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Abstract. Differential Evolution (DE) is an efficient optimizer in cur-
rent use. Although many new DE mutant vectors have been proposed by
alter the differential operator, there are few works studying the differen-
tial operator’s effect in DE algorithm. This paper proposes a correlation
between the DE performance and the mutant vector. That is, for a par-
ticular mutant vector, increase the number of differential operator would
influence the performance of the algorithm linearly. These mutant vectors
are evaluated by 23 benchmarks selected from Congress on Evolutionary
Computation (CEC) competition. Additionally, this paper proposes an
unrestrained method to generate mutant vector. Unlike the old method
selects mutually exclusive individuals, the new method allows same indi-
viduals appear repeatedly to generate mutant vector. This new method
could enhance the potential diversity of the population and improve the
performance of DE in general. abstract environment.

Keywords: Differential Evolution (DE), differential operator, mutant
vector generation.

1 Introduction

Since 1995 Storn and Price proposed DE, it is accepted widely as an excellent
and reliable function optimizer. DE is a special case of evolutionary algorithm,
it distinguished to other EAs because it generates offspring by a scaled differ-
ence perturb vector. Ferrante Neri and Ville Tirronen[1] have given an overview
of DE, Swagatam Das[2] has given a conclusion of recent years development
and future trend of DE. In forestall research, except noise problems [3][4], DE
achieved excellent result to most benchmarks. In previous CEC, DE is best as
an applicable evolutionary algorithm. Although recent papers show some strong
EA like restart covariance matrix adaptation ES (CMA-ES) outperforms classi-
cal and adaptive DE at CEC2005 competition, DE is still outstanding to solve
real-valued test functions.
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As DE is simple and effective, various mutate vectors have been proposed to
get further optimization. Storn and Price have suggested a mutant vector family
and many other scientists have expanded the vector family. It is easy to perceive
that some vectors are improved by add one more differential operator, however,
few papers have pay attention to the performance tendency of DE with various
differential operator. With this consideration, this paper explores the relation
between DE performance and the number of differential operator in mutant
vector.

In the following part this paper proposes a new method to generate mutant
vector. Classical DE select individuals in the population randomly and subtract
other randomly selected individuals to gain perturb parameter. This paper pro-
poses an unrestrained method which could enhance potential diversity of the
population. The new method improves the performance of DE steadily. In this
paper, 2.1 concludes framework of DE, 2.2 presents classical mutate vectors
and the author gives new mutate vectors, 2.3 proposes a new method to gener-
ate effective mutate vector. Part 3.1 introduces experiment benchmarks and 3.2
presents the result of experiments and analysis. The paper gives a conclusion in
part 4.

2 Benchmark Optimization by DE

2.1 Framework of DE

DE optimization means to find the minimum value of objective function f(x).
This problem can be encoded as a NP population with D dimension parameters
vector X = [x1, x2, . . . , xNP ],initial population distributed in search space S
randomly. The goal of the algorithm is to find out xmin ∈ S, by using pre-
prepared benchmarks.

The framework of DE:
a) Initialization
For each individual with D dimension at G generation xi = {xG

i1, x
G
i2, . . . , x

G
iD},

there have a certain range for each dimensions, the initial population should
randomly distributes in a prescribed space.
b) Mutation
DE employs a mutate vector to perturb individuals to get a mutation in the
search space. The classical vector could be expressed as

V G
i = xG

r1 + F (xG
r2 − xG

r3) (1)

r1, r2, r3 are integers randomly selected in the range [1, NP].
c) Crossover
After mutation, for each individual xi crossover operation is used to generate
a trial vector UG

i = [uG
1i, u

G
2i, . . . u

G
Di],. This paper uses binomial crossover to

generate trail vector.
d) Select
In this step the select operation if the trail vector has less or equal benchmark
value than the target vector, the trail vector would replace the parent as a
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member of the offspring, otherwise the target vector would remain in the next
generation.
b)c)d)would be repeated until certain criterion is met.

2.2 Construct New Mutation Family

The difference vector (1) has only one scaled difference to perturb the population,
which is known as DE/rand/1. Storn and Price suggest other difference vectors
known as:

1.DE/best/1 : V G
i = xbest + F (xG

r2 − xG
r3)

2.DE/best/2 : V G
i = xbest + F (xG

r2 − xG
r3) + F (xG

r4 − xG
r5)

3.DE/rand/2 : V G
i = xG

r1 + F (xG
r2 − xG

r3) + F (xG
r4 − xG

r5)
4.DE/cur − to− best/1 : V G

i = xG
i + F (xG

best − xG
r1) + F (xG

r2 − xG
r3)

5.DE/rand− to− best/1 : V G
i = xG

r1 + F (xG
best − xG

r2) + F (xG
r3 − xG

r4)
r1, r2, r3, r4, r5 are integers randomly selected in the range [1, NP]. is the

best individual in G generation. These vectors could be seen at [6].
It is easy to perceive rand/1, rand/2 and best/1, best/2 all achieve acceptable

result and they are in regular pattern. Based on this observation, this paper
gives a hypothetical that increase the number of differential operator would have
influence on the performance on DE algorithms. These vectors are expanded by
adding difference parameters to rand/3 and best/3. Moreover, cur-to-best/1 and
cur-to-rand/1 vector could derive new vectors best-to-cur/1, rand-to-cur/1 by
changing the parameter positions. In the same theory of expand best/1, cur-
to-best/1 and rand-to-best/1 could expand to cur-to-best/2 and rand-to-best/2,
etc.

These new vectors are listed below:
6.DE/best/3 : V G

i = xbest + F (xG
r2 − xG

r3) + F (xG
r4 − xG

r5) + F (xG
r6 − xG

r7)
7.DE/rand/3 : V G

i = xG
r1 + F (xG

r2 − xG
r3) + F (xG

r4 − xG
r5) + F (xG

r6 − xG
r7)

8.DE/best− to− cur/1 : V G
i = xbest + F (xG

i − xG
r1) + F (xG

r2 − xG
r3)

9.DE/cur − to− rand/1 : V G
i = xG

i + F (xG
r1 − xG

r2) + F (xG
r3 − xG

r4)
10.DE/rand− to− cur/1 : V G

i = xG
r1 + F (xG

i − xG
r2) + F (xG

r3 − xG
r4)

11.DE/cur−to−best/2 : V G
i = xG

i +F (xG
best−xG

r1)+F (xG
r2−xG

r3)+F (xG
r4−xG

r5)
12.DE/rand − to − best/2 : V G

i = xG
r1 + +F (xG

best − xG
r2) + F (xG

r3 − xG
r4) +

F (xG
r5 − xG

r6)
To prove this hypothesis, the following new mutant vectors will be tested in

part 3.
These vectors perhaps not excellent enough to handle test functions, but they

are useful to present performance of vectors with different difference parameter.
As the vector has a simple structure, change the value of control parameter

or change the different operator are common methods to optimize the vector.

2.3 Improved Method to Generate Mutant Vector

Since 1950s, with the idea of using Darwinian principles to solve problems, evolu-
tionary computation emerges distant ideas as a competitive discipline. This part
we propose a new method to generate mutant vector and try to explain it by
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Darwinian principles. In biological, the mutant vector means a sudden change
in the gene characteristics of a chromosome [2]. This has proposed for a long
time and it is widely accepted. To evolutionary computing, mutation is a per-
turb factor, a parent vector with a mutation operation generates an offspring,
the mutant vector is also called donor vector.

Classical method selects r1,r2,r3,r4,r5,r6,r7, and are mutually exclusive inte-
gers from the range [1,NP][6] [8] [9]. For each mutant vector these integers would
generate again. However, this method declines performance of DE. As these 7 pa-
rameters are mutually exclusive, it decreases the diversity of the perturb vector.
The new method ignores the restriction that selects integers mutually exclusive,
same integers can appear repeatedly in one mutant vector.

Fig1 illustrates the development of the new method. Use rand/2 as example,
if xr1,xr2,xr3,xr4,xr5, are all different,xr1,F (xG

r2−xG
r3),and F (xG

r4−xG
r5), are not

zero. But this restriction is unreasonable. Restrict integers mutually exclusive
predefined a scope to mutant the population and the new scope is smaller than
the search space.

Fig. 1. Illustrating DE mutant vector scheme in 2-D parametric space. The new method
increases the potential diversity of the population, F (xG

r2−xG
r3),is the increased choice

of the Difference Vector.

In biological evolution, each individual would influence the evolution of the
whole group. Bases on this theory, previous DE algorithms select all integers
mutually exclusive. However, this approach is one-sided understanding of Dar-
winian principle. At biosphere, new offspring influenced by other individuals,
but the number of other individuals is undecided. As all factors selects from
the parent population which means new mutation generates by deformation and
combination of parent individual. Some genes are called recessive genes would
not certainly show their influence. Fixing the number of differences decreases
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the diversity of population individuals. So in this paper we select r1, r2, r3, r4,
r5, r6, r7 randomly in [1, NP], even all of them are same is acceptable, but re-
member the distinct individual should different to the base vector , this restrict
ensures the mutant vector would not be same to its parent -which is useless in
the biological evolution process.

This simplified strategy not only simplifies the mutant vector generate pro-
cess but also improves the performance of DE because it enriches the potential
perturb diversity.

3 Experiment Result

3.1 Extend Benchmark Functions and Parameter Setting

Ferrante Neri and E. Mezura-Montes [1] [7] have explored the performance of
some mutate vectors. It suggests that no one vector can achieve best result to all
problems [7]. But this result is artless and sketchy, the experiment by using only
13 benchmarks is not sufficient as many new benchmarks are given now. This
paper use comprehensive benchmarks to experiment different mutate vectors. 23
benchmarks are used to experiment various vectors. f1-f6 are unimodal functions,
f7-f13 are multimodal functions with many local minima, f14-f20 are multimodal
functions with a few local minima, especially f18-f20 are multimodal functions
with deceiving, above functions are seen in [8]. f21-f23 are rotated functions.
These rotated functions are generate by f7,f10,f11 multiply an orthogonal ma-
trix.. As DE does not perform good on noise problem mentioned, in this paper
no noise problems is discussed.

In the traditional sense, the mutation scale factor F, the crossover constant
CR and population size NP is control parameters. The effects of them are well
studied. To ensure all DE performance are in the same conditions, this paper set
NP=100, dimension=30 as constant value, F=0.5 and CR=0.9. Iteration number
of each function is given in TABLE1and TABLE 2.

3.2 Performance Comparison of Various Difference Vectors

This part we compare the result between DE with various differential operator.
As cur-to-best/2 and rand-to-best/2 does not achieve good result and restricted
by paper’s length, we does not list performance of these two vectors in Table2.
With 6 classical vectors and expanded 5 vectors, 11 vectors are listed in Table1
-Table4.

The result of various benchmarks shows that best/2 is best to handle unimodal
functions and rand/1 is best to handle multimodal functions with many local
minima. To unimodal functions with a few local minima, best/2 is weak in the
vector family.

Here we give some details of these vectors to different benchmarks:
To f1-f6 unimodal functions, best/2 achieves best result, following is best-to-

cur/1, rand/1, rand-to-best/1. Best/1 is worst.
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Table 1. Experiment Result of Rand/1,Rand/2,Rand/3,Best/1,Best/2 and Best/3
over 50 Independent Runs

bench gener rand/1 rand/2 rand/3 best/1 best/2 best/3
mark ation

f1 1500 Mean 2.71e-19 1.30e-03 6.20e+03 1.89e+03 5.56e-49 3.55e-06
Std.Dev 1.79e-19 5.36e-4 1.05e+03 9.29e+02 9.11e-49 2.42e-06

f2 2000 Mean 4.18e-13 2.53e-02 5.69e+01 1.08e+01 3.53e-34 8.67e-04
Std.Dev 2.59e-13 1.16e-02 4.91e+00 2.79e+00 4.11e-34 6.26e-04

f3 5000 Mean 1.74e-16 9.78e+00 1.94e+04 5.271e+03 8.72e-49 1.58e-01
Std.Dev 1.25e-016 5.35e+00 3.84e+03 1.80e+003 1.52e-48 1.01e-01

f4 5000 Mean 5.74e-001 1.28e-03 4.09e+01 2.91e+001 1.58e-07 4.84e-04
Std.Dev 1.245e+00 4.65e-04 3.82e+00 4.22e+000 2.69e-07 2.96e-04

f6 1500 Mean 0 0 6.12e+03 2.02e+003 0 0
Std.Dev 0 0 9.12e+02 6.29e+002 0 0

f7 3000 Mean 1.55e+002 1.65e+02 2.82e+02 2.00e+002 3.72e+01 1.94e+02
Std.Dev 1.063e+01 1.12e+01 1.16e+01 8.66e+00 1.28e+01 1.65e+01

f10 1500 Mean 1.24e-010 1.31e-02 1.41e+01 9.14e+000 6.07e-01 9.61e-04
Std.Dev 4.91e-011 3.36e-03 6.33e-001 1.79e+000 7.59e-01 3.37e-04

f11 2000 Mean 0 2.77e-02 3.99e+01 2.05e+001 9.22e-03 5.34e-02
Std.Dev 0 9.53e-02 6.18e+00 1.01e+001 1.13e-02 1.35e-01

f12 1500 Mean 2.10e-020 1.56e-03 3.24e+12 6.01e+010 1.35e-01 1.11e-03
Std.Dev 2.34e-020 1.71e-03 2.11e+12 1.29e+011 3.05e-01 3.74e-03

f13 1500 Mean 1.62e-019 4.03e-03 1.47e+13 7.27e+011 6.33e-02 4.92e-05
Std.Dev 1.32e-019 3.04e-03 5.69e+12 8.72e+011 2.68e-01 7.10e-05

f21 3000 Mean 1.77e+002 1.76e+02 1.78e+02 8.32e+001 6.49e+01 1.72e+02
Std.Dev 1.43e+001 1.65e+01 1.32e+01 1.55e+001 1.49e+01 2.19e+01

f22 1500 Mean 1.29e-006 8.62e-03 2.04e+01 2.01e+001 4.20e-01 2.09e+01
Std.Dev 3.94e-006 2.41e-03 6.60e-001 7.72e-002 6.56e-01 7.64e-02

f23 2000 Mean 0 4.95e-02 9.27e+001 1.59e+001 1.13e-02 1.99e-02
Std.Dev 0 1.51e-01 2.32e+01 7.85e+00 1.09e-02 6.69e-02

To f7-f13 multimodal functions with many local minima, rand/1 achieves
best result, following is ran-to-best/1, cur-to-best/1, best/3. best/2 is worse and
other vectors achieve little optimize. f7 is special as best/2 achieves best and
next is best/3.

To f14-f20 multimodal functions with a few local minima, in f14-f17, all
vectors achieve similar result, in f18-f20, best/2 and best-to-cur/1 achieve best
result, next is rand/1, others perform weak.

To observe rotated benchmarks, the sequence of these vectors does not
change, but their convergence ability is weak. Specially, in f23 best/1 does not
achieve best result any more, but cur-to-best is outstanding.

Moreover, best-to-cur/1 achieves similar result to best/2 but perform weak
on multimodal functions, it is interesting that its brother vector cur-to-best/1
perform in contrary. To rand-to-cur/1, the brother of best/2, perform worse than
best2 but still good in the whole family.
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Table 2. Experiment Result of Cur-to-best/1,Bets-to-cur/2,Rand-to-best/1,Best-to-
rand/1 and Rand-to-cur/1 over 50 Independent Runs

benchmark generation Cur-to Best-to Rand-to Best-to Rand-to
-best/1 -cur/1 -best/1 -rand/1 -cur/1

f1 1500 Mean 1.17e-08 7.04e-044 3.19e-009 5.89e-003 2.10e-001
Std.Dev 1.55e-008 7.41e-044 2.96e-009 2.59e-003 1.73e-001

f2 2000 Mean 1.12e-005 3.11e-031 3.79e-006 1.45e-001 1.10e+000
Std.Dev 6.31e-006 2.58e-031 1.90e-006 1.05e-001 4.07e-001

f3 5000 Mean 6.61e-009 1.45e-048 1.71e-006 5.67e-001 6.91e+001
Std.Dev 7.1e-009 3.26e-048 1.48e-006 4.74e-001 3.35e+001

f4 5000 Mean 6.02e-004 4.34e-007 1.12e-007 9.59e-002 8.52e-002
Std.Dev 8.28e-004 4.87e-007 2.29e-007 4.13e-001 2.37e-002

f6 1500 Mean 0 0 0 0 2.50e-001
Std.Dev 0 0 0 0 4.33e-001

f7 3000 Mean 1.55e+002 2.34e+001 1.75e+002 1.98e+002 2.11e+002
Std.Dev 7.49e+000 7.31e+000 1.61e+001 1.25e+001 1.05e+001

f10 1500 Mean 3.74e-005 7.95e-001 1.94e-005 3.10e-002 3.21e-001
Std.Dev 1.05e-005 9.22e-001 6.16e-006 1.01e-002 1.14e-001

f11 2000 Mean 3.57e-003 9.48e-003 1.48e-003 1.41e-002 1.15e-001
Std.Dev 4.64e-003 7.71e-003 3.60e-003 5.45e-002 2.05e-001

f12 1500 Mean 4.50e-009 1.19e-001 1.65e-009 6.39e-003 1.11e-03
Std.Dev 6.25e-009 1.95e-001 1.31e-009 8.57e-003 3.29e-001

f13 1500 Mean 5.49e-004 3.75e-001 5.33e-009 1.49e-002 4.46e-001
Std.Dev 2.39e-003 9.45e-001 7.19e-009 9.52e-003 2.25e-001

f21 3000 Mean 1.79e+002 1.76e+002 1.63e+002 1.75e+002 1.72e+02
Std.Dev 1.93e+001 2.08e+001 2.32e+001 2.13e+001 1.80e+001

f22 1500 Mean 2.09e+001 1.14e+000 2.09e+001 2.09e+001 3.69e-001
Std.Dev 5.24e-002 9.41e-001 7.20e-002 4.32e-002 1.52e-001

f23 2000 Mean 4.92e-003 1.17e-002 3.08e-003 2.36e-002 1.06e-001
Std.Dev 7.69e-003 1.29e-002 5.82e-003 1.02e-001 1.74e-001

Bases on the experiment we could gain some useful concludes:
Increase more than two difference parameter would decrease the performance

of the perturb vector. To bets/n, best/2 is best and best/1 is weak, if n is
bigger than two, increase difference parameter would decrease the performance
of perturb vector. To rand/n, rand/1 performs weak inmultimodal function and
rand/2 get best result. Because best/1 with only one difference parameter it is
constrained by limited search ability, with more difference parameter, although
it is outstanding in search ability but performs weak in convergence ability. In
this theory rand/1 is easy to entrap into local minima.

Rand/1 performs best to unimodal functions and best/2 is best to mul-
timodal functions. Specially, vectors with parameter perform excellent in the
vector family.

cur-to-best/1 and this series mutant vectors performs not best in mutate
family. But these vectors present exceptional features that same parameter in
different position lead to vary results. This feature should further study.
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3.3 Performance of New Method Generates Mutant Vector

Restricted by the length, this paper presents part of the result comparison be-
tween new method and old method in Table 5 and Table 6. According to the
experiment result, the new method optimizes the algorithm steadily. The new
method optimizes unimodal functions, multimodal functions with many local
minima, multimodal functions with deceiving and rotated functions well.

The new method achieves better performance in unimodal functions. To mul-
timodal functions with many local minima, best/2 use the new method does
not optimize the performance as obvious as unimodal functions done, but the
rand/1 and cur-to-best/1 achieve outstanding optimized results. To multimodal
functions with a few local minima, all the mutant vectors achieves same results,
the new method achieves same-level result, too. To rotated benchmarks, many
DE achieve weak results, but the new method still achieves obvious optimized
results.

4 Conclusion

Under the standard DE framework, considerable research has put forward many
mutant vectors. This paper proposed the linear relation between the algorithm
performance and the differential operator. According to experiment result, in-
creasing the differential operator would not certainly optimize the performance
of DE. In contrary, adds more than two difference parameters would decrease the
convergence ability. Some of the mutant vector like cur-to-best/1 and rand-to-
best did not perform best in the mutate family, but it is exceptional and worth
further study because in these mutate vectors parameters at different position
lead to different performance.

Moreover, we use rand/1, rand/2 and best/2, three best mutant vectors to
test the new method. The new method is more effective and achieves better
result than old method. The new method could optimize the performance of DE
in general. DE with three different mutant vectors all achieve optimized result.
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