
Creating Learning Sets for Control Systems

Using an Evolutionary Method

Marcin Gabryel1, Marcin Woźniak2, and Robert K. Nowicki1

1 Department of Computer Engineering, Czestochowa University of Technology,
Al. Armii Krajowej 36, 42-200 Czestochowa, Poland

2 Institute of Mathematics, Silesian University of Technology,
ul. Kaszubska 23, 44-100 Gliwice, Poland

{Marcin.Gabryel,Robert.Nowicki}@kik.pcz.pl, Marcin.Wozniak@polsl.pl

Abstract. The acquisition of the knowledge which is useful for devel-
oping of artificial intelligence systems is still a problem. We usually ask
experts, apply historical data or reap the results of mensuration from a
real simulation of the object. In the paper we propose a new algorithm
to generate a representative training set. The algorithm is based on ana-
lytical or discrete model of the object with applied the k–nn and genetic
algorithms. In this paper it is presented the control case of the issue illus-
trated by well known truck backer–upper problem. The obtained training
set can be used for training many AI systems such as neural networks,
fuzzy and neuro–fuzzy architectures and k–nn systems.

Keywords: genetic algorithm, control system, training data acquisition.

1 Introduction

Very important phase in the process of designing solution based on artificial
intelligence, e.g. artificial neural networks, fuzzy and neuro-fuzzy architectures
[1], [2], [3], type-2 neuro-fuzzy systems [4], [5], as well as its ensambles [6] is
the acquisition of knowledge. The expert, fuzzy, neuro-fuzzy, rough systems and
it’s hybrids [7], [8] can apply the knowledge that come from human experts. In
many projects this is a main source which determines the prototypes of rules.
However, usually it is insufficient. These systems require also the other type of
knowledge - the set of examples of proper operation of the system. This type
of knowledge is necessary for tuning and evaluating the solution. In the case of
developing neural networks and often even neuro-fuzzy architectures the set of
examples, i.e. training set, is the one and only form of knowledge used both for
training and evaluating [9], [10]. Moreover, the set of examples can be used to
obtain other forms of knowledge including rules [11], [12], [13], [14], [15], [16].
As we see the set of examples is quite versatile knowledge form. The common
practice in training and evaluating new AI systems is to use available to the
public sets - benchmarks [17]. Such proceedings are obviously unsuitable in a
real problem. During the building of medical diagnostic system the source of the
case is historical diagnosis of real patients. During the development of the control

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 206–213, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Creating Learning Sets for Control Systems Using an Evolutionary Method 207

or diagnostic system the samples come from measurement of the real objects or
from model simulation. When we neglect the cost of first method and problem
with imperfection of model in a second one, we have still two problems. The first
one is poor representativity of obtained set. The second one is more serious. To
proceed the work or simulation, in one of structures depicted in Fig. 1 or 2, we
have to know how to control the object or detect the threat of damage. We can
use the past controller or human operator. The training set of Truck backer–
upper control problem [18], [19] (see Section 2) used in many experiments and
publications comes from registration the trajectories when the truck was being
controlled by the driver.

object

controller, e.g. PID
u(t) e(t)

v(t) +- r(t)

Fig. 1. Classical control system

object

controller, e.g. FS
u(t)

e(t)

v(t) +- r(t)

Fig. 2. AI control system

In the next part of the paper we will present the new method to generate a
representative training set without the proper knowledge about control proce-
dure. The algorithm is based on an analytical or discrete model of object with
applied the k–nn [20] and genetic algorithms.

2 Truck Backer–Upper Control Problem

The problem of truck parking has been proposed and used as an example issue
of non-linear control of the object by Nguyen and Widrow [18] and also used
by Kong’a, Kosko [19]. It has become quite popular in experiments of control
systems.

208 M. Gabryel, M. Woźniak, and R.K. Nowicki

Truck goes to the back of a constant speed, and its goal is to reach the ramp.
The parameter controlling the steering angle θ. State of the vehicle in the parking
determine four parameters: coordinates x and y – determine the location of the
parking lot, φ – angle to the axis Y of the vehicle, θ – turn the wheels of the
vehicle. Truck moves backwards in the following steps in order to reach axis
of the ramp (point x = 0, φ = 0). Distance from the dock is ignored, since
goal is assumed that any further driving in a straight line is not a problem.
Problem posed in the article is to generate a learning set based on the model
describing the motion of the vehicle in the following steps. The individual data
within the learning set should be chosen in such a way that for a given position
in which the vehicle is, in the next step to bring the vehicle to the ramp turning
the wheels. The next steps of the simulation (vehicle’s motions) describe the
following formulas:

x(k + 1) = x(k) + δtv cos (φ(k)) ,
y(k + 1) = y(k) + δtv sin (φ(k)) ,

φ(k + 1) = φ(k) + δtv sin(θ(k))
L ,

(1)

where φ – angle to the Y axis, L – length of the vehicle, θ – steering angle, v –
vehicle speed, δt – time interval, k – iteration in the simulation, (x, y) – vehicle
position. The range of variation of the variables is as follows: x ∈ (−150, 150),
y ∈ (0, 300), φ ∈ (−45, 45), θ ∈ (−180, 180). The problem is shown in Fig. 3.

x(t) x=0

y=0
r

y=300
x=-150 x=150

y(t)
�(t)

dock

truck

Fig. 3. Model of vehicle parking

Creating Learning Sets for Control Systems Using an Evolutionary Method 209

3 k Nearest Neighbor Controller

To check the quality of the individual training sets we could build a Controller
on each of them. This solution has one serious defect. Constructing the controller
is time-consuming. The results can depend on the type of controller and above
all it do not allow an individual assessment of the samples. Rating would apply
to all drivers and so the entire training set.

In the proposed algorithm, there was proposed a special Controller, based on
the algorithm of k–nn [20]. The driver will be the used knowledge contained in a
single set of learning samples. The set is composed of M samples, each of them
has two parts — the value in the input space vi ∈ V and the corresponding
baseline values in the output space of ui ∈ U. The fitness function fi = F (Xi)
is assigned to each sample (see Section 4).

The control system shown in Fig. 2 will be used in this case. State of the
controlled object is described by the vector v(t) ∈ V, which is passed to the
input driver. In the collection of samples used by the driver there is no sample
for which vi = v(t) (omitting digitizing measurement and representation of
samples, this situation is infinitely improbable). To design the control value u(t)
there will be used all samples contained in a set, each depending on the distance

di(t) = ||v(t) − vi|| (2)

and fitness function for each sample fi according to

u(t) =

M∑

i=1

g (di(t)) fiui

M∑

i=1

g (di(t)) fi

, (3)

where g is a not increasing function for positive values in the space of variations
di(t) defined by the formula (2).

We can also consider the inclusion k < M the nearest v samples, however
this requires a sort to the distance di. Controll value willbe calculated by the
formula

u(t) =

∑

i : di∈Ωk(t)

fiui

∑

i : di∈Ωk(t)

fi
, (4)

where Ωk(t) is a set of k lowest values of di(t). Hence the name of the proposed
controller.

4 Testing Procedure and Results

Implemented system was tested using truck. Due to discrete nature of the model
used in the model integrals were replaced by the sums of the successive steps of
the simulation. Described problem will be solved using the evolutionary strategy

210 M. Gabryel, M. Woźniak, and R.K. Nowicki

(μ, λ) (see [21], [22]). It is well known that evolution strategies are distinguished
by self-adaptation of additional strategy parameters, which enable them to adapt
the evolutionary optimization process to the structure of the fitness [23]. It is
assumed that the chromosome of an individual is formed by a pair of real-valued
vectors (X, σ). The strategy vector σ is a subject to a randommutation according
to the formula

σ′
i = σi · eτ ′·N(0,1)+τ ·N(0,1), (5)

where τ ′ = 1√
2L

, τ = 1√
2
√
L
, i = 1, . . . , L and L is the length of the chromosome.

The mutation in the algorithm is based on the formula

X ′
i = Xi + σ′

i ·Ni(0, 1), (6)

replaces the parent X ′ with the descendant X . The standard evolution strategy
based on mutation is extended by using of a uniform recombination operator
[21] . In a single chromosome is encoded M = 50 possible samples (triplets
of numbers (X,φ, θ)). The length of the chromosome is therefore L = 3M =
150. The proposed algorithm uses an evolutionary algorithm in addition to the
calculation algorithm of the additional k-nearest neighbor algorithm (k–nn) [20].
The algorithm consists of several steps:

1. Initialize the algorithm – Enter the number of steps N .
2. For k = 1, . . . , N , repeat steps 3-6.
3. Random selection of the initial position of truck:

(a) xk = N(0, 1) · (xmax + xmin) + xmin.
(b) φk = N(0, 1) · (φmax + φmin) + φmin.

4. Initiation of an evolutionary strategy (μ, λ).

(a) Determination of parameters of an evolutionary strategy.
(b) Random the vectorsXj of initial population for j = 1, . . . , μ, i = 1, . . . ,M .

i. Xj,i·3 = N(0, 1) · (xmax + xmin) + xmin.
ii. Xj,i·3+1 = N(0, 1) · (φmax + φmin) + φmin.
iii. Xj,i·3+2 = N(0, 1) · (θmax + θmin) + θmin.

5. Commissioning strategy (μ, λ) for 100 generations of evolution and the cal-
culation of fitness function according to algorithm:

(a) F (Xj) = 0.
(b) Perform a full simulation of motion for the point (xk, φk):

i. t = 0.
ii. Find the turning angle θ of wheels for your vehicle from all samples

using the algorithm k–nn.
iii. Move the vehicle to a new position x(t + 1), y(t + 1) according to

equations (1), t = t+ 1.
iv. F (Xj) = F (Xj) + x(t) + φ(t) (see Fig. 4).
v. Finish the simulation of T steps if the vehicle approaches the ramp,

otherwise go to step ii.

6. The introduction of all the samples with the winning chromosome which
participated in the k–nn algorithm and adding them to the learning set Ω.

Creating Learning Sets for Control Systems Using an Evolutionary Method 211

v(t)
v

r

Q

t

Fig. 4. Method of fitness function calculate

The algorithm uses the following designations: N – the number of subjects of
the vehicle states, xmax, xmin, φmax, φmin, θmax, θmin – maximum and minimum
values are defined in Section 2, N(0, 1) – random number generated from the
range (0, 1), M – number of samples encoded in the chromosome, t – iteration
in the simulation, F (Xj) – value of fitness function for the j-th chromosome.

Generated samples are collections of three numbers (x, φ, θ), where for input
data x and φ is adjusted steering angle θ to make the vehicle closer to the ramp
in the next move. Algorithm in the steps satisfies the conditions x = 0, y = 0
and θ = 0. To simplify the operations it is assumed that the y position of the
truck will not be taken into account.

The idea behind the algorithm is to generate many of the initial states of
the model, and then evolutionary selection of parameters affecting its perfor-
mance taking into account his current state. After finishing the simulation the

Table 1. The results obtained in the algorithm

No. x φ θ No. x φ θ

1 -98.19 -14.16 60.00 16 26.36 66.86 -5.37

2 -76.53 -57.65 -3.38 17 31.28 15.75 19.96

3 -53.56 -15.10 56.88 18 37.56 48.22 0.03

4 -36.71 -34.93 60.00 19 39.83 54.27 2.79

5 -33.48 7.49 60.00 20 40.56 51.23 5.63

6 -30.20 -2.35 36.72 21 45.28 61.24 -20.88

7 -16.42 48.89 0.33 22 49.29 39.68 -38.75

8 -16.35 34.85 29.16 23 50.51 61.57 -41.48

9 -9.61 32.19 -12.92 24 57.68 24.44 -2.31

10 -9.51 81.89 -16.01 25 57.69 30.45 -60.00

11 -6.11 41.96 -5.69 26 73.51 117.22 -1.39

12 -2.96 118.15 -4.17 27 79.76 110.37 -10.74

13 -1.07 33.32 -9.31 28 90.79 31.61 -2.13

14 3.43 95.29 -4.33 29 98.52 57.67 -19.50

15 4.09 7.98 -21.92 30 105.12 -43.77 -60.00

212 M. Gabryel, M. Woźniak, and R.K. Nowicki

best chromosomes selected are those samples that have been generated by the
algorithm k–nn with the operation of fitness function. The algorithm has been
implemented in Java with the following parameters of the algorithm:N = 10, μ =
10, λ = 50,M = 50, k = 5, T = 500. The generated sequence of learning states
can be found in Table 1. Analyzing the samples can be seen that the generated
sequence is appropriately diverse and individual states (X,φ) corresponds to the
appropriate response to the steering wheel θ.

5 Final Remarks

The article proposed a new method to generate a collection of representative
samples, which can be used in the preparation of the target driver based on
various methods of artificial intelligence, but also other, using the knowledge in
the form of examples [24]. This method can be useful when we have a model of
controlled object, and we have no knowledge of it’s proper control. Conducted
experiments confirm it’s usefulness. An important restriction only need to carry
out a large number of simulation control process to determine the assessment of
individual sets of samples and the same samples. It is therefore time-consuming
procedure. Further work should therefore be carried out in the direction of reduc-
ing time-consuming solution, eg. by using some knowledge prior to generating
the initial population.

References

1. Rutkowska, D., Nowicki, R.K.: Implication-based neuro–fuzzy architectures. Inter-
national Journal of Applied Mathematics and Computer Science 10(4), 675–701
(2000)

2. Rutkowski, L., Cpa�lka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, December
2-5, vol. 3, pp. 1428–1431 (2001)

3. Rutkowski, L., Cpa�lka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

4. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-
val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

5. Starczewski, J.T., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Infer-
ence Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J.
(eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

6. Korytkowski, M., Rutkowski, L., Scherer, R.: From Ensemble of Fuzzy Classifiers
to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272.
Springer, Heidelberg (2008)

7. Nowicki, R.: Rough–neuro–fuzzy structures for classification with missing data.
IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics 39 (2009)

8. Nowicki, R.: On classification with missing data using rough-neuro-fuzzy systems.
International Journal of Applied Mathematics and Computer Science 20(1), 55–67
(2010)

Creating Learning Sets for Control Systems Using an Evolutionary Method 213

9. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

10. Korytkowski, M., Scherer, R., Rutkowski, L.: On combining backpropagation with
boosting. In: 2006 International Joint Conference on Neural Networks, Vancouver,
BC, Canada, pp. 1274–1277 (2006)

11. Wang, L.X.: Adaptive Fuzzy Systems and Control. PTR Prentice Hall, Englewood
Cliffs (1994)

12. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE
Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992)

13. Grzymala-Busse, J.W.: LERS — a system for learning from examples based on
rough sets. In: Sowiski, R. (ed.) Intelligent Decision Support: Handbook of Ap-
plications and Advences of the Rough Sets Theory, pp. 3–18. Kluwer, Dordrecht
(1992)

14. Grzymala-Busse, J.W.: An overview of the LERS1 learning systems. In: Proceed-
ings of the 2nd International Conference on Industrial and Engineering Applica-
tions of Artificial Intelligence and Expert Systems, pp. 838–844 (1989)

15. Nozaki, K., Ishibuchi, H., Tanaka, H.: A simple but powerful heuristic method for
generating fuzzy rules from numerical data. Fuzzy Sets and Systems 86, 251–270
(1997)

16. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling.
IEEE Transactions on Fuzzy Systems 1(1), 7–31 (1993)

17. Mertz, C.J., Murphy, P.M.: UCI respository of machine learning databases,
http://www.ics.uci.edu/pub/machine-learning-databases

18. Nguyen, D., Widrow, B.: The truck backer-upper: An example of self-learning in
neural network. IEEE Control Systems Magazine 10(3), 18–23 (1990)

19. Kong, S.G., Kosko, B.: Comparison of fuzzy and neural truck backer upper control
system. In: Proceedings of IJCNN 1990, vol. 3, pp. 349–358 (1990)

20. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13(1), 21–27 (1967)

21. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Heidelberg (1998)

22. Eiben, A.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)
23. Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University

Press, Oxford (1996)
24. Scherer, R.: Neuro-fuzzy Systems with Relation Matrix. In: Rutkowski, L., Scherer,

R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS
(LNAI), vol. 6113, pp. 210–215. Springer, Heidelberg (2010)

http://www.ics.uci.edu/pub/machine-learning-databases

	Creating Learning Sets for Control Systems Using an Evolutionary Method
	Introduction
	Truck Backer–Upper Control Problem
	k Nearest Neighbor Controller
	Testing Procedure and Results
	Final Remarks
	References

