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Abstract. Compact algorithms are Estimation of Distribution Algo-
rithms which mimic the behavior of population-based algorithms by
means of a probabilistic representation of the population of candidate
solutions. Compared to an actual population, a probabilistic model re-
quires a much smaller memory, which allows algorithms with limited
memory footprint. This feature is extremely important in some engineer-
ing applications, e.g. robotics and real-time control systems. This paper
proposes a compact implementation of Bacterial Foraging Optimization
(cBFO). cBFO employs the same chemotaxis scheme of population-based
BFO, but without storing a swarm of bacteria. Numerical results, car-
ried out on a broad set of test problems with different dimensionalities,
show that cBFO, despite its minimal hardware requirements, is compet-
itive with other memory saving algorithms and clearly outperforms its
population-based counterpart.

1 Introduction

Bacterial Foraging Optimization (BFO), see [8,18], is a meta-heuristic inspired
by the foraging behavior of the E. coli bacteria within some environment with
a non-uniform distribution of nutrients. The basic idea is to explore the search
space performing tentative moves similar to the swim foraging pattern (called
”chemotaxis”) observed in motile bacteria. Bacterial chemotaxis is a complex
combination of two types of moves, namely tumbling (i.e. changes of direc-
tion) and swimming (i.e. moves along a successful direction), which respectively
enable the bacteria to search for nutrients in random directions and rapidly
approach higher concentrations of nutrients. In other words, the alternation
between ”swims” and ”tumbles” guarantees a balance between exploitation and
exploration of the search space, thus making BFO robust and versatile.

Like other Swarm Intelligence algorithms, BFO has been successfully applied
to many practical problems. For example, in [10] BFO is applied in image pro-
cessing. In [13] a hybrid algorithm composed of BFO and a GA is used to tune
a PID controller. In [20], BFO is used to design UPFC controllers. In [7], BFO
is used to calibrate a volatility option pricing model.
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Despite its versatility, however, BFO shows a poor convergence behavior,
compared to other meta-heuristics, especially over high dimensional complex
optimization problems. To overcome these issues, different strategies have been
proposed. In [5,19], cooperative approaches are used to improve the performance
of standard BFO. In [3], instead, BFO has been hybridized with Particle Swarm
Optimization. Recently, some adaptive and self-adaptive variants of the original
BFO have been proposed, see e.g. [4,6] and [9,10]. In [21] the foraging mechanism
is combined with an EDA and applied in predictive control.

This paper introduces a compact implementation of BFO, called cBFO. The
cBFO algorithm belongs to the class of compact Evolutionary Algorithms (cEA),
i.e. optimization algorithms which do not store and process an entire population
of individuals, but make use of a probabilistic representation of the population.
Thus, a run of these algorithms requires a limited memory compared to their
correspondent standard EAs. These algorithms have been developed in order
to address industrial optimization problems characterized by limited memory
resources, e.g. in mobile robots and control systems, where a powerful computer
may be unavailable due to cost and/or space limitations. The remainder of this
paper is organized as follows. Section 2 describes the proposed cBFO. Section
3 shows the numerical results of an extensive test on the performance of cBFO
compared to a set of algorithms. Section 4 gives the conclusion of this work.

2 Compact Bacterial Foraging Optimization

The classical BFO consists of three phases, namely: 1) chemotaxis, 2) reproduc-
tion, and 3) dispersal. During chemotaxis, the movement of the i-th bacterium

is modeled as xi = xi + Ci ·Δi/
√
ΔT

i Δ, where Δi is the direction vector of the
chemotactic step (being ΔT

i its transpose), and Ci is a parameter which controls
the step size. In tumbles, Δi is a random vector whose elements are uniformly
distributed in [−1, 1]; in swims instead, Δi is the same as the last chemotactic
step, thus allowing the bacterium to exploit a promising direction. To mimic
the asexual reproduction of E. coli, at each iteration BFO sorts all the bacteria
according to their fitness and selects the best half of the swarm. Each survivor is
then splitted into two replicas, thus keeping the swarm size constant. Finally, in
order to prevent premature convergence and keep a high diversity rate, after a
fixed number of chemotaxis/reproduction steps a few bacteria are chosen, with
some probability, for being replaced with new random individuals.

The original population-based BFO framework can be implemented as a com-
pact algorithm almost straightforwardly. For the sake of clarity, the resulting
algorithm, here called cBFO, is shown in Alg. 1. Without loss of generality, let
us assume that parameters are normalized so that each search interval is [−1, 1].
cBFO consists of the following. A 2 × n matrix, namely perturbation vector
PV = [μ, σ], is generated. μ values are set equal to 0 while σ values are set equal
to a large number λ = 10. The value of λ is empirically set in order to simulate a
uniform distribution at the beginning of the optimization process. A solution xe

is then sampled from a multivariate Gaussian Probability Distribution Function
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(PDF) characterized by a mean value μ and a standard deviation σ. For further
details on sampling, see [15]. The solution xe is called elite. Subsequently, at each
chemotactic step, a new solution is sampled and a combination of tumble/swim
moves is attempted, in the same way as in the population-based BFO. Every
time a new offspring is generated, either by sampling or tumble/swim, its fitness
is computed and compared with the fitness of the current elite. On the basis of
their fitness values, a winner solution (solution displaying the best fitness) and
a loser solution (solution displaying the worst fitness) are detected. The winner
solution biases the virtual population by affecting the PV values, according to
the following update rules:

μt+1 = μt + 1
Np

(winner − loser)

σt+1 =
√
(σt)

2
+ (μt)

2 − (μt+1)
2
+ 1

Np
(winner2 − loser2)

(1)

where Np is a parameter, namely virtual population size. Details for constructing
Eg. 1 are given in [14]. In addition to the PV values, also the elite is updated,
according to a persistent elitism scheme, see [2].

The compact implementation of reproduction and elimination/dispersal de-
serves an explanation. While BFO keeps the best S/2 bacteria and replicate
them, cBFO ”shifts” the PDF towards the elite and ”shrinks” over it. In other
words, the fitness-based comparison described above is applied to μ and elite,
and the PV is updated accordingly. In this way, asexual reproduction is crudely
approximated by a forced update of the PDF. As for the elimination/dispersal
step, the injection of new randomly generated bacteria into the swarm is modeled
by means of a perturbation of PV . More specifically, the following perturbation
is applied, see [17]:

μt+1 = μt+1 + 2τ · rand (0, 1)− τ

σt+1 =

√
(σt+1)

2
+ τ · rand (0, 1)

(2)

where τ = 0.1 is a constant parameter.

3 Numerical Results

The numerical results are divided in three groups, namely results from the
testbed in [16] (24 problems) in 10, 20 and 40 dimensions. For each of the three
groups, the following algorithms, with the parameter setting suggested in the
original paper, have been compared to cBFO:

− Simplified Intelligence Single Particle Optimization: ISPO proposed in [23],
with acceleration A = 1, acceleration power factor P = 10, learning coeffi-
cient B = 2, learning factor reduction ratio S = 4, minimum threshold on
learning factor E = 1e− 5, and particle learning steps PartLoop = 30;
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{** PV initialization **}
initialize μ = 0̄ and σ = 1̄ · 10
generate elite by means of PV
while budget condition do

{** chemotaxis **}
for i = 1 : Np do

generate 1 individual xi by means of PV
[winner, loser] = compete (xi, elite)
update μ, σ and elite
Jlast = fxi{** tumble and move **}
xi = xi + Ci · Δi/

√
ΔT

i Δ, with random Δi ∈ [−1, 1]n

{** swim **}
for i = 1 : Ns do

[winner, loser] = compete (xi, elite)
update μ, σ and elite
if fxi

< Jlast then
Jlast = fxi

xi = xi + Ci · Δi/
√

ΔT
i Δ, with same direction vector Δi

end if
end for

end for
{** reproduction: shift μ towards elite **}
[winner, loser] = compete (μ, elite)
update μ and σ
{** elimination/dispersal: perturb PV **}
perturb PV according to Eq. 2

end while

Algorithm 1: cBFO pseudo-code

− compact Differential Evolution: cDE proposed in [15], employing rand/1/
mutation, binary crossover and persistent elitism, with virtual population
size Npop = 300, scale factor F = 0.5, and crossover rate Cr = 0.3;

− Adaptive Bacterial Foraging Optimization: ABFO0 (hereafter simply called
ABFO) proposed in [6], with number of bacteria S = 50, initial chemotac-
tic step size Cinitial = 0.1, swim steps Ns = 4, probability of elimination/
dispersion Ped = 0.25, initial epsilon εinitial = 100, adaptation generations
n = 10, Ci reduction ratio α = 10, and ε reduction ratio β = 10.

As for cBFO, the following parameter setting has been used: number of bacteria
Np = 300, chemotactic step size Ci = 0.1, swim steps Ns = 4. Similarly to the
cDE scheme, in this case the number of bacteria represents the virtual population
size used in the probabilistic model of the population. The reason for setting the
value of Np much larger than S is that, since it controls the convergence of
the compact framework, a lower value would cause premature convergence. On
the other hand, a high value of Np guarantees a fair balance between exploration
- in the early stages - and exploitation in the later stages. The value Np =
300 has been chosen empirically after a series of numerical experiments. It
should be noticed that the aforementioned set of algorithms has been chosen
diverse in terms of search logic. ABFO is a typical population based algorithm
which requires a proper population size dependent on the dimensionality of the
problem. This fact makes the memory requirement of ABFO heavily dependent
on the dimensionality of the problem. On the other hand, ISPO, cDE and cBFO
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Table 1. Average final results± standard deviation and Wilcoxon test in 10 dimensions

Fcn. ISPO W cDE W ABFO W cBFO

f1 7.948e+01 ± 1.26e-14 - 7.948e+01 ± 1.07e-14 - 7.950e+01 ± 3.33e-03 + 7.948e+01 ± 5.84e-04

f2 -2.099e+02 ± 9.65e-14 - -2.099e+02 ± 1.00e-10 - 3.171e+03 ± 2.72e+03 + 2.289e+02 ± 2.72e+02

f3 -3.966e+02 ± 7.41e+01 = -4.507e+02 ± 5.00e+00 - 5.323e+04 ± 7.91e+04 + -4.191e+02 ± 9.77e+00

f4 -4.319e+02 ± 1.55e+01 = -4.339e+02 ± 1.21e+01 - -1.572e+02 ± 7.42e+01 + -4.233e+02 ± 1.78e+01

f5 -9.210e+00 ± 0.00e+00 - -9.210e+00 ± 3.87e-09 - -3.895e+00 ± 1.84e+00 + -9.182e+00 ± 4.95e-03

f6 1.006e+04 ± 1.34e+04 + 3.052e+02 ± 3.31e+02 + 8.305e+03 ± 3.19e+03 + 3.710e+01 ± 3.41e-01

f7 1.004e+02 ± 5.59e+00 + 1.075e+02 ± 1.10e+01 + 9.966e+01 ± 3.22e+00 + 9.445e+01 ± 8.16e-01

f8 1.843e+02 ± 7.71e+01 = 1.587e+02 ± 1.49e+01 = 1.591e+02 ± 3.76e+00 + 1.559e+02 ± 2.13e+00

f9 1.262e+02 ± 1.12e+00 - 1.756e+02 ± 5.90e+01 + 1.319e+02 ± 9.31e-01 = 1.388e+02 ± 2.50e+01

f10 3.789e+05 ± 4.23e+05 + 5.998e+03 ± 5.88e+03 = 3.413e+03 ± 1.92e+03 = 3.239e+03 ± 2.39e+03

f11 2.673e+04 ± 1.34e+04 + 2.318e+03 ± 9.99e+02 + 8.704e+03 ± 4.03e+03 + 8.985e+01 ± 6.14e+00

f12 -5.732e+02 ± 3.16e+01 - -5.375e+02 ± 2.85e+02 - 1.360e+04 ± 6.23e+03 + 1.699e+03 ± 2.20e+03

f13 5.572e+01 ± 1.78e+01 = 4.584e+01 ± 1.46e+01 - 6.169e+01 ± 1.15e+01 = 5.485e+01 ± 1.66e+01

f14 -5.235e+01 ± 9.04e-05 - -5.235e+01 ± 8.57e-03 - -1.150e+01 ± 6.83e+00 + -5.234e+01 ± 1.38e-03

f15 1.580e+03 ± 2.25e+02 + 1.036e+03 ± 1.44e+01 = 1.086e+03 ± 1.97e+01 + 1.043e+03 ± 1.74e+01

f16 8.363e+02 ± 7.75e+02 + 7.670e+01 ± 4.31e+00 - 1.306e+03 ± 3.45e+02 + 7.999e+01 ± 4.30e+00

f17 2.517e+01 ± 2.03e+01 + -1.537e+01 ± 6.97e-01 + 9.247e+00 ± 1.05e+01 + -1.598e+01 ± 7.91e-01

f18 1.995e+02 ± 1.38e+02 + -1.135e+01 ± 3.70e+00 + 7.463e+01 ± 3.25e+01 + -1.376e+01 ± 1.87e+00

f19 -7.443e+01 ± 1.31e+01 + -1.006e+02 ± 6.62e-01 - -3.394e+01 ± 1.95e+01 + -1.000e+02 ± 7.79e-01

f20 -5.453e+02 ± 2.68e-01 = -5.455e+02 ± 3.46e-01 - -5.103e+02 ± 5.80e+01 + -5.453e+02 ± 2.72e-01

f21 5.317e+01 ± 1.40e+01 = 4.450e+01 ± 5.11e+00 - 5.004e+01 ± 1.18e+01 = 4.728e+01 ± 5.57e+00

f22 -9.889e+02 ± 1.74e+01 = -9.980e+02 ± 1.40e+00 = -9.261e+02 ± 1.00e+01 + -9.963e+02 ± 4.88e+00

f23 1.108e+01 ± 5.90e+00 + 7.601e+00 ± 2.62e-01 - 9.848e+00 ± 1.18e+00 + 8.126e+00 ± 2.69e-01

f24 5.951e+02 ± 1.12e+02 + 1.515e+02 ± 1.76e+01 = 1.808e+02 ± 1.45e+01 + 1.467e+02 ± 1.13e+01

Table 2. Average final results± standard deviation and Wilcoxon test in 20 dimensions

Fcn. ISPO W cDE W ABFO W cBFO

f1 7.948e+01 ± 2.96e-15 - 8.005e+01 ± 1.31e+00 = 7.952e+01 ± 8.02e-03 + 7.949e+01 ± 1.21e-03

f2 -2.099e+02 ± 5.81e-14 - 5.836e+00 ± 4.53e+02 - 1.582e+04 ± 1.10e+04 + 2.847e+03 ± 1.33e+03

f3 -3.565e+02 ± 8.22e+01 - 3.295e+02 ± 4.77e+02 + 8.079e+05 ± 5.97e+05 + -3.064e+02 ± 4.05e+01

f4 -3.919e+02 ± 2.29e+01 - -3.149e+02 ± 5.65e+01 = 1.012e+01 ± 3.63e+01 + -2.871e+02 ± 6.12e+01

f5 -9.210e+00 ± 0.00e+00 - -8.718e+00 ± 7.82e-01 - -2.516e+00 ± 1.16e+00 + -8.025e+00 ± 1.70e+00

f6 7.985e+03 ± 6.94e+03 + 4.603e+03 ± 1.71e+03 + 9.264e+06 ± 3.46e+06 + 4.142e+01 ± 1.81e+00

f7 1.486e+02 ± 6.80e+01 + 1.671e+02 ± 3.18e+01 + 1.113e+02 ± 9.17e+00 + 1.049e+02 ± 4.71e+00

f8 1.711e+02 ± 3.03e+01 - 4.695e+02 ± 6.53e+02 + 1.900e+02 ± 1.71e+01 + 1.831e+02 ± 3.09e+01

f9 1.350e+02 ± 2.56e+00 - 4.284e+02 ± 3.52e+02 + 1.457e+02 ± 1.70e+00 - 1.674e+02 ± 4.47e+01

f10 8.883e+05 ± 8.17e+05 + 1.517e+05 ± 1.25e+05 + 1.108e+04 ± 4.28e+03 = 1.675e+04 ± 1.34e+04

f11 8.075e+04 ± 3.37e+04 + 4.852e+03 ± 1.32e+03 + 2.465e+04 ± 6.03e+03 + 1.046e+02 ± 1.06e+01

f12 5.344e+06 ± 2.62e+07 + 2.939e+06 ± 4.56e+06 + 6.616e+04 ± 1.97e+04 + 7.354e+03 ± 3.86e+03

f13 5.491e+01 ± 2.15e+01 - 3.682e+02 ± 1.40e+02 + 7.406e+01 ± 7.61e+00 = 6.921e+01 ± 2.49e+01

f14 -5.235e+01 ± 2.92e-04 - -4.930e+01 ± 2.37e+00 + -6.687e+00 ± 3.03e+00 + -5.233e+01 ± 4.07e-03

f15 2.516e+03 ± 4.52e+02 + 1.178e+03 ± 4.71e+01 + 1.434e+03 ± 7.67e+01 + 1.150e+03 ± 4.12e+01

f16 1.183e+03 ± 6.96e+02 + 1.440e+02 ± 5.22e+01 + 2.394e+03 ± 3.74e+02 + 9.041e+01 ± 7.95e+00

f17 1.638e+01 ± 1.19e+01 + -1.298e+01 ± 9.02e-01 = 7.463e+00 ± 1.13e+01 + -1.297e+01 ± 1.53e+00

f18 1.352e+02 ± 5.22e+01 + -1.782e+00 ± 3.71e+00 = 9.490e+01 ± 3.57e+01 + -3.647e+00 ± 6.73e+00

f19 -2.505e+01 ± 2.97e+01 + -9.775e+01 ± 1.73e+00 = -1.657e+01 ± 1.26e+01 + -9.747e+01 ± 6.99e-01

f20 -5.452e+02 ± 2.19e-01 - -5.450e+02 ± 3.89e-01 = -4.238e+02 ± 9.65e+01 + -5.449e+02 ± 2.68e-01

f21 5.860e+01 ± 2.02e+01 = 5.076e+01 ± 7.63e+00 = 4.777e+01 ± 7.89e+00 = 4.998e+01 ± 1.22e+01

f22 -9.873e+02 ± 1.12e+01 = -9.919e+02 ± 9.48e+00 = -9.001e+02 ± 5.66e+00 + -9.911e+02 ± 1.25e+01

f23 1.483e+01 ± 5.62e+00 + 8.193e+00 ± 4.61e-01 - 1.495e+01 ± 2.22e+00 + 8.800e+00 ± 2.82e-01

f24 1.495e+03 ± 1.97e+02 + 2.830e+02 ± 3.95e+01 + 2.954e+02 ± 3.30e+01 + 2.542e+02 ± 3.27e+01

can be considered memory saving heuristics, as they require a fixed amount of
memory slots which does not depend on the problem dimension. In other words,
if one of these algorithms is used to tackle a large scale problem, although the
slots are as long as the problem dimensionality, these slots do not increase in
number. More specifically, the ISPO scheme is a typical single solution algorithm,
requiring only two memory slots, one for the current best solution and the other
for a trial candidate solution. The cDE and cBFO structures are memory-wise
slightly more expensive than ISPO as they require, on the top of the two slots
for single solution algorithms, two extra slots for the virtual population PV .
This compromise is made in order to have the advantages of a population-based
search and a still low memory usage.
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Table 3. Average final results± standard deviation and Wilcoxon test in 40 dimensions

Fcn. ISPO W cDE W ABFO W cBFO

f1 7.948e+01 ± 1.22e-14 - 1.120e+02 ± 1.73e+01 + 7.960e+01 ± 9.75e-03 + 7.952e+01 ± 4.83e-03

f2 -2.099e+02 ± 1.12e-13 - 4.907e+04 ± 6.04e+04 + 7.397e+04 ± 2.54e+04 + 9.396e+03 ± 2.90e+03

f3 -2.497e+02 ± 1.07e+02 - 1.322e+04 ± 5.53e+03 + 2.838e+06 ± 1.44e+06 + -3.848e+00 ± 7.46e+01

f4 -1.855e+02 ± 1.27e+02 - 3.605e+02 ± 1.11e+02 + 4.467e+02 ± 1.16e+02 + 7.343e+01 ± 1.03e+02

f5 -9.210e+00 ± 0.00e+00 - 1.155e+01 ± 7.56e+00 + -1.921e+00 ± 7.38e-01 - 5.845e+00 ± 5.35e+00

f6 2.640e+04 ± 2.19e+04 + 1.945e+04 ± 4.09e+03 + 1.983e+07 ± 4.90e+06 + 1.019e+02 ± 4.10e+01

f7 6.123e+02 ± 5.34e+02 + 5.442e+02 ± 1.26e+02 + 3.082e+02 ± 6.89e+01 + 1.623e+02 ± 2.18e+01

f8 1.848e+02 ± 8.94e+01 - 2.187e+04 ± 1.36e+04 + 2.305e+02 ± 2.61e+01 = 2.576e+02 ± 7.97e+01

f9 1.629e+02 ± 2.67e+01 - 1.480e+04 ± 1.24e+04 + 1.828e+02 ± 3.98e+01 + 1.697e+02 ± 2.05e+01

f10 2.349e+06 ± 2.09e+06 + 6.739e+05 ± 2.49e+05 + 6.860e+04 ± 2.07e+04 + 5.332e+04 ± 3.01e+04

f11 2.131e+05 ± 1.01e+05 + 1.105e+04 ± 2.10e+03 + 4.285e+04 ± 6.09e+03 + 1.436e+02 ± 1.76e+01

f12 -6.032e+02 ± 1.13e+01 - 7.085e+07 ± 2.97e+07 + 1.136e+05 ± 1.11e+04 + 7.161e+04 ± 4.75e+04

f13 4.581e+01 ± 2.17e+01 - 1.319e+03 ± 2.46e+02 + 1.048e+02 ± 8.92e+00 + 9.299e+01 ± 3.23e+01

f14 -5.235e+01 ± 3.05e-04 - -3.288e+01 ± 5.51e+00 + -3.147e+00 ± 1.36e+00 + -5.231e+01 ± 7.71e-03

f15 4.278e+03 ± 6.81e+02 + 1.693e+03 ± 1.18e+02 + 2.318e+03 ± 1.71e+02 + 1.493e+03 ± 9.54e+01

f16 1.895e+03 ± 6.68e+02 + 4.456e+02 ± 1.01e+02 + 3.467e+03 ± 3.72e+02 + 1.252e+02 ± 1.27e+01

f17 2.634e+01 ± 1.98e+01 + -8.793e+00 ± 1.35e+00 = 2.020e+01 ± 2.17e+01 + -9.086e+00 ± 1.58e+00

f18 1.784e+02 ± 6.92e+01 + 1.037e+01 ± 7.07e+00 = 1.875e+02 ± 9.10e+01 + 1.050e+01 ± 6.20e+00

f19 -3.630e-01 ± 2.66e+01 + -8.942e+01 ± 2.43e+00 + -7.683e+00 ± 2.79e+00 + -9.484e+01 ± 8.41e-01

f20 -5.453e+02 ± 1.35e-01 - 2.786e+03 ± 3.42e+03 + -3.340e+02 ± 1.10e+02 + -5.446e+02 ± 2.47e-01

f21 7.488e+01 ± 2.37e+01 + 7.935e+01 ± 1.65e+01 + 7.945e+01 ± 2.81e+01 + 4.975e+01 ± 1.46e+01

f22 -9.539e+02 ± 1.64e+01 + -9.613e+02 ± 1.61e+01 + -8.543e+02 ± 9.64e+00 + -9.889e+02 ± 8.18e+00

f23 1.659e+01 ± 6.73e+00 + 9.141e+00 ± 4.27e-01 - 2.298e+01 ± 3.40e+00 + 9.995e+00 ± 2.82e-01

f24 2.861e+03 ± 2.59e+02 + 7.729e+02 ± 8.20e+01 + 8.291e+02 ± 8.52e+01 + 5.534e+02 ± 3.95e+01

For each algorithm and each test problem, 30 independent runs have been
performed. The budget of each single run has been fixed equal to 5000 ·n fitness
evaluations, where n is the dimensionality of the problem. All the experiments
were executed using the optimization platform Kimeme, see [1]. Tables 1-3 show
the obtained numerical results. Average final fitness values are computed for
each algorithm and each problem over the 30 runs available. In each table, the
best results are highlighted in bold face. In order to strengthen the statistical
significance of the results, the Wilcoxon Rank-Sum test has also been applied
according to the description given in [22], where the confidence level has been
fixed to 0.95. In each table, the results of the Wilcoxon test for cBFO against the
other algorithms considered in this study are displayed. A ”+” indicates the case
in which cBFO statistically outperforms, for the corresponding test problem, the
algorithm indicated in column; a ”=” indicates that a pairwise comparison leads
to success of the Wilcoxon Rank-Sum test, i.e., the two algorithms have the same
performance; a ”−” indicates that cBFO is outperformed.

Numerical results show that cBFO has overall a respectful performance de-
spite its limited memory requirement. In particular, cBFO outperforms, on a
regular basis, ABFO (which, in turn, outperforms cBFO only in one case out
of 72). This fact is an extremely interesting finding which, according to our in-
terpretation, is related to two different counterbalancing effects. The first one is
related to the population modeling of compact algorithms: the sampling mecha-
nism indeed seems to introduce a beneficial randomness, see [15], which endows
the original BFO framework with extra search moves that allow the exploration
of different regions of the search space. The second effect is related to the inher-
ent exploitative pressure which characterizes a compact algorithm, and which
allows, especially in high-dimensional cases, a better exploitation of the most
promising search directions.

As for the other memory saving algorithms considered in this study, a clear
trend emerges. In 10-dimensional problems, cBFO is outperformed by cDE,
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especially on separable functions (6 ”+” and 13 ”−”), while it slightly outper-
forms ISPO (11 ”+” and 6 ”−”). In 20-dimensional problems, both ISPO and
cBFO display a better performance than in 10 dimensions. In particular, cBFO
has a similar performance with respect to ISPO (12 ”+” and 10 ”−”), while it
outperforms cDE (13 ”+” and 3 ”-”). This trend is confirmed in 40-dimensional
problems, where cBFO and ISPO have a similar performance (13 ”+” and 11
”−”) and cDE is clearly outperformed by cBFO (21 ”+” and 1 ”−”). In con-
clusion, cBFO seems to robustly handle various landscapes and offer a good
performance in several cases, especially in high-dimensional cases.

3.1 Holm-Bonferroni Procedure

In order to draw some statistically significant conclusions regarding the perfor-
mance of cBFO, the Holm-Bonferroni procedure, see [11,12], for the four algo-
rithms under study and the 72 problems under consideration has been performed.
The Holm-Bonferroni procedure consists of the following. Considering the results
in the tables above, the four algorithms under analysis have been ranked on the
basis of their average performance calculated over the 72 test problems. More
specifically, a score Ri for i = 1, · · · , NA (where NA is the number of algorithms
under analysis, NA = 4 in our case) has been assigned in the following way:
for each problem, a score of 4 is assigned to the algorithm displaying the best
performance, 3 is assigned to the second best, and so on. The algorithm dis-
playing the worst performance scores 1. For each algorithm, a mean score has
been calculated averaging the sum of the scores of each problem. On the basis of
these scores the algorithms have been sorted. Within the calculated Ri values,
cBFO has been taken as a reference algorithm. Indicating with R0 the rank of
cBFO, and with Rj for j = 1, · · · , NA − 1 the rank of one of the remaining
three algorithms, the values zj , for j = 1, · · · , NA − 1, have been calculated as

zj = (Rj −R0)/
√

NA(NA+1)
6NTP

, where NTP is the number of test problems in con-

sideration (NTP = 72 in our case). By means of the zj values, the corresponding
cumulative normal distribution values pj have been calculated. These pj values
have then been compared with the corresponding δ/(NA − j) where δ is the
significance level of null-hypothesis rejection, set to 0.05 in our case. Table 4
displays ranks, zj values, pj values, and corresponding δ/(NA − j). The rank of
cBFO is shown in parenthesis. The values of zj and pj are expressed in terms of
zNA−j and pNA−j for j = 1, · · · , NA − 1. Moreover, it is indicated whether the
null-hypothesis (that the two algorithms have indistinguishable performances)
is ”Rejected” i.e., cBFO statistically outperforms the algorithm under consid-
eration, or ”Accepted” if the distribution of values can be considered the same
(there is no out-performance). Numerical results in Table 4 show that cBFO
has the best rank among the algorithms considered in this study. However, the
rank difference is large enough to claim that cBFO ”globally” outperforms only
ABFO and ISPO, while the null hypothesis is accepted when cBFO is compared
to cDE, meaning that the performance of cDE and cBFO is indistinguishable
on the selected benchmarks. This result is, in our opinion, remarkable, since it
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Table 4. Holm-Bonferroni Procedure

NA − j Algorithm zNA
− j pNA

− j δ/(NA − j) Hypothesis Rank

3 ABFO -6.65e+00 1.48e-11 1.67e-02 Rejected 1.75
2 ISPO -3.42e+00 3.12e-04 2.50e-02 Rejected 2.4444
1 cDE -2.39e+00 8.46e-03 5.00e-02 Accepted 2.6667

(3.1806)

indicates not only that cBFO clearly outperforms its population-based counter-
part, but also that it represents a good alternative to a robust and versatile
optimizer like cDE. Most importantly, these results confirm our previous find-
ing, see [17], that a properly designed memory saving algorithm can successfully
tackle complex problems, with different dimensionality, even better than over-
whelmingly complicated population based algorithms. In this light, we think that
a proper algorithmic design will allow, in the future, the integration of Compu-
tational Intelligence methods within cheap devices notwithstanding the limited
hardware.

4 Conclusion

This paper introduces a novel compact optimization algorithm, namely compact
Bacterial Foraging Optimization (cBFO). Like its population-based counterpart,
this heuristic employs the metaphor of the chemotaxis mechanism which occurs
in bacterial foraging. An extensive set of test problems has been considered for
algorithmic testing. Numerical results show that, despite an extremely limited
memory footprint, cBFO clearly outperforms one of the most recent implementa-
tions of population-based BFO which employs adaptation. In addition, cBFO is
competitive with another compact algorithm employing a different logic, i.e. the
compact Differential Evolution. Further studies will investigate the introduction
of adaptive and self-adaptive schemes in the cBFO framework here proposed.
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