly a mass function m out of MΩ is equivalent to uniformly
sampling (2|Ω|)-way categorical distributions out of C(2|Ω|). This is particularly use-
ful, as the distribution of categorical distributions over C(2|Ω|) is the well-known
Dirichlet distribution.

3.2 The Dirichlet Distribution

The Dirichlet lawDir(π1, . . . , πk) of order k ≥ 2with parametersπ = (π1, . . . , πk)
∈ [0, 1]k describes a random variable over Ck that has the following probability
density function

x → fDir(x;π) =
Γ (π0)∏k
i=1 Γ (πi)

k−1∏
i=1

xπi−1
i

where x = {x1, . . . , xk} ∈ Ck with xk = 1 − ∑k−1
i=1 xi, π0 =

∑k
i=1 πi and Γ

is the gamma function. fDir is the conjugate prior of the categorical distributions,
as it is a probability density over all the k-way categorical distributions. Hence,
a trial according to the Dirichlet distribution results in a k-way categorical dis-
tribution that can then be translated in a mass function (Theorem 1). Parameters
π = (π1, . . . , πk) ∈ [0, 1]k of the distribution determine the behavior of the proba-
bility density function over Ck, that will govern sampling behavior.

Property 1. Let X be a random vector following a Dirichlet distribution of parame-
ter π = (π1, . . . , πk) ∈ [0, 1]k (or, X ∼ Dir(π1, . . . , πk) for short). We have:

E[X ] =

(
π1

π0
, · · · , πi

π0
, · · · , πk

π0

)
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In other words, the expected mass of the ith focal element, with mass sampled ac-
cording to a Dirichlet distribution of parameters π = (π1, . . . , π2|Ω|) ∈ [0, 1]2

|Ω|

will be πi/
∑2|Ω|

j=1 πj . This property is useful to set the long-run behaviour of simulated
masses. Similarly, if m is sampled uniformly from MΩ , then every focal element
of m should have the same expected mass. Indeed, we have a stronger result:

Property 2. If π = 1k (i.e. πi = 1 ∀i), the Dirichlet distribution corresponds to the
uniform distribution on Ck
This property leads us to the following theorem (direct from Th. 1 and above prop.),
which defines the uniform probability on the set of mass functions:

Theorem 2. The uniform distribution on MΩ is given by the Dirichlet distribution
of order 2|Ω| and of parameters πi = 1 ∀i ∈ (1, . . . , 2|Ω|).

3.3 Links with the Gamma Distribution

From a theoretical point of view, we now know how to uniformly generate mass
functions. However dealing directly with Dirichlet law is not practical. To solve
this, we can use the link between the Dirichlet and the gamma distributions.

The gamma distribution G(α, β) with shape parameter α ∈ R∗
+ and scale param-

eter β ∈ R∗
+ has the following probability density function over R:

x → fG(x;α, β) =
βα

Γ (α)
xα−1e−βx

Recall that the gamma distribution can be seen as a generalized exponential distri-
bution, as G(α = 1, β) = Exp(β). The link between the gamma and the Dirichlet
distributions is given by the following property:

Property 3. Let X1, . . . , Xk be k independent random variables such that Xi ∼
G(α = πi, β). The random vector Y = ( X1∑

k
j=1 Xj

, . . . , Xi∑
k
j=1 Xj

, . . . , Xk∑
k
j=1 Xj

) fol-

lows a Dirichlet law of parameters (π1, . . . , πk).

This means that to generate a Dirichlet distribution, we can use independent re-
alizations of gamma distributions with identical scale parameter.

4 Algorithms

4.1 Uniform and Non-uniform Sampling on MΩ

We can now use the tools of Section 3 to study the sampling of mass functions with
a statistically known distribution. As generating mass functions on MΩ involves
all focal elements, it comes down to sample Dirichlet laws on C|P(Ω)|. Algorithm 2
summarizes how to achieve this. We notice two main differences with Algorithm 1:
First, no selection of focal elements is performed, as the entire set MΩ is consid-
ered. Second, gamma distributions are used instead of uniform ones. Note that most
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Algorithm 2: Algorithm to sample from MΩ .
Input: frame Ω, parameter π = (π1, . . . , π2|Ω| )
Output: random mass function m

1 P ← generatePowerSetof(Ω);
2 foreach 1 ≤ i ≤ |P| do
3 mi ← randomlySample(G(πi, 1));

4 foreach 1 ≤ i ≤ |P| do
5 m(Pi) ← mi/∑|P|

k=1
mk;

coding language have native functions allowing for such sampling: For instance,
with R language, one writes > rgamma(k, shape = 1, scale = pi_i).

Uniform sampling is achieved by choosing πi = 1 for i = 1, . . . , |P(Ω)|, or
alternatively by generating i.i.d. realizations of exponential law Exp(β = 1), as
G(1, 1) = Exp(β = 1). Figures 1 illustrates mass distributions obtained by Algo-
rithm 1 and 2 for |Ω| = 2 and 5, respectively. The difference is obvious, and the
uniformity of Algorithm 2 can be checked in the case |Ω| = 2, as we obtain the
2-dimensional simplex (i.e. a triangle with a straight angle, [8]).

Non-uniform sampling is achieved by choosing the parameters πi proportionally
to the "average" mass focal element Pi (Pi being the subset with binary encoding i)
should receive, and by sampling i.i.d. realizations of G(1, πi) distributions. For in-
stance, to induce noisy mass functions around a true known value ωj , the parameter
πi for all subsets such that ωj ∈ Pi should be higher than the ones of other subsets.

4.2 Uniform Sampling on Sub-Domains of MΩ

In many situations, mass functions to be sampled have a particular structure of sup-
port (consonant, k-additive, simple support, etc.), and thus live in a subregion S of
MΩ . In the case where S is a single determined hyperface of MΩ (i.e. a simplex),
this is not really difficult, even in case of non-uniform sampling (simply apply Al-
gorithm 2 on the adapted simplex). However, if S is a randomly chosen sub-simplex
or a collection of hyperfaces, non-uniform sampling may be very complicated, even
impossible (how to define a distribution on the focal elements if these latter are
not specified yet?). Worst, if the domain is completely arbitrary, even uniform sam-
pling may be rather tricky. Thus we focus on uniform sampling on domains of MΩ

which correspond to well-known particular mass functions: consonant, consistant,
k-additive, k-intolerant, simple support, categorical, or with restrictions on the car-
dinality of the focal elements.

In this case, and if, in addition, the number N ≤ 2Ω of focal elements is fixed,
the characterization of S comes down to the characterization of F, the set of all the
possible supports in S: F = {Fm ⊂ P(Ω)/m ∈ S, |Fm| = N}. At this point,
there are two strategies. First, if F can be automatically enumerated, it is possible
to sample uniformly F, and then, to perform N i.i.d. Exp(1) trials. If F can not be
explained, it is always possible to apply the Acceptance-Rejection method, which
is based on the following idea: Repeat uniform samples on {Fm ⊂ P(Ω)}, until a
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Simulations with Algorithm 2

Simulations with Algorithm 1

Fig. 1 Uniform sampling, illustration

Algorithm 3: Algorithm to sample on subspaces.
Input: frame Ω, number of focal elements N , constraints defining S
Output: random mass function m from S

1 if S enumerated then
2 F ← randomlySample(U(S))
3 else
4 P ← generatePowerSetof(Ω);
5 while F �∈ S do
6 F ← getFocalElements(N , P)

7 foreach 1 ≤ i ≤ N do
8 mj ← randomlySample(Exp(1));
9 foreach 1 ≤ i ≤ N do

10 m(Fi) = mi/
∑N

k=1 mk;
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support in F is found. The sampling law of such an algorithm is proved to correspond
to U(F). This couple of strategies are implemented in Algorithm 3, which allows
random generation of most types of particular mass functions, while autorizing to
select the number of focal elements.

5 Conclusion

In this article, we have presented mathematical and algorithmic tools to randomly
generate mass functions with controlled statistical distributions. Further works
should study various strategies for specific mass functions, with an objective of effi-
ciency from a computational point of view. For instance, the Acceptance-Rejection
method may be non optimal, as potential many rejects occur before the acceptance.
In addition, we look forward to studying non-uniform sampling on such specific
mass fucntions.
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Revisiting the Notion of Conflicting Belief
Functions

Sébastien Destercke and Thomas Burger

Abstract. The problem of conflict measurement between information sources knows
a regain of interest. In most works related to this issue, Dempter’s rule plays a cen-
tral role. In this paper, we propose to revisit conflict from a different perspective.
We do not make a priori assumption about dependencies and start from the defini-
tion of conflicting sets, studying its possible extensions to the framework of belief
functions.

Keywords: Consistency, Fusion, Contour Function, Dependence.

1 Introduction

In this paper, we revisit the notion of conflict and its quantification in Dempster-
Shafer theory (DST), in which it plays an essential role. In particular, its uses in
merging rules is the matter of lively debates [1]. Recently, some researchers have
questioned the validity of the usual conflict measure (i.e., the mass attributed to the
empty set after combination) [2,3]. To solve the issue, they have mostly proposed to
complement the usual measure with others. In this work, we take a rather different
approach. Two main ideas have motivated this study:

1. First, the idea that conflict between belief functions should be an extension of
conflict between sets: when belief functions reduce to sets, the conflict measure
should be a binary value that is maximum in case of disjoint sets, minimum
otherwise.

2. Second, the idea that conflict between sources should not a priori depend on
a specific independence assumption between the sources. This is coherent with
the least commitment principle.
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After recalling some basics (Section 2), Section 3 investigates how consistency de-
gree of a single mass assignment can be defined. Then, in Sections 4 and 5, we
investigate the case of conflict between sets, and the case of conflict between mass
functions. This study leads us to two different propositions of conflict measures,
whose differences are briefly discussed in Section 6.

2 Preliminaries

We assume the reader to be familiar with DST [4, 5], and we only present nota-
tions and unusual definitions. A mass assignment m over Ω is a mapping m :
℘(Ω) → [0, 1], with ℘(Ω) the power set of Ω and s.t.

∑
A∈℘(Ω) m(A) = 1.

MΩ denote the set of all mass assignments over Ω. A subset A ⊆ Ω is a fo-
cal element of m if m(A) �= 0. The set of focal elements of m is noted F . m
is normalised if m(∅) = 0. From m, in addition to the classical belief, plausi-
bility and commonality functions [4], respectively denoted Bel, Pl and Q we use
the contour function pl : Ω → [0, 1] of a mass assignment that corresponds to
its plausibility on singletons. Recall that m can be associated to a probability set
Pm := {Pr(.) | ∀A ⊆ Ω,Bel(A) ≤ Pr(A)}.

Among the existing interpretations of belief functions, we focus on Shafer’s
view [4], extensively taken over by Smets in his Transferable Belief Model [5]. In
this view,m(A) is the mass of belief exactly committed to the hypothesis {ω0 ∈ A},
whereω0 is the true value of an ill-known variableW . A difference between Shafer’s
view and the TBM is that the latter allows m(∅) �= 0. Note that in the TBM original
exposure, m(∅) is not related to conflict itself, but to the open-world assumption in
which m(∅) quantifies the belief that the true value does not lie in Ω.

A main source of conflict comes from the conjunctive combination of informa-
tion coming from not fully agreeing sources. The most classical conjunctive combi-
nation is the conjunctive rule [5], or Dempster’s [6] unnormalised rule, that assumes
that the sources of information are independent. In this paper, we consider a more
general framework [7] where other dependency structures are considered. Given
two mass assignments m1 and m2 defined on Ω, we consider that a conjunctive
combination is achieved in two steps:

1. A joint mass assignment m : ℘(Ω)× ℘(Ω) → [0, 1] is built s.t.∑
B⊆Ω

m(A×B) = m1(A) ;
∑
A⊆Ω

m(A×B) = m2(B) ∀A,B ∈ ℘(Ω). (1)

2. A mass m∩ : ℘(Ω)→ [0, 1] such that m∩(C) =
∑

A∩B=C m(A×B).

The joint mass m encodes the dependence structure between the two sources
m1,m2. The conjunctive rule, whose result is denoted m⊕, corresponds to choose
m(A×B) = m1(A)m2(B) in step 1. We denote byM12 the set of all mass m∩ ob-
tainable by a conjunctive combination ofm1 andm2. Note that all mass assignments
in M12 are specialisations of both m1 and m2. Recall that a mass m with F =
{E1, . . . , Eq} is a specialisation of m′ with F ′ = {E′

1, . . . , E
′
p} if and only if there

exists a non-negative matrix G = [gij ] such that for j = 1, . . . , p,
∑q

i=1 gij =
1, gij > 0 ⇒ Ei ⊆ E′

j , and for i = 1, . . . , q,
∑p

j=1 m
′(E′

j)gij = m(Ei), where
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gij is the proportion of E′
j that "flows down" to Ei. In other words, m1 is s-included

in m2 (m1 *s m2) if the mass of any focal element Ej of m2 can be redistributed
among subsets of Ej in m1. In fact, s-inclusion is a direct extension of the relation
of inclusion between sets. As for set inclusion, s-inclusion can therefore be used
to compare informative contents, m1 *s m2 meaning that m1 is less informative
than m2.

3 Consistent Mass Assignments

We first define the notion of consistent set, before extending it to mass assignment.
When information is provided as a single set ω0 ∈ A, this information is consistent
if and only if A �= ∅. A can be seen, for instance, as the set of models of a logic base
that could be inconsistent. In this case, either a set is consistent (i.e. non-empty) or it
is not, and a degree of consistency φ can only takes two values. Moreover, it should
obey the following properties:

Property 1 (Bounded). φ should be bounded.

Property 2 (Extreme consistency). φ should be maximal iff information is totally
consistent, and minimal iff information is totally inconsistent.

For simplicity, we assume that the bounds are [0, 1]. In the case of sets, we define
the consistency degree as φ : ℘(Ω) → {0, 1} such that

φ(A) = 1 if A �= ∅, 0 otherwise (2)

which satisfies Properties 1 and 2. We now extend it to generic mass functions.
We consider first extreme cases of totally consistent and totally inconsistent mass
functions: It is natural to associate totally inconsistent information with the mass
m(∅) = 1. On the other hand, the totally consistent information on sets can be
extended in two main different ways. A first definition of consistent belief functions
(see [7, 8]) is the following:

Definition 1. A mass assignment m is said to be logically consistent if and only if⋂
E∈F E �= ∅.

That is, a (normalized) mass m whose focal elements have a non-empty intersection.
Next lemma characterizes these masses in terms of contour function.

Lemma 1.
⋂

E∈F E �= ∅ ⇔ ∃ω ∈ Ω s.t. pl(ω) = 1

m is logically consistent iff its contour function is normalized. This form of con-
sistency is in accordance with the TBM interpretation, as a source is logically con-
sistent if it considers at least one state of the world to be totally plausible. Among
logically consistent mass assignments, consonant ones play a particular role, dis-
playing an even stronger form of consistency: the intersection of any two focal sets
is still a focal set of this mass assignment (since if A ⊂ B, A ∩ B = A), which is
not the case for general logically consistent mass assignments. The next definition
provides a weaker form of consistency:
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Definition 2. A mass assignment m is said to be probabilistically consistent if and
only if m(∅) = 0.

The name probabilistic consistency comes from the fact that requiring m(∅) = 0 is
equivalent to requiring that the probability set Pm induced by m is non-empty. It is
also in accordance with logic-based interpretation of belief functions [9].

Definitions 1 and 2 each suggests a different measure of consistency. The follow-
ing measures φpl, φm from MΩ to [0, 1], such that:

φpl(m) = max
ω∈Ω

pl(ω), (3)

φm(m) = 1−m(∅) (4)

do satisfy Property 2 for totally inconsistent information and for Definitions 1 and 2
of totally consistent information, respectively. When ∃A ∈ Ω/m(A) = 1, then both
φm and φpl reduce to Eq. (2).

Although Definition 2 and Eq. (4) appear less adapted to the TBM interpretation
than Definition 1, we will see in further sections that Eq. (4) can be useful in the
TBM interpretation as well. Also, let us note that the inequality φpl ≤ φm always
holds, and φpl = φm if and only if

⋂
E∈F\∅E �= ∅. Moreover, for consonant masses

φpl, φm are the consistency degree of possibility theory [10].

4 Conflict between Sets

We can now study conflict between sources, starting with sets. Similar to possibil-
ity theory [10], we measure conflict as the inconsistency (inconsistency being the
inverse of consistency) resulting from the conjunctive merging of information. Con-
sidering two sources of information (extensionN > 2 is straightforward), we define
the conflict of sets as κ : ℘(Ω)× ℘(Ω) → {0, 1} embedding the combination step.

In the case of sources assessing that ω0 ∈ A and ω0 ∈ B, two extreme cases
may occur: they are conflicting (A ∩ B = ∅) or not (A ∩ B �= ∅). As for the
consistency measure, a (bounded) measure of conflict κ should take its maximal /
minimal values in such cases, giving

Property 3 (Extreme conflict). A conflict measure should be maximal value iff
sources are totally conflicting, and minimal iff sources are non-conflicting.

In other words, conflict κ for sets should be such that

κ(A,B) = 1− φ(A ∩B) = 1 if A ∩B = ∅, 0 otherwise (5)

Other desirable properties may be formulated by observing sets. A first property
should be symmetry, as we consider the two sources of equal importance.

Property 4 (Symmetry). A measure of conflict should be symmetric.

This translates into κ(A,B) = κ(B,A). The other properties concern the behaviour
of the measure with respect to some changes in the information.
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Property 5 (Imprecision monotonicity). A measure of conflict should be non-
increasing if a source becomes less informative.

If A ∩ B �= ∅, then considering A′ ⊇ A implies A′ ∩ B �= ∅, hence κ should not
increase. In contrast, we may have A ∩ B = ∅ but A′ ∩ B �= ∅, in which case κ
should decrease. This translates by the constraint κ(A′, B) ≤ κ(A,B).

Property 6 (Ignorance is bliss). A measure of conflict should be insensitive to com-
bination with ignorance.

If B = Ω, then A ∩ B �= ∅ unless A = ∅, and a state of ignorance should not
conflict with any information, unless the latter is inconsistent. This translates by the
constraint κ(A,Ω) = 1− φ(A).

5 Conflict between Mass Assignments

In the case of mass assignments m1,m2, the conjunctive combination is no longer
unique (Eq. (1)), unless a specific (in)dependence structure is given. In our opinion,
conflict measurement should reflect our knowledge of dependence. In particular,
m⊕ should not be used to measure conflict, unless independence assumption be-
tween sources holds. This results in the following property.

Property 7 (Independence to dependence). A conflict measure should not depend
on a dependence assumption not supported by evidence.

5.1 Characterising Total Conflict and Conflict Absence

It is natural to say that two sources are totally conflicting if none of their focal
elements intersect (i.e., only ∅ can have positive mass after merging). Let Di =
∪A∈FiA, then

Definition 3. m1 and m2 are totally conflicting when D1 ∩D2 = ∅.

If m1(A) = 1 and m2(B) = 1, we retrieve the set definition. To extend the notion
of non-conflicting sets, we see two main ways fitting the TBM interpretation, given
here from the most to the least constraining.

Definition 4. m1,m2 are strongly non-conflicting iff
⋂

A∈Fm1∪Fm2
A �= ∅.

Definition 5. m1,m2 are non-conflicting iff ∀(A,B) such that A ∈ Fm1 , B ∈
Fm2 , we have A ∩B �= ∅.

Definition 4 requires all focal elements to have a non-empty intersection, and is
stronger than requiring that all pairs of focal elements from m1 and m2 have a non-
empty intersection (Definition 5). Ifm1(A) = 1 andm2(B) = 1, the two definitions
reduce to non-empty intersecting sets. The next proposition shows that strongly non-
conflicting masses are related to plausibility measures, hence to consistency given
by Eq. (3).
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Proposition 1.
⋂

A∈{Fm1∪Fm2}A �=∅ iff ∀m∩ ∈M12, ∃ω ∈ Ω s.t. plm∩(ω) = 1

This suggests to use the contour function to evaluate the conflict when conflict ab-
sence corresponds to Definition 4 (Strong non-conflict). Proposition 1 says that two
sources are strongly non-conflicting iff there is at least one state of the world ω that
they both consider "normal" or totally plausible. This is in agreement with the TBM
interpretation and similar to Daniel [3] proposal. Definition 5, on the other hand, is
related to the consistency measure given by Eq. (4) and we have

Proposition 2. A ∩B �= ∅ ∀A ∈ Fm1 , ∀B ∈ Fm2 iff m∩(∅) = 0 ∀m∩ ∈M12

This suggests to use m∩(∅) to measure conflict under Definition 5 (Non-conflict).
It is by far the most common value used to estimate conflict between information
sources in Dempster-Shafer theory.

5.2 Measuring Conflict between Mass Assignments

We now propose different measure of conflicts corresponding to each notion of con-
flict absence, some of them being imprecise (reflecting a possible lack of knowledge
about source dependencies). First, we reformulate some properties of conflict mea-
surement κ in the vocabulary of mass assignments:

• Prop. 3 (Extreme conflict): κ(m1,m2) = 0 if and only if m1 and m2 are non-
conflicting (according to the considered definition);

• Prop. 4 (Symmetry): κ(m1,m2) = κ(m2,m1);
• Prop. 5 (Imprecision monotonicity): if m1 �s m′

1, then κ(m′
1,m2) ≤

κ(m1,m2);
• Prop. 6 (Ignorance is bliss): if m2(Ω) = 1, then κ(m1,m2) = 1− φ(m1);

Measures for strong non-conflict: Given Proposition 1, it is natural to use φpl

(Eq. (3)) to measure conflict from strong non-conflict. We propose to distinguish
three cases:

• the case where dependence is unknown, and where one accepts imprecise con-
flict. In this case, if I([0, 1]) denote intervals of [0, 1], the measure of conflict is
an application κ1

pl :MΩ ×MΩ → I([0, 1]) such that

κ1
pl(m1,m2) = [ min

m∩∈M12

1− φpl(m∩), max
m∩∈M12

1− φpl(m∩)] (6)

= [ min
m∩∈M12

1−max
ω∈Ω

pl∩(ω), max
m∩∈M12

1−max
ω∈Ω

pl∩(ω)];

• the case where dependence is unknown, but the least commitment principle is
followed to get a unique conflict value. In this case, we propose to select the
minimal conflicting situation and κ2

pl :MΩ ×MΩ → [0, 1] is such that

κ2
pl(m1,m2) = min

m∩∈M12

1− φpl(m∩) = min
m∩∈M12

1−max
ω∈Ω

pl∩(ω) (7)

• the case where dependence is known (i.e., a joint mass m is specified) and where
the result of conjunction is a single m∩: We propose to simply use
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κ3
pl(m1,m2) = 1− φpl(m∩) = 1−max

ω∈Ω
pl∩(ω) (8)

They all satisfy properties 3- 6, and can deal with unknown dependence. Note that
both κ3

pl and κ2
pl are straightforward to compute (the latter using results from [7]),

and only the upper bound of κ1
pl requires the use of linear programming techniques.

Measures for non-conflict: As Proposition 2 is linked to Definition 2, we use
φm (Eq.(4)) to derive three measures under non-conflict:

κ1
m(m1,m2) = [ min

m∩∈M12

1− φm(m∩), max
m∩∈M12

1− φm(m∩)] (9)

κ2
m(m1,m2) = min

m∩∈M12

1− φm(m∩) = min
m∩∈M12

m∩(∅) (10)

κ3
m(m1,m2) = 1− φm(m∩) = m∩(∅) (11)

κ1
m(m1,m2), κ2

m(m1,m2) corresponding to unknown dependence (without and
with least commitment principle, respectively) and κ3

m(m1,m2) corresponding to
known dependence. They all satisfy properties 3- 6 and can deal with unknown
dependence. Classical conflict measure m⊕(∅) is captured by κ3

m(m1,m2) when
independence between sources can be assumed. Computing the two bounds of κ1

m

require the use of linear programs, while κ3
m remains straightforward to evaluate.

6 Short Exemplified Discussion

Let us take two different examples, showing that the proposed measures of conflict
behave differently, and each have their own interest.

First, let us consider m1,m2 on Ω = {ω1, ω2, ω3} such that m1({ω1, ω2}) =
0.6, m1({ω1, ω3}) = 0.4 and m2({ω2, ω3}) = 0.5, m2(Ω) = 0.5. Both are logi-
cally and probabilistically consistent, and we have κ1

pl(m1,m2) = [0.4, 0.4] = 0.4

while κ1
m(m1,m2) = [0, 0] = 0. According to the measure based on the contour

functions, there is some conflict, whereas according to the one based on m(∅) there
is not. While each source is consistent, they disagree on which state of the world is
the most plausible (ω1 for m1 and ω2 or ω3 for m2). Hence, in some sense (mean-
ingful in a TBM interpretation), the two sources can be considered as conflicting.
Clearly, only the measure based on contour functions is able to detect it.

As a second example, consider two identical masses on Ω = {ω1, ω2} such that
m1({ω1}) = m2({ω1}) = 0.5 and m1({ω2}) = m2({ω1}) = 0.5. First, note that
φpl(mi) = 0.5 for i = 1, 2, a rather low score indicating some internal inconsis-
tency for each source. Also, the conflict measures are κ1

pl(m1,m2) = [0.5, 1] and
κ1
m(m1,m2) = [0, 1]. The highest and lowest conflict value being obtained for the

combination m(ω1 × ω2) = 0.5 and m(ω2 × ω1) = 0.5 and for the combination
m(ω1×ω1) = 0.5 and m(ω2×ω2) = 0.5 (idempotent merging), respectively. Note
that every possible dependency between these extremes may be considered. This ex-
ample shows that some conflict is generated from the combination, but that contour-
function based measures tend to mix it with some initial inconsistency, while κm

does detect that sources can totally agree in case of dependence. Hence, contrar-
ily to the first example, here, measures based on m(∅) provide some interesting
information which are not captured by measures based on contour functions. This
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short discussion shows that the measures have different behaviors, and that an ex-
tended discussion would be interesting. A first quick conclusion is that m(∅) based
measures identify conflict arising from combination only, while contour-function
based measures also capture some internal inconsistency. Hence, m(∅) seems better
fitted to measure conflict between sources.

7 Conclusion

We have considered conflict as the inconsistency resulting from conjunctive com-
bination. Starting from sets, we have derived a number of results regarding consis-
tency and conflict on mass assignments. Then, we have proposed several conflict
measurements not relying on Dempster’s rule and able to cope with unknown (or
partially known) dependencies. Our findings show that using the contour function
may be a better conflict measure within the TBM interpretation, but that using m(∅)
may be useful to characterise conflict between mass assignments.

The next step is to relate this study with other works. For instance, how it can be
used to differentiate between internal and external conflict [3]. Our approach should
also be compared to conflict measurements based on distances [2, 11], however we
can already notice that dissimilarities based on distances do not generally satisfied
the properties required here (e.g., Prop. 3 and 5), hence the two approaches are likely
to give different conclusions in some cases.
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About Conflict in the Theory of Belief Functions

Arnaud Martin

Abstract. In the theory of belief functions, the conflict is an important concept.
Indeed, combining several imperfect experts or sources allows conflict. However,
the mass appearing on the empty set during the conjunctive combination rule
is generally considered as conflict, but that is not really a conflict. Some mea-
sures of conflict have been proposed, we recall some of them and we show some
counter-intuitive examples with these measures. Therefore we define a conflict
measure based on expected properties. This conflict measure is build from the
distance-based conflict measure weighted by a degree of inclusion introduced in this
paper.

1 Introduction

The theory of belief functions was first introduced by [2] in order to represent some
imprecise probabilities with upper and lower probabilities. Then [13] proposed a
mathematical theory of evidence with is now widely used for information fusion.
Combining imperfect sources of information leads inevitably to conflict. One can
consider that the conflict comes from the non-reliability of the sources or the sources
do not give information on the same observation. In this last case, one must not
combine them.

Let Θ = {θ1, . . . ,θn} be a frame of discernment of exclusive and exhaustive hy-
pothesis. A mass function m is the mapping from elements of the power set 2Θ onto
[0,1] such that:

∑
X∈2Θ

m(X) = 1. (1)
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A focal element X is an element of 2Θ such that m(X) �= 0. If the focal elements
are nested, the mass functions is consonant. Constraining m( /0) = 0 corresponds to
a closed-world assumption [13], while allowing m( /0) ≥ 0 corresponds to an open
world assumption [15]. Smets interprets this mass on the empty set such as an non-
expected hypothesis and normalizes it in the pignistic probability defined for all
X ∈ 2Θ , with X �= /0 by:

BetP(X) = ∑
Y∈2Θ ,Y �= /0

|X ∩Y |
|Y |

m(Y )
1−m( /0)

. (2)

The first combination rule has been proposed by Dempster [2] and is defined for
two mass functions m1 and m2, for all X ∈ 2Θ , with X �= /0 by:

mDS(X) =
1

1− k ∑
A∩B=X

m1(A)m2(B), (3)

where k = ∑
A∩B= /0

m1(A)m2(B) is the inconsistence of the combination and generally

called conflict. We call it here the global conflict.
To stay in an open world, Smets [15] proposes the non-normalized conjunctive

rule given for two mass functions m1 and m2 and for all X ∈ 2Θ by:

mConj(X) = ∑
A∩B=X

m1(A)m2(B) := (m1 ∩©m2)(X). (4)

These both rules allow to reduce the imprecision of the focal elements and to in-
crease the belief on concordant elements. The main assumptions to apply these rules
are the cognitive independence and the reliability of the sources.

Based on the results of these rules, the problem enlightened by the famous
Zadeh’s example [20] is the repartition of the global conflict. Indeed, consider
Θ = {θ1,θ2,θ3} and two experts opinions given by m1(θ1) = 0.9, m1(θ3) = 0.1,
and m2(θ2) = 0.9, m1(θ3) = 0.1, the mass function resulting in the combination
using Dempster’s rule is m(θ3) = 1 and using conjunctive rule is m( /0) = 0.99,
m(θ3) = 0.01. Therefore, several combination rules have been proposed to manage
this global conflict [16, 9].

As observed in [8, 10], the weight of conflict given by k = mConj( /0) is not a con-
flict measure between the mass functions. Indeed, the conjunctive-based rules are
not idempotent (as the majority of the rules defined to manage the global conflict):
the combination of identical mass functions leads generally to a positive value of k.
Hence, new kind of conflict measures are defined in [10].

In the following section 2, we recall the different measures of conflict in the
theory of belief functions. Then, on the bases of wanted properties we propose a
new conflict measure based on a degree of inclusion that we define in section 3. The
last section 4 presents the interest of the proposed conflict measures on numerical
example and gives uses of this measure.
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2 Conflict Measures

First of all, we should not mix up conflict measure and contradiction measure. The
measures defined by [7, 17] are not conflict measures, but some discord and speci-
ficity measures (to take the terms of [6]) we call contradiction measures. We define
the contradiction and conflict measures by the following definitions:

Definition A contradiction in the theory of belief functions quantifies how a mass
function contradicts itself.

Definition (C1) The conflict in the theory of belief functions can be defined by
the contradiction between two or more mass functions.

Therefore, is the mass on the empty set or the functions of this mass (such as
− ln(1−mConj( /0)) proposed by [13]) a conflict measure? It seems obvious that the
property of the non-idempotence is a problem to use this as a conflict measure.
However, if we define a conflict measure such as Conf(m1,m2) = mConj( /0), we note
that Conf(m1,mΘ ) = 0 where mΘ (Θ) = 1 is the ignorance. Indeed, the ignorance is
the neutral element for the conjunctive combination rule. This propertiy seems to be
reached by a conflict measure.

Other conflict measures have been defined. In [5], a conflict measure is given by:

Conf(m1,m2) = 1− plT1 .pl2
‖pl1‖‖pl2‖

(5)

where pl is the plausivity function and plT1 .pl2 the vector product in 2n space of both
plausibility functions. However, generally Conf(m1,mΘ ) �= 0, that seems couter-
intuitive.

Auto-conflict

Introduced by [11], the auto-conflict of order s for one expert is given by:

as =

(
s∩©

i=1
m

)
( /0). (6)

where ∩© is the conjunctive operator of Equation (4). The following property holds:
as ≤ as+1, meaning that due to the non-indempotence of ∩©, the more m is combined
with itself the nearer to 1 k is, and so in a general case, the more the number of
experts is high the nearer to 1 k is. The behavior of the auto-conflict was studied
in [10] and show that we should take into account the auto-conflict in the global
conflict in order to really define a conflict. In [19], the auto-conflict was defined and
called the plausibility of the belief structure with itself. The auto-conflict is a kind of
measure of the contradiction, but depends on the order. A measure of contradiction
independent on the order has been defined in [14].

Conflict Measure Based on a Distance

The definition of the conflict (C1) involves firstly to measure it on the bba’s space
and secondly that if the opinions of two experts are far from each other, we consider
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that they are in conflict. That suggests a notion of distance. That is the reason why
in [10], we give a definition of the measure of conflict between experts assertions
through a distance between their respective bba’s. The conflict measure between 2
experts is defined by:

Conf(1,2) = d(m1,m2). (7)

We defined the conflict measure between one expert i and the other M − 1
experts by:

Conf(i,E ) =
1

M− 1

M

∑
j=1,i�= j

Conf(i, j), (8)

where E = {1, . . . ,M} is the set of experts in conflict with i. Another definition is
given by:

Conf(i,M) = d(mi,mM), (9)

where mM is the bba of the artificial expert representing the combined opinions of
all the experts in E except i.

We use the distance defined in [3], which is for us the most appropriate. See
[4] for a comparison of distances in the theory of belief functions. This distance is
defined for two basic belief assignments m1 and m2 on 2Θ by:

d(m1,m2) =

√
1
2
(m1−m2)T D(m1−m2), (10)

where D is an 2|Θ | × 2|Θ | matrix based on Jaccard distance whose elements are:

D(A,B) =

⎧⎪⎪⎨⎪⎪⎩
1, ifA = B = /0,

|A∩B|
|A∪B| , ∀A,B ∈ 2Θ .

(11)

This measure is called a total conflict measure. An interesting property of the total
conflict is given by Conf(m,m) = 0. That means that there is no conflict between
a source and itself (that is not a contradiction). However, we generally do not have
Conf(m,mΘ ) = 0, where mΘ (Θ) = 1 is the ignorance.

3 Towards Efficient Conflict Measures

We have seen that we cannot use the mass on the empty set as a conflict measure
because of the non-idempotence of the conjunctive rule. We also have seen that the
conflict measure based on the distance is not null in general for the ignorance mass.
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The conjunctive rule does not transfer mass on the empty set if the mass functions
are included.

Definition We say that the mass function m1 is included in m2 if all the focal
elements of m1 are included in all focal elements of m2. We note this inclusion by
m1 ⊆ m2. The mass functions are included if m1 is included in m2 or m2 is included
in m1.

Therefore these two conflict measures have not an intuitive and expected
behavior. Hereafter, we define a new conflict measure having expected properties
presented in the following axioms.

Axioms

Let note Conf(m1,m2) a conflict measure between the mass functions m1 and m2.
We present hereafter essential properties that must verify a conflict measure.

1. Non-negativity: Conf(m1,m2)≥ 0
A negative conflict does not make sens. This axiom is for us necessary.

2. Identity: Conf(m1,m1) = 0
Two equal mass functions are not in conflict. This property is not reached by the
global conflict, but seems natural.

3. Symmetry: Conf(m1,m2) = Conf(m2,m1)
The conflict measure must be symmetric. We do not see any case where the non-
symmetry can make sens.

4. Normalization: 0 ≤ Conf(m1,m2)≤ 1
This axiom is may be not necessary to define a conflict measure, but the normal-
ization is very useful in many applications of conflict measure.

5. Inclusion: Conf(m1,m2) = 0, iif m1 ⊆ m2 or m2 ⊆ m1

This axiom means if the focal elements of two mass functions are not conflicting
(the intersection is never empty), the mass functions are not in conflict and the
mass functions cannot be in conflict if they are included. This property is not
reached by a distance based conflict measure.

If a conflict measure verifies these axioms that is not necessary a distance. Indeed,
we only impose the identity and not the definiteness (Conf(m1,m2)= 0⇔m1 =m2).
The axiom of inclusion is less restrictive and make more sens for a
conflict measure. Moreover, we do not impose the triangle inequality
(Conf(m1,m2) ≤ Conf(m1,m3) + Conf(m3,m2)). It can be interesting to have
Conf(m1,m2) ≥ Conf(m1,m3) + Conf(m3,m2) meaning that an expert given the
mass function m3 can reduce the conflict. He reach a kind of consensus. Therefore,
a distance cannot be used directly to define a conflict measure as before.

Degree of Inclusion

We see that the axiom of inclusion seems very important to define a conflict mea-
sure. This is the reason why we define here a degree of inclusion measuring how
two mass functions are included. Let the inclusion index: Inc(X1,Y2) = 1 if X1 ⊆Y2

and 0 otherwise, where X1 and Y2 are two focal elements of m1 and m2 respectively.
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Let dinc(m1,m2) a degree of inclusion of m1 in m2. We can define it by:

dinc(m1,m2) =
1

|F1||F2| ∑
X1∈F1

∑
Y2∈F2

Inc(X1,Y2) (12)

where F1 and F2 are the set of focal elements of m1 and m2 respectively, and |F1|,
|F2| are the number of focal elements of m1 and m2.

Let δinc(m1,m2) a degree of inclusion of m1 and m2 define by:

δinc(m1,m2) = max(dinc(m1,m2),dinc(m2,m1)) (13)

This degree gives the maximum of the proportion of focal elements from one mass
function included in another one. Therefore, δinc(m1,m2) = 1 if and only if m1 and
m2 are included, and the axiom of inclusion is reached for 1− δinc(m1,m2).

A Conflict Measure

We define a conflict measure between two mass functions m1 and m2 by:

Conf(m1,m2) = (1− δinc(m1,m2))d(m1,m2) (14)

where d is the distance defined by the equation (10). All the previous axioms are
reached. Indeed the axiom of inclusion is reached by 1− δinc(m1,m2) and the dis-
tance d verify the other axioms. Moreover 0 ≤ δinc(m1,m2) ≤ 1, by the product of
1− δinc and d, all the axioms are verified.

For more than two mass functions, the conflict measure between one expert i and
the other M− 1 experts can be defined from the equations (8) or (9).

4 Illustration

Comportment of the Proposed Conflict Measure

We can first note Conf(m1,m1) = 0 and Conf(m1,mΘ ) = 0 as expected. We have
even: if m1 and m2 are included then Conf(m1,m2) = 0, because the degree of in-
clusion gives the axiom of inclusion. For example, let’s consider:

m1(θ1) = m1(θ2) = m1(θ1∪θ2) = 1/3, (15)

m2(θ1∪θ2) = m2(θ1∪θ2∪θ3) = 1/2. (16)

On this example, d(m1,m2) = 0.3727. dinc(m1,m2) = 1 and dinc(m2,m1) = 0.17,
therefore δinc(m1,m2) = 1 and Conf(m1,m2) = 0

Note we have dinc(m1,m1) = 0.56 and dinc(m2,m2) = 0.75, we only have
dinc(m,m) = 1 if m is categoric (m(X) = 1, X ∈ 2Θ ).

To illustrate the comportment of the proposed conflict measure we consider:

m3(θ3) = m3(θ1∪θ2∪θ3) = 0.5. (17)
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We have dinc(m1,m3) = dinc(m2,m3) = 0.5, but Conf(m1,m3) = 0.3815 and
Conf(m2,m3) = 0.3571. Hence, we obtain: Conf(m1,m3) ≥ Conf(m1,m2) +
Conf(m2,m3). m2 reduce the conflict between m1 and m3. If we consider two cat-
egorical mass functions such as m4(θ1) = 1, m5(θ2) = 1 we obtain the maximum
of the conflict measure: Conf(m4,m5) = 1. That means the most conflicting mass
functions are two different categorical mass functions.

On the Use of Conflict Measures

The role of conflict is essential in information fusion. Different ways can be use to
manage and reduce the conflict. The conflict can come from the low reliability of the
sources. Therefore, we can use this conflict to estimate the reliability of the sources
if we cannot learn it on databases as proposed in [10]. Hence, we reduce the conflict
before the combination, but we can also directly manage the conflict in the rule of
combination as generally made in the theory of belief functions such as explained in
[16, 9]. The proposed conflict measure could also use to define combination rules.

According to the application, we do not search always to reduce the conflict.
For example, we can use the conflict measure such as an indicator for example in
databases [1]. Conflict information can also be an interesting information in some
applications such as presented in [12].

5 Conclusion

We propose in this paper an analysis of existing conflict measure. On the base of the
drawbacks of these measures, we propose a conflict measure in order to outperform
existing ones. This measure is based on the definition of a degree of inclusion. This
degree is introduced here in order to quantify how the focal elements of two mass
functions are included together. Indeed, we can consider that two mass functions
are not in conflict if its are included. The proposed conflict measure, based on five
axioms, is then the product of this degree of inclusion and a distance between two
mass functions. We see for example this conflict measure can be use to reduce the
conflict before or in the combination or as enrichment in databases.
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The Internal Conflict of a Belief Function★ 

Johan Schubert  

Abstract. In this paper we define and derive an internal conflict of a belief function 
We decompose the belief function in question into a set of generalized simple 
support functions (GSSFs). Removing the single GSSF supporting the empty set we 
obtain the base of the belief function as the remaining GSSFs. Combining all 
GSSFs of the base set, we obtain a base belief function by definition. We define the 
conflict in Dempster’s rule of the combination of the base set as the internal conflict 
of the belief function. Previously the conflict of Dempster’s rule has been used as a 
distance measure only between consonant belief functions on a conceptual level 
modeling the disagreement between two sources. Using the internal conflict of a 
belief function we are able to extend this also to non-consonant belief functions. 

1  Introduction 

In this paper we define and derive an internal conflict of a belief function within 
Dempster-Shafer theory [1−3, 14]. We decompose the belief function in question 
into a set of generalized simple support functions (GSSFs). Removing the single 
GSSF supporting the empty set we obtain the base of the belief function as the 
remaining GSSFs. Combining all GSSFs of the base set, we obtain a base belief 
function by definition. We define the conflict in Dempster’s rule of this 
combination as the internal conflict of the belief function. We propose that the base 
belief function is a better measure than the original belief function which can be 
obtained by combining the base belief function with pure conflict, i.e., 

[ ] [ ]{ }1 1( ), , ( ),m m∅ ∅ Θ Θ . 

There are several different ways to manage a high conflict in combination of 
belief functions within Dempster-Shafer theory. For an overview of different 
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alternatives to manage the combination of conflicting belief functions, see articles 
by Smets [16] and Liu [7]. For a recent survey of alternative distance between belief 
functions, see Jousselme and Maupin [5]. 

In section 2 we review a method for decomposing a belief function into a set of 
GSSFs [15]. In section 3 we derive the base set of a belief function and construct a 
base belief function from the base set corresponding to the belief function under 
decomposition. In section 4 we derive the internal conflict of the belief function and 
show how this extends the conflict from being a distance measure only for 
consonant belief functions to a functioning distance measure also between 
non-consonant belief functions. In section 5 we provide an example. Finally, 
conclusions are drawn (section 6). 

2  Decomposing a Belief Function 

All belief functions can be decomposed into a set of GSSFs on a frame of 
discernment Θ using the method developed by Smets [15]. A GSSF is either a 
traditional simple support function (SSF) [14] or an inverse simple support function 
(ISSF) [15]. Let us begin by defining an ISSF: 

Definition 1. An inverse simple support function on a frame of discernment  is a 

function : 2 ( , )m Θ → −∞ ∞  characterized by a weight  and a focal 

element , such that ,  and  when 

{ , }X A∉ Θ . 

Let us recall the meaning of SSFs and ISSFs [15]: An SSF  

represents a state of belief that “You have some reason to believe that the actual 
world is in A (and nothing more)”. An ISSF 2 ( ) ( ,0)m A ∈ −∞  on the other hand, 

represents a state of belief that “You have some reason not to believe that the actual 
world is in A”. Note that not believing in A is different than believing in Ac. 

A simple example is one SSF 1 (A) 1/ 4m =  and 1 ( ) 3 / 4m Θ = , and one 

ISSF 2 (A) 1/ 3m = −  and 2 ( ) 4 / 3m Θ = . Combining these two functions 

yields a vacuous belief function . 

The decomposition method is performed in two steps eqs. (1) and (2). First, for 
any non-dogmatic belief function Bel0, i.e., where , calculate the 
commonality number for all focal elements A by eq. (1). We have 

0 0( ) ( )
B A

Q A m B
⊇

= ∑  (1)

For dogmatic belief functions assign  and discount all other focal 

elements proportionally. 
Secondly, calculate  for all decomposed GSSFs, where  

including , and i is the ith GSSF. There will be one GSSF for each subset C 

Θ
w 1 ∞,( )∈

A Θ⊆ m Θ( ) w= m A( ) 1 w–= m X( ) 0=

m1 A( ) 0 1,[ ]∈

m1 2⊕ Θ( ) 1=

m0 Θ( ) 0>

m0 Θ( ) ε 0>=

mi C( ) C Θ⊆

C ∅=
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of the frame unless  happens to be zero. In the general case we will have 

2Θ  GSSFs. We get for all  including  

  

(2)

where [1, 2 1]i Θ∈ − . 

Here,  of  is the ith subset of Θ in numerical order2 which also 

includes , i.e., [ ] [ ]{ }1 1( ), , ( ),m m∅ ∅ Θ Θ  is the first decomposed GSSF 

of eq. (2). 

3  Transforming a Belief Function into a Base Belief Function 

Using eqs. (1) and (2) we may decompose a belief function m0 into a set of GSSFs. 
We call the non-conflict GSSFs of the decomposition the base of m0. 

Definition 2. The base of a belief function m0 is the set of decomposed simple 
support and inverse simple support function 

{ } 2 1

2i i
m

Θ −

=
 (3)

deliberately excluding m1 that supports only { }∅, Θ , where 

{ } 2 1

1i i
m

Θ −

=
 (4)

is the full set of  simple support and inverse simple support function 
from the decomposition of m0 by eqs. (1) and (2). 

Definition 3.  A base belief function  of a belief function m0 is the belief 

function resulting from the unnormalized combination of the base of m0, i.e., 

 
(5) 

Definition 4. A base conflict of a belief function m0 is the obtained conflict  

of the first GSSF that supports [ ] [ ]{ }1 1( ), , ( ),m m∅ ∅ Θ Θ  of the decomposition of 

a belief function of m0 by eqs. (1) and (2). 
 

                                                           
2  With { , , }a b cΘ =  the numerical order of all subsets in Θ including ∅  is Θ = { ∅ , {a}, 

{b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}}. 

mi C( )

C Θ⊆ C ∅=

mi C( ) 1 Q0 A( ) 1–( ) A C 1+–

A C⊇
∏–=

mi Θ( ) 1 mi C( )–=

C Θ⊆ mi C( )

C ∅=

2 Θ 1–

m00

.m00 mi{ }∩
i 2=
2Θ 1–

=

m1 ∅( )
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Theorem 1. A belief function m0 can be recovered by combination of its 

corresponding base belief function  with the base conflict m1, i.e., 

  (6) 

Proof. Immediate by definition 2 and 3.                                          Ñ 

4  The Internal Conflict of a Belief Function 

The conflict received from a combination of belief functions by Dempster’s rule is 
not a measure of dissimilarity between the combined belief functions. Indeed, belief 
functions can be quite different and yet have zero conflict as intersection of their 
focal elements are non-empty. Instead the conflict of Dempster’s rule is best viewed 
as a different kind of distance measure; a measure of conceptual disagreement 
between sources. When they disagree highly it is a sign that something is wrong. It 
should be noted that there is at least two possible sources of conflict other  
than measurement errors. We may have modeling errors or faulty sources [4]. 
Faulty sources are corrected by appropriate discounting (e.g., [6, 12, 16]) while 
modeling errors are corrected by adopting an appropriate frame of discernment  
[13, 14]. 

In this section we define and investigate an internal conflict of a belief function. 
We further devise a way to obtain the internal conflict. 

Definition 5. The internal conflict of a belief function m0 is the conflict received in 
the unnormalized combination of the base of m0 to obtain the base belief function 

, i.e.,  where 

 
(7) 

For simplicity, view the intersection of eq. (7) as taking place in a 2 2Θ −  hyper 

cube of all 2 2Θ −  GSSFs. Note that  can take both positive and negative 

values. 

Theorem 2. The internal conflict within a base belief function is strictly a function 
of conflicts between different GSSFs supporting subsets of the frame. 

Proof. Immediate by observation of the combination in eq. (7) as m1 with body of 

evidence [ ] [ ]{ }1 1( ), , ( ),m m∅ ∅ Θ Θ  is not included in the combination.         Ñ 

Theorem 3. There exist an infinite size family of unnormalized belief functions  

{ } with an identical base belief function m00 and 

identical internal conflict. 

m00

m0 m00 m1∩=

m00 m00 ∅( )

.m00 ∅( ) mi{ }∩
i 2=
2Θ 1– ∅( )=

m00 ∅( )

m0
p

p m1 ∅( ) ∞– ∞,( )∈= p 1≠,



The Internal Conflict of a Belief Function 173
 

 

Proof.  Let us generate a family from the base: Take any belief function m0 on a 

frame Θ of size | |n = Θ . Decompose m0 into its  GSSFs. Combine { }2

2

n

i i
m

=
 

using eq. (7) into the base belief function. Let us ignore the value obtained for 
 in the decomposition. Instead, let . The 

family of belief functions  is generated by combining the base belief function 

m00 with each of the . The family is of infinite size.                         Ñ 

When going in the other direction from family to base: Note, that in the special case 
of a normalized base belief function it can be recovered from any family member by 
normalization. 

If we combine a non-consonant belief function with itself we should not be 
surprised that we receive a conflict. A non-consonant belief function can be 
expressed as a construct from the base set of that belief function. If the belief 
function combined with itself is constructed in two steps by first combining all 

GSSFs pairwise with themselves, these 2 2Θ −  combinations of GSSFs with 

identical focal sets are conflict free (excluding  and Θ). Combining the resulting 

2 2Θ −  GSSFs in the second step obviously has empty intersections among their 

focal elements resulting in conflict. Thus, the internal conflict received is a function 
of conflicts from different GSSFs (excluding ) that are used to construct the 

non-consonant belief function. Thus, the conflict noticed in the combination exists 
internally within non-consonant belief functions before combination and is a 
consequence of the scattering of mass within the distribution. This makes the 
internal conflict appropriate as a conceptual distance measure also between 
non-consonant belief functions as it measures the internal conflict in the 
combination of GSSFs from two different base sets corresponding to the two 
different base belief functions without the added pure conflict of m1 (supporting 
only  and Θ) that is always included in the conflict obtained by Dempster’s rule. 

Thus, from theorem 2 and 3 follows that the internal conflict is an appropriate 
distance measure for all belief functions as it excludes the pure conflict of  

(i.e., also for non-consonant belief functions), where this distance measure sought 
after is a measure of conceptual disagreement between sources. 

When calculating the conceptual distance measure based on internal conflict 

between two belief functions we first transform the two belief functions m0 and  

to their base belief function form using eqs. (1) and (2) to find the base set, this is 

followed by eq.  (5) to construct the base belief function, m00 and . We 

perform a conjunctive combination  and find the internal 

conflict  of the resulting base belief function using eq. (7). 
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This measure  of internal conflict is the most objective conflict measure 

since it excludes pure conflict and is immune to normalizations and incoming belief 
functions from sources without any information on conflicts in earlier 
combinations. 

In the problem of partitioning mixed-up belief functions into subsets that 
correspond to different subproblems [8−11] we may use the distance measure of 
internal conflict for all belief functions (i.e., also for non-consonant belief 
functions). 

5  An Example 

Let us study a simple example. In this example we will represent all belief functions 
using numerical ordering of focal elements. 

We assume a frame of discernment  and a belief function m0 that is 

build up by combination of two SSFs m2 and m3 that are yet unknown to us, where 

[ ] [ ]2 30, 0.4, 0, 0.6 , 0, 0, 0.4, 0.6m m= = . (8) 

We have, 

 (9)

Using eqs. (1) and (2), m0 can be decomposed into the base SSFs m2 and m3.  
Here, the base conflict is 0, i.e., m1 in the decomposition of m0 is a vacuous SSF; 
m1(Θ) = 1. From the base set eq. (8) we can construct the base belief function m00 
which in this case is identical to the belief function m0. 

If m0 is normalized then the situation is different. Let us call this normalization 
m0n. We have, 

[ ]0 0, 0.2857, 0.2857, 0.4286 .nm =  (10) 

Decomposing m0n we get 

[ ] [ ]
[ ]

1 2

3

0.1905, 0, 0, 1.1905 , 0, 0.4, 0, 0.6 ,

0, 0, 0.4, 0.6

n n

n

m m

m

= − =

=
 (11) 

which is the same base for m0n as in the decomposition of m0. Thus, m0 and m0n  
has the same base belief function, which is m00 = m0. However, we obtain an  
inverse base conflict of  when decomposing m0n compared to  

m1(Θ) = 1 in the decomposition of m0. 

Furthermore, let us assume that we have a second belief function  which is 

build up by combination of two SSFs m2 and m3 that are also unknown to us, where 

[ ] [ ]2 30, 0.3, 0, 0.7 , 0, 0, 0.3, 0.7 .m m′ ′= =  (12)

 

m00
″ ∅( )

Θ a b,{ }=

.m0 m2 m3∩ 0.16 0.24 0.24 0.36, , ,[ ]= =

m1n ∅( ) 0.1905–=

m0
′



The Internal Conflict of a Belief Function 175
 

 

We have 

 
(13)

As above, using eqs. (1) and (2)  can be decomposed into the base  and 

 (  is vacuous). Using eq. (5) we construct the base belief function . 

Finally, given both m00 and  we combine them to obtain 

 
(14) 

We notice a conflict of 0.3364 in the combination of m00 and . 

Assuming instead that we receive  from a source (let us then call it ) we 

can decompose it to obtain a pure base without any base conflict; 

[ ] [ ]
[ ]

1 3

3 , 0.58, 0.42

0, 0, 0,1 , 0, 0.58, 0, 0.42 ,

0, 0 .

m m

m

′′ ′′

′′

= =

=
 (15)

We should notice that the two base SSFs  and  are themselves conflict free 

combinations  and  resulting in  and , respectively. 

Recombining  and  yields a base belief function  identical to . 

Thus, the conflict of  and the internal conflict of  are identical in this case. 

Had  been normalized the situation is somewhat different. Let us call the 

normalization . We have, 

[ ]0 0, 0.3671, 0.3671, 0.2658 .nm′′′ =  (16). 

It can be decomposed into 

[ ] [ ]
[ ]

1 2

3

0.3082, 0, 0, 1.3082 , 0, 0.58, 0, 0.42 ,

0, 0, 0.58, 0.42 .

n n

n

m m

m

′′ ′′

′′

= − =

=
 (17)

We observe that  and  have the same base set in that  and 

. 

Finally, let us study a combination of a belief function with itself. We combine 

 with itself. We have, 

(18)
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where  is the internal conflict distance measure between the two 

belief function. 

Decomposing  we get, 

[ ] [ ]
[ ]

1 2

3

1.2711, 0, 0, 2.2711 0, 0.8236, 0, 0.1764 ,

0, 0, 0.8236, 0.1764 .

n n

n

m m

m

′′′′ ′′′′

′′′′

= − =

=
 (19) 

As before we have a base set of two SSFs. Here the base set of  is  and 

, where 

  
 (20) 

6  Conclusions 

We conclude that the internal conflict of a non-consonant belief function is actually 
a function of conflicts between different GSSFs in the base set of that belief 
function. Here all GSSFs that have identical focal elements have zero conflict. 
Thus, the internal conflict between two belief functions is an appropriate distance 
measure on a conceptual level that measures disagreement between sources. 
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Plausibility in DSmT∗

Milan Daniel

Abstract. Preparing for generalization of results on conflicts of classic belief func-
tion to DSm approach, we need normalized plausibility of singletons also in DSmT.
To enable this, plausibility of DSm generalized belief functions is analyzed and
compared on entire spectrum of DSm models for various types of belief functions;
from simple uniform distribution, through general classic belief function, to gen-
eral generalized belief function in full generality. Both numeric and comparative
variability with respect to particular DSm models has been observed and described.
This comparative study enables deeper understanding of plausibility in DSm ap-
proach and also underlines the sensitivity to selection of particular DSm models.

Figure of elements of DSm domain — DSm hyper-power set — and figures rep-
resenting particular DSm models (the free DSm model, hybrid DSm models, and
Shafer’s model) throughout the text enable better understanding of DSm principles.

Further, a notion of non-conflicting DSm model is introduced and characterized
towards the end of the study.

1 Introduction

Investigating nature of conflicts of classic belief functions (BFs) [5, 6], plausibility
function, specially normalized plausibility of singletons was utilized. To general-
ize/transform the classic results of [6] to DSm approach we need plausibility func-
tion also in DSmT. Plausibility was defined already in [7, 9] on DSm free model;
nevertheless it was not studied in detail as it has value 1 for all elements of a frame
of discernment; thus it is considered as not interesting and is often ignored in DSmT.
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On the other hand, we can observe that constant plausibility value 1 holds true
in DSm free model, but it does not hold true in general; simple counter-example is
Shafer’s DSm model (i.e. classic Shafer’s approach).

The free DSm model is presented as the most general DSm model in DSmT.
Considering classic approach [3, 4], the free model is one of special models, where
plausibility is constant and equal to 1 for all elements of the corresponding frame of
discernment. Using this, we investigate plausibility in different DSm models in this
contribution. After that, the notion of non-conflicting DSm model is introduced and
characterized in the study.

2 Preliminaries

Let us suppose classic belief functions according to Shafer’s book [8]. Further we
will use DSm approach [9] in the notation of Chapter 3 of volume 2 [10]. DSmT
supposes non-empty intersections of all elements of a frame of discernment in gen-
eral. For bibliography of DSmT and free download of [9, 10] see its web page [11].

Application of non-existential constraints is analogous to usage of smaller frame
of discernment (the original one without constrained elements). Hence, we will not
deal with non-existential constraints in this study.

Analogously to the classic Shafer’s approach, belief and plausibility functions
are defined on DSm hyper-power set DΘ as follows: Bel(A) = ∑ /0 �≡X⊆A,X∈DΘ m(X),

Pl(A) = ∑ /0 �≡X∩A m(X). Hyper-power set DΘ is the set containing /0 and all unions
and intersections of elements θi of the frame of discernment Θ .

3 Plausibility of Belief Functions on Frame Θ3 = {θ1,θ2,θ3}
3.1 Plausibility of Uniform Distribution of Belief Masses to

Elements of Frame of Discernment Θ3 = {θ1,θ2,θ3}
Let us start with a simple BF U3 which assigns 1/3 to any θi ∈ Θ3, i.e. m(θ1) =
m(θ2) = m(θ3) = 1/3. We will compute plausibility of U3 in particular DSm mod-
els starting from the free DSm model without any constraint, finishing by Shafer’s
model with all possible exclusivity constraints θ1 ∩ θ2 ≡ θ1 ∩ θ3 ≡ θ2 ∩ θ3 ≡
θ1∩θ2∩θ3 ≡ /0 in the following subsections.

3.1.1 Plausibility of U3 in the Free DSm Model M f

The DSm free model M f has not any constraint, see Fig. 2. It corresponds to entire
DSm hyper-power set DΘ (i.e., Dedekind lattice extended with /0); it contains /0 and
18 non-empty elements for 3-element frame Θ3, see [9] Chap. 2 and Fig. 1:

α0 = /0, α5 = (θ1∪θ2)∩θ3), α11 = θ3, α15 = θ1∪θ2,
α1 = θ1∩θ2∩θ3, α6 = (θ1∪θ3)∩θ2, α12 = (θ1∩θ2)∪θ3, α16 = θ1∪θ3,
α2 = θ1∩θ2, α7 = (θ2∪θ3)∩θ1, α13 = (θ1∩θ3)∪θ2, α17 = θ2∪θ3,
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Fig. 1 Non-empty elements of hyper-power set DΘ3 .

Fig. 2 DSm models M f , M1, and M 0. Grey parts are excluded by constraints in M1
and M 0.

α3 = θ1∩θ3, α9 = θ1, α14 =(θ2∩θ3)∪θ1, α18 = θ1∪θ2∪θ3,
α4 = θ2∩θ3, α10 = θ2, α8 = (θ1∩θ2)∪ (θ1∩θ3)∪ (θ2∩θ3).

We can compute plausibility according to definition for every αi, i = 1, ...,18. Or
we can compute Pl(α1) = ∑ /0 �=X∩α1

m(X) = ∑18
i=1 αi = m(θ1)+m(θ2)+m(θ3) = 1,

and further use that α1 ⊂ αi for i = 2,3,4, ...,18, thus Pl(αi) = 1 for any αi ∈ DΘ3 .

3.1.2 Plausibility of U3 in Hybrid DSm Model M1

The simplest hybrid DSm model is M1 where only the conjunction of all 3 elements

of the frame Θ3 is excluded, i.e., α1 = θ1 ∩θ2 ∩θ3
M1≡ /0. We have 17 non-empty

elements of the constrained hyper-power set DΘ3
M1

in this DSm model.
We can compute plausibility according to definition for every αi, i = 2, ...,18

again. Or we can notice, that θ1 has non-empty intersection with any αi, i =
2,3,5,6,7...,18, analogously θ2 has non-empty intersection with all αi except for
α3 = θ1 ∩ θ3 and similarly θ3 has non-empty intersection with all αi except for
α2. Hence Pl(αi) = ∑3

i=1 m(θi) = 1 for any αi for i = 5,6,7, ...,18 and Pl(α2) =

m(θ1)+m(θ2) = 2/3 = Pl(α3) = Pl(α4) in DΘ3
M1

.

3.1.3 Plausibility of U3 in Hybrid DSm Models M2 – M4

Futher exclusion is exclusion of intersection of two elements, e.g. θ1∩θ2 is excluded

in hybrid DSm model M2, see Fig. 3, thus α2 = θ1∩θ2
M2≡ /0. As α1 = θ1∩θ2∩θ3 ⊂

θ1∩θ2 =α2, we have α1
M2≡ α2

M2≡ /0. Further α6 = (θ1∪θ3)∩θ2
M2≡ θ2∩θ3 =α4, and
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Fig. 3 DSm models M2 – M4. Grey parts are excluded by constraints.

analogically α7 =(θ2∪θ3)∩θ1
M2≡ θ1∩θ3 =α3,α8 =(θ1∩θ2)∪(θ1∩θ3)∪(θ2∩θ3)

M2≡ (θ1∪θ2)∩θ3 = α5 and α12 = (θ1∩θ2)∪θ3
M2≡ θ3. Thus we have only 12 different

non-empty elements of constrained DΘ3
M2

: α3 – α5, α9 – α11, and α13 – α18.
Plausibility function in M2 has the following values: Pl(α3) = Pl(θ1 ∩ θ3) =

Pl(θ1) = Pl(α9) = m(θ1) +m(θ3) = 2/3 and Pl(α4) = Pl(θ2 ∩ θ3) = Pl(θ2) =
Pl(α10) = m(θ2)+m(θ3) = 2/3. There is Pl(αi) = ∑3

j=1 m(θ j) = 1 for any αi for
i = 5,11,13,14, ...,18 in M2.

And similarly for hybrid DSm model M3 (resp. M4), where θ1 ∩θ3 (resp. θ2∩
θ3) is excluded.

3.1.4 Plausibility of U3 in Hybrid DSm Models M5 – M7

Greater exclusion does mean to exclude two intersections of couples of elements of

Θ , e.g. α2 = θ1∩θ2
M5≡ α3 = θ1∩θ3

M5≡ /0 (and implicitly also α1 = θ1∩θ2∩θ3
M5≡ /0

M5≡ (θ2∪θ3)∩θ1. Further α5 = (θ1∪θ2)∩θ3
M5≡ α6 =(θ1∪θ3)∩θ2

M5≡ α4 = θ2∩θ3.

α12 = (θ1∩θ2)∪θ3
M5≡ α11 = θ3. α13 = (θ1 ∩θ3)∪θ2

M5≡ α10 = θ2. Thus we have
only 9 different non-empty elements of constrained DΘ3

M5
in hybrid DSm model M5,

see Fig. 4: α4, α9 – α11, and α14 – α18.
Plausibility function in M5 has the following values: Pl(α9) =Pl(θ1) =m(θ1) =

1/3, Pl(α10) = Pl(θ2) = Pl(α11) = Pl(θ3) = Pl(α4) = Pl(θ2 ∩ θ3) = Pl(α17) =
Pl(θ2 ∪ θ3) = m(θ2) + m(θ3) = 2/3, and there is Pl(αi) = ∑3

j=1 m(θ j) = 1 for
i = 14,15,16,18 in M5.

And similarly for hybrid DSm model M6 (resp. M7), where θ1∩θ2 and θ2∩θ3

(resp. θ1∩θ3 and θ2∩θ3) are excluded.

Fig. 4 DSm models M5 – M7. Grey parts are excluded by constraints.



Plausibility in DSmT 183

3.1.5 Plausibility of U3 on Shafer’s DSm Model M 0

The greatest exclusion on Θ3 is exclusion of all 3 intersections of couples of ele-
ments and consequently intersection of 3 elements and unions of excluded intersec-

tions, i.e. exclusion of all α1,α2, ...,α8. Further α12 = (θ1 ∩θ2)∪θ3
M 0

≡ α11 = θ3,

α13 = (θ1 ∩ θ3) ∪ θ2
M 0

≡ α10 = θ2, α14 = (θ2 ∩ θ3) ∪ θ1
M 0

≡ α9 = θ1, Thus we
have just 7 different non-empty elements of constrained DΘ3

M 0 : α9 = θ1, α10 = θ2,
α11 = θ3, α15 = θ1∪θ2, α16 = θ1∪θ3, α17 = θ2∪θ3, α18 = θ1∪θ2∪θ3, which cor-
respond to non-empty elements of classic power set as in classic Dempster-Shafer
approach.

Hence we have Pl(α9)=Pl(θ1)=m(θ1)= 1/3, Pl(θ2)=m(θ2)= 1/3, Pl(θ3)=
m(θ3) = 1/3, Pl(α15) = Pl(θ1∪θ2) =m(θ1)+m(θ2) = 2/3, Pl(θ1∪θ2) =m(θ1)+
m(θ3) = 2/3, Pl(θ2∪θ3) =m(θ2)+m(θ3) = 2/3, and Pl(α18) = Pl(θ1∪θ2∪θ3) =
m(θ1)+m(θ2)+m(θ3) = 1, as in classic Dempster-Shafer approach.

3.1.6 Summary of Plausibility of U3 in DSm Models

The presented simple example displays that plausibility function related to the same
belief assignment has different values in different DSm models. This also character-
ize particular DSm models.

3.2 Plausibility of Non-Uniform Distribution of Belief Masses to
Elements of a Frame of Discernment Θ3 = {θ1,θ2,θ3}

Let us assume Bayesian BF Bel which assigns belief masses as it follows m(θ1) =
0.6, m(θ2) = 0.3, m(θ3) = 0.1.

In the same way as in subsection 3.1.1, we can compute Pl(αi) = 1 for any αi ∈
DΘ3 in M f . Analogously Pl(α1) = 0, Pl(θi ∩ θ j) = m(θi)+m(θ j), and Pl(αi) =

∑3
i=1 m(θi) = 1 for any αi for i = 5,6,7, ...,18 in M1.
In Shafer’s model we have Pl(θ1) = 0.6, Pl(θ2) = 0.3, Pl(θ3) = 0.1, Pl(θ1 ∪

θ2) = 0.9, Pl(θ1 ∪ θ2) = 0.7, Pl(θ2 ∪ θ3) = 0.4, and Pl(θ1 ∪ θ2 ∪ θ3) = 1, as in
classic Dempster-Shafer approach.

3.2.1 Plausibility of Non-uniform Distribution in Models M2 – M4

Plausibility function has the following values in hybrid DSm model M2: Pl(α3) =
Pl(θ1 ∩ θ3) = Pl(θ1) = Pl(α9) = m(θ1) +m(θ3) = 0.7, Pl(α4) = Pl(θ2 ∩ θ3) =
Pl(θ2) = Pl(α10) = m(θ2)+m(θ3) = 0.4, and Pl(αi) = ∑3

j=1 m(θ j) = 1 for any αi

for i = 5,11,13,14, ...,18 in M2. Analogously, there is Pl(θ1) = m(θ1)+m(θ2) =
0.9, Pl(θ2) = m(θ1)+m(θ2)+m(θ3) = 1, Pl(θ3) = m(θ2)+m(θ3) = 0.4, in M3.
Similarly, Pl(θ1) = 1, Pl(θ2) = 0.9, Pl(θ3) = 0.7, in M4.

Thus for m(θ1) > m(θ2) > m(θ3), where m(θ1)+m(θ2)+m(θ3) = 1 we have
Pl(θ2)> Pl(θ1) in M3 and Pl(θ3)> Pl(θ1),Pl(θ2) in M2.
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3.2.2 Plausibility of Non-uniform Distribution in Models M5 – M7

Plausibility function has the following values in M5: Pl(θ1) =m(θ1) = 0.6, Pl(α10)
= Pl(θ2) = Pl(α11) = Pl(θ3) = Pl(α4) = Pl(θ2 ∩θ3) = Pl(α17) = Pl(θ2 ∪θ3) =
m(θ2) + m(θ3) = 0.4, and there is Pl(αi) = ∑3

j=1 m(θ j) = 1 for i = 14,15,
16,18.

Analogously, there is Pl(θ1) = Pl(θ3) = m(θ1) + m(θ3) = 0.7, and Pl(θ2) =
m(θ2) = 0.4 in M6. Similarly Pl(θ1) = Pl(θ2) = 0.9, and Pl(θ3) = 0.1
in M7.

Thus for m(θ1) > m(θ2) > m(θ3), where m(θ1)+m(θ2)+m(θ3) = 1 we have
Pl(θ2) = Pl(θ3) in M5, Pl(θ1) = Pl(θ1) in M7, and Pl(θ1) = Pl(θ3) > Pl(θ2)
in M6.

3.3 Plausibility of General Classic and General Generalized BFs

3.3.1 Plausibility of a General Classic BF in DSm Models

Let us consider a general classic BF Belc defined by mc as it follows mc(θ1) =
0.40, mc(θ2) = 0.20, mc(θ3) = 0.05, mc(θ1 ∪ θ2) = 0.15, mc(θ1 ∪ θ3) = 0.10,
mc(θ2 ∪ θ3) = 0.05, mc(θ1 ∪ θ2 ∪ θ3) = 0.051. We will compute plausibility cor-
responding to Belc in particular DSm models again, for results see Tab. 1. Notice,
that Pl(θ2)=Pl(θ3) in M5, Pl(θ1)=Pl(θ2) in M7, and Pl(θ1)=Pl(θ3)>Pl(θ2)
in M6.

Table 1 Plausibility of hyper-power set elements α j for general classic BF Belc in DSm
model Mi

Model α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

mc(αi): 0.4 0.2 0.05 0.150.10 0.050.05

M f : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

M1 : /0 0.95 0.8 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

M2 : /0 /0 0.8 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
M3 : /0 0.95 /0 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
M4 : /0 0.95 0.8 /0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

M5 : /0 /0 /0 0.6 (α4) (α4) /0 (α4) 0.7 0.6 0.6 (α11)(α10)1.0 1.0 1.0 0.6 1.0
M6 : /0 /0 0.6 /0 (α3) /0 (α3) (α3) 0.8 0.55 0.8 (α11)1.0 (α9) 1.0 0.8 1.0 1.0
M7 : /0 0.95 /0 /0 /0 (α2) (α2) (α2) 0.950.95 0.251.0 (α10)(α9) 0.951.0 1.0 1.0

M 0 : /0 /0 /0 /0 /0 /0 /0 /0 0.7 0.45 0.25(α11)(α10)(α9) 0.950.8 0.6 1.0

1 Note that θ1 ∪ θ2 corresponds to {θ1,θ2} in classic Shafer’s notation. Similarly, α18 =
θ1 ∪θ2∪θ3 corresponds to Θ3 = {θ1,θ2,θ3}.
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Table 2 Plausibility of hyper-power set elements α j for generalized BF Belg in DSm
model Mi

Model α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18

mg(αi): 0.050.09 0.040.020.02 0.030.050.05 0.180.090.03 0.010.030.06 0.080.04 0.030.10

M f : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

M1 : /0 0.84 0.720.590.86 0.860.860.95 0.950.950.95 0.950.950.95 0.950.95 0.950.95

M2 : /0 /0 0.720.590.86 (α4) (α3) (α5) 0.720.590.86 (α11)0.860.86 0.860.86 0.860.86
M3 : /0 0.84 /0 0.59(α4) 0.91(α2) (α6) 0.840.910.59 0.91(α10)0.91 0.910.91 0.910.91
M4 : /0 0.84 0.72 /0 (α3) (α2) 0.93(α7) 0.930.840.72 0.930.93(α3) 0.930.93 0.930.93

M5 : /0 /0 /0 0.59(α4) (α4) /0 (α4) 0.460.590.59 (α11)(α10)0.77 0.770.77 0.590.77
M6 : /0 /0 0.72 /0 (α3) /0 (α3) (α3) 0.720.330.72 (α11)0.81(α9) 0.810.72 0.810.81
M7 : /0 0.84 /0 /0 /0 (α2) (α2) (α2) 0.840.840.21 0.87(α10)(α9) 0.840.87 0.870.87

M 0 : /0 /0 /0 /0 /0 /0 /0 /0 0.460.330.21 (α11)(α10)(α9) 0.610.53 0.410.65

3.3.2 Plausibility of a General Generalized BF in DSm Models

Analogously, we can compute plausibility values for a general generalized BF Belg
given by generalized bba mg, see Tab. 22. Notice that, Pl(θ3) > Pl(θ1),Pl(θ2)
in M2, Pl(θ2) > Pl(θ1) in M3, Pl(θ3) = Pl(θ2) > Pl(θ1) in M5, and Pl(θ1) =
Pl(θ3)> Pl(θ2) in M6.

4 Summary

We have observed variability of plausibility values for different DSm models for
large spectrum of BFs from simple uniform distribution U3 through general clas-
sic BFs to general generalized BFs. We have observed not only numeric variability,
but also the comparative one: e.g., Pl(θ1) = Pl(θ3) > Pl(θ2) in M6 for all investi-
gated types of BFs, and Pl(θ3)> Pl(θ1),Pl(θ2) in M2 for generalized BFs whereas
Pl(θ1)> Pl(θ2)> Pl(θ3) for all investigated BFs in M 0.

This characterizes both plausibility functions and hybrid DSm models. It un-
derlines sensitivity of DSm approach to selection of hybrid models and stresses
out the necessity to be careful when selecting a DSm model for real-world
applications.

2 Fully general generalized bba mg is out of DSm models M1 — M7 and M 0. To tune mg

with particular DSm models it should be normalized over non-constrained αi’s in particular
models. Thus there should be 8 different bba’s mM f ≡ mg, mM1

— mM7
and mM 0 . For

better comparison of behaviour of particular DSm models, we use the only generalized
bba mg, thus the values in Tab. 2 should be normalized (i.e., divided by particular values
for α18, i.e., divided by 1 minus sum of bbas of excluded elements) to represent correct
plausibility values.
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5 Non-conflicting DSm Models

BF Bel is non-conflicting (without internal conflict) when Bel ∩©Bel do not assign
any belief mass to m( /0), [5, 6]. All elements of entire (non-constrained) hyper-
power set DΘ have non-empty intersection in the free DSm model (αi ∩α j �≡ /0 in
M f ). Thus any BF in M f is non-conflicting and any two BFs are mutually non-
conflicting in M f . Hence M f is non-conflicting DSm model and moreover it is the
only non-conflicting model for generalized BFs in full generality.

Theorem 1. The free DSm model M f is the only non-conflicting DSm model in full
generality.

Let us note that considering some special class of BFs, e.g. classic BFs as inputs,
the issue of non-conflictness of DSm models is more complicated.

6 Conclusion

Plausibility functions for various types of belief functions (BFs) were analyzed and
compared on entire spectrum of DSm models on Θ3. Both numeric and comparative
variabilities were observed. Finally, the notion of non-conflicting DSm model was
introduced.

The original purpose of this study was just a preparation for generalizations of
results on conflicts of BFs from [6]. As a side-effect, a nature of particular DSm
models was displayed for classic BF audience; further a variability and importance
of plausibility in DSmT for DSmT researchers; and also significant sensitivity of
results to selection of a specific DSm model was shown.
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A Belief Function Model for Pixel Data

John Klein and Olivier Colot

Abstract. Image data i.e. pixel values are notably corrupted with uncertainty. A
pixel value can be seen as uncertain because of additional noise due to acquisition
conditions or compression. It is possible to represent a pixel value in a more impre-
cise but less uncertain way by considering it as interval-valued instead of a single-
valued. The Belief Function Theory (BFT) allows to handle such interval-based
pixel representations. We provide in this paper a model describing how to define
belief functions from image data. The consistency of this model is demonstrated on
edge detection experiments as conflicting pixel-based belief functions lead to image
transitions detection.

1 Introduction

The Belief Function Theory (BFT) [3, 8], also known as evidence theory or
Dempster-Shafer theory, provides a framework for processing uncertain and impre-
cise data. As image data can be considered as such, an evidential model leading to a
new representation of pixel values can be introduced. Existing evidential image pro-
cessing approaches are mainly dedicated to information fusion on multiple image
components or neighbor pixels as part of pixel classification algorithms [1, 10]. In
this article, we intend to process images using the BFT under a new perspective by
introducing a model that translates directly each raw pixel value into a belief func-
tion. Indeed, a pixel value equals x with probability p. It is also possible to consider
that the pixel value belongs to the interval [x− q,x+ q] with a probability p′ > p
and q > 0. This piece of information can be easily encoded using a belief function.
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In section 2, BFT fundamental concepts necessary for our approach are recalled.
Section 3 presents a methodology to represent pixel values as belief functions. Sec-
tion 4 introduces results for pixel conflict computation. Finally, in section 5, the
consistency of the model is demonstrated through edge detection experiments on
synthetic gray-scale images.

2 Belief Functions Fundamentals

In this section, BFT fundamentals are briefly recalled. Suppose a finite set of mu-
tually exclusive solutions denoted by Ω = {ω1, ...,ωK} and called the frame of
discernment. The set of all subsets of Ω is denoted by 2Ω . The mass of belief as-
signed to A by a source Si is denoted by mi (A). The function mi : 2Ω → [0,1] is
called basic belief assignment (bba) and is such that: ∑A⊆Ω mi (A) = 1.

A set A such that mi (A)> 0 is called a focal element of mi. A bba is denoted by
Amx if it has two focal elements: Ω and A�Ω , and if:

Amx (A) = 1− x and Amx (Ω) = x. (1)

with x ∈ [0,1]. Such bbas are called simple bbas (sbbas).
To combine bbas issued by reliable sources, the conjunctive rule ∩© can be used:

∀X ∈ 2Ω ,m1 ∩©2 (X) = ∑
B∩C=X ,B,C⊂Ω

m1 (B)m2 (C) . (2)

The mass m( /0) is denoted by κ and called the degree of conflict. This mass is
given support when S1 and S2 advocate respectively for non-intersecting solutions.
It is thus an indication on how much the two sources disagree.

Furthermore, it is possible to bring down a source of information using an oper-
ation called discounting [8]. Discounting mi with rate α ∈ [0,1] is defined as:

mα
i (X) = (1−α)mi (X)+α1X=Ω (3)

with 1 the indicator function. The higher α is, the stronger the discounting. One
may remark that a sbba Amx is Am0 discounted with rate x.

3 A Model for Pixel Representation Using Belief Functions

In this section, our evidential pixel representation (EPR) model is introduced. Let
us denote a pixel p = (px, py) with px and py its coordinates along the two image
axes. An 8-bit gray-scale image can be represented by a function I (p) such that
0 ≤ I (p)≤ 255.

The measured image Ĩ can be viewed as the sum of the true image and a random
noise B: Ĩ = I+B, and B(p)∼ fb the noise density function. Suppose one is able to
find a symmetrical cumulative distribution function F such that ∀q,F (q)≥ Fb (q) =∫ q
−∞ fb (ν)dν , then the following assertion holds:
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1− 2F (−q)≤ P(true pixel value I (p) ∈ Ap,q =
[
Ĩ (p)− q, Ĩ (p)+ q

])≤ 1 (4)

with P the probability measure on the pixel value set. In case of a Gaussian cen-
tered noise, F is simply the cumulated density of a centered Gaussian function
with a greater standard deviation than that of fb. As pixel values are integers rang-
ing from 0 to 255, the set of possible values for q is Q = {0.5,1.5, ...,255.5}.
Consequently, the set generated by intersections and unions of all possible Ap,q is
Ω = {−255,−254, ...,512}. Now, the information on a pixel value can be repre-
sented by a parametrized bba mp,q defined on 2Ω :

mp,q = Ap,qm2F(−q) (5)

Multiple bbas may be defined by this mean, as it is difficult to determine what value
for q to choose. To cumulate all pieces of evidence, we propose to define the bba
representing pixel p as the conjunctive combination of parametrized bbas for all
possible values of q:

mp =
∩©

q∈Q
mp,q. (6)

The focal elements of mp are nested: {Ap,q}255.5
q=0.5. A frequent criticism addressed to

the BFT is the computational load induced by large frames of discernment. In this
paper, the cardinal of 2Ω is 2255, thus computing the above bba using equation (2) is
infeasible. Yet, since the set of bbas to combine has some particular properties, this
computation can be easily done using the following proposition:

Theorem 1. Let
{

mi =
Aimαi

}N
i=1 be a set of sbbas with nested focal elements such

that A1 � A2 � ... � AN � Ω . Let us denote m ∩© the conjunctive combination of
these sbbas. We have:

m ∩© (X) = (1−αi)
i−1

∏
j=1

α j1X=Ai +
N

∏
j=1

α j1X=Ω (7)

Proof. The focal elements of m ∩© are the sets {Ai}N
i=1 and Ω . For {Ai}N

i=1, we have:

m ∩© (Ai) = ∑
(∩N

j=1B j)=Ai,B j∈{A j ,Ω}
A1mα1 (B1) ...

AN mαN (BN)

The condition under the sum can only be verified if ∀ j < i,B j = Ω and Bi = Ai.
Since Aimαi (Ai) = (1−αi) and ∀ j < i, A j mα j (Ω) = α j, we have:

m ∩© (Ai) = (1−αi)
i−1

∏
j=1

α j ∑
(∩N

j=i+1B j)∩Ai=Ai,B j∈{A j ,Ω}
Ai+1mαi+1 (Bi+1) ...

AN mαN (BN)
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Because ∀ j > i, Ai∩B j = Ai, we have:

m ∩© (Ai) = (1−αi)
i−1

∏
j=1

α j ∑
B j∈{A j ,Ω}

Ai+1mαi+1 (Bi+1) ...
AN mαN (BN)

and since m j (A j)+m j (Ω) = 1, we get m ∩© (Ai) = (1−αi)∏i−1
j=1 α j.

Finally, the mass allocated to Ω is easily obtained from more general results about
the conjunctive rule: ∀mi,m j, mi ∩©m j (Ω) = mi (Ω)m j (Ω). $%
It is important to note that for two different pixels p and p′, we have ∀q,mp (Ap,q) =
mp′
(
Ap′,q

)
= βi although Ap,q �= Ap′,q. All pixels have the same masses βi but their

focal elements are potentially different.

4 Pixel Conflict Computation

In the previous section, we have obtained bbas mp representing uncertain and im-
precise values of each pixel. We present now a simple way to compute pixel-based
degree of conflict.

As mentioned before, the cardinality of Ω makes it hard to compute the degree
of conflict using equation (2). To overcome this difficulty, we propose to use a result
from [4]. It is shown in that article that if there is at least one pairwise positive
degree of conflict among a set of bbas {mi}M

i=1, then the global conflict of a set of
identically discounted bbas can be approximated by the sum of pairwise degrees
of conflict. Consequently, it makes sense to compute the sum of pairwise degrees
of conflict instead of the global degree of conflict, as identically discounting bbas
preserves their relative prevalences. The pairwise conflict of two bbas mp and mp′
can be easily computed using the following result:

Theorem 2. Let mp and mp′ be two bbas obtained from the process described in
section 3. Then their pairwise conflict κ{p,p′} is a function of Δ =

∣∣Ĩ (p)− Ĩ (p′)
∣∣

and

κ{p,p′} (0) = 0, (8)

κ{p,p′} (Δ > 0) =

⎧⎪⎪⎨⎪⎪⎩
κ{p,p′} (Δ − 1)+ 2

Δ/2

∑
k=1

βkβΔ−k if Δ is even,

κ{p,p′} (Δ − 1)+ 2
(Δ−1)/2

∑
k=1

βkβΔ−k +β 2
(Δ+1)/2 if Δ is odd.

(9)

Proof. If one denotes by k the index of a focal element of mp and by l the index
of a focal element of mp′ , those with empty intersections are such that
k + l ≤ Δ . Consequently, we obtain κ{p,p′} = ∑

k+l≤Δ
βkβl . It can be seen that

κ{p,p′} is a function of Δ which can be recursively computed. Indeed, we have
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κ{p,p′} (Δ)−κ{p,p′} (Δ − 1) = ∑
k+l=Δ

βkβl . In the end, some elements of ∑
k+l=Δ

βkβl

are counted twice that is why two cases are distinguished corresponding odd and
even values of Δ . $%
The values of βi for all i and of κ{p,p′} (Δ) for all Δ can be stored in a lookup table,

making it easy and fast to compute pixel pairwise degrees of conflict. The method
appears to be based only on pixel value differences. The function applied to these
differences is entirely justified using the BFT and is based on conflict.

5 Experiments on Edge Detection

The degree of conflict of bbas belonging to the neighborhood Vp of pixel p is
obtained as follows: κ (p) = ∑p′∈Vp

κ{p,p′}. It is likely to be a relevant feature

for assessing the presence of an edge at pixel p. Consequently, edge detection
was chosen to demonstrate the consistency of EPR. For using the EPR, one must
first define function F . The unknown noise fb is supposed to be centered and
Gaussian. The function F is thus defined likewise with a greater standard devia-
tion σEPR than that of the noise. A pixel neighborhood Vp is defined as follows:

Vp =
{

p′|
√
(px− p′x)2 +(py− p′y)2 ≤ hEPR

}
. An edge detector yields a binary

edge image whereas κ (p) corresponds to an image containing edge probabilities (if
normalized). If κ (p) appraises correctly image edges, then it should be compliant
with output edge probability distributions drawn from classical edge detection algo-
rithms. The algorithms retained for the experiments are : Roberts [7], Prewitt [6],
Sobel [9], Canny [2] and LoG [5] edge detectors. Roberts, Prewitt and Sobel de-
tectors are based on image first derivatives whereas LoG is based on second order
derivatives. Canny [2] introduced a filter as an optimal solution in terms of detec-
tion of step edges, edge localization and uniqueness. In addition to filtering, his
approach also comprises two other steps helping to obtain thin edges and to remove
false edges. To allow a fair comparison of the methods, we only use in the experi-
ments the filtering part of Canny’s approach.

Roberts, Sobel and Prewitt are parameter-free, but LoG, Canny and κ (p) are de-
pending on two parameters each: a filter spread hLoG, hCanny, hEPR respectively and
a standard deviation σLoG, σCanny, σEPR respectively. For Canny and LoG, the filter
spread is usually greater than at least three times the standard deviation. Concerning
hEPR, its value was set to 2 for all experiments. σLoG, σCanny, σEPR are hand-tuned
in each experiment. The value yielding the lowest Kullback-Leibler DKL divergence
is retained. This criterion is defined as:

DKL (Ie||GT ) = ∑
p

Ie (p) log

(
Ie (p)

GT (p)

)
(10)

where Ie is an edge probability image and GT the ground truth. When these distribu-
tions are identical DKL (Ie||GT ) = 1. Higher values are obtained when the distribu-
tions are different. This criterion is adapted to our purpose as it penalizes wrongly
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located edges, thick edges and partially detected edges. Note that a contrast en-
hancement is used on some of the images displayed in this section in order to help
the reader to perceive some image details.

5.1 Omni-Directional Edges

In this experiment, the dependence on edge direction is examined. A synthetic image
I1 containing a ramp-edge in shape of a circle is used. The edge is made of two
transitions: from 0 to gray level 125 and from 125 to 255. When using a step-edge
with a single transition from 0 to 255, the edge is located at a sub-pixel precision
which makes it harder to define a ground truth.

I1, its corresponding ground truth GT as well as the output edge probability distri-
butions produced by several approaches are presented in Figure 1. The DKL obtained
in this experiment are gathered in Table 1. κ (p) produces the smallest divergence
because the edge distribution is thinner.

Fig. 1 From top-left to
down-right: input image
I1, ground truth GT , out-
put edge distribution using
Roberts, Sobel, Prewitt,
Canny, LoG and κ (p).
σCanny = 0.3, σLoG = 0.9
and σEPR = 1e5

Table 1 Performances of several edge detection methods on synthetic image I1.

Method Roberts Sobel Prewitt Canny
σCanny = 0.3

LoG
σLoG = 0.9

κ (p)
σEPR = 1e5

DKL 8.61 8.32 8.52 7.88 11.56 3.81

5.2 Edges with Varying Contrast

In this experiment, the dependence on edge contrast is examined. The input im-
age I2 is obtained by shading I1. I2, GT and the edge probability distributions
are presented in Figure 2. The corresponding DKL are gathered in Table 2. κ (p)
produces the smallest divergence because the transitions inside the circle are fil-
tered out. The divergence is more stringent on this aspect than on detecting the
whole circle. Smaller values of σEPR leads to performances close to Canny’s
ones.
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Fig. 2 From top-left to
down-right: input image
I2, ground truth GT , out-
put edge distribution using
Roberts, Sobel, Prewitt,
Canny, LoG and κ (p).
σCanny = 0.4, σLoG = 0.9
and σEPR = 1e5

Table 2 Performances of several edge detection methods on synthetic image I2.

Method Roberts Sobel Prewitt Canny
σCanny = 0.4

LoG
σLoG = 0.9

κ (p)
σEPR = 1e5

DKL 9.98 9.70 9.84 9.40 11.82 4.53

5.3 Robustness to Gaussian Noise

In this experiment, the robustness to additive Gaussian noise is examined. The
input image I3 is obtained by adding to I2 such a noise with standard deviation
σb = 50. I3, GT and the edge probability distributions are presented in Figure 3.
The corresponding DKL are gathered in Table 3. Again, κ (p) produces the small-
est divergence because non-relevant transitions are filtered out. Obviously, if the
edge distributions were thresholded, Canny’s approach would detect a larger part
of the circle than κ (p). Smaller values of σEPR lead to output images close to
Canny’s. It is important to remind that it is only intended to validate EPR
and not to introduce an edge detector. For such a purpose, additional experi-
ments involving image thresholding, more evaluation criteria and natural images are
needed.

Fig. 3 From top-left to
down-right: input image
I3, ground truth GT , out-
put edge distribution using
Roberts, Sobel, Prewitt,
Canny, LoG and κ (p).
σCanny = 1.5, σLoG = 1.2
and σEPR = 1e5



196 J. Klein and O. Colot

Table 3 Performances of several edge detection methods on synthetic image I3.

Method Roberts Sobel Prewitt Canny
σCanny = 1.5

LoG
σLoG = 1.2

κ (p)
σEPR = 1e5

DKL 13.31 12.85 12.83 12.28 13.13 12.02

6 Conclusion

In this paper, a model for pixel representation (EPR) is proposed. This model is
based on the belief function theory. The consistency of this model was proved
through preliminary edge detection experiments. Indeed, the degree of conflict of
neighbor pixels appears to be a relevant feature to assess the presence of an edge.

The approach is easy to implement and and does not require a heavy computa-
tion load. The goal behind this paper is to pave the way for future evidential im-
age processing developments like denoising or pixel classification. Some additional
processes and experiments will be investigated to introduce potentially a full edge
detector. Furthermore, the EPR should also be extended to multi-component images
and other belief masses than the degree of conflict may be exploited. The possibility
to extend the model to non-additive noise should also be considered.
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Using Belief Function Theory to Deal
with Uncertainties and Imprecisions
in Image Processing

Benoı̂t Lelandais, Isabelle Gardin, Laurent Mouchard, Pierre Vera, and Su Ruan

Abstract. In imaging, physical phenomena and acquisition system often induce an
alteration of the information. It results in the presence of noise and partial volume
effect corresponding respectively to uncertainties and imprecisions. To cope with
these different imperfections, we propose a method based on information fusion
using Belief function theory. First, it takes advantage of neighborhood information
and combination rules on mono-modal images in order to reduce uncertainties due
to noise while considering imprecisions due to partial volume effect on disjunctions.
Imprecisions are then reduced using information coming from multi-modal images.
Results obtained on simulated images using various signal to noise ratio and medical
images show its ability to segment multi-modal images having both noise and partial
volume effect.

1 Introduction

In imaging, two distinct problems lead to ambiguities from a spatial point of view:
uncertain information due to noise and imprecise information due to lack of knowl-
edge at the transition between areas. At this transition, the information carried by
voxels is more ambiguous than the one suffering from noise. Both uncertainties and
imprecisions have a negative effect on image processing.
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Belief function theory (BFT) [1, 2, 3] is particularly well suited to represent
information from partial and unreliable knowledge. In [4, 5], authors propose to
use BFT to reduce uncertainties and imprecisions using conjunctive combination of
neighboring voxels. On one hand, it allows to reduce noise and on the other hand,
to highlight conflicting areas mainly present at the transition between areas where
PVE occurs due to the fact that information is extremely ambiguous in a spatial con-
text. Therefore, results obtained by these authors allow to represent both segmented
regions and contours.

BFT has the advantage to manipulate not only singletons but also disjunctions.
This gives the ability of explicitly representing both uncertainties and imprecisions.
One of the difficulties resides in the modeling of disjunctions, while they make it
possible to take into consideration the lack of knowledge. In [6], author proposes
to use fuzzy morphological operators to transfer for each voxel a part of belief on
disjunctions according to its neighborhood. This method is interesting, but considers
uncertainties and imprecisions in the same way.

By using BFT, our aim is two-fold: first, we reduce uncertainties due to noise,
then imprecisions due to Partial Volume Effect (PVE) which corresponds to the lack
of knowledge at the transition between areas. At first, our method operates a disjunc-
tive combination followed by a conjunctive combination of neighboring information
on mono-modal images. The disjunctive combination allows to transfer both uncer-
tain and imprecise informations on disjunctions. Then, the conjunctive combination
is applied to reduce uncertainties due to noise while maintaining representation of
imprecise information at the boundaries between areas on disjunctions. In order to
remove some imprecise informations, a multi-modal image fusion is also proposed.
We take benefit from the complementarity of images to reduce imprecisions.

The method is used for the fusion of multi-modal PET (Positron Emission To-
mography) medical images of the same patient using three radiotracers which give
respectively information on tumor glucose metabolism, cell proliferation, and hy-
poxia (inadequate supply of oxygen). These images are of major interest for the
treatment of lung cancer by radiotherapy, but need a relevant treatment considering
both their important noise and partial volume effect.

First, we present our method, based on the fusion in mono-modal images, fol-
lowed by the multi-modal fusion of informations. Then, the validation of the method
is done on simulated data. Finally, the method is applied on multi-modal PET
images.

2 Information Fusion Using Belief Function Theory for
Reducing Uncertainties and Imprecisions

2.1 Fusion for Reducing Uncertainties While Considering
Imprecision on Mono-Modal Images

Partial knowledge as uncertainties and imprecisions are taken into account by as-
signing Basic Belief Assignments (BBA) m over different subsets of the considered
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frame of discernment Ω = {ω1,ω2, . . . ,ωC}. m is defined as a mapping from 2Ω to
[0,1] verifying∑A⊆Ω m(A) = 1.

From initial BBA, to reduce uncertainties while considering imprecisions, we
propose to take benefit from both neighborhood information and combination oper-
ators [4, 5]. The way in which the neighborhood contribution has been carried out
is as follow: let Φ(Vi) be a set of P voxels Vk (with k ∈ {1, . . . ,P}), surrounding a
voxel Vi, and including Vi. Because of the different distances separating Vk and Vi,
we propose to associate for each voxel in Φ(Vi) a coefficient αk that depends on
the distance separating it from Vi. It is computed by: αk = exp((Vk −Vi)

2
/σ2
), with

FWHM = 2
√

2log2σ the Full Weight at Half Maximum corresponding to the spatial
resolution of our images.

2.1.1 Disjunctive Combination of Neighboring Voxels

First, the influence of a voxel Vk from Φ(Vi) is weighted by the coefficient αk. The
BBA on A ≠ ∅ and on ∅ can be calculated using the expressions:

m′Vk
(A) = αkmVk(A), ∀A ≠ ∅

m′Vk
(∅) = 1−αk +αkmVk(∅)

(1)

Thus, the further away from Vi the voxel Vk is, the lower its contribution to the com-
putation will be. The transfer to the empty set is interpreted as a non-commitment
toward all the other hypotheses, and allows, before applying a disjunctive combina-
tion, to reduce the influence of mVk(A) proportionally to αk. The Fuzzy C-Means
algorithm (FCM) [7] is used in order to initialize mVk(A).

After this step, and in order to transfert uncertain and imprecise data to disjunc-
tions, the following disjunctive combination is performed for each voxel:

MVi(.) = ∪◯

Vk∈Φ(Vi)

m′Vk
(.) (2)

It follows that nonzero masses are assigned to disjunctions. Higher they are, more
different the informations carried by the neighboring voxels are. It is especially true
on the edges between areas where PVE occurs and for voxels located in a very noisy
environment. This operator, usually used when at least one source is reliable, can be
used at that time. It is reasonable to assume that at least one of the voxels in the
neighborhood gives a reliable information. After the disjunctive combination, we
can assume that all sources become reliable since operator acts as a discounting of
spatially ambiguous sources.

2.1.2 Estimation Using Disjunctive Combination in FCM

Disjunctive step allows to transfert, from initial BBA computed using FCM, uncer-
tain and imprecise information on disjunctions. We also propose to integrate our
disjunctive combination of neighboring voxels inside FCM algorithm. This process



200 B. Lelandais et al.

is used for updating centroids and computing membership degrees with adapted
data. After the fusion, the obtained data is less ambiguous.

2.1.3 Conjunctive Combination of Neighboring Voxels

To reduce uncertainties without impacting the ambiguities brought by the impre-
cisions, the opposite operation has been proposed. It consists in the conjunctive
combination of neighboring voxels Vk discounted. First, the discounting is
done according to the coefficient αk by transferring a part of belief on the
set Ω :

M

′′

Vk
(A) = αkMVk(A), ∀A ≠Ω

M

′′

Vk
(Ω) = 1−αk +αkMVk(Ω)

(3)

The discount process allows to reduce the influence of voxels which are far from Vi

before doing the conjunctive combination using Dempster’s rule given by:

MVi(.) = ⊕

Vk∈Φ(Vi)

M

′′

Vk
(.) (4)

Since all sources are reliable (thanks to disjunctive combination), it is appropriate to
use this operator. This step allows to remove ambiguities due to noise, by transfer-
ring their belief on the singletons, while the voxels at the boundaries between areas
remain represented on disjunctions.

2.2 Fusion for Reducing Imprecisions Using Multi-modal
Informations

Having different information coming from other sources, we propose to take benefit
from this information in order to reduce imprecisions due to PVE. Information com-
ing from mono-modal image does not allow to reduce imprecisions. If two sources
of information are available, reducing the imprecision with BFT is possible by using
the conjunctive rule of combination. Let m1 and m2 be two fully reliable BBA. Their
fusion is defined as follow:

m1 ∩�m2(A) = ∑
B∩C=A

m1(B)m2(C) (5)

We propose an information fusion method based on conjunctive rule to deal with
multi-modal images. Furthermore, we choose to use an external contextual knowl-
edge to reduce imprecisions for our application on PET images (section 4).The ex-
ternal knowledge is learned from PET phantom images containing spheres whose
volumes are known. It consists in applying the conjunctive combination of the cur-
rent source with the external knowledge whose BBA has two focal elements: the
subset A of Ω to reinforce and Ω .
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3 Validation

The efficiency of our method is evaluated and compared to the method proposed
in [6] on simulated images by measuring the recognition rates (rates of pixels
correctly labelled) according to several Signal to Noise Ratio (SNR) varying from
1.5 to 6. The simulated images (Fig. 1) consist in a square surrounding by a back-
ground (images with two classes). The simulated images are blurred with a
Gaussian filter whose FWHM vary according to the SNR, and noised with a Gaus-
sian filter whose standard deviation is inversely proportional to the SNR. Note
that BBA presented on Fig. 1(a) and (b) correspond to a simulated image with
SNR of 5.

The proposed method is applied on the simulated images. At the end of the dis-
junctive combination of each pixel with its neighborhood, the belief masses are
spread over the hypotheses {ω1}, {ω2} and {ω1,ω2} (Fig. 1(f), (g) and (h)). The
belief of each pixel for which the information is ambiguous is mainly represented on
the hypothesis {ω1,ω2}. The result, using the conjunctive combination of each pixel
with its neighborhood is presented Fig. 1(i), (j) and (k). Inside areas, the method
provides high beliefs in favor of {ω1} and {ω2}. The uncertainties due to noise are
therefore reduced. Within the transitions between areas, the belief is mainly repre-
sented on the hypothesis {ω1,ω2}, highlighting the imprecision.

For comparison, we present Fig. 1(c), (d) and (e) the result of the modeling using
the method proposed in [6]. This method considers both noisy and fuzzy information

(a) {ω1} (b) {ω2}

(c) {ω1} (d) {ω2} (e) Ω

(f) {ω1} (g) {ω2} (h) Ω

(i) {ω1} (j) {ω2} (k) Ω

SNR

performance

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.6

0.7

0.8

0.9

1

(l)

Fig. 1 Results of the fusion of mono-modal simulated images. (a) and (b) are initial BBA. (c),
(d) and (e) show the BBA with the method proposed in [6]. (f), (g) and (h) present the BBA
after the disjunctive combination. (i), (j) and (k) show the BBA applying then the conjunctive
combination (our method). On (l) are presented the recognition rates according to different
SNR on simulated images using only FCM (black curve), both FCM and the method proposed
in [6] (orange curve), the conjunctive rules (blue curve), the disjunctive and the conjunctive
rules (green curve), and using disjunctive rule integrated in FCM followed by conjunctive
rule (red curve).
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as imprecision. Note that the conjunctive combination of neighboring pixels is an
important step of our method to reduce noise and transfer fuzzy information on
disjunctions.

Fig. 1(l) presents the recognition rates using FCM, and applying our method,
and the method proposed in [6] according to different Signal to Noise Ratio (SNR).
To measure recognition rates for each SNR, the methods are here applied on two
images having the same SNR, and results are then fused using the Dempster’s rule
in order to reduce both uncertainties and imprecisions. As we can see, our method
gives better recognition rates than the method proposed in [6]. In addition, note that
the conjunctive combination of neighboring pixels allows to improve the results.
Moreover, when disjunctive rule is integrated in FCM, performances are lightly im-
proved.

4 Application to Multi-modal PET Images for Functional
Tumor Localization

The proposed method is also applied for multi-modal fusion of PET functional med-
ical images (Fig. 2) to localize the tumor. These images are obtained after injection
of a tracer specific to a studied function. From tracer FDG, FLT and FMISO, three
type of PET images are obtained for a patient. Their characteristics are respectively
glucose metabolism, cell proliferation and hypoxia (inadequate supply of oxygen).
The FDG provides a good definition of the tumor target volume, especially gan-
glionic [8]. The FLT has a better tumor specificity than FDG [9] and lets us to en-
visage increasing the frequency of radiation therapy sessions on hyper-proliferative
lesions. Finally, FMISO defines hypoxic tumors for which an irradiation dose esca-
lation can be envisaged to improve the treatment [10].

The three PET images allow the distinction of areas that can be represented by
five singletons, namely healthy tissue {N} (Normal), those with an important glu-
cose Metabolism {M}, an important cell Proliferation {P}, a significant hypoxia
{H}, and tissues with a Full uptake {F}: where tissues need an increasing of both
the radiation therapy frequency and the dose. For each image, estimation step as
proposed has been applied in order to obtain degrees of belief over two hypotheses
and their union as presented in Table 1.

(a) FDG (b) FLT (c) FMISO

Fig. 2 Transverse slices for one patient with lung cancer. (a) Glucose metabolism PET im-
age, (b) cell proliferation PET image, (c) hypoxia PET image. The area of interest (tumor
lesion) is located in the rectangle.
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Table 1 Hypotheses considered for PET images in order to fuse them coherently.

Image Low uptake High uptake Ω
FDG {N} {M,P,H,F} {N,M,P,H,F}
FLT {N,M,H} {P,F} {N,M,P,H,F}

FMISO {N,M,P} {H,F} {N,M,P,H,F}

(a) {M,P,H,F} (b) Ω (c) {P,F} (d) Ω (e) {H,F} (f) Ω

(g) ∅ (h) {M} (i) {P} (j) {H} (k) {F} (l) max

Fig. 3 Images showing results of our method of fusion on multi-modal PET images. (a) to
(f) show the BBA assigned to each voxel after the estimation step. (g) to (l) are the results
applying the Dempster’s rule of combination. (g) correspond to the areas of conflict. (h) to (k)
are the plausibility corresponding to our hypotheses of interest. Finally, (l) is the segmented
image using the maximum of plausibility.

On PET images, partial volume effect depends both on the size of the high uptake
area and the contrast between areas. It becomes also important to reinforce BBA of
high uptake areas according to its contrast and its volume. We chose to apply a
reinforcement with a knowledge depending on contrast and volume. A learning is
first carried out on PET images for which the high uptake volume is known in order
to determine the parameters of reinforcing. This step allows to reduce imprecisions
on mono-modal PET images.

Results obtained from multi-modal PET images (Fig. 2) are presented in Fig. 3.
From Fig. 3(a) to (f) are presented BBA corresponding to high uptake tissues and
imprecise information after applying our fuzzy clustering method on each image
followed by the conjunctive combination of neighboring voxels. On one hand, we
observe that noisy information is removed from areas corresponding to high uptake
tissues. On the other hand, we can see that areas corresponding to partial volume
effect and medium uptake are mainly assigned to the vacuous BBA. Fig. 3(g) to
(k) present the result of the multi-modal PET image fusion using first the reinforc-
ing and then the Dempster’s rule [1]. They present both the BBA corresponding to
the conflict, and the plausibility corresponding to our hypotheses of interest: {M},
{P}, {H} and {F}. Note that the conflict corresponds to a high uptake in FLT and
FMISO and a low uptake in FDG. Finally, Fig. 3(l) correspond to the segmented
tumor using the maximum of plausibility. This image is of great interest for the
radiotherapist in order to adapt dose deliverance according to the functional tumor
tissues.
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5 Discussion-Conclusion

Currently, in medical images, very few authors consider both spatial uncertainties
and imprecisions in the information modeling with the BFT [6]. We propose to per-
form a fusion of neighboring information by a disjunctive combination followed by
a conjunctive combination. This method allows to deal with both types of imper-
fection. In addition, we suggest to integrate the disjunctive combination in FCM in
order to compute centroids only with certain and precise information. Finally, we
propose to take benefit from prior knowledge in order to reduce imprecisions.

As shown from the results on simulated and medical images, the interest of our
method is that the uncertainties due to noise are largely removed, and that the im-
precision at the boundaries between regions is taken into account in the modeling.
Moreover, considering large amount of noise, our method outperform a simple FCM
and the method proposed in [6].

The method is generic since it can be applied whatever the distribution of initial
beliefs is. In future work, we will test our method on a larger database to assess the
robustness of the method, and on other types of images to confirm its genericity.
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Belief Theory for Large-Scale Multi-label Image
Classification

Amel Znaidia, Hervé Le Borgne, and Céline Hudelot

Abstract. Classifier combination is known to generally perform better than each
individual classifier by taking into account the complementarity between the input
pieces of information. Dempster-Shafer theory is a framework of interest to make
such a fusion at the decision level, and allows in addition to handle the conflict
that can exist between the classifiers as well as the uncertainty that remains on the
sources of information. In this contribution, we present an approach for classifier
fusion in the context of large-scale multi-label and multi-modal image classification
that improves the classification accuracy. The complexity of calculations is reduced
by considering only a subset of the frame of discernment. The classification re-
sults on a large dataset of 18,000 images and 99 classes show that the proposed
method gives higher performances than of those classifiers separately considered,
while keeping tractable computational cost.

Keywords: Demspster-Shafer theory, multi-label classification, multi-modal
classification, classifier fusion.

1 Introduction

Image annotation consists in describing an image content according to a finite num-
ber of concepts. This problem is usually posed as a set of binary classification tasks,
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which means to address both image description and visual concept learning. Con-
cerning the first step, images are commonly described using only visual content
such as color, texture or shape etc. However, in practice an important gap remains
between visual descriptors and the semantic content of images [12].

Therefore, the use of multiple classifiers trained on different modalities (visual,
textual ...) and features becomes more popular due to the fact that classifiers are
different and informative [5, 7]. Thus, the fusion of their decisions can yield to
higher performance than the best individual classifier [4].

Most commonly, straightforward fusion approaches, such as majority voting,
maximum and averaging [13] have been used in the literature. According to Tax
et al. [13] simple average is the optimal linearly combining rule, only if the indi-
vidual classifiers exhibit both identical performances and correlations between esti-
mation errors. Otherwise, Dempster-Shafer theory [11] is particularly interesting to
handle the uncertainty and the conflict that can exist between different classifiers.
However, it suffers from a high computational cost, in particular when the num-
ber of classes (i.e the frames of discernment) is large. To encounter this limitation,
Denoeux al. [2] proposed a method to reduce the complexity of manipulating and
combining mass functions, when belief functions are defined over a suitable subset
of the frame of discernment equipped with a lattice structure. This approach was
applied for multi-label classification based on the Evidential KNN classifier. For a
problem with C classes, this method reduces the complexity from 22C

to 3C + 1.
Althougth such a reduction is impressive, the problem remains intractable when C
is above 10, that is quite common for a multimedia classification problem, for which
C can reach 100 or 1000.

The most similar prior work is [9], which combine textual and visual classifiers
based on Dempster’s rule to improve the classification accuracy. However, their sys-
tem was applied for single-label classification task, for a small dataset (≈ 1,200
images) and only for six classes of emotions.

In this work, we aim at improving the classification accuracy based on classi-
fier fusion in the Dempster-Shafer theory to handle the uncertainty and the conflict
that can exist between different classifiers and to assess the discrepancy between
various sources of information. The major difference between our work and afore-
mentioned efforts is that we address the problem of combination in a multi-label
classification task for a large problem: to the best of our knowledge, this is the
first attempt to apply Dempster theory for a multimodal multi-label image clas-
sification for a large dataset (≈ 18,000 images) and a large variety of categories
simultaneously (scene, event, objects, image quality and emotions ≈ 99 concepts
). First, we convert the classifier output probabilities into consonant mass func-
tions using the inverse pignistic transform [3]. Secondly, these mass functions are
combined in the belief theory using Dempster’s rule [11]. Since Average rule has
been widely used in the literature, and it outperforms other conventional methods
(Maximum, Product, Majority voting), we use it as a baseline to compare with the
Dempster’s rule.

The remainder of the paper is organized as follows. The background on be-
lief functions is first recalled in section 2. The proposed approach for large scale
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multi-label image classification is presented in section 3, and experimental results
are reported and discussed in section 4. Section 5 concludes this paper.

2 Basics of Dempster-Shafer Theory

In Dempster-Shafer (DS) theory [11], a frame of discernment Ω is defined as the
set of all hypothesis in a certain domain. A basic belief assignement (BBA) is a
function m that defines the mapping from the power set of Ω to the interval [0,1]
and verifies:

m : 2Ω → [0,1] (1)

∑
A∈2Ω

m(A) = 1 (2)

The quantity m(A) can be interpreted as a measure of the belief that is commited
exactly to A, given the available evidence. A subset A ∈ 2Ω with m(A)> 0 is called
a focal element of m. In DS theory, two functions of evidence can be deduced from
m and its associated focal elements, belief function Bel and plausibility function Pl.
Bel(A) is the measure of the total belief committed to a set A. The belief function is
defined as a mapping Bel : 2Ω → [0,1] that satisfies Bel( /0) = 0,Bel(Ω) = 1 and for
each focal element A, we have:

Bel(A) = ∑
/0 �=B⊆A

m(B) (3)

The plausibility of A, Pl(A), represents the amounts of belief that could potentially
placed in A and defined as:

Pl(A) = ∑
A∩B �= /0

m(B) (4)

2.1 Dempster’s Combination Rule

When there are many sources of information defined on the same frame of discern-
ment, the mass functions from different sources are combined under the normalized
Dempster’s combination rule [11].

m1−2(A) = m1⊕m2 =

{
∑B∩C=A m1(B)m2(C)

1−∑B∩C= /0 m1(B)m2(C)
, ∀ A ⊆ Ω , A �= /0

0 i f A = /0
(5)

where k = ∑B∩C= /0 m1(B)m2(C) represents the degree of conflict between the two
sources. If k = 1 the two evidences are in conflict and they can not be
combined.
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3 Proposed Multi-label Classification System

In the context of multi-label and multi-modal classification problem, each image
can belongs to one or more than one class. Formally, let Ω = {w1, ...,wC} be the
set of labels or classes. The frame of discernment of the multi-label extended DS
theory is not the set of all possible single hypotheses but its power set Θ = 2|Ω |.
Given a training set T = {(X1,Y1), ...,(XN ,YN)} of N labelled images, where Xi =
{x1

i ... xL
i } represents the feature vector of image Ii extracted from L modalities and

Yi the corresponding set of labels, our goal is to predict the set of lables that describe
the image content. The flowchart of the proposed system is presented in Figure 1.
Assume that we have Q classifiers, denoted by ψ1,ψ2, ...ψQ to be combined. Given
an input image I, each classifier ψi produced an output ψi(I) defined as :

ψi(I) = [si1, ...,siC] (6)

where si j indicates the degree of confidence in saying that ’image I belongs to class
wj according to classifier ψi‘. First, classifier output are normalized to obtain a
probability distribution pi over Ω as follows:

������������	�

Visual Classifier Contextual Classifier

Building mass function

Decision 

Tierna, sweet, happy, girl, 
Amor, bebe, top, preciosa ...

Demspter's Combination
Rule

Building mass function Building mass function

Semantic Classifier 

Fig. 1 Flowchart of the proposed system. First, the classifier output scores ψi are normalized
to sum to one. Secondly, the obtained probabilities are transformed into mass function using
the inverse pignistic transform. A combination is performed to obtain the final mass function,
used to compute the plausibility fo decision making.
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pi(wj) =
si j

∑C
k=1 sik

, f or j = 1, ...,C (7)

For each classifier ψi, the element of Ω are ranked by decreasing probabilities such
that p(w1) ≥ p(w2) ≥ ... ≥ p(w|Ω |). The class label of an instance may be repre-

sented by a variable Y taking values in Θ = 2|Ω |. Thus, expressing partial knowledge
of Y in the Dempster-Shafer framework may imply storing 22C

numbers. Based on
this ordering, instead of considering the whole power set of Θ , we will focus on a
smaller subset R(Ω) defined by:

R(Ω) = {Ak = {w1, ...,wk+1},∀ k = 1, ..., |Ω |− 1} (8)

The size of this subset is |Ω |− 1, it is thus much smaller than 22C
while being rich

enough to express evidence because we consider only the most probable subsets.
Secondly, we convert the obtained probabilities into consonant mass functions using
the inverse pignistic transform [3]. The consonant mass function derived from these
probabilities verifies :

m : 2Ω → [0,1], ∑
Ak∈2Ω

m(Ak) = 1 (9)

m({w1,w2, ...,wi}) = i× [p(wi)− p(wi+1)] ∀ i < |Ω |
m({w1,w2, ...,w|Ω |}) = |Ω |× p(w|Ω |)

m(X) = 0 ∀ X /∈ R(Ω).
(10)

In this work, we choose to combine the obtained consonant mass functions from
different classifiers using the normalized Dempster’s rule [11]. Other combination
rules can be used [10]. Let mi be the mass function of the source i, the combination
of n mass function (corresponding to n classifiers) is defined according to Demp-
ster’s combination rule as follows:

m1−n(A) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑

∩n
k=1bk=A

n

∏
i=1

mi(bi)

1− ∑
∩n

k=1bk= /0

n

∏
i=1

mi(bi)

, ∀A ⊆ Ω , A �= /0,bk ∈ Rk(Ω)

0 i f A = /0

(11)

Let Ŷ be the predicted label set for instance x. To decide whether to include each
class or not, we compute the degree of plausibility Pl(wj) that the true label set Y
contains the label wj, and the degree of plausibility Pl(w̄ j) that it does not contain
the label wj using formula (4). We then define Ŷ as:

Ŷ = {wj ∈ Ω |Pl(wj)≥ Pl(w̄ j)} (12)
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4 Experimental Results

4.1 Dataset and Experimental Setup

The Dataset used in our experiments is the MIR Flickr dataset [6] containing 8,000
images for training and 10,000 for testing belonging to 99 concept classes. These
concepts describe the scene ’indoor, outdoor, landscape...‘, depicted objects ’car, an-
imal, person...‘, the representation of image content ’portrait, graffiti, art...‘, events
’travel, work...‘, or quality issues ’overexposed, underexposed, blurry...‘ and emo-
tions ’funny, cute, nice, scary ... ‘. Figure 2 shows samples of images taken from
the dataset with their annotated concepts.

Features We used two textual descriptors and one visual descriptor. The textual
descriptor is based on semantic similarity between tags and visual concepts. Two
distances were used: one based on the Wordnet ontology and one based on social
networks. Each feature vector is of size 99 (the number of concepts). The visual com-
ponent considers various local and global features, such as colour and edge features.
The visual feature vector is of size 890. More details about the used features can be
found in [14]. Each feature vector was used to train a classifier using the Fast Shared
Boosting algorithm [8]. Three measures are used to test the performance of the in-
dividual classifiers and the different combinations: Mean Average Precision (MAP),
Equal Error Rate (ERR) and Area Under Curve (AUC).

4.2 Results and Discussions

Table 1 displays the performances of individual classifiers and the two considered
combination rules in terms of MAP, ERR and AUC. These results show that in-
dividual classifiers exhibit identical performances with a small superiority to the
contextual classifier. Since Average rule has been widely used in the literature, and
it outperforms other conventional methods (Maximum, Product, Majority voting ),
we will use it as a baseline to compare to the Dempster’s rule.
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Fig. 2 Samples of images taken from the dataset with their annotated concepts.
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Table 1 Comparative Performance of individual classifiers in terms MAP, ERR and AUC.

Classifier Visual Classi-
fier

Contextual Classi-
fier

Semantic Classifier Dempster’s
rule

Average rule

MAP 29.86 32.13 29.24 39.05 40.21
EER 28.93 31.50 35.69 26.21 24.64
AUC 77.59 74.32 68.44 80.79 82.29

Table 2 Comparative Performance of individual classifiers, Dempster, Average and the Im-
ageClef 2011 Winner [1] for some challenging classes in terms of Mean Average Precision
(MAP).

Classes Visual Contextual Semantic Dempster Average ImageClef 2011
Winner [1]

Travel 18.85 14.78 17.55 22.12 14.57 16.72
Technical 08.19 06.37 04.52 12.85 07.24 08.51
Boring 07.28 07.78 07.63 15.88 08.79 09.94
Bird 17.55 51.71 56.08 61.52 58.77 58.71
Insect 14.26 47.84 46.44 58.08 53.12 45.21
Airplane 05.36 44.36 42.53 61.66 59.32 22.93
Skateboard 00.27 10.29 21.54 28.42 11.46 00.56
Scary 18.46 08.31 14.10 19.02 11.29 16.39

By comparing these results, we can see that the combination of classifiers for
both Dempster’s rule and average rule gives better results than the best individual
classifier. We obtain a gain of ≈ 10% in terms of classification accuracy and con-
sequently, reducing the classification error by ≈ 9%. For this dataset, we observe
that the average rule achieve slightly better performances. These results may be ex-
plained by the performance of the individual classifiers which exhibit both identical
performances and correlations between estimation errors. In addition, we train indi-
vidual classifiers with unbalanced data over classes which can generate unreliable
confidences (e.g. caused by a small training set or by overtraining).

The average rule is hardly ever theoretically optimal, but performs sometimes sur-
prisingly good except for some classes as shown in Table 2. For these challenging
classes, Dempster’rule performs much better than the average rule especially when
considering ensembles of ’good‘ and ’bad‘ classifiers, then using the average rule to
combine the classification results will not be a good choice. We compare Dempster’s
rule to the ImageClef 2011 Winner [1] for these classes. The proposed method outper-
forms the state of art [1] for such type of classes. We can notice that the Belief theory
seems to offer a significant advantage to such situations. It is particularly interesting
to handle the uncertainty and the conflict that can exist between different classifiers.

5 Conclusion

In this paper, we presented a system for combining classifiers using Belief theory
for large-scale multi-label image classification. When individual classifiers present
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similar performances, results have shown that using simple rules such as averaging
can be a good choice. While, for conflicting classifiers, the Belief theory seems to
be an interesting framework to handle the uncertainty and the conflict that can exist
between different classifiers. One direction for future research is to take into account
the classifier reliability while combining. An additional direction is to construct
mass functions directly in the classifiers.

References

1. Binder, A., Samek, W., Kloft, M., Müller, C., Müller, K.-R., Kawanabe, M.: The joint
submission of the tu berlin and fraunhofer first (tubfi) to the imageclef 2011 photo anno-
tation task. In: CLEF (Notebook Papers/Labs/Workshop) (2011)

2. Denoeux, T., Masson, M.: Evidential reasoning in large partially ordered sets. Annals of
Operations Research (May 2011)

3. Dubois, D., Prade, H., Smets, P.: New Semantics for Quantitative Possibility Theory. In:
Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 410–
421. Springer, Heidelberg (2001)

4. Duin, R.P.W.: The combining classifier: To train or not to train? In: ICPR (2), pp. 765–
770 (2002)

5. Guillaumin, M., Verbeek, J., Schmid, C.: Multimodal semi-supervised learning for image
classification. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 902–
909 (June 2010)

6. Huiskes, M.J., Lew, M.S.: The mir flickr retrieval evaluation. In: MIR 2008: Proceedings
of the 2008 ACM International Conference on Multimedia Information Retrieval. ACM,
New York (2008)

7. Kawanabe, M., Binder, A., Muller, C., Wojcikiewicz, W.: Multi-modal visual concept
classification of images via markov random walk over tags. In: Proceedings of the 2011
IEEE Workshop on Applications of Computer Vision, WACV (2011)

8. Le Borgne, H., Honnorat, N.: Fast shared boosting for large-scale concept detection.
Multimedia Tools and Applications, 1–14 (2010)
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Facial Expression Classification Based  
on Dempster-Shafer Theory of Evidence 

Mohammad Shoyaib1, M. Abdullah-Al-Wadud2, S.M. Zahid Ishraque1,  
and Oksam Chae1 

Abstract. Facial expression recognition is a well discussed problem. Several ma-
chine learning methods are used in this regard. Among them, Adaboost is popular 
for its simplicity and considerable accuracy. In Adaboost, decisions are made 
based on the weighted majority vote of several weak classifiers. However, such 
weighted combination may not give expected accuracy due to the lack of proper 
uncertainty management. In this paper, we propose to adopt the Dempster Shafer 
theory (DST) of Evidence based solution where mass values are calculated from  
k-nearest neighboring feature information based on some distance metric, and 
combined together using DST. Experiments on a renowned dataset demonstrate 
the effectiveness of the proposed method.  

1   Introduction 

Facial expression generally conveys information, from which the state of the mind 
of a person may be inferred. The rapid development of technologies facilitates the 
consumer devices to incorporate different types of applications related to face im-
ages. Among them, facial expression recognition (FER) has become an active re-
search area over the last two decades due to its diversified application areas. The 
main focuses of FER based researches are the appropriate representation of differ-
ent expressions and their proper classification. Selection of appropriate and small 
number of features to represent the facial expressions improves the classification 
accuracies. Again, a suitable classifier also increases the overall performance.  

Several promising facial expression recognition systems (FERSs) have already 
been proposed [16], [11]. Based on the features used to represent the expression, 
FERSs can generally be categorized into geometrical feature-based approaches 
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and appearance-based approaches [18]. The geometrical feature-based approaches 
rely on the detection of a set of fiducial points [13], face feature contours [7] or 
active shape model [10] which is usually followed by tracking of the detected 
points or shapes. However, the computational cost is very high for these methods 
[2]. Further, they usually require accurate facial feature detection and tracking, 
which may not be feasible in many situations [16]. On the other hand appearance-
based approaches usually use partial or whole facial textures to identify different 
expressions. Among the appearance based methods Gabor and local binary pattern 
(LBP) based FERS are popular for their better performances. In this paper, we 
adopt LBP based method due to its success in various texture based classification 
and face analysis work. Further, LBP is computationally simple and robust in 
monotonic illumination change. We extract LBP features from the whole face  
image and analyze its performances under evidential theory. 

For facial expression classification Adaboost [6] is largely used [8] [14]. It is a 
well-known ensemble learning algorithm and can be used either as a classifier or 
as a feature selector. In Adaboost, every weak classifier offers binary decisions  
(1 or -1) regarding all the classes.  Generally, it constructs a strong classifier, H(x), 
as a linear combination of T weak classifiers, ht(x), and is given by 

   ( )( ) ( ) ,1
TH x sign h xt tt α= ∑ =        (1) 

where t = 1, 2, …, T, and tα is a weight that indicates the importance of the cor-

responding ht(x). The final decision is thus made based on the weighted majority 
vote of the T weak classifiers. 

A facial expression may not always be a perfectly distinguishable one. It may 
rather be a combination of different expressions. A well-designed statistics-based 
method might offer a good solution in this case. Again, a set of features generated 
from a given image  may not always be adequate to express all the variations in 
expressions. This may also lead to uncertainty in expression detection. However, 
the weighted majority voting scheme of Adaboost may fail to handle these uncer-
tainties. To solve this problem, we propose to use the Dempster-Shafer theory of 
evidence, which offers a powerful and flexible framework for representing and 
handling uncertainties and thus helps to overcome the aforementioned limitations. 

The rest of the paper is organized as follows. Section 2 includes a short  
overview of the Dempster-Shafer theory of evidence. The Proposed method is  
described in Section 3. Section 4 shows some comparative results and Section 5 
concludes the paper. 

2   Dempster-Shafer Theory of Evidence  

The Dempster-Shafer theory of evidence (DST) [15] uses a frame of discernment, 
which is defined as a set of mutually exclusive and collectively exhaustive hypo-
theses denoted by Θ . The power set of all possible subsets of Θ , including itself 

and the empty set φ , is 2Θ . A mass function m: 2 [0,1]Θ →  is a function  
satisfying (2).  
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(2)

Here, m(S) represents the belief reflecting how strongly S is supported. The mass 
values assigned to Θ  is called the degree of ignorance, and the subsets S of Θ  
with non-zero mass values are called the focal elements. Belief (bel) and plausibil-
ity (pl) are two other common evidential measures, which are derived in (3) and 
(4), respectively. 
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where S and T are subsets of Θ .  
Dempster’s rule of combination can fuse the mass functions mi obtained from n 

Sources of information according to (5).  
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where K represents the degree of conflict given by  
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There are several ways of taking the final decision using DST framework. For in-
stance, decision can be made by choosing the hypothesis with the maximum mass, 
belief, plausibility or using pignistic probability distribution [17, 4].  
 
 

 

Fig. 1 The overview of the proposed expression recognition method 
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3   The Proposed Method 

The proposed FERS consists of two main steps: feature generation – using 
LBP and selection of the prominent features by Adaboost; classification –  
using a DST based framework. The overall proposed framework is depicted in 
Fig. 1.  

3.1   Feature Generation 

In our proposal, we use local binary patterns as the feature. A local binary pat-
tern (LBP) is a binary code defined at a pixel, c, with respect to its neighboring 
pixels in a grayscale image [12].  Therefore, the LBP at c for n neighbors, 
which are located at uniform distance on a circle centered at c with radius r, is 
given by 

1 01( ) ( )2 , ( ), 0 0

if an lLBP x y q g g q an r c c cl l otherwise

⎧⎪
⎨
⎪⎩

≥−, = − =∑ =
                      (6) 

where (xc, yc) is the pixel co-ordinate of c, and gc and gl are the intensities of c and 
the lth neighboring pixel, respectively. An LBP code thus encodes local micro-
patterns at a pixel such as edge, corner and line-end 

These LBP codes of an image are then used to build a histogram which 
represents a feature vector of the image. The kth component of the histogram, Hk, 
for an image of size M×N is derived by 

1 ( , ),1 1 ,, ,0 0 0 .

if LBP i j kn rk k kM NH i j i ji j otherwise
ψ ψ

=⎧⎪− −= =∑ ∑ ⎨= = ⎪⎩

              (7) 

It is observed that all the variations in LBP codes are not necessary to 
represent the most of the available patterns in the nature. Thus following [12] 
we use uniform LBP patterns. In the histogram, each of the uniform LBP 
codes is placed in separate bin, and all non-uniform LBP codes are placed in a 
single bin.  

For generating the patterns, we follow the similar method describe in [1]. For 
this we first divide the whole face into few blocks and then generate LBP histo-
gram for each block using (7). For different facial expressions, the changes in fa-
cial features in all the parts of the face are not usually same. Hence, they cannot 
equally contribute for discriminating facial expressions. To reflect the significance 
of the features coming from different blocks, we multiply the accumulations in 
histogram bins of every block with some predefined weights as suggested in [1]. 
We then concatenate all the resultant histograms to form the feature vector to 
represents an expression.  

During the training phase, the feature vectors of all the expressions are fed into 
the multiclass Adaboost, which then selects N prominent bins having better dis-
crimination ability among all the bins in the feature vector. We use these selected 
bins to form the final feature vector for classification.  
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3.2   Feature Classification 

For classification, we use the Dempster-Shafer theory of evidence-based ap-
proach. The reason behind choosing this approach is its capability to handle the 
uncertainties that might arise due to the similarity of different expression features, 
and the distributions of these features for different expression may overlap. 

For using DST based method one of the foremost challenge is to find a way to 
calculate the mass values. In this case, we adopt an approach proposed by  
Denoeux [3] (here we named as KNNDS). In KNNDS, the mass values are calcu-
lated from the k-nearest neighboring patterns according to a distance metric for a 
given test pattern. The evidences from the neighbors are then combined using DS 
rule of combination.  

Let Θ  = {C1, C2, . . . , CM} denote M different expression classes. Consider 
that Y is the feature vector to be classified and Nk is the set of its k-nearest neigh-
bors in the training set. Here any Yi∈ Nk  may belongs to a class Cq ∈ Θ . This 
membership of Yi can provide piece of evidence to increase our belief that Y  
belongs to Cq. This evidence is represented by mass value mi as follows. 

({ })

( )

i
i q q

i
i q

m C

m

α

α

=

Θ = −1     (8) 

All the other values in im are 0. The mass i
qα is chosen as a decreasing function of 

the Euclidean distance di between Y and Yi
 

exp( ( ) )i i
q q dα α γ= − 2 20                 (9) 

where γq is a parameter associated to class Cq and α0 is  fixed. Such pieces of  

evidences are combined using Dempster’s rule of combination, and Y is classified 
to the class, for which the pignistic probability is maximum.  

4   Experimental Results 

In this section, we first discuss about the data that we use for our experiments, and 
then present the experimental results followed by a discussion.  

4.1   Source of Experimental Data 

According to Ekman and Friesen, six basic emotions, namely joy, disgust,  
sadness, anger, fear and surprise, can be universally recognized [5] (including neu-
tral expression it becomes seven). To evaluate the performances, we take 408 im-
age sequences of 96 subjects the Cohn-Kanade (C-K) database [9]. For six-class 
recognition, we pick three peak expression images from every sequence, which re-
sults in 1224 images. For seven-class, we include the first neutral expression 
frame, and thus there are 1632 images in total. For generating the results, we  
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Fig. 2 Recognition accuracies (%) on C-K database  

Table 1 Confusion Matrix for Six-Class Expression (KNNDS) 

 A D F J S G 
Anger (A) 89.66 3.44 0 0 6.9 0 
Disgust (D) 0 99 0 1 0 0 
Fear (F) 0 4 84 8 0 4 
Joy (J) 0 0 3.7 96.3 0 0 
Sadness (S) 1 1 0 0 98 0 
Surprise (G) 0 3.33 0 0 0 96.67 

Mean 93.94 

 
perform 10-fold cross validation on our dataset. For LBP codes, we take eight 
neighbors at two pixels apart (r = 2). For KNNDS, we take k = 10.  

4.2   Results  

In this section, we analyze the performances of KNNDS for expression classifica-
tion. We first compare the performance of KNNDS with Adaboost, and the results 
for both six and seven class expression recognition are shown in Fig. 2.  

Table 2 Confusion Matrix for Six-Class Expression (Adaboost) 

 A D F J S G 
Anger (A) 86.21 0 0 0 13.79 0 
Disgust (D) 5 85 0 5 0 5 
Fear (F) 12 0 76 8 0 4 
Joy (J) 0.14 0 2.3 97.56 0 0 
Sadness (S) 10.53 0 0 0 89.47 0 
Surprise (G) 0 0 0 0 3.33 96.67 

Mean 88.49 
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From Fig. 2, we can observe that in both six and seven class expression recog-
nition, KNNDS outperforms the Adaboost. To analyze it in more detail, we build 
up the confusion matrices as shown from Tables 1 to 4. The data in the tables 
show that KNNDS gives much better outcomes as compared to the Adaboost. The 
principle reason behind this better outcome is that the uncertainties in classifica-
tions by weak classifiers are handled well in Dempster-Shafer-based approach. 

Table 3 Confusion Matrix for Seven Class Expression on C-K Database (KNNDS) 

 A D F J S G N 
Anger (A) 76.47 0 0 0 0 11.76 11.76 
Disgust (D) 0 80 0 0 0 0 12 
Fear (F) 0 0 86.96 4.35 0 0 8.7 
Joy (J) 0 0 3.23 86.12 0 3.34 7.31 
Neutral (N) 0 0 0 0 83.3 0 16.7 
Sadness(S) 0 0 0 0 0 91.2 8.8 
Surprise(G) 3.9 0 3.7 3.7 5.3 0 83.4  
Mean  84.93 

Table 4 Confusion Matrix for Seven Class Expression on C-K Database (Adaboost) 

 A D F J S G N 
Anger (A) 52.94 0 0 0 5.88 5.88 35.29 
Disgust (D) 10 80 0 0 0 0 10 
Fear (F) 4.35 0 82.61 4.35 0 0 8.70 
Joy (J) 0 0 0 96.77 0 0 3.23 
Neutral N  5.88 0 0 0 76.47 5.88 11.76 
Sadness (S) 4 0 0 0 0 96 0 
Surprise(G) 0 0 3.7 0 3.7 0 92.59 
Mean  82.48 

 
From the aforementioned tables, we can observe that the individual class accu-

racies of KNNDS are acceptable. However, in case of Adaboost, there are many 
variations in the accuracies (for example, 96.77% for Joy, but 52.94% for anger in 
Table 4). 

5   Conclusion 

In this paper, we have investigated an appearance based facial expression recogni-
tion method using Dempster-Shafer theory of evidence. Here we use k-nearest 
neighbors to calculate the mass values and combine them using DST to identify 
the most probable expression present in an image. This method can also be ex-
tended to expression recognition in video images.  

We use an existing mass generation method in this paper. By incorporating un-
certainty management with the weak classifiers of Adaboost, it might be possible 
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to find an improved mass generation methodology to achieve better accuracy in 
expression recognition. We leave this as our future work. 
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Compositional Models in Valuation-Based
Systems

Radim Jiroušek and Prakash P. Shenoy

Abstract. Compositional models were initially described for discrete probability
theory, and later extended for possibility theory, and Dempster-Shafer (D-S) theory
of evidence. Valuation-based systems (VBS) can be considered as a generic un-
certainty framework that has many uncertainty calculi, such as probability theory, a
version of possibility theory where combination is the product t-norm, Spohn’s epis-
temic belief theory, and D-S belief function theory, as special cases. In this paper,
we describe compositional models for the VBS framework using the semantics of
no-double counting. We show that the compositional model defined here for belief
functions differs from the one studied by Jiroušek, Vejnarová, and Daniel. The latter
model can be described in the VBS framework, but with a combination operation
that is different from Dempster’s rule.

1 Introduction

Compositional models were initially described for discrete probability theory
[4, 5]. They were later extended by Vejnarová [14] for possibility theory, and in
[6] for belief functions in the Dempster-Shafer (D-S) belief function theory. In
this paper, we use the valuation-based systems (VBS) framework [10] to extend
compositional models to all uncertainty calculi captured by the VBS framework,
which includes calculi such as probability theory, a version of possibility theory
with the product t-norm, Spohn’s epistemic belief theory, and D-S belief function
theory.
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Faculty of Management, University of Economics, Jindřichův Hradec and Prague,
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We start by recalling the necessary basic notions of the VBS framework (most of
the material is taken from [10]).

2 Valuation-Based Systems

VBS consists of two parts — a static part that is concerned with representation of
knowledge, and a dynamic part that is concerned with reasoning.

The static part consists of objects called variables and valuations. Let Φ denote a
finite set whose elements are called variables. Elements of Φ are denoted by upper-
case Roman alphabets such as X , Y , Z, etc. Subsets of Φ are denoted by lower-case
Roman alphabets such as r, s, t, etc.

Let Ψ denote a finite set whose elements are called valuations. Elements of Ψ
are denoted by lower-case Greek alphabets such as ρ , σ , τ , etc. Each valuation
is associated with a subset of variables, and represents some knowledge about the
variables in the subset. Thus, we say that ρ is a valuation for r, where r ⊆ Φ is the
subset associated with ρ .

We identify a subset of valuations Ψn ⊂ Ψ, whose elements are called normal
valuations. Normal valuations are valuations that are coherent in some sense. In D-S
belief function theory, normal valuations are basic probability assignment potentials
whose values for all non-empty subsets add to one.

The dynamic part of VBS consists of three operators — combination, marginal-
ization, and removal — that are used to make inferences from the knowledge en-
coded in a VBS. We define these operators using axioms.

Combination. The first operator is the combination operator ⊕ : Ψ×Ψ → Ψn,
which represents aggregation of knowledge. It must satisfy the following three ax-
ioms:

1. (Domain) If ρ is a valuation for r, and σ is a valuation for s, then ρ ⊕σ is a
normal valuation for r∪ s.

2. (Commutativity) ρ ⊕σ = σ ⊕ρ .
3. (Associativity) ρ ⊕ (σ ⊕ τ) = (ρ ⊕σ)⊕ τ .

The domain axiom expresses the fact that if ρ represents some knowledge about
variables in r, and σ represents some knowledge about variables in s, then ρ ⊕σ
represents the aggregated knowledge about variables in r ∪ s. The commutativity
and associativity axioms reflect the fact that the sequence in which knowledge is
aggregated makes no difference in the aggregated result.

The set of all normal valuations with the combination operator⊕ forms a commu-
tative semigroup. We let ι /0 denote the (unique) identity valuation of this semigroup.
Thus, for any normal valuation ρ , ρ ⊕ ι /0 = ρ .

The set of all normal valuations for s ⊆ Φ with the combination operator ⊕ also
forms a commutative semigroup (which is different from the semigroup discussed
in the previous paragraph). Let ιs denote the (unique) identity for this semigroup.
Thus, for any normal valuation σ for s, σ ⊕ ιs = σ .

Notice that in general ρ ⊕ρ �= ρ . Thus, it is important to ensure that we do not
double count knowledge when double counting matters, i.e., it is okay to double
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count knowledge ρ that is idempotent, i.e., ρ ⊕ρ = ρ . In representing our knowl-
edge as valuations in Ψ, we have to ensure that there is no double counting of non-
idempotent knowledge.

Marginalization. Another operator is marginalization −X : Ψ → Ψ, which al-
lows us to coarsen knowledge by marginalizing X out of the domain of a valuation.
It must satisfy the following four axioms:

1. (Domain) If ρ is a valuation for r, and X ∈ r, then ρ−X is a valuation for r\{X}.
2. (Normal) ρ−X is normal if and only if ρ is normal.
3. (Order does not matter) If ρ is a valuation for r, X ∈ r, and Y ∈ r, then (ρ−X)−Y =

(ρ−Y )−X , which is denoted by ρ−{X ,Y}.
4. (Local computation) If ρ and σ are valuations for r and s, respectively, X ∈ r,

and X /∈ s, then (ρ ⊕σ)−X = (ρ−X)⊕σ .

The domain axiom is self-explanatory. Marginalization preserves normal (and non-
normal) property of valuations. The order does not matter axiom dictates that when
we coarsen knowledge by marginalizing out several variables, the order in which
the variables are marginalized does not matter in the final result. Occasionally, we
let ρ↓r\{X ,Y} denote ρ−{X ,Y}.

Removal. The removal operator . : Ψ×Ψn → Ψn represents removing knowl-
edge in the second valuation from the knowledge in the first valuation. It must satisfy
the following three axioms:

1. (Domain): Suppose σ is a valuation for s and ρ is a normal valuation for r. Then
σ .ρ is a normal valuation for r∪ s.

2. (Identity): For each normal valuation ρ for r, ρ ⊕ρ.ρ = ρ . Thus, ρ .ρ acts as
an identity for ρ , and we denote ρ .ρ by ιρ . Thus, ρ ⊕ ιρ = ρ .

3. (Combination and Removal): Suppose π and θ are valuations, and suppose ρ is
a normal valuation. Then, (π ⊕θ ).ρ = π ⊕ (θ .ρ).

We call σ .ρ the valuation resulting after removing ρ from σ . The identity axiom
defines the removal operator as an inverse of the combination operator.

In [10], a number of properties of combination, marginalization, and removal
operators are proved. For example, suppose π ,σ ,θ are valuations for p, s, and t,
respectively, ρ is a normal valuation for r, X ∈ s, and X /∈ r. Then, (π ⊕ θ ).ρ =
(π .ρ)⊕θ , and (σ .ρ)−X = σ−X .ρ .

3 VBS for D-S Belief Function Theory

In D-S belief function theory, we can use either basic probability assignments, or
belief functions, or plausibility functions, or commonality functions, to represent
knowledge. Here, we use only basic probability assignments.

Basic Probability Assignment. A basic probability assignment (bpa) μ for s is a
function μ : 2Ωs →R such that μ(a)≥ 0 for all a∈ 2Ωs , and ∑{μ(a) | a∈ 2Ωs}= 1.

B-Valuations. A b-valuation σ for s is a function σ : 2Ωs → R. We say σ is
normal if ∑{σ(a) | a∈ 2Ωs}= 1, and we say σ is proper if σ(a)≥ 0 for all a∈ 2Ωs .
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Proper normal b-valuations represent bpa functions. Normal b-valuations that are
not proper are called pseudo-bpa .

Set Operations. Suppose r, s, and t are sets of variables, r ⊆ s. For x ∈ Ωs, x↓r

denotes the projection of x into Ωr. Similarly, for a ∈ 2Ωs , the projection of a to r,
denoted by a↓r, is given by a↓r = {x↓r | x ∈ a}. Also, if a⊆Ωs, and b⊆Ωt , then the
join of a and b, denoted by a �� b is given by:

a �� b = {x ∈ Ωs∪t | x↓s ∈ a, x↓t ∈ b}. (1)

Combination. Suppose ρ and σ are b-valuations for r and s, respectively. Let K
denote ∑{ρ(b) ·σ(c) | b ⊆ Ωr,c ⊆ Ωs s.t.b �� c = /0}. The combination ρ ⊕σ is a
normal b-valuation for r∪ s given for all a ⊆ Ωr∪s by

(ρ ⊕σ)(a) =

{
K−1 ∑{ρ(b) ·σ(c) | b⊆ Ωr,c ⊆ Ωs s.t.b �� c = a} if K �= 0

0 if K = 0.
(2)

If K �= 0, then K is a the normalization constant that ensures that ρ ⊕σ is a normal
b-valuation. It is evident that if ρ and σ are bpa’s (proper normal b-valuations), and
K �= 0, then ρ ⊕σ is a bpa. It can be shown that the definition of combination in
Equation (2) satisfies the three axioms of combination.

Marginalization. Suppose σ is a b-valuation for s, and suppose X ∈ s. The
marginal σ−X is a b-valuation for s\ {X} given by

σ−X(a) = ∑{σ(b) | b ∈ 2Ωs s.t.b↓s\{X} = a} for all a ∈ 2Ωs\{X} . (3)

It can be shown that the definition of marginalization in Equation (3) satisfies the
four axioms of marginalization.

Removal. Removal is inverse of combination. It is not easy to define removal in
terms of b-valuations. For readers familiar with commonality functions, ⊕ reduces
to pointwise multiplication of commonality functions followed by normalization.
Thus, σ .ρ is pointwise division of commonality functions corresponding to σ and
ρ , followed by normalization. It can be shown that this definition satisfies the three
axioms of removal.

Notice that if σ and ρ are proper b-valuations, it is possible that σ . ρ is a
pseudo-bpa. This may be true even if r ⊆ s and ρ is a marginal of σ .

Convention. For the sake of simplicity, in the rest of this paper we assume that
whenever the operator ⊕ or . is applied, then the result does not result in the zero
valuation, a valuation whose values are identically 0.

4 Compositional Models in VBS

Suppose we have marginals for two overlapping subsets of variables, say for {D,G}
and {D,B}. How do we construct a joint distribution for {D,G,B} that is consistent
with the two marginals (assuming that it exists)? In [4], the operation of “compos-
ing” the two marginals to obtain a joint distribution is introduced. One way to view
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the composition operator is in terms of no double counting. Notice that the two
marginals are not distinct since the knowledge of {D} is included in both marginals.
So, the composition operator should aggregate the knowledge in the two marginals
while adjusting for the double counting of knowledge of {D}.

In practice, it is extremely unlikely we would find marginals on non-disjoint sub-
sets of variables with common marginals. In this case, there does not exist a joint
that agrees with both marginals. So we relax the requirements so that the joint dis-
tribution that is constructed is required to agree only with the first marginal.

Composition. A general definition of composition is as follows. Suppose ρ and
σ are normal valuations for r and s, respectively. The composition of ρ and σ ,
written as ρ � σ , is defined as follows:

ρ � σ = ρ ⊕σ .σ↓r∩s (4)

It can be seen directly from the definition in Equation (4) that the composition opera-
tor is, in general, neither commutative nor associative. Its most important properties
are summarized in the following lemma.

Lemma. Suppose ρ and σ are normal valuations for r and s, respectively. Then the
following statements hold.

1. Domain: ρ � σ is a normal valuation for r∪ s.
2. Composition preserves first marginal: (ρ � σ)↓r = ρ .
3. Commutativity under consistency: If ρ and σ have a common marginal for r∩ s,

i.e., ρ↓r∩s = σ↓r∩s, then ρ � σ = σ � ρ .
4. Associativity under a special condition: Suppose τ is a normal valuation for t,

and suppose s ⊃ (r∩ t). Then, (ρ � σ)� τ = ρ � (σ � τ).
5. Composition of marginals: Suppose t is such that (r∩ s)⊆ t ⊆ s. Then

(ρ � σ↓t)� σ = ρ � σ .

5 Comparison with an Alternative Compositional Model

For belief functions in the D-S theory, the operator of composition was originally
introduced in [6]. Since, as it will be shown in a simple example, it differs from
the operator introduced here in Equation (4), we will use for the original operator a
slightly different symbol.

Definition. Suppose ρ and σ are normal b-valuations for r and s, respectively. The
old-composition of ρ and σ , written here as ρ � σ , is defined for each a ⊆Ωr∪s by
one of the following expressions:

[1] if σ↓r∩s(a↓r∩s)> 0 and a = a↓r �� a↓s then (ρ � σ)(a) =
ρ(a↓r)·σ(a↓s)

σ↓r∩s(a↓r∩s)
;

[2] if σ↓r∩s(a↓r∩s) = 0 and a = a↓r ×Ωs\r then (ρ � σ)(a) = ρ(a↓r);
[3] in all other cases (ρ � σ)(a) = 0.



226 R. Jiroušek and P.P. Shenoy

Example. Consider the Studený’s example [1]. Suppose X ,Y and Z are variables
with state spaces ΩX = {x, x̄}, ΩY = {y, ȳ}, and ΩZ = {z, z̄}. Consider two b-
valuations ρ and σ for {X ,Z} and {Y,Z}, respectively, each having only two non-
zero values: ρ({xz̄, x̄z}) = ρ({xz̄, x̄z̄}) = 0.5 and σ({yz̄, ȳz}) = σ({yz̄, ȳz̄}) = 0.5.

In [7], it is shown that ρ � σ has also only two non-zero values:
(ρ � σ)({xyz̄, x̄ȳz}) = (ρ � σ)({xyz̄,xȳz̄, x̄yz̄, x̄ȳz̄}) = 0.5. Thus, we see that ρ � σ
is a proper normal b-valuation.

Also, ρ ⊕σ is a normal b-valuation with value 0.25 for the following four sets:
{xyz̄,xȳz̄},{xyz̄, x̄yz̄},{xyz̄, x̄ȳz},{xyz̄,xȳz̄, x̄yz̄, x̄ȳz̄}. In contrast, ρ � σ = ρ ⊕ σ .
σ−Y is a pseudo-bpa since (ρ �σ)({x̄ȳz}) = −0.25 (the following are the remain-
ing non-zero values of ρ �σ : (ρ �σ)({xyz̄,xȳz̄}) = 0.25, (ρ �σ)({xyz̄, x̄yz̄}) = 0.25,
(ρ �σ)({xyz̄, x̄ȳz}) = 0.5, (ρ �σ)({xyz̄,xȳz̄, x̄yz̄, x̄ȳz̄}) = 0.25).

It is worth mentioning that the same result as ρ � σ is obtained also by the
Srivastava-Cogger algorithm [13], but it need not be the case for different values of
the ρ and σ b-valuations in this example.

To understand the differences between the two operators of composition, recall that
a close connection exists between the combination operator ⊕ and a notion of in-
dependence. Namely, after combining ρ for X and σ for Y , we get the valuation
ρ ⊕σ for {X ,Y}, with respect to which variables X and Y are independent. Simi-
larly, if ρ is a valuation for {X ,Z}, and σ is a valuation for {Y,Z}, with respect to
the valuation ρ ⊕σ for {X ,Y,Z}, variables X and Y are conditionally independent
given Z. However, several other concepts of independence and conditional inde-
pendence for belief functions exists in the literature. For a non-exhaustive survey,
see [1, 2].

In their seminal papers, Dempster [3] and Walley and Fine [15] considered a type
of independence that hold for variables X and Y with respect to bpa μ for {X ,Y} if

μ(a) =

{
μ↓X(a↓X) ·μ↓Y (a↓Y ) if a = a↓X × a↓Y

0 otherwise
for all a ∈ Ω{X ,Y}. (5)

Generalizing this idea, we define an alternative operation of combination, denoted
by ⊕ , for b-valuations ρ and σ (for r and s, respectively) as follows. Suppose K
denotes ∑{ρ(a↓r) ·σ(a↓s) | a ∈ Ωr∪s s.t.a = a↓r �� a↓s}. The combination ρ⊕σ is
the b-valuation for r∪ s given for all a ∈ Ωr∪s by

(ρ⊕σ)(a) =

{
K−1ρ(a↓r)σ(a↓s) if K > 0, a = a↓r �� a↓s

0 otherwise.
(6)

It is obvious that ρ⊕σ defined in Equation (6) is a proper normal b-valuation for
r∪ s, and that ⊕ satisfies all the three axioms of combination.

In a similar way, we define an alternative removal operator . . Suppose ρ and σ
are b-valuations for r and s, respectively, and suppose that ρ is normal. Let K denote

∑{σ(a↓s)

ρ(a↓r)
| a ∈ Ωr∪s s.t.a = a↓r �� a↓s,ρ(a↓r)> 0}. σ .ρ is the b-valuation for s∪ r

given for all a ∈ Ωs∪r by
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(σ ⊕ρ)(a) =

{
K−1

(
σ(a↓s)

ρ(a↓r)

)
if K > 0, a = a↓r �� a↓s, ρ(a↓r)> 0

0 otherwise.
(7)

Thus, together with marginalization defined as in Section 3, we get an alternative
VBS for belief functions in the D-S theory. Let two normal b-valuations ρ and σ
for r and s, respectively, be such that

σ↓r∩s(x) = 0 =⇒ ρ↓r∩s(x) = 0.

Consider a⊆ Ωr∪s for which a = a↓r �� a↓s. Then,

(ρ⊕σ .σ↓r∩s)(a) =

{
k
(

ρ(a↓r)σ(a↓s)

σ↓r∩s(a↓r∩s)

)
if σ↓r∩s(a↓r∩s)> 0

0 otherwise,
(8)

which, due to the definition of old-composition, can be rewritten as

(ρ⊕σ .σ↓r∩s)(a) = k (ρ � σ)(a).

Notice that because of the above assumption, when computing ρ � σ , whenever
case [2] of the definition of old composition applies, the value ρ(a↓r) = 0.

Since for all a �= a↓r �� a↓s, (ρ⊕σ .σ↓r∩s)(a) = (ρ � σ)(a) = 0, we get

(ρ⊕σ .σ↓r∩s)(a) = k (ρ � σ)(a), for all a ⊆ Ωr∪s.

Since we know that both ρ⊕σ .σ↓r∩s and ρ � σ are normal b-valuations (for the
former, it follows from the lemma presented in Section 4; for the latter, it is proved
in [6]), it follows that k = 1.

Thus, we have shown that the operator of composition defined in [6] can be con-
sidered as a special case of composition in a VBS where combination is ⊕ , removal
is . , and marginalization is the same as in the D-S theory.

6 Summary and Conclusions

We have described the VBS framework in general, and described the composi-
tion model in the VBS framework using the semantics of no double counting
of knowledge. We have compared the compositional model defined in this pa-
per for D-S belief function theory with the one described in [6] for belief func-
tions. Our conclusion is that although both of these compositional models are
defined for belief functions and its alternative representations (bpa, commonal-
ity, etc.), the former is defined for the D-S belief function theory (that necessar-
ily entails Dempster’s rule of combination), and the latter for a belief function
theory that has ⊕ as the rule of combination. Both of these theories fit in the
VBS framework, but they have different semantics, different notions of conditional
independence, etc.
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6. Jiroušek, R., Vejnarová, J., Daniel, M.: Compositional models of belief functions. In: de
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Ascribing Causality from Interventional Belief
Function Knowledge

Imen Boukhris, Salem Benferhat, and Zied Elouedi

Abstract. In many Artificial Intelligence applications, causality is an important
issue. Interventions are external manipulations that alter the natural behavior of the
system. They have been used as tools to distinguish causal relations from spurious
correlations. This paper proposes a model allowing the detection of causal relation-
ships under the belief function framework resulting from acting on some events.
Facilitation and justification in the presence of interventions, concepts complemen-
tary to the concept of causality, are also discussed in this paper.

1 Introduction

Causal knowledge simplifies decision-making. In fact, it enables to choose the right
actions to achieve the goals. Accordingly, discovering causal relations is a task of
crucial importance in many applications. Three kinds of causal reasoning may exist:
by abduction for diagnosis problems, by deduction to deal with simulation problems
or by induction for ascribing causal links [2].

Usually, an agent identifies causal links from its background knowledge about
the normal course of things and a set of observed events. Some of these reported
events are considered as exceptional ones. Therefore, the concept of abnormality
plays an important role for ascribing causality.

Observational data provide some information about the statistical relations among
events. This means that they might be correlations that do not necessarily follow a
causal process. To tackle this problem, interventions are used [11, 13]. They consist
in external actions that perturb the spontaneous behavior of the system by forc-
ing some variables to take specific values. Through these experimentations, the ef-
fects of all direct (and undirected) causes related to the variable of interest will be
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ignored. Therefore, given two dependent variables A and B, if an action on an event
A has no impact on an event B, then A cannot be the cause of event B, but if a
manipulation of event A leads to a change in B, then we can conclude that A is a
cause of B.

While in the context of observations, any representation of the background
knowledge is suitable, in the context of interventions, the “graphical structure” is
needed. Interventions will be represented on this causal structure by the mean of the
“do” operator. This tool was originally introduced by [10] for the ordinal conditional
functions of Spohn [19] and proposed after that in [13] for Bayesian causal net-
works. To fit several kinds of imperfect knowledge, counterparts of the do-operator
were proposed in possibilistic causal networks [1, 3, 5] to deal with pure qualita-
tive knowledge when only the ordinal handling is important, and in belief function
causal networks [9].

Since information is is almost always tainted with various kinds of imperfection,
in this paper we are interested in ascribing causality when the agent’s background
knowledge is formalized with belief functions [14, 18]. It is an appropriate frame-
work to handle imperfect causal data [15]. In fact, the belief function theory has an
expressive power to model different forms of uncertainty including full knowledge,
partial ignorance, total ignorance and even probabilistic knowledge. It also better
manages ignorance situations [20].

A very preliminary work has been addressed in [8] in the context of observations
only. In this paper, we propose to ascribe causality when observing abnormal events
and also in presence of interventions. Our introduced model is based on belief func-
tion causal networks. The advantage of these networks comparing to the Bayesian
ones, is that they allow the description of uncertain effects including situations of
total ignorance after making an intervention.

The rest of the paper is organized as follows: In Section 2, we recall the ba-
sics of the belief function theory. Section 3 presents a new definition of the con-
cept of acceptance. The latest is used to ascribe causality. Our model for causality
ascription under the belief function framework in presence of observations or in-
terventions is introduced in Section 4. We also define its related notions namely,
facilitation, justification introduced in [6] and also the concepts of confirmation
and attenuation proper to the belief function framework. Section 5 concludes the
paper.

2 Belief Function Theory: Basic Concepts

In the following, we recall some of the basics of belief function theory. More details
can be found in [18]. In the belief function theory [14], beliefs are expressed on
propositions belonging to the powerset of Θ . The basic belief assignment (bba),
denoted by m, is a mapping from 2Θ to [0,1] such that:

∑
A⊆Θ

m(A) = 1. (1)
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where m(A) is a basic belief mass (bbm) assigned to A⊆Θ , and represents the part
of belief exactly committed to the event A. The subsets of Θ such that m(A)> 0 are
called focal elements.

A bba m can be equivalently represented by a plausibility function pl: 2Θ → [0,1],
defined as:

pl(A) = ∑
B∩A �= /0

m(B) and pl( /0) = 0. (2)

The value pl(A) quantifies the maximum amount of belief that could be given to a
subset A.

The combined effect of two distinct sources, providing two bba’s m1 and m2, is
computed by Dempster’s rule of combination [16], defined as:

m1⊕m2(A) = K−1 ∑
B∩C=A

m1(B) ·m2(C),∀B,C⊆Θ . (3)

where the normalization factor: K = 1−∑B∩C= /0 m1(B) ·m2(C).
Conditioning consists in revising the agent belief originally defined on A, fol-

lowing the arrival of a new information B ⊆ A. Indeed, the mass that was specif-
ically allocated to A is transferred to A∩B using Dempster’s rule of conditioning.
pl(.|B) denotes the conditional plausibility function obtained after revising the cor-
responding pl using a new piece of evidence B (where pl(B) > 0) and is defined
as [17]:

pl(A|B) = pl(A∩B)
pl(B)

. (4)

3 Acceptance and Ascribing Causality in Presence
of Observations

In this section, we introduce our causal model which is a counterpart of the qualita-
tive model proposed in [6, 7]. It also overcomes the limitation of the original model
in which the representation of events is restrained to binary variables. Therefore, an
agent will identify an unknown causal relation from three components:

• his non-causal uncertain background knowledge about the natural course of the
world formalized within the belief function theory;
For instance, in an intrusion detection system [12], one may express the effects
of legitimates actions on the system.

• a sequence of observations occurring in his environment, O = { f1, . . . , fn}. We
define an observation fi as a subset of the frame of discernment Θ which is the
cartesian product of all variable domains;
In intrusion detection systems, this may refer to log files (for legitimate actions)
and alerts that report a set of actions that are considered as malicious by some
security policies.
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• an event from the set of observed events that contradicts his judgment about the
normal course of things: an abnormal event ei. In fact, the agent will ascribe the
causes of this abnormal event.
For instance, there exists an illegal access to some data.

The agent will discriminate from the set of observed events between potential
causes. For that we will use the concepts of acceptance/rejection instead of changes
in uncertainty to ascribe causality. We define potential causes, which are rejected
events, as a partition representing exhaustive and mutually exclusive events of the
cartesian product of the domain of some n-ary variables.

The set of possible events is denoted by ΘE = {e1,e2, . . . ,en} satisfying these
properties:

1- Exhaustibility: e1∪ e2∪ . . .∪ en =Θ ,
2- Exclusivity: ∀i, j ei∩ e j = /0.

The complement of ei w.r.t. Θ , denoted by ei is defined as: ei =
⋃

e j ,e j �=ei
e j.

An abnormal event can be an atomic event representing any instance of some
n-ary variable Ai = ai j. In this case ΘE = {[ai1], . . . , [ain]} where [ai j] is a set of all
elements θ ∈Θ such that Ai in θ has the value ai j.
Note that when there is no ambiguity, we will use ei to denote normal and abnormal
events.

In this paper, we consider that an event is accepted if it is likely enough to be
considered as it holds. An event ei has different possible status, in particular it said
to be:

• accepted: if the confidence in this event is strictly greater than the confidence in
its complement according to ΘE : pl(ei)> pl(ei);

• rejected: if the confidence in this event is strictly less than the confidence in its
complement according to ΘE : pl(ei)< pl(ei);

• ignored: if the confidence in this event is the same than the confidence in its
complement according to ΘE : pl(ei) = pl(ei).

Of course, one may consider different levels of acceptance (rejection) in order to
associate a strength to causality ascriptions. This topic is not addressed here due to
space limitations.

Based on these definitions of acceptance/rejection, observed events are seen to
be linked by :

• causation: If an event ei is rejected and after observing an event e j it
becomes accepted, e j is said to be a cause of ei. Namely, pl(ei,e j)< pl(e j,ei)≤
pl(ei)< 1;

• facilitation: If an event e j is rejected and after observing an event ei it becomes
ignored then ei is said to facilitate the occurrence of e j. Namely, 0 < pl(ei,e j) =
pl(ei,e j)≤ pl(e j)< pl(e j);

• justification: Given a sequence of events, e j is said to justify ei, if ei is ignored
and becomes accepted after the observation of e j. Namely, pl(ei,e j) < pl(e j)≤
pl(ei) = pl(ei).
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These three concepts are the counterpart of the ones proposed in [4, 6] in possibility
theory framework.

4 Ascribing Causality Based on Belief Function Causal
Networks

4.1 Needs of Interventions

Causality plays an important role in many applications such as policy analysis or
decision making. Thus, a spurious correlation should be well distinguished from a
causal connection. In fact, two events may be wrongly inferred as causally related,
due to either the coincidence of their occurrence or the presence of a common cause
which is a hidden event. Finding the cause of an event will be much better and
easier and if it is based on data collected via active interventions rather than passive
observations.

Interventions can be seen as experimentations that force some variables to have
some specific values. They are represented with the “do” operator. A manipulation
on a variable Ai is an external action that forces it to take the specific value ai j without
modifying our beliefs over its direct causes. It is denoted do(Ai = ai j) or do(ai j).

Example 1. An agent learns that someone took up drugs, that he has dilated pupils.
He notices that this person’s heart rate has increased. The agent believes that gener-
ally, it is abnormal to be a drug-consumer, to have dilated pupils, and to have an ac-
celerated heart rate: (pl({Drugs})> pl({Drugs}); pl({Dilated})> pl({Dilated});
pl({Accelerated})>pl({Accelerated})).

From the observation: a person who has dilated pupils, has also an accelerated
heart rate, the agent will conclude that when pupils are dilated, it causes an increase
in heart rate (pl({(Dilated,Accelerated)}> pl({(Dilated,Accelerated)})).

Tropicamide shortly acts on the dilation of the pupil. When it is applied as eyes
drops, it forces the eyes to be dilated (do(Dilated)). The agent notes that his action
has no effect on the speed of the heartbeat. Accordingly, he will not be able to infer
that there is a causal relation between these two events.

The agent believes that it is normal for a drug-consumer to have dilated pupils
(pl({(Drugs,Dilated)})>pl({(Drugs,Dilated)})) and to have an accelerated heart
rate (pl({(Drugs,Accelerated)})> pl({(Drugs,Accelerated)})).

After forcing someone to take drugs (do(Drugs)), he observes that his pupils are
dilated and the speed of his heartbeat is altered. Therefore, he concludes that the
hidden event, namely taking drugs, is their common cause.

4.2 Extending Causality Ascription to Deal with Interventions

To ascribe causal relations between elements of the system, we propose to use belief
function causal networks [9]. The distinction between observations and interventions,
to identify causal relationships, is therefore made by the use of the “do” operator.
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A belief function causal network is a directed acyclic graph where nodes repre-
sent variables and arcs represent not only dependence relations but also cause-effect
relationships. The set of parents of Ai is denoted by Pa(Ai). Quantitatively, a set of
bba’s is associated with each node in the graph. For each root node Ai (Pa(Ai) = /0)
having a frame of discernment ΘAi , an a priori mass m(a) is defined on the powerset
2ΘAi . For other nodes, a conditional bba m(a|Pa j(Ai)) is specified for each subset of
Ai knowing an instance of Pa(Ai).

An intervention on a variable Ai forces it to take the specific value ai j, do(ai j).
This action makes the original causes of the manipulated variable no more respon-
sible of its state. However, our beliefs on the parents set Pa(Ai) will not be affected.
Graphically, it can be represented by the deletion of arcs relating the variable of
interest with its parents. The resulting graph is called a mutilated graph. The effect
of an intervention do(ai j) corresponds to observing the value ai j on this graph.

While an observation is encoded as a conditional bba computed as m(.|ai j), the
effect of an intervention on a variable Ai forcing it to take the value ai j, is given by
m(.|do(ai j)). If m is compactly represented by a belief network, then m(.|do(ai j))
is obtained from the network after removing the links between Ai and its parents
(see [9] for more details). The following subsection extends causality ascription for
handling such interventions.

4.3 Causality Ascription

An agent will ascribe causality from four components, namely:

• his background knowledge represented with a graphical structure: a belief func-
tion causal network;

• a sequence of observations;
• a sequence of interventions;
• an event that contradicts his judgment about the normal course of things: an

abnormal event.

Two events are perceived as causally related, if the agent starts believing that one
of them is rejected and after an action on the other one, he changes his beliefs and
accepts it.

Definition 1. Belief function causality ascription: If an event ei is rejected, i.e.
pl(ei) > pl(ei), and after acting on an event e j it becomes accepted, i.e.
pl(ei|do(e j)) > pl(ei|do(e j)). An intervention do(e j) is said to be a cause of ei,
namely

pl(ei,do(e j))< pl(ei,do(e j))≤ pl(ei)< 1. (5)

Example 2. Having dilated pupils is a rejected event: pl({Dilated}) > pl
({Dilated}; After forcing someone to take drugs (do(Drugs)), the agent observes
that his pupils are dilated: pl({(do(Drugs),Dilated)})>pl({(do(Drugs),
Dilated)}). He will conclude that forcing the event Drugs to be taken caused the
dilation of the pupils.
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4.4 Facilitation Ascription

Facilitation is a concept that is very close to causality. It is used when an agent is
cautious in his causal interpretation of the sequence of events: he starts not believing
in the occurrence of an event under the normal course of things and he changes his
beliefs after acting on an another event. However, this change consists to not believe in
the event neither in its complement instead of accepting it as it is the case for causality.

Definition 2. Belief function facilitation ascription: If an event ei is rejected, i.e.
pl(ei)> pl(ei), and after acting an event e j it becomes ignored, i.e. pl(ei|do(e j)) =
pl(ei|do(e j)), then an intervention do(e j) is said facilitate the occurrence of ei.
Namely,

0 < pl(do(e j),ei) = pl(do(e j),ei)≤ pl(ei)< pl(ei). (6)

Example 3. The frequency of seizures is represented with a variable epilepsy, ΘE =
{low,medium,high}. Beliefs are expressed on subsets of ΘE . Having a high fre-
quency of epileptic seizure is an event strongly rejected, i.e. pl({high})> pl({high}).
By administering a drug to someone, namely do(Drug), the risk of having many
crises becomes unsurprising, i.e. pl({high}|do(Drug)) = pl({high}|do(Drug)).
The intervention do(Drug) is therefore seen as facilitating having epileptic seizures.

4.5 Justification Ascription

If an agent judges that forcing the occurrence of an event e j gave reason to expect
the occurrence of observing ei, we deal then with justification. Acting on e j caused
the agent to start believing ei, and that it should not be surprised of having ei reported
afterwards.

Definition 3. Belief function justification: Given a sequence of events, an inter-
vention do(e j) is said to justify ei, if ei is ignored, i.e. pl(ei) = pl(ei), and becomes
accepted after an action on e j, i.e. pl(ei|do(e j))> pl(ei|do(e j)). Namely,

pl(ei,do(e j))< pl(do(e j))≤ pl(ei) = pl(ei). (7)

Example 4. The risk of heart failure is an ignored event: pl({Failure}) = pl
({Failure}) In context of high level of alcohol in the blood, after forcing someone
to take cocaine, the risk that this person has a heart failure afterward is very strongly
accepted pl({(High,Failure)}|do(Drug))> pl({(High,Failure)}|do(Drug)). Ac-
cordingly, intervening on cocaine in context of alcohol strongly justifies heart failure
risk.

4.6 Confirmation and Attenuation

In the quantitative belief function framework acceptance, rejection can be confirmed
or attenuated upon intervening on some variables.
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Definition 4. Belief function confirmation: An intervention on e j, do(e j), is said to
confirm another event ei if the plausibility of observing ei after acting on e j is greater
than the plausibility of observing ei alone, i.e. pl(ei|do(e j))> pl(ei). Namely,

pl(ei) · pl(do(e j))< pl(ei,do(e j))< pl(e j) (8)

Definition 5. Belief function attenuation: An intervention do(e j) is said to attenu-
ate ei if the plausibility of observing ei after acting on e j is smaller than the plausi-
bility of observing ei alone, i.e. pl(ei|do(e j))< pl(ei). Namely,

pl(ei,do(e j))< pl(ei) · pl(do(e j))< pl(do(e j)). (9)

Example 5. Suppose that an agent expresses his beliefs about the state of drunken-
ness of a person: pl({Drunk}) > pl({Drunk}). By administering cocaine,
(do(Drug)), the agent changes his beliefs. Indeed, pl({Drunk}|do(Drug)) <
pl({Drunk}) and pl({Drunk}|do(Drug)) > pl({Drunk}). Thus, forcing a person
to take cocaine is seen as attenuating drunkenness and confirming the acceptance of
Drunk.

5 Conclusion

In this paper, we proposed a model able to identify causal links between events in a
sequence when external actions are experienced. This is done using the do-operator.
We showed that making interventions allows to better identify causal links by dis-
tinguishing between correlation and causation. After forcing some n-ary variables
to take a specific value, we showed the impact of this action to differentiate be-
tween events related in a causal way and those when facilitation or justification are
involved according to the definitions of acceptance and rejection that we have pro-
posed. As future works, we intend to include other definitions of acceptance and
rejection to define several strength of causal links.
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About Sources Dependence in the Theory
of Belief Functions

Mouna Chebbah, Arnaud Martin, and Boutheina Ben Yaghlane

Abstract. In the theory of belief functions many combination rules are proposed
in the purpose of merging and confronting several sources opinions. Some com-
bination rules are used when sources are cognitively independent whereas others
are specific to dependent sources. In this paper, we suggest a method to quantify
sources degrees of dependence in order to choose the more appropriate combination
rule. We used generated mass functions to test the proposed method.

1 Introduction

Decision making is more and more difficult when using imperfect data, however
information can be imprecise, uncertain and even not available. Usually decision
is made using precise and certain data but available information are not always so.
Many theories manage uncertainty such as the theory of probabilities, the theory
of fuzzy sets, the theory of possibilities and the theory of belief functions. Within
imperfect environment, combining several imperfect information helps users and
decision makers to reduce the degree of uncertainty by confronting several opinions.
The theory of belief functions presents a strong framework for combination.
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To combine uncertain information many combination rules can be used. Some
of these combination rules are used when sources are cognitively independent like
[6, 7, 9, 10, 13] but the cautious rule [5] is applied when sources are dependent.
A source is assumed to be cognitively independent towards another one when the
knowledge of the belief of that source does not affect the belief of the first one.
In some cases, like when a source is completely dependent on another source, the
user can decide to discard the dependent source and its mass functions from the
combination.

Some researches are focused on the sources statistical dependence such as [1, 2]
and others [12, 11] tackled the cognitive dependence between variables. This paper
is focused on sources dependence measuring. Thus, we suggest a method to estimate
the dependence between sources.

In the following, we introduce preliminaries of the theory of belief functions in
the second section. In the third section, the independence measure is presented. This
independence is estimated in three steps, in the first step a clustering technique is
applied then similar clusters are matched in the second step and finally a weight is
affected to matched clusters. This method is tested on random mass functions in the
fourth section. Finally, conclusions are drawn.

2 Theory of Belief Functions

The theory of belief functions was introduced by [4] and [12] and so called
Dempster-Shafer theory to model imperfect information held by a source (an ex-
pert, a belief holder, . . . ). In this section, we will remind some basic notions of this
theory as seen in the transferable belief model [10].

The frame of discernment Ω = {ω1,ω2, . . . ,ωn} is a set of n elementary and mu-
tually exclusive and exhaustive hypotheses. These hypotheses are all the possible
and eventual solutions of the problem under study. The power set 2Ω is the set of
all subsets made up of hypotheses and union of hypotheses from Ω . The basic be-
lief assignment (bba) also called mass function is a function defined on the power
set 2Ω and affects a value from [0,1] such that: ∑

A⊆Ω
m(A) = 1. We can also assume

that: m( /0) = 0. A subset A having a strictly positive mass is called focal element.
The mass allocated to this focal element A is the source’s degree of belief that the
solution of the problem under study is in A. In the theory of belief functions, a great
number of combination rules [6, 7, 9, 10, 13] are used to summarize all combined
mass functions into only one mass function reflecting all the sources beliefs. The
first combination rule was proposed by Dempster in [4] and is defined for two dis-
tinct mass functions m1 and m2:

m1 ∩©2(A) = (m1 ∩©m2)(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

B∩C=A

m1(B)×m2(C)

1− ∑
B∩C= /0

m1(B)×m2(C)
∀A ⊆ Ω , A �= /0

0 if A = /0

(1)
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Dempster’s rule of combination together with other rules [6, 7, 9, 10, 13] are used to
combine independent mass functions. In the case of dependent sources, the cautious
rule [5] can be applied. After the combination, the pignistic probability BetP(X) is
generally used to decide.

3 Independence

Independence concept was first introduced in probability theory in the purpose of
studying dependent statistical variables. In the probability theory, two variables A
and B are assumed to be independent if one of these equivalent conditions is satis-
fied: P(A∩B) = P(A)∗P(B) or P(A|B) = P(A). Statistical independence is general-
ized from probability theory to the theory of belief functions [1, 2]. Mass functions
can be seen as subjective probabilities held by sources (experts, belief holders, . . . )
who can communicate, thus cognitive independence is specially defined in the the-
ory of belief functions. A definition of cognitive independence was first proposed
by Shafer ([12], page 149) as ”two frames of discernment may be called cognitively
independent with respect to the evidence if new evidence that bears on only one of
them will not change the degree of support for propositions discerned by the other”.
Smets [11] claims that two variables are independent when the knowledge of the
value taken by one of them does not affect our belief about the other. This paper is
not focused on variables independence but on sources independence.

Definition 1. Two sources are independent when the knowledge of the belief pro-
vided by one source does not affect the belief of the other source, otherwise these
sources are dependent.

Not only communicating sources are considered to be dependent but also sources
having the same background of knowledge since their beliefs are similar. In this
paper, mass functions provided by two sources are studied in order to reveal any de-
pendence between them. Therefore, the aim is to find dependence between sources
if it exists. In the following, we define an independence measure Id, (Id(s1,s2) is the
independence of s1 towards s2) verifying the following axioms:

1. Non-negativity: The independence of a source s1 on an another source s2,
Id(s1,s2) cannot be negative, it is a positive or null degree.

2. Normalization: Source independence Id is a degree on [0,1], it is null when the
source is dependent from the other one, equal to 1 when it is completely inde-
pendent and a degree in [0,1] otherwise.

3. Non-symmetry: If a source s1 is dependent on a source s2, s2 is not necessarily
dependent on s1. Even if s1 and s2 are mutually dependent, degrees of dependence
are not the same.

4. Identity: Id(s1,s1) = 0. A source is completely dependent from it self.

If two sources s1 and s2 are dependent, there will be a relation between their belief
functions. The main idea of this paper is to classify mass functions provided by each
source, then a study of the similarities between cluster repartitions can reveal any
dependence between sources. Once clustering is performed, the idea is to study the
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sources overall behavior. The proposed method is in three steps, in the first step mass
functions of each source are classified then in the second step similar clusters are
matched and finally the weights of the linked clusters are quantified in the third step.

3.1 Clustering

In this paper, we use a modified C-means algorithm with the distance on belief
functions given by [8] such as in [3] to classify mass functions of one source. The
number of clusters C has to be also known, a set T contains n objects oi : 1 ≤ i ≤ n
which values mi are belief functions defined on a frame of discernment Ω . For
example, a doctor is diagnosing the disease of n patients and giving each time a
mass function as an uncertain diagnostic. In that case, patients are considered as
these objects oi to be classified, the frame of discernment Ω contains all the possible
diseases and mi is the mass function provided by the doctor when diagnosing each
patient oi. In this section a clustering technique is performed on mass functions mi

provided by the same source in order to study the overall behavior of a source.
This clustering technique is based on a dissimilarity measure which is used to

quantify the dissimilarity of an object oi towards a cluster Clk. The dissimilarity D
of the object oi towards the cluster Clk is the mean of distances between mi the mass
function value of the object oi and all the nk mass functions classified into the cluster
Clk as follows:

D(oi,Clk) =
1
nk

nk

∑
j=1

d(mΩ
i ,mΩ

j ) (2)

d(mΩ
1 ,mΩ

2 ) =

√
1
2
(mΩ

1 −mΩ
2 )tD(mΩ

1 −mΩ
2 ),D(A,B) =

{
1 if A = B = /0
|A∩B|
|A∪B| ∀A,B ∈ 2Ω (3)

Each object is affected to the most similar cluster in an iterative way until reaching
an unchanged cluster partition. It is obvious that the number of clusters C has to be
fixed. In this paper, we suppose that C is the cardinality of the frame of discernment.
In a classification problem, the cardinality of the frame of discernment is the number
of classes that is why we choose C = |Ω | in this paper.

3.2 Cluster Matching

Clustering technique, given in section 3.1, is used to classify mass functions pro-
vided by both sources s1 and s2, the number of clusters is assumed to be the car-
dinality of the frame of discernment. After the classification, both mass functions
provided by s1 and s2 are distributed on C clusters. Once clustering performed the
most similar clusters have to be linked, a cluster matching is performed for both
clusters of s1 and that of s2. The dissimilarity between two clusters Clk1 of s1 and
Clk2 of s2 is the mean of distances between objects ol ∈Clk1 and ow ∈Clk2 :
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δ 1(Clk1 ,Clk2) =
1

nk1

nk1

∑
l=1

1
nk2

nk2

∑
w=1

d(ol ,ow) (4)

We note that nk1 is the number of objects on the cluster Clk1 , δ 1 is the dissimilarity
towards the source s1 and d is the distance defined by equation (3). It is obvious that
d(ol ,ow) ∈ [0,1]. δ 1(Clk1 ,Clk2) is the mean of pairwise distances between objects
of Clk1 and Clk2 , thus δ 1(Clk1 ,Clk2) ∈ [0,1].

A dissimilarity matrix M1 containing dissimilarities of clusters of s1 according to
clusters of s2, and M2 the dissimilarity matrix between clusters of s2 and clusters of
s1 are defined as follows:

M1 =

⎛⎜⎜⎜⎜⎝
δ 1

11 δ 1
12 . . . δ 1

1C
. . . . . . . . . . . .
δ 1

k1 δ 1
k2 . . . δ 1

kC
. . . . . . . . . . . .
δ 1

C1 δ 1
C2 . . . δ 1

CC

⎞⎟⎟⎟⎟⎠ and M2 =

⎛⎜⎜⎜⎜⎝
δ 2

11 δ 2
12 . . . δ 2

1C
. . . . . . . . . . . .
δ 2

k1 δ 2
k2 . . . δ 2

kC
. . . . . . . . . . . .
δ 2

C1 δ 2
C2 . . . δ 2

CC

⎞⎟⎟⎟⎟⎠ (5)

We note that δ 1
k1k2

is the dissimilarity between Clk1 of s1 and Clk2 of s2 and δ 2
k1k2

is

the dissimilarity between Clk2 of s2 and Clk1 of s1 and δ 1
k1k2

= δ 2
k2k1

. The dissimilarity
matrix M2 of s2 is the transpose of the dissimilarity matrix of s1 noted M1. Therefore,
a unique matrix M1 can be used to store dissimilarities between all clusters of s1 and
that of s2. Clusters of s1 are matched to the nearest clusters of s2, a cluster Clk1 of s1

is matched to the cluster having the minimal dissimilarity δ 1
k1.

and a cluster Clk2 of s2

is matched to the cluster having the minimal dissimilarity δ 2
k2.

= δ 1
.k2

.Two clusters of
s1 can be linked to the same cluster of s2. The output are C cluster matchings of s1,
C different cluster matchings of s2 and 2×C dissimilarity values of each matched
clusters.

3.3 Cluster Independence

Once cluster matching is obtained, the degree of independence and dependence be-
tween sources are quantified in this step. A set of matched clusters is obtained for
both sources and a mass function can be used to quantify the independence between
each couple of clusters. Suppose that the cluster Clk1 of s1 is matched to Clk2 of s2,
a mass function m defined on the frame of discernment ΩI = {Dependent Dep,
Independent Ind} describes how much this couple of clusters is independent or
dependent as follows: ⎧⎪⎨⎪⎩

mΩI
k1k2

(Dep) = α (1− δ 1
k1k2

)

mΩI
k1k2

(Ind) = α δ 1
k1k2

mΩI
k1k2

(Dep∪ Ind) = 1−α
(6)

The coefficient α is used to take into account the number of mass functions in each
cluster. Mass functions defining sources dependence are not provided by any source
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whereas they are estimations of the sources dependence. α is not the reliability of
any source but it can be seen as the reliability of the estimation. Therefore, the more
a cluster contains mass functions the more our dependence measure estimation of
that cluster is reliable. For example, let us take two clusters the first one containing
only one mass function and the second one containing 100 mass functions, it is
obvious that the dependency estimation of the second cluster is more precise and
significant than the dependency estimation of the first one.

The obtained mass functions quantify the independence of each matched clusters
according to each source. Therefore, C mass functions are obtained for each source
such that each mass function quantifies the independence of each couple of matched
clusters. The combination of C mass functions for each source using Dempster’s rule
of combination defined by equation (1) is a mass function mΩI defining the whole
dependence of one source towards the other one: mΩI = ∩©mΩI

k1k2
.

Two different mass functions mΩI
s1 and mΩI

s2 are obtained for s1 and s2 respec-
tively. We note that mΩI

s1 is the combination of C mass functions representing the
dependence of matched clusters defined using equation (6). These mass functions
are different since cluster matchings are different which verifies the axiom of non-
symmetry. δ 1

k1k2
,δ 2

k2k1
∈ [0,1] which verifies the non-negativity and the normaliza-

tion axioms. Finally, pignistic probabilities are computed from these mass func-
tions in order to decide about these sources independence Id such that Id(s1,s2) =
BetP(Ind) and Id(s1,s2) = BetP(Dep), if BetP(Ind) > 0.5 we can claim that the
corresponding source is independent from the other one otherwise it is dependent.

4 Examples on Generated Mass Functions

To test this method we used generated mass functions. Thus, two sets of mass func-
tions are generated for two sources s1 and s2. We note that the number of sources
is always two (s1 and s2) because the dependence is a binary relationship. Thus
a source is dependent or independent according to another one. For the sake of
simplicity, we take here the discounting factor α = 1, thus mass functions are not
discounted. To generate bbas, some information are needed: the cardinality of the
frame of discernment |Ω |, the number of mass functions. Mass functions are gener-
ated as follows:

1. The number of focal elements F is chosen randomly from [1, |2Ω |]. The F focal
elements are also chosen randomly from the power set.

2. The interval [0,1] is divided randomly into F continuous sub intervals.
3. A random mass from each sub interval is attributed to focal elements. Masses are

attributed to focal elements chosen in the first step. The complement to 1 of the
attributed masses sum is affected to the total ignorance m(Ω).

This method is used to generate a random mass function, thus the number of focal
elements and masses are attributed randomly. Using the pignistic transformation,
the decided class is not known from the beginning. In some cases generated mass
functions are corrected in order to correct the classification result as follows:
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i Generate a mass function as described above,
ii to change the classification result of the generated mass function, masses affected
to each focal element are transfered to its union with the decided class.

Dependent sources: When sources are dependent, they are either providing sim-
ilar belief functions with the same decided class (using the pignistic transformation)
or one of the sources is saying the opposite of what says the other one. In the case
of sources deciding the same class, the decided class of one source is directly af-
fected by that of the other one. To test this case, we generated 100 mass functions
on a frame of discernment of cardinality 5. Both sources are classifying objects in
the same way. Applying the method described above, the obtained mass function
defined on the frame ΩI = {Ind, Dep} and describing the independence of s1 to-
wards s2 is m(Ind) = 0.0217, m(Dep) = 0.9783 meaning that Id(s1,s2) = 0.0217
and Id(s1,s2) = 0.9783. Thus s1 is highly dependent on s2.
The mass function of the independence of s2 according to s1 is m(Ind) = 0.022,
m(Dep) = 0.978. It proves that s2 is also dependent on s1 because Id(s2,s1) = 0.978.

When sources are indirectly dependent, one of them is saying the opposite of the
other one. In other words, when the decision class of the first source is a class A, the
second source may classify this object in any other class but not A. In that case, the
obtained mass function for the dependence of s1 according to s2 is m(Ind) = 0.0777,
m(Dep) = 0.9223 meaning that s1 is dependent on s2 because Id(s1,s2) = 0.9223.
The mass function of the independence of s2 according to s1 is m(Ind) = 0.0805,
m(Dep) = 0.9195, thus s2 is also highly dependent on s1 and Id(s2,s1) = 0.9195.
Thus s1 is dependent towards s2 with a degree 0.978 and s2 is dependent towards s1

with a degree 0.9195. s1 and s2 are mutually dependent.
Independent sources: We generated randomly 100 mass functions for both

sources s1 and s2. The number of focal elements is randomly chosen on the in-

terval [1, 2Ω

4 ] rather than [1,2Ω ] to reduce the number of focal elements. The ob-
tained mass function of the independence of s1 according to s2 is m(Ind) = 0.7211,
m(Dep) = 0.2789. The mass function of the independence of s2 according to s1 is
m(Ind) = 0.6375, m(Dep) = 0.3625. Thus s1 is independent towards s2 because
Id(s1,s2) = 0.7211 and s2 is independent towards s1 because Id(s2,s1) = 0.6375. s1

and s2 are mutually independent.

5 Conclusion

Combining mass functions provided by different sources is helpful when making
decision. The choice of the combination rule is conditioned on the sources depen-
dence, thus the cautious rule is especially used when sources are dependent but other
rules can be applied with independent sources. In this paper, we suggested a method
estimating the dependence degree of one source towards another one. As a future
work, we may try to estimate the dependence of one source according to many other
sources and not only one source. When one source is dependent on another one, this
dependence can be direct (positive dependence) or indirect (negative dependence).
Thus, we will also quantify the positive and negative dependence in the case of



246 M. Chebbah, A. Martin, and B. Ben Yaghlane

dependent sources. We will also define the discounting factor which will be a func-
tion of the number of mass functions. Finally, we will use the discounting operator
in order to take into account the number of provided mass functions because we can-
not decide on the sources independence if they do not provide a sufficient number
of mass functions.
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On Random Sets Independence and Strong
Independence in Evidence Theory

Jiřina Vejnarová

Abstract. Belief and plausibility functions can be viewed as lower and upper
probabilities possessing special properties. Therefore, (conditional) independence
concepts from the framework of imprecise probabilities can also be applied to its
sub-framework of evidence theory. In this paper we concentrate ourselves on ran-
dom sets independence, which seems to be a natural concept in evidence theory,
and strong independence, one of two principal concepts (together with epistemic
independence) in the framework of credal sets. We show that application of strong
independence to two bodies of evidence generally leads to a model which is beyond
the framework of evidence theory. Nevertheless, if we add a condition on result-
ing focal elements, then strong independence reduces to random sets independence.
Unfortunately, it is not valid no more for conditional independence.

1 Introduction

Imprecise probabilities is a general concept comprising different theories dealing
with imprecise information. These theories can be partially ordered with respect to
their generality and evidence theory belongs to the most specific ones. More pre-
cisely, belief and plausibility functions can be viewed as lower and upper probabili-
ties, respectively, possessing special properties.

Independence belongs to the most important concepts within any theory dealing
with uncertainty and therefore it has been studied in the evidential framework from
the very beginning [11]. Because of reasons stated above, the application of inde-
pendence concepts from imprecise probabilities to belief plausibility functions is,
in principle, possible and their relationship to “natural” independence concepts in
evidence theory is an interesting question, as already suggested in [5, 6, 8].
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In this paper we confine ourselves to random sets independence and strong in-
dependence and will not deal with epistemic irrelevance and independence, as they
are based on conditional probabilities/beliefs and there does not exist a uniquely
accepted conditioning rule [7] in the framework of evidence theory.

The paper is organized as follows. Section 2 is an overview of basic concepts
from evidence theory and form credal sets and in Section 3 random sets indepen-
dence and strong independence are introduced and their relationship in the frame-
work of evidence theory is studied.

2 Basic Concepts

In this section we will briefly recall basic concepts from evidence theory [11] con-
cerning sets and set functions and from the framework of credal sets [10].

2.1 Set Projections and Joins

For an index set N = {1,2, . . . ,n} let {Xi}i∈N be a system of variables, each Xi

having its values in a finite set Xi. In this paper we will deal with multidimensional
frame of discernment XN = X1×X2× . . .×Xn, and its subframes (for K ⊆ N)

XK =×i∈KXi.

When dealing with groups of variables on these subframes, XK will denote a group
of variables {Xi}i∈K throughout the paper.

A projection of x = (x1,x2, . . . ,xn) ∈ XN into XK will be denoted x↓K , i.e. for
K = {i1, i2, . . . , ik}

x↓K = (xi1 ,xi2 , . . . ,xik) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A
into XM:

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.

In addition to the projection, in this text we will also need an opposite operation,
which will be called a join. By a join [1] of two sets A⊆XK and B⊆XL (K,L⊆ N)
we will understand a set

A �� B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆ C↓K �� C↓L, but generally C �=
C↓K �� C↓L, i.e. , a join is, in a sense, a generalization of a rectangle — so called
X↓K∩L-layered rectangle [3].
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2.2 Set Functions

In evidence theory [11] (or Dempster-Shafer theory) two dual measures are used
to model the uncertainty: belief and plausibility measures. Both of them can be
defined with the help of another set function called a basic (probability or belief)
assignment m on XN , i.e. , m : P(XN)−→ [0,1], where P(XN) is power set of XN

and ∑A⊆XN
m(A) = 1. Furthermore, we assume that m( /0) = 0. A set A ∈P(XN) is

a focal element if m(A)> 0.
Belief and plausibility measures are defined for any A ⊆ XN by the equalities

Bel(A) = ∑
B⊆A

m(B), Pl(A) = ∑
B∩A �= /0

m(B),

respectively. It is well-known (and evident from these formulae) that for any A ∈
P(XN)

Bel(A)≤ Pl(A), Pl(A) = 1−Bel(AC), (1)

where AC is the set complement of A ∈P(XN).
Because of (1) belief and plausibility functions may be viewed as lower and upper

probabilities, respectively. Furthermore, basic assignment can be computed from
belief function via Möbius inversion:

m(A) = ∑
B⊆A

(−1)|A\B|Bel(B), (2)

i.e. any of these three functions is sufficient to define values of the remaining two.
For a basic assignment m on XK and M ⊂ K, a marginal basic assignment of m

on XM is defined (for each A ⊆ XM):

m↓M(A) = ∑
B⊆XK

B↓M=A

m(B).

Analogously we will denote by Bel↓M marginal belief measure on XM .

2.3 Credal Sets

A credal set M (X) about a variable X is defined as a closed convex set of proba-
bility measures about the values of this variable. In order to simplify the expression
of operations with credal sets, it is often considered [10] that a credal set is the
set of probability distributions associated to the probability measures in it. Under
such consideration a credal set can be expressed as a convex hull of its extreme
distributions

M (X) = CH{ext(M (X))}.
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Any lower probability P can be associated with a credal set of probabilities domi-
nating it:

M (P) = CH{P : P(A)≥ P(A),A ⊆ X}.
As belief measure is a lower probability, this association can be done also for it, as
suggested in both examples in the next section.

3 Independence Concepts

3.1 Random Sets Independence

Let us start this section by recalling the notion of random sets independence [4].

Definition 1. Let m be a basic assignment on XN and K,L ⊂ N be disjoint. We say
that groups of variables XK and XL are independent with respect to basic assignment
m if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L) (3)

for all A ⊆ XK∪L for which A = A↓K ×A↓L, and m(A) = 0 otherwise.

Example 1. Consider two basic assignments mX and mY on X = {x, x̄} and Y =
{y, ȳ}, respectively, specified in Table 1 together with their beliefs and plausibilities.
Under the assumption of random sets independence we get the joint basic assign-
ment m, values of which are contained in the second column of Table 2. In third
and fourth columns one can find beliefs and plausibilities of the corresponding sets,
respectively. ♦

Table 1 Basic assignments mX and mY .

A ⊆X mX (A) BelX (A) PlX(A) A ⊆ Y mY (A) BelY (A) PlY (A)

{x} 0.3 0.3 0.8 {y} 0.6 0.6 0.9

{x̄} 0.2 0.2 0.7 {ȳ} 0.1 0.1 0.4

X 0.5 1 1 Y 0.3 1 1

There exist numerous generalizations [3, 9, 12] of this notion to the conditional case.
For the reasons presented e.g. in [9], we use the following one.

Definition 2. Let m be a basic assignment on XN and K,L,M ⊂ N be disjoint, K �=
/0 �= L. We say that groups of variables XK and XL are conditionally independent
given XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if the equality

m↓K∪L∪M(A) ·m↓M(A↓M) = m↓K∪M(A↓K∪M) ·m↓L∪M(A↓L∪M) (4)

holds for any A⊆XK∪L∪M such that A = A↓K∪M �� A↓L∪M , and m(A) = 0 otherwise.
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Table 2 Results of application of random sets independence (Col. 2–4) and strong indepen-
dence (Col. 5–7).

C ⊆ X×Y mR(C) BelR(C) BelR(C) PXY (C) PXY (C) m̃XY (C)

{xy} 0.18 0.18 0.72 0.18 0.72 0.18

{xȳ} 0.03 0.03 0.32 0.03 0.32 0.03

{x̄y} 0.12 0.12 0.63 0.12 0.63 0.12

{x̄ȳ} 0.02 0.02 0.28 0.02 0.28 0.02

{x}×Y 0.09 0.3 0.8 0.3 0.8 0.09

{x̄}×Y 0.06 0.2 0.7 0.2 0.7 0.06

X×{y} 0.3 0.6 0.9 0.6 0.9 0.3

X×{ȳ} 0.05 0.1 0.4 0.1 0.4 0.05

{xy, x̄ȳ} 0 0.2 0.85 0.34 0.74 0.14

{xȳ, x̄y} 0 0.15 0.8 0.26 .66 0.11

X×Y\{x̄ȳ} 0 0.72 0.98 0.72 0.98 −0.11

X×Y\{x̄y} 0 0.37 0.88 0.37 0.88 −0.14

X×Y\{xȳ} 0 0.68 0.97 0.68 0.97 −0.14

X×Y\{xy} 0 0.28 0.82 0.28 0.82 −0.11

X×Y 0.15 1 1 1 1 0.4

3.2 Strong Independence

From numerous definitions of independence for credal sets [4] we have cho-
sen strong independence, as it seems to be most proper for multidimensional
models.

We say that XK and XL are strongly independent with respect to M (XKXL) iff (in
terms of probability distributions)

M (XKXL) = CH{P1 ·P2 : P1 ∈M (XK),P2 ∈M (XL)}. (5)

Again, there exist several generalizations of this notion to conditional independence,
see e.g. [10], but as the following definition is suggested by the authors as the most
appropriate for the marginal problem, it seems to be a suitable counterpart of random
sets independence.

Given three variables X ,Y and Z we say that X and Y are independent on the
distribution given Z under global set M (X ,Y,Z) iff

M (X ,Y,Z) = {(p1 · p2)/p
↓Z

1 : p1 ∈M (X ,Z), p2 ∈M (X ,Z), p
↓Z

1 = p
↓Z

2 } .

From the term “strong independence” one could deduce that it should imply random
sets independence. Nevertheless, it is not true, as can be seen from the following
simple example.
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Example 1. (Continued) From values contained in Table 1 we obtain credal sets
about variables X and Y :

M (X) = CH{(0.3,0.7),(0.8,0.2)}, M (Y ) = CH{(0.6,0.4),(0.9,0.1)}.

Under the assumption of strong independence we get

M (XY ) = CH{(0.18,0.12,0.42,0.28),(0.27,0.03,0.63,0.07),

(0.48,0.32,0.12,0.08),(0.72,0.08,0.18,0.02)}.

Let us compute lower and upper probabilities of all nonempty subsets of X×Y.
Their values can be found in fifth and sixth columns of Table 2.

In the last column one can find hypothetical values of basic assignment corre-
sponding the these lower and upper probabilities taken as beliefs and plausibilities
computed via formula (2). From this column one can see that X and Y do not satisfy
random set independence, as mXY assigns positive values also to subsets which are
not of the form A = B×C. Furthermore, negative values are assigned to some sets,
which violates the nonnegativity of basic assignment, i.e. we are beyond the limits
of evidence theory. ♦
This result led us to the conclusion that strong independence cannot be applied in
the framework of evidence theory. Nevertheless, under specific conditions it can be
done as the following theorem1 holds true.

Theorem 1. Let XK and XL (K ∩L �= /0) be two groups of variables with basic as-
signments m↓K and m↓L, respectively. Let Bel↓K∪L and P↓K∪L denote the joint belief
function under random sets independence and joint lower probability under strong
independence, respectively, and let A be a subset of XK × XL such that A =
A↓K ×A↓L. Then

Bel↓K∪L(A) = P↓K∪L(A). (6)

Proof. It is well-known2 that for random sets independence the following equality
holds true for any A = A↓K ×A↓L:

Bel↓K∪L(A) = Bel↓K(A↓K) ·Bel↓L(A↓L).

Taking into account the fact that

Bel↓K(A↓K) = P↓K(A↓K), Bel↓L(A↓L) = P↓L(A↓L),

to get (6) it is enough to prove that for any A ⊆ XK ×XL such that A = A↓K ×A↓L

the equality

1 Let us note that the content of this theorem was already mentioned (without a proof)
in [4].

2 In [2] equality (7) together with an analogous one for plausibilities is used as a definition
of evidential independence and Definition 1 is presented as an equivalent characterization.
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P↓K∪L(A) = P↓K(A↓K) ·P↓L(A↓L)

is satisfied.
Generally,

P↓K∪L(A) = min
P∈M

{∑
x∈A

P(x)},

but as M = {P1 ·P2 : P1 ∈MK ,P2 ∈ML}, and A = A↓K ×A↓L then

P↓K∪L(A) = min
P∈M

{∑
x∈A

P(x)}= min
P=P1·P2,P1∈MK ,P2∈ML

{ ∑
xK∈A↓K

P(xK) · ∑
xL∈A↓L

P(xL)}

= min
P1∈MK

{ ∑
xK∈A↓K

P(xK)} · min
P2∈ML

{ ∑
xL∈A↓L

P(xL)}= P↓K(A↓K) ·P↓L(A↓L),

as requested (where the last but one equality holds thanks to the fact that we deal
with non-negative numbers.) $%
Unfortunately, for conditional independence an analogous result does not hold.

Example 2. Let X ,Y and Z be three binary variables with values in X = {x, x̄}, Y =
{y, ȳ} and Z = {z, z̄}, respectively, and mXZ and mY Z two basic assignments, both of
them having only two focal elements:

mXZ({(x, z̄),(x̄, z̄)}) = 0.5, mXZ({(u, z̄),(x̄,z)}) = 0.5,
mY Z({(y, z̄),(ȳ, z̄)}) = 0.5, mY Z({(y, z̄),(ȳ,z)}) = 0.5.

Applying Definition 2 one can easily obtain the following joint assignment:

m(X×Y×{z̄}) = 0.5, m({(x,y, z̄),(x̄, ȳ,z)}) = 0.5.

From the values of the basic assignments mXZ we will obtain credal set

M (XZ) = CH{(0,1,0,0),(0, .5,0, .5),(0, .5,0.5,0),(0,0, .5, .5)},

and credal set M (Y Z) is identical. We can see, that the first two probability distribu-
tions are projective and the remaining two as well. Therefore under the assumption
of strong conditional independence we will get the following joint credal set

M (XYZ) = CH{(0,1,0,0,0,0,0,0),(0, .5,0, .5,0,0,0,0),(0, .5,0,0,0, .5,0,0),
(0, .25,0, .25,0, .25,0, .25),(0, .5,0,0,0,0, .5,0),

(0, .0,0, .5,0,0, .5,0),(0,0,0,0,0, .5, .5,0),(0,0,0,0,0,0, .5, .5)}.

From M (XYZ) we can easily get values of lower and upper probabilities of all
singletons as well as values of bigger subsets. For example, for the above mentioned
focal elements we have

P(X×Y×{v}) = 0.5, P({(u,u,v),(v,v,u)}) = 0.25,

i.e., the latter is different from that obtained under random sets independence. ♦
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4 Conclusions

The aim of this paper was to clarify the relationship between random sets inde-
pendence and strong independence in the framework of evidence theory. Although
evidence theory can be viewed as a special case of imprecise probabilities, applica-
tion of strong independence may lead to models which are beyond the framework
of evidence theory. If we confine ourselves to rectangles, values of joint belief func-
tion (under random sets independence) and those of joint lower probability (under
strong independence) coincide. Nevertheless, an analogous result does not hold in
the conditional case.

The problem of (epistemic) irrelevance was not discussed here, as the properties
of irrelevance are dependent on the conditioning rule in question, and the problem
of conditioning in evidence theory has not yet been satisfactorily solved.
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Combining Linear Equation Models
via Dempster’s Rule

Liping Liu

Abstract. This paper proposes a concept of imaginary extreme numbers, which
are like traditional complex number a+ bi but with i =

√−1 being replaced by
e = 1/0, and defines usual operations such as addition, subtraction, and division on
the numbers. It applies the concept to representing linear equations in knowledge-
based systems. It proves that the combination of linear equations via Dempster’s rule
is equivalent to solving a system of simultaneous equations or finding a least-square
estimate when they are overdetermined.

1 Introduction

The concept of linear belief functions unifies the representation of a diverse range of
linear models in expert systems [Liu et al., 2006]. These linear models include linear
equations that characterize linear deterministic relationships of continuous or dis-
crete variables and stochastic models such as linear regressions, linear time series,
and Kalman filters in which some variables are deterministic while others stochas-
tic. They also include normal distributions that describe probabilistic knowledge on
a set of variables, a lack of knowledge such as ignorance and partial ignorance, and
direct observations or observations with missing values. Despite the varieties, the
concept of linear belief functions unifies them as manifestations of a single concept,
represents them as matrices with the same semantics, and combine them by a single
mechanism, the matrix addition rule, which is consistent with Dempster’s rule of
combination [Shafer, 1976].

What makes the unification possible is the sweeping operator. Nevertheless, when
the operator is applied to knowledge representation, a division-by-zero enigma often
arises. For example, when two linear models are combined, their matrix represen-
tations must be fully swept via the old matrix addition rule [Dempster, 2001] or
partially swept via the new matrix addition rule [Liu, 2011b]. This poses no issue
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to linear models with a positive definite covariance matrix [Liu, 2011a]. However,
for deterministic linear models such as linear equations, sweeping points are often
zero, and a sweeping, if needs to be done, will have to divide regular numerical
values by zero, a mathematical operation that is not defined. The division-by-zero
issue has been a challenge that hinders the development of intelligent systems that
implements linear belief functions.

In this paper, I propose a notion of imaginary extreme numbers to deal with the
division-by-zero problem. An imaginary extreme number is a complex number like
3+ 4e with extreme number e = 1

0 . On these imaginary numbers, usual operations
can be defined. The notion of imaginary extreme numbers makes it possible to
represent linear equations as knowledge in intelligent systems. As we will illustrate,
a linear equation is transformed into an equivalent one by a sweeping from a zero
variance and a reverse sweeping from an extreme inverse variance. The notion also
makes it possible to combine linear equations as independent pieces of knowledge
via Dempster’s rule of combination. We will show that the combination of linear
equations corresponds to solving the equations or finding the least-square estimate
when the equations are over-determining.

2 Matrix Sweepings

Sweeping is a matrix transformation that starts from a sweeping point, a square
submatrix, and iteratively spreads the change across the entire matrix:

Definition 1. Assume real matrix A is made of submatrices as

A = (Ai j)

and assume Ai j is a square submatrix. Then a forward (reverse) sweeping of A
from Ai j replaces submatrix Ai j by its negative inverse −(Ai j)

−1, any other sub-
matrix Aik in row i and any submatrix Ak j in column j are respectively replaced by
(−)(Ai j)

−1Aik and (−)Ak j(Ai j)
−1, and the remaining submatrix Akl not in the same

row or column as Ai j, i.e., k �= i and j �= l, by

Akl −Ak j(Ai j)
−1Ail .

Note that forward and reverse sweepings defined above operationally differ only in
the sign for the elements in the same column or row as the sweeping point. Yet the
difference is significant in that forward and reverse sweepings cancel each other’s
effects, and thus the modifiers ”forward” and ”reverse” are justified. Both forward
and reverse sweeping operations may be also defined to sweep from a square sub-
matrix as a sweeping point. If a sweeping point is positive definite such as a co-
variance matrix, then a sweeping from the submatrix is equivalent to a series of
successive sweepings from each of the leading diagonal elements of the submatrix
[Liu, 2011a].

When applied to a moment matrix that consists of a mean vector and a covariance
matrix, sweeping operations can transform a normal distribution to its various forms,
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each with interesting semantics. Assume X has mean vector μ and covariance matrix
Σ . Then in general the moment matrix is

M(X) =

[
μ
Σ

]
and its fully swept form

M(
−→
X ) =

[
μΣ−1

−Σ−1

]
represents the density function of X . Note M(

−→
X ) symbolizes that M(X) has been

swept from the covariance matrix of X , or to be brief, that M(X) has been swept
from both X . It is interesting to imagine that, if the variances of X are so huge
that their inverse covariance matrix Σ−1 −→ 0, then M(

−→
X ) = 0. Thus, a zero

fully swept matrix is the representation of ignorance; intuitively, we are ignorant
about X if its variances are infinite. A partial sweeping has more interesting se-
mantics. For example, for the normal distribution of X , Y , and Z with moment
matrix:

M(X ,Y,Z) =

⎡⎢⎢⎣
3 4 2
4 2 0
2 5 2
0 2 6

⎤⎥⎥⎦ ,
its sweeping from the variance terms for X and Y is a partially swept matrix

M(
−→
X ,

−→
Y ,Z) =

⎡⎢⎢⎣
0.4375 0.625 0.75
−0.3125 0.125 −0.25

0.125 −0.25 0.5
−0.25 0.5 5

⎤⎥⎥⎦ .
This contains two distinct pieces of information about the variables [Liu, 2011a].
First, the submatrix corresponding to variables X and Y ,

M(
−→
X ,

−→
Y ) =

⎡⎣ 0.4375 0.625
−0.3125 0.125

0.125 −0.25

⎤⎦
represents the density function of X and Y . Second, the remaining partial matrix⎡⎢⎢⎣

0.75
−0.25

0.5
−0.25 0.5 5

⎤⎥⎥⎦
represents a regression model Y = 0.75−0.25X+0.5Y + ε with ε ∼ N(0,5). Since
this regression model alone casts no information on independent variables X and
Y , the missing elements in the above partial matrix shall be zero. Furthermore,
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when the conditional variance of Z vanishes, the conditional distribution reduces
to a regular linear equation model Z = 0.75− 0.25x+ 0.5y as represented by the
matrix:

M(
−→
X ,

−→
Y ,Z) =

⎡⎢⎢⎣
0 0 0.75
0 0 −0.25
0 0 0.5

−0.25 0.5 0

⎤⎥⎥⎦ .
Here M(

−→
X ,

−→
Y ,Z) represents a generic moment matrix of X , Y , and Z with X

and Y being swept. Note that it has been long realized that a linear model such
as a regression model or a linear equation is a special case of a multivariate nor-
mal distribution [Khatri, 1968].What is new, however, is that with sweeping oper-
ations, it can be uniformly represented as a moment matrix or its partially swept
form.

3 Imaginary Numbers

In this section I propose a new type of imaginary numbers, called extreme numbers,
and use it to resolve the division-by-zero issue. Just as a usual imaginary num-
ber uses i for non-existent

√−1, we use e for 1
0 , which also does not exist. Also,

as a usual imaginary number consists of two parts, a real part and an imaginary
part, an imaginary extreme number consists of the same two parts. For example,
3− 2e is an extreme number with 3 as real part and −2 as imaginary part. When
imaginary part vanishes, an extreme number reduces to a real one. When its imag-
inary part is nonzero, we call an extreme number true extreme number. When its
real part is zero, we call the extreme number pure extreme. When both real and
imaginary parts are zero, the extreme number is zero, i.e., a+ be = 0 if and only if
a = 0 and b = 0. Thus, the system of extreme numbers includes real numbers as a
subset.

Extreme numbers may be added, subtracted, or scaled as usual imaginary num-
bers. For any extreme number a+ be and a real number c, their multiplication, or
scaling of a+ be using scale c is defined as c(a+ be) = (a+ be)c = ac+ bce.For
any two extreme number a1 + b1e and a2 + b2e, their addition is defined as (a1 +
b1e)+ (a2 + b2e) = (a1 + a2)+ (b1 + b2)e.Clearly, the system of extreme numbers
is closed under the operation of scaling, addition, and subtraction.

Unlike usual imaginary numbers, the multiplication of two extreme numbers is
not defined because it is not closed operationally. However, division can be defined
here: for any two extreme number a1 +b1e and a2 +b2e, their division is defined as
follows:

a1 + b1e
a2 + b2e

=
b1

b2

if b2 �= 0. If the denominator is a nonzero real number, then division reduces to
scaling. If the denominator is zero and the numerator is one, i.e., b1 = 0 and a1 = 1,
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the division is e = 1/0 via definition. Also, 0/0 is defined to be 0 to be consistent
with scaling, i.e., 0(0+ 1e) = 0+ 0e = 0.

Because division generally cancels out imaginary parts, the operation of multipli-
cation followed by division, called crossing, can be defined. For any three extreme
numbers a1 + b1e, a2 + b2e, and a3 + b3e, their crossing is defined as follows:

(a1 + b1e)(a2 + b2e)
a3 + b3e

=
a1b2 + a2b1

b3
+

b1b2

b3
e

if b3 �= 0. Crossing reduces to division if one of the multiplicants a1 + b1e and
a2 +b2e is real, i.e., b1b2 = 0. If at the same time the denominator is a nonzero real
number, i.e., b3 = 0 and a3 �= 0, it is reduced to scaling. It is consistent with the
definition of extreme numbers if the dividor a3 + b3e = 0, and b1 = 0, b2 = 0.

Extreme numbers may be extended to extreme matrices with the inverse of zero
matrix being defined as 0−1 = Ie, where I is an identity matrix. In general, A+
Be with real part A and imaginary part B, where both A and B are of the same
dimensions. Operations on extreme matrices can be adopted from those for extreme
numbers with slight modifications on division and crossing. For any two extreme
matrices A1 +B1e and A2 +B2e, if B2 is nonsingular, then

(A1 +B1e)(A2 +B2e)−1 = B1(B2)
−1

(A2 +B2e)−1(A1 +B1e) = (B2)
−1B1

For any three extreme matrices A1 +B1e, A2 +B2e, and A3+B3e, if B3 is nonsingu-
lar, then their crossing is defined as

A1(B3)
−1B2 +B1(B3)

−1A2 +B1(B3)
−1B2e.

4 Equation Combination

Intuitively, a linear equation carries partial knowledge on the values of some vari-
ables through a linear relationship with other variables. If each of such equations is
considered an independent piece of knowledge, its combination with other similar
knowledge will render the values more certain. When there exist sufficient number
of linear equations, their combination may jointly determine a specific value of the
variables with complete certainty. Therefore, the combination of linear equations
should correspond to solving a system of simultaneous equations. In this section,
we will prove this statement.

In genearl, a linear equation may be expressed explicitly as

Xn = b+ a1X1 + a2X2 + ...+ an−1Xn−1 (1)

or implicitly as
a1X1 + a2X2 + ...+ an−1Xn−1 + anXn = b. (2)
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The matrix representation for the explicit expression is straightforward:

M(
−→
X1, ...,

−−→
Xn−1,Xn) =

⎡⎢⎢⎢⎢⎣
0 ... 0 b
0 ... 0 a1
... ... ... ...
0 ... 0 an−1
a1 ... an−1 0

⎤⎥⎥⎥⎥⎦ .
This partially swept matrix indicates that we have ignorance on the values of X1, X2,
..., and Xn−1; thus they correspond to a zero submatrix in the fully swept form. While
given X1, X2, ..., and Xn−1, the value of Xn is b for sure; thus its conditional mean
and variance are respectively b and zero. Of course, in algebra, a variable on the
right-hand-side can be moved to the left-hand-side through a linear transformation.
For example, if a1 �= 0, Equation 1 can be equivalently turned into

X1 =− b
a1
− a2

a1
X2− ...− an−1

a1
Xn−1 +

1
a1

Xn.

This transformation can be also done through the sweepings of matrix representa-
tions first by a foward sweeping from Xn and then a backward sweeping from X1.

An implicit expression like Equation 2 may be represented as two separate linear
equations in explicit forms:

a1X1 + a2X2 + ...+ an−1Xn−1 + anXn =U

and U = b. Their matrices are respectively

M1(
−→
X1, ...,

−→
Xn,U) =

⎡⎢⎢⎢⎢⎣
0 ... 0 0
0 ... 0 a1

... ... ... ...
0 ... 0 an

a1 ... an 0

⎤⎥⎥⎥⎥⎦
and

M2(U) =

[
b
0

]
.

To combine them via Dempster’s rule, we sweep both matrirces from U respectively
into M1(

−→
X1, ...,

−→
Xn,

−→
U ) as ⎡⎢⎢⎢⎢⎣

0 ... 0 0
−(a1)

2e ... −a1ane a1e
... ... ... ...

−ana1e ... −(an)
2e ane

a1e ... ane −e

⎤⎥⎥⎥⎥⎦
and

M2(
−→
U ) =

[
be
−e

]
,
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and then add the results position-wise into M(
−→
X1, ...,

−→
Xn,

−→
U ) as⎡⎢⎢⎢⎢⎣

0 ... 0 be
−(a1)

2e ... −a1ane a1e
... ... ... ...

−ana1e ... −(an)
2e ane

a1e ... ane −2e

⎤⎥⎥⎥⎥⎦ .
To remove the auxiliary variable U , we shall unsweept M(

−→
X1, ...,

−→
Xn,

−→
U ) from U into

M(
−→
X1, ...,

−→
Xn,U) and then remove U by projecting the result to the variables X1, X2,

..., and Xn. We will obtain a fully swept matrix representation M(
−→
X1, ...,

−→
Xn) for the

implicit linear equation 2 as⎡⎢⎢⎣
1
2 b
(

a1 ... an
)

e

− 1
2

⎛⎝ a1

...
an

⎞
⎠( a1 ... an

)
e

⎤⎥⎥⎦ (3)

Assume coefficient an �= 0, we can then unswept it from Xn and obtain M(
−→
X1, ...,−−→

Xn−1,Xn) as ⎡⎢⎢⎢⎢⎣
0 ... 0 b/an

0 ... 0 −a1/an

... ... ... ...
0 ... 0 −an−1/an

−a1/an ... −an−1/an 0

⎤⎥⎥⎥⎥⎦ ,
which is the matrix representation for an explicit form for equation 2:

Xn =
b
an
− a1

an
X1− ...− an−1

an
Xn−1.

Now let us study the representation and combination of multiple linear equations.
For explicit expressions, without loss of generality, assume two linear equations are
respectively Y = b1 +XA1 and Y = b2 +XA2, where Y is a single variable, X is n
dimensional horizontal vector, b1and b2 are constant values, and A1 and A2 are n
dimensional vertical vectors. Their matrix representations are

M1(
−→
X ,Y ) =

⎡⎣ 0 b1

0 A1

(A1)
T 0

⎤⎦ ,
M2(

−→
X ,Y ) =

⎡⎣ 0 b2

0 A2

(A2)
T 0

⎤⎦ .
To combine them, we need to sweep both matrices from Y and then add them
position-wise into M(

−→
X ,

−→
Y ) as
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T e− b2(A2)

T e (b1 + b2)e
−A1(A1)

T e−A2(A2)
T e (A1 +A2)e

(A1 +A2)
T e −2e

⎤⎦ .
Now unsweeping M(

−→
X ,

−→
Y ) from Y , we obtain M(

−→
X ,Y ) as⎡⎣ 1

2 (b2− b1)(A1−A2)
T e (b1 + b2)/2

− 1
2(A1−A2)(A1−A2)

T e (A1 +A2)/2
(A1 +A2)

T/2 0

⎤⎦ .
Comparing to Equation 3, the above matrix represents the implicit linear equation:

X(A1−A2) = b2− b1

for X along with the conditional knowledge of Y given X . It is trivial to note that
the combination is equivalent to solving linear equations Y = b1 +XA1 and Y =
b2 +XA2 by substitution:

b1 +XA1 = b2 +XA2.

When linear equations are expressed implicitly, their combination is equivalent to
forming a larger system of linear equations. Assume XA = U and XB = V are two
systems of linear equations on a vector of variables X , U , and V , where U and V
are distinct vectors of auxiliary variables, and A and B are appropriate coefficient
matrices. Their matrix representations are

M(
−→
X ,U) =

⎡⎣ 0 0
0 A

AT 0

⎤⎦ ,
M(

−→
X ,V ) =

⎡⎣ 0 0
0 B

BT 0

⎤⎦ .
Since both matrices have been swept from common variables X , they can be directly
summed according to the new generalized rule of combination [Liu, 2011b]:

M(
−→
X ,U,V ) =

⎡⎢⎢⎣
0 0 0
0 A B

AT 0 0
BT 0 0

⎤⎥⎥⎦ ,
which corresponds to

X
[

A B
]
=
[

U V
]
.

In words, the combination of XA =U and XB =V is identical to a system of linear
equations joining both XA =U and XB =V .
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To understand what it really means by combining linear equations, let us perform
sweepings on the matrix representation for a system of m equations, XA=U, where
X is a vector of n variables, and U is a vector of m variables, and A is a n×m
coefficient matrix. First, assume n≥m and all linear equations are independent, i.e.,
none is linear combination of others, and thus there is a subvector of X that can be
solved in terms of other variables. Without loss of generality, assume X = (X1,X2)
with X1 being any subvector of m variables that can be solved and A is split vertically
into two submatrices A1 and A2 with A1 being a nonsingular m×m matrix. Then
we have

X1A1 +X2A2 =U,

which is represented as

M(
−→
X1,

−→
X2,U) =

⎡⎢⎢⎣
0 0 0
0 0 A1

0 0 A2

AT
1 AT

2 0

⎤⎥⎥⎦ .
Apply a forward sweep to M(

−→
X1,

−→
X2,U) from U :

M(
−→
X1,

−→
X2,

−→
U ) =

⎡⎢⎢⎣
0 0 0

−eA1AT
1 −eA1AT

2 eA1

−eA2AT
1 −eA2AT

2 eA2

eAT
1 eAT

2 −eI

⎤⎥⎥⎦
and unsweep M(

−→
X1,

−→
X2,

−→
U ) from X1. Noting that A1 is nonsingular and

(A1AT
1 )

−1 = (AT
1 )

−1(A1)
−1,

we can easily verify that M(X1,
−→
X2,

−→
U ) is⎡⎢⎢⎣

0 0 0
0 −(AT

1 )
−1AT

2 (AT
1 )

−1

−A2(A1)
−1 0 0

(A1)
−1 0 0

⎤⎥⎥⎦ ,
which is the matrix representation of

X1 =−X2A2(A1)
−1 +U(A1)

−1.

Therefore, sweeping from U and unsweeping from X1 is the same as solving for X1

in terms of U .
Second, assume the system XA = C contains m equations and n variables with

n ≤ m, C being an n dimensional vector, and A has rank n. Using auxiliary variable
U , the system is equivalent to the combination of
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M(
−→
X ,U) =

⎡⎣ 0 0
0 A

AT 0

⎤⎦
with

M(U) =

[
C
0

]
or via extreme numbers,

M(
−→
X ,

−→
U ) =

⎡⎣ 0 Ce
−AAT e Ae

AT e −2Ie

⎤⎦ .
Unsweeping M(

−→
X ,

−→
U ) from the inverse covariance matrix of U , we obtain

M(
−→
X ,U) =

⎡⎣ 1
2CAT e C/2
− 1

2 AAT e A/2
AT/2 0

⎤⎦ .
Since A has rank n, AAT is positive definite. Thus, we can unsweep M(

−→
X ,U) from

the inverse covariance matrix of X and obtain M(X ,U) as⎡⎣CAT (AAT )−1 1
2C[I+AT (AAT )−1A]

0 0
0 0

⎤⎦
implying that, after combination, variable X takes on value

X =CAT (AAT )−1

with certainty. Note that this solution is the least-square estimate of X from regres-
sion model XA = C with A being the observation matrix for independent variables
and C being the observations for a dependent variable. In addition, the auxiliary
variable U takes on the value

U =
1
2

C[I+AT (AAT )−1A] (4)

with certainty. This seems to be in conflict with initial component model U = C.
However, one shall realize that, when m > n, there exist only n independent linear
equations. Thus, only n variables of U can take independent observations, and the
remaining n−m variables take on the values as derived from those observations.
Otherwise, U =C will have conflicting observations on some or all variables. Equa-
tion 4 represents values that are closest to the observations if there is any conflict.
In fact, in the special case when m = n, we have

(AAT )−1 = (AT )−1A−1.
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Thus

M(X ,U) =

⎡⎣CA−1 C
0 0
0 0

⎤⎦ ,
implying that X = CA−1 and U = C with certainty. This is simply the solution to
XA =C.

5 Conclusion

In knowledge-based systems, extreme numbers arise whenever a deterministic lin-
ear model like a linear equation exists in the knowledge base. A linear model is
represented as a marginal or conditional normal distribution. For a linear equation,
its conditional variance is zero, and its matrix sweeping from such a zero vari-
ance turns the matrix into an extreme one. This paper studied the application of
extreme numbers to representing and transforming linear equations and combining
them as belief functions via Dempster’s rule. When a number of linear equations
are under-determined, their combination corresponds to solving the equations for
some variables in terms of others. When they are just determined, their combina-
tion corresponds to solving the equations for all the variables. When they are over-
determined, their combination corresponds to finding the least-square estimate of
all the variables.The meaning of the combination in such a case should be studied
by future research.
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Reliability in the Thresholded Dempster-Shafer
Algorithm for ESM Data Fusion

Melita Hadzagic, Marie-Odette St-Hilaire, and Pierre Valin

Abstract. The effectiveness of a multi-source information fusion process for de-
cision making highly depends on the quality of information that is received and
processed. This paper proposes methods for incorporating reliability, as one of the
attributes of the quality of information, into the Thresholded Dempster-Shafer fu-
sion algorithm for Electronic Support Measure (ESM) data fusion and delivers its
quantitative assessment by evaluating statistically the performance of the fusion al-
gorithm. The results suggest that accounting for the reliability of information in the
fusion algorithm will lead to an improved decision making.

1 Introduction

An information fusion system for decision making involves gathering and fusing a
large amount of imperfect heterogeneous information obtained from geographically
distributed sources. The effectiveness of a fusion algorithm in use highly depends on
the quality of received and processed information, which may be characterized by
its attributes such as uncertainty, reliability, relevance, completeness, and others [5].

This paper addresses the reliability as one of the attributes of the quality of infor-
mation and attempts to assess its impact on an information fusion process. For this
purpose, the reliability is considered as a higher order of uncertainty [4].
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There exist two approaches to define reliability as a higher order of uncertainty.
In the first approach, reliability is considered as the relative stability of the first order
of uncertainty, i.e. the reliability is measured by the sensor’s performance in terms
of amount of countermeasures acting on the sensor. In the second approach, the
goal is to represent reliability by measuring the accuracy of predicted beliefs. In the
latter case, the following situations can be identified, [4]: (i) assigning a numerical
degree of reliability to each source, (ii) a subset of sources is reliable but it is not
known which one, and (iii) reliabilities of respective sources are known up to an
order, however no precise reliability values are known.

Addressing each of these situations requires implementing one or all of the
following strategies while incorporating the reliability into the fusion process: (i)
strategies for identifying reliability of sources and discarding data coming from a
source of poor reliability prior to the fusion process, (ii) strategies for modifying
beliefs by considering their reliability before fusion, (iii) strategies for modifying
the fusion process to account for reliability of the input.

This paper proposes methods for incorporating reliability into the Thresholded
Dempster-Shafer (DS) fusion algorithm [6] for Electronic Support Measure (ESM)
data fusion, and delivers its quantitative assessment by evaluating statistically the
performance of the fusion algorithm in terms of two measures of the fusion algo-
rithm’s performance, the stability and the latency. The results obtained will facili-
tate evaluating how well the fusion product represents the reality, which will further
contribute to improved decision making and situation awareness.

The rest of the paper is organized as follows. Section 2 introduces the reliabil-
ity and general approaches for its incorporation into the information fusion pro-
cess, and also presents the proposed methods. In Section 3, the results obtained
by numerical simulations are presented, while Section 4 delivers the conclusion
remarks.

2 Reliability in a Fusion Process

Following from Section 1, the reliability is considered as the adequacy of belief
models with respect to reality where a numerical degree of reliability is assigned
to each source, while the strategies for modifying beliefs prior to fusion process
are adopted. Generally for this approach, expert-based and/or context-based meth-
ods may be used for modifying beliefs. In the expert-based methods, the reliability
coefficients are assumed to have fixed values. For references on the context-based
methods, see, e.g. [1], [2], and [3].

The information fusion process is considered to be a process of combining suc-
cessive ESM measurements, i.e. fusing data of a single ESM sensor over time. The
fusion algorithm used is the Thresholded-DS algorithm [6]. The approach proposed
here is to assign a numerical degree of reliability to each source while applying the
strategies of modifying beliefs before fusion. Prior to each combination of beliefs
in the Thresholded-DS algorithm, three situations of interest, when assigning a nu-
merical degree of reliability, are distinguished: (1) assuming a fixed value of the
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reliability coefficient during the fusion process, (2) assuming a variable value of the
reliability coefficient during the fusion process in the form of a step function, and
(3) assuming different values of reliability coefficients for different ESM reported
allegiances.

With the basic assumptions of the DS theory (e.g. see Chapter 4 in [4]), it is
assumed that for each source i the beliefs mi(A) are not equally reliable, mi(A) being
the belief of the source i that the observed data belongs to a subset A ∈ 2Θ , from a
frame of discernment Θ . For the reliability factors Ri, i = 1, . . . , I, and I number of
sources, the combination rule can be written as, [4],

m(A) =
I

∑
i=1

Rimi(A) (1)

Since only a single sensor is considered here, i denotes the index of ESM re-
ports ordered in time, where i ∈ [1, . . . ,N], N being the total number of the ESM
reports.

2.1 Constant Sensor Reliability

For a single sensor ESM data fusion process, i.e. the combining successive ESM
measurements (different allegiances) obtained from a single sensor, it is possi-
ble to assign to each sensor’s declaration a reliability coefficient that is assumed
constant for all reports i, i = 1, . . . ,N, during the whole duration of the fusion
process, i.e.

Ri = R (2)

The assumption on the existence of countermeasures acting on the ESM sensor is
allowed.

2.2 Variable Reliability Coefficient

For a single sensor ESM data fusion process, the value of the reliability coefficient
may vary for different intervals of sensor’s reporting time, i.e. the reliability coeffi-
cient (e.g. for three intervals) can be defined as

R =

{R1, i ∈ [0, i1]
R2, i ∈ [i1 + 1, i2]
R3, i ∈ [i2 + 1,N]

(3)

where i1, i2 and i3 define the intervals of interest, and N is the total number of the
ESM reports (or total number of reporting time instants). The beliefs of each new
sensor report are modified using (1) where the reliability coefficient, Ri, has the
corresponding interval value. The assumption on the existence of countermeasures
acting on the ESM sensor is also allowed.
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2.3 Allegiance-Based Reliability

The values of the reliability coefficients may depend on the allegiance, i.e. one can
assume that an ESM report friend (F) is more reliable than the report hostile (H).
In this case, for reported allegiances F, neutral (N) and H different fixed values of
reliability coefficients RF , RN , and RH , respectively, may be used in (1) to update
the beliefs of the ESM sensor. The assumption on the existence of countermeasures
acting on the ESM sensor is allowed.

3 Numerical Simulations

For the purpose of the algorithm’s performance evaluation, the data obtained from
a simulated ground truth scenario, were used. The scenario assumes total number
of N reports obtained at discrete times ti, i = 1, . . . ,N. For the simplicity of nota-
tion, let ti = i. It is assumed that for i ∈ [1, isw] the ESM sensor reports are friend
(F), while for i ∈ [isw + 1,N], the reported allegiances are hostile (H). The default
values of the scenario are N = 100 and the time of the switch of allegiance isw = 50.
Additionally, it is assumed that there exists a percentage of countermeasures act-
ing on the reporting ground-truth, which appear 1− Acc% of time, where Acc%
represents the percentage of total number of correct reports of allegiance. The num-
ber of false reports for the true allegiance F as the result of the countermeasures is
equally distributed between the declarations N and H, while for the true allegiance
H is equally distributed between the declarations N and F. For the Thresholded-DS
algorithm, it is assumed that the basic probabilistic assignment BPA (or mass m) for
the ESM sensor has a value m, while the rest (1−m) is assigned to ignorance. The
default value for the ESM mass m is m = 0.7. The value of the ignorance threshold
Imin, defined as the value below which the ignorance cannot be lower after a fusion
step [6], is assumed to be Imin = 0.0325 for all MC simulations. Both m and Imin

values can be user defined. For all numerical simulations, it was assumed that 20%
of countermeasures have acted on the ESM sensor.

Stability is defined in terms of error of the fusion product i.e. the error on the
allegiance decision of the fusion algorithm at each report time instant [6]. It is
defined as the averaged standard deviation of the statistical error, σ̄i(e), over all
fusion steps at discrete time instants i ∈ I, I = [15, isw − 5]∪ [isw − 5,N − 15], isw

being the time of the allegiance switch, i.e., σ̄i(e) = 1
I ∑i∈I σi(e) where σi(e) =√

1
M ∑M

j=1(e
j
i − μi(e))2, and μi(e) = 1

M ∑M
j=1 e j

i , and where M is the number of

Monte Carlo (MC) simulations, N is the total number of the ESM reports, and e j
i is

the absolute decision error at the fusion step i for the j-th MC run. The choice of
the set of fusion steps considered in calculating the stability is justified by the fact
that the poor stability occurs (by default) in the beginning due to the initialization
process of the algorithm. For the current version of the scenario, it is assumed that
the total number of ESM reports N ≥ 50.

Latency is defined as the number of fusion steps required to detect the true al-
legiances after the switch of allegiance occurs, i.e. Latency = ∑i∈I,i≥isw Li where
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Li =

{
1, gi < T
0, otherwise

and where i ∈ I is the current index of the fusion step, I is the

set of considered fusion steps, gi = 100μi(e) represents the so-called good deci-
sion rate at the fusion step i, while T is a threshold for sufficiently good reaction
time performance. The threshold T is calculated as T = μ(gi)− 3σ(gi) where the
mean good decision rate, μ(gi), and its standard deviation, σ(gi), are calculated as

μ(gi) =
1
I ∑i∈I gi and σ(gi) =

√
1

|I|−1 ∑i∈I(gi− μ(gi))2.

The results are presented next.
Figure 1 shows the output of the Thresholded-DS algorithm for one MC run and

the constant reliability (or the tradeoff (rtoff )) approach, in which the value of the
reliability coefficient, R = 0.8 during the total duration of the scenario. Figure 2
shows latency as the number of reports below the threshold T (see the above defini-
tion of latency) obtained from 1000 MC runs. The computed latency = 9 suggests
relatively good performance of the fusion algorithm in presence of a lower sensor
reliability, R = 0.8. The latency for different values of reliability coefficients in the
presence of 20% of countermeasures is shown in Figure 3. It increases linearly as the
values of reliability coefficients decrease, while the stability, shown in Figure 4 de-
creases for decreasing values of the reliability coefficients, hence both performance
measures indicating the influence of the reliability on the fusion process.

With the same assumptions on the countermeasures, the BPAs obtained for the
variable reliability approach, referred to as r123, for the specified intervals, are
shown in Figure 5. It illustrates slightly poorer performance with the r123 approach
comparing to the rtoff one, which is expected since in r123 the values of reliability
coefficients decrease during the fusion process. The latency, see Figure 6, was not
affected in the proximity of the switch. Using the same reliability approach, a situ-
ation of a low sensor reliability in the proximity of the switch was investigated. In
the vicinity of the switch, isw = 51, between the fusion step i = 31 and i = 61 the re-
liability factor value was set to drop to R2 = 0.5. It can be observed in Figure 7 that
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Fig. 1 BPA for the tradeoff (rtoff) app-
roach, R = 0.8, Imin = 0.0325, ESM mass
m = 0.7, for one MC run. Countermea-
sures = 20%.
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Fig. 2 Good decision rate (gdr) for the trade-
off (rtoff) approach, R = 0.8, Imin = 0.0325,
ESM mass m = 0.7, for 1000 MC runs. Coun-
termeasures = 20%.
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Fig. 3 Latency versus reliability for the
tradeoff (rtoff) approach, R = 0.8, Imin =
0.0325, ESM mass m = 0.7, for 1000 MC
runs. Countermeasures = 20%.
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Fig. 4 Stability versus reliability for the
tradeoff (rtoff) approach, R = 0.8, Imin =
0.0325, ESM mass m = 0.7, for 1000 MC
runs. Countermeasures = 20%.
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Fig. 5 BPA for the variable reliability (r123)
approach, R1 = 0.8, R2 = 0.7 and R3 =
0.6 for i ∈ [0,30], i ∈ [31,60], and i ∈
[61,100], respectively, Imin = 0.0325, ESM
mass m = 0.7 for one MC run. Countermea-
sures = 20%.
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Fig. 6 Good decision rate (gdr) for the
variable reliability (r123) approach, R1 =
0.8, R2 = 0.7 and R3 = 0.6 for i ∈ [0,30],
i ∈ [31,60], and i ∈ [61,100], respectively,
Imin = 0.0325, ESM mass m = 0.7, for 1000
MC runs. Countermeasures = 20%.

the performance of detection of a correct allegiance decreases near the switch as the
reliability decreases its value. In this case, latencyR=0.5 = 12 > latencyR=0.8 = 9,
i.e. the decision on a switch of allegiance was delayed.

The allegiance-based approach (rfhn) allows for setting a larger value of relia-
bility coefficient to the declarations F and N than to H. For the specified values,
the results depicted in Figure 8 illustrate that the decision of a correct allegiance
occurs but is delayed. This is confirmed by the calculated average latency value
for 1000MC, latency = 12, see Figure 10. However, for another MC run an error
in making a correct decision may also happen in the vicinity of the switch, as ob-
served in Figure 9. Finally, Figure 11 shows the standard deviations for all three
approaches suggesting on average (1000 MC runs) similar algorithm’s stability
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Fig. 7 BPA for the variable reliability (r123) approach, R1 = 0.8, R2 = 0.5 and R3 = 0.8 for
i ∈ [0,30], i ∈ [31,60], and i ∈ [61,100], respectively, Imin = 0.0325, ESM mass m = 0.7, for
one MC run. Countermeasures = 20%.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

bp
a

 

 

friend
neutral
hostile

Fig. 8 BPA for the different allegiance ap-
proach (RF = RN = 0.9, RH = 0.5), Imin =
0.0325, ESM mass m = 0.7 for one MC run.
Countermeasures = 20%.
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Fig. 9 BPA for different allegiance
approach (rfhn) (RF = RN = 0.9,
RH = 0.5) for one MC run. Countermea-
sures = 20%.
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Fig. 10 Good decision rate (gdr) for
the different allegiance (rfhn) approach,
Imin = 0.0325, ESM mass m = 0.7, for
1000 MC runs.
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Fig. 11 Standard deviation for the tradeoff (toff),
the variable reliability (r123), and the allegiance-
based (rfhn) reliability approach, Imin = 0.0325,
ESM mass m = 0.7, for 1000 MC runs.
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performance for the tradeoff (toff), the variable (r123), and the allegiance-based
(rfhn) reliability. The horizontal line (labeled as AvgS) represents the average
stability.

4 Conclusions

The tradeoff approach shows on average (for 1000 MC runs) good fusion perfor-
mance for a lower but still large (R = 0.8) reliability. However, the fusion per-
formance decreases as the value of the reliability coefficient decreases. Similarly,
the variable reliability approach suggests that low reliability highly affects the
performance of the algorithm, especially in terms of detection of switch of alle-
giance. The allegiance-based approach also shows that the reliability significantly
affects the Thresholded-DS algorithm’s performance in terms of correct decision on
allegiance. In conclusion, the study suggests that accounting for the reliability in the
fusion algorithm will lead to an improved decision making.
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Hierarchical Proportional Redistribution
for bba Approximation

Jean Dezert, Deqiang Han, Zhunga Liu, and Jean-Marc Tacnet

Abstract. Dempster’s rule of combination is commonly used in the field of infor-
mation fusion when dealing with belief functions. However, it generally requires a
high computational cost. To reduce it, a basic belief assignment (bba) approxima-
tion is needed. In this paper we present a new bba approximation approach called
hierarchical proportional redistribution (HPR) allowing to approximate a bba at any
given level of non-specificity. Two examples are given to show how our new HPR
works.

1 Introduction

Dempster-Shafer Theory (DST), also called Theory of Evidence [10], has been
widely used in many applications, e.g., information fusion, pattern recognition and
decision making [11]. Although it is appealing in uncertainty modeling, while ap-
pearing more controversial for consistent reasoning, the high computational cost
remains problematic which is often raised against its use [11]. To resolve such a
problem, three major types of approaches have been proposed.

The first is to propose efficient procedures for performing exact computations
[1, 8]. The second is composed of Monte-Carlo techniques [9]. The third is to
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approximate a belief function to a simpler one. The papers of Voorbraak [13],
Dubois and Prade [5] are seminal works of this type. Other representative works
include k− l − x [3] and k-additive belief function [2, 6]. Denœux uses hierarchical
clustering to implement the inner and outer approximation [3].

In this paper, we propose a new method called hierarchical proportional redistri-
bution (HPR) to approximate any general basic belief assignment (bba) at a given
level of non-specificity [4], up to the ultimate level 1 corresponding to a Bayesian
bba [10]. The level of non-specificity can be controlled by the users through the
adjustment of the maximum cardinality of remaining focal elements. For the ap-
proximated bba obtained by HPR, the maximum cardinality of the focal elements
is k. Thus HPR can be considered as a generalized k-additive belief approximation.
Some examples are given to show how our proposed HPR method works, and to
compare it with other approximations.

2 Basics of Dempster-Shafer Theory (DST)

In DST [10], the frame of discernment (FoD) is a set Θ of mutual exhaustive and
exclusive elements. m(.) : 2Θ → [0,1] is a basic belief assignment (bba), also called
mass function, if it satisfies

∑A⊆Θ m(A) = 1, m( /0) = 0. (1)

Belief function (Bel) and plausibility function (Pl) are defined as

Bel(A) = ∑B⊆A m(B) and Pl(A) = ∑A∩B �= /0 m(B). (2)

Suppose that m1,m2, ...,mn are n bba’s, then Dempster’s rule of combination is de-
fined by

m(A) =

⎧⎪⎨⎪⎩
0, A = /0

∑
∩Ai=A

∏
1≤i≤n

mi(Ai)

∑
∩Ai �= /0

∏
1≤i≤n

mi(Ai)
, A �= /0

(3)

This rule is used in DST to combine pieces of evidence expressed by bba’s. As re-
ferred above, Dempster’s combination has high computational cost and three types
of approaches have been proposed to reduce it. We prefer belief approximation ap-
proaches [2, 3, 6, 12] since they both reduce the computational cost of the combina-
tion and allow to deal with smaller-size focal elements, which is more intuitive for
human to catch the meaning and interpret fusion results [2].

3 Two bba Approximation Approaches

1) k− l−x approximation: This was proposed by Tessem [12]. The simplified bba
obtained by k− l−x approach satisfies: a) keep no less than k focal elements; b) keep
no more than l focal elements; c) the mass assignment to be deleted is no greater
than x. In k− l − x, the focal elements of a original bba are sorted by their masses.
Such an algorithm chooses the first p focal elements such that k ≤ p ≤ l and such
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that the sum of the masses of these first p focal elements is no less than 1− x. The
deleted masses are redistributed to the other focal elements through a normalization.

2) k-additive belief function approximation: Given m(.) : 2Θ → [0,1], one kind of
k-additive belief function [2, 6] induced by the mass m(.) is defined by⎧⎨⎩mk(B) = m(B)+ ∑

A⊃B,A⊆Θ ,|A|>k

m(A)·|B|
N (|A|,k) , ∀|B| ≤ k

mk(B) = 0, ∀|B|> k
(4)

where B ⊆Θ and

N (|A| ,k) =
k

∑
j=1

( |A|
j

)
· j =

k

∑
j=1

|A|!
( j−1)!(|A|− j)!

(5)

is the average cardinality of the subsets of A of size at most k. For k-additive belief
approximation, the maximum cardinality of available focal elements is no greater
than k. Other bba approximation methods can be found in related references.

4 Hierarchical Proportional Redistribution Approximation

In this paper we propose a new bba approximation approach called hierarchical
proportional redistribution (HPR), which provides a new way to reduce step-by-
step the mass committed to uncertainties. Ultimately an approximate measure of
subjective probability can be obtained if needed, i.e. a so-called Bayesian bba in
[10]. Our proposed procedure can be stopped at any step in the process and thus it
allows to reduce the number of focal elements of a given bba in a simple manner to
diminish the size of the core [10] of a bba. Thus we can reduce the complexity (if
needed) when applying also some complex rules of combinations. By using HPR,
we can obtain approximate bba’s at any different non-specificity level that we want.
Let us first introduce two new notations for convenience and conciseness:

1. Any element of cardinality 1 ≤ k ≤ n of the power set 2Θ will be denoted X(k)
by convention. For example, if Θ = {A,B,C}, then X(2) can denote the following
partial uncertainties A∪B, A∪C or B∪C, and X(3) denotes the total uncertainty
A∪B∪C.

2. The proportional redistribution factor (ratio) of width s involving elements X and
Y of the powerset is defined by (for X �= /0 and Y �= /0)

Rs(Y,X)� m(Y )+ ε · |X |
∑ Y⊂X
|X |−|Y |=s

m(Y )+ ε · |X | (6)

where ε is a small positive number introduced here to deal with particular cases
where ∑ Y⊂X

|X |−|Y |=s
m(Y ) = 0.

By convention, we will denote R(Y,X) � R1(Y,X) when we use the proportional
redistribution factors of width s = 1, as we use in this paper for this HPR method.
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The HPR is a step-by-step (recursive) proportional redistribution of the mass m(X(k))
of a given uncertainty X(k) (partial or total) of cardinality 2 ≤ k ≤ n to all the least
specific elements of cardinality k− 1, i.e., to all possible X(k− 1), until k = 2 is
reached. The proportional redistribution is done from the masses of belief com-
mitted to X(k− 1) as done classically in DSmP transformation. The “hierarchical”
masses mh(.) are recursively (backward) computed as follows. Here mh(k) represents
the approximate bba obtained at the step n−k of HPR, i.e., it has the maximum focal
element cardinality of k.

mh(n−1)(X(n−1)) = m(X(n−1))+∑ X(n)⊃X(n−1),
X(n),X(n−1)∈2Θ

[m(X(n)) ·R(X(n−1),X(n))];

mh(n−1)(A) = m(A),∀|A|< n−1
(7)

mh(n−1)(·) is the bba obtained at the first step of HPR (n− (n−1) = 1), the maximum
focal element cardinality of mh(n−1) is n−1.

mh(n−2)(X(n−2)) = m(X(n−2))
+∑ X(n−1)⊃X(n−2)

X(n−2),X(n−1)∈2Θ
[mh(n−1)(X(n−1)) ·R(X(n−2),X(n−1))]

mh(n−2)(A) = mh(n−1)(A),∀|A|< n−2

(8)

mh(n−2)(·) is the bba obtained at the second step of HPR (n− (n−2) = 2), the maxi-
mum focal element cardinality of mh(n−2) is n−2.

This hierarchical proportional redistribution process can be applied similarly (if
one wants) to compute mh(n−3)(.), mh(n−4)(.), ..., mh(2)(·), mh(1)(·) with

mh(2)(X(2)) = m(X(2))+∑ X(3)⊃X(2)
X(3),X(2)∈2Θ

[mh(3)(X(3)) ·R(X(2),X(3))]

mh(2)(A) = mh(3)(A),∀|A|< n−2

(9)

mh(2)(·) is the bba obtained at the first step of HPR (n− 2), the maximum focal
element cardinality of mh(2) is 2.

Mathematically, for any X(1) ∈Θ , i.e. any θi ∈Θ a Bayesian belief function can
be obtained by HPR method in deriving all possible steps of proportional redistri-
butions of partial ignorances in order to get

mh(1)(X(1)) = m(X(1))+ ∑
X(2)⊃X(1)

X(1),X(2)∈2Θ

[mh(2)(X(2)) ·R(X(1),X(2))] (10)

In fact, mh(1)(·) is a probability transformation, called here the Hierarchical DSmP
(HDSmP). Since X(n) is unique and corresponds only to the full ignorance θ1∪θ2∪
. . .∪θn, the expression of mh(X(n−1)) in Eq.(9) just simplifies as

mh(n−1)(X(n− 1)) = mh(X(n− 1))+m(X(n)) ·R(X(n−1),X(n)) (11)

For the full proportional redistribution of the masses of uncertainties to the elements
least specific involved in these uncertainties, no mass is lost during the step-by-step
hierarchical process and thus at any step of HPR, the sum of masses is kept to one.
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5 Examples

5.1 Example 1

Let’s consider the following bba over Θ = {θ1,θ2,θ3}:
m(θ1) = 0.10, m(θ2) = 0.17, m(θ3) = 0.03, m(θ1∪θ2) = 0.15,

m(θ1 ∪θ3) = 0.20, m(θ2∪θ3) = 0.05, m(θ1 ∪θ2∪θ3) = 0.30.

We apply the HPR with ε = 0 in this example because there is no mass of belief
equal to zero. It can be verified that the result obtained with small positive ε param-
eter remains (as expected) numerically very close to what is obtained with ε = 0.

• Step 1: The first step of HPR consists in redistributing back m(θ1 ∪θ2∪θ3) = 0.30
committed to the full ignorance to the elements θ1 ∪ θ2, θ1 ∪ θ3 and θ2 ∪ θ3 only,
because these elements are the only elements of cardinality 2 that are included in
θ1 ∪ θ2 ∪ θ3. Applying the Eq. (8) with n = 3, one gets when X(2) = θ1 ∪ θ2, θ1 ∪ θ3
and θ1∪θ2 the following masses.

mh(2)(θ1 ∪θ2) = m(θ1 ∪θ2)+m(X(3)) ·R(θ1 ∪θ2,X(3)) = 0.15+(0.30 ·0.375) = 0.2625

because R(θ1 ∪θ2,X(3)) = 0.15
0.15+0.20+0.05 = 0.375.

Similarly, one gets

mh(2)(θ1 ∪θ3) = m(θ1 ∪θ3)+m(X(3)) ·R(θ1 ∪θ3,X(3)) = 0.20+(0.30 ·0.5) = 0.35

because R(θ1 ∪θ3,X(3)) = 0.20
0.15+0.20+0.05 = 0.5, and also

mh(2)(θ2 ∪θ3) = m(θ2 ∪θ3)+m(X(3)) ·R(θ2 ∪θ3,X(3)) = 0.05+(0.30 ·0.125) = 0.0875

because R(θ2 ∪θ3,X(3)) = 0.05
0.15+0.20+0.05 = 0.125.

• Step 2 Now, we go to the next step of HPR principle and one needs to redistribute
the masses of partial ignorances X(2) corresponding to θ1 ∪ θ2, θ1 ∪ θ3 and θ2 ∪ θ3
back to the singleton elements X(1) corresponding to θ1, θ2 and θ3. We use Eq. (10)
for doing this as follows:

mh(1)(θ1) = m(θ1)+mh(θ1 ∪θ2) ·R(θ1,θ1 ∪θ2) +mh(θ1∪θ3) ·R(θ1,θ1∪θ3)

≈ 0.10+(0.2625 ·0.3703)+(0.35 ·0.7692) = 0.10+0.0972+0.2692 = 0.4664

because R(θ1,θ1 ∪θ2) =
0.10

0.10+0.17 ≈ 0.3703 and R(θ1,θ1∪θ3) =
0.10

0.10+0.03 ≈ 0.7692
Similarly, one gets

mh(1)(θ2) = m(θ2)+mh(θ1 ∪θ2) ·R(θ2,θ1 ∪θ2)+mh(θ2 ∪θ3) ·R(θ2,θ2 ∪θ3)

≈ 0.10+(0.2625 ·0.6297)+(0.0875 ·0.85) = 0.17+0.1653+0.0744 = 0.4097

because R(θ2,θ1 ∪ θ2) =
0.17

0.10+0.17 ≈ 0.6297 and R(θ2,θ2 ∪ θ3) =
0.17

0.17+0.03 = 0.85. and
also

mh(1)(θ3) = m(θ3)+mh(θ1∪θ3) ·R(θ3,θ1∪θ3)+mh(θ2 ∪θ3) ·R(θ3,θ2 ∪θ3)

≈ 0.03+(0.35 ·0.2307)+(0.0875 ·0.15) = 0.03+0.0808+0.0131 = 0.1239
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because R(θ3,θ1 ∪θ3) =
0.03

0.10+0.03 ≈ 0.2307 and R(θ3,θ2∪θ3) =
0.03

0.17+0.03 = 0.15
Hence, the result of final step of HPR is:

mh(1)(θ1) = 0.4664, mh(1)(θ2) = 0.4097, mh(1)(θ3) = 0.1239.

We can easily verify that mh(1)(θ1)+mh(1)(θ2)+mh(1)(θ3) = 1.
To compare HPR with the approach of k− l−x, we set the parameters of k− l−x

to obtain bba’s with equal focal element number with HPR at each step. In Example
1, for HPR at first step, it can obtain a bba with 6 focal elements. Thus we set
k = l = 6,x = 0.4 for k− l−x to obtain a bba with 6 focal elements. Similarly, for HPR
at second step, it can obtain a bba with 3 focal elements. Thus we set k = l = 3,x = 0.4
for k− l−x. Based on HPR and k− l−x, the results are shown in Table 1.

Table 1 Experimental results of Example 1.

Focal elements
mh(k)(·) - approximate bba m(·) obtained by k− l−x
k = 3 k = 2 k = 1 k = l = 6 k = l = 3

θ1 0.1000 0.1000 0.4664 0.1031 0.0000
θ2 0.1700 0.1700 0.4097 0.1753 0.2573
θ3 0.0300 0.0300 0.1239 0.0000 0.0000
θ1∪θ2 0.1500 0.2625 0.0000 0.1546 0.0000
θ1∪θ3 0.2000 0.3500 0.0000 0.2062 0.2985
θ2∪θ3 0.0500 0.0875 0.0000 0.0515 0.0000
θ1∪θ2 ∪θ3 0.3000 0.0000 0.0000 0.3093 0.4478

5.2 Example 2

Let’s consider Θ = {θ1,θ2,θ3}, and the bba m(θ3) = 0.7 and m(θ1 ∪ θ2 ∪ θ3) = 0.30.
Here, the masses of all the focal elements with cardinality size 2 equal to zero.
For HPR, when ε > 0, m(θ1 ∪ θ2 ∪ θ3) will be divided equally and redistributed to
{θ1 ∪ θ2}, {θ1 ∪ θ3} and {θ2 ∪ θ3}. Because the ratios are (taking for example ε =
0.001)

R(θ1∪θ2,X(3)) = R(θ1∪θ3,X(3)) = R(θ2∪θ3,X(3)) =
0.00+0.001 ·3

(0.00+0.001 ·3) ·3 = 0.3333

In this case, HPR cannot work directly when ε = 0. This shows the necessity for
the use of ε > 0. The bba’s obtained from HPRε=0.001 and k− l − x are listed in
Table 2.

From the results of Examples 1 & 2, we can see that based on k− l− x, the users
can control the number of focal elements but cannot control the maximum cardinal-
ity of focal elements. Although based on k− l−x, the number of focal elements can
be reduced, the focal elements with big cardinality might also be kept. This is not
good for further reducing computational cost. But with the proposed HPR method,
users can easily control both the non-specificity of approximated bba’s and the focal
element’s size.
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Table 2 Experimental results of Example 2 (ε = 0.001)

Focal elements
mh(k)(·) - approximate bba m(·) obtained by k− l−x
k = 3 k = 2 k = 1 k = l = 6 k = l = 3

θ1 0.0000 0.0000 0.0503 0.0000 0.0000
θ2 0.0000 0.0000 0.0503 0.0000 0.0000
θ3 0.7000 0.7000 0.8994 0.7000 0.7000
θ1∪θ2 0.0000 0.1000 0.0000 0.0000 0.0000
θ1∪θ3 0.0000 0.1000 0.0000 0.0000 0.0000
θ2∪θ3 0.0000 0.1000 0.0000 0.0000 0.0000
θ1∪θ2 ∪θ3 0.3000 0.0000 0.0000 0.3000 0.3000

5.3 Example 3

In this work, an approximation method 1 (giving m1(.)) is considered better than a
method 2 (giving m2(.)) if both conditions are fulfilled: 1) if the distance between
m1(.) and original bba m(.) is smaller than the distance between m2(.) and origi-
nal bba m(.), i.e. d(m1,m)< d(m2,m); 2) if the approximate non-specificity value
U(m1) is closer (and lower) to the true non-specificity value U(m) than U(m2). We
have used Jousselme’s distance [7] which has been proved recently to be a strict
distance metric because it is commonly used in applications. The Non-specificity
[4] is given by U(m) = ∑A⊆Θ m(A) log2 |A|. In this example, we make a compari-
son between HPR (method 1) and k-additive approach (method 2). We have taken
Θ = {θ1,θ2,θ3,θ4,θ5} and generated randomly 30 bba’s using the algorithm given in
[7]. We compute and plot d(m1,m), d(m2,m), U(m), U(m1) and U(m2) for several

0 10 20 30
1

1.1

1.2

1.3

1.4

N
on

−
sp

ec
ifi

ci
ty

0 10 20 30
0.9

1

1.1

1.2

1.3

1.4

bba’s
0 10 20 30

0.8

1

1.2

1.4

 

 

0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

D
is

ta
nc

e 
of

 e
vi

de
nc

e

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

bba’s
0 10 20 30

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 

 

non−specificity
of original bba’s
k−additive
HPR

Max FS =4 MAX FS =3 MAX FS = 2

Fig. 1 Results for the Example 3. Comparison of k-additive belief function approximation
with HPR approximation method. (FS means Focal element Size)



282 J. Dezert et al.

levels of approximation. The results are shown in Fig. 1 and indicate clearly the
superiority of HPR over the k-additive approach.

6 Conclusions

In this paper, a novel bba approximation called HPR has been proposed as an
interesting alternative approach to two classical ones. With this HPR, the non-
specificity degree can be easily controlled by the users. Our example show its be-
havior and advantage in comparisons with other well-known bba approximation
approaches. HPR has a low computational cost compared with k-additive approach,
which will be discussed in a more detailed paper in future. In further works, we will
also compare our proposed HPR with more bba approximation approaches avail-
able in the literature. In this paper, we have used only the distance of evidence
and the non-specificity criteria, which in fact are not enough, or comprehensive
to evaluate efficiently bba approximations. So in future, we will try to propose
more efficient evaluation criteria to evaluate and design better bba approximations
(if possible).
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On the α-Conjunctions for Combining Belief
Functions

Frédéric Pichon

Abstract. The α-conjunctions basically represent the set of associative, commu-
tative and linear operators for belief functions with the vacuous belief function as
neutral element. Besides, they include as particular case the unnormalized Demp-
ster’s rule. They are thus particularly interesting from a formal standpoint. However,
they suffer from a main limitation: they lack a clear interpretation in general. In this
paper, an interpretation for these combination rules is proposed, based on a new
framework that allows the integration of meta-knowledge on the various forms of
lack of truthfulness of the information sources.

1 Introduction

The theory of belief functions [1, 5, 10] is a general framework for reasoning un-
der uncertainty. Within this framework, many belief function combination rules
have been proposed for the fusion of information and, in particular, the unnormal-
ized version of Dempster’s rule [1, 5] (also called conjunctive rule) introduced by
Smets in the Transferable Belief Model [6], the disjunctive rule [2, 7], the exclusive
disjunctive rule and its negation [2, 8].

In [8], Smets studied these four combination rules and discovered that they are
actually special cases of an infinite family of rules, which he called α-junctions and
that basically represent the set of associative, commutative and linear operators for
belief functions with a neutral element. He further showed that there are only two
possibilities for the neutral element, leading to two subfamilies of rules called α-
conjunctions and α-disjunctions; the α-conjunctions being the family that has the
so-called vacuous belief function as neutral element and the conjunctive rule and
the negation of the exclusive disjunctive rule as particular cases. However, except
for the four particular cases, he did not provide an interpretation for these rules.
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The first effort to find an interpretation for this important family of rules was
reported in [3], where we showed that the α-junctions correspond to a particular
form of meta-knowledge on the truthfulness of the sources. However, the actual
meaning of the α-junctions as presented in [3] remains hard to grasp.

In this paper, the investigation on these rules is pursued. An interpretation for
the α-conjunctions is proposed in Section 3, based on a new framework that allows
the integration of meta-knowledge on the various forms of lack of truthfulness of
the information sources. This framework is introduced in the next section. Let us
note that an interpretation for the α-disjunctions can also be provided using this
framework. However, due to lack of space, only the case of the α-conjunctions is
addressed in this paper.

2 Truthfulness

In this section, a general approach to information fusion for belief functions is pro-
posed, where the various of forms of lack of truthfulness of the sources may be
taken into account. We formalize first the notion of truthfulness, before unveiling an
associated general combination rule.

2.1 Truthfulness of a Single Source

Let x be a parameter defined on a domain X . Let us suppose that a source S, such
as a sensor or a human agent, provides a piece of information on the value taken by
x and that this source is relevant1, which means that it provides useful information
regarding the value of x [4]. Let us further assume that the information provided by
S takes the form x ∈ A, for some A ⊆ X . In [4], the notion of source truthfulness is
investigated and the definition that is used is the following: a source is truthful if it
actually supplies the information it possesses and a non truthful source is a source
that declares the contrary of what it knows. According to this definition, one must
conclude that x∈A or x∈A, where A is the complement of A, depending on whether
the source S is assumed to be truthful or not.

This definition correspond to the crudest description of the lack of truthfulness.
Various other forms of lack of truthfulness exist: besides telling the contrary of what
it knows, a source may just say less, or something different, even if consistent with
its knowledge, as already remarked in [4]. We propose in the following a refined
model of source truthfulness, which allows us to take into account these various
forms of lack of truthfulness.

Let Tx = {tx,¬tx} be the frame of the variable tx used to model the truthfulness
(tx) or non truthfulness (¬tx) of a source S with respect to x∈ X , i.e., the assumptions
that the source tells what it knows or the opposite of what it knows with respect to
the value x ∈ X . There are thus four possible cases:

1 In this paper, all information sources will be assumed relevant and thus we will hereafter
omit to state this assumption, for clarity of exposition.
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1. Suppose the source is in state tx.

a. If the source tells x is possibly the actual value of x, i.e., the information x∈ A
provided by the source is such that x ∈ A, then one must conclude that x is
possibly the actual value of x;

b. If the source tells x is not a possibility for the actual value of x, i.e.,
x �∈ A, then one must conclude that x is not a possibility for the actual
value of x.

2. Suppose the source is in state ¬tx.

a. If the source declares x is possibly the actual value of x, then one must con-
clude that x is not a possibility for the actual value of x;

b. If the source tells x is not a possibility for the actual value of x, then one must
conclude that x is possibly the actual value of x.

Let H denote the possible states of S with respect to its truthfulness for all x ∈ X .
By definition, H = ×x∈XTx. Furthermore, let hB, B ⊆ X , be the state where
the source tells the truth for all x ∈ B and lies for all x �∈ B. For instance, let
X = {x1,x2,x3,x4} and B = {x3,x4}, then hB =

(¬tx1 ,¬tx2 , tx3 , tx4

)
. We have thus

H = ×x∈XTx = {∪B⊆X hB} and there are 2|X | states hB, B ⊆ X , of which 2|X | − 1
are distinct lies and the remaining one, hX , corresponds to telling the truth for
all x ∈ X .

Let us now consider the following question: suppose a source declares x ∈ A and
is in state hB, what must one conclude about x? The answer follows directly from the
fact that the four cases above correspond to the Boolean equivalence connective: one
must conclude x ∈ (A∩B)∪ (A∩B) [4]. For all A⊆ X , we can define a multivalued
mapping ΓA from H to X that encodes this reasoning:

ΓA(hB) = (A∩B)∪ (A∩B), ∀B ⊆ X .

ΓA(h) indicates how to interpret the information x∈A provided by the source in each
configuration h of the source. We may also consider non elementary hypotheses H,
H ⊆H , corresponding to subsets of possible states of the source. Let ΓA(H) denote
the image of H under ΓA. It is defined as ΓA(H) = ∪h∈HΓA(h).

This framework allows us to represent the various forms of lack of truthful-
ness mentioned above. For instance, let X = {x1,x2,x3,x4} and suppose a source
tells x ∈ {x3,x4}: if the source is in state h{x1,x4}, this means that it actually knows
x ∈ {x2,x4}, i.e., it is telling something different yet consistent with what it knows;
if the source is in state h{x1,x2,x3}, then it knows x ∈ {x3} and thus is telling less.
Let us also remark that the state hX corresponds to the state of the source be-
ing truthful in the truthfulness model considered in [4] and recalled above, as it
also yields the conclusion x ∈ A from a piece of information x ∈ A, A ⊆ X . The
truthfulness model of [4] is actually a particular case of the one proposed here,
since the state h /0 (lying for all x ∈ X) corresponds to the state of non truthfulness
in [4].
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2.2 Uncertain Meta-knowledge and Testimony

Consider the situation where an agent’s meta-knowledge on the truthfulness of S is
uncertain and represented by subjective probabilities pH (h), h ∈H . For instance,
suppose the agent knows that S behave similarly for all x ∈ X , that is, for any x ∈ X
the probability of telling the truth is α and the probability of lying is 1−α . Besides,
the agent knows that the behavior of the source are independent for all x ∈ X , i.e.,
the variables tx, x ∈ X , are independent. In other words, the agent knows that the
truthfulness of the source for all x ∈ X may be assimilated to a Bernoulli process.

We have then pH (hA) = α |A|(1−α)|A|, for all A ⊆ X , since the probability that

the source lies for all elements in A is equal to ×x∈A p(¬tx) = (1−α)|A| and the
probability that it tells the truth for all elements in A is equal to ×x∈A p(tx) = α |A|.

Following Dempster’s approach [1], a testimony x∈ A provided by S will then be
interpreted by a belief function [5] with associated mass function mA on X defined
by, for all B ⊆ X : mA(B) = pH (h), where B = ΓA(h). Formally, a mass function
m on X is a probability distribution on the power set of X , hence ∑A⊆X m(A) = 1.
Mass functions can encode various forms of knowledge, for instance the so-called
vacuous mass function m0 defined by m0(X) = 1 represents total ignorance about
the actual value of x.

More generally, the testimony of the source may be uncertain and represented
by a mass function mS on X . Each testimony x ∈ A is then allocated mass mS(A),
yielding the following mass function:

m(B) = ∑
A

mS(A)mA(B), ∀B ⊆ X . (1)

Let us remark that the framework introduced in this paper for modeling source truth-
fulness is actually a particular case of an approach to account for general source
behavior assumptions proposed in [4] and that Reference [4] may readily be used to
provide a formal derivation of (1).

2.3 The Case of Multiple Sources

Let us now consider that there are two sources S1 and S2 providing the pieces of
information x∈ A and x∈ B, respectively. Let H1 and H2 denote the set of possible
state configurations of each source. The set of elementary joint state assumptions on
sources is H12 = H1×H2. Following the approach described in [4], a multivalued
mapping ΓA,B from H12 to X , which assigns to each elementary hypothesis h =
(h1,h2),h ∈H12, the result of the fusion of the two pieces of information x ∈ A and
x ∈ B may be defined as follows: ΓA,B(h) = ΓA(h1)∩ΓB(h2) and, more generally,
ΓA,B(H) =

⋃
(h1,h2)∈H(ΓA(h1)∩ΓB(h2)), for all H ⊆H12.

Now, suppose uncertain meta-knowledge on the two sources, represented by a
mass function mH12 , and that the sources provide uncertain information m1 and m2,
respectively, on X . Assume further that the sources are independent, where indepen-
dence means the following: if we interpret mi(A) as the probability that the source
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Si provide the information x ∈ A, then the probability that the source S1 provide the
information x ∈ A and the source S2 provide conjointly the information x ∈ B is the
product m1(A) ·m2(B) [4]. In such a situation, one may use the so-called Behavior-
Based Fusion (BBF) rule introduced in [4], to obtain the following mass function m
on X :

m(C) = ∑
H

mH12(H) ∑
A,B:C=ΓA,B(H)

m1(A) m2(B), ∀C ⊆ X . (2)

Two important variants of this last equation are the unnormalized version of
Dempster’s rule [1] and the negation of the exclusive disjunctive rule [2, 8]. The
former rule is recovered with mH12

({
(h1

X ,h
2
X)
})

= 1, i.e., both sources are truth-
ful, since we have ΓA,B(

{
(h1

X ,h
2
X)
}
) = A ∩ B. The latter rule is recovered with

mH12
({

(h1
X ,h

2
X ),(h

1
/0,h

2
/0)
})

= 1, i.e., both or none of the sources are truthful, since
we have ΓA,B(

{
(h1

X ,h
2
X),(h

1
/0,h

2
/0)
}
) = (A∩B)∪(A∩B). This latter rule will be called

for short the equivalence rule in the remainder of this paper, since it corresponds to
the Boolean equivalence connective.

3 α-Conjunctions

In this section, we first recall some basic and necessary notions on the α-
conjunctions. We then proceed with the disclosure of an interpretation for these
rules.

3.1 Basic Notions

Smets introduced the α-junctions in [8, 9] as follows. Let M X be the set of mass
functions on X . Let m1 and m2 be two mass functions on X . Suppose we want to
build a mass function m12 such that m12 = f (m1,m2). Smets [8] determined the
operators that map M X ×M X to M X and that satisfy the following requirements
(the origins of those requirements are summarized in [9, p.25]).

• Linearity: f (m, pm1 + qm2) = p f (m,m1)+ q f (m,m2), p ∈ [0,1], q = 1− p.
• Commutativity: f (m1,m2) = f (m2,m1).
• Associativity: f ( f (m1,m2),m3) = f (m1, f (m2,m3)).
• Neutral element: existence of a mass function m0 such that f (m,m0) = m for

any m.
• Anonymity: relabeling the elements of X does not affect the results.
• Context preservation: let pli be the plausibility function [10] associated to the

mass function mi and defined by pli (A) = ∑B∩A �= /0 mi (B), for all A ⊆ X (the
quantity pli(A) represents the probability that the proposition x ∈ A can not
be refuted by the available information). Context presentation correspond to the
requirement: if pl1(A) = 0 and pl2(A) = 0 for some A ⊆ X , then
pl12(A) = 0.
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Smets [8] showed that there are two families of rules that satisfy these require-
ments: one for each of the only two possible solutions for m0, which can only be, as
shown by Smets, either m0 = m0 or m0 = m⊥, with m⊥ the mass function defined
by m⊥( /0) = 1. Besides, he showed that each of these two families depend on a pa-
rameter α ∈ [0,1]. He called these families the α-conjunctions and α-disjunctions,
respectively. In the remainder of this paper, we focus on the α-conjunctions.

Smets provided a complex definition for these rules. In [3], a simpler definition
was found. We reproduce this latter definition here. Let m1 and m2 be two mass
functions and let m1 ∩©α 2 denote the mass function resulting from the α-conjunction
of m1 and m2. We have, for all D ⊆ X [3, Proposition 3]:

m1 ∩©α 2 (D) = ∑
(A∩B)∪(A∩B∩C)=D

m1 (A)m2 (B)mα (C) , (3)

where mα (A) = α|A|(1−α)|A|, for all A ⊆ X . The α-conjunctions include the con-
junctive rule (for α = 1) and the equivalence rule (for α = 0).

3.2 Interpretation

Suppose meta-knowledge on two sources S1 and S2 of the following form:

• For each x ∈ X , they both tell the truth with probability α and both lie with
probability 1−α . Besides, their behavior for all x ∈ X are independent.

• Or they are both truthful.

The first part of this meta-knowledge amounts to the hypotheses
(
h1

A,h
2
A

)
, A ⊆ X ,

being allocated probability α |A|(1−α)|A| since for any A ⊆ X , the probability that

both sources lie for all elements in A is equal to ×x∈A p((¬t1
x ,¬t2

x )) = (1−α)|A|
and the probability that they both tell the truth for all elements in A is equal to
×x∈A p((t1

x , t
2
x )) = α |A|. Since the assumption that both sources are truthful corre-

spond to the hypothesis
(
h1

X ,h
2
X

)
, we have that the above meta-knowledge on the

sources truthfulness can be represented by the following mass function on H12:

mH12
({(

h1
X ,h

2
X

)
,
(
h1

A,h
2
A

)})
= α |A|(1−α)|A|, ∀A ⊆ X . (4)

Theorem 1. Let m1 and m2 be two mass functions on X provided by two independent
sources S1 and S2. Let m be the mass function obtained by combining m1 and m2

using the BBF rule (2), with mH12 defined by (4). We have m1 ∩©α 2 = m.

Proof. (Sketch) It may easily be shown that, for all A,B,C ⊆ X ,

ΓA,B(
{(

h1
X ,h

2
X

)
,
(
h1

C,h
2
C

)}
) = (A∩B)∪ (A∩B∩C)

and thus the quantity

mH12(
{(

h1
X ,h

2
X

)
,
(
h1

C,h
2
C

)}
) ·m1(A) ·m2(B) = α |C|(1−α)|C| ·m1(A) ·m2(B)
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is allocated to the subset (A∩B)∪ (A∩B∩C) by the BBF rule. Besides, from (3),
we have

∑
(A∩B)∪(A∩B∩C)=D

m1 (A)m2 (B)mα (C) = ∑
(A∩B)∪(A∩B∩C)=D

m1 (A)m2 (B)mα (C) ,

where mα denotes the negation of mα defined by mα(A) = mα(A), for all A ⊆ X

[2]. We have mα(A) = α |A|(1−α)|A|, for all A ⊆ X , and thus the quantity α |C|(1−
α)|C| ·m1(A) ·m2(B) is transferred by the α-conjunctive rule to the subset (A∩B)∪
(A∩B∩C), for all A,B,C ⊆ X . $%
Theorem 1 shows that an α-conjunction is a particular case of the BBF procedure
and as such corresponds to a special meta-knowledge on the sources. This meta-
knowledge, represented by (4), basically comes down to assuming that either both
sources tell the truth or they commit the same lie hA, with probability α |A|(1−
α)|A|. In [3], the α-conjunctions are decomposed into simple pieces of evidence on
the truthfulness of the sources, using the same definition of truthfulness as the one
adopted in [4]. However, even if it is easy to understand the meaning of each of
the simple pieces of evidence in [3], it is difficult to capture the meaning of their
combination and thus of the α-conjunctions. Comparatively, in the present paper,
thanks to the new richer model of source truthfulness, we are able to provide a single
mass function on the truthfulness of the sources, which admits a clear interpretation
and from which the α-conjunctions can be recovered.

Let us end this section with a few comments on the behavior of the fusion scheme
that the meta-knowledge mH12 defined by (4) leads to. To analyze the behavior of the
α-conjunctions, it is useful to consider the situation where ones receives two certain
testimonies x∈A and x∈B from two sources such that A∩B �= /0 (the case where the
testimonies are uncertain is merely a generalization of what follows). One may show
that in such a case, only the subsets D such that A∩B ⊆ D ⊆ (A∩B)∪ (A∩B) will
receive a non null mass after combining the two testimonies by an α-conjunctive
rule. Precisely, each of those subsets D can be expressed as (A∩B)∪C for some
C ⊆ A∩B and one may show that each of those subsets D = (A∩B)∪C will be

allocated mass α|A∩B|−|C|(1−α)|C|. One may then remark that as α goes from 0 to
1, masses flow from the least specific subsets D to the most specific subsets D. In
particular, for α = 1, all the mass is allocated to the subset D = A∩B (there is a
probability equal to one of knowing x ∈ A∩B), i.e., the most specific subset D such
that A∩B ⊆ D ⊆ (A∩B)∪ (A∩B) is the result of the combination. Conversely, for
α = 0, the least specific subset D such that A∩B ⊆ D ⊆ (A∩B)∪ (A∩B) is the
result of the combination, i.e., all the mass is allocated to the subset D = (A∩B)∪
(A∩B). Another interesting particular case is α = 0.5: all subsets D are allocated

mass 1/2|A∩B|, i.e., they are equiprobable. It appears thus that the α-conjunctions
allow us to control the behavior of the combination, from the conjunctive rule to
the equivalence rule, by ranging from the principle of maximum specificity to the
principle of maximum entropy to the principle of minimum specificity with respect
to the subsets D such that A∩B⊆ D ⊆ (A∩B)∪ (A∩B).
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4 Conclusion

In this paper, an interpretation for the α-conjunctions was proposed. It was shown
that they correspond to assuming that the sources behave similarly (they both tell the
truth or commit the same lie), with some particular probability. Of special interest is
the new framework that was introduced to provide this interpretation: it allows the
integration of meta-knowledge on the various forms of lies the information sources
may commit and it extends recent work [4] on the formalization of meta-knowledge
on information sources.
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Improvements to the GRP1 Combination Rule

Gavin Powell, Matthew Roberts, and Dafni Stampouli

Abstract. The recursive use of belief function combination rules, as required with
temporal data, is issue prone. Systems will either become unreactive, through a
greedy empty set, or provide a false sense of security through applying a closed
world model to an open world scenario. We improve on the previous combina-
tion rule GRP1 to enhance its ability to work with temporal data in an open
world. Specifically we have progressed with the dynamic self adjustment prop-
erties of the rule, which allow it to gauge how fusion should take place depen-
dant on the temporal information that it receives. Comparisons are made between
the improved GRP1 rule and other rules which have been applied to temporal
datasets.

1 Introduction

Sensors are extensively used to continually monitor the environment of interest.
Measurements are taken at each time step and provide a rich stream of information
about the object or event that is being sensed. Analysis of this information provides
understanding of the observed object or event, its changes, and helps us manage
the inherent issues related to sensing within the real world (such as sensor errors
or failures). Existing belief function fusion methods tend not to take advantage of
the temporal information and look at the situation at a single time step and base
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decisions on this. Where temporal information is available, it should be utilised as
much as possible in order to enhance the decision process. Analysis of this incoming
stream of information will allow for an understanding of the object or state, how
well the sensing medium is performing, and the changes that are occurring in the
world that is being sensed. A new combination rule is being developed to utilise
temporal information by dynamically accounting for changes in input information
and adjusting the means of combination in order to provide a more robust output
from which decisions can be made. At the same time, the new rule allows for open
world scenarios, by retaining the empty set.

In this paper we examine and present findings based upon the combination
of open world belief assignments and temporal information and we follow on
from previous work of the authors [4, 5, 6] and address previous feedback. Sec-
tion 2 presents an outline of belief functions and discusses issues with existing
methods. Section 3 and 4 discuss the GRP1 rule [4] and the proposed improve-
ments. A scenario to classify target vehicle based on their kinematic informa-
tion is outlined in Section 5. This scenario is used to demonstrate disadvantages
of well established combination rules and provide a comparison to the proposed
method. The results are analysed and discussed in Section 6 and demonstrate
the improvement achieved in terms of stability and avoidance of false sense of
security.

2 Belief Functions

Belief functions are a mature technology for use in fusing or combining data and
information. Their origins can be said to lie in work undertaken by Arthur Demp-
ster and Glenn Shafer [1, 9] who defined the set theoretic means of combination
of information of Dempster-Shafer Theory (DST). Difficulties in its use within an
open world and with temporal data are documented [4, 5, 6] and an understanding of
its abilities and disabilities are essential to its effective use. Variants and extensions
to the original DST framework and its rules of combination are available where the
notable extensions to the original DST framework are Dezert-Smarandache The-
ory (DSmT) [2] and the Transferable Belief Model (TBM) [11]. DSmT utilises an
open world scenario through inclusion of an additional hypothesis that accounts
for the open world. This approach allows for an open world when redistribution
of the empty set takes place, providing a much more complete framework to work
with. A notable issue of set based approaches is the curse of dimensionality where
computational load rises rapidly as the number of possible outcomes increases cre-
ating a limit based on computing power but at present falls between 10–20 possible
outcomes. DSmT, through its more complete framework, can exaggerate this is-
sue. The TBM also allows for an open world by not redistributing the empty set
after combination and using this as a marker for the ‘anything else’ outcome of
the open world. In practice though the use of the unnormalised conjunctive rule
of combination will degrade the system as more pieces of evidence are recursively
combined.
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3 Recursive Combination

Errors in the model or sensors can be hidden by normalisation and as such they be-
come silent problems, particularly so in recursive applications where the incoming
information is used to update the current estimate. Smets noted this in his work and
proposed that normalisation should not take place and that the conjunctive rule (or
similar) can be used without normalisation [11]. This provides the advantage of re-
taining the empty set value that will allow for an open world, but also allows for
an understanding of the state of the system and the information that is being com-
bined. The empty set is a marker for conflict within the information which should
be used to assist in any later decision making. By removing the normalisation phase
your model of the object, state or event will deteriorate as more information is
combined [5]. To counter act this, the authors previously proposed the GRP1 [4]
algorithm which uses a discounted mixture of the conjunctive and disjunctive com-
bination rule. This created a dynamic system that could self adjust in terms of how
much onus should be placed on the incoming information due to how certain the
estimate was.

GRP1 discounts incoming information based on the distribution of mass in the
current state, object, event estimate. This meant that a lack of focus was given to
the actual incoming data and how that compared to the current state, object, event
estimate, GRP2 addresses this.

4 Proposed Combination Rule

To fully understand the state of the (1 or many) sensors that are providing informa-
tion to the system it is necessary to compare them to possibly each other at that time
instant, with each other over time, or with the current state, object, event estimate.
This will allow for an understanding of which sensors should be most prominent, to
manage conflict within sensors and to mitigate for sensors when they are failing. As
a first step we look at a single sensor and how that compares to the current state, ob-
ject, event estimate. This allows for a single measure of how much in agreement the
sensor is with the estimate at this instance in time thus identifying if it is likely to be
failing or providing noisy or incorrect information. Through an unnormalised con-
junctive combination between the incoming information and the current estimate we
use the empty set to identify the amount of conflict there is. This measure of conflict
is used to adjust the weighting parameter between the conjunctive and disjunctive
mix, which previously in GRP1 was the arithmetic mean. If there is a great deal of
conflict then we wish to be placing more of the weighting on the cautious disjunc-
tive rule as we have less faith in that information, if there is little conflict we wish to
place more weight on the conjunctive rule as we are more certain of this information
and have more faith within it.

The GRP2 combination rule is

mGRP2(A) = k mα
∪ (A)+ (1− k)mα

∩ (A) , (1)
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where mα∪ is the disjunctive combination rule after discounting, mα∩ is the conjunc-
tive combination rule after discounting, and k is the conflict after conjunctive com-
bination between the current estimate and the input from a sensor. Both mα∪ and mα∩
are the combination (after discounting) between the current estimate and the input
— only the basic belief assignment (bba) for the input is discounted. Discounting is
used to reduce the impact of the new information in a manner that is proportional to
the confidence of the existing estimate. The method used for discounting depends on
whether the conjunctive or disjunctive combination rule is used — this is discussed
and justified in previous work [4]. The same value of α is used for both discounting
methods and is calculated using:

α = p
(

2Ω
)
= ∑ |Ω |− |A|

|Ω |− 1
mc(A) ∀A �= /0,A ∈ 2Ω , (2)

where p
(
2Ω) is precision, or educatedness [4], and mc(A) is the mass assigned to A

for the current estimate.
RCR [3] is similar to the above rule but mass cannot be assigned to the empty set

of the resultant bba and normalisation is required after the weighted average is cal-
culated. This normalisation adjusts the weighting of the symmetric version of RCR,
called RCR-S, to have the same linear weighting as found in Equation 1. Assigning
mass to the empty set and not requiring normalisation can be advantageous — this
is shown in Section 6.

5 Scenario

The scenario used in this paper is based on previous work [7, 8] which used simula-
tions of vehicles to compare Wireless Sensor Network (WSN) tracking and classifi-
cation algorithms. The simulation used here consists of an amphibious light tank
moving over road, grass, and water. There are five possible target classes: am-
phibious light tank (ALT); pedestrian (Ped); car; light tank (LT); and main battle
tank (MBT) (i.e. Ω = {ALT,Ped,Car,LT,MBT}). At each time step, a subset of the
nodes within the WSN are used to update the kinematic state estimate of the target
— this is then used within the TBM to provide a target classification which is fused
over time to provide a more reliable classification.

The classification produced at each time step is a bba [11] which is conditional
upon the target speed and the terrain beneath the target. This work uses the, non-
fused, conditional assignment produced at each time step as its input. This input is
fused over time using different combination rules to compare their performance (see
Section 6).

6 Results

Four classification methods have been used (PCR5 [10], RCR-S, GRP1, and GRP2)
and compared in their task of identifying a vehicle moving over different terrain
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(see Figures 1–4, the legend can be found in Figure 1). The evaluation that follows is
a qualitative one, where the different methods are compared in terms of correctness
of classification, timely response, amount of confidence, stability in decision, and
variation between classifications over time. Further analysis could be conducted in
the future to compare the methods in terms of accuracy, which determines how close
different results agree with the true class.

The algorithms which are being used to compare against are designed for a
closed world and as such an open world comparison is unjust as the GRPx algo-
rithms are designed to succeed in that environment. The open world of the GRPx
algorithms is an important feature even within a closed world. Here the empty set
value provides a measure of conflict and uncertainty of the sensing mediums. This
can show errors in the system/model or faulty sensors/communications links and
can aid in the decision process so that false positives/negatives are more readily
avoided.

For the given scenario, the vehicle observed during the first 50 seconds is mov-
ing on a road, from 50 to 70 seconds it is moving on grass and then enters the
water till the 95th second at which it goes onto grass again until the end of the
sensing.

Looking at the results more closely, Figure 1 shows the BetPs of all the classes
obtained using PCR5. The BetP for the ALT is steadily increasing while at the 75th
second when the vehicle is about to enter the water, the system gives a belief of
1, that it is a car and a belief of 0 that it is an ALT. Within 10 seconds it totally
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Fig. 1 BetP after applying PCR5 at each time step.
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Fig. 2 BetP after applying RCR-S at each time step.
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Fig. 3 BetP after applying GRP1 at each time step.
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Fig. 4 BetP after applying GRP2 at each time step.

changes its mind and gives a belief of 0 to the car and a belief of 1 to the ALT,
and again changes its mind on the 105th second when the vehicle moves on grass.
Taking into account that incoming information is very noisy, we can conclude that
PCR5 over-inflates the confidence in each class, and is unstable (is certain about
one class and 10 seconds later is it certain about another). This happened due to
the normalisation stage which hides problems in the sensors or the model. Sim-
ilar unstable results are shown by RCR-S, Figure 2 where the system fluctuates
between classes with high certainty within 20 seconds when the vehicle exits the
water.

GRP1 (Figure 3), on the other hand, takes into account uncertainty and incor-
porates it into the empty set. The empty set has some value in this scenario which
indicates that there is noise in the incoming information. GRP1, when the vehicle is
in the water, presents stability issues and ripples the BetP of the ALT. GRP2 (Fig-
ure 4) on the other hand, solves this problem and classifies correctly the vehicle
without over-inflating the confidence as PCR5 and RCR-S do. It also presents the
most stable result among the four methods. Furthermore in terms of timely response,
both PCR5 and RCR-S are too fast to respond to changing inputs. This creates large
oscillations. GRP1 and GRP2 on the other hand, take into account previous states
(through educatedness), which smoothes the output, balancing a timely response
and stability.
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7 Conclusion

We have shown that it is possible to recursively combine information using an open
world model and to adapt in a logical way as the vagueness and consistency of the
information stream changes over time.

Through our work on this paper it is clear that a new combination rule, that isn’t
reliant on the unnormalised combination rule, needs to be created. Retaining the
empty set and open world are critical, as is non associativity and one that will not
degrade as more sensors or information are combined. Currently the unnormalised
combination rule will begin to degrade as soon as fusion begins and will continue
as more information sources are added. This makes combination rules based on this
unusable for recursive fusion of multiple sensors over time which is the next goal
for belief functions.
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Consensus-Based Credibility Estimation of Soft
Evidence for Robust Data Fusion

Thanuka L. Wickramarathne, Kamal Premaratne, and Manohar N. Murthi

Abstract. Due to its subjective nature which can otherwise compromise the integrity
of the fusion process, it is critical that soft evidence (generated by human sources)
be validated prior to its incorporation into the fusion engine. The strategy of dis-
counting evidence based on source reliability may not be applicable when dealing
with soft sources because their reliability (e.g., an eye witnesses account) is often
unknown beforehand. In this paper, we propose a methodology based on the no-
tion of consensus to estimate the credibility of (soft) evidence in the absence of
a ‘ground truth.’ This estimated credibility can then be used for source reliability
estimation, discounting or appropriately ‘weighting’ evidence for fusion. The con-
sensus procedure is set up via Dempster-Shafer belief theoretic notions. Further,
the proposed procedure allows one to constrain the consensus by an estimate of the
ground truth if/when it is available. We illustrate several interesting and intuitively
appealing properties of the consensus procedure via a numerical example.

1 Introduction

Motivation: The recent interest in defense-related fusion community in incorpo-
rating soft evidence (e.g., witness statements) into the fusion process has spawned
a multitude of research avenues and challenges. As a vital aspect of any robust
evidence fusion strategy, one crucial question to be addressed is, how can (soft)
evidence be validated when the ground truth (GT) is not known?

Challenges: Dempster Shafer (DS) belief theory is increasingly being used in the
fusion community due to the flexibility it provides in modeling and decision making
in imperfect data domains. In the DS framework, if the reliability (a measure of
trustworthiness of a source based on past performance) of sources are available, one
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can account for the credibility of evidence (a measure of trustworthiness of current
evidence) via a procedure referred to as discounting. However, one often has to deal
with (soft) sources whose reliability is not known beforehand.

In a typical fusion scenario, soft evidence is usually gathered from many sources
whose actual reliabilities may not be known. When an adequate number of sources
are considered, it is not unreasonable to assume that the truth is reflected in the
majority opinion. If this majority opinion can be established via some rational ag-
gregation procedure, the very aggregate, often referred to as a consensus, can in
turn be used for credibility estimation. However, due to the subjective (and hence
possibly inconsistent and even contradictory) nature of soft evidence [6], simple
averaging operations may not be adequate enough to provide a rational consensus
[3]. Further, in many applications, even though the GT is unknown, highly reliable
rough estimates can still be generated, perhaps based on hard sensor data and/or
expert opinions. Thus, one can actually ‘drive’ the consensus towards the GT, if the
process can be constrained by an estimate of the GT.

Contributions: In this paper, we propose a consensus-based technique for cred-
ibility estimation of evidence in the absence of the GT. This estimated credibility
can then be used for source reliability estimation and evidence discounting prior to
fusion operations. The consensus procedure is set up via DS theoretic notions of
evidence fusion, thus allowing it the flexibility to capture a variety of imperfections
inherent to soft evidence. Further, the proposed procedure allows one to constrain
the consensus by an estimate of the GT if/when it is available. While the detailed
proofs of convergence have been omitted due to space limitations, several interest-
ing and intuitively appealing properties of the consensus procedure are illustrated
via a numerical example.

2 DS Theory Preliminaries

In DS theory, the frame of discernment (FoD), Θ = {θ1, . . . ,θn}, refers to the set of
mutually exclusive and exhaustive propositions of interest; a proposition θi repre-
sents the lowest level of discernible information.

Definition 1. The mapping m : 2Θ �→ [0,1] is a basic probability assignment (BPA)
or mass function for the FoD Θ if ∑B⊆Θ m(B) = 1 with m( /0) = 0. Consider the
proposition B ⊆Θ . Let B =Θ \B.

(i) When m(B) > 0, B is referred to as a focal element and the quantity m(B) is
the mass allocated to B.

(ii) The set of focal elements is the core F; the triplet E ≡ {Θ ,F,m(�)} is the
corresponding body of evidence (BoE).

(iii) The mapping Bl : 2Θ �→ [0,1] where Bl(B) = ∑C⊆B m(C) is the belief of B;
the mapping Pl : 2Θ �→ [0,1] where Pl(B) = 1−Bl(B) is the plausibility of B.

Theorem 1 (Fagin-Halpern Conditionals). [1] For B ⊆ Θ and a conditioning
event A s.t. Bl(A) > 0, the conditional belief Bl(B|A) is given by Bl(B|A) =
Bl(A∩B)/[Bl(A∩B)+Pl(A∩B)].
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Evidence Combination: This refers to the process of combining BoEs Ei ≡
{Θi,Fi,mi(�)}, i = 1,2, to arrive at a new BoE E ≡ {Θ ,F,m(�)} representing the
aggregated evidence. We restrict our discussion to BoEs with identical FoDs (i.e.,
Ei s.t. Θi =Θ ,∀ i); for the non-identical FoDs case, see [10] and references therein.
Henceforth, we will use ℜ+ to denote the non-negative reals. Also, 1,n and 1,n \ i
denote the sets {1, . . . ,n} and {1, . . . ,n} \ {i}, respectively.

Definition 2 (Dempster’s Combination Rule (DCR)). The BoE E generated by
fusing BoEs E1 and E2 is E ≡ E1⊕E2, where

m(B) = ∑
C∩D=B

m1(C)m2(D)

1−K
, ∀B ⊆Θ , whenever K = ∑

C∩D= /0

m1(C)m2(D) �= 1.

Evidence Updating: This refers to the process of updating the evidence in a
BoE Ei[k] with evidence received from the BoEs E j[k], j = 1,n \ i, to arrive at
Ei[k + 1]. Here k denote the discrete update index. We denote this as Ei[k +
1] ≡ Ei[k]	 E1[k] . . .Ei−1[k]Ei+1[k] . . .En[k]. The updating scheme proposed in [7]
(for n = 2 case) provides several interesting properties applicable to the task
at hand.

Definition 3 (Conditional Update Equation (CUE)). [7] The CUE that updates
E1[k] with the evidence in E2[k] is

Bl1(B)[k+ 1] = α1[k]Bl1(B)[k]+ ∑
A∈F2[k]

β2(A)[k]Bl2(B|A)[k], ∀k ≥ 0.

The parameters α1[k],β2(�)[k] ∈ ℜ+ satisfy α1[k]+ ∑
A∈F2[k]

β2(A)[k] = 1.

We can extend the CUE to get a strategy for fusion of evidence from E1 and E2:

Definition 4 (Conditional Fusion Equation (CFE)). The CFE that fuses the evi-
dence of E1 and E2 is

Bl(B) = K1 ∑
A∈F1

β1(A) Bl1(B|A)+K2 ∑
A∈F2

β2(A) Bl2(B|A).

The parameters K1,K2,βi(�) ∈ ℜ+ satisfy K1 ∑
A∈F1

β1(A)+K2 ∑
A∈F2

β2(A) = 1.

Remarks:

1. Parameters α1[�] and β2(A)[�] can be used to account for the inertia of E1[�]
and to appropriately weigh the evidence from E2[�], respectively (see [7] for
details).

2. The parameters K1 and K2 can be used to incorporate a measure of relative im-
portance of the sources (e.g., evidence credibility) into fusion.

3. CUE and CFE can be generalized to handle the non-identical FoDs
case [10].
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In our work, we will also use the following DS theoretic distance measure:

Definition 5. [2] The distance between two BoEs Ei, i = 1,2, is given by

dist(E1,E2) =
√

0.5(m1−m2)T D(m1−m2),

where mi = {mi(�)}, i = 1,2, are 2Θ ×1 column vectors; and D = {d j} is a 2Θ ×2Θ

matrix with d j = |A j ∩A|/|A j ∪A|, A j,A ∈ 2Θ , | /0∩ /0|/| /0∪ /0| ≡ 0.

3 Credibility of Evidence

In this section, we present our consensus-based credibility estimation technique.
The terms credibility and reliability are being used in the literature to refer to both
evidence and the sources. For our purpose, we interpret these terms as follows:
(a) credibility refers to “... the quality of being trusted and believed in (e.g., the gov-
ernment’s loss of credibility) [8]”; (b) reliability refers to the notion of “... [being]
consistently good in quality/performance or able to be trusted (e.g., a reliable source
of information) [8]”. So, credibility can be considered an instantaneous measure of
trustworthiness (of evidence), while reliability is thought of as an overall measure
of trustworthiness (of a source).

3.1 Credibility Estimation

A conflict-based credibility estimation method appears in [4]1.

Definition 6. Given the BoEs Ei, i ∈ 1,n, the credibility of Ei is given by

Crc f (Ei) =
(

1− conf(Ei,E j �=i )
λ
)1/λ

,

where λ ∈ ℜ+, E j �=i = {E j | j ∈ 1,n \ i} and conf(Ei,E j �=i) is the conflict between
Ei and E j �=i. Two variants Crc f 1 and Crc f 2 are

conf(Ei,E j �=i) =

⎧⎨⎩
1

n−1 ∑
j∈1,n\i

dist(Ei,E j), for Crc f 1;

dist(Ei,E⊕ j �=i), for Crc f 2,

where E⊕ j �=i = E1⊕·· ·⊕Ei−1⊕Ei+1⊕·· ·⊕En , for i ∈ 1,n.

However, with credibility viewed as a measure of the instantaneous trustworthiness
of evidence, it makes sense to assess the credibility of a BoE by comparing it to the
GT via a distance measure (such as what appears in Definition 5):

1 The authors in [4] refer to this as a measure of relative reliability. However, to be con-
sistent with our interpretations of the terms, we take their definition as a measure of
credibility.
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Definition 7. Let E t denote the GT. Then, the credibility of the BoE E is given by

Crcon(E ) =
(

1− dist(E ,E t)λ
)1/λ

, where λ ∈ ℜ+.

As sensible as it appears, the difficulty with this strategy lies in the fact that the
GT is usually absent. Is there a way to estimate the GT in such a situation? The
notion of consensus has been used in many disciplines (e.g., social sciences, mar-
keting/finance, engineering) and in a myriad of applications as a method to arrive
at a ‘general agreement’ among opinions or sources (e.g., a consensus of opinion
among judges). Thus, given the imprecise, unstructured and often inconsistent na-
ture of soft evidence, we contend that a consensus provides an ideal estimate of the
GT that can then be used for estimating credibility. Our approach thus differs from
the work in [4] in that we first seek an estimate of the GT and use this estimate for
credibility estimation.

3.2 Establishing a Consensus Among DS Theretic BoEs

For the task at hand (viz., estimation of credibility), we seek a consensus pro-
cess that satisfies several desirable properties: the consensus being attained must
(P1) be a rational agreement among the sources [3]; (P2) reach the GT (given by
E t ) when it is known (i.e., all evidence must converge to the GT); and (P3) be
‘consistent’ with a reliable estimate of the GT (given by Ê t ) when it is avail-
able (i.e., the consensus must be ‘contained’ within the estimate of the GT). See
Figure 1.

EjEi

Êt = Et

E∗

(a) GT known

EjEi

Êt E∗

(b) Estimate of GT
known

EjEi
Êt

E∗

(c) Unknown GT

Fig. 1 The convergence behavior of BoEs to E ∗. Here, E t , Ê t and E ∗ denote the GT, an
estimate of GT, and consensus, respectively. Note that E ∗ is always ‘contained’ within Ê t .

We now present a consensus control strategy based on an extension to the
CUE in Definition 3. This scheme mimics the process followed by humans to ar-
rive at a consensus, viz., mutually exchange each other’s opinions until all arrive
at a consensus. Further, it can be shown that this process satisfies the properties
(P1)-(P3).
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3.3 CUE-Based Consensus Control Strategy

Definition 8. Let E = {Ei}n
i=1 be the set of n BoEs among which a consensus is

sought2. Update each Ei[k], ∀k ≥ 1, as

Bli(B)[k+ 1] = αi[k] Bli(B)[k]+ ∑
j∈1,n\i

∑
Ai j∈F j

βi j(Ai j)[k]Bl j(B|Ai j)[k],

where Ei[0] = Ei, i ∈ 1,n. Here, αi[k] =Ci[k] ∈ℜ+, i ∈ 1,n,

βi j(A)[k] =

{
Cj [k]mi(A)[k], for updating Ê t (i.e., i s.t. Ei = Ê t );

Cj [k]m j(A)[k], otherwise,

and αi[k]+ ∑
j∈1,n\i

∑
Ai j∈F j

βi j(Ai j) = 1, ∀ j �= i, i ∈ 1,n.

Theorem 2. The iterative scheme in Definition 8 converges to a BoE E ∗, which we
refer to as the consensus BoE, i.e., Ei[k]→ E ∗, ∀i ∈ 1,n, as k → ∞.

Remarks:

1. It can be easily shown that the iterative scheme above generates a valid belief
function Bli(�)[k], ∀i, at each k. Further, it inherits many desirable properties
from the CUE, e.g., robustness against contradictory evidence (see [7, 10] for
details).

2. Theorem 2 can be established by using the convergence properties of paracon-
tracting operators [5]. We omit the proof due to space limitations.

3. The scheme in Definition 8 updates a BoE with weighted sum of conditionals of
the other BoEs. This agrees with the well-established weighted average view of
consensus [3] and is also consistent with the CUE (for evidence updating).

4. The consensus BoE is guaranteed to be ‘consistent’ with the GT if/when an es-
timate Ê t of the GT is incorporated into the consensus process. For instance, if
F̂t = ab, then F∗ ⊆ {a,b,ab}.

5. The above parameter selection strategy combines the cautious and receptive
strategies in [7, 10]: the cautious strategy applies to the estimate of the GT (i.e.,
Ei = Ê t ); the receptive strategy applies to the other BoEs (i.e., Ei �= Ê t ).

6. The parameter Ci ∈ (0,1) associated with each BoE Ei can be used to assign
importance weights to BoEs. When such information is unavailable, take all Ci s
to be equal.

7. In practice, the iterative scheme can be terminated either (a) at k = K for some
chosen K, or (b) when dist(Ei[k + 1],Ei[k]) ≤ ε, i ∈ 1,n, for some threshold
ε ≥ 0.

2 E is taken to contain an estimate of GT when it exists, i.e., if ∃ Ê t , then Ei = Ê t for some
Ei ∈ E.
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4 Numerical Example

Consider five (5) soft sources represented via the BoEs Ei, i ∈ 1,5, with Θi ≡Θ =
{abcde}. Suppose their credibilities are unknown.

Setup: Suppose the BPAs are as follows:

m1(ac)=0.9; m2(b) =0.9; m3(ac)=0.9; m4(ac)=0.9; m5(e) =0.9;
m1(b) =0.1; m2(abc)=0.1; m3(e) =0.1; m4(d) =0.1; m5(abc)=0.1.

We consider four cases (in decreasing order of ‘preciseness’ of the GT estimate):

Case 1 Case 2 Case 3 Case 4
m̂t(a)=1.0; m̂t(ab)=1.0; m̂t(abc)=1.0; m̂t(Θ)=1.0.

In Case 1, GT is known; in Cases 2-3, only an estimate of the GT is known; and in
Case 4, the GT is completely unknown. For each case, all the five BoEs Ei, i ∈ 1,5,
reach the following consensus BoE:

Case 1: m∗(a) = 1.00
Case 2: m∗(b) = 1.00
Case 3: m∗(b) = 0.29 m∗(ac) = 0.71
Case 4: m∗(b) = 0.30 m∗(ac) = 0.66 m∗(d) = 0.02 m∗(e) = 0.02
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(a) Case 1: m̂t(a) = 1.0
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(b) Case 2: m̂t(ab) = 1.0
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(c) Case 3: m̂t(abc) = 1.0
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(d) Case 4: m̂t(Θ) = 1.0

Fig. 2 Convergence of E1 to E ∗ as indicated by the the evolution of the BPA with k. All the
focal elements that are not contained in the core of the estimated GT Ê t vanish as E1 reaches
E ∗. This is exactly what has been referred to as being ‘consistent’ with Ê t in (P3).
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Table 1 Estimated credibility measures of the BoEs.
M

et
ho

d Credibility
Case 1. m̂t (a) = 1.0 Case 2. m̂t (ab) = 1.0 Case 3. m̂t(abc) = 1.0 Case 4. m̂t(Θ ) = 1.0

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

Crc f 1 0.32 0.05 0.32 0.32 0.06 0.47 0.17 0.46 0.45 0.12 0.51 0.15 0.51 0.50 0.13 0.52 0.12 0.52 0.51 0.14
5 1 5 5 2 5 2 4 3 1 5 2 5 3 1 5 1 5 3 2

Crc f 2 0.32 0.05 0.32 0.32 0.06 0.32 0.05 0.32 0.32 0.06 0.90 0.07 0.90 0.90 0.08 0.90 0.07 0.90 0.90 0.08
5 1 5 5 2 5 1 5 5 2 5 1 5 5 2 5 1 5 5 2

Crcon 0.32 0.05 0.32 0.32 0.06 0.10 0.92 0.05 0.05 0.06 0.83 0.33 0.77 0.77 0.19 0.71 0.37 0.70 0.67 0.38
5 1 5 5 2 4 5 2 2 3 5 2 4 4 1 5 1 4 3 2

Figure 2 shows the convergence of BoE E1 to E ∗ for each case. Note how the con-
sensus BoE is ‘consistent’ or ‘agrees’ with E t . Behavior of other BoEs are similar
and converge to E ∗ in each case.

Credibility Estimation: We now use the consensus BoE E ∗ in place of E t in
Definition 7 to get the credibility estimates Crcon for each BoE. See Table 1 which
also shows the two measures Crc f 1 and Crc f 2 in Definition 6. Ranked credibility
values (lowest is ‘1’) are also indicated underneath each credibility value in Table 1.

In Case 1, not surprisingly, all measures produce identical results. In Case 2, the
assignment of a low credibility to E2 (supporting proposition b) by both Crc f 1 and
Crc f 2 is surprising when GT is either a or b. Crcon assigns a significantly higher cred-
ibility to E2 relative to other BoEs. The assignment of low credibility to E1,E3,E4

(mainly supporting a or b) also needs further investigation. The comparison is more
difficult with decreasing exactness of the GT estimate, but they all seem to agree.
Cases 3-4 are illuminating: (a) consensus BoE allocates higher supports for ac,
which is in concordance with what a cursory glance at the BoEs reveals; (b) a is
absent in the consensus because no BoE supports the singleton a; (c) d and e are
absent in Case 3 consensus because they are absent in the GT estimate.

5 Concluding Remarks

The proposed consensus-based credibility estimation strategy addresses an impor-
tant research question: how can we validate evidence when the GT is unknown? The
proposed strategy can be used for purposes of (a) estimating the source reliability,
(b) weighting the sources for fusion, or (c) discounting the BoEs.

The iterative process of consensus generation mimics rational agreement via the
exchange of evidence among sources, and credibilities are assessed with respect to
this consensus BoE. This is the major difference with conflict-based methods which
are heavily dependent on the combination rule utilized3.

However, the conflict-based measures may be computationally more efficient
than the consensus-based approach. This important issue warrants further

3 For example, when the Crc f 2 employs the DCR, evidence conflicts can generate null re-
sults. To avoid this, we set mi(Θ) = 0.0001 (and deducted 0.0001 from the largest mass).
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investigation. We plan to study error bounds so that an ‘optimal’ number of itera-
tions could be determined. We are also exploring how the conditional core theorem
[9] and approximation techniques can be exploited to reduce computational cost.
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Research (ONR) via grants #N00014-10-1-0140 and #N00014-11-1-0493 and the US
National Science Foundation (NSF) via grant #1038257.
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Ranking from Pairwise Comparisons
in the Belief Functions Framework

Marie-Hélène Masson and Thierry Denœux

Abstract. The problem of deriving a binary relation over alternatives based on
paired comparisons is studied. The problem is tackled in the framework of belief
functions, which is well-suited to model and manipulate partial and uncertain infor-
mation. Starting from the work of Tritchler and Lockwood [8], the paper proposes a
general model of mass allocation and combination, and shows how to practically de-
rive a complete or a partial ranking of the alternatives. A small example is provided
as an illustration.

1 Introduction

The aim of the paper is to study the task of constructing a linear order, or a rank-
ing, of n alternatives, based on paired comparisons. Paired experiments consist in
presenting two objects to one or several judges and asking them to choose the best
alternative among the pair. Each paired comparison is supposed to provide uncer-
tain pieces of evidence on the ranking relation, and the derivation of a linear order
is considered as an information fusion problem. Uncertain possibilistic preferences
have been already considered e.g. in [2]. In this paper, the problem is tackled in the
framework of belief functions.

A first work using belief functions to describe the uncertainty about the compar-
isons has been proposed in [8]. Unfortunately, this work remains essentially the-
oretical and gives very few tools for practical applications. Our paper synthesizes
their main results in Section 3 and extends them in Section 4 in three ways: a more
general model of mass allocation is proposed, a linear programming approach for
determining the most plausible ranking is introduced, and a heuristic procedure for
choosing only a partial order, starting from the most plausible ranking, is given.
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A small example in Section 5 illustrates the proposed method. Note that, due to
space limitations, basic knowledge on belief functions will be assumed. The reader
is referred, in particular, to [3, 6].

2 Basic Notions on Relations

Let O = {o1,o2, ...,on} be a set of n alternatives. We recall that a strict order R on O
is a binary relation for which the following properties hold for all oi, o j and ok ∈O:

• if (oi,o j) ∈ R then (o j,oi) �∈ R (asymmetry);
• if (oi,o j) ∈ R and (o j,ok) ∈ R then (oi,ok) ∈ R (transitivity);

If the order is complete (either (oi,o j) ∈ R or (o j,oi) ∈ R), it is a linear (or total)
order, otherwise it is a partial order. If (oi,o j) ∈ R or (o j,oi) ∈ R then oi and o j are
comparable, otherwise they are said incomparable.

A linear order L is called a linear extension of a partial order P if P ⊆ L (∀
(oi,o j) ∈ P, then (oi,o j) ∈ L). To each partial order can thus be associated the set
of its linear extensions. Conversely, any collection C of total orders defines a partial
order H as follows: (oi,o j) ∈H iff (oi,o j) belongs to all linear order in C. One then
says that H is realized by C. Note that two subsets can realize the same partial order.

Any relation R can be conveniently represented by a directed graph with nodes
O. Two nodes oi and o j are connected by an arc in the graph if (oi,o j) ∈ R.

3 Pairwise Comparisons in the Framework of Belief Functions

Combining pairwise comparisons in the framework of belief functions has been al-
ready addressed by Tritchler and Lockwood [8]. This section follows their presenta-
tion and synthetizes the most useful notions. They consider that, for each pair (oi,o j)
of alternatives in O (1 ≤ i < j ≤ n), an expert expresses its preference between oi

and o j using a mass function mΘi j quantifying the uncertainty in the evaluation. This
mass function is defined on the frame of discernement Θi j = {oi 1 o j,o j 1 oi}: the
singleton oi 1 o j means that oi should be ranked before o j and the singleton o j 1 oi

that o j should be ranked first. Tritchler and Lockwood propose to use a simple sup-
port mass function: the expert chooses one of the singletons with mass αi j and the
rest of the mass is allocated to Θi j. The value αi j is interpreted as the reliability of
the choice.

Let φi j denote a focal element of mΘi j . Each focal element φi j has a graph repre-
sentation which consists of two nodes, oi and o j, with one arc if φi j is a singleton
element, and no arc if the focal element is Θi j.

The problem is to derive from the n(n− 1)/2 mass functions a ranking of the
alternatives. This task may be seen as an information fusion problem and Dempster’s
rule of combination [3] can be used to this end. Let I denote the set {(i, j) | 1 ≤ i <
j ≤ n} and let Θ(I) denote the product space:

Θ(I) =Θ12×Θ13× ...×Θ(n−1)n.
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Θ(I) consists of all complete asymmetric relations (or graphs) defined on the set O.
Before being combined, pieces of evidence from all pairs have to be expressed on
the same frame of discernement, namely the product space Θ(I). This is achieved
by applying the vacuous extension operation [3, 5] to each mΘi j . This operation,
denoted ↑, transfers each mass mΘi j(φi j) to φi j ×Θ(I −{(i, j)}). The symbol ⊕
representing Dempster’s rule of combination, the expression of the combination can
thus be formally written as:

mΘ (I) = mΘ12↑Θ (I)⊕mΘ13↑Θ (I)⊕ ...⊕mΘ(n−1)n↑Θ (I), (1)

or, using the commonalities:

qΘ (I) = ∏
(i, j)∈I

qΘi j↑Θ (I). (2)

The focal elements of mΘ (I) are of the form: φ = φ12×φ13× ...×φ(n−1)n, where φi j

is a focal element of mΘi j and the mass resulting from the combination is:

mΘ (I)(φ) = mΘ12(φ12)m
Θ13(φ13)...m

Θ(n−1)n(φ(n−1)n). (3)

In terms of graph, each focal element φ of mΘ (I) can be represented by a directed
graph formed by the union of individual graphs. Since each φi j is equal either to a
singleton or to Θi j, each focal element φ is a subset composed of complete asym-
metric relations on O, whose graphs contain the arcs of φ .

The combination described above allocates masses on various sets of asymmet-
ric relations defined on O. A first objective is to find a linear ordering on O that
is the most compatible with the pairwise evaluations. This can be done by impos-
ing conditions on the set in which the solution has to be found. Let L denote the
set of all linear orders defined on O which is a subset of Θ(I). To impose the na-
ture of the solution, it is proposed in [8] to condition the mass mΘ (I) with respect
to L :

mΘ (I)[L ] = mΘ (I)⊕mL , (4)

with mL a categorical mass function defined by mL (L ) = 1.
Expressed using the commonalities, the whole combination can be written as:

qΘ (I)[L ] =
1

1−K
qL ∏

(i, j)∈I

qΘi j↑Θ (I), (5)

where K is the conflict resulting from the combination of mΘ (I) with mL . K can
be interpreted as an index of the internal coherence of the evaluations. Its practical
computation will be explained when dealing with partial orders.
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4 Practical Use

We consider in this section a general form of mass allocation defined by:⎧⎨⎩
mΘi j(oi 1 o j) = αi j,
mΘi j(o j 1 oi) = βi j,
mΘi j(Θi j) = 1−αi j−βi j.

(6)

This mass allocation may come from a single expert who is asked to provide, for
each (i, j) ∈ I, the above mass function, or from the combination of the evaluations

of several experts. In that case, for each (i, j) ∈ I, several m
Θi j
k are available and they

have to be fused to provide mΘi j . The choice of the combination rule depends on the
hypotheses made on the dependence between the experts. If they can be considered
as independent, Dempster’s rule should be chosen. Otherwise, the cautious rule [1]
may be preferred.

4.1 Most Plausible Ranking

Let L ∈ L be a strict linear ordering on O. L being a singleton of the frame of
discernement, one has qL ({L}) = 1 and, with the mass allocation (6), one has:{

qΘi j↑Θ (I)({L}) = 1−βi j if (oi,o j) ∈ L,
qΘi j↑Θ (I)({L}) = 1−αi j if (o j,oi) ∈ L.

(7)

Let us introduce n(n− 1)/2 binary variables li j((i, j) ∈ I) defined by li j = 1 if
(oi,o j) ∈ L and 0 otherwise. Using (7) and (5), the commonality, or, equivalently,
the plausiblity of L can be written as:

qΘ (I)[L ]({L}) = plΘ (I)[L ]({L}) = 1
1−K ∏

(i, j)∈I

(1−βi j)
li j (1−αi j)

1−li j , (8)

where K is the conflict resulting from the combination of mΘ (I) with mL . To find
the most plausible ranking of the alternatives, it is not necessary to enumerate all
possible linear orderings. We propose to solve the problem using a linear program-
ming approach. Maximizing expression (8) is equivalent to maximize its logarithm
so that, omitting the constant term depending on K, the most plausible ranking L
can be found as the solution of the following linear program:

max
li j∈{0,1} ∑

(i, j)∈I

li j ln

(
1−βi j

1−αi j

)
, (9)

subject to: {
li j + l jk− 1≤ lik, ∀i < j < k,
lik ≤ li j + l jk, ∀i < j < k.

(10)
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The constraints are used to insure that L belongs to L : if li j = 1 and l jk = 1 then
lik = 1. If li j = 0 and l jk = 0 then lik = 0.

Remark 1. Note that the general form of mass allocation (6) allows us to take natu-
rally into account tied evaluations. If the comparison between oi and o j results in a
tie, we let αi j = βi j . Then, it can be easily seen that the pair (oi,o j) does not appear
any more in the objective function.

4.2 Plausibility of a Partial Ranking

In some situations, it may be also interesting to compute the plausiblity of a par-
tial order. When working in the set of asymmetric relations as defined by Tritchler
and Lockwood, it not possible to provide an analytical expression. However, some
results from [8] make it possible to use simple algorithms based on graph theory
to compute the plausibility of any partial order. The following theorem is proved
in [8]:

Theorem 1 (Tritchler and Lockwood (1991)). Let K be the conflict between the
two mass functions mΘ (I) and mL .

1. K = ∑mΘ (I)(φ) where the summation is over every focal element of mΘ (I) whose
graph contains a cycle;

2. Let H be a partial order realized by a focal element θH of mΘ (I)[L ]. Then θH is
the set of all linear extensions of H (θH is the largest subset of L which realizes
H).

3. mΘ (I)[L ](θH) =
1

1−K ∑mΘ (I)(φ), where the summation is over every focal ele-

ment φ of mΘ (I) such that the transitive closure of G(φ), Gt(φ), is equal to H.

To compute the plausiblity of any partial order, one has to sum the masses associ-
ated to all focal elements with a non null intersection with this partial order. The
following lemma helps to recognize the focal elements which intersect a given par-
tial order:

Lemma 1 (Tritchler and Lockwood (1991)). Let C1 and C2 be two subsets of L
realizing the partial orders H1 and H2. Then C1 ∩C2 �= /0 if and only if H1 ∪H2 is
acyclic.

Computing the plausibility of any partial order H is thus achieved by summing the
masses of all focal sets θH′ such that H ′ ∪H is acyclic. .

Lemma 1 and Theorem 1 allow us to propose two simple procedures (one exact,
one approximate) for computing the plausibility of a given partial order. The two
procedures are detailed in Algorithms 1 and 2.

4.3 Heuristic Search for a Partial Ranking

If the plausibility of the most plausible ranking is too low, it can be preferable
to provide the user with only a partial ranking of the alternatives. The algorithms
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Algorithm 1. Plausibility of a partial order H
1: K ← 0
2: pl(H)← 0
3: for all φ = φ12×φ13× ...×φ(n−1)n do
4: Compute the transitive closure Gt(φ) of G(φ)
5: Compute the mass m = mΘ (I)(φ) by equation (3)
6: if Gt(φ) contains a cycle then
7: K = K +m
8: else if G(H)∪Gt(φ) is acyclic then pl(H) = pl(H)+m
9: end if

10: end for
11: pl(H)← 1

1−K pl(H)

Algorithm 2. Approximate computation by a Monte-Carlo approach

1: Npl ← 0
2: NK ← 0
3: for rep ← 1,N do
4: G← /0
5: for each (i, j) ∈ I do
6: With probability mΘi j (φi j), randomly select a focal element φi j from the focal

elements of mΘi j

7: if φi j is a singleton, add the corresponding arc to G
8: end for
9: Compute the transitive closure Gt of G

10: if Gt contains a cycle then
11: NK = NK +1
12: else if G(H)∪Gt is acyclic then Npl = Npl +1
13: end if
14: end for

15: K̂ =
NK

N

16: p̂l(H) =
1

1− K̂

Npl

N

described in the previous section allow us to compute the plausibility of any partial
order. Instead of exploring every possible partial orders, which would be practically
intractable, we propose a heuristic procedure based on a principle of hierarchical
clustering. We start from the most plausible ranking (see Section 4.1). Then, at the
first step of the procedure, we compute the plausibility of every partial orders ob-
tained by removing one pair of adjacent alternatives from the total order relation.
The most plausible partial order is retained and the corresponding pair of alterna-
tives is “merged”. The process is repeated until all alternatives have been merged
into a single one. It is easy to see that the sequence of plausibility values is mono-
tonically increasing. Finally, a partial order with the desired level of plausibility can
be chosen by the user.
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5 Example

We illustrate the methods described above using an example inspired from [8]. In
a study conducted at the Ontario Cancer Institute, subjects were asked to give their
preferences about four scenarios describing ethical dilemmas in health care. The
preferences for all six possible scenario pairs were obtained. The experts were also
asked to rate the reliability of their evaluations. The preferences of a subject can
be represented by a directed graph in which the vertices are the scenarios and the
edges represent the relation “is preferred to”. The values on the edges represent the
reliability given by the expert. The graphs of the experts are given in Figure 1. The
fact that graph 1 (left) contains a cycle (ADB) shows that the evaluations of expert
1 are not fully consistent. There is no cycle in graph 2 (right), but the degrees of
belief are weaker than for expert 1. The evaluations of each expert are modelled
using the mass allocation expressed by equation (6) with either αi j or βi j equal
to zero.

Applied individually to each expert, the procedure for deriving a complete rank-
ing of the alternatives (Section 4.1) gives the ranking A1D1 B1C with a plausib-
lity of 0.8070 for the first expert, and the ranking A1C 1D1 B with a plausibility
equal to 1 for the second one. The plausiblities thus reflect the internal coherence
of the experts. The evaluations of the experts can also be combined before search-
ing for a complete ranking. The results of the combination using Dempster’s rule of
combination can be found in Table 1.

The most plausible total ranking derived from Table 1 is A 1 D 1 B 1C with a
plausibility equal to 0.8893. Applying the heuristic procedure using the masses of
Table 1 for determining a partial ranking gives the result presented in Figure 2. The
dendrogram can be cut at the desired level of plausibility. For example, the partial
order A 1 D 1 {B,C} reaches a plausibility of almost 0.96.

A 

D C 

B 0,44 

0,06 

0,93 0,97 0.74 0.94 

A 

D C 

B 0,44 

0,01 

0,8 0,97 0.74 0.94 

Fig. 1 Graph representation of the evaluations; (left) : expert 1 ; (right) : expert 2.

Table 1 Mass assignment using Dempster’s rule of combination

(oi,o j) oi 1 o j o j 1 oi Θi j

(A,B) 0.3056 0.3056 0.3889
(A,C) 0.9991 0 0.0009
(A,D) 0.9964 0 0.0036
(B,C) 0.7266 0.2187 0.0547
(B,D) 0 0.9324 0.0676
(C,D) 0.0594 0.0094 0.9312
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Fig. 2 Dendrogram obtained from Table 1.

6 Conclusion

In this paper, we have shown how to use the framework of belief functions to model
paired comparisons and how to derive from these individual judgements a total or
a partial ranking of the alternatives. The linear order is obtained by solving a linear
program maximizing the plausibility of the relation. A heuristic procedure has been
proposed to provide only a partial order when the plausibility of the linear order is
too low. This work offers several perspectives, among which the application of the
approach to machine learning problems like instance or label ranking problems.
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Dempster-Shafer Fusion of Context Sources
for Pedestrian Recognition

Magdalena Szczot, Otto Löhlein, and Günther Palm

Abstract. This contribution presents the design of an image-based contextual pedes-
trian classifier for an automotive application. Our previous work shows that local
classifiers working with image cutouts are in many cases not sufficient to achieve
satisfactory results in complex scenarios. As a solution the work proposed incorpo-
rating contextual knowledge into the classification task, significantly improving the
classification results. Contextual knowledge is described by a set of different and
independent context sources. This paper discusses the fusion of these sources on the
basis of the Dempster-Shafer theory. It presents and compares different possibilities
to model the frame of discernment and the mass function to achieve optimal results.
Furthermore, it provides an elegant way to take uncertainties of the context sources
into account. The methods are evaluated on simulated and on real data.

1 Introduction

Recent studies in the field of driver assistance systems concern themselves with
the task of detecting pedestrians in front of a vehicle. This task is usually solved
by applying a local classifier to the camera images. Such classifiers regard only
local image cutouts on different positions and scales and decide for each cutout
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separately whether it contains a pedestrian or not. Our previous work [5] shows
the disadvantages of such an approach and greatly improves the results by incorpo-
rating contextual knowledge into the classification task. Such knowledge is hereby
modeled as a set of many different hints (context sources) which describe the re-
lation between a pedestrian and his surroundings. The actual challenge is finding
an elegant way of describing those hints in a unified manner ([5], [4]) and fusing
them into a single classifier. This contribution concentrates on the fusion of context
sources with the Dempster-Shafer theory and shows the benefits of this method in
comparison to the usual Bayesian approach. It discusses different possibilities for
choosing the frame of discernment and modeling the mass function. Furthermore, it
describes an effective way of representing the uncertainty of one context source for
one pedestrian detection. Finally, the paper compares the different methods on a real
data set.

For a comprehensive overview of the Dempster-Shafer theory, we would like to
refer to the work by Smets [3].

2 Application Setup

The goal of the system is a robust recognition of pedestrians in camera images. Its
first component is a Viola-Jones cascaded classifier [6], which for one camera image
delivers a list of detections in the form of bounding boxes. This list of detections is
the basis for any further processing. Furthermore, all evaluation results are given
in relation to this list of detections, which can be either true positive (TP) or false
positive (FP) pedestrian detections. This means that if the context classifier accepts
all pedestrians previously detected by the cascade, the detection rate would be 1,
even though the whole system might still have overlooked some of the pedestrians.
Figure 1 shows an example of a false positive and a true positive detection.

The second component of the application is given by the context sources. All
context sources share a common model which delivers a foundation for the fusion
algorithms.

Fig. 1 An example of a true positive (green) and a false positive (red) detection of the cas-
caded classifier.
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One context source represents an arbitrary piece of information which is consid-
ered to be relevant for the classification task. Each context source gets one detection
D of a cascaded classifier as an input and computes one value q(D)∈R. The compu-
tation of q(D) depends on the sort of the context source. For example, if one wants
to consider the position of the horizon in the image, than q(D) might be defined as
a normalized distance of the bottom line of the detection box to the horizon line.
Additionally, each source holds two histograms over the outputs q(D) of its algo-
rithm over the training data: one for the positive and one for the negative samples.
Let Θ T P = (Θ T P

1 . . .Θ TP
N ) denote the bin boundaries of the histogram over the set

of true positive detections IT P. The number of entries in the true positive histogram
bins is then defined as:

V T P
j = |{q(D)|Θ TP

j ≤ q(D)<Θ TP
j+1

} |. (1)

The frequencies V FP
j of the histogram over false positives FP are computed in

the same manner. This simple representation of each contextual information as
a pair of histograms together with the according algorithm for the computation
of q(D) allows modeling any arbitrary information source and is the foundation
for the fusion algorithms presented in this contribution. The basic idea is to use
the quotient π = V T P

j /(V T P
j +V FP

j ) for a detection with q(D) in bin j as an
estimate for p(pedestrian|q(D)). One possibility then is to use the naive Bayes
method for the combination of these probabilities. However, this would not ac-
count for the uncertainty of these probability estimates. For this reason we pro-
pose the use of the Dempster-Shafer theory and in particular of Dempster’s rule of
combination ([3]).

3 Dempster-Shafer Theory for Fusion of Context Sources

There are two main design decisions to be made for a practical application of the
Dempster-Shafer theory: the first one concerns the frame of discernment and the
definition of the single hypotheses. The second decision regards the mass function
of the sources over the propositions from 2Ω .

This work presents two different approaches concerning the choice of the frame
of discernment as well as the distribution of mass. The first discrimination between
the methods is given by the choice of Ω . Following the most common approaches in
the literature, the first method in this paper divides the frame of discernment into the
proposition pedestrian (F) and background (¬F) (i.e. Ω = {F,¬F,}). This frame of
discernment will be called symbolic. As an alternative, this paper suggests choosing
a real-valued frame of discernment. Specifically, we define the frame of discernment
as the interval between zero and one (Ω = [0,1]), where the focal elements are
nested intervals in Ω .
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3.1 Modeling the Uncertainty of One Context Source

Both methods share a common model of the uncertainty of a context source. This
uncertainty determines the assignment of mass to the propositions. The foundation
of this is provided by the histograms of the context sources.

Let both histograms be defined as described in Section 2. Let j be the index of
the histogram bin for the output of q for current detection D : Θ j ≤ q(D)<Θ j+1.
The number of entries in each bin is modeled by a binomially distributed random
variable:

B(n = (V T P
j +V FP

j ),π =V T P
j /(V T P

j +V FP
j )). (2)

Here the number of successes matches the number of positive samples in the j-th
histogram bin. The certainty with which on source makes a statement (π) is roughly
proportional to the number of entries in the bin. To model this certainty we consider
the conjugate distribution to the binomial distribution - the beta distribution ([1])
over π (π ∼ fα ,β ). The number of entries in histogram bins are taken as parameters
for the beta distribution: α =V p

j and β =V n
j . The smaller the number of entries, the

larger the variance of the beta distribution.

3.2 Simulation Framework

For a better understanding of each presented approach, this work gives exemplary
results on artificial sources from a simulation framework. The simulation consists of
three contextual sources. The output of each source is modeled by two normal dis-
tributions (for positive and negative samples). During the simulation of the training
step the outputs are drawn from those distributions in order to create the positive and
negative histograms. In the evaluation step each context source delivers a random
output which is used to estimate the according histogram bin and the parameters of
the beta distribution.

3.3 Method 1: Symbolic Frame of Discernment Ω = {F,¬F,}
The first method handles propositions consisting of symbolic classes: pedestrian
(F), background(¬F), and the union of the two classes ({F,¬F,}).

After estimating the correct histogram bin of each context source for current de-
tection, the according beta distribution parameters are known and given by the equa-
tions in the previous sections. The expectation value of this distribution should steer
the mass assessment to the propositions (F) and (¬F). Furthermore, the variance of
the beta distribution should have some influence on the amount of mass assigned to
the union of the single hypotheses ({F,¬F,}). In order to meet these requirements,
the first method regards the integral of the beta distribution over a certain interval.
Let γ ∈ [0,1] and c = fα ,β ([π − γ,π + γ]) be the integral of the beta distribution
around its expectation value. The value c describes the certainty of the output of the
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Fig. 2 Method 1. Result of a fusion of simulated context sources with Ω = {F,¬F,}. The
figure on the left shows the three beta distributions and the mass function of each context
source. The figure on the right shows the result of Dempster’s rule of combination.

context source: the smaller the variance of the beta distribution, the larger c is. The
value c is used as a scaling factor for the computation of the mass function.

m(F) = π · c, and m(¬F) = (1−π) · c. (3)

The remaining mass is assigned to the union of both classes (m(Ω) = 1− c). The
estimation of an optimal γ is done by evaluating this method on a learnset and choos-
ing the parameter which achieves the lowest error over all samples. Figure 2 shows
the mass of the context sources and the result of the fusion for the simulation ex-
ample. The presented method distributes the mass of one context source accord-
ing to its posterior probability for a detection and its confidence derived from the
beta distribution. The single hypotheses of the context sources are class names, and
the uncertainty is modeled only in an indirect way by assigning mass to the union
of both classes. The different context sources are combined by Dempster’s rule of
combination.

In contrast to this approach the second method assumes that the actual state-
ment of a context source is its posterior probability π for a pedestrian. The un-
certainty for this statement is given directly by the beta distribution fα ,β and
we consider a different choice of the frame of discernment, namely Ω = [0,1]
([2]). Here one could use different combination methods, in particular different
ways of handling the conflict (see [3]), but Dempster’s rule works fine in our
application.

3.4 Method 2: Real-Valued Frame of Discernment ( Ω = [0,1] )

The present realisation considers propositions which are nested intervals within Ω .
The propositions Bi are taken to lie symmetrically around the expectation value of
the beta distribution, as shown in figure 3. This works better than the more common
use of disjoint intervals, because it reduces the conflict arising from the combination
of the sources. The mass function is computed by integrating the beta-distribution
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Fig. 3 Method 2. Choice of propositions over the frame of discernment. The propositions
interleave and lie around the expectation value of the beta distribution.

Fig. 4 Method 2. Result of the Dempster-Shafer Fusion for the interleaved focal propositions
and Ω = [0,1]. The figure on the left shows the beta distributions and the propositions. The
result of the orthogonal sum is shown in the figure on the right.

over the differences Bi \Bi−1 = Bl
i ∪Br

i (see figure 3) and assigning the value of the
integral to the nested focal elements:

m(Bi) = fα ,β (B
l
i)+ fα ,β (B

r
i ) (4)

Figure 4 shows the result of the Dempster-Shafer fusion for a partitioning of Ω
into 20 single intervals. In this particular example, the largest resulting mass is as-
signed to the intervals around 0.3 and 0.4, where the responses of the two first con-
text sources agree. The third context source, whose posterior probability would be
higher, does not have enough samples in the current bin, to overrule this decision.

For the evaluation of this method the actual output O(D) of the Dempster-Shafer
fusion for one detection is given by the center of the proposition with greatest mass:

O(D) = (xi+1 + xi) ·0.5 , for i = argmax(m([x0,x1]), ...,m([xM−1,xM])). (5)

4 Evaluation Results

This section presents the evaluation results for the application of the pedestrian
recognition. As described above, the fusion algorithms are evaluated on the list of
detections of a cascaded classifier. The cascade used consists of 30 layers. In order
to gain more data (especially more false alarms) for this evaluation we regard all
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Fig. 5 ROC-curve for the Bayes’ fusion and both methods from the Dempster-Shafer ap-
proach. Since the results are only relevant for high detection rates, the axis is limited to a
detection rate between 0.9 and 1 for visualization purposes.

detections beginning with the 26th layer. In this way, the fusion methods are eval-
uated for 2900 labeled pedestrian occurrences and 900 false alarms. The detection
rate is 1 if all pedestrians represented by the detections are accepted by the fusion
system. Three context sources were used for the evaluation. The context sources re-
gard the position of the street, the position of the horizon line in the image as well
as the relative positions of objects in the image. A thorough description of these
sources can be found in [5] and [4].

Figure 5 presents the detection and false alarm rates for the Bayes’ fusion and
the Dempster-Shafer fusion. The operating points of the ROC-curve are computed
by comparing the output O(D) of the fusion algorithm with increasing thresholds
between 0 and 1. The results show an improvement achieved by incorporating un-
certainties of the sources into the fusion framework. Furthermore, the usage of a
real-valued frame of discernment leads to a further reduction of the false alarm
rate in comparison to the second method with symbolic frame of discernment. For
example, for a constant detection rate of 98% the Bayes’ fusion achieves a false
alarm rate of 25.2%, the Dempster-Shafer approach with symbolic Ω leads to a
false alarm rate of 23.4% whereas the real-valued Ω achieves a false alarm rate
of 18.9%.

5 Conclusion and Future Work

Many cognitive systems take advantage of a combination of diverse pieces of infor-
mation. An optimal design of the fusion method for such systems is crucial in order
to achieve satisfactory results. This contribution arises from the field of pedestrian
recognition and is motivated by the desire to incorporate contextual hints into the
classification process. As there are many different contextual hints, the architec-
ture of a contextual classifier requires the fused response of all sources. A classical
Bayes’ approach delivers only suboptimal results since it ignores the uncertainty of
the different sources. As a possible solution, we propose the use of Dempster-Shafer
theory.
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This paper discusses two possibilities to model the frame of discernment and the
mass function. Specifically, it differentiates between a symbolic and a real-valued
frame of discernment. The first method requires the sources to assign mass to sym-
bolic class names. This is the most common approach and the evaluation shows
that it already delivers better results than the Bayes’ fusion. Further improvement is
achieved by a real-valued frame of discernment directly containing intervals from
[0,1] describing the posterior probabilities. This approach proposes an elegant way
of modeling the mass functions within the Dempster-Shafer theory and incorpo-
rating the uncertainty of the evidences. The evaluation results show a significant
improvement achieved through the introduction of the uncertainty into the fusion by
applying the Dempster-Shafer theory.
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Multi-level Dempster-Shafer Speed Limit
Assistant

Jérémie Daniel and Jean-Philippe Lauffenburger

Abstract. This paper deals with a Speed Limit Assistant (SLA) performing the fu-
sion of a Geographic Information System (GIS) and a vision system. The present
strategy is based on multi-level data fusion using Evidence Theory. In a first step,
the GIS reliability is estimated through GIS criteria related to the positioning, the lo-
calization and the digital map resolution. Contextual criteria also extracted from the
GIS define the belief masses of the speed candidates. Afterwards, a multi-criterion
fusion is processed to detect potential GIS incoherences (difference between the GIS
speed and the road context). The second fusion level (the multi-sensor fusion) then
combines the GIS and vision information by considering these sensors as special-
ized sources. In order to manage the conflict, the Proportional Conflict redistribution
Rule 5 (PCR5) has been chosen. The benefits of the proposed solution are shown
through real experiments performed with a test vehicle.

1 Introduction

Speed Limit Assistants (SLA) usually refer to the combination of a Speed Limit
Sign Recognition System (SLSRS) with a Geographical Information System (GIS)
as they are complementary. Among the different techniques which can be used for
their fusion, Evidence Theory [1, 2] showed its effectiveness. This formalism was
for instance employed for SLAs by [3] and [4]. They proposed an approach in which
the GIS information is processed through a combination of digital map database
attributes. The selected attributes are of great help, on the one hand in the description
of the current road context (giving information about context-dependent implicit
speeds), and on the other hand to characterize the reliability of the GIS. However, in
these works, no detection of the GIS incoherences and inaccuracies was performed
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and a simple weighted sum was used to define the basic belief assignments (bba)
w.r.t. the GIS criteria.

To overcome these limitations, the present SLA is based on a multi-level fusion
approach. The first level - the multi-criterion fusion - consists in the evaluation of the
navigation reliability while the second level - the multi-sensor fusion - fuses the vi-
sion and the GIS to define the final speed limit and its confidence. The main benefits
of the multi-criterion fusion is the consideration of the GIS reliability (positioning,
localization and digital map database quality) in its bba. In addition, this fusion
helps to detect the GIS incoherences (contradiction between the speed indicated by
the GIS and contextual data related to the driving situation) and to determine the
appropriate navigation speed candidate through a local decision step. Both fusion
levels are based on the Rombaut’s bba model [5] which considers the sensors as
specialized sources [6]. The conflict which may be generated during this step is
managed by the Proportional Conflict redistribution Rule 5 (PCR5) [7].

The paper is organized as follows: Section.2 describes the notations and the strat-
egy adopted for speed limit determination. Section.3 presents the combination rules
as well as the decision technique used to select the most relevant speed candi-
date considering the eventually generated conflict. Before the concluding remarks
(Section.5), experimental results are highlighted in Section.4.

2 Combining Vision and Navigation Information

2.1 Notations

The discernment frame Θ used for the SLA contains the speeds S j defined by the
general legal driving rules. The corresponding referential subset 2Θ is presented in
(1) with k the number of possible speeds:

Θ = {S1,S2, ...,Sk} , 2Θ = {S1,S2, ...,Sk,{S1,S2} , ...,{S2,S3} , ...,Θ} (1)

The model initiated by Rombaut [5] has been retained for the representation of the
navigation and vision data. It considers the sources to be independent and special-
ized: a source can only give information about one specific speed (S j) of the dis-
cernment frame. Moreover, the source can only say “I believe in this speed”, “I do
not believe in this speed” or “I do not know”. Consequently, each source gives its

opinion on the triplet
{

S j,Sc
j,Θ
}

where Sc
j =

{
S1, ...,S j−1,S j+1, ...,Sk

}
. In addition,

this model is defined regarding a non-overlapping condition of the masses S j and
Sc

j. In the multi-criterion fusion, the sources are the different criteria extracted from
the GIS (cf. Section.2.2). They give their opinion on a speed S j of Θ through a bba
m j defined as follows:
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m j (S j) =

{
0(

α j
1−τ

)
Rv− α jτ

1−τ

Rv ∈ [0,τ]
Rv ∈ [τ,1]

m j

(
Sc

j

)
=

{−α j
τ Rv +α j

0
Rv ∈ [0,τ]
Rv ∈ [τ,1]

m j (Θ) =

{ α j
τ Rv +(1−α j)

−
(

α j
1−τ

)
Rv +

1−(1−α j)τ
1−τ

Rv ∈ [0,τ]
Rv ∈ [τ,1]

(2)

with τ the boundary value defining the limit between the belief in S j and Sc
j, and Rv

the reliability variable of the considered information source. α j describes the level
of coherence which links a speed S j to a criteria through a maximum mass value. For
example, a highway road coupled to a 30km.−1 speed, thus describing an incoherent
situation, are linked by a low value of α j. The multi-criteria fusion, combining bbas
defined with different α j, then helps to detect the incoherences of the GIS data.

For the vision system, the reliability Rvis is defined regarding the confidence in the
detected speed while the navigation reliability RGIS is defined regarding the accuracy
of the positioning, localization and digital map database as described in Section.2.2.
For briefness reasons, the model cannot be completely described here. Additional
details are available in [8].

2.2 Multi-level Fusion and Navigation Reliability

The fusion strategy is based on the diagram presented in Fig.1 showing a two-level
fusion. The first step consists in the local processing of the sensor data, i.e. the deter-
mination of their speed candidates and the related confidence masses. For the vision,
it consists in the SLSRS reliability Rvis estimation. For the GIS, it consists in a fu-
sion based on digital map criteria. This approach, used in [6] and [9] for different
applications, helps to characterize a set of potential speeds w.r.t. to the knowledge
of the driving context. In fact, [4] showed that the criteria initially proposed by [3]
can be classified in two sets. The first set is suitable for the determination of the GIS
reliability RGIS, while the second one defines the road context informing about in-
duced speeds (e.g. highway ⇒ 130km.h−1, urban ⇒ 50km.h−1 for french context).
The bba of every candidate speed w.r.t. the criteria are defined using RGIS (if it is
low/high, low/high confidence will be given to the GIS data) and their fusion allows
the determination of the road context (urban, highway, etc.) informing about im-
plicit speed candidates. Finally, a local decision is performed to select the GIS best
speed candidate based on the evaluated context. Contrary to [4], no extra confidence
is put on the speed contained in the GIS due to potential out-dated data, errors, etc.

The second level is dedicated to the multi-sensor fusion in which each sensor is
independent and specialized on one speed. Finally, a raw speed limit based on the
combination using Smets’ conjunctive rule [10], and the conflict redistributed speed
obtained with the PCR5 [7] are provided to the driver.
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Fig. 1 Multi-level Fusion Strategy

First of all, relevant criteria describing the road context and the GIS reliability
are selected. This approach presents interesting results as it allows to determine the
level of confidence which can be given to the speed traditionally stored in the GIS
database [3]. Five criteria are considered for the road context description and im-
plicit speeds definition: C1 describes the road importance in the digitalization level
of the map, C2 refers to the road type (european, highway, national, departmental
or communal), C3 informs about urban or extra urban context, C4 gives the eventual
intersection presence, and finally C5 provides highway ramp presence/absence.

For the GIS, the reliability is evaluated considering its performance in position-
ing, localization and the resolution of the digital map database. These three elements
are subject to inaccuracies, which have different origins, but may lead to false nav-
igation information. For the GPS positioning, one of the reliability indicators is the
satellite geometry characterized by the Horizontal Dilution Of Precision (HDOP).
For the localization of the vehicle on the map, an indicator is the probability of the
candidate locations provided by the map-matching. In fact, for each vehicle position,
a set of possible locations are determined regarding the road context and the candi-
date with the best probability is selected. This probability, called Most Likely Can-
didate Probability (MLCP), is relevant of the quality of the map-matching. The last
element, the digital map, is an approximation of the reality. The digital map database
accuracy level is provided by a specific attribute named ADASAttribute. The latter
denotes if the quality of the road representation is ADAS-compliant. Equation (3)
presents the way the navigation reliability is finally defined using these elements.

RGIS =
(

1−
(

HDOP
HDOPmax

))
·
(

1−
(

MLCP
MLCPmax

))
·ADASAttribute (3)
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3 Combination and Decision

3.1 Multi-criterion and Multi-sensor Fusion

The multi-criterion fusion is performed independently and sequentially for each

speed S j of Θ , consequently specialized to Θ =
{

S j,Sc
j

}
. The resulting power set

becomes 2Θ =
{

/0,S j,Sc
j,Θ
}

. The objective is to evaluate the coherence between the

speed candidate S j and the driving context obtained through the criteria. The com-
bined mass related to S j w.r.t. criteria C1 to C5 is obtained using Smets’ conjunctive
operator. The latter is given for l criteria in [6] such as:

m1...l, j (S j) =
l

∏
i=1

(
1−mi, j

(
Sc

j

))
−

l
∏
i=1

mi, j (Θ)

m1...l, j

(
Sc

j

)
=

l
∏
i=1

(1−mi, j (S j))−
l

∏
i=1

mi, j (Θ)

m1...l, j (Θ) =
l

∏
i=1

mi, j (Θ)

m1...l, j ( /0) = 1− l
∏
i=1

(1−mi, j (S j))−
l

∏
i=1

(
1−mi, j

(
Sc

j

))
+

l
∏
i=1

mi, j (Θ)

(4)

Contrary to the multi-criterion fusion in which all the criteria express their opinion
on a speed S j at a time, GIS and vision may have different points of view, i.e. give
opinions on two different speeds SGIS and Svis. In this case, there are only two speeds
in the specialized discernment frame Θ = {SGIS,Svis}. Considering these elements,
the multi-sensor fusion using Smets’ operator and generalized for p sensors is [6]:

m1...p (S j) = m j (S j)
p

∏
a=1
a �= j

(1−ma (Sa))+m j (Θ)
p

∏
a=1
a �= j

(ma (Sc
a))

m1...p
({

S j, . . . ,Sl
})

= m j (Θ) . . .ml (Θ)
p

∏
a=1
a �= j
......
a �=l

(ma (Sc
a))

m1...p

(
Sc

j

)
= m j

(
Sc

j

) p
∏

a=1
a �= j

ma (Θ)

m1...p (Θ) =
p

∏
a=1

ma (Θ)

m1...p ( /0) = 1−
p

∏
a=1

(1−ma (Sa))−
p
∑

a=1
ma (Sa)

p
∏

b=1
b �=a

(1−mb (Sb))+
p

∏
a=1

(ma (Sc
a))

(5)
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3.2 Conflict Management

During the multi-criterion fusion, as the sources express themselves sequentially
over the same speed, no conflict can be generated. On the opposite, the multi-sensor
fusion combines sources which may be confident in different speeds, thus may lead
to conflict. To manage this conflict, the Proportional Conflict redistribution Rule 5
(PCR5) introduced in [7], has been chosen1. This operator is described by (6) with
m ∩©(S j) the mass on speed S j after the conjunctive combination, and mPCR5(S j) the
mass on speed S j after conflict redistribution.

mPCR5 ( /0) = 0 and for S j ∈ 2Θ\{ /0}
mPCR5 (S j) = m ∩©(S j)+ ∑

Sa∈2Θ\{S j}
S j∩Sa= /0

[
mj(S j)

2
ma(Sa)

mj(S j)+ma(Sa)
+

ma(S j)
2
mj(Sa)

ma(S j)+mj(Sa)

]
(6)

Sources which generate a high conflict have usually strong beliefs in their original
propositions. These beliefs are greatly reduced after the combination due to con-
flict apparition. The use of the PCR5 can therefore involve a re-appearance of the
original strong beliefs which caused the conflict while preserving the other infor-
mation obtained from the combination (ignorance, etc.) contrary to the Dempster
normalization which redistributes it over all the propositions of Θ . For test compar-
ison purposes, the multi-sensor combination results without redistribution are also
considered in Section.4. As for the multi-criterion fusion, the selection of the multi-
sensor speed is done considering the maximum of Belief:

S =

{
arg max

1≤ j≤p
Bel(S j)

}
(7)

4 Experimental Results

Contrary to [8], in this work, no focal elements are selected since the bbas of every
speed S j are defined using the GIS criteria. Consequently, the multi-criterion fusion
is performed successively over every speed of the discernment frame (8) and it de-
fines the relevant GIS speed candidates out of Θ . Finally, the local decision selects
the most confident candidate.

Θ = {5,10,20,30,45,50,60,70,80,90,100,110,120,130} (8)

This SLA has been implemented using Navteq’s ADASRP software and RT MAPS
from Intempora [8]. The focus is placed on a driving situation defined by an average
GIS reliability (RGIS = 0.68) based on the MLCP, HDOP and AdasAttribute but,
in the same time, on an incoherency between the criteria and the GIS extracted
speed. Indeed, the GIS indicates 50km.h−1 while the criteria describe a highway

1 The generalized Proportional Conflict redistribution Rule for n sources known as PCR6
yields to the PCR5 when two sources are considered [7].
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Fig. 2 Multi-level Fusion Results

situation: the vehicle is on an accurately digitalized extra-urban highway, without
any intersection nor highway ramp. On the other hand, the vision has detected a
speed limit sign of 50km.h−1 with an equivalent reliability Rvis of 0.68. This average
reliability leads to the belief masses described in Fig.2 right top plot which show low
confidence in the detected speed, due to the neutral bba model [8].

The results of the multi-criterion fusion are presented in Fig.2 left top plot. The
detection of the GIS incoherences is shown as the multi-criterion fusion favorites
high speeds, even if no focal elements related to the GIS extracted speed are con-
sidered, due to the context attributes. The multi-sensor fusion results (Fig.2 mid-
dle plot) obtained with PCR5, then show that even if the GIS and vision belief
masses in 50km.h−1 are low, the combination yields in selecting this speed. This
result is involved by the conjunctive combination which favorites the sources com-
mon propositions and cancels the benefits of the multi-criterion fusion (GIS in-
coherences detection). On the opposite, by selecting the best GIS candidate after
multi-criterion fusion (here 130km.h−1) using the local decision, the final speed be-
comes 130km.h−1 as presented in Fig.2 bottom plots. Nevertheless, the selection
of 130km.h−1 is difficult in the non-normalized case (Fig.2 bottom left plot) as the
level of ignorance and conflict are close to the level of confidence of the retained
speed. Thanks to the PCR5 partial conflict management, the belief in the final speed
of 130km.h−1 becomes slightly higher than the belief in 50km.h−1 and the level of
ignorance (cf. Fig.2 bottom right plot). The final speed considering the best GIS
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candidate is consequently more coherent with the driving context than the final
speed determined without decision step after the multi-criterion fusion.

5 Conclusion

This paper has presented an approach to the fusion of a Geographic Information
System (GIS) and a vision system for Speed Limit Determination. A Demspter-
Shafer multi-level data fusion composed of a multi-criterion fusion for the definition
of the GIS reliability and a multi-sensor fusion between the GIS and the vision, have
been proposed. The main benefit of this approach is to detect the GIS incoherences
by an earlier evaluation of its reliability based on the positioning, the localization
and the digital map performance. Then, contextual information is used to confirm
or infirm the GIS speed during criteria fusion which is further combined with the
vision information. The system has been validated through experimental results.
Further studies would be focused on the vision system through the integration of
contextual information such as weather conditions.

References

1. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. An-
nals of Mathematical Statistics 38, 325–339 (1967)

2. Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)
3. Lauffenburger, J.P., Bradai, B., Basset, M., Nashashibi, F.: Navigation and speed signs

recognition fusion for enhanced vehicle location. In: IFAC World Congress (IFAC WC),
Seoul, South Korea, September 6-11 (2008)

4. Puthon, A.S., Nashashibi, F.: B Bradai. Improvement of multisensor fusion in speed
limit determination by quantifying navigation reliability. In: International Conference on
Intelligent Transportation Systems (ITSC), Madeira, Portugal, September 19-22 (2010)

5. Rombaut, M.: Decision in multi-obstacle matching process using Dempster-Shafer’s the-
ory. In: Advances in Vehicle Control and Safety (AVCS), Amiens, France, July 1-3
(1998)
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A New Local Measure of Disagreement between
Belief Functions – Application to Localization

Arnaud Roquel, Sylvie Le Hégarat-Mascle, Isabelle Bloch, and Bastien Vincke

Abstract. In the theory of belief functions, the disagreement between sources is
often measured in terms of conflict or dissimilarity. These measures are global to
the sources, and provide few information about the origin of the disagreement. We
propose in this paper a “finer” measure based on the decomposition of the global
measure of conflict (or distance). It allows focusing the measure on some hypothe-
ses of interest (namely the ones likely to be chosen after fusion). We apply the pro-
posed so called “local” measures of conflict and distance to the choice of sources
for vehicle localization. We show that considering sources agreement/disagreement
outperforms blind fusion.

1 Introduction

Multi-sensor systems are used in many applications such as classification, image
processing, change detection, object trajectory localization. Usually the informa-
tion provided by each sensor is prone to imperfections, such as imprecision and
uncertainty, and fusion procedures aim at making better decisions by combining
multi-sensor information. Belief Functions (BF) are suitable for modeling impreci-
sion and uncertainty, and handle belief on the power set of the frame of discernment
(set of hypotheses). A disagreement between sources makes the system unstable
and can impact the decision. Many techniques have been developed to measure the
disagreement between sources. A review can be found in [4] or [5]. One method con-
sists in observing the so-called “Demspter’s conflict” [10] resulting from the con-
junctive combination of the basic belief functions. However, the non-idempotence
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of the usual conjunctive rule can create a non-zero conflict for the combination of
two equal belief functions. Other measures are based on distances between mass
functions. The distances derived from L1 or L2 norms measure the inter-sources
disagreement taking into account all elements of the space of discernment.

In this paper, we aim at exploiting the conflict or distance to provide a diagnosis
of the system status. For this we need a more precise measurement than the “Dem-
spter’s conflict” or global dissimilarity between sources. Thus we propose a new
measure which is related to the different elements of the discernment space, that
we call “local” measure. After recalling some notations and basic elements on mass
function decompositions and distance measures in Section 2, the proposed measure
is introduced and analyzed in Section 3. It is then illustrated on a vehicle localization
problem described in Section 4. Results are provided in Section 5.

2 Background

In the following, we denote by Ω the frame of discernment, by 2Ω the power set
of Ω , and by m j a Basic Belief Assignment (BBA) on 2Ω associated with a source
S j. Plausibility and communality are denoted by Pls and q, respectively. Smets pro-
posed a canonical decomposition of every non-dogmatic BBA, as a unique conjunc-
tive combination of simple support functions (SSF) [9]:

m j = ∩©A⊂Ω Aw j(A), (1)

where Aw j(A) is a SSF, i.e. a function with only two focal elements A and Ω , such that
Aw j(A)(Ω) = wj(A), Aw j(A)(A) = 1−wj(A), and Aw j(A)(B) = 0,∀B ∈ 2Ω \ {A,Ω}.
If wj(A) ≤ 1 then Aw j(A) is a BBA, and if wj(A) ≤ 1,∀A ⊂ Ω , m j in Eq. 1 is a
separable BBA (SBBA). The weight wj ∈ R+ is expressed from the commonalities
as follows:

∀A ⊂ Ω , wj(A) = ∏
B⊇A

q j(B)
(−1)|B|−|A|+1

. (2)

For the conjunctive combination of N BBAs, two main rules are generally consid-
ered depending on whether the sources are “cognitively independent”, and can be
expressed using the canonical decomposition: Smets’ combination [9] (sometimes

simply called conjunctive rule because of its authority): m ∩© = ∩©A⊂Ω A∏N
j=1 w j(A),

and the cautious rule [2]: m ∧© = ∩©A⊂Ω A
∧N

j=1 w j(A), where
∧

denotes the minimum
operator.

The dissimilarity between BBAs is often used for computing their disagreement.
It is generally estimated from a conflict or distance measure (the reader can refer
to [5] or [4] for an overview). These measures involve all elements of 2Ω .

In this study, we focus on the conflict (as a diagnostic tool of the system) between
different sources. Besides, in the estimation of a disagreement (conflict), to avoid
the bias due to the individual source auto-conflict, we consider sources with null
auto-conflict, namely modelled using consonant BBAs, as proposed in [6].
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3 Proposed Local Measures of Sources Disagreement

3.1 Local Conflict

We note ϒ = {{Ai} j, Ai ⊆ Ω , j ∈ {1, ...,N}} the multi-set containing the elements
of the canonical decomposition of the BBAs to be combined, where {Ai} j is the set
of elements of the canonical decomposition of m j for which wj(Ai) �= 1. From Eq. 1,
the mass of the empty set resulting from the combination of N SBBAs defined on
Ω (with |Ω |> 2) is:

m ∩© ( /0) = 1+ ∑
B⊆Ω ,B �= /0

(−1)|B|
|ϒ |
∏
k=1

∑
B⊆A

wk(A). (3)

In the following, we focus on the case of two consonant BBAs. If ϒ is not a con-
sonant set, then conflict appears. Now for two BBAs the conflict can be brought by
different hypotheses. We propose to analyze the origin of the conflict by decom-
posing it on pairs of elements. For this we consider the canonical decomposition
of m1 ∩© 2 and we analyze the conflict between the pairs of elements (singletons or
compound hypotheses) of this decomposition.

We introduce the following function f /0 on 2Ω × 2Ω for conflict decomposition:

∀(A,B) / A∩B �= /0 , f /0(A,B) = 0, (4)

∀(A,B) / A∩B = /0 , (5)

f /0(A,B) =
1
2

|ϒ |
∑
g=1

|ϒ |
∑
l=1

μg(A)× μl(B)× ∑
{X1, ...,X|ϒ |−2}
∈ {ϒ⊇A∪ϒ⊇B}

|ϒ |
∏

k = 1
k �= {g, l}

μk(Xk),

=
1
2

|ϒ |
∑
g=1

|ϒ |
∑
l=1

μg(A)× μl(B)×
|ϒ |
∏⎧⎪⎪⎨⎪⎪⎩

k = 1,
k �= {g, l}

Xk ∈ {ϒ⊂A∪ϒ⊂B}

μk(Ω), (6)

where ϒ⊇A is the set of elements of ϒ including A: ϒ⊇A = {X ∈ ϒ / A ⊆ X} and
ϒ⊂A is the set of elements being strictly included in A: ϒ⊂A = {X ∈ ϒ/X ⊂ A}.
μ j(A) = Aw j(A) if A is an element of the decomposition of m j and μ j(A) is the
vacuous BBA (such that m(Ω) = 1) if A is not an element of the decomposition
of m j.

For each element of 2Ω we define the conflict brought by this element as:

∀Ai ∈ 2Ω , Mes /0(Ai) = ∑
A j∈2Ω

f /0(Ai,A j). (7)
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The mass on the empty set (Eq. 3), is thus:

m ∩© ( /0) = ∑
A∈2Ω

Mes /0(A). (8)

Example: Let m1 and m2 be two consonant SBBAs defined on Ω = {a,b,c} (see
the table below). Here ϒ = {{a},{b},{a∪c},{b∪c}}. After conjunction, ∀Ai ∈ϒ ,

A
∏2

j=1 w j(Ai)

i is a SSF.

{a} {b} {a∪b} {c} {a∪ c} {b∪ c} {Ω} { /0}
m1 0.3 0 0 0 0.6 0 0.1 0
m2 0 0.3 0 0 0 0.6 0.1 0

m1 ∩© 2 0.03 0.03 0 0.36 0.06 0.06 0.01 0.45

w1 0.7 1 1 1 0.1429 1 1 1
w2 1 0.7 1 1 1 0.1429 1 1
μ1 0.3 0 0 0 0 0 0.7 0
μ2 0 0.3 0 0 0 0 0.7 0
μ3 0 0 0 0 0.8571 0 0.1429 0
μ4 0 0 0 0 0 0.8571 0.1429 0

∀Ai �= Ω ,μi(Ai) = 1−∏2
j=1 wj(Ai) and μi(Ω) = ∏2

j=1 wj(Ai). From Eq. 6, the de-
composition of m1 ∩© 2( /0) can be written as:

Decomposition of m1 ∩© 2( /0) Pairs of conflicting hypotheses

μ1({a}) × μ2({b})
μ1({a}) × μ2({Ω}) × μ4({b∪ c})
μ1({Ω}) × μ1({b}) × μ3({a∪ c})

({a},{b})
({a},{b,c})
({b},{a,c})

The result of the conflict decomposition is:

{a} {b} {a∪b} {c} {a∪ c} {b∪ c} {Ω} { /0}
Mes /0 0.27 0.27 0 0 0.18 0.18 0 0

For this example, we note that the conflict is mainly due to the couple of hypotheses
{a} and {b}.

3.2 Local Pseudo-distance

In Section 3.1, we introduced the notion of “local ” conflict induced by a hypothesis.
In a similar way, we introduce a local pseudo-distance:

DistPl1,2(A,B) =
1
2
| (Pl1(A)−Pl2(A))+ (Pl2(B)−Pl1(B)) |, (9)

where Pl j, is the plausibility function associated with m j, j = {1,2}, and A and B
denote two elements of 2Ω . This defines a pseudo-metric: it is non-negative and
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symmetrical by construction, ∀A ∈ 2Ω ,DistPl1,2(A,A) = 0 and satisfies the triangu-

lar inequality: ∀(A,B,C) ∈ (2Ω )3, DistPl1,2(A,C)+DistPl1,2(C,B)≥ DistPl1,2(A,B).

Note that the detection of a partial conflict between BBAs and the detection of a
high distance have very different interpretations. In the first case, we aim at selecting
the hypotheses mainly inducing conflict in order to specify the conflict (origin, type
of conflict, etc.). In the second case, we aim at restricting the measure of distance to
a sub-part of 2Ω (pairs of elements) because our interest focuses on some hypotheses
(typically those that can be selected when making the decision).

4 Application to the Localization Problem

4.1 Localization Problem

In this section, we apply the previously presented measures to the problem of ve-
hicle localization using different sources j, here algorithms providing localization
estimates from vehicle sensors (odometers, camera). Odometers provide the dis-
tance travelled by each wheel independently. Using the wheel parameters (radius,
length of the rear axle, tick number) and assuming a rigid structure of the vehicle,
we can compute its displacement (longitudinal and rotational components). From
the camera data, features (interest points i.e. SURF, SIFT points, etc.) are tracked in
several images, both to infer the scene structure (3D) and the camera movement [1].
In our experiments, the longitudinal and rotational components of displacement are
estimated using three different algorithms. The first one (S1) exploits only odometer
data. The second one (S2), FastSLAM algorithm [7], exploits both odometer and
camera. Finally, the third algorithm (S3), exploits only images. The estimates from
these three algorithms are more or less precise depending on the physical world and
the movement of the vehicle. A wheel sliding may induce an error in the estimates
of the algorithms using odometer data; an homogeneous environment or a mismatch
between features may induce an error for the algorithms using camera data.

4.2 Fusion Model

At each instant the movement is described by a couple (δs,δΘ ) (longitudinal and
rotational components), whose values are bounded by the motor vehicle features.
Each hypothesis of Ω represents a pair of values (δs,δΘ ). We denote the mea-
surement provided by a given source at instant t by

−−→δ (t) = (δs(t),δθ (t))t , and the
measurement associated to a hypothesis H by

−→δH = (δs(H),δθ (H))t . The consid-
ered measure between δs(H) and δθ (H) is the Mahalanobis distance d2(

−→δt ,
−→δH) =(

δs[H]− δs(t)
δθ [H]− δθ (t)

)T

Σ−1

(
δs[H]− δs(t)

δθ [H]− δθ(t)

)
, where Σ is the covariance matrix.

We assume longitudinal and rotational components of the movement are decor-
related, and thus Σ is diagonal. We also assume that the more the acceleration is
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important, the less accurate are the movement estimations by the considered al-
gorithms, and thus the higher are the Σ terms: in our model Σ depends on the
movement estimate itself. The ellipsoid centered at

−→δt models the movement of the
vehicle. The probability of a hypothesis H, H ∈Ω , is calculated conditionally to

−→δt :

P(H | −→δt ) =
1

2π×|Σ | 1
2

exp{−d2(
−→δt ,

−→δH)

2
} (10)

The higher the distance between hypothesis H and source estimate at t, the lower the
probability of H. The mass allocation proposed by Dubois [3] builds a consonant
BBA (the less committed BBA having given a pignistic probability) centred on the
hypothesis maximizing Eq. 10. For consonant BBAs, the number of focal elements
is |Ω |, and the auto-conflict [6] is null.

As second main hypothesis about the data model, we assume the sampling of
data (30Hz) is high relatively to the acceleration so that (δs(t),δθ (t)) varies slowly
versus time. This so called “regularity assumption” allows us to consider (δs(t −
1),δθ (t−1)) as sources for the estimation of the vehicle movement at t, even if less
reliable than measurements at t. We will see in the next section how such (t − 1)
sources are used in the data fusion process.

Finally, for combination, recall that S1 and S2, which both use odometer data,
are not independent, and that S2 and S3, which both use camera data, are also not
independent. Independence between sources can only be assumed for S1 and S3. In
this study, our aim is to show the interest of the conflict measurement, and sources
are combined at the same time. Therefore we consider that the sources are at least
partially correlated and we use the cautious combination proposed by Denoeux [2].

4.3 Exploitation of Conflict

As said in Section 4.2, the precision of sources is time varying (e.g. mainly depends
on the acceleration), and so is its reliability. In this work, we estimate dynamically
the reliability of the sources to improve the fusion robustness. The estimation of
conflict (Eq. 7) is “local” to the candidate to be chosen by the fusion. If this lat-
ter is conflictual, we try to remove the “unreliable” sources. Using three sources,
we could have chosen a majority criterion to decide the reliable sources. However,
sources being partially correlated, we prefer to base the detection of reliable sources
on “regularity assumption”, based on the local distance (Eq. 9), between succes-
sive instant measurements. It allows us to focus on the information concerning the
hypotheses of interest (the ones selected by the sources).

Precisely, if we denote by H1,H2,H3,H ∧© the singleton elements maximizing the
plausibility function of respectively m1,m2,m3,m ∧©, where m1, m2, m3 are the con-
sonant BBAs associated with sources S1,S2,S3 described in Section 4.2 and m ∧©
is the BBA after combination of m1,m2,m3 by the cautious rule, the exploitation of
conflict is composed of three steps:



A New Local Measure of Disagreement between Belief Functions 341

1. Compute the level of conflict introduced by the singleton element chosen by the
decision step: Mes(H ∧©) = ∑B⊆Ω ,H ∧©⊂B Mes /0(B).

2. If Mes(H ∧©)> TM , then search the sources which do not respect the assumption

of regularity: (DistPln(Hn(t),Hn(t − 1))> TD, with

DistPln(Hn(t),Hn(t− 1)) =
1
2
| (Plnt (Hn(t))−Plnt−1(Hn(t)))

+ (Plnt−1(Hn(t− 1))−Plnt(Hn(t− 1))) |,

where n = {1,2,3} is the source index, t and t−1 two successive times, and Plnt

is the plausibility of source n at time t. The threshold values TM and TD have been
fixed experimentally to 0.1 and 0.5.

3. Combine the sources which have been found as reliable using the two conditions.

5 Results and Conclusion

In this section we present the results obtained in the case of two various trajecto-
ries. The first one includes a strong acceleration at the beginning of the trajectory,
inducing a sliding of the wheels. During the second trajectory, there is an acceler-
ation at a turn. Figure 1 presents a 2D top view of the 3D physical world. On both
trajectories, we remark a wrong odometer estimation either at the beginning, or at
the turn, due to the sliding of the wheels. The monocular vision algorithm shows

(a) Trajectory one (b) Trajectory two

Fig. 1 Two different trajectories. On each we can observe respectively in red, green and
blue the integration of the movement estimation by odometer data (S1), FASTSLAM (S2)
and visual odometry (S3) algorithms. The trajectory in black represents the integration of
movement estimated by the fusion of sources S1, S2 and finally the multi-color and purple
trajectories correspond to the integration of the movement estimation exploiting the local
conflict and the global conflict (process derived from [8]), respectively.
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also some limitations due to some imprecision in the camera mode (parameters)
and some matching errors in the presence of a white wall. These causes of errors
also occur for the FASTSLAM algorithm that uses both kinds of data.

We observe that the conflict as defined in Section 4.3 allows us to estimate a
movement close to the ground truth even in extreme cases. We also observe that it
outperforms the result of the three source fusion not considering their reliability.

In conclusion, this paper introduces a “local” measure to compute the disagree-
ment between sources. Theoretical and experimental examples show that a global
measure like “Demspter’s conflict” or dissimilarity do not always allow a fine anal-
ysis of source reliability and origin of conflict, while the proposed local measure
does. Further analysis of the properties of the local measures of conflict, potential
extension to non-consonant BBA, more experiments on localization and other ap-
plications are planned for our future work.
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Map-Aided Fusion Using Evidential Grids
for Mobile Perception in Urban Environment

Marek Kurdej, Julien Moras, Véronique Cherfaoui, and Philippe Bonnifait

Abstract. Evidential grids have been recently used for mobile object perception.
The novelty of this article is to propose a perception scheme using prior map knowl-
edge. A geographic map is considered an additional source of information fused
with a grid representing sensor data. Yager’s rule is adapted to exploit the Dempster-
Shafer conflict information at large. In order to distinguish stationary and mobile ob-
jects, a counter is introduced and used as a factor for mass function specialisation.
Contextual discounting is used, since we assume that different pieces of information
become obsolete at different rates. Tests on real-world data are also presented.

1 Introduction

Autonomous driving has been an important challenge in recent years. Navigation
and precise localisation aside, environment perception is an important on-board sys-
tem of a self-driven vehicle. The level of difficulty in autonomous driving increases
in urban environments, where a good scene understanding makes the perception
subsystem crucial. There are several reasons that make cities a demanding environ-
ment. Poor satellite visibility deteriorates the precision of GPS positioning. Vehicle
trajectories are hard to predict due to high variation in speed and direction. Also, the
sheer number of mobile objects poses a problem, e.g. for tracking algorithms.

On the other hand, more and more detailed and precise geographic databases be-
come available. This source of information has not been well examined yet, hence
our approach of incorporating prior knowledge from digital maps in order to im-
prove perception scheme. A substantial amount of research has focused on the map-
ping problem for autonomous vehicles, e.g. Simultaneous Localisation and Mapping
(SLAM) approach, but the use of maps for perception is still understudied.
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In this article, we propose a data fusion method based on Dempster–Shafer the-
ory [8] taking into account meta-knowledge obtained from a digital map. We show
the advantage of including prior knowledge into an embedded perception system of
an autonomous car. The vehicle environment is modelled by 2D occupancy grids
proposed in [2]. This paper describes a robust and unified approach to a variety of
problems in spatial representation using the theory of probability. The theory of ev-
idence was not combined with occupancy grids until recently to build environment
maps for robot perception [7]. Only recent works take advantage of the theory of ev-
idence in the context of mobile perception [4]. Some works use 3D city model as a
source of prior knowledge for localisation and vision-based perception [1], whereas
our method uses maps for scene understanding.

This article is organised as follows. In section 2, we describe the details of the
method. Section 3 presents the results and section 4 concludes the paper.

2 Multi-grid Fusion Approach

This section presents the proposed perception schemes. The grid construction
method is described in section 2.2 and all data processing steps are detailed in
section 2.4. Figure 1 presents a general overview of our approach.
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Fig. 1 Method overview (lidar: laser scanner, Applanix: inertial measurement unit).

2.1 Heterogeneous Data Sources

There are three sources in our perception system: vehicle pose, lidar range scanner
point cloud and vector maps. The vehicle pose comes from the Applanix system
based on a GPS, an odometer and an IMU. The system is supposed to provide pre-
cise and integral positioning. Our main source of information about the environment
is an IBEO Alaska XT lidar able to provide a cloud of about 800 points 10 times per
second. The digital maps that we use were provided by the French National Geo-
graphic Institute (IGN) and contain 3D building models as well as the road surface.
We also performed successful tests with freely available OpenStreetMap project 2D
maps [6], but here we limited the use to building data. We assume the maps to be
precise and accurate.
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2.2 Occupancy Grids

An occupancy grid models the world using a tessellated representation of spatial
information. In general, it is a multidimensional spatial lattice with cells storing
some stochastic information. In our case, each cell representing a box (a part of
environment) X ×Y where X = [x−, x+], Y = [y−, y+] stores a mass function.

• ScanGrid (SG) construction: In order to process the lidar data, an eviden-
tial occupancy grid is computed when a new scan arrives, this grid is called
ScanGrid. Each cell of this grid stores a mass function on the frame of dis-
cernment (FOD) ΩSG = {F,O}, where F refers to the free space and O – to the
occupied space. The basic belief assignment, which reflects the sensor model, is
described in [4].

• MapGrid (MG): To store the results of information fusion, an occupancy grid
MG has been introduced with a FOD ΩMG = {F,C, N, S,V}. Respective classes
represent: free space F , mapped infrastructure (buildings) C, non-mapped infras-
tructure N, temporarily stopped objects S and mobile (moving) V objects. ΩMG

is a common frame used for information fusion. By using MG as a cumulative
information storage, we are not obliged to aggregate preceding ScanGrids.

• PriorGrid (PG) context representation: PG allows us to perform a contextual
information fusion incorporating some meta-knowledge about the environment.
This grid uses the same frame of discernment ΩMG as MG. The grid is obtained
by projection of map data, buildings and roads, onto a 2D grid with global coor-
dinates.
We define two sets of polygons defining the 2D position of buildings and

road surface by, respectively, B =

{
bi =

[
x1x2 . . .xmi

y1y2 . . .ymi

]
, i ∈ [0,nB]

}
and R ={

ri =

[
x1x2 . . .xmi

y1y2 . . .ymi

]
, i ∈ [0,nR]

}
, B∩R = /0. Then, we attribute the mass to each

cell {X ,Y} of the PriorGrid in the following way:
We note that B = {C}, R = {F, S,V}, T = {F, N, S,V} for convenience and
readability only. A denotes all other strict subsets of Ω . These aliases charac-
terise the meta-information inferred from geographic maps. For instance, on the
road surface R, we encourage the existence of free space F as well as stopped S
and moving V objects. Analogically, building information B fosters mass trans-
fer to C. Lastly, T denotes the intermediate area, e.g. pavements, where mobile
and stationary objects as well as small urban infrastructure can be present. Note
that neither buildings nor roads are present, so we exclude existence of mapped
infrastructure C, but we cannot omit other classes. Also, we define a level of con-
fidence β for each map source, possibly different for each context. Let x̃= x−+x+

2 ,
ỹ = y−+y+

2 .
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mPG{X ,Y}(B) =
{

βB if (x̃, ỹ) ∈ bi

0 otherwise
∀i ∈ [0,nB]

mPG{X ,Y}(R) =
{

βR if (x̃, ỹ) ∈ ri

0 otherwise
∀i ∈ [0,nR]

mPG{X ,Y}(T ) =
{

0 if (x̃, ỹ) ∈ bi∨ (x̃, ỹ) ∈ r j

βT otherwise
∀i ∈ [0,nB],∀ j ∈ [0,nR]

mPG{X ,Y}(Ω) =

⎧⎪⎨⎪⎩
1−βB if (x̃, ỹ) ∈ bi

1−βR if (x̃, ỹ) ∈ ri

1−βT otherwise

∀i ∈ [0,nB],∀ j ∈ [0,nR]

mPG{X ,Y}(A) = 0 ∀A�Ω and A /∈ {B,R,T}
(1)

2.3 Incorporating Prior Knowledge

The frame of discernment ΩSG used in SG is distinct from ΩMG, so in order to
enable the fusion of SG and MG we define a refining rSG : 2ΩSG → 2ΩMG such
that rSG ({F}) = {F}, rSG ({O}) = {C,N,S,V}, rSG(A) =

⋃
θ∈A rSG(θ ). The re-

fined mass function can be expressed as mΩMG
SG (rSG (A)) = mΩSG

SG (A) , ∀A ⊆ ΩSG.
Then, Dempster’s rule is applied in order to exploit the prior information included
in PriorGrid:

m′ΩMG
SG,t = mΩMG

SG,t ⊕ mΩMG
PG (2)

2.4 Temporal Fusion

Computing Conflict Masses

We use the idea from [5] to distinguish between two types of conflict, which arise
from the fact that the environment is dynamic. We denote /0FO the conflict induced
when a free cell in MG is fused with an occupied cell in SG. Similarly, /0OF in-
dicates the conflicted caused by an occupied cell in MG fused with a free cell in
SG. In an error-free case, these conflicts represent, respectively, the disappearance
and the appearance of an object. Conflict masses are calculated using the formu-
las: mMG,t ( /0OF) = mMG,t−1 (O) ·mSG,t (F), mMG,t ( /0FO) = mMG,t−1 (F) ·mSG,t (O),
where m(O) = ∑

A
m(A), ∀A ⊆ {C,N,S,V}.

MapGrid Specialisation Using a Counter

Mobile object detection is an important issue in dynamic environments. We propose
the introduction of a counter ζ in each cell in order to include temporal information
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on the cell occupancy. For this purpose, incrementation and decrementation steps
δinc ∈ [0,1], δdec ∈ [0,1], as well as threshold values γO, γ /0 have been defined.

ζ (t) = min
(

1, ζ (t−1) + δinc

)
if mMG(O)≥ γO and mMG ( /0FO)+mMG ( /0OF)≤ γ /0

ζ (t) = max
(

0, ζ (t−1)− δdec

)
if mMG ( /0FO)+mMG ( /0OF)> γ /0

Otherwise ζ (t) rests unchanged. Using ζ values, we impose a specialisation of mass
functions in MG using the equation:

m′
MG,t (A) = S(A,B) ·mMG,t(B) (3)

where specialisation matrix S(·, ·) is defined as:

S(A\{V} , A) = ζ ∀A ⊆ ΩMG and {V} ∈ A

S(A, A) = 1− ζ ∀A ⊆ ΩMG and {V} ∈ A

S(A, A) = 1 ∀A ⊆ ΩMG and {V} /∈ A

S(·, ·) = 0 otherwise (4)

Fusion Rule

An important part of the method consists in fusing a discounted and specialized MG
(see section 2.5 and preceding paragraph) with a SG combined with prior knowledge
(see section 2.3).

mMG,t =
α m′

MG,t−1 
m′
SG,t (5)

The fusion rule 
 is a modified Yager’s rule [10] adapted to mobile object detec-
tion. There are of course many different rules that could be used, but in order to
distinguish between moving and stationary objects some modifications had to be
included. These modifications consist in transferring the mass corresponding to a
newly appeared object /0FO to the class of moving objects V as described by the
equation 6. Symbol ∩© denotes the conjunctive fusion rule.

(m1 
m2)(A) = (m1 ∩©m2)(A) ∀A�Ω ∧A �=V

(m1 
m2) (V ) = (m1 ∩©m2)(V )+ (m1 ∩©m2) ( /0FO)

(m1 
m2) (Ω) = (m1 ∩©m2)(Ω)+ (m1 ∩©m2) ( /0OF)

(m1 
m2)( /0FO) = 0

(m1 
m2)( /0OF) = 0 (6)

All the above steps allow us to construct a MapGrid containing reach information
on the environment state, including the knowledge on mobile and static objects.
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2.5 Contextual Discounting

Information discounting allows to forget information which is no longer valid. Dis-
counting parameter α serves to model the speed with which information becomes
obsolete. Thanks to the contextual discounting [3], we make use of more detailed
information regarding the confidence we have in the source in various contexts. We
noticed that different pieces of information become obsolete with different speed.
Hence, the coarsening used is Θ =

{
θstatic, θdynamic, θ f ree

}
, with θstatic = {C,N},

θdynamic = {S,V}, θ f ree = {F}, and discount rates α =
{

αstatic, αdynamic, α f ree
}

. We
assign higher discount rates (lower confidence) to rapidly changing contexts such as
free space, stopped and moving objects, and lower rates to the static context. The
discounted mass function is obtained by the disjunctive combination of the input
mass function mMG and mass functions for each element of the partition Θ .

α mMG,t = mMG,t ∪©mstatic ∪©mdynamic ∪©m f ree (7)

where each mass function ml (l = static, dynamic, free) is defined by ml (θl) = αl ,
ml ( /0) = 1−αl, ml(A) = 0, ∀A ⊆ Ω ∧A /∈ { /0,θl}.

3 Results

3.1 Setup

The data set used for our experiments was acquired in cooperation with IGN in
Paris. The overall length of the trajectory was about 3 km. The size of the grid cell
in the occupancy grids was set to 0.5 m, which is sufficient to model a complex
environment with mobile objects. The discount rates α describing the speed of in-
formation becoming obsolete were defined empirically, but they can be learnt from
data, as proposed in [3]. We have defined the map confidence factor β by ourselves,
but ideally, it should be given by the map provider. β describes data currentness
(age), errors introduced by geometry simplification and spatial discretisation. β can
also be used to depict the localisation accuracy. Other parameters, such as counter
steps δinc, δdec and thresholds γO, γ /0 used for mobile object detection determine the
sensitiveness of mobile object detection and were set by manual tuning.

3.2 Impact of Prior Knowledge

The results for a particular instant of the approach tested on real-world data are
presented on figure 2. The visualisation of the MG has been obtained by calculating
the pignistic probability of each class [9]. The presented scene contains two cars
(only one is visible in the camera image) going in the direction opposite to the test
vehicle and a bus parked on the road edge. Bus and car positions are marked on the
grids by green and red boxes, respectively. The test vehicle position is shown as a
blue box. Different classes of ΩMG are represented by different colours: F – white,
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Fig. 2 (a) Scene. (b) PG. (c) MG without prior information. (d) MG with prior map
knowledge.

C, N – blue, S – green and V – red. PG on figure 2(b) shows the position of the road
space (white) and buildings (blue).

The principal advantage gained by using map knowledge is richer information
on the detected objects. A clear difference between a moving object (red, car) and
a stopped one (green, bus) is visible. Also, stopped objects are distinct from in-
frastructure when prior map information is available (cf. figures 2(c) and 2(d). In
addition, thanks to the prior knowledge, stationary objects (cyan) such as infras-
tructure are distinguished from stopped objects on the road. Grids make noticeable
the effect of discounting, as information on the environment behind the vehicle is
being forgotten. On the other hand, the parked bus is still in evidence despite being
occluded by the passing car.

4 Conclusion and Perspectives

A new mobile perception scheme based on prior map knowledge has been intro-
duced. Geographic information is exploited to reduce the number of possible hy-
potheses delivered by an exteroceptive source. A modified fusion rule taking into
account the existence of mobile objects has been defined. Furthermore, the vari-
ation in information lifetime has been modelled by the introduction of contextual
discounting. In the future, we anticipate removing the hypothesis that the map
is accurate. This approach will entail considerable work on creating appropriate
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error models for the data source. Moreover, we envision differentiating the free
space class into two complementary classes to distinguish navigable and non-
navigable space. This will be a step towards the use of our approach in autonomous
navigation. Another perspective is the use of reference data to validate the results,
choose the most appropriate fusion rule and learn algorithm parameters. We envi-
sion using map information to predict object movements. It rests also a future work
to exploit fully the 3D map information.
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Distributed Data Fusion for Detecting Sybil
Attacks in VANETs

Nicole El Zoghby, Véronique Cherfaoui,
Bertrand Ducourthial, and Thierry Denœux

Abstract. Sybil attacks have become a serious threat as they can affect the function-
ality of VANETs (Vehicular Ad Hoc Networks). This paper presents a method for
detecting such attacks in VANETs based on distributed data fusion. An algorithm
has been developed in order to build distributed confidence over the network under
the belief function framework. Our approach has been validated by simulation.

1 Introduction

Exchanging data in a Mobile Ad hoc NETwork (MANET) in a safe manner be-
comes an important issue. These networks are vulnerable to different attacks such
as intrusion. The need for security requires the introduction of the notion of confi-
dence, as each node should have confidence in other nodes or in the received data
before using the exchanged information in different applications. By broadcasting
messages, nodes will discover their neighborhood. These neighbors can be fake or
real nodes, they can also be attackers. Different research papers have been dedicated
to find a solution to these problems. Many recent works deal with reputation mech-
anisms ([20],[1],[9]) and trust evaluation ([16],[17]) to manage the confidence in
the source of information. Others were interested in data aggregation without taking
into account the source [2][3][10][13].

We propose a method to fuse data in a distributed system in order to build confi-
dence over the network. Nodes broadcast their opinions, which are then used at the
reception to evaluate other nodes. Since local opinion is uncertain and incomplete,
the use of belief functions to evaluate the received messages seems appropriate. The
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fusion of a node’s local knowledge with all the received messages is done by Demp-
ster’s rule. The network can suffer from cycles of data dissemination where the same
information can be combined many times as it is coming from independent sources
[14],[11]. To avoid that, we use the cautious rule of combination [5].

We are interested in studying the confidence in a node for the purpose of detect-
ing sybil attacks in VANETs (Vehicular Ad Hoc NETworks). The sybil attack is the
case where a single faulty entity, called a malicious node, can present multiple iden-
tities [6] known as sybil nodes or fake nodes. This attack can affect the functionality
of the network for the benefit of the attacker. Several techniques have been devel-
oped to detect misbehaving or fake nodes in VANETs. Gole et al [7] represented
an adversial parsimony that means finding the explanation for corrupted data. Ve-
hicles can distinguish their neighbors by using cameras or exchanging messages in
infrared light spectrum. The technique described by Xiao et al. is based on statistic
signal strength analysis with the help of roadside infrastructure to detect sybil nodes
[18]. Yan et al. [19] used an on-board radar to detect neighbors and to confirm their
announced position. Piro et al [12] showed that the sybil attack can be detected pas-
sively through single or multiple observers. Due to the dynamics of the vehicular
networks, of the number of vehicles and of the lack of permanent infrastructure ac-
cess, deploying a Public Key Infrastructure in vehicular network (Vehicular PKI)
is a very challenging task. As shown in [8], by simply comparing the received sig-
nal strength, half of the vehicles can detect the Sybil nodes and it is expected that
cooperative techniques would decrease the number of cheated vehicles. Our work
proposes such a cooperative algorithm between vehicles, based on the theory of
belief functions, and could allow to avoid cryptographic schemes.

In this paper, we develop a distributed fusion technique based on the theory of
belief functions. We first describe the system and how we represent the confidence
using mass functions. We present the distributed data fusion approach and the pro-
posed algorithm. We validate our approach by simulations and finally we conclude.

2 Distributed Data Fusion Approach

We consider a network composed by nodes exchanging messages. It can be mod-
eled by a directed graph G = (V,E), where V represents the set of nodes V =
{v1,v2, ...,vn} and E represents the set of edges. The neighbors of each node are
represented by Γ (v) = {v j ∈V,{vi,v j} ∈ E}. For the sake of simplicity, we suppose
that each node knows n = |V |. Figure 1 shows an example of network configuration.
Each node periodically sends regular messages composed of its true identity and
geographical position. Moreover, one of the node sends both its regular messages
and fake messages composed of a forged identity and a forged position. By receiving
the fake messages, other nodes are cheated and consider a non existing node, called
fake node or Sybil node. We consider a single malicious node, which creates sev-
eral Sybil nodes. All nodes use the same transmission system (same antenna, same
transmission power). The topology of the network is given by the transmission ra-
dio range of the nodes (unit disk graph). We propose a data fusion methodology to
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Fig. 1 Network Configuration

combine data exchanged in a mobile ad hoc network, with the aim of quantifying
the confidence in the nodes of the network. For this purpose, the messages contain
also the sender’s confidence in the nodes of the network.

Representing the Confidence by Mass Function: Each node is able to assign a
confidence to each other node of the network. This confidence is represented by a
basic belief assignment (bba) denoted by m, defined from the frame of discernment
Ω = {0,1} where 0 represents FakeNode and 1 represents RealNode.

We denoted by mi j the corresponding bba that represents the opinion of node vi

about node v j. The bba mi j is defined in Ω by:

mi j( /0) = 0 ; mi j(0) = pi j ; mi j(1) = qi j ; mi j(Ω) = 1− pi j− qi j. (1)

Principle of the Approach: Node vk sends a message to vi containing its identity, its
coordinates and its opinion about the network. When node vi receives the message,
it calculates, after analyzing the signal strength, what we call a direct confidence. It
is a mass vector denoted by mdik . This direct confidence is saved in a local memory
called local knowledge or private knowledge.

Note that each node has two bodies of knowledge: local knowledge and public
knowledge. Local knowledge represents what each node can collect from its neigh-
borhood. It is combined with the public knowledge of other nodes in order to up-
date the public knowledge and rebroadcast it through the network. We thus have
a distributed system. Local knowledge depends only on the signal strength of the
messages and not on their content: consequently, it cannot be cheated. In contrast,
public knowledge is based on the combination of the content of the messages and
can be cheated by fake messages. This is why we separate local and public knowl-
edge. The internal memory of each node is thus represented by two mass vectors
(arrays of |V | cells initialized at m(Ω) if i �= j and m(1) if i = j):

K privatei(t) = [m(t)
li j
] ; K publici(t) = [m(t)

pi j ]. (2)

Distributed Fusion Algorithm: The processing steps performed at the reception
are presented in Algorithm 1, and explained hereafter.

Distributed Fusion: When node vi receives a message, it computes the direct confi-
dence mdik . This confidence is independent of previous messages and it is not the re-
sult of any other combination. So we use it to update the receiver’s local knowledge
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Algorithm 1. Received Message Processing on node vi

Require: message from vk to vi, the signal strength P, message contains mpk j∀ j

Ensure: K privatei=[m(t)
li j

] and K publici=[m(t)
pi j ] ∀ j ∈V

m(t)
dik
← DirectCon f idence(message,P)

m(t)
lik
←U pdateLocalKnowledge(m(t−1)

lik
,m(t)

dik
)

m(t)
pik ←U pdatePublicKnowledge(m(t−1)

pik ,m(t)
lik
)

α ← DiscountingFactor(mlik )
for each node j ∈ V such as j �= i , j �= k do

α m(t)
pk j ← DiscountTransmitterKnowledge(α,mpk j

(t),m(t)
Ω )

m(t)
pi j ←U pdatePublicKnowledge(m(t−1)

pi j ,α m(t)
pk j )

about the transmitter by Dempster’s rule [4]. The function UpdateLocalKnowledge

(m(t−1)
lik

,m(t)
dik
) is calculated as:

m(t)
lik

= m(t−1)
lik

⊕m(t)
dik
, (3)

where ⊕ denotes Dempster’s rule. Since fake nodes might falsify the opinion of
each node, the knowledge of other nodes is needed. To this end we use a distributed
fusion to collect other opinions. As we consider that the transmitter is not totally
reliable, we discount its opinion before combining it with the receiver’s knowl-
edge. The discounting factor α = 1−mlik(1) is defined as the plausibility that the
transmitter is unreliable. The transmitter’s opinion is discounted with the function

DiscountTransmitterKnowledge(α,m(t)
k j ,m

(t)
Ω ) as follows:

α m(t)
pk j = (1−α).m(t)

pk j +α.m(t)
Ω . (4)

To update the receiver’s public knowledge, we use the cautious rule [5]. In a dis-
tributed system, the same information can be received and treated many times.
While combining the knowledge, it is useful to use an idempotent rule to avoid
counting the same information several times (data incest) as if it is provided by dif-

ferent independent sources. So the function UpdatePublicKnowledge(m(t−1)
pi j ,α m(t)

pk j)
allows us to combine the receiver’s public knowledge with the transmitter’s dis-
counted knowledge about its neighbors as follows:

m(t)
pi j = m(t−1)

pi j ∧©α m(t)
pk j , (5)

where ∧© denotes the cautious rule.

Direct Confidence: Different methods can be used to compute the direct confidence
mdik . We propose a method that allows us to convert a real measure into a mass
function. The real measure is based on signal strength analysis. Each receiver can
analyze the signal strength to detect if the announced position is the real one [8].
It measures the strength of the received signal and calculates a theoretical value
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in terms of the node’s coordinates. The estimated value of the signal strength is
calculated by the Friis formula as μ = Pe.GSR/d2

ik, where

• Pe is the transmitted signal power, depending on the transmitter antenna;

• GSR = Gt .Gr .λ 2

16.π2 is the antenna gain, Gt and Gr are the gains of the transmit antenna
and the receive antenna, respectively, and λ is the wavelength;

• dik is the distance between the transmitter node vk and the receiver node vi.

The comparison between the estimated power and the theoretical one allows the
detection of a misbehavior. We propose to compute the plausibility that the received
signal power P is equal to x, given that the transmitting node is a true node (ω = 1)
as follows:

pl(P = x/ω = 1) = f (x/ω=1)
supx′∈R( f (x′/ω=1) , (6)

where f (x/ω = 1) is the normal density function with mean μ and standard devia-
tion σ depending on the receiver antenna.

The plausibility pl(P = x/w= 0) is defined as shown in Figure 2: if the estimated
and the theoretical powers are equal, we leave the possibility that the transmitter can
be a fake node. Indeed, if the transmitter is a fake node but its position is near the
malicious node therefore the estimated position will be approximately equal to the
measured position. This result can influence the detection of the fake node.

1

μ

pl(x/w=0)

pl(x/w=1)

pl

P

0

Fig. 2 Plausibility of received power values for true (ω = 1) and fake (ω = 0) nodes

The direct confidence is computed using the Generalized Bayes theorem [15]. It
is obtained by combining the prior knowledge about the transmitter mΩ

0 with the
plausibility that the node is a fake node knowing that it is a real {0}pl(x/w=1) and the
plausibility that the node is a real node knowing that it is a fake {1}pl(x/w=0):

m(t)
dik

= mΩ (./x) = mΩ
0 ∩©{0}pl(x/w=1) ∩©{1}pl(x/w=0), (7)

where ∩© denotes the unnormalized Dempster’s rule.

3 Results

In order to validate our approach, Algorithm 1 has been implemented in Matlab.
Simulations were performed on static and dynamic network. For simplicity of anal-
ysis, we first assumed all nodes in the network to be static. We performed simula-
tions on different random network configurations. Next we tested our approach on
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a dynamic network, where nodes were moving in the same direction following a
highway scenario.

Implementation: In this part we will represent an example of a network composed
from six true nodes, one of them is a malicious node that creates three fake nodes.
The transmitted signal Power Pe is about 600 mW and the antenna ranges is in or-
der of 400 m. We consider that each transmitter sends its id, its position and its
public knowledge. The receiver uses these informations to perform all the calcula-
tions and to verify if the node is true or fake. Simulations are performed until the
convergence of the algorithm. We consider that the algorithm has converged when

|m(t−1)
i j −m(t)

i j |< ε , where ε is a defined small threshold. The results of the simula-
tion will be represented by gray scale matrices.

Static Network: We present in Figure 3 an example of a network configuration
where the nodes are static (left figure) and the result of the simulation (right figure).
The white color in the right figure corresponds to a mass equal to 1 representing
true nodes. The black color correspond to a mass equal to 0 representing fake nodes.
The malicious node 3 will try to convince other nodes that the fake nodes (7,8,9) are
true nodes. The fake nodes have the same opinion as the malicious node. The first
part of the rightmost figure represents the private knowledge. Each node has only
information about its neighbors. The second part represents the public knowledge.
We see that mpi j({1}) = 0 for i = {1,2,4,5,6} and j = {7,8,9}, which means that
the true nodes have correctly identified nodes {7,8,9} as untrustworthy.
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Fig. 3 Network configuration and simulation results.

To verify the convergence of the algorithm, we performed simulations on dif-
ferent random network configurations by changing the number of the fakes nodes.
Table 1 represents the result with different proportions of fake nodes. Each itera-
tion represents the simulation of the process of a message. It needs more time to
converge when the proportion of the fake nodes is greater. Our approach can detect
sybil nodes with different static configurations.

Dynamic Network: Static configurations have some limits, especially when a ma-
licious node is not in the neighborhood of the true nodes: in that case, fake nodes
cannot be detected. So, we simulated a dynamic scenario in which nodes move in
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Table 1 Results with different nodes configurations

Nodes Configurations Average of the number of iterationsa Standard deviation
True Nodes=6 Fake Nodes =3 207.05 7.86
True Nodes=6 Fake Nodes =4 227.55 6.89
True Nodes=6 Fake Nodes =5 255.8 6.33
True Nodes=6 Fake Nodes =6 304.7 7.55
a These results represent the average of 20 simulations.

Table 2 Results for dynamic networks with different node configurations

Nodes Configurations Average of the number of iterationsa Standard deviation
True Nodes=6 Fake Nodes =3 119.3 45.88
True Nodes=6 Fake Nodes =4 274.4 40.96
True Nodes=6 Fake Nodes =5 361.1 54.23
True Nodes=6 Fake Nodes =6 376.3 32.05
a These results represent the average of 10 simulations.

the same direction as on a highway. While moving, the neighborhood of each node
changes. It influences the private knowledge because it depends on the neighbor-
hood. Thanks to public knowledge, each node can get information about the whole
network and can quantify its confidence. Table 2 shows results for different dynamic
network configurations. The number of iterations until convergence changes at each
simulation, because the node motions and neighborhoods are random. These pre-
liminary results suggest that true nodes can successfully detect fake nodes in the
network while moving on a highway.

4 Conclusion

A distributed data fusion approach based on belief functions for detecting sybil at-
tacks in VANETs has been developed. The method uses both Dempster’s rule and
cautious rule to combine information and to compute a distributed confidence over
the network. The results are promising and demonstrate that we can determine the
reliability of nodes and detect fake nodes in a VANET. More realistic scenarios are
currently being studied using an ad hoc network simulator.
The method presented in this paper computes the confidence in the nodes without
taking into account the contents of the messages exchanged in the network. The joint
analysis of information and node reliability is currently being investigated. Results
along these lines will be reported in future publications.
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Partially-Hidden Markov Models

Emmanuel Ramasso, Thierry Denœux, and Noureddine Zerhouni

Abstract. This paper addresses the problem of Hidden Markov Models (HMM)
training and inference when the training data are composed of feature vectors plus
uncertain and imprecise labels. The “soft” labels represent partial knowledge about
the possible states at each time step and the “softness” is encoded by belief func-
tions. For the obtained model, called a Partially-Hidden Markov Model (PHMM),
the training algorithm is based on the Evidential Expectation-Maximisation (E2M)
algorithm. The usual HMM model is recovered when the belief functions are vacu-
ous and the obtained model includes supervised, unsupervised and semi-supervised
learning as special cases.

1 Introduction

Hidden Markov Models (HMM) are powerful tools for sequential data modelling
and analysis. Many applications for several decades have found solutions based on
HMM such as discovering word sequences based on speech audio recordings [9],
gene finding based on a DNA sequence [8], and performing prognostics and health
detection of ball bearings degradation based on noisy sensors [6, 10]. In the sequel,
we consider sequential data taking the form of a time-series of length T where each
element is a multidimensional feature vector xt ∈ ℜF , t = 1 . . .T also called vector
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of observations [9]. The modelling part assumes that the system (a speaker, a DNA
sequence or a ball bearing) generating the time-series is a Markov process with un-
observed (hidden, latent) discrete states. In HMMs, the states are not visible but
when the system is entering one of the states, the features follow a particular prob-
ability distribution. The sequence of observations thus provides information about
the sequence of states. One of the most powerful characteristics of HMMs, account-
ing for its wide range of applications, is the possibility to estimate the parameters
efficiently and automatically. Given a training dataset composed of the observed
data X = {x1, . . . ,xt , . . . ,xT } (where xt can be continuous or discrete), and denoting
by K the number of hidden states such that the state variable yt at time t can take a
value in

ΩYYY = {1, . . . , j, . . . ,K} , (1)

the following parameters have to be estimated:

• ΦΦΦ = {φφφ1, . . . ,φφφ j, . . . ,φφφ K} is the set of parameters characterising the probability
distribution of observations given each state:

b j(xt) = P(xt |yt = j;φφφ j), j = 1 . . .K (2)

• AAA = [ai j] with

ai j = P(yt = j|yt−1 = i), i = 1 . . .K, j = 1 . . .K, (3)

that is the probability of the system to be in state j at time-instant t, given that
the system was in state i at t− 1, with ∑ j ai j = 1.

• ΠΠΠ = {π1, . . . ,π j, . . . ,πK}, where

π j = P(y1 = j) (4)

is the probability of state j at t = 1, such that ∑ j π j = 1.

In the sequel, all these parameters are aggregated in a vector θ :

θ = {A,ΠΠΠ ,ΦΦΦ} . (5)

These parameters can be estimated using an iterative procedure called the Baum-
Welch algorithm [1, 9] and relying on the Expectation-Maximisation process.

There are applications where some observations xt in the training data X are as-
sociated to a label that actually represents the state at time t. Instead of considering
the labelling process as a binary one, where states can be known or unknown, we
address the problem of partially-supervised HMM training, assuming partial knowl-
edge about the states to be available and represented by belief functions.

The contribution of this paper holds in the development of a model called Partially-
Hidden Markov Model (PHMM) that manages partial labelling of the training dataset
in HMMs. Compared to [3], we take into account the temporal dependency into
account, helping in time-series modelling. The proposed approach is based on the
Evidential Expectation-Maximisation (E2M) algorithm introduced in [5].
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2 Partially-Hidden Markov Models (PHMM)

Given the observation sequence X = {x1,x2, . . . ,xT }, there are three main problems
of interest in connection with HMMs [9]:

Problem 1: Given a model θ = {ΠΠΠ ,AAA,ΦΦΦ}, how to compute its likelihood L(θ ;X)?
Problem 2: Given a model θ , how to choose the state sequence Y∗={y∗1,y

∗
2, . . . ,y

∗
T}

that best explains observations?
Problem 3: How to estimate parameters θ = {ΠΠΠ ,AAA,ΦΦΦ} of a model?

These problems have been solved in different ways for some decades for HMMs
[9]. In the sequel, we present the solutions for the case where partial information
on states is available in the form of a set of belief functions m defined on the set
of states ΩYYY . States are then “partially hidden” and the case of completely hidden
states is recovered when all the masses are vacuous.

The main idea behind the solutions of partially-supervised training in statisti-
cal models is to combine the probability distributions on hidden variables with the
belief masses m. This combination can be computed from the contour function pl
associated to m.

The next paragraph describes the main features of the E2M algorithm in or-
der to introduce the conditioning process that plays a central role in solutions for
problems 1, 2 and 3. The E2M algorithm will be used in the last paragraph dedi-
cated to parameter estimation in PHMMs.

2.1 Generalized Likelihood Function and E2M Algorithm

The Evidential EM (E2M) algorithm [5] is an iterative procedure dedicated to maxi-
mum likelihood estimation in statistical models based on uncertain observations en-
coded by belief functions. As for the usual EM algorithm, the E2M algorithm does
not maximise directly the observed-data likelihood function denoted here L(θ ;X,m)
but it focuses instead on a lower bound called the auxiliary function [2], and usually
denoted by Q and defined as:

Q(θ ,θ (q)) = Eθ (q) [logL(X,Y;θ )|X, pl] , (6)

where pl denotes the contour function associated to m, θ (q) is the fit of parameter θ
at iteration q and Q represents the conditional expectation of the complete-data log-
likelihood. In the E-step of the E2M algorithm, the conditional expectation in the

auxiliary function Q is taken with respect to γ ′ def
= P(·|X, pl;θ (q)) =P(·|X;θ (q))⊕ pl,

that is the combination of the expectation, denoted γt , with the plausibilities using
Demspter’s rule [4, 5]. The new expectation is then defined for each state j at time
t by γ ′t ( j|pl;θ (q)) = P(yt = j|X, pl;θ (q)):

γ
′
t ( j|pl;θ (q)) =

γt( j;θ (q)) · plt( j)

L(θ (q);X, pl)
(7)
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and the auxiliary function becomes:

Q(θ ,θ (q)) =
∑Y P(Y|X;θ (q)) · pl(Y) · logL(X,Y;θ )

L(θ (q);X, pl)
. (8)

The M-step is similar to to that of the usual EM algorithm and consists in max-
imising Q with respect to θ . The maximisation is ensured to increase the likelihood
of observed data since E2M inherits the monotonicity of EM as for any sequence
L(θ (q);X, pl), q = 1,2 . . . , we have L(θ (q+1);X, pl)≥ L(θ (q);X, pl).

2.2 Solution to Problem 1 in PHMM

Using a similar process as in usual HMM (see [2] for details on HMM), the marginal
posterior distribution on latent variables for the set of parameters θ (q) at iteration q
of E2M can be rewritten as:

γ
′
t = P(yt |X;θ (q))⊕ plt = α

′
t ·βt (9)

with α ′
t

def
= P(X1:t ,yt |pl;θ (q)) and β ′

t
def
= P(Xt+1:T |yt ;θ (q)). The definition of β re-

mains the same as in the standard algorithm with βt(i;θ (q)) = ∑ j βt+1( j;θ (q)) ·
b j(xt+1) ·a ji, t = 2 . . .T starting from βT (i;θ (q)) = 1,∀i. The probability of jointly
observing a sequence X1:t up to t and state j at time t given the parameters
and the uncertain data is given by the modified forward variable α ′

t such that
α ′

t ( j;θ (q)) = P(X1:t ,yt = j|pl;θ (q)) with:

α
′
t ( j;θ (q)) =

αt( j;θ (q)) · plt( j)

L(θ (q);X, pl)
(10)

and therefore

γ
′
t ( j;θ (q)) =

αt( j;θ (q)) · plt( j) ·βt( j;θ (q))

L(θ (q);X, pl)
. (11)

Variables α and β are the same as in HMM [2].
Summing Eq. 11 over latent variables gives the observed data likelihood. There-

fore, to assess the likelihood function L(θ (q);X, pl) at the current iteration of the
E2M algorithm, we simply need to choose a time index t. A good candidate is the
index T since in this case we do not need to evaluate βT (that equals to 1) reducing
the computation load:

L(θ (q);X, pl) =
K

∑
j=1

αT ( j;θ (q)) · plT ( j). (12)

Practically, we can use the normalization process proposed in [9] in order to cope
with the limited machine precision range.
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2.3 Solution to Problem 2 in PHMM

The Viterbi algorithm [7] was defined in order to retrieve the best sequence of hid-
den states within the noisy observations. The best sequence is found in K2 × T
operations (instead of KT for a greedy search) and is ensured to be the one with
the highest likelihood. Given the observed data X, the Viterbi algorithm finds
the maximum a posteriori (MAP) sequence Y∗ = {y∗1, . . . ,y

∗
t , . . . ,y

∗
T},y∗t ∈ ΩY. In

PHMM, the MAP criterion is modified by taking soft labels into account, i.e.,
P(Y∗|X, pl;θ (q)) or, equivalently, logP(X,Y∗|pl;θ (q)). In HMMs, the Viterbi algo-
rithm is called the max-sum product algorithm and it is equivalent to a forward prop-
agation with conditioning at each time-step by the potential predecessors of each
state. In PHMMs, a similar reasoning can be applied where conditioning (by sin-
gletons states) naturally leads to the use of plausibilities. The MAP criterion can be
written as:

δ
′
t ( j;θ (q)) = max

i

[
δ
′
t−1(i;θ (q)) ·ai j

]
·b j(xt) · plt( j), t = 2 . . .T (13)

starting from δ ′
1( j;θ (q)) = π j · plt( j) · b j(x1). Keeping track of the argument max-

imising this expression as ψ ′
t ( j) = argmax i

[
δ ′

t−1(i;θ (q)) ·ai j

]
, the backtracking of

the best state sequence ending in y∗t = j at time t is given by y∗t−1 = ψ ′
t (y

∗
t ).

2.4 Solution to Problem 3 in PHMM

In the E2M algorithm, the auxiliary function is given by Eq. (8). In order to define
the maximisation step, the Q-function has to be computed. For that purpose, we
introduce the multinomial representation of variables such that yt j = 1 if state j at
time t is true, else yt j = 0. Then, we can write:

P(Y,X;θ ) =

(
K

∏
j=1

πy1 j
j

)
·
(

T

∏
t=2

K

∏
i=1

K

∏
j=1

a
yt−1,i,yt j
i j

)
·
(

T

∏
t=1

K

∏
j=1

b j(xt)
yt j

)
. (14)

Taking the logarithm of the above expression leads to the complete-data log-
likelihood. In this paper, partial knowledge on yt j is assumed to be represented by
a belief function (and in particular by its contour function plt( j),∀t = 1 . . .T, j =
1 . . .K). The auxiliary function Q thus becomes:

Q(θ ,θ (q)) = Eθ (q) [logP(X,Y;θ )|X, pl] (15a)

= Qπ(θ ,θ (q))+QA(θ ,θ (q))+QΦΦΦ(θ ,θ (q)) , (15b)
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with Qπ(θ ,θ (q)) = ∑K
j=1Eθ (q)

[
y1 j|X, pl

] · logπ j given by:

Qπ(θ ,θ (q)) =
K

∑
j=1

γ
′
1( j;θ (q)) · logπ j , (16)

QA(θ ,θ (q)) = ∑T
t=2 ∑K

i=1 ∑K
j=1Eθ (q) [yt−1,iyt j |X, pl] · logai j with:

QA(θ ,θ (q)) =
T

∑
t=2

K

∑
i=1

K

∑
j=1

ξ
′
t−1,t(i, j;θ (q)) logai j , (17)

and QΦΦΦ(θ ,θ (q)) = ∑T
t=1 ∑K

j=1Eθ (q) [yt j |X, pl] · logb j(xt) given by:

QΦΦΦ(θ ,θ (q)) =
T

∑
t=1

K

∑
j=1

γ
′
t ( j;θ (q)) · logb j(xt) . (18)

In the above expressions we have:

γ
′
t ( j;θ (q)) =

γt( j;θ (q)) · plt( j)

∑K
l=1 γt(l;θ (q)) · plt(l)

, (19)

which is the marginal posterior distribution of a latent variable y j at t given pl, and

ξ
′
t−1,t(i, j;θ (q)) =

ξt−1,t(i, j;θ (q)) · plt−1(i) · plt( j)

∑K
l=1 ξt−1,t(i, l;θ (q)) · plt−1(i) · plt(l)

(20)

is the joint probability of two consecutive latent variables yt−1,i and yt j given pl. The
optimal parameters at each iteration of E2M are given by using a similar reasoning
as in the standard algorithm, but the posterior probability over latent variables now
depends on the plausibilities:

π (q+1)
j =

γ1( j;θ (q)) · pl1( j)
K

∑
l=1

γ1(l;θ (q)) · pl1(l)

(21a)

a(q+1)
i j =

T

∑
t=2

ξt−1,t(i, j;θ (q)) · plt−1(i) · plt( j)

T

∑
t=2

K

∑
l=1

ξt−1,t(i, l;θ (q)) · plt−1(i) · plt(l)

. (21b)

The maximisation of QΦΦΦ (θ ,θ (q)) depends on the form of the distribution of obser-
vations given the latent variable j.
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3 Partial Results, Conclusion and Further Work

Partial results: To illustrate this approach, we considered that observations can be
modelled by mixtures of Gaussians. We proceeded as in standard HMM to derive
the M-step in PHMM and to estimate the parameters of the distributions. Equations
are however not reported in this paper for lack of space.

For illustration purpose, we used the dataset of the PHM’08 data challenge [12]
concerning the health state of a turbofan engine. It was manually segmented into
four states (to evaluate the results) such that each time-series is accompanied by a set
of labels reflecting the current state of the fan, that is normal, transition, degrading
or faulty mode. Each label corresponds to a mass function focused on a singleton,
except in the transitions where doubt between two labels is defined1. The BBA were
then transformed into plausibilities. For these tests, we corrupted them by additive
noise: plt( j)← plt( j)+σk · εt( j), where σk ∈ {0,0.1, . . . ,1} and εt( j)∼U[0,1] was
drawn from a uniform distribution. For each noise level, we considered the influ-
ence of the number of unlabelled data νk ∈ {0%,10%, . . . ,100%}. The partitions of
time-series in the testing dataset estimated by HMM and PHMM using the Viterbi
algorithm as defined in HMM (since we do not know the labels for the testing) were
compared using the Folkes and Mallows index (F ∈ [0,1]) [11]. Positive values of
the relative performance improvement index G = Fpshmm/Fhmm−1 indicate that the
proposed PHMM provided a better segmentation of the time-series into states.
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Fig. 1 Performance (G-index): median value over 10 runs with different initialisation. Pos-
itive value reflects an improvement provided by PHMM. Here almost all values are positive
except darkest areas.

1 The segmentation and the associated BBA are available at
http://www.femto-st.fr/˜emmanuel.ramasso/
PEPS_INSIS_2011_PHM_by_belief_functions.html.

http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
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The plot of G as a function of the percentage of unlabelled data and noise level
shown in Figure 1 shows an improvement by several percents when using the pro-
posed PHMM (up to 12%). When all data were unlabelled and with no noise (bottom
right hand-side corner), both models provided exactly the same results, as expected.
When the noise increased, the performance decreased but was still higher than that
of the standard HMM. The most difficult cases were encountered when the noise
was high (top of figure), where PHMM improvements were between [2%,5%].

Conclusion and Further Work: Taking partial knowledge into account is of crucial
importance in many statistical models. Encoding prior information by belief func-
tions leads to simple modifications of the initial estimation formula while remaining
theoretically sound. The statistical model considered in this paper was the Hidden
Markov Models. Further work remains to be done in order to compute in developing
re-estimation formula for various distributions of observations given latent states.
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Large Scale Multinomial Inferences and Its
Applications in Genome Wide Association
Studies

Chuanhai Liu and Jun Xie

Abstract. Statistical analysis of multinomial counts with a large number K of cat-
egories and a small number n of sample size is challenging to both frequentist and
Bayesian methods and requires thinking about statistical inference at a very funda-
mental level. Following the framework of Dempster-Shafer theory of belief func-
tions, a probabilistic inferential model is proposed for this “large K and small n”
problem. Using a data-generating device, the inferential model produces probability
triplet (p,q,r) for an assertion conditional on observed data. The probabilities p and
q are for and against the truth of the assertion, whereas r = 1− p−q is the remain-
ing probability called the probability of “don’t know”. The new inference method is
applied in a genome-wide association study with very-high-dimensional count data,
to identify association between genetic variants to a disease Rheumatoid Arthritis.

1 Introduction

Statistical analysis of multinomial counts with a large number K of categories and
a small number n of sample size is a challenging problem for both frequentist and
Bayesian methods. For Bayesian methods, it is well known that in this case Bayesian
priors have tremendous effects on the final inferential results. Frequentist methods,
such as the χ2-test for contingency table, suffer from the problem of small or zero
counts. It is not uncommon that frequentist methods are applied to modified con-
tingency tables obtained by either deleting or combining categories with small ob-
served counts (e.g., zeros and ones).

This “large K and small n” problem is motivated by genome-wide associa-
tion studies with very-high-dimensional count data, i.e., single nucleotide poly-
morphisms (SNPs) data. SNPs are major genetic variants that may associate with
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common diseases such as cancer and heart disease. A SNP has three possible geno-
types, wild type homozygous, heterozygous, and mutation (rare) homozygous. As
a simple example, we compare differences in allele frequencies of a set of SNPs
between cases and controls to identify association with a disease. Commonly used
statistical analyses in genetic association studies, based on unrelated individuals,
include logistic regression and χ2 tests of association. However, the conventional
statistical methods only work for a single SNP or a very small number of SNPs. If
we consider a block of SNPs, for example, in exploratory data analysis and model
checking or validation, even a moderate size 10 results in 310 = 59,049 possible
genotypes. This number of categories is much larger than a typical study size of a
few thousands subjects. Therefore, most of categories will have zero or one obser-
vation. The familiar logistic regression and χ2 tests are not appropriate any more in
such a case.

Recently, Martin, Zhang, and Liu [6, 9] proposed what they called weak beliefs
for probabilistic inference, based on an extension of the framework of Dempster-
Shafer theory of belief functions [7, 1]. Inferential models using weak beliefs were
used to produce valid probabilities, in terms of long-run frequency, for and against
the truth of assertions of interest (see, e.g., [3]). We introduce the new framework of
probabilistic inference in Section 2 and develop a specific inference model for the
multinomial problem in Section 3. The method is applied in a genome-wide associ-
ation study to identify SNPs that are potentially associated with a given disease in
Section 4. Section 5 concludes with a few remarks.

2 A New Framework of Probabilistic Inference

We start with a demonstration example. Assume that a set of observed data X is
available and that model fθ (X) for X ∈ X is specified, usually with unknown pa-
rameter θ ∈ Θ . We use the following example to explain the new framework of
probabilistic inference. The key idea is to use an unobserved auxiliary random vari-
able to represent fθ (X).

Example 1. Let X be a dichotomous observation with X ∈ X = {0,1}. Assume a
Bernoulli model

Pθ (X = 1) = θ and Pθ (X = 0) = 1−θ
with unknown θ ∈Θ = [0,1]. The problem is to infer θ from X . We consider a data
generating mechanism using an auxiliary random variable U ∼Uni f (0,1):

X =

{
1, if U ≤ θ ;
0, if U > θ .

This sampling mechanism preserves the model for X given θ . Moreover, it creates
a random set for the parameter θ given the observation X , as defined below,

SX =

{
U ≤ θ ≤ 1, if X = 1;
0 ≤ θ <U, if X = 0.

(U ∼Uni f (0,1))
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In other words, we think θ ∈ [U,1] if we observe X = 1 and θ ∈ [0,U) if X = 0,
where U is a random variable from Uni f (0,1). This relationship among the param-
eter of interest θ , the observation X, and the auxiliary random variable U is critical
in our construction of the probabilistic inferential model, where inference about the
parameter θ will be derived from prediction of the auxiliary random variable U.

Given, for example, X = 1, we have the random interval SX = [U,1] as the region
for θ . Now consider an assertion A = {θ ≤ θ0} ⊆Θ for a fixed θ0 ∈ (0,1). There
are two possible cases: (i) if U > θ0, the random set SX = [U,1] for θ provides
evidence against the truth of A ; (ii) if U ≤ θ0, the random set SX = [U,1] for θ
does not have any information about the truth or falsity of A . Note that there is no
realization of the random interval that provides evidence for the truth of A , because
the random set [U,1] cannot be fully contained in A = {θ ≤ θ0}. As a result, the
probability triplet (p,q,r) for the assertion A are calculated in the following

p = 0, q = P{U > θ0}= 1−θ0, and r = θ0. $%
To emphasize the fact that the (p,q,r) output is conditional on the observed data X ,
we write (p,q,r) as (pX(A ),qX (A ),rX (A )), that is,

pX (A ): the probability for the truth of A , given X

qX (A ): the probability against the truth of A , given X

rX (A ): the probability neither for nor against the truth of A , given X .

Formally, an inferential model for probabilistic inference about θ is given by a prob-
ability model with the sample space consisting of all subsets of Θ . Its probability
measure is defined by an auxiliary random variable, for example the uniform vari-
able U in Example 1. More specifically, a random set is constructed for inference
about θ using the auxiliary random variable and conditional on the observed data
X . Denote the random set by SX , as in Example 1. The probability for the truth of
a given assertation A (on the parameter θ ) is computed as the probability that the
random set SX is contained in A ,

pX (A ) = P(SX ⊆A ).

Based on a symmetry argument, the probability against the truth of A or for the
truth of A c is computed as the probability that the random set SX is contained in
A c,

qX(A ) = P(SX ⊆A c).

The remaining probability

rX (A ) = 1− pX(A )− qX(A )

is the probability that the random set SX intersects with both A and A c, in which
case we “don’t know” the truth or falsity of A .

In order for the probability triplet (pX(A ),qX(A ),rX (A )) to have desirable
long-run frequency properties, the concept of validity is helpful.
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Definition 1. The inferential model is valid for assertion A if for every α in (0,1),
both

Pθ ({X : pX (A )≥ α})≤ 1−α and Pθ ({X : qX(A )≥ α})≤ 1−α (1)

hold respectively for every θ ∈A c =Θ \A and for every θ ∈A . The probabilities
in (1) are defined with respect to the random variable X following fθ (X).

In other words, credibility requires pX(A ) and qX(A ), as functions of the random
variable X , to be stochastically bounded by the uniform distribution over the unit
interval (0,1) in repeated experiments. Thus, the triplet (pX(A ),qX (A ),rX (A ))
provides strength of evidence for both A and A c in term of long-run frequency
probability. For hypothesis testing, thresholds for pX (A ) and qX(A ) can be used
to confirm the truth and falsity of A .

3 Inference of Multinomial Models

Now we develop an inferential model for parameters of multinomial distributions.
In the following, the probabilistic inference of multinomial models is valid for data
with both small and large number of categories. We start with a motivating example
of genome-wide association study, where we compare SNPs frequencies of control
samples and case samples. We scan the whole genome sequence using blocks of
SNPs, for example, with a block size of 10 SNPs. For a given block, there are two
independent multinomial distributions, corresponding to distributions of SNP geno-
types of the control and case populations. These two multinomial distributions can
be derived by a 2×K table of independent Poisson counts, where K is the total

number of SNP genotypes in the block. More specificially, let N(i)
j denote a Poisson

count with unknown rates λ (i)
j ≥ 0 for i = 0,1 and j = 1, ...,K. It is well known that

conditioning on mi = ∑K
j=1 N(i)

j for i = 0 and 1, the observed data N(i)
j follow two

independent multinomial models with

(N(i)
1 , ...,N(i)

K )∼ Multinomial
(

mi,θ
(i)
1 , ...,θ (i)

K

)
(i = 0,1)

where θ (i)
j = λ (i)

j /∑K
j=1 λ (i)

j is the SNPs frequencies of the control (i = 0) and case
(i = 1) populations. The problem of interest here is inference about the assertion

that θ (0)
j = θ (1)

j for j = 1, ...,K. In terms of λ (i)
j , this assertion can be written as

λ (0)
j ∝ λ (1)

j ( j = 1, ...,K).

Alternatively, conditional on each column the Poisson counts of the 2×K table lead

to K binomial distributions. Let φ j = λ (1)
j /(λ (0)

j +λ (1)
j ) and write n j = N(0)

j +N(1)
j

and Xi = N(1)
j for j = 1, ...,K. Then,

Xj ∼ Binomial(n j,φ j) ( j = 1, ...,K).
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The inference about equal multinomial frequency parameters is the same as infer-
ence about

A = {φ j = φ0 : j = 1, ...,K for some φ0 ∈ [0,1]}. (2)

For probabilistic inference of (2), we take the generalized inferential model ap-
proach [4] (See also [7, 8, 2] for examples of belief approaches based on likelihood
functions). That is, inference can be made from a function of the observed data, e.g.,
Y = h(X) for some specified function h(.). This can be viewed as an extension of the
basic method described in Section 2. Denote N = ∑K

j=1 n j, which is the total sample
size of both control and case groups. We introduce a statistic

Y =
K

∑
j=1

wj

(
Xj − n j

∑K
j=1 Xj

N

)2

n j(N− n j)

where wj = (n j − 1)/(n j + 1) is used to down-weight observations with small col-
umn size n j. Note that we only consider counts with the column total of n j ≥ 2 when
calculating Y . Let φ = (φ1, ...,φK) denote the parameter of the assertion of interest
(2) and Fφ (y) be the cdf of Y conditioning on ∑K

j=1 Xj. The conditional distribution
Fφ (y) may be derived using the fact that Xj’s follow a (multivariate) hypergeometric
distribution conditioning on ∑K

j=1 Xj. In addition, Fφ (y) depends on φ only through

their relative values, say, φ/∑K
j=1 φ j. For a data-generating device of the observable

quantity Y , we know that Y can be generated by taking the inverse of Fφ (y) on a
uniform random variable U . Following the idea of Example 1 in Section 2, we have
a random set for φ ,

SY =
{

φ : Fφ (Y )≤U
}
,

where U is the auxiliary random variable from Uni f (0,1). The probability triplet
for the assertion A are obtained as

p(A ) = P(SY ⊆A ), q(A ) = P(SY ⊆A c), r(A ) = 1− p(A )− q(A ).

The probability for A , p(A ), is necessarily zero, as the assertion represents a lower-
dimensional space, where all components of φ are equal. The probability against the
assertion, q(A ), is computed by using the fact that

q(A ) = Pr(SY ⊆A c) = Pr(Sc
Y ⊇A )

= Pr
({φ : Fφ (Y )>U} ⊇A

)
= Pr

(
U < Fφ (Y ) for all φ ∈A

)
= Pr

(
U < min

φ∈A
Fφ (Y )

)
= min

φ∈A
Fφ (Y ).
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We compute this q value by a Monte Carlo method. Under A , all components of φ
are the same. Because the distribution Fφ (Y ) only depends on relative values of the
components of φ , there is only one quantity of Fφ (Y ) over φ ∈A . The minimization
is in fact not necessary. For a good approximation with a small Monte Carlo sample
size (e.g., 1,000), we compute the distribution of Y using a scaled χ2 distribution
with the scale and degrees of freedom estimated from the Monte Carlo sample by
the method of moments.

4 Application in Genome-Wide Association Study

We apply the methodology on the GAW16 (Genetic Analysis Workshop 16) data
from the North American Rheumatoid Arthritis Consortium. This genome-wide as-
sociation study aims at identifying genetic variants, more specifically single nu-
cleotide polymorphisms, that are associated with the Rheumatoid Arthritis disease.
The data consists of 2062 samples, where 868 are cases and 1194 are controls. For
each sample, whole genome SNPs are observed with a total coverage of 545,080
SNPs.

We partition the entire SNP sequence on each chromosome into a sequence of m
blocks of consecutive SNPs, each block consisting of, for example, 10 SNPs. For
each block, indexed by b = 1, ...,m, our proposed approach to analysis of the two-
sample multinomial counts produces (pb,qb,rb) output for the assertion that “the
two samples, cases versus controls, are from the same population”. The (pb,qb,rb)
output has pb = 0 and qb providing evidence against the assertion.

The validity of our (p,q,r)’s implies that most values in the collection {qb : b =
1, ...,m} can be viewed as a sample from a common distribution, called the null
distribution, that has more small values in the unit interval (0,1) than the uniform
distribution. The remaining large values provide information on the potential blocks
that distinguish a case from a control.

Figure 1 displays sequences of the q-value for chromosomes 6 and 14 in terms
of Z-score, Z = Φ−1(qb), where Φ−1(.) stands for the cdf of the standard normal
distribution. When larger than 8, the values of the Z-scores are replaced with 8
in the plots. Figure 2 displays the histograms of the q-value for chromosomes 6
and 14. Large values on the right tail in Figure 2(a) indicate that there are some
blocks on chromosome 6 potentially associated with Rheumatoid Arthritis. This
result is consistent with the known fact that the HLA (human leukocyte antigen)
region on chromosome 6 contributes to disease risk. Figure 2(b) shows that there are
hardly any blocks on chromosome 14 that are associated with Rheumatoid Arthritis.
Except for these large values, the q-value in Figures 2(a) and 2(b) have very smooth
distributions. This implies that we can specify a null distribution so that outliers or
blocks potentially associated with Rheumatoid Arthritis can be identified. The same
results on the null distribution are seen on the other chromosomes.
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Fig. 1 The time-series plots of the Z-scores of the probabilities for the assertion that control
and case populations are different, computed based on the two-multinomial model for SNPs
in blocks of 10 in (a) chromosome 6 and (b) chromosome 14.
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Fig. 2 Histograms of the Z-scores of the probabilities for the assertion that control and case
populations are different, computed based on the two-multinomial model for SNPs in blocks
of 10 in (a) chromosome 6 and (b) chromosome 14.
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5 Conclusion

The difficulty of existing statistical methods for large-scale multinomial counts re-
quires thinking about statistical inference at a very fundamental level and demands
novel ideas beyond the current two dominant schools of thought, the frequentist
and Bayesian. We propose a probabilistic inferential model, which uses auxiliary
random variables for reasoning towards inference rather than constructing fiducial
probabilities in the attempt to replace Bayesian posterior probabilities. The proposed
method works for data of both small and large sample sizes. It produces inferential
results that have desirable frequency properties. In addition, compared with max-
imum likelihood based inference with hypothetically large sample sizes, the pro-
posed method is also efficient. In the inferential model framework, there are issues
that need further investigation. These include the arbitrariness of the unobserved
auxiliary random variable, specification of the predictive random sets, and choice
of partial sampling model in generalized inferential models. To save space, we refer
to the on-going work [3, 5] for relevant discussions. We believe that the proposed
method will 1) generates useful tools for applied statisticians who are challenged
by very-high-dimensional count data, and 2) call attention to fundamental research
on statistical inference and problems considered by founding fathers such as Ronald
Fisher and Jerzy Neyman.

Acknowledgements. This work is supported by the National Science Foundation Grant
DMS-1007678.
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Belief Function Robustness in Estimation

Alessio Benavoli

Abstract. We consider the case in which the available knowledge does not allow
to specify a precise probabilistic model for the prior and/or likelihood in statistical
estimation. We assume that this imprecision can be represented by belief functions.
Thus, we exploit the mathematical structure of belief functions and their equiva-
lent representation in terms of closed convex sets of probability measures to derive
robust posterior inferences.

1 Introduction

Lower and Upper probabilities induced from multivalued mappings were introduced
by Dempster [1]. Shafer [2] called them belief and plausibility functions. Associated
with a belief function there is a closed convex set of probability measures of which
the belief function is a lower bound [1, 3, 4]. On the other hand, the lower bound
of a convex set of probability measures is not necessarily a belief function, e.g., [3,
Sec. 5.13.4]. Wasserman [5, 6] has shown that the mathematical structure of belief
functions makes them suitable for generating classes of prior distributions to be used
in robust Bayesian inference. In particular, in case the prior is expressed via a belief
function and the likelihood is a precise probability measures, he has derived a closed
form solution for the upper and lower bounds of the posterior probability content of
a measurable subset of the parameter space (even in case of infinite spaces). In
this paper, we extend this work in three directions. First, we compute upper and
lower bounds of the posterior expectations for any bounded scalar function g of
interest in statistical estimation. Second, we consider the case in which also the
likelihood model (not only the prior) may be expressed via belief functions. By
using the formalism of Walley’s theory of coherent lower previsions [3], we provide
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closed form solutions for the lower and upper expectations of g. Third, we show the
application of this model to several cases of practical interest.

2 Belief Function

In this section we revise some properties of belief functions. Let X be a Polish
space (e.g., Euclidean space) with Borel σ -algebra B(X ) and let Z be a convex,
compact, metrizable subset of a locally convex topological vector space with Borel
σ -algebra B(Z ) [5]. Let PZ be a probability measure on (Z ,B(Z )) and let Γ be
a map taking points in Z to nonempty, closed subsets of X .1 For each A ⊆ X ,
define the belief and plausibility function as [1, 5]:

P(A) = Bel(A) = PZ({zi ∈Z : Γ (zi)⊂ A}),
P(A) = Pl(A) = PZ({zi ∈Z : Γ (zi)∩A �= /0}). (1)

The fourtuple (Z ,B(Z ),PZ,Γ ) is called a source for Bel. Bel and P1 are related
by Bel(A) = 1−P1(AC), where Ac is the complement of A. An intuitive explanation
[5] of Bel and P1 is as follows. Draw z randomly according to PZ . Then Bel(A) is the
probability that the random set Γ (z) is contained in A and P1(A) is the probability
that the random set Γ (z) hits A [7]. Here, a simple example [3, Sec. 5.13.3] that
explains the construction of belief functions through multivalued mappings.

Example 1. Suppose that our information on X is a report from an unreliable wit-
ness that the event B ⊂ X has occurred. We might consider two possible expla-
nations: either the witness really observed B, or he observed nothing at all. These
hypotheses are represented by z1 and z2, with multivalued mapping Γ (z1) = B and
Γ (z2) = X . If we assess the probability PZ(z1) = p and PZ(z2) = 1− p, this corre-
sponds to the belief function Bel(A) = p if A⊇ B and A �=X ; Bel(A) = 1 if A =X
and zero otherwise. $%
This lack of knowledge expresses via a belief function can equivalently be repre-
sented through a set of probability measures, i.e., the set of all probabilities on X
that are compatible with the bounds Bel and Pl [1]:

PX = {PX : Bel(A)≤ PX(A)≤ Pl(A) for any A ⊆X }. (2)

For this reason, Bel is also called lower probability P (and Pl upper probability
P), since it is the lower (upper) envelope of a set of probability measures. Thus,
associated to each belief function, there is a closed convex set of probability mea-
sures of which a belief function is a lower bound but, on the other hand, the lower
bound P of a closed convex set of probability measures is not necessarily a be-
lief function [3]. To be a belief function, the lower probability P has to satisfy the
property of ∞-monotonicity. There are many closed convex sets of distributions that
are used in practical applications that are not belief functions. By restricting closed

1 Natural conditions, such as upper or lower semi-continuity, may be imposed on Γ to guar-
antee measurability [5].
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convex sets of distributions to be belief functions one looses in generality but gains
in tractability. In fact, because of the ∞-monotonicity property, belief functions sat-
isfy several nice properties. Besides tractability, belief functions are also a useful
source of closed convex set of probabilities. For instance, the multivalued mapping
mechanism can be used to define belief functions also in the case the set X is
continuous.

Example 2. Consider the case X = Z = R and thus B(Z ) and B(X ) coincide
with the standard Borel σ -algebra in R. Since X = Z , we are considering a map
from X to itself and, thus, for simplicity we can denote z with x. Assume that
p(x) is the probability density w.r.t. the Lebesgue measure on R associated to PZ

(assuming it exists) and consider the case p(x) =U[a,b](x), i.e., the uniform density
on the interval [a,b]. Consider then the multivalued mapping Γ (x) = [x− c,x+ c]
with c > 0 which maps each point x in the interval [x− c,x+ c]. This originates the
following lower/upper probabilities for the interval [r,s] with r < s:

P([r,s]) =
∫

x∈[a,b]
I{x: [x−c,x+c]⊂[r,s]}(u) 1

b−a du,

P([r,s]) =
∫

x∈[a,b]
I{x: [x−c,x+c]∩[r,s]�= /0}(u) 1

b−a du,
(3)

where I{A}, defined by I{A}(x) = 1 if x ∈ A and I{A}(x) = 0 if x /∈ A is called the
indicator of A. Notice that the inclusion [x− c,x+ c] ⊂ [r,s] holds for all x ∈ [r +
c,s−c], while the condition [x−c,x+c]∩ [r,s] �= /0 is satisfied by all x∈ [r−c,s+c].
By setting [r,s] = (−∞,x], one can compute the lower/upper cumulate distribution
function:

P((−∞,x])=

⎧⎨⎩
0 x < a+ c,
x−a−c

b−a a+ c≤ x < b+ c,
1 x ≥ b+ c,

P((−∞,x])=

⎧⎨⎩
0 x < a− c,
x−a+c

b−a a− c≤ x < b− c,
1 x ≥ b− c.

(4)

This model can be used to account for lack of information on the support of the
uniform distribution. We are eliciting a support of length b− a but we are not com-
pletely sure about its extremes. $%
This approach can be extended to any PDF p(x) (e.g., see [5] for the Gaussian case).
Assume X = Z = R, we discuss two other models (the first is discussed in [5])
generated by multivalued mappings.

ε-contamination: p(x) = (1−ε)π ′(x)+εδ{z0}(x), Γ (x) = x if x �= z0 and Γ (x) =R
if x = z0, where δ{z0} is a Dirac’s delta on z0 and π ′ is PDF such that π ′(z0) = 0 and
π ′ = π if x �= z0, then:

P(A) = (1− ε)
∫

A
π(x)dx, P(A) = (1− ε)

∫
A

π(x)dx+ ε.

When ε = 1, we have a vacuous model P(A) = 0 and P(A) = 1.
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Heavy-tail: p(x) = N (x;0,1), Γ (x) = [x,1/x) if x ∈ [0,1) and Γ (x) = x if x ≥ 1
(symmetric for the negative axis). Consider A = (−∞,w] with w > 1, we can then
compute the lower upper distribution of X :

P((−∞,w])= 1
2 +

w∫
1

N (x;0,1)dx+
1∫

1/w
N (w;0,1)dx= 1

2

(
erf
(

w√
2

)
− erf

(
1√
2w

))
,

where erf(w) = 2√
π
∫ w

0 e−t2
dt, while

P((−∞,w]) = 1
2 +

w∫
0

N (x;0,1)dx = 1
2

(
1+ erf

(
w√
2

))
.

By differentiating P((−∞,w]) w.r.t. w, one gets:

d
dw P((−∞,w]) = 1

2

⎛⎝√ 2
π e−

w2
2 +

√
2
π e

− 1
2w2

w2

⎞
⎠ .

Observe that the derivative goes to zero as 1/w2 and, thus, it has the same tail be-
haviour of the Cauchy density γ/[π((w−w0)

2 + γ2)]. This belief function can be
used for instance for robustness to outliers when employed as likelihood model or
as a sort of weak-informative prior (when employed as prior model).

2.1 Upper and Lower Expectation

The previous section has discussed several belief functions generated through a mul-
tivalued mappings. We have also seen that a belief function can equivalently be in-
terpreted as a lower probability model defined on the subsets of X and also as a
lower expectation model defined on the indicator functions over the subsets of X ,
i.e., E(I{A}) = P(A). Assume that we know the functional P(A) = E(I{A}) for any
subset A of X how can we extend this lower probability model to compute E(g)
for any bounded real-valued function of interest g. It can be shown that

E(g) = inf
PX∈PX

∫
g(x)PX(dx), E(g) = sup

PX∈PX

∫
g(x)PX(dx). (5)

Thus, the interpretation of belief functions as closed convex set of probability mea-
sures allows to computer lower and upper expectations for any bounded real valued
function. Since belief function are multivalued mapping, it has been proved in [5]
that (5) is equal to:

E(g) =
∫

g∗(z)PZ(dx), E(g) =
∫

g∗(z)PZ(dz), (6)

where g∗(z) = infx∈Γ (z) g(x) and g∗(z) = supx∈Γ (z) g(x). This fact has important im-
plications for computation because it reduces the problem of calculating extrema
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over the set of probability measures PX to that of finding extrema of g over subsets
of X followed by a single integral over Z.

Example 3. Consider for instance the ε-contamination model discussed in the pre-
vious section, then

E(g) =
∫

g∗(z)PZ(dz) =
∫

dz
[
(1− ε)π ′(z)+ εδ{z0}(z)

]
inf

x∈Γ (z)
g(x),

=
∫

Z −{z0}
(1− ε)π ′(z)g(z)dz+ ε inf

x∈R
g(x) =

∫
(1− ε)π(z)g(z)dz+ ε inf

x∈R
g(x). (7)

In case π(z) = N (z;x0,σ2
0 ) and in the case the vacuous part is restricted to [−a,a]

with a > 0, one gets E(g) =
∫
(1− ε)g(z)N (z;x0,σ2

0 )dz+ ε inf
x∈[−a,a]

g(x). $%

2.2 Statistical Inference

Assume that X ⊆ R. Consider a likelihood model p(y|x), where Y denotes the
observation variable taking values from a sample space (Y ,B(Y )) and x ∈ X .
Assume that the prior information over X is expressed through a belief function or,
equivalently, through the closed convex set of probability measures associated to
the belief function, how can we compute the lower/upper posterior expectation of a
bounded real-valued function g given the observation ỹ?

Theorem 1. Assume that p(y|x) is B(Y )×B(X )-measurable and bounded. As-
sume that the value ỹ of Y is observed and that EX (EY (δ{ỹ}|X)) = E

(
p(ỹ|x)) > 0,

where δ{ỹ} is a degenerate limiting measure (e.g., Dirac’s delta) on Y . The lower
posterior expectation E(g|ỹ) is the unique solution μ of the following equation:

EX

(
EY
(
(g− μ)δ{ỹ}|X

))
= 0. $% (8)

This equation is called Generalized Bayes rule (GBR) [3, Ch. 6].

Proof.

0 = EX

(
EY
(
(g−μ)δ{ỹ}|X

))
= E

(
(g−μ)p(ỹ|x))= inf

PX∈PX

∫
(g(x)−μ)p(ỹ|x)PX(dx)

= inf
p∈PX

∫
p(ỹ|x)P(dx)

(∫
g(x)p(ỹ|x)P(dx)∫

p(ỹ|x)P(dx)
−μ
)
.

Being
∫

p(ỹ|x)PX(dx) = E
(

p(ỹ|x)) > 0 by hypothesis, it follows that μ =

inf
pX∈PX

∫
g(x)p(ỹ|x)PX(dx)∫

p(ỹ|x)PX(dx)
. Therefore, GBR is equivalent to apply Bayes rule to

all probability measures in PX and, then, take the infimum. The following proof
has been derived by [3, Sec. 6.4.1.] replacing the indicator with a Dirac’s delta to
account for the fact that Y is a continuous variable. $%
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Corollary 1. Exploiting (6) and applying (8) to belief function, it results that the
lower posterior expectation E(g|ỹ) is the unique solution μ of the following
equation:

E
(
(g− μ)p(ỹ|x))= ∫ PZ(dz) inf

x∈Γ (z)
(g(x)− μ)p(ỹ|x) = 0. (9)

$%
For the proof, see Theorem 2. Equation (9) can be extended to the case of n i.i.d.
observation, by simply replacing p(ỹ|x) with ∏n

i=1 p(ỹi|x). Assume now the case in
which also the likelihood model is expressed through a belief function characterized
by (U ,B(U ),Γ (·|x),PU|x) for each value of the conditional variable x.

Theorem 2. Assume that the value ỹ of Y is observed, that EX (EY (δ{ỹ}|X))> 0 and
EY (δ{ỹ}|x) is well defined for each x ∈X . The lower posterior expectation E(g|ỹ)
is the unique solution μ of the following equation:

EX

(
EY

(
(g− μ)δ{ỹ}|X

))
= 0, (10)

which for belief functions becomes:

0 =

∫
PZ(dz) inf

x∈Γ (z)

∫
PU|x(du|x) inf

y∈Γ (u|x)
δ{ỹ}(y)(g(x)− μ). (11)

$%
This is the extension of Corollary 1 to the case also the likelihood is a belief function.
The proof of this theorem can be derived from the proof of [8, Th. 2] by using the
expression for the lower expectation in (6).2 The above result is very important for
practical applications as shown in the next examples.

3 ε-Contamination and Interval Estimation

Consider an ε-contamination model for (U ,B(U ),Γ (·|x),PU|x), i.e., PU|x = (1−
εm)N (u;x,σ2)+εmδ{u0}(u|x) and Γ (u|x) = y and Γ (u0|x) =AY (x) = [x−b,x+b]
for b > 0. In the domain of the variable Y , this model is equivalent to: y = x+(1−
εm)n+ εmv, where n is a Gaussian noise with zero mean and variance σ2, while v is
a noise with unknown distribution. The only knowledge about v is its support [−b,b]
(norm bounded noise). This model can be used to account for the uncertainty in the
measurement process which is due to a white noise component (n) and to the finite
precision of the instrument (v), so it is very important for practical applications.
Assume that also the prior over X is a ε-contamination model at the end of the
Example 3. Applying (11) one gets:

2 Observe that the proof in [8, Th. 2] has been obtained by assuming that the observation
variables are discretized. Intuitively, we can see Theorem 2 as the limit of this result when
the size of the discretization interval goes to zero.
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0 =
∫

dz
[
(1− ε)N (z;x0,σ2

0 )+ εδ{z0}(z)
]

inf
x∈Γ (z)∫

du
[
(1− εm)N (u;x,σ2)+ εmδ{u0}(u|x)

]
inf

y∈Γ (u|x)
δ{ỹ}(y)(g(x)− μ). (12)

Consider the case where δ{ỹ}(y) is the limit for |Ω(ỹ)| → 0 of the following se-
quence of functions 1

|Ω(ỹ)| I{Ω(ỹ)}, where Ω(ỹ) is a ball centred at ỹ which does not

depend on x and |Ω(ỹ)| is its Lebesgue volume [3, Sec. 6.10.4], [8]. Then, the pre-
vious integral equation can be rewritten as:

0 = 1
|Ω(ỹ)|

∫
dz
[
(1− ε)N (z;x0,σ2

0 )+ εδ{z0}(z)
]

inf
x∈Γ (z)∫

du
[
(1− εm)N (u;x,σ2)+ εmδ{u0}(u|x)

]
inf

y∈Γ (u|x)
I{Ω(ỹ)}(y)(g(x)− μ).

(13)
Since |Ω(ỹ)| is positive it can be simplified in the equation, which for |Ω(ỹ)| → 0
tends can be written as:

0 =
∫

dz
[
(1− ε)N (z;x0,σ2

0 )+ εδ{z0}(z)
]

inf
x∈Γ (z)[

(1− εm)N (ỹ;x,σ2)(g(x)− μ)+ εm inf
y∈AY (x)

I{Ω(ỹ)}(y)(g(x)− μ)
]

=
∫

dz
[
(1− ε)N (z;x0,σ2

0 )+ εδ{z0}(z)
]

inf
x∈Γ (z)[

(1− εm)N (ỹ;x,σ2)(g(x)− μ)− εm I{x: ỹ∈AY (x)}(x)(g(x)− μ)−
]
,

(14)

where (g(x)−μ) =−min(g(x)−μ ,0) is the negative part of g−μ . Simplifying the
other integral and exploiting that Γ (z0) = [−a,a], AY (x) = [x− b,x+ b] and, thus,
ỹ ∈A (x) implies x ∈ [ỹ− b, ỹ+ b], one finally gets:

0 =
∫
(1− ε)N (x;x0,σ 2

0 )dx
[
(1− εm)N (ỹ;x,σ 2)(g(x)−μ)− εm I{x∈[ỹ−b,ỹ+b]}(x)(g(x)−μ)−

]
+ ε inf

x∈[−a,a]

[
(1− εm)N (ỹ;x,σ 2)(g(x)−μ)− εm Ix∈[ỹ−b,ỹ+b](x)(g(x)−μ)−

]
.

Notice that in case ε = εm = 0 (no imprecision) and g = X , then μ = E(X |ỹ) =
(1/σ2

0 +1/σ2)−1(x0/σ2
0 + ỹ/σ2) that is the well known expression for the posterior

mean in the Gaussian case. In the vacuous case, ε = εm = 1 (full imprecision), one
gets:

0 = − sup
x∈[−a,a]

I{x∈[ỹ−b,ỹ+b]}(x)(g(x)− μ)− = sup
x∈[−a,a]∩[ỹ−b,ỹ+b]

(g(x)− μ)−. (15)

For g = X and assuming that the two intervals overlap, one has μ = E(X |ỹ) =
max(ỹ−b,−a). Similarly, we can compute E(X |ỹ) = min(ỹ+b,a). This is the well
known updating formula in interval estimation, for instance in set-membership es-
timation [9, 10]. Figure 1 shows the expression for E(X |ỹ) in case ε = 0, εm = 0.5,
ỹ= 1, x0 = 0, σ2

0 =σ2 = 1 and different values of b, i.e., b∈ [0,4]. It can be observed
that for b < (1/σ2

0 + 1/σ2)−1(x0/σ2
0 + ỹ/σ2) = 0.5, the posterior mean coincides

with that of the case εm = 0. The lower expectations starts to decrease when the
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Fig. 1 Lower expectation μ = E(X |ỹ) versus ỹ−b for ỹ = 1 and b ∈ [0,4].

support of the norm-bounded noise v, i.e., [ỹ− b, ỹ+ b], becomes larger than the
interval [0.5,1.5].

4 Heavy-Tail Belief Function Model

Consider the model discussed at the end of Section 2 for the variable X with p(x) =
N (x;0,2.19), i.e., variance 2.19. Assume that the measurement process is described
by a normal density function N (y;x,σ2). We can then use Corollary 1 to compute
the lower posterior expectation of some function of interest g of X , i.e., E[g|y] is the
unique solution μ of

0 =
∫

dxN (x;0,2.19) inf
x′∈Γ (x)

(g(x′)− μ)∏n
i=1 N (yi;x,σ2), (16)

where Γ (x) = [x,1/x) for x ∈ (−1,1) and Γ (x) = x otherwise. The above equation
can be solved numerically by discretizing X . In Table 1 (last row) we have reported
the lower and upper posterior mean of X computed according to (16) in case g = X .
For the sake of comparison we have reported also the posterior means obtained
by the prior p1(x) = N (x;0,2.19) (Normal distribution), denoted by E1(X |y) in
the table, and p2(x) = C (x;0,1) (Cauchy distribution), denoted by E2(X |y). Both
these two prior distributions have prior mean equal to zero and and prior quartiles
equal to ±1.3 From Table 1 it can be noticed that at the increasing of the prior-data
conflict (increasing of y) the Cauchy prior is more robust than the Normal prior,
i.e., its posterior mean is closer to the value of the measurement. The third row
in the table shows that the choice of a set of priors based on the heavy-tail belief
function model further increases the robustness. Notice in fact that, for a small prior-
data conflict, the interval [E(X |y),E(X |y)] is tight and includes the posterior mean
E1(X |y). However, at the increasing of the conflict, the interval enlarges highlighting
the presence of a prior-data conflict, and its centre moves towards y similarly to the
posterior mean of the Cauchy prior that moves towards y.

3 This example has been adapted from [11, Sec. 4.7.1.].
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Table 1 Posterior mean computed for the three different prior models.

y 0 1 2 4.5 10

E1(X |y) 0 0.69 1.37 3.09 6.87
E2(X |y) 0 0.55 1.28 4.01 9.80

E(X |y),E(X |y) -0.26,0.26 0.68,1.46 1.35,1.93 2.78,4.52 5.42,14.01

5 Conclusions

We have derived robust inferences based on classes of priors and likelihoods gener-
ated by belief functions. As future work, we intend to apply this work to practical
estimation problems and to derive more closed convex sets of probability measures
by using the multivalued mapping mechanism of belief functions.
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n. 200020-121785/1.

References

1. Dempster, A.P.: Upper and lower probabilities induced by a multiple-valued mapping.
Ann. Math. Stat. 38, 325–339 (1967)

2. Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)
3. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, New

York (1991)
4. Miranda, E., de Cooman, G., Couso, I.: Lower previsions induced by multi-valued map-

pings. Journal of Statistical Planning and Inference 133(1), 173–197 (2005)
5. Wasserman, L.A.: Prior envelopes based on belief functions. The Annals of Statis-

tics 18(1), 454–464 (1990)
6. Wasserman, L.A.: Belief functions and statistical inference. The Canadian Journal of

Statistics 18(3), 183–196 (1990)
7. Molchanov, I.: Theory of random sets. Springer (2005)
8. Benavoli, A., Zaffalon, M., Miranda, E.: Robust filtering through coherent lower previ-

sions. IEEE Transactions on Automatic Control 56, 1567–1581 (2011)
9. Schweppe, F.C.: Recursive state estimation: Unknown but bounded errors and system

inputs. In: Sixth Symposium on Adaptive Processes, vol. 6, pp. 102–107 (1967)
10. Bertsekas, D., Rhodes, I.: Recursive state estimation for a set-membership description of

uncertainty. IEEE Transactions on Automatic Controll 16, 117–128 (1971)
11. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer Series in

Statistics, New York (1985)



Conditioning in Dempster-Shafer Theory:
Prediction vs. Revision

Didier Dubois and Thierry Denœux

Abstract. We recall the existence of two methods for conditioning belief functions
due to Dempster: one, known as Dempster conditioning, that applies Bayesian con-
ditioning to the plausibility function and one that performs a sensitivity analysis on
a conditional probability. We recall that while the first one is dedicated to revising
a belief function, the other one is tailored to a prediction problem when the belief
function is a statistical model. We question the use of Dempster conditioning for
prediction tasks in Smets generalized Bayes theorem approach to the modeling of
statistical evidence and propose a modified version of it, that is more informative
than the other conditioning rule.

1 Introduction

Probabilistic conditioning is used both for prediction from observations and revision
of uncertain information. When dealing with prediction, we have at our disposal a
model of the world under the form of a probability distribution P issued for instance
from a representative set of statistical data (e.g., medical knowledge). Moreover we
get some new observations C on the current state of the world (e.g., test results for
a patient). Then, one tries to predict some property A of the current world with its
associated degree of belief (e.g. predict the disease of the patient). The conditional
probability P(A | C) (the frequency of observation of A in context C) is used for
estimating the degree of belief that the current world satisfies A.

The revision scenario is different: given a probability distribution P (which is of-
ten a subjective probability), one learns that an event C occurred, which makes its
subjective probability equal to 1 (and not to P(C) < 1 as it was supposed before).
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The problem is to determine the new subjective probability measure P′, such that
P′(C) = 1, which is the closest to P in some sense, in order to comply with a min-
imal change principle. Then, it can be shown that if we use an appropriate relative
information measure, it follows that P′(A) = P(A |C),∀A again [3]. However, in the
prediction problem, generic knowledge remains unaffected by singular evidence,
which is handled apart : predictions can be computed beforehand on the basis of
the statistical probability, for each possible set of observations. Note that we do not
consider the question of learning a statistical model.

For belief functions, not so much has been done from a statistical point of view,
because the main references (Shafer’s book [8], and most papers by Smets) present
the theory of evidence as an approach to the merging of unreliable testimonies, and
consider the mass function at work as a form of subjective probability. Shafer’s
book contains a single chapter on statistical evidence, then severely criticized, id-
ualincluding by Shafer himself [9] (but more recently rehabilitated [2]). So, the
mainstream literature on belief functions is a theory of handling singular uncertain
evidence, and not so much an extension of Bayesian statistical prediction. Interest-
ingly, Dempster’s pioneering works on upper and lower probabilities are motivated
by statistical reasoning and the rehabilitation of ideas of Fisher. In Dempster’s set-
ting, a probability space is given that corresponds to the usual setting of random
observations for statisticians, along with a random set. Dempster [1] proposes a
merging rule and two conditioning rules. However, only one of them was retained
in the theory of belief functions. It was originally motivated by the presence of
several independent sample spaces, not by a prediction problem. While Shafer is
interested by merging independent unreliable isolated testimonies, Dempster con-
siders the problem of merging independent bodies of statistical information. What
is crucial is to notice that the merged items are of the same nature, whether singular
or generic. As what is known as “Dempster conditioning” is a special case of Demp-
ster rule of combination, this conditioning, widely used in evidence theory, can be
viewed as a revision process, understood as a prioritized merging of a sure piece of
information with an uncertain one. However the scenario of prediction, which in-
volves a model reflecting a population and a piece of evidence pertaining to a single
situation, features of which are to be predicted, totally escapes this revision scheme.
In this paper, we distinguish between revision and prediction conditionings. The lat-
ter is applied to predicting the class θ of an instance x based on a statistical model
P(·|θ ).
• We claim that in general, prediction cannot be achieved using Dempster condi-

tioning. The most cautious prediction method is based on sensitivity analysis on
conditional probabilities.

• Using Dempster conditioning in prediction relies on a bold application of the
maximum likelihood principle [6]. The two first points were previously discussed
by Dubois Prade and Smets [4].

• As a consequence, the approach to statistical prediction proposed by Smets as the
Generalized Bayes Theorem (GBT) is questionable, and the prediction condition-
ing is inefficient. We propose a trade-off approach assuming some information
on the training populations.
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2 Conditioning for Belief Functions and Imprecise Probabilities

In standard probability theory, even if their solution is given by the same condition-
ing rule, the problem of revising a probability function is different from the one of
predicting on the basis of generic statistical information. In the following we exam-
ine these two problems in the setting of belief functions.

Prediction Conditioning: In the case where the generic knowledge of the agent is
represented by imprecise probabilities, Bayesian prediction is generalized by per-
forming a sensitivity analysis on the conditional probability. It represents all predic-
tions that could have been made, had the probabilistic model been precise. Let P be
a family of probability measures on S. For each proposition A, a lower bound P∗(A)
and an upper bound P∗(A) of the probability degree of A are known. In presence
of singular observations summarized under the form of a context C, the belief of an
agent in a proposition A is represented by the interval [P∗(A |C),P∗(A |C)] (already
proposed in [1]) where:

P∗(A |C) = inf{P(A |C) : P(C)> 0,P ∈P}; (1)

P∗(A | C) is obtained by replacing inf by sup. It may happen that the interval
[P∗(A | C),P∗(A | C)] is larger than [P∗(A),P∗(A)], which corresponds to a loss of
information in specific contexts. This property reflects the idea that the more singu-
lar information is available about a situation, the less informative is the application
of generic information to it (since the number of statistical data that fit this situation
may become very small). We see that this form of conditioning does not correspond
at all to the idea of enriching a statistical model, it is only a matter of querying it.

Belief and plausibility functions in the sense of Shafer [8] are mathematically
speaking important particular cases of lower and upper probabilities, although these
functions were independently introduced in Shafer’s book without any reference to
the idea of imprecise probability. Information is supposed to be represented by the
assignment of non-negative weights m(E) to subsets E of S. In a generic knowledge
representation perspective, m(E) is, for instance, the proportion of imprecise results
of the form x ∈ E , in a statistical experiment on a random variable x (in Dempster
work, it stems from a known random variable relating observations and parameters).
It is clear that in that kind of situation, there exists a real probabilistic model under-
lying the belief function representation. It contrasts with belief functions on unique
events, where there is no underlying subjective probability.

In the frequentist framework, prediction in context C requires evaluating the pro-
portion of the population lying in C, taken as the new frame, from the information
on the mass function m. Three cases should be considered for a focal set E:

• E ⊆C: In this case, the frequency m(E) remains assigned to E .
• E ∩C = /0: In this case, E no longer matters and m(E) is eliminated.
• E ∩C �= /0 and E ∩C �= /0 : In this case, there is a proportion αE ·m(E) of the

population that satisfies E ∩C and the rest, i.e., (1−αE) ·m(E), satisfies E ∩C.
But these proportions may be unknown.
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It is clear that αE = 1 and αE = 0 in the first and second above cases respectively.
The third case corresponds to incomplete observations E that neither confirm nor
disconfirm C. Suppose that all values α = {αE : E ⊆ S} were known. Then, we can
build a mass function obtained as

mC
α(B) = ∑

E:B=C∩E

αEm(E). (2)

Note that a renormalisation of this mass function is necessary, in general, as soon as

PlCα(C)< 1, letting mα(· |C) = mC
α (·)

PlCα (C)
. If one denotes by Belα(A |C) and Plα(A |C)

the corresponding conditional belief and plausibility functions, based on the alloca-
tion vector α , we can define conservative belief and plausibility degrees conditional
to C by considering all possible weight vectors α . One still obtains belief and plau-
sibility functions (Jaffray [7]). Moreover the following result holds:

Bel(A |C) = infα Belα(A |C) = P∗(A |C) = Bel(A∩C)
Bel(A∩C)+Pl(A∩C)

(3)

Pl(A |C) = supα Plα(A |C) = P∗(A |C) = Pl(A∩C)
Pl(A∩C)+Bel(A∩C)

(4)

It is easy to see that Pl(A |C) = 1−Bel(A | C), and that the closed form formulas
generalize probabilistic conditioning. Note that if Bel(C) = 0 and Pl(C) = 1 (com-
plete ignorance regarding C) then all the focal sets of m overlap C without being
contained in C. In this case, Bel(A | C) = 0 and Pl(A |C) = 1,∀A �= /0,A ⊂C: one
loses all information in context C.

Example: Ellsberg urn Consider a bag of balls containing 1/3 red balls, the rest be-
ing black or white. So S = {w,b,r} and the corresponding frequentist mass function
is m(r) = 1/3, m(wb) = 2/3 (we omit the brackets to denote sets). The prediction
problem consists in guessing the colour of a ball x picked at random in the urn.
Before knowing anything about x, Bel(r) = Pl(r) = 1/3;Bel(w) = 0,Pl(w) = 2/3.
Suppose one hears that x is not black (C = b̄). Applying the prediction condition-
ing yields Bel(r|b) = Bel(r)

Bel(r)+Pl(w) = 1/3, Pl(r|b) = Pl(r)
Pl(r)+Bel(w) = 1, Bel(w|b) =

Bel(w)
Bel(w)+Pl(r) = 0, Pl(w|b) = Pl(w)

Pl(w)+Bel(r) = 2/3. So the piece of information “the ball
is not black” does not alter our beliefs about x being white or not. One may indeed
argue it should not, as, hearing x is not black, nothing forbids the urn to contain
no white ball, nor no black ball. But the plausibility of the ball being red strongly
increases. This is a loss of information on the probability of the ball being red or not.

Revision Conditioning: The other conditioning, called ‘Dempster conditioning’
systematically assumes αE = 1 as soon as E ∩C �= /0 in the above mass transfer
process. It transfers the full mass of each focal set E to E ∩C �= /0 (followed by a
renormalisation). This means that we interpret the new information C as modifying
the initial belief function in such a way that Pl(C) = 0: situations where C is false
are considered as impossible. If one denotes by Pl(A ||C) the plausibility function
after revision, we have:



Conditioning in Dempster-Shafer Theory: Prediction vs. Revision 389

Pl(A ||C) = Pl(A∩C)
Pl(C)

(5)

The conditional belief is then obtained by duality as Bel(A || C) = 1−Pl(A || C).
Note that with this conditioning, the size of focal sets diminishes, thus information
becomes more precise, and the intervals [Bel,Pl] may become tighter than those ob-
tained by prediction conditioning. Dempster conditioning thus corresponds to a pro-
cess where information is enriched, which contrasts with prediction conditioning. If
Bel(C) = 0 and Pl(C) = 1 (complete ignorance about C), Dempster conditioning on
C will often significantly increases the precision of resulting beliefs.

In the more general framework of imprecise probabilities, the revision by a piece
of information C consists in adding the extra constraint P(C) = Pl(C) to the family
P = {P ≥ Bel}. It has been shown by Gilboa and Schmeidler [6] that:

P∗(A ||C) = inf{P(A |C),P(C) = Pl(C),P ≥ Bel}; (6)

P∗(A ||C) = sup{P(A |C),P(C) = Pl(C),P ≥ Bel}. (7)

They indicate that Dempster conditioning comes down to applying the maximal
likelihood principle in the imprecise probability setting.

In the view of Shafer and Smets, this type of conditioning is little related with
the previous prediction problem, since, in their setting, the mass function m does
not represent generic knowledge, but rather uncertain information collected about
a particular situation (non fully reliable testimonies, more or less safe clues). It is
a form of reasoning under uncertainty where generic knowledge is not taken into
account, but where all the pieces of information are singular (as in the Peter Paul
and Mary example [4]).

Example: Ellsberg again Hearing that there is no black ball in the urn is a piece of
generic information of the same nature as the prior knowledge about the urn. There
are then two independent sample spaces as assumed by Dempster [1] in his pioneer-
ing paper (one with the possibility of back balls, one without it). We then revise
the content of the urn, which in turn impacts a change of belief about the colour of
the picked ball x. We then legitimately conclude that since the urn does not contain
black balls, the probability of x being white is 2/3. It may look questionable to apply
this conditioning rule to the problem of predicting the colour of a ball x drawn from
the urn, based on the fact that it is not black. Using the maximum likelihood inter-
pretation of Dempster conditioning, doing so comes down to assuming that since
the ball is known not to be black, we restrict to the probabilistic models P making
this event maximally likely (the ones such that P(b̄) = Pl(b̄)). Then, P(b̄) is viewed
as the likelihood of the probabilistic model P ≥ Bel if the ball is not black.

There is one case when it is easy to show that the two forms of conditionings
coincide:

Proposition 1. If the conditioning event C is such that for any focal set E of m it
either contains it or is disjoint from it, then ∀A ⊆ S,Pl(A ||C) = Pl(A |C).
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3 Application to Smets Generalized Bayes Theorem

Despite the warning of Shafer regarding the fact that his theory of evidence deals
with unique uncertain events, it has been applied to statistical prediction problems,
and the appropriateness of Dempster conditioning for such a task is most of the time
not even questioned. A typical example is the Generalized Bayes Theorem of Smets
[10], but it is true as well for various other similar approaches to the estimation of
parameters based on a belief function model (see [2] for more bibliography).

In the simplest setting, the parametric inference problem is stated as follows :
Given a finite parameter space Θ and a set of parametric belief functions BelX(·|θ ),
θ ∈Θ , and some observation x ∈ X , compute BelΘ (·|x).

The most usual situation is when a finite number of probabilistic likelihood func-
tions {P(·|θ ),θ ∈Θ}, are available, each one coming from a different population
representing a class θ . The GBT procedure specializes as follows:

1. Conditional embedding: Each likelihood function P(·|θ ) is modelled by a be-
lief function Belθ on X ×Θ (ballooning): the associated mass function is de-
fined by mθ (θ̄ ∪ x) = P(x|θ ),x ∈ X ; Belθ on X ×Θ has a vacuous marginal on
Θ and yields P(·|θ ) back when conditioned on θ .

2. Conjunctive merging of the belief functions Belθ ,θ ∈Θ on X×Θ . Consider a
function φ : Θ →X ; we must assign mass ∏θ∈Θ P(φ(θ )|θ ) to

⋂
θ∈Θ θ̄ ∪φ(θ ) =⋃

θ∈Θ{θ}×{φ(θ )}. So, each function φ is a focal element and the resulting
mass function on Θ ×X is of the form m(φ) = ∏θ∈Θ P(φ(θ )|θ )1.

3. Conditioning of the result on the observation x using Dempster conditioning:

PlΘ (θ ||x)=Pl({θ}×{x})
Pl(Θ ×{x}) =

∑φ :φ(θ)=x m(φ)
∑φ :φ−1(x) �= /0 m(φ)

=
∑φ :φ(θ)=x ∏τ∈Θ P(φ(τ)|τ)

∑φ :φ−1(x) �= /0 ∏τ∈Θ P(φ(τ)|τ) .

The result is a general belief function not fully representable by the PlΘ (θ ||x)’s,

since the mass function m(T ||x) is of the form
∑φ :φ−1(x)=T m(φ)

Pl(Θ×{x}) .

Step 2 comes down to applying the disjunctive combination rule to the conditional
probabilities P(·|θ ): Bel(A×T ) = ∏θ∈T P(A|θ ),∀A ⊆ X . For T ⊆Θ ,PlX(x|T ) is
a function of elementary likelihoods P(x|θ ),θ ∈ T . The merging rule in step 2 as-
sumes that the likelihood functions P(·|θ ), θ ∈Θ have been inferred from distinct
sets of empirical data obtained from independent sources. Hence, each value θ cor-
responds to a specific class of objects, and is not a continuous parameter.

However, x is a single observation while m is a statistical model on X ×Θ . Let
us then compute the prediction conditioning PlΘ (θ |x), the plausibility that θ is the
class of x. Since a focal element is in the form of a mapping φ : Θ → X , and obser-
vation x is modelled by {x}×Θ three situations can be met for a focal φ :

1 Unions are intersections over different spaces consider cylindrical extensions of elements.
In the more general case of conditional belief functions BelX (·|θ ), focal elements on Θ×X
are multimappings Γ : Θ → 2X .
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1. � ∃θ ∈Θ ,φ(θ ) = x, which means φ−1(x) = /0; φ can be eliminated.
2. φ−1(x) �= /0 and �=Θ , then the line {x}×Θ only overlaps the graph of φ .
3. φ(θ ) = x,∀θ ∈Θ then φ = {x}×Θ supports x but it gives no clue on θ .

When observing x and considering a focal φ consistent with it (case 2), it is not
clear what part of m(φ) should be allocated to φ−1(x) and what part should be
allocated to its complement in Θ . Applying the prediction conditioning would then
yield an empty prediction since ∀T ⊂Θ , Bel(T ×{x})= Bel(T ×{x}) = 0, because
φ ⊆ T ×{x} never holds (∀θ ∈Θ ,φ(θ ) �= /0). However, it is possible to propose an
alternative prediction rule that is less bold than Dempster conditioning and more
useful than the plain prediction conditioning.

The prior probabilities P(θ )’s are unknown (for Edwards [5], they are even mean-
ingless). It is then tempting to replace P(θ ) by the number of observations n(θ )
available for class θ . This number does not necessarily correspond to a prior prob-
ability (as the actual probability P(θ ), if any, is different from the number of cases
actually at hand). Yet, n(θ ) if available reflects the reliability of the information
regarding the likelihood function P(·|θ ).

Since m(φ) accounts for all mX (φ(θ )|θ ), one may consider, when observing x,
sharing m(φ) between all θ such that φ(θ ) = x, and those such that φ(θ ) �= x, ac-

cording to n(θ ). Then consider the portion αφ (x) =
∑θ∈φ−1(x) n(θ)

∑θ∈Θ n(θ) of the available
training data that pertains to observing x. It suggests the following modified condi-
tional belief function for prediction:

∀T ⊆Θ ,mα(T |x) =
∑φ :φ−1(x)=T m(φ)αφ (x)

∑φ :φ−1(x) �= /0 m(φ)αφ (x)
. (8)

Example: The simplest example of the problem (actually studied by Shafer [9])
uses a space S = {x, x̄}× {θ , θ̄}. The available knowledge consists in the two
likelihood values a = P(x|θ ) > b = P(x|θ̄). So there is a majority of x’s in class θ
and a majority of x’s in class θ̄ . Suppose that the likelihood functions are based on
independent populations and that the number of available samples of class θ is much
greater than those for class θ̄ (say 1000 times more). There are only 4 φ functions
with their mass assignments on Θ ×X shown in the table below.

φ1 φ2 φ3 φ4

θ x x x x n(θ ) = 3000
θ x x x x n(θ ) = 3

P(·|θ ) a = 2/3 a = 2/3 1−a = 1/3 1−a = 1/3
P(·|θ) b = 1/3 1−b = 2/3 b = 1/3 1−b = 2/3
m(φ) ab = 2/9 a(1−b) = 4/9 (1−a)b = 1/9 (1−a)(1−b) = 2/9
αφ (x) 1 1000/1001 1/1001 0
αφ (x) 0 1/1001 1000/1001 1

The following results are obtained if x is observed using Dempster maximal like-
lihood conditioning:

PlΘ (θ ||x) = a
a+ b− ab

=
6
7

;PlΘ (θ̄ ||x) = b
a+ b− ab

=
3
7
. (9)
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Note that if x is observed, the figures are exchanged. However, this symmetry is
surprising: since the data set of class θ is very poor, the observation of x should
suggest class θ to a lesser extent than the one to which observing x should suggest
class θ . The last two lines of the table above show the proportions of the overall
available population of examples concerned when observing x and x, given any focal
element φ . It comes down to assuming that if we observe x, the portion of weight of
φ3 to be transferred to θ̄ ∧ x should be much less than the portion to be transferred
to θ ∧ x. Conversely if we observe x̄, the portion of weight of φ2 to be transferred
to θ̄ ∧ x̄ should be much less than the portion to be transferred to θ ∧ x̄. So, if x is
observed the modified conditional mass m(φ3|x) is reduced to 1/9009 and becomes
negligible: Plα(θ |x)3 1;Plα(θ̄ |x)3 1/3. If x is observed, the modified conditional
mass m(φ2|x) is reduced to 4/9009 so Plα(θ |x) 3 1;Plα(θ̄ |x) 3 2/3. It makes it
clear that, as expected, we become more confident about class θ when observing x
than about class θ when observing x. We even still believe in class θ in the latter
case, due to the overwhelming number of θ examples. Note that having many more
examples of class θ than of class θ does not mean that class θ is rare, but only that
we could not have access to many examples of it. So we should not confuse the size
of available samples with prior probabilities of classes. The above discussion also
lays bare that the GBT approach presupposes not only independent populations of
samples for each class, but also that such populations are (approximately) equal.

To conclude, we suggest how to improve the GBT so as to make a trade-off be-
tween prediction and revision conditioning. The case of prediction based on several
pieces of observations can be addressed by merging the information coming from
each observation. Other techniques for modelling statistical evidence [2] should be
studied in the light of the above discussion as well.
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Combining Statistical and Expert Evidence 
within the D-S Framework: Application  
to Hydrological Return Level Estimation  

Nadia Ben Abdallah, Nassima Mouhous Voyneau, and Thierry Denœux1* 

Abstract. Estimation of extreme sea levels and waves for high return periods is of 
prime importance in hydrological design and flood risk assessment. The common 
practice consists of inferring design levels from the available observations and 
assuming the distribution of extreme values to be stationary. However, in the recent 
decades, more concern has been given to the integration of the effect of climate 
change in environmental analysis. When estimating defense structure design 
parameters, sea level rise projections provided by experts now have to be combined 
with historical observations. Due to limited knowledge about the future world and the 
climate system, and also to the lack of sufficient sea records, uncertainty involved in 
extrapolating beyond available data and projecting in the future is considerable and 
should absolutely be accounted for in the estimation of design values.   

In this paper, we present a methodology based on evidence theory to represent 
statistical and expert evidence in the estimation of future extreme sea return level 
associated to a given return period. We represent the statistical evidence by 
likelihood-based belief functions [7] and the sea level rise projections provided by 
two sets of experts by a trapezoidal possibility distribution. A Monte Carlo 
simulation allows us to combine both belief measures to compute the future return 
level and a measure of the uncertainty of the estimations. 

1   Introduction 

Comprehensive uncertainty analysis is a key part of design and safety assessment 
procedures for reliable results and optimal decision. In the hydrological field, 
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communicating the uncertainty about future flood risk to the decision makers is 
becoming the rule rather than the exception [1, 12]. If there is a general consensus 
about the relevant sources of uncertainty within a flood risk analysis, there is an 
increasing debate among risk analysts about the framework to use for quantifying 
it. The commonly used probabilistic framework has been strongly criticized for 
treating in the same way aleatory uncertainty that characterizes natural variability 
and epistemic uncertainty resulting from limited knowledge [1]. Given that, in 
environmental risk analysis, these uncertainties usually arise from different 
sources (statistical evidence, expert opinion...), the need for alternative 
frameworks to address differently both kinds of uncertainty emerged. Intensive 
works are investigating the appropriateness of approaches such as fuzzy set 
theory, imprecise probability or Dempster-Shafer theory in assessing reliability 
and risk analyses.  

In this paper, we are interested in modeling the uncertainty pertaining to the 
design parameters of flood defense structures in the context of future climate 
change. Evidence for estimating the parameter of interest and its uncertainty 
originates from two sources of different natures. The first one is related to 
statistical evidence commonly expressed by frequentist or Bayesian approach, the 
relevance of which has been increasingly criticized [5, 8]. The second one 
concerns projections of climate change and its impacts in terms of sea level rise, 
which have to be assessed by climate experts. Partial disagreement about the 
future climate change within the climate community leads, as will be showed later, 
to a high level of uncertainty attached to the projections available in the literature. 

We propose to represent and combine the two different sources of evidence 
(data and experts) using the DS framework, given its ability to address in a unified 
mathematical context different sources of evidence and the tools it offers to 
combine them.   

The paper is organized as follows. In the first section, we review the use of 
extreme value statistics in hydrology and the characteristics of hydrologic 
extremes in flood design. We briefly address the issue of climate change impacts 
and present the main projections on the future sea level rise existing in the 
literature. In the second part, we justify and explain the use of likelihood-based 
inference to represent statistical evidence and briefly address its connection with 
the DS framework. Finally, the last part describes the application of the 
methodology and summarizes the main results. 

2   Key Elements on Hydrology and Climate Change 

Flood structures have to withstand exceptional sea events and their design has thus 
to be based on extreme sea level and waves. The main tool for modeling extreme 
events in environmental applications such as floods, droughts or rainfalls is 
Extreme Value Theory (EVT), which has emerged giving the limit of the 
conventional frequency analysis in fitting the tails of probability distributions. The 
block maxima approach is the original and best known method in EVT. It is based 
on the assumption that the maximum of an independent and identically distributed 
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(i.i.d.) sample has asymptotically a generalized extreme value (GEV) distribution 
[11]. The cumulative distribution function of the GEV distribution is given by:  

  , , , exp 1                      for   0exp exp                     for   0,                   (1)     

                     
where , 0,  are, respectively, location, scale and shape parameters. 
According to the sign of ,  the distribution is called Fréchet ( 0 , Weibull 
( 0  or Gumbel ( 0 . 

In extreme-values studies, the probability of exceedance of a certain value z is 
usually expressed in terms of the return period T, defined as the average number 
of years between two successive exceedances of the corresponding return value z. 
Within the annual maxima method, the return period of a given level z is directly 
related to its annual non exceedance probability p by the relation: T =1/(1-p). 
Therefore, we get from (1) the following expression of the return level   
associated to a given return period T: 

 

               zT  µ  1 Log 1 T           for   ξ 0 µ σ Log Log 1 T                 for   ξ 0,                        (2)  

 
The only available evidence when estimating extreme quantiles is derived from 
the historical observations.   

Commonly, flood defenses in coastal areas are designed to withstand at least 
100-year events. However, due to climate change, they will be subject during their 
life time to higher loads than the design estimations. The main impact is related to 
the increase of the mean sea level which affects the frequency and intensity of 
surges. For adaptation purposes, the present statistics of extreme sea levels derived 
from the observations should be combined with the projections of the future sea 
level rise (SLR). 

Future SLR projections provided by the IPCC's (International Panel of Climate 
Change Experts) last Assessment Report [10] assess the likely range of values for 
sea-level rise over the 1990-2095 period as 0.18 to 0.79 m; it is indicated in this 
report that higher values should not be excluded. This range takes into account 
uncertainties associated to future emissions of greenhouse gases (GHGs) 
corresponding to the SRES (Special Report Emission Scenarios) (scenarios that 
cover a wide range of possible economic, technological and energetic states of 
the world), global circulation models used to estimate future temperature 
projections and impacts models (melting of the Antarctic and Greenland, oceans 
expansion, etc.).  

Since the release of the last IPCC report, other sea level rise assessments based 
on semi-empirical models have been undertaken, proposing more pessimistic sea 
level rise scenarios for 2100. For example, based on a simple statistical model, 
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Rahmstorf [15] suggests [0.5m, 1.4 m] as a likely range of values for sea-level rise 
at the end of this century. However, recent studies showed that there is a physical 
limit to the sea level rise in the coming years: the threshold of 2 m could not be 
exceeded by the end of this century [13].  

Current methods for integrating future SLR in flood risk or design analysis 
have considered a deterministic particular sea level rise scenario since there is no 
information to quantify the probability of any given sea level magnitude within the 
IPCC range. However, as shown by Purvis [14], who undertook a flood risk 
analysis under climate change, using the most plausible sea level rise scenario 
may significantly underestimate effective consequences and lead to erroneous 
decisions. 

For estimating design level under climate change, we proceed in two steps: we 
first infer the current design level from statistical evidence (available sea level 
measurements). In a second step, we integrate expert judgment on future sea  
level rise.  

3   Likelihood-Based Representation of Statistical Evidence 

The estimated level is usually obtained from (2) by replacing the probability 
distribution parameters by their best estimates. Commonly, parameters are 
estimated using frequentist methods. However, these methods are based on 
asymptotic properties and their performance turns to be quite poor when we deal 
with small samples. As for the estimations, the confidence intervals supposed to 
inform about the level of uncertainty within the estimations are quite unreliable 
because of the very crude approximations in the calculation of the upper and lower 
bounds of the confidence interval [18]. In fact, confidence intervals are based on 
the repeated sampling hypothesis which consists of hypothetically repeating the 
particular experiment and derive accordingly the confidence bounds. In cases such 
that the repetition is not possible, this approach can be questioned and alternative 
approaches to effectively represent the available evidence are needed. 

Authors such as Fisher [8], Cox [5], Barnard et al. [3] and Edwards [7] have 
criticized the frequentist approach for its inappropriate use of significance levels, 
confidence intervals and other repeated-sampling criteria to represent evidence 
and have advocated a new, more ‘evidential’ approach to statistical inference that 
uses only the likelihood function.  

The likelihood-based inference approach relies on the likelihood principle, 
which states that given an observation , the relevant information about an 
unknown parameter Ѳ  (possibly a vector) is all contained in the 
likelihood function for the observed sample , denoted ; X .  Recall that the 
likelihood is a function of the parameters of a statistical model ;  defined as 
follows: given some observed outcomes, the likelihood of a set of parameters is 
equal to the probability of the observations given those parameters. Thus  ; X ; . 
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The representation of statistical evidence in the belief function framework is 
motivated by the fact that belief functions form a richer set of functions than 
probability measures: it is thus expected that inference, when based on belief 
functions, would allow us to model a wider range of uncertainty than probabilities. 
Shafer [17] was the first to propose to represent likelihood information as a 
consonant belief function about the parameters. Shafer’s method was later 
justified axiomatically by Wasserman [19]; additional arguments for its use in 
statistical inference were provided by Aickin [2]. Fisher [8] interprets the 
likelihood function as an expression of the relative plausibility of the parameters 
when no additional information, except the observations, is available. It thus 
seems reasonable to define the plausibility contour function (or credibility 
function), when the likelihood is bounded, as: 

 

                                         ; ; ;                                       (3)  

 
where  is the maximum likelihood estimate (MLE) of . The associated 

plausibility is easily computed for every subset Ѳ as:        
 
                                sup ; ;                              (4)    
 
The contour function (3) has a simple interpretation:  ;  represents the 
probability of observing x if the true parameter value is , relative to the 
maximum probability of observing x  for any value of . A parameter value with 
low plausibility, say 0.001, indicates that there are other values of   which ensure 
a 1000 times higher probability to observe .  

The set  Ѳ / , , called the -level likelihood region, allows us 
to characterize ranges of implausible values (for example, values ranging outside 
5% likelihood region) and very plausible values. 

4   Application and Results 

As a case study, we applied the likelihood-based inference method described 
above to infer the design variable  from the sample of observations X 
corresponding to 15 years of hourly records of sea level (observations from tide 
gauges at le Havre harbor, France). This measure was estimated under the 
assumption that the annual maxima have a Gumbel distribution (2); here,  is the 
structural parameter and    the nuisance one. The latter was eliminated through a 
profile likelihood approach. The corresponding contour function is shown in 
Figure 1.The most plausible value characterized by a plausibility level equal to 1 
corresponds to the maximum likelihood estimate.   

In a second step, we integrated the uncertain effect of climate change in terms 
of SLR (in meters) to estimate the future return level (at the end of the century)  
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Fig. 1 Plausibility measure of the design 
parameter  

 
 
Fig. 2 SLR Trapezoidal Possibility inferred 
measures (in continuous bold line: inference 
based on Rahmstorf evidence. In dashed 
line: inference based on IPCC evidence)  

 
associated to the same return period.  As sources of information about the SLR, 
we considered projections by the IPCC and Rahmstorf [15] estimations provided 
above as the current best available evidence. We formalized each of these pieces 
of evidence by a trapezoidal possibility measure that represents our best 
interpretation of the expert’s estimations (Figure 2). Since both sources are 
reliable, a conjunctive aggregation is applicable. Among the conjunctive rules, the 
minimum is the most appropriate when the opinions of the experts are based on a 
common knowledge: we thus applied this rule to derive the aggregated SLR 
possibility distribution. 

Finally we computed the belief function on the future design level  
 using a Monte Carlo sampling procedure. This procedure 

consists in randomly drawing plausibility levels  and possibility levels  using 
independent uniform distributions For every random  and , we associate the  and  likelihood regions [  ,   and [  ,  ; the corresponding 

design level  is within [   ,  . This procedure was 

repeated a thousand times. From these simulated intervals, we can calculate for 
a fixed level , the cumulative plausibility and belief. The cumulative 
plausibility corresponds to the relative frequency, over the simulations, of the 
event “the lower bound is less than the fixed level”, whereas the cumulative 
belief corresponds to the relative frequency of the event “the upper bound is less 
than the fixed level”. Figure 3 shows the cumulative plausibility and belief 
functions of the current and future return level (respectively in dashed and solid 
line). The upper curve corresponds to the plausibility function and the lower one 
to the belief measure.  
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Fig. 3 Cumulative belief functions for the current (in dashed line) and future (in solid line) 
return level: the lower distribution is the belief; the upper one is the plausibility 

The area between the belief and the plausibility dashed curves can be 
interpreted as a measure of the total uncertainty. When climate change is 
considered in the estimation of the future level, the area becomes very large, 
reflecting the important uncertainty associated with the SLR projections. 

5   Conclusion 

The Dempster-Shafer theory of belief functions places emphasis on the 
representation of evidence for evaluating degrees of belief. The generality and 
flexibility of this framework makes it suitable for representing and combining 
expert judgments and statistical evidence. In this paper, this approach has been 
applied to the estimation of the centennial sea level at a particular location, taking 
into account historical data and expert assessments of sea level rise by the end of 
the century. This work is part of a larger project that aims at defining engineering 
design processes for the adaptation of coastal infrastructure to climate change. 
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Sigmoidal Model for Belief Function-Based
Electre Tri Method

Jean Dezert and Jean-Marc Tacnet

Abstract. Main decision-making problems can be described into choice, ranking or
sorting of a set of alternatives or solutions. The principle of Electre TRI (ET) method
is to sort alternatives ai according to criteria g j into categories Ch whose lower and
upper limits are respectively bh and bh+1. The sorting procedure is based on the
evaluations of outranking relations based firstly on calculation of partial concor-
dance and discordance indexes and secondly on global concordance and credibility
indexes. In this paper, we propose to replace the calculation of the original concor-
dance and discordance indexes of ET method by a more effective sigmoidal model.
Such model is part of a new Belief Function ET (BF-ET) method under development
and allows a comprehensive, elegant and continuous mathematical representation of
degree of concordance, discordance and the uncertainty level which is not directly
taken into account explicitly in the classical Electre Tri.

1 Introduction

The Electre Tri (ET) method, developed by Yu [13], remains one of the most suc-
cessful and applied methods for multiple criteria decision aiding (MCDA) sorting
problems [5]. ET method assigns a set of given alternatives ai ∈A, i = 1,2, . . . ,n ac-
cording to criteria g j, j = 1,2, . . . ,m to a pre-defined (and ordered) set of categories
Ch ∈C, h= 1,2, . . . , p+1 whose lower and upper limits are respectively bh and bh+1

for all h = 1, . . . , p), with b0 ≤ b1 ≤ b2 ≤ . . . ≤ bh−1 ≤ bh ≤ . . . ≤ bp. The assign-
ment of an alternative ai to a category Ch (limited by profiles bh and bh+1 ) consists
in four steps involving at first the computation of global concordance c(ai,bh) and
discordance d(ai,bh) indexes1 (steps 1 & 2), secondly their fusion into a credibility
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1 Themselves computed from partial concordance and discordance indexes based on a given
set criteria g j(.), j ∈ J.
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index ρ(ai,bh) (step 3), and finally the decision and choice of the category based
on the evaluations of outranking relations [13, 6] (step 4). The partial concordance
index c j(ai,bh) measures the concordance of ai and bh in the assertion ”ai is at least
as good as bh”. The partial discordance index d j(ai,bh) measures the opposition of
ai and bh in the assertion ”ai is at least as good as bh”. The global concordance
index c(ai,bh) measures the concordance of ai and bh on all criteria in the asser-
tion ”ai outranks bh”. The degree of credibility of the outranking relation denoted
as ρ(ai,bh) expresses to which extent ”ai outranks bh” according to c(ai,bh) and
d j(ai,bh) for all criteria. The main steps of ET method are described below:

1. Concordance Index: The concordance index c(ai,bh) ∈ [0,1] between the al-
ternative ai and the category Ch is computed as the weighted average of partial
concordance indexes c j(ai,bh), that is

c(ai,bh) = ∑
j∈J

wjc j(ai,bh) (1)

where the weights wi ∈ [0,1] represent the relative importance of each crite-
rion g j(.) in the evaluation of the global concordance index. They must sat-
isfy ∑ j∈J wj = 1. The partial concordance index c j(ai,bh) ∈ [0,1] based on
a given criterion g j(.) is computed from the difference of the criteria eval-
uated for the profil bh, and the criterion evaluated for the alternative ai. If
the difference g j(bh)− g j(ai) is less (or equal) to a given preference thresh-
old q j(g j(bh)) then ai and Ch are considered as different based on the crite-
rion g j(.) so that a preference of ai with respect to Ch can be clearly done.
If the difference g j(bh)− g j(ai) is strictly greater to another given threshold
p j(g j(bh)) then ai and Ch are considered as indifferent (similar) based on g j(.)).
When g j(bh)− g j(ai) ∈ [q j(g j(bh)), p j(g j(bh))], the partial concordance index
c j(ai,bh) is computed from a linear interpolation. Mathematically, the partial
concordance index is obtained by:

c j(ai,bh)�

⎧⎪⎨⎪⎩
1 if g j(bh)− g j(ai)≤ q j(g j(bh))

0 if g j(bh)− g j(ai)> p j(g j(bh))
g j(ai)+p j(g j(bh))−g j(bh)

p j(g j(bh))−q j(g j(bh))
otherwise

(2)

2. Discordance Index: The discordance index between the alternative ai and the
category Ch depends on a possible veto condition expressed by the choice of a
veto threshold v j(g j(bh)) imposed on some criterion g j(.). The (global) discor-
dance index d(ai,bh) is computed from the partial discordance indexes:

d j(ai,bh)�

⎧⎪⎨⎪⎩
1 if g j(bh)− g j(ai)> v j(g j(bh))

0 if g j(bh)− g j(ai)≤ p j(g j(bh))
g j(bh)−g j(ai)−p j(g j(bh))

v j(g j(bh))−p j(g j(bh))
otherwise

(3)
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One defines by V the set of indexes j ∈ J where the veto applies (where the
partial discordance index is greater than the global concordance index), that is

V � { j ∈ J|d j(ai,bh)> c(ai,bh)} (4)

Then a global discordance index can be defined [12] as

d(ai,bh)�
{

1 if V = /0

∏ j∈V
1−d j(ai,bh)

1−c j(ai,bh)
if V �= /0

(5)

3. Global Credibility Index: In ET method, the (global) credibility index ρ(ai,bh)
is computed by the simple discounting of the concordance index c(ai,bh) given
by (1) by the discordance index (discounting factor) d(ai,bh) given in (5). Math-
ematically, this is given by

ρ(ai,bh) = c(ai,bh)d(ai,bh) (6)

4. Assignment Procedure: The assignment of a given action ai to a certain cate-
gory Ch results from the comparison of ai to the profile defining the lower and
upper limits of the categories. For a given category limit bh, this comparison re-
lies on the credibility of the assertions ai outranks bh. Once all credibility indexes
ρ(ai,bh) for i = 1,2, . . . ,m and h = 1,2, . . . ,k have been computed, the assign-
ment matrix M � [ρ(ai,bh)] is available for helping in the final decision-making
process. In ELECTRE TRI method, a simple λ -cutting level strategy (for a given
choice of λ ∈ [0.5,1]) is used in order to transform the fuzzy outranking relation
into a crisp one to determine if each alternative outranks (or not) each category.
This is done by testing if ρ(ai,bh) ≥ λ . If the inequality is satisfied, it means
that indeed ai outranks the category Ch. Based on outranking relations between
all pairs of alternatives and profiles of categories, two approches are proposed
in ELECTRE TRI to finally assign the alternatives into categories, see [5] for
details:

• Pessimistic (conjunctive) approach: ai is compared with bk, bk−1, bk−2, . . . ,
until ai outranks bh where h ≤ k. The alternative ai is then assigned to the
highest category Ch if ρ(ai,bh)≥ λ for a given threshold λ .

• Optimistic (disjunctive) approach: ai is compared with b1, b2, . . . bh, . . . until
bh outranks ai. The alternative ai is assigned to the lowest category Ch for
which the upper profile bh is preferred to ai.

The objective and motivation of this paper is to develop a new Belief Function based
ET method taking into account the potential of BF to model uncertainties. The whole
BF-ET method is under development and will be presented and evaluated on a de-
tailed practical example in a forthcoming publication. Due to space limitation con-
straints, we just present here what we propose to compute the new concordance and
discordance indexes useful in our BF-ET.
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2 Limitations of the Classical Electre Tri

ET method remains rather based on heuristic approach than on a theoretical one for
each of its steps. Belief functions can improve ET method because of their ability
to model and manage conflicting as well as uncertainty information in a theoretical
framework. We only focus here on steps 1 and 2 and we propose a solution to over-
come their limitations in the next section.

Example 1: Let’s consider g j(ai) ∈ [0,100], and let’s take g j(bh) = 50 and the fol-
lowing thresholds: q j(g j(bh)) = 20 (indifference threshold), p j(g j(bh)) = 25 (pref-
erence threshold) and v j(g j(bh) = 40 (veto threshold). Then the local concordance
and discordances indexes obtained in steps 1 and 2 of ET are shown on the Fig. 1.
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Fig. 1 Example of partial concordance and discordance indexes.

From this very simple example, one sees that ET modeling of partial concordance
and discordance indexes is not very satisfactory since there is no clear (explicit
and consistent) modeling of the uncertainty area where the action ai is not totally
discordant, nor totally concordant with the profile bh. In such simplistic modeling,
there exist points g j(ai) (lying on the slope of the blue or red curves) that can be
not totally concordant while being totally not discordant (and vice-versa), which is
counter-intuitive and rather abnormal. This drawback will be solved using our new
sigmoidal basic belief assignment (bba) modeling presented in the next section.

3 Sigmoidal Model for Concordance and Discordance Indexes

In fact, there are several ways to compute partial concordances and discordances
indexes and to combine them in order to provide the global credibility indexes
ρ(ai,bh). Electre Tri proposes a simple and basic approach based on hard threshold-
ing techniques for doing this. It can fail to work efficiently in practice in some cases,
or may require a lot of experience to calibrate/tune all setting parameters in order to
apply it to get pertinent results for decision-making support. Usually, a sensitivity
analysis must be done very carefully before applying ET in real applications. Here,
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we propose a more flexible approach based on sigmoidal modeling where no hard
thresholding technique is required.

In ET approach, we are mainly concerned in the evaluation of the credibility in-
dexes ρ(ai,bh) ∈ [0,1] for i = 1,2, . . . ,m and h = 1,2, . . . ,k (step 3) from which the
final decision (assignment) will be drawn in step 4. Step 3 is conditioned by the
results of steps 1 and 2 which can be improved using belief functions. For such pur-
pose, we consider, a binary frame of discernment2 Θ � {c, c̄} where c means that
the alternative ai is concordant with the assertion ”ai is at least as good as profile
bh”, and c̄ means that the alternative ai is opposed (discordant) to this assertion. This
must obviously be done with all the assertions to check in the ET framework. The
basic idea is for each pair (ai,bh) to evaluate its bba mih(.) defined on the power-set
of Θ , denoted 2Θ . Such bba’s have of course to be defined from the combination
(fusion) of the local bba’s m j

ih(.) evaluated from each possible criteria g j(.) (as in

steps 1 and 2). The main issue is to derive the local bba’s m j
ih(.) defined in 2Θ from

the knowledge of the criteria g j(.) and preference, indifference and veto thresholds
p j(g j(bh)), q j(g j(bh)) and v j(g j(bh)) respectively. It turns out that this can be easily
obtained from the new method of construction of bba presented in [4] and adapted
here in the ET context as follows:

• Let g j(ai) be the evaluation of the criterion g j(.) for the alternative ai, follow-
ing ET approach when g j(ai) ≥ g j(bh)− q j(g j(bh)) then the belief in concordance
c must be high (close to one), whereas it must be low (close to zero) as soon as
g j(ai) < g j(bh)− p j(g j(bh)). Similarly, the belief in discordance c̄ must be high
(close to one) if g j(ai) < g j(bh)− v j(g j(bh)), and it must be low (close to zero)
when g j(ai) ≥ g j(bh)− p j(g j(bh)). Such behavior can be modeled directly from
the sigmoid functions defined by fs,t (g)� 1/(1+ e−s(g−t)) where g is the criterion
magnitude of the alternative under consideration; t is the abscissa of the inflec-
tion point of the sigmoid. s/4 is the slope3 of the tangent at the inflection point. It
can be easily verified that the bba m j

ih(.) satisfying the expected behavior can be
obtained by the fusion4 of the two following simple bba’s defined by: where the
abscisses of inflection points are given by tc = g j(bh)− 1

2 (p j(g j(bh))+q j(g j(bh)))

and tc̄ = g j(bh)− 1
2 (p j(g j(bh))+v j(g j(bh))) and the parameters sc and sc̄ are given

by5 sc = 4/(p j(g j(bh))− q j(g j(bh))) and sc̄ = 4/(v j(g j(bh))− p j(g j(bh))).

Table 1 Construction of m1(.) and m2(.).

focal element m1(.) m2(.)

c fsc,tc(g) 0
c̄ 0 f−sc̄,tc̄(g)

c∪ c̄ 1− fsc,tc(g) 1− f−sc̄ ,tc̄(g)

2 Here we assume that Shafer’s model holds, that is c∩ c̄ = /0.
3 i.e. the ratio of the vertical and horizontal distances between two points on a line; zero if

the line is horizontal, undefined if it is vertical.
4 With averaging rule, PCR5 rule, or Dempster-Shafer rule [8].
5 The coefficient 4 appearing in sc and sc̄ expressions comes from the fact that for a sigmoid

of parameter s, the tangent at its inflection point is s/4.
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• From the setting of threshold parameters p j(g j(bh)), q j(g j(bh)) and v j(g j(bh)),
it is easy to compute the parameters of the sigmoids (tc,sc) and (tc̄, tc̄), and thus to
get the values of bba’s m1(.) and m2(.). Once this has been done the local bba
m j

ih(.) is computed by the fusion (denoted ⊕) of bba’s m1(.) and m2(.), that is

m j
ih(.) = [m1⊕m2](.). As shown in [4], the choice of a particular rule of combination

(Dempster, PCR5, or hybrid rule) has only a little impact on the result of the com-
bined bba m j

ih(.). But since PCR5 proposes a better management of conflicting bba’s
yielding to more specific results than with other rules [1], we use it to combine m1(.)

with m2(.) to compute m j
ih(.) associated with the criterion g j(.) and the pair (ai,bh).

In adopting such sigmoidal modeling, we get now from m j
ih(.) a fully consistent

and elegant representation of local concordance c j(ai,bh) (step 1 of ET), local dis-
cordance d j(ai,bh) (step 2 of ET), as well as of the local uncertainty u j(ai,bh) by
considering: c j(ai,bh)� m j

ih(c) ∈ [0,1], d j(ai,bh)� m j
ih(c̄) ∈ [0,1] and u j(ai,bh)�

m j
ih(c∪ c̄) ∈ [0,1]. Of course, one has also c j(ai,bh)+ d j(ai,bh)+ u j(ai,bh) = 1.

4 Example of a Sigmoidal Model

If one takes back the example 1, the inflection points of the sigmoids f1(g) �
fsc,tc(g) and f2(g)� f−sc̄,tc̄(g) have the following abscisses tc = 50− (25+20)/2=
27.5 and tc̄ = 50−(25+40)/2= 17.5 and parameters sc = 4/(25−20)= 4/5= 0.8
and sc̄ = 4/(40−25)= 4/15≈ 0.2666. The two sigmoids f1(g j(ai)) and f2(g j(ai))
are shown on the Fig. 2.
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Fig. 2 f1(g j(ai)) and f2(g j(ai)) sigmoids.

It is interesting to note the resemblance of Fig. 2 with Fig. 1. From these sig-
moids, the bba’s m1(.) and m2(.) are computed according to Table 1 and shown on
the Figure 3.
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Fig. 3 Bba’s m1(.) and m2(.) to combine.

The construction of the consistent bba m j
ih(.) is obtained by the PCR5 fusion of

the bba’s m1(.) and m2(.). The result is shown on Fig. 4.
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Fig. 4 m j
ih(.) obtained from the PCR5 fusion of m1(.) with m2(.).

From this new sigmoidal modeling, we can compute the local bba’s m j
ih(.) de-

rived from the knowledge of criterion g j(.) and setting parameters. This is a smooth
appealing and elegant technique to build all the local bba’s: no hard thresholding is
necessary because of the continuity of sigmoid functions.

One can then compute the global concordance and discordance indexes of steps
1 and 2 from the computation of the combined bba mih(.) resulting of the fusion of
local bba’s m j

ih(.) taking eventually into account their importance and reliability6 (if
one wants). This can be done using the recent fusion techniques proposed in [9],
or by a simple weighted averaging. From mih(.) we can use the same credibility
index as in step 3 of ET, or just skip this third step and define a decision-making
based directly on the bba mih(.) using classical approaches used in belief function
framework (say the max of belief, plausibility, or pignistic probability, etc).

6 In classical ET, the reliability of criteria is not taken into account.
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5 Conclusions

After a brief presentation of the classical ET method, we have proposed a new ap-
proach to model and compute the concordance and discordance indexes based on
belief functions in order to overcome the limitations of steps 1 and 2 of the ET ap-
proach. The advantages of our modeling is to provide an elegant and simple way not
only to compute the concordance and discordance indexes, but also the uncertainty
level that may occur when information appears partially concordant and discordant.
The Improvements of other steps of ET method are under development. In future
reaserch works, we will evaluate and compare on real MCDA problem our BF-ET
with the original ET method and with other belief functions based methods already
available in MCDA frameworks [10, 11].
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Belief Inference with Timed Evidence
Methodology and Application Using Sensors in a Smart
Home

Bastien Pietropaoli, Michele Dominici, and Frédéric Weis�

Abstract. Smart Homes need to sense their environment. Augmented appliances
can help doing this but sensors are also required. Then, data fusion is used to com-
bine the gathered information. The belief functions theory is adapted for the com-
putation of small pieces of context such as the presence of people or their posture.
In our application, we can assume that a lot of sensors are immobile. Also, physical
properties of Smart Homes and people can induce belief for more time than the ex-
act moment of measures.

Thus, in this paper, we present a simple way to apply the belief functions the-
ory to sensors and a methodology to take into account the timed evidence using
the specificity of mass functions and the discounting operation. An application to
presence detection in smart homes is presented as an example.

1 Introduction and Motivation

Context-aware applications have to sense the environment in order to adapt them-
selves and provide contextual services. This is the case of Smart Homes equipped
with sensors and augmented appliances. However, sensors can be numerous, hetero-
geneous and unreliable. Thus the data fusion is complex and requires a solid theory
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to handle those problems. For this purpose, we adopted the belief functions theory
(BFT) [7].

In our Smart Home application, we forbid the use of equipment on people [2].
Thus, we assume that a lot of sensors are immobile. Some of them should also in-
duce belief for a certain amount of time after the measures because of the continuity
of studied context. For instance, a motion sensor in a room could be able to induce
a belief on the presence of someone for a longer time than the exact moment at
which the measure has been obtained. It is a matter of physical system with inertia.
In this example, it is easy to take into account that physical persons cannot move
too fast and thus will certainly be there for some seconds before they can exit the
room. Thus, this little example brings two questions: how to build evidence from
raw data and how to take into account evidence over time? In this paper, we show a
simple method already existing to build belief functions from raw data and propose
an improvement to take into account timed evidence.

Section 2 presents the basics of the belief functions theory required to understand
the proposed methodology. In section 3, the methodology used to build the belief
functions from raw data given by sensors and the algorithm to take into account
timed evidence and create temporization are detailed. In section 4, a very simple
example of application is given. Finally in section 5 the results are discussed and
our future work is presented.

2 Basics of Belief Functions Theory

In this section, we present the basics of the BFT, only considering the notions that
are required to understand the methodology given in section 3.

2.1 Mass Function

In the BFT [7], the first thing that should be defined is a set of possible worlds Ω =
{ω1,ω2, ...,ωn} called the frame of discernment. These worlds have to be exclusive
and if possible exhaustive. To give an example, we can define a set of the possible
postures of someone by Ω = {Seated,Standing,LyingDown}. Once the frame of
discernment is created, a mass function (also called basic belief assignment or body
of evidence) representing the degree of belief associated to each subset of Ω is
defined such that:

m : 2Ω �−→ [0,1]

∑
A⊆Ω

m(A) = 1 (1)

Every subset A with m(A)> 0 is called a focal set and may be considered as a part
of belief. As the mass functions are applied to the powerset of Ω (the set of all
subsets of Ω ), differing from the probability theory, the beliefs may be non-specific
(imprecise), i.e. accorded to a set of possible worlds. Thus, the belief functions
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theory offers a double way to express the uncertainty using degrees of belief but
also non-specificity.

2.2 Specificity

We saw that a mass function can be non-specific and assign belief to a set of possible
worlds. Thus, there exists a tool, called specificity [9], to characterize mass functions
and defined by:

Sm = ∑
A⊆Ω ,A �= /0

m(A)
|A| where |A| is the cardinality of A (2)

It can be interpreted as the degree of precision of the mass function or the inverse of
the average cardinality of focal elements. For instance, if Sm = 1, then it means the
mass function has only focal elements with a cardinality of 1 and if Sm = 0.5, then
the average cardinality of focal elements is two. This tool will be used in section 3
as an indicator of the global precision of a mass function.

2.3 Discounting

There exist many operations on mass functions. One we found interesting to manage
time is the discounting. It is defined by:

mα(A) =

{
α.m(A) if A ⊆ Ω and A �= Ω

α.m(A)+ (1−α) if A = Ω with α ∈ [0,1] (3)

This operation transfers a part of the mass attributed to each focal element to the
set of all possible worlds (Ω ) considered, in our case, as the belief given to the total
ignorance. Thus, this operation always reduces the specificity of the mass function
it is applied to.

The basics presented in this section are the only tools required by the methodol-
ogy described in the next section.

3 Building Belief Functions

In this section, we describe a simple way to build mass functions from raw data
given by sensors and also a way to add temporization to take into account timed
evidence. For simplicity’s sake, only linear functions are shown but any kind of
function can be used to build sets of mass functions as well as temporization.

3.1 Sets of Mass Functions

To build mass functions, it is possible to use methods exploiting statistics [1] but we
wanted a simple and intuitive way to build mass functions without the need for hours
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Fig. 1 Example of a set of mass functions associated to a Phidget motion sensor in the case
of presence detection

of experimentation and easy to tune to adapt to any place and any situation. Thus,
we chose the method used in [6]. Instead of building mass functions from previous
observations, we build for each sensor a set a mass functions. Figure 1 gives an
example of set of mass functions for a simple motion sensor in a case of presence
detection (Ω = {Yes,No}). The sensor used is a Phidget Motion Sensor [4]. When
connected to a USB interface, it returns a measure between 0 and 1000. A measure
of 500 corresponds to no motion detected and any other measure is equivalent to
its symmetrical around 500. This kind of set is built on intuition and can be fine-
tuned after few experiments. Once a set of mass functions is built, a projection on
this set is done in order to obtain the corresponding mass function each time a raw
data from that sensor is received. For instance, with the given figure 1, if the motion
sensor returns a value of 450, then the resulting mass function would have two focal
elements: m({Yes}) = 0.7 and m({Yes∪No}) = 0.3.

A constraint to respect when building these sets of mass functions is the least
commitment principle. In our case it can be translated by the fact that the belief in-
duced by a sensor measure should not be too specific when it cannot be. In the given
example, the motion is only a proof that somebody may be there but the gathered
measure can never be a good proof that nobody is there. That is why the set {No}
never appears in the set of mass functions in figure 1.

3.2 Temporization

In physical systems such as Smart Homes, some properties can make evidence stay
valid over time. In the case of presence detection, a motion sensor, if well placed,
is certainly a timed evidence as a person moving in a room cannot leave it before
seconds. This assumption is valid for any state that can be perceived as continuous
in time. Thus, it should be possible to infer belief for a certain amount of time after
the measure has been obtained. The belief should become less and less committed
over time if no new clear evidence is brought. As far as we now, no tool in the BFT
handles this problem directly.
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In order to represent the weakening of a belief over time, we use the discounting
operation (3). The specificity (2) will also help characterizing the mass function
resulting of each measure and to give priority to precision instead of certainty. Thus,
an old and discounted mass function m1 will be preferred to a fresh mass function
m2 if Sm1 > Sm2 . As a consequence, instead of giving just the projection induced by
the last measure, the specificity of both mass functions, the old one and the new one,
are compared and the most specific is returned. Algorithm 1 shows the pseudo-code
corresponding to this procedure.

We decided to give priority to precision instead of certainty because in the deci-
sion making process, when using classical criterion such as credibility, plausibility
or the bet on the probability [8], it is easier to degrade the precision to gain in cer-
tainty. As a matter of fact, it is possible to increase the cardinality of the set of
possible worlds chosen as the system response to gain certainty.

Algorithm 1. Take time into account
newMassFunction = getProjection(lastRawData)
alpha = getDiscountingFactor(oldTime, newTime)
discountedMassFunction = discounting(oldMassFunction, alpha)
if SdiscountedMassFunction > SnewMassFunction then

return discountedMassFunction
else

oldMassFunction = newMassFunction
oldTime = newTime
return newMassFunction

end if

The function computing the discounting factor can be any function depending on
time. In the example that will be given in section 4, a simple linear function has
been used. This very simple algorithm can be applied easily but does require a bit of
computation as discounting and specificity are in O(2n) where n = |Ω |. However, n
stays acceptable for the computation of small pieces of context such as the presence,
the posture of someone, etc, as it is the case in our application [2, 5]. In practice, the
computation of discounting and specificity is also reduced to the number of focal
sets (A ⊂ Ω with m(A) > 0) of a belief function which can be smaller than the set
of possible subsets of Ω . Some performance results of our implementation of the
belief functions theory are presented in [5].

4 Application

In this section, we focus on the importance of taking into account the timed evi-
dence induced by the physical properties of systems. Then, we illustrate the use of
temporization in a simple example of presence detection in a room.
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4.1 Presence Detection

In Smart Homes, one of the main problems is the detection of people anywhere and
anytime. Sometimes, indoor geo-localization is not needed and only an indication
that someone is in a room or in another is enough. To do this, simple systems often
use only a motion sensor considered as a sufficient proof. Using data fusion and es-
pecially belief functions theory, it is possible to combine multiple sensors to obtain
a finer result with poor evidence. The fact that someone cannot exit a room in the
second after he or she has been detected can indirectly bring interesting evidence.
That is why we apply temporization in the detection of presence.

In order to detect presence in a room, we use in this application three simple
sensors [4]: a motion sensor, a vibration sensor on a chair and a sound sensor. The
evidence gathered from the sound sensor is taken from the variation of sound level
and not directly from the measure. None of these sensors can bring a good proof
that nobody is in the room. Thus, the system response should always be {Yes∪No}
or {Yes}. Figure 1 shows the model used for the motion sensor in this application.

In the presence detection described here, we used certain types of sensors but
some others such as CO2 level sensors, microphones and so on can also be used and
the same methodology can be applied. The application presented here is thus just a
simple example the proposed methodology is not limited to.

4.2 Application of Temporization

Figure 2 shows the results of an experimentation where both results have been com-
puted in parallel from the same raw data. The combination rule used is the nor-
malized Dempster’s rule of combination but any combination could be used. As a
matter of fact, this way of building mass functions does not prevent from using any
combination rule.

Figure 2 is eloquent. The resulting mass functions are clearly stabilized when
applying temporization on sensors. Without temporization, the system can doubt
sometimes because the sensors used in our experiment are not sufficient proofs,
especially if there is someone quiet and not moving at all. The first consequence of
temporization is thus stabilization of the system response.

Unfortunately, the effect of noisy measures is also stabilized. In the top part of
figure 2, when nobody is in the room, the mass assigned to the {Yes} is greater than
in the case where no temporization has been used. Thus, a less committed model
should be used to be less sensitive to noisy measures. The use of temporization
enables the use of less committed models because asynchronous proofs can be fused
altogether anyway, a simple discounting factor reducing the strength of each proof.
As a consequence, temporization brings more confidence in the end as multiple
sensors may not be activated at the same time but, considered as timed evidence, it
does not matter as long as they induce belief in the same time interval.

Temporization also enables the reduction of required measures to get an image
of what is happening at a given time. The absence of measure gives a vacuous mass
function (m(Ω) = 1) which is always less specific than a discounted mass function.
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Fig. 2 Resulting mass functions from the detection of presence in a room with a motion
sensor, a vibration sensor on a chair and a sound sensor. On top, the temporization has been
used. In the bottom part, no temporization has been used. Both results come from the same
measures and from the same sets of mass functions.

It gives the possibility to still have belief when there is no new measure. Thus, if a
sensor measure induces belief for a long time, its frequency can be drastically re-
duced. This can also be useful in systems using wireless sensor nodes characterized
by the possibility of measure loss during communication.

Even though, the measure frequency should not be reduced too much or the sys-
tem may suffer severe problems of reactivity. A compromise between frequency and
reactivity is needed.

5 Discussion and Future Work

In this paper, we presented a simple way to build mass functions when physical
systems can induce belief over time. The complexity of the algorithm is acceptable
because only fast operations are used to take into account the time. The results
presented in section 4 show that the reactivity is slightly reduced. However, if the
chosen model respects the least commitment principle, the system response is more
stable. The algorithm also enables the use of poor evidence without degrading too
much the response of the system. The use of less committed evidence is also a very
good point when the measures are noisy.

The application presented in this paper is simple. Other experiments with more
complex cases have been tested and seem to work in the same way. Anyway, the
temporization should only be applied when the physical continuity of systems is
easy to assume. Also, the least commitment principle is key to prevent from stabi-
lizing too much belief induced by noisy measures and should be strictly respected.
More work is also required to generalize this method when the conflict between the
sources is high.

The methodology introduced enables taking into account that a belief can stay
partly valid for a certain amount of time after the measure it comes from. Another in-
teresting studied thing in the BFT is the time as evidence by itself [3]. For example,
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in the application presented in section 4, the fact that no sensor has detected even
a low activity for a very long time can be a good proof that nobody is in the room.
This kind of evidence, time as evidence, requires more work in our application.

Another big question when using the belief functions theory is decision making.
Promising work on result filters suggests that the temporization can help creating a
natural way to doubt on what is going on. Still with the same example of presence, a
natural way to doubt could be instead of directly saying {Yes} or {No}, the system
could transit from one state to the other with a {Yes∪No} for some seconds.
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Evidential Network with Conditional Belief
Functions for an Adaptive Training in Informed
Virtual Environment

Loı̈c Fricoteaux, Indira Thouvenin, Jérôme Olive, and Paul George

Abstract. Simulators have been used for many years to learn driving, piloting,
steering, etc. but they often provide the same training for each learner, no matter
his/her performance. In this paper, we present the GULLIVER system, which deter-
mines the most appropriate aids to display for learner guiding in a fluvial-navigation
training simulator. GULLIVER is a decision-making system based on an evidential
network with conditional belief functions. This evidential network allows graphi-
cally representing inference rules on uncertain data coming from learner observa-
tion. Several sensors and a predictive model are used to collect these data about
learner performance. Then the evidential network is used to infer in real time the
best guiding to display to learner in informed virtual environment.

1 Introduction

Virtual reality can provide, in comparison with classical training, many advan-
tages [1]. In the case of fluvial navigation, training in virtual environment allows
to simply modify environmental conditions (wind, current, etc.), which has an im-
pact on the behavior of the ship. Another advantage of training in virtual reality
is the strong coupling between the user and the virtual environment. The virtual
world must credibly answers to user’s actions. We use an informed virtual environ-
ment (IVE: environment including knowledge-based models and providing an ac-
tion/perception coupling) for fluvial navigation training. The purpose of our work is
to provide the best learner guiding (set of aids) in real time based on learner observa-
tion. We propose an adaptive system: the learner’s behavior is taken into account for
the choice of the aids to display [3]. On the opposite side, non-adaptive systems [4]
are easier to build but the aids will not be adapted to the learner’s performance. For
example, novice learners will not have enough help and experienced ones will have
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too much help. As fluvial navigation is a complex task, there is no complete pro-
cedure to follow to know how to navigate (there is only a navigation code). With a
procedural approach, errors can be easily detected by comparing learner’s actions
with good actions to perform [3]. With a non-procedural approach [6], the system is
more complex to build but is adapted to the training of complex tasks. Thus, our sys-
tem is based on this approach. Errors are mainly detected according to a predictive
model (the future position of the ship), therefore this detection is uncertain and this
has to be taken into account by the decision-making module in the choice of the best
guiding. We also use physiological sensors to detect learner’s state (for example the
stress level with a heart rate variability sensor), which gives uncertain data about the
user’s state due to sensor reliability and uncertainty of data interpretation.

All data coming from learner observation has to be expressed in a common formal
framework to allow making decision. We use the Dempster-Shafer (DS) theory [9]
to take the uncertainty of these data into account. Comparing to the theory of prob-
ability, the DS theory allows modeling ignorance explicitly, which is useful in our
case since we can have incomplete data about learner’s actual situation. To repre-
sent influences between variables (i.e. variables about learner’s errors and possible
feedbacks to avoid these errors) and to reason on these variables, directed graphs
are widely used. In the case of probabilistic inference, Bayesian networks (BN) are
used [7]. With belief functions, the equivalent network is called an Evidential Net-
work with Conditional belief functions (ENC) [11, 15]. ENC have been generalized
by DEVN (Directed EVidential Network with conditional belief functions) to have
n-ary relations between variables (ENC are limited to binary relations) [2]. In our
case, relations between variables are only binary because it is easier to specify [11]
and to update, so we use an ENC in our system. Also to be more intuitive, we rep-
resent knowledge by using conditional belief functions unlike joint belief functions
as in valuation networks [10]. Contrary to ENC, BN need experimental data to be
initialized (to compute conditional probabilities) because they are not intuitive to
specify. Indeed, if A and B influences C, you have to specify the probability of C
conditionally to A and B, whereas in an ENC you have to specify the belief of C
conditionally to A and the belief of C conditionally to B (and then apply a com-
bination rule to fusion these two results). When the number of variables increases,
conditional probabilities in BN cannot be simply specified or updated by hand.

The paper is organized as follows. In section 2, some useful formulas and nota-
tions about DS theory are presented. Section 3 describes our GULLIVER system of
adaptive training in IVE based on inferences in ENC.

2 Decision-Making with Conditional Belief Functions

In this section, some useful definitions and notations in the Transferable Belief
Model (TBM) [12] are briefly presented.

Definition 1. Let Ω be a finite set called the frame of discernment. Ω is the domain
relative to the variable X . A basic belief assignment (bba) mΩ : 2Ω → [0;1] is a set
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of belief masses such that ∑
A⊆Ω

mΩ (A) = 1. The belief mass mΩ
S (A) represents the

belief of the source S in the fact ”ω ∈ A”, where ω is the real state of the system
observed [8].

Data fusion is used to enhance-decision-making. To combine heterogeneous data
coming from several sources and representing by bba, combination rules are used.
Two of them are presented in the next two definitions.

Definition 2. Let two distinct bba mΩ
S1 and mΩ

S2 defined on the same frame of dis-
cernment Ω . The sources S1 and S2 are supposed reliable and distinct [14]. The
TBM conjunctive rule of combination (CRC) of mΩ

S1 and mΩ
S2 is defined as follows:

∀A ⊆ Ω , mΩ
S1 ∩ S2 (A) =

(
mΩ

S1 ∩ mΩ
S2

)
(A) = ∑

B∩C=A

mΩ
S1 (B)mΩ

S2 (C) (1)

If these belief sources are distinct and at least one of them is reliable (without being
able to quantify the reliability and knowing which source is reliable), the disjunctive
rule of combination (DRC) must be used [11].

Definition 3. Let two distinct bba mΩ
S1 and mΩ

S2 defined on the same frame of dis-
cernment Ω . The sources S1 and S2 are supposed distinct and one of them reliable.
The disjunctive rule of combination (DRC) of mΩ

S1 and mΩ
S2 is defined as follows:

∀A ⊆ Ω , mΩ
S1 ∪ S2 (A) =

(
mΩ

S1 ∪ mΩ
S2

)
(A) = ∑

B∪C=A

mΩ
S1 (B)mΩ

S2 (C) (2)

Applying the DRC on bba, when belief sources are not reliable, produces a less
informative bba [8]. When it is possible to quantify the reliability of a source S, the
CRC can be used after applying a discounting [5] on the bba coming from S.

Definition 4. The Shafer discounting of a bba mΩ
S coming from a source S which

has a reliability of 1−α is defined as follows [9]:{ α mΩ
S (A) = (1−α)mΩ

S (A) , ∀A ⊂ Ω
α mΩ

S (Ω) = (1−α)mΩ
S (Ω)+α (3)

To represent knowledge about influences between variables, conditional beliefs are
used:

Definition 5. Let mΩ be a bba about the frame of discernment Ω . The conditional
bba given B⊆Ω is defined by the following unnormalized rule of conditioning [11]:

mΩ (A|B) =
⎧⎨⎩ ∑
{X⊆B}

mΩ (A∪X), if A ⊆ B ⊆ Ω

0 otherwise
(4)

The next theorem is a property of the generalized Bayesian theorem [11] to compute
the belief of A with the knowledge of A given B and an a priori on B.
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Theorem 1. Suppose there exists some a priori belief mΘ
0 distinct from the belief

induced by the conditional bba mΩ (.|θ ) , θ ⊆Θ , then [11]:

mΩ (ω) = ∑
θ⊆Θ

mΘ
0 (θ )mΩ (ω |θ ), ∀ω ⊆ Ω (5)

As it is easier to determine belief given singletons instead of belief given sets [11],
the following formula, applying DRC on a conditional bba, can be used in (5):

mΩ (ω |θ) =
⋃

θi∈Θ
mΩ (ω |θi), ∀ω ⊆ Ω , ∀θ ⊆Θ (6)

In the TBM, decisions are made with the pignistic probabilities [13] of a bba.

Definition 6. The pignistic probability function BetP
{

mΩ}
(ω) on Ω of the bba

mΩ is defined as follows [13]:

BetP
{

mΩ
}
(ω) = ∑

A⊆Ω , ω∈A

mΩ (A)
|A|(1−mΩ ( /0))

, ∀A ⊆ Ω (7)

The decision is generally made by choosing the element ω with the highest pignistic
probability [8].

To graphically represent knowledge about influences between variables, an ENC
(Fig. 1) can be used. It is a directed acyclic graph where [11, 15, 2]:

• Each variable X has a set of possible values in ΩX and a bba associated mΩX . A
variable is represented by a circle (or an oval).

• Each root node represents an a priori bba mΩX
0 on its child node X and is repre-

sented by a rectangle.
• Each edge between two variables X and Y has a diamond representing the con-

ditional bba mΩX (X |Y ) on the child X given its parent Y .

3 Inference in ENC: The GULLIVER System for an Adaptive
Training in Informed Virtual Environment

The system GULLIVER (GUiding by visuaLization metaphors for fluviaL naviga-
tion training in Informed Virtual EnviRonment) is a decision-making system which
interprets data coming from user observation to infer the best guiding to display.

Fig. 1 Example of ENC

A B

C D

m0(A) m0(B)

m(C|A) m(C|B) m(D|B)
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Knowledge is represented in an ENC which is also used to propagate belief for
decision-making.

The global system operates as follows. The fluvial navigation simulator SimNav
computes the position, the direction and the speed of the barge controlled by the
learner thanks to the boat controls associated (Fig. 2). From these data, the position
of the barge is updated in the IVE (Informed Virtual Environment).

Actions (boat movements) and events (collisions, etc.) are transmitted by the IVE
to the user’s activity detection module. Information about the learner’s gestures is
also transmitted to this module which is in charge of detecting the mistakes made by
the learner. The learner’s state (stress level, cognitive load, etc.) is also recognized
thanks to data coming from physiological sensors.

From the learner’s state and mistakes, the decision-making module, based on an
ENC, activates the right aids to guide the learner. This module can also decide to
trigger events. For example, if the learner does not make mistakes and feels at ease,
the environment will be complexified by adding some dangers, for instance floating
objects to avoid or a thick fog.

In addition to the learner’s state and mistakes, the system takes also the learner’s
profile into account: his/her usage history (errors made before, inefficient aids, etc.)
and his/her level (novice, experienced, etc.). If the learner is a novice, the guiding
system must adapt to a cognitive speed compatible with the learner’s perception and
comprehension speed to avoid a cognitive overload.

3.1 A Priori Beliefs Deduced from User Observation

Learner’s observation brings a priori beliefs on variables representing learner’s er-
rors and state. Fig. 3 presents an extract of the ENC used in GULLIVER system.

A heart rate sensor is used to determine the learner’s stress level. In function of
the heart rate (in beats per minute), an a priori bba is computed for the variable
stress, which has a set of possible values in Ωstress = {yes;no}, as shown in Fig. 4.

Fig. 2 Model of an
adaptive training system:
GULLIVER

SIMNAVShip controls

GULLIVER

Informed virtual environment

Decision-making module

Detection of user’s activity

User’s state recognition

Actions, events

Mistakes,
risks

User’s state

User’s state tracking

Guiding with visual and audio aids

User’s profile

User’s gestures tracking
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As the heart rate sensor has a reliability of 80%, a discounting is apply on the a
priori bba. For example, if the heart rate is 105 bpm, then the a priori bba is:⎧⎨⎩

mΩstress
0 (yes) = 0.5
mΩstress

0 (no) = 0
mΩstress

0 (Ωstress) = 0.5

By using the formula (3) for the discounting, we obtain:⎧⎨⎩
0.2mΩstress

0 (yes) = 0.4
0.2mΩstress

0 (no) = 0
0.2mΩstress

0 (Ωstress) = 0.6

Similarly as for stress, we can compute an a priori bba for the variable bridge
collision in function of the future position of the boat. The more the collision is
in a near future, the more certain the collision is. In this case there is no discounting
because the physical engine can reliably compute the future position of the boat.

3.2 Information Propagation in ENC

After computing the a priori beliefs, they must be propagated in the ENC (Fig. 3)
to determine the useful aids for the current learner’s situation. A link between two
variables represents an influence of the parent variable on its child. These influences
are represented by conditional bba, which are the translation of simple rules. The
simplicity is a choice made so that the system can be modified by navigation trainers.

For example, we have the rules ”if the learner is under stress, then the event ”hid-
ing of the next bridge” is useful at 50%” and ”if the learner is not under stress, then
the event ”hiding of the next bridge” is useless at 50%”. The two ”50%” represent
the degree of relevance of the rules. The variable hiding next bridge has a set of
possible values in Ωhiding next bridge = {use f ul;useless}. The previous rules can be
translated by the left conditional belief table in Table 1.

Fig. 3 Extract of the ENC
used in GULLIVER system

Heart rate sensor

Stress

Hiding of the
next bridge

Future position of the boat

Bridge collision

Displaying of a
recommended trajectory

...

...

...

Fig. 4 A priori bba of stress
in function of hear rate

Belief mass

Heart rate (bpm)

1
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stressm noΩ ( )0
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For the aid ”displaying of a recommended trajectory” (Fig. 3), we have the rule
”if the boat is about to collide with a bridge, ”displaying of a recommended trajec-
tory” is useful”. If the boat is not about to collide with a bridge, we cannot conclude
anything on the usefulness of displaying a recommended trajectory. This is trans-
lated by the right conditional belief table in Table 1.

Table 1 Conditional belief tables

Yes No Ωstress

Useful 0.5 0 0
Useless 0 0.5 0
Ωhiding next bridge 0.5 0.5 1

Yes No Ωbridge collision

Useful 1 0 0
Useless 0 0 0
Ωdisp. recommended tra jectory 0 1 1

With the conditional belief tables and the a priori bba, the belief can be prop-
agated to the next level of the ENC by using the formula (5). In the case of
hiding next bridge, there are two parent variables which bring beliefs (Fig. 3), so
the resulting beliefs must be combined by using the CRC (formula (1)).

In order to classify the aids by priority order for decision-making, the pignis-
tic probability of the usefulness of each aid/event (the terminal nodes in Fig. 3) is
computed (formula (7)). The aids/events with the highest pignistic probability are
very likely to be displayed, but a final filtering is necessary. Indeed, the aids/events
composing the guiding must be moderated in order to respect some constraints. For
example, the set of aids/events to trigger must not overload the screen, they must
be mutually compatible (for example it is not possible to trigger at the same time
”hiding of the next bridge” and ”highlighting of the next bridge traffic sign”), they
must be adapted to the learner’s level, they must have a high pignistic probability
of usefulness, etc. Some constraints must be obligatory respected (for example they
must have a high pignistic probability of usefulness) and others can be not respected
(but the best solution must respect as many of them as possible). This is a constraint
satisfaction problem and it is solved by enumerating every possibility or by using a
genetic algorithm if the combinatorics is too important. Indeed, a genetic algorithm
allows computing a good solution within a time chosen, which is a very short time
in our case since the guiding must be updated in real time.

Conclusion

We propose the GULLIVER system, an adaptive training system in informed virtual
environment which infers a learner guiding thanks to an ENC (evidential network
with conditional belief functions). User observation (errors made, stress level, etc.)
is translated into a priori beliefs which are then propagated in the ENC for decision-
making about the best guiding to display to the learner. The main advantage of our
system is that it can be easily updated by non-expert of the system thanks to the use
of conditional beliefs translated from simple rules. The system can be intuitively
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initialized by hand and does not need experimental data as for Bayesian networks
by example. Another advantage is the genericity of our system which can be applied,
for example, in car driving assistance in augmented reality.

As perspective, we plan to enhance the system so that it will be auto-adaptive:
the system will provide auto-regulation, throughout its use, for the rule relevancies
(translated in conditional beliefs) and for the constraint satisfaction system. Another
perspective is to reuse this system for other applications like car, train or plane
driving assistance with augmented reality visualization.
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Using the Belief Functions Theory to Deploy
Static Wireless Sensor Networks

Mustapha Reda Senouci, Abdelhamid Mellouk,
Latifa Oukhellou, and Amar Aissani

Abstract. The location of sensors is one of the fundamental design issues in wireless
sensor networks. It may affect the fulfillment of the system’s requirements and mul-
tiple network performance metrics. Assuming that an inherent uncertainty can be
associated with sensor readings, it is very important to consider this issue in the de-
ployment process to anticipate this sensing behavior. This paper addresses the issue
of uncertainty-aware sensor networks deployment by exploiting the belief functions
reasoning framework. An evidence-based coverage model is proposed and some
possible extensions are discussed. The deployment problem is formulated as an op-
timization problem and possible solutions are discussed. Preliminary experimental
analysis demonstrates very promising results of the proposed methodology.

1 Introduction

The rapid development in wireless communications and electronics have enabled
the development of small-scale, low-power, low-cost sensor nodes (or sensors) that
integrate processing, storage, sensing and communication capabilities. These tiny
sensors leverage the idea of wireless sensor networks.
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A Wireless Sensor Network (WSN) consists of a spatially distributed sensors and
one or more sinks. Sensors monitor environmental conditions, such as temperature,
vibration, or motion and produce sensory data. A sink, on the other hand, collects
data from sensors.

One of the fundamental design issues in WSNs is where to place the sensors
in the Region of Interest (RoI). The location of a sensor may affect the fulfillment
of the system’s requirements and multiple network performance metrics. A prob-
lem which impinges upon the success of any deterministic WSN deployment is the
fact that there is an inherent uncertainty associated with sensor readings. Indeed,
sensors may not always provide reliable information, either due to hardware config-
uration or environmental conditions. As an example, for omnidirectional acoustic
sensors or ultrasonic sensors, a longer distance between the sensor and the target
generally implies a greater loss in the signal strength or a lower signal-to-noise ratio
[1]. Therefore, it is very important to take into account this issue in the deployment
process to anticipate this sensing behavior.

This paper addresses the uncertainty-aware sensor networks deployment problem
(USDP) by exploiting the belief functions theory. The paper starts with a general
discussion of related work. In Section 3, we present our evidence-based coverage
model and some possible extensions. Section 4 formulates the USDP as an opti-
mization problem and discuss some possible solutions. In Section 5, we present ex-
perimental results that show the effects of different parameters on the performance.
Section 6 concludes the paper and discusses some future directions for our work.

2 Related Work

Usually, the deterministic deployment of static WSNs involves two components: (i)
a sensor coverage model and (ii) a placement algorithm. A sensor coverage model
is an abstraction model trying to quantify how well sensors can sense physical phe-
nomena at some locations in the RoI [1]. On the other hand, a placement algorithm
determines the minimum number of sensors and their locations to achieve the de-
sired design goals. The sensors locations are computed based on a sensor coverage
model. This section reviews the related work of sensor coverage models and place-
ment algorithms.

The most widely used sensor coverage model in the literature is the binary cov-
erage model [1, 2, 3], which assumes that an event happening within the sensing
radius of a node is always detected, while any event outside this disk is assumed not
to be detected. While this is appropriate for defining the foundation of research, the
binary coverage model is overly simplistic and does not reflect reality.

Some researchers argue that the sensing quality of a sensor will decay with the
increase of the distance away from the sensor, environmental conditions, hardware
configurations, and other problem specific attributes [1, 4, 5]. Probabilistic coverage
models [1, 2, 4, 5, 6] are used to capture such attenuated sensing qualities. Although
these models capture the behavior of sensors more realistically, they remain limited.
For example, it is not clear how to handle the reliability of sensors in the design stage
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when using a probabilistic coverage model. The objective of our research described
in this paper is to extend the probabilistic coverage model to an evidence-based
coverage model that can provide insight into USDP.

When considering a binary coverage model, the sensor deployment problem can
be formulated as the famous art gallery problem (AGP) addressed by the art gallery
theorem [7]. Authors in [3] try to minimize costs subjects to covering all target
points. Some other formulations include the minimal disk covering problem [8].

There has been relatively little research performed in the area of USDP. In [5],
Zou et al. consider the uncertainty in sensor locations subsequent to airdropping. In
literature, when sensor detection is modeled probabilistically, the sensor deployment
problem is formulated as an optimization problem which is NP-complete. Therefore,
proposed solutions are mainly heuristics [4, 5, 9, 10].

In this paper, we propose a more realistic approach for USDP based on the trans-
ferable belief model (TBM) [11]. Our model is generic and flexible and can be
extended in many ways.

3 Our Proposal

The TBM manipulates belief functions. Thus, we need to translate the sensory data
into belief functions. In this section, we define an evidence-based coverage model.
In what follows, we assume the reader to be familiar with the TBM [11].

3.1 Evidence Construction

Only two states are required to specify whether a space point p ∈ RoI is covered:
θ0(not covered) and θ1(covered). Thus, the Frame of Discernment (FoD) is the set
Θ = {θ0,θ1}.

Let s be a sensor, Rs be its sensing range and Ru be a distance (0 ≤ Ru ≤ Rs)
as illustrated in Fig. 1a. Each sensor s provides information on the coverage of a
space point p ∈ RoI with a belief xs/p. The complementary information 1− xs/p is
assigned to the whole FoD because it encodes the sensor ignorance. The output from
the sensor s about a space point p ∈ RoI can thus be represented as a basic belief
assignment (bba) ms/p with two focal sets: the singleton {θ1} and the FoD Θ .

Definition 1. The Certain Detection Zone (CDZ) of s is a disk centered at s with the
radius of (Rs−Ru). Within its CDZ, s produces a categorical belief function

Definition 2. The Uncertainty Zone (UZ) of s is the complement of its CDZ relative
to the RoI; UZ =CDZRoI . UZ is divided into two sub-zones: the Partial Ignorance
Zone (PIZ) and the Total Ignorance Zone (TIZ).

Definition 3. The PIZ is defined as an annulus centered at s with an inner radius
of Rs −Ru and an outer radius of Rs. Within its PIZ, s produces a simple support
function defined by equation (1).
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(a) Illustration of the different zones.
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Fig. 1 Evidence-based sensor coverage model.

ms/p({θ1}) = xs/p, xs/p ∈ [0,1]
ms/p(Θ) = 1− xs/p, ms/p( /0) = 0

(1)

Definition 4. The TIZ is defined as the complement of the PIZ relative to (RoI−
CDZ); T IZ = PIZRoI−CDZ . Within its TIZ, s produces a vacuous belief function.

The parameter 1−xs/p reflects the sensor’s degree of ignorance. One can assume, as

in the truncated attenuated disk model, that xs/p = e−δ (d(s,p)−(Rs−Ru))
β

where d(s, p)
is the Euclidean distance between a sensor s and a space point p, δ is a sensor tech-
nology related parameter and β is an event characteristic-dependent parameter. This
model reflects the behavior of range sensing devices such as infrared and ultrasound
sensors [1]. An example of this model is depicted in Fig. 1b.

3.2 Evidence Combination

For N sensors, the combination of the N bbas m1/p, . . . ,mN/p using the unnormalized
Dempster’s rule yields a bba mp with 2 focal sets: the singleton {θ1} and the FoD
Θ . This bba has the following expression:

mp({θ1}) =
N

∏
i=1

xi/p + x j/pxk/p . . .xL/p︸ ︷︷ ︸
1:N−1 terms
j,k,...,L=1...N
j �=k �=...�=L�=i

N

∑
i=1

(1− xi/p)

mp(Θ) =
N

∏
i=1

(1− xi/p)

(2)
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3.3 Decision Making

Relatively to a space point p, we construct the pignistic transformation (denoted by
BetPp) that permits the construction of the probabilities needed for decision mak-
ing. The decision is based on selecting the hypothesis θ̂ with the largest pignistic
probability: θ̂ = max

i=0,1
BetPp({θi}).

A space point p is covered if: θ̂ = θ1 and BetPp({θ1}) ≥ Thp. The threshold
(Thp) value is an application-specific user-specified parameter.

3.4 Some Possible Extensions

In this section, we discuss how discounting factors [11, 12] can be included in our
solution in order to handle deployment-related issues such as sensor reliability and
challenging environments.

When sensors are vulnerable to misreading or malfunctioning due to their quality,
we consider such sensors as only partially reliable. For α ∈ [0,1], let (1−α) be the
degree of ”confidence” we assign to the sensor. It can be encoded into a bba defined
on the set {reliable, not reliable} such that:

m(reliable) = 1−α and m(not reliable) = α (3)

Suppose that the bba m on Θ represents the sensor report about the actual value of
Θ . The result of combining the sensor report with the bba given in equation (3) is a
new bba denoted mα , defined as:

mα(A) = (1−α).m(A) f or A ⊂Θ

mα(Θ) = α +(1−α).m(Θ)

If a priori knowledge on sensor reliability is available, discounting factors associated
to the sensors will be used in the evidence combination step.

Although sensors may be of good quality and provide accurate readings, external
factors can greatly influence their correct functioning [12]. In this case, sensors are
vulnerable to misreading or malfunctioning due to their locations in the RoI; we
call such locations ”challenging locations”. A fully reliable sensor is considered as
only partially reliable if it is deployed in a challenging location. Let β ∈ [0,1] be the
degree of ”challenge” that we assign to a location p in the RoI. It can be encoded
into a bba defined on the set {challenging, not challenging} such that:

m(challenging) = β and m(not challenging) = 1−β (4)

Suppose that the bba m on Θ represents the report of the sensor (deployed at a
challenging location p) about the actual value of Θ . The result of combining the
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sensor report with the bba given in equation (4) is a new bba denoted mβ , defined
as:

mβ (A) = (1−β ).m(A) f or A ⊂Θ

mβ (Θ) = β +(1−β ).m(Θ)

Thus, discounting factors will be associated with deployment points. The available
a priori knowledge on environmental factors is used to compute the discounting
factors.

Some sensors are more vulnerable to misreading or malfunctioning due to their
quality and/or their location in the RoI. Suppose the bba m on Θ represents the
sensor report about the actual value of Θ . The result of combining the sensor report
with the bba given in equation (3) and the bba given in equation (4) is a new bba
denoted mαβ , defined as:

mαβ (A) = (1−α)(1−β ).m(A) f or A ⊂Θ

mαβ (Θ) = β +α.(1−β )+ (1−α)(1−β ).m(Θ)

Discounting factors will be associated with deployment and target points.

4 Problem Formalization

We define the USDP as the problem of covering a set of target points using an
evidence-based coverage model. The RoI has a number of target points defining the
set T ⊆ RoI. We constrain the deployment of sensors in the set D ⊆ RoI consisting
of deployment points in the RoI.

In the simplest form of the USDP, the number of sensors should be kept to a
minimum while also satisfying the coverage requirements for all points. We assume
a non-uniform area coverage; thus each target point p ∈ RoI is associated with a
required minimum event detection probability threshold, denoted by thp. The USDP
can be formulated as an optimization problem:

min ∑
p∈D

xp (5)

s.t. BetP({θ1})p ≥ thp, ∀p ∈ T (6)

xp ∈ {0,1}, ∀p ∈ D (7)

Equation (5) defines the optimization problem where the objective is to minimize
the deployment cost. The solution is constrained in equation (6), which requires that
each target point is covered. Equation (7) defines xp as a zero-one variable. If xp = 1
than a sensor will be deployed at the point p. It should be pointed out that this
formulation can be extended to include additional objectives such as the network
connectivity. As the USDP is now clearly formulated as an optimization problem



Using the Belief Functions Theory to Deploy Static Wireless Sensor Networks 431

which is NP-complete, previously proposed heuristics [4, 5, 9, 10] can be adapted
to use our evidence-based coverage model.

5 Experimental Analysis

Using the proposed evidence-based coverage model, we have devised a constructive
greedy-like placement algorithm to analyze its effect on the sensors placement. For
a 20× 20 RoI, D=RoI and a predefined T, Fig. 2 shows an example of obtained
results. CDZs are represented by black disks and PIZs by gray disks.

Fig. 2 An example of sensor placement in a 20×20 RoI.

Fig. 3 shows the effects of Rs, Ru, and T h (we assume a uniform coverage) on
the performance. We see clearly on Fig. 3a that increasing the size of the CDZ re-
duces the cost of deployment. This reduction is more significant when the T h is
more important. Intuitively, as the CDZ increases, more target points will be cov-
ered by the sensor resulting in better sensing quality. The same behavior is observed
when increasing the size of the PIZ as depicted in Fig. 3b. These results show that
considering noisy sensory data of multiple sensors (partial ignorance zones) can sig-
nificantly improve sensing coverage by exploiting the collaboration among sensors.

6 Conclusion and Future Works

In this paper, a new methodology based on the transferable belief model has been
proposed for handling the uncertainty-aware sensor networks deployment problem
(USDP). We have first presented an evidence-based coverage model and discussed
some possible extensions. Second, we have formulated the USDP as an optimization
problem and we have discussed possible solutions.

Preliminary experimental analysis demonstrates very promising results of the
proposed methodology. In the future, we plan to validate our proposal in real plat-
form which will allow us to quantify the real benefit of the proposed methodology.



432 M.R. Senouci et al.

0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

size of the CDZ

nu
m

be
r 

of
 s

en
so

rs

 

 

PIZ=1; Th=0.8
PIZ=1; Th=0.65

(a) Varying the size of the CDZ.

0 1 2 3
15

20

25

30

size of the PIZ

nu
m

be
r 

of
 s

en
so

rs

 

 

CDZ=1; Th=0.8
CDZ=1; Th=0.65

(b) Varying the size of the PIZ.

Fig. 3 The effects of Rs, Ru, and T h on the performance.
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A Quantitative Study of the Occurrence of a
Railway Accident Based on Belief Functions

Felipe Aguirre, Mohamed Sallak, Walter Schön, and Fabien Belmonte

Abstract. In the field of railway systems, there is a great interest to include the
human factor in the risk analysis process. Indeed, a great number of accidents are
consider to be triggered by the human factors interacting in the situation. Several
attempts have been made to include human factors in safety analysis, but they gen-
erally attack the problem in a qualitative way. The choice of qualitative methods
arises from the difficulty to elicit human behavior and the effects on systems safety.
This paper presents a first attempt to account for the human factor by using the
generalized bayesian theory and fault tree analysis.

Introduction

As stated by Hale and Hovden [1], we are living in a new era of industrial safety
in which three different factors are considered of major influence: technical, human
and organisational factors. Indeed, they divide the era of industrial safety in three.
First, there is the age of technology in which things were considered to fail because
technology fails. This age started with the industrial revolution until the human fac-
tor started to take its place and the age of human factors was born. By this time,
accidents were also attributed to human failures and new techniques for Human Re-
liability Assessment (HRA) were invented (THERP [2], HEART [3], JHEDI [4],
etc.). Further on, the age of organisational factors arrived and accidents were also
considered as consequences of organisational deficiencies.
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Human Reliability Assessment (HRA) has been often attacked as being of dubi-
ous validity [5, 6]. One of the main points of the critics is that human performance is
not easy to quantify due to a large number of factors affecting it and the variability
of one person over others. Nevertheless, studies have been made to prove the per-
formance of current methods [7, 8, 9]. One of their drawbacks is that performance
factors are dependent of the working context and a validation of the experimental
data must be done. This suggest that there is a need for new methods of HRA [10].

Moreover, in the field of railway systems there has been some attemps to in-
clude human factors in safety analysis (i.e. [11]). However, these works are mostly
of a qualitative nature mainly because of the difficulty to elicit human behaviour
in a quantitative way. Indeed, it is considered that human behaviour is surrounded
by epistemic uncertainties, thus needing the use of proper theories to represent and
propagate the uncertainty in risk analysis. In the literature, several theories are pro-
posed to treat epistemic uncertainties in risk analysis: Imprecise probabilities [12],
Fuzzy sets [13], Monte-Carlo simulation [14], Belief functions theory [15, 16], etc.
From the listed theories, Belief functions theory has been proven to be a promising
one to treat epistemic uncertainty in risk analysis. However, only technical aspects
are taken into account. This paper is a first attempt to integrate the human and organ-
isational factors to risk analysis in railway accidents using belief functions theory in
a quantitative way.

1 Risk Analysis Using Belief Functions Theory

Sallak et al.[15] presented a reliability model using belief functions theory. Fur-
ther on, Aguirre et al. [16] improved the model by adding generalized reliability
expressions that optimise the computational time. The model proposes to represent
reliability using basic belief masses defined over a binary frame of discernement
Ω = {Fi,Wi}. Fi and Wi represent respectively the failing and working state of com-
ponent i. Afterwards, using the concept of minimal cut sets and/or minimal path
sets, the reliability masses are combined to obtain the final reliability of the system.
A cut set is a set of components that induce the failure of the system if they are all
in a failing state and a minimal cut set is a cut set that doens’t contain any more cut
sets as a subset. A minimal path set is defined in a similar way, the difference being
that a path set containts a set of components that keeps the system in a working state
if they are all working.

With a slight change on the definitions of the model, it can also be applied to risk
analysis. Lets consider that for each basic event defined over the frame of discerne-
ment Ei, the state of belief on its ocurrence is bounded by [bel(ei), pl(ei)] defined
over Ei = {ei,ei}. Now, lets say that the minimal cut sets contain sets of basic events
that induce an undesired top event etop. The belief over the undesired event is ob-
tained using Eqs. 1 and the following notation:

NC Number of minimal cuts in the system
Ci Index set of the ith minimal cut set
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bel(etop) =
NC

∏
i=1

(
1−

size(Ci)

∏
j=1

(
1−m(eCi( j))

))

pl(etop) =
NC

∏
i=1

(
1−

size(Ci)

∏
j=1

m(eCi( j))

)
(1)

Therefore, the risk of arriving to the top undesired event is bounded by the interval
[bel(etop), pl(etop)]. The critical part of the model is the definition of the basic belief
masses mEi over the events representing human actions. These events, are influenced
by diffrent performance factors that modify the behavior of the agent performing the
action. The key point is to use the Generalized Bayesian Theorem and the Disjunc-
tive Rule of Combination to account for the influence of these performance factors
on human behaviour in order to elicit the basic belief masses mEi .

2 Effect of Performance Factors on a Decision Taken
by an Agent

To study the influence of performance factors on the decision taking process of an
agent, we propose the use of a generalization of the Disjunctive Rule of Combination
(DRC) introduced by Smets [17]. Lets assume there are two simple binary variables
defined over the frames of discernement Θ = {θ ,θ} and E = {e,e}

plE(e) = ∑
θ⊆Θ

mΘ
0 (θ )plE(e|θ )

= ∑
θ⊆Θ

mΘ
0 (θ )

(
1− ∏

θi∈θ

(
1− plE(e|θi)

))
(2)

From equation 2, it can be seen that if we have a basic belief mass over Θ (mΘ
0 )

and conditional plausibility functions on E given θ and θ . Then, the plausibility
induced on E can be computed. To better understand this, take a look at equation 2
developped for each of the subsets of E using matrix calculus:⎡⎣ pl(e)

pl(e)
pl(e∪ e)

⎤⎦=

⎡⎣ pl(e|θ ) pl(e|θ) pl(e|θ ∪θ )
pl(e|θ ) pl(e|θ) pl(e|θ ∪θ )

pl(e∪ e|θ ) pl(e∪ e|θ ) pl(e∪ e|θ ∪θ)

⎤⎦⎡⎣ m(θ )
m(θ )

m(θ ∪θ)

⎤⎦ (3)

Equation 3 can be used to study the effect of a given factor Θ on the performance
of an agent in a given event E . For example, let’s suppose that Θ refers to a noisy
environment and that E is a basic event refering to a bad decision taken by an agent.
Under a noisy environment, the agent is prone to take a bad decision and this is
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represented by a conditional belief mass mE(|θ ) (that we further convert into a plau-
sibility space plE(|θ )). Furthermore, we dispose of a basic belief mass mΘ :

m(e|θ ) = 0.2
m(e|θ ) = 0.5
m(e∪ e|θ ) = 0.3

=⇒
pl(e|θ ) = 0.5
pl(e|θ ) = 0.8
pl(e∪ e|θ ) = 1

m(θ ) = 0.6
m(θ ) = 0.3
m(θ ∪θ) = 0.1

(4)

Additionally, lets assume that the conditional plausibilities plE(|θ ) and plE(|θ ∪θ )
are vacuous—that is, we have nothing to say about E if we know that there isn’t
a noisy environment or if we ignore the state of Θ . After applying equation 3 it is
concluded that the the risk that the agent takes a bad decision knowing that he is in
a noisy environment is bounded by [bel(e), pl(e)] = [0.12,0.88]

In practice, the agent is subject to more than one factor in the decision taking
process. The way to proceed is to apply the DRC for each of the different factors
and then combining the obtained masses over the event E . Note that if the factors
are conditionaly independent, they are considered as distinct pieces of evidence and
Dempster’s rule can be used to combine the masses [18]

3 Case Study

The scenario takes place in a railway section between several stations. Some works
were being done on one side of the railwaytrack heading east, forcing all the trains
heading in this direction to take the other track in the opposite direction. In these
kind of situations, protective measures are installed to avoid a potential accident
and the planning of the commercial trains is slightly modified. The works extended
over 10 km, they took place over the night and were programmed to end early in
the morning in order to avoid unnecesary delays in the commercial trains. Three
trains were involved in the night works (named T TX1, T TX2, TT X3 and T TX4).
The works were supervised by a foreman (F) and the movement of the trains was
controlled by a signaller.

Thanks to a series of unexpected events, the engineering train TT X3 encoun-
tered head to head with a commercial train going in the opposite direction. A delay
on the works, forced to change the siding position of the trains T TX2 and T T X3
and the situation became complicated. When the proposed initial solution was going
to be implemented, the foreman realized that the reserved track for trains T TX2 and
T TX3 was blocked by the train T T X1, therefore, he was rushed into another change
of plans under complicated measures. Badly advised by the signaller, he chose to
park the trains in a manner that forced them to enter a protected zone running in
an oposite direction. When the train T TX3 was going to engage the siding posi-
tion, he encountered a closed sign that forbade him from crossing. The conductor of
the train called the signaller who decided to authorize him to cross a signal at dan-
ger (or closed) by the application of a specific procedure without taking into account
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the time table of the commercial trains. As a consequence of these series of events,
the accident happened.

After a deep analysis of the circumstances, three basic events are identified as the
precursors of the accident (see Fig. 1), namely:

• Bad change of siding strategy: The decision to change the parking plans of the
engineering trains TT X2 and T TX3 was taken by the foreman thanks to several
factors. To start with, the planning was delayed at the begining putting some extra
pression to finish the work on time. In the second place, the signaller validated
the change of plans with a lack of knowledge of the different parking positions of
the train station and their state of occupancy. Finally, the foreman was in a very
noisy environment when he took the decision.

• Crossing permission of closed signal: The signaller granted the permission to
cross the closed sign to the train driver because he had the ilusion of a “safe” sit-
uation. Indeed, as all of the signals in the working area were closed, he thought
that there wasn’t any danger. He forgot that the signals were all closed on the mo-
ment that a train entered the protected area running in the opposite direction. As
a consequence, he didn’t take into account the time table of the commercial trains
and didn’t realized that a train was heading in the direction of the accident. This
situation is considered a consequence of the lack of experience of the signaller.
He also based his the decision on the fact that others had already granted the per-
mission to cross the same signals. He thought, “Somebody already verified the
situation, it should work this time” [19, 20].

• Blocked road: Finally, the train TT X4 was blocking the way of trains T T X2
and TT X3, causing more delays on their parking maneuvers. The way the intial
plan was stated, this situation shouldn’t have happened because the siding of the
trains headed in an opposite direction.

Head to head
encounter

Bad change of
parking plans

Blocked road
Crossing permission

of closed sign

Noisy en-
vironment

Signaller
confirms

Delay on work
Pre-existing
confirmations

Agent on
training

Fig. 1 Fault tree of the situation leading to a head to head encounter
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Table 1 Conditional belief masses for the different factors

Θ mE(e|θ ) mE(e|θ ) mE(E|θ )mΘ (θ ) mΘ (θ ) mΘ (Θ)

Noisy environment 0.02 0.98 0 0.6 0.3 0.1
signaller confirms 0.5 0.3 0.2 0.7 0.2 0.1
Delays on works 0.04 0.9 0.06 0.1 0.8 0.1
Pre-existing confirmations 0.1 0.8 0.1 0.9 0.5 0.5
Agent on training 0.1 0.75 0.15 0.1 0.8 0.1

3.1 Quantitative Analysis of the Accident

The three basic events identified are considered as the causes of the head to head
encounter. One of them is considered as technical, the blocked road and the two
others are considered as an event influenced by human and organisational factors as
indicated in the following descriptions:

1. Bad change of parking plans

• Noisy environment: The foreman had to take the decision in a noisy envi-
ronment which made the comunication with the signaller complicated adn
created a harsh work environment.

• signaller confirms: The signaller confirmed that the new plan was feasible,
but complicated. In reality it wasn’t, but the foreman trusted in his opinion

• Delay on works: Several delays at the beginning and during the work, forced
the signaller to change the plans.

2. Crossing permission of closed sign

• Pre-existing confirmations: The signaller based his decision on the fact that
others had already granted the permission to cross the same signs. He thought,
“Somebody already verified the situation, it should work this time”.

• Agent on training: He was also in the final phase of a training period.

Fig. 1 describes the situation at hand. The fault tree consist of the three basci events
related to the top event by an and gate. Moreover, the different factors that influence
the events are also highlighted. The conditional masses as well as the basic beliefs
on the different factors are showned in table 1.

First, the masses for the events Bad change of parking plans and Crossing per-
mission of closed sign are elicited using Eq. 3. As for the block road event, its basic
belief is considered to be bounded by [0.5,0.9]. Finally, equations 1 are applied to
obtain the bounds of the ocurrence of the top event. We get to the conclution that
the risk of accident is bounded by [0.00760,0.06012].
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4 Conclusions

This paper presents a first attemp to account for the human factor in risk analysis
using belief functions theory. The generalized bayesian theorem is used to elicit the
masses of the basic events when they are influenced by several factors and finally,
the belief over the basic events is propagated to the top undesired event.

The advantage of the presented method is that our state of belief about the con-
ditional relationship between the different factors and the basic beliefs doesn’t have
to be perfect. Indeed, the method is well suited to account for ignorance and a priori
knowledge about the basic events are not needed.

Another advantage is that the method is capable of taking into account human,
organisational and technical factors in the risk analysis of railway systems. Never-
theless, the elicitation method still needs to be improved and validated with studies
similar to those made in other fields [7, 8, 9].
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Cherfaoui, Véronique 343, 351
Colot, Olivier 189
Cuzzolin, Fabio 101, 109, 125

Daniel, Jérémie 327
Daniel, Milan 179
Denœux, Thierry 21, 77, 311, 351, 359,

385, 393
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