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Preface

This volume constitutes the proceedings of the International Symposium on
Swarm and Evolutionary Computation organized as part of the 11th Interna-
tional Conference on Artificial Intelligence and Soft Computing, ICAISC 2012,
held in Zakopane, Poland from April 29 to May 3, 2012. The symposium con-
sisted of the Symposium on Swarm Intelligence and Differential Evolution (SIDE
2012) and the Symposium on Evolutionary Computation. Swarm intelligence
(SI) is a computational intelligence technique which mimics and makes use of
collective behavior (e.g., fish, birds, bees, ants, bacteria etc.) for solving search
and optimization problems. The resulting algorithms are thus population-based
systems of simple individuals interacting with one another and with their envi-
ronment. Differential evolution (DE) is a special example of an optimizer since
it shares some features with SI, mainly in the interaction amongst particles and
selection scheme, but can also be considered as an evolutionary algorithm (EA).
This symposium gathered new theoretical and implementation results, applica-
tions, reviews, and comparative studies. Special emphasis was placed on those
studies which attempt to explain the working principles of the algorithms. I
would like to thank the SIDE Committees, especially Ponnuthurai N. Sugan-
than, for organizing this successful event. The volume is divided into two parts:
proceedings of the 2012 Symposium on Swarm Intelligence and Differential Evo-
lution and the Symposium on Evolutionary Computation. This edition of the
ICAISC also hosted the 4th International Workshop on Engineering Knowledge
and Semantic Systems (IWEKSS 2012). The whole conference (ICAISC, SIDE
and IWEKSS) attracted a total of 483 submissions from 48 countries and after
the review process 212 papers were accepted for publication. I would like to thank
our participants, invited speakers and reviewers of the papers for their scientific
and personal contribution to the conference. Several reviewers were very helpful
in reviewing the papers and are listed herein.

Finally, I thank my co-workers �Lukasz Bartczuk, Agnieszka Cpa�lka, Piotr
Dziwiński, Marcin Gabryel, Marcin Korytkowski and the conference secretary
Rafa�l Scherer, for their enormous efforts to make the conference a very successful
event. Moreover, I would like to acknowledge the work of Marcin Korytkowski,
who designed the Internet submission system.

April 2012 Leszek Rutkowski
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Abstract. This paper presents a work inspired by the Pachycondyla
apicalis ants behavior for the clustering problem. These ants have a sim-
ple but efficient prey search strategy: when they capture their prey, they
return straight to their nest, drop off the prey and systematically return
back to their original position. This behavior has already been applied to
optimization, as the API meta-heuristic. API is a shortage of api-calis.
Here, we combine API with the ability of ants to sort and cluster. We
provide a comparison against Ant clustering Algorithm and K-Means us-
ing Machine Learning repository datasets. API introduces new concepts
to ant-based models and gives us promising results.

Keywords: Data mining, Clustering, Ant-Based Clustering, Swarm
Intelligence.

1 Introduction

Clustering is an unsupervised classification task which builds clusters from a
set of objects or patterns based on similarity or dissimilarity measures between
objects. The unknown number of clusters to obtain, the difficulty of defining a
cluster for the given data (thereby choosing the appropriate dissimilarity mea-
sure) and the challenge of high-dimensionality of the data results in the impor-
tant number of clustering algorithms that is continually published [9]. These
algorithms can be categorized into partitioning or hierarchical. The clustering
problem considered here is partitioning clustering in the case of exploratory data
analysis. A comprehensive study of clustering can be found in [10,9].

Given a clustering problem, many challenges have to be faced in order to
choose the appropriate algorithm. Among them is how to assess the output of a
given algorithm. Statistical indexes (Ward, inter/intra class, F-Measure, Rand,
Dunn) are the most widely used criteria to answer this question [10].

The API algorithm, based on the foraging behavior of Pachycondyla apicalis
ants, has initially been proposed for continuous optimization [13]. However, as a
meta-heuristic, API can be applied to various search spaces, such as discrete or
mixed ones. An example is the training of the Hidden Markov Models [2]. The

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 3–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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main motivation of this paper is to study how API algorithm can be transposed
to tackle a clustering problem. The difference between the HMM optimization
case is that for HMM, each hunting site corresponds to a solution of the problem
(i.e. one HMM) but for the clustering problem, a hunting site only corresponds
to one object on the grid, the solution built by ants is represented by the whole
set of nests each containing objects.

The remainder of this paper is organized as follows: the next section gives
a quick presentation of the basic ideas behind ant-based clustering methods
since we have used the same kind of ideas to provide clustering skills to API . In
section 3, we explain the API algorithm and how we can adapt it to clustering. In
section 4, we present the experiments we have done to evaluate the API algorithm
as a clustering tool and the last section gives conclusions and perspectives about
this work.

2 Bio-inspired and Ant Based Clustering Algorithms

Bio-inspired methods are based on the behavior of self-organized, decentralized
systems. In Nature, many ant species have the ability to sort and cluster their
dead ants or their brood (eggs, larvae,...) into several piles and have foraging
mechanisms [3]. Several attempts have been provided to transpose various be-
haviors of ants to tackle clustering problems (see recent reviews in [8,6,12]), but,
to the best of our knowledge, API algorithm for clustering has been studied once
before [1] but in a different manner than what is presented in this study.

Deneubourg et al. [5] proposed a simple model, called DM in the following,
aiming at simulating the behavior of ants to gather objects. In this model, robots
representing ants are randomly moving on a grid where objects of the same type
are scattered. A robot which does not carry an item, will more likely pick up
the most isolated object with the probability Ppickup and will drop it near a
heap with the probability Pdrop. The DM represents the root model of ant-based
clustering methods that directly mimics natural ants.

Lumer and Faieta [11] proposed the first adaptation of DM for data clustering
problems. The key idea of their model, called LF, is the definition of a similar-
ity function f based on Euclidean distance d in the space of object attributes.
Initially, ants and objects are randomly placed on a 2D grid. The decision of
an ant to pick up or drop an object oi is based on the density f(oi). Which
measures the average similarity of object oi with the other objects oj present
in the neighborhood of oi. The main drawbacks of LF algorithm are the large
number of clusters found and the slow convergence [11].

The DM and LF algorithms are the basis of many algorithms that have been
proposed. The complete description of these ideas is beyond the scope of this
paper. However, a constant difficulty over the proposed methods is the way we
need to choose the parameter values. A first idea is to divide parameters into
two groups: those which are linked to the data (size, type, internal properties...)
and those which are independent. For details see the ACA [4] algorithm against
which we will compare our results.
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Before introducing the API algorithm and its clustering version, it is interest-
ing to quickly describe the work presented in [1] as it is an adaptation of API
algorithm to the clustering problem. At the beginning of the algorithm, called
AntPart, all the objects are in the nest, and ants are getting out of the nest
with one object and tries to find a valuable class for this object. The search
for a good class to introduce the object is done according to ant’s own mem-
ory and, if necessary, to a common memory of the whole colony. Thus, clusters
are being built in the opposite way ants usually work: usually ants are looking
for food on hunting sites and are bringing some when they are coming back to
their nest. In AntPart, ants are spreading the “food” outside of their nest, us-
ing hunting sites as clusters they feed with objects. There is also a repairing of
mechanisms with specialized ants which are capable of moving objects from one
hunting site/cluster towards another one. As we will explain in the next section,
our adaptation of API does not operate in this direction.

3 API for Data Clustering

3.1 API Principles

API algorithm is based on the foraging behavior of Pachycondyla apicalis ants.
These ants have the ability to search for and exploit some distributed food
sources without any complicated and centralized behavior such as mass recruit-
ment often encountered in several more populous ant species. Instead of that,
P. apicalis ants display a simple behavior to bring back enough prey for the
survival of their colony. We can describe this behavior with a few rules that can
be easily transformed into algorithms: (i) P. apicalis are looking for food around
their nest (notion of central point and random exploration). (ii) A P. apicalis
ant memorizes the place where it catches its prey (mainly another insect, dead
or alive) and goes back straight to its nest (there is no pheromone trails). (iii) At
its next nest exit, a P. apicalis ant systematically goes back to its last successful
hunting site and starts to look for a new prey from this position (notion of local
exploration), (iv) P. apicalis ants can not build their own nest and are conse-
quently obliged to move their colony when living conditions are not perennial
(restart operator), (v) When the colony decides to move, workers are using a
simple form of recruitment, called tandem running: one ant leads another one to
the new nest location and again until the whole colony is aware of the new nest.

The model we can deduce from these rules embeds ant agents in a search
space in which points correspond to solutions of the corresponding problem.
For instance, for a continuous optimization problem, the search space can be a
subspace S of Rn in which we are looking for a minimum value reached by an
unknown function f defined on this subspace. The API algorithm in this case,
consists in starting at a random position of S for the nest. Then ants are gener-
ating random points around the nest which correspond to their initial hunting
sites. At each iteration, every ant goes back to its hunting site, operates a local
random search. If this attempt is a success, then the ant is considered to have
found its prey. If not, several unsuccessful visits at the same hunting site can
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discourage the ant which consequently starts with a new random point generated
around the nest. The general outline of API algorithm shows that it is a popu-
lation based stochastic optimization algorithm: hunting sites memorized by ants
correspond to the population and the nest (and other details not explained here)
is playing a role in information exchange between elements of the population.

In the following, we are focusing on API for clustering data.

3.2 Notations and Initial Conditions

We define four sets:
O = {O1, . . . ,OO} is the set of O objects (i.e. the input dataset), A =

{A1, . . . ,AA} is the set of A ants, N = {N1, . . . ,NN} is the set of N nests
and G is a two dimensions grid (which can be toroidal or not, often squared)
composed of cells. Each cell has 4 neighbor cells (in the toroidal case). All ele-
ments of sets O, A and N are located on the grid G.

O7

• • O5 O10

• O2 O3 •
• O4 • O1

• O6 •
O8 • O9

The set of neighboring empty cells of object O3,
denoted by E(O3), is represented by the set of •
in the figure. The set v(O3) = {O2,O4} denotes
the set of objects that are direct neighbors of O3.

Fig. 1. A 7× 7 grid example

We also define the two following notations:
d(Oi,Oj) is the distance between objectsOi andOj (we use euclidean distance

in the parameters space). Last, the set E(X) corresponds to the extended empty
neighboring cells of object X (X ∈ O ∪ A ∪ N ∪ G). E(X) = {cells = φ ∈
V(Y ), Y ∈ V(X)} (see figure 1).

First, the toroidal grid is built with at least 4 × O cells (side length of the
grid:

⌈√
4×O

⌉
) and nests are regularly scattered on the grid so that there are

at least several empty cells between each couple of nests (in order to have an
initial separation of nests). Then objects of O are randomly scattered on the
grid G (with a maximum of one object per cell).

A ants are equally assigned to the N nests and are randomly located on the
grid. Each nest correspond to a cluster so N is the initial number of cluster.

3.3 Description of Ant-Agent Behavior

Once the objects, nests and ants are initialized, the algorithm simulates the ants
behavior: at each time step, ants can move or perform an action (pick-up and
deposit an object). An ant can move from its cell to one of the four neighboring
cells and its decisions are governed by probabilities explained in the following.
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Ant Behavior for Picking-Up Objects. If one ant finds an object (i.e. the
object is on the same cell as the ant), then its behavior depends on the object:

– If the object is free (i.e. it does not belong to any nest) or its similarity with
its nest is worse than with the nest of the ant, then the ant picks-up the
object Oi with the probability:

Ppickup(Oi,Nj) =

(
fpickup(Oi,Nj)

kp + fpickup(Oi,Nj)

)2

(1)

where Nj is the nest from which the ant belongs to, kp is a constant param-
eter of the algorithm, and fpickup is a density function calculated according
to distances between object Oi and objects already in nest Nj :

fpickup(Oi,Nj) = max

⎧⎨⎩ 1

|Nj |
∑

Ok∈Nj

1− d(Oi,Ok)

α
; 0

⎫⎬⎭ (2)

where |Nj | denotes the number of objects belonging to Nj , α is a constant
and a given parameter to the algorithm.Note that if the nest Nj is empty
(i.e. |Nj | = 0) the probability Ppickup(Oi,Nj) is set to 1. Thus the first free
object found by an ant of an empty nest is systematically picked up.

– If Oi already belongs to a nest Nj , the similarity between Oi and the nest
Nk of the ant is calculated by:

g(Oi,Nk) =
fpickup(Oi,Nj)

fpickup(Oi,Nk) + ε
(3)

where ε is an arbitrary small value. If g(Oi,Nk) < 1 then object Oi is
considered to be more similar to nest Nk than to its own nest (Nj) then the
ant picks up the object Oi.

Ant Behavior for Dropping Objects. When an ant has just picked up an
object Oi, it goes straight back to its nest Nj and lays down the object in a free
cell of the neighborhood E(Nj) of its nest. For each empty cell c of E(Nj) the
probability of dropping the object Oi is given by:

Pdrop(Oi, c) =

(
fdrop(Oi, c)

kd + fdrop(Oi, c)

)2

(4)

Similarly to equation 1, kd is a constant value given as a parameter of the algo-
rithm. Function fdrop is a kind of density function (also similar to the function
given in formula 2) calculated as follows:

fdrop(Oi, c) = max

⎧⎨⎩ 1

|v(c)|
∑

Ok∈v(c)

1− d(Oi,Ok)

α
; 0

⎫⎬⎭ (5)
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Recall that α is the same parameter than in formula 2 and v(c) is the set of
objects that are in the direct neighborhood of cell c. Moreover, if v(c) = ∅ then
fdrop(Oi, c) = 1 (the probability to drop an object to a cell without any object
in its neighborhood is 1).

To summarize the dropping and picking-up behavior of one ant we can say
that each time an ant takes an object, it brings it back straight to its nest, drops
it in the neighborhood of the nest and goes back to the cell where the object has
been found. This is exactly what an ant of Pachycondyla apicalis species does
when it captures a prey: the prey is brought back straight to the nest and at its
next nest exit, the ant goes straight to the position, the so called hunting site,
of its last catch.

4 Experiments

As a first step we need to evaluate if API is able to produce valid results on
classical datasets and secondly we provide a comparison of our results against
K-means and ACA [4] algorithms. We will consider the two well known Iris and
Wine datasets. Iris dataset is made of 150 objects, each one described with 4
numerical values and there are 3 initial clusters. Wine dataset is made of 178
objects, each one described with 13 numerical values and there are also 3 initial
clusters. The data attributes are normalized before using API. For a considered
datum x = [xi, · · · , xn] is normalized as:

zi =
xi − x̄

σ
(6)

Where x̄ is the mean value and σ the standard deviation. Distances are scaled
between [0, · · · , 1]. To study the clustering ability of API, we first focus on
two classical indexes: F-Measure, the Classification Error (see [7] for a precise
description of these indexes) which will measure the behavior of API during the
clustering process. However, clustering quality evaluation is a difficult question
and using several points of view can be very informative when we study a new
clustering process such as API. In the second step, we provide two more indexes,
the Intra cluster variance and the Dunn Index.

Experiments are conducted with the following parameter values: α = 0.5, kp =
0.1, kd = 0.15, ε = 0.03, the number of ants is chosen to be 10. These values are
the commonly used values in ant-based clustering methods based on LF model.
However we project to carry a more deeper study of their impacts on API. The
current implementation of our method is done in Java and runs on a standard
laptop using a Pentium(R) Dual-Core 2.10 GHz CPU.

The Figure 2 gives the evolution of 3 runs of API (10,000 iterations) in or-
der to show the global trend of the performance measures over the time. The
F-Measure, computed as the weighted average of the precision and recall, shows
that in both datasets, API is reaching good values of F-Measure (i.e. 1 which
represents a good equilibrium between precision and recall). Also along the clus-
tering process, the Classification Error is continually decreasing.
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Fig. 2. Evolution of F-Measure (FM) and Classification Error (EC) along the first
10,000 iterations of 3 independent runs for Iris (left) and Wine (right) datasets

Table 1 presents the mean and standard deviation values (obtained from 10
independent runs) of the evaluation functions for API (10,000 iterations) and K-
Means when the number of clusters is set to k = 2 (resp. k = 4). The IRIS dataset
can be seen as two linear separable classes. Therefore, API should determine
these two classes. In the case of kmeans, some methods are used to separate the
class containing two sub-classes into two classes. As we go further into our work,
the ants should always determine a better number of classes without using an
optimization method. k is set to four to study the behaviour of API when k is
greater than the real number of classes. The expected behavior of API is the
reduction of the number of classes to be found to a number closer to the real
number. In this case, the size of some groups found should be zero.

Table 2 presents the comparison of the results of API, K-means and ACA [4].
API and ACA [4] are run (10 independent runs) during 1,000,000 iterations
with 10 ants. Mean values and standard deviations obtained with Iris and Wine
datasets for the 4 indexes are given. According to the results obtained with these
3 measures, API results are closed to K-means, and they slightly improve ACA
results. While K-means performs better than API and ACA [4] on wine dataset.
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Table 1. Results of API and K-means for Iris and Wine datasets when k = 4

Iris dataset Wine dataset
API K-Means API K-Means

k
=

2

Classification Error 0.223(0.000) 0.223 (0.000) 0.31 (0.004) 0.315 (0.009)
F-Measure 0.777 (0.000) 0.777 (0.000) 0.652 (0.012) 0.677 (0.016)
Dunn-Index 11.473 (0.040) 0.575 (0.000) 2.851 (0.303) 0.309 (0.004)

Intra Cluster Variance 2.76 (0.007) 0.0181 (0.000) 0.666 (0.008) 0.106 (0.0004)

k
=

4

Classification Error 0.166 (0.008) 0.211 (0.019) 0.108 (0.006) 0.114 (0.019)
F-Measure 0.800 (0.008) 0.753 (0.029) 0.889 (0.008) 0.870 (0.037)
Dunn-Index 2.342 (0.517) 0.396 (0.089) 1.328 (0.162) 0.194 (0.023)

Intra Cluster Variance 1.915 (0.374) 0.019 (0.001) 0.345 (0.007) 0.162 (0.008)

Table 2. Results of API, K-means and ACA for the Iris and Wine datasets with k = 3

API K-Means ACA

Iris dataset

Classification Error 0.123 (0.004) 0.165 (0.009) 0.230 (0.053)
F-Measure 0.89 (0.006) 0.838 (0.015) 0.773 (0.022)
Dunn-Index 5.04 (0.106) 0.411 (0.068) 2.120 (0.628)

Intra Cluster Variance 2.37 (0.089) 0.018 (0.0004) 4.213 (1.609)

Wine dataset

Classification Error 0.072 (0.007) 0.053 (0.006) 0.142 (0.030)
F-Measure 0.943 (0.006) 0.96 (0.004) 0.855 (0.023)
Dunn-Index 2.233 (0.177) 0.293 (0.005) 1.384 (0.101)

Intra Cluster Variance 0.460 (0.133) 0.123 (0.035) 8.521 (0.991)

We conclude this experimental section saying that the first results obtained by
API are very promising, both in terms of quality and time, even if several points
(parameters tunning, recruitment) would need deeper experiments.

5 Conclusions

In this article, we have presented an adaptation of the API meta-heuristic to the
clustering problem. Our results are very promising compared to ACA [4] and K-
means algorithms. The next study is to add a recruitment behavior to the ants
in order to introduce a mean to vary the initial given number of clusters. Also,
parameters tuning as well as a comparative study with other ant-based clustering
algorithms are mandatory steps to improve the use of API for clustering. Finally,
we will also investigate real applications of our method on images and clustering
in a wireless sensor network.

Acknowledgements. The authors would like to thank Malika Hafidi and Amy
Sandoval for their reviews of this paper.
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Abstract. This paper presents an efficient PARAllelization of Differ-
ential Evolution on GPU hardware written as an EASEA (EAsy Spec-
ification of Evolutionary Algorithms) template for easy reproducibility
and re-use. We provide results of experiments to illustrate the relation-
ship between population size and efficiency of the parallel version based
on GPU related to the sequential version on the CPU. We also discuss
how the population size influences the number of generations to obtain
a certain level of result quality.

1 Introduction

Real-world problems are often continuous problems represented by a vector of
real numbers that must be optimized. Because of their continuous nature, such
problems can be approached with success by black-box algorithms, such as CMA-
ES for instance [4]. However, the context in computer science is changing: CPU
clock speed kept increasing ever since the first computers were manufactured
in the 1950s until about 2005, when it reached a plateau with 3.8GHz for Intel
CPUs. Fortunately Moores law (which states that transistor density on silicon
doubles every two years) still applies, so CPU power still increases thanks to
parallelism: a quad core 3GHz CPU is more powerful than a single core 3.8GHz
CPU. Recently, General Purpose Graphic Processing Units (GPGPUs, or GPUs
briefly) have appeared, that contain hundreds of slower cores (the latest nVidia
GF110 architecture contains 512 cores running at 772MHz). Current machines
often contain such graphic cards, e.g., the Sandy Bridge INTEL CPUs already
integrate GPU cores. If the development of the computer hardware follows this
line then, in a short future, using only one core of one’s machine to solve a
problem will mean using only 1/100th of the power of the machine.

This great technical ability raises a fundamental question of benefits that
the Differential Evolution (DE) can gain from processing large and huge pop-
ulations. We concentrated on DE since it appears to be a very simple though
quite effective optimization method, according to the results of benchmarking
based on the quality of solutions obtained after evaluating a predefined number
of individuals [5].

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 12–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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This paper therefore presents a parallel implementation of DE using GPU
cards and reports on tests which used the CEC2005 benchmark set [9]. We show
that increasing the population size can reduce the number of generations to
obtain solution at certain accuracy level and improve quality of results obtained
at the end of simulation.

The paper is composed in the following way. In section 2 we briefly describe
the EASEA platform which can be used to implement EA on GPU. Section 3
provides an overview of earlier works on implementation of DE on GPU. Then we
show our approach that is implemented under the EASEA platform . Section 4
reports on experiments we made using the CEC2005 benchmark set, and section
5 concludes the paper.

2 EASEA — Platform for Implementing EA on GPU

GPU cards can contain up to several hundreds of processing cores, their own
memory, which can be up to 6GB, and have a high bandwidth. Yet the same
constraints that are observed for CPU apply for GPU and increasing the number
of cores on the same chip is achieved at the expense of the programming simplic-
ity. The first limitation relates to the cache memory. In modern GPU cards it is
accessible in a very limited quantity (16KB per core)1 and of course is shared
by a large number of threads (as for an efficient spatio-temporal parallelization,
at least 32 threads are required per core), which increases the pressure on that
memory. Another is that cores are grouped by 32 in SIMD bundles (Single In-
struction Multiple Data) that must perform the same instruction at the same
time.

The scarcity of cache makes very important the average latency time of mem-
ory accesses which can be compensated by using three mechanisms:

– On-chip fast (but small) shared memory between cores of a same bundle.
– A thread scheduler, a SMT mechanism (Simultaneous MultiThreading) as

implemented on Intel processors under the name of Hyper-Threading. How-
ever, if in a classic processor, SMT allows the scheduling between two threads
for a single unit, on GPU scheduling is done between 32 threads, which can
cover larger latencies.

– A large bus width, which allows a high bandwidth (up to 177GB/s) if neigh-
boring threads access data in adjacent memory.

Taking into account these programming constraints can help to obtain a very
interesting speedup with a widely available and cheap hardware. In particular,
Evolutionary Algorithms (EAs) seem to be almost perfectly fit to the speci-
ficity of the SIMD organization of computation since they proceed populations
of chromosomes which are mutually independently evaluated. EASEA (EAsy
Specification of Evolutionary Algorithms) is a platform dedicated for scientists
with only basic skills in EAs to apply various evolutionary approaches to perform
optimization on single GPU cards as well as on clusters of computers [1,6].

1 In first-generation GPU cards the cache memory was not provided at all.
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EASEA generates an evolutionary algorithm using a source file (.ez) written
in an extended C++. The software analyzes a template and puts the elements de-
fined by the user, applying a treatment if necessary. The resulting source uses an
internal library (libeasea) which defines the invariant elements between algo-
rithms (selection operators, migration tools for island model, etc.). By compiling
this output code, the user easily obtains an EA set for his problem.

There are several level of customization. Obviously the first is the customiza-
tion of the .ez file that allows the user to implement his problem using an
EASEA internal optimization algorithm. However, implementing a new algo-
rithm in EASEA requires to alter the produced code. It is also possible to imple-
ment one’s own algorithm using the internal mechanism of EASEA, by redefining
a template that is used to generate the sources. These files describe how EASEA
uses the user’s source file (.ez) and what it must do when filling code files in
pure C++ using ibeasea. They use a set of keywords and a pseudo C++ code.
These keywords specify the insertion location of codes directly from the source
file or modified by internal processing.

3 Massively Parallel Differential Evolution

In August 2010 Zhu [11] claimed that “to the best of our knowledge, the DE
implementation presented in this paper is the first one on a GPU platform.” He
provided a parallel DE implementation which was coupled with Pattern Search
to improve precision of the results. He also studied speedup in terms of time
needed to run DE on the GeForce GTX 280 card and he showed that at the peak
performance the parallel implementation runs about 8 times faster on GPU than
on CPU. In parallel, few other DE implementations on GPUs have been reported.
Cabido et al. [2] presented a preliminary study using the GTX 260 card and a
parabola fitness function. They have observed that the speedup, in terms of time
needed to complete simulation of a predefined number of generations, varies from
2.85 (100 individuals in population) to 14.80 (1000 individuals) when compared
to the CPU time. Veronese and Krohling [10] presented yet another GPU based
implementation of DE. They used the GTX 285 card to test the speedup based
on time comparison between CPU and GPU to simulate a predefined number of
generations for several test problems and they observed that for 100 and 1,000
individuals the maximum speedup was 19.04 and 35.48, respectively. Gonzales
and Barriga [3] shortly described their approach which was tested on the Tesla
C2050 card. Unfortunately we were unable to find results of their tests.

We have developed an EASEA template that implements a simple DE based
on the DE/rand/1/bin pattern [8] to asses ability of speeding up computations
by using GPU to parallelize the population evaluation, whereas the rest of the
algorithm is implemented on the CPU side. Outline of the method is provided
in Fig. 1. The method processes populations P t and Ot, where t stands for the
generation index. Each population contains Np individuals. With P t

i and Ot
i we

denote the i-th individual from P t and Ot, respectively. The user defines the
fitness function q : Rn → R and lower and upper limits l, u ∈ Rn.



PARADE: A Massively Parallel Differential Evolution Template for EASEA 15

algorithm DE/rand/1/bin
t ← 0
P 0 ← initialize(l, u)
evaluate P 0 in parallel
repeat until stop condition met

for i ∈ 1...Np

j, k, l ← sample w/o replacement {1, ..., Np}
v ← P t

j + F (P t
k − P t

l ) + e(l, u)
w ← crossover(P t

i , v)
Ot

i ← repair(w,P t)
end for
evaluate Ot in parallel
for i ∈ 1...Np

if q(Ot
i) ≤ q(P t

i ) then P t+1
i ← Ot

i

else P t+1
i ← P t

i

end for
t ← t+ 1

end repeat

Fig. 1. Outline of the DE/rand/1/bin algorithm implemented in PARADE

In our implementation we initialize the population P 0 with points picked up at
random with uniform distribution from the hyperrectangle [l, u]. To avoid stag-
nation, in the mutation method we add to the scaled difference of two points a
zero mean uniformly distributed noise e from the range [−(u−l)/100, (u−l)/100].
A binary crossover is used which consists in randomly choosing several coordi-
nate values from P t

i and inserting them into proper positions into v; probability
of selecting a coordinate for the exchange is given by the user. The resulting new
point w is checked for feasibility. If it is infeasible then the repairing procedure
is performed for each coordinate separately by substituting the i-th coordinate
value by w′

i = 2ui − wi when wi > ui or by w′
i = 2li − wi when wi < li. In our

implementation we additionally compute the population middlepoint and report
its fitness value.

4 Experiments and Results

4.1 Used Benchmark

Since the year 2000 there have been developed two families of widely accepted
state-of-the-art sets of numerical optimization benchmark sets that are used by
the EC community. The first one is the CEC series, which has been continu-
ously used at the Congress of Evolutionary Computation since 2005, and the
second is BBOB that has been used at Genetic and Evolutionary Computation
Congress since 2009. Every year, benchmark sets are focused on different aspects
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of optimization tasks, including unconstrained optimization, highly dimensional
tasks, constraint handling techniques, fitness function varying in time and mul-
tiple objectives.

In this study we refer to benchmark functions defined in the CEC2005 set
[9] which comprises 25 functions which include unimodal functions (f1-f5), basic
multimodal functions (f6-f12) and their combinations (f13-f25). Some of these
functions include noise (f4, f17). For all functions, except f7 and f25, bound-
ary constraints are defined. Coordinate systems have been shifted, rotated an
non-uniformly scaled so that the global minimum is not located in the middle
of the coordinate system and one cannot decompose the optimization problem
coordinate-wise into a superposition of one-dimensional problems. All optimiza-
tion problems are defined in 2,10, 30 and 50 dimensional real space. Value of the
global optimum is known for each optimization problem, therefore instead of the
fitness function of a solution, we speak of the solution error which is defined as
a difference in the fitness between the current solution and the global optimum.
Conditions of the competition that was held at the CEC2005 conference defined
the test methodology which was based on reporting intermediate results from
each run of the optimization method achieved after a certain number of the
fitness function evaluations. Here we concentrate on the number of generations
instead.

The benchmark set is defined in the source code in Matlab, C and Java. We
have adopted the C code to implement a CUDA version of CEC2005 benchmark
problems and used this version to obtain reported results. We concentrated on
50-dimensional test problems. We have performed experiments for the CEC2005
benchmark set using the DE implementation provided in PARADE. We assumed
the same settings as in [7], i.e., both the scaling factor F and the crossover
parameter CR were equal to 0.9. In the experiments, the population size was
varying in the range Np ∈ {102 − 105}. For each function in the benchmark set
and each population size, we performed 25 independent runs and we reported
the best solution error in consecutive generations. In addition we observed the
execution time of each generation.

4.2 Execution Time

In EASEA, one or several GPU cards are used to parallelize the fitness function
evaluation process. Therefore the execution time tgen to simulate one generation
of Np individual equals tgen(Np) = tDE(Np) + teval(Np) where teval(Np) is the
time needed to evaluate the whole population (either on the GPU card or on
the CPU) and tDE(Np) stands for the overhead time, i.e. the time spent on
CPU to generate the offspring population, to communicate with the evaluation
process and to define the next generation. Since the amount of time needed to
generate a single individual to pass its coordinates to the evaluation process
is independent of the population size, we conclude that the tDE time depends
linearly on the population size tDE(Np) = a ·Np + b. Relation between the teval
time and the population size is more complicated. When using CPU to evaluate,
the dependence is linear. For the GPU card, teval will depend on how effectively
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Fig. 2. GPU/CPU speedup (a) and the relative increase of the computing time per
single individual related to Np = 100 (b) vs. population size Np for functions f01
(dotted line) and f11 (solid line)

the cores are used which in turn will relate to the number of cores and the
number of threads that can be effectively run in parallel on each core2.

In Fig. 2 a) we provide comparison of time needed to complete simulation of
100 generations of PARADE which was run with and without the GPU card.
We define the GPU/CPU time speedup as a proportion of the average runtime
for the CPU version and the GPU version and we investigate how the speedup
behaves for various population size from the range Np = 102 − 105. For the
clarity of the picture we present the results for two functions only: f01 (which is
evaluated in the shortest time) and f11 (which is evaluated 14 times longer).

In Fig. 2 b) we compare how the runtime of the GPU version depends on the
population size from the same range, for benchmark functions f01 and f11. We
report the value Δ(Np) = Np · tgen(100)/(100 · tgen(Np)) which indicates how
much the computation time per one individual will decrease when the population
size will expand from 100 to Np. Both curves from Fig. 2 have been obtained
as an average of 25 independent PARADE runs. Experiments were performed
using a computer running under Ubuntu 11.04 x86 64, using a 2.6.38-8 linux
kernel. The CPU was an Intel(R) Core(TM) i7 920 at 2.67GHz with 6GB of
memory. The computer was equipped with three GPU cards nVidia GTX480
and the CUDA 4.0 platform was used.

For the used hardware we observed that the speedup in terms of the computing
time increased with the population size and saturated when the population size
was about Np = 10, 000. The speedup value was also increasing with the average
time to compute one individual’s fitness. When looking at values of Δ(Np) we
observed that the GPU execution time per one individual is reduced with the
population size and saturates also at about Np = 10, 000. The saturation value

2 If the GPU card were a perfect SIMD machine with an infinite number cores then
the evaluation time would be a constant.
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Fig. 3. Convergence and speedup curves for DE, function a) f01, b) f12, c) f15 for
population size equal to 100 (dashdot line), 1,000 (dashed line), 10,000 (dotted line)
and 100,000 (solid line)

seems to be hardware dependent3. Therefore in the next section we investigate
if PARADE can benefit from large populations assuming the computing time to
be independent of the population size.

3 For example, in earlier experiments with PARADE, for CEC2005 benchmark func-
tions in 10 dimensions optimized using a single GeForce 8400 GS card, the optimum
population size was about 3000.
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4.3 Quality of Solutions

To illustrate how the population size influences the effectiveness we present con-
vergence curves of the best individual’s fitness and “speedup” curves which have
been generated in the following way. For each population size Np we observed the
number of generations g(Np, L) needed for a convergence curve to hit a certain
level L of the fitness. We treated the results obtained for Np = 100 as a reference
and plotted curves of the proportion g(Np, L)/g(100, L) vs. the value of L. In
Fig. 3 the results of experiments are depicted for functions f01, f12 and f15.

All speedup curves reveal similar pattern of change. For large error values a
high speedup was observed (up to 20 when Np = 10000) which we interpret as a
consequence of a wide dispersion of populations in the initial exploration phase.
Then comes a range of error values with rather small speedup (2–5 times for
Np = 10000) that relates to the process of convergence. In all cases we observed
premature convergence and for this phase the speedup grew up significantly (up
to more than 100 for Np = 10000 and function f15). It should be noted that,
in addition to the speedup, usage of a big population may allow to obtain the
results of a quality that is inaccessible for small populations.

5 Concluding Remarks

We presented an EASEA template that implements the DE algorithm on GPU
cards. In comparison to other implementations which are dedicated to DE only,
the presented solution is highly general. The user needs only to define the fit-
ness function. Moreover, if the user needs to check how other EA schemes would
manage the optimization problem, he can do it easily just by changing the tem-
plate declaration. The template allows for faster simulation of DE and the actual
speedup in comparison to the CPU grows with time needed to evaluate a single
chromosome.

Introduction of the template gave a technical ability to efficiently perform
experiments aimed at checking possible advantages of having very large popula-
tions in massively parallel DE implementations when time is measured with the
number of generations rather than the number on fitness evaluations. Results
of experiments performed for the CEC2005 benchmark indicate that the use of
very large populations allows to obtain higher quality results. Moreover in early
phases of evolution, when the population explores the search space, large popu-
lations allow to obtain results of a required quality after executing much smaller
number of generations. Finally, very large populations allow to fully utilize the
computing power offered by GPU cards.

Acknowledgment. J. Arabas acknowledges kind support in a form of a travel
grant funded by the Warsaw University of Technology, Center for Advanced
Studies.
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Abstract. In this paper we present a new 3D simulation environment,
combining features of both discrete swarm agents and continuous envi-
ronment defined implicitly as a locally updatable zero-level set surface.
The advantage of the proposed framework is the natural support for
swarm coordination, as well as for adding other continuum based pro-
cesses, such as the Eulerian numerical simulation of fluid dynamics equa-
tions. In most biomedical applications the influence of gaseous/liquid
flows and concentrations becomes a key aspect in any viable model.
The level set equations are solved using the finite element method
(FEM), which is routinely used for analysing physical properties such
as aseous/liquid flows, heat transfer, diffusion and reaction etc.

1 Introduction

Existing swarm agent based models for swarm robotics reiterate the belief that
simple probabilistic stimulus-response functions can account for the complex-
ity found in nature. However, the problem with designing agent based models
is the inherent dependencies between the various parameters. When compared
to continuum PDE models, the agent paradigm suffers from a distinctly poor
representation of spatio-temporal scale, e.g., objects are of the same size, agent
movements are restricted to discrete ‘jumps’ from cell to cell.

In this paper we present a new swarm agent modelling environment, combin-
ing features of both continuous and discrete methods. Swarm agents are rep-
resented as discrete entities with a R

3 location, whereas the environment is a
regularly sampled continuum, defined implicitly as a locally updatable zero-level
set surface. The level set method [6] allows a substrate to be represented to ar-
bitrary scale and deformed by arbitrary mechanical forces at arbitrary points.
The numerical nature of the method allows for a wide variety of metrics to be
calculated and the method is routinely used for analysing physical properties
such as gaseous/liquid flows, heat transfer, diffusion and reaction etc.

The rest of this paper is organised as follows. Sect. 2 describes a fast, locally
deformable level set method, which is used to model a deformable surface. Sect.
3 explains how to agents are embedded on this surface, and Sect. 4 uses inhomo-
geneous diffusion equations to represent simple fluid embedded on the surface.

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 21–29, 2012.
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Finally, Sect. 5 shows an example application of the simulation framework, and
Sect. 6 provides a summary of the work.

2 A Localised Level Set

The 0th level set of a scalar field φ is surface defined as ∂Ω = {x | φ(x) = 0}.
Solving the level set equation dφ

dt +∇φ• ∂x
∂t = 0 involves updating the values of a

scalar field φ at each point in space requires a numerical technique to evolve the
zero-level set from an initial specification. Algorithms have been developed to
only perform updates on regions near the surface and reinitialising the area near
the zero-curve to a signed distance field, to prevent instability. The most well-
known is the narrow band approach [6], where numerical integration is performed
within a band of points initialised either side of the surface. When the zero-
level set reaches the edge of the narrow band, the band is reinitialised about
the zero-curve using the fast marching method [6]. The sparse field method
improves this by computing the narrow band using a very simple ±1 scheme,
rather than a more complex distance transform. The sparse field method however
still assumes that the entire surface must be updated at every iteration. In order
to optimize the sparse field method for local modification by agents, we propose
some alterations to the method, as shown in Algo. 1, which takes as input a tuple
of {φ,A,X}, where φ is the lattice containing elements to be updated, A is a
lattice containing the updates to make to φ, and X gives the specific location of
the points in A and φ to be processed.

The layers of the narrow band are stored in an array of linked lists of Z
3

location vectors, L. The locations in the signed distance level set lattice φ that
lie along the zero-level set (within ±0.5 of) are stored in the zero-layer linked
list L(0). The layers surrounding the zero-layer are numbered by increasing or
decreasing indices for layers outside or inside the surface volume, respectively.
Two temporary arrays of linked lists of pointers into elements of L are first
created, Y and S. Y stores pointers into outer layer L elements that must have
their distance transform updated as a result of changes to the zero-layer. S is
a ‘status change’ array of linked lists, which stores those elements flagged to
be moved to a different layer, or removed entirely from the narrow band. The
maximum area of effect of a zero-layer point using the simplified ±1 distance
transform is NL + 1, where NL is the number of layers either side of the zero-
layer, so there are 2NL + 1 layers in total. To reduce the need for searching
through linked lists we utilize a secondary regular lattice grid R of pointers into
individual elements within L.

The first major step is to update the zero-layer L(0) at the points in X using
the values stored in A:

φ(x) = φ(x) + |∇φ(x)|A(x) (1)

Here, Eq. (1) is derived directly from the level set equation dφ
dt = F |∇φ|. The

next step is to test that point to see if it has moved out of the zero-layer range
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Algorithm 1. UpdateSparseField: main localised sparse field update
algorithm

Input:
� X : array of locations to update.
� A : a lattice of quantities to update by.
� φ : the signed distance level set lattice.

Output:
� φ : an updated signed distance level set lattice.

Data:
� L : an array of linked lists, one list for each layer of the narrow band,
denoted by L(i), such that i is the narrrow band layer. Each element of a L(i)

linked list stores a Z
3 vector corresponding to the location of an element in

the φ lattice.
� R : a lattice equal in size to the φ lattice. Each element of R contains a
pointer to an element within L or is NULL.

Y ←array of linked lists, each list reflecting a layer in L;1
S ←array of linked lists, each list reflecting a layer in L;2
B ←lattice of booleans with same size as φ, initially all false;3

r = (NL + 1, NL + 1, NL + 1)T ;4
foreach x ∈ X do5

// Update value and add to status change list if moved out of
range

φ(x) = φ(x) +A(x)|∇φ(x)|;6
if �φ(x)� �= 0 then S(0) → append x;7
// Find all outer-layer points within NL + 1 range of x
for p = (x− r) to (x + r) do8

� = �φ(p)�;9
if � �= 0 AND |�| ≤ NL AND B(p) = false then10
B(p) = true;11
Y(�) → append R(p);12

end13

end14

end15
(S , φ) = UpdateDistanceTransform(Y,S , φ);16
(L,R, φ) = UpdateLayerMembership(L,S ,R, φ);17
return φ18

[−0.5, 0.5] and if so add to the status change list S(0). Next we must search
through all points p within a range r from x and store the found outer layer
points according to thier layer. The current layer � is �φ(p)�. Next we update the
distance transform of those outer layer points referenced in Y, giving an updated
φ lattice along with that need to have their layer membership updated, S. The
final step, then, is to update the layer membership of the points referenced in
S, giving an updated layer array L, pointer lattice R, and possibly an updated
φ lattice (if the surface expands).
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3 Agents Interacting with Continuum

We embed the agents in a fairly coarse lattice grid on the level set surface.
In continuum, agents occupy real-valued locations and interact with the level
set surface at these locations. Interpolation is used to weight surface modifica-
tion contributions to the nearby level set lattice nodes. This results in a much
smoother, natural looking surface, rather than sharp discontinuities as with the
cellular agent model. The weighting of elements nearer the source point can be
easily controlled by varying the standard deviation of the Gaussian function:

G(x0,x)σ =
1

π
3
2 σ2

exp
(−|x0 − x|2

2σ

)
(2)

where x0 and x are the start and end points, respectively; and σ is the standard
deviation of the distribution.

We must normalise this function when considering a finite set of points if we
are to preserve mass. Given a set of points, P , and a quantity to distribute, a,
out from location x0, we use Eq. (2) to calculate the quantity to add at each
x ∈ P as

G∗(x0,x, a)σ =
aG(x0,x)σ∑
p∈P G(x0,p)σ

(3)

Agents may be attracted toward any direction, dependent on factors that are
problem-specific to the application or simulation model being constructed (for
example, pheromone gradient fields in social insect simulations). However, for
agents moving across a surface the ideal velocity (or movement potential) from
the agent’s perspective may not be valid, that is, it is not guaranteed that the
direction of this movement potential points along a tangent to the surface. There-
fore this potential must be resolved to a valid movement velocity. We calculate
a normal pointing away from the surface, ∇|φ| and use this to resolve the move-
ment potential vector into a valid direction pointing along the surface. We do
this by using the surface normal ∇|φ| to remove the component of u that is
perpendicular to the surface. This gives

v = u −∇|φ| (∇|φ| • u) (4)

which has the effect of resolving the direction to be tangential to the surface at
that location. However, due to the relatively abrupt changes in surface normals
as the agent moves between sampling one set of level set lattice nodes to the
next, the agent’s position may drift away from the zero-curve. This drift must
be compensated for by pulling the agent back toward the surface (in an analogue
to adhesion), so that the final step to updating the agent’s position is

x = (x + v) − ε∇|φ| (5)



A 3D Discrete-Continuum Swarm Intelligence Simulation on GPU 25

where 0 < ε ≤ 1 controls the strength of the pull back onto the zero-curve.
Too high a value may pull the agent back to its previous location. Too low a
value will allow the agent to drift away from the zero-curve, and away from
the narrow band, making spatial derivatives invalid. Although best determined
through experimentation to balance movement freedom with accuracy, a general
guideline is ε ≈ 1

2 |vmax|, where vmax is the maximum possible agent velocity.
Briefly, the routine for calculating localised surface modifications is as follows:

we search within a range rS from an agent’s real-valued location x for level set
lattice φ nodes that lie along the zero-layer of the narrow band. The zero-layer
points found are appended to the β array and the contributions of their Gaussian
weightings are summed to give ΣG using Eq. (2). With these zero-layer points
identified we can cycle through them and compute their contribution to the
update lattice A using Eq. (3). We also append each of these zero-layer locations
to the array X , for use outside this routine when cycling through the updated
points. The output from agent surface modification then feeds into the algorithm
for sparse field updating in order to perform the actual zero-layer and narrow
band update.

4 Agent Responding to Diffusion

The most basic numerical fluid dynamics implementation involves the diffusion
or heat equation ∂ρ

∂t = d ∂2ρ
∂x2 , where ρ is the quantity of some substance and d is

the diffusion coefficient controlling the rate of flow. In order to account for differ-
ent rates of diffusion through varying materials we must solve the inhomogeneous
diffusion equation, which can be stated as

∂ρ

∂t
=

∂

∂x

(
dx

∂ρ

∂x

)
(6)

That is, d is point dependent. Discretisation of this in 3D yields:

∂ρ

∂t
≈di+1,j,k(ρi+1,j,k − ρi,j,k) − di−1,j,k(ρi,j,k − ρi−1,j,k)

Δx2

+
di,j+1,k(ρi,j+1,k − ρi,j,k) − di,j−1,k(ρi,j,k − ρi,j−1,k)

Δy2

+
di,j,k+1(ρi,j,k+1 − ρi,j,k) − di,j,k−1(ρi,j,k − ρi,j,k−1)

Δz2
(7)

For stability we use a backward Euler formulation for integrating over time:

ρ(t + Δt) − Δt
∂ρ(t + Δt)

∂t
= ρ(t) (8)

As ρ(t + Δt) is unknown, so Eq. (8) requires the solution of a linear system. We
can rephrase Eq. (8) in matrix terms as

Ax = b (9)
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where b represents the vector of known initial values of ρ(t) in the system; A
represents the matrix formulation of the transform; and x represents the vector
of ρ(t+Δt) values we are trying to find. We could compute the inverse of A and
multiply both sides to find x, but for a sparse matrix such as a diffusion transform
this is overkill. Instead we use the Gauss-Seidel iterative relaxation method to
solve Eq. (9). This method has the advantage of straightforward implementation
on massively parallel SIMD hardware, as well as faster convergence and lower
memory requirements than its predecessor, the Jacobi method.

Let ρi = ρi(t), and ρ∗i = ρi(t + Δt), the discretisation of Eq. (8) for the
inhomogeneous diffusion equation in 1D then yields

ρ∗i − Δt

Δx2
(di+1 ρ∗i+1 − (di+1 + di−1) ρ∗i + di−1 ρ∗i−1) = ρi (10)

From this we can derive the base update equation for use in a relaxation method

ρ∗i (1 +
Δt

Δx2
(di+1 + di−1)) = ρi +

Δt

Δx2
(di+1 ρ∗i+1 + di−1 ρ∗i−1)

ρ∗i =
ρi + Δt

Δx2 (di+1 ρ∗i+1 + di−1 ρ∗i−1)
1 + Δt

Δx2 (di+1 + di−1)

ρ∗i =
Δx2 ρi + Δt (di+1 ρ∗i+1 + di−1 ρ∗i−1)

Δx2 − Δt (di+1 + di−1)
(11)

Setting an initial guess for ρ∗ (for example, ρ∗ = 0) and applying Eq. (11) over
several iterations causes ρ∗ to relax over time, converging on a stable solution
(though not necessarily an accurate solution). For the Jacobi method we would
replace ρ∗ on the left hand side with ρ(n+1) and the right hand side with ρ(n),
where n is the iteration number. That is, we would store the values of ρ(n+1)

separately from ρ(n) ready to use on the next iteration. It turns out that this is
not necessary, and in fact faster convergence is achieved when the results of the
current iteration are used immediately for computing the next node(s) along in
the lattice. This in-line approach finally gives us the Gauss-Seidel method. In
3D the iterative update equation becomes

let

a = Δt (di+1,j,k ρ∗i+1,j,k + di−1,j,k ρ∗i−1,j,k + di,j+1,k ρ∗i,j+1,k

+ di,j−1,k ρ∗i,j−1,k + di,j,k+1 ρ∗i,j,k+1 + di,j,k−1 ρ∗i,j,k−1)

b = Δt (di+1,j,k + di−1,j,k + di,j+1,k + di,j−1,k + di,j,k+1 + di,j,k−1)

then

ρ∗i,j,k =
Δx2 ρi,j,k + a

Δx2 + b
(12)

where ρi,j,k is the known value ρi,j,k(t); ρ∗i,j,k is the iteratively computed solution
to ρi,j,k(t + Δt); and di,j,k is the location-dependent diffusion coefficient.
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The inhomogeneous diffusion model is implemented on the GPU (Graphics
Processing Unit) device. The implementation detail is omitted here. The addition
of inhomogeneous diffusion allows us to add volatile fluids to a solid volume that
then diffuse from the volume into the air. This is accomplished simply by adding
a quantity g of fluid distributed over those points in the fluid lattice ρ that
correspond to the modified points of the level set lattice φ. The quantity of
fluid g to add/remove depends on whether the surface is being raised or lowered.
Raising the surface adds a fixed amount of fluid determined by the agent, whereas
lowering the surface removes a portion of the existing fluid. The quantity is
further controlled by a normalised Gaussian distribution using exactly the same
calculated ratio as the surface modification.

5 Example Application

This section demonstrates the simulation framework using a simple biological
model of the termites. Termites of the genus Macrotermes provide a unique
springboard for investigating self-organising systems. They are a collection of
agents, which modify and communicate through their environment toward some
goal. Individual termites are tiny and blind but together they build and main-
tain a vast mound structure, with a royal chamber at its heart and a large
chimney-like structure featuring ramifying air passages to provide wind driven
respiration for the colony [7]. The termite is an ideal model for swarm robotics,
demonstrating coordination through self-organisation. This work evolved from
our previous work on simulating multiple agents building a 3D structure and
level set segmentation [2,3,5,4].

The simulation environment is configured as follows:

– The environment size (and thus φ level set grid size) is set to 128x40x128.
– The level set surface is initialised with NL = 3, giving a total number of layers

2 NL + 1 = 7. The surface represents a layer of deformable soil, initialised to
a 120x15x120 surface at the bottom of the φ grid.

– Cement pheromone diffusion constant in air, dout = 0.000625. This is the
same value as the diffusion constant used in [1].

– Cement pheromone diffusion constant in soil (that is, underneath the zero-
level set surface), din = 0.00000625.

– Agent movement potential u is calculated as

u = s
∥∥υ u0 + μ∇ρ

∥∥ (13)

where u0 is the resolved movement direction from the previous time step;
∇ρ is the gradient of the pheromone field; s is the speed of the agents; υ and
μ are weights controlling the strength of attraction of the pheromone field.
The speed parameter is set to s = 1. The weights are set to υ = 0.01 and
μ = 0.004629, based on Bonabeau et al.’s PDE model [1].

– The amount of pheromone infused into the soil upon an agent depositing,
g = 0.8888. This value is taken from the constants k1, k2 and k4 in [1],
representing the deposition rate of soil from termites, the emission rate of
pheromone from soil and the decay rate of pheromone, respectively.
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(a) t=30000 (b) t=70000 (c) t=100000

Fig. 1. The emergence of fairly regularly spaced pillars in the model using curvature
based deposition probabilities coupled with gradient based chemotactic movement

(a) t=40000 (b) t=60000, with cement
pheromone.

(c) t=100000

Fig. 2. The emergence of a royal chamber-like structure in the model when the agents
are restricted in their deposits to a zone defined by the edge of a sphere

– The probability of an agent picking up soil (lowering the surface) at any
given time step is set to a constant, P (pick) = 0.1.

– The probability of an agent dropping soil (raising the surface) at any given
time step is given by a response-threshold type function

P (drop) =
|κ|n

|κ|n + θn
(14)

where |κ| = |∇• ∇φ
|∇φ| | is the absolute value of the mean curvature; n = 3 con-

trols the steepness of the probability distribution; θ controls the magnitude
of curvature required before the function returns 0.5. The threshold value is
set to θ = 2.

The results of this model as described above is shown in Fig. 1. The model is run
for 100 000 time steps. Pillars begin to emerge from an initially homogeneous
(but noisy) surface. The cement pheromone gradient following behaviour pro-
vides long range coordination controlling the distribution of the pillars, whilst
the curvature controlled deposition probability controls the overall shape of the
pillars. One further simple extension to this model is then given, where a dome-
shaped imposed template is placed at the bottom-centre of the environment.
Outside this zone P (drop) = 0, whereas inside the zone the probability remains
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as in Eq. (14). This simplification of queen pheromone diffusion is required be-
cause the GPU diffusion implementation/hardware only supports a single gas at
present, which in this case is the cement pheromone. The results of this model
are shown in Fig. 2. A few sites are reinforced more than others are as a result of
the greater curvature and cement pheromone concentrations. As the sites grow
they begin to arch toward each other, forming walls and a roof, and giving a
completed royal chamber-like structure within 100 000 time steps.

6 Conclusion

We have introduced a novel simulation environment combining descrete agent
and continuum environment models. The level set method is extended to pro-
vide localised modifications at arbitrary surface points. Agents are allowed to in-
habit and modify the environment based on their internal reasoning. An implicit
Gauss-Seidel solution to the inhomogeneous diffusion equation is performed on a
GPU device. The coupling of a fluid solver and a level set terrain is demonstrated
with a simple model of termite mound construction. The underlying physical
model can be varied as necessary, making this approach highly extensible for
other projects, particularly in biomedical applications involving interactions be-
tween discrete and continuum, e.g., cells and tissues.
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Abstract. In the present paper, we introduce two different algorithms
for the two dimensional gathering problem for synchronous, fat (disk-like)
robots with no global navigation or communication, and with limited vis-
ibility. One of the algorithms is a slightly modified version of the local
smallest enclosing circle (local SEC) algorithm. The other algorithm uses
a new method of the gathering: the robots moves towards the furthest
visible robot, and the robots on the perimeter of the visibility graph ap-
plies a bigger extent of move than the others. With the help of computer
simulations, the two proposed algorithms are shown to be applicable for
the gathering problem above and they perform better than the earlier
simple SEC algorithm developed for point like robots.

Keywords: mobile robot swarm, gathering problem, fat robots.

1 Introduction

Since the idea of applying robotic swarm as an autonomous system is aroused,
the algorithms solving typical swarm intelligence problems have attracted wide
attention in the area of robotics.

In the present state of the art, the algorithms of even the basic swarm intelli-
gence tasks are not solved sufficiently or too theoretical to use them in practice.
The most studied basic tasks are: gathering of the robots in one point (or into
a small area) [1]–[10], discovering of an area starting from a point (base station)
([11]), collecting particles distributed in various ways ([12], [13]).

In this paper we are focusing on the gathering problem on an obstacle-free
plane. This means, that the robots have to gather in one point starting from
an arbitrary initial condition under a finite. A weaker version of the problem is
the convergence task when we require that the diameter of the area enclosing
all of the robots tends to zero with the increasing time. It was necessary to
introduce the convergence task, because the gathering problem is not solvable
in numerous cases [1]. The solution, i.e. the algorithm of the individual robots,
depends highly on the properties of the robots. In order to classify the problem
we have to decide if the robots:
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c© Springer-Verlag Berlin Heidelberg 2012

http://www.kefo.hu


Gathering of Fat Robots with Limited Visibility 31

– have memory or not;

– synchronize their acts to each other or not (synchronous or asynchronous
case);

– have global navigation tool with common coordination system or not;

– have limited or unlimited radius of visibility;

– can communicate with each other or not;

– are point-like or have an extent (fat robots).

According to the thought of using as simple individuals as possible, most of
the gathering algorithms are based on memory-less (oblivious) robots without
global navigation. This means that the robots cannot use backtracking steps and
common coordinate system. In a typical gathering algorithm each robot repeats
the steps of:

– ”look” (determining the positions of all visible robots),

– ”calculate”(the position in the next time-step for itself),

– ”move” (to the calculated position),

in this order. In a synchronous model the robots execute these steps at the same
time providing some synchronizing signal. In an asynchronous model, however,
the starting times and the durations of the steps above can be different for the
individual robots, and, in addition to this, a ”wait” phase can be added between
the ”move” and the next ”look” phase.

One straightforward solution is to calculate and move toward the center of
gravity (COG) of the robots in each moving step, since it is the same in each
local coordinate system. Cohen and Peleg [2] proved the correctness of the COG
algorithm for point-like, oblivious robots with unlimited visibility for arbitrary
number of robots in the semi-synchronous (and the synchronous) case. The same
correctness could be proven only for two such robots in the asynchronous case.

Cieliebak et al. [3] used the center of the smallest enclosing circle (SEC) of
all robots instead of the COG, and with this SEC algorithm solved the asyn-
chronous gathering problem for arbitrary number of point-like, oblivious robots
with unlimited visibility.

With these algorithms, the gathering problem is solved for point-like robots
with unlimited visibility; however, it is necessary to step towards more realistic
models. Ando et al. [4] examined the synchronous gathering problem with limited
visibility and point-like oblivious robots. Here the concept of the visibility graph
arises. This graph contains all robots as vertices, and there is an edge between
two vertices (robots), if and only if the two robots see each other. Ando et al.
gave solution to the gathering problem with the condition, that the visibility
graph is connected. They, too, applied the SEC algorithm, but in this case, the
robots calculated and moved towards the center of SEC of the group robots
visible by the robot at hand, so each robot had a different center of SEC as
purpose at each step cycle. In addition to this the calculated movement of each
robot was limited by the condition, that any edge of the visibility graph must
not be broken by the step of the robot, so the vector of the planned move was
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shortened according to this condition. They proved the correctness of their local
SEC algorithm in the synchronous case.

Later Flocchini et al. [5] and Souissi et al. [6] introduced algorithms to solve
the asynchronous limited visibility problem. However, here the robots could de-
termine the directional angle of a common and global polar coordinate system
(with a compass, for example), so, partly, they provided a global navigational
tool.

Recently Degener et al. [7] proposed an algorithm for the synchronous limited
visibility problem that is based on the local convex hull of the visible robots
instead of the GOC or the SEC. In this algorithm no global navigation but
communication abilities were supposed, since the robots could share coordinates
local the moving strategy with each other.

Another step towards the realistic models is to work with no point-like but
”fat” robots, where all of the robots are supposed to be solid discs on a plane
with radius Rs. This modification of the problem has serious consequences: it is
impossible to gather in a single point, so the original purpose should be modified.
Another problem is that the robots now can hinder or totally block the movement
of each other; moreover, this is true for the visibility too, since the robots are
not transparent in a realistic case.

How should we define the gathering in the case of the fat robots? Czyzowicz
et al. [8] defined the gathering so that

– the contact graph of the disks are connected, and
– each robot sees all of the others.

(The contact graph contains the center of the disks as vertices, and two vertices
are connected if and only if the two disks are in contact.) Starting out from
this definition, they solved the gathering problem for at most four robots. It is
obvious, however, that the condition of seeing the other robots at the gathered
position cannot be satisfied if there are a numerous robots. Therefore, we define
the minimum requirement of gathering as the connectivity of the contact graph.

Cord-Landwehr et al. [9] and later Chaudhuri et al. [10] invented algorithms
to gather arbitrary number of disk-like robots around a given point so that the
contact graph, and, beyond this, in the gathered state the robot-disks should be
as closely packed as possible. In these models, the robots had global navigation
tools and total visibility, which meant, in this case, that the robot disks were
transparent.

In the present paper, we deal with problem of oblivious, fat robots with limited
visibility, but with no global navigation and no communication capabilities at all.
We test the local SEC based algorithm, introduced by Ando et al. [4], applied for
fat robots without modification, and then, with a slight improvement according
to the problems caused by the fat property of the robots. In addition to these,
we introduce a new gathering algorithm, which performs better for the problem
above. In the next section, we give the details of the algorithms at hand. In
Section 3, the results of the computer simulation tests are introduced, and in
the last section we conclude.
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2 The Proposed Gathering Algorithm

In this work we study the gathering problem with synchronous setting, where
the robots are represented as fat robots and they are not transparent (closed
disc). For more realistic setting, the robots has limited visibility and there are
no a global navigation system. Moreover each robot are oblivious (memory-less)
and cannot be identified. Our aim is to present an algorithm which solves the
gathering problem in finite time with these minimal conditions. Of course we
assume that the visibility graph is connected. In our interpretation the swarm
is gathered when the contact graph is connected.

Let R = {r1, . . . , rn} be the set of robots and we represent the position of a
robot by the vector ri(t) at time t. Each robot is represented as a closed disc
with radius Rs, and V be the size of the radius of visibility.

A considerable problem in the fat robot algorithms is that the robots hinders
the movements of each other. Typically, the robots on the perimeter are blocked
by inner robots. This problem cannot be solved effectively by the SEC based al-
gorithms (as it is demonstrated in Section 3 in this paper). The basic idea of our
proposed solution is that the robots try to move away towards the furthest visible
robot, which is completely different from the algorithms discussed so far. We will
show that this type of algorithm solves the problem of blocking more effectively
than the SEC algorithm. In order to make our algorithm more optimal we intro-
duce the concept of the ”perimeter robots” that are on the border of the swarm,
and give different size of steps for these robots in the algorithm. We call a robot
as perimeter robot if all of the visible robots are in a sector centered at the robot
at hand with sector angle at most 120 degrees (see figure 1.). We denote the set of
perimeter robots by RP . The robots in the set of R/RP (i.e. the complementary
set) are considered to be ”inside robots”, and their set will be denoted by RI. In
each step, R is separated into sets of perimeter and inside robots.

Fig. 1. Perimeter robot

The idea of our algorithm is to make the perimeter robots move towards inside
robots. However, this algorithmic element alone can lead to flocking of the discs
at the boundary of the visibility graph. Therefore, the movement of the inside
robots should solve this problem. The mathematical details of the algorithm are
given in the followings.
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In the presented algorithm all of the robots execute the Look, Compute and
Move phases synchronously. At the Look phase each robot collects the visible
robots at the time t (denoted by RVi(t) set) and determines their positions in its
own local coordinate system. We call this procedure GetV isibleRobots(R), which
takes the set of robots as input. At the Compute phase a robot determines if it
is a perimeter of inside robot. After that the GetFurthestV isbleRobot(RVi(t))
procedure returns with the position of the furthest visible robot (denoted by
rdi(t)). Based on this information the perimeter and the inside robot calculates
its local vector of planned move (g) with a following formula:

g = c
rdi(t)− ri(t)

V
(rdi(t)− ri(t)). (1)

where c is chosen to be 1 or c = 1/2 for the cases of perimeter and inside robots,
respectively. Regarding the value of c the difference between the two cases is
reasonable because in the perimeter there are lower density of robots than in the
inner region of the swarm.

Fig. 2. Perimeter (a) and inside (b) robot step

By the means of this formula each robot move towards its furthest visible
neighbor, but with different distance. This distance depends on the current robot
position in the local environment. The further is this neighbor the longer is the
planned move g. If the furthest neighbor is at the border of the visibility then a
perimeter robot plans to move to that neighbor (i.e. g(t) = rdi(t) − ri(t)), in
case of an inside robot, the move vector is only the half of that. This is because
the perimeter robots are located at the graph border of the visibility graph,
hence they have to get closer to the swarm and execute a superior movement.

However, the movement of the robots along the vector g should be limited
in the SEC algorithm, because the visibility relationships between the robots
must not be broken meanwhile a step-cycle. To satisfy this condition the Ando’s
distance limitation algorithm is used here [4].

2.1 Solution to the Blocking Problem

Because of the fat robot representation, a robot could block the movement of an-
other robot. This can be deadlock situation. However, this deadlock can be solved
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by a simple technique. The blocked robot should modify its original goal vector
so that the new direction is tangential to the blocker robot (see figure 3.). The
length of the new vector is calculated as the projection of the original vector to
the tangential direction. So, the robot can get closer to its originally planned po-
sition. This trick helps only when there is only one blocking robot. We apply a
GetBlockers(ri, RVi, rdi) procedure to get all of the blocking robots. If the num-
ber of blockers is zero, then nothing is to be done with the original goal vector;
if the number of blockers is one, then the goal vector is altered; if the number of
blockers more than one, then the robot won’t move in this step cycle. Due to this
method, in more steps the robots get around each other and the blocking problem
is solved. We call this method as slip of the robot.

Fig. 3. Solution to the blocking problem

2.2 Gathering Algorithm

As a summary, we give a concise outline of one step-cycle (i.e. Look, Compute
and Move), which works on each robots in a synchronous way. In the algo-
rithm the ComputeMovementLimitation function computes Ando’s movement
limitation and TangentialDirection is responsible for computing the move-
ment vector resulting from the slip effect discussed before. The final altered
movement vector is given by m.

– RVi(t) = GetV isibleRobots(ri, R)

– rdi(t) = GetFurthestRobot(RVi(t))

– if ri(t) ∈ RP (t) then c = 1 else c = 1
2

– g = c rdi(t)−ri(t)
V (rdi(t)− ri(t))

– m = ComputeMovementLimitation(ri, RVi(t), g)

– Bi(t) = GetBlockers(ri, RVi(t))

– if Bi(t) contains more than 1 member then m = ri
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– else if Bi(t) contains one member then m = TangentialDirection(ri(t),
Bi(t), g)

– else ith robot moves with m

3 Computer Tests and Results

To demonstrate the correctness of our algorithm we performed computer simu-
lations in MATLAB. We tested the three mentioned gathering methods (simple
SEC, SEC with slip and the present algorithm) with different starting states and
different number of robots up to 200 units.

First, we tested the SEC algorithm proposed by Ando for point-like robots,
but we applied it for fat robots. Then we upgraded Ando’s algorithm with the
slip method detailed in Subsection 2.1, so that to avoid the blocking effect.
Finally, we tested the algorithm introduced in the present paper. We tested
all three gathering solution for N=12,25,50,100,200 robots and at each value
of N we generated 5 random start positions for the robots where the visibility
graph is connected. The simulation was stopped when the robots did no more

Fig. 4. The gathering results in case N=200. (a) shows the initial state of 200 robots,
(b) shows the results of original Ando gathering algorithm, (c) is Ando with slip. Finally
(d) demonstrates the results of the presented gathering algorithm.
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movement. In figure 4. we can see snapshots of experiments for N=200 robots,
which demonstrate the final results of the three gathering algorithms. It can
be see that in the final stage the contact graph is connected in the case of
our presented algorithm. This is also true for the other values of N. Moreover
structure of the swarm is similar to a closely packed one. Nevertheless, we did
not examine the question if the structure of the robots is more or less closely
packed in every case of the parameters.

Finally, figure 5. represents the cumulative results of our simulations of the
gathering methods. We measured the total gathering times (figure 5/a.) (from
the starting position to the final state), and the biggest diameters of the contact
graphs in the final state (figure 5/b.) It can be seen that there is no significant
difference between the gathering times of the different algorithms. However, the
diameter of contact graph is always considerably smaller in the case of the pre-
sented new method than that of the others. It is also seen that the extension of
the original SEC algorithm with the slip method improves the performance of
the gathering with respect to the diameter of the contact graph. It is important
to remark, that the final contact graph was not connected in a few cases when
the simple SEC algorithm was applied, while this failure was not occurred in the
case of the other two algorithm.

Fig. 5. The average values of the total gathering times (a) and the biggest diameters
of the contact graphs (b) as a function of the number of the robots in a log-log scale
in the case of the three examined algorithm

4 Conclusions

In this paper, we introduced a new and effective gathering algorithm for fat
robots without global navigation and with limited visibility. The computer sim-
ulations in MATLAB has shown that
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– the SEC algorithm with the ”slip” modification and the proposed new gath-
ering algorithm can reach a gathered state with connected contact graph.

– Among the three examined algorithm (simple SEC, SEC with slip and the
proposed new) the proposed algorithm can produce the best results with
respect to the diameter of the contact graph (considering a smaller diameter
as better result).
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Abstract. The influence of migration on the performance of differen-
tial evolution algorithm is studied. Six adaptive variants of differential
evolution are applied to a parallel migration model with a star topology.
The parallel algorithm with several different settings of parameters con-
trolling the migration was experimentally compared with the adaptive
serial algorithms in six benchmark problems of dimension D = 30. The
parallel algorithm was more efficient than the best serial adaptive DE
variant in a half of the problems.

Keywords: global optimization, differential evolution, self-adaptation,
parallel model, experimental comparison.

1 Introduction

When solving a global optimization problem, our natural requirement is to find
reliably an acceptable approximation of the global minimum point as quickly as
possible. The Differential Evolution (DE) introduced by Storn and Price [13] has
appeared to be an efficient heuristic algorithm to solve optimization problems.
DE has been intensively studied in the last years, for an overview see [4,9,10].

DE uses a population of N points in the search domain that are candidates
of the solutions. The population is developed during the whole search process
using evolutionary operators, i.e. selection, mutation and crossover. Mutation is
controlled by F parameter, F > 0, and crossover is controlled by CR parameter,
0 ≤ CR ≤ 1. The combination of mutation and crossover is called DE strategy
and it is denoted by the abbreviation of DE/m/n/c. A symbol m specifies the
kind of mutation, n is used for the number of differences in mutation, and c
indicates the type of crossover. Various values of F and CR can be used in each
strategy. DE has only a few control parameters. Besides setting the population
size N and defining the stopping condition necessary for all evolutionary algo-
rithms, the selection of DE strategy and setting the values of F and CR is all
what must be done. However the DE performance is sensitive to the values of
these parameters and their appropriate setting is problem-dependent.
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The goal of this paper is to study how migration applied to DE via a parallel
model affects the performance of the algorithm and to compare the efficiency of
parallel DE with the serial DE variants.

2 Adaptive Variants Used in Parallel Model

Implementation of an adaptive or self-adaptive mechanism into the DE algorithm
is a way how to select a suitable strategy and an appropriate control-parameter
setting for a specific problem. Many various self-adaptive DE algorithms have
been recently proposed. Four state-of-the-art adaptive DE algorithms [1,7,11,20]
have been compared experimentally with DE algorithm using composite trial
vector generation strategies and control parameters (CoDE) [17] and with a
variant of competitive DE [16]1. These six adaptive or self-adaptive DE variants
employed in the parallel migration model experimentally tested in this study are
shortly presented bellow.

Self-adaptive jDE algorithm proposed by Brest et al. [1] uses the DE/rand-
/1/bin strategy with an evolutionary self-adaptation of F and CR. A pair of
(F, CR) is encoded with each individual of the population. The pair survives with
a trial vector which is inserted into next generation. The values of F and CR are
initialized randomly from uniform distribution for each point of the population
and survive with the individuals in the population but they can be randomly
mutated in each generation with given probabilities. Control parameters are set
up to the values used in [1].

Differential Evolution with Strategy adaptation (SaDE) [11] uses four strate-
gies. The probability of strategy selection to generate a new trial vector is based
on its success rate in the previous LP generations. The values of the parame-
ters F are generated randomly for each trial vector from a normal distribution
N(0.5, 0.3), the second parameter of normal distribution is the standard devia-
tion. No adaptation of F is used in this algorithm. The values of the parameter
CR are generated from the normal distribution N(CRmk, 0.1), where the pa-
rameter CRmk, k = 1, 2, 3, 4, is adapted during the evolution.

JADE variant of adaptive differential evolution [20] extends the original DE
concept with three different improvements – current-to-pbest mutation, a new
adaptive control of parameters F and CR, and archive. The mutant vector v is
generated in the following manner:

v = xi + F (xpbest − xi) + F (xr1 − xr2 ), (1)

where xpbest is randomly chosen from 100 p% best individuals with input pa-
rameter p = 0.05 recommended in [20]. The vector xr1 is randomly selected from
P (r1 �= i), xr2 is randomly selected from the union P

⋃
A (r2 �= i �= r1 ) of the

1 Tvrd́ık, J., Poláková, R., Veselský, J., Bujok, P.: Adaptive Variants of Differential
Evolution: Towards Control-Parameter-Free Optimizers, submitted to Handbook of
Optimization, I. Zelinka, V. Snasel, and A. Abraham (eds.), Springer, to appear in
2012.
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current population P and the archive A. In every generation, parent individuals
replaced by better offspring individuals are put into the archive and the archive
size is reduced to N individuals by randomly dropping surplus individuals. The
trial vector is generated from v and xi using the binomial crossover. CR and F
are independently generated for each individual xi, CR is generated from the
normal distribution of mean μCR and standard deviation 0.1, truncated to [0, 1].
F is generated from Cauchy distribution with location parameter μF and scale
parameter 0.1, truncated to 1 if F > 1 or regenerated if F < 0, see [20] for
details of μCR and μF adaptation.

This adaptive DE variant using Ensemble of Parameter values and mutation
Strategies (EPSDE) was proposed in [7]. The mutation strategies and the values
of control parameters F and CR are stored in pools. Combinations of the strate-
gies and the parameters in the pools have diverse characteristics so that they
can exhibit distinct performance during different stages of evolution. A triplet of
(strategy, F, CR) is stored together with each point of population. The triplets
are set randomly for initial generation and they develop during evolution. If the
triplet stored with the target vector xi produces a successful trial vector, the
triplet survives adhered to the vector entering into next generation instead of
xi. Each successful triplet of parameters is also stored in auxiliary memory of
length of L, usually L = N. If the stored triplet of (strategy, F, CR) is not
successful, it is re-initialized by a triplet whose items are randomly chosen from
respective pools or by randomly chosen one from the auxiliary memory of suc-
cessful triplets. The pool of strategies and the pools of F and CR values are
given in [7].

Competitive DE uses H strategies with their control-parameter values held in
the pool [15]. Any of H strategies can be chosen to create a new trial point y. A
strategy is selected randomly with probability qh, h = 1, 2, . . . , H . The values of
probability are initialized uniformly, qh = 1/H , and they are modified accord-
ing to the success rate in the preceding steps. The hth strategy is considered
successful if it produces a trial vector entering into next generation. Probability
qh is evaluated as the relative frequency of success. A variant of this algorithm
(denoted b6e6rl), well-performing in benchmark tests [16], is employed in the
parallel migration model. In this variant, twelve strategies are in competition,
six of them use the binomial crossover, the others the exponential crossover. The
randrl/1/ mutation [6] is applied to all the strategies, two different values of con-
trol parameter F are used, {0.5, 0.8}. The binomial crossover uses three different
values of CR, CR ∈ {0, 0.5, 1}. Three different values of CR are also used in the
exponential crossover, their setting is based on the relationship between muta-
tion probability and CR derived in [19]. Three values of the mutation probability
are set up equidistantly in the interval (1/D, 1), where D is the dimension of the
problem.

DE algorithm with composite trial vector generation strategies and control pa-
rameters (labeled CoDE hereafter) has been recently presented [17]. The CoDE
combines three well-studied trial vector strategies with three control parameter
settings in a random way to generate trial vectors. The strategies are rand/1/bin,
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rand/2/bin, and current-to-rand/1 and all the three strategies are applied when
generating a new trial vector. It results in having three offspring vectors and
among them the vector with the least function value is used as the trial vec-
tor. The values of control parameters F and CR are chosen randomly from
the parameter pool containing [F = 1, CR = 0.1], [F = 1, CR = 0.9], and
[F = 0.8, CR = 0.2]. A variant of CoDE using the binomial crossover after
the current-to-rand/1 mutation appeared to be more efficient compared to the
CoDE algorithm without the binomial crossover described in [17] in the prelimi-
nary experiments. This modified CoDE variant is applied to the parallel model.

3 Parallel Migration Model

Three types of parallel model are used in parallel EAs: master-slave, diffusion
andmigration model [3,8]. When the migration model is considered, the intercon-
nection among islands called topology [2,12] is an important feature influencing
the performance of the algorithm. The migration models with various topologies
were also applied in parallel DE [14,18]. The star topology shown in Fig. 1 was
implemented in the parallel DE algorithm in our experimental tests. There are
k islands with the sub-populations Pj , j = 1, 2, . . . , k. Each island is linked only
to a special island called mainland and individuals can migrate only between
the linked islands. A similar version of cooperative star topology was also used
in the context of compact DE, see Iacca et al. [5].

Fig. 1. Star migration model and distribution of sub-populations

The parallel migration model implemented in this study is shown in Algo-
rithm 1. Sub-populations are of the same size, the size NI is an input parameter.
Each island sub-population evolves independently by one of the six adaptive DE
algorithm described above until the moment to migrate is reached. The migra-
tion from the islands to the mainland occurs after performing a given number
of generations nde (input parameter of the algorithm). In the migration model
used here, the individual with the least function value of the ith sub-population
(xbest,i) replaces the ith individual (xm

i ) of the mainland population and mig
other randomly chosen points of the sub-population (except xbest,i) overwrite
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mig individuals of mainland population on places corresponding to kth sub-
population, mig is also an input parameter. Thus, mig+1 individuals from each
island are copied to mainland. It is obvious that the size of the mainland pop-
ulation NM should be set up to NM ≥ k × (mig + 1). If NM= k × (mig + 1),
the mainland population is renewed completely in each epoch and the elitism
of the parallel algorithm is ensured. In order to satisfy this condition, the input
parameter mig was set up to mig = 4 and NM = 30 in all the experiments.

After finishing the migration from the islands to the mainland, the search
process continues applying a DE variant on the mainland until the stopping
condition for the current epoch (2) is reached. In this parallel DE algorithm,
competitive b6e6rl DE variant as the most reliable in preliminary experiments
was chosen for the mainland population. The stopping condition for the mainland
and the current epoch was formed as follows:

fmax − fmin < 1× 10−6 OR nfem > 10(epoch−1) × 2× nde×NM, (2)

where fmax and fmin are the worst and the best function values of the mainland
population, respectively, and nfem is the number of function evaluations in the
mainland population during this epoch. Notice that in early epochs the evolu-
tion on the mainland tends to stop due to the given limit of allowed function
evaluations (after 2 × nde generations in the first epoch) while in late epochs
due to the small difference of the function values in the mainland population.

Algorithm 1. Parallel Model Using Adaptive DE Algorithms

initialize mainland population and sub-populations Pi, i = 1, 2, . . . , k
epoch = 1
while stopping condition (3) not reached do

for i = 1, 2, . . . , k do
perform nde generations of ith island by ith adaptive DE
migrate the best point and mig points randomly chosen from Pi to mainland

end for
while stopping condition (2) not reached do

develop mainland sub-population by a DE variant
end while
for i = 1, 2, . . . , k do

migrate 1 +mig points from the mainland to ith island
end for
epoch = epoch+ 1

end while

When development of mainland population is done, the migration from the
mainland to islands happens. The point from the ith position in mainland moves
to the ith island on the position of the former best point and mig points of main-
land from positions corresponding to ith island rewrite the points on random po-
sitions (except the position of the former best point) in the island sub-population.
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This migration accomplishes the epoch. The search continues until the stopping
condition (3) on the mainland is satisfied:

fmax − fmin < 1× 10−6 AND fold − fnew < 1× 10−6, (3)

where fold and fnew are the minimum function values found in two last subse-
quent epochs.

4 Experiments and Results

The parallel DE algorithm (hereafter PADE) is experimentally compared with
the most efficient and the most reliable serial variants from the former compar-
ison, i.e. with JADE [20] as the most efficient algorithm and the second most
reliable and with the b6e6rl variant of competitive DE [16] as the most reliable
and the second most efficient one. Several different values of input parameters
nde and NI are tested, their setting is based on the previous results [2]. The
size of population of serial DE variants was set up to N = 60 and the search
was stopped if fmax − fmin < 1× 10−6, where fmax and fmin are the worst and
the best function values of the population. Six well-known test functions [7,13]
are used as benchmark. Rosenbrock and Schwefel functions were used in their
standard form, Ackley, Dejong1, Griewank, and Rastrigin functions were used in
their shifted version. The shifted version of function was evaluated at the point
z = x − o, o ∈ S, o �= (0, 0, . . . , 0), where S =

∏D
j=1[bj − aj ], aj < bj is the

search domain. The shift o was generated randomly from uniform distribution
before each run. The problem dimension is D = 30.

One hundred of independent runs were carried out for this algorithm and
each test problem, in each run the number of the function evaluations (nfe) and
the minimum function value in the final generation (fmin) were recorded. The
reliability rate (R) was evaluated as the number of runs when (fmin − f(x∗)) <
1× 10−4.

The results of experimental comparison of the algorithms are presented in
Table 1. The values of nfe for PADE that are significantly better than nfe for the

Table 1. Basic characteristics of the algorithms’ performance

Alg Ackley DeJong Griewank Rastrigin Rosenbrock Schwefel
NI nde nfe R nfe R nfe R nfe R nfe R nfe R

b6e6rl 71278 100 37781 100 51934 100 73402 100 148185 100 64245 100
JADE 75248 100 13470 100 22759 93 67801 100 76440 93 57994 77
PADE 10 5 31916 94 17869 100 24673 85 41994 98 163269 95 33043 88
PADE 10 10 32992 96 18659 100 25096 82 42705 98 165302 100 34390 91
PADE 10 20 34502 99 19757 100 25948 79 44677 100 167270 91 36654 97
PADE 10 30 34809 96 20155 100 27306 86 46601 99 162716 97 37234 97
PADE 30 10 44268 97 28431 100 37283 74 60452 100 180133 94 46746 98
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Ackley DeJong1

Griewank Rastrigin

Rosenbrock Schwefel

Fig. 2. Minimum function values in the mainland population in epochs

best serial DE variant (by more than 10%) are printed in bold. The parallel DE is
more efficient in three out of six benchmark problems, mostly without significant
decreasing the reliability. The performance of PADE is not very sensitive to the
change of nde. Increasing the size of the island population to NI = 30 decreases
the efficiency without improving the reliability.
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The development of the minimum function values (median of 100 runs) in
the mainland population during the search is depicted in Fig. 2, logarithmic
scale is used for the vertical axis. The PADE variants with NI = 10 and longer
development on the islands (nde = 30 and nde = 20) need a smaller number of
epochs to find an acceptable solution.

The proportion of the function evaluations performed on the mainland to the
total nfe is shown in Table 2. Bad performance of PADE in Rosenbrock problem
could be explained by a very high proportion of function evaluations spent on
the mainland indicating that the parallelism was not helpful in this problem.

Table 2. Proportion of the function evaluations on the mainland to the total count

NI nde Ackley DeJong Griewank Rastrigin Rosenbrock Schwefel

10 5 91% 86% 89% 93% 98% 92%
10 10 85% 77% 82% 88% 89% 86%
10 20 76% 63% 71% 81% 93% 77%
10 30 69% 55% 60% 73% 90% 71%
30 10 67% 55% 61% 73% 89% 69%

5 Conclusion

Six adaptive DE variants cooperated in a simple parallel model. The parallelism
provided the algorithm with migration, which is an additional evolutionary op-
erator. Parallel DE was more efficient than the best serial adaptive DE variant
in a half of benchmark problems. This result is promising for future research in
parallel DE and it gives a chance to propose a more robust and efficient parallel
DE model applicable in solving optimization problems where the evaluation of
the objective function is time-consuming and the reduction of the number of
function evolutions is crucial.
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parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEE Transactions on Evolutionary Computation 10, 646–657 (2006)

2. Bujok, P.: Parallel models of adaptive differential evolution based on migration
process. In: Aplimat, 10th International Conference on Applied Mathematics,
Bratislava, pp. 357–364 (2011)

3. Cantu-Paz, E.: A survey of parallel genetic algorithms (1997),
http://neo.lcc.uma.es/cEA-web/documents/cant98.pdf

http://neo.lcc.uma.es/cEA-web/documents/cant98.pdf


Parallel Model Employing Various Adaptive DE Variants 47

4. Das, S., Suganthan, P.N.: Differential evolution: A survey of the state-of-the-art.
IEEE Transactions on Evolutionary Computation 15, 27–54 (2011)

5. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Global supervi-
sion for compact differential evolution. In: Proceeding IEEE Symposium on Dif-
ferential Evolution, Paris, France, pp. 25–32 (2011)

6. Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution
algorithms. European J. Operational Research 169, 1176–1184 (2006)

7. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolu-
tion algorithm with ensemble of parameters and mutation strategies. Applied Soft
Computing 11, 1679–1696 (2011)

8. Nedjah, N., Alba, E., de Macedo Mourelle, L.: Parallel Evolutionary Computations.
SCI. Springer-Verlag New York Inc., Secaucus (2006)

9. Neri, F., Tirronen, V.: Recent advances in differential evolution: a review and
experimental analysis. Artificial Intelligence Review 33, 61–106 (2010)

10. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach
to Global Optimization. Springer, Heidelberg (2005)

11. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Transactions on Evo-
lutionary Computation 13(2), 398–417 (2009)
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Abstract. Music fingering is a cognitive process whose goal is to map
each note of a music score to a fingering on some instrument. A finger-
ing specifies the fingers of the hands that the player should use to play
the notes. This problem arises for many instruments and it can be quite
different from instrument to instrument; guitar fingering, for example, is
different from piano fingering. Previous work focuses on specific instru-
ments, in particular the guitar, and evolutionary algorithms have been
used.

In this paper, we propose a differential evolution (DE) algorithm de-
signed for general music fingering (any kind of music instruments). The
algorithm uses an Adaptive Neuro-Fuzzy Inference System (ANFIS) en-
gine that learns the fingering from music already fingered.

The algorithm follows the basic DE strategy but exploits also some
customizations specific to the fingering problem. We have implemented
the DE algorithm in Java and we have used the ANFIS network in Mat-
lab. The two systems communicate by using the MatlabControl library.
Several tests have been performed to evaluate its efficacy.

1 Introduction

Given a music score for some instrument, a fingering is a mapping of each note
of the input score to a specific “position” of the hands that should be used to
play the notes. The position of the hands in most cases just specifies a finger for
each note (like for example for piano scores). In some other case it specifies also
other information (like a string on the guitar). In some cases also the two foots
are used (like for the church organ). A fingered music score is a music score with
a fingering.

Fingering involves several aspects: musical analysis, physical constraints, bio-
mechanical constraints (possible figures of the hand). In addition, each musician
has different preferences about the positioning of the fingers, as suggested by
experience, physical possibilities and so on. Fingered music can be of great help
to music students or any one that wishes to play and does not have enough
competence to find a good fingering by himself. The process of fingering a music
score, however, can be laborious and time consuming, especially if one has plenty
of music to be fingered. A publishing house might want to print a book of music
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with the fingering rather than without it. Having computer programs that can
automatically find music fingerings can be of great help. A music score can have
many possible fingerings. Although each instrument has specific constraint that
might reduce the number of possible fingerings, in theory, there is a huge number
of possible fingerings for a music score. This makes the evolutionary approach
to this problem interesting.

The fingering problem has been given considerable attention in the last
few years, although most of the work focuses on the guitar. Each instruments
has specific physical and structural features which make the fingering problem
instrument-dependant.

In this paper we explore the use of the Differential Evolution (DE) approach
for the fingering problem. Although our algorithm follows the general DE strat-
egy, there are several customization specific to the fingering problem. In our ap-
proach, the DE algorithm is used to explore good fingered configurations among
the solution space. Once the algorithm generates a new solution, an adaptive
neuro-fuzzy inference system (ANFIS) [5] is used to determine its fitness value
for the evolutionary algorithm to continue its search process. ANFIS is a class of
adaptive networks which are functionally equivalent to fuzzy inference systems.
In our case, the ANFIS network is trained to learn fingered positions starting
from music already fingered. Such fingered music might represent either the par-
ticular preferences of a specific user (musician) or standard fingering practice for
the instrument for which the music is written.

This paper. In this paper, we propose a general model of fingering, not restricted
to one specific instrument but usable for any type of musical instrument, al-
though the algorithm uses a different representation of the fingering which is
instrument-dependant. This is transparent to the user. In order to abstract from
one specific instrument, the model does not use information on the physical
characteristics of the musical instruments, but gets the needed information from
already fingered music. To the best of our knowledge this is the first algorithm
applicable to any type of musical instrument. We have implemented the DE algo-
rithm in Java and the ANFIS network in Matlab. The two systems communicate
by using the MatlabControl library. We have run several tests and finally, the
output of the system is validated against the performance of a human expert.
In the final section of the paper we report the results of the tests.

Related work. Most of previous works are concerned with the fingering of stringed
instruments (in particular the guitar). Expert systems for the guitar fingering
problem have been published by Sayegh [10], Miura and Yanagida (MY) [6] and
Emura et al [3]. Radisavljevic and Driessen [9] implement and build on Sayegh’s
idea of dynamic programming. Their interest is in tuning their algorithm to par-
ticular styles of music fingering through training over selected scores for guitar.
Tuohy and Potter [13] approach the guitar fingering problem with a genetic algo-
rithm. In this algorithm the population is a collection of tablatures that are valid
for a given piece of music. A tablature “chromosome” is defined as a sequence of
chords. A chord is a “gene” and consists of fretboard positions for all the notes
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in that chord. The fitness function is based on two separate classes of tablature
complexity: difficulty of hand/finger movement and difficulty of hand/finger ma-
nipulation. In a later work [14] they introduce a neural network to assign fingers
to their tablature.

2 Background

2.1 Music Notation

We assume that the reader is familiar with basic music notions. The twelve notes
of an octave are denoted with the letters A, A� or B	, B, C, C� or D	, D, D� or
E	, E, F, F� or G	, G and G� or A	. In the audible range of sounds there are
several octaves, usually denoted with the numbers from 0 to 7. The keyboard of
a piano contains all the 88 notes used in music (the lowest notes and also the
highest ones are used rarely). We will use MIDI codes to specify the notes. Each
MIDI code is a number in the range 0-127. Thus we have more MIDI codes than
keys in a standard 88-key piano. The lowest note in the piano, the first A, has
MIDI code 21, while the highest note, the last C, has MIDI code 108.

Fingering information is instrument-specific, Figure 1 shows an example of
fingering for piano and Figure 2 shows an example of fingering for guitar.

Fig. 1. Piano fingering
Fig. 2. Guitar fingering

Given a score S it is possible to have many fingerings Fi(S). Although each
instrument has specific constraint that might reduce the number of possible
fingerings, in theory, given a score S there is a huge number of fingerings for S.
The goal of the algorithm is to find a “good” fingering, one that would be used
by an expert musician.

2.2 Differential Evolution

Given the scope of the conference we assume that the reader is familiar with
evolutionary algorithms and in particular with the differential evolution (DE)
strategy proposed in [11]. In the next section we will describe the modifications
needed to adapt the standard (DE) strategy to our problem.
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2.3 Adaptive-Network-Based Fuzzy Inference System (ANFIS)

An Adaptive Network-Based Fuzzy Inference System or simply ANFIS can be
used for constructing a set of fuzzy if-then-rules with appropriate membership
functions able to generate correct input-output pairs. Due to lack of space we
refer the reader, for example, to [4,12] for more information. In the next section
we will explain how we use an ANFIS network for our algorithm.

3 The DE Algorithm

In this section we present the fingering algorithm that we call DE. The DE
algorithm adopts the differential evolution strategy and uses an ANFIS network
to evaluate the fitness of the solutions. To describe the algorithm we start by
describing how we represent individuals, then we describe how we use the ANFIS
network and finally how we adapt the DE strategy to the fingering problem.

3.1 Data Representation

In this section we describe how we represent a fingering. The choice of the data
representation is a crucial step in the design of an evolutionary algorithm and
also of a fuzzy network. We seek a representation that is enough general to deal
with fingerings for all kind of instruments.

Regardless of the specific instrument for which it is written, a music score S
can be viewed as a temporal sequence of score-changes, where each score-change
is the appearance of a new note or group of notes. We denote this sequence as
S = S1, S2, . . . , SN , where N is the number of score-change in S. Notes in a
score-change are specified using the corresponding MIDI code. Figure 3 provides
an example. The score fragment consists of 4 score-changes. Notice that the
score-change representation of a score loses the information about timing (which
is not needed for fingering) retaining only the information about the notes to be
played.

Abstracting from the instruments a fingering configuration will be a 12-
element array of notes-information and an associated 12-element array of extra-
information. The notes-information will be MIDI codes that specify the
score-change. We use a maximum of 12 notes since we assume that with the

Fig. 3. A fragment of a score and the sequence of score-changes
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fingers we can play at most 10 notes and on some instruments (like the organ)
we can use the foots to play other 2 notes1 For many instruments, in particular
the ones having a keyboard, the notes-information is all we need to specify a
fingering. For other instruments, like for example a guitar, we need additional
information. In such cases we use them extra-information.

Figure 4 shows examples of fingering. Gray elements are not used. The fin-
gering for piano and organ simply map each note to a finger, numbered from 1
(thumb) through 5 (little), or a foot (left or right). For the guitar we use the
notes-information for the left hand: in the example the 2nd and the 5th finger play
E (MIDI code 64) and C (MIDI code 60). Moreover the extra information for
the left hand tells on which string the fingers should be placed: the 2nd finger on
the 4th string and the 5th finger on the 3rd string. Finally the extra-information
for the right hand tells which finger of the right hand should pluck the strings
specified in the extra-information of the left hand: the 3rd finger should pluck
the 3rd string and the 2nd finger the 4th string. For the accordion the extra-
information specifies the row of buttons to be used (some notes can be played
in different rows).

Fig. 4. A fingered score fragment and its matrix representation

Although we have chosen to represent the fingering as a dimensional matrix
(just because we have notes-information and associated extra-information), we
can store all the fingering information for a score change in one single array
of dimension K. The implementation uses K = 24 although, depending on the
instrument, some entries are always 0.

1 Actually on the organ it is possible to play more than 1 note with each foot. For
simplicity we assumed that one can play only one note. In order to accomodate more
than one note per foot it is enough to make the array longer.
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Given a score S, an entire fingering F (S) is represented as a K × N matrix,
where N is the total number of score-changes in S, and each column represents
one fingering-change.

3.2 The ANFIS Model for Learning Fingering

The objective of this network is to learn the preferred fingering, be it that of
a single-user musician or that deriving from common practice. The choice of
a musician on how to place the fingers for a specific score-change depends on
the fingering for the previous score-change and that of the next score-changes.
This is because each player tries to move his hands in the most convenient way
and as efficiently as possible. Thus the ANFIS network will work with triples of
consecutive fingering-changes Each instance in the training set is a pair (triple
of fingering-changes, preference).

To represent each such a pair, we need an array of 3K + 1 elements, the first
3K to represent the three fingering-changes (each one takes K integers), while
the last entry of the array will contain the preference that the user gives to this
particular fingering.

Let {S1, . . . , SM} be a set of scores set and {F (S1), . . . , F (SM )} be the cor-
responding fingerings. We consider all the possible the triples of score-changes
Si
j−1S

i
jS

i
j+1 for all i = 1, . . . ,M and all j = 2, . . . , Ni−1, where Ni is the number

of score changes in Si (remember that each score-change is a set of notes). Then
we count the number of occurrences of a particular fingering for each triple.
Such a number (normalized by the total number of appearance of the triple of
score-changes to which the fingering is referred) gives the preference for that
particular fingering.

3.3 The Differential Evolution Algorithm

The DE algorithm takes as input a score and produces a fingering for the score.

Encoding. The population in our algorithm is made up of individuals that are
fingered configurations of the given input score. We represent each individual
using the data representation explained in previous sections; that is a chromo-
some x (individual) is a fingering x = F (S) for the input score S and each
fingering-change is a gene of x.

Fitness Measure. The fitness value f(x) is defined as follows. Let x be an
individual of the population, and F (S) the corresponding fingering. For each
i = 2, . . . , N − 1, we consider the triple of consecutive genes 〈Fi−1, Fi, F

i+1〉 of
x = F (S) and we use the neuro-fuzzy network to evaluate the triple. Let f(i) be
the value returned by the neuro-fuzzy network. The overall evaluation of x is

f(x) = f(F (S)) =

N−1∑
i=2

f(i).

While evaluating chromosomes our algorithm computes also important informa-
tion. In particular for each individual we identify points that we call cut points.
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The cut point is the triple of consecutive genes (score-changes) that contains the
worst value. We used a similar approach in [1,2], for a different problem. In the
rest of the paper we will identify cut point i with the triple of genes Fi−1FiFi+1

that gives the minimum value over all possible i.

Initial Population. We start with a random initial population. We build chro-
mosomes by selecting a random values for entry of the fingering configuration.

Mutation (perturbation) Operator. Now we have to specify how we com-
pute the perturbation. Since the individuals of our problem cannot be described
as real numbers over a continuous domain we have to introduce different ways
to define the “differential” mutation. To do so we will define specialized ‘+’ (ad-
dition) and ‘×’ (multiplication) operations that work with the individuals of our
problem.

Let F 1, F 2, F 3 be the three parents chosen at random. We have to compute
the mutant vector. To do so, we need to introduce the ‘+’ and ‘×’ operation for
the individuals of our problem.

The mutant vector is given by v = F 1 + Z × (F 2 − F 3), where Z is the scale
factor. The “difference” F 2 and F 3 between two fingering is a vector of integers
values and is computed as follows. Let Si = {a1, a2, . . . , ak} be the notes in
the ith score-change. For each note aj , j = 1, . . . , k, the jth component of the
difference for the notes-information Dj is given by the change of position of note
aj from F 2 to F 3. For example if note aj is played by the 4th finger of the right
hand in F 2 while in F 3 is played with the 5th finger of the right hand, then
Dj = −1. For the extra-information, the difference is defined in a similar way
(the exact definition depends on the instrument).

To increase the perturbation we use the crossover operator. The crossover
operator starts from the mutant and the target vector and produces the trial
vector. Let v = (M1, ...,MN ) be the mutant vector. The target vector is xi. Let
xi = (G1, ..., G

N ). Moreover let the trial vector be u = (T1, ..., TN ).
We augment the basic DE algorithm by using two possible crossover:

1. Binomial Crossover. That is, the trial vector is obtained as:

Tj =

{
Mj if(rand([0, 1]) ≤ CR or j = i

Gj otherwise

where CR is a user-defined crossover threshold in the range [0, 1] and rand(j)
is the jth evaluation of a uniform random number generator that returns
numbers in the range [0, 1].

2. Cut crossover. In this case we exploit the cut point to perform a crossover op-
eration. Let k be the cut point in the target vector xi. Then the trial vector u
is obtained considering the two individuals F 1 = (G1, ..., Gk,Mk+1, ...,MN)
and F 2 = (M1, ...,Mk, Gk+1, ..., GN ). Finally the trial vector u is simply the
individual Fz, z = {1, 2} with the best fitness value.

To choose which crossover we have to use we exploit a probability distribution
PC = (pn, pc), where the specific choice for the two probabilities can be tuned
to improve the results of the tests.
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4 Test Results

In order to evaluate the proposed system we have run several tests. As test cases
we have used three type of instruments: the piano, the guitar and the chromatic
accordion.

4.1 ANFIS Model: Training, Checking and Test Results

Our ANFIS model for fingering preferences is developed using the Matlab Fuzzy
Logic Toolbox. For each instrument we selected a set of already fingered scores
from which we extracted a data set of triples of fingering changes for each in-
strument and we used them as shown in Table 1.

Table 1. Number of data instances and performance measures of the ANFIS network

total training checking testing learning minimum coefficient
instances instances instances instances epochs MSE of determination

Piano 1100 770 115 115 110 0.112 0.8722
Guitar 1280 896 192 192 132 0.124 0.8018

Accordion 1030 721 155 154 147 0.132 0.8671

The ANFIS network has been created using generalized bell membership func-
tions with five parameters. To evaluate the errors we used theMSE (Mean Square
Error) function. We trained the network using the hybrid learning algorithm over
a maximum of 200 epochs. For the piano, the total sum of the MES converged
to a minimum of 0.112 after 110 training epochs. Therefore for the final learning
we used 110 epochs. See Table 1 for the other instruments.

After training we validated the ANFIS network against the testing instances.
The coefficient of determination, a number in [0, 1] which specifies the goodness
of the network, with 1 being the best possible result, is shown in Table 1.

4.2 Test Results and Conclusions

We have run several tests varying the size of the initial population and the
number of generations. The other parameters involved in the tests are the scale
factor Z, the crossover threshold CR and the probability distribution PC for the
crossover operation. We have used Z = 0.7 and CR= 0.8 as suggested in [7].
For PC We have tried several choices and the one that gave best results is
PC = { 1

3 ,
2
3}.

Finally we have asked an expert musician to evaluate the output of the DE
algorithm. We have considered two pieces for piano from the standard jazz reper-
toire, Round Midnight by Thelonious Monk and All Blues by Miles Davis, two
pieces for guitar from the standard Latin jazz repertoire, Wave and How Insen-
sitive by Jobim, two pieces for accordion from the tango repertoire, Libertango
by Astor Piazzolla and A Evaristo Carriego by Eduardo Rovira.
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For each instrument, we have requested the musician tell which fingerings
were correct and which ones were wrong. The percentage of correct fingerings
was 89.2% for the piano, 87.3% for the guitar and 85.3% for the accordion.

Finally we have compared the DE algorithm with a standard genetic algorithm
(GA) with same features, that is using the same chromosome representation, the
same fitness evaluation function, the same ANFIS network. The DE algorithm
always outperforms the genetic algorithm. Future work include the investigation
of DE variants (see for example [8]).
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Abstract. PSO-2S is a multi-swarm PSO algorithm using charged par-
ticles in a partitioned search space for continuous optimization problems.
This algorithm uses two kinds of swarms, a main one that gathers the
best particles of auxiliary ones. In this paper, we present a new variant
of PSO-2S, called DEPSO-2S, which is a hybridization of DE and PSO.
DE was used, in this variant, to construct the main swarm. We analyze
the performance of the proposed approach on seven real problems. The
obtained results show the efficiency of the proposed algorithm.

Keywords: Particle swarm optimization, Differential evolution, Multi-
swarm, Global optimization, Partitioned search space.

1 Introduction

Particle swarm optimization (PSO) [3] is an emerging evolutionary computa-
tion technique, inspired by social behavior simulations of bird flocking and fish
schooling. The system is initialized with a population of random solutions and
searches for optima by updating generations. In PSO, the potential solutions,
called particles, fly through the problem space by following the current optimum
particles until termination criterion is satisfied. The advantage of PSO is that
it is easy to implement. It has been successfully applied in many research areas
and real problems [7]. As PSO, differential evolution (DE) is an optimization
method [8], it works by iteratively trying to improve a candidate solution with
regard to a given measure of quality. It is inspired by genetic algorithms and
evolutionary strategies. Currently, a large number of industrial and scientific
applications rely on DE [10].

Various attempts have been made to improve the performance of standard
PSO [10], including such changes as hybrid models, biology-inspired mechanisms,
and some basic modifications in the velocity update equations (inertia weight
w, topology of informants, ...). PSO-2S [1] is a variant of the standard PSO,
which is based on several initializations in different zones of the search space
using charged particles. This algorithm uses two kinds of swarms, a main one

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 57–65, 2012.
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that gathers the best particles of auxiliary ones initialized several times. PSO-2S
has been tested successfully on artificial problems of 10 and 30 dimensions [1],
however, in this work we focus only on real lower-dimension problems [6].

In this paper, we present a new variant of PSO-2S, called DEPSO-2S, which
consists of the hybridization of PSO and DE. Hence, the particles of the main
swarm are created by the algorithm of DE. At first, the particles are randomly
initialized in different zones, then DE performs K generations to obtain the best
solution found in each zone. Once the main swarm is created, PSO is used to
continue the search until the stopping criterion of the algorithm is satisfied.

This paper is organized as follows: in section 2, we present briefly the parti-
cle swarm optimization. In section 3, the differential evolution is presented. In
section 4, PSO-2S and the new variant DEPSO-2S are described. Experimen-
tal analysis and comparisons are done in section 5, followed by a conclusion in
section 6.

2 Overview of Particle Swarm Optimization

The particle swarm optimization (PSO) [3] is inspired originally by the social
and cognitive behavior existing in the bird flocking. The algorithm is initialized
with a population of particles randomly distributed in the search space, and each
particle is assigned a randomized velocity. Each particle represents a potential
solution to the problem.

In this paper, the swarm size is denoted by s, and the search space is n-
dimensional. In general, the particles have three attributes: the current position
Xi = (xi,1, xi,2, ..., xi,n), the current velocity vector Vi = (vi,1, vi,2, ..., vi,n) and
the past best position Pbesti = (pi,1, pi,2, ..., pi,n). The best position found in
the neighborhood of the particle i is denoted by Gbesti = (g1, g2, ..., gn). These
attributes are used to update iteratively the state of each particle in the swarm.
The objective function to be minimized is denoted by f . The velocity vector
Vi of each particle is updated using the best position it visited so far and the
overall best position visited by its neighbors. Then, the position of each particle
is updated using its updated velocity per iteration. At each step, the velocity of
each particle and its new position are updated as follows:

vi,j(t+1) = wvi,j(t)+c1r1i,j (t) [pbesti,j(t)−xi,j(t)]+c2r2i,j (t) [gbesti,j(t)−xi,j(t)]
(1)

xi,j(t + 1) = xi,j(t) + vi,j(t + 1) (2)

where w is called inertia weight, c1, c2 are the learning factors and r1, r2 are two
random numbers selected uniformly in the range [0, 1].

3 Overview of Differential Evolution

The Differential Evolution (DE) is inspired by Genetic Algorithms (GA) and
Evolutionary Strategies (ES). Hence, GA changes the structure of individuals
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using the mutation and crossover operators, while ES achieves self-adaptation by
a geometric manipulation of individuals. This combination has been implemented
through an operation, simple but powerful, of mutation vectors proposed in 1995
by K. Price and R. Storn [8]. Such as PSO, DE is a direct parallel method that
uses N vectors of n-dimensions, where:

xi,t, i = 1, 2, ..., N (3)

is the population at generation t and N is the size of population.
The standard DE uses three techniques (mutation, crossover and selection)

for the movement of the agents as well as GA. At first, a vector xi,t is randomly
selected, which is the current vector of the agent i at generation t. Then, xi,t

moves according to the three following operations:

a - Mutation: For each current vector (target vector) xi,t, a mutant vector vi,t+1

is generated, which will be calculated using the following formula:

vi,t+1 = xr1,t + F.(xr2,t − xr3,t) (4)

where, r1, r2 et r3 ∈ {1, 2, . . . , N} are randomly selected integers such that
r1, r2, r3 and i are all different. F is a real and constant factor ∈[0, 2].

b - Crossover: The crossover operation is introduced to increase the diver-
sity of the target vectors. This operation generates a new vector (trial vector)
ui,t+1 = (u1i,t+1, u2i,t+1, ..., uni,t+1), as follows:

uji,t+1 =
{

v1i,t+1 if (randb(j) ≤ CR) or j = rnbr(i)
xji,t if (randb(j) > CR) and j �= rnbr(i) j ∈ [1, 2, . . . , n]. (5)

where rnbr(j) is the jth random number ∈ [0, 1], CR is the crossover factor
∈ [0, 1] and rnbr(i) is a random index ∈ {1, 2, . . . , N}.
c - Selection: To determine which vector, the trial vector ui,t+1 or the target
vector xi,t, should become a member of generation t + 1, the fitness function
values of these two vectors are compared. Indeed, we keep the vector that has
the smallest fitness function value, in the case of minimization.

4 The Proposed Method

4.1 The Original Version of PSO-2S

In this section, we present the first version of PSO-2S [1]. PSO-2S consists of
using three main ideas. The first is to use two kinds of swarms: a main swarm,
denoted by S1, and s auxiliary ones, denoted by S2i, where 1 ≤ i ≤ s. The
second idea is to partition the search space into several zones in which the
auxiliary swarms are initialized (the number of zones is equal to the number
of auxiliary swarms, thus is equal to s). The last idea is to use the concept of
the electrostatic repulsion heuristic to diversify the particles for each auxiliary
swarm in each zone.
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To construct S1, we propose to perform the auxiliary swarms S2i several
times in different areas, and then each best particle for each S2i is saved and
considered as a new particle of S1. To do so, the population of each auxiliary
swarm is initialized randomly in different zones (each S2i is initialized in its
corresponding zone i). After each of these initializations, K displacements of
particles, of each S2i, are performed in the same way of standard PSO. Then
the best solution found by each auxiliary swarm is added to S1. The number of
initializations of S2i is equal to the number of particles in S1.

As we mentioned above the second idea is to partition the search space
[mind, maxd]N into several zones (maxzone zones). Then, we calculate the
centerd and the stepd of each dimension separately, according to (6) and (7).
The stepd are similar in the case of using a square search space.

centerd = (maxd − mind)/2 (6)

stepd = centerd/maxzone (7)

where maxzone is a fixed value, and d is the current dimension (1 ≤ d ≤ N).
The sizes of the zones of the partitioned search space are different (Z1 < Z2 <

. . . < Zmaxzone). Therefore, the number of particles in S2i, denoted by S2isize,
depends on its corresponding zone size. Indeed, a small zone takes less particles
and the number of particles increases when the zone becomes larger. The size of
each auxiliary swarm is calculated as follows:

S2isize = numzone ∗ nbparticle (8)

where numzone = 1, 2, ..., maxzone, is the current zone number and nbparticle

is a fixed value. After the initializations of the auxiliary swarms in different
zones (Zi, S2i), an electrostatic repulsion heuristic is applied to diversify the
particles and to widely cover the search space [2]. This technique is used in
an agent-based optimization algorithm for dynamic environments [4]. Therefore,
this procedure is applied in each zone separately, hence each particle is considered
as an electron. Then a force of 1/r2 is applied, on the particles of each zone, until
the maximum displacement of a particle during an iteration becomes lower than
a given threshold ε (where r is the distance between two particles, ε is typically
equal to 10−4). At each iteration of this procedure, the particles are projected
in the middle of the current zone, before reapplying the heuristic repulsion.

4.2 The New Variant of PSO-2S (DEPSO-2S)

DEPSO-2S is a new variant of PSO-2S, which is based on the hybridization
of two metaheuristics (DE and PSO). These two metaheuristics have been hy-
bridized [9], and used in a large number of industrial and scientific applica-
tions [7]. Hence we propose to hybridize these two algorithms.

This new version consists in using the principle of DE to initialize the particles
of the auxiliary swarms, rather than using the standard PSO to construct the
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main swarm, as it is performed in the old version of PSO-2S. Modifications of
DE are proposed to fit the two algorithms together and help to achieve better
results.

These modifications are inspired from a variant of DE, denoted by DELG [5].
DELG uses the concept of neighborhood of each vector that is designed to bal-
ance the capabilities of exploration and exploitation of the differential evolution,
without the need to evaluate the function. This is done through the use of two
operators of mutation (the local mutation and global mutation). DELG uses a
ring topology, where each particle is connected to k particles in the swarm.

Now for every vector Xi we define a neighborhood of radius k, consisting of
vectors Xi−k, . . . , Xi, . . . , Xi+k. For each particle i, a local mutation is applied
by using the fittest vector in the neighborhood of particle i, and two other vectors
chosen from the same neighborhoods. The expression of this mutation is given
by:

Li,t = Xi,t + λ.(Xnbest,t − Xi,t) + F.(Xp,t − Xq,t) (9)

where the subscript nbest corresponds to the best vector in the neighborhood
of Xi and p, q ∈ (i − k, i + k). Moreover, for all vectors Xi, a global mutation
is applied by using the global best particle with two other randomly selected
vectors in the population. The global mutation is expressed as:

Gi,t = X i,t + λ′.(Xbest,t − Xi,t) + F ′.(Xr,t − Xr,t) (10)

where the subscript best denotes the best vector in the entire population, and
r, s ∈ (1, n). Indeed, the local mutation favors the exploration and the global
mutation encourages the exploitation. The two mutations are combined using
a scalar weight that changes over the time to provide a good balance between
local search and global search. The equation for this combination of mutations
is calculated as follows:

V i,t = wDE .Gi,t + (1 − wDE).Li,t (11)

The weight factor varies linearly with time, as follows:

wDE = wmin + (wmax − wmin).(
iter

MAXITDE
) (12)

where iter is the current iteration number, MAXITDE is the maximum number
of iterations allowed for DE and wmax, wmin denote the maximum and minimum
values of the weight, respectively, with wmax, wmin ∈ (0, 1).

Finally, to improve the performance of the hybridization of PSO-2S with
DELG, and to make DELG compatible with the strategy of partitioning of
the search space, which was used by PSO-2S, several modifications have been
proposed. Equation 11 was changed to make the current zone dynamic: at the
beginning of the search, the vector can leave its zone to explore more peripheral
regions of the search space, then it returns progressively to the interior of its
zone. The new formula for the combination of global and local mutations is:

V i,t = (1 − wDE).Gi,t + (1 − wDE).Li,t (13)
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Choosing wmin < 0.5 and wmax > 0.5, the vector V i,t is then free to leave its
area of search when the values of t are close to 0. V i,t is then progressively
reduced, when t increases.

5 Experiments and Discussion

5.1 Real Life Problems

F1: Gas transmission design

Min f(x) =
{

8.61 ∗ 105x
1/2
1 x2x

−2/3
3 (x2

2 − 1)−1/2 + 3.69 ∗ 104x3+
7.72 ∗ 108x−1

1 x0.219
2 − 765.43 ∗ 106x1.

(14)

Bounds:

10 ≤ x1 ≤ 55, 1.1 ≤ x2 ≤ 2, 10 ≤ x3 ≤ 40

F2: Optimal capacity of gas production facilities

Min f(x) =
{

61.8 + 5.72x1 + 0.2623
[
(40 − x1) ln

(
x2
200

)]−0.85 +
0.087 (40 − x1) ln

(
x2
200

)
+ 700.23x−0.75

2 .
(15)

Bounds:

17.5 ≤ x1 ≤ 40, 300 ≤ x2 ≤ 600

F3: Design of a gear train

Min f(x) =
{

1
6.931

− TdTb

TaTf

}2

=
{

1
6.931

− x1x2

x3x4

}2

. (16)

Bounds:

12 ≤ xi ≤ 60, i = 1, 2, 3, 4 and xi should be integers.

F4: Optimal thermohydraulic performance of an artificially roughened air
heater

Max L = 2.51 ln e+ + 5.5 − 0.1RM − GH . (17)

where: RM = 0.95x0.53
2 , GH = 4.5(e+)0.28(0.7)0.57, e+ = x1x3(f̄ /2)1/2,

f̄ = (fs + fr)/2,
fs = 0.079x−0.25

3 , fr = 2(0.95x0.53
3 + 2.5ln(1/2x1)2 − 3.75)−2.

Bounds:

0.02 ≤ x1 ≤ 0.8, 10 ≤ x2 ≤ 40, 3000 ≤ x3 ≤ 20000.
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F5: Frequency modulation sound parameter identification

y(t) = a1 ∗ sin(w1 ∗ t ∗ θ + a2 ∗ sin(w2 ∗ t ∗ θ + a3 ∗ sin(w3 ∗ t ∗ θ))). (18)

with θ = (2.π/100). The fitness function is defined as the sum of square error be-
tween the evolved data and the model data, as follows: f(a1, w1, a2, w2, a3, w3) =∑100

t=0 (y(t) − y0(t))
2. The model data are given by the following equation:

y0(t) = 1.0 ∗ sin(5.0 ∗ t ∗ θ + 1.5 ∗ sin(4.8 ∗ t ∗ θ + 2.0 ∗ sin(4.9 ∗ t ∗ θ))). (19)

Bounds:

−6.4 ≤ ai, wi ≤ 6.35, i = 1, 2, 3.

F6: The spread spectrum radar poly-phase code design problem

Min f(X) = max {f1(X), . . . , f2m(X)} . (20)

where X = {(x1, . . . , xn) ∈ Rn | 0 ≤ xj ≤ 2π, j = 1, 2, . . . , n} and m = 2n − 1,
with: f2i−1(x) =

∑n
j=i cos

(∑j
k=|2i−j−1|+1 xk

)
i = 1, 2, . . . , n;

f2i(x) = 0.5 +
∑n

j=i+1 cos
(∑j

k=|2i−j|+1 xk

)
i = 1, 2, . . . , n − 1;

fm+i(X) = −fi(X), i = 1, 2, . . . , m.

5.2 Experimental Settings and Parameter Selection

The experiments compared four algorithms including the proposed DEPSO-2S,
DE, SPSO2007 and PSO-2S. Seven real problems with different dimensions are
used in this comparison. The four algorithms were implemented in C.

For DE and DEPSO-2S, we chose Cr = 0.5 and F = F ′ = λ = λ′ = 0.2. For
SPSO2007, PSO-2S and DEPSO-2S, w = 0.72 and c1 = c2 = 1.19 were used.
The specific parameters of PSO-2S and DEPSO-2S. nbparticle and maxzone are
set to 2 and 20, respectively, for all problems. Hence, the size of the main swarm
S1 is equal to maxzone and the number K of generations of swarms S2 is set to
5. The maximum number of function evaluations (Nb. evals) depends on each
problem and problem dimension D is presented in Table 1.

5.3 Experimental Results and Discussion

In experiments, each algorithm was run 30 times and mean best value and stan-
dard deviation were calculated. Table 1 presents the dimension of the problem,
the number of function evaluations (Nb. evals), the mean best value and the
standard deviation (mean±std. dev.) of 30 runs. The best results among those
obtained by the four algorithms are shown in bold.

From the experiments, we can notice that DEPSO-2S obtains the best results
on most of the problems used. Thus, this algorithm leads to a remarkable im-
provement compared to the previous PSO-2S. DEPSO-2S outperforms the other
tested algorithms on F1, F3, F5, F6(a) and F6(b). It obtains similar results on
F2 with SPSO2007 and PSO-2S, and it is outperformed by SPSO2007 on F4.
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Table 1. Fitness value and standard deviation on seven problems

Function D Nb. evals DE SPSO − 2007 PSO − 2S DEPSO − 2S

F1
2.96438e+006 2.96440e+006 7.43233e+006 2.96438e+006

3 24000 ± ± ± ±
0.264829 4.66e-010 2.28e-009 1.40e-009

F2
1.69844e+002 1.69844e+002 1.69844e+002 1.69844e+002

2 16000 ± ± ± ±
0.000021 1.14e-013 1.14e-013 1.14e-013

F3
1.76382e-008 1.43626e-009 1.40108e-010 1.39732e-010

4 32000 ± ± ± ±
3.51577e-008 5.05e-009 3.35e-010 2.65e-010

F4
4.21422 7.26733e-016 2.31987e-006 3.17128e-005

3 24000 ± ± ± ±
5.08471e-07 5.69e-016 1.25e-005 7.54e-005

F5
3.01253 9.75177e+000 2.58539e+000 2.07431e+000

6 144000 ± ± ± ±
0.367899 6.65e+000 3.30e+000 3.07e+000

F6(a)

0.626379 5.00750e-001 3.50806e-001 3.00490e-001
10 240000 ± ± ± ±

0.0821391 1.61e-001 7.19e-002 7.07e-002

F6(b)

1.07813 8.65976e-001 5.39793e-001 5.37990e-001
20 480000 ± ± ± ±

0.0812955 2.52e-001 1.25e-001 8.25e-002

6 Conclusion

A new improved PSO-2S, based on the hybridization of differential evolution and
particle swarm optimization was presented. The principle of DE has been used
to discover the zones in the search space and create the main swarm of PSO-2S.
Experimental results indicate that DEPSO-2S improves the search performance
significantly, on most of the real-world problems tested.
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Abstract. The Artificial Bee Colony (ABC) is the name of an optimiza-
tion algorithm that was inspired by the intelligent behavior of a honey
bee swarm. It is widely recognized as a quick, reliable, and efficient meth-
ods for solving optimization problems. This paper proposes a hybrid ABC
(HABC) algorithm for graph 3-coloring, which is a well-known discrete
optimization problem. The results of HABC are compared with results
of the well-known graph coloring algorithms of today, i.e., the Tabucol
and Hybrid Evolutionary algorithm (HEA), and results of the traditional
evolutionary algorithm with SAW method (EA-SAW). Extensive exper-
imentations has shown that the HABC matched the competitive results
of the best graph coloring algorithms, and did better than the tradi-
tional heuristics EA-SAW when solving equi-partite, flat, and random
generated medium-sized graphs.

Keywords: combinatorial optimization, graph 3-coloring, artificial bee
colony optimization, swarm intelligence, bee’s behavior.

1 Introduction

Graph coloring represents a test bed for many newly developed algorithms be-
cause of its simple definition, which states: How to color a graph G with the k
colors, so that none of the vertices connected with an edge have the same color.
The coloring c is proper if no two connected vertices are assigned to the same
color. A graph is k-colorable if it has a proper k-coloring. The minimum k for
which a graph G is k-colorable is called its chromatic number χ(G).

Many approaches for solving the graph coloring problem (GCP) have been
proposed over the time [12,20]. The most natural way to solve this problem is,
however, in a greedy fashion, where the vertices of the graph are ordered into
a permutation, and colored sequential. Thus, the quality of coloring depends
on the permutation of the vertices. For example, the DSatur algorithm [3], one
of the best traditional heuristics for graph coloring today, orders the vertices
v according to saturation degrees ρ(v). The saturation degree represents the
number of distinctly colored vertices adjacent to the vertex v. Furthermore,
DSatur’s ordering is calculated dynamically during the coloring process.

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 66–74, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Many heuristic methods have been developed for larger instances [12] because
exact algorithms can only color instances of up to 100 vertices. These methods
can be divided into local search methods [1] and hybrid algorithms [19]. The most
important representative of the former is Tabucol [15], which utilizes the tabu
search, as proposed by Glover [14]. Later were combined local search methods
with evolutionary algorithms and improved the results of pure Tabucol, as for
example, the hybrid genetic algorithm by Fleurent and Ferland [10], and the
hybrid evolutionary algorithm (HEA) by Galinier and Hao [11].

Swarm intelligence is the collective behavior of a self-organized system. Birds,
insects, ants, and fish use collective behavior for foraging and defending. These
individuals are looking for good food sources and help each other when a lack
of food has arisen. This concept was introduced into the computer’s world by
Kennedy and Eberhart [18]. Moreover, it was successfully applied to several
problem domains, for example, particle swarm optimization, which achieves good
results during antenna optimization [24]. In addition, ant colony optimization
reaches good results by solving the traveling-salesman person [6]. Finally, the ar-
tificial bee colony algorithm, proposed by Karaboga and Basturk [17], exhibited
excellent results when solving combinatorial optimization problems [21,25].

This paper focuses on the artificial bee colony (ABC) algorithm for graph 3-
coloring (3-GCP), which belongs to a class of NP -complete [13] problems. There,
the real-valued weights w are assigned to the vertices v. These weights determine
how difficult the vertex is to color. The higher the weight, the earlier the vertex
should be colored. Thus, weights define the order in which the vertices should be
colored. This ordering is used by the DSatur traditional algorithm for construct-
ing 3-coloring. The ABC algorithm incorporates DSatur as a decoder. In this
manner, the ABC algorithm acts as a meta-heuristic concerned for a generation
of new solutions (vector of weights), whilst the quality of the solution (its fitness)
is evaluated by DSatur. This approach is not new: it was used by the evolutionary
algorithm with SAW method (EA-SAW) of Eiben et al. [8], and by the hybrid
self-adaptive differential evolution of Fister et al. [9]. In the former case, instead
of Dsatur, a greedy heuristic was applied as a decoder. Finally, the proposed
ABC algorithm was hybridized with a random walk with direction exloitation
(RWDE) [23] local search heuristic. This local search heuristic was applied in
place of the original sending scouts function and focuses itself on discovering
new food sources in the vicinity of the current sources.

The results of the proposed hybrid artificial bee colony algorithm for graph
3-coloring (HABC) was compared with the results obtained with Tabucol, HEA,
and EA-SAW for solving an extensive set of random medium-scale graphs gen-
erated by the Culberson graph generator [5]. A comparison between these algo-
rithms shows that the results of the proposed HABC algorithm are comparable
with results of the other algorithms used in the experiments.

The structure of this paper is as follows: In Section 2, the 3-GCP is discussed,
in detail. The HABC is described in Section 3, whilst the experiments and results
are presented in Section 4. The paper is concluded with a discussion about the
quality of the results, and directions for further work are outlined.
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2 Graph 3-Coloring

3-coloring of a graph G = (V,E) is a mapping c : V → C, where C = {1, 2, 3}
is a set of three colors [2]. Note that V in the graph definition denotes a set
of vertices v ∈ V and E a set of edges that associates each edge e ∈ E to an
unordered pair of vertices (vi, vj) for i = 1 . . . n ∧ j = 1 . . . n.

3-GCP can be formally defined as a constraint satisfaction problem (CSP)
that is represented as the pair 〈S, φ〉, where S = Cn with Cn = {1, 2, 3} denotes
the free search space, in which all solutions c ∈ Cn are feasible and φ a Boolean
function on S (also a feasibility condition) that divides search space into feasible
and unfeasible regions. This function is composed of constraints belonging to
edges. In fact, to each e ∈ E the corresponding constraint be is assigned by
be(〈c1, . . . , cn〉) = true if and only if e = (vi, vj) and ci �= cj . Assume that
Bi = {be|e = (vi, vj) ∧ j = 1 . . .m} defines the set of constraints belonging to
variable vi. Then, the feasibility condition φ is expressed as a conjunction of all
the constraints φ(c) = ∧v∈V Bv(c).

Typically, constraints are handled indirectly in the sense of the penalty func-
tion that transforms the CSP into free optimization problem (FOP) [7] (also
unconstrained problem). Thus, those infeasible solutions that are far away from
a feasible region are punished by higher penalties. The penalty function that is
also used as a fitness function here, is expressed as:

f(c) = min

n∑
i=0

ψ(c, Bi), (1)

where the function ψ(c, Bi) is defined as:

ψ(c, Bi) =

{
1 if c violates at least one be ∈ Bi,
0 otherwise.

(2)

In fact, Eq. (1) can be used as a feasibility condition in the sense that φ(c) = true
if and only if f(c) = 0. Note that this equation evaluates the number of constraint
violations and determines the quality of solution c ∈ Cn.

3 HABC for Graph 3-Coloring

In the ABC algorithm, the colony of artificial bees consists of three groups [27]:
employed bees, onlookers, and scouts. The employed bees discover each food
source, that is, only one employed bee exists for each food source. The employed
bees share information about food sources with onlooker bees, in their hive.
Then, the onlooker bees can choose a food sources to forage. Interestingly, those
employed bees whose food source is exhausted either by employed or onlooker
bees, becomes scouts. The ABC algorithm is formally described in Algorithm 1,
from which it can be seen that each cycle of the ABC search process (statements
within a while loop) consists of three functions:
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– SendEmployedBees(): sending the employed bees onto the food sources and
evaluating their nectar amounts,

– SendOnlookerBees(): sharing the information about food sources with em-
ployed bees, selecting the proper food source and evaluating their nectar
amounts,

– SendScouts(): determining the scout bees and then sending them onto pos-
sibly new food sources.

Algorithm 1. Pseudo code of the ABC algorithm

1: Init();
2: while !TerminationConditionMeet() do
3: SendEmployedBees();
4: SendOnlookerBees();
5: SendScouts();
6: end while

However, before this search process can take place, initialization is per-
formed (function Init()). A termination condition (function TerminationCondi-
tionMeet()) is responsible for stoping the search cycle. Typically, the maximum
number of function evaluations (MAX FES) is used as the termination condition.

The ABC algorithm belongs to population-based algorithms, where the solu-
tion of an optimization problem is represented by a food source. The solution of
3-GCP is represented as a real-valued vector Yi = {wij} for i = 1...NP∧j = 1...n,
where wij denotes the weight associated with the j-th vertex of the i-th solu-
tion; NP is the number of solutions within the population, and n the number
of vertices. The values of the weights are taken from the interval wij ∈ [lb, ub],
where lb indicates the lower, and ub the upper bounds. The initial values of the
food sources are generated randomly, according to the equation:

wij = Φij · (ub− lb) + lb, (3)

where the function Φij denotes the random value from the interval [−1, 1].
The employed and onlooker bees change their food positions within the search

space, according to the equation:

w
′
ij = wij + Φij(wij − wkj), (4)

where Φij is a random number from interval [−1, 1]. The onlooker bee selects a
food source with regard to the probability value associated with that food source
pi calculated by the equation:

pi =
f(Γ (Yi))∑NP
j=0 f(Γ (Yj))

, (5)

where Γ indicates a mapping from the real-valued search space to the problem
search space, as explained in the next subsection, and f the fitness function
according to Eq. (1).
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3.1 Fitness Calculation

The ABC for 3-GCP explores continuous real-valued search space, where the
solution is represented as Yi = {wij} for i = 1...NP ∧ j = 1...n. Firstly, this
solution needs to be transformed into a permutation of vertices Xi = {vij}. Such
a permutation can be decoded into 3-coloring Ci = {cij} by the DSatur heuristic.
The 3-coloring Ci represents the solution of 3-GCP in its original problem space.
Whilst a new position regarding a food source is performed within the real-valued
search space, its quality is evaluated within the original problem space, according
to the equation Eq.(1). This relation can be expressed mathematically as follows:

Xi = Γ (Yi), for i = 1...NP . (6)

Note that the function Γ is not injective, i.e. more than one food source can
be mapped into the same value of the fitness function. On the other hand, a
weakness of this function is that a small move in the real-valued search space
can cause a significant increase or decrease in the fitness function.

3.2 Hybridization with Local Search

In the classical ABC algorithm, scouts act as a random selection process. That
is, if the position of a food source cannot be improved further within a predeter-
mined number of cycles called limit, then that source is replaced by the randomly
generated position. In HABC, instead of randomly generating the new position
in the search space (exploration), a deterministic exploitation in the vicinity of
the current solution was used [16]. Thus, in place of the original SendScouts()
function, the RWDE local search heuristic was implemented, which generates
the new food sources according to the following equation [23]:

Y
′
i = Yi + λ · Ui, (7)

where λ is the prescribed scalar step size length and Ui is a unit random vector
generated for the i-th solution.

4 Experiments and Results

The goal of the experimental work was to show that HABC can be successfully
applied to 3-GCP. In line with this, the proposed HABC was compared with:
EA-SAW, Tabucol, and HEA, whose implementations were downloaded from the
Internet.

The characteristics of the HABC used during the experiments were as follows:
The population size was set at 100 because this value represents a good selection,
as was indicated during the experimental work. The value of limit was set at
1,000, whilst the (MAX FES) was limited to 300,000. The former value was
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obtained through experimental work, whilst the later was selected in order to
draw a fair comparison with the other algorithms, i.e. the other algorithms also
obey the same limitation. In the end, 25 independent runs were observed, because
of the stochastic nature of tested algorithms.

The algorithms were compared according to two measures: success rate (SR)
and average number of objective function evaluations to solution (AES). The
first measure expresses the ratio of the number of successful runs from among
all runs, whilst the second reflects the efficiency of a particular algorithm.

4.1 Test Suite

All graphs in the test suite were generated using the Culberson random graph
generator [5], which allows to generate graphs of different: size n, type t, edge
probability p, and seed s. This paper focuses on medium-sized graphs, i.e. graphs
with 500 vertices. Three types of graphs were used as follows: uniform (a random
graph with variability set at zero), equi-partite, and flat graphs. The edge prob-
ability was varied from 0.008 to 0.028 with steps of 0.001. Thus, 21 instances of
randomly generated graphs were obtained. Ten different seeds were employed,
i.e. from 1 to 10. In summary, each algorithm was solved 3×21×10×25 = 15, 750
different instances of graphs.

An interval of edge probabilities was selected such that the region of phase
transition was included. Phase transition is a phenomenon that is connected
with most combinatorial optimization problems and indicates those regions,
where the problem passes over the state of ”solvable” to the state of ”unsolv-
able”, and vice versa [26]. The 3-GCP determination of this phenomenon is
connected with parameter edge probability. Interestingly, this region is identi-
fied differently by many authors. For example, Petford and Welsh [22] stated
that this phenomenon occurs when 2pn/3 ≈ 16/3, Cheeseman et al. [4] when
2m/n ≈ 5.4, and Eiben et al. [8] when 7/n ≤ p ≤ 8/n. In our case, the phase
transition needed to be by p = 0.016 over Petford and Welsh, by p ≈ 0.016 over
Cheeseman, and between 0.014 ≤ p ≤ 0.016 over Eiben et al..

4.2 Influence of Edge Probability

In this experiment, the phenomenon of phase transition was investigated, as
illustrated by Fig. 1. The figure is divided into six diagrams according to type,
and two different measures SR and AES. The diagrams capture the results of 21
instances that were obtained by varying the edge probability through a region,
including phase transition. Due to space limitation of this paper’s length, a more
detailed analysis of the results is left to the reader.

In summary, the best results on medium-sized graphs were reported by HEA
and Tabucol. The results of HABC were slightly worse but comparable to both
of the mentioned algorithms, whilst the EA-SAW saw the worst results.
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Fig. 1. Results of algorithms for 3-GCP solving different types of random graphs

4.3 Influence of the Local Search

During this experiment, the influence of hybridizing the ABC algorithm with
a RWDE local search heuristic was observed. Therefore, a especial focus was
placed on the instances during phase transition, i.e. p ∈ [0.013, 0.017]. The two
versions of ABC were compared: the original and the hybridized version. In the
former, the scouts were generated randomly, whilst in the later the RWDE local
search heuristic was used.
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The results of this experiment are shown in Table 1, where the row Graphs in-
dicates different graph types, whilst the columns Random and Hybrid indicate
the original and the hybrid ABC algorithms. Note that the average results of the
mentioned instances have a varying seed s ∈ [1, 10] and are presented in the table.

Table 1. Influence of the local search by HABC on different graph types

Graphs Uniform Equi-partite Flat
p Random Hybrid Random Hybrid Random Hybrid

0.013 0.816 0.848 0.872 0.912 1.000 1.000
0.014 0.112 0.404 0.200 0.448 0.012 0.256
0.015 0.060 0.248 0.036 0.304 0.000 0.000
0.016 0.180 0.528 0.104 0.524 0.000 0.004
0.017 0.328 0.856 0.340 0.828 0.000 0.028

avg 0.299 0.577 0.310 0.603 0.202 0.258

The results showed that using the RWDE local search, substantially improved
the results of the original ABC. For example, this improvement amounted to
92.98% for uniform, 94.52% for equi-partite, and 27.72% for flat graphs. On
average, hybridization improved the results of the original ABC for 71.74%.

5 Conclusion

The results of the proposed HABC for 3-GCP convinced us that the original ABC
algorithm is a powerful tool for solving combinatorial optimization problems.
HABC gained results that are comparable with the results of the best algorithm
for k-GCP today (Tabucol and HEA), and improved results obtained with EA-
SAWwhen solving the medium-sized extensive suite of random generated graphs.
Note that these graphs are not the hardest to color but are difficult enough that
the suitability of the ABC technology for solving the 3-GCP could be successfully
proven.

In the future, the HABC for 3-GCP could be additionally improved. In particu-
lar, the problem-specific knowledge via local search heuristics could be conducted
into the algorithm. The greatest challenge for further work remains the solving of
large-scale graph suite (graphs with 1,000 vertices). We are convinced that these
graphs could also be successfully solved using the proposed HABC algorithm.
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Supélec, IMS Research Group
2 rue edouard Belin, 57070 Metz, France

firstname.lastname@supelec.fr

Abstract. Finding optimal controllers of stochastic systems is a par-
ticularly challenging problem tackled by the optimal control and rein-
forcement learning communities. A classic paradigm for handling such
problems is provided by Markov Decision Processes. However, the result-
ing underlying optimization problem is difficult to solve. In this paper,
we explore the possible use of Particle Swarm Optimization to learn op-
timal controllers and show through some non-trivial experiments that it
is a particularly promising lead.

Keywords: particle swarm optimization, optimal control, policy search.

1 Introduction

Reinforcement Learning (RL) [12] addresses the optimal control problem. In
this paradigm, at each (discrete) time step the system to be controlled is in a
given state (or configuration). Based on this information, an agent has to choose
an action to be applied. The system reacts by stochastically stepping to a new
configuration, and an oracle provides a reward to the agent, depending on the
experienced transition. This reward is a local hint of the quality of the control,
and the aim of the agent is to choose a sequence of actions in order to maximize
some cumulative function of the rewards. A notable advantage of this paradigm
is that the oracle quantifies how the agent behaves without specifying what to
do (for example, when learning to play chess, a reward would be given for wining
the game, not for taking the queen).

The mapping from configurations to actions is called a policy (or a controller);
its quality is quantified by the so-called value function which associates to each
state an expected measure of cumulative reward from starting in this state and
following the policy. The best policy is the one with associated maximal value
function. Among other approaches, direct policy search algorithms (e.g., [1])
adopt a parametric representation of the policy and maximize the value function
(as a function of the controller’s parameters). This approach is sound, but the
underlying optimization problem is difficult. Even for simple policies, computing
the gradient of the related objective function is far from being straightforward.

In the numerical optimization community, several algorithms requiring only to
evaluate the objective function have been devised, among which one finds genetic
algorithms, particle swarm optimization and ant algorithms. These approaches

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 75–83, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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involve a set of individuals (each representing a set of parameters related to the
objective function of interest) that are combined, trying to reach a global optima.
Particle swarm optimization is one of these algorithms, proposed originally by
[7]. Variations of this algorithm have been proposed and a thorough review can
be found in [3]. It has been shown that PSO (the original or one of its variations)
performs well for optimization problems whether uni- or multi-modal, with static
or dynamic fitness and even in large search space [4].

In this article, we introduce a simple but new RL policy search algorithm using
particle swarm optimization at its core. We show that it is particularly efficient
for optimizing the parameters of controllers for three classical benchmark prob-
lems in reinforcement learning : the inverted pendulum, the mountain car and the
acrobot. The two first problems involve noise in the evolution of the system which
introduces random fluctuations in the fitness landscape. In the last problem, we
evaluate the performence of PSO in a large search space. The acrobot is known as
being a very difficult problem in the RL community, and most approaches fail to
solve it.

2 Monte Carlo Swarm Policy Search (MCSPS)

A Markov Decision Process (MDP) is a tuple {S,A, P,R} with the state space
S, action space A, a set of Markovian transition probabilities P and a reward
function R. A policy is a mapping from states to probabilities over actions:
π : S → P(A). At each time step i, the system to be controlled is in a state si,
the agent chooses an action ai according to a policy π, ai ∼ π(.|si). It is applied
to the system which stochastically transits to si+1 according to p(.|si, ai). The
agent receives a reward ri = R(si, ai, si+1). Its goal is to find the policy which
maximizes some cumulative function of the rewards, over the long run; this is the
so-called value function. There are many ways to define a value function. The
more common one is to consider the expected discounted cumulative reward
(expectation being according to stochasticity of transitions and of the policy):
V π(s) = E[

∑∞
i=0 γ

iri|s0 = s, π], the term γ ∈ (0, 1) being the discount factor and
weighting long-term rewards. Another common criterion hold if a finite horizon
T is considered: V π(s) = E[

∑T
i=0 ri|s0 = s, π]. Another possible criterion, less

common because less convenient (from a mathematical point of view) is the
mean reward: V π(s) = limn→∞ 1

nE[
∑n

i=0 ri|s0 = s, π]..
For any definition of the value function, the criterion to be optimized is the

expected value over a distribution p0 of initial states:

ρπ = E[V π(s0)|s0 ∼ p0]. (1)

The optimal policy π∗ is the one maximizing this criterion:

π∗ = argmax
π:S→P(A)

ρπ. (2)

In the considered policy search context, we make some assumptions. First, the
model (that is transition probabilities and the reward function) is unknown.
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However, we assume that a simulator is available, so that we can sample trajec-
tories according to any policy of interest (which can be a well-founded hypothe-
sis, depending on the problem of interest). Second, we assume that a parametric
structure is chosen for the controller beforehand: any policy πθ is parameterized
by a parameter vector θ (for example, it can be a Gibbs sampler constructed
from a radial basis function networks, and the parameters are the weights of the
kernels). The optimization problem to be solved is therefore the following:

θ∗ = argmax
θ∈Rp

ρπθ . (3)

Indeed, this is a quite difficult optimization problem. It has been proposed to
solve it using a gradient ascent [1] or cross-entropy [9], among other approaches.
As the model is unknown, the gradient should be estimated from simulation,
which causes a high variance.

In this paper, we introduce a simple idea: using a particle swarm optimizer
to solve this difficult optimization problem. Each particle holds a parameter
vector, that is a controller, and the fitness function is ρπθ . As the model is un-
known, it cannot be computed analytically. However, as a simulator is available,
it can be estimated using Monte Carlo. For example, consider the finite hori-
zon value function. One generates M trajectories, starting in a random state
s0 sampled according to p0, and a trajectory of length T is obtained by apply-
ing the policy πθ and following the system’s dynamic. From such trajectories
{(sm0 , am0 , sm1 , rm0 . . . smT , rmT−1)1≤m≤M}, one can compute

ρ̂πθ =
1

M

M∑
m=1

T−1∑
i=0

rmi , (4)

which is an unbiased estimate of the true fitness function ρπθ .
More precisely, we consider a swarm with N particles with a von Neumann

topology. In all the simulations presented below, we used a swarm of 5 × 5
particles. Different rules to update the position and velocity of the particles
have been proposed in the litterature (see [3] for a review). We used the basic
PSO with a constriction factor [7,2]. Namely, we use the following equations to
update the velocity vi and position pi of a particle i:

vij = wvij + c1r1.(bij − pij) + c2r2.(lij − pij)

pi = pi + vi (5)

with w = 0.729844, c1 = c2 = 1.496180, r1, r2 are random numbers uniformly
drawn from [0, 1], bi is the best position ever found by the particle i and li the
best position ever found by one particle in the neighborhood of particle i. The
position of the particles are initialized randomly in the parameter space while
the velocities are initialized to zero. The position and velocity of the particles
are updated asynchronously. At each iteration, we need to compute the fitness of
a particle and update its position given the position and fitness of the particles
within their neighborhood. Given our problems are stochastic we evaluate the
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fitness of a particle each time its position changed and also reevaluate the fitness
of its best position each time we want to change it. Each update of a particle’s
state and fitness is propagated to the neighborhoods to which the particle be-
longs. The scripts for all the simulations presented in the paper are available
online [5].

3 Results

3.1 Inverted Pendulum

Problem
The inverted pendulum is a classic benchmark problem in reinforcement learning
and has already been addressed with several methods (see e.g. [8]). We use the
same setting as in [8]. It consists of finding the force to apply to a cart, on
which a pendulum is anchored, in order to maintain the pendulum still at the
vertical position. The state of the system is the angle of the pendulum relative
to the upright and its angular speed (θ, θ̇), which are updated according to

the equations : θ̈ = g sin(θ)−αml sin(2θ)θ̇2/2−α cos(θ)(f+η)
4l/3−αml cos2(θ) , where g is the gravity

constant (g = 9.8m/s2), m and l are the mass and length of the pole (m =
2.0 kg, l = 0.5 m), M the mass of the cart (M = 8.0 kg) and α = 1

m+M . The
time-step τ is set to 0.1s. The pole must be held in [−π

2 ;
π
2 ]. An episode is

constrained to last at most 3000 iteractions. At each interaction, a reward of 0
is given until the pole exits this domain which ends the episode and leads to a
reward of −1. This reward is actually poorly informative as it is only indicating
that the pole should not fall but not that the optimal position is around 0 (which
can be induced by a cosine reward for example). The pole is initialized close to
equilibrium (θ0 ∈ [−0.1, 0.1], θ̇0 ∈ [−0.1, 0.1]). The pole-cart system is controlled
by applying a force ft ∈ {−50, 0, 50} Newtons perturbed by a uniform noise
η ∈ [−5; 5] Newtons to the cart.

The controller is defined with a radial basis function network (RBF) with 9
Gaussians and a constant term per action. The means of the basis functions are
evenly spread in [−π/4, π/4] × [−1.0, 1.0] and the standard deviation is set to
σ = 1.0. Optimizing this controller means finding 30 parameters, i.e. the ampli-
tude of the 27 basis functions and the 3 constant terms. The RBF associated to
each action defines the probability to select that action (ci and ai,j being param-

eters to be learnt): ∀i ∈ [1, 3], Pi =
1
P exp(ci +

∑9
j=1 ai,jexp(− (θ−θj)

2+(θ̇−θ̇j)
2

2σ2 )),
where P is a normalizing term so that the probabilities sum to 1.0. An action is
selected with a probabilistic toss biased by these probabilities.

Experimental results
The experiment is repeated 1000 times. For each iteration of one swarm, the fit-
ness of a particle is evaluated using a single trajectory which makes an iteration
much faster but also much more subject to the stochasticity of the problem due
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to the definition of the initial state, to the selection of the action using a random
toss and to the uniform noise added to the controller. Random fluctuations of
the fitness remains, as it was checked on some trials by evaluating several times
the fitness of a set of parameters but this is not shown here. The fitness we
report on the illustrations is the fitness of the best particle evaluated on 500
trajectories to get an accurate estimate of it. The swarm is allowed to evolve
during 200 iterations.

The average number of balancing steps of the best particle, and its standard
deviation, are plotted over the iteration of the swarms on figure 1. As shown
on the figure, all the trials converged to a good policy allowing to keep the
pendulum balancing for the 3000 time steps, the maximal length of an episode.
On average, it took approximately 50 iterations of the swarm to converge to a
very good policy.

A standard approach for policy search consists in performing a gradient as-
cent of the value function respectively to the parameters of the policy [1]. It
also requires to simulate trajectories. For this problem, unreported experiments
shows that gradient ascent took an order of 200.103 trajectories before reaching
an optimal policy. The proposed approach took an order of 1250 trajectories
to reach the same result (25 particles, 50 iterations and one simulated trajec-
tory per fitness evaluation). Meta parameters (c1, c2, w for PSO, learning rates
and forgetting factor for the gradient ascent) could certainly be better defined.
However this shows that MCPSO easily achieves state of the art policy search
performance.

Fig. 1. Average number of balancing steps for the best particle. This average is com-
puted over the 1000 trials, and using 500 trajectories for each trial at each epoch to get
an accurate estimate of it. Please note that we plot here the number of balancing steps
and not the fitness which is more intuitive. Error bars indicate one standard deviation.
The simulation scripts are available at [5].



80 J. Fix and M. Geist

3.2 Mountain Car

Problem
The second problem we consider is the mountain car as described in [12]. The goal
is to control a vehicle in order to escape from a valley. Given the car has a limited
power, it must swing forward and backward in the valley to reach the exit. The
state is defined as the position x ∈ [−1.2, 0.5] and velocity ẋ ∈ [−0.07, 0.07] of the
car. Three discrete actions are allowed : accelerating to the left, doing nothing or
accelerating to the right a ∈ {−1, 0, 1}. The system evolves according to discrete
time equations provided in [12, Chap 8]. The position is bounded in the domain
[−1.2, 0.5]. The cart is initialized randomly close to the worst cases, at the bottom
of the valley with a speed close to zero (x0 ∈ [−0.75,−0.25], ẋ0 ∈ [−0.02, 0.02]).
When the cart’s position reaches the lower bound, the velocity is set to 0.0.
When the cart reaches the upper bound, the episode ends with a reward of 0;
the reward is set to −1 otherwise. The length of an episode is limited to 1500
interactions. The goal of the swarm is to find a set of parameters that maximizes
the reward which is equivalent to minimizing the number of steps necessary to
escape from the valley.

The controller is defined by a set of 9 basis functions (Gaussians) plus a
constant term for each action, leading to 30 parameters to optimize. If the state
(position and velocity) is scaled in [0, 1], the centers of the basis functions are
evenly spread in [0, 1]× [0, 1] and the standard deviation set to σ = 0.3. Similar
to the inverted pendulum problem, the value of these 3 basis networks is used
as probabilities to toss an action.

Experimental results
We repeated 1000 experiments. For each experiment, the swarm is allowed to
evolve during 50 epochs (which was enough to get a good policy). At each epoch,
the fitness of a particle is evaluated using 30 trajectories (it does not suppress
the stochasticity of the fitness as we checked on some trials, but this is not shown
here). The reported fitness of the best particle is evaluated using 1000 trajectories
to get an accurate estimate of it. The evolution of the average number of steps
to reach the goal of the best particles is shown on figure 2a), with its standard
deviation. The average number of steps to reach the goal for the initial and final
best particles of a typical trial are plotted on figures 2b,c.

3.3 Swing-up Acrobot

Problem
The aim of the acrobot problem is to swing an under-actuated two-arm pen-
dulum, starting from a vertical position pointing down in order to reach the
vertical pointing up unstable position. The system’s state is defined by four
continuous variables (the two joints’ angle θ1, θ2 and their velocity θ̇1, θ̇2). The
system is controlled with a torque τ ∈ {−1, 0, 1} applied to the second joint. The
torque is only applied on the joint between the two segments, the system being
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Fig. 2. a) Average number of steps to reach the goal state with its standard deviation.
b) Average number of steps to reach the goal state for evenly spread initial conditions
(θ, θ̇) during a typical trial. For the illustration, this average is bounded to 200 but
reaches 1500 in the worst case (the length of an episode). c) Average number of steps
to reach the goal state for the best particle after 50 iterations.

therefore under-actuated and solving the task requires to swing the pendulum
back and forth. The system’s state evolves according to the discrete-time equa-
tions provided in [11] with the strength τ ∈ {−1, 0, 1}, time-step Δt = 0.01s.,
θ̇1,t ∈ [−9π, 9π], θ̇2,t ∈ [−4π, 4π], m1 = m2 = 1, l1 = l2 = 1, lc1 = lc2 = 0.5,
I1 = I2 = ml2/12, g = 9.8. The state is initialized at the vertical position
pointing down with a null speed θ1,0 = 3π/2, θ2,0 = 0, θ̇1,0 = θ̇2,0 = 0 (see fig. 3).

Controlling the acrobot is a difficult problem[10]. To ease the problem, we
considered a simplified controller which combines a RBF network with an opti-
mal Linear Quadratic Regulator (LQR) [11]. The LQR controller can maintain
the pendulum still in the vertical upward position but is unable to swing it. In
addition, the LQR controller works perfectly only in a narrow range of the state
space; for θ̇1 = θ̇2 = 0, the LQR controller stabilizes the pendulum if the initial
state is in θ2 = 0, θ1 = π/2± π/24. Therefore, the RBF controller has to swing
the pendulum in order to bring it at the vertical position with a certain speed to
allow the LQR to stabilize it. We used a continuous action defined as the tanh
of a RBF involving 4 gaussians per dimension. The RBF controller therefore
involves 44 = 256 parameters. When the pendulum is close to the goal state
(θ1 = π/2 ± π/4, θ2 = 0 ± π/4, θ̇1 = 0 ± π/2, θ̇2 = 0 ± π/2, denoted Dθ), the
controller is switched from the RBF to the LQR. It has also to be noted that
the LQR controller is not optimized in these experiments but computed before-
hand (see [11]). Better controllers could certainly be designed but the point here
was to test the ability of PSO to find the parameters in such a large parame-
ter space. Given the simulations are expensive, the problem is here considered
deterministic (no noise in the initial state nor in the chosen action).
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Fig. 3. a) Setup of the acrobot problem. Starting from the vertical pointing-down
position, the controller, influencing the pendulum through the torque τ shall bring and
keep the pendulum still in a domain close to the vertical pointing-up unstable position
b) Average number of steps the pendulum stays in the goal domain. This average is
computed over 300 repetitions of the experiment. c) Behavior of one of the best policies.

The controllers are defined as :

τ =

⎧⎨⎩−KT .θ, θ = (θ1 − π/2; θ2; θ̇1; θ̇2) if θ ∈ Dθ

2 tanh(
∑256

j=1 aje
− sin2(θ1−θ

j
1)

2σ2
1

− sin2(θ2−θ
j
2)

2σ2
2

− (θ̇1−θ̇1
j)2

2σ2
3

− (θ̇2−θ̇
j
2)2

2σ2
4 ) otherwise

(6)
with σ1 = σ2 = 0.25, σ3 = σ4 = 4.5, the centers of the gaussians being evenly
spread in [−π/4, 5π/4]× [−π/4, 5π/4]× [−9, 9]× [−9, 9].

Experimental results
We repeated the experiments over 300 trials. A simulation is allowed to run for
at most 20s. (2000 interactions). The swarm is evolving during 4000 iterations.
A reward of +1 is given each time the pendulum is in the goal region (as defined
above), and 0 otherwise. The average reward function of the iteration of the
swarm is shown on figure 3b. As we can see, the swarm does not always converge
to an optimal policy and get stuck in local minima. This is probably due to the
architecture of the controller which is certainly not optimal. In addition, during
the iteration of the algorithm, the fitness tends to stay on ”plateau”. There are
nevertheless policies that are close to optimal as for example the one depicted
on figure 3c. This example illustrates that PSO is able to optimize controllers
even in large parameter space but the controller can be improved.

4 Discussion

Particle Swarm Optimization is an efficient algorithm for solving optimization
problems. In addition to the different problems on which it has been applied
before, we have shown here that it reveals to be very efficient to optimize the
parameters of controllers solving challenging optimal control problems. It is also
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a very convenient algorithm if we compare it to the gradient-based policy search
algorithm since we do not have to compute the gradient of the policy nor do we
need it to be computable. Moreover, PSO is less prone to local optimum and
converges more quickly than gradient-based approaches. A lack of the current
approach is that it requires a simulator. However, in some cases, only data sam-
pled according to a fixed behaviorial policy are available. To extend the current
approach to this case, we envision to replace the Monte Carlo estimation of the
fitness function by value function approximation [6]. Ultimately, on can envision
to design an online algorithm, with an agent learning to control optimally the
system while interacting with it.
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Abstract. Compact algorithms are Estimation of Distribution Algo-
rithms which mimic the behavior of population-based algorithms by
means of a probabilistic representation of the population of candidate
solutions. Compared to an actual population, a probabilistic model re-
quires a much smaller memory, which allows algorithms with limited
memory footprint. This feature is extremely important in some engineer-
ing applications, e.g. robotics and real-time control systems. This paper
proposes a compact implementation of Bacterial Foraging Optimization
(cBFO). cBFO employs the same chemotaxis scheme of population-based
BFO, but without storing a swarm of bacteria. Numerical results, car-
ried out on a broad set of test problems with different dimensionalities,
show that cBFO, despite its minimal hardware requirements, is compet-
itive with other memory saving algorithms and clearly outperforms its
population-based counterpart.

1 Introduction

Bacterial Foraging Optimization (BFO), see [8,18], is a meta-heuristic inspired
by the foraging behavior of the E. coli bacteria within some environment with
a non-uniform distribution of nutrients. The basic idea is to explore the search
space performing tentative moves similar to the swim foraging pattern (called
”chemotaxis”) observed in motile bacteria. Bacterial chemotaxis is a complex
combination of two types of moves, namely tumbling (i.e. changes of direc-
tion) and swimming (i.e. moves along a successful direction), which respectively
enable the bacteria to search for nutrients in random directions and rapidly
approach higher concentrations of nutrients. In other words, the alternation
between ”swims” and ”tumbles” guarantees a balance between exploitation and
exploration of the search space, thus making BFO robust and versatile.

Like other Swarm Intelligence algorithms, BFO has been successfully applied
to many practical problems. For example, in [10] BFO is applied in image pro-
cessing. In [13] a hybrid algorithm composed of BFO and a GA is used to tune
a PID controller. In [20], BFO is used to design UPFC controllers. In [7], BFO
is used to calibrate a volatility option pricing model.
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Despite its versatility, however, BFO shows a poor convergence behavior,
compared to other meta-heuristics, especially over high dimensional complex
optimization problems. To overcome these issues, different strategies have been
proposed. In [5,19], cooperative approaches are used to improve the performance
of standard BFO. In [3], instead, BFO has been hybridized with Particle Swarm
Optimization. Recently, some adaptive and self-adaptive variants of the original
BFO have been proposed, see e.g. [4,6] and [9,10]. In [21] the foraging mechanism
is combined with an EDA and applied in predictive control.

This paper introduces a compact implementation of BFO, called cBFO. The
cBFO algorithm belongs to the class of compact Evolutionary Algorithms (cEA),
i.e. optimization algorithms which do not store and process an entire population
of individuals, but make use of a probabilistic representation of the population.
Thus, a run of these algorithms requires a limited memory compared to their
correspondent standard EAs. These algorithms have been developed in order
to address industrial optimization problems characterized by limited memory
resources, e.g. in mobile robots and control systems, where a powerful computer
may be unavailable due to cost and/or space limitations. The remainder of this
paper is organized as follows. Section 2 describes the proposed cBFO. Section
3 shows the numerical results of an extensive test on the performance of cBFO
compared to a set of algorithms. Section 4 gives the conclusion of this work.

2 Compact Bacterial Foraging Optimization

The classical BFO consists of three phases, namely: 1) chemotaxis, 2) reproduc-
tion, and 3) dispersal. During chemotaxis, the movement of the i-th bacterium

is modeled as xi = xi + Ci ·Δi/
√

ΔT
i Δ, where Δi is the direction vector of the

chemotactic step (being ΔT
i its transpose), and Ci is a parameter which controls

the step size. In tumbles, Δi is a random vector whose elements are uniformly
distributed in [−1, 1]; in swims instead, Δi is the same as the last chemotactic
step, thus allowing the bacterium to exploit a promising direction. To mimic
the asexual reproduction of E. coli, at each iteration BFO sorts all the bacteria
according to their fitness and selects the best half of the swarm. Each survivor is
then splitted into two replicas, thus keeping the swarm size constant. Finally, in
order to prevent premature convergence and keep a high diversity rate, after a
fixed number of chemotaxis/reproduction steps a few bacteria are chosen, with
some probability, for being replaced with new random individuals.

The original population-based BFO framework can be implemented as a com-
pact algorithm almost straightforwardly. For the sake of clarity, the resulting
algorithm, here called cBFO, is shown in Alg. 1. Without loss of generality, let
us assume that parameters are normalized so that each search interval is [−1, 1].
cBFO consists of the following. A 2 × n matrix, namely perturbation vector
PV = [μ, σ], is generated. μ values are set equal to 0 while σ values are set equal
to a large number λ = 10. The value of λ is empirically set in order to simulate a
uniform distribution at the beginning of the optimization process. A solution xe

is then sampled from a multivariate Gaussian Probability Distribution Function
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(PDF) characterized by a mean value μ and a standard deviation σ. For further
details on sampling, see [15]. The solution xe is called elite. Subsequently, at each
chemotactic step, a new solution is sampled and a combination of tumble/swim
moves is attempted, in the same way as in the population-based BFO. Every
time a new offspring is generated, either by sampling or tumble/swim, its fitness
is computed and compared with the fitness of the current elite. On the basis of
their fitness values, a winner solution (solution displaying the best fitness) and
a loser solution (solution displaying the worst fitness) are detected. The winner
solution biases the virtual population by affecting the PV values, according to
the following update rules:

μt+1 = μt + 1
Np

(winner − loser)

σt+1 =
√
(σt)

2
+ (μt)

2 − (μt+1)
2
+ 1

Np
(winner2 − loser2)

(1)

where Np is a parameter, namely virtual population size. Details for constructing
Eg. 1 are given in [14]. In addition to the PV values, also the elite is updated,
according to a persistent elitism scheme, see [2].

The compact implementation of reproduction and elimination/dispersal de-
serves an explanation. While BFO keeps the best S/2 bacteria and replicate
them, cBFO ”shifts” the PDF towards the elite and ”shrinks” over it. In other
words, the fitness-based comparison described above is applied to μ and elite,
and the PV is updated accordingly. In this way, asexual reproduction is crudely
approximated by a forced update of the PDF. As for the elimination/dispersal
step, the injection of new randomly generated bacteria into the swarm is modeled
by means of a perturbation of PV . More specifically, the following perturbation
is applied, see [17]:

μt+1 = μt+1 + 2τ · rand (0, 1)− τ

σt+1 =

√
(σt+1)

2
+ τ · rand (0, 1)

(2)

where τ = 0.1 is a constant parameter.

3 Numerical Results

The numerical results are divided in three groups, namely results from the
testbed in [16] (24 problems) in 10, 20 and 40 dimensions. For each of the three
groups, the following algorithms, with the parameter setting suggested in the
original paper, have been compared to cBFO:

− Simplified Intelligence Single Particle Optimization: ISPO proposed in [23],
with acceleration A = 1, acceleration power factor P = 10, learning coeffi-
cient B = 2, learning factor reduction ratio S = 4, minimum threshold on
learning factor E = 1e− 5, and particle learning steps PartLoop = 30;
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{** PV initialization **}
initialize μ = 0̄ and σ = 1̄ · 10
generate elite by means of PV
while budget condition do

{** chemotaxis **}
for i = 1 : Np do

generate 1 individual xi by means of PV
[winner, loser] = compete (xi, elite)
update μ, σ and elite
Jlast = fxi{** tumble and move **}
xi = xi + Ci · Δi/

√
ΔT

i Δ, with random Δi ∈ [−1, 1]n

{** swim **}
for i = 1 : Ns do

[winner, loser] = compete (xi, elite)
update μ, σ and elite
if fxi

< Jlast then
Jlast = fxi

xi = xi + Ci · Δi/
√

ΔT
i Δ, with same direction vector Δi

end if
end for

end for
{** reproduction: shift μ towards elite **}
[winner, loser] = compete (μ, elite)
update μ and σ
{** elimination/dispersal: perturb PV **}
perturb PV according to Eq. 2

end while

Algorithm 1: cBFO pseudo-code

− compact Differential Evolution: cDE proposed in [15], employing rand/1/
mutation, binary crossover and persistent elitism, with virtual population
size Npop = 300, scale factor F = 0.5, and crossover rate Cr = 0.3;

− Adaptive Bacterial Foraging Optimization: ABFO0 (hereafter simply called
ABFO) proposed in [6], with number of bacteria S = 50, initial chemotac-
tic step size Cinitial = 0.1, swim steps Ns = 4, probability of elimination/
dispersion Ped = 0.25, initial epsilon εinitial = 100, adaptation generations
n = 10, Ci reduction ratio α = 10, and ε reduction ratio β = 10.

As for cBFO, the following parameter setting has been used: number of bacteria
Np = 300, chemotactic step size Ci = 0.1, swim steps Ns = 4. Similarly to the
cDE scheme, in this case the number of bacteria represents the virtual population
size used in the probabilistic model of the population. The reason for setting the
value of Np much larger than S is that, since it controls the convergence of
the compact framework, a lower value would cause premature convergence. On
the other hand, a high value of Np guarantees a fair balance between exploration
- in the early stages - and exploitation in the later stages. The value Np =
300 has been chosen empirically after a series of numerical experiments. It
should be noticed that the aforementioned set of algorithms has been chosen
diverse in terms of search logic. ABFO is a typical population based algorithm
which requires a proper population size dependent on the dimensionality of the
problem. This fact makes the memory requirement of ABFO heavily dependent
on the dimensionality of the problem. On the other hand, ISPO, cDE and cBFO
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Table 1. Average final results± standard deviation and Wilcoxon test in 10 dimensions

Fcn. ISPO W cDE W ABFO W cBFO

f1 7.948e+01 ± 1.26e-14 - 7.948e+01 ± 1.07e-14 - 7.950e+01 ± 3.33e-03 + 7.948e+01 ± 5.84e-04

f2 -2.099e+02 ± 9.65e-14 - -2.099e+02 ± 1.00e-10 - 3.171e+03 ± 2.72e+03 + 2.289e+02 ± 2.72e+02

f3 -3.966e+02 ± 7.41e+01 = -4.507e+02 ± 5.00e+00 - 5.323e+04 ± 7.91e+04 + -4.191e+02 ± 9.77e+00

f4 -4.319e+02 ± 1.55e+01 = -4.339e+02 ± 1.21e+01 - -1.572e+02 ± 7.42e+01 + -4.233e+02 ± 1.78e+01

f5 -9.210e+00 ± 0.00e+00 - -9.210e+00 ± 3.87e-09 - -3.895e+00 ± 1.84e+00 + -9.182e+00 ± 4.95e-03

f6 1.006e+04 ± 1.34e+04 + 3.052e+02 ± 3.31e+02 + 8.305e+03 ± 3.19e+03 + 3.710e+01 ± 3.41e-01

f7 1.004e+02 ± 5.59e+00 + 1.075e+02 ± 1.10e+01 + 9.966e+01 ± 3.22e+00 + 9.445e+01 ± 8.16e-01

f8 1.843e+02 ± 7.71e+01 = 1.587e+02 ± 1.49e+01 = 1.591e+02 ± 3.76e+00 + 1.559e+02 ± 2.13e+00

f9 1.262e+02 ± 1.12e+00 - 1.756e+02 ± 5.90e+01 + 1.319e+02 ± 9.31e-01 = 1.388e+02 ± 2.50e+01

f10 3.789e+05 ± 4.23e+05 + 5.998e+03 ± 5.88e+03 = 3.413e+03 ± 1.92e+03 = 3.239e+03 ± 2.39e+03

f11 2.673e+04 ± 1.34e+04 + 2.318e+03 ± 9.99e+02 + 8.704e+03 ± 4.03e+03 + 8.985e+01 ± 6.14e+00

f12 -5.732e+02 ± 3.16e+01 - -5.375e+02 ± 2.85e+02 - 1.360e+04 ± 6.23e+03 + 1.699e+03 ± 2.20e+03

f13 5.572e+01 ± 1.78e+01 = 4.584e+01 ± 1.46e+01 - 6.169e+01 ± 1.15e+01 = 5.485e+01 ± 1.66e+01

f14 -5.235e+01 ± 9.04e-05 - -5.235e+01 ± 8.57e-03 - -1.150e+01 ± 6.83e+00 + -5.234e+01 ± 1.38e-03

f15 1.580e+03 ± 2.25e+02 + 1.036e+03 ± 1.44e+01 = 1.086e+03 ± 1.97e+01 + 1.043e+03 ± 1.74e+01

f16 8.363e+02 ± 7.75e+02 + 7.670e+01 ± 4.31e+00 - 1.306e+03 ± 3.45e+02 + 7.999e+01 ± 4.30e+00

f17 2.517e+01 ± 2.03e+01 + -1.537e+01 ± 6.97e-01 + 9.247e+00 ± 1.05e+01 + -1.598e+01 ± 7.91e-01

f18 1.995e+02 ± 1.38e+02 + -1.135e+01 ± 3.70e+00 + 7.463e+01 ± 3.25e+01 + -1.376e+01 ± 1.87e+00

f19 -7.443e+01 ± 1.31e+01 + -1.006e+02 ± 6.62e-01 - -3.394e+01 ± 1.95e+01 + -1.000e+02 ± 7.79e-01

f20 -5.453e+02 ± 2.68e-01 = -5.455e+02 ± 3.46e-01 - -5.103e+02 ± 5.80e+01 + -5.453e+02 ± 2.72e-01

f21 5.317e+01 ± 1.40e+01 = 4.450e+01 ± 5.11e+00 - 5.004e+01 ± 1.18e+01 = 4.728e+01 ± 5.57e+00

f22 -9.889e+02 ± 1.74e+01 = -9.980e+02 ± 1.40e+00 = -9.261e+02 ± 1.00e+01 + -9.963e+02 ± 4.88e+00

f23 1.108e+01 ± 5.90e+00 + 7.601e+00 ± 2.62e-01 - 9.848e+00 ± 1.18e+00 + 8.126e+00 ± 2.69e-01

f24 5.951e+02 ± 1.12e+02 + 1.515e+02 ± 1.76e+01 = 1.808e+02 ± 1.45e+01 + 1.467e+02 ± 1.13e+01

Table 2. Average final results± standard deviation and Wilcoxon test in 20 dimensions

Fcn. ISPO W cDE W ABFO W cBFO

f1 7.948e+01 ± 2.96e-15 - 8.005e+01 ± 1.31e+00 = 7.952e+01 ± 8.02e-03 + 7.949e+01 ± 1.21e-03

f2 -2.099e+02 ± 5.81e-14 - 5.836e+00 ± 4.53e+02 - 1.582e+04 ± 1.10e+04 + 2.847e+03 ± 1.33e+03

f3 -3.565e+02 ± 8.22e+01 - 3.295e+02 ± 4.77e+02 + 8.079e+05 ± 5.97e+05 + -3.064e+02 ± 4.05e+01

f4 -3.919e+02 ± 2.29e+01 - -3.149e+02 ± 5.65e+01 = 1.012e+01 ± 3.63e+01 + -2.871e+02 ± 6.12e+01

f5 -9.210e+00 ± 0.00e+00 - -8.718e+00 ± 7.82e-01 - -2.516e+00 ± 1.16e+00 + -8.025e+00 ± 1.70e+00

f6 7.985e+03 ± 6.94e+03 + 4.603e+03 ± 1.71e+03 + 9.264e+06 ± 3.46e+06 + 4.142e+01 ± 1.81e+00

f7 1.486e+02 ± 6.80e+01 + 1.671e+02 ± 3.18e+01 + 1.113e+02 ± 9.17e+00 + 1.049e+02 ± 4.71e+00

f8 1.711e+02 ± 3.03e+01 - 4.695e+02 ± 6.53e+02 + 1.900e+02 ± 1.71e+01 + 1.831e+02 ± 3.09e+01

f9 1.350e+02 ± 2.56e+00 - 4.284e+02 ± 3.52e+02 + 1.457e+02 ± 1.70e+00 - 1.674e+02 ± 4.47e+01

f10 8.883e+05 ± 8.17e+05 + 1.517e+05 ± 1.25e+05 + 1.108e+04 ± 4.28e+03 = 1.675e+04 ± 1.34e+04

f11 8.075e+04 ± 3.37e+04 + 4.852e+03 ± 1.32e+03 + 2.465e+04 ± 6.03e+03 + 1.046e+02 ± 1.06e+01

f12 5.344e+06 ± 2.62e+07 + 2.939e+06 ± 4.56e+06 + 6.616e+04 ± 1.97e+04 + 7.354e+03 ± 3.86e+03

f13 5.491e+01 ± 2.15e+01 - 3.682e+02 ± 1.40e+02 + 7.406e+01 ± 7.61e+00 = 6.921e+01 ± 2.49e+01

f14 -5.235e+01 ± 2.92e-04 - -4.930e+01 ± 2.37e+00 + -6.687e+00 ± 3.03e+00 + -5.233e+01 ± 4.07e-03

f15 2.516e+03 ± 4.52e+02 + 1.178e+03 ± 4.71e+01 + 1.434e+03 ± 7.67e+01 + 1.150e+03 ± 4.12e+01

f16 1.183e+03 ± 6.96e+02 + 1.440e+02 ± 5.22e+01 + 2.394e+03 ± 3.74e+02 + 9.041e+01 ± 7.95e+00

f17 1.638e+01 ± 1.19e+01 + -1.298e+01 ± 9.02e-01 = 7.463e+00 ± 1.13e+01 + -1.297e+01 ± 1.53e+00

f18 1.352e+02 ± 5.22e+01 + -1.782e+00 ± 3.71e+00 = 9.490e+01 ± 3.57e+01 + -3.647e+00 ± 6.73e+00

f19 -2.505e+01 ± 2.97e+01 + -9.775e+01 ± 1.73e+00 = -1.657e+01 ± 1.26e+01 + -9.747e+01 ± 6.99e-01

f20 -5.452e+02 ± 2.19e-01 - -5.450e+02 ± 3.89e-01 = -4.238e+02 ± 9.65e+01 + -5.449e+02 ± 2.68e-01

f21 5.860e+01 ± 2.02e+01 = 5.076e+01 ± 7.63e+00 = 4.777e+01 ± 7.89e+00 = 4.998e+01 ± 1.22e+01

f22 -9.873e+02 ± 1.12e+01 = -9.919e+02 ± 9.48e+00 = -9.001e+02 ± 5.66e+00 + -9.911e+02 ± 1.25e+01

f23 1.483e+01 ± 5.62e+00 + 8.193e+00 ± 4.61e-01 - 1.495e+01 ± 2.22e+00 + 8.800e+00 ± 2.82e-01

f24 1.495e+03 ± 1.97e+02 + 2.830e+02 ± 3.95e+01 + 2.954e+02 ± 3.30e+01 + 2.542e+02 ± 3.27e+01

can be considered memory saving heuristics, as they require a fixed amount of
memory slots which does not depend on the problem dimension. In other words,
if one of these algorithms is used to tackle a large scale problem, although the
slots are as long as the problem dimensionality, these slots do not increase in
number. More specifically, the ISPO scheme is a typical single solution algorithm,
requiring only two memory slots, one for the current best solution and the other
for a trial candidate solution. The cDE and cBFO structures are memory-wise
slightly more expensive than ISPO as they require, on the top of the two slots
for single solution algorithms, two extra slots for the virtual population PV .
This compromise is made in order to have the advantages of a population-based
search and a still low memory usage.
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Table 3. Average final results± standard deviation and Wilcoxon test in 40 dimensions

Fcn. ISPO W cDE W ABFO W cBFO

f1 7.948e+01 ± 1.22e-14 - 1.120e+02 ± 1.73e+01 + 7.960e+01 ± 9.75e-03 + 7.952e+01 ± 4.83e-03

f2 -2.099e+02 ± 1.12e-13 - 4.907e+04 ± 6.04e+04 + 7.397e+04 ± 2.54e+04 + 9.396e+03 ± 2.90e+03

f3 -2.497e+02 ± 1.07e+02 - 1.322e+04 ± 5.53e+03 + 2.838e+06 ± 1.44e+06 + -3.848e+00 ± 7.46e+01

f4 -1.855e+02 ± 1.27e+02 - 3.605e+02 ± 1.11e+02 + 4.467e+02 ± 1.16e+02 + 7.343e+01 ± 1.03e+02

f5 -9.210e+00 ± 0.00e+00 - 1.155e+01 ± 7.56e+00 + -1.921e+00 ± 7.38e-01 - 5.845e+00 ± 5.35e+00

f6 2.640e+04 ± 2.19e+04 + 1.945e+04 ± 4.09e+03 + 1.983e+07 ± 4.90e+06 + 1.019e+02 ± 4.10e+01

f7 6.123e+02 ± 5.34e+02 + 5.442e+02 ± 1.26e+02 + 3.082e+02 ± 6.89e+01 + 1.623e+02 ± 2.18e+01

f8 1.848e+02 ± 8.94e+01 - 2.187e+04 ± 1.36e+04 + 2.305e+02 ± 2.61e+01 = 2.576e+02 ± 7.97e+01

f9 1.629e+02 ± 2.67e+01 - 1.480e+04 ± 1.24e+04 + 1.828e+02 ± 3.98e+01 + 1.697e+02 ± 2.05e+01

f10 2.349e+06 ± 2.09e+06 + 6.739e+05 ± 2.49e+05 + 6.860e+04 ± 2.07e+04 + 5.332e+04 ± 3.01e+04

f11 2.131e+05 ± 1.01e+05 + 1.105e+04 ± 2.10e+03 + 4.285e+04 ± 6.09e+03 + 1.436e+02 ± 1.76e+01

f12 -6.032e+02 ± 1.13e+01 - 7.085e+07 ± 2.97e+07 + 1.136e+05 ± 1.11e+04 + 7.161e+04 ± 4.75e+04

f13 4.581e+01 ± 2.17e+01 - 1.319e+03 ± 2.46e+02 + 1.048e+02 ± 8.92e+00 + 9.299e+01 ± 3.23e+01

f14 -5.235e+01 ± 3.05e-04 - -3.288e+01 ± 5.51e+00 + -3.147e+00 ± 1.36e+00 + -5.231e+01 ± 7.71e-03

f15 4.278e+03 ± 6.81e+02 + 1.693e+03 ± 1.18e+02 + 2.318e+03 ± 1.71e+02 + 1.493e+03 ± 9.54e+01

f16 1.895e+03 ± 6.68e+02 + 4.456e+02 ± 1.01e+02 + 3.467e+03 ± 3.72e+02 + 1.252e+02 ± 1.27e+01

f17 2.634e+01 ± 1.98e+01 + -8.793e+00 ± 1.35e+00 = 2.020e+01 ± 2.17e+01 + -9.086e+00 ± 1.58e+00

f18 1.784e+02 ± 6.92e+01 + 1.037e+01 ± 7.07e+00 = 1.875e+02 ± 9.10e+01 + 1.050e+01 ± 6.20e+00

f19 -3.630e-01 ± 2.66e+01 + -8.942e+01 ± 2.43e+00 + -7.683e+00 ± 2.79e+00 + -9.484e+01 ± 8.41e-01

f20 -5.453e+02 ± 1.35e-01 - 2.786e+03 ± 3.42e+03 + -3.340e+02 ± 1.10e+02 + -5.446e+02 ± 2.47e-01

f21 7.488e+01 ± 2.37e+01 + 7.935e+01 ± 1.65e+01 + 7.945e+01 ± 2.81e+01 + 4.975e+01 ± 1.46e+01

f22 -9.539e+02 ± 1.64e+01 + -9.613e+02 ± 1.61e+01 + -8.543e+02 ± 9.64e+00 + -9.889e+02 ± 8.18e+00

f23 1.659e+01 ± 6.73e+00 + 9.141e+00 ± 4.27e-01 - 2.298e+01 ± 3.40e+00 + 9.995e+00 ± 2.82e-01

f24 2.861e+03 ± 2.59e+02 + 7.729e+02 ± 8.20e+01 + 8.291e+02 ± 8.52e+01 + 5.534e+02 ± 3.95e+01

For each algorithm and each test problem, 30 independent runs have been
performed. The budget of each single run has been fixed equal to 5000 ·n fitness
evaluations, where n is the dimensionality of the problem. All the experiments
were executed using the optimization platform Kimeme, see [1]. Tables 1-3 show
the obtained numerical results. Average final fitness values are computed for
each algorithm and each problem over the 30 runs available. In each table, the
best results are highlighted in bold face. In order to strengthen the statistical
significance of the results, the Wilcoxon Rank-Sum test has also been applied
according to the description given in [22], where the confidence level has been
fixed to 0.95. In each table, the results of the Wilcoxon test for cBFO against the
other algorithms considered in this study are displayed. A ”+” indicates the case
in which cBFO statistically outperforms, for the corresponding test problem, the
algorithm indicated in column; a ”=” indicates that a pairwise comparison leads
to success of the Wilcoxon Rank-Sum test, i.e., the two algorithms have the same
performance; a ”−” indicates that cBFO is outperformed.

Numerical results show that cBFO has overall a respectful performance de-
spite its limited memory requirement. In particular, cBFO outperforms, on a
regular basis, ABFO (which, in turn, outperforms cBFO only in one case out
of 72). This fact is an extremely interesting finding which, according to our in-
terpretation, is related to two different counterbalancing effects. The first one is
related to the population modeling of compact algorithms: the sampling mecha-
nism indeed seems to introduce a beneficial randomness, see [15], which endows
the original BFO framework with extra search moves that allow the exploration
of different regions of the search space. The second effect is related to the inher-
ent exploitative pressure which characterizes a compact algorithm, and which
allows, especially in high-dimensional cases, a better exploitation of the most
promising search directions.

As for the other memory saving algorithms considered in this study, a clear
trend emerges. In 10-dimensional problems, cBFO is outperformed by cDE,
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especially on separable functions (6 ”+” and 13 ”−”), while it slightly outper-
forms ISPO (11 ”+” and 6 ”−”). In 20-dimensional problems, both ISPO and
cBFO display a better performance than in 10 dimensions. In particular, cBFO
has a similar performance with respect to ISPO (12 ”+” and 10 ”−”), while it
outperforms cDE (13 ”+” and 3 ”-”). This trend is confirmed in 40-dimensional
problems, where cBFO and ISPO have a similar performance (13 ”+” and 11
”−”) and cDE is clearly outperformed by cBFO (21 ”+” and 1 ”−”). In con-
clusion, cBFO seems to robustly handle various landscapes and offer a good
performance in several cases, especially in high-dimensional cases.

3.1 Holm-Bonferroni Procedure

In order to draw some statistically significant conclusions regarding the perfor-
mance of cBFO, the Holm-Bonferroni procedure, see [11,12], for the four algo-
rithms under study and the 72 problems under consideration has been performed.
The Holm-Bonferroni procedure consists of the following. Considering the results
in the tables above, the four algorithms under analysis have been ranked on the
basis of their average performance calculated over the 72 test problems. More
specifically, a score Ri for i = 1, · · · , NA (where NA is the number of algorithms
under analysis, NA = 4 in our case) has been assigned in the following way:
for each problem, a score of 4 is assigned to the algorithm displaying the best
performance, 3 is assigned to the second best, and so on. The algorithm dis-
playing the worst performance scores 1. For each algorithm, a mean score has
been calculated averaging the sum of the scores of each problem. On the basis of
these scores the algorithms have been sorted. Within the calculated Ri values,
cBFO has been taken as a reference algorithm. Indicating with R0 the rank of
cBFO, and with Rj for j = 1, · · · , NA − 1 the rank of one of the remaining
three algorithms, the values zj , for j = 1, · · · , NA − 1, have been calculated as

zj = (Rj −R0)/
√

NA(NA+1)
6NTP

, where NTP is the number of test problems in con-

sideration (NTP = 72 in our case). By means of the zj values, the corresponding
cumulative normal distribution values pj have been calculated. These pj values
have then been compared with the corresponding δ/(NA − j) where δ is the
significance level of null-hypothesis rejection, set to 0.05 in our case. Table 4
displays ranks, zj values, pj values, and corresponding δ/(NA − j). The rank of
cBFO is shown in parenthesis. The values of zj and pj are expressed in terms of
zNA−j and pNA−j for j = 1, · · · , NA − 1. Moreover, it is indicated whether the
null-hypothesis (that the two algorithms have indistinguishable performances)
is ”Rejected” i.e., cBFO statistically outperforms the algorithm under consid-
eration, or ”Accepted” if the distribution of values can be considered the same
(there is no out-performance). Numerical results in Table 4 show that cBFO
has the best rank among the algorithms considered in this study. However, the
rank difference is large enough to claim that cBFO ”globally” outperforms only
ABFO and ISPO, while the null hypothesis is accepted when cBFO is compared
to cDE, meaning that the performance of cDE and cBFO is indistinguishable
on the selected benchmarks. This result is, in our opinion, remarkable, since it
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Table 4. Holm-Bonferroni Procedure

NA − j Algorithm zNA
− j pNA

− j δ/(NA − j) Hypothesis Rank

3 ABFO -6.65e+00 1.48e-11 1.67e-02 Rejected 1.75
2 ISPO -3.42e+00 3.12e-04 2.50e-02 Rejected 2.4444
1 cDE -2.39e+00 8.46e-03 5.00e-02 Accepted 2.6667

(3.1806)

indicates not only that cBFO clearly outperforms its population-based counter-
part, but also that it represents a good alternative to a robust and versatile
optimizer like cDE. Most importantly, these results confirm our previous find-
ing, see [17], that a properly designed memory saving algorithm can successfully
tackle complex problems, with different dimensionality, even better than over-
whelmingly complicated population based algorithms. In this light, we think that
a proper algorithmic design will allow, in the future, the integration of Compu-
tational Intelligence methods within cheap devices notwithstanding the limited
hardware.

4 Conclusion

This paper introduces a novel compact optimization algorithm, namely compact
Bacterial Foraging Optimization (cBFO). Like its population-based counterpart,
this heuristic employs the metaphor of the chemotaxis mechanism which occurs
in bacterial foraging. An extensive set of test problems has been considered for
algorithmic testing. Numerical results show that, despite an extremely limited
memory footprint, cBFO clearly outperforms one of the most recent implementa-
tions of population-based BFO which employs adaptation. In addition, cBFO is
competitive with another compact algorithm employing a different logic, i.e. the
compact Differential Evolution. Further studies will investigate the introduction
of adaptive and self-adaptive schemes in the cBFO framework here proposed.
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Abstract. This paper introduces CoMiniMax, a coevolutionary Mini-
max algorithm, based on Differential Evolution, for the detection of Nash
Equilibrium in games. We discuss the robust theoretical principles of the
proposed algorithm. The algorithm is illustrated on examples in eco-
nomics, transportation and deregulated electricity markets. Numerical
experience demonstrates that the algorithm is a useful tool for the study
of Nash Equilibrium problems.

Keywords: Coevolution, Nash Equilibrium, Minimax, Equilibrium Prob-
lems with Equilibrium Constraints (EPECs).

1 Introduction

This paper introduces a coevolutionary minimax technique specifically designed
for solving Nash Equilibrium (NE) problems. The minimax optimization method
is a mathematical programming technique for identifying solutions that are robust
i.e. provide the best “worst case” performance. Many problems arising in science
and engineering can be formulated as minimax problems [1]. This has resulted
in applications in fields as diverse as game theory [25], control and systems en-
gineering [12] and finance [22]. Hence there has been much research on minimax
optimization using deterministic [1,6], and evolutionary [12,14] methods.

In this paper, we propose a method that is applicable to a broad class of
single shot games. Although we employ evolutionary heuristics, we stress that
the proposed method enjoys robust theoretical backing.

The rest of this paper is organized as follows. Following this introduction,
Section 2 focuses on Nash Equilibrium and the theoretical foundations of the
proposed method. The CoMiniMax Algorithm, outlined in Section 3 is applied to
the examples in economics, transportation systems management and the dereg-
ulated electricity market in Section 4. Section 5 concludes.

2 The Nash Equilibrium Problem

We consider single shot normal form games with a set of players indexed by
v ∈ {1, 2, ..., ρ}. Each player can play a strategy xv ∈ Xv which all players

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 93–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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announce simultaneously. X(≡
ρ∏

v=1
Xv) ⊆ R

d is the collective action space for all

players. We assume the absence of any preplay communication or collusion. Our
focus is on games with continuous strategy spaces and ignore mixed strategies.

To emphasize the variables chosen by player v, we write (xv, x−v) where x−v

is the combined strategies of all players in the game excluding that of player v.
Writing (xv, x−v) does not suggest that the components of x are reordered such
that xv becomes the first block. Let πv(x) be the payoff/reward to player v if x
is played.

Definition 1. [20] A combined strategy profile x∗ = (x∗
1
, x∗

2
, ..., x∗

ρ) ∈ X is a
Nash Equilibrium (NE) for the game if :

πv(x
∗
v, x

∗
−v) ≥ πv(xv , x

∗
−v) ∀xv ∈ Xv , v ∈ {1, 2, ..., ρ} (1)

At a NE no player can benefit (increase individual payoffs) by unilaterally devi-
ating from the current chosen strategy.

2.1 The Nikaido Isoda Function

The Nikaido Isoda (NI) (or “Ky Fan”) function in Eq. 2 is a tool often used in
the study of NE problems [2,13]. Each summand of Eq. 2 shows the increase
in payoff a player could receive by unilaterally deviating and playing a strategy
yv ∈ Xv while all others play according to x.

Ψ(x, y) =

ρ∑
v=1

[πv(yv, x−v)− πv(xv, x−v)] (2)

The NI function is always non-negative for any combination of x and y. Eq. 2
is everywhere non-positive when either x or y is a NE [2]. This follows from
Definition 1 since at a NE no player can increase their payoffs by unilaterally
deviating. The key result is summarized in Definition 2.

Definition 2. [13] A vector x∗ ∈ X is a Nash Equilibrium if Ψ(x, y) = 0.

2.2 Solution Algorithms for NE Problems

The optimal move a player should make is governed by the best response func-
tion. If πv(x) is continuously differentiable, then the best response function for
player v is given by dπv(xv, x−v)/dxv [8,11]. The NE is the intersections of these
best response functions for all players which leads to solving a system of ρ equa-
tions i.e. dπv(xv, x−v)/dxv = 0, v ∈ {1, 2, ..., ρ} [3,11].

This analytical method is however infeasible for realistic problems. In practice,
finding NE amounts to a fixed point iteration [10] or by solving a Complemen-
tarity Problem [15]. Convergence of these methods relies on the payoff functions
possessing diagonally dominant Jacobians ([8], Theorem 4.1, pp. 280). For a
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review of such methods see [7]. [18] developed an evolutionary method based
on the concept of Nash Dominance which also embodies the NI function as its
theoretical foundation (see also [17]).

Ideas from coevolution have been exported into algorithms designed for the
detection of NE e.g. [4]. In this paper, we propose a coevolutionary algorithm
designed to specifically minimize the maximum of the NI function.

3 A Coevolutionary MiniMax Algorithm - CoMiniMax

CoMiniMax operates on the objective function shown in Eq. 3. The algorithm
is designed to terminate when Ψ(x, y) attains the value of 0 (within tolerance)
when the NE Solution is found (cf. Definition 2).

min
x∈X

max
y∈X

Ψ(x, y) (3)

CoMiniMax utilizes two populations comprising NP chromosomes each, P1 and
P2 (representing x and y respectively). At each outer iteration loop, we evolve P1

using Differential Evolution (DE) [21] to minimize Ψ(x, y). Simultaneously P2 is
evolved to maximize Ψ(x, y). The process terminates when either the maximum
number of user specified iterations, Maxit, is exceeded or when the value of the
NI function, Ψ(x, y), reaches the user specified termination tolerance ε. Based
on Definition 2, the solution thus obtained is a Nash Equilibrium.

Algorithm 1. Coevolutionary MiniMax Algorithm for Nash Equilibrium Prob-
lems - CoMiniMax
1: Input: NP , Maxit, ε > 0, Control Parameters of Differential Evolution (DE),

players’ payoff functions
2: it ← 0
3: Randomly initialize the first population of NP strategy profiles Pit

1

4: Randomly initialize the second population of NP strategy profiles Pit
2

5: it = it+ 1
6: while it ≤ Maxit and Ψ(x, y) > ε do
7: Evolve Pit

1 using DE for inner iterations init to minimize Ψ(x, y∗) given Pit−1
2

8: Set x∗ as the fittest member of Pit
1

9: Evolve Pit
2 using DE for init to maximize Ψ(x∗, y) given Pit

1

10: Set y∗ as the fittest member of Pit
2

11: Compute Ψ(x∗, y∗)
12: it = it+ 1
13: end while

In the numerical examples reported in the following section, we assumed 5
inner iterations, 15 outer iterations and used a population comprising 20 chro-
mosomes each in both P1 and P2. DE control parameters are taken from [17].
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4 Numerical Examples and Applications

4.1 Example 1: Cournot Duopoly

We consider the standard Cournot Duopoly model from economics [11]. Let the
market comprise only two producers maximizing profit through the production
and sale of a homogeneous product. Each producer is unaware of the amount
produced by his counterpart. The objective is to determine the equilibrium out-
put levels for each producer such that no producer is able to increase its profit
by changing production levels (i.e. a NE as given in Definition 1). The pay-
off/profit for producer i, i ∈ {1, 2}, πi, given by the difference between revenues
and production costs, defined as:

πi = p(Q)qi − ciqi, i ∈ {1, 2}

We assume that the entire market is supplied by these two producers so Q =
q1 + q2. Let p(Q) denote the inverse demand function giving price as a function
of quantity and has the functional form:

p(Q) =

{
24−Q, if Q < 24

0, if Q � 24

Assume there are no fixed costs and production cost per unit, ci = 9, i ∈ 1, 2
for both producers. Following [11], we can analytically solve for the NE output.
From the first order conditions for each producer’s profit maximum with respect
to its own output levels, we obtain the following system of equations:

dπ1/dq1 = 15− 2q1 − q2 = 0

dπ2/dq2 = 15− 2q2 − q1 = 0

The solution of this system is {q∗1 , q∗2} = {5, 5}. CoMiniMax easily converges to
this analytical solution as illustrated in Figure 1.

The remaining two examples in this paper focus on a special class of Nash
Games with a distinctive hierarchical structure. These are collectively known as
Equilibrium Problems with Equilibrium Constraints (EPECs) [19]. In EPECs,
players at the upper level, known as “leaders”, are assumed to act non coopera-
tively to maximise individual payoffs. However, each leader’s payoff is influenced
not only by their competitor’s actions but also by the behaviour of the agents or
“followers” at the lower level which arise in the form of a constraint specifying
equilibrium in a given parametric system [17].

4.2 Example 2: Highway Network with Competing Toll Operators

This example presents a problem that arises in transportation network analysis
that fits within the structure of an EPEC. This problem is to find an NE toll
(road user charge per vehicle) level for each revenue maximising operator who
separately controls a predefined link on a given traffic network in competition
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Fig. 1. Cournot Duopoly: Best Member of P1 (solid lines) and P2 (dashed lines) at
Each Outer Iteration

with others doing the same simultaneously. To facilitate exposition, we introduce
the notation as follows:

A: the set of directed links in a traffic network,
B: the set of links which have their tolls optimised, B ⊂ A
K: the set of origin destination (O-D) pairs in the network
f : the vector of link flows f = [fa], a ∈ A
x: the vector of link tolls x = [xa], a ∈ B
c(v): the vector of monotonically non decreasing travel costs as a function of

link flows c(v) = [ca(va)], a ∈ A
d: the continuous and monotonically decreasing demand function for each

O-D pair as a function of the generalized travel cost between OD pair k only,
d = [dk], k ∈ K

D−1: the inverse demand function and
Ω: feasible region of flow vectors,defined by a linear system of flow conserva-

tion constraints.
Each player wishes to maximize individual revenue from tolls as shown in

Eq. 4.

max
xv

πv(x) = fv(x)xv, v ∈ 1, 2 (4)

where f is obtained by solving the Variational Inequality (VI) in Eq. 5 (see [5];
[23])

c (f∗,x)T · (f − f∗)−D−1 (d∗,x)T · (d− d∗) ≥ 0, ∀ (f ,d) ∈ Ω (5)

This VI represents Wardrop’s principle of route choice which states that no road
user on the network can unilaterally benefit (reduce travel time) by changing
routes at the equilibrium [26]. The equilibrium toll levels can be determined by
Definition 1 and it is the very presence of the VI constraint Eq. 5 that transforms
our problem into an EPEC because each player at the upper level (individual toll
operator) has to take into account the route choices of the users of the network
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(followers) when setting the toll levels in order to maximize revenue. Once the
toll vector is input, solving the VI entails performing a traffic assignment to
obtain the link flows and hence allow evaluation of each player’s objective.

Assume that links numbered 7 and 10 (shown as dashed lines in Figure 2) are
the only two links which are tolled. Table 1 compares the result obtained by the
proposed CoMiniMax algorithm against others reported in the literature.

Fig. 2. Example 2: Nine Node 18 Link
Highway Network from [16]. Links 7 and
10 (dash lines) are controlled by compet-
ing toll operators.

Fig. 3. Example 3: Three bus network
model from [24]. Players 1, 2 and 3 are lo-
cated at G1,G2 and G3 respectively.

Table 1. Example 2: Comparison of results of CoMiniMax with others reported

Source [16] [17] This Paper

Link 7 141.37 141.36 141.36
Link 10 138.29 138.28 138.29

4.3 Example 3: Competition in Deregulated Electricity Markets

In deregulated electricity markets, electricity generating companies (“GENCOs”)
submit bids of the quantities of electricity they wish to supply to meet the mar-
ket demand. These bids are then cleared by the Independent System Operator
(ISO). However the price (and individual profits) are not only dependent on their
individual bids but also that of their competitors and prices are not known until
the market clearing is performed by the ISO [3,9,24]. This leads to an EPEC
and CoMiniMax can be applied to this “pool based bidding” game.

Consider the three player model from [3] with the 3 bus network used as shown
in Figure 3. Three players submit bids of quantities of electricity (in Megawatts
per hour) they wish to supply to maximize individual profits according to Eq. 6.

max
xv

πv(xv, x−v) = λ∗
vxv − cv(xv), v ∈ {1, 2, 3} (6)
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where λv is obtained by the ISO solving the system ( Eqs. 7a - 7e) by maximizing
the benefits at each bus for a given vector of bid submissions.

max
δ1,δ2,δ3

B1(δ1) +B2(δ2) +B3(δ3)︸ ︷︷ ︸
(Benefits at each bus)

(7a)

subject to

2θ1 − θ2 = x1 − δ1 (7b)

−θ1 + 2θ2 = x2 − δ2 (7c)

−θ1 − θ2 = x3 − δ3 (7d)

−TMax ≤ κ1 ≤ TMax (7e)

The system Eq. 7 is analogous to the route choice constraint in the previous
example and hence this problem can also be classed as an EPEC. The prices
λ∗
v, v ∈ {1, 2, 3} is given by the Lagrange multiplier of the equality constraints

7b, 7c and 7d which model the dc powerflow equations [9]. Note that θ1 and θ2
represent the powerflows on lines AC and -AC respectively. The last constraint
7e is the transmission limit.

The individual benefit functions Bv(δv) at each bus and the cost functions
cv(xv) for each player used are exactly as given as in [3]. TMax is set to 100.
Table 2 compares the results from [3] with those obtained by CoMiniMax.

Table 2. Example 3 - 3 Bus Model (Megawatts per Hour)

Player 1 2 3

[3] 1105 1046 995
Results from CoMiniMax:

Mean 1104.99 1046.47 995.15
Standard Deviation of P1 0.005 0.000 0.0001
Standard Deviation of P2 0.001 0.004 0.0003

5 Summary and Conclusions

This paper has presented a coevolutionary algorithm, CoMiniMax, which is
based on the minimax framework for evolving solutions to Nash Equilibrium
Problems. The algorithm has been demonstrated on a Cournot Nash game as
well as on EPECs arising in transportation networks and electricity markets.
Although evolutionary heuristics have been employed, the algorithm has robust
theoretical backing in the Nikaido Isoda function. On the test problems, we have
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demonstrated that this algorithm is able to successfully replicate previous results
reported in the literature. The limited numerical experience gained thus far sup-
ports the view that the algorithm could be a useful aid in the study of Nash
Equilibrium problems.
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Abstract. In this paper we present a particle swarm optimization (PSO)
based approach for marker-less full body motion tracking. The objective
function is smoothed in an annealing scheme and then quantized. This
allows us to extract a pool of candidate best particles. The algorithm
selects a global best from such a pool to force the PSO jump out of stag-
nation. Experiments on 4-camera datasets demonstrate the robustness
and accuracy of our method. The tracking is conducted on 2 PC nodes
with multi-core CPUs, connected by 1 GigE. This makes our system
capable of accurately recovering full body movements with 14 fps.

1 Introduction

Tracking of 3D articulated body motion in image sequences plays an important
role due to wide variety of potential applications. The aim of articulated body
tracking is to estimate the joint angles of the human body at any time. The
recovery of human body movements from image sequences is a very challenging
problem. The difficulties arise mainly due to the high dimensionality and non-
linearity of the search space, large variability in human appearance, noisy image
observations, self-occlusion, and complex human motions. To cope with such dif-
ficulties, much previous work has focused on the use of 3D human body models
of various complexity to recover the position, orientation and joint angles from
2D image sequences [3][4][9][10]. An articulated human body can be perceived as
a kinematic chain consisting of at least eleven parts, corresponding to the main
body parts. Usually such a 3D human model is built on very simple geometric
primitives like truncated cones or cylinders. Given the 3D model, a lot of hy-
pothetical body poses are generated and then projected into the image plane in
order to find the configuration of the 3D model, whose projection matches best
the current image observations. Multiple cameras and simplified backgrounds
are commonly used to ameliorate some of practical difficulties arising due to
occlusions and depth ambiguities [9][10].

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 102–109, 2012.
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2 Searching Schemes for Human Motion Tracking

In tracking of the articulated human motion the particle filtering is utilized in the
majority of the trackers. Particle filters [5] are recursive Bayesian filters that are
based on Monte Carlo simulations. They approximate a posterior distribution
for the human pose on the basis of a series of observations. The high dimension-
ality of the search space entails vast number of particles to approximate well
the posterior probability of the states. Moreover, sample impoverishment may
prevent particle filters from maintaining multimodal distribution for longer pe-
riods of time. Therefore, many efforts have been devoted to confining the search
space to promising regions that contain the true body pose. Deutscher and Reid
[3] developed an annealed particle filter, which adopts an annealing scheme to-
gether with the stochastic sampling to achieve better concentration of the par-
ticle spread close to modes of the probability distribution. To achieve this the
fitness function is smoothed using annealing factors 0 = α1 < α2, . . . , < αn = 1,
and in consequence the particles migrate towards the extremum without getting
stuck in local minima. In addition, a crossover operation is employed in order to
obtain an improved particle’s diversity.

The annealed particle filter greatly improves the tracking performance in com-
parison to the ordinary particle filtering. However, a considerable number of par-
ticles it still required. In contrast, the particle swarm optimization (PSO) [7],
which is population-based searching technique, has higher searching capabilities
owning to combining the local search and global one. A basic variant of the PSO
algorithm is built on particles representing candidate solutions. These particles
are moved around in the search-space according to a few very simple rules. The
movements of the particles are guided by their own finest known locations in the
search-space as well as the entire swarm’s best location. Particles move through
the solution space, and undergo evaluation according to some fitness function
f(). While the swarm as a whole gravitates towards the global extremum, the
individual particles are capable of ignoring many local optima. In the dynamic
optimization the aim is not only to seek the extrema, but also to follow their
progression through the space as closely as possible. Since the object track-
ing is a kind of dynamic optimization, the tracking can be attained through
incorporating the temporal continuity information into the ordinary PSO. In
consequence, the tracking can be realized by a sequence of static PSO-based
optimizations, followed by re-diversification of the particles to cover the possible
poses in the next time step. The re-diversification of the particle i can be realized
on the basis of normal distribution concentrated around the state estimate x̂t−1,

x
(i)
t ← N (x̂t−1, Σ).
In the original PSO, convergence of particles towards its attractors is not

guaranteed. Clerc and Kennedy [2] studied the mechanisms to improve the con-
vergence speed and proposed constriction methodologies to ensure convergence
and to fine-tune the search. They proposed to utilize a constriction factor ω in
the following form of the formula expressing the i-th particle’s velocity:

vi,k+1 = ω[vi,k + c1r1(p
i − xi,k) + c2r2(g − xi,k)] (1)
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where constants c1 and c2 are responsible for balancing the influence of the
individual’s knowledge and that of the group, respectively, r1 and r2 stand for
uniformly distributed random numbers, xi denotes position of the i-th particle,
pi is the local best position of particle, whereas g is the global best position.

In our approach the value of ω depends on annealing factor α as follows:

ω = −0.8α+ 1.4 (2)

where α = 0.1 + k
K+1 , k = 0, 1, . . . ,K, and K is the number of iterations.

The annealing factor is also used to smooth the objective function. The larger
the iteration number is, the smaller is the smoothing. In consequence, in the
last iteration the algorithm utilizes the non-smoothed function. The algorithm
termed as annealed PSO (APSO) [8] can be expressed as follows:

1. For each particle i
2. initialize vi,0t
3. xi,0

t ∼ N (gt−1, Σ0)
4. pit = xi,0

t , f i
t = f(xi,0

t )
5. ui

t = f i
t , ũi

t = (ui
t)

α0

6. i∗ = argmini ũ
i
t, gt = pi

∗
t , wt = ui∗

t
7. For k = 0, 1, . . . ,K
8. update ωα on the basis of (2)
9. G = argmini round(num bins · ũi

t)
10. For each particle i
11. Select a particle from {G ∪ gt} and assign it to git
12. vi,k+1

t = ωα[v
i,k
t + c1r1(p

i
t − xi,k

t ) + c2r2(g
i
t − xi,k

t )]
13. xi,k+1

t = xi,k
t + vi,k+1

t

14. f i
t = f(xi,k+1

t )
15. if f i

t < ui
t then pit = xi,k+1

t , ui
t = f i

t , ũi
t = (ui

t)
αk

16. if f i
t < wt then gt = xi,k+1

t , wt = f i
t

The smoothed objective functions are quantized, see 9th line in the pseudo-code.
Owing to this the similar function values are clustered into the same segment
of values. In each iteration the algorithm determines the set G of the particles,
which after the quantization of the smoothed fitness function from the previous
iteration, assumed the smallest values (the best fitness scores), see 9th line in the
pseudo-code. For each particle i the algorithm selects the global best particle git
from {G∪gt}, where gt determines the current global best particle of the swarm.
By means of this operation the swarm selects the global best location from a pool
of candidate best locations to force the PSO jump out of stagnation. We found
that this operation contributes considerably toward better tracking, particularly
in case of noisy observations. It is worth noting that in the literature devoted to
dynamic optimization the problem of optimization of noisy objective functions
is considered very rarely.

The fitness score is calculated on the basis of following expression: f(x) =
1− (f1(x)

w1 · f2(x)w2 ), where w denotes weighting coefficients that were deter-
mined experimentally. The function f1(x) reflects the degree of overlap between
the segmented body parts and the projected model’s parts into 2D image. The
function f2(x) reflects the edge distance-based fitness [8].
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3 Parallel APSO for Real-Time Motion Tracking

PSO is parallel in nature. To shorten the optimization time several studies on
parallelizing the algorithm were done so far. However, the majority of the al-
gorithms are for the static optimization. In object tracking the calculation of
the objective function is the most consuming operation. Moreover, in multi-view
tracking the 3D model is projected and then rendered in each camera’s view.
Therefore, in our approach the objective function is calculated by OpenMP
threads [1], which communicate via the shared memory, see Fig. 1. The PSO
thread has access to the shared memory with the objective function values,
which were determined by the local threads as well as the values of the objec-
tive functions that were calculated by the cooperating swarm on another cores
or computational nodes. We employ asynchronous exchange of the best particle
location and its fitness score. In particular, if a sub-swarm, which as the first one
finished object tracking in a given frame, it carries out the re-diversification of
the particles using its current global best particle, without waiting for the global
best optimum determined by the participating sub-swarms. It is worth mention-
ing that in such circumstances the estimate of the object state is determined
using the available global best locations of cooperating sub-swarms.

Fig. 1. The communication in parallel PSO for real-time object tracking

4 Experimental Results

The algorithm was evaluated on two image sequences acquired by four synchro-
nized and calibrated cameras. The color images of size 1920×1080 were acquired
with rate 25 fps and then subsampled at a factor of 4 both horizontally and ver-
tically. Each pair of the cameras is approximately perpendicular to the other
two. A commercial motion capture (moCap) system from Vicon Nexus provides
ground truth data at rate of 100 Hz. The system employs reflective markers and
sixteen cameras to recover the 3D location of such markers. The synchronization
between the moCap and multi-camera system is based on hardware from Vicon.

All computations were conducted on a computer cluster that was composed
of 2 identical machines connected with a TCP/IP 1 GigE (Gigabit Ethernet)
local area network. Each PC node is equipped with two six-core Intel Xeon 5690
3.46 GHz CPUs. They support Hyper-Threading technology, which enables a
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single core to act like multiple cores. In this way, a core with Hyper-Threading
appears to be more than one core. For example, if the CPU is a dual core
processor with Hyper-Threading, the operating system will process as many as
four threads through it simultaneously.

The accuracy of human motion tracking was evaluated experimentally in sce-
narios with a walking person. Although we focused on tracking of torso and legs,
we also estimated the head’s pose as well as the pose of both arms. The body
pose is described by position and orientation of the pelvis in the global coordi-
nate system as well as relative angles between the connected limbs. The overlap
of the projected 3D model on the subject undergoing tracking can be utilized
to illustrate the quality of tracking, see Fig. 2, which depicts the frontal and
side views from two nearly perpendicular cameras. As we can see, the overlap
of the projected model on both images is quite good. The estimation of the 3D
pose was done in 10 iterations using 300 particles. Given the estimated human
pose we calculated the location of virtual markers on the model. The location
of such markers on the body corresponds to the location of the real markers on
the person undergoing tracking.

Fig. 2. Articulated 3D human body tracking. Shown are results in frames #20, 40,
60, 80, 100, 120, 140, obtained by APSO. The left sub-images are seen from view 1,
whereas the right ones are seen from view 4.

The pose error in each frame was calculated as the average Euclidean distance
between corresponding markers. We used 39 markers, where 4 markers were
placed on the head, 7 markers on each arm, 12 on the legs, 5 on the torso and 4
markers were attached to the pelvis.

The results obtained on two image sequences were compared by analyses
carried out both through qualitative visual evaluations as well as quantitatively
by the use of the motion capture data as ground truth. The tracking was done
using various number of particle swarms and PC nodes, see Table 1. The pool of
the particles was distributed evenly among the sub-swarms. The results shown
in Table 1 demonstrate that the motion tracker based on APSO is better than
PSO-based one in terms of the tracking accuracy. As we can observe, the tracking
error increases slightly with the number of the swarms. The reason for the poorer
accuracy of tracking is that we employ the non-blocking parallel PSO. At two
PC nodes the processing time of the blocking parallel PSO is a dozen or so
milliseconds larger in comparison to the non-blocking version. The discussed
results were obtained in ten runs of the algorithm with unlike initializations.
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Table 1. Average errors [mm] for M = 39 markers in two image sequences

#threads Seq. 1 Seq. 2

#swarms #particles PC1 PC2 PSO APSO PSO APSO

1 300 4 0 59.3± 33.4 54.9 ± 30.8 57.7± 33.6 52.3 ± 27.3

2 2× 150 4 4 59.5± 33.0 54.2 ± 29.9 61.5± 37.0 52.2 ± 28.2

3 3× 100 8 4 59.9± 35.3 55.3 ± 31.2 62.2± 38.6 56.9 ± 37.0

4 4× 75 8 8 59.5± 34.0 54.8 ± 30.3 60.6± 37.3 54.4 ± 33.7

6 6× 50 12 12 62.6± 36.5 58.2 ± 32.2 62.5± 42.1 61.5 ± 43.6

8 8× 38 16 16 73.0± 46.6 57.7 ± 31.1 69.3± 47.9 62.3 ± 43.5

Figure 3 depicts the tracking errors versus frame number that were obtained
during motion tracking using APSO and PSO-based motion trackers. The ex-
periments were done on an image sequence acquired by the four camera system.
As we can observe in the plots shown at Fig. 3, the tracking accuracy obtained
by the APSO-based tracker is much better. In particular, in some frames the
accuracy of PSO-based tracker considerably drops. This takes place because the
PSO is unable to find the global extremum in a given number of iterations.

Fig. 3. Tracking errors [mm] versus frame number for PSO and APSO for various
number of particles in the sub-swarms
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Similar effect has been observed in many runs of the algorithms with unlike
initializations. In general, APSO performs better than PSO over the whole image
sequences, attaining much better accurateness and robustness.

In Fig. 4 are shown the errors that were obtained using single and eight
swarms. In a APSO consisting of eight sub-swarms the optimizations were done
using 38 particles in each swarm. As we can see, the tracking errors of both legs
are something larger in comparison to tracking errors of the torso.

Fig. 4. Tracking errors [mm] versus frame number at 1 and 2 PCs using 1 and 8 particle
swarms, respectively

In Table 2 are demonstrated the tracking times that were obtained for various
distributions of the sub-swarms into the computational resources. As we can
observe, for identical number of the sub-swarms the computation time is larger
on single computer in comparison to a configuration consisting of two nodes
connected by 1 GigE network. This means that the time necessary for scheduling
the threads is larger in comparison to time needed for information exchange in a

Table 2. Tracking time [ms] and speed-up for a single frame

#threads Seq. 1 Seq. 2

#swarms #particles PC1 PC2 time [ms] speed-up time [ms] speed-up

1 300 4 0 367.0 - 333.2 -

2 2× 150 8 0 195.7 1.9 182.5 1.8

2 2× 150 4 4 195.9 1.9 183.1 1.8

3 3× 100 12 0 163.8 2.2 153.0 2.2

3 3× 100 8 4 136.6 2.7 122.4 2.7

4 4× 75 16 0 138.9 2.6 125.7 2.7

4 4× 75 8 8 126.2 2.9 116.8 2.9

6 6× 50 12 12 86.6 4.2 80.5 4.1

8 8× 38 16 16 70.9 5.2 67.6 4.9
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distributed system. The image processing and analysis takes about 0.2 sec. and
it is not included in the times shown in Table 2. The complete human motion
capture system was written in C/C++ and works in real-time. It is worth noting
that in [6], the processing time of Lee walk sequence from Brown University is
larger than one hour.

5 Conclusions

We presented a marker-less motion capture system for real-time tracking of 3D
full body motion. The performance of the proposed algorithms was evaluated on
two image sequences captured by 4 cameras. In many quantitative comparisons
of APSO and the competing PSO algorithm, APSO expressed better tracking
accuracy. APSO shows good global search ability making it well suited for uncon-
strained motion tracking, where no strong prior or dynamic model is available.

Acknowledgment. This paper has been supported by the research project
OR00002111: ”Application of video surveillance systems to person and behavior
identification and threat detection, using biometrics and inference of 3D human
model from video.”
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Abstract. Metaoptimization is a way of tuning parameters of an op-
timization algorithm with use of a higher-level optimizer. In this paper
it is applied to the problem of choosing among possible mutation range
adaptation schemes in Differential Evolution (DE). We consider a new
version of DE, called DE/rand/∞. In this algorithm, differential mu-
tation is replaced by a Gaussian one, where the covariance matrix is
determined from the contents of the current population. We exploit this
property to separate the adaption of search directions from the adap-
tation of mutation range. The former is characterized by a norm of the
covariance matrix while the latter can be expressed as a normed covari-
ance matrix multiplied by the scaling factor. Such separation allows us
to introduce a few schemes of direct, explicit control of the mutation
range and to compare them with the basic, implicit scheme present in
DE/rand/∞. To ensure fair comparisons all versions of DE/rand/∞ are
first metaoptimized and then assessed on the CEC’05 benchmark.

Keywords: differential evolution, metaoptimization, adaptation of
mutation.

1 Introduction

Tuning an optimization algorithm consists in finding values of its parameters
that ensure its maximal performance. This can be seen as an optimization prob-
lem in the space of parameters. The process of applying an optimizer to tune
parameter values of another optimization method is called metaoptimization and
has been used since at least 1980’s [2]. In this paper it is applied to the problem
of choosing the most effective mutation adaptation scheme in a novel modifi-
cation of differential evolution algorithm DE/rand/∞ which we introduced in
[7]. Each variant of the algorithm is tested on a subset of CEC’05 benchmark
functions [11] in order to choose the best-performing one. Reliable comparison
of variants of algorithm requires tuning parameters for each of them, which can
be achieved by means of metaoptimization. Maximizing performance for a set
of test functions can be a noisy multiobjective optimization task with both dis-
crete and continuous variables, which are often subject to constraints. For these
reasons, metaoptimization is a non-trivial and very computationally expensive
task.
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This paper aims at summarizing experiences of choosing mutation opera-
tor for DE/rand/∞ with use of metaoptimization. In classical DE, both range
and direction of mutation are implicitly adopted through the use of difference
vectors. Introduction of DE/rand/∞ algorithm (section 2) allows to explicitly
control mutation range without hindering the property of adaptation of search
directions. In this paper a few explicit methods of controlling mutation range
are defined and compared with the original, implicit adaptation scheme. Each of
the resulting DE/rand/∞ variants becomes then subject to a metaoptimization
procedure discussed in section 3. The paper is concluded with a discussion of
the metaoptimized parameter values.

2 From DE/rand/1 to DE/rand/∞
DE/rand/1. Differential evolution (DE) is a simple and effective continuous
stochastic optimizer [9], whose outline is presented as Algorithm 1. The fitness
function is denoted by f , Pt is the population in generation t and Pt

i denotes
the i-th individual. The algorithm takes three parameters: population size NP ,
crossover probability CR and scaling factor F which is used for mutation.

For every individual Pt
i, another individual P

t
i1

is randomly selected. A mu-
tant ui is created by adding a scaled difference between two other randomly
picked individuals Pt

i2
and Pt

i3
to individual Pt

i1
.

ui ← Pt
i1 + F · (Pt

i2 −Pt
i3 ) (1)

The mutant ui is then crossed-over with individual Pt
i. Differential mutation

is directly dependent on the spread of current population through the use of
the difference vectors F · (Pt

i2 − Pt
i3). This leads to an implicit adaptation of

range and direction of differential mutation. In our opinion, this adaptation
mechanism coupled with the greedy local selection scheme are the main reasons
for high performance of DE.

DE method, which uses mutation operator defined in equation (1) is called
DE/rand/1, since there is only one difference vector and the index i1 is cho-
sen randomly with uniform distribution. Observe that scaled difference vector
F · (Pt

i2
−Pt

i3
) is a random variable, whose distribution depends on the popula-

tion contents and can be expressed by means of convolution of distributions [7].
Fig. 1 a) shows a population spread in a two-dimensional space, while Fig. 1 b)
presents the corresponding difference vector distribution. This distribution is
symmetric with respect to origin, has zero mean and its covariance matrix is
proportional to the covariance matrix of vectors in the current population.

cov
(
F · (Pt

i2 −Pt
i3)
)
= 2F 2cov(Pt) (2)

Equation (2) shows that range and direction of differential mutation is implicitly
dependent on contents of the current population Pt.
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Algorithm 1. Differential Evolution

Initialize parameters: CR, F , and NP
Initialize population P0, t ← 0
while stop condition not met do

for all i ∈ {1, 2, ..., NP} do
ui ← mutation(F ; i,Pt)
oi ← crossover(CR;Pt

i,ui)
if f(oi) ≤ f(Pt

i) then
Pt+1

i ← oi

else
Pt+1

i ← Pt
i

end if
end for
t ← t+ 1

end while
return arg minif(P

t
i)

Fig. 1. Population scattered in the search space a), corresponding difference vector
distribution b)

DE/rand/∞ [7]. Differential mutation may be generalized by using k difference
vectors [9], which is denoted by DE/rand/k (k = 1 and k = 2 are the most
common choices).

ui ← Pt
i1 + F · (Pt

i2 −Pt
i3 ) + F · (Pt

i4 −Pt
i5 ) + ...+ F · (Pt

i2k −Pt
i2k+1

) (3)

Indices i, i1, i2, ..., i2k+1 are required to be pairwise distinct. If we drop this
assumption, then picking each difference vector F · (Pt

j1
−Pt

j2
) would be equiv-

alent to realization of a random variable. Its distribution is determined by the
current population Pt and exemplified in Fig. 1. Hence, summing k difference
vectors is equivalent to summing k independent, identically distributed random
variables with zero mean and covariance matrix given by (2). The covariance
matrix of difference vectors for DE/rand/k equals 2kF 2cov(Pt) which implies
that the range of change introduced by the mutation (3) will increase with k.
This effect can be eliminated by dividing the sum by

√
k:



Decomposition and Metaoptimization of Differential Mutation 113

ui ← Pt
i1 +

F√
k

k∑
j=1

(
Pt

i2j −Pt
i2j+1

)
(4)

On the basis of central limit theorem the distribution of the normed sum of
difference vectors 4 weakly converges to the normal distribution with zero mean
and the covariance matrix equal to 2F 2cov(Pt). Consequently, under assumption
that k → ∞ one can replace 4 by:

ui ← Pt
i1 +

√
2F · v∞, where v∞ ∼ N (

0, cov(Pt)
)
. (5)

Thus, if we drop the assumption that indices i, i1, ..., i2k+1 must be pairwise
distinct, we can replace the differential mutation by the Gaussian mutation
with zero mean and covariance matrix proportional to the covariance matrix
of the current population. Our earlier analyzes [7] show that performance of
DE/rand/∞/bin is comparable to DE/rand/1/bin and may be improved by
coupling with an exploitative mutation operator DE/best/1.

Decomposition of mutation. Formula (5) can be reformulated as follows:

ui ← Pt
i1 + F ·

√
2||cov(Pt)|| · vi, where vi ∼ N

(
0,

cov(Pt)

||cov(Pt)||
)

(6)

Observe that mutation range is decomposed to a product of the scalar factor F
and a scalar describing the spread of the current population, which we measure
as the covariance matrix norm

√||cov(Pt)||. Vector vi describes the direction of
differential mutation. Decomposition (6) allows us to separately analyze muta-
tion range and direction in DE/rand/∞.

Explicit control of mutation range. In this study we were interested in analysis
of the implicit adaptation mechanism in DE. Decomposition (6) shows that mu-
tation range in DE/rand/∞ is proportional to

√||cov(Pt)||. A natural question
arises, how does it compare to other possible ways of controlling mutation range?
To answer this question we modified the scheme (6) by substituting the product
of the scaling factor and the root of covariance matrix norm with a function
dependent on the generation index.

ui ← Pt
i1 +

√
2F (t)s · vi, where vi ∼ N

(
0,

cov(Pt)

||cov(Pt)||
)

(7)

This provides explicit control over the mutation range while preserving adapta-
tion of search directions. The constant s adjusts the scaling factor to the size of
a feasible set. In this paper, each fitness function fi, i ∈ {1, 2, ..., 14} was con-
strained to a hypercube [li, ui]

n and the value of s for i-th problem was defined
as ui − li. Introduction of the s term allows to reinterpret the scaling factor F .
Intuitively speaking, F ≈ 1 means that the mutation range is approximately the
same as the size of the feasible set, F ≈ 0.1 mean that it is 10 times smaller
etc. We defined three variants of dynamic control of mutation range (7), namely
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using a constant value, decreasing it linearly and exponentially—see Table 1.
In addition we also considered a noisy version of the const strategy and meth-
ods of periodic change along sawtooth saw and sine sin, but they performed
consistently worse.

3 Metaoptimization Procedure

Choice of test problems. To our knowledge, there are no theoretical clues about
optimal mutation range adaptation. Performance of different methods of mu-
tation adaptation was hence measured on a benchmark of ten-dimensional test
problems introduced at the CEC’05 [11] conference. The CEC’05 benchmark
contains 5 unimodal functions, 7 basic multimodal ones as well as two multi-
modal complex functions. Apart from that, there are 11 hybrid functions, each
of whom is created as a weighted sum of 10 basic ones. In general, hybrid prob-
lems proved to be too complicated to be solved [3]. Therefore, we decided to
limit metaoptimization to the first 14 problems only. There are also newer and
more elaborated global optimization benchmarks, in particular BBOB [5]. We
decided to use CEC’05 mainly because it defines stopping condition based on
maximal number of function evaluations, which is convenient in case of dynamic
control of mutation range.

In this study an implementation of CMA-ES [4] was used as a metaoptimizer.
All investigated mutation range adaptation variants were started with the same
seed values of the random number generator.

Metacriterion. Performance for each test problem was assessed on the basis of
the final optimization error after 105 function evaluations. The results for N = 14
investigated problems were aggregated to form a single-objective metaoptimiza-
tion criterion (metacriterion). Due to a random initialization and stochastic na-
ture of DE, final error values were nondeterministic. Therefore, each algorithm
was independently restarted k times. The median value of final optimization
errors for i-th test problem is denoted by εi. The metacriterion fm is defined as

fm =
1

N

N∑
i=1

(
m+ log10

(
10−m + εi

))
, (8)

Table 1. Mutation range adaptation schemes

Parameters Adaptation scheme

implicit NP ∈ N, F0 ∈ R
F = F0, no norming;

mutation according to (5)
const NP ∈ N, F0 ∈ R F (t) = F0

lin NP ∈ N, F0 ∈ R F (t) = F0
tmax−t
tmax

exp NP ∈ N, F0, F1 ∈ R F (t) = F0

(
F1
F0

)t/tmax
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Fig. 2. Derivation of metacriterion, a) raw error values plotted for 5 runs for each of 14
test problems; b) logarithms of the errors (8), medians connected with a dotted line,
metacriterion shown by the horizontal line

where m = 3 is a parameter ensuring that the metacriterion takes nonnegative
values. It also provides a lower bound on the required error level 10−m. We
used the logarithmic transformation to reduce a risk that a single problem with
the highest error would dominate all other problems within the benchmark set.
For instance, in Fig. 2 a), error values for problems number 3 and 6 are of
several orders of magnitude greater than all others. Without the logarithmic
transformation, metaoptimizer would fit parameters to increase performance for
these two problems only.

Choosing the “best” mutation range adaptation scheme basing on benchmark
results is justified when the same criterion is used in the metaoptimization and
in the evaluation of the final (metaoptimized) benchmark results. There is how-
ever a possibility that parameters would be overfitted to the benchmark. Yet,
currently available benchmarks are still quite difficult to solve, even for the state-
of-the-art optimizers [3,5], so overfitting is arguably not a real threat.

Metalandscapes. A metalandscape graph is the plot of the metacriterion values
versus its parameters. Fig. 3 a) shows the metalandscape of DE/rand/∞/none
(when CR = 1) with the implicit mutation (5). The scaling factor takes values
F0 ∈ {0.4, 0.5, ..., 1.2} while the quotient (NP/n) of population size NP and
search space dimension n = 10 takes values (NP/n) ∈ {2, 3, 5, 10, 20, 50, 100}.
Fig. 3 b) presents analogous results published in [8] which were obtained for
DE/rand/1/bin for other set of test problems in n = 30 dimensions and for a
metacriterion defined as the weighted sum of final error values. Nevertheless, the
bent shapes of metalandscape are similar in both cases. This may suggest that
the metaoptimization method presented here yields robust results and that both
algorithms DE/rand/1 and DE/rand/∞ reveal a similar pattern of parameters’
influence on the performance on benchmarks. Additionally, conversion of the
linear scale to the logarithmic one, as in figures 3 b) and c), seems to improve
the conditioning of the metacriterion making it “easier to solve” and “more
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Table 2. Parameter values obtained through metaoptimization

Mutation Metaoptimized paremeter values

implicit NP = 11.5 · n, F0 = 0.54
const NP = 4.5 · n, F0 = 0.064
lin NP = 5.2 · n, F0 = 0.14
exp NP = 9.2 · n, F0 = 350, F1 = 8.3 · 10−9

convex”. Consequently, the metaoptimization procedure was applied to loga-
rithms of parameters rather than their raw values.

Interpretation of results. Table 2 contains parameter values obtained during the
metaoptimization. Their analysis may give some clues to further the DE/rand/∞
algorithm. First of all, only the implicit and exponential schemes yielded signif-
icantly better performance than any other method. Results of the Dunn’s and
Holm’s tests adjusted for multiple comparisons are summarized in Table 3, where
significance larger than 1− α = 0.95 is denoted by + and lack of it by ·.

In is noteworthy that for both winning methods population size was of the
order 10 · n which agrees well with the suggestions for tuning DE given e.g. by
Price and Storn [9]. Closer look at the exponential method reveals that the initial
mutation range value is huge (F0 = 350) and that it decreases to a very low level
(F1 = 8.3 · 10−9). Consequently, for one third of the optimization time, applying
differential mutation results in random sampling, since it is nearly entirely guided
by a constraint handling method. High performance of the exponential scheme
suggests that extending the initialization phase by a period of random sampling
compiled with the greedy parent-offspring selection may improve the overall
performance of DE/rand/∞.

4 Discussion

Analysis of mutation in DE. Parameter setting in DE has been subject of consid-
erable study [9], [8], as well as various modifications of mutation operators, some
of which are surveyed in [6]. Mutation range adaptation in DE was also enhanced
by introducing self-adaptation of parameters in jDE [1] and self-adaptation of
both parameters and the mutation strategy in SADE [10]. In general, research
on differential mutation concentrates on choosing the value of a scale factor F
or appropriate variants of mutation operators. The implicit dependence of mu-
tation range and direction on the spread of current population is usually kept as

Table 3. Statistical superiority tests: Dunn’s—left hand side, Holm’s—right hand side

implicit exp lin saw sin rand const

implicit · · · · + + + + + + + +
exp · · · · + · + · + · + +
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(a) DE/rand/1/bin in 30 dimensions [8], linear scale

(b) DE/rand/∞/none in 10 dimensions, linear scale

(c) DE/rand/∞/none in 10 dimensions, log scale

Fig. 3.Metalandscapes for DE/rand/1/bin in linear scale (a) and DE/rand/∞ in linear
(b) and logarithmic (c) scales
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an effective adaptation scheme. This paper provides decomposition (6) of mu-
tation operator in DE/rand/∞. Adaptation of mutation range and adaptation
of search directions can be therefore analyzed (or controlled) separately, which
provides new opportunities for improving DE. Similar decompositions can be
derived for other mutation operators, such as DE/rand/1 or DE/best/1. In such
cases the distribution of a random vector vi is not normal but depends on the
current population in a manner shown in Fig. 1.

Concluding remarks. In this paper we reported an ongoing research on adapta-
tion in DE. We used a metaoptimization approach to consider possible alterna-
tive methods to vary the mutation range. From the obtained results it appears
that the implicit adaptation method is indeed very effective. It appears however
that performance of DE could be improved by prolonging the population initial-
ization phase with a period of sampling with the uniform distribution from the
feasible area together with the local selection of results. Further research con-
centrates on finding functions which simultaneously control mutation range and
approximate the implicit adaptation scheme. In this way we hope to explicitly
model and analyze the process of mutation range adaptation in DE.

This study was partially supported by research fellowship within “Informa-
tion technologies: research and their interdisciplinary applications” agreement
number POKL.04.01.01-00-051/10-00.
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Abstract. Interpolated Ant Colony Optimization (IACO) for a con-
tinuous domain was proposed in the paper. The IACO uses the same
mechanisms as the classical ACO applied to discrete optimization. The
continuous search space is sampled by individuals on the basis of the lin-
ear interpolated trace of the pheromone. It allows to obtain a simple and
efficient optimization algorithm. The proposed algorithm is then used to
identify delays in linear dynamic systems. The examination results show
that it is an effective tool for global optimization problems.

Keywords: Continuous optimization, Ant colony algorithm, Time
delay, Identification.

1 Introduction

Optimization problems can be found in many areas of industry and engineering
problems. One example might be the problem of identifying plant parameters in
control systems. Especially the identification of time delay in the linear system
is important and should be treated as the first task during system analysis and
control design. If the time delay used for controller design does not coincide
with the real process time delay, then the close-loop system can be unstable or
may cause the efficiency loss, [1,2]. The time delay identification can become
more complicated for the multi-input single-output system (MISO), where the
solution space is multi-modal.

Most of the conventional system identification techniques, such as those based
on the non-linear estimation method, for example the separable nonlinear least
squares method (SEPNLS), are in essence the gradient-guided local search meth-
ods, [3]. They require a smooth search space or a differentiable performance in-
dex. The conventional approaches in the multi-modal optimization can easily
fail in obtaining the global optimum and may stop at a local optimum, [4,5].

Ant algorithms are one of the most recent approximate optimization methods
to be developed. These algorithms are inspired by the behavior of real ants in
the wild [6], and more specifically, by the indirect communication between ants
within the colony via the secretion of chemical pheromones. The macro-scale
complex behavior emerges as a result of the cooperation in the micro-scale [7].

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 119–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The first ACO algorithm has been applied to many combinatorial problems.
Until now, there are few adaptations of such algorithms to continuous optimiza-
tion problems. In the paper we propose an Interpolated Ant Colony Optimiza-
tion (IACO) for a continuous domain. The continuous search space is sampled
by the individuals on the basis of the interpolated trace of the pheromone. The
proposed algorithm is then used to identify delays in linear dynamic systems.

2 Basic Concept of Continuous Ant Colony Optimization

ACO is a metaheuristic algorithm inspired by the foraging behavior of real ants.
At the start, when ants are looking for food, they explore the area in a random
way. Ants deposit a pheromone trail on the ground on the way back to the nest.
They reach food faster via shorter routes and since they leave their marks they
are reinforcing the pheromone trail during this path. The pheromone trail guides
other ants to the food source. Ants have tendency to follow a trail that contains
higher concentration of pheromone [8]. Indirect communication between ants,
known as stigmergy, enables them to find shortest paths between their nest and
food sources.

The first ACO algorithm was developed by Dorigo et al. [6,9] and used for
solving a combinatorial optimization problem. Many ant based optimization al-
gorithms have been developed and applied to discrete optimization problems, like
traveling salesman problem (TSP) [10], scheduling [11,12], vehicle routing prob-
lem [13]. A direct application of the stigmergy mechanism to solving continuous
optimization problem is difficult and only a few methods have been proposed
in the literature. The Continuous ACO (CACO) was the first of these meth-
ods [14]. It includes two levels: global and local. ACO performs local searches,
whereas the global search is handled by a genetic algorithm. The API algorithm
[15] was inspired by primitive ants behavior. It uses a ’tandem-running’ which
involves two ants and leads to gathering the individuals on the same hunting
site. This method selects the best point among those evaluated by the ants in
order to make the population proceed towards the optimum. A heterarchical
algorithm called ’Continuous Interacting Ant Colony’ (CIAC) [16] is designed
for the optimization of multiminima continuous functions. CIAC uses two com-
munication channels showing the properties of trail and direct communication.
However, all these approaches are conceptually quite different from ACO for
discrete problems.

The ACO algorithm for continuous optimization proposed by Socha [17],
known as ACOR, is the closest to the spirit of ACO for discrete problems. The
main idea of this algorithm is shifting from using a discrete probability distri-
bution to using a continuous probability density function (PDF). This density
function is produced, for each solution construction, from a population of solu-
tions which the algorithm keeps at all times. The construction of a solution is
done by components like in the original ACO algorithm. For a single dimension
an ant chooses only one value. For constructing a solution an ant uses a Gaussian
kernel which is a weighted superposition of several Gaussian functions, as PDF.
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Another algorithm for contiuous optimisiation problem, so-called Differential
Ant-Stigmergy Algorithm (DASA) was proposed by Korosec [18]. It transforms
a real-parameter optimization problem into a graph-search problem. The param-
eters’ differences assigned to the graph vertices are used to navigate through the
search space.

3 Ant Colony Optimization with Interpolated Search
Space

ACO is mainly applicable to discrete problems. The usage of pheromones space
interpolation allows for the extension of ACO applications to continuous spaces.
The IACO carries the same mechanisms as the classical ACO. Ants leave their
mark on the road which they pass and it is proportional to the quality of the
resulting solution. Pheromones aggregate and evaporate during iteration and
a specific map of pheromones is created in the search space. This map is not
unalterable and can bring into line with ambient. Each ant looks for food inde-
pendently of the others and moves from nest to the source of food. There are
plenty of ways in which ants can go. Ants choose a way by using three sources of
information: own experience, local information, pheromone trail. Ant own expe-
rience permits to recognize place already visited and to avoid looping the way.
For the artificial ant it permits to allocate a particular value to appropriate seek-
ing parameters. The local information determines a permissible way. Ants can
recognize and sidestep hindrances. In the artificial ant colony this is responsible
for the search space constraints. The pheromone trail permits to come back to
the nest and to find the source of food found earlier by another individual from
colony. Ants prefer those directions in which the pheromone intensity is growing.

The process of constructing a solution by an ant is divided into stages in
which the ant chooses a value for only one decision variable xi. When an ant is
choosing the value of the i-th decision variable xi it uses the cumulative distri-
bution function D(xi) obtained from an interpolation of the pheromone trace.
The pheromone trace is treated as a discrete probability distribution function
(DPDF) Pd(xi), where each k-th component of this function is defined by single
trace:

pd(xik) =
τ(xik)∑n
j=0 τij

(1)

On the base of the (DPDF) the R-probability density function (R-PDF) PcR

and similarly the L-probability density function (L-PDF) PcL are created::

PcR(xik < x � xik+1) = pdxik+1 PcL(xik < x � xik+1) = pdxik (2)

Next we can use the R-cumulative distribution function (R-CDF) DR(x) and
the L-cumulative distribution function (L-CDF) DL(x) defined as follows:

DR(x) =

∫ x

−∞
PcR(t)dt DL(x) =

∫ x

−∞
PcL(t)dt (3)
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If we sample the inverse of CDF DR(xi)
−1 or DL(xi)

−1 and use an interpolation
procedure we can obtain a new value of the decision variable xik taken by the
k-th ant. The functions R-PDF and L-PDF prefer probabilities obtained from
DPDF with its right or left side respectively (Fig. 1 shows an example). This
can lead to search on only one side of the best previously known solutions. In
order to search the entire space solution one half of the population of ants uses
the functions DR(xi)

−1 and the other half uses the function DL(xi)
−1 . This

solution is simple to implement and does not require complex calculations. The
pseudo code of the IACO is presented below.
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Fig. 1. The example of R-PDF PcR and L-PDF PcL with marked value of the likelihood
pd, and CDF:DR, and DL. This illustrates the unilateral preferences, left or right sided,
of the above functions.

Pseudo-code of IACO

Set_parameters

Initialize_pheromone_trials

While (termination conditions are not met) do

Calculate_the_L_and_R_cumulative_sum_of_the_pheromone_traces

Normalize_the_L_and_R_cumulative_sum_to_1

For (i=all new ants) do

For (k=all parmeters) do

Generate_uniformly_distributed_real_number_and_use_it_to:

Construct_solution_by_inerpolation_of_inverse_of...

_L_or_R_cumulative_sum

Add_calculated_solution_to_i-th_ant_as_k-th_component

end

Compute_quality_of_i-th_ant
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end

Update_pheromone_trials

end.

The choice made by an ant is determined by the pheromone trace and the cumu-
lative distribution function. It can lead to a local minimum. In order to improve
exploration one half of individuals have also disturbed the chosen direction by
adding a random component. For the i-th parameter of the k-th ant it can be
describe as:

xik = xikβ + ξ(1− β), (4)

where: xik - the value obtained on the basis of the cumulative distribution func-
tion, ξ - the random value with normal distribution, β - random coefficient of
ratio of averaging.

The ants use a pheromone trail which aim is to indicate a promising direction.
For this reason the intensity of a trace left by the k-th ants is proportional to
the quality of the obtained solution Jk:

τ(xik) =
n

m

Jα
k∑n

j=0 J
α
j

, (5)

where: n is an amount of ants in the nest, m is an amount of the pheromone
trace, α is a parameter that controls the exploration/exploitation mechanism by
influencing the ratio of the pheromone trace leaved by the best and the worst ant.
The quality function Jk is divided by the sum of all quality functions in order
to uniform it to one. The ratio of the number of ants n to the number of rows
in the matrix of pheromones m scales the intensity of leaving new pheromones
to the already existing traces. In order to avoid a too rapid convergence of the
algorithm the pheromone trace evaporates. It introduces a process of forgetting
and permits favoring the exploration of new areas in the search space. All the
pheromone values are decreasing during time t:

τ(xik , t+ 1) = ρτ(xik , t), (6)

where ρ ∈ (0, 1] is the evaporation rate. The amount of pheromone traces is
limited to a specified number by removing the worst traces in each iteration. The
ants are looking only for the time delays of a model. The residual parameters of
the model are obtained by SEPNLS during the calculation of the quality function
of individuals. It can be done because these parameters are linear and SEPNLS
works efficiently with them. The SEPNLS algorithm is described bellow.

4 The Optimization Problem

4.1 The Time Delay Identification

Dynamics of continuous-time (MISO) system with unknown time delays can be
described as:

n∑
i=0

aip
n−1x(t) =

r∑
j=1

mj∑
k=1

bjkp
mj−kuj(t− τj) (7)
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where: a and b are parameters describe dynamics of the system, where a0 = 1,
bi1 �= 0, p - differential operator, uj(t) - j-th input, τj - time delay of j-th input,
x - non-disturbed output of the system.

We assume that parameters n and mj are known. The measured output is
disturbed by a stochastic noise. The problem studied here is as follows: how to
estimate the time delays and the system parameters from sampled data repre-
sentation of the inputs and the noisy output.

4.2 SEPNLS and GSNLS Estimation Methods

The linear parameters of the model can be estimated as the minimizing argu-
ments of the LS criterion VN (θ, τ), [19]

VN (θ, τ) =
1

N − ks

N∑
k=ks+1

1

2
ε2(kθ, τ) =

1

N − ks

N∑
k=ks+1

1

2

(
y(t)− ϕT (k, τ)θ

)2
(8)

where: ε(kθ, τ) is an error of the model, θ - unknown linear parameters, τ - time
delay, ϕ - observed vector regression, y(t) - observed output of the plant.

The vectors of the time delays τ and linear parameters θ are estimated in a
separate manner. The linear parameters, when the time delays are known, can
be obtained from linear LS method:

θ = argmin
θ

VN (θ, τ), (9)

and the time delays τ̂ can be estimated as the nonlinear LS minimization method:

τ̂ = argmin
τ

V̌N (τ) (10)

The SEPNLS method can converge to the local optimum. It is possible to apply
a stochastic approximation [20] with convolution smoothing to the SEPNLS
method in order to reach the global optimum [21]. The estimate of the time
delay in GSNLS can be obtained by disturbing the time delay using a random
value β:

τ̂ (k+1) = τ̂ (k) +Δτ̂ (k) + β, (11)

where: τ̂ (k) is an astimate of time delay in k-th step of LS procedure, Δτ̂ (k) is
an increnet of the value of τ̂ (k) calculate in k-th step of LS procedure, β is a
random disturbans.

5 Simulation Example

The proposed algorithms were used to identify time delay for a set of 14 MISO
systems:

ÿ(t) + a1ẏ(t) + a2y(t) = b11u1(t− τ1) + b21u2(t− τ2), (12)
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where all parameters a1, a2, b11, b21, τ1, τ2, have been chosen in a random way.
The input and output signals are converted by Zero-Order-Hold operation with
sampling period T = 0.05. As input signals we use an independent sequence of
uniform distribution between 0 and 1. The signal to measurement noise ratio
SNR is 5%. A data set of 1000 samples was generated for the identification
process. The algorithms are implemented for 250 iterations. The initial values of
time delays τ (0) are randomly chosen between 0 and 25. The algorithms presented
in the paper were running 100 times for each systems.

The IACO was used to identify time delays and the other parameters of the
model (12) have been identified by using SEPNLS method [22]. The fitness
function Jk of each individuals was obtained directly from the linear LS method
VN (θ, τ) given by the equation (9):

Jk = VN (θ, τ) (13)

The solution space of time delays is multimodal and the global optimum is not
reached every time. Therefore the percentage of identified time delays, with error
less than 10%, can be treated as the main quality function and it is presented
in Fig. 2. GSNLS identifies time delays correctly in average of 29%, IACO in
86%. Although, IACO does not always cope with the correct identification it is
definitely better than GSNLS.

The performance of identification algorithm is determined also by the time of
computing. The number of functional evaluations required to reach the true time
delay with 10% accuracy is smaller for GSNLS and on average is equal to 650
calls. The corresponding value for IACO is almost twice as much as the length
and is equal to 1050 calls.

Based on these results we can conclude that the IACO algorithm is more
accurate but requires a longer computation time than the GSNLS.
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Fig. 2. The percentage of identified time delays with error less than 10%, for respec-
tively a) τ1 and b) τ2. The average number of corect identification τ1 and τ2 is equal
29% for GSNLS and 86% for IACO.
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6 Conclusion

The paper presents a continuous optimization algorithm IACO which uses the
same mechanisms as the ACO applied to discrete optimization. The linear inter-
polation allows to obtain a simple and efficient optimization algorithm. Presented
example shows that it is an effective tool for global optimization.

Further research is required to compare the proposed algorithm with other
Ant Colony Optimization for continuous domain using for this purpose some
classical benchmarks. It will allow a better assessment of the algorithm.
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8. Grassé, P.P.: La reconstruction du nid et les coordinations inter-individuelles chez
bellicositermes natalensis et cubitermes sp. La thorie de la stigmergie: Essai din-
terprtation des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)

9. Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). PhD the-
sis, Dipartimento di Elettronica, Politecnico di Milano, Italy (1992)

10. Bullnheimer, B., Hartl, R.F., Strauss, C.: Applying the Ant System to the Vehicle
Routing Problem. In: Voss, S., et al. (eds.) Meta-heuristics: Advances and Trends
in Local Search Paradigms for Optimization. Kluwer (1999)

11. Costa, D., Hertz, A.: Ants can color graphs. J. Oper. Res. Soc. 48, 295–305 (1997)
12. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-

constrained project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002)
13. Reimann, M., Doerner, K., Hartl, R.F.: D-ants: Savings based ants divide and

conquer the vehicle routing problems. Comput. Oper. Res. 31(4), 563–591 (2004)
14. Bilchev, B., Parmee, I.C.: The Ant Colony Metaphor for Searching Continuous

Design Spaces. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 25–39.
Springer, Heidelberg (1995)
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Abstract. In this paper, we present a variable iterated greedy algorithm where 
its parameters (basically destruction size and probability of whether or not to 
apply the iterated greedy algorithm to an individual) are optimized by the  
differential evolution algorithm. A unique multi-chromosome solution represen-
tation is presented in such a way that the first chromosome represents the de-
struction size and the probability whereas the second chromosome is simply  
a job permutation assigned to each individual in the population randomly. The 
proposed algorithm is applied to the no-idle permutation flowshop scheduling 
problem with the makespan criterion. The performance of the proposed algo-
rithm is tested on the Ruben Ruiz’s benchmark suite and compared to their best 
known solutions available in http://soa.iti.es/rruiz as well as to a very recent 
discrete differential evolution algorithm from the literature. The computational 
results show its highly competitive performance and ultimately, 183 out of 250 
instances are further improved. In comparison to the very recent hybrid discrete 
differential evolution algorithm, 114 out of 150 new best known solutions they 
provided are also further improved. 

Keywords: Differential evolution algorithm, iterated greedy algorithm, no-idle 
permutation flowshop scheduling problem, heuristic optimization. 

1 Introduction 

In a no-idle permutation flowshop scheduling (NIPFS) problem, each machine has to 
process jobs without any interruption from the start of processing the first job to the 
completion of the last job. For this reason, whenever needed, the start of processing 
the first job on a given machine must be delayed so as to satisfy the no-idle require-
ment. The relevant literature about the NIPFS problem can be found in [1-15].   As to 
the meta-heuristics applications, Pan and Wang proposed a discrete differential evolu-
tion and a discrete particle swarm optimization algorithms in [16, 17]. Recently, in 
[18] an iterated greedy (IG) algorithm for the NIPFS problem with the makespan 
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criterion was presented. In addition, they employed their own benchmark suite and 
tested the performance of IG against the existing heuristic algorithms from the litera-
ture whereas a differential evolution algorithm is presented in [19]. In this paper, a 
variable iterated greedy algorithm with a differential evolution (vIG_DE) is presented 
to be compared to the best known solutions in [18] as well as to a very recent hybrid 
discrete differential evolution algorithm (HDDE) in [24]. The remaining paper is 
organized as follows. Section 2 introduces the no-idle permutation flowshop schedul-
ing problem. Section 3 presents the vIG_DE algorithm in detail. Section 4 discusses 
the computational results over benchmark problems. Finally, Section 5 summarizes 
the concluding remarks. 

2 No-Idle Permutation Flowshop Scheduling Problem 

The NIPFS problem with  1, . . ,  jobs and  1, . . ,   machines can be 
defined as follows. Each job will be sequenced through  machines. ,  denotes 
the processing time in which the setup time is included. At any time, each machine 
can process at most one job and each job can be processed on at most one machine. 
The sequence in which the jobs are to be processed is the same for each machine. To 
follow the no-idle restriction, each machine must process jobs without any interrup-
tion from the start of processing the first job to the completion of processing the last 
job. The aim is then to find the same permutation on each machine and its makespan 
is minimized. The formulation of makespan criterion is given below:  

Let a job permutation , . . ,  represent the schedule of jobs to be 
processed and , . . ,  be a partial schedule of  such that j must be between 

1 and  ( 1 ). In addition, , , 1  refers to the minimum difference 
between the completion of processing the last job of  on machines 1 and , 

which is restricted by the no-idle constraint.  Then, , , 1  can be computed 
as follows:       , , 1 , 1                             1, . . , 1                   (1)           , , 1 , , 1 , , 0 , 1                                                               2, . . ,   1, . . , 1                                     (2) 
Then, the makespan of job   on machine  can be given by , ∑ , , 1 ∑ , 1                  (3) 
We refer to Tasgetiren et al. [19] for the details with examples. Therefore, the objec-
tive of the NIPFS with the makespan criterion is to find a permutation   in the set of 
all permutations Π  such that    Π∈∀π .                       (4)  
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3 IG with Differential Evolution 

Differential evolution (DE) is an evolutionary optimization method proposed by Storn 
and Price [20]. An excellent review of DE algorithms can be found in Das and Sugan-
than [21]. On the other hand, an IG algorithm in general is either started with a ran-
dom solution or a problem specific heuristic, which is usually the NEH heuristic [22]. 
Then a local search based on the best insertion heuristic is applied to the initial solu-
tion generated by the NEH heuristic. The solution is destructed and reconstructed by 
using the NEH heuristic again. This process is repeated until a termination criterion is 
satisfied. For details regarding the IG algorithm, we refer to Ruiz and Stützle [23] 
where it is well illustrated with an example. 

In this paper, the standard differential evolution algorithm is modified such that the 
IG algorithm will be able to use a variable destruction size and a probability whether 
or not to apply the IG algorithm to the associated individual in the population, thus 
ending up with a variable iterated greedy algorithm guided by a DE algorithm 
(vIG_DE). For this purpose, we propose a unique multi-chromosome solution repre-
sentation given in Fig. 1. 

 
 1 2 3 ...  
    
    ...  

Fig. 1. Solution representation 

In the solution representation, each individual represents the destruction size  
and the probability  whether or not to apply the IG algorithm, respectively. In 
addition, a permutation is randomly assigned to each individual in the target popula-
tion. The basic idea behind the proposed algorithm is that while DE optimizes the  
and , respectively, these optimized values guide the search for the IG algorithm in 
order for offspring generation. In other words, a uniform random number  is generat-
ed. If  is less than the probability ( , offspring is directly generated by applying the 
IG algorithm with the destruction size  to the permutation  of the corresponding 
individual. In the initial population, the  and  parameters for each individual are 
established as follows: the destruction size is randomly and uniformly determined as 1, 1 . Then, the permutation for the first individual is constructed by the 
NEH heuristic. The remaining permutations for individuals in the population are ran-
domly constructed and the NEH heuristic is applied to each of them. Once the de-
struction size and permutation for each individual are constructed, the IG algorithm is 
applied to each individual at first glance. Then the probability and  whether or not 

to apply the IG algorithm to each permutation is determined as 1 ∑ . By 

doing so, the higher the probability is, the higher the chance that the IG algorithm will 
be applied to corresponding individual i. In the proposed vIG_DE algorithm, mutant 
individuals are generated as follows:  
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                                (5) 

Where ,  and  are three randomly chosen individuals by tournament selection with 
size of 2 from the target population such that 1, . . ,  and 1,2 . 0 is a  mutation scale factor which affects the differential variation 
between two individuals. Then, an arithmetic crossover operator is applied to obtain 
the trial individual instead of the traditional uniform crossover such that:  1                   (6) 

where  is a user-defined crossover constant in the range 0,1 . During the reproduc-
tion of the trial population, parameter values violating the search range are restricted to:          1,2                        (7) 

where  1  1; 0    1; and r is a uniform 
random number between 0 and 1. Finally, the selection is based on the survival of the 
fittest among the trial and target individuals such that:  

                       (8) 

The pseudo code of the vIG_DE algorithm is given in Figure 2.  _                      0,1                
     

Fig. 2. vIG_DE algorithm 

4 Computational Results 

The proposed vIG_DE algorithm was coded in C++ and run on an Intel Core 2  
Quad 2.66 GHz PC with 3.5GB memory. Crossover probability and mutation  
scale factor are taken as 0.9    0.9, respectively.  We test the perfor-
mance of our algorithm on a benchmark suite available in http://soa.iti.es/rruiz.  
The benchmark set is specifically designed for the no-idle permutation flowshop 
scheduling problem with makespan criterion. It has complete combinations of 
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50,100,150,200,250,300,350,400,450,500 ; and 10,20,30,40,50 . 
There are five instances per combination; hence there are 250 instances in total. 

Five runs were carried out for each problem instance as the same as in other com-
peting algorithms. Each run was compared to the best known solution presented in 
http://soa.iti.es/rruiz . The average relative percent deviation from the best known 
solution is given as follows:  ∆ ∑ /                            (9) 

Where ,  and  are the objective function values generated by vIG_DE algo-
rithm in each run; the best known solution value; and the number of runs; respective-
ly. As a termination criterion, the vIG_DE algorithm was run for 2⁄  
milliseconds where 30, which is the same as in Ruiz et al. [18]. The population 
size is fixed at 30.  

The computational results are given in Table 1. As seen in Table 1, the vIG_DE al-
gorithm was significantly better than the IG_LS algorithm of Ruiz et al. [18] since the 
overall ∆  was improved from 0.34% to 0.12%. In terms of the overall minimum 
deviation, the whole benchmark suite was further improved by 0.25% whereas the 
overall maximum deviation was only 0.02%. The vIG_DE algorithm was also robust 
since the overall standard deviation of the relative percent deviation was 0.11%. Ul-
timately, 183 out of 250 instances were further improved, 49 being equal and only 18 
being worse. 

Table 1. Computational result of algorithms  

  IG_LS vIG_DE HDDE 
n m ∆  ∆  ∆  ∆  ∆  Tmax ∆  Tmax 
50 10 0.25 0.03 -0.02 0.10 0.05 7.5 0.20 15.0 

 20 0.33 -0.04 -0.13 0.04 0.07 15.0 0.29 30.0 
 30 0.64 -0.17 -0.33 -0.04 0.11 22.5 0.25 45.0 
 40 0.78 -0.41 -0.64 -0.18 0.18 30.0 0.36 60.0 
 50 1.52 -0.16 -0.43 0.11 0.22 37.5 1.15 75.0 

100 10 0.17 0.04 0.00 0.10 0.05 15.0 0.10 30.0 
 20 0.33 -0.09 -0.18 0.01 0.08 30.0 0.09 60.0 
 30 0.46 -0.19 -0.34 0.00 0.13 45.0 0.50 90.0 
 40 0.87 -0.65 -0.98 -0.40 0.24 60.0 0.07 120.0 
 50 0.73 -0.12 -0.40 0.17 0.22 75.0 0.45 150.0 

150 10 0.01 0.00 0.00 0.00 0.00 22.5 0.01 45.0 
 20 0.34 0.05 -0.03 0.12 0.06 45.0 0.43 90.0 
 30 0.42 -0.18 -0.29 -0.11 0.08 67.5 0.14 135.0 
 40 0.73 -0.07 -0.31 0.17 0.20 90.0 0.25 180.0 
 50 0.68 -0.85 -1.14 -0.62 0.20 112.5 -0.17 225.0 

200 10 0.06 0.00 0.00 0.00 0.00 30.0 0.03 60.0 
 20 0.12 -0.07 -0.12 -0.01 0.05 60.0 0.04 120.0 
 30 0.21 -0.31 -0.44 -0.18 0.11 90.0 0.01 180.0 
 40 0.44 -0.26 -0.50 -0.04 0.18 120.0 0.10 240.0 
 50 0.42 -0.40 -0.55 -0.24 0.13 150.0 0.45 300.0 

250 10 0.01 -0.01 -0.01 -0.01 0.00 37.5 0.00 75.0 
 20 0.17 -0.03 -0.08 0.02 0.04 75.0 0.13 150.0 
 30 0.31 -0.14 -0.26 -0.02 0.10 112.5 0.00 225.0 
 40 0.54 0.02 -0.11 0.16 0.10 150.0 0.31 300.0 
 50 0.56 -0.60 -0.85 -0.31 0.22 187.5 0.06 375.0 
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Table 1. (continued) 

300 10 0.01 0.00 0.00 0.00 0.00 45.0 0.00 90.0 
 20 0.23 0.00 -0.08 0.09 0.06 90.0 0.12 180.0 
 30 0.23 0.02 -0.09 0.12 0.08 135.0 0.30 270.0 
 40 0.26 -0.34 -0.53 -0.16 0.15 180.0 0.15 360.0 
 50 0.42 -0.23 -0.59 0.24 0.34 225.0 0.10 450.0 

350 10 0.03 0.00 0.00 0.00 0.00 52.5 0.02 105.0 
 20 0.23 -0.01 -0.06 0.05 0.04 105.0 0.05 210.0 
 30 0.33 -0.05 -0.15 0.05 0.08 157.5 0.11 315.0 
 40 0.39 0.08 -0.09 0.26 0.13 210.0 0.31 420.0 
 50 0.40 -0.44 -0.64 -0.21 0.17 262.5 -0.18 525.0 

400 10 0.01 0.00 0.00 0.00 0.00 60.0 0.01 120.0 
 20 0.14 0.04 -0.04 0.12 0.06 120.0 0.14 240.0 
 30 0.25 0.11 0.02 0.23 0.09 180.0 0.23 360.0 
 40 0.33 -0.04 -0.20 0.09 0.11 240.0 0.20 480.0 
 50 0.37 -0.25 -0.43 0.01 0.18 300.0 0.08 600.0 

450 10 0.02 0.00 0.00 0.00 0.00 67.5 0.02 135.0 
 20 0.12 0.00 -0.07 0.05 0.05 135.0 0.12 270.0 
 30 0.20 -0.03 -0.15 0.10 0.10 202.5 0.08 405.0 
 40 0.36 -0.09 -0.24 0.05 0.12 270.0 0.01 540.0 
 50 0.58 -0.07 -0.35 0.32 0.26 337.5 0.21 675.0 

500 10 0.03 0.00 0.00 0.00 0.00 75.0 0.01 150.0 
 20 0.10 -0.04 -0.06 -0.03 0.01 150.0 0.04 300.0 
 30 0.20 0.08 -0.01 0.19 0.09 225.0 0.13 450.0 
 40 0.35 0.10 -0.06 0.27 0.13 300.0 0.13 600.0 
 50 0.45 -0.03 -0.33 0.18 0.20 375.0 0.17 750.0 

Avg  0.34 -0.12 -0.25 0.02 0.11 123.8 0.16 247.5 

 
In addition to above, we also compare our algorithm to a very recent HDDE algo-

rithm in [24]. To avoid the CPU time questions, we directly take their results for /2 60 milliseconds, which is twice when compared to our termination crite-
rion ( /2 30). First of all, Table 1 confirms that the vIG_DE algorithm was 
superior to the HDDE algorithm since ∆  was improved from 0.16% to 0.12%. 
In [24], it is reported that 150 out of 250 instances are improved for the benchmark 
suite. In Table 2, we show that 114 out of 150 best known solutions provided by 
HDDE in [24] were further improved by the vIG_DE algorithm with the half of the 
CPU time allocation.  

Table 2. New best known solutions by improvement over the HDDE algorithm  

Instance HDDE vIG_DE Instance HDDE vIG_DE Instance HDDE vIG_DE 
I_7_50_30_1 7225 7223 I_7_200_40_1 20019 19965 I_7_350_50_1 32375 32144 
I_7_50_30_5 7338 7333 I_7_200_40_2 21743 21724 I_7_350_50_2 33167 32911 
I_7_50_40_1 9169 9168 I_7_200_40_4 17624 17507 I_7_350_50_3 34903 34718 
I_7_50_40_3 9791 9782 I_7_200_50_1 22865 22729 I_7_350_50_4 37081 37009 
I_7_50_50_2 10942 10893 I_7_200_50_2 23600 23488 I_7_350_50_5 35588 35390 
I_7_50_50_4 9970 9967 I_7_200_50_3 22561 22431 I_7_400_20_1 27696 27686 
I_7_50_50_5 11349 11316 I_7_200_50_5 24334 24275 I_7_400_20_5 24711 24688 

I_7_100_10_1 6570 6570 I_7_250_20_2 17684 17683 I_7_400_30_1 29468 29405 
I_7_100_20_4 9029 8972 I_7_250_20_4 17646 17645 I_7_400_40_1 37540 37440 
I_7_100_20_5 9117 9109 I_7_250_30_2 21876 21853 I_7_400_40_2 33889 33805 
I_7_100_30_1 11228 11210 I_7_250_30_4 19807 19794 I_7_400_40_3 34498 34482 
I_7_100_30_2 10943 10938 I_7_250_30_5 20910 20906 I_7_400_40_4 35374 35306 
I_7_100_30_3 10587 10571 I_7_250_40_1 22870 22820 I_7_400_50_1 37938 37825 
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Table 2. (continued) 

I_7_100_30_4 11137 11103 I_7_250_40_4 24858 24748 I_7_400_50_2 38336 38237 
I_7_100_40_1 12721 12606 I_7_250_50_2 24864 24577 I_7_400_50_3 38122 37880 
I_7_100_40_2 13291 13117 I_7_250_50_3 26678 26512 I_7_400_50_4 40521 40465 
I_7_100_40_3 12574 12488 I_7_250_50_5 27511 27389 I_7_400_50_5 35761 35516 
I_7_100_40_4 11853 11781 I_7_300_30_1 26529 26501 I_7_450_20_1 27521 27514 
I_7_100_50_1 16035 16019 I_7_300_30_3 24381 24370 I_7_450_20_3 28808 28770 
I_7_100_50_2 14800 14787 I_7_300_30_5 22630 22568 I_7_450_20_4 28461 28446 
I_7_150_20_3 12058 12046 I_7_300_40_1 26731 26599 I_7_450_30_2 32544 32517 
I_7_150_20_4 10960 10936 I_7_300_40_2 29316 29158 I_7_450_30_4 33734 33700 
I_7_150_30_1 15540 15505 I_7_300_40_3 25382 25362 I_7_450_40_1 39641 39562 
I_7_150_30_2 13719 13667 I_7_300_40_4 27546 27479 I_7_450_40_2 36137 36020 
I_7_150_30_3 14664 14651 I_7_300_40_5 28812 28760 I_7_450_40_4 37770 37606 
I_7_150_30_4 14555 14549 I_7_300_50_1 31755 31667 I_7_450_40_5 35773 35712 
I_7_150_40_1 16114 16025 I_7_300_50_2 29515 29490 I_7_450_50_1 37847 37563 
I_7_150_40_2 18204 18122 I_7_300_50_3 30851 30731 I_7_450_50_3 44157 44087 
I_7_150_40_3 16391 16356 I_7_300_50_5 29205 29051 I_7_450_50_5 41180 40923 
I_7_150_50_1 20388 20364 I_7_350_20_3 22899 22880 I_7_500_20_3 31102 31066 
I_7_150_50_2 19374 19121 I_7_350_20_4 22975 22968 I_7_500_20_4 30905 30900 
I_7_150_50_3 19655 19447 I_7_350_20_5 22750 22746 I_7_500_30_2 39365 39357 
I_7_150_50_4 20166 20139 I_7_350_30_2 27765 27744 I_7_500_30_4 33972 33918 
I_7_150_50_5 19342 19308 I_7_350_30_3 27673 27653 I_7_500_40_1 40768 40708 
I_7_200_20_5 14181 14175 I_7_350_30_4 29305 29295 I_7_500_40_3 40485 40366 
I_7_200_30_1 17116 17053 I_7_350_40_1 29282 29182 I_7_500_40_5 36343 36312 
I_7_200_30_3 17501 17428 I_7_350_40_2 29154 29043 I_7_500_50_1 46331 46238 
I_7_200_30_4 20005 19991 I_7_350_40_4 34744 34644 I_7_500_50_3 45394 45206 

5 Conclusions 

In this paper, we present a DE based variable iterated greedy algorithm to solve the the 
no-idle permutation flowshop scheduling problem with makespan criterion. A unique 
multi-chromosome solution representation is presented in such a way that first chromo-
some represents the destruction size and the probability of applying the IG algorithm to 
the permutation of each individual whereas second chromosome is simply a permutation 
assigned to each individual in the population randomly. The performance of the 
vIG_DE algorithm is tested on the Ruben’s benchmark suite and compared to the best 
known solutions presented in [18].  Ultimately, 183 out of 250 instances were further 
improved, 49 being equal and only 18 being worse. When compared to the HDDE algo-
rithm, 114 out of 150 best known solutions provided by HDDE in [24] were further 
improved by the vIG_DE algorithm with the half of the CPU time allocation.  
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Centre of Excellence IT4Innovations, Division of University of Ostrava,
Institute for Research and Applications of Fuzzy Modeling,

30. dubna Street 22, 701 03 Ostrava, Czech Republic
{josef.tvrdik,ivan.krivy}@osu.cz

http://www.osu.cz/

Abstract. We consider the problem of optimal partitional clustering of
real data sets by optimizing three basic criteria (trace of within scatter
matrix, variance ratio criterion, and Marriottt’s criterion). Four variants
of the algorithm based on differential evolution with competing strategies
are compared on eight real-world data sets. The experimental results
showed that hybrid variants with k-means algorithm for a local search are
essentially more efficient than the others. However, the use of Marriottt’s
criterion resulted in stopping hybrid variants at a local minimum.

Keywords: optimal partitional clustering, adaptive differential evolu-
tion, k -means algorithm, hybrid search, numerical comparison.

1 Introduction

Cluster analysis is an important exploratory technique used for grouping ob-
jects into relatively homogeneous clusters on the basis of object similarities or
distances.

Clustering problem can be defined as follows. Let O be a set of n objects,
each of which is characterized by p real-valued attributes. Furthermore, let Z
be a data matrix of size n × p. Therefore, the matrix can be considered as
composed of n data vectors zi, where each element zij represents the jth real-
valued attribute of the ith object. Given the matrix Z, the aim of the partitional
clustering algorithm is to find such a partition G = {C1, C2, . . . , Cg}, Ck �=
∅ for all k, Ck ∩ Cl = ∅ for all k �= l,∪g

k=1Ck = O that the objects belonging
to the same cluster are as similar to each other as possible, while the objects
belonging to different clusters are as dissimilar as possible.

The partitional clustering algorithms try to decompose the data sets directly
into a set of disjoint clusters using available optimizing criteria. Among evo-
lutionary algorithms, the differential evolution (DE) appeared to be the most
efficient in partitional clustering [2,3,10,11,13]. We have recently studied a few
improved adaptive DE variants: variants based on an exponential crossover with
a high probability of mutation [18], hybrid variants including k -means algorithm
for local search [19], and variants with a special rearrangement of the rank of
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c© Springer-Verlag Berlin Heidelberg 2012
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cluster centers after completing each generation [19]. Our experimental results
obtained on four real data sets using only one optimizing criterion indicated
that hybrid variants are substantially more efficient when compared with other
DE variants.

In this paper, we are searching for an optimal partitional clustering of real
data sets by using improved DE algorithms with competing strategies and three
basic optimizing criteria.

2 Criteria of Optimal Partitioning

There are several optimizing criteria convenient for comparing the degree of
optimality over all possible partitions (see [8]). We use the following three criteria
in experimental comparison.

Trace within criterion (hereafter TRW), proposed by Friedman and Rubin [7],
is based on minimizing the trace of pooled-within groups scatter matrix (W )
defined as

W =

g∑
k=1

W k, (1)

W k being the variance matrix of attributes for the objects belonging to cluster
Ck,

W k =

nk∑
j=1

(z
(k)
j − z̄(k))(z

(k)
j − z̄(k))T , (2)

where z
(k)
j is the vector of attributes for the jth object of cluster Ck, z̄

(k) =(∑nk

j=1 z
(k)
j

)
/nk the vector of means (centroids) for cluster Ck, and nk = |Ck|.

The between groups scatter matrix can be expressed analogously in the form

B =

g∑
k=1

nk(z̄
(k) − z̄)(z̄(k) − z̄)T , (3)

z̄ = (
∑n

i=1 zi)) /n being the vector of means for all objects. It can be easily
proved that the total scatter matrix T , defined as T =

∑n
i=1(zi − z̄)(zi − z̄)T ,

meets the equality T = W +B.
Variance ratio criterion (VRC) based on maximizing the ratio of between and

within variance and Marriott’s criterion (MC) to be minimized have the form:

VRC =
tr(B)/(g − 1)

tr(W )/(n− g)
, MC = g2

det(W )

det(T )
. (4)

3 Differential Evolution Algorithm

The differential evolution (DE), introduced by Storn and Price [15], has become
one of the most frequently evolutionary algorithms used for solving the con-
tinuous global optimization problems [14]. When considering the minimization



138 J. Tvrd́ık and I. Křivý

problem, for a real function f(x) → R, where x is a continuous variable (vector
of length d) with the domain D ⊂ R

d, the global minimum point x∗ satisfying
condition f(x∗) ≤ f(x) for ∀x ∈ D is to be found. The domain D is defined by

specifying boundary constraints, D =
∏d

j=1[aj , bj], aj < bj , j = 1, 2, . . . , d .
The initial population of N points is generated at random uniformly dis-

tributed in D, each point in D is considered as a candidate of the solution and
then the population is evolving generation by generation until the stopping con-
dition is met. Next generation is created by application of evolutionary operators
to the current generation.

A new trial point y is generated by using mutation and crossover. There are
various strategies of mutation and crossover [4,5,12,14,15]. The most popular
mutation strategy rand/1 generates the mutant point u by adding the weighted
difference of two points

u = r1 + F (r2 − r3) , F > 0 , (5)

where r1, r2, and r3 are three mutually distinct points randomly taken from
population P , not coinciding with the current xi, and F is an input parameter.
Kaelo and Ali [9] proposed an amendment of this mutation denoted as randrl/1.
The point r1 in (5) is the best among r1, r2, and r3, r1 = argmini∈{1,2,3} f(ri).
Such mutation improves the efficiency of the search with preserving the reliability
of the search.

The elements yj , j = 1, 2, . . . , d, of the trial point y are built up by the
crossover of the current point xi and the mutant point u. The number of mutant
vector elements used in the trial point is controlled by parameter CR, 0 ≤ CR ≤
1. Two kinds of crossover (binomial and exponential) were proposed in [15].
Let pm be the probability of mutation defined as the mean relative length of
overwritten elements of xi, i.e. pm = E(L)/d. The relation between the pm and
control parameter CR was studied by Zaharie [21]. For binomial crossover, the
relation between pm and control parameter CR is linear, while for exponential
crossover the relationship is strongly non-linear,

CRd − d pm CR + d pm.− 1 = 0. (6)

The equation (6) has only one real solution in the open interval of (0, 1) for
pm ∈ (1/d, 1). The crossover parameter CR satisfies the conditions CR = 0 for
pm = 1/d and CR = 1 for pm = 1. Thus, for given pm we can find a unique
corresponding value of CR.

A combination of the mutation and the crossover gives the DE strategy, mostly
abbreviated by DE/m/n/c, where m stands for the type of mutation, n for the
number of differences used in mutation, and c for the crossover type. The strategy
with the setting of F and CR defines a DE variant. Efficiency of the DE variants
varies very substantially and is problem-depending. That is why many adaptive
or self-adaptive DE algorithms were proposed.

Adaptive DE with competition of different DE strategies and control parame-
ter settings was introduced in [16]. Any of H strategies in the pool can be chosen
for the generation of a new trial point y. The strategy is selected randomly with
probability qh, h = 1, 2, . . . , H . At the start the values of probability are set
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uniformly, qh = 1/H , and they are modified according to the success rate in the
preceding steps of the search process. The hth setting is considered successful
if it generates such a trial vector y satisfying f(y) ≤ f(xi). Probability qh is
evaluated as the relative frequency according to

qh =
nh + n0∑H

j=1(nj + n0)
, (7)

where nh is the current count of the hth setting successes, and n0 > 0 is an
input parameter. The setting of n0 > 1 prevents from a dramatic change in qh
by one random successful use of the hth strategy. To avoid degeneration of the
search process, the current values of qh are reset to their starting values if any
probability qh decreases bellow some given limit δ > 0. The input parameters
controlling competition are recommended to set up to n0 = 2 and δ = 1/(5×H).

For optimal partitioning we use a variant of this algorithm that appeared well-
performing in several benchmark tests [17]. In this variant, denoted cde hereafter.
12 strategies are in competition (H = 12), six of them use a binomial crossover,
the others an exponential crossover. The randrl/1/ mutation is applied in all the
strategies, two different values of control parameter F are used, F = 0.5 and
F = 0.8. Binomial crossover uses three different values of CR, CR ∈ {0, 0.5, 1}.
Values of CR for exponential crossover are evaluated from (6), three values of
probability pm are set up equidistantly in the interval (1/d, 1). This cde algorithm
was applied to partitioning [19] and outperformed the other algorithms [1,20].

4 Encoding in Clustering Problems

During a search process, it is desirable to solve the problem how to encode a
feasible partition of objects. Data matrix Z is size of n × p with real-valued
elements and it should be partitioned into g clusters. Each center of the cluster
of a partition could be considered to be just one vector of length p so that
each partition could be represented by g-tuple of such vectors. Therefore, any
partition of g clusters can be encoded using a floating point array of length g×p.
Each object is classified into a cluster with the least Euclidean distance to the
center of the cluster. If it happens that a cluster or even more clusters are empty
within the search process and make the current classification unfeasible, such a
classification can be repaired for example by assignment of a randomly chosen
element from the cluster of the highest cardinality to each empty cluster. This
attempt is used in the implemented algorithms.

Another question arises when we consider how to encode an object-to-cluster
association. In this paper, a direct encoding of the object-to-cluster association
was used. The encoding is based on the idea to represent any feasible partition
by a vector (of length n) whose ith component gives the number of the corre-
sponding cluster. However, this scheme is ambiguous, e.g. the vectors (2, 2, 3, 1, 1)
and (3, 3, 1, 2, 2) represent the same partitions. The unambiguity could be solved
by using a convenient rearrangement of the rank of cluster centers making the
object-to-cluster association as similar as possible for all individuals in the cur-
rent population. To find such rearrangement of one individual representation
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making the object-to-cluster association equivalent to object-to-cluster associa-
tion of another individual is easy when the both individuals produces the same
classifications as in the example given above. However, the rearrangement is a
hard problem when the classifications differ. We proposed a new heuristic search
for the most similar object-to-cluster association based on the comparing of the
g the most promising rearrangements and the selection of the best of them.

The rearrangement was applied at random after completing a generation with
the probability increasing in the course of the optimizing process. The DE vari-
ants, where this recoding is used, are denoted by suffix “G” at the end of their
labels.

5 Hybrid DE with k-Means Algorithm

In order to improve the search of minimum value of the clustering criterion,
a modified hybrid DE algorithm was proposed. After finding a trial vector y
satisfying the condition f(y) ≤ f(xi), the k-means algorithm with y as input
is used to get the locally best solution. This solution is then used as a trial
vector. Similar approach has been recently applied in [11]. Advantages of k-
means algorithm are fast convergence to a local minimum and low complexity
O(n). The DE variants, where this hybrid local search is used, are denoted by
suffix ”H” at the end of their labels.

6 Data Used in Benchmark Tests

All DE algorithms under consideration were tested using eight real-world data
sets. The data labeled as bcw, iris, glass, and vowel were received directly
from [10], while the remaining data were taken from the Machine learning repos-
itory [6]. When labeling the data from the repository, we use hereafter abbrevia-
tions wine, iono, thyroid, and liver. The data sets are briefly described in Table 1.
All the objects attributes are numeric. No missing attribute values occur.

Table 1. Description of data

Data name bcw iris glass vowel wine ionosphere thyroid liver
disease disorders

No. of classes 2 3 6 6 3 2 3 2
No. of objects 683 150 214 871 178 371 215 345
No. of attributes 9 4 9 3 13 34 5 6

7 Experiments and Results

The search space D for all the DE variants was chosen to give the Z matrix
domain [zmin, zmax], where zmin and zmax are vectors of minimum and max-
imum values of each variable in data set Z. The population size was set up to
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N = 30 in all experiments. Individuals in initial population were generated as g
randomly taken rows of matrix Z. The stopping condition of the search was in
the form (fmax − fmin)/|fmin| < 1× 10−3, where fmax, fmin are maximum and
minimum function values in the current generation, respectively. The control
parameter of k-means algorithm is the relative difference of objective function
values in two subsequent steps and it was set up to 1× 10−5. For each algorithm
and each test problem, 50 independent runs were performed. Computational cost
of a run was measured by the number of objective-function evaluations denoted
by nfe. The average values of the optimizing criterion are presented in Table 2
with their standard deviations in % of the mean. The best values are printed in
bold, where the average values obtained by the algorithms are not the same for
the given problem. Values of MC for iono data are missing because the values of
the second attribute are constant and then det(Z) = 0.

Table 2. Means of the best criterion values and their standard deviations in % of the
mean (vc)

cde cdeG cdeH cdeGH

TRW mean vc mean vc mean vc mean vc

bcw 19323.18 6e-5 19323.18 5e-5 19323.17 0 19323.17 0
liver 423980.9 0 423980.9 0 423980.9 0 423985.6 4e-3
glass 341.1419 3.09 336.8895 1.22 336.0605 0 336.0605 0
iono 2419.377 1e-3 2419.366 3e-4 2419.365 0 2419.365 0
iris 7885.144 0 7885.144 0 7885.144 0 7885.144 0
thyroid 28560.15 0 28560.15 0 28560.15 0 28560.15 0
vowel 30876830 1.37 30742870 0.73 30686240 0 30686240 0
wine 2370690 0 2370690 0 2370690 0 2370690 0

VRC mean vc mean vc mean vc mean vc

bcw 1026.262 4e-5 1026.262 5e-5 1026.262 0 1026.262 0
liver 322.2691 0 322.2691 0 322.2667 5e-3 322.2667 5e-3
glass 124.1408 1.54 123.6517 2.35 124.6162 0 124.6162 0
iono 118.8265 0 118.8265 0 118.8265 0 118.8265 0
iris 561.6277 0 561.6277 0 561.6277 0 561.6277 0
thyroid 131.8364 0 131.8364 0 131.8364 0 131.8364 0
vowel 1450.04 1.79 1463.036 0.79 1465.88 0 1465.88 0
wine 561.8157 0 561.8157 0 561.8157 0 561.8157 0

MC mean vc mean vc mean vc mean vc

bcw 0.356116 3.92 0.352645 0.03 0.432092 0 0.432092 0
liver 1.207571 0.49 1.201166 0.49 1.257056 0 1.257056 0
glass 0.025077 22.60 0.023289 21.13 0.034508 0 0.034508 0
iris 0.198357 0 0.198357 0 0.29001 0 0.29001 0
thyroid 0.496504 2.05 0.497565 1.92 0.805791 0 0.805791 0
vowel 0.306145 6.99 0.297856 5.38 0.344496 0.39 0.34468 0.32
wine 0.550134 36.91 0.574409 30.98 0.82154 0 0.82154 0
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All four algorithms are able to find the optimal value of TRW and VRC
criteria very reliably with a standard deviation near or equal zero, while for the
MC criterion the hybrid algorithms are trapped in the local minimum area and
the non-hybrid algorithms are able to find better solution but the variability is
greater.

The average values of nfe are shown in Table 3 with their standard deviations
in % of the mean, the least values of nfe for each data set are printed in bold.
From the results it is apparent that the hybrid algorithms using k-means are
much more efficient than their non-hybrid counterparts. One function evaluation
takes about 0.001 sec on a standard PC with Intel Pentium 4CPU, 3.00 GHz, 992
MB RAM, which means that a solution can be found in 1 sec for the majority
of the problem in tests.

The influence of the centers rearrangement on the efficiency of algorithms was
evaluated by two-sample Wilcoxon test, the results are presented in Table 4.
The comparison of cde and cdeG algorithms is in the lines denoted “plain”, the
comparison of cdeH and cdeGH in line “hybrid”, symbol “+” means significant

Table 3. Means of nfe values and their standard deviations in % of the mean (vc)

cde cdeG cdeH cdeGH
mean vc mean vc mean vc mean vc

bcw 2100 24 2639 32 321 21 327 27
liver 1453 26 1937 42 469 26 450 23
glass 23869 51 33706 106 6760 23 3931 16

TRW iono 9365 30 19797 108 713 3 723 3
iris 2132 32 2977 43 782 34 749 29
thyroid 2966 32 3195 39 1405 33 1289 21
vowel 12628 40 40988 130 7126 31 4392 20
wine 1873 32 3346 36 552 36 589 38

bcw 2867 29 3545 58 328 24 317 24
liver 1498 23 1933 35 494 30 435 20
glass 25738 45 41140 112 6798 25 4038 16

VRC iono 14379 39 31337 72 716 3 717 3
iris 2194 37 2749 43 829 31 878 34
thyroid 3559 28 4635 55 1292 24 1327 28
vowel 13480 43 39324 92 7408 22 4746 22
wine 2020 31 3563 48 525 22 577 33

bcw 4895 28 6092 38 2257 51 1346 33
liver 4591 28 5823 42 607 32 582 33
glass 56678 114 81032 147 7386 24 4615 15

MC iris 4436 35 8455 71 5458 130 2243 50
thyroid 13764 64 15092 70 2837 70 1847 29
vowel 26276 41 55072 65 11132 29 6911 18
wine 22290 51 99756 154 526 27 509 20
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Table 4. Influence of centers rearrangement on nfe value using Wilcoxon test

Criterion alg bcw liver glass iono iris thyroid vowel wine

TRW plain − − − − − − −
hybrid + − +

VRC plain − − − − − − −
hybrid + + +

MC plain − − − − −
hybrid + + + +

decrease in nfe by rearrangement, symbol “−” significant increase of nfe, and the
empty field denotes no significant influence on nfe. The two-tailed tests at 0.05
significance level is applied. A significant benefit of rearrangement is surprisingly
rare. It was found in glass and vowel data for the hybrid algorithms and three
other problems but negative influence on nfe (increase) is more frequent.

8 Conclusion

Adaptive DE with competing strategies and control parameter settings was ap-
plied to solve optimal partitioning. Four variants of the algorithm were tested
in eight real-world data sets. The hybrid variants using k-means algorithm for
local search were found much more efficient compared with non-hybrid DE al-
gorithms. The group centers rearrangement was beneficial only in some hard
problems, while in other problems no influence or even negative influence on the
efficiency of the algorithms was detected. The hybrid algorithms performed well
with TRW and VRC criteria but they were not effective in partitioning with
MC criterion, where their search systematically stopped at a local minimum. It
is the theme for future research as well as some other questions connected with
optimal partitioning by evolutionary algorithms.
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Abstract. This paper compares the binomial crossover used in the
Differential Evolution with a variant named the contiguous binomial
crossover. In the latter, a contiguous block of variables is used for se-
lecting which variables are exchanged, in a fashion similar to that of the
exponential crossover, allowing to using a single, normally-distributed
random number to decide the number of exchanged variables. Experi-
mental results show that this variant of the binomial crossover exhibits
in general similar or better performance than the original one, and allows
to increase significantly the execution speed of the Differential Evolution,
especially in higher dimension problems.

1 Introduction

Differential Evolution (DE), see [1,2], is an optimization algorithm for continu-
ous problems that has shown high performance in various types of applications
e.g., [3]. As a stochastic algorithm, DE makes use of an important quantity of
pseudo-random numbers (for simplicity, the term random will be used instead
of pseudo-random in the remainder of this paper), especially for the algorithmic
component known as the crossover. To clarify the notation used in this article
we refer to the minimization problem of an objective function f(x), where x is
a vector of n design variables in a decision space D.

In this study, we present a new variant of the crossover, named the contiguous
binomial crossover, that uses only one, normally distributed random number to
decide of the length of the crossover, instead of using n, uniformly distributed
random numbers. Since this new variant exchanges a contiguous block of vari-
ables during the crossover, instead of a set of variables scattered along the whole
length of x, it is necessary to verify that it does not lead to a loss of performance
and that it indeed increases the execution speed of DE. It must be noted that
with regard to the quality of the solutions produced by the algorithms, this study
is, in first intention, non-regression test rather than a performance test: its aim
is to find out whether the new crossover scheme has adverse effects on the per-
formance of DE, rather than to present a new, better-performing algorithm. For
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this reason, DE with the contiguous binomial crossover will be compared solely
to DE with the original binomial crossover, and not to any other, state-of-the-art
algorithm.

1.1 Differential Evolution with Binomial Crossover

This section gives the description of DE according to its original definition given
in [4]. A schematic description of DE highlighting the working principles of the
algorithms is given in Fig. 1.

An initial sampling of Spop individuals is performed randomly with a uniform
distribution function within the decision space D. At each generation, for each
individual xi of the Spop, three individuals xr, xs and xt are randomly extracted
from the population. According to the DE logic, a provisional offspring x′

off is
generated by mutation:

x′
off = xt + F (xr − xs) (1)

where F ∈ [0, 1 + ε[ is a scale factor which controls the length of the exploration
vector (xr − xs) and thus determines how far from point xi the offspring should
be generated. With F ∈ [0, 1 + ε[, it is meant here that the scale factor should
be a positive value which cannot be much greater than 1 (i.e. ε is a small pos-
itive value), see [1]. While there is no theoretical upper limit for F , effective
values are rarely greater than 1.0. The mutation scheme given in Equation (1)
is also known as DE/rand/1. Other variants of the mutation rule have been
subsequently proposed in literature, see [5].

When the provisional offspring has been generated by mutation, each gene of
the individual x′

off is exchanged with the corresponding gene of xi with a uniform
probability and the final offspring xoff is generated, as shown in equation 2:

xoff ,j =
{

x′
off ,j if rand (0, 1) < CR
xi,j otherwise (2)

where rand (0, 1) is a uniformly distributed random number between 0 and 1;
j is the index of the gene under examination.

The resulting offspring xoff is evaluated and, according to a one-to-one spawn-
ing strategy, it replaces xi if and only if f(xoff ) ≤ f(xi); otherwise no replace-
ment occurs. It must be remarked that although the replacement indexes are
saved one by one during generation, actual replacements occur all at once at the
end of the generation.

The crossover used in the above description (see Equation 2) is referred to
as binomial crossover, due to the fact that the number of variables xi that
are exchanged during one crossover (the length of the crossover) is following a
binomial distribution (the discrete counterpart of the normal distribution) char-
acterized by a mean value of nCR and a standard deviation of

√
nCR(1 − CR).

When associated to the DE/rand/1 mutation, the algorithm is referred to as
DE/rand/1/bin.
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generate Spop individuals of the initial population randomly
while budget condition do

evaluate the fitness values of the population
for i = 1 : Spop do

{** Mutation **}
randomly select three individuals xr, xs, and xt

compute x′
off = xt + F (xr − xs)

{** Crossover **}
xoff = xi

generate j0 ← 1 + round(n × rand(0, 1))
for j = 1 : n do

if rand(0, 1) ≤ CR OR j = j0 then
xoff ,j = x′

off ,j

end if
end for
{** Selection **}
if f (xoff ) ≤ f (xi) then

save index for replacement xi = xoff
end if

end for
perform replacements

end while

Fig. 1. Pseudo code of DE with binomial crossover

1.2 The Exponential Crossover

Another commonly used crossover function is the exponential crossover, where the
number of variables xi that are exchanged during one crossover is following a ge-
ometric distribution (the discrete counterpart of the exponential distribution). In
the exponential crossover, a design variable of the provisional offspring x′

off (j) is
randomly selected and copied into the jth design variable of the solution xi. This
guarantees that parent and offspring have different genotypes. Subsequently, a set
of random numbers between 0 and 1 are generated. As long as rand (0, 1) ≤ CR,
where the crossover rate CR is a predetermined parameter, the design variables
from the provisional offspring (mutant) are copied into the corresponding posi-
tions of the parent xi. The first time that rand (0, 1) > CR the copy process is
interrupted. Thus, all the remaining design variables of the offspring are copied
from the parent. When this crossover is combined with the DE/rand/1 mutation,
the algorithm is referred to as DE/rand/1/exp. For the sake of clarity the pseudo-
code of the exponential crossover is shown in Fig. 2.

For illustration purposes, Fig. 3 graphically represents the distribution of the
exchanged variables for both a scattered crossover (such as the original binomial
crossover) and a contiguous crossover (such as the exponential crossover).
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xoff ← xi

generate j ← 1 + round(n × rand(0, 1))
xoff (j) ← x′

off (j)
p ← 0
while rand(0, 1) ≤ CR AND p < n − 1 do

xoff (1 + (j + p) mod n) ← x′
off (1 + (j + p) mod n)

p ← p + 1
end while

Fig. 2. Pseudo code of the exponential crossover

Scattered crossover Contiguous crossover

Parent

Offspring

offspring
Provisional

Fig. 3. Illustration of scattered and contiguous crossovers

2 Considerations on the Crossover

In [6], the author remarks that since the variables exchanged during the crossover
are contiguous (possibly wrapping around the end of the vector x to its begin-
ning), it is possible to mathematically transform a single, uniformly distributed
random number into a geometrically distributed one and use that number as the
length of the crossover. Evolutionary algorithms are consuming a large number of
random numbers, and [7] shows that replacing one algorithm for pseudo-random
number generation by another, faster one can significantly reduce the execution
speed of DE (crossover alone in DE/rand/1/bin consumes something in the or-
der of magnitude of D ×budget random numbers, where budget is the number of
fitness evaluations allocated for running the algorithm). It follows that by reduc-
ing the usage of random numbers, one should increase the speed of execution of
the algorithm by a significant amount (see Section 3 for experimental results).

The binomial distribution can be approximated by a normal distribution.
Several methods have been published to generate normally distributed random
numbers: e.g., [8] uses at least two uniformly distributed random numbers to
produce one normally distributed number, while [9] (presented in Equations 3
and 4) uses exactly two uniformly distributed random numbers from the [0, 1)
interval (thereafter U1 and U2) to produce two normally distributed numbers,
with a mean of 0 and a standard deviation of 1 (thereafter N1 and N2), at the
cost of using trigonometric functions. The method in [9] has been selected for
this work, since it makes a lower usage of the random number generator.

N1 = cos(2πU1)
√

−2 log(1 − U2) (3)
N2 = sin(2πU1)

√
−2 log(1 − U2) (4)
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The crossover in DE is then modified into a contiguous binomial crossover, as
described in Fig. 4, where N(0, 1) is a normally distributed random number
with a mean of 0 and a standard deviation of 1, generated according to either
of Equations 3 or 4.

generate L ← nCR + N(0, 1)
√

nCR(1 − CR)
clamp L to [0, n − 1] and round it to the nearest integer
xoff ← xi

generate j ← 1 + round(n × rand(0, 1))
xoff (j) ← x′

off (j)
for p = 1 : L − 1 do

xoff ((j + p) mod n) ← x′
off ((j + p) mod n)

end for

Fig. 4. Contiguous binomial crossover pseudo-code

The new variant of DE using the contiguous binomial crossover is thus named
DE/rand/1/binC, and its performance is compared to that of DE/rand/1/bin
in the next Section.

3 Experimental Results

The comparison of DE/rand/1/bin and DE/rand/1/binC has been made on a
subset of the benchmark used in [10], using functions F1 to F8, composed of a
blend of unimodal (F1, F2, F7, F8) or multimodal (F3–F6) functions, additively
separable (F1, F4, F6, F7) or not (F2, F3, F5, F8), easily optimized dimension
by dimension (F1, F3, F4, F6, F7) or not (F2, F5, F8).

To compare the algorithms in as many configurations as possible, those func-
tions have been considered in n = 50, 100, 200, 500 and 1000 dimensions, as sug-
gested by the benchmark used in [10]. Moreover, populations sizes of Spop = 30,
60, 90 and 120 have been considered: although values equal to at lease 2n have
been advocated, a study in [11] shows that a population size lower than the
dimensionality of the problem can be optimal in many cases and [12] indicates
that for large-scale problems (500–1000 dimensions), the population size must
be limited, values of 60 and 100 having given satisfactory results. Regarding the
crossover rate, values of CR = 0.1, 0.3, 0.5, 0.7 and 0.9 have been used, while
the value of F has been set in every case to 0.7, in accordance with suggestions
given in [13] and [14]. The number of fitness evaluations alloted to each exper-
iment was set to nfe = 5000n, following the suggestions of [10]. Finally, each
experiment has been run 30 times, and the average of these 30 runs has been
considered.

It must be noted that the combination of all test functions, numbers of di-
mensions, values of Spop and CR, and number of runs produce 48,000 runs al-
together (which translates into 2.64 × 109 fitness evaluations). Due to the very
large amount of computation time required by this study, a tradeoff had to be
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found between the number of different values of n, Spop and CR on one hand,
and the number of test functions on the other hand. A smaller benchmark of
only eight test function presenting a variety of characteristics and difficulties has
thus been selected.

Moreover, this large number of experiments makes it is impossible to publish
the usual average and standard deviation values for every combination of algo-
rithm, function, dimension, population size and crossover rate. A more synthetic
approach has thus been adopted by using statistical significance tests, such as
Wilcoxon’s signed-rank test [15] and the Holm procedure [16].

Wilcoxon’s signed-rank test produces a probability (the p-value) that two
samples have been extracted from the same statistical distribution (which con-
stitutes the test’s null-hypothesis). Table 1 presents the results of this test where
the two samples are made of the average fitness, at the end of the optimization
process, of DE/rand/1/bin and DE/rand/1/binC, using the same CR and Spop
values, over functions F1 to F8, in a given number of dimensions. Note that in
Table 1(f), the samples are made of the average fitness for all functions F1 to F8
in all the number of dimensions considered, thus giving an even more synthetic
view of the performance of the two algorithms. A threshold for the p-value was
set to 0.05, and symbols are used for indicating the outcome of the test: the
symbol “=” indicates that the null-hypothesis holds, meaning that the perfor-
mance of the two algorithms cannot be distinguished, while a “+” indicates
that DE/rand/1/binC performs significantly better than DE/rand/1/bin; a “−”
symbol indicates the opposite case where DE/rand/1/binC is outperformed by
DE/rand/1/bin.

Table 1. Results of the Wilcoxon signed-rank test for DE/rand/1/bin compared to
DE/rand/1/binC over functions F1 to F8 in different numbers of dimensions

(a) 50 dimensions
�����CR

Spop 30 60 90 120

0.1 = = = =
0.3 = = = =
0.5 + = = =
0.7 = = = =
0.9 = = − −

(b) 100 dimensions
�����CR

Spop 30 60 90 120

0.1 = = = =
0.3 = = = =
0.5 = = = =
0.7 = = = =
0.9 = = = −

(c) 200 dimensions
�����CR

Spop 30 60 90 120

0.1 = = = =
0.3 + = = =
0.5 + = = =
0.7 = + = =
0.9 = = = =

(d) 500 dimensions
�����CR

Spop 30 60 90 120

0.1 = = = =
0.3 + + = =
0.5 + + + =
0.7 = = = =
0.9 = = = =

(e) 1000 dimensions
�����CR

Spop 30 60 90 120

0.1 + = = =
0.3 + + + +
0.5 + + + +
0.7 = = = =
0.9 = = = =

(f) All dimensions
�����CR

Spop 30 60 90 120

0.1 + = − −
0.3 + + = =
0.5 + + = =
0.7 = = = =
0.9 = = − −



Contiguous Binomial Crossover in Differential Evolution 151

Those results show that with a few exceptions, DE/rand/1/binC performs
at least as well as DE/rand/1/bin, and in several cases it is even outperform-
ing the original DE algorithm. Tables 1(d) and 1(e) especially indicate that
DE/rand/1/binC seems more promising on high-dimension problems, when
CR = 0.3 or 0.5. Moreover, Table 1(f) shows that the contiguous binomial
crossover is generally detrimental to the performance with larger populations
(90 or 120 individuals) combined with extreme values of CR (0.1 and 0.9), but
smaller populations sizes (30 or 60 individuals) combined with lower values of
CR (0.1 to 0.5) lead to an improved performance compared to the original DE.

Wilcoxon’s signed-rank test has also been applied to the results produced
by DE/rand/1/bin and DE/rand/1/binC on a given function over numbers of
dimensions ranging from 50 to 1000. The corresponding tables are not presented
in this paper, but it is worth mentioning that they were all, with no exception,
filled with “=” symbols, meaning that the performance of the two crossovers
were not significantly different.

To further compare the performance of the binomial and contiguous binomial
crossovers, the Holm procedure was applied to the results produced by every
possible combination of crossover algorithm, crossover rate and population size.
Each of those algorithm combinations was applied to every possible combination
of test function and number of dimensions, and retaining the average over 30
runs, as described in the beginning of that section. Similarly to Wilcoxon’s rank-
sum test, the Holm procedure allows to decide whether two samples are extracted
from the same statistical distribution (constituting the test’s null-hypothesis),
but takes into account the cumulative error that arises from multiple comparisons
(see [17,18] for a detailed explanation). The procedure thus ranks the algorithms
by their performance over the set of test functions (here F1 to F8 in dimensions

Table 2. Results of the Holm procedure (the reference algorithm is DE/rand/1/binC
with Spop = 30 and CR = 0.1)

i Cros. Spop CR p-value α/i Hypoth.
39 bin 120 0.5 1.68e-34 1.28e-03 Rejected
38 binC 120 0.7 1.37e-33 1.32e-03 Rejected
37 binC 120 0.5 1.94e-33 1.35e-03 Rejected
36 bin 120 0.7 1.51e-30 1.39e-03 Rejected
35 bin 90 0.5 1.34e-29 1.43e-03 Rejected
34 binC 120 0.3 5.04e-28 1.47e-03 Rejected
33 binC 90 0.7 1.71e-24 1.52e-03 Rejected
32 binC 90 0.5 3.07e-24 1.56e-03 Rejected
31 bin 120 0.3 4.12e-23 1.61e-03 Rejected
30 bin 90 0.7 6.62e-23 1.67e-03 Rejected
29 bin 60 0.5 2.97e-22 1.72e-03 Rejected
28 binC 120 0.9 1.05e-20 1.79e-03 Rejected
27 bin 90 0.3 4.33e-20 1.85e-03 Rejected
26 binC 90 0.3 2.94e-19 1.92e-03 Rejected
25 bin 60 0.3 1.85e-16 2.00e-03 Rejected
24 bin 60 0.7 2.10e-13 2.08e-03 Rejected
23 bin 120 0.9 2.59e-13 2.17e-03 Rejected
22 binC 120 0.1 4.86e-13 2.27e-03 Rejected
21 binC 90 0.9 2.87e-12 2.38e-03 Rejected
20 binC 60 0.7 4.75e-11 2.50e-03 Rejected

i Cros. Spop CR p-value α/i Hypoth.
19 binC 60 0.5 8.38e-11 2.63e-03 Rejected
18 bin 30 0.3 2.12e-10 2.78e-03 Rejected
17 binC 90 0.1 2.37e-08 2.94e-03 Rejected
16 bin 30 0.5 5.55e-08 3.13e-03 Rejected
15 bin 90 0.9 1.15e-07 3.33e-03 Rejected
14 bin 120 0.1 1.21e-07 3.57e-03 Rejected
13 binC 60 0.3 2.57e-07 3.85e-03 Rejected
12 bin 90 0.1 1.18e-05 4.17e-03 Rejected
11 binC 60 0.9 1.59e-05 4.55e-03 Rejected
10 bin 30 0.7 1.88e-05 5.00e-03 Rejected
9 binC 30 0.9 2.83e-05 5.56e-03 Rejected
8 bin 30 0.9 4.24e-05 6.25e-03 Rejected
7 bin 60 0.9 9.58e-05 7.14e-03 Rejected
6 bin 60 0.1 8.54e-04 8.33e-03 Rejected
5 binC 30 0.7 3.92e-03 1.00e-02 Rejected
4 bin 30 0.1 4.15e-03 1.25e-02 Rejected
3 binC 60 0.1 1.23e-02 1.67e-02 Rejected
2 binC 30 0.5 5.20e-02 2.50e-02 Accepted
1 binC 30 0.3 2.80e-01 5.00e-02 Accepted
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50 to 1000) and compares the best-ranking algorithm with every other algorithm.
For each comparison, a p-value is computed, compared to a threshold (α/i where
i is the rank of the algorithm), and the null hypothesis is then either accepted
or rejected. Table 2 presents the results of the Holm procedure over the forty
variants of DE analyzed in this paper and shows that DE/rand/1/binC variants
with Spop = 30 and CR ≤ 0.5 are significantly better than the other variants (but
none of these three variants performs significantly better than the two others).

Finally, Table 3 shows the benefits of using the binomial contiguous crossover
in terms of execution speed of the algorithm, by computing the ratio of the
running times of DE/rand/1/binC over DE/rand/1/bin applied to function F1 in
dimensions 50, 100, 200, 500 and 1000. The decrease in runtime ranges from 20%
in 50 dimensions to 74% in 1000 dimensions, which translates into an increase
in speed ranging from 25% to 270%.

Table 3. Ratio of the running time of DE/rand/1/binC over DE/rand/1/bin for F1
in different dimensions

Dimension 50 100 200 500 1000
Time ratio 0.80 0.64 0.49 0.33 0.27

4 Conclusion

The contiguous binomial crossover presented in this paper is a variant of the
canonical binomial crossover in DE. In a fashion inspired by the exponential
crossover, it replaces variables in one block, the length of which is chosen by
the means of a normally distributed random number. This approach consider-
ably reduces the number of times the random number generator is used, thus
significantly increasing the execution speed of the algorithm. Moreover, an ex-
perimental study shows that the contiguous binomial crossover is, with most
parameter settings, exhibiting similar or better performance compared to the
original DE.

Due to the very large number of different sets of parameters, the benchmark
was voluntarily limited to only eight functions. To make a better comparison,
future work should consider a much broader benchmark.
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Abstract. This paper presents a novel differential evolution algorithm
for optimization of state-of-the-art real world industry challenges. The al-
gorithm includes the self-adaptive jDE algorithm with one of its strongest
extensions, population reduction, and is now combined with multiple mu-
tation strategies. The two mutation strategies used are run dependent on
the population size, which is reduced with growing function evaluation
number. The problems optimized reflect several of the challenges in cur-
rent industry problems tackled by optimization algorithms nowadays.
We present results on all of the 22 problems included in the Problem
Definitions for a competition on Congress on Evolutionary Computation
(CEC) 2011. Performance of the proposed algorithm is compared to two
algorithms from the competition, where the average final best results ob-
tained for each test problem on three different number of total function
evaluations allowed are compared.

Keywords: self-adaptive differential evolution, population reduction,
multiple mutation strategies, real world industry challenges.

1 Introduction

In this paper we present multiple mutation strategies into a variant of jDE dif-
ferential evolution algorithm [1], by extending its population reduction variant
as published in [3]. We assess our new algorithm performance on real world
optimization problems, consisting of recent industry challenges. The optimiza-
tion of models for these challenges is lately being addressed using evolutionary
algorithms and published in journals on optimization. The models of these chal-
lenges are now gathered in a suite as 22 functions [6]. We report our results
for all functions, for three different termination criteria based on total number
of function evaluations allowed. Also, results of our algorithm are compared to
two related algorithms which were presented at the competition at Congress on
Evolutionary Computation 2011 [9, 10].

In the following section we present related work. In the third section, we pro-
pose our multi-strategy extension for population reduction differential evolution.
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Then, the enhancement is assessed in the fourth section using functions mod-
elling real world industry challenges (RWIC). In the fifth section, conclusions
are drawn and guidelines for further work are given.

2 Related Work

Differential Evolution (DE) [17] is a floating-point encoding evolutionary algo-
rithm for global optimization over continuous spaces, which can also work with
discrete variables. Its main performance advantages over other evolutionary al-
gorithms lie in floating-point encoding and a good combination of evolutionary
operators, the mutation step size adaptation, and elitist selection [1,12]. DE was
proposed by Storn and Price [17] and since then, it has been modified and ex-
tended several times with new versions proposed [4,5,7,11,13–16,19,20,22,23,25]
and its derivations have won evolutionary algorithm competitions. DE was also
introduced for multi-objective optimization [18,23]. Among real world problems
tackled using jDE, is also our reconstruction of procedural tree models with
differential evolution [24].

The DE algorithm has a main evolution loop in which a population of vectors
is computed for each generation of the evolution loop. During one generation
G, for each vector xi, ∀i ∈ {0,NP} in the current population, DE employs
evolutionary operators, namely mutation, crossover, and selection, to produce
a trial vector (offspring) and to select one of the vectors with the best fitness
value. NP denotes population size and G the current generation number.

Mutation creates a mutant vector vi,G+1 for each corresponding population
vector. Among many proposed, one of the most popular DE mutation strategies
are ’rand/1’ [15, 17]:

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (1)

and ’best/1’:
vi,G+1 = xbest,G + F (xr1,G − xr2,G), (2)

where the indexes r1, r2, and r3 represent the random and mutually different
integers generated within the range {1,NP} and also different from index i.
xbest,G denotes the currently best vector. F is an amplification factor of the
difference vector within the interval [0, 2], but usually less than 1. Vector at
index r1 is a base vector. The term xr2,G − xr3,G denotes a difference vector
which after multiplication with F , is named amplified difference vector.

After mutation the mutant vector vi,G+1 is taken into recombination process
with the target vector xi,G to create a trial vector ui,j,G+1. The binary crossover
operates as follows:

ui,j,G+1 =

{
vi,j,G+1 if rand(0, 1) ≤ CR or j = jrand

xi,j,G otherwise
,

where j ∈ {1, D} denotes the j-th search parameter of D-dimensional search
space, rand(0, 1) ∈ [0, 1] denotes a uniformly distributed random number, and
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jrand denotes a uniform randomly chosen index of the search parameter, which is
always exchanged to prevent cloning of target vectors. CR denotes the crossover
rate for which the influence has been thorougly studied in [21].

Finally, the selection operator propagates the fittest individual in the new
generation (for minimization problem):

xi,G+1 =

{
ui,G+1 if f(ui,G+1) < f(xi,G)

xi,G otherwise
.

The jDE algorithm [1] extends the original DE algorithm with self-adaptive
control mechanism to change the control parameters F and CR during the evo-
lutionary process. The third control parameter NP is kept unchanged in [1].
Each individual in the jDE population is extended using the values of these two
control parameters. The better values for these (encoded) control parameters
lead to better individuals which, in turn, are more likely to survive and produce
offspring and, hence, propagate these better parameter values [1]. New control
parameters Fi,G+1 and CRi,G+1 are calculated as [1]:

Fi,G+1 =

{
Fl + rand1 × Fu if rand2 < τ1

Fi,G otherwise
CRi,G+1 =

{
rand3 if rand4 < τ2

CRi,G otherwise.

They produce control parameters F and CR in a new vector. The randj ∈ [0, 1],
j ∈ {1, 2, 3, 4} are uniform random values. τ1 and τ2 represent the probabilities
of adjusting control parameters F and CR, respectively. τ1, τ2, Fl, Fu are taken
fixed values as proposed in [1]. The new F takes a value from [0.1, 1.0] in a
random manner. The new CR takes a value from [0, 1]. Fi,G+1 and CRi,G+1

are obtained before the mutation is performed. So they influence the mutation,
crossover, and selection operations of the new vector xi,G+1.

As later reported in [14] to be one of best extensions for jDE, in [3] an exten-
sion of the jDE algorithm was presented which reduces population size to half
in certain generations when the generation number exceedes the ratio between
maximum number of function evaluations allowed and population size:

Gp >
Nmax Feval

pmaxNPp
,

where Nmax Feval is total number of function evaluations and NPp is population
size reduced as of current generation. Vectors are discarded index neighbour
pairwise, as drawn in [3].

3 Population Reduction Differential Evolution
with Multiple Mutation Strategies

We introduce a new version of differential evolution algorithm, jDENP,MM. To
the algorithm dynNP-DE [3], we include besides the population reduction en-
hancement of jDE [1], to select one among two mutation strategies to mutate
one individual vector.
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We select to execute the first mutation strategy, rand/1, always when popula-
tion size is NP ≥ 100, or in three out of four cases uniform randomly otherwise.
When population size is NP < 100, in one out of four cases uniform randomly
we select to execute the best/1 strategy. Therefore, the two mutation strategies
used are selected dependent on the population size, which is reduced with grow-
ing function evaluation number. We set initial population size (NP ) to 200 and
number of reductions to pmax = 4. The described strategy selection mechanism
in mutation operator for our algorithm can be implemented as:

int s = int(random() * 4); // s = {0, 1, 2, 3}

if (s <= 2 || NP >= 100) use mutation as in Eq. (1)

else use mutation as in Eq. (2)

Therefore, our proposed DE variant adds very few to the computational cost of
the dynNP-DE, and also dynNP-DE follows the inspiration of the original DE
and does not require many additional operations to original DE, as noted in [3].

4 Results

We assess the proposed algorithm using a toolkit from competition at Congress
on Evolutionary Computation (CEC) 2011 [6] which comprises of several real
world industry challenges. We have used the Linux toolkit variant which includes
C++ function call stubs encapsulating a Matlab environment implementing the
functions to model these problems. The toolkit includes various functions, which
after weighting the penalties sum are exposed as merely unconstrained functions
to an optimizer. Namely, the sum is added to a fitness evaluation. Since the
constraint valuation is partly handled by fitness evaluation increase, by compar-
ing two vectors in selection mechanism, we penalize infeasible vectors by always
discarding vectors which have infeasible non-assessed evaluation (i.e. not a num-
ber), otherwise we simply compare the obtained fitness values of two vectors.

Results of 25 independent runs for our algorithm on these functions are gath-
ered. For each function, three different stopping conditions are used, i.e. for
three different number of total function evaluations allowed, 50000, 100000, and
150000, respectively. In Table 1, best, worst, median, average values and their
standard deviation for our jDENP,MM algorithm are reported.

Comparison of these results to results from some other most similar algo-
rithms are seen in Table 2, where in the third column, average final values of
our algorithm are presented; in the fourth column, results of the algorithm of
Korošec and Šilc [2, 8] denoted as C-0036 [9] are listed; and in the fifth column,
results of the algorithm of Mallipeddi and Suganthan [11] denoted as C-0362 [10]
are listed. In the sixth and seventh column, differences between results are listed
for our algorithm and other algorithms. The results in bold text are the results
where our algorithm outperforms other algorithms on average for these 25 inde-
pendent runs. The results in italic text denote the opposite, when our algorithm
is outperformed by a certain algorithm.

As seen from the comparison, our algorithm outperforms algorithm C-0036 on
47 instances, performs worse on 13 instances and performs with no difference on 6
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Table 1. Best, worst, median, average values and their standard deviation for 25
independent run results of our jDENP,MM algorithm

Fun. FES Best Worst Median Average Std. dev.
F1 50000 3.5067e-27 1.7616e+01 1.0167e+01 7.9306e+00 6.9176e+00
F1 100000 0.0000e+00 1.7325e+01 0.0000e+00 1.5262e+00 4.3884e+00
F1 150000 0.0000e+00 1.6460e+01 0.0000e+00 1.1067e+00 3.9046e+00
F2 50000 -2.4458e+01 -1.4863e+01 -2.0507e+01 -2.0288e+01 2.1585e+00
F2 100000 -2.5423e+01 -1.9449e+01 -2.3028e+01 -2.2839e+01 1.5306e+00
F2 150000 -2.6033e+01 -2.1875e+01 -2.4207e+01 -2.4284e+01 1.0418e+00
F3 50000 1.1515e-05 1.1515e-05 1.1515e-05 1.1515e-05 1.6120e-19
F3 100000 1.1515e-05 1.1515e-05 1.1515e-05 1.1515e-05 1.7033e-19
F3 150000 1.1515e-05 1.1515e-05 1.1515e-05 1.1515e-05 1.3730e-19
F4 50000 1.3771e+01 2.0820e+01 1.4329e+01 1.5316e+01 2.4938e+00
F4 100000 1.3771e+01 2.0820e+01 1.4329e+01 1.5158e+01 2.3877e+00
F4 150000 1.3771e+01 2.0820e+01 1.4329e+01 1.5158e+01 2.3877e+00
F5 50000 -3.6291e+01 -3.1447e+01 -3.3875e+01 -3.3386e+01 1.2044e+00
F5 100000 -3.6124e+01 -3.3942e+01 -3.4106e+01 -3.4374e+01 6.6266e-01
F5 150000 -3.6450e+01 -3.4086e+01 -3.4441e+01 -3.4779e+01 7.7855e-01
F6 50000 -2.9131e+01 -2.1268e+01 -2.7427e+01 -2.7050e+01 2.1680e+00
F6 100000 -2.9166e+01 -2.3006e+01 -2.8734e+01 -2.8021e+01 1.6751e+00
F6 150000 -2.9166e+01 -2.7429e+01 -2.9147e+01 -2.8651e+01 7.8281e-01
F7 50000 8.9644e-01 1.6204e+00 1.3414e+00 1.3231e+00 1.6425e-01
F7 100000 8.5265e-01 1.4976e+00 1.1417e+00 1.1477e+00 1.7377e-01
F7 150000 8.0404e-01 1.4326e+00 1.1421e+00 1.1677e+00 1.5041e-01
F8 50000 2.2000e+02 2.2000e+02 2.2000e+02 2.2000e+02 0.0000e+00
F8 100000 2.2000e+02 2.2000e+02 2.2000e+02 2.2000e+02 0.0000e+00
F8 150000 2.2000e+02 2.2000e+02 2.2000e+02 2.2000e+02 0.0000e+00
F9 50000 1.4667e+03 7.6387e+03 2.8741e+03 3.2413e+03 1.6096e+03
F9 100000 1.7671e+03 4.0275e+03 2.3870e+03 2.5200e+03 5.3784e+02
F9 150000 1.2819e+03 3.4166e+03 2.1349e+03 2.2419e+03 5.2331e+02
F10 50000 -2.1217e+01 -1.7052e+01 -2.0392e+01 -1.9870e+01 1.3676e+00
F10 100000 -2.1361e+01 -1.7881e+01 -2.1217e+01 -2.0743e+01 1.0375e+00
F10 150000 -2.1421e+01 -2.0780e+01 -2.1321e+01 -2.1300e+01 1.2491e-01
F11 50000 7.4678e+04 5.2735e+05 2.0435e+05 2.2755e+05 1.1962e+05
F11 100000 5.1197e+04 2.4823e+05 5.9560e+04 8.3780e+04 5.6018e+04
F11 150000 5.1030e+04 6.8184e+04 5.2497e+04 5.3040e+04 3.2412e+03
F12 50000 1.0757e+06 1.2337e+06 1.1354e+06 1.1424e+06 4.4843e+04
F12 100000 1.0725e+06 1.1323e+06 1.0749e+06 1.0803e+06 1.3601e+04
F12 150000 1.0713e+06 1.0780e+06 1.0743e+06 1.0745e+06 1.6768e+03
F13 50000 1.5444e+04 1.5479e+04 1.5448e+04 1.5452e+04 9.4020e+00
F13 100000 1.5444e+04 1.5459e+04 1.5445e+04 1.5446e+04 3.4605e+00
F13 150000 1.5444e+04 1.5445e+04 1.5444e+04 1.5444e+04 4.4370e-01
F14 50000 1.8427e+04 1.9139e+04 1.8653e+04 1.8666e+04 1.3434e+02
F14 100000 1.8339e+04 1.8744e+04 1.8532e+04 1.8560e+04 1.2390e+02
F14 150000 1.8338e+04 1.8783e+04 1.8508e+04 1.8529e+04 8.7554e+01
F15 50000 3.2769e+04 3.3033e+04 3.2889e+04 3.2882e+04 5.5334e+01
F15 100000 3.2757e+04 3.2929e+04 3.2842e+04 3.2843e+04 4.4323e+01
F15 150000 3.2719e+04 3.2898e+04 3.2812e+04 3.2815e+04 4.2736e+01
F16 50000 1.3214e+05 1.4639e+05 1.3529e+05 1.3652e+05 3.5227e+03
F16 100000 1.3101e+05 1.4055e+05 1.3309e+05 1.3359e+05 2.3260e+03
F16 150000 1.2958e+05 1.3529e+05 1.3260e+05 1.3266e+05 1.5770e+03
F17 50000 1.9246e+06 2.2007e+06 1.9499e+06 1.9650e+06 5.5502e+04
F17 100000 1.9211e+06 2.1883e+06 1.9474e+06 1.9629e+06 5.7849e+04
F17 150000 1.9028e+06 1.9876e+06 1.9421e+06 1.9462e+06 2.1343e+04
F18 50000 9.3784e+05 1.1032e+06 9.4637e+05 9.5964e+05 4.0189e+04
F18 100000 9.3942e+05 9.4961e+05 9.4396e+05 9.4397e+05 2.6203e+03
F18 150000 9.3899e+05 9.4986e+05 9.4419e+05 9.4397e+05 2.7674e+03
F19 50000 1.1204e+06 1.6541e+06 1.2904e+06 1.3137e+06 1.5365e+05
F19 100000 1.0366e+06 1.5295e+06 1.2547e+06 1.2818e+06 1.3172e+05
F19 150000 1.0013e+06 1.4053e+06 1.2602e+06 1.2464e+06 1.2539e+05
F20 50000 9.3784e+05 1.1032e+06 9.4637e+05 9.5964e+05 4.0189e+04
F20 100000 9.3942e+05 9.4961e+05 9.4396e+05 9.4397e+05 2.6203e+03
F20 150000 9.3899e+05 9.4986e+05 9.4419e+05 9.4397e+05 2.7674e+03
F21 50000 1.3416e+01 2.2495e+01 1.7869e+01 1.7961e+01 2.2384e+00
F21 100000 1.4534e+01 2.0373e+01 1.7188e+01 1.6921e+01 1.6142e+00
F21 150000 1.1470e+01 1.9076e+01 1.6734e+01 1.6599e+01 1.7991e+00
F22 50000 1.1162e+01 2.0083e+01 1.4415e+01 1.4754e+01 2.2620e+00
F22 100000 1.0376e+01 1.7406e+01 1.3290e+01 1.3154e+01 1.7894e+00
F22 150000 9.1802e+00 1.5959e+01 1.1707e+01 1.2404e+01 1.7697e+00
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Table 2. Comparison of average final best values of 25 independent runs for our and
other algorithms

Fun. FES jDENP,MM C-0036 [9] C-0362 [10] diff(C-0036) diff(C-0362)
F1 50000 7.9306e+00 1.3995e+01 7.06E+00 -6.0644e+00 8.7060e-01
F1 100000 1.5262e+00 1.0872e+01 2.29E+00 -9.3458e+00 -7.6380e-01
F1 150000 1.1067e+00 1.0128e+01 1.78E+00 -9.0213e+00 -6.7330e-01
F2 50000 -2.0288e+01 -1.5775e+01 -1.26E+01 -4.5130e+00 -7.6880e+00
F2 100000 -2.2839e+01 -1.6766e+01 -1.64E+01 -6.0730e+00 -6.4390e+00
F2 150000 -2.4284e+01 -1.7566e+01 -1.83E+01 -6.7180e+00 -5.9840e+00
F3 50000 1.1515e-05 1.1515e-05 1.15E-05 0.0000e+00 1.5000e-08
F3 100000 1.1515e-05 1.1515e-05 1.15E-05 0.0000e+00 1.5000e-08
F3 150000 1.1515e-05 1.1515e-05 1.15E-05 0.0000e+00 1.5000e-08
F4 50000 1.5316e+01 1.4173e+01 1.67E+01 1.1430e+00 -1.3840e+00
F4 100000 1.5158e+01 1.4039e+01 1.67E+01 1.1190e+00 -1.5420e+00
F4 150000 1.5158e+01 1.3936e+01 1.67E+01 1.2220e+00 -1.5420e+00
F5 50000 -3.3386e+01 -3.3533e+01 -2.38E+01 1.4700e-01 -9.5860e+00
F5 100000 -3.4374e+01 -3.3834e+01 -2.75E+01 -5.4000e-01 -6.8740e+00
F5 150000 -3.4779e+01 -3.3909e+01 -2.90E+01 -8.7000e-01 -5.7790e+00
F6 50000 -2.7050e+01 -2.3150e+01 -1.28E+01 -3.9000e+00 -1.4250e+01
F6 100000 -2.8021e+01 -2.5581e+01 -1.55E+01 -2.4400e+00 -1.2521e+01
F6 150000 -2.8651e+01 -2.6748e+01 -1.70E+01 -1.9030e+00 -1.1651e+01
F7 50000 1.3231e+00 1.0262e+00 1.61E+00 2.9690e-01 -2.8690e-01
F7 100000 1.1477e+00 9.6956e-01 1.49E+00 1.7814e-01 -3.4230e-01
F7 150000 1.1677e+00 9.3895e-01 1.42E+00 2.2875e-01 -2.5230e-01
F8 50000 2.2000e+02 2.2000e+02 2.20E+02 0.0000e+00 0.0000e+00
F8 100000 2.2000e+02 2.2000e+02 2.20E+02 0.0000e+00 0.0000e+00
F8 150000 2.2000e+02 2.2000e+02 2.20E+02 0.0000e+00 0.0000e+00
F9 50000 3.2413e+03 1.6940e+03 2.875E+03 1.5473e+03 3.6630e+02
F9 100000 2.5200e+03 1.2338e+03 2.529E+03 1.2862e+03 -9.0000e+00
F9 150000 2.2419e+03 1.0692e+03 2.529E+03 1.1727e+03 -2.8710e+02
F10 50000 -1.9870e+01 -1.2655e+01 -1.52E+01 -7.2150e+00 -4.6700e+00
F10 100000 -2.0743e+01 -1.3213e+01 -1.55E+01 -7.5300e+00 -5.2430e+00
F10 150000 -2.1300e+01 -1.3540e+01 -1.56E+01 -7.7600e+00 -5.7000e+00
F11 50000 2.2755e+05 5.2607e+04 5.26E+04 1.7494e+05 1.7495e+05
F11 100000 8.3780e+04 5.2160e+04 5.24E+04 3.1620e+04 3.1380e+04
F11 150000 5.3040e+04 5.2017e+04 5.22E+04 1.0230e+03 8.4000e+02
F12 50000 1.1424e+06 1.2750e+06 1.08E+06 -1.3260e+05 6.2400e+04
F12 100000 1.0803e+06 1.2733e+06 1.07E+06 -1.9300e+05 1.0300e+04
F12 150000 1.0745e+06 1.2717e+06 1.07E+06 -1.9720e+05 4.5000e+03
F13 50000 1.5452e+04 1.5516e+04 1.55E+04 -6.4000e+01 -4.8000e+01
F13 100000 1.5446e+04 1.5512e+04 1.55E+04 -6.6000e+01 -5.4000e+01
F13 150000 1.5444e+04 1.5511e+04 1.55E+04 -6.7000e+01 -5.6000e+01
F14 50000 1.8666e+04 1.9341e+04 1.82E+04 -6.7500e+02 4.6600e+02
F14 100000 1.8560e+04 1.9332e+04 1.82E+04 -7.7200e+02 3.6000e+02
F14 150000 1.8529e+04 1.9323e+04 1.81E+04 -7.9400e+02 4.2900e+02
F15 50000 3.2882e+04 3.3185e+04 3.28E+04 -3.0300e+02 8.2000e+01
F15 100000 3.2843e+04 3.3183e+04 3.28E+04 -3.4000e+02 4.3000e+01
F15 150000 3.2815e+04 3.3181e+04 3.27E+04 -3.6600e+02 1.1500e+02
F16 50000 1.3652e+05 1.4715e+05 1.32E+05 -1.0630e+04 4.5200e+03
F16 100000 1.3359e+05 1.4669e+05 1.31E+05 -1.3100e+04 2.5900e+03
F16 150000 1.3266e+05 1.4666e+05 1.31E+05 -1.4000e+04 1.6600e+03
F17 50000 1.9650e+06 2.4168e+06 1.92E+06 -4.5180e+05 4.5000e+04
F17 100000 1.9629e+06 2.1476e+06 1.92E+06 -1.8470e+05 4.2900e+04
F17 150000 1.9462e+06 2.0375e+06 1.92E+06 -9.1300e+04 2.6200e+04
F18 50000 9.5964e+05 1.0127e+06 9.44E+05 -5.3060e+04 1.5640e+04
F18 100000 9.4397e+05 9.4803e+05 9.43E+05 -4.0600e+03 9.7000e+02
F18 150000 9.4397e+05 9.4569e+05 9.43E+05 -1.7200e+03 9.7000e+02
F19 50000 1.3137e+06 1.5823e+06 9.94E+05 -2.6860e+05 3.1970e+05
F19 100000 1.2818e+06 1.4433e+06 9.91E+05 -1.6150e+05 2.9080e+05
F19 150000 1.2464e+06 1.4012e+06 9.90E+05 -1.5480e+05 2.5640e+05
F20 50000 9.5964e+05 1.0567e+06 9.44E+05 -9.7060e+04 1.5640e+04
F20 100000 9.4397e+05 9.8217e+05 9.43E+05 -3.8200e+04 9.7000e+02
F20 150000 9.4397e+05 9.4887e+05 9.43E+05 -4.9000e+03 9.7000e+02
F21 50000 1.7961e+01 2.8815e+01 2.26E+01 -1.0854e+01 -4.6390e+00
F21 100000 1.6921e+01 2.7518e+01 1.98E+01 -1.0597e+01 -2.8790e+00
F21 150000 1.6599e+01 2.6419e+01 1.88E+01 -9.8200e+00 -2.2010e+00
F22 50000 1.4754e+01 3.3463e+01 1.99E+01 -1.8709e+01 -5.1460e+00
F22 100000 1.3154e+01 3.0902e+01 1.57E+01 -1.7748e+01 -2.5460e+00
F22 150000 1.2404e+01 2.9620e+01 1.39E+01 -1.7216e+01 -1.4960e+00

B/W 47 / 13 31 / 32
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problem instances regarding the assessment used. Compared to the algorithm C-
0362, these values are 31, 32, and 3, respectively. We have also made a preliminary
comparison of our algorithm jDENP,MM versus the dynNP-DE [3] algorithm and
the new algorithm seems to outperform the existing one in most of cases.

5 Conclusion

We presented an algorithmwhich combines multiple mutation strategies and pop-
ulation reduction in self-adaptive differential evolution jDENP,MM. We have as-
sessed its performance on 22 real world industry challenges from a competition
at Congress on Evolutionary Computation (CEC) 2011. We have also reported
a performance comparison with two algorithms from the competition. In the fu-
ture research, additional measurements to compare the proposed extension in the
new algorithm could be done with existing algorithms. More strategies inclusion
like [20] could be addressed. Population size control and best strategy mutation
enhancement are two interesting goals to pursue for our algorithm, too.
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Abstract. The aim of the contribution is to present Cognitive Analysis
of fuzzy rule bases used in Genetic optimization of Multiagent system
behaviour. This Cognitive analysis allows to analyze behaviour caused by
rules and sort them to Social, Group or Individual sets of the rules. Rules,
which have same behaviour, can be reduced. This allows to decrease
of the rules and number of genes in chromosome and also GA Search
Space. The Fuzzy Rule Based Evolution System is presented. This system
consists of three main parts the FUZNET, the GA-MPI and the Webots.
Simple example based on the Box Pushing problem is presented.

Keywords: Fuzzy rule base, Cognitive analysis, Optimization, Genetic
algorithm, Simulation, FUZNET, MPI, Webots.

1 Introduction

Behavior of each agentAiis given by rule base RBi, nA is number of Agent in MAS.
We use fuzzy rule based system for Agent behavior modeling, namelyMamdani like
fuzzy system. This system we select especially for following reasons[1]:

– Prevent oscillations
– Aprox. function are nonlinear
– Rules we can express natural language like (small distance, middle distance,

long distance)
The rule base of Mamdani fuzzy system are given by (1) where xi are

inputs, An,r is linguistic values of rules an antecedent and Cr are linguistic
values of rules in consequent.
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IF (x1 is A1,1) AND (x2 is A2,1) AND . . . (x is An,1) THEN (y1 is C1)
IF (x1 is A1,1) AND (x2 is A2,1) AND . . . (x is An,1) THEN (y2 is C2)

...
IF (x1 is A1,r) AND (x2 is A2,r) AND . . . (x is An,r) THEN (yr is Cr)

(1)

2 Cognitive Analysis Rule Bases of Multiple Agents

Offered cognitive analysis is based on Question Answering Mechanism. With this
analysis we can determine how the r-th rule from rule base is consistent with
another rule base [1]. The consistency analysis process is following, we select
one rule from one agent. We separate antecedent part and set them as input to
another agent. We get response and check consistence between consequent part
rule of first agent and response of the second one. With this we can determine
similar partitionaly behaviour of two agents described by concrete rule/s.

2.1 Measuring of Consistency

Let’s have as vector that contain all n linguistic values antecedent part r-th rule
from rule base of agent Ai[1].

Xi
r =

(
Ai

1,r, A
i
2,r, . . . , A

i
n,r

)
(2)

and make question to fuzzy system with response to input:

Byi ∗
r,j = Response

(
RBj , X

i
r

)
(3)

And check consistency between response Byi ∗
r,jand consequent part of r-th rule

of agent Ai. as follows:

Consi
r,j =

1́

0

Byi ∗
r,j

⋂
Ci

r

1́

0

Byi ∗
r,j

(4)

Where j is index, that determinine checked agent. Index r determine checked
rule selected from i-th agent. Determining rule error is described earlier. We
must first define Consistency matrix and matching criterion.

CMAi =

⎡⎢⎢⎢⎣
Consi

1,1 Consi
1,2 · · · Consi

1,nA

Consi
2,1 Consi

2,2 · · · Consi
2,nA

...
...

. . .
...

Consi
nR,1 Consi

nR,2 · · · Consi
nR,nA

⎤⎥⎥⎥⎦ (5)

where nR is number of rules in the i-th rule base. Rows determine consistency
for each rules and columns consistency for all rule basis. Matching criterion must
decide if consistency is satisfied or unsatisfied. The satisfy we define as equation
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DMASi
r,j =

⎧⎪⎨⎪⎩
Consi

r,j � εj

Consi
r,j < εj

1

0
(6)

The next image show the graphical ilustration of consistency measures for third
agent and hisr-th rule.

A 2 : RB 2A 1 : RB 1A 3 : RB 3 A 4 : RB 4 A nA : RB nA

R3
r : IF x1 is Ai AND x2 is Aj THEN yr is C m

( Ai , Aj )
Question

Answers

Consistency with C m

By 3
r,3 By 3

r,1 By 3
r,2 By 3

r,4 By 3
r,nA

Cons 3
r,3 Cons 3

r,1 Cons 3
r,2 Cons 3

r,4 Cons 3
r,nA

Fig. 1. Cognitive analysis with Q-A mechanism

2.2 Determinimg the Type of Behaviour and Equivalent Rule Set

Basicly we can clasify behaviour rule description into three main types [1]. The
first is social behaviour, individual behaviour and number of Group’s behaviors.
For determining behaviour’s types we need dependency matrix of the i-th rule
from base to all rule basis of MAS is defined as

DMASi =

⎡⎢⎣ DMASi
1,1 · · · DMASi

1,nA
...

. . .
...

DMASi
nRi,1

· · · DMASi
nRi,nA

⎤⎥⎦ (7)

Dependency Histogram defines numbers of dependencies i-th rule to each rule
bases of MAS.

DMASN i =

⎡⎢⎢⎢⎢⎢⎢⎣

nA∑
j=1

DMASi
1,j

...
nA∑
j=1

DMASi
nRi,j

⎤⎥⎥⎥⎥⎥⎥⎦ (8)
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Social Behaviour of i-th Agent is given by the set of rules consistent with all rule
basis of MAS as follows

M i
Social =

{
Ri

r; DMASN [r] = nA, r = 1 . . . nRi

}
(9)

and rule set of Social Behaviour for all possible Agents is given by

MSocial =
{
M i

Social; i = (1 . . . nA)
}

(10)

Individual behaviour of i-th Agent is given by the set of rules with consistence
only with ourselves

M i
Individual =

{
Ri

r; DMASN [r] = 1 ∧ DMASr,j = 1, r = (1 . . . nRi)
}

(11)

Group behaviour is given by rules:

MGroup =
{
Ri

r; DMASi
r,j = 1∀jεGroup, r = (1 . . . nRi) , , j = (1 . . . nA)

}
(12)

where Group is set of indexes off all agents in group.

3 Optimization of MAS Behaviour

As optimization technique we used genetic optimization. Genetic algorithm use
standard and advanced operators. As the extension of GA is simultaneity used.
Genetic algorithm can divide each generation computation on to the number of
Clusters or cores. This allows shorter the time of the simulation.

3.1 Genetic Algorithm

Genetic optimalization of MAS behaviour consist of two tasks. Structure and
parametric identification of Agent’s rule bases. We must also define Fitness func-
tion as best and desired behaviour of the MAS.

For structure and parametric identification, we must code into chromosome
information, such as number of rules, number of inputs, relation between Inputs
and Outputs and membership function’s shapes. The example of configuration
will be shown in chapter Experiment. In presented Genetic algorithm we used
following operators[2]:

– parent selection
– crossover operator
– mutation operator
– restricted lifetime of gene

Because we have for this simulation 8 core server, we used GA parallelization.
This parallelization is implemented in MPI. Each generation is characterized by
population of chromosomes. This generation we can separate, in this case, onto
8 parts and compute indepedently. This division allows speedup of computation.
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3.2 Reduction of GA Space Search

As we mentioned earlier, we can extract from MAS different types of the be-
haviours. If we have some Rules, which are belonging to the social behaviour,
we need not have those rules in all agents of MAS. These rules will be apear on
MAS only once. With this reduction, we can also decrease the size of chromo-
some structure and also reduce GA Space Search. This main idea is applicable
also on to the Group’s Behaviours.

4 Implementation

4.1 FuzNet

The Programme tool FUZNET was developed based on fuzzy neural network
technology, including the new identifying procedures presented in [3,4]. This
fuzzy neural network environment appears to be suitable for fuzzy non-linear
model identification as well as introduces the programme FUZNET including its
application in real system modeling. This system is an extension of the neural
network (NN) development system based on the Back Propagation algorithm.
The FUZNET structure is mentioned in [3,4]. We actually need not adaptation
procedures, because identification and optimization are business of GA part. We
used FuzNet for computation. Actually we need for computation two description
files, namely Rule description files *.dsc and Fuzzy neural network description file
Net.wri. The Core of Fuznet is Dynamic Link Library FuzNet.dll in the Windows
and binary library FuzNet.a in Linux. This part we used for simulations and
FRBES system design.

4.2 GA-MPI Implementation

GA-MPI implementation is, infact very simple, first we apply GA operators.
Next we distribute the number of chromosomes from actual generation from
cluster or core 0 to the other clusters or cores. In separate processes will be
computing values of fitness functions as simulation of the given task. After cal-
culating of fitness functions will be fitness values send back to cluster or core 0.
As paralelization tool we used well known Message Parsing Interface [5].

4.3 Webots-Robot simulator

This simulator is widely used for experiments in Robotic simulation [6]. Webots
contain Virtual world with the possibility of physical modelling. Virtual world
is realized by 3D model depicted in VRML. Programming interface could be
realized in C/C++ and numerous methods receiving information from sensors
and set actuators, like motors, etc. For robot programming is used special entity
called “Robot Controller” and “Supervisor” in case of MAS. For future we used
robot Koala and program some additional functionality, like pan tilt camera.
This 3D virtual model is the same as hw robot Koala in our Laboratory.
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4.4 FRBES System Design

Now we get all together. We design Fuzzy Rule Based Evolution System (FRBES)
adopted to Box-Pushhing problem [7,8]. This system is based on client - server
architecture with parallelization using MPI (Message Parsing Interface).

The Supervisor block realizes Genetic algorithm with MPI paralelization,
cognitive analysis of rule bases and calculation of global fitness function. The
supervisor sends part of population certain generation to Wserver in separate
processes. The Wserver converts chromosome structure to fuzzy rule base. Each
fuzzy rule bases is described by descriptions file using by FuzNet.

The Supervisor also acts as role of the virtual agent. Startup of Webots
instance is initiated from Wserver. In Webots we can implement agents with
physical properties in 3D. Here are implemented Left pusher, Right pusher and
Watcher. Each agent in Webots has two functions, Initialization and Main func-
tion. In initialization function is the instance FuzNet created and fuzzy rule base
builds from description file. In main function is initiated inference of fuzzy rule
base as the reaction onto sensors, state and comm. values. Inferenced values
makes changes actuators, state and comm. in Enviroment. In main function is
also determined value of agent fitness function, which is propagated back to the
supervisor. This inference repeats untill the end of an experiment with concrete
fuzzy rule base ie. concrete chromosome.

5 Experiment

As the experiment we select Box-Pushing problem. In this experiment we have 3
robots, left pusher, right pusher and watcher [8]. Pushers cooperate to pushing a
box and get information from watcher about pushing direction. Watcher has the
function of explorer and finder of the target. Following table shows each robot
with their role and function with behaviour classification.

The Box Pushing problem consists of two subtasks. The first, search box
and prepare to push. The second, explore and track the target by watcher and
communicate with Pushers to push the box. We describe the first subtask and
results. The second task is actually in the course of simulations.

First we need to define the structure of rule for all agent/robots, the rules
have the same structure. The rule on the next table consists from antecedent
and consequent parts. Antecedent part of the Rule contains State of simulation,
Comunication with watcher, detected marks from camera and information from
range finder sensors.

Consequent part consists of actuators - left and right motors, feedback State
and Communication. This rule configuration is sufficient for solving Box push-
hing Task. The numbers in the second row will describe the number of linguistic
values, fuzzy sets and crisp parameters.

The configuration of a genetic algorithm was following, each generation has
218 members. Maximal number of generation was set to 200 and fitness function
is defined as normalized distance (13) to the Goal - Box with colored circles.
Maximal number of rules was set to 9.
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Fig. 2. FRBES System design in case Box-Pushing

Table 1. Classification of rules by type of behaviour/function

PushL PushR Watcher
Social behaviour rules / Breitenberg alg.(obstacle avoidance)

Group behaviour rules / box pushing Individual behaviour rules /
Individual behaviour rules / Individual behaviour rules / searching green circle,

searching blue circle, searching red circle, comm to PushL,
communication with watcher communication with watcher comm to PushR,

Explore and tracking target

fitness =
(

ActualDistR1
MaxDistR1

+
ActualDistR2
MaxDistR2

+
ActualDistR3
MaxDistR3

)
(13)

We made one experiment (S0) without cognitive analysis and six experiments
(S0x) with cognitive analysis and different random generators. Labels in table
are Simulation time in Hours, Average Time of One generation in Minutes, Best
Fitness function value, Number of generation to Best Fitness value, Random
Generator Type and Best Time to arriving Robots to Box with circles. We
tested two random generators, namely classical rand from GCC libraries, The
second, MT was Merssene Twister random generator [9].
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Table 2. Structure of Agent’s rule

Antecedent part of Rule Consequent part of Rule
State Com CamP CamT In01 In02 In03 In04 In05 State Com MotR MotL
1,2 1 0,1,2,3 1,2 0,1,2,3 1,2 1 1,2,3,4

Table 3. Experiment results

ID SimTm/Hrs AvgTmOneGener/Min BestFit nGenersToBF RandGen BestTimeToGoal/Sec
S0 185.4 55 1.9595 109 MT None
S01 79.7 24 0.804 84 RAND 29
S02 79.1 24 0.616 93 MT 33
S03 83.8 25 0.7105 179 RAND 60
S04 85.5 26 0.7436 39 RAND 25
S05 90.2 27 0.785 139 MT 35
S06 87.2 26 0.6533 126 MT 52

For illustration two pictures are presented, configuration of an experiment
when starting and when finishing with best fitness function value.

Fig. 3. Start and finish of the experiment with best fitness function

6 Conclusions

The Cognitive analysis could be very useful in the reduction of the rule basis
of agents in MAS optimized by the Genetic algorithm. This analysis could be
also used for the analyzing of the emergence processes in MAS. In this time, we
were continuing with experiments on the second subtask. We are also consid-
ering reinplementation of the FuzNet, the Genetic algorithm and the Cognitive
analysis onto the mobile automotive platform and move this experiment from
the Webots simulator to the Koala hardware robotic platform.
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Abstract. Memetic algorithms are popular approaches to improve pure
evolutionary methods. But were and when in the system the local search
should be applied and does it really speed up evolutionary search is
a still an open question. In this paper we investigate the influence of
the memetic extensions on globally induced regression and model trees.
These evolutionary induced trees in contrast to the typical top-down
approaches globally search for the best tree structure, tests at internal
nodes and models at the leaves. Specialized genetic operators together
with local greedy search extensions allow to the efficient tree evolution.
Fitness function is based on the Bayesian information criterion and mit-
igate the over-fitting problem. The proposed method is experimentally
validated on synthetical and real-life datasets and preliminary results
show that to some extent memetic approach successfully improve evolu-
tionary induction.

Keywords: data mining, evolutionary algorithms, memetic algorithms,
regression trees, model trees, global induction.

1 Introduction

The most popular algorithms for decision tree induction are based on top-down
greedy search [10]. Top-down induction starts from the root node where locally
optimal split (test) is searched according to the given optimality measure. Then,
the training data is redirected to newly created nodes and this process is repeated
recursively for each node until some stopping-rule is reached. Finally, the post-
pruning is applied to improve the generalization power of the predictive model.

Nowadays, many research focus on approaches that evolve decision trees as
alternative heuristics to the traditional top-down approach [2]. The main advan-
tage of evolutionary induced trees over greedy search methods is the ability to
avoid local optima and search more globally for the best tree structure, tests
at internal nodes and models at the leaves. On the other hand the induction of
global regression and model trees is much slower. One of the possible solutions
to speed up evolutionary approach is a combination of evolutionary algorithms
with local search techniques, which is known as Memetic Algorithms [6].

In this paper, we focus on regression and model trees that may be considered
as a variant of decision trees, designed to approximate real-valued functions.

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 174–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Main difference between regression tree and model tree is that, for the latter,
constant value in the terminal node is replaced by a regression plane. In our pre-
vious works we investigated the global approach to obtain accurate and compact
regression [8] and model trees with simple linear regression [4] and multivariate
linear regression [5] at the leaves. We also investigated the influence of memetic
extensions on the global induction of classification trees [7]. In this paper we
would like to apply a similar approach for globally induced regression and model
trees.

The rest of the paper is organized as follows. In the next section a memetic
induction of regression and model trees is described. Experimental validation of
the proposed approach on artificial and real-life data is presented in section 3. In
the last section, the paper is concluded and possible future works are sketched.

2 Memetic Induction of Regression and Model Trees

In this section we present a combination of evolutionary approach with local
search techniques in inducing the regression and model trees. The general struc-
ture of proposed solution follows a typical framework of evolutionary algorithms
[9] with an unstructured population and a generational selection. New memetic
extensions are proposed in 2.2 and 2.4.

2.1 Representation

Regression and model trees are represented in their actual form as classical uni-
variate trees (tests in internal nodes are based on a single attribute). Depending on
the tree type, each leaf of the tree can contain a mean of dependent variable from
training objects (regression trees) or a linear model that is calculated at each ter-
minal node of the model tree using standard regression technique (model trees).
Additionally, in every node information about learning vectors associated with
the node is stored. This enables the algorithm to perform more efficiently the lo-
cal structure and tests modifications during applications of genetic operators.

2.2 Memetic Initialization

Initial individuals are created by applying the classical top-down algorithm [10].
At first, we learn standard regression tree that has a mean of dependent variable
values from training objects at each leaf. The recursive partitioning is finished
when all training objects in the node are characterized by the same predicted
value (or it varies only slightly, default: 1%) or the number of objects at node
is lower than the predefined value (default value: 5). Additionally, user can set
the maximum tree depth (default value: 10) to limit initial tree size. Next, if
necessary, a linear model is calculated at each terminal node of the model tree.

Traditionally, the initial population should be generated randomly to cover the
entire range of possible solutions. Due to the large solution space the exhaus-
tive search may be infeasible. Therefore, while creating initial population we
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search for a good trade off between a high degree of heterogeneity and relatively
low computation time. To create initial population we propose several memetic
strategies which involves employing the locally optimized tests and models on
randomly chosen internal nodes and leaves. For all non-terminal nodes one of
the four test search strategies is randomly chosen:

– Least Squares (LS) function reduces node impurity measured by sum of
squares,

– Least Absolute Deviation (LAD) function reduces the sum of absolute devi-
ations. It has greater resistance to the influence of outlying values to LS,

– Mean Absolute Error (MAE) function which is more robust and also less
sensitive to outliers to LS,

– dipolar, where a dipol (a pair of feature vectors) is selected and then a test
is constructed which splits this dipole. First instance that constitutes dipol
is randomly selected from the node. Rest of the feature vectors are sorted
decreasingly according to the difference between dependent variable values
to the firstly chosen instance. To find a second instance that constitutes dipol
we applied mechanism similar to the ranking linear selection [9].

For the leaves, algorithm finds the locally optimal model that minimizes the sum
of squared residuals for each attribute or for randomly chosen one.

2.3 Genetic Operators

To maintain genetic diversity, we have proposed two specialized genetic opera-
tors corresponding to the classical mutation and cross-over. At each evolutionary
iteration one of the operators is applied with a given probability (default prob-
ability of selecting mutation equals 0.8 and cross-over 0.2) to each individual.
Both operators have influence on the tree structure, tests in non-terminal nodes
and models at the leaves. Cross-over solution starts with selecting positions in
two affected individuals. In each of two trees one node is chosen randomly. We
have proposed three variants of recombination [4] that involve tests, subtrees and
branches exchange. Mutation solution starts with randomly choosing the type
of node (equal probability to select leaf or internal node). Next, the ranked list
of nodes of the selected type is created and a mechanism analogous to ranking
linear selection is applied to decide which node will be affected. Depending on
the type of node, ranking take into account the location of the internal node
(internal nodes in lower parts of the tree are mutated with higher probability)
and the absolute error (worse in terms of prediction accuracy leaves and internal
nodes are mutated with higher probability). We have proposed several variants
of mutation for internal node [4] and for the leaf [5] that involve tests, models and
modifications in the tree structure (pruning the internal nodes and expanding
the leaves).

2.4 Memetic Extensions

To improve the performance of evolutionary process, we propose additional local
search components that are built into the mutation-like operator. With the user
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defined probability a new test can be built on a random split or can be locally
optimized similarly to 2.2. Due to the computational complexity constraints, we
calculate optimal test for single, randomly chosen attribute. Different variant of
the test mutation involve shifting the splitting threshold at continuous-valued
feature which can be locally optimized in the similar way. In case of model trees,
memetic extension can be used to search for the linear models at the leaves. With
the user defined probability a new, locally optimized linear regression model is
calculated on a new or unchanged set of attributes.

In previous research, after performed mutation in internal nodes the models
in corresponding leaves were not recalculated because adequate linear models
could be found while performing the mutations at the leaves. In this paper we
test the influence of this recursive model recalculations as it can also be treated
as local optimization.

2.5 Fitness Function, Selection and Termination Condition

A fitness function is one of the most important and sensitive element in the
design of the evolutionary algorithm. It measures how good a single individual
is in terms of meeting the problem objective and drives the evolutionary search
process. Direct minimization of the prediction error measured on the learning
set usually leads to the overfitting problem. In a typical top-down induction of
decision trees [10], this problem is partially mitigated by defining a stopping
condition and by applying a post-pruning.

In our previous works we used different fitness functions like Akaike’s infor-
mation criterion (AIC) [1] and Bayesian information criterion (BIC) [11]. In this
work we continue to use BIC as a fitness function with settings like in [5] but
with new assumption. When the sum of squared residuals of the tree equals to
zero the original BIC fitness is equal infinity therefore no better individual can
be found. In our research we continue the search to find the best individual with
the lowest complexity.

Ranking linear selection [9] is applied as a selection mechanism. Additionally,
in each iteration, single individual with the highest value of fitness function in
current population in copied to the next one (elitist strategy). Evolution termi-
nates when the fitness of the best individual in the population does not improve
during the fixed number of generations. In case of a slow convergence, maximum
number of generations is also specified, which allows to limit the computation
time.

3 Experimental Validation

The proposed memetic approach is evaluated on both artificial and real life
datasets. It is compared only to the pure evolutionary versions of our global
inducer since in previous work [4] we had a detailed comparison of our solutions
with popular counterparts. All results presented in this paper correspond to
averages of 10 runs and were obtained by using test sets (when available) or
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by 10-fold cross-validation. Root mean squared error (RMSE) is given as the
prediction error measure of the tested systems. The number of nodes is given as
a complexity measure (size) of regression and model trees.

3.1 Synthetical Datasets

In the first group of experiments, two simple artificially generated datasets illus-
trated in figure 1 are analyzed. Both datasets have the same analytically defined
decision borders and contain two independent and one dependent feature with
5% noise. Dataset armchair1 was designed for the regression trees (dependent
feature contains only a few distinct values) and armchair2 for the model trees
(dependent variable is modeled as a linear function of single variable). One thou-
sand observations for each dataset were divided into a training set (33.3% of
observations) and testing set.

In order to verify the impact of memetic approach on the results, we prepared
a series of experiments for global regression trees GRT and global model trees
GMT. Let m denote the percentage use of local optimizations in the mutation of
evolutionary induced trees and equals: 0%, 10% or 50%. The influence of these
memetic components on the evolutionary process is illustrated in the figure 2 for
GRT and in figure 3 for GMT. On both figures the RMSE and the tree size is
shown.

Illustrations on the left side, present the algorithms GRT and GMT in which
after each performed mutation in the internal node corresponding leaves were
not recalculated since they could be found during the leaves mutation. In the
illustrations on the right, for the algorithms denoted as GRTr and GMTr, all
the mean values or models in corresponding leaves were recursively recalculated
which can also be treated as local optimization 2.4.

In table 1 we summary the results for the figure 2. All the algorithms man-
aged to find minimum RMSE and the optimal tree size which was equal 7.
Stronger impact of the memetic approach results in significantly faster algo-
rithm convergence however it also extends the average iteration time. The pure
evolutionary algorithm GRT managed to find optimal solution but after 28000
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Fig. 2. The influence of memetic parameter m on the performance of the algorithm
without (GRT - left) , or with (GRTr - right) recursive recalculations
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Fig. 3. The influence of memetic parameter m on the performance of the algorithm
without (GMT - left), or with (GMTr - right) recursive recalculations

iterations where for example GRTr with memetic impact m = 50% need only
100 generations. We can observe that the best performance was achieved for the
GRTr algorithms with local optimization m equal 10%.

Dataset armchair2 was more difficult to analyse and none of the GMT and
GMTr algorithm presented in figure 3 and described in table 2 managed to find
the optimal solutions. Similarly to the previous experiment, the algorithms with
memetic approach convergence much faster and were able to find good results
even after few iterations. The GMTr with m equal 50% managed to achieve the
highest performance in the terms of RMSE and the total time.

3.2 Real-Life Datasets

In the second series of experiments, two datasets from UCI Machine Learning
Repository [3] were analyzed to assess the performance of memetic approach on
real-life problems. Table 3 presents characteristics of investigated datasets and
obtained results after 5000 performed iterations.

We can observe that for the higher memetic impact, the RMSE is the smallest
but at the cost of the evolution time. Additional research showed that if we run
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Table 1. Results of the GRT and GRTr algorithms for the armchair1 dataset

Algorithm GRT0 GRT10 GRT50 GRTr0 GRTr10 GRTr50
performed iterations 28000 6400 4650 970 190 100
average loop time 0.0016 0.0044 0.011 0.0017 0.0045 0.012
total time 44.8 28.2 51.2 1.65 0.855 1.2
RMSE 0.059 0.059 0.059 0.059 0.059 0.059
size 7 7 7 7 7 7

Table 2. Results of the GMT and GMTr algorithms for the armchair2 dataset

Algorithm GMT0 GMT10 GMT50 GMTr0 GMTr10 GMTr50
performed iterations 20000 20000 20000 20000 20000 20000
average loop time 0.0040 0.0060 0.011 0.0041 0.0063 0.011
total time 80 120 220 82 126 220
RMSE 0.047 0.044 0.045 0.046 0.044 0.045
size 16 18 17 16 17 16

Table 3. Results of the GMT and GMTr algorithms for the real-life datasets

Dataset Alg. GRT0 GRTr0 GRTr10 GRTr50 GMT0 GMTr0 GMTr10 GMTr50
Abalone RMSE 2.37 2.34 2.31 2.30 2.25 2.23 2.23 2.23
inst: 4177 size 39 35 35 39 17 15 13 15
attr: 7/1 time 52 56 207 414 149 336 521 1240

Kinemaics RMSE 0.195 0.191 0.186 0.185 0.185 0.179 0.176 0.174
inst: 8192 size 77 109 129 109 59 61 59 81
attr: 8 time 96 99 719 1429 285 442 1203 2242

the pure evolutionary algorithm for the same amount of time as GRTr50 or
GMTr50 the results would be similar. Therefore, if we consider the time limit,
the global trees with small memetic impact (m = 10%) would achieved the
highest performance in the terms of RMSE and size.

4 Conclusion

In the paper the memetic approach for global induction of decision trees was in-
vestigated. We have assessed the impact of local optimizations on evolutionary
induced regression and model trees. Preliminary experimental results suggest
that at some point memetic algorithms successfully improve evolutionary induc-
tion. Application of the memetic approach results in significantly faster algorithm
convergence however it also extends the average iteration time. Therefore, too
much of local optimizations may not really speed up the evolutionary process.
Experimental results also suggest that additional recursive model recalculations
after performed mutation for corresponding leaves may be a good idea.
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Further research to fully understand the influence of the memetic approach for
the decision trees is advised. Currently we plan to analyze each local optimization
separately to see how it affects three major elements of the tree: structure, test
and models at the leaves.
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Abstract. This paper presents a method of searching for the best de-
composition strategy for logical functions. The strategy is represented by
a decision tree, where each node corresponds to a single decomposition
step. In that way the multistage decomposition of complex logical func-
tions may be specified. The tree evolves using the developmental genetic
programming. The goal of the evolution is to find a decomposition strat-
egy for which the cost of FPGA implementation of a given function is
minimal. Experimental results show that our approach gives significantly
better outcomes than other existing methods.

Keywords: developmental genetic programming, functional decompo-
sition, FPGA devices.

1 Introduction

Decomposition is a process of splitting a complex function into a set of smaller
sub-functions. It is used in machine learning, pattern analysis, data mining,
knowledge discovery and logic synthesis of digital systems [14]. The goal of the
decomposition is to optimise certain system features. In the case of digital cir-
cuits, objectives of optimisation are the minimal cost and the minimal latency
of target system implementation.

There exist a lot of different decomposition methods dedicated to Boolean
functions [14]. As far as LUT-based FPGA (Look-Up Table Based Field Pro-
grammable Arrays) implementations are considered, the most effective method
is the functional decomposition [3]. It splits a logical function into two smaller
functions using a parallel or a serial strategy. This step should be repeated re-
cursively for each result function which is not implementable in one logic cell.
There are efficient methods of single-step functional decomposition, giving quite
good results [9], but it seems that multilevel decomposition strategies are not
studied enough. The only known method is the balanced decomposition [9], but
it was not proved that this strategy is optimal.

This paper presents a new approach to the multilevel functional decomposi-
tion. For each circuit a dedicated strategy of decomposition is evaluated. The
strategy defines the methods of decompositions which are applied during each
step. In our approach the strategy of decomposition is optimized using the devel-
opmental genetic programming. We observed that our method gives significantly

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 182–189, 2012.
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better results, than other existing methods, for the most of the evaluated bench-
mark circuits.

In the next section the functional decomposition is described. Section 3
presents the developmental genetic programming used in our approach. In the
section 4 our method is presented. Section 5 contains experimental results. The
paper ends with conclusions.

2 Functional Decomposition

Let F be a multiple-input/multiple-output function. The function may be decom-
posed using a parallel or a serial strategy. The parallel decomposition expresses
the function F(X) through functions G and H with disjoint sets of output vari-
ables. The serial decomposition expresses the function F(X) through functions
G and H, such that F=H(U,G(V)), where U ∪ V=I. If the number of inputs and
outputs of the result function does not exceed the number of inputs and outputs
in the LUT, then the function is implementable in one LUT cell.

The following problems of defining the decomposition strategy should be re-
solved: which decomposition method should be used, and which sets of separated
inputs (in serial decomposition) or outputs (in parallel decomposition) should be
chosen. The only known solution for the first problem is the balanced decomposi-
tion [9]. In this strategy the parallel decomposition is chosen if the decomposed
function has more outputs than inputs, otherwise the serial decomposition is
applied. However, it was not proved that this strategy is the best one for the
functional decomposition. Thus alternative approaches should be studied, and
the strategy giving the best final results should be found.

For the variable partitioning problem a lot of heuristics were proposed [11]. In
[13] the best variable partition is determined using the information relationship
measures that express relations between input and output variables. Separated
sets of inputs may be also optimised using evolutionary algorithms [12]. An
efficient method of finding variable partitions, based on so called r-admissibility
was proposed in [11]. A method applying ”divide-and-conquer” paradigm was
presented in [10].

The goal of all above methods is to find the input partitions providing the
best serial decomposition of a given input function. It should be noticed that
a decision giving the best results in a single step does not guarantee obtaining
the optimal solution. Thus the local as well as the global optimisation methods
should be studied, to find the best strategy of the multilevel decomposition.

3 Developmental Genetic Programming

Genetic programming (GP) [7] creates computer programs using genetic algo-
rithm (GA) [5]. The population is a set of individuals representing computer
programs which evolve. In the developmental genetic programming (DGP) [6],
methods creating solutions evolve instead of computer programs. In this method
the genotype and the phenotype are distinguished. The genotype is composed of
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genes representing elementary functions that constructs the solution of a prob-
lem. Phenotype represents the target solution. During evolution only genotypes
are evolved, while the genotype-to-phenotype mapping is used to create pheno-
types. Next, all genotypes are rated according to the estimated quality of the
corresponding phenotypes. The goal of the optimisation is to find the procedure
constructing the best solution of a problem.

DGP is especially helpful in optimizing solutions of hard-constrained prob-
lems. In these cases most of randomly generated solutions are not valid. Thus
in probabilistic methods like GA some restrictions should be applied to enforce
genetic operators to produce only legal individuals. But these restrictions may
also create infeasible regions in a search space, eliminating sequences of genes
which may lead to high quality solutions. This problem does not appear in DPG,
because in the DGP genotypes are evolved without any restrictions and legal
only phenotypes are guaranteed by appropriate genotype to phenotype map-
ping. DGP proves to be effective in such problems like synthesis of electronic
circuits, synthesis of the control algorithms, co-synthesis of embedded systems,
etc. [8].

The only constraint in the functional decomposition is that the original be-
haviour must be preserved. Since generation of networks of Boolean functions
which are equivalent to the given function is a hard problem, there is no ef-
ficient GP approach for optimising functional decomposition. However, taking
into consideration that DGP evolves a system construction procedure instead of
the system itself, such an approach seems to be very promising for optimisation
of the decomposition strategy for Boolean functions.

4 Evolution of the Multilevel Decomposition Strategy

In our method genotypes are represented by binary trees specifying the decom-
position strategy. Each node (gene) specifies the decomposition of the function
created by the parent node into 2 functions passed to offspring nodes for further
processing. Thus each level in the tree represents a single stage of the multi-level
decomposition process. Functions created by tree leaves constitute the target
solution.

4.1 Genotypes and Phenotypes

Each gene specifies a decomposition strategy used in a single step. The strategy is
defined by the type of decomposition (parallel or serial) and the rules according
to which the sets of separated inputs or outputs are determined. As yet, 16
different genes are defined.

The initial generation consists of individuals generated randomly, where all
genes are selected with the same probability. The size of the genotype should
be attuned to the complexity of the function, therefore the number of nodes in
each genotype is calculated according to the following formula:

G = Θ(
n ∗m

ILUT
∗A1.2

0.8) (1)
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where: n - is the number of inputs, m - is the number of outputs, ILUT – is
the number of LUT’s inputs, A1.2

0.8 is a random value from range [0.8 . . . 1.2], Θ
– returns the argument rounded upward to the nearest natural odd value.

A sample genotype tree is shown in Fig.1. The genotype corresponds to a
function with 8 inputs and 3 outputs. For LUT with 4 inputs and 1 output
possible number of nodes is equal to 5, 7 or 9. OS1, OS2, OS8 and IS3, IS4, IS5
mean different strategies for separation of outputs and inputs.

Fig. 1. Sample genotype

Genotype to phenotype mapping is done by traversing the genotype in the
depth-first order, for each node the decomposition is performed according to rules
defined by the corresponding gene. The methods of the functional decomposition
based on the blanket algebra [3] are applied. Two exceptions are possible: first,
the node has successors but further decomposition is not necessary, second, the
node is a leaf but the function requires further decompositions. In the first case,
the decomposition of the given subfunction is not continued and useless nodes are
removed from the genotype tree immediately. This process is similar to withering
of unused features in live organisms. In the second case, the decomposition result
is estimated using the expected cost of implementation:

ECI = 2n−k ∗m (2)

Results estimated by this rule are enough pessimistic to be worse than most of
the fully decomposed solutions. In that way the probability of reproducing such
solutions to the next generations is very low.

The phenotype is a network of result functions which is functionally equivalent
to the original function. According to the sample genotype shown in Fig.1, a
function F was decomposed into 5 smaller functions(Fig.2). Assuming that the
target LUT has 4 inputs and 1 output the genotype to phenotype mapping
proceeded as follows: function F was split into functions (g, h) using the parallel
decomposition, next function g was decomposed into (gg, gh) and function h was
decomposed into (hg, hh), finally function hh was decomposed into (hhg, hhh).

4.2 Genetic Operators

Each generation contains the same number of individuals. To ensure that the
examined solution space will be proportional to the function complexity, the size
of the generation is calculated according to the following formula:
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Fig. 2. The phenotype mapped from the genotype presented in Fig.1

N = (n+m) ∗Ω (3)

where Ω is a DGP parameter.
Genotypes are ranked according to the implementation cost of the correspond-

ing phenotypes. Solutions which require less LUT cells for implementation have
higher position in the ranking. During evolution the rank selection operator is
used. Reproduction copies the selected individuals from the current generation to
the next generation. Cross-over selects 2 genotypes, then both trees are pruned
by removing randomly selected edge, next, sub-trees are swapped between both
parent genotype. In that way 2 new individuals are created and added to the
next generation. Mutation selects one genotype, then one of the following mod-
ifications is done for the chosen genotype:

– randomly selected gene is changed to another,
– randomly selected edge is pruned and the subtree is removed,
– two random nodes are created and added to the randomly selected leaf.

Each type of modification is selected with the same probability, except that for
single-node genotypes the subtree extraction can not be selected. Implementation
of genetic operators ensures that the correct genotype-tree structure is always
kept. Each node in the genotype has exactly 2 child-nodes or it is a leaf node.

The new generation is created using the above operations in the following
way: r = α ∗ N individuals are reproduced, c = β ∗ N individuals are created
using cross-over, and m = γ ∗ N individuals are created using mutation. The
following requirement must be fulfilled:

α+ β + γ = 1 (4)

If the algorithm does not find any bettter solution in λ succeeding generations,
the evolution stops. Values of Ω, α, β, γ and λ are experimentally attuned.

5 Experimental Results

The described method has been implemented and evaluated with the help of
some MCNC benchmarks [15]. The following values of DGP parameters have
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been assumed: Ω=12, α=0.05, β=0.65, γ=0.3, λ=20. The same experiments
were performed using other existing methods of logic synthesis for FPGAs:
GUIDek [1], an academic tool which decomposes functions using determinis-
tic approach, it also uses the functional decomposition, the ABC system [2], it
is also an academic tool but it performs FPGA mapping based on cofactoring
and disjoint-support decomposition, and commercially available tool Quartus II
v.10.0 from Altera Corp. Experimental results are shown in Tab. 1. The following
columns contain: the name of the benchmark, results obtained using our (DGP)
method(the best results obtained in 20 trials), GUIDek, ABC and Quartus. The
results represent the cost of the FPGA implementation (number of LUT cells).
DGP gives 18% better implementations than GUIDek and 21% better result
than Quartus, on average.

Table 1. Decompositon results (number of LUT4x1 cells, Cyclone II devices)

Benchmark DGP GUIDek ABC Quartus II

5xp1 18 22 34 33

9sym 8 9 92 9

dk17 27 32 34 31

dk27 12 13 11 11

f51m 15 22 39 19

inc 27 35 39 42

m1 20 25 23 20

misex1 16 20 14 22

newcpla2 24 33 26 24

rd53 5 5 14 7

rd73 9 9 43 11

seq 18 23 22 20

sqn 21 24 42 33

sqrt8 11 13 17 14

squar5 13 14 17 16

t4 15 17 14 14

tms 60 73 87 80∑
321 389 568 406

Avg. improvement – 18% 44% 21%

In GP approaches it is very important to attune the genetic parameters. Thus
we performed some experiments to analyze the influence of certain parameters
on the final result. First, we have analyzed the number of individuals in one
generation (Ω). Results obtained for the benchmark dk17 with 300, 800, 1600
individuals in each generation (Ω=15, 40 and 80) are presented in Fig.3. We
observed that increasing the generation size improves the final result, but there
is no dependence between the generation size and the number of generations
required to get the final result. In all cases the best result was found after less
than 40 steps.

Another important parameter is the number of mutations applied during each
step. Fig.4 presents results obtained for 9sym benchmark using DGP with 5%,
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Fig. 3. Evolution for different numbers of individuals in one generation

Fig. 4. Results of the evolution with 5%(a), 15%(b) and 30%(c) of mutations

15% and 30% of mutations. Each evolution was repeated 50 times. The best
solution was found in 16%, 36% and 52% of trials, respectively. Results confirmed
that in the DGP approach the number of mutations should be relatively high.

6 Conclusions

In this paper the developmental genetic programming was applied to the problem
of functional decomposition of Boolean functions. In our approach the multilevel
decomposition strategy for given function evolves, instead of the solutions itself.
In that way we use strategy optimized for the given system instead of the global
decomposition strategy. To our best knowledge this is the first DGP approach
targeting the multilevel decomposition problem. DGP approach requires more
CPU time compared to other methods. But genetic algorithms can be efficiently
parallelized, thus the implementation for multicore processors will significantly
reduce this time [4].

Preliminary results show, that the method is efficient; it gives significantly
better results than existing methods. We considered only the cost issue, but it is
possible to consider, during the fitness computation, the number of logic levels
in a system. In this way the performance of the target implementation also may
be optimised. Future work will concentrate on analyzing other implementations
of genetic operators. We will work also on developing new types of genes using
different input variable partitioning methods, some metric measures and other
methods of input selection known from the literature.
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Abstract. A tournament searching method with new mutation operators for a 
problem of the feature subset selection is presented. The probability of the bit 
mutation in a classical approach is fixed. In the proposed methods this probabil-
ity is dependent on the history of the searching process. Bit position whose mu-
tation from 0 to 1 (from 1 to 0) improved the evaluation of the solution in early 
iterations, are mutated more frequently from 0 to 1 (from 1 to 0). The roulette 
wheel method and the tournament method are used to select the bits for the mu-
tation according to the adaptive probability. The algorithms were tested on sev-
eral tasks of the feature selection in the supervised learning. The experiments 
showed the faster convergence of the algorithm with directed mutations in rela-
tion to the classical mutation.  

Keywords: feature selection, tournament feature selection, directed mutation, 
roulette wheel mutation, tournament mutation, supervised learning, k-nearest 
neighbour method. 

1 Introduction 

Feature selection (FS) is an important stage in the design of classification and ap-
proximation systems, as well as in modelling the phenomena, processes and physical 
objects in general. The aim of FS is to reduce the dimension of the input vectors by 
the feature (variable) subset selection which describes object in the best manner and 
ensures the best quality of the model. In this process the irrelevant, redundant and 
unpredictive features are omitted. 

The methods of  FS can be generally divided into filter and wrapper ones [1]. Filter 
methods do not require application of learning model to select relevant features. They 
select features as a preprocessing step, independent on the choice of the predictor. 
They also use information included in the dataset, e.g. the correlation between vari-
ables or discriminatory abilities of the individual features, to create the most promis-
ing feature subset before commencement of learning. The main disadvantage of the 
filter approach is the fact that it totally ignores the effect of the selected feature subset 
on the performance of the learning model. 

The wrapper approach operates in the context of the learning model – it uses fea-
ture selection algorithm as a wrapper around the learning algorithm and has usually 
better predictive accuracy than the filter approach. The wrapper approach using the 
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learning model as a black box is remarkably universal. However, this approach can be 
very slow because the learning algorithm is called repeatedly. The comparative ex-
periments between the wrapper and filter models confirmed that it is inappropriate to 
evaluate the usefulness of an input variable without taking into consideration the algo-
rithms that built the classification or regression model [1].  

Some learning models have internal build-in mechanisms of FS. For example deci-
sion trees (CART, ID3, C4.5) which incorporate FS routine as a subroutine and heu-
ristically search the space of feature subsets along tree structure during the learning 
process or artificial immune system proposed in [2] which includes the local feature 
selection mechanism. This approach,  inspired by the binding of an antibody to an 
antigen, which occurs between amino acid residues forming an epitope and a para-
tope, allows the detection of many relevant feature sets (a separate relevant feature set 
is created for each learning point and its neighborhood). 

In [3] the wrapper method of FS called tournament feature selection (TFS) was 
proposed. The solution strings processed by TFS are vectors composed of bits 
representing all m features: x = [x1, x2, …, xm]. Ones and zeros in these vectors indi-
cate whether the feature is selected or not. TFS is a simple stochastic search mechan-
ism which explores the solution space starting from an initial solution and generating 
new ones by perturbing it using a mutation operator. This operator switches the value 
of one randomly chosen bit (but different for each candidate solution) of the parent 
solution. When the set of new l candidate solutions is generated (l represents the tour-
nament size), their evaluations are calculated. The best candidate solution (the tour-
nament winner), with the highest value of the criterion function, is selected and it 
replaces the parent solution, even if it is worse than the parent solution. This allows us 
to escape from the local maxima of the criterion function. If l is equal to 1, this proce-
dure comes down to a random search process. On the other hand, when l is equal to 
the total number of features this method becomes a hill climbing method where there 
is no escape from the local maxima. 

  The TFS turned out to be very promising in the feature selection problem, better 
than a genetic algorithm and simulated annealing, as well as deterministic sequential 
forward and backward selection algorithms [3]. The TFS method, similarly to the 
genetic algorithm, has a parallel structure – several candidate solutions can be gener-
ated and evaluated at the same time. This results in the runtime decreasing. The main 
advantage of TFS is only one parameter to adjust – the tournament size l.  

This paper presents TFS with specialized binary search operators: roulette wheel 
and tournament mutations. These operators use information gained during the search-
ing process about the effect of mutations at different bit positions on the solution 
quality. Bit position whose mutation from 0 to 1 (or 1 to 0) improved the evaluation 
of the solution in earlier iterations are more frequently mutated from 0 to 1 (or 1 to 0). 
This mechanism should speed up the convergence of the algorithm. 

The biological inspiration for the proposed directed mutations is a hypothesis of  
directed mutagenesis proposing that organisms can respond to environmental stresses 
through directing mutations to certain genes or areas of the genome [4].    
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2 Roulette Wheel Mutation  

In the roulette wheel method the mutation intensity is determined individually for 
each bit position i = 1, 2, …, m. The indexes of mutation intensity from 0 to 1 w0-1(i) 
and from 1 to 0 w1-0(i) are introduced and initialized with zeros for each position i. 
The index values are updated after each algorithm iteration according to the following 
scheme: 

• if the solution evaluation after mutation increases, the index values for mutated 
positions increase, i.e. w0-1(i) or w1-0(i) (respectively to the direction of mutation 
(from 0 to 1 or from 1 to 0) and the mutated bit position) is incremented by u.  

• if the solution evaluation after mutation decreases, the index values for mutated 
positions decrease, i.e. w0-1(i) or w1-0(i) is decremented by u. 

• if the solution evaluation after mutation does not change, the index values remain 
unchanged. 

This can be expressed by formulas: 
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where: u > 0 – the incrementation/decrementation constant, x, x' – the solution before 
and after mutation, M – the set of mutated position in the solution x, F(x), F(x') – the 
evaluation values of the solution x before and after mutation, respectively. 

The high value of the index w0-1(i) (w1-0(i)) informs that in the current realization of 
the searching process the change of the i-th bit value from 0 to 1 (from 1 to 0) caused 
improvement of the evaluation in the most cases. Thus the probability of the mutation 
of this bit from 0 to 1 (from 1 to 0) in the next iterations should be adequately high, 
depending on the value of w0-1(i) (w1-0(i)) index. The mutation probability is calcu-
lated according to the formula: 
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where: wd(i) = w0-1(i) if the i-th bit value in the mutated solution is equal to 0 and  
wd(i) = w1-0(i) otherwise, Ω0(i) is a set of positions of zeros and Ω1(i) is a set of posi-
tions of ones in the mutated solution, f(.) is a logistic function of the form:  
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The task of the logistic function having an “S” shape is to reduce the mutation prob-
ability of positions with large values of the mutation indexes and transform the nega-
tive values of indexes to the positive ones. This is illustrated in Fig. 1. Index values 
after transformation using (5) are in the range from 0 to 1. The positive values of  
indexes are necessary for the proper operation of the roulette wheel method. The re-
duction of mutation probability for positions with large index values eliminates the 
premature convergence to the superindividuals. The mutation probability is propor-
tional to the value of f(wd(i)(i)) now, and not to the value of wd(i)(i), which may  
increase/decrease to +/- infinity during the searching process and which may affect 
the mutation probabilities in an undesirable way. The mutation probability of z2 in 
Fig. 1 is only about 11% larger than the mutation probability of z1, although z2 is two 
times larger than z1.      
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Fig. 1. The logistic function transforming the mutation index values 

The mutation positions are chosen according to the probabilities p(i) using the rou-
lette wheel. The roulette wheel is composed of m sectors which  sizes depend on p(i), 
and their boundaries are determined as follows: 
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The circuit of the roulette wheel equals 1.  
The scheme of the roulette wheel mutation for TFS is as follows:  

1. For each position i = 1, 2, …, m, according to the values of w0-1(i) and  
w1-0(i) indexes, the values of probability p(i) are calculated from equation (3). 

2. For each candidate solution the roulette wheel is constructed taking into account 
sector boundaries (5). 
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3. For each candidate solution the uniformly distributed random number r from the 
range (0, 1] is drawn. The sector including number r determines the position and 
direction of the mutation.  

In the original TFS algorithm, each candidate solution is mutated in a different posi-
tion. If we want to introduce such a requirement in the roulette wheel mutation, before 
calculating probabilities (3) for the mutated candidate solution, we assume  
p(i) = 0 for all previously mutated positions in the current iteration and remove these 
positions as forbidden from the sets Ω0(i) and Ω1(i). For illustration in Fig. 2 the rou-
lette wheels are shown for three 8-bit candidate solutions, where the parent solution is  
x = [0 1 1 0 0 0 1 0], the mutation indexes are: w0-1 = [-0.1, 0.5, 0.8, -0.4, -0.6, -0.2, 
0.9, 0.0], w1-0 = [0.4, -0.3, -0.8, 0.5, 0.9, 0.6, -0.9, 0.1], and the random numbers are  
r = 0.76, 0.28 and 0.59.    

 

 
Fig. 2. The roulette wheels for the three successive candidate solutions generated from the 
parent solution x = [0 1 1 0 0 0 1 0]. (Dark sectors correspond to ones in the parent solution, 
and white sectors correspond to zeros.)  

The mutation parameter u allows to control the selection pressure. The higher u 
value increases the selection pressure. Since the function (4) does not reach zero there 
is nonzero probability of mutation of each bit in both directions. 

3 Tournament Mutation  

Analogically to the roulette wheel mutation, in the tournament mutation the mutation 
intensity indexes w0-1(i) and w1-0(i) are defined. For each candidate solution h bit posi-
tions are sampled uniformly at random with replacement, where h = 1, 2, … is the 
tournament mutation size. Among h positions the one with the highest value of wd(i)(i) 
is chosen, and the value of this position is changed to the opposite one. 

Note that here we do not need to calculate the probability of mutation and the sizes 
of sectors such as in the case of the roulette wheel mutation, because in the tourna-
ment  selection procedure there is not important what is the difference between the 
mutation index values wd(i)(i) corresponding to the bit positions competing in the 
tournament.   
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The tournament size h controls the selection pressure. If h = 1, the tournament mu-
tation is reduced to the classical random mutation. 

Restriction used in TFS, that every candidate solution is mutated in a different po-
sition, is implemented here in such a way that the positions mutated in the previously 
considered candidate solutions do not participate in the tournament for the current 
candidate solution. 

The roulette wheel and tournament mutations should bring good results in the tasks 
where the i-th bit value influences the value of objective function in the same way, 
independently of the bit context (values of the remaining bits in the solution). 

4 Application Examples  

The proposed TFS method with roulette wheel and tournament mutations was verified 
on several test problems of data classification. Benchmark datasets, described in Ta-
ble 1, were taken from the UCI Machine Learning Repository. The features in the 
datasets were standardized to zero-mean and unit-variance. 

Table 1. Description of data used in experiments 

Dataset Size Features Classes 
Optimal  
k value 

Ionosphere 351 34 2 3 
Cancer 569 30 2 4 

Heart Statlog 270 13 2 7 
Wine 178 13 3 4 
Glass 214 9 6 5 

Diabetes 768 8 2 14 

where: Cancer – the Wisconsin diagnostic breast cancer dataset. 
  

k-nearest neighbor method (k-NN) was used as a classifier, with k determined a 
priori for all features (optimal k values are shown in Table 1). The classification accu-
racy was determined in the leave-one-out procedure. For each dataset the feature 
space was optimized running algorithms 30-times. The number of solutions generated 
in the searching process was the same for all mutation variants: 40⋅round(m/2)2. The 
parameter values are listed below: 

• tournament size in TFS: l = round(m/3), 
• incrementation/decrementation constant u = 0.1, 
• tournament mutation size: h = 2 or 4. 

Experiments were carried out using TFS with standard mutation (SM), roulette wheel 
mutation with replacement (the same mutations for different candidate solutions are 
possible, RWM1), roulette wheel mutation without replacement (the same mutations 
for different candidate solutions are not possible, RWM2), tournament mutation with 
replacement for h = 2 (TM1), tournament mutation without replacement for h = 2 
(TM2) and tournament mutation with replacement for h = 4 (TM3).    
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The results are presented in Table 2, where Accmean, Accmin, Accmax are accuracies 
of the classifier using selected features (mean, minimal and maximal accuracies re-
turned in 30 runs) and σAcc is the standard deviation of accuracy.  

The convergence curves averaged from 30 runs for SM, RWM2 and TM2 are 
shown in Fig. 3. Characteristically, the convergence curve for SM is the lowest. This 
indicates the large variance of the searching process (we observe high variability of 
the process). Directed mutations RWM and TM reduce the variance leading the 
searching process to the promising regions of the solution space, which have been 
identified in an earlier stage of searching and stored in the mutation indexes. But from 
Table 2 it can be seen that TFS with the simple standard mutation usually leads to no 
worse results than the directed mutations. 

Table 2. Results of classification using k-NN and TFS 

Dataset  SM RWM1 RWM2 TM1 TM2 TM3 
Without 

FS 
Ionosphere Accmean 94.78 94.09 94.12 94.68 94.62 94.23 84.33 

 Accmin 94.59 92.88 92.88 94.30 94.02 92.88  
 Accmax 95.44 94.87 94.87 95.44 95.44 94.87  
 σAcc 0.26 0.45 0.47 0.35 0.26 0.40  

Cancer Accmean 98.25 97.87 97.89 98.05 98.01 97.91 96.61 
 Accmin 97.89 97.72 97.72 97.72 97.54 97.36  
 Accmax 98.42 98.24 98.42 98.42 98.42 98.42  
 σAcc 0.18 0.15 0.17 0.20 0.23 0.22  

Heart  Accmean 86.16 85.84 85.84 86.06 86.04 85.83 82.22 
Statlog Accmin 85.93 84.81 84.81 85.93 85.93 85.19  

 Accmax 86.30 86.30 86.30 86.30 86.30 86.30  
 σAcc 0.18 0.30 0.32 0.18 0.17 0.27  

Wine Accmean 98.88 98.86 98.86 98.88 98.88 98.67 96.07 
 Accmin 98.88 98.31 98.31 98.88 98.88 98.31  
 Accmax 98.88 98.88 98.88 98.88 98.88 98.88  
 σAcc 0.00 0.10 0.10 0.00 0.00 0.28  

Glass Accmean 74.77 74.77 74.77 74.77 74.77 74.77 65.89 
 Accmin 74.77 74.77 74.77 74.77 74.77 74.77  
 Accmax 74.77 74.77 74.77 74.77 74.77 74.77  
 σAcc 0.00 0.00 0.00 0.00 0.00 0.00  

Diabetes Accmean 77.21 77.21 77.20 77.21 77.21 76.94 73.96 
 Accmin 77.21 77.21 76.69 77.21 77.21 76.30  
 Accmax 77.21 77.21 77.21 77.21 77.21 77.21  
 σAcc 0.00 0.00 0.10 0.00 0.00 0.33  

 
In order to confirm the faster convergence of TFS with directed mutation, we 

check whether the difference d between the average evaluation of the parent solutions 
in all iterations and runs of the algorithm in the case of TFS with standard mutation 
and TSF with directed mutation is statistically significant. Because we cannot assume 
a normal distribution of accuracies we use for this purpose two nonparametric tests: 
the sign test for the null hypothesis that the difference d has zero median and  
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Fig. 3. The mean convergence curves 

Wilcoxon rank sum test for equality of medians of two distributions. The 5% signific-
ance level is applied in this study. The test results confirmed that in all cases TFS with 
the directed mutation (RWM1, RWM2, TM1, TM2 and TM3) converges faster than 
TFS with standard mutation. 

Fig. 4 demonstrates how for the Diabetes dataset the transformed values of the mu-
tation indexes changed during the searching process. Decreasing values of w0-1 and in 
the same time increasing values of w1-0 for features 1, 3, 4 and 5 inform, that these 
features are irrelevant, because switching bits corresponding to them from 0 to 1 most 
frequently resulted in the deterioration of the classifier accuracy, and switching these 
bits from 1 to 0 resulted in increased accuracy. The w1-0(2) decreases very rapidly 
which means that the mutation of the second bit from 1 to 0 is unfavourable. As a 
result, this bit often takes value 1, so the mutation from 0 to 1 does not occur and  
w0-1(2) cannot adapt its value (straight line for w0-1(2) in Fig. 4(a)). A similar but op-
posite situation is for the 4-th feature.   
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Fig. 4. The mutation index values transformed using logistic function (4) during the searching 
process for Diabetes data and RWM2 

5 Conclusion 

The article describes an attempt to improve the performance of the tournament feature 
selection method by introducing new methods of mutation, in which the probability of 
the bit mutation depends on the effectiveness of mutation of this bit in an earlier stage 
of the searching process.  

In the early iterations of the algorithm the probability of mutation of all bits are 
equal. This ensures the thorough search of the solution space in the whole range. In 
the course of the search process information about whether the change of the specific 
bit from 0 to 1 and vice versa improves or deteriorates the solutions are stored. This 
information is used in subsequent iterations to adapt mutation probabilities of individ-
ual bits: bits that mutation from 0 to 1 (1 to 0) increased the solutions are mutated in 
this direction more often. As a result, the algorithm exploitation capabilities are en-
hanced: the neighborhood of  the best solution is searched more intensively. This 
mechanism is effective when the value of the bit affects the evaluation of solutions in 
the same way, regardless of the context. 

The results of this investigation have shown that the convergence of the algorithm 
was improved through the use of the roulette wheel and tournament mutations, but 
better classifier accuracy than using tournament feature selection with the standard 
mutation operator were not achieved. 
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Abstract. The paper presents a new Fully Controllable Ant Colony
Algorithm (FCACA) for the clustering of the text documents in vector
space. The proposed new FCACA is a modified version of the Lumer and
Faieta Ant Colony Algorithm (LF-ACA). The algorithm introduced new
version of the basic heuristic decision function significantly improves the
convergence and greater control over the process of the grouping data.
The proposed solution was shown in a text example proving efficiency of
the proposed solution in comparison with other grouping algorithms.

1 Introduction

Ant Colony Optimization (ACO) was introduced in 1990 by M. Dorigo [1] as
a novel inspired be nature metaheuristic for solution of the hard Combinato-
rial Optimization (CO) problem. For many years it was used for different CO
where enough good results were obtained in reasonable time. Ants randomly
search the food exploring the area around their nest. When ants find a food
resource, it deposits pheromone trail on the ground in the return trip. Quantity
of the pheromone deposited depends on the quantity and quality of the found
food. Deposited pheromone guides other individuals of the colony to the food
resource [1]. The form of the indirect communication via pheromone trails be-
tween all ants enables them to find the shortest path between the nest and food
resources of the best quality and quantity. This characteristic behavior of the
real ant was exploited in artificial ant colonies in order to solve CO problems
such as travelling salesman problem (TSP) [2, 3, 4, 5], asymmetric TSP, quadric
assignment problem (QAP) [6], task assignment problem [7], time tabling prob-
lem [8, 9]. Other interesting behavior is based on cluster dead ants in the nest
in so-called cemeteries to clean up them. Similar sorting behaviour also was ob-
served in the clustering of the larvae. Ants placed smaller larvae near the center,
larger ones towards the edge of the cluster. Similar artificial ants randomly walk
around, pick up and drop information objects based on local information only
in order to group them in the clusters. Lumer and Faieta in [10] proposed LF
algorithm to solve clustering problem, later it was applied to clustering hard
multidimensional text data [11].

Despite of a significant development of methods for natural language process-
ing, the main way to represent textual document remains Vector Space Model

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 199–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(VSM). Systems using VSM are called vector space information retrieval system
originated by Gerard Salton [12,13], developed by many authors and used today.
The documents set it is represented by matrix V of the real crisp values vij de-
termining the degree of the connection between each keyword ki and document
dj . Matrix values are determine using one of the terms weighting methods in
documents [14,15,16,17,18]. The main problem of this type of representation is
the size of the space despite of the elimination of the irrelevant terms [17,18,19].

Even for small number of documents it takes large sizes. Moreover, the in-
dividual vectors representing the text documents contain values different from
zero only in a few positions - there are so called sparse vectors. High dimension-
ality significantly hinders the use of popular classification methods such as Hard
C-means (HCM), Fuzzy C-Means (FCM), [20,21] or Classification Systems (CS)
building decision rules based on sample data [22, 23, 24, 25].

2 LF Ant Colony Algorithm

First LF Ant Colony Algorithm (LF-ACA) for clustering task was proposed
in [10]. LF-ACA is based on behaviour of some ants species - cluster dead ants
in the nest or sorting larvae. Artificial ants similarly randomly walk on the grid
pick up and drop information objects based on local information only in order
to group them in the clusters. First, all information data and ants are placed
randomly on the two dimensional grid. Secondly, ants can walk through the grid
by moving to the neighbouring cells. If ant moves with the data item and the
cell is empty, they drop the data with probability Pdrop, otherwise, if ant moves
empty and the cell contain the data item, they pickup the data with probability
Ppickup.

Ppickup(i) =

(
k1

k1 + f(i)

)2

, Pdrop(i) =

{
2 · f(i) if f(i) < k2

1 otherwise
(1)

f(i) = max

⎛⎝0,
1

s2

∑
j∈N(j)

(
1− d(i, j)

α

)⎞⎠ (2)

The values of the probability Ppickup and Pdrop are based on the neighbourhood
function f(i). Their value depends on the similarity between the data item i and
its surrounding data items in neighbourhood N(i) of radius s. The s parameter
influences on the quality of the obtained clusters. By changing parameter α,
algorithm can be adopted to the input field. Function d(i, j) is specific distance
measure between information objects. If k1 takes small values, the probability
Ppickup value decreases rapidly with decreasing value of similarity function. The
parameter k2 is threshold value for neighborhood function f(i). Above k2 value,
function f(i) has no effect on Pdrop probability - sufficient similar objects are
not distinguished, which affects the quality of the obtained clusters, especially
for hard multidimensional data. Main drawback of the LF-ACA is slow conver-
gence to optimal solution - algorithm requires approximately 106 iterations, more
clusters are formed that are in the data set, some modifications are necessary.
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A first real application consisting of text document clustering is presented
in [26]. In the paper [11] authors propose some modification LF-ACA using
cosine similarity function normalized by the length of the document vectors.

In the paper [27] authors summarize proposed modification of the ant algo-
rithm. Some ants are able to move over several grid units forming coarse clus-
ters, other ants moves more slowly, they should place the information objects
more precisely. Each ant has short term memory, remembering the location of
the formed clusters, so the ants do not moves randomly, just chooses the best
location on the basis of memory. Adaptive Time-dependent Transporter Ants
(ATTA) has been proposed in [28]. In ATTA radius s is modified during the
algorithm from small values - perception ability of the ants are smaller - more
different objects form clusters, to bigger values - perception ability of the ants
are bigger - clusters are more optimal. The base heuristic functions Pdrop, Ppickup

(1) and f(i) (2) were modified to (3) and (4) for speed up process respectively,
f(i) ∈ [0, 1].

Ppickup(i) =

{
1 if f(i) ≤ 1

1
f(i)2 otherwise

, Pdrop(i) =

{
1 if f(i) ≥ 1

f(i)4 otherwise
(3)

f(i) =

⎧⎪⎨⎪⎩max

(
0, 1

s2

∑
j∈N(j)

(
1− d(i,j)

α

))
if ∀j (1− d(i,j)

α ) > 0

0 otherwise

(4)

The new neighborhood function f(i) (4) prevents objects from remaining in
areas, where no clusters are formed - when there is at least a distant object.

Main drawback of the ATTA algorithm has less influence on the distinguishing
grouping objects by parameters. Firstly, function domain f(i) is interval [0, 1],
thus function Ppickup(i) always adopts value 1. Ants move on the grid always pick
up random objects from the grid. Only α parameter influences on the ability of the
distinguishing different objects. The shape of the function is constant, we can not
influence on the ability of each artificial ant to distinguish more similar objects.

3 Fully Controllable Ant Colony Algorithm

In this section we propose new Fully Controllable Ant Colony Algorithm
(FCACA) with new version of the function Ppickup(i) and Pdrop(i) (5), which
ensures a rapid improvement of convergence of the algorithm and providing the
full capabilities of the artificial ants to sensitivity control on the value of the
similarity function f(i), for which classify the objects into different groups.

Ppickup = (1− f(i))
γp , Pdrop = f(i)1/γd (5)

A parameter γp ∈ [0, 1) in function Ppickup(i) influences on the level of the
destruction of the created clusters. For γp = 0, ants randomly pick up infor-
mation objects, large values of γp, increases the likelihood of picking up similar



202 P. Dziwiński, �L. Bartczuk, and J.T. Starczewski

objects - following destruction of clusters. In order to reduce the destruction of
the clusters, the γp value should be reduced to a value close to zero.

A parameter γd ∈ (0, 10) in function Pdrop(i) controls the ability of the artifi-
cial ants to distinguish similar objects during the formation of the clusters. For
small values of the γd artificial ants are more sensitive to small changes in the
similarity function f(i) for values closer to one. Parameter γd should be reduced
in the case of formation too small number of clusters of the information objects.

Similarity function f(i) also requires modification - the parameter δ is intro-
duced modifying function depending on the threshold of the likelihood of the σ -
the function f∗(i) is obtained. If σ ≤ 0.5 then, the function f∗(i) is more likely
do determine arithmetic mean of the similarities of the information objects, oth-
erwise it is more likely do determine density of the objects in some area s - the
number of the objects is more important than the similarity between them. Pa-
rameter η is a random value form 0 to 1. Good results are obtained for σ = 0.8,
especially in early stages, rapid speeding up of a grouping process is observed.

f∗(i) =

⎧⎨⎩δ · ∑
j∈N(i)

(
1− d(i,j)

α

)
if ∀j

(
d(i,j)

α

)
≤ 1

0 otherwise
(6)

δ =

{
1
s2 if η ≤ σ

1
|N(j)| otherwise

(7)

In addition, each artificial ants are equipped with a short term memory, such
as [28], in which recently visited location where the information objects are
dropped is remembered. This allows to compare carried objects with those in
memory instead of moving in random direction additionally it speeding up the
convergence of the algorithm.

In order to obtain better classification results, HCM algorithm used in time
work of the artificial ants was adopted. Each ant moving on the grid if puts
information object near other objects, create a cluster with center c. Another ant
placing an other objects in the neighbourhood, updates this center. Artificial ants
move on the grid compare picked up object not with there objects in some area
N(i), but with the created center, function fHCM (i) (8). Each ones represents
objects in their neighbourhood.

Certain influence in the area N(i) the objects is still required in order to
achieve consistency of the clusters. This had been obtained by using weight
parameter ρ (9).

fHCM (i) =

{
δ ·

(
1− d(i,C(i))

α

)
·min

(|C(i)| , s2) if d(i,C(i))
α ≤ 1

0 otherwise
(8)

where: C(i) - center for placed object, if center does not exist, then it is created,
|C(i)| - number of the objects which are added to the center, s2 - maximal
number of the objects visible by the ants.
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f(i) = f∗(i) · ρ+ fHCM (i) · (1 − ρ) (9)

c+ =
c ·N + i

N + 1
, c− =

c ·N − i

N − 1
(10)

where: c - old value for the center, N - number of the objects added to the center,
i - information object.

Artificial ants placing the object simple update center using c+, if pick up the
object, update the center using c−(10).

4 Simulation

The FCACA for clustering of the hard multidimensional data firstly, it was
tested for a iris dataset [29], secondly in two text data set d2 [30] and d3 [31].
The document set are parsed, stemmed and weighted by using TFIDF weight
[14, 17, 18] normalized with cosine normalization. Obtained vectors firstly were
clustered in using FCM with a known number of classes, secondly with LF-ACA
and FCACA with not known number of them. Obtained results are shown in
table 1 and table 2. The experiments are performed 20 times for all data from
d1 and d2 dataset. In the case d2 and d3 dataset part of the dataset are used.

Table 1. The results obtained with different algorithms and data sets - part 1

Data set NP NI NC HCM Max F-M FCM Max F-M

d1 150 4 3 0.64 0.73 0.76 0.87 0.88 0.88

d2 568 447 4 0.44 0.85 0.63 0.54 0.8 0.65

d3 300 135 3 0.34 0.45 0.45 0.33 0.39 0.46

NP - number of patterns, NI - number of input, NC - the actual number of classes,
HCM - Hard c-means algorithm, Max - the maximum efficiency of the grouping
algorithm, F-M - F-Measure uses ideas of precision and recall, FCM - Fuzzy C-
means algorithm.

Table 2. The results obtained with different algorithms and data sets - part 2

Data set LF-ACAMax F-MNOC NOI FC-ACA-HCM Max F-M NOC NOI

d1 0.74 0.86 0.77 3.2 14.5 · 106 0.75 0.85 0.79 3 0.7 · 106
d2 0.23 0.33 0.4 4 71 ∗ 106 0.34 0.476 0.43 3.8 0.82 ∗ 106
d3 0.34 0.4 0.48 3 9.8 ∗ 106 0.34 0.41 0.48 3 0.28 ∗ 106

LF-ACA - Lumer and Faieta Ant Colony Algorithm, NOC - obtained the average
number of the classes, NOI - the number of the iterations.
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5 Conclusion

The new proposed FC-ACA algorithm for grouping text data was obtain similar
results with compare LF-ACA algorithm in very small number of the iterations.
Moreover, proposed new algorithm obtain better results than HCM algorithm
despite not known number of the clusters. Obtained results are comparable with
the FCM algorithm. It is worth nothing that the complexity of the new algo-
rithm grows very slowly depending on the number of the input data. Future
research will focus on design neuro-fuzzy system [?,?,?] by making use the FC-
ACA algorithm to determine fuzzy rules represent local groups created during
the algorithm works. We expect much better clustering results overcomes FCM
algorithm.
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Abstract. The acquisition of the knowledge which is useful for devel-
oping of artificial intelligence systems is still a problem. We usually ask
experts, apply historical data or reap the results of mensuration from a
real simulation of the object. In the paper we propose a new algorithm
to generate a representative training set. The algorithm is based on ana-
lytical or discrete model of the object with applied the k–nn and genetic
algorithms. In this paper it is presented the control case of the issue illus-
trated by well known truck backer–upper problem. The obtained training
set can be used for training many AI systems such as neural networks,
fuzzy and neuro–fuzzy architectures and k–nn systems.

Keywords: genetic algorithm, control system, training data acquisition.

1 Introduction

Very important phase in the process of designing solution based on artificial
intelligence, e.g. artificial neural networks, fuzzy and neuro-fuzzy architectures
[1], [2], [3], type-2 neuro-fuzzy systems [4], [5], as well as its ensambles [6] is
the acquisition of knowledge. The expert, fuzzy, neuro-fuzzy, rough systems and
it’s hybrids [7], [8] can apply the knowledge that come from human experts. In
many projects this is a main source which determines the prototypes of rules.
However, usually it is insufficient. These systems require also the other type of
knowledge - the set of examples of proper operation of the system. This type
of knowledge is necessary for tuning and evaluating the solution. In the case of
developing neural networks and often even neuro-fuzzy architectures the set of
examples, i.e. training set, is the one and only form of knowledge used both for
training and evaluating [9], [10]. Moreover, the set of examples can be used to
obtain other forms of knowledge including rules [11], [12], [13], [14], [15], [16].
As we see the set of examples is quite versatile knowledge form. The common
practice in training and evaluating new AI systems is to use available to the
public sets - benchmarks [17]. Such proceedings are obviously unsuitable in a
real problem. During the building of medical diagnostic system the source of the
case is historical diagnosis of real patients. During the development of the control
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c© Springer-Verlag Berlin Heidelberg 2012
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or diagnostic system the samples come from measurement of the real objects or
from model simulation. When we neglect the cost of first method and problem
with imperfection of model in a second one, we have still two problems. The first
one is poor representativity of obtained set. The second one is more serious. To
proceed the work or simulation, in one of structures depicted in Fig. 1 or 2, we
have to know how to control the object or detect the threat of damage. We can
use the past controller or human operator. The training set of Truck backer–
upper control problem [18], [19] (see Section 2) used in many experiments and
publications comes from registration the trajectories when the truck was being
controlled by the driver.

object

controller, e.g. PID
u(t) e(t)

v(t) +- r(t)

Fig. 1. Classical control system

object

controller, e.g. FS
u(t)

e(t)

v(t) +- r(t)

Fig. 2. AI control system

In the next part of the paper we will present the new method to generate a
representative training set without the proper knowledge about control proce-
dure. The algorithm is based on an analytical or discrete model of object with
applied the k–nn [20] and genetic algorithms.

2 Truck Backer–Upper Control Problem

The problem of truck parking has been proposed and used as an example issue
of non-linear control of the object by Nguyen and Widrow [18] and also used
by Kong’a, Kosko [19]. It has become quite popular in experiments of control
systems.
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Truck goes to the back of a constant speed, and its goal is to reach the ramp.
The parameter controlling the steering angle θ. State of the vehicle in the parking
determine four parameters: coordinates x and y – determine the location of the
parking lot, φ – angle to the axis Y of the vehicle, θ – turn the wheels of the
vehicle. Truck moves backwards in the following steps in order to reach axis
of the ramp (point x = 0, φ = 0). Distance from the dock is ignored, since
goal is assumed that any further driving in a straight line is not a problem.
Problem posed in the article is to generate a learning set based on the model
describing the motion of the vehicle in the following steps. The individual data
within the learning set should be chosen in such a way that for a given position
in which the vehicle is, in the next step to bring the vehicle to the ramp turning
the wheels. The next steps of the simulation (vehicle’s motions) describe the
following formulas:

x(k + 1) = x(k) + δtv cos (φ(k)) ,
y(k + 1) = y(k) + δtv sin (φ(k)) ,

φ(k + 1) = φ(k) + δtv sin(θ(k))
L ,

(1)

where φ – angle to the Y axis, L – length of the vehicle, θ – steering angle, v –
vehicle speed, δt – time interval, k – iteration in the simulation, (x, y) – vehicle
position. The range of variation of the variables is as follows: x ∈ (−150, 150),
y ∈ (0, 300), φ ∈ (−45, 45), θ ∈ (−180, 180). The problem is shown in Fig. 3.

x(t) x=0

y=0
r

y=300
x=-150 x=150

y(t)
�(t)

dock

truck

Fig. 3. Model of vehicle parking
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3 k Nearest Neighbor Controller

To check the quality of the individual training sets we could build a Controller
on each of them. This solution has one serious defect. Constructing the controller
is time-consuming. The results can depend on the type of controller and above
all it do not allow an individual assessment of the samples. Rating would apply
to all drivers and so the entire training set.

In the proposed algorithm, there was proposed a special Controller, based on
the algorithm of k–nn [20]. The driver will be the used knowledge contained in a
single set of learning samples. The set is composed of M samples, each of them
has two parts — the value in the input space vi ∈ V and the corresponding
baseline values in the output space of ui ∈ U. The fitness function fi = F (Xi)
is assigned to each sample (see Section 4).

The control system shown in Fig. 2 will be used in this case. State of the
controlled object is described by the vector v(t) ∈ V, which is passed to the
input driver. In the collection of samples used by the driver there is no sample
for which vi = v(t) (omitting digitizing measurement and representation of
samples, this situation is infinitely improbable). To design the control value u(t)
there will be used all samples contained in a set, each depending on the distance

di(t) = ||v(t) − vi|| (2)

and fitness function for each sample fi according to

u(t) =

M∑
i=1

g (di(t)) fiui

M∑
i=1

g (di(t)) fi

, (3)

where g is a not increasing function for positive values in the space of variations
di(t) defined by the formula (2).

We can also consider the inclusion k < M the nearest v samples, however
this requires a sort to the distance di. Controll value willbe calculated by the
formula

u(t) =

∑
i : di∈Ωk(t)

fiui∑
i : di∈Ωk(t)

fi
, (4)

where Ωk(t) is a set of k lowest values of di(t). Hence the name of the proposed
controller.

4 Testing Procedure and Results

Implemented system was tested using truck. Due to discrete nature of the model
used in the model integrals were replaced by the sums of the successive steps of
the simulation. Described problem will be solved using the evolutionary strategy
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(μ, λ) (see [21], [22]). It is well known that evolution strategies are distinguished
by self-adaptation of additional strategy parameters, which enable them to adapt
the evolutionary optimization process to the structure of the fitness [23]. It is
assumed that the chromosome of an individual is formed by a pair of real-valued
vectors (X, σ). The strategy vector σ is a subject to a randommutation according
to the formula

σ′
i = σi · eτ ′·N(0,1)+τ ·N(0,1), (5)

where τ ′ = 1√
2L

, τ = 1√
2
√
L
, i = 1, . . . , L and L is the length of the chromosome.

The mutation in the algorithm is based on the formula

X ′
i = Xi + σ′

i ·Ni(0, 1), (6)

replaces the parent X ′ with the descendant X . The standard evolution strategy
based on mutation is extended by using of a uniform recombination operator
[21] . In a single chromosome is encoded M = 50 possible samples (triplets
of numbers (X,φ, θ)). The length of the chromosome is therefore L = 3M =
150. The proposed algorithm uses an evolutionary algorithm in addition to the
calculation algorithm of the additional k-nearest neighbor algorithm (k–nn) [20].
The algorithm consists of several steps:

1. Initialize the algorithm – Enter the number of steps N .
2. For k = 1, . . . , N , repeat steps 3-6.
3. Random selection of the initial position of truck:

(a) xk = N(0, 1) · (xmax + xmin) + xmin.
(b) φk = N(0, 1) · (φmax + φmin) + φmin.

4. Initiation of an evolutionary strategy (μ, λ).

(a) Determination of parameters of an evolutionary strategy.
(b) Random the vectorsXj of initial population for j = 1, . . . , μ, i = 1, . . . ,M .

i. Xj,i·3 = N(0, 1) · (xmax + xmin) + xmin.
ii. Xj,i·3+1 = N(0, 1) · (φmax + φmin) + φmin.
iii. Xj,i·3+2 = N(0, 1) · (θmax + θmin) + θmin.

5. Commissioning strategy (μ, λ) for 100 generations of evolution and the cal-
culation of fitness function according to algorithm:

(a) F (Xj) = 0.
(b) Perform a full simulation of motion for the point (xk, φk):

i. t = 0.
ii. Find the turning angle θ of wheels for your vehicle from all samples

using the algorithm k–nn.
iii. Move the vehicle to a new position x(t + 1), y(t + 1) according to

equations (1), t = t+ 1.
iv. F (Xj) = F (Xj) + x(t) + φ(t) (see Fig. 4).
v. Finish the simulation of T steps if the vehicle approaches the ramp,

otherwise go to step ii.

6. The introduction of all the samples with the winning chromosome which
participated in the k–nn algorithm and adding them to the learning set Ω.



Creating Learning Sets for Control Systems Using an Evolutionary Method 211

v(t)
v

r

Q

t

Fig. 4. Method of fitness function calculate

The algorithm uses the following designations: N – the number of subjects of
the vehicle states, xmax, xmin, φmax, φmin, θmax, θmin – maximum and minimum
values are defined in Section 2, N(0, 1) – random number generated from the
range (0, 1), M – number of samples encoded in the chromosome, t – iteration
in the simulation, F (Xj) – value of fitness function for the j-th chromosome.

Generated samples are collections of three numbers (x, φ, θ), where for input
data x and φ is adjusted steering angle θ to make the vehicle closer to the ramp
in the next move. Algorithm in the steps satisfies the conditions x = 0, y = 0
and θ = 0. To simplify the operations it is assumed that the y position of the
truck will not be taken into account.

The idea behind the algorithm is to generate many of the initial states of
the model, and then evolutionary selection of parameters affecting its perfor-
mance taking into account his current state. After finishing the simulation the

Table 1. The results obtained in the algorithm

No. x φ θ No. x φ θ

1 -98.19 -14.16 60.00 16 26.36 66.86 -5.37

2 -76.53 -57.65 -3.38 17 31.28 15.75 19.96

3 -53.56 -15.10 56.88 18 37.56 48.22 0.03

4 -36.71 -34.93 60.00 19 39.83 54.27 2.79

5 -33.48 7.49 60.00 20 40.56 51.23 5.63

6 -30.20 -2.35 36.72 21 45.28 61.24 -20.88

7 -16.42 48.89 0.33 22 49.29 39.68 -38.75

8 -16.35 34.85 29.16 23 50.51 61.57 -41.48

9 -9.61 32.19 -12.92 24 57.68 24.44 -2.31

10 -9.51 81.89 -16.01 25 57.69 30.45 -60.00

11 -6.11 41.96 -5.69 26 73.51 117.22 -1.39

12 -2.96 118.15 -4.17 27 79.76 110.37 -10.74

13 -1.07 33.32 -9.31 28 90.79 31.61 -2.13

14 3.43 95.29 -4.33 29 98.52 57.67 -19.50

15 4.09 7.98 -21.92 30 105.12 -43.77 -60.00
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best chromosomes selected are those samples that have been generated by the
algorithm k–nn with the operation of fitness function. The algorithm has been
implemented in Java with the following parameters of the algorithm:N = 10, μ =
10, λ = 50,M = 50, k = 5, T = 500. The generated sequence of learning states
can be found in Table 1. Analyzing the samples can be seen that the generated
sequence is appropriately diverse and individual states (X,φ) corresponds to the
appropriate response to the steering wheel θ.

5 Final Remarks

The article proposed a new method to generate a collection of representative
samples, which can be used in the preparation of the target driver based on
various methods of artificial intelligence, but also other, using the knowledge in
the form of examples [24]. This method can be useful when we have a model of
controlled object, and we have no knowledge of it’s proper control. Conducted
experiments confirm it’s usefulness. An important restriction only need to carry
out a large number of simulation control process to determine the assessment of
individual sets of samples and the same samples. It is therefore time-consuming
procedure. Further work should therefore be carried out in the direction of reduc-
ing time-consuming solution, eg. by using some knowledge prior to generating
the initial population.
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(eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

6. Korytkowski, M., Rutkowski, L., Scherer, R.: From Ensemble of Fuzzy Classifiers
to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272.
Springer, Heidelberg (2008)

7. Nowicki, R.: Rough–neuro–fuzzy structures for classification with missing data.
IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics 39 (2009)

8. Nowicki, R.: On classification with missing data using rough-neuro-fuzzy systems.
International Journal of Applied Mathematics and Computer Science 20(1), 55–67
(2010)



Creating Learning Sets for Control Systems Using an Evolutionary Method 213

9. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
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Abstract. Following earlier results, the purpose of this paper is to show a new 
evolutionary algorithm whose parameters are moving in ranges defined by 
experiments. That is to say, no parameters must be fixed at the beginning of the 
course of generations. Comparing the performance of two methods, we arrive to 
the conclusion that the random often is a better way. 

Keywords: Evolutionary algorithms, Optimization. 

1 Introduction 

In the field of evolutionary computation, one strategy called steady-state genetic 
algorithm (SSGA) takes some distance with the biological mechanisms which 
inspired. Since the canonical genetic algorithm (GA) [1, 2, 3], many ways of research 
intend to accelerate evolution in order to optimization problems with elitist heuristics 
[4] or small population [5, 6]. It is well known that a too homogeneous population 
must be avoided. Diversity is thought to be important for evolutionary computation. A 
lot of different ideas have been proposed (clearing, changing the fitness, parallel 
evolution…) and in previous studies [7, 8, 9], according to the criteria of the average 
number of fitness calls to reach a solution, we observed, as always, better results with 
small populations, according to a methodical way of replacement. 

Now, our aim is to avoid fixed parameters for this algorithm. A first idea was to 
move them with fuzzy rules [10]. But those parameters must be in a range and also must 
be changed following fuzzy rules. The question is how to find the “best” fuzzy rules ? 

If a population is forced to optimize a function f, at each generation, let a be the 
population amplitude f(iμ) – f(i1) as a measure of  the phenotype diversity inside the 
population. So, a natural way to express what must be done could be : 

If the amplitude  a is strong or increasing, then we can focus on exploitation with a 
weak elimination. 

Conversely, if amplitude a is weak (a too homogeneous population on the 
contrary), then exploration must increase, strong elimination (weak π, see further) and 
a strong replacement threshold τ, means more exploration. 

So, we want actually make a comparison between SSGA for small values and a 
new algorithm RSGA which randomly takes its parameters into the range seen as the 
best interval for SSGA. 
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2 The Steady State Genetic Algorithm SSGA(μ, τ, π) 

In evolutionary computation, a very simple way is to go on exploration searching in 
the same time as exploitation of real-time results of optimum. Thus, each generation, 
in the population of μ individuals, the τ best children remove the τ worst parents 
under the condition 0 < τ < μ and an elimination is performed with a similarity 
threshold π. 

In respect to search global minimum of a positive function f from [a, b]m to R, a 
population P is a set of μ individuals which are vectors of m components x = (x1, x2, 
… , xm) evaluated by f(x).  

In all the following : m is the dimension of space of research 
ε is the threshold we want to reach to stop the run if we get f(x) < ε  
evalmax is the maximum number of evaluation of f to avoid infinite course 
nv = number of evaluation to reach f(x) < ε  (average of it on 100 runs) 
The main criterion for comparison is the mean number nv of calls of f to reach the 

goal. So the SSGA(μ, τ, π) will be :. 

1) t ← 0, the initial population P0 of μ random float-vector in [0, 1]m is built. 

Each x of P0 is evaluated by f (x), vm is the best value of the μ individuals  
and nv ← μ 

2) Loop while vm > ε and nv < evalmax do 
Offspring: for i = 1 to μ do let Ct(i) = op(Pt(i)) where op is a genetic operator 

randomly chosen between mutation, any other unary operator, or a crossover 
with another random Pt(j) (Ct is called the population offspring and Pt the 
parents) 

Evaluations by f of the μ children and sorting of Ct, 
Updating: let Pt+1 be the sorted union of the best τ children in Ct  and the best μ - 

τ  parents of Pt. 
Clearing: according to a similarity measure in the space of research, each time a pair 

of individual i, j with f(i) < f(j) and prox(i, j) > π, then j is killed and removed 
by a new individual. 

Sort of Pt+1 according to f and incrementation nv ← nv + μ + (number of new 
individuals). 

3) Return the number nv  of evaluations and the best individual with the best  
value vm  

Previous work showed that SSGA(μ, τ, π) is a very good optimization strategy with 
small population, and clearing with a similarity measure π for the genotypes is an 
easy method for maintenance of diversity. To obtain an experimental view of it, we 
tried to find the optimum on various problems according to different values of the 
parameters. For example, the well known Griewank function  

FG(x) = (1/4000)∑1 ≤ i ≤ m xi2 - ∏1 ≤ i ≤ m cos(xi/√i) + 1) 



216 L. Gacôgne  

1 2
3

4 5
6

7
8

9
10

11
12

13
14

3

5

7

9

11

13

15

0

50

100

150

200

250

300

350

400

3

4

5

6

7

8

9

10

11

12

13

14

15

Population size

mu

Optimum mu=8 tau=4

1 < tau < mu

or mu=9 tau=4 or 5

 

Fig. 1. Curves of the mean number of evaluations for the 30-dimension Griewank function 
according to µ and τ 

The Griewank function in 30-dimension is here solved with (μ, τ) = (8, 4) or (9, 4) 
or (9, 5) but a lot of problems raise towards similar results, that is to say the shortest 
time to find the optimum is with a small population μ between 7 and 12 and a 
threshold τ around the third or half part of population. 

Now, we use SSGA(100, 33, 66) which is a quite good experimental strategy, to 
search the best individuals (µ, τ, π). We shall give a score F to each of them as the 
total number of averaging calls of functions (f1, f2, ... , fk) on k different functions to 

minimize, to reach their minima’s. 

 

Fig. 2. Projections of an example of population of triples (µ, τ, π) after 50 generations (and 
4500 evaluations of F) 
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For any evolutionary algorithm SSGA, let us define Φ µ, τ, π (f), the random 
variable equal to the number (bounded for example by the parameter max = 100 000) 

of evaluations of a positive function f to reach f < ε defined in a range [a, b]m. 
Moreover, because of a quite large dispersion, we take n = 100 to average each 
function test f. Let now (f1, f2, ... , fk) be a sequence of functions and : 

F(µ, τ, π) = (1/nk) ∑ 1 • i • k i • k
 ∑ 

1 • j • n j • n
 Φ µ, τ, π  (fi) 

defined on [1, 100]3 where Φµ, τ, π is the number of evaluations given by SSGA(µ, 
τ, π). We use again µ = 100 to have a sufficient visualization, τ = 33 because one of 
the best empirical rate and π = 66  not too low to keep a compact swarm but still 
enough to get optimization. So, we make runs to minimize Φ 100, 33, 66 (F) to get 

solutions (µ, τ, π). 
For test functions we choose (f1, f2, f2, f4) Jong, Parabola or Rosenbrock, Rastrigin 

and Griewank functions on [-500, 500]2 for a benchmark based on easy or difficult 
functions to optimize the triple (µ, τ, π). 

Different combinations F, always provided after long runs of Φ 100, 33, 66 (F), a 

population where µ is very small, between 3 and 12, a rate τ between 33% and 50% 
and π roughly around 33%. But for this last item we had often two sub-swarms as 
above with also π around 66% for a worse part of population.  

A third observation is that many operators may be imagined according to the 
problem. The following operators are used to explore the neighborhood : 

migration-0 : gives an entirely new individual (Monte-Carlo method, not only used to 
initialize the population, but also to replace double or similar individuals and 
moreover as an operator) 
migration-1 : everything is replaced except the only first element of each component 
migration-2 : a random half of the individual is replaced 

mutation-1 : mutation for a randomly chosen digit in a component 
mutation-2 : "small" mutation adding ±1 to one digit. 

addition : a new digit is added at the end of one component 

transposition : two digits are swapped  

crossover-0 : uniform crossover with a random other parent [9] 
crossover-1 : one site crossover inside the list of components 
crossover-2 :  two sites crossover 
crossover-3 : crossover only with one the 10% best individuals ("coral-fish" idea 
inspired by the breeder genetic algorithm [10] 

3 The Random Genetic Algorithm 

As we showed that the averaging number of calls to f is the best for small populations, 
we tried to leave the parameters randomly picked in some ranges. So, the algorithm is : 
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1) t ← 0, μ ← random in [2, 12]  
A population P0 of μ random individuals is built and estimated with f. 
The number of calls is nv ← μ  

2) Loop while vm > ε and nv < evalmax do 

τ ← random(μ/3, μ/2) 
π ← random(10, 90) 

Offspring generation, evaluation and updating are the same as in  
SSGA(μ, τ, π),vm is the best value of f 

μ ← random(2, 12) 

Clearing with the new size μ and incrementation of nv. 

3) Return the number nv  of evaluations and the best individual with the best value vm  

4 Results 

4.1 Test on Rastrigin Function 

Our first test is on the well known function : 

fR(x) = Σi=1..m [xi

2
 + 10 - 10 cos(2πxi)] / 100 

We use for example, in the 3-dimensional Rastrigin’s function, individuals could be 
3*5 digits and we use a decode function to be in the space [0, 1]3 and next in [-30, 
30]3 with the dilatation φ from [0, 1] to [a, b] defined by : 

φ(x) = a + x(b – a). 

Thus in one dimension decode (3, 4, 5, 6, 7) → 0.34567 

 

Fig. 3. The Rastrigin’s function in one dimension 

For this problem with ε = 0.001 we got 192 evaluations of fR before discovery of 

minimum 0 by SSGA(9, 4, 75), and 156 evaluations by RSGA.  
For ε = 0.00001, we got 702 evaluations by SSGA and 596 by RSGA. 
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4.2 The Gauss’ Queens Problem 

We can solve the famous Gauss’ queens problem taking the function gauss equal to the 
number of couple of queens in catching positions on a chessboard, for instance : queens 
(4) → (2 4 1 3), queens (8) → (6 3 1 8 4 2 7 5), queens (9) → (4 1 7 9 2 6 8 3 5) or 
queens (7) → (3 1 6 2 5 7 4) : 

 

Fig. 4. Example of solution for the Gauss‘ queens problem in 7 dimension 

 
 

Fig. 5. Results of the average of evaluation number to reach the first solution in the Gauss‘ 
queens problem 

4.3 The Royal Road Problem 

In the royal road problem, for a list of 8*m binary digits, the function we want to 
minimize is the number of octets different of 0 [15]. This problem is very difficult 
because most of the genetic operators don’t infer on the phenotype, that is to say do 
not move the fitness function. 
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Fig. 6. For lists of binary digits from one to 15 octets, the figure shows the average of number 
of evaluation to reach the minimum 0 

As seen before, we have an improvement using several operators instead of only 
mutation and crossover. We have better results if those operators are randomly picked 
in their family [8].  Let us say that if we use fuzzy rules to change the parameters 
μ, τ, π, results are not so good as it is with a random way. 

5 Conclusion 

Ideally we would like to have an evolutionary strategy able to optimize every problem 
especially difficult ones. There is no doubt that a small population, whose quite 
important part is removed at each generation, is a good way, moreover with a large 
family of operators. 

But the size of the population may have some freedom to change. However, the 
population size has to be variable in a certain extent as well as the updating rate. 
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Abstract. The paper presents a generalization of the Pittsburgh ap-
proach to learn fuzzy classification rules from data. The proposed ap-
proach allows us to obtain a fuzzy rule-based system with a predefined
level of compromise between its accuracy and interpretability (trans-
parency). The application of the proposed technique to design the fuzzy
rule-based classifier for the well known benchmark data sets (Dermatol-
ogy and Wine) available from the http://archive.ics.uci.edu/ml is
presented. A comparative analysis with several alternative (fuzzy) rule-
based classification techniques has also been carried out.

1 Introduction

Methods and algorithms for discovering ”knowledge” from data sets play an
important role in the intelligent decision support systems design not only in
technical applications but also in medicine, economy, management, marketing
and many others, see e.g. [5], [11], [12]. These techniques provide tools for re-
vealing valid, useful and understandable structures, patterns, trends and decision
mechanisms in data. One of the most commonly used structures for knowledge
representation are fuzzy classification (or, decision) rules characterized by high
readability and modularity. Fuzzy systems themselves, however, are neither ca-
pable of learning fuzzy rules from available data nor even tuning the parameters
of fuzzy sets occurring in the fuzzy rules. In order to address this problem, various
hybrid solutions - in particular, neuro-fuzzy systems (implementations of fuzzy
rules in neural-network-like structures) - have been proposed (see e.g. [8], [13]).
In most of them, however, the learning consists in tuning only the parameters of
membership functions occurring in predefined, ”initial’ fuzzy rule bases by means
of backpropagation-like algorithms that lead local optima of the assumed quality
indices. Therefore, the optimal or sub-optimal solution of the problem of discov-
ering fuzzy rule-based knowledge in data can be obtained by: a) the formulation
of the considered problem as a rule-structure- and rule-parameter-optimization
task, and b) the application of global search and optimization methods in com-
plex spaces. In paper [9] by the same authors such a solution - based on modified

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 222–230, 2012.
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Pittsburgh approach from the area of evolutionary computations - has been pro-
posed. A broader perspective as far as evolutionary learning of fuzzy rule-based
systems is concerned is presented e.g. in [6].

This paper presents a generalization of the solution of [9] allowing us to obtain
from data a fuzzy rule-based system with a predefined level of compromise be-
tween, on the one hand, its accuracy and, on the other hand, its interpretability
and transparency (measured by the number and complexity of fuzzy rules). The
considered problem attracts the interest of many researchers, e.g. according to [7]
”...Linguistic fuzzy modelling, developed by linguistic fuzzy rule-based systems,
allows us to deal with the modelling of systems by building a linguistic model
which could become interpretable by human beings. Linguistic fuzzy modelling
comes with two contradictory requirements: interpretability and accuracy. In re-
cent years the interest of researchers in obtaining more interpretable linguistic
fuzzy models has grown...”.

A conceptual illustration of the regulation of the accuracy-interpretability
compromise level is shown in Fig. 1. Shifting a ”slider” in Fig. 1 to the left, directs
the learning process towards more accuracy-oriented fuzzy system, whereas shift-
ing it to the right produces more interpretability-oriented fuzzy rule base. Such
solutions may be useful in achieving different goals as far as decision support is
concerned. First, some aspects of the fuzzy rule-based classifier design from data
are discussed. Then, the mechanisms allowing us to regulate the learning pro-
cess of fuzzy classification rules from data in order to achieve an assumed level of
compromise between system’s accuracy and interpretability is presented. In turn,
the application of the proposed technique to the well known benchmark data sets
(Dermatology and Wine) available from the http://archive.ics.uci.edu/ml is pre-
sented. These data sets have been selected due to their popularity to enable a
broad comparative analysis with alternative methods of designing (fuzzy) rule-
based classifiers. A comparison with selected alternative techniques has also been
included in the paper.
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Fig. 1. An illustration of regulating the accuracy-interpretability compromise level

2 Some Aspects of Fuzzy Rule-Based Classifier Design

The proposed classification system has n inputs (attributes) x1, x2, ..., xn and an
output in the form of a possibility distribution over the set Y = {y1, y2, ..., yc}
of class labels. In general, each input attribute xi (taking values from the set Xi)
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may be described either by numerical values (e.g., pulse rate is equal to 80 beats
per minute) or by linguistic terms (e.g., blood pressure is ”high”) represented
by appropriate fuzzy sets.

LetA
′
= {A′

1,A
′
2, ...,A

′
n} and A

′

i ∈ F(Xi), i = 1, 2, ..., n, where F(Xi) is a fam-
ily of all fuzzy sets defined on the universe Xi. Also, let FX = {F(X1),F(X2), ...,

F(Xn)}. A
′ ∈ FX is a general fuzzy-set-representation of the collection of input

attributes. Each xi is represented by a corresponding fuzzy set A
′

i. In particular,

when we deal with a numerical representation x
′

i of xi, the fuzzy set A
′

i is reduced

to a fuzzy singleton A
′

i(sgl) with μ
A

′
i(sgl)

(x
′

i) = 1 and 0 elsewhere. Moreover,

let B
′ ∈ F(Y) = FY be a fuzzy set representing a possibility distribution defined

over the set Y of class labels. The possibility distribution assigns to each class
yj, j = 1, 2, ..., c from the set Y a number from the interval [0, 1], indicating

the possibility that the object described by A
′
belongs to that class. In partic-

ular, when we deal with a non-fuzzy possibility distribution over Y, the fuzzy

set B
′
is reduced to a fuzzy singleton B

′

(sgl) that indicates one class y
′ ∈ Y only

(μ
B

′
(sgl)

(y
′
) = 1 and 0 elsewhere).

The classifier is designed from the learning data that, in general, have the
form of K input-output records:

L1 = {A′

k,B
′

k}
K
k=1

. (1)

In particular, when we deal with numerical, non-fuzzy representation x
′

k =

(x
′

1k, x
′

2k, ..., x
′

nk) ∈ X = X1×X2×...×Xn (× stands for Cartesian product of

ordinary sets) of input attributes, expression (1) reduces to

L2 = {x ′

k,B
′

k}
K

k=1
. (2)

Additionally, if we deal with a singleton-type possibility distribution B
′

k(sgl) in

(2), formula (2) becomes equivalent to

L3 = {x ′

k, y
′

k}
K
k=1

. (3)

Fuzzy classification rules that will be synthesized from the learning data L1 (or,
their special cases L2 or L3) by the proposed later in the paper genetic technique
have the following form (for the case when all n input attributes are involved):

IF (x1 is A1r) AND ... AND (xn is Anr) THEN ( Br(sgl)), (4)

where Air ∈ F(Xi), i = 1, 2, ..., n is one of the S-, M-, or L-type fuzzy sets (see
below), and Br(sgl) ∈ F(Y) is the singleton possibility distribution; all in the

r -th fuzzy rule, r = 1, 2, ...,R. As already mentioned, the input attributes are
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described by three types of fuzzy sets corresponding to verbal terms ”Small” (S-
type), ”Medium” (M-type) and ”Large” (L-type). Theirmembership functions are

of the form: μMi
(xi) = exp[−0.5(xi − cMi

)2/σMi
2], where σMi

= σMLi
for xi ≤

cMi
and σMi

= σMRi
elsewhere, μSi

(xi) = exp[−0.5(xi − cSi
)2/σSi

2] only for

xi ≥ cSi
and 1 elsewhere, and, analogously, μLi

(xi) = exp[−0.5(xi − cLi
)2/σLi

2]

for xi ≤ cLi
and 1 elsewhere (see Figs. 3 and 5 later in the paper); σSi

> 0,

σMi
> 0, σLi

> 0, i = 1, 2, ..., n. In general, one S-type, one L-type and several

M-type fuzzy sets can be considered for a given attribute xi. It is worth stressing
that a given verbal term for a given attribute is represented by the same fuzzy set
in all rules in which it occurs.

Genetic learning of fuzzy classification rules from data requires an evaluation
of particular individuals (fuzzy rule bases in Pittsburgh-based approach) in each
generation. For this reason a formal representation of fuzzy rule base (4) as well
as fuzzy inference scheme have to be employed. Both prevalent in the literature
fuzzy reasoning schemes, that is, compositional rule of inference and similarity
based reasoning with various definitions of fuzzy implications, t -norms and t -
conorms (see e.g. [2]) can be implemented in our approach. In the case of most
widely used Mamdani’s model (with min-type t -norm, max-type t -conorm and
min operator playing the role of fuzzy implication), one can obtain - for the input
numerical data x 0 = (x01, x

0
2, ..., x

0
n) - a fuzzy response (possibility distribution

B0 represented by its membership function μB0(yj), j = 1, 2, ..., c) of the fuzzy

classifier (4):

μB0(yj) = max
r=1,2,...,R

μB0

r
(yj) = max

r=1,2,...,R
min[αr, μBr

(yj)], (5)

where αr = min(α1r, α2r, ..., αnr) = min[μA1r
(x01), μA2r

(x02), ..., μAnr
(x0n)]. αr

is the activation degree of the r -th fuzzy rule by the input numerical data x 0.

3 Genetic Learning of Fuzzy Classification Rules
with Regulated Accuracy-Interpretability Compromise
Level

The fitness function ff that plays an essential role in the ”orientation” of genetic
learning has been defined as follows:

ff = (1− α)ffACU + αffINT, (6)

where α ∈ [0, 1) is the accuracy-interpretability coefficient (it regulates the level
of the compromise between both aspects of the system design), whereas ffACU
and ffINT are components ”responsible” for accuracy and interpretability, re-
spectively, of the fuzzy rule base. In particular, the learning process can be
directed to produce exclusively accuracy-oriented fuzzy classifier (α = 0), ex-
clusively interpretability-oriented one (α close to 1 but α �= 1), or the fuzzy
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classifier that fulfills an intermediate level of compromise between its accuracy
and interpretability.

The accuracy component ffACU has the form:

ffACU = 1−QRMSE = 1−

√√√√√ 1

Kc

K∑
k=1

c∑
j=1

[μ
B

′
k
(yj)− μB0

k
(yj)]

2, (7)

where QRMSE is the root-mean-squared-error cost function (QRMSE ∈ [0, 1]),
μ
B

′
k
(yj) is the desired response of the fuzzy classifier for the k -th sample of

the learning data L1 (1) (or, L2 (2)), and μB0

k
(yj) is the actual response of the

classifier (calculated according to (5)).
The interpretability component ffINT has been defined as follows:

ffINT = 1−QCPLX = 1− ACAR+NNR

2
, (8)

where QCPLX is the rule base complexity measure (smaller values of QCPLX
correspond to lesser complexity; QCPLX ∈ [0, 1]), ACAR and NNR are the
average complexity of all rules in the rule base and the normalized number of
rules in the rule base, respectively. They are defined in the following way:

ACAR =
1

R

R∑
r=1

NAr
n

, NNR =
R− Rmin

Rmax − Rmin
, (9)

where NAr is the present number of antecedents in the r -th rule, r = 1, 2, ...,R,
NAr ≤ n (n is the number of all possible antecedents), Rmin and Rmax are
the minimal and maximal numbers of rules collected in the rule base. Rmin is
equal to the number of classes unless determined differently by the user. Rmax
is equal to the number of all combinations of verbal terms for rule antecedents
not exceeding the number K of records in the learning data L1 (1) or L2 unless
the user assumes a smaller value.

In the course of the operation of the genetic algorithm - in the framework of the
modified Pittsburgh approach proposed by the same authors in [9] - two separate
entities: a rule base and a data base that represent a given fuzzy rule collection
(an individual) are processed. An essential role is played by the proposed in [9]
non-binary crossover and mutation operators. Due to a limited space for this
publication these issues cannot be discussed here - see [9] for details.

4 Application to Selected Classification Problems

The application of the proposed technique to design the genetic fuzzy rule-based
classifiers for various levels of the accuracy-interpretability compromise for two
well known benchmark data sets (Dermatology and Wine) available from the
http://archive.ics.uci.edu/ml will now be presented. The original data sets (366
records with 34 input attributes and 6 classes for Dermatology and 178 records
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with 13 input attributes and 3 classes for Wine) have been divided into the
learning- and test-parts (244 and 122 as well as 119 and 59 records, respectively,
randomly selected from the original data sets preserving the proportion of the
class occurrence).

In all experiments, the genetic algorithm with population of 200 individuals
and tournament selection method (with the number of individuals participating
in the competition equal to 2) supported by elitist strategy as well as with
crossover and mutation probabilities equal to 0.8 and 0.7, respectively, has been
used.

As far as the Dermatology data set is concerned, Fig. 2 presents the plots of
QRMSE as in (7) for the learning and test data as well the number R of fuzzy
rules in the rule base versus the accuracy-interpretability coefficient α as in (6).
Table 1 presents the fuzzy rule base of the interpretability-oriented classifier
(α = 0.9) whereas Fig. 3 shows examples of the membership functions of fuzzy
sets representing selected verbal terms occurring in fuzzy rules of Table 1.

Fig. 4, Table 2 and Fig. 5 provide an analogous information for the Wine data
set as that in Fig. 2, Table 1 and Fig. 3 for the Dermatology data.
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Fig. 2. QRMSE for the learning and test data as well the number R of fuzzy rules in
the rule base versus the accuracy-interpretability coefficient α (Dermatology data set)

Table 1. Fuzzy rule base of the interpretability-oriented classifier (with α = 0.9) for
the Dermatology data set

No. Fuzzy classification rules Number of records
activating the rule

learning data test data

1 IF x20 is Medium3 THEN Class 1 (psoriasis) 75 36

2 IF x5 is Small AND x28 is Large THEN Class 2 (seboreic
dermatitis)

41 20

3 IF x33 is Large THEN Class 3 (lichen planus) 47 23

4 IF x26 is Medium2 THEN Class 4 (pityriasis rosea) 34 20

5 IF x15 is Large THEN Class 5 (cronic dermatitis) 36 18

6 IF x30 is Large THEN Class 6 (pityriasis rubra pilaris) 11 5

QRMSE for the learning and test data: 0.19016 0.20608

Number (and percentage) of correct decisions: 229 (93.8%) 115 (94.3%)



228 M.B. Gorza�lczany and F. Rudziński
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Fig. 3. The final membership functions of fuzzy sets occurring in fuzzy rules of Table
1 for input attributes x26 (a) and x33 (b) (Dermatology data set)

a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
accuracy - interpretability coefficient α

0.06

0.10

0.14

0.18

0.22

0.26

0.30

Q
R

M
SE

 o
f t

he
 r

ul
e 

ba
se

learning data
test data

b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
accuracy - interpretability coefficient α

1

3

5

7

9

11

13

15

17

N
um

be
r 

of
 r

ul
es

 in
 th

e 
ru

le
 b

as
e

Fig. 4. QRMSE for the learning and test data as well the number R of fuzzy rules in
the rule base versus the accuracy-interpretability coefficient α (Wine data set)

Table 2. Fuzzy rule base of the interpretability-oriented classifier (with α = 0.9) for
the Wine data set

No. Fuzzy classification rules Number of records
activating the rule

learning data test data

1 IF x13 is Large THEN Class 1 36 19

2 IF x10 is Small THEN Class 2 52 24

3 IF x7 is Small THEN Class 3 31 16

QRMSE for the learning and test data: 0.23646 0.23375

Number (and percentage) of correct decisions: 110 (92.4%) 59 (100%)

In turn, Table 3 presents the results of comparative analysis with several
alternative approaches to design (fuzzy) rule-based classifiers from data. One
has to keep in mind that sometimes it is hard to find a ”common denominator”
for various solutions due to, e.g., different formats of fuzzy rules considered. It
is evident, however, that the approach presented in this paper is characterized
by high flexibility as far as the accuracy-versus-interpretability design of fuzzy
rule-based classifiers is concerned. For this reason as well as taking into account
the numerical results presented in Table 3, the proposed approach is a strong
option in the area under consideration.
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Fig. 5. The final membership functions of fuzzy sets occurring in fuzzy rules of Table
2 for input attributes x7 (a) and x13 (b) (Wine data set)

Table 3. Comparative analysis with several alternative approaches - percentages of
correct decisions for learning (CDlearn) and test (CDtest) data sets, for the whole data
set (CD), numbers of rules and (if available) the numbers of fuzzy sets used

Dermatology Our appr.(1) Alcala[1] Stavros[14] ANFIS[15]

data set CDlearn = 93.8%,
CDtest = 94.3%,

6 rules,
7 fuzzy sets

CDlearn = 99.1%,
CDtest = 95.2%,

9.13 rules(2),

14.93 fuzzy sets(2)

CD = 97.5%,
18 rules

CD = 95.5%,
54 rules

Wine Our appr.(1) Ishibuchi[10] Chen[4] Chang[3]

data set CDlearn = 92.4%,
CDtest = 100%,

3 rules,
3 fuzzy sets

CD = 90.4%,
3 rules,

3 fuzzy sets

CD = 98.3%,
4 rules,

10 fuzzy sets

CD = 98.9%,
5 rules,

13 fuzzy sets

(1) Our appr. = Our approach for the interpretability-oriented classifier (with α = 0.9),
(2) average number of rules or fuzzy sets,

5 Conclusions

The generalization of the Pittsburgh-based approach (proposed by the same au-
thors in [9]) to design a fuzzy rule-based classifier from data has been presented in
this paper. It allows us to obtain a system with a predefined level of compromise
between its accuracy and interpretability (measured by the number and complex-
ity of fuzzy rules). Such solutions may be very useful in achieving different goals
in the applications of decision support systems. The mechanism that governs
the accuracy-interpretability compromise has been implemented by appropriate
definition of the fitness function of the genetic algorithm. The application of the
proposed technique to design the fuzzy rule-based classifiers characterized by
various accuracy-interpretability relations for the well known benchmark data
sets (Dermatology and Wine) available from the http://archive.ics.uci.edu/ml
has been presented. A comparative analysis with several alternative (fuzzy) rule-
based classification approaches has also been carried out demonstrating that the
proposed technique is a strong option (first of all, in terms of flexibility and
effectiveness) in the field of the rule-based classifier design.
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Abstract. The paper presents a genetic fuzzy rule-based technique for
the modelling of generalized time series (containing both, numerical and
non-numerical, qualitative data) which are a comprehensive source of in-
formation concerning the behaviour of many complex systems and pro-
cesses. The application of the proposed approach to the fuzzy rule-based
modelling of an industrial gas furnace system using measurement data
available from the repository at the http://www.stat.wisc.edu/∼reinsel/
bjr-data (the so-called Box-Jenkins’ benchmark) is also presented.

1 Introduction

Mathematical models of dynamic systems and processes are necessary in var-
ious applications such as model-based control, prediction, simulation, or fault
diagnosis. Modelling based on conventional mathematical tools (e.g. linear or
nonlinear differential or difference equations) is not well suited for dealing with
ill-defined, complex and uncertain systems. It is neither able to effectively process
quantitative and qualitative data describing the system’s behaviour nor provides
transparent and understandable “image” of its operation. For this reason, it is
worth considering techniques from the field of data mining and knowledge dis-
covery for the purposes of the dynamic systems modelling from data. These
techniques reveal valid, useful and understandable structures, trends and pat-
terns in data. Among them, fuzzy conditional rules belong to the most commonly
used knowledge-representation structures. Hybrid approaches that combine ge-
netic algorithms and fuzzy logic (referred to as genetic fuzzy systems, cf. [3]) are
particularly effective in fuzzy rule-based modelling since they provide tools for
a global optimization of both the structures of the rules and the parameters of
fuzzy sets occurring in them.

This paper presents a genetic fuzzy rule-based technique for the dynamic
systems modelling from generalized time series. The term a “generalized time
series” means a time series which contains both, quantitative, numerical data
coming from experiments and measurements as well as non-numerical, quali-
tative data (most conveniently represented with the use of fuzzy sets) usually
provided by human experts. The proposed technique is a generalization (for the

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 231–239, 2012.
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case of systems with continuous outputs) of the genetic fuzzy classifier intro-
duced by the same authors in [5] (another generalization of the latter - towards
the design fulfilling an assumed accuracy-interpretability compromise level - is
presented in [7]). First, a fuzzy rule-based computational scheme for the gen-
eralized time series modelling is presented. Then, a genetic learning of fuzzy
rules from data in the framework of a Pittsburgh approach (cf. [5]) is outlined.
Finally their application to the fuzzy rule-based modelling of an industrial gas
furnace system using measurement data available from the repository at the
http://www.stat.wisc.edu/∼reinsel/bjr-data (the so-called Box-Jenkins’ bench-
mark [2]) is also discussed.

2 Fuzzy Rule-Based Computational Scheme for
Generalized Time Series Modelling and Forecasting

Consider a dynamic system or process with r physical inputs u1, u2, ..., ur (uc ∈
Uc, c = 1, 2, ..., r) and s outputs z1, z2, ..., zs (zd ∈ Zd, d = 1, 2, ..., s). Assume
that the behaviour of the system is described by r + s associated generalized
time series (each containing T records):

S 1 = {D ′
t,E

′
t}
T
t=1

= {D′
1t,D

′
2t, ...,D

′
rt,E

′
1t,E

′
2t, ...,E

′
st}

T
t=1

, (1)

where {D′
ct}Tt=1

, c = 1, 2, ..., r, and {E′

dt}Tt=1
, d = 1, 2, ..., s (t stands for a discrete

time instant) are generalized time series describing inputs and outputs of the

system, respectively. D
′
ct ∈ F(Uc), c = 1, 2, ..., r and E

′

dt ∈ F(Zd), d = 1, 2, ..., s
are fuzzy sets that represent verbal terms or numerical values describing the c-th
input and d -th output of the system, respectively, at time instant t (F(Uc) and
F(Zd) are families of all fuzzy sets defined on the universes Uc and Zd). When

we deal with a numerical value u
′
ct of uc, the fuzzy set D

′
ct is reduced to a fuzzy

singleton D
′

ct(singl) with μ
D

′
ct(sgl)

(u
′
ct) = 1 and 0 elsewhere (analogously, for

an output numerical value z
′

dt).

In particular, when we deal exclusively with non-fuzzy, numerical data in (1),
it reduces to the collection of fuzzy singletons that is equivalent to

S2 = {u ′
t, z

′
t}
T
t=1

= {u′
1t, u

′
2t, ..., u

′
rt, z

′
1t, z

′
2t, ..., z

′
st}

T
t=1

, (2)

where u
′
t ∈ U = U1×U2×...×Ur and z

′
t ∈ Z = Z1×Z2×...×Zs (× stands for

Cartesian product of ordinary sets).
Due to the dynamics of the system, the particular data records in (1) or (2)

are interrelated. For instance, for a dynamic system with one input u and one
output z its dynamics can be described, in general, by the following formula:

zt = f(ut, ut−1, ..., ut−M, zt−1, zt−2, ..., zt−N), M ≥ 0, N ≥ 1. (3)
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Only in the case of a static system, formula (3) reduces to zt = f(ut). Expression
(3) can be easily generalized for the case of the system with r inputs and s
outputs.

Therefore, an important stage of the fuzzy rule-based model design consists
in determining the structure of the model in terms of its inputs and outputs
(similarly as in (3) for the single-input single-output case). It is an approximation
of the system’s dynamics. As we demonstrate later in the paper, the (close-to-)
optimal structure of the model can be found by repeating the learning process
for different structures of the model and selecting the structure that gives the
best results of learning. Assume now that such a structure of the model has
been determined and the model has n inputs x1, x2, ..., xn, xi ∈ Xi (n ≥ r), and
m outputs y1, y2, ..., ym, yj ∈ Yj (usually m = s and yj = zj). For instance,

for a single input single output system with the dynamics (3), x1 = ut, x2 =
ut−1, ..., xM+1 = ut−M, xM+2 = zt−1, xM+3 = zt−2, ..., xn = xM+N+1 = zt−N,
and y1 = y = zt. The generalized time series S1 (1) describing the behaviour of
the dynamic system has to be now reedited to the “static” form according to
the selected structure of the model:

L1 = {A′

k,B
′

k}
K
k=1

= {A′

1k,A
′

2k, ...,A
′

nk,B
′

1k,B
′

2k, ...,B
′

mk}
K
k=1

, (4)

where A
′

ik ∈ F(Xi), i = 1, 2, ..., n and B
′

jk ∈ F(Yj), j = 1, 2, ...,m (F(Xi) and

F(Yj) are families of all fuzzy sets defined on the universes Xi and Yj). Fuzzy

sets A
′

ik represent corresponding sets D
′
ct and E

′

dt of (1) and fuzzy sets B
′

jk -

corresponding output sets E
′

dt of (1), k is the number of model’s input-output
static data pattern and K is the overall number of such patterns.

In particular, when we deal with the numerical time series (2), it has to be
reedited (in an analogous way as data (1)) to the “static” form:

L2 = {x ′

k, y
′

k}
K
k=1

= {x′

1k, x
′

2k, ..., x
′

nk, y
′

1k, y
′

2k, ..., y
′

mk}
K
k=1

, (5)

where x
′

k ∈ X = X1×X2×...×Xn and y
′

k ∈ Y = Y1×Y2×...×Ym. From now

on data (4) or their special case (5) will be referred to as the learning data.
Fuzzy rules that will be synthesized from data (4) or (5) (for the case of single

output system, that is, for m = 1 and y1 = y) by the proposed later in the paper
genetic technique have the following form (when all n inputs are involved):

IF (x1 is A1r) AND ... AND (xn is Anr) THEN (y is Br), (6)

where Air ∈ F(Xi), i = 1, 2, ..., n and Br ∈ F(Y), r = 1, 2, ...,R, are the
S-, M-, or L-type fuzzy sets corresponding to verbal terms ”Small” (S-type),
”Medium” (M-type) and ”Large” (L-type). Their membership functions (for

rule antecedents) are of the form: μMi
(xi) = exp[−0.5(xi − cMi

)2/σMi
2], where

σMi
= σMLi

for xi ≤ cMi
and σMi

= σMRi
elsewhere, μSi

(xi) =

exp[−0.5(xi − cSi
)2/σSi

2] only for xi ≥ cSi
and 1 elsewhere, and, analogously,
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μLi
(xi) = exp[−0.5(xi − cLi

)2/σLi
2] for xi ≤ cLi

and 1 elsewhere (see Fig. 2

later in the paper); σSi
> 0, σMi

> 0, σLi
> 0, i = 1, 2, ..., n. Fuzzy sets describ-

ing rule consequents are defined in an analogous way. In general, one S-type, one
L-type and several M-type fuzzy sets can be considered for a given antecedent or
consequent. It is worth stressing that a given verbal term for a given antecedent
or consequent is represented by the same fuzzy set in all rules in which it occurs.

3 An Outline of Genetic Learning of Fuzzy Rules from
Data

In the course of the genetic learning process, an evaluation of particular indi-
viduals (fuzzy rule bases in the considered Pittsburgh-based approach) must be
performed in each generation. For this reason, a fuzzy-set-theory representation
of fuzzy rule base (6) and fuzzy inference scheme have to be employed. Vari-
ous definitions of fuzzy implications, t -norms and t -conorms in the framework
of two dominating in the literature fuzzy reasoning schemes (compositional rule
of inference and similarity based reasoning; see e.g. [1]) can be implemented in
our approach. In case of the most widely used Mamdani’s model (with min-type
t -norm, max-type t -conorm and min operator playing the role of fuzzy impli-
cation), one can obtain - for the input numerical data x 0 = (x01, x

0
2, ..., x

0
n) - a

fuzzy system’s response in the form of fuzzy set B0 ∈ F(Y) represented by the
following membership function:

μB0(yj) = max
r=1,2,...,R

μB0

r
(yj) = max

r=1,2,...,R
min[αr, μBr

(yj)], (7)

where αr = min(α1r, α2r, ..., αnr) = min[μA1r
(x01), μA2r

(x02), ..., μAnr
(x0n)]. αr

is the activation degree of the r -th fuzzy rule by the input numerical data x 0.
If non-fuzzy system’s response y0 ∈ Y is required, a defuzzification procedure
must be applied to fuzzy set B0. In this paper, a “half of the field” method (see
e.g. [4]) has been used.

The fitness function ff for a multi input single output system has been defined
as follows: ff = const. − Q, where const. is a constant value selected in such a
way that ff > 0 and Q is the cost function (a root mean squared error):

Q =

√√√√√ 1

K

K∑
k=1

(y
′
k
− y0

k
)
2
, (8)

whereK is the number of the learning samples, y
′

k is the desired model’s response

for the k -th learning data sample of (5), and y0k is the actual response of the
model for that sample.

In the framework of the considered Pittsburgh-based approach, each individ-
ual (a fuzzy rule collection) is represented by two entities: a rule base (represent-
ing the rule structures) and a data base (representing the parameters of fuzzy
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sets that occur in fuzzy rules). An essential role in processing the population of
individuals is played by the proposed non-binary crossover and mutation oper-
ators (due to a limited space of this publication they cannot be presented here
- see [6] for details).

4 Model of an Industrial Gas Furnace System

The application of the proposed approach to design the genetic fuzzy rule-
based model of an industrial gas furnace system from the data available from
the repository at the http://www.stat.wisc.edu/∼reinsel/bjr-data (the so-called
Box-Jenkins’ benchmark [2]) will now be presented. The data consists of 296
pairs of the gas flow rate (input ut) measured in ft3/min and the concentration
of CO2 in the exhaust gas (output zt) expressed in % (the sampling period is
equal to 9 sec.). Therefore, it is a single input single output dynamic process
described by data (2) with r = 1, s = 1 and T = 296.

As stated in the previous section of this paper, an essential stage of the fuzzy
model design consists in determining the input-output structure of the model.
Since the optimal model’s structure is not known, one of possible solutions is
repeating the learning for several different structures of the model and selecting
the structure that gives the best results of learning. For a single input single
output dynamic system, the simplest structure of the model is characterized by
two inputs and one output:

zt = f(ut−tu , zt−tz), (9)

where tu = 0, 1, ..., tz = 1, 2, ..., t = max(tu, tz) + 1,max(tu, tz) + 2, .... In
such a case, original set (2) of data pairs (u

′
t, z

′
t) must be reedited to the set

(5) of data triplets (u
′
t−tu , z

′
t−tz , z

′
t)= (x

′
1, x

′
2, y

′
), k = t − max(tu, tz) and

K = T − max(tu, tz). In the learning experiments, the genetic algorithm with
the population of 100 individuals and the tournament selection method (with the
number of individuals participating in the competition equal to 2) supported by
the elitist strategy as well as with crossover and mutation probabilities equal to
0.8 and 0.7, respectively, has been used. The results of the experiments have been
collected in Fig. 1 that presents the minimal value Qmin of the cost function
(8) for several sets of parameters tu and tz of (9). The best results have been
obtained for tu = 4 and tz = 1, that is, for the model zt = f(ut−4, zt−1). Table 1
presents its rule base that has been obtained after the completion of the learning
process. The last column and the last row in Table 1 represent fuzzy rules with
single antecedent, x1 = ut−4 and x2 = zt−1, respectively. Fig. 2 shows final shapes
of the membership functions of fuzzy sets describing system’s input ut (gas flow
rate) - Fig. 2a, and system’s output zt (CO2 concentration) - Fig. 2b. The final
stage of the genetic fuzzy rule-based model design (the pruning of the rule base)
consists in gradual removing of “weaker”, superfluous rules from the model’s
rule base (in order to increase its transparency), and analyzing how it affects
the model’s accuracy. This process is illustrated in Fig. 3. Q is the cost function
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of (8) calculated for the model (after the completion of the learning process)
for different numbers of fuzzy rules in model’s rule base. After removing nine
“weakest” rules (represented by dark cells in Table 1) from the full rule base,
the model with reduced rule base - containing four “strongest” fuzzy rules - has
been obtained (see Fig. 4).
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Fig. 1. Minimal value Qmin of the cost function (8) for several sets of parameters tu
and tz of (9)

Table 1. Full fuzzy rule base of the genetic fuzzy model - dark cells represent fuzzy

rules removed from the rule base as a result of a pruning (see below)
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IF (ut−4 is Medium2) THEN (zt is Medium4)

IF (ut−4 is Medium3) AND

(zt−1 is Medium2) THEN (zt is Medium2)

IF (zt−1 is Medium1) THEN (zt is Small)

IF (zt−1 is Large) THEN (zt is Large)

Fig. 3. Accuracy vs. transparency
criteria for the genetic fuzzy model

Fig. 4. Reduced fuzzy rule base of the
genetic fuzzy model

Both fuzzy models (with full and reduced rule bases) will now be tested in
“OSA predictions” mode and “AFT predictions” mode. OSA predictions stand
for One-Step-Ahead predictions. This means that the model - using x

′
1 = u

′
t−4

and x
′
2 = z

′
t−1

from the learning data set - generates a response y0 = z0t (one-step-

ahead prediction) which, in turn, can be compared with the desired response
y
′
= z

′
t. A much more demanding test of model’s accuracy is its operation

as the AFT (“All-Future-Times”) predictor. In such a case, the model using
x
′
1 = u

′
t−4

from the learning data set and x
′
2 = z0t−1

generated by the model itself

in the previous iteration, produces a response y0 = z0t . The cumulation of errors

associated with generation of y0 = z0t by the model in the consecutive iterations
can cause - for models of insufficiently high accuracy - that they become more
and more divergent with regard to the data. The operation of the genetic fuzzy
model with full and reduced rule bases is illustrated in Fig. 5.
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Fig. 5. Genetic fuzzy model with full (a), b)) and reduced (c), d)) rule bases
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Table 2 summarizes the accuracy vs. interpretability results of the genetic
fuzzy model with full and reduced rule bases. Additionally, the results - regard-
ing exclusively the accuracy - of the conventional Box-Jenkins’ approach [2] have
been included. The genetic fuzzy model with the reduced rule base containing
only four fuzzy rules provides excellent results as far as both, the model’s ac-
curacy and transparency are concerned. The fuzzy rules describe precisely and
clearly the mechanisms that govern the operation of the system.

Table 2. Accuracy and transparency of genetic fuzzy model with full and reduced rule

bases and conventional Box-Jenkins’ model

Full rule base Reduced rule base Box-Jenkins’ model [2]

Q (OSA predictions) 0.385 0.487 0.251

Q (AFT predictions) 0.936 1.064 0.979

Number of rules in the rule base 13 4 –

5 Final Remarks

The generalization - for the case of systems with continuous outputs - of the
genetic fuzzy classifier introduced by the same authors in [5] has been presented
in this paper. The proposed technique is a tool for the dynamic systems modelling
from generalized time series that describe their behaviour. The generalized time
series may contain both, quantitative, numerical data coming from experiments
and measurements as well as non-numerical, qualitative data (most conveniently
represented with the use of fuzzy sets) usually provided by human experts.

In order to verify the performance of the proposed approach, its applica-
tion to the fuzzy rule-based modelling of an industrial gas furnace system (the
well known Box-Jenkins’ benchmark [2]) has also been presented and compared
with conventional Box-Jenkins’ model. The Box-Jenkins’ benchmark data set has
been selected due to its popularity to enable a broad comparative analysis with
possible alternative methods of (generalized) time series modelling. Obviously,
the example presents a kind of “reduced” (to numerical data only) test of our
approach. However, according to our knowledge, there are now neither widely
available time series with qualitative data (to perform a full test) nor the meth-
ods to model them (to compare with). Taking into account these limitations,
we decided to perform the above-mentioned “reduced” test (obtaining excellent
results), treating it as a kind of “minimal” (numerical-data-based only) require-
ment regarding the proposed approach (and any other possible approaches) to
generalized time-series modelling.
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Abstract. In this paper the parametric inverse heat conduction prob-
lem with the third kind boundary condition is solved by applying the
Ant Colony Optimization algorithm introduced in recent years and be-
longing to the group of optimization algorithms inspired by the behavior
of swarms of individuals living in real word. In this case the applied
algorithm is based on the technique of searching for the shortest way
connecting the ant-hill with the source of food and is used for mini-
mizing the functional playing a crucial role in the proposed procedure
prepared for reconstruction of the thermal conductivity coefficient.

Keywords: Artificial Intelligence, Swarm Intelligence, Ant Colony
Optimization Algorithm, Inverse Heat Conduction Problem.

1 Introduction

In recent decades a number of biologically inspired optimization algorithms have
been developed. There are, for example, the genetic algorithms and neural net-
works inspired by the mechanisms of natural evolution, the immune algorithms
imitating the rules of functioning of the immunological system in the bodies of
vertebrates, swarm intelligence algorithms based on the intelligent behavior of
the swarm resulting from the cooperation of many simple individuals building
the common solution of the problem by finding independently only a small piece
of the solution [1,2].

The Ant Colony Optimization algorithm, introduced in 1992 by Marco Dorigo
[3,4,5], imitates the organization of the swarm of ants and method of commu-
nication between members of this community. By observing these insects, it
was interesting how these almost blind creatures can find the best way from
the ant-hill to the source of food, how they are able to communicate and what
makes them to follow one after another. Solution of this mystery is given by
the pheromone – a chemical substance produced and recognized by the most of
ant species. Ants are not endowed with any special instincts, but they leave the
pheromone trace in the ground giving the information for the other ants which

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 240–248, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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path to choose and for the ant itself how to return to the ant-hill. The more ants
traverse the path, the stronger is the pheromone trace. The shorter is the way,
the sooner the ant can reach the source of food and return to the ant-hill, which
makes the pheromone trace stronger and forces the other ants to choose this
specific way. This natural procedure has been transformed to the language of
computer programming which resulted in form of the ACO algorithm – efficient
tool used for solving different kinds of optimization problems [3,4,5,6,7].

In this paper we propose to use the ACO algorithm for numerical solution of
the inverse parametric heat conduction problem consisting in identification of
the thermal conductivity parameter of a material in course of the ingot cooling.
Mathematical model of this problem is represented by the heat conduction equa-
tion with boundary conditions of the second and third kind, but formulated for
the incomplete set of data. Incomplete input data are compensated by the addi-
tional information which can be, for example, the measurements of temperature
in selected points of the domain [8,9]. On this basis the sought thermal conductiv-
ity coefficient is identified and the distribution of temperature in the considered
domain is reconstructed. Solving of the inverse heat conduction problem is much
more difficult than solving of the direct heat conduction problem and, except
the simplest cases, impossible by means of analytical methods. That is why the
approximate methods are wanted, among which we can listed, for example, the
Monte Carlo method [10], method using the Green function [11], mollification
method introduced by Mourio [12], methods based on the wavelets theory [13]
and applying the genetic algorithms [14,15], as well as the algorithms of swarm
intelligence applied by the Authors to reconstructing the boundary condition of
the first and second kind [16,17]. The inverse parametric heat conduction prob-
lems consisting in identification of the thermal conductivity [18,19,20] or other
parameters [21,22] play an important role in literature devoted to the inverse
problems, however the idea of applying the swarm intelligence algorithm for
solving this problem, used already by the Authors in [23], is recent.

2 Ant Colony Optimization Algorithm

In ACO algorithm the role of ants is played by vectors xk, randomly dispersed
in the searching region. In each step, one of the ants is selected as the best
one xbest – the one, for which the minimized function F (x) takes the lowest
value. In the next step, to each vector xk is applied a modification based on
the pheromone trail. Vector of each ant is updated at the beginning of each
iteration by using the following formula: xk = xbest+dxk, where dxk is a vector
determining the length of jump, elements of which are randomly generated from
the interval [−β, β] (where β = β0 is the narrowing parameter, defined in the
initialization of the algorithm). At the end of each iteration the range of ants
dislocations is decreasing, according to the formula βt+1 = 0.1βt, which simulates
the evaporation of the pheromone trail in nature. The role of the simulated source
of food is played by the point of the lowest value of minimized function, that is
why the presence of ants – vectors is condensing around this point. The described
procedure is iterated until the assumed maximal number of iterations.
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Detailed ACO algorithm is presented below.

Initialization of the algorithm.

1. Initial data:
F (x) – minimized function, x = (x1, . . . , xn) ∈ D;
m – number of ants in one population;
I – number of iterations;
β – narrowing parameter.

2. Random selection of the initial ants localization: xk = (xk
1 , . . . , x

k
n),

where xk ∈ D, k = 1, 2, . . . ,m.
3. Determination of the best located ant xbest in the initial ants population.

The main algorithm.

1. Updating of the ants locations:
– random selection of the vector dxk such that

−βi ≤ dxk
j ≤ βi;

– generation of the new ants population:

xk = xbest + dxk, k = 1, 2, . . . ,m.

2. Determination of the best located ant xbest in the current ant population.
3. Points 1 and 2 are repeated I2 times.
4. Narrowing of the ants dislocations range: βi+1 = 0.1βi.
5. Points 1 – 4 are repeated I times.

There are three basic advantages of such approach – the algorithm is effective,
even for the not differentiable functions with many local minimums, time needed
for finding the global minimum is respectively short and the algorithm does not
require any specific assumptions. If the solution of the optimized problem ex-
ists, it will be found with some given precision of course. Moreover, the ACO
algorithm belongs to the group of heuristic algorithms which means that solu-
tion received by using this algorithm should be treated as the best solution in
the given moment. Another running of the algorithm can give different solution,
slightly better or worse. Because of this the effective application of the ACO al-
gorithm desires multiple execution and taking the average results as the solution.
However, it does not decrease the usefulness of the algorithm.

3 Formulation of the Problem

We consider the problem in which distribution of temperature is described with
the aid of the heat conduction equation

c ρ
∂u

∂t
(x, t) = λ

∂2u

∂x2
(x, t), x ∈ [0, d], t ∈ [0, T ], (1)
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with the following initial and boundary conditions

u(x, 0) = u0, x ∈ [0, d], (2)

∂u

∂x
(0, t) = 0, t ∈ [0, T ], (3)

where c, ρ and λ are, respectively, the specific heat, mass density and thermal
conductivity, t and x denote, respectively, the time and spatial location, whereas
u defines the temperature. On boundary for x = 1 the third kind boundary
condition is assumed

−λ
∂u

∂x
(d, t) = α(t) (u(d, t) − u∞), t ∈ [0, T ], (4)

where u∞ denotes the ambient temperature and α(t) describes the heat transfer
coefficient. Solving of the considered problem consists in identifying the value
of thermal conductivity coefficient λ and in reconstructing the distribution of
temperature u(x, t) in domain of the problem. By assuming the value of sought
parameter λ as given, the problem defined by equations (1)–(4) can be solved by
using one of the known method for direct problems, for instance the finite dif-
ference method or finite element method. In this way, the values of temperature
ũ(xi, tj) in selected points of the domain can be received.

In considered inverse problem for the known values of temperature u(xi, tj),
i = 1, ..., k, j = 1, ...,m, in selected points of the domain, we will determine
the desired thermal conductivity coefficient. By using the calculated tempera-
tures ũ(xi, tj) and the given temperatures u(xi, tj) we can construct the following
functional

P (λ) =

√√√√ k∑
i=1

m∑
j=1

(
u(xi, tj)− ũ(xi, tj)

)2
, (5)

representing the error of approximate solution ũ, which will be minimized. By
this means, the value of parameter λ will be determined in such a way that the
approximate distribution of temperature will be as close as possible to the known
values of temperature in control points. For minimizing the functional (5) will
we use the ACO algorithm, paying attention to the fact that each execution of
the procedure means the necessity of solving the appropriate heat conduction
problem.

4 Numerical Experiment

The proposed approach will be tested for the following values of parameters:
c = 1000 [J/(kg · K)], ρ = 2679 [kg/m3], T = 1000 [s], d = 1 [m], u0 = 980 [K],
u∞ = 298 [K] and the following values of α(t) [W/(m2 ·K)]:

α(t) =

⎧⎨⎩
250 for t ∈ [0, 90],
150 for t ∈ (90, 250],
28 for t ∈ (250, 1000].
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We know the exact value of the sought parameter λ which is equal to
240 [W/(m · K)]. For constructing the functional (5) we use the control values
of temperature, determined for the known exact value of λ and values noised by
the random error of 1, 2, 5 and 10%. The measurement point is located on the
boundary for x = 1, where the third kind boundary condition is reconstructed,
and in the 5% and 10% distance away from this boundary. The measurements
of temperature are taken at every 1 s. We will verify how much the shift of
measurement point away from the boundary affects the quality of results. The
initial population of ants representing the localization of the sought parameter
is randomly selected from the range [0, 1000]. We evaluate the experiment for
number of ants m = 10 and number of iterations I = 10, because the simulations
indicated those values as sufficient for receiving satisfying results. Value of the
narrowing parameter is β = 0.1 and the initial β0 = 600. The approximate value
of reconstructed coefficient is received by running the algorithm 20 times and by
averaging the obtained results. Selected results are presented in figures.

Fig. 1 presents the results of the thermal conductivity parameter reconstruc-
tion calculated for the successive iterations of ACO algorithm (from 1 till 10),
for input data burdened by the error of 1% and control point located in the
5% distance away from the boundary for x = 1. Distribution of the reconstruc-
tion error, with respect to the number of iterations, is also displayed. The other
sought element in the considered problem is the distribution of temperature. Dis-
tribution of temperature u(x, t) on the boundary for x = 1 (where the boundary
condition is reconstructed) calculated for 10 iterations in ACO algorithm, for
input data burdened by the error of 1% and control point located in the 5%
distance away from the considered boundary is presented in Fig. 2. Similar col-
lection of results, but for the case of 5% perturbation of input data and location
of measurement point in the 10% distance away from the boundary for x = 1
is showed in Figures 3 and 4, whereas, for 10% perturbation of input data and
measurement point located on the boundary for x = 1 – in Figures 5 and 6.
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Fig. 1. Reconstruction of parameter λ for the successive iterations, for input data
burdened by the error of 1% and control point located in the 5% distance away from
the boundary for x = 1 (left figure) and error of this reconstruction (right figure)
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Fig. 2. Distribution of temperature u(x, 1) on the boundary for x = 1 reconstructed
for input data burdened by the error of 1% and control point located in the 5% dis-
tance away from the boundary for x = 1 (solid line – exact solution, dashed line –
approximated values)
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Fig. 3. Reconstruction of parameter λ for the successive iterations, for input data
burdened by the error of 5% and control point located in the 10% distance away from
the boundary for x = 1 (left figure) and error of this reconstruction (right figure)
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Fig. 4. Distribution of temperature u(x, 1) on the boundary for x = 1 reconstructed
for input data burdened by the error of 5% and control point located in the 10%
distance away from the boundary for x = 1 (solid line – exact solution, dashed line –
approximated values)

Executed numerical experiment indicated that the proposed procedure gives
satisfying results for this kind of problem. For the exact input data we received
in few iterations the results almost equal to the exact solution. In case of the
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Fig. 5. Reconstruction of parameter λ for the successive iterations, for input data
burdened by the error of 10% and control point located on the boundary for x = 1
(left figure) and error of this reconstruction (right figure)
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Fig. 6. Distribution of temperature u(x, 1) on the boundary for x = 1 reconstructed
for input data burdened by the error of 10% and control point located on the boundary
for x = 1 (solid line – exact solution, dashed line – approximated values)

measurement point located on the boundary for x = 1 (where the boundary con-
dition is reconstructed), or in the 5% or 10% distance away from this boundary,
the reconstruction errors are smaller than the 1, 2 and 5% errors of input data.
For 10% perturbation of input data the results are good for the control point
located on the considered boundary and shifted 5% away from this boundary.
Moreover, the experiment gave similar results in 20 repetitions made for the
same input data which confirms stability of the procedure.

In presented simulation the optimal number of algorithm iterations I = 10 and
size of ants population m = 10 were determined experimentally. Other researches
aimed to reconstruct the thermal conductivity coefficient or other coefficients in
the inverse heat conduction problem of considered kind, like the heat transfer
coefficient, in various conditions and for various numbers of measurements, indi-
cated that proposed procedure based on ACO algorithm gives satisfying results
for the number of ants and number of iterations not exceeding 10. However, to
conclude more general conclusions some further researches must be made.
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5 Conclusions

In this paper the procedure for solving the inverse heat conduction problem with
boundary condition of the third kind, using one of the Swarm Intelligence algo-
rithms, is proposed. Solution of this problem consisted in identification of the
thermal conductivity parameter and reconstruction of the temperature distribu-
tion in considered region. Essential part of the approach concerned minimization
of the functional expressing the errors of approximate results, for minimization
of which the Ant Colony Optimization algorithm was used. The proposed pro-
cedure was investigated with regard to the speed of execution and the precision
of obtained results, as well as to the sensitivity to the initial parameters of the
algorithm, error of input data and location of the control points.

Presented results indicated that the proposed algorithm constitutes the effec-
tive tool for solving such kind of inverse problem, for different cases of the input
data error, distance of the control point away from the boundary of the region
and selection of parameters in the ACO algorithm (number of individuals and
number of iterations). The listed elements exert of course some influence on the
quality of solution, however, in each considered case of input data the recon-
struction errors are smaller than perturbations of input data and the numbers
of individuals and iterations in the algorithm needed for receiving the satisfy-
ing results are relatively small which makes the algorithm fast working and the
entire procedure useful and efficient.
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Abstract. In this paper we present the comparison of numerical meth-
ods applied for solving the inverse heat conduction problem in which
two algorithms of swarm intelligence are used: Artificial Bee Colony al-
gorithm (ABC) and Ant Colony Optimization algorithm (ACO). Both
algorithms belong to the group of algorithms inspired by the behavior of
swarms of insects and they are applied for minimizing the proper fun-
ctional representing the crucial part of the method used for solving the
inverse heat conduction problems. Methods applying the respective al-
gorithms are compared with regard to their velocity and precision of the
received results.

Keywords: Swarm Intelligence, Artificial Bee Colony algorithm, Ant
Colony Optimization algorithm, Inverse Heat Conduction Problem.

1 Introduction

The group of intelligence algorithms, also called the swarm intelligence algo-
rithms, belong to the group of artificial intelligence algorithms and they repre-
sent the special way of solving various problems in which the intelligent behavior
results from the cooperation of many simple individuals. Single individuals are
not aware of the complete problem which should be solved, but big number of
them and their specific forms of behavior cause the common success and, in re-
sult, lead to find the solution. Such kind of methods is represented by the ants
and bees algorithms in which the imaginary individuals – ants or bees – built
the common solution of the problem by finding independently only a small part
of the solution, about quality of which they inform the other members of the
swarm by using the virtual pheromone, in case of ants, or imitation of a special
dance taking place in the hive, in case of bees. Effectiveness of those algorithms
in solving the optimization problems exceeds the effectiveness of traditional
approaches [1,2,3,4].

Ant Colony Optimization algorithm (ACO) and Artificial Bee Colony algo-
rithm (ABC) were used, so far, for solving various optimization problems of
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combinatoric kinds, such as the traveling salesmen problem, determination of
the vehicle routes, sequential sorting, graph coloring and flow control in the net-
works [1]. Moreover, there were developed the procedures, basing on the ants
and bees algorithms, serving for finding the solution of more analytical prob-
lems, like determining the global minimum of the function [2,3,4]. In regard to
application of the considered algorithms in the inverse problems in engineering,
there were published so far only few works concerning this subject [5,6,7].

The inverse heat conduction problem is a heat conduction problem formulated
for the incomplete set of data and it consists in determining the temperature
distribution and one of the boundary conditions [8,9]. Incomplete set of data
is compensated by the additional information which can be given, for example,
by the measurements of temperature in selected points of the domain. Solving
of the inverse problem is much more difficult than solving of the direct heat
conduction problem in which the distribution of temperature in the considered
domain should be determined for the given initial and boundary conditions.
However, the scientists constantly make some efforts for receiving the approxi-
mate solutions of inverse problems. The successful methods of solving such kind
of problems are, for example, the Monte Carlo method [10], method using the
Green function [11], mollification method introduced by Mourio [12], homotopy
perturbation method [13,14], methods based on the wavelets theory [15] or ap-
plying the genetic algorithms [16,17,18].

Successful trials of using the ants and bees algorithms in solving the inverse
heat conduction problems were made by authors of the current work in papers
[19,20]. Idea of applying the algorithms of swarm intelligence in solving such
kind of problems consists in minimizing the properly constructed functional,
expressing the error of approximate solution, with the aid of ACO and ABC
algorithms, according to the approach presented in papers [2,3,4]. The current
paper is devoted to summarizing the obtained calculations and comparing the
effectiveness of ants and bees algorithms in determining the approximate solution
of inverse problems.

2 Ant Colony Optimization Algorithm

ACO algorithm was inspired by observation of the real ant community behavior
and the technique of looking for the food around the ant-hill by the ants. Those
almost blind creatures are able to find the shortest way connecting the ant-hill
with the source of food by passing round the obstacles which can appear on the
way. Answer to the question what makes the swarm of ants to follow one after
another, choosing by this way the best of the possible trails, is the pheromone.
Pheromone is a chemical substance which is produced and recognized by most
of the ant species. Such kind of substance is leaved in the ground by the moving
ant and, afterwards, is smelled by the other ants which makes them to follow its
trace. As stronger is the pheromone trace, as greater number of ants will choose
the trail covered by it. According to this, as shorter is the way to the source of
food, as faster will be traversed by the ant. After that the ant returns to the
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ant-hill by using the same trail and by intensifying the pheromone trace. Whereas,
the pheromone trace leaved on the longer trail evaporates little by little.

Such simple mechanism has been used in elaborating the optimization algo-
rithm in which the role of ants is played by the vectors xk, randomly dispersed
in the considered region. In each step, one of the ants-vectors is selected as the
best one xbest – the one for which the minimized function F (x) takes the lowest
value. At the beginning of each iteration, vector representing each ant is up-
dated (for the assumed number of times) according to the following formula:
xk = xbest+dxk, where dxk denotes the vector determining the length of jump,
elements of which are randomly selected from the interval [−β, β]. Parameter β
is called the narrowing parameter and its initial value β0 is defined in the ini-
tialization of the algorithm. At the end of each iteration value of the narrowing
parameter is modified according to the formula βi+1 = 0.1 βi, thanks to which
the range of ants dislocations is decreasing. This procedure simulates the evap-
orating process of the pheromone trail because it causes that the individuals xk

are getting together more and more densely around the best solution, whereas
the points of the considered region giving worse solutions are visited more and
more rarely.

Detailed scheme of the ACO algorithm can be found in [19].

3 Artificial Bee Colony Algorithm

ABC algorithm imitates the technique of searching for the nectar around the
hive by the colony of real bees. The way of communication between bees, unique
in nature, is the following: after discovering the attractive source of nectar the
bee (called as the scout) flies back with the sample of nectar to the hive where
it informs the other bees (called as the viewers) with the aid of the special kind
of dance. Dance of the bees, called as the waggle dance, happens in the special
place in the hive (near the exit) and consists of two parts: moving straight and
moving back to the starting point along the semicircle, once to the right side,
next to the left side. During the straight movement the bee swings with its whole
body, once to the right, once to the left, and it emits the buzzing sounds which
can be well heard by the human ears. The sound is produced by the very quick
movements of the bee’s wings, about 200-300 per one second. Direction of the
bee’s dance determines the angle between the localized source of food and the
sun. By taking into account the fact that position of the sun is changing during
the day, the bee modifies the angle of its straight movement about 1 degree at
every 4 minutes. Duration of the straight movement determines the distance
between the hive and the source of food (each 75 milliseconds of moving straight
denotes 100 metres of distance). Magnitude of the bee’s body vibration during
the dance indicates the quality of nectar.

Population of artificial bees in the algorithm is divided into two equal parts.
First part is made by the bees-scouts exploring the environment in search for
the nectar. Second part is made by the bees-viewers waiting in the hive for in-
formation. In the first part of the algorithm the bees-scouts localize the assumed
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number of the sources of nectar – points xk of the investigated region. By doing
this, they make some number of control movements in order to check whether
in the neighborhood of the selected point some better localization can be found.
The quality measure of the selected point is obviously the value of minimized
function F (x) (as smaller is the value, as the source is more attractive). Next,
the scouts return to the hive, give the information to the bees-viewers and wait
in the hive for the next cycle of algorithm. In the second part of the algorithm
the bees-viewers choose the sources of nectar with the given probabilities (as
greater as better is the quality of the source) from among the points of the do-
main selected by the scouts. Of course, one source can be chosen by a group of
bees. Next, the bees-viewers explore the selected sources by making also some
number of the control movements around, in order to improve the quality of
the localized source. Each cycle of the algorithm is ended by choosing the best
source of nectar in the current cycle – if the chosen source is better than those
one selected in the previous cycles, the chosen source is considered as the best
solution so far in the entire algorithm execution.

More detailed description of the ABC algorithm is presented in paper [20].
It is worth to mention in this moment that the ABC algorithm, as well as

the ACO algorithm, belong to the group of heuristic algorithms, which means
that each running of the algorithm can give slightly different solution. Thus,
the reasonable application of those algorithms should consist in averaging the
results received in some number of their repeated executions. However, it is not
problematic because of the simplicity, easiness of implementation and relative
high speed of execution of the presented algorithms. Moreover, their important
advantage is ensured by the fact that the ABC and ACO algorithms do not re-
quire to satisfy any assumptions about the minimized function or the considered
domain which significantly increases the range of their usefulness. If only the
solution exists, it will be found with the aid of those algorithms with the bigger
or smaller precision.

4 Formulation of the Problem

In the considered problem distribution of temperature is described by means of
the heat conduction equation

c ρ
∂u

∂t
(x, t) = λ

∂2u

∂x2
(x, t), x ∈ [0, d], t ∈ [0, T ], (1)

with the given initial condition

u(x, 0) = u0, x ∈ [0, d] (2)

and boundary condition

∂u

∂x
(0, t) = 0, t ∈ [0, T ], (3)
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where c, ρ and λ are, respectively, the specific heat, mass density and thermal
conductivity, t and x denote, respectively, the time and spatial location, whereas
u defines the distribution of temperature. On boundary for x = 1 the third kind
boundary condition is assumed

− λ
∂u

∂x
(d, t) = α(t) (u(d, t)− u∞), t ∈ [0, T ], (4)

where u∞ denotes the ambient temperature and α(t) describes the heat trans-
fer coefficient. Form of this coefficient is unknown and solving of the problem
will consist in its determination. Another unknown element which should be
determined is the distribution of temperature u(x, t) in the considered domain.

For the fixed value of heat transfer coefficient the above problem, described by
equations (1)–(4), turns into the direct problem, solving of which enables to find
the values of temperature ũ(xi, tj) in the selected points of the domain. By using
the calculated temperatures ũ(xi, tj) and the given temperatures u(xi, tj) we can
construct the following functional

P (α) =

√√√√ k∑
i=1

m∑
j=1

(
u(xi, tj)− ũ(xi, tj)

)2
, (5)

representing the differences between the received approximate results ũ and the
known values of temperature u in the measurement points. By this means, we
will calculate the values of parameters such that the approximate distribution
of temperature will be as close as possible to its known values. For minimizing
the functional (5) will we use the ACO and ABC algorithms, paying attention
to the fact that for finding the solution α we need to solve many times the direct
problem associated with the considered inverse problem.

5 Numerical Example

The inverse problem, described in the previous section, is considered for the fol-
lowing values of parameters: c = 1000 [J/(kg · K)], ρ = 2679 [kg/m3],
λ = 240 [W/(m · K)], T = 1000 [s], d = 1 [m], u0 = 980 [K] and u∞ = 298 [K].
We need to determine the values of three parameters αi [W/(m2 ·K)], i = 1, 2, 3,
denoting the successive values of the heat transfer coefficient. Exact values of
the sought parameters are the following:

α(t) =

⎧⎨⎩
250 for t ∈ [0, 90],
150 for t ∈ (90, 250],
28 for t ∈ (250, 1000].

Moreover, in calculations we have used the measurements of temperature taken
in point located on the boundary for x = 1, read in five series: at every 1, 2, 5,
10 and 20 s.

In case of applying the ACO algorithm for minimization of functional (5) we
assume that the initial population of ants, which suppose to locate the sought
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values of parameters, is randomly selected from the range [0, 500] and the initial
value of the narrowing parameter β0 is equal to 300. Approximate values of the
desired parameters αi, i = 1, 2, 3 are determined by running the algorithm 30
times and by averaging the received results. In course of the researches, made
for various numbers of ants population nM and various numbers of iterations I
in the algorithm execution, it turned out that the satisfying results are obtained
for the number of ants nM = 5 and number of iterations I = 5.

Similar investigations were made in case of using for minimization of func-
tional (5) the ABC algorithm, also executed 30 times. The initial population
of bees, corresponding with the explored sources of nectar, is also randomly
selected from the range [0,500]. In course of researches it appeared that the
satisfying results are received for the number of bees nP = 5, similarly like in
case of ACO algorithm, but the maximal number of cycles C in the algorithm
execution, necessary for obtaining good results, is equal to 14.

Note that successful results of the temperature distribution reconstruction
are received for 5 iterations in ACO algorithm execution, as well as for 5 cycles
of ABC algorithm execution. However, the differences appear by comparing the
reconstructed values of heat transfer coefficient α. It turned out that in case of
ACO algorithm, for the series of control measurements of temperature made at
every 1 s, as well as for the measurements made at every 20 s, 5 iterations is
enough for receiving the small values of relative errors δαi of the reconstructed
parameter αi, which is presented in Fig. 1. Whereas, in case of the ABC algo-
rithm, number of cycles necessary for obtaining the small relative errors δαi of
the reconstructed parameter αi is grater and is equal to 14, especially for the
series of measurements taken at every 20 s which can be seen in Fig. 2.
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Fig. 1. Relative errors of reconstruction of parameters αi for the successive iterations
of ACO algorithm and for the series of measurements taken at every 20 s (left figure)
and at every 1 s (right figure) (� – for α1, � – for α2, � – for α3)

Fig. 3 presents the distribution of temperature on the boundary for x = 1,
where the boundary condition of the third kind is reconstructed, calculated for
the control measurements of temperature taken at every 1 s, by using, respec-
tively, 5 iterations of the ACO algorithm and 14 cycles of the ABC algorithm.
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Fig. 2. Relative errors of reconstruction of parameters αi for the successive cycles of
ABC algorithm and for the series of measurements taken at every 20 s (left figure) and
at every 1 s (right figure) (� – for α1, � – for α2, � – for α3)

The numbers of iterations and cycles are those for which the satisfying recon-
struction of heat transfer coefficient is received. Numbers of ants and bees are
equal to 5. One can see that the reconstruction of temperature distribution is
very good in both cases, which is additionally confirmed by the relative errors
δu of the respective approximations, distribution of which are showed in Fig. 4.
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Fig. 3. Distribution of temperature on the boundary for x = 1 calculated by using 5
iterations of ACO algorithm (left figure) and 14 cycles of ABC algorithm (right figure)
(solid line – exact values of temperature, dashed line – reconstructed values)

Moreover, in Table 1 the statistical comparison between ACO and ABC al-
gorithms in reconstruction of parameters αi is displayed. The table presents, in
turn, the maximal and minimal relative errors of parameters αi approximations,
their mean values and standard deviation values received in 30 runnings of the
algorithms, for measurements taken at every 20 s and for 5 iterations and cycles,
respectively. Obtained results indicate superiority of ACO algorithm.
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Fig. 4. Relative error of reconstruction of the temperature distribution on the boundary
for x = 1 calculated by using 5 iterations of ACO algorithm (left figure) and 14 cycles
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Table 1. Statistical comparison between ACO and ABC algorithms in αi reconstruc-
tion (first line presents results obtained by ACO, second line – by ABC)

maxΔαi minΔαi α1 σ1 α2 σ2 α3 σ3

[%] [%]

1.2 · 10−11 8 · 10−12 250.000 2.3 · 10−11 150.000 1.1 · 10−11 28.000 3.1 · 10−11

2.981 0.812 249.612 1.219 150.412 1.376 28.211 0.692

6 Conclusions

Aim of the presented paper was the comparative study of two methods used for
solving the inverse heat conduction problem consisted in identification of the
heat transfer coefficient appearing in boundary condition of the third kind and
reconstruction of the distribution of temperature in considered region. Compared
methods differ in the way of minimizing the functional, expressing the differences
between the received approximate results and the known values of temperature
and representing the crucial element in the process of solving the problem. For
minimizing the functional in the first approach the ACO algorithm was used,
whereas in the second approach the ABC algorithm was applied. Investigations
indicated that both algorithms are very well suitable for solving the considered
problem, they give satisfying results for the small numbers of individuals, as
well as for the small numbers of iterations or cycles. However, by taking into
account the number of calculations needed for receiving good results, which
means the velocity of the algorithms working, the ant algorithm appeared to
be more efficient in solving the considered problem. Number of iterations in
the ACO algorithm execution, implying the number of direct heat conduction
problems which should be solved, is half as big in comparison with the ABC
algorithm.
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Abstract. In this paper, an approach to automatic optimisation of the
retrieval quality of search engines using a language model paradigm is
presented. The topics of information retrieval (IR) and natural language
processing (NLP) have already been investigated. However, most of the
approaches were focused on learning retrieval functions from existing ex-
amples and pre-set feature lists. Others used surface statistics in the form
of n-grams or efficient parse tree utilisations – either performs poorly
with a language open to changes. Intuitively, an IR system should present
relevant documents high in its ranking, with less relevant following below.
To accomplish that, semantics/ontologies, usage of grammatical informa-
tion and document structure analysis were researched. An evolutionary
enrichment of language model for typed dependency analysis acquired
from documents and queries can adapt the system to the texts encoun-
tered. Futhermore, the results in controlled experiments verify the possi-
bility of outperforming existing approaches in terms of retrieval quality.

Keywords: Natural Language Processing (NLP), Genetic Algorithms
(GA), Information Retrieval (IR), Search Systems, Ranking Algorithms.

1 Introduction

The problem of information retrieval (IR) can be expressed as an open-ended
research problem for practical language technology: ”How can I find documents
about this?”, thus equivalent to searching for a suitable definition of appropri-
ate semantic relevance. Current IR techniques are based on the recovering of
documents that are related to a specified query using implementations of algo-
rithms for indexing of materials, for matching them to the query and for ranking
the results (eg. RankBoost, RankingSVM, AdaRank or Google PageRank). De-
spite the improvements in search effectiveness, failures on filling user information
needs and capturing the information request semantics are still not fully adressed
[16,17,18]. To improve the quality of the searches, intelligent IR systems tend to
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utilise linguistic information. Considerable attention dedicated to language mod-
elling methods in IR resulted in various approaches [1], with a classic n-gram
model most popular [12,13,14,15,16] and language syntax modeling for IR sec-
ond [2,3,4], [18]. Signicant contribution of dependency types language structure
modeling for IR is still to be presented.

From the linguistics perspective, language model resilience to linguistic im-
purities and malforms is important for the contemporary language analysis [9].
,,Language is an immensely democratising institution. To have learned a lan-
guage is immediately to have rights in it. You may add to it, modify it, play with
it, create in it, ignore bits of it, as you will.”[10] As English is often considered
global lingua franca (discussed in [5] and [10]), it is influenced by several cultural
accretions. Grammar is subject to changes [15] and the dictionary is enriched
with eg. opaque fixed expressions like francophone next tomorrow (British day
after tomorrow). These have ramifications for IR systems [11], thus text analysis
with language model creation/update may be used. It is usually done with re-
current neural networks, gradient descent, simulated annealing and evolutionary
programming (according to [19]).

The following paper discusses typed dependency parses for IR system search
effectiveness improvement. As this type of parses offers another level of use-
ful information to a regular syntactical approach, the syntax-driven IR model
will first be presented. Due to system’s planned adaptability to various lan-
guages, author proposed evolutionary approach to the problem of optimisation
of language modelling according to encountered texts. Next, the importance and
theoretical information increase obtained from typed dependency parse of the
syntactical parse results is discussed. Experiments in the area of computer gen-
erated and updated language grammar models with their results are described
and discussed in the following section. Finally, the last section concludes and
gives some directions for future work.

2 Language Modelling and IR

A language grammar G is a four tuple {N, T, P, S}, where N and T are sets of
terminals and nonterminals comprising the alphabet of the grammar, P is a set
of appropriate production rules, and S is the start symbol. For every grammar,
there exists a set of terminal symbol strings known as a language L, that the
grammar can generate or recognise. There are also automata that recognise and
generate the grammar from that set. These facts are used in language modelling
approaches to many problem solutions, as once there are enough sets of the
strings, many linguistic methods may be used to improve on other approaches.

In language modelling based IR, for each query qi ∈ Q (Q = {q1, q2, . . . , qn})
consisting of query terms qi = {qi1, qi2, . . . , qim}, all of the documents dj ∈ D
to be ranked by relevance to the query are ranked by the probability P (dj |qi)
of being generated by the query language model. This is further extended into
ranking according to the probability P (dj |Q) of being generated by the query-set
language model. From the Bayes formula and the facts that P (Q) is constant and
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P (dj) is considered uniform across the document collection, the documents can
be ranked with the same result by the P (Q|dj) probability. Instead of estimating
probability of documents generated by language model defined by Q, the query
probability being generated from the documents’ language model is used (as in
[1]). The probability of a dependency bigram (with h(qik) depicting head and qik
its modifier) in a language model of documents D is denoted as PD(h(qik), qik).
PD is thus considered a simplified notation for documents’ probability and Pdj

its counterpart for a single document. Frdj(h(qik), qik) is the frequency of de-
pendency bigram in document dj . The size of the document, denoted by ‖dj‖,
is the number of dependency relations defined by dependency syntax tree of the
document. There is a bijection between words of the sentence and nodes of the
tree and, except for the root usually being the predicate of the sentence, each
word has one parent, therefore it is possible to introduce the following estimate:

Pdj(qi) =
∏

qik:∃h(qik)
Pdj(h(qik), qik) ≈

∏
qik:∃h(qik)

Frdj(h(qik), qik)

‖dj‖ . (1)

3 Syntax-Based IR System

Classic IR systems use the n-gram model, in which any (text) document is
treated as a set of words and only frequencies of the corresponding language
phenomena and/or adjacency relationship are considered. The term adjacency
is usually measured in a number of characters or words between the terms. It is
commonly understood that words within a certain distance from each other are
in some relation to each other – the closer the query terms are in a document
the higher ranking position it gets. For example, a search for wide lenses ex-
cludes documents with wide and fast lenses, lowering the recall. With the query
formulated as wide AND lenses, the precision decreases since documents with a
wide variety of contact lenses are also returned and ranked higher than those
with wide and water-resistant quality lenses. The basic idea of a syntax-based
IR system is that the syntactical relationships of the user query and documents
are compared. Linguists defined a whole battery of syntactical relations used to
build more complex structures with corresponding semantics. For instance, noun

Fig. 1. Example of a sentence syntax analysis
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phrases (NP) carry more information than do verb ones (VP) and still can be
identified relatively easily, as seen in Fig. 1. In a syntax-based IR system the user
is able to search for a structure consisting of a noun lenses and an adjective wide.
The sentences of the documents and the user query are represented by syntac-
tical parse trees. The tree vertices are the words of the text while the edges are
the relationships between them. Vertices can also store additional information
eg. lexical form (in morphologically rich languages [3]) or negation. Matching
is defined in the sense of sub-graph match. Some systems use a simple Boolean
match, while others may assign a relevance value to the document. In the case of
Boolean matchers, the topological match of the query and the texts is examined
and only complete structural match is accepted (no vertex match is considered).
In the case of relevance match calculators, the percentage of matching nodes and
term inclusion in phrase types is used. If a lexical index (eg. inverse word list)
is used for lexical filtering of the documents, the query is matched with both
the lexical and the structural index, and the intersection of the results is used.
The structural index fastens up searches for complex structures and the lexical
index allows the system to work better with non-common terms. For partially
unfilled queries the undefined vertices are not looked up in the lexical index. If
the queries or documents consist of structures previously unknown or ungram-
matical, the parsing process may still fail. The easiest solution is to continually
adapt the rule-set to better conform to the texts. If we are trying to identify
an intended theme of a text, which is important for IR systems, it seems to be
intuitive to further assume that definite nouns are better for theme recognition
than indefinite ones. Syntactical analysis with thorough dictionary definition al-
lows for that. Another assumption is that identification of the (surface) subject
of a clause is useful and simplified within syntax-based framework.

4 Typed Dependencies for IR

Typed dependencies and phrase structures (as used in syntax-based analysis)
are different ways of representing the structure of sentences. While the second
approach to parsing represents nesting of multi-word structures, dependency
parses represent dependencies between individual words in the texts. A typed
dependency parse additionally labels them with existing grammatical relations.
There has been much linguistic discussion of the two formalisms and formal
isomorphisms between certain linguistic structures since 1980s [7]. Recent years
have seen an increased interest in using dependency parses for a range of NLP
tasks. IR applications benefit particularly well from having access to typed de-
pendencies between words, since these provide additional information (eg. about
predicate-argument structure) not easily available from simple phrase structure
parses. This results in several more recent treebanks and parser classes adopting
the dependency representation as primary annotation format. However, existing
dependency parsers for English such as Minipar or LinkParser are not always
as accurate and effective as phrase structure (syntax) parsers trained on very
large corpora. Grammatical relations used for typed dependencies approach are
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Fig. 2. Example of a sentence typed dependency analysis

arranged in a hierarchy, rooted with the most generic relation of being depen-
dent (dep). When the relation between a phrasal head and its dependent is
recognised, relations further down in the hierarchy are analysed and possibly
used. For the English language, the dependent relation might be further speci-
fied as eg. argument (arg) or modier (mod). Arg can again be divided into several
relations eg. a subject (subj) relation with its nominal subject (nsubj) subtype
or a complement (comp) relation with object (obj) subtype that includes direct
(dobj), indirect (iobj) and prepositional (pobj) objects. Mod relations include eg.
adjectival modifier (amod) relations (as presented on Fig. 2). These dependen-
cies offer not only theoretically but also practically efficient approach, as they
offer information useful in the context of textual inference and retrieval applica-
tions. Generating typed dependencies requires appropriate rules and dictionary
definition for the language, so it is an even better exemplification of how im-
portant adapting a pre-defined model to query and document contents language
model is. When typed dependencies are used for IR, the process is similar to
syntax-based IR. First, a document is parsed with a phrase structure parser.
Then, heads of each constituent (structural element) of the document text are
identied using specially prepared rules for retrieving the semantic rather than
the syntactic heads (as in [2]). Next, the dependents are found and the relations
are specified. As there is at least one pattern defined over the phrase structure
parse tree for each grammatical relation, each pattern is matched against every
corresponding tree node and one with the most specic grammatical relation is
taken as the type of the dependency. Dependency trees form the index similarly
to syntax-based IR systems. Finally, lexical index is built. When searching, the
query is matched with both indices. The intersection of the results is used for
further analysis. The relevance calculator that is proposed for typed dependency
analysing systems measures distance between two terms dist(ti, tj) as:

dist(ti, tj) = min∀r∈routes(e(ti, tj)) (2)

where min() depicts minimum of the set provided as the parameter, e(x, y)
depicts the number of edges traversed between the node of x and the node of y.
Routes are possible ways for the dependency tree to be traversed between the
nodes.
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5 Genetic Approach

As described in [6], languages change over time in a fashion similar to evolution-
ary changes of living organisms. The language model (specimen) defined by the
document is encapsulated in the form of syntactic rules, dependency relations
and a dictionary. The processes of mutation are defined as dictionary changes
(class changes, addition and removal of items) and rule modifications (as in [11]).
The crossover is a ,,cut and splice” approach with roulette-based crossover point
selection. If in a children model duplicates of elements are detected, only the first
occurrence is preserved. Starting specimens are defined by selected documents.
Adaptation process is run at start and whenever result-page clickthrough data
suggest it (as in [15], [16]). The fitness function for the specimens (language
models) is:

Fevo =

∑
∀t∈tests

Ff∗Rf

Fr∗Rr

tests
(3)

where Ff represents a vector of returned documents and Rf a corresponding
vector of weights. Fr is a vector of possible answers (eg. defined by experts)
and Rr depicts a vector with their weights. The * (star symbol) represents dot
product of the vectors. The weights correspond to the relevance of a document
to the query and are calculated from:

w = (c1 ∗ P ) +
c2 −

∑Np−1

i=1

∑Np
j=i+1 min(dist(i,j),c2)∑Np−1

k=1 (Np−k)

c2
c1

+
Nt

c3
(4)

where P = Pdj(qi) from (1), Np is the number of unique and Nt of total term
occurrences in the document, dist(i, j) is the distance from (2). The variables
ci are parametres set to (97, 1013, 0.0011). The two-parameter min(x, y) func-
tion returns the smaller parameter. Due to GP similarities of the approach (as
shown in [14]) to text analysis methodology described and used by the author
in [11], these elements of the approach to linguistic text analysis in searching
are not further described. The stop conditions for the experiments performed
during preparations of this article were as follows: evolution reached 1’000’000
generations or at least one specimen returned fitness function result ≥0.97 or no
changes in fitness function results of the population were observed during last
1’000 generations. Best specimen (from last generation) is used.

6 Experiments

All the experiments were done using sets of documents and query-and-answers by
respective experts. The Digital Photography Review (dpreview) website forums
offered wide range of real-life linguistic peculiarities. For the second experiment
the TREC WebTrack.gov collection was used as it is often used in IR evaluation.
Each experiment was performed 10 times in a series of 100 repetitions each,
average values obtained are presented in the appropriate tables.
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6.1 Dpreview

The website forum was used to search for information on possible Pentax K-
7 usage during a holiday trip to France. The starting model was built from
the K-7 review. After training the system to the language of the comments to
the review, experiments consisted of searching on an August 2011 copy of the
forum database for: ,,Pentax camera for France”, ,,Pentax K7 gear for a trip to
France”, ,,Pentax camera for a french trip”, ,,Pentax camera gear for a french
trip”, ,,Pentax system” + ,,holiday in France”, ,,Pentax k-7” + ,,Pentax camera
for France”, ,,Pentax k-7” + ,,Pentax camera for a french trip”, ,,Pentax k-7” +
,,Pentax system” + ,,holiday in France”, ,,Pentax k-7” + ,,Paris trip”, ,,k-7 in
France”. Table 1 presents results obtained for the full query set. R depicts size
of the genetic population and was set into either 100 or 1000 specimens (due to
platform restrictions). Mutation probability Pm was either 0.001 or 0.01. The
Nr column depicts experiment series. FG shows the evolution quality function
results for Google rankings. The data shows that evolutionally modified language
model used in typed dependency approach results in highly increased relative
correctness of the search system.

Table 1. Dpreview result set

R = 100 R = 1000
Nr FG Pm = 0.001 Pm = 0.01 Pm = 0.001 Pm = 0.01

1 0.760 0.863 0.927 0.862 0.963
2 0.780 0.954 0.994 0.893 0.961
3 0.711 0.856 0.844 0.922 0.943
4 0.603 0.917 0.917 0.998 0.922
5 0.804 0.899 0.878 0.919 0.999
6 0.755 0.913 0.976 0.905 0.936
7 0.827 0.943 0.993 0.974 0.988
8 0.769 0.890 0.869 0.667 0.999
9 0.799 0.988 0.983 0.685 0.995
10 0.701 0.962 0.879 0.999 0.901

Even for the smaller population of 100 specimens the results obtained by own
search engine were usually better than those by Google PageRank. Whatever
the mutation probability, the results were clearly better: for 0.001 a value of
0.988 was achieved, and for 0.01 – 0.994. With the population size increase, the
language model space was better explored, thus, for both mutation probabili-
ties, the best result was 0.999. For the same query and document set Google
PageRank only returned a value of 0.827.

6.2 TREC.gov

For the better comparison to other systems TREC WebTrack.gov collection
of 225 queries and preferred answers was used. The starting specimens were
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constructed on the basis of randomly chosen first 10 English language documents
of the collection. Table 2 shows the results similarly to the previous experiment.

Table 2. TREC .GOV results

R = 100 R = 1000
Nr FG Pm = 0.001 Pm = 0.01 Pm = 0.001 Pm = 0.01

1 0.755 0.853 0.909 0.862 0.936
2 0.680 0.914 0.977 0.885 0.919
3 0.711 0.756 0.894 0.922 0.873
4 0.603 0.852 0.921 0.998 0.922
5 0.734 0.893 0.898 0.919 0.954
6 0.725 0.913 0.946 0.905 0.899
7 0.679 0.549 0.615 0.845 0.969
8 0.712 0.890 0.860 0.737 0.999
9 0.789 0.991 0.893 0.659 0.795
10 0.601 0.923 0.897 0.999 0.801

Again, bigger populations lead to better results. Still, with a population of
100 the best results achieved were 0.991 for the mutation probability Pm =
0.001 and 0.977 for Pm = 0.01. Both values are better than the one reached by
Google PageRank – 0.789. Increasing the population size tenfolds improved the
solution space searching, which resulted in achieving 0.999 faster. Allowing for
more mutation to take place resulted in faster reaching of those high values with
larger group of specimens.

7 Conclusions

The conducted experiments show that appropriate genetic algorithm can create
highly efficient language model (the genome of the specimen). This further leads
to building forests and indices that represent results of linguistic analysis of the
texts. Through the use of efficient forest search algorithms and correct indices,
high quality query answer sets are obtained. The results show that the best
specimen reaches over 0.9 and often into 0.99 territory. As with other GA-based
solutions, experiments that use population of total size approx. 1’000 proved
that such approach guarantees better results. These values look better when
compared to the results of Google PageRank approach: maximum = 0.79 with
an average of 0.721. There are, however, problems still ahead: resources needed
to make the correct genome, analyse the text and create indices prevents this
solution from being used as an on-the-fly continuous adaptive search tool. Still,
once one uses distributed computing solutions, this method may offer even better
results, and probably faster.
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Abstract. The Invasive Weed Optimization algorithm (IWO) is an op-
timization method inspired by dynamic growth of weeds colony. The au-
thors of the present paper have modified the IWO algorithm introducing
a hybrid strategy of the search space exploration. The goal of the project
was to evaluate the modified version by testing its usefulness for numer-
ical functions minimization. The optimized multidimensional functions:
Griewank, Rastrigin, and Rosenbrock are frequently used as benchmarks
which allows to compare the experimental results with outcomes reported
in the literature. Both the results produced by the original version of the
IWO algorithm and the Adaptive Particle Swarm Optimization (APSO)
method served as the reference points.

Keywords: Invasive Weed Optimization algorithm, Griewank function,
Rastrigin fuction, Rosenbrock function.

1 Introduction

The Invasive Weed Optimization (IWO) algorithm is an optimization method, in
which the exploration strategy of the search space (similarly to the evolutionary
algorithm) is based on the transformation of a complete solution into another
one. Its idea was inspired by observation of dynamic spreading of weeds and
their quick adaptation to environmental conditions [1].

The authors of the method from University of Tehran emphasized its useful-
ness for continuous optimization tasks. Their research was focused inter alia on
minimization of the multimodal functions and tuning of a second order com-
pensator [1], antenna configurations [2], electricity market dynamics [3], and a
recommender system [4].

The authors of the present paper have modified the IWO algorithm intro-
ducing a hybrid strategy of the search space exploration (described in detail in
section 2) and broadened the scope of the IWO algorithm application dealing
skillfully with an important discrete optimization task from the databases area
– the join ordering problem – for both – centralized and distributed data [5]-[6].
The symmetric TSP was also successfully solved by the modified IWO equipped
with the inver-over operator [7].

The goal of the present paper is an evaluation of the modified IWO based
on the effects of the optimization of the Griewank, Rastrigin and Rosenbrock
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functions. The results (minima values) produced by the modified IWO were
compared with the outcomes generated by the original IWO as well as with the
results of the Adaptive Particle Swarm Optimization (APSO) [8], [9].

The organization of this paper is as follows – section 2 contains a brief descrip-
tion of the IWO algorithm taking into serious consideration the proposed hybrid
method of the search space penetration. Optimized functions are presented in
section 3. Section 4 deals with procedure of the experimental research along with
its results. The conclusions are formulated in section 5.

2 Description of the Modified IWO Algorithm

The modified version of the IWO algorithm provides the opportunity to exper-
iment with different search space exploration strategies. The pseudocode men-
tioned below describes the algorithm by means of terminological convention con-
sistent with the ,,natural” inspiration of its idea:

Create the first population composed of n randomly generated

individuals.

For each individual {

Compute the value of the fitness function

as the reciprocal of the minimized function.

}

While the stop criterion is not satisfied {

For each individual from the population {

Compute the number of seeds depending on the value

of the fitness function.

For each seed {

Determine a place of fall of the seed choosing

with the fixed probability one of the following

methods: dispersing, spreading or rolling down.

Create a new individual according to the randomly

chosen method.

Compute the value of the fitness function

for the new individual.

}

}

Create a new population composed of n best adapted

individuals taking into account members of the former

population as well as new individuals.

}

The number of seeds Sind produced by a single individual depends on the value
of its fitness function find – the greater the degree of individual’s adaptation,
the greater its reproduction ability according to the following formula:

Sind = Smin +

⌊
(find − fmin)

Smax − Smin

fmax − fmin

⌋
, (1)
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where Smax, Smin denote maximum and minimum admissible number of seeds
generated, respectively, by the best population member (fitness fmax) and by
the worst one (fitness fmin).

The character of the operation described as ,,Determine a place of fall of
the seed” differs depending on the method chosen randomly for its realization.
Probability values of selection assigned to the particular methods: dispersing,
spreading and rolling down form parameters of the algorithm.

In case of dispersing the aforementioned operation computes the distance
between the place where the seed falls on the ground and the parent individual
(Fig. 1a). The distance is described by normal distribution with a mean equal
to 0 and a standard deviation truncated to nonnegative values. The standard
deviation is decreased in each algorithm iteration (i.e. for each population) and
computed for the iteration iter, iter ∈ [1, itermax] according to the following
formula:

σiter =

(
itermax − iter

itermax

)m

(σinit − σfin) + σfin . (2)

The total number of iterations (itermax), equivalent to the total number of popu-
lations, can be either used in form of the algorithm parameter with the purpose
of determination of the stop criterion or can be estimated based on the stop
criterion defined as the execution time limit. The symbols σinit, σfin represent,
respectively, initial and final values of the standard deviation, whereas m is a
nonlinear modulation factor.

According to the dispersing method construction of a new individual repre-
sented by a vector of a length equal to n, where element i, i ∈ [1, n] contains
argument xi of the optimized n-dimensional function, is based on the random
generation of the values for all arguments xi. Those values determine the direc-
tion of the seed’s ,,fly”. Because the seed has to fall on the ground at the deter-
mined distance from the parent individual, the values of function arguments are
scaled so that this condition is fulfilled.

The spreading is a random disseminating seeds over the whole of the search
space. Therefore, this operation is equivalent to the random construction of new
individuals (Fig. 1b).

The rolling down is based on the examination of the neighbourhood of the par-
ent individual. In case of continuous optimization the term ,,neighbours” stands
for individuals located at the same randomly generated distance from the con-
sidered one. The best adapted individual is chosen from among the determined
number of neighbours, whereupon its neighbourhood is analyzed in search of the
next best adapted individual. This procedure is repeated k times (k is a param-
eter of the method) giving the opportunity to select the best adapted individual
found in the k-th iteration as a new one (Fig. 1c).

3 Characterization of the Optimized Functions

According to [10] there are following classes of functions used as benchmarks for
numerical optimization problems:
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Fig. 1. Idea of: a) dispersing b) spreading c) rolling down (k = 3)

1. Unimodal, convex, multidimensional.
2. Multimodal, two-dimensional with a small number of local extremes.
3. Multimodal, two-dimensional with a huge number of local extremes.
4. Multimodal, multidimensional with a huge number of local extremes.

Griewank and Rastrigin functions belong to the 4. class. The classical Rosenbrock
function is a two-dimensional unimodal function, whereas the n-dimensional
(n = 4 ∼ 30) Rosenbrock function has 2 minima [11]. The global minimum
for all functions is equal to 0.

The formula defining the n-dimensional Griewank function (Fig. 2a) is as
follows:

f (x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1 . (3)

The n-dimensional Rastrigin function (Fig. 2b) is described by the following
formula:

f (x) = 10n+

n∑
i=1

[
x2
i − 10 cos (2πxi)

]
. (4)

The following formula defines the n-dimensional (n > 1) Rosenbrock function
(Fig. 2c):

f (x) =

n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (1− xi)

2
]
. (5)

4 Experimental Research

The goal of the experiments was to compare the results (minima values) found by
the modified IWO with the outcomes generated by other methods. As reference
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Fig. 2. a) The Griewank function b) the Rastrigin function c) the Rosenbrock function

points served the results achieved from experiments with the original version of
the IWO algorithm and those reported in [9] as minima found by the APSO
method. For purpose of comparison the initial scope of the search space for
particular functions as well as other optimization parameters correspond with
values proposed in the literature. The initial scopes given in Figures 5, 6, 7 are
asymmetric according to the suggestion expressed in [9]. Values of the modified
IWO parameters describing the hybrid strategy of the search space exploration
were collected in Table 1. They were found during the research as the most
appropriate values for the considered problem.

The workstation used for experiments is described by the following parameters:
Intel Core2 Quad Q6600 2.4GHz processor, RAM 2GB 800MHz. The number of

Table 1. Modified IWO parameters describing the search space exploration strategy

Description Griewank
(n = 10)

Griewank
(n = 20, 30)

Rastrigin Rosenbrock

Number k of neighbourhoods ex-
amined during the rolling down

1 1 1 1

Probability of the dispersing 0.7 0.3 0.8 0.1
Probability of the spreading 0.2 0.2 0 0.1
Probability of the rolling down 0.1 0.5 0.2 0.8
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trial runs for each function in the presence of a single parameters configuration of
the optimization method was equal to 500.

Minima of the 30-dimensional Rastrigin and Griewank functions found by the
original and modified versions of the IWO algorithm are presented in Figures 3,
4, respectively. The X values denote the optimization time.

Fig. 3. Comparison between the original and modified IWO based on the Rastrigin
function

Fig. 4. Comparison between the original and modified IWO based on the Griewank
function

Minima of the n-dimensional Rastrigin, Rosenbrock, and Griewank functions
(n = 10, 20, 30) found by the modified IWO algorithm and the APSO method
are presented in Figures 5, 6, 7, respectively. The n value is strictly related to
the number of algorithm iterations (respectively: 1000, 1500, 2000) used as a
stop criterion. The X values denote the number of individuals.
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Fig. 5. Comparison between the APSO and IWO algorithms based on the Rastrigin
function

Fig. 6. Comparison between the APSO and IWO algorithms based on the Rosenbrock
function

Fig. 7. Comparison between the APSO and IWO algorithms based on the Griewank
function
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5 Conclusion

The experiments revealed the usefulness of the modified IWO for solving con-
tinuous optimization tasks. The method can compete with other algorithms,
although it should be compared with some methods mentioned in the literature
as successful ones (e.g. Artificial Bee Colony).

The hybrid strategy of the search space exploration turned out to be more
efficient than the dissemination used in the original IWO. However, the influence
of the strategy components (dispersing, spreading, rolling down) on the solution
found by the modified IWO requires further research.

In the area of discrete optimization the modified IWO takes part at present
in the World TSP Challenge (www.tsp.gatech.edu/world/index.html) and in the
Mona Lisa TSP Challenge (www.tsp.gatech.edu/data/ml/monalisa.html).
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Abstract. This paper proposes a hybrid particle swarm optimization (PSO) 
algorithm for solving the job-shop scheduling problem with fuzzy processing 
times. The objective is to minimize the maximum fuzzy completion time, i.e., 
the fuzzy makespan. In the proposed PSO-based algorithm performs global 
explorative search, while the tabu search (TS) conducts the local exploitative 
search. One-point crossover operator is developed for the individual to learn 
information from the other individuals. Experimental results on three well-
known benchmarks and a randomly generated case verify the effectiveness and 
efficiency of the proposed algorithm.  

Keywords: Fuzzy processing time, Job-shop scheduling problem, Particle 
swarm optimization, Tabu search. 

1 Introduction 

The job shop scheduling problem (JSP) has received much attention in recent decades 
[1]. The processing time for each operation is deterministic in the classical JSP. 
However, in most practical industries, the processing time for each operation is just a 
fuzzy value, because various factors are involved in the real-world problems.  

In 1996, Kuroda and Wang [2] proposed a branch-and-bound algorithm for solving 
both the static and the dynamic JSP. Sakawa and Mori designed an efficient genetic 
algorithm (GA) for solving the FJSP with one objective, in reference (1999) [3], and 
two objectives, in reference (2000) [4]. Song et al. (2006) [5] developed a hybrid 
algorithm combined GA and ant colony optimization (ACO), a local search approach 
was also embedded in the hybrid algorithm. Inés et al. (2010) [6] considered a multi-
objective JSP with uncertain durations and crisp due dates. A fuzzy goal 
programming approach embedded in GA was also proposed. Lei (2010) [7] developed 
a random key GA algorithm. The other swarm intelligent algorithms have also been 
introduced for solving the fuzzy JSP. Wu et al. (2006) [8] designed an efficient 
algorithm by combining fuzzy ranking method and shifting bottleneck procedure to 
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solve the FJSP. Lei (2007) [9] proposed a particle swarm optimization (PSO) 
algorithm to solve the FJSP with three objectives. The Pareto archive structure is 
conducted in the proposed PSO algorithm. Niu et al. (2008) [10] introduced a hybrid 
algorithm combined with PSO and GA for the problem. 

PSO is introduced in 1995 by Kenney and Eberhart (Kennedy & Eberhart, 1995) 
[11, 12]. In PSO, each particle records the best experience it has encountered, and 
denotes as pbest. The best particle found so far is also recorded and denoted as gbest. 
Each particle in the current population learns from both pbest and gbest with a certain 
probability. However, PSO has limited ability to escape from local optima. Tabu 
Search (TS) proposed by Glober in 1986 is an effective local search algorithm to 
solve combinatorial optimization problems [13, 14, and 15]. In this paper, we propose 
a hybrid algorithm combining PSO with TS (HPSO) for solving the fuzzy JSP. In the 
proposed algorithm, the exploration task is performed by PSO, while the exploitation 
task is completed by TS.  

The rest of this paper is organized as follows: Section 2 briefly describes the 
problem. Then, the framework of the proposed algorithm is presented in Section 3. 
Section 4 illustrates the experimental results and compares against competitive 
algorithms from the existing literature to demonstrate the superiority of the proposed 
algorithm. Finally, Section 5 presents the concluding remarks and future research 
directions.  

2 Problem Formulation 

The job shop scheduling with fuzzy processing time can be formulated as follows. 
There are n jobs and m machines. Each job visits each machine exactly once in a 

predefined order. Each machine can process only one operation at a time. There are 
no set-up times, no release dates and no due dates. Let ijO  be the jth operation of job 

iJ ; Let 
~

ijkp  be the fuzzy processing time of ijO  on machine kM . The objective of 

the problem is to sequence each operation on each machine in order to minimize the 
maximum completion time. The fuzzy makespan is represented by a triplet (s1, s2, s3). 

3 The Proposed Algorithm 

3.1 Individual Representation  

For FJSP with n jobs and m machines, the individual representation used in [4] is by a 
n×3m matrices of fuzzy completion times. In [7], each individual is denoted by a 
n×3m real string. In this study, we represent each individual by an n×m integer value. 
Each value represents the job number which the corresponding operation belongs to. 
Therefore, in each individual, each job number occurs m times.  For example, given a 
3-jobs-3-machines FJSP case, one of the possible individual is denoted by 
{1,2,2,1,3,3,1,3,2}. The first element in the individual represents the first operation of 
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the job J1. Then, the following element tells the first operation of J2. The next one 
shows the second operation of J2, while the last element is the last operation of J2. It 
should be noted that the individual in this study only tells the scheduling sequence 
among all operations, the individual does not contain the information of the fuzzy 
processing time. The advantage of the coding is that, when considering the evolving 
operators, computational time can be reduced. 

3.2 Initial Population  

In this study, the initial population is generated in a random way. That is, each 
individual in the population is produced without making use of any prior experience. 
The advantage of this approach is simplicity and ease of maintaining the population 
diversity. The disadvantage is ignoring prior knowledge, if such knowledge is 
available. 

3.3 Iterations  

In the basic PSO, a particle flies by learning from both the local best and the global 
best. In this study, the individual is represented by lots of integer numbers. Therefore, 
it is hard to utilize the classical PSO directly to solve the FJSP. In the proposed 
algorithm, the crossover operator in the classical GA is introduced into the PSO to 
help the individuals to learn from others. The detailed implementation of the 
crossover operator is defined as follows. 

Step 1. Given an n-jobs-m-machines problem, two individuals are denoted by p1 
and p2, respectively. 

Step 2. Select a random number r, which is ranged at [1, m].  
Step 3. Copy the first r elements in p1 to the corresponding location in a new 

particle c1. Select the first r elements in p2 to the corresponding location in a new 
particle c2. 

Step 4. Read each element in p1 from left to right, if the element has occurred in c2 

m times, then ignore it; otherwise, place the element in the first empty location in c2. 
Scan each element in p2 from left to right, if the element has occurred in c1 m times, 
then ignore it; otherwise, place the element in the first empty location in c1. 

Step 5. Evaluate the c1 and c2, select the one with better fuzzy makespan as the new 
particle to replace the old particle in the current population. 

3.4 Local Search  

In DPSO, each particle learns information from the two best particles. Thus, the 
whole algorithm converges rapidly. However, the classical PSO may not be able to 
escape from a locally optimal solution. In this study, TS was conducted to complete 
the exploitation task. In the proposed algorithm, TS was applied for the global best 
particle found so far. In each generation, after crossover, the best particle will be 
improved by TS-based local search. Then, the new improved best particle will direct 
the swarm of particles to a better location in the search space. 
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3.5 Framework  

The main framework of the proposed algorithm is as follows. 

Step 1. Generate Psize particle to construct the initial population. Evaluate each particle 
in the population and record each one as the local best. Select the best particle in the 
population as the global best. 

Step 2. If stop condition is satisfied, then terminate; otherwise perform Steps 3-6.  
Step 3. For each particle in the population, apply the one-point crossover with the 

local best and global best.  
Step 4. Evaluate each new generated particle, and select the best particle as the new 

global best. Record the local best for each particle. 
Step 5. Apply TS-based local search to the global best found so far. 
Step 6. Go back to Step 2. 

4 Numerical Results  

This section discusses the computational experiments used to evaluate the 
performance of the proposed algorithm. The dimensions of the instances range from 6 
jobs 6 machines to 16 jobs 16 machines. Our algorithm was implemented in C++ on 
an Intel Pentium IV 1.7GHz PC with 512MB memory. The best and average results 
of experiments from 30 independent runs were collected for performance comparison. 

4.1 Experimental Parameters  

Firstly, we set several fixed parameters for the experiment as follows: the probability 
for PSO are set: c1=0.5, c2=0.5; the population size is set 10; the tabu list size is set 
n×m; the tabu tenure is set n×m/2; the algorithm stops when the solution is close 
enough to the lower bound of the objective function value. Otherwise, it stops when 
the best solution is not improved for n×m iterations or the time budget is exhausted. 

4.2 Experimental Results on Three Benchmarks  

Three benchmarks are conducted by the proposed algorithm. Tables 1 to 3 give the 
fuzzy processing time for the three benchmarks, respectively. The first case in Table 1 
is a 6-jobs-6-machines problem; the scale of other two problems is 10-jobs-10-
machines.  

To make a detailed comparison with the current algorithms, we select two famous 
algorithms in the present literature. RKGA refers to the algorithm in [7], while SMGA 
is the algorithm proposed in [4]. Table 4 gives the comparison results for solving the 
three benchmarks. It can be concluded form Table 4 that: (1) for solving the three 
fuzzy JSP, the proposed algorithm obtains all optimal solutions; (2) the proposed 
algorithm obtains the near-optimal solutions in each run, and the average values 
obtained by our algorithm are also the best.  
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Table 1. The fuzzy processing time for Case1. (6-jobs-6-machines). 

Processing machines (fuzzy processing time) 

Job1 3(9,13,17) 2(6,9,12) 0(10,11,13) 4(5,8,11) 1(10,14,17) 5(9,11,15)  

Job 2 3(5,8,9) 1(7,8,10) 4(3,4,5) 2(3,5,6) 0(10,14,17) 5(4,7,10) 

Job 3 4(3,5,6) 3(3,4,5) 2(2,4,6) 0(5,8,11) 1(3,5,6) 5(1,3,4)  

Job 4 5(8,11,14) 2(5,8,10) 0(9,13,17) 3(8,12,13) 1(10,12,13) 4(3,5,7) 

Job 5 2(8,12,13) 4(6,9,11) 5(10,13,17) 1(4,6,8) 0(3,5,7) 3(4,7,9)  

Job 6 1(8,10,13) 3(8,9,10) 5(6,9,12) 2(1,3,4) 4(3,4,5) 0(2,4,6) 

Table 2. The fuzzy processing time for Case2. (10-jobs-10-machines). 

Processing machines (fuzzy processing time) 

Job 1 7(2,3,4) 5(3,5,6) 4(2,4,5) 1(4,5,6) 0(1,2,3) 2(3,5,6) 8(2,3,5) 3(1,2,3) 6(3,4,5) 9(2,3,4)  

Job 2 9(2,3,4) 6(2,3,5) 3(2,4,5) 5(1,2,3) 7(4,5,6) 2(2,4,6) 1(2,3,4) 0(1,3,4) 4(2,3,4) 8(3,4,5)  

Job 3 5(2,4,5) 8(1,2,3) 9(2,3,5) 7(1,2,4) 0(3,5,6) 6(1,3,4) 3(1,3,5) 1(1,2,4) 4(2,4,5) 2(1,3,5)  

Job 4 0(1,2,3) 4(3,4,5) 7(1,3,5) 8(2,4,6) 9(2,4,5) 5(1,2,4) 6(3,4,5) 1(1,3,5) 3(1,3,6) 2(1,3,4)  

Job 5 1(2,3,4) 6(1,3,4) 2(1,3,4) 4(1,2,3) 7(1,3,5) 8(2,3,4) 9(3,4,5) 5(1,3,4) 0(3,4,5) 3(1,3,4)  

Job 6 3(2,3,4) 1(2,3,4) 2(1,2,3) 4(2,4,5) 5(1,3,4) 7(1,3,4) 6(3,4,5) 8(1,2,3) 9(2,4,5) 0(1,3,4)  

Job 7 2(2,3,4) 4(1,4,5) 3(1,3,5) 0(3,4,5) 8(2,3,4) 6(3,4,5) 1(1,2,3) 9(3,5,6) 7(3,5,6) 5(1,2,2)  

Job 8 6(3,4,5) 0(1,2,3) 8(3,4,5) 5(2,4,5) 9(1,3,4) 1(2,3,4) 4(1,2,3) 2(2,4,5) 3(3,4,5) 7(2,3,5)  

Job 9 8(3,4,5) 3(1,3,4) 9(1,3,5) 1(2,3,4) 2(3,5,6) 5(2,4,5) 7(1,3,4) 0(3,4,5) 4(1,2,3) 6(1,2,4)  

Job 10 6(2,4,5) 4(1,2,3) 1(3,4,5) 3(2,3,4) 0(1,2,3) 7(3,4,5) 9(2,4,5) 5(3,4,5) 2(1,2,3) 8(1,2,4) 

Table 3. The fuzzy processing time for Case3. (10-jobs-10-machines) 

Processing machines (fuzzy processing time) 

Job 1 
3(10,13,16) 5(4,7,9) 6(10,12,13) 7(5,6,7) 8(6,8,9) 1(7,8,12) 4(10,12,15) 2(5,6,7) 0(2,3,5) 

9(10,14,18) 

Job 2 
1(3,5,6) 0(9,10,13) 2(5,8,9) 9(9,12,16) 5(5,6,9) 6(7,11,12) 4(9,13,14) 8(8,12,16) 7(2,4,6) 

3(4,7,10) 

Job 3 6(9,12,14) 9(10,13,14) 8(5,7,8) 3(3,4,6) 4(4,7,8) 1(3,5,7) 7(3,4,6) 2(1,2,4) 0(5,7,9) 5(9,11,13) 

Job 4 4(10,12,16) 6(1,2,4) 9(6,8,10) 5(1,3,5) 3(7,8,11) 0(5,8,10) 7(9,10,14) 8(4,7,8) 1(4,7,10) 2(2,3,5) 

Job 5 
4(9,12,15) 5(8,11,14) 9(10,14,17) 0(5,7,9) 1(2,4,5) 3(1,3,5) 6(7,8,10) 8(3,4,6) 7(9,11,13) 

2(1,2,3) 

Job 6 
7(4,7,9) 1(10,12,15) 2(3,4,5) 3(10,14,18) 0(5,6,9) 4(10,14,16) 8(10,12,15) 5(8,9,12) 9(5,8,9) 

6(4,7,10) 

Job 7 
4(8,12,13) 9(2,4,6) 7(10,14,18) 0(5,7,9) 5(4,5,8) 8(4,5,7) 6(7,10,11) 1(10,11,12) 2(10,13,15) 

3(9,12,13) 

Job 8 
1(10,12,15) 5(5,6,9) 2(1,2,4) 7(6,9,12) 3(4,6,9) 0(7,11,14) 8(7,11,13) 4(6,9,11) 9(8,11,13) 

6(7,9,13) 

Job 9 8(2,4,6) 5(2,3,5) 1(2,3,4) 3(4,6,7) 9(6,8,9) 2(8,12,14) 0(4,7,9) 6(8,11,14) 7(1,2,3) 4(3,5,6) 

Job 10 
6(5,8,9) 7(6,8,9) 2(8,12,16) 0(6,9,12) 8(7,11,13) 4(10,11,14) 3(7,10,11) 1(3,5,7) 9(3,4,6) 

5(8,11,15) 
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Table 4. The comparisons with other two algorithms 

RKGA SMGA HPSO 

avg opt avg opt avg opt 

1 56, 80, 103 56, 80, 103  56, 80, 103 56, 80, 103  56, 80, 103 56, 80, 103 

2 95.1,130.9,162.2 96, 129, 60  96.8, 134.9, 164.7 95, 133, 161  93.8, 130.6, 161.2 96, 129, 60 

3 28.4, 48, 64.1 28, 47, 62  29.1, 48.3, 64.5 28, 47, 66  26.8, 47, 64 27, 47, 62 

4.3 Experimental Result on a Random Generated Problem  

To verify the ability to solve large scale problems, we randomly generated a fuzzy 
JSP with 16 jobs and 16 machines. The problem is given in Table 5. The fuzzy 
makespan for the best solution obtained by the proposed algorithm is (162,200,247). 
The Gantt chart obtained by the proposed algorithm is given in Fig. 1. In the Gantt 
chart, each machine faces a base line. All operations operated on the machine are 
placed on the base line one by one in the scheduling order. The two groups of values 
 

Table 5. The fuzzy processing time for the randomly generated case. (16-jobs-16-machines). 

Processing machines (fuzzy processing time) 
Job 1 5(4,4,5) 15(10,10,14) 1(3,7,10) 2(2,6,9) 14(3,3,3) 9(6,10,13) 8(3,6,8) 11(5,8,9) 16(5,8,8) 

13(6,8,9) 6(9,13,15) 7(10,10,14) 12(5,5,5) 10(6,9,12) 3(1,2,5) 4(3,5,7)  
Job 2 3(8,8,11) 14(2,5,8) 7(8,8,12) 6(6,6,9) 13(4,6,9) 16(4,6,10) 8(4,8,9) 10(9,11,14) 2(1,2,5) 

5(5,8,9) 15(1,5,8) 9(1,1,4) 4(8,9,12) 1(6,7,7) 12(9,12,16) 11(5,8,11)  
Job 3 15(10,12,13) 3(5,5,8) 10(7,8,8) 7(6,7,11) 2(7,11,11) 12(5,7,7) 9(4,6,7) 6(9,11,12) 

13(7,10,14) 8(5,5,6) 5(3,3,6) 1(6,7,8) 14(2,6,10) 11(7,9,10) 16(9,11,11) 4(6,7,7)  
Job 4 15(2,2,3) 4(8,9,9) 5(1,3,7) 10(4,7,8) 13(3,6,8) 7(4,8,11) 2(5,8,9) 1(9,13,15) 6(4,8,11) 

11(1,1,4) 3(9,9,9) 8(2,6,9) 16(7,10,14) 9(3,4,8) 14(9,11,14) 12(5,5,7)  
Job 5 14(4,5,9) 16(9,13,16) 1(10,11,14) 3(6,7,11) 4(3,3,6) 11(9,13,15) 12(9,11,11) 13(2,6,9) 

5(2,6,9) 6(6,10,12) 2(10,13,13) 15(2,6,8) 7(6,6,6) 8(1,5,7) 10(9,11,15) 9(6,6,10)  
Job 6 12(5,5,5) 14(2,3,3) 8(10,10,13) 15(4,7,9) 4(3,4,8) 9(4,7,8) 2(1,4,7) 11(9,13,16) 5(1,2,2) 

1(5,6,9) 7(8,11,11) 16(9,9,10) 10(10,10,13) 6(10,13,14) 13(1,2,6) 3(8,11,15)  
Job 7 12(5,6,6) 14(7,8,9) 4(7,8,10) 8(2,6,6) 3(7,8,10) 16(2,6,10) 5(6,8,11) 13(5,6,6) 15(3,6,7) 

11(7,10,13) 2(3,5,7) 10(2,4,5) 9(1,5,9) 6(5,6,6) 1(4,5,7) 7(5,5,8)  
Job 8 12(9,10,12) 15(2,6,10) 16(9,11,15) 11(6,8,12) 7(10,13,16) 10(9,10,14) 6(9,10,11) 5(3,6,9) 

1(3,4,6) 4(8,8,10) 2(9,11,13) 13(9,9,11) 3(1,4,8) 9(3,6,8) 14(1,1,1) 8(3,5,6)  
Job 9 7(8,11,13) 8(9,10,11) 15(1,5,5) 5(9,13,13) 1(1,1,3) 13(3,3,3) 10(3,4,8) 3(9,10,14) 

14(7,10,14) 11(9,12,12) 2(6,7,7) 9(6,9,13) 12(1,1,5) 4(8,10,11) 16(5,9,13) 6(1,4,4)  
Job 10 4(4,4,4) 15(8,9,11) 16(9,12,13) 7(5,9,10) 11(10,10,10) 1(8,12,14) 9(4,8,8) 2(9,12,13) 

10(6,8,11) 8(3,7,8) 14(7,8,10) 3(10,10,14) 12(10,13,14) 6(2,6,10) 13(6,6,6) 5(7,7,7)  
Job 11 13(10,14,15) 11(4,8,12) 15(1,1,4) 2(10,11,13) 3(9,12,13) 10(9,10,10) 9(3,7,11) 5(1,3,5) 

16(2,2,6) 14(5,9,11) 7(6,6,10) 4(3,4,6) 12(8,10,14) 8(6,6,10) 1(1,4,8) 6(2,4,6)  
Job 12 16(10,13,15) 8(3,5,8) 11(6,9,12) 15(10,14,18) 3(7,11,14) 2(6,7,8) 4(1,3,5) 12(8,10,11) 

7(5,7,8) 6(4,6,7) 9(7,10,13) 13(4,6,9) 5(7,7,8) 10(3,4,4) 1(6,10,11) 14(8,12,15)  
Job 13 14(5,7,10) 11(9,10,11) 1(4,7,9) 3(7,8,10) 8(3,6,8) 4(9,9,12) 6(6,9,11) 7(4,7,8) 5(1,4,5) 

2(1,5,7) 12(5,9,10) 9(6,8,11) 10(4,8,10) 15(3,3,4) 16(3,5,7) 13(1,3,7)  
Job 14 13(2,2,5) 15(8,11,15) 16(6,10,12) 14(3,3,5) 12(9,10,12) 3(1,4,5) 10(9,12,12) 11(4,5,7) 

2(1,3,6) 5(5,6,9) 6(4,6,6) 4(9,10,12) 9(1,5,8) 8(9,10,13) 7(7,9,12) 1(10,10,10)  
Job 15 13(6,7,8) 12(4,4,4) 1(9,12,14) 11(4,4,5) 6(6,6,10) 4(8,10,12) 3(9,11,15) 10(5,9,12) 5(3,5,7) 

16(6,9,13) 7(8,11,15) 14(6,7,11) 15(1,3,6) 8(4,5,9) 2(4,5,5) 9(5,5,7)  
Job 16 12(10,10,13) 4(2,6,6) 9(8,12,12) 1(4,7,9) 3(4,6,7) 14(1,5,5) 16(8,8,12) 11(1,1,2) 2(3,3,7) 

5(9,13,14) 7(8,11,14) 15(1,3,4) 8(7,7,9) 10(9,13,16) 13(10,14,18) 6(5,7,7) 
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Fig. 1. Fuzzy Gantt chart of the best result for the random-generated case ((162,200,247)) 

under each operation are the starting and completing fuzzy time, respectively, for the 
corresponding operation. The random-generated large scale problem also shows the 
efficiency and effectiveness of the proposed algorithm. 

5 Conclusions  

This paper proposed a hybrid algorithm combining PSO and TS for solving the fuzzy 
JSP. A novel crossover operator was introduced into the PSO to make it capable of 
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solving the JSP. TS-based local search was conducted for the global best particle to 
enable it to escape from locally optimal points. Experimental results show the 
efficiency and robustness of the proposed algorithm. The future work will apply the 
proposed hybrid PSO to solve other combinatorial problems. 
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Abstract. Genetic operators are used in genetic algorithms (GA) to
generate individuals for the new population. Much research focuses on
finding most suitable operators for applications or on solving large-scale
problems. However, rarely research addresses the performance of differ-
ent operators in small- or medium-scale problems. This paper studies
the impact of genetic operators on solving the traveling salesman prob-
lem (TSP). Using permutation coding, a number of different GAs are
designed and analyzed with respect to the impact on the global search
capability and convergence rate for small- and medium-scale TSPs. In
addition, the differences between small- and medium-scale TSPs on suit-
able GA design are studied. The experiments indicate that the inversion
mutation produces better solutions if combined with insertion mutation.
Dividing the population into small groups does generate better results
in medium-scale TSP; on the contrary, it is better to apply operators to
the whole population in case of small-scale TSP.

Keywords: Genetic algorithm, Genetic operators, Convergence, Global
search capability, TSP.

1 Introduction

The Genetic Algorithm (GA) proposed by Holland [1] mimics some of the pro-
cesses of natural evolution to solve global optimization problems. It is a general
problems solver and has been used in a variety of real world problems [2,3]
due to its advantages such as simplicity, minimal problem restrictions, global
search capability, etc. As the new population is generated by selection, crossover
and mutation operators in classical genetic algorithms, it is important to select
appropriate operator realizations. A lot of enhanced genetic algorithms have
been proposed, such as adaptive crossover and mutation probability [4], differ-
ent crossover operators [5,6], suitable population sizes [7,8], etc. The research
particularly addresses large-scale problems [2,9,10], while little work is done on
GA design for small- and medium-scale problems.

Differentmutation operators were compared in [11] for solving small-scale prob-
lems, and inversion mutation was compared with insertion operator based on dif-
ferent crossover in [12] for solving 80-cities TSP. The results in both papers [11,12]
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are similar to the one presented in this paper: the algorithm with inversion muta-
tion outperforms other mutation operators. However, they do neither study the
results for simultaneous use of different operators (e.g. inversion combined with in-
sertionmutation), nor do they consider the impact of different crossover/mutation
rates and different population sizes on the algorithm performance.

This paper studies GA design with different crossover and mutation opera-
tors for small- and medium-scale permutation problems. Assessment criteria are
the global search capability and convergence rate in the benchmark - Traveling
Salesman Problem (TSP). The research is restricted to the symmetrical single-
salesman problem, in which the salesman should visit each city exactly once
and return to the start city. This is a Hamiltonian cycle, which is a cycle in an
undirected graph that visits each vertex exactly once and finally returns to the
starting vertex [13].

The total traveled distance is used as the evaluated cost with dij (Euclidean dis-
tance) as the traveled cost between cities. Given N cities, named {c1, c2, ..., cN},
and a traveling sequence {s1, s2, ..., sN} of the salesman, the objective is to deter-
mine the sequence of cities that minimizes the total cost:

min

[( s(N−1)∑
k=s1

dk(k+1)

)
+ dsNs1

]
For the symmetric TSP, the number of possible tours is (N − 1)!/2. Small-,
medium-, and large-scale TSP were defined differently in the literature: [9] and
[10] referred to more than 100 cities as large-scale TSP, [2] referred 40 cities as
medium-scale TSP, [14] considered the number of cities between 100 and 200 as
medium-scale TSP, but [15] referred to 51 cities as a small-scale TSP. In this
paper, a number of cities N ≤ 20 is considered as small scale, 20 < N < 100
as medium scale, and N > 100 as large scale. Problems with 10, 15, 20 and 50
cities are selected as examples for analyzing the properties of genetic algorithms
in small- and medium-scale TSP, with the number of possible solution candidates
are 1.8× 105, 4.4 × 1010, 6.1 × 1016, and 3.0× 1062, respectively. Although the
small-scale problems can be solved by exhaustive search, using GA is much
faster [16].

The content of this paper is organized as follows. Section 2 describes the
process of the general genetic algorithm proposed in this paper. Two strategies
for generating the new population are presented. Section 3 designs a number
of GA variants with different genetic operators based on section 2. Section 4
analyzes the global search capabilities and convergence rates of GAs designed
in section 3 in small- and medium-scale TSP. Finally, conclusions are drawn in
section 5.

2 General Algorithm Design

In this paper, permutation coding is used to represent a tour (i.e. one chromo-
some codes one tour), which is an integer coding scheme. A consecutive integer
number is assigned to each city, and a possible tour is a sequence of cities.
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Although a binary matrix (N by N) can be used to represent a tour [6], permu-
tation coding is more intuitive, easier to visualize, and requires less storage space
than matrix coding. Elitism strategy is used for selection, in which at least one
best individual (elite) is copied without changes to the new population. Such a
strategy prevents losing the best solutions found so far, while GA design avoids
dominance of a super-fit individual. In this paper, the new population is gener-
ated by four operators: elitism selection, crossover, mutation and random gen-
eration. Therefore, the new population with PS individuals is composed of four
offsprings groups: EC elite chromosomes,CC children of crossover,MC children
of mutation and RC random generated chromosomes. The four operators are:

• Elite chromosomes with the best fitness (elites) in current population that
are transferred unchanged to the new population, the rate is re: = EC/PS.

• Crossover chromosomes generated by crossover operator, the rate is rc: =
CC/PS. The parents of crossover are chosen randomly from the parental pool
composed of the best rp · Ng chromosomes of the current population. rp is the
rate of chromosomes selected into the parental pool, and Ng is the number of
chromosomes in each group for generating offsprings as explained in the following
strategies. Note that not all of the chromosomes in parental pool can be chosen
for crossover if rc < rp.

• Mutation chromosomes generated by mutation operators, the rate is rm: =
MC/PS.

• Random chromosomes generated randomly, the rate is rr: = RC/PS.
The rate of these four types of offsprings satisfies re+rc+rm+rr = 1, that is,

PS = EC +CC +MC+RC. Two strategies for generating the new population
are proposed:

Strategy 1: (Ng < PS) The population is randomly divided into non-
overlapping groups (tournament team) with each group having Ng chromosomes
in each generation. Then the elite selection, crossover and mutation are per-
formed in each group, respectively. The number of the chromosomes that are
chosen into the parental pool is rp · Ng. Mutation operators are applied to the
best chromosome in each group in parallel. This strategy is inspired from keeping
both global best and local best chromosomes.

Strategy 2: (Ng = PS) The population is not divided into groups. The
elite selection, crossover and mutation are applied to the entire population. The
number of chromosomes which are chosen into the parental pool is rp · PS.
Mutation operators are applied to the best chromosome in the population in
parallel. This strategy is inspired from keeping the global best and sub-best
chromosomes in the population.

A two-point crossover - the partially mapped crossover (PMX) [17] and three
mutation operators (swap [18], insertion [18] and inversion [1]) are used for gen-
erating the new offsprings in this paper. The next section designs a number
of different variants of genetic algorithms for analyzing the impact of different
operators and of different operator combinations.
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3 Algorithmic Variants

Twelve genetic algorithms were designed (Table 1) to analyze the impact of
different crossover and mutation operators. GA1 without PMX crossover is in-
serted randomly generated chromosomes for keeping the constant population
size. GA3-GA5 and GA9-GA11 test impact of different mutation operators with
different crossover rates. GA6-GA8 test the impact of different combinational
mutation operators. As premature convergence could be emerged if the genetic
algorithms without mutation operators, random chromosomes are inserted for
increasing the diversity of the population in GA12. The performance of the de-
signed algorithms on both strategies is analyzed in the next section.

Table 1. Genetic algorithms with different operators

GA
Elitist Parents PMX Mutation(rm) Random

rc rm
(re) (rp) (rc) swap insertion inversion (rr)

GA1 0.2 0 0 0.2 0.2 0.2 0.2 0 0.6
GA2 0.2 0.4 0.2 0.2 0.2 0.2 0 0.2 0.6
GA3 0.2 0.4 0.2 0.6 0 0 0 0.2 0.6
GA4 0.2 0.4 0.2 0 0.6 0 0 0.2 0.6
GA5 0.2 0.4 0.2 0 0 0.6 0 0.2 0.6
GA6 0.2 0.4 0.4 0.2 0.2 0 0 0.4 0.4
GA7 0.2 0.4 0.4 0 0.2 0.2 0 0.4 0.4
GA8 0.2 0.4 0.4 0.2 0 0.2 0 0.4 0.4
GA9 0.2 0.4 0.6 0.2 0 0 0 0.6 0.2
GA10 0.2 0.4 0.6 0 0.2 0 0 0.6 0.2
GA11 0.2 0.4 0.6 0 0 0.2 0 0.6 0.2
GA12 0.2 0.4 0.6 0 0 0 0.2 0.6 0

4 Experimental Study

The experiments analyze the global search capability (GSC) and convergence
rate (CR) of the genetic algorithms with different operators and population sizes
for the same predefined computational load. Each algorithm runs independently
200 times, if the global optimal solution is found k times, the global search
capability is GSC: = k/200. The convergence rate is CR: = (

∑200
i=1(FG)i)/200,

FG is the generation in which the global optimal solution appears for the first
time (due to the elitist operator it cannot get lost again). The smaller CR is,
the better.

For each TSP size, the performance of the designed GA is addressed with
different population sizes PS. To analyze the efficiency of the algorithms at the
same computing cost, the termination criterion is selected as maximum number
of generations Gmax. In the experiments, Gmax · PS = constant is chosen for
each TSP size. Five population sizes PS ∈ {10, 20, 40, 80, 120} are analyzed in
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the experiments and compared based on the same computational load (Gmax ·
PS = 2000 in TSP with 10 cities, Gmax · PS = 4000 in TSP with 15 cities,
Gmax · PS = 8000 in TSP with 20 cities, and Gmax · PS = 2× 105 in TSP with
50 cities).

4.1 Small-Scale TSP

Based on strategy 1, set Ng = 10, the global search capability and the con-
vergence rate are shown in Fig. 1. Algorithms GA1, GA2, GA5, GA7, GA8 and
GA11 obtain much better GSC than the others, and all of them use inversion mu-
tation. Among those, GA1, GA2 and GA7 are similar and better than the others.
Although inversion mutation provides for better GSC, the algorithm without in-
sertion mutation yields sub-best GSC (GA5, GA8 and GA11). Therefore, using
inversion combined with insertion mutation is suggested.
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Fig. 1. GSC and CR based on strategy 1 in small-scale TSP (left most bar for PS = 10,
right most for PS = 120 for each algorithm)

The results of GA3-GA5 and GA9-GA11 show that the effects of different
mutation operators alone on GSC from better to worse are: inversion, inser-
tion, swap. This emphasizes that inversion is the most powerful of these three
genetic operators, as the inversion mutation based on the individuals with the
best fitness in each group allows small adjustments (for instance, swapping two
adjacent genes) and also can generate big adjustments (e.g. inverting the whole
chromosome), so that it can evolve with great efficiency while keeping the ge-
netic diversification. Although random chromosomes are inserted for increasing
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the diversity of the population, GA12 without mutation still leads to premature
convergence and has very low global search capability.

For strategy 2, the global search capability and the convergence rate are shown
in Fig. 2. The results provide for the same conclusions as strategy 1: inversion
combined with insertion mutation produces better solutions, and the effects of
these mutation operators on GSC from better to worse are: inversion, insertion,
swap. The algorithm with strategy 2 has better GSC and converges significantly
faster than strategy 1 in small-scale TSP. Therefore, for small-scale TSP, it is
suggested to use GA based on strategy 2 with inversion and insertion mutation
operators.
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Fig. 2. GSC and CR based on strategy 2 in small-scale TSP (left most bar for PS = 10,
right most for PS = 120 for each algorithm)

4.2 Medium-Scale TSP

The following experiment is an example for the medium-scale problem with
50 cities. The global search capability and the convergence rate of these algo-
rithms based on strategy 1 and strategy 2 are shown in Fig. 3. The results show
that GA1, GA2 and GA7 perform much better than the others. Similar to the
small-scale TSP, inversion combined with insertion mutation offers good GSC,
inversion has better GSC than insertion and swap, and strategy 2 has much
faster convergence rate than strategy 1. But the algorithm with strategy 1 has
significantly better GSC than strategy 2 in medium-scale TSP. This is contrary
to the results for small-scale TSP.
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Fig. 3. GSC and CR of 50 cities (left most bar for PS = 10, right most for PS = 120
for each algorithm)

For medium-scale TSP with a much more complex search space than for small-
scale TSP, it is better to use strategy 1 for keeping the local optimal solutions,
that better maintains the genetic diversity and avoids premature convergence.
Therefore, for designing GA for solving medium-scale TSP, it is suggested to use
strategy 1 with inversion and insertion mutation operators.

5 Conclusion

This paper investigates the design of Genetic Algorithms for small- and medium-
scale permutation problems on the example of the traveling salesman problem.
Based on elitism selection, two strategies are proposed for generating the new
population. Several genetic algorithms are designed and tested based on both
strategies to analyze the impact of different genetic operators (crossover, inver-
sion, insertion and swap mutation). From the experiments, the following conclu-
sions can be drawn:

(1) For medium-scale TSP, it is better to use a tournament approach
(strategy 1), while for small-scale TSP the population should not be divided
into groups (strategy 2) for genetic operations.

(2) The genetic algorithm with inversion combined with insertion mutation
operator offers better GSC in all test cases and all strategies.

A companion paper [19] presents an application study for task allocation and
tour planning for a multi-robot system for plant inspection. Future work will
address design issues for multi-TSP with cooperative tasks.
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Abstract. Differential Evolution (DE) is an efficient optimizer in cur-
rent use. Although many new DE mutant vectors have been proposed by
alter the differential operator, there are few works studying the differen-
tial operator’s effect in DE algorithm. This paper proposes a correlation
between the DE performance and the mutant vector. That is, for a par-
ticular mutant vector, increase the number of differential operator would
influence the performance of the algorithm linearly. These mutant vectors
are evaluated by 23 benchmarks selected from Congress on Evolutionary
Computation (CEC) competition. Additionally, this paper proposes an
unrestrained method to generate mutant vector. Unlike the old method
selects mutually exclusive individuals, the new method allows same indi-
viduals appear repeatedly to generate mutant vector. This new method
could enhance the potential diversity of the population and improve the
performance of DE in general. abstract environment.

Keywords: Differential Evolution (DE), differential operator, mutant
vector generation.

1 Introduction

Since 1995 Storn and Price proposed DE, it is accepted widely as an excellent
and reliable function optimizer. DE is a special case of evolutionary algorithm,
it distinguished to other EAs because it generates offspring by a scaled differ-
ence perturb vector. Ferrante Neri and Ville Tirronen[1] have given an overview
of DE, Swagatam Das[2] has given a conclusion of recent years development
and future trend of DE. In forestall research, except noise problems [3][4], DE
achieved excellent result to most benchmarks. In previous CEC, DE is best as
an applicable evolutionary algorithm. Although recent papers show some strong
EA like restart covariance matrix adaptation ES (CMA-ES) outperforms classi-
cal and adaptive DE at CEC2005 competition, DE is still outstanding to solve
real-valued test functions.
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As DE is simple and effective, various mutate vectors have been proposed to
get further optimization. Storn and Price have suggested a mutant vector family
and many other scientists have expanded the vector family. It is easy to perceive
that some vectors are improved by add one more differential operator, however,
few papers have pay attention to the performance tendency of DE with various
differential operator. With this consideration, this paper explores the relation
between DE performance and the number of differential operator in mutant
vector.

In the following part this paper proposes a new method to generate mutant
vector. Classical DE select individuals in the population randomly and subtract
other randomly selected individuals to gain perturb parameter. This paper pro-
poses an unrestrained method which could enhance potential diversity of the
population. The new method improves the performance of DE steadily. In this
paper, 2.1 concludes framework of DE, 2.2 presents classical mutate vectors
and the author gives new mutate vectors, 2.3 proposes a new method to gener-
ate effective mutate vector. Part 3.1 introduces experiment benchmarks and 3.2
presents the result of experiments and analysis. The paper gives a conclusion in
part 4.

2 Benchmark Optimization by DE

2.1 Framework of DE

DE optimization means to find the minimum value of objective function f(x).
This problem can be encoded as a NP population with D dimension parameters
vector X = [x1, x2, . . . , xNP ],initial population distributed in search space S
randomly. The goal of the algorithm is to find out xmin ∈ S, by using pre-
prepared benchmarks.

The framework of DE:
a) Initialization
For each individual with D dimension at G generation xi = {xG

i1, x
G
i2, . . . , x

G
iD},

there have a certain range for each dimensions, the initial population should
randomly distributes in a prescribed space.
b) Mutation
DE employs a mutate vector to perturb individuals to get a mutation in the
search space. The classical vector could be expressed as

V G
i = xG

r1 + F (xG
r2 − xG

r3) (1)

r1, r2, r3 are integers randomly selected in the range [1, NP].
c) Crossover
After mutation, for each individual xi crossover operation is used to generate
a trial vector UG

i = [uG
1i, u

G
2i, . . . u

G
Di],. This paper uses binomial crossover to

generate trail vector.
d) Select
In this step the select operation if the trail vector has less or equal benchmark
value than the target vector, the trail vector would replace the parent as a
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member of the offspring, otherwise the target vector would remain in the next
generation.
b)c)d)would be repeated until certain criterion is met.

2.2 Construct New Mutation Family

The difference vector (1) has only one scaled difference to perturb the population,
which is known as DE/rand/1. Storn and Price suggest other difference vectors
known as:

1.DE/best/1 : V G
i = xbest + F (xG

r2 − xG
r3)

2.DE/best/2 : V G
i = xbest + F (xG

r2 − xG
r3) + F (xG

r4 − xG
r5)

3.DE/rand/2 : V G
i = xG

r1 + F (xG
r2 − xG

r3) + F (xG
r4 − xG

r5)
4.DE/cur − to− best/1 : V G

i = xG
i + F (xG

best − xG
r1) + F (xG

r2 − xG
r3)

5.DE/rand− to− best/1 : V G
i = xG

r1 + F (xG
best − xG

r2) + F (xG
r3 − xG

r4)
r1, r2, r3, r4, r5 are integers randomly selected in the range [1, NP]. is the

best individual in G generation. These vectors could be seen at [6].
It is easy to perceive rand/1, rand/2 and best/1, best/2 all achieve acceptable

result and they are in regular pattern. Based on this observation, this paper
gives a hypothetical that increase the number of differential operator would have
influence on the performance on DE algorithms. These vectors are expanded by
adding difference parameters to rand/3 and best/3. Moreover, cur-to-best/1 and
cur-to-rand/1 vector could derive new vectors best-to-cur/1, rand-to-cur/1 by
changing the parameter positions. In the same theory of expand best/1, cur-
to-best/1 and rand-to-best/1 could expand to cur-to-best/2 and rand-to-best/2,
etc.

These new vectors are listed below:
6.DE/best/3 : V G

i = xbest + F (xG
r2 − xG

r3) + F (xG
r4 − xG

r5) + F (xG
r6 − xG

r7)
7.DE/rand/3 : V G

i = xG
r1 + F (xG

r2 − xG
r3) + F (xG

r4 − xG
r5) + F (xG

r6 − xG
r7)

8.DE/best− to− cur/1 : V G
i = xbest + F (xG

i − xG
r1) + F (xG

r2 − xG
r3)

9.DE/cur − to− rand/1 : V G
i = xG

i + F (xG
r1 − xG

r2) + F (xG
r3 − xG

r4)
10.DE/rand− to− cur/1 : V G

i = xG
r1 + F (xG

i − xG
r2) + F (xG

r3 − xG
r4)

11.DE/cur−to−best/2 : V G
i = xG

i +F (xG
best−xG

r1)+F (xG
r2−xG

r3)+F (xG
r4−xG

r5)
12.DE/rand − to − best/2 : V G

i = xG
r1 + +F (xG

best − xG
r2) + F (xG

r3 − xG
r4) +

F (xG
r5 − xG

r6)
To prove this hypothesis, the following new mutant vectors will be tested in

part 3.
These vectors perhaps not excellent enough to handle test functions, but they

are useful to present performance of vectors with different difference parameter.
As the vector has a simple structure, change the value of control parameter

or change the different operator are common methods to optimize the vector.

2.3 Improved Method to Generate Mutant Vector

Since 1950s, with the idea of using Darwinian principles to solve problems, evolu-
tionary computation emerges distant ideas as a competitive discipline. This part
we propose a new method to generate mutant vector and try to explain it by
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Darwinian principles. In biological, the mutant vector means a sudden change
in the gene characteristics of a chromosome [2]. This has proposed for a long
time and it is widely accepted. To evolutionary computing, mutation is a per-
turb factor, a parent vector with a mutation operation generates an offspring,
the mutant vector is also called donor vector.

Classical method selects r1,r2,r3,r4,r5,r6,r7, and are mutually exclusive inte-
gers from the range [1,NP][6] [8] [9]. For each mutant vector these integers would
generate again. However, this method declines performance of DE. As these 7 pa-
rameters are mutually exclusive, it decreases the diversity of the perturb vector.
The new method ignores the restriction that selects integers mutually exclusive,
same integers can appear repeatedly in one mutant vector.

Fig1 illustrates the development of the new method. Use rand/2 as example,
if xr1,xr2,xr3,xr4,xr5, are all different,xr1,F (xG

r2−xG
r3),and F (xG

r4−xG
r5), are not

zero. But this restriction is unreasonable. Restrict integers mutually exclusive
predefined a scope to mutant the population and the new scope is smaller than
the search space.

Fig. 1. Illustrating DE mutant vector scheme in 2-D parametric space. The new method
increases the potential diversity of the population, F (xG

r2−xG
r3),is the increased choice

of the Difference Vector.

In biological evolution, each individual would influence the evolution of the
whole group. Bases on this theory, previous DE algorithms select all integers
mutually exclusive. However, this approach is one-sided understanding of Dar-
winian principle. At biosphere, new offspring influenced by other individuals,
but the number of other individuals is undecided. As all factors selects from
the parent population which means new mutation generates by deformation and
combination of parent individual. Some genes are called recessive genes would
not certainly show their influence. Fixing the number of differences decreases
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the diversity of population individuals. So in this paper we select r1, r2, r3, r4,
r5, r6, r7 randomly in [1, NP], even all of them are same is acceptable, but re-
member the distinct individual should different to the base vector , this restrict
ensures the mutant vector would not be same to its parent -which is useless in
the biological evolution process.

This simplified strategy not only simplifies the mutant vector generate pro-
cess but also improves the performance of DE because it enriches the potential
perturb diversity.

3 Experiment Result

3.1 Extend Benchmark Functions and Parameter Setting

Ferrante Neri and E. Mezura-Montes [1] [7] have explored the performance of
some mutate vectors. It suggests that no one vector can achieve best result to all
problems [7]. But this result is artless and sketchy, the experiment by using only
13 benchmarks is not sufficient as many new benchmarks are given now. This
paper use comprehensive benchmarks to experiment different mutate vectors. 23
benchmarks are used to experiment various vectors. f1-f6 are unimodal functions,
f7-f13 are multimodal functions with many local minima, f14-f20 are multimodal
functions with a few local minima, especially f18-f20 are multimodal functions
with deceiving, above functions are seen in [8]. f21-f23 are rotated functions.
These rotated functions are generate by f7,f10,f11 multiply an orthogonal ma-
trix.. As DE does not perform good on noise problem mentioned, in this paper
no noise problems is discussed.

In the traditional sense, the mutation scale factor F, the crossover constant
CR and population size NP is control parameters. The effects of them are well
studied. To ensure all DE performance are in the same conditions, this paper set
NP=100, dimension=30 as constant value, F=0.5 and CR=0.9. Iteration number
of each function is given in TABLE1and TABLE 2.

3.2 Performance Comparison of Various Difference Vectors

This part we compare the result between DE with various differential operator.
As cur-to-best/2 and rand-to-best/2 does not achieve good result and restricted
by paper’s length, we does not list performance of these two vectors in Table2.
With 6 classical vectors and expanded 5 vectors, 11 vectors are listed in Table1
-Table4.

The result of various benchmarks shows that best/2 is best to handle unimodal
functions and rand/1 is best to handle multimodal functions with many local
minima. To unimodal functions with a few local minima, best/2 is weak in the
vector family.

Here we give some details of these vectors to different benchmarks:
To f1-f6 unimodal functions, best/2 achieves best result, following is best-to-

cur/1, rand/1, rand-to-best/1. Best/1 is worst.
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Table 1. Experiment Result of Rand/1,Rand/2,Rand/3,Best/1,Best/2 and Best/3
over 50 Independent Runs

bench gener rand/1 rand/2 rand/3 best/1 best/2 best/3
mark ation

f1 1500 Mean 2.71e-19 1.30e-03 6.20e+03 1.89e+03 5.56e-49 3.55e-06
Std.Dev 1.79e-19 5.36e-4 1.05e+03 9.29e+02 9.11e-49 2.42e-06

f2 2000 Mean 4.18e-13 2.53e-02 5.69e+01 1.08e+01 3.53e-34 8.67e-04
Std.Dev 2.59e-13 1.16e-02 4.91e+00 2.79e+00 4.11e-34 6.26e-04

f3 5000 Mean 1.74e-16 9.78e+00 1.94e+04 5.271e+03 8.72e-49 1.58e-01
Std.Dev 1.25e-016 5.35e+00 3.84e+03 1.80e+003 1.52e-48 1.01e-01

f4 5000 Mean 5.74e-001 1.28e-03 4.09e+01 2.91e+001 1.58e-07 4.84e-04
Std.Dev 1.245e+00 4.65e-04 3.82e+00 4.22e+000 2.69e-07 2.96e-04

f6 1500 Mean 0 0 6.12e+03 2.02e+003 0 0
Std.Dev 0 0 9.12e+02 6.29e+002 0 0

f7 3000 Mean 1.55e+002 1.65e+02 2.82e+02 2.00e+002 3.72e+01 1.94e+02
Std.Dev 1.063e+01 1.12e+01 1.16e+01 8.66e+00 1.28e+01 1.65e+01

f10 1500 Mean 1.24e-010 1.31e-02 1.41e+01 9.14e+000 6.07e-01 9.61e-04
Std.Dev 4.91e-011 3.36e-03 6.33e-001 1.79e+000 7.59e-01 3.37e-04

f11 2000 Mean 0 2.77e-02 3.99e+01 2.05e+001 9.22e-03 5.34e-02
Std.Dev 0 9.53e-02 6.18e+00 1.01e+001 1.13e-02 1.35e-01

f12 1500 Mean 2.10e-020 1.56e-03 3.24e+12 6.01e+010 1.35e-01 1.11e-03
Std.Dev 2.34e-020 1.71e-03 2.11e+12 1.29e+011 3.05e-01 3.74e-03

f13 1500 Mean 1.62e-019 4.03e-03 1.47e+13 7.27e+011 6.33e-02 4.92e-05
Std.Dev 1.32e-019 3.04e-03 5.69e+12 8.72e+011 2.68e-01 7.10e-05

f21 3000 Mean 1.77e+002 1.76e+02 1.78e+02 8.32e+001 6.49e+01 1.72e+02
Std.Dev 1.43e+001 1.65e+01 1.32e+01 1.55e+001 1.49e+01 2.19e+01

f22 1500 Mean 1.29e-006 8.62e-03 2.04e+01 2.01e+001 4.20e-01 2.09e+01
Std.Dev 3.94e-006 2.41e-03 6.60e-001 7.72e-002 6.56e-01 7.64e-02

f23 2000 Mean 0 4.95e-02 9.27e+001 1.59e+001 1.13e-02 1.99e-02
Std.Dev 0 1.51e-01 2.32e+01 7.85e+00 1.09e-02 6.69e-02

To f7-f13 multimodal functions with many local minima, rand/1 achieves
best result, following is ran-to-best/1, cur-to-best/1, best/3. best/2 is worse and
other vectors achieve little optimize. f7 is special as best/2 achieves best and
next is best/3.

To f14-f20 multimodal functions with a few local minima, in f14-f17, all
vectors achieve similar result, in f18-f20, best/2 and best-to-cur/1 achieve best
result, next is rand/1, others perform weak.

To observe rotated benchmarks, the sequence of these vectors does not
change, but their convergence ability is weak. Specially, in f23 best/1 does not
achieve best result any more, but cur-to-best is outstanding.

Moreover, best-to-cur/1 achieves similar result to best/2 but perform weak
on multimodal functions, it is interesting that its brother vector cur-to-best/1
perform in contrary. To rand-to-cur/1, the brother of best/2, perform worse than
best2 but still good in the whole family.
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Table 2. Experiment Result of Cur-to-best/1,Bets-to-cur/2,Rand-to-best/1,Best-to-
rand/1 and Rand-to-cur/1 over 50 Independent Runs

benchmark generation Cur-to Best-to Rand-to Best-to Rand-to
-best/1 -cur/1 -best/1 -rand/1 -cur/1

f1 1500 Mean 1.17e-08 7.04e-044 3.19e-009 5.89e-003 2.10e-001
Std.Dev 1.55e-008 7.41e-044 2.96e-009 2.59e-003 1.73e-001

f2 2000 Mean 1.12e-005 3.11e-031 3.79e-006 1.45e-001 1.10e+000
Std.Dev 6.31e-006 2.58e-031 1.90e-006 1.05e-001 4.07e-001

f3 5000 Mean 6.61e-009 1.45e-048 1.71e-006 5.67e-001 6.91e+001
Std.Dev 7.1e-009 3.26e-048 1.48e-006 4.74e-001 3.35e+001

f4 5000 Mean 6.02e-004 4.34e-007 1.12e-007 9.59e-002 8.52e-002
Std.Dev 8.28e-004 4.87e-007 2.29e-007 4.13e-001 2.37e-002

f6 1500 Mean 0 0 0 0 2.50e-001
Std.Dev 0 0 0 0 4.33e-001

f7 3000 Mean 1.55e+002 2.34e+001 1.75e+002 1.98e+002 2.11e+002
Std.Dev 7.49e+000 7.31e+000 1.61e+001 1.25e+001 1.05e+001

f10 1500 Mean 3.74e-005 7.95e-001 1.94e-005 3.10e-002 3.21e-001
Std.Dev 1.05e-005 9.22e-001 6.16e-006 1.01e-002 1.14e-001

f11 2000 Mean 3.57e-003 9.48e-003 1.48e-003 1.41e-002 1.15e-001
Std.Dev 4.64e-003 7.71e-003 3.60e-003 5.45e-002 2.05e-001

f12 1500 Mean 4.50e-009 1.19e-001 1.65e-009 6.39e-003 1.11e-03
Std.Dev 6.25e-009 1.95e-001 1.31e-009 8.57e-003 3.29e-001

f13 1500 Mean 5.49e-004 3.75e-001 5.33e-009 1.49e-002 4.46e-001
Std.Dev 2.39e-003 9.45e-001 7.19e-009 9.52e-003 2.25e-001

f21 3000 Mean 1.79e+002 1.76e+002 1.63e+002 1.75e+002 1.72e+02
Std.Dev 1.93e+001 2.08e+001 2.32e+001 2.13e+001 1.80e+001

f22 1500 Mean 2.09e+001 1.14e+000 2.09e+001 2.09e+001 3.69e-001
Std.Dev 5.24e-002 9.41e-001 7.20e-002 4.32e-002 1.52e-001

f23 2000 Mean 4.92e-003 1.17e-002 3.08e-003 2.36e-002 1.06e-001
Std.Dev 7.69e-003 1.29e-002 5.82e-003 1.02e-001 1.74e-001

Bases on the experiment we could gain some useful concludes:
Increase more than two difference parameter would decrease the performance

of the perturb vector. To bets/n, best/2 is best and best/1 is weak, if n is
bigger than two, increase difference parameter would decrease the performance
of perturb vector. To rand/n, rand/1 performs weak inmultimodal function and
rand/2 get best result. Because best/1 with only one difference parameter it is
constrained by limited search ability, with more difference parameter, although
it is outstanding in search ability but performs weak in convergence ability. In
this theory rand/1 is easy to entrap into local minima.

Rand/1 performs best to unimodal functions and best/2 is best to mul-
timodal functions. Specially, vectors with parameter perform excellent in the
vector family.

cur-to-best/1 and this series mutant vectors performs not best in mutate
family. But these vectors present exceptional features that same parameter in
different position lead to vary results. This feature should further study.
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3.3 Performance of New Method Generates Mutant Vector

Restricted by the length, this paper presents part of the result comparison be-
tween new method and old method in Table 5 and Table 6. According to the
experiment result, the new method optimizes the algorithm steadily. The new
method optimizes unimodal functions, multimodal functions with many local
minima, multimodal functions with deceiving and rotated functions well.

The new method achieves better performance in unimodal functions. To mul-
timodal functions with many local minima, best/2 use the new method does
not optimize the performance as obvious as unimodal functions done, but the
rand/1 and cur-to-best/1 achieve outstanding optimized results. To multimodal
functions with a few local minima, all the mutant vectors achieves same results,
the new method achieves same-level result, too. To rotated benchmarks, many
DE achieve weak results, but the new method still achieves obvious optimized
results.

4 Conclusion

Under the standard DE framework, considerable research has put forward many
mutant vectors. This paper proposed the linear relation between the algorithm
performance and the differential operator. According to experiment result, in-
creasing the differential operator would not certainly optimize the performance
of DE. In contrary, adds more than two difference parameters would decrease the
convergence ability. Some of the mutant vector like cur-to-best/1 and rand-to-
best did not perform best in the mutate family, but it is exceptional and worth
further study because in these mutate vectors parameters at different position
lead to different performance.

Moreover, we use rand/1, rand/2 and best/2, three best mutant vectors to
test the new method. The new method is more effective and achieves better
result than old method. The new method could optimize the performance of DE
in general. DE with three different mutant vectors all achieve optimized result.
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Abstract. Clustering analysis is the task of assigning a set of objects to groups 
such that objects in one group or cluster are more similar to each other than to 
those in other clusters. Clustering analysis is the major application area of data 
mining where Particle Swarm Optimisation (PSO) is being widely implemented 
due to its simplicity and efficiency. When compared with techniques like K-
means, Fuzzy C-means, K-Harmonic means and other traditional clustering 
approaches, in general, the PSO algorithm produces better results with 
reference to inter-cluster and intra-cluster distances, while having quantization 
errors comparable to the other algorithms. In recent times, many hybrid 
algorithms with PSO as one of the techniques have been developed to harness 
the strong points of PSO and increase its efficiency and accuracy. This paper 
provides an extensive review of the variants and hybrids of PSO which are 
being widely used for the purpose of clustering analysis. 

Keywords: Clustering Analysis, Particle Swarm Optimization, Hybrid 
Methods. 

1 Introduction 

This section gives a brief introduction on clustering analysis and the application of 
PSO for clustering analysis. The amount of information available and collected 
nowadays is beyond the human capability of analysing and extracting relevant 
information or discovering knowledge from it. Such data is heterogeneous, uncertain, 
dynamic and massive. It is of great significance to explore how to automatically 
extract the implicit, unknown and potentially helpful information so that it can help in 
the commercial decision-making activities. This is precisely the task of data mining 
and knowledge discovery from databases. A dramatic increase in the amount of 
information requiring in depth analysis has led to the design of new techniques that 
can perform knowledge extraction efficiently and automatically. 

1.1    Clustering Analysis 

Clustering analysis is an important technique used in data mining. It involves 
grouping together similar multi-dimensional data vectors into a number of clusters. 
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The main objective of clustering is to minimize inter-cluster similarity and to 
maximize intra-cluster similarity [1].  Clustering techniques are basically divided into 
two types: 

• Hierarchical: This approach provides a series of nested partitions of the dataset. It 
divides the data into a nested tree structure where the levels of the tree show similarity 
or dissimilarity among the clusters at different levels. It is further divided into 
‘Agglomerative’ and ‘Divisive’ approaches. The divisive approach splits one large 
cluster into different sub clusters e.g. CHAMELEON [2], BIRCH [3]. In 
agglomerative approach, the clustering process starts with every data element in 
individual clusters which are then merged on the basis of their proximity until all data 
elements are finally in a single cluster e.g. CURE [4] and ROCK [5]. This approach 
does not need the number of clusters to be specified in advance. It is deterministic and 
has lower execution time efficiency than partitioning techniques. 

• Partitioning: In contrast to hierarchical technique which yields a successive level 
of clusters by iterative fusions or divisions, this technique assigns a set of objects to 
clusters with no hierarchical structure. These methods try to minimize certain criteria, 
like square error function. These methods are further divided into ‘supervised’ and 
‘unsupervised’ algorithms. The supervised algorithms are provided with both the 
cases (data points) and the concept to be learnt for each case. Common algorithms 
include K-means and its variants like Fuzzy c-means, Spherical K-Means etc. 

1.2     Particle Swarm Optimization 

PSO is a technique based upon Swarm Intelligence (SI); an artificial intelligence 
paradigm for solving optimization problems that originally took its inspiration from 
the biological examples such as in swarming, flocking and herding phenomena in 
vertebrates. Particle Swarm Optimization (PSO) incorporates swarming behaviour 
observed in flocks of birds, schools of fish, or swarms of bees, and even human social 
behaviour. It is a population-based optimization tool, which could be implemented 
and applied easily to solve various function optimization problems, or the problems 
that can be transformed to the function optimization problem. For applying PSO 
successfully, one of the key issues is finding how to map the problem solution into the 
PSO particle, which directly affects its feasibility and performance. Many 
evolutionary techniques based on Particle Swarm Optimization have also been 
developed for unsupervised method. 

2 Related Work 

2.1     Original Version (Early Developments) 

PSO was first introduced by J. Kennedy and Eberhart in 1995 [6]. They developed 
this method for optimization of continuous non-linear functions. A ‘swarm’ refers to a 
collection of a number of potential solutions where each potential solution is known 
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as a ‘particle’. In the standard PSO method, each particle is initialized with random 
positions Xi and velocities Vi, and a function, f (fitness function) is evaluated. The aim 
of PSO is to find the particle’s position that gives the best evaluation of a given 
fitness function using the particle's positional coordinates as input values. In a k-
dimensional search space, Xi = (xi1, xi2, xi3,...,xik) and Vi = (vi1, vi2, vi3,...,vik). 
Positions and velocities are adjusted, and the function is evaluated with the new 
coordinates at each step. In each generation, each particle updates itself continuously 
by following two extreme values: the best position of the particle in its neighbourhood 
(lbest or localbest or personalbest) and the best position in the swarm at that time 
(gbest or globalbest) [7]. After finding the above values, each particle updates its 
position and velocity as follows:  

vi.k( t + 1) = wvi.k(t) + c1r1.k( t ) ( yi.k ( t ) - xi . k(t ))+ c2r2.k(t) (y`k(t) – xi.k(t))  (1) 

xi (t+1) = xi(t) + vi(t+1)      (2) 

Where: vi.k is the velocity of the i-th particle in the t-th iteration of the k-th dimension; 
xi.k is the position of the i-th particle in the t-th iteration of the k-th dimension; rl and r2 
are random numbers in the interval [0, 1]; cl and c2 are learning factors, in general, 
c1=c2=2.  An improvement in these parameters and their optimized values have been 
done in recent papers by the researchers which will be discussed later. ‘w’ is the 
inertia weight factor generally selected in the range  (0.1, 0. 9). This parameter was 
introduced in [8] which illustrated its significance in the particle swarm optimizer. 
Equation (1) is used to calculate the particle's new velocity according to its previous 
velocity and the distances of its current position from its own best experience and the 
group's best experience. The velocity is thus calculated based on three contributions:  

• A fraction of the previous velocity.  
• The cognitive component which is a function of the distance of the particle from 

its personal best position.  
• The social component which is a function of the distance of the particle from the 

best particle found thus far (i.e. the best of the personal bests).  
 
The personal best position yi of particle ‘i’ can be computed as:  

                       yi (t+1) = yi (t)   if  f(xi(t+1)) >= f(yi(t)) 

or  yi (t+1) =  xi(t+1)   if f(xi(t+1) < f(yi(t))                           (3) 

Equation (1) reflects the gbest version of PSO whereas in the lbest version the swarm 
is further divided into overlapping neighbourhoods and the best particle in each 
neighbourhood is determined. For the lbest version the social component of (1) 
changes to: 

C2r2.k(t)(y`j.k(t)-xi.k(t))    (4) 

Where:  y`j is the best in the neighbourhood of  i-th particle. The particle flies towards 
a new position according to equation (2). The PSO is usually executed with repeated 
application of equations (1) and (2) until a specified number of iterations have been 
exceeded or when the velocity updates are close to zero over a number of iterations. 
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2.2      PSO Clustering 

In [7] the authors have used the first kind of hybrid PSO technique for data clustering 
by hybridizing PSO with the popular K-means algorithm. The k-means algorithm has 
been used to seed the initial swarm and PSO is then used to refine the clusters formed 
by K-means. In this algorithm a single particle represents the Nc cluster centroid 
vectors. That is, each particle x, is constructed as follows: 

xi = (mi1... : mij,..,miNc )    (5) 

Where: mij is the j-th cluster centroid vector of the i-th particle in cluster Cij. The 
fitness of particles can be easily measured as the quantization error,  

Je = ∑j=1
Nc   [ ∑vZpЄCij d(zp.mj)/|Cij|]   (6) 

Nc 
where d is the distance to the centroid given by equation: 

d(zp.mj) = √ ∑k=1
Nd (zpk – mjk)

2    (7) 

‘k’ subscripts the dimension and |Ci| in equation (7) is the number of data vectors 
belonging to cluster Cij i.e. the frequency of that cluster. The authors also proposed 
the standard gbest PSO clustering algorithm using this hybrid technique. Results 
proved that this hybrid technique is more efficient than the standard PSO technique or 
traditional K-means algorithm alone. In [9] the authors have used PSO to decide the 
vector of the cluster centre. The following fitness function in equation (4) is evaluated 
and then compared with the particle’s best solution. The updating of position and 
velocities vectors are carried out according to (1) and (2) till the algorithm meets its 
stopping criterion. 

J = ∑K
i=1∑N

i=1 || xi-zj||2    (8) 

In [10] the authors have applied hybrid of K-means and PSO for the purpose of fast 
and high-quality document clustering to effectively navigate, summarize and organize 
information. C.M Cohen and Castro [11] used PSO for data clustering by adapting 
this algorithm to position prototypes (particles) in regions of the space that represent 
natural clusters of input data set. They proposed the PSC (particle swarm clustering) 
which behaves more like a self-organizing neural network that aids the positioning of 
the particles (prototypes) in the space following the spatial distribution of the input 
data. Other than the introduction of inertia weight parameter; another improvement in 
original PSO proposed by Kennedy and Eberhart was the introduction of the 
constriction factor [12] that too resulted in fast convergence of PSO algorithm. In 
equation (1) of the original version of PSO, vi.k is limited to the range (-Vmax, +Vmax) 
where Vmax parameter was introduced to limit the step size or the velocity to prevent 
explosion that results due to the random weighting of the control parameters in the 
algorithm. Constriction Coefficients are used to prevent such an explosion. 
Specifically, the application of constriction coefficients allows control over the 
dynamic characteristics of the particle swarm, including its exploration versus 
exploitation properties. Eberhart and Shi [13] have also concluded that constriction 
factor does not alone guarantee fast convergence and that the fastest convergence can 
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be achieved by a combined approach of Vmax parameter clamping strategy and 
constriction coefficients. Engelbrecht and Bergh proposed a new locally convergent 
particle swarm optimizer [14] called the Guaranteed Convergence Particle Swarm 
Optimizer (GCPSO). This new algorithm significantly resulted in faster convergence 
compared to the original PSO, especially when smaller swarm sizes are used. Yet 
another paper by Bergh and Engelbrecht [15] employs heuristic approach for 
initialization of the inertia weight and acceleration of coefficient values of PSO to 
guarantee convergent trajectories. In [16] an improved PSO method has been 
proposed in order to solve the problem of easy fall into local optimal solutions, lower 
convergent precision, slower convergence rates and the poor population diversity.  
The simulation results of this improved PSO indicated that its performance in terms  
of optimal precision, efficiency and the stability are much better than that of 
traditional PSO.  

In another version of PSO [17] based on initial population of clustering, the 
diversity of the population was analyzed according to discrepancy in the solution 
space and objective function space. The clustering algorithm is used to grab the 
information of the initial population in order to generate the representative 
individuals, and then the size of the initial population composed by these 
representative individuals is reduced. This method provides an effective method to 
generate initial populations and offers the basis for assessment and regulation of the 
population diversity in the process of running the algorithm. In a paper [18] by Dai, 
Lui, and Li, an intelligent method for optimum parameter selection is proposed. 
Firstly it analyzes the effect of each parameter on algorithm performance in detail. 
Tests to the benchmark function show that these parameters are better than the 
experience parameters and results in the optimal fitness and convergence rate. A 
discrete binary version of the improved PSO has been discussed in [19].On one hand, 
to improve the convergence rate, the improved algorithm combines the traditional 
binary particle swarm algorithm with the simulated annealing in order to guide the 
evolution of the optimal solution, and on the other hand, to simplify the structure of 
algorithm, the cross-operation of the genetic algorithm is used to replace the update 
operation of the speed and location. 

3 Survey of Hybrid Techniques Based on PSO  

Evolutionary algorithms are used nowadays for clustering. Hybridization is a method 
of combining two or more techniques in a judicious way so that the resulting 
algorithm contains the positive features of all the combined algorithms. Many hybrids 
of PSO have been developed so far in order to harness the strong points of the PSO 
algorithm and further improve its efficiency and accuracy.  

3.1    Hybridization Perspective of Clustering of Multi-objective and  
          High-Dimensional Problems 

For Multi-objective optimization problems (MOPs), the objectives to be optimized are 
normally in conflict with respect to each other, which means that there is no single 
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solution for these problems. A research paper [20] published in 2009 proposed a PSO 
method for MOP using Fuzzy Clustering technique named Fuzzy Clustering Multi-
objective Particle Swarm Optimizer (FC-MOPSO). Fuzzy clustering technique 
provides a better distribution of solutions in decision variable space by dividing the 
whole swarm into sub-swarms. In FC-MOPSO, the migration concept is used to 
exchange information between different sub-swarms and to ensure their diversity. The 
actual data sets used in data mining are high-dimensional and very complex, hence, 
effective hybrid techniques are required to efficiently cluster them. To reduce 
dimensionality of datasets PSO along with the Principal Component Analysis 
technique (PCA) [21] is used. PSO has been proved to be effective in clustering data 
under static environments. In 2010, Serkan, Jenn and Moncef proposed a PSO 
technique [22] for multidimensional search in dynamic environment by introducing 
the Fractional Global Best Formation (FGBF) technique. This technique exhibits a 
significant performance for multi-modal and non-stationary environments.  

3.2    PSO and Genetic Algorithm (GA) Hybridization 

The hybrid of PSO and Genetic Algorithm (GA) is one of the most widely used and 
efficient technique for clustering data [23]. GA is a randomized global search 
technique that solves problems by imitating processes observed from natural 
evolution. Based on the survival and reproduction of the fittest, GA continually 
exploits new and better solutions. For a specific problem, the GA codes a solution as a 
binary string called a chromosome (individual). A set of chromosomes is randomly 
chosen from the search space to form the initial population that represents a part of 
the solution space of the problem. Next, through computations, the individuals are 
selected in a competitive manner, based on their fitness measured by a specific 
objective function. The genetic search operators such as selection, mutation and 
crossover are then applied one after another to obtain a new generation of 
chromosomes in which the expected quality over all the chromosomes is better than 
that of the previous generation. The major problem with the traditional K-means 
algorithm is that it is sensitive to the selection of the initial partitions and it may 
converge to local optima. The hybrid of GA and PSO and K-means [23] avoids 
premature convergence and provides fast data clustering. This hybrid combines the 
ability of the globalized searching of the evolutionary algorithms and the fast 
convergence of the k-means algorithm and can avoid the drawbacks of both. 

3.3    PSO and DE (Differential Evolution) Hybridization 

DE algorithm was proposed by Storn and Price [24] in 1995. DE involves the same 
operators as GA (selection, mutation and crossover) but differs in the way it operates. 
PSO-DE hybrids usually combine the evolutionary schemes of both algorithms to 
propose a new evolutionary position scheme. A modified PSO with differential 
evolution operator mutations is introduced in [25] to eliminate stagnation and 
premature convergence of standard PSO. In [26] the authors have used this hybrid 
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technique in an attempt to efficiently guide the evolution and enhance the 
convergence. They have evolved the personal experience of the swarm with the DE 
algorithm [27].  

3.4    Other Variants of PSO 

A novel technique named Selective Regeneration Particle Swarm Optimization 
(SRPSO) [29] suggests parameter setting and the mechanism of selective particle 
regeneration. The suggested unbalanced setting of c1 and c2 in equation (1) 
accelerates the convergence of the algorithm while the particle regeneration operation 
enables the search to escape from local optima and explore other areas for better 
solutions. A comprehensive review of the various hybridization techniques of PSO 
and K-means has been discussed in [30]. An improved particle swam optimization 
algorithm with synthetic update mechanism is presented. The synthetic update is 
made up of three parts: the first is disturbance operation, the second is mutation 
operation and the last is gbest value distribution. Multi-objective PSO algorithm [32] 
has been used for clustering and feature selection. Features are assigned weights 
automatically by an algorithm and the features with low weights are then omitted 
which helps in omitting irrelevant features. Experimental results show that the 
proposed algorithm performs clustering independently for the shape of clusters and it 
can have good accuracy on dataset of any shape or distribution. In [33], the authors 
have developed a new PSO technique which can be applied both when the number of 
clusters is known as well as when this number is unknown. The authors have 
proposed a fitness function in case where the number of clusters is known: 

ft
p = σt

p = ∑Kp
k=1∑n

i=1w
pt

ik D(oi.z
pt

k)   (9) 

Where ft
p is the fitness value of particle p at iteration t. If the number of clusters is 

unknown the following fitness function is proposed: 

ft
p = σt

p - mink≠l D(zpt
k.z

pt
l)   (10) 

When the partitioning is compact and satisfactory, the value of σt
p should be low, 

while   mink≠l D(zpt
k.z

pt
l) should be high, thereby yielding lower values from the fitness 

function. Nowadays meta heuristic optimization algorithms have become popular 
choice for solving complex and intricate problems which are otherwise difficult to 
solve by traditional methods [34].   

4 Conclusion 

One of the major reasons for the wide use of Particle Swarm Optimization is that 
there are very few parameters to adjust. A single version, with very slight variations 
works well in a wide variety of applications. PSO has been used for approaches that 
can be used across a wide range of applications such as clustering of web usage data, 
image segmentation, system design, multi-objective optimization, classification, 
pattern recognition, biological system modelling, scheduling, signal processing and 
robotic applications. The hybridisation of PSO with other evolutionary algorithms like 
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GA and DE has been very effective in improving its efficiency and accuracy. Due to 
its simplicity and efficiency, PSO is gaining a lot of attention from the researchers and 
the recent developments show that hybrid PSO methods will emerge as a successful 
optimization technique in diverse applications. 
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Abstract. Modern optimization algorithms are often metaheuristic,
and they are very effective and promising in solving NP-hard optimiza-
tion problems. Many of them are based on nature, like the particle swarm
optimization, which purely outperforms its predecessors. This paper pro-
vides an insight into improved metaheuristic of Particle Swarm Optimiza-
tion extended with stronger social links.

Keywords: PSO, particle swarm optimization, glowworm optimization.

1 Introduction

Most problems faced by engineers are nonlinear with many constraints. Finding
optimal solutions in short amount of time requires efficient optimization algo-
rithms. Optimization algorithms can be classified in two groups: deterministic
and stochastic. Deterministic methods, like hill climbing, are not reliable and
are easily trapped in local optimums. However, they also give us unchanging
solutions if the initial parameters are being used. Stochastic algorithms often
produce different solutions, but tend to converge to a similar solution with a
given accuracy. Many modern metaheuristic algorithms are based on nature. An
example of such an algorithm is the particle swarm optimization, which is trying
to optimize functions by simulating bird flocks or fish schools behavior.

2 Particle Swarm Optimization and Its Implementation

Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart in
1995 [1], is an optimization method based on social behaviours of birds and fish.
Although, this method does not calculate a gradiet of the objective function, so
it does not have to be differentiable. Swarm methods can also be used for very
noisy and dynamic functions. It can also be used with dynamically changing
domains. The PSO algorithm searches the space of the objective function by
adjusting the movement trajectory for each individual agent called particle. The
particles adjust their velocity in each dimmension by being attracted to the best
global position and their own best known position along with φS and φP , which
are responsible for gregariousness and individuality of the particles and Ω which
is responsible for extinction of the particle movement. When a particle finds a

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 310–316, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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position that is better than the previous one, it will categorize this position as
the best for itself. Futhermore, it also checks to see if this new position is better
than the global best and will update if so. At the end of the algorithm the global
best is the final solution.

3 Glowworm Optimization and Its Implementation

Glowworms are insects which have the ability to light up their abdomen. They
use this ability to exchange information between each other with large distances.
Females usually attract males with their light and highlight their position. This
knowledge was used here to add an information exchange system between par-
ticles in the swarm. It was assumed that all of the particles are unisex and are
capable of attracting other particles whilst having a better position than the
current one. A similar approach was presented by Xen-She Yang [2]. Informa-
tion exchanging allows particles to find solutions faster than in standard PSO
implementation. In the Glowworm Optimization we have four initial parameters:

Ω responsible for movement velocity extinction, which translates into limitating
search space with time.

ΦS responsible for gregariousness of the particles in the swarm, larger than φP

tends global best to attract stronger than local best.
ΦP responsible for individuality of the particles in the swarm, larger than φS

tends local best to attract stronger than global best.
Ψ parameter which modulates attractiveness, larger value tends particles to at-

tract other particles stronger. Studies show, that it should be lower than Ω.

The main benefit of adding global information exchange is a better exploitation
of the search space, whlist randomness given by Rp, Rs makes the exploration
of the search space more efficient. Thus the swarm is able to find a more ac-
curate solution in static problems and to find new solutions faster in dynamic
problems. The remaining rules are exactly like the PSO and are presented in the
pseudocode 3.

4 Comparison of PSO and GWO

Tables 1, 2, 3, 4, 5, and 6 presents results on Particle Swarm Optimization(PSO)
, Glowworm Optimization(GWO), Evolutionary Strategy Plus(ES+), Evolution-
ary Strategy Comma(ES′), and Immune System(IS) testing on multiple bench-
mark functions with given initial boundaries. The greater the initial boundaries
are, the harder it is to find a solution. In tables statistics from 100 simulations
for each algorithm to get meaningful statistical analysis are stored. The algo-
rithm stops after reaching the global objective function optimum with a tolerance
ε ≤ 10−5. The results are summarized in the table below. The numbers are in
format: ‘3204.4±123.2 (98 %)‘ which means mean±std(succes rate). Where mean
is mean value of iterations needed to find a solution with given tolerance, std
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1: for each particle in swarm do
2: particles position as uniformly distributed random vector U(lo, up)
3: particles velocity as uniformly distributed random vector U(−|up−lo|, |up−lo|)
4: set particle best known position as initial position
5: if particle best known position is better than swarm best position then
6: set global best as particles initial position
7: end if
8:
9: end for
10: while Terminal condition is not met do
11: for each particle i in swarm do
12: set Rp, Rs as random numbers U(0, 1)
13: update the particle velocity: vi = Ω ∗ vi ∗ ΦpRp(pi − xi) + ΦsRs(g − xi)
14: for each particle j in swarm do
15: if j has better position than i then
16: update the particle velocity: vi = Ψ ∗vi ∗ΦpRp(pi−xj)+ΦsRs(g−xi)
17: end if
18: end for
19: update particles position xi = xi + vi
20: if current position is better than best known then
21: update best known position as current position
22: if best known position is better than global best position then
23: update global best position as best known position
24: end if
25: end if
26: end for
27: end while

Fig. 1. Glowworm Optimization Pseudo-code

is standard deviation of same set. Succes rate means % of simulations ended in
less than 10× 103 function evaluations.

Algorithm parameters used for simulations:

PSO : particles :15, Ω: 0.8, ΦP : 0.9, ΦS : 0.3

GWO : particles :15, Ψ : 0.7, Ω: 0.9, ΦP : 0.5, ΦS : 0.8

ES+ : μ: 6, ρ: 5, λ: 40

ES′ :μ: 6, ρ: 5, λ: 40

IS μ : 20, clones: 5, α: 1.5, β: 0.5

The benchmark functions used in Tables are: (1) Beale (d=2), (2) Quadric (d=2),
(3) Booth (d=2), (4) Zakharov(d=2), (5) Bohachevsky (d=2), (6) Hump (d=2),
(7) Rosenbrock (d=2), (8) Easom (d=2), (9) Michalewicz (d=2, m=10), (10)
Ackley (d=2). Parameters for PSO and GWO have been checked forcefully from
range of parameters -2.5 to 2.5 with step 0.1. Benchmark has run on set of
functions [(1), (2), (8)] on initial boundaries from range [1 → 100). The set of
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parameters that gave the best mean result with the restriction of 3500 objective
function evaluations has been chosen. In the studies good parameter sets were
found for:

small ranges (0 to 10) Ψ : 0.8, Ω: 0.6, ΦP : 0.4, ΦS : 0.8
medium ranges (10 to 100) Ψ : 0.6, Ω: 0.4, ΦP : 0.6, ΦS : 0.7
big ranges (100 to 10000) Ψ : 0.7, Ω: 0.9, ΦP : 0.5, ΦS : 0.8

Which statistically performs better on benchmark sets with given initial bound-
aries.

As we can see in tables with comparison for really big initial boundaries,
swarm finds a solution with high success rate and greater accuracy. For lower
initial bounds in function with flase attractor like function (9) the swarm does
not perform well because it will not exploit the search space. Instead, it tries to
explore the flase attractor.

Table 1. Comparison of the algorithms performance for initial bounds [-10000, 10000]

fun. PSO(×103) GWO(×103) ES+(×103) ES′(×103) IS(×103)

(1) 54.0±46.0 (52) 8.0±15.0 (98) 24.0±30.0 (89) 28.0±38.0 (78) 47.0±45.0 (62)

(2) 2.0±0.1 (100) 1.3±0.1 (100) 2.3±2.1 (100) 1.0±0.1 (100) 2.1±1.5 (100)

(3) 2.2±0.2 (100) 1.5±0.1 (100) 3.6±6.3 (100) 1.3±0.2 (100) 2.6±1.5 (100)

(4) 3.0±0.7 (100) 3.9±1.3 (100) 4.1±2.7 (100) 5.9±3.1 (100) 7.7±6.5 (100)

(5) 2.2±0.1 (100) 1.4±0.1 (100) 2.5±1.9 (98) 1.1±0.1 (100) 2.3±1.6 (97)

(6) 2.3±0.2 (100) 1.5±0.1 (100) 5.0±3.3 (75) 1.4±0.2 (100) 2.5±1.7 (96)

(7) 9.4±1.5 (12) 9.1±1.7 (24) 9.9±0.5 (5) 10.0±0.0 (0) 9.9±7.0 (4)

Table 2. Comparison of the algorithms performance for initial bounds [-1000, 1000]

fun. PSO(×103) GWO(×103) ES+(×103) ES′(×103) IS(×103)

(1) 27.0±39.0 (80) 3.0±9.0 (99) 10.0±18.0 (97) 15.0±32.0 (87) 30.0±37.0 (83)

(2) 1.6±0.1 (100) 1.1±0.0 (100) 1.6±0.1 (100) 0.8±0.1 (100) 1.6±0.6 (100)

(3) 1.8±0.1 (100) 1.3±0.1 (100) 2.0±1.5 (100) 1.1±0.1 (100) 2.2±1.4 (100)

(4) 1.9±0.1 (100) 1.8±0.3 (100) 2.2±1.6 (100) 1.7±0.6 (100) 2.7±1.6 (100)

(5) 1.8±0.1 (100) 1.2±0.0 (100) 1.7±1.1 (100) 0.9±0.1 (100) 2.0±1.6 (98)

(6) 1.9±0.1 (100) 1.2±0.1 (100) 4.1±3.2 (83) 1.1±0.3 (100) 2.1±1.9 (96)

(7) 8.8±2.3 (25) 6.9±2.6 (67) 9.1±1.7 (29) 10.0±0.0 (0) 9.6±1.4 (9)
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Table 3. Comparison of the algorithms performance for initial bounds [-100, 100]

fun. PSO(×103) GWO(×103) ES+(×103) ES′(×103) IS(×103)

(1) 8.3±21.5 (96) 2.6±9.8 (99) 6.2±16.9 (97) 5.9±19.7 (96) 16.6±30.0 (90)

(2) 1.2±0.1 (100) 0.8±0.0 (100) 1.4±1.6 (100) 0.6±0.1 (100) 1.4±1.0 (100)

(3) 1.5±0.1 (100) 1.0±0.1 (100) 1.5±1.6 (100) 0.8±0.1 (100) 1.5±0.5 (100)

(4) 1.4±0.1 (100) 1.0±0.1 (100) 1.1±0.7 (100) 0.8±0.1 (100) 1.5±0.6 (100)

(5) 1.5±0.1 (100) 0.9±0.0 (100) 1.4±0.8 (100) 0.7±0.1 (100) 1.9±1.7 (97)

(6) 1.5±0.2 (100) 1.0±0.1 (100) 3.3±3.2 (84) 0.9±0.2 (100) 1.8±1.7 (97)

(7) 6.5±3.1 (62) 4.1±1.8 (98) 7.0±2.5 (70) 10.0±0.0 (0) 8.8±2.3 (27)

(8) 5.3±3.4 (72) 5.1±2.1 (93) 7.9±3.7 (26) 9.9±0.9 (1) 5.2±2.8 (88)

Table 4. Comparison of the algorithms performance for initial bounds [-10, 10]

fun. PSO(×103) GWO(×103) ES+(×103) ES′(×103) IS(×103)

(1) 1.2±0.2 (100) 1.0±0.4 (100) 6.3±21.5 (95) 13.9±33.2 (87) 5.2±16.9 (97)

(2) 0.9±0.1 (100) 0.6±0.0 (100) 0.6±0.2 (100) 0.4±0.1 (100) 10.2±0.5 (100)

(3) 1.1±0.1 (100) 0.8±0.1 (100) 0.9±0.5 (100) 0.7±0.1 (100) 1.5±2.5 (100)

(4) 1.0±0.1 (100) 0.7±0.1 (100) 0.8±1.1 (100) 0.5±0.1 (100) 1.0±0.5 (100)

(5) 1.1±0.1 (100) 0.7±0.0 (100) 1.2±1.7 (97) 0.7±0.9 (99) 1.4±1.7 (98)

(6) 1.1±0.1 (100) 0.8±0.1 (100) 1.8±2.1 (97) 0.7±0.2 (100) 1.2±0.7 (100)

(7) 3.5±2.3 (94) 2.8±0.8 (100) 4.3±2.0 (97) 10.0±0.0 (0) 7.9±2.5 (56)

(8) 0.9±0.1 (100) 0.7±0.0 (100) 1.0±1.1 (99) 1.2±2.4 (93) 1.0±0.6 (100)

(9) 5.1±4.0 (64) 8.0±3.2 (38) 6.1±3.9 (55) 7.7±3.7 (33) 5.6±4.3 (54)

(10) 2.0±0.1 (100) 1.3±0.1 (100) 2.0±1.1 (100) 3.0±13.8 (100) 4.6±13.8 (100)
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Table 5. Comparison of the algorithms performance for initial bounds [-5, 5]

fun. PSO(×103) GWO(×103) ES+(×103) ES′(×103) IS(×103)

(1) 1.4±2.4 (100) 0.9±0.2 (100) 5.3±19.3 (96) 14.8±34.3 (86) 3.1±10.9 (99)

(2) 0.8±0.1 (100) 0.5±0.0 (100) 0.5±0.3 (100) 0.4±0.1 (100) 0.8±0.5 (100)

(3) 1.0±0.1 (100) 0.7±0.1 (100) 0.9±0.4 (100) 0.4±0.7 (100) 1.2±0.9 (100)

(4) 0.9±0.1 (100) 0.6±0.0 (100) 0.6±0.2 (100) 0.4±0.1 (100) 0.9±0.7 (100)

(5) 1.0±0.1 (100) 0.7±0.0 (100) 0.8±0.9 (100) 0.7±1.3 (98) 1.2±1.4 (98)

(6) 1.0±0.1 (100) 0.7±0.1 (100) 2.1±2.7 (92) 0.8±1.3 (98) 1.0±0.9 (100)

(7) 2.7±1.7 (98) 2.6±0.9 (100) 4.1±2.0 (97) 10.0±0.0 (0) 7.3±2.7 (63)

(8) 0.9±0.1 (100) 0.7±0.1 (100) 0.9±0.6 (100) 0.8±1.3 (98) 0.9±0.6 (100)

(9) 8.8±2.7 (18) 6.0±3.6 (61) 6.6±3.8 (51) 6.6±4.2 (45) 5.2±4.5 (55)

(10) 1.9±0.1 (100) 1.2±0.1 (100) 1.7±1.5 (100) 5.9±21.5 (100) 2.1±2.2 (100)

Table 6. Comparison of the algorithms performance for initial bounds [-2, 2]

c

fun. PSO(×103) GWO(×103) ES+(×103) ES′(×103) IS(×103)

(1) 0.9±0.2 (100) 0.8±0.3 (100) 2.0±9.8 (99) 8.9±26.8 (92) 4.3±16.8 (97)

(2) 0.7±0.1 (100) 0.4±0.0 (100) 0.4±0.2 (100) 0.3±0.0 (100) 0.7±0.3 (100)

(3) 0.9±0.1 (100) 0.6±0.0 (100) 0.9±0.4 (100) 0.7±0.1 (100) 1.0±0.6 (100)

(4) 0.8±0.1 (100) 0.5±0.0 (100) 0.4±0.2 (100) 0.4±0.1 (100) 8.0±0.5 (100)

(5) 0.8±0.1 (100) 0.5±0.0 (100) 0.7±0.3 (100) 0.7±1.4 (98) 0.9±1.0 (99)

(6) 0.8±0.1 (100) 0.6±0.1 (100) 1.1±1.8 (98) 0.5±0.1 (100) 0.9±0.5 (100)

(7) 2.7±1.6 (100) 2.1±0.6 (100) 4.8±2.2 (100) 10.0±0.0 (0) 7.2±2.9 (65)

(8) 0.8±0.1 (100) 0.6±0.0 (100) 1.2±1.7 (97) 1.4±2.5 (93) 0.9±0.9 (99)

(9) 9.9±0.6 (2) 3.4±3.2 (87) 6.9±3.8 (44) 7.3±3.8 (42) 7.3±4.0 (33)

(10) 1.8±0.1 (100) 1.2±0.0 (100) 2.7±9.8 (100) 1.8±9.8 (100) 1.8±8.2 (100)

5 Conclusions

In this paper, a new metaheuristic Glowworm Optimization is performed and
analysed similarities and differences with Particle Swarm Optimization. Simula-
tions show that in most cases, Glowworm Optimization outperforms PSO and
have higher success rate than PSO and other metaheuristics. Future studies may
be able to form automatic parameter selection and dynamically change param-
eters. This would allow the algorithm to find solutions faster.
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Abstract. Two adaptive approaches applied in competitive differen-
tial evolution and in differential evolution with an ensemble of mutation
strategies and parameter values are compared. The approach used in
each of these two algorithms can be divided into two parts: adaptive
mechanism and pool of strategies. Four variants of adaptation in dif-
ferential evolution mutually combining these two parts of the two algo-
rithms are experimentally compared in six benchmark functions at two
levels of dimension. It was found out that the algorithms with the pool of
competitive differential evolution are more reliable, whereas the variants
using the pool of the other algorithm need mostly a smaller number of
function evaluations to reach the stopping condition.

Keywords: global optimization, differential evolution, adaptation,
experimental comparison.

1 Introduction

Differential evolution (DE ) is one of the most frequently used evolutionary al-
gorithms solving a continuous optimization problem. Differential evolution has
a few parameters but its efficiency is very dependent on setting of parameters to
appropriate values, which often requires a lot of time. That is why many adap-
tive or self-adaptive DE versions have appeared in literature, for an overview
see [6,3]. Among the adaptive variants of DE, jDE [2], SADE [7], JADE [13],
and EPSDE [5] the state-of-the-art algorithms are considered. The approaches
to the implementation of adaptive or self-adaptive mechanism vary but some
common features can be found in some pairs of approaches used in the adaptive
DE. We focus on EPSDE and a competitive DE variant [10]. The aim of our
study is to compare the adaptive mechanisms used in these two algorithms.

The remainder of this paper is organized as follows. Section 2 deals with DE
algorithm. Two studied approaches of adaptation in DE and their implementa-
tion are described in section 3 as well as the algorithms compared in experiments.
Benchmark functions used in tests are briefly mentioned in section 4, where the
setting of experiments is also described. The results of experiments are presented
in section 5. Last section gives brief conclusions.

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 317–324, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Differential Evolution

Differential evolution is simple and powerful population-based algorithm for the
global optimization introduced by Storn and Price [8]. DE works with two al-
ternating generations of population, P and Q. The points of population are
considered as candidates of solution.

At the beginning, the generation P is initialized randomly in the search do-
main S, S =

∏D
j=1[aj , bj ], aj < bj, j = 1, 2, . . . , D . A new point y (trial

point) is produced by mutation and crossover operations for each point xi ∈ P ,
i ∈ {1, 2, . . . ,NP}, where NP is the size of population. The point y is inserted
into new generation Q if f(y) ≤ f(xi), otherwise the point xi enters into Q.
After completing the new generation, Q becomes the old generation P and the
whole process continues until the stopping condition is satisfied.

The trial vector y is generated by crossover operation of two vectors (points),
the target one (xi) and a mutant one (v). The mutant vector v is obtained by a
mutation. F is parameter of mutation. The rand/1 [8], randrl/1 [4], best/2 [8],
and current-to-rand/1 [5] mutations were used in our work. Binomial or ex-
ponential crossover can be used in generating a new trial points with all the
mutations except current-to-rand/1 which generates the trial point y directly
because it includes so-called arithmetic crossover. Probability of mutation (pm)
determines the number of exchanged elements in crossover and it is controlled
by crossover parameter CR, 0 ≤ CR ≤ 1. The relation between pm and CR in
the binomial crossover is linear. However, this relation is strongly nonlinear in
the exponential crossover [12].

3 Different Approaches to Adaptation in DE

Four state-of-the-art adaptive DE algorithms (jDE [2], SADE [7], JADE [13],
and EPSDE [5]) have been compared experimentally with two variants of CoDE
(composite trial vector generation strategies and control parameters) [11] and
with b6e6rl variant of competitive DE [10] recently1. Considering the overall
performance, JADE appeared the most efficient, competitive DE, the most reli-
able among the algorithms in the comparison. EPSDE [5] was efficient in some
problems but its reliability was considerable less compared to competitive DE,
in spite of the fact that their adaptive mechanisms are similar in some features.

3.1 Competitive Differential Evolution

Adaptive approach based on competition of different DE strategies and pa-
rameter settings was introduced in [9] and is denoted by abbreviation of CDE.
Any of H such strategies in the pool can be chosen to generate a new trial

1 Tvrd́ık, J., Poláková, R., Veselský, J., Bujok, P.: Adaptive Variants of Differential
Evolution: Towards Control-Parameter-Free Optimizers, submitted to Handbook of
Optimization, I. Zelinka, V. Snasel, and A. Abraham (eds.), Springer, to appear in
2012.
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point y for each element xi. A strategy is selected randomly with probability
qh, h = 1, 2, . . . , H . At the start the values of probability are set uniformly,
qh = 1/H , and they are modified according to the success rate in the preceding
steps of the search process. The hth setting is considered successful if it gener-
ates a trial point y satisfying f(y) ≤ f(xi). Probability qh is evaluated as the
relative frequency according to

qh =
nh + n0∑H

j=1(nj + n0)
, (1)

where nh is the current count of the hth strategy successes, and n0 > 0 is an
input parameter. The setting of n0 > 1 prevents from a dramatic change in
qh by one random successful use of the hth strategy at beginning. To avoid
degeneration of the search process, the current values of qh are reset to their
starting values if any probability qh decreases below given limit δ, δ > 0.

Several variants of competitive DE were tested [10]. The variant of competi-
tive DE, denoted b6e6rl there, appeared well-performing and robust in different
benchmark tests. The CDE is used as the label of this competitive DE variant
hereafter. In this variant, twelve strategies are in competition (H = 12), six of
them use the binomial crossover, the others use the exponential crossover. The
randrl/1 mutation is applied in all the strategies, two different values of control
parameter F are used, F = 0.5 and F = 0.8. The binomial crossover uses three
different values of CR, CR ∈ {0, 0.5, 1}. The exponential crossover uses three
values of CR ∈ {CR1,CR2,CR3}. Values CR1, CR2, and CR3 are evaluated
as roots of polynomial equation derived by Zaharie [12] describing the relation
between mutation probability pm and CR for three values of pm that are set
up equidistantly in the interval (1/D, 1). The values of parameters controlling
competition are set up to n0 = 2 and δ = 1/(5×H), as it was used in previous
applications of this algorithm.

3.2 Ensemble of Mutation Strategies and Parameter Values

The adaptive variant ofDE called ensemble of mutation strategies and parameter
values (EPSDE ) was proposed in [5]. The mutation strategies and the values of
control parameters F and CR are stored in pools. The combinations of the strate-
gies and the parameters in the pools have diverse characteristics, so that they
can exhibit distinct performance during different stages of evolution. A triplet of
strategy, F, CR is stored together with each point of population. The triplets
are set randomly for initial generation and then they develop during evolution.
If the triplet (strategy, F, CR) of target vector xi produces a successful trial
vector y, the triplet survives and it becomes the triplet of parameters of the trial
vector y which is now (in next generation) the member of population instead
of xi. Each successful triplet of parameters is also stored in auxiliary memory
of length of L, usually L = NP. If the stored triplet (strategy, F, CR) is not
successful, it is re-initialized by a triplet whose items are randomly chosen from
respective pools or by a randomly chosen one from the memory of successful
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triplets. The pool of strategies is {best/2/bin, rand/1/bin, current-to-rand/1},
the pool of F values is {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and the pool of CR values is
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} in EPSDE algorithm described in [5].

There are 54 different pairs of (F,CR) in EPSDE, each of them can be joined
with best/2/bin and rand/1/bin. The current-to-rand/1 mutation can be used
with each of 6 different values from pool of F . We obtain together 114 different
strategies and control parameter settings applied in EPSDE.

3.3 Algorithms in Experimental Comparison

Common features of CDE and EPSDE are adaptation and usage of the pool
of DE strategies and the values of control parameters. However, the algorithms
differ in the contents of the pools and in the implementation of adaptive mecha-
nisms. In order to evaluate the influence of these approaches on the performance
of the algorithms, we compare experimentally the algorithms combining the
adaptive mechanisms and the pools used in CDE and EPSDE. If we denote the
adaptive mechanisms and the pools used in these algorithms by the first letter of
an algorithm’s label, we obtain four possibilities how adaptive mechanisms and
the pools can be combined, namely C-C, E-E, C-E, E-C, where the first letter
stands for the adaptive mechanism and the second for the pool.

Note, that C-C and E-E symbols denote the original CDE described in 3.1
and EPSDE described in 3.2, respectively. In the C-E algorithm, the pool of
strategies and parameter settings of EPSDE is used with competitive adaptation,
the value of H = 114. Vice versa, the adaptive mechanism coming from EPSDE
is applied to the CDE pool of strategies and parameter settings in the E-C
algorithm. The length of memory of successful triplets is set up to L = 9 for this
algorithm, because of the fact that the L should be less than the count of all
possible strategies, which are only twelve here.

4 Benchmark Functions and Experiments

Six well-known test functions [1,5,8] are used as benchmark in this study. Rosen-
brock and Schwefel functions were used in their standard form. Ackley, Dejong1,
Griewank, and Rastrigin were used in their shifted version. The shifted version
of function was evaluated at the point z = x− o, o ∈ S, o �= (0, 0, . . . , 0). The
shift o was generated randomly from uniform D-dimensional distribution before
each run.

Four algorithms (C-C, E-E, E-C, and C-E ) were compared in six benchmark
problems at two levels of dimension, D = 30 and D = 100. The same size
of population (NP = 60) was set for every tested algorithms. The stopping
condition was defined the same for all tested adaptive variants of DE as follows:

fmax − fmin < εf OR nfe > D ×maxevals , (2)

where fmax − fmin is the difference between the function values of the worst
and the best individual in the population, nfe is the current number of function
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evaluations, εf and maxevals are input parameters set up to εf = 1× 10−6 and
maxevals = 2× 104, respectively.

One hundred of independent runs for each test problem and each tested al-
gorithm were carried out. The number of the function evaluations (nfe) and the
minimum function value (fmin) were recorded at the end of each run. The so-
lution found in a run is considered acceptable if the minimum function value in
the final generation does not differ from the known correct solution of the test
problem by more than 1× 10−4. The reliability rate (R) of an algorithm in the
solved problem is the percentage of runs finding an acceptable solution.

5 Results

The basic characteristics of algorithms’ performance, i.e. the mean value of func-
tion evaluations and the values of reliability rate, are shown in Tables 1 and 2
for all the algorithms in comparison and each problem in columns labeled by nfe
and R, respectively. The least values of nfe for each problem are printed in bold.

Table 1. Characteristics of performance, D = 30

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
nfe R nfe R nfe R nfe R nfe R nfe R

C-C 71297 100 37472 100 51934 100 73402 100 147185 100 64243 100
E-E 44899 100 23818 100 32438 100 251678 100 163082 100 74555 99
E-C 72894 100 40142 100 56475 94 112639 100 153244 99 76888 100
C-E 54967 100 28793 100 40669 97 111616 100 155491 99 62018 100

Table 2. Characteristics of performance, D = 100

Ackley Dejong1 Griewank Rastrigin Rosenbrock Schwefel
nfe R nfe R nfe R nfe R nfe R nfe R

C-C 258244 100 145163 100 178750 99 271464 100 910790 97 248053 98
E-E 102604 89 61112 100 76005 82 2000040 0 1548091 82 612686 98
E-C 225699 100 128734 100 159421 95 410656 100 852464 91 293149 98
C-E 115202 100 67567 100 83472 93 1996477 6 1286119 76 232939 100

Relevant pairs of the algorithms were compared statistically. The agreement
of the computational costs measured by the number of function evaluations was
tested by the Wilcoxon two-sample test, the agreement in reliability rates was
tested by Fisher exact test. In the tables with the results of statistical tests,
the symbol “+” denotes a significant difference in the case if the first algorithm
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in a pair is better, the symbol “−” is used for a significant difference if the
first algorithm in comparison is worse, and the symbol “=” means no significant
difference between the algorithms at the level of 0.05.

Original algorithms C-C (CDE ) and E-E (EPSDE ) are compared in Table 3.
While the computational costs of the algorithms can be considered similar (the
counts of significant differences in both directions are equal), the reliability of
CDE is substantially better in the problems of D = 100.

Table 3. Comparison of C-C vs. E-E algorithms

Ackley Dejong1 Griewank Rastrigin Rosenbr. Schwefel

D = 30 Fisher R = = = = = =
Wilcoxon nfe − − − + + +

D = 100 Fisher R + = + + + =
Wilcoxon nfe − − − + + +

Table 4. Comparison of different adaptive approaches with the same pool of strategies

Ackley Dejong1 Griewank Rastrigin Rosenbr. Schwefel

C-C vs. E-C

D = 30 Fisher R = = + = = =
Wilcoxon nfe + + + + + +

D = 100 Fisher R = = = = = =
Wilcoxon nfe − − − + − +

E-E vs. C-E

D = 30 Fisher R = = = = = =
Wilcoxon nfe + + + − − −

D = 100 Fisher R − = − − = =
Wilcoxon nfe + + + − − −

Comparison of different adaptive approaches with the same pool of strategies
is shown in Table 4. The use of EPSDE adaptive mechanism with CDE pool
of strategies does not bring any benefit in the problems of D = 30, while the
efficiency of such combination is significantly higher in four problems of D = 100.
Replacing of EPSDE adaptive mechanism by the competitive adaptation leads
to higher reliability in three problems of D = 100 and the influence of this
change on efficiency is significant but its direction is problem-depending (three
increases, three decreases).
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Table 5. Comparison of different pools of strategies in the same adaptive approach

Ackley Dejong1 Griewank Rastrigin Rosenbr. Schwefel

C-C vs. C-E

D = 30 Fisher R = = = = = =
Wilcoxon nfe − − − + + −

D = 100 Fisher R = = = + + =
Wilcoxon nfe − − − + + −

E-E vs. E-C

D = 30 Fisher R = = + = = =
Wilcoxon nfe + + + − − +

D = 100 Fisher R − = − − = =
Wilcoxon nfe + + + − − −

Comparison of different collections of strategies in the same adaptive approach
is presented in Table 5. When we compare two strategy pools applied within the
competitive adaptation mechanism, the EPSDE pool increases the efficiency
of the algorithm in most problems (8 out of 12). However, it is not helpful in
Rastrigin and Rosenbrock problems. C-E combination is significantly worse for
these two problems both in the reliability and efficiency at D = 100. Using the
CDE pool of strategies in EPSDE adaptive mechanism increases significantly
the reliability in three problems of D = 100 but its influence on the efficiency is
problem-dependent.

6 Conclusion

Adaptive DE variants combining the adaptive mechanisms and strategy pools
of competitive DE and EPSDE were compared experimentally in six benchmark
problems at two levels of dimension. The influence of the mechanism and the pool
combinations on the performance of the algorithms is problem dependent. How-
ever, the algorithms using EPSDE pool of strategies need frequently a smaller
number of function evaluations to reach the stopping condition, while the algo-
rithms with CDE pool of strategies are more reliable. The higher reliability of
these variants is probably caused by the presence of exponential crossover in the
pool of strategies, which is considered helpful in optimizing the non-separable
functions.
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Abstract. The article presents the idea of the intelligent system for the
multiobjective optimization. The system consists of the genetic algorithm
(GA) and the fuzzy logic controller (FLC). In experiments we investi-
gated the maintenance of genetic algorithms with the variable length
of genes. The genes of individuals are encoded and represented by real
numbers. The FLC controls the length of individuals’ genotypes in the
genetic algorithm. The variable length of the genotype of individuals al-
lows for the limitation of the computational effort, when the length of
the genotype of an individual grows smaller. We chose the problem of
the distribution of Access Points in a given area in a wireless network
as the test-function for our experiments. In the article we presented the
results obtained during the optimization of the test-function. The exper-
iments show, that the proposed system is an efficient tool for solving the
multiobjective optimization problems. The proposed system can be used
to solve similar problems of multiobjective optimization.

Keywords: fuzzy logic, genetic algorithms, multiobjective optimization.

1 Introduction

Wireless local area networks (WLAN) are one of the most rapidly growing meth-
ods of communication and data transfers. A wireless network can use Access
Points. In this type of network the Access Point acts like a hub, providing con-
nectivity for the wireless computers. It can connect the wireless LAN to a wired
LAN, allowing wireless computers access to LAN resources, such as file servers
or Internet. The goal of the network design is to provide the maximum customer
service with minimum cost (using minimum Access Points). How to efficiently
place Access Points on a given area is a very important issue. The problem, called
wireless Access Points placement problem, can be treated by two approaches.
The first approach, wireless Access Point selection, is to find the number of Ac-
cess Points to cover the given area. The second approach is to find the positions
of Access Points. Wireless Access Points placement problem is an NP-hard op-
timization problem so a few heuristic approaches have been proposed. Existing
heuristic methods can find approximate positions of Access Points if the number
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of Access Points is known. The system for solving this problem should find both
the number and the positions of Access Points.

Genetic algorithms stand for a class of stochastic optimization methods that
simulate the process of natural evolution [2][5]. In a genetic algorithm, a pop-
ulation of strings (called individuals or chromosomes), which encode candidate
solutions (called individuals) to an optimization problem, evolves toward better
solutions. Individuals can be represented by strings of zeros and ones (the bi-
nary representation) or by a set of real numbers (the real representation). They
usually search for approximate solutions for composite optimization problems.
A characteristic feature of genetic algorithms is that in the process of evolution
they do not use the specific knowledge for a given problem, except for the fit-
ness function assigned to all individuals. The genetic algorithms can be used for
solving multiobjective optimization problems too [1][6].

The genetic algorithm consists of the following steps:

1. the choice of the first generation,
2. the estimation of each individual’s fitness,
3. the check of the stop conditions,
4. the selection of individuals to the parents’ pool,
5. the creation of a new generation with the use of operators of crossing and

mutation,
6. the printing of the best solution.

Fuzzy Logic (FL) is able to process incomplete and subjective data. The reason-
ing in FL is similar to human reasoning. FL incorporates a simple, rule-based
IF ... THEN ... approach to a solving control problem. FL can provide approxi-
mate solutions to problems, where there are no mathematic formula to compute
solution.

The fuzzy genetic systems [3][4] is an effective tool for solving difficult op-
timization problems. The system proposed in this article consists of Genetic
Algorithm (GA) and Fuzzy Logic Controller (FLC). The FLC controls the evo-
lution process realized by genetic algorithm. The system allows for simultaneous
maximization of the coverage of the network’s area and the minimization of the
number of Access Points.

2 Problem Formulation

Let us consider a fixed geographic area, on which some Access Points serve as a
wireless access to network.

A = {(xmin, ymin), (xmax, ymax)} (1)

The problem of finding the Access Points’ location is to place the minimum
number of Access Points in such a way that they can cover all the network area.
Each Access Point has a fixed range and cost of installation. To minimize the
cost of the installation we have to minimize the number of Access Points.
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The formal definition of Wireless Access Points Placement (WAPP) can be
stated as follows: Given a network area and the Access Points’ features, the
problem WAPP is to find the minimum number of Access Points n, and their
location (x, y), subject to the cost and area cover constraints.⎧⎨⎩

max f1(x) = (x1, y1, x2, y2, ..., xn, yn)
min f2(n)
subject to: cost and area constraints

(2)

where:

– f1 - is a function representing the area, wherein the access to the network is
possible,

– f2 - is a function representing the number of Access Points,
– (x1, y1), ..., (xn, yn) ∈ A - is a position of the point in the geographic area of

the network,
– 1 ≤ n ≤ nmax - is the number of Access Points used in the network.

Mobile devices, like PDAs or laptops, may move around all the network area.
Each point in the network area (xn, yn) ∈ A can be covered from zero to n of
Access Points. The signal strength from at least one Access Point should be
greater than a threshold to maintain quality of service requirement. Each point
in the network area is covered by Access Point with the highest signal strength.

3 Proposed Fuzzy-Genetic System

The proposed system consists of two modules: the Genetic Algorithm (GA) and
the Fuzzy Logic Controller (FLC). The GA seeks for the optimal placement of
Access Points and delivers information concerning the current state of optimiza-
tion to the FLC. FLC looks for the optimal number of Access Points. The FLC
is engaged between generations of GA in fixed intervals. The FLC modifies the
number of Access Points in the dependence on information delivered from the
GA.

In the proposed GA the individuals’ genes are encoded by means of real
numbers. The individuals’ genes represent the position of Access Points in ge-
ographical coordinates. Each individual is represented by a set of coordinates,
with length equal to the number of Access Points. Because the number of Access
Points is also an object of optimization, the length of the individuals’ genotype
will be variable.

In our experiment different types of crossing of chromosomes is used. The
standard one-point crossing is used when the number of Access Points does not
change. We introduce two new crossing operators, used when the number of
Access Points changes:

– CR1 - is used when the length of the genotype of the descendant is greater
than the length of the genotype of the parents. The genotype of the descen-
dant is obtained by copying all genes from the first parent and lacking genes
from the end of the second parent.
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– CR2 - is used when the length of the genotype of the descendant is smaller
than the length of the genotype of the parents. The number of genes copied
from every parent is diminished in proportion to the length of the genotype,
to obtain the required length of the genotype of the descendant.

To calculate individuals’ fitness function, we cover the network area with grid
with fixed step. For each point of the grid the maximum value of the signal
strength from all Access Points is calculated. Each point of the grid is associated
with the Access Point with the maximum value of the signal strength. The fitness
function is calculated as the sum of maximum values of the signal strength in
all points of the grid.

The FLC uses the knowledge of experts and the knowledge collected by the
GA. A basic task of the FLC in the proposed system is the evaluation of the
solutions found till now. The FLC makes a decisions about the diminution or
the enlargement of the number of Access Points. These decisions are made with
fixed intervals between generations of the GA. The FLC modifies the number of
Access Points using the following rules:

– enlarge the number of Access Points if the network coverage ratio is small
and the average number of points of the grid covered by Access Points is
large,

– do not change the number of Access Points if the network coverage ratio
is suitable and the average number of points of the grid covered by Access
Points is suitable,

– diminish the number of Access Points if the network coverage ratio is large
and the average number of points of the grid covered by Access Point is
small.

The FLC calculates the change of the number of Access Points based on two
parameters:

– network coverage ratio

cov =

∑k
i=1 pcov
p

(3)

where:∑k
i=1 pcov - the number of points of the grid covered by the signal,

p - the number of all points in the grid.
– the average number of points of the grid covered by Access Points

cov =

∑k
i=1 pcov
n

(4)

where:
n - the number of Access Points.

As the result from the FLC we accepted:

– wAP - the ratio of the change of the Access Points’ number.
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Table 1. The rule base for the FLC

cov

cov

VS S OK G

S LD LE LE SE

OK LD LD LE LE

G SD LD LD LE

The modified number of Access Points obeys the formula:

n′ = wAP ∗ n (5)

where:

– n′ - the modified number of Access Points,
– n - the number of Access Points,
– wAP - the ratio of the change of the Access Points’ number.

The knowledge base (rule base) of FLC is shown in Table 1 (fuzzy values of the
ratio of the change of the Access Points’ number).

Values in the Table1 are:

– VS - very small,
– S - small,
– OK - suitable,
– G - good,
– SD - strongly diminished,
– LD - lightly diminished,
– LE - lightly enlarged,
– SE - strongly enlarged.

Figures 1 - 3 show the membership functions of the network coverage ratio, the
average number of points of the grid covered by Access Points and the ratio of
the change of the Access Points’ number.

The FLC uses the center of gravity [5] defuzzyfication method.

4 Computational Experiments

The goal of the experiment is the verification of the idea of controlling the
process of multiobjective optimization realized by the genetic algorithm. In the
modified algorithm we introduce an additional FLC, which controls the value
of one objective function. The FLC keeps this value in near-optimal section.
We chose the problem of the distribution of Access Points on the given area
in a wireless network as the test-function for our experiments. We defined two
mutually contradictory objective functions: the coverage of the network area
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Fig. 1. The membership functions of the network coverage ratio

Fig. 2. The membership functions of the average number of points of the grid covered
by Access Points

and the number of Access Points (the cost of installation). If the number of
Access Points grows, the coverage of the network area grows too, however the
cost of installation grows as well. In the considered tasks, the FLC manages the
number of Access Points and modifies the length of the individuals’ genotype.
Access Points are located on the area 30x30 units. We chose a few different
ranges of Access Points to check the coverage of the area and the distribution of
Access Points. The algorithms’ parameters used in the experiment:

– the genes of individuals are represented by real numbers,

– the probability of crossover = 0,8,

– the probability of mutation = 0,15,

– the number of individuals in the population = 25,

– the algorithms were stopped after predefined number of generations.
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Fig. 3. The membership functions of the ratio of the change of the Access Points’
number

Table 2. Average values of the Access Points’ number and the coverage of the network
area

The range of Access Points

7,5 5 3,75

The optimal number of Access Points 4 9 16

The number of Access Points found by algorithm 4 9 16

The coverage of the network area 93,44 91,77 97,22

Each algorithm was executed 10 times. In Table 2 there are average values of
the Access Points’ number and the coverage of the network area obtained by the
algorithm.

Figure 4. shows the distribution of Access Points in the network area.

Fig. 4. The distribution of Access Points found by the algorithm at the range of Access
Points a) 7.5, b) 5, c) 3.75
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5 Conclusions

The proposed fuzzy-genetic system can solve multiobjective optimization prob-
lems. The basic advantage of the system is that it can simultaneously optimize
many objective functions.

In the considered task the objective functions were mutually contradictory.
The total optimum was located in the place, where no objective functions accept
the extremum.

The FLC is able to manage the evolution in the genetic algorithm. The FLC
found an optimal number of Access Points in all investigated tasks.

The genetic algorithm can find solutions with higher value of the fitness func-
tion, but the number of Access Points (and the cost of installation) is greater
than optimal in this case. The FLC held the number of Access Points close to
the optimum value.

The parameters of the system, eg. the number of generations after the FLC
is engaged, can be modified. Experiments show that large number of genera-
tions between the FLC engagements, can increase the accuracy of solutions. The
diminution of the number of generations between the FLC engagements, causes
quicker changes of the value of the objective function controlled by the FLC.

The proposed system can be used to solve similar problems of multiobjective
optimization.
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Abstract. Our aim is to propose a new approach to soft selection in
evolutionary algorithms for optimization problems with constraints. It
is based on the notion of a filter as introduced by Fletcher and his co-
workers. The proposed approach occurred to be quite efficient.

1 Introduction and Problem Statement

Fletcher and his co-workers introduced the idea of a filter ([4], [5] and earlier pa-
pers cited therein) as an ingredient of sequential linear programming (SLP) and
sequential quadratic programming, whose aim is to avoid the necessity of adding
penalties to a goal function when solving nonlinear optimization problems with
constraints. We are convinced that the methodology of applying the filter is much
wider and it can be useful in developing new algorithms for many optimization
problems with constraints. Our aim in this paper is to propose a new approach
that incorporates the filter into evolutionary search algorithms with constraints.
The filter plays the role of a soft selector as it takes into account both fitness of
an individual and the degree of constraints violation.

The proposed approach occurred to be fruitful in designing a relatively ef-
ficient and easy to implement algorithm. However, the proposed algorithm is
rather an exemplification of the above idea, which can be further developed in
various directions. Furthermore, this approach can be useful in modeling the evo-
lution of natural populations, in the spirit of the seminal papers [6], [7], when
resources are constrained.

Earlier Efforts in Developing Evolutionary Algorithms with
Constraints. Evolutionary algorithms, by their construction, are not well suited
to incorporate constraints. The first attempts to take constraints into account
can be traced back to the eighties (see [12] for survey paper and [14]). The num-
ber of papers on constraints handling is still growing (see, e.g., [8], [9], [10], [14],
[15] and the monograph [3]), indicating that the problem is still difficult.

The idea of using a multi-objective programming approach has also a long
history [2], [11], [1], but the approaches proposed in these and related papers do
not use the multi-criteria approach with the filter directly as the soft selector.
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The Optimization Problem. Denote by f(x) a real valued function of vector
x ∈ Rd. f is our objective function, which is continuous in X .

We impose inequality constraints of the form: c(x) ≤ 0, where c(x) is m-
dimensional vector of functions, c : Rd → Rm, which define the following set

C def
= {x : c(1)(x) ≤ 0, c(2)(x) ≤ 0, . . . c(m)(x) ≤ 0},

where c(j)(x) is j-th component of vector c(x). The continuity of c(j)(x)’s is
assumed, which implies that C is a closed set. We also assume that C ⊂ Rd is
nonempty and bounded.

Consider the following optimization problem

min
x

f(x) subject to c(x) ≤ 0. (1)

The continuity of f and the compactness of C imply existence of its solution.
Our aim is to discuss evolutionary algorithms in which the filter plays the

role of a soft selector. Sequences xk ∈ X , k = 1, 2, . . ., generated by them are
expected to be convergent to (hopefully global) minimizer x∗ of f over C.

Define a penalty function, denoted further h,

h(c(x)) =

m∑
j=1

max
(
0, c(j)(x)

)
. (2)

Note that h(c(x)) = 0 iff x ∈ C. Observe that h(c(x)) is not differentiable.

2 How Does the Filter Work ?

The notion of a filter, was introduced as a tool for solving constrained optimiza-
tion problems by generating sequences that are solutions of quadratic or linear
approximations to f(x) and linear approximations to c(x).

Following Fletcher’s idea with minor changes, we define the filter as follows.

Definition 1. In k-th generation a filter Fk is a list of pairs (hk, fk), which
were generated according to the rules described below, where for given xk we
denote by (hk, fk) a pair of the form: (h(c(xk)), f(xk)). The list of xk’s, which
correspond to (hk, fk) ∈ Fk is also attached to the filter, but it is not displayed.

In our case it is necessary to store xk’s together with the corresponding (hk, fk)’s.
This is not as memory consuming as one can expect, because we do not allow
the filter content to grow above a certain level.

We say that a pair (hk, fk) dominates (hl, fl) if and only if

fk ≤ fl AND hk ≤ hl (3)

and at least one of these inequalities is strict.
We shall need a somewhat more demanding notion of a dominance between

such pairs as discussed later. At k-th generation the following rules govern the
behavior of filter Fk.
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Rule 1). Filter Fk contains only pairs (hl, fl), which were generated up to k-th
generation and the corresponding xl’s. No pair in Fk dominates any other
in the sense (3).

Rule 2). A new pair (hj , fj) it is allowed to be included to Fk, if it is not
dominated by any point already contained in Fk.

Rule 3). If for a pair (hl, fl) R2) holds, then is acceptable for inclusion in the
filter Fk and all entries dominated by this pair must be removed from Fk so
as to ensure R1).

An example of a filters contents is shown in Fig. 1 by dots. Note that:

– points are pairs (hl, fl) included in Fk,
– the horizontal and vertical lines and the shaded area indicate regions where

no new points can be entered, because they are dominated by the points
already in Fk,

– desirable points for inclusion to Fk are as closely as possible to (0, fmin),
where fmin = f(x∗),

– additional, horizontal and vertical, fat lines are artificially added in order to
prevent an undesirable behavior of (fk, hk)’s that is described later.

Filter as a Soft Selector in Evolutionary Algorithms. In the above cited
papers of Fletcher and his co-workers the role of the filter was to consider a new
point, generated by the sequential quadratic programming, as a candidate to the
filter. Our idea is to apply the filter to the whole off-spring of a new generation
as a soft selector.

Selection. The role of the filter is to decide whether new points, generated by
an evolutionary algorithm, should be accepted for further generations or not.

Softness. Fk provides a soft selection mechanism, because rules R1)-R3) allow
a new point to be included into a filter, even if the corresponding value of the
objective function is worse than already found. This may happen only if the
penalty for constraints violation decreases.

The idea of using a filter as a soft selector has the additional advantage,
which seems not to be shared by any other evolutionary algorithm that takes
constraints into account. Namely, after stopping our search the filter content
provides valuable information on the trade off between attainable values of the
objective function and the degree of constraints violation. It is illustrated in
Fig. 1 by the point with the smallest value of f(x). This point attains the
value of the goal function, which is below fmin. This can happen only when the
constraints are slightly violated (h(x) > 0). However, if the constraints are not
hard, we may decide to pay an additional cost for the constraint violation (e.g.,
to cover the costs of additional resources), if the decrease of the goal function
f(x) is sufficiently large. Below, we discuss additional requirements imposed on
the rules governing the filter in order to make it workable in practice.

Rule 2a). A pair (h, f) is allowed to be included to Fk if for every hl, fl from
Fk and selected constants β, γ ∈ (0, 1) the following conditions holds

h ≤ β hl OR f ≤ fl − γ hl. (4)
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Conditions (4) extend a taboo region determined by Fk by adding thin strips
toward lower values of f(x) and h(x), respectively (see Fig. 1). We refer the
reader to [4], [5] for many details concerning more technical aspects of filter
handling. Here, we only mention two of them, because it may happen that the
filter contains subsequences such that NW escape: fk → ∞ and simultaneously
hk → 0, SE escape: fk → −∞ and simultaneously hk → ∞.

It suffices to include the artificial point (−∞, hmax) into the filter in order
to prevent SE escape, where hmax is the largest constraints violation that is
allowed, e.g., one can take the largest constraints violation by individuals of the
first generation (see the fat vertical line Fig. 1). The problem of preventing NW
escapes is more complicated, because we have to predict attainable large values
of f(x), e.g., by a linear predictor. For the purposes of this paper we propose a
rough bound, obtained by including the point (fub, 0) into the filter, where fub
is a crude upper bound for f(x). The bottom edge of this bound is sketched out
as the fat horizontal line in Fig. 1. The bounds fub and hmax can be updated.

3 Outline of the Evolutionary Algorithm with Filter

We provide an outline of the evolutionary search algorithm with filter for con-
strained optimization problems, stressing that it is a skeletal algorithm that can
be modified in a number of ways.

Definition 2. Let x′
k ∈ Rd, x′′

k ∈ Rd, . . . denote features of individuals in
k-th generation. An extended filter F̄k in k-th generation contains the triples
(x′

k, f(x
′
k), h(x

′
k)), (x

′′
k , f(x

′′
k), h(x

′′
k)), . . ., such that for all the corresponding

tuples (f(x′
k), h(x

′
k)), (f(x

′′
k), h(x

′′
k)), . . . the requirements imposed by Rule 1),

Rule 2a) and Rule 3) hold. Later on, we shall use the term ”filter” also for the
extended filter.

Evolutionary Algorithm with the Filter

Preparations Filter Initialization. Select Nmax – the largest admissible pop-
ulation size andNmin – the smallest reasonable population size. Choose hmax

and fub in the way discussed in Section 2.

Fig. 1. Example of a filter content: dots indicate points included in the filter, shaded
areas are taboo regions, fat horizontal and vertical lines prevent escaping to regions
where fk → ∞ and hk → 0 as well as fk → −∞ and hk → ∞
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Step 0. Set the generations counter k = 0.
– Allocate an empty filter (list) F̄0 and enter the triples (dummy, −∞,

hmax) and (dummy, fub, 0) to F̄0, where dummy is an arbitrary vector.
– If it is possible, select x0 ∈ C, set h0 = 0, f0 = f(x0). If f0 < fub, enter

(x0, f0, 0) into F̄0, set k = 1 and go to Step 2. Otherwise, repeat the
selection of x0 ∈ C.

– If it is not possible to select x0 ∈ C, go to Step 1.
Step 1. Initial population. Choose γ > 0 as a tolerance of the constraints

violation.
1. Select at random an initial population of points, admitting non feasible

points, i.e., those outside C.
2. Run ”a standard evolutionary algorithm” that does not take constraints

into account, but minimizes h(x) only as the goal function.
3. Stop this algorithm, if at least one point, x0 say, with h(x0) ≤ γ is found.
4. Set h0 = h(x0), f0 = f(x0) (or h′

0, f
′
0, h

′′
0 , f

′′
0 etc., if there is more than

one point with the penalty not exceeding γ).
5. Enter (x0, f0, h0) into F̄0 (or h

′
0, f

′
0, h

′′
0 , f

′′
0 etc., according to Rules 1-3).

Set k = 1.
Step 2. Trimming the filter. Denote by card[F̄k] the cardinality of filter F̄K ,

which is simultaneously the size of a current population.
1. If Nmin ≤ card[F̄k] ≤ Nmax, go to Step 3
2. If card[F̄k] < Nmin, apply random mutations of a moderate size to

x′
k, x

′′
k , . . . that are already in F̄k. Denote the results of mutations as

mut(x′
k), mut(x′′

k), . . .
3. Calculate (f(mut(x′

k)), h(mut(x′
k))), (f(mut(x′′

k)), h(mut(x′′
k))), . . . and

confront them with the current filters’ content, according to Rules 1, 2a,
3. Repeat these steps unless card[F̄k] ≥ Nmin, then go to Step 3.

4. If card[F̄k] > Nmax, sort the entries of F̄k according to increasing penal-
ties hk’s and leave in F̄k only the first Nmax entries. Go to Step 3.

Step 3. The next generation. To each x′
k, x

′′
k , . . . that are already in F̄k

apply the following operations:
offspring: replicate each individual x′

k, x
′′
k , . . . to n + Round[n/(1 + h′

k)],
n+Round[n/(1 + h′′

k)], . . . number of descendants, respectively,
mutations: to each replica add a random vector and calculate the corre-

sponding value of f and h.
soft selection: Confront the results (f, h) of the replications and mutations

with the current filter contents and enter (reject) those, which are (not)
in agreement with Rules 1, 2a, 3.

Check the stopping condition. If k does not exceed the admissible num-
ber of generations, set k = k + 1 and go to Step 2.

Remark 1. In Step 1.2 we propose minimizing the penalty h(x) using any rea-
sonable evolutionary algorithm for unconstraint minimization, expecting that we
obtain points, which are in C or close to it in the sense that their penalties
are not larger than γ > 0. In our simulations reported below we have used the
Mathematica ver. 7 function NMinimize with the option RandomSearch. The
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Table 1. Best values of the goal function in subsequent epochs, but only those for which

h(xk) ≤ 0.005 (left panel). Basic statistics from 30 simulation runs from f values, but

only those with h < 0.005 (right panel).

epoch

Epochs 1000 3000

Min f 7161.1 7161.2

Max f 7385.9 7266.1

Median f 7264.0 7226.0

Mean f 7265.5 7224.7

Dispersion f 50.0 31.0

idea of using n+Round[n/(1+h′
k)] as the number of descendants is that x′

k has
more of them, if h(x′

k) is smaller. At the mutation stage d-dimensional random
vectors are added to x′

k, x
′′
k and to their replicas. In our experiments independent

samples from either N(0, σ) or from the uniform distribution on [−a, a] were
used, where σ > 0 and a > 0 were selected from [1, 10] interval.

A crossing-over operation is not mentioned in the above algorithm, because it
reduces exploration possibilities. However, the following version: αx′

k+(1−α)x′′
k,

α ∈ (0, 1) can be useful when the volume of C is small.
As is known (see [4]), the filter algorithm with SQP has the proof of conver-

gence. One may hope that it is also possible to prove the convergence of the above
evolutionary method with a filter, but it is outside the scope of this paper.

4 Simulations

By the lack of space, we report the results of simulations for one of the most
difficult benchmark problems, which is the well known G10 problem (see [12]).

Tuning Parameters. The following tuning parameters were used during sim-
ulations: γ = 0.01 and β = 0.99 in R 2a), Nmin = 22 as the smallest population

Fig. 2. Example of the filter contents after 1000 epochs (left panel) and after 3000
epochs (right panel)
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size and Nmax = 100 as the upper bound for the population size before entering
into a new epoch. Note, however, that in Step 3, when the offspring is generated,
we allow much larger population of individuals to be confronted with the filter.

A Barrier for SE Escape. hmax = 100 was used at Step 0, but after perform-
ing Step 1 (with γ = 0.3) hmax was updated as follows: hmax = Max[2.5, hmc],
where hmc is the largest penalty of individuals that were rejected from the filter
in Step 2. fub was set to a very large number and it was not updated later,
because we did not observe tendencies to an NW escape.

Mutations. Two kind of mutations were used:
in Step 2.3 mut(x′

k), mut(x′
k), . . . were mutated as follows:

mut(x′
k) = x′

k + vec[unif(−(12 + 2/k), 12 + 2/k)], (5)

where unif(−ζ, ζ) is a random number uniformly distributed in [−ζ, ζ], ζ > 0,
while vec[.] denotes d-dimensional vector of such numbers and in Step 3:

mut(x′
k) = x′

k + vec[unif(−(5 + 12/
√
k), (5 + 12/

√
k))], (6)

The Methodology of Simulations and Their Results

Starting Point. We do not have a point from C at our disposal and a random
random search minimizing h(x) was run with γ = 0.3. As a result, the
following point was found:

x0 = [1387.42, 2161.53, 4962.31, 142.415, 381.521, 217.502, 280.688, 441.817]

with h(x0) = 0.299 and f(x0) = 8511.26. Then, 21 additional points accept-
able by growing filter were generated, according to Steps 2.2 and 2.3. γ was
reduced to 0.005.

1000 epochs. 1000 generations were simulated by circulating between Step 2
and Step 3. The resulting content of the filter is shown in Fig. 2 (left panel),
while in Table 1 (left panel) the best value of f(xk), among those in the filter,
is displayed. Then, the above simulations were repeated 30 times (statistics
are reported in Table 1 (right panel, middle column)).

3000 epochs. The filter contents is shown in Fig. 2 (right panel). The statistics
(30 repetitions) are summarized in Table 1 (right panel, last column).

Filter. The most valuable result of the algorithm is not the best point, but the
final contents of the filter. A quick look at Fig.. 2 (left panel) indicates that

– the best value of f(x) found in this run is 7300, if we insist that the
constraints exactly hold,

– however, if we allow that the constraints are only slightly violated, at the
level h(x) between 0.0275 and 0.035, then we have found three points
with f(x), which is below f∗ = 7049.330923 that is known to be the
exact optimum of the G10 problem.
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Fig. 3. The maximum, the minimum and the mean of penalties of individuals that are

contained in the filter in subsequent epochs

Records. Taking the above discussion into account, the best values found are
not so important. We provide them for completeness. From Table 1 (right
panel) it follows that our record is f = 7161.1, allowing h < 0.005. Thus,
it is in the middle between f∗ and the record 7286.650 that is reported in
the well known survey paper [12], where it was also found in 1000 epochs.
However, if we allow h < 0.01 (instead of h < 0.005), then the record found
during 3000 epochs is 7121.8.

Filter as a soft selector. In addition to Fig. 2 also Fig. 3 illustrates how the
filter works as a soft selector. The largest penalties of individuals that are
currently in the filter exhibits large variation, which allows for exploration.
Simultaneously, individuals with small penalties are permanently present in
the filter, providing guarantees that good solutions that are in C or close to
it can be found.
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Abstract. Discrete Ant System (DAS) algorithm, a modification of
classical Ant System algorithm formulated by M. Dorigo, is presented.
Definition of optimization problem and a detailed description of compo-
nent rules of DAS method are given. Then a probabilistic algebraic model
of DAS heuristic describing its evolution in terms of Markov chains is
presented. The final result in the form of a pointwise convergence of
Discrete Ant System algorithm is established.

1 Introduction

This article is a summary of research work on Discrete Ant System [10], a sub-
class of probabilistic algorithms inspired by nature. Our aim is to present a
new theoretical result on the convergence of DAS method, which has no ana-
logues in the literature [6,7]. For this purpose we refer to the theoretical results
on the asymptotic of a simple genetic algorithm given in [9,13], which in turn
benefit from the approach used for stochastic dynamic systems [8,12]. Article
consists of two integral parts. In the first one (Chapters 2-4) we remind the nec-
essary assumptions and properties related to an optimization problem as well
as to a scheme of discrete ant algorithm. Finally a theoretical model of consid-
ered heuristic is given. In the second part (Chapter 5) the latest research result
aimed at demonstrating a pointwise convergence of DAS method is established.
The result obtained is set out in the form of a theorem. At the end, we indicate
directions for our future research activities: both theoretical and practical, in
the field.

2 Optimization Problem

An optimization problem is a five

(Σ,R, Δ, ‖·‖ , [↘ | ↗]) , (1)

where:
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– Σ = {x1, x2, . . . , xn} – is a finite set of n indexed objects (symbols),
– R ⊂ Σ∗ – is a finite set of r indexed solutions (words), where as usual Σ∗

denotes the space of all words over Σ,
– Δ : Σ∗ → {0, 1} – is a solution acceptance function such, that

Δ (ω) =

{
1, if ∃

(
ω

′ ∈ Σ∗, ω
′′ ∈ R

)(
ω ◦ ω

′
= ω

′′
)

0, in other case
(2)

– ‖·‖ : R → R+ ∪ {0} – is a solution quality function,
– [↘ | ↗] – is an optimization direction, ↘ for minimization, ↗ for maximiza-

tion.

Without loss of the generality of considerations later in this work we shall assume
to minimize evaluation function in the set of positive real numbers R+.

Now let ω∗ be a optimal solution, i.e. such a solution to given optimization
problem that the following condition is true

∀ (1 ≤ i ≤ r) (‖ωi‖ ≥ ‖ω∗‖) . (3)

Then the set of all solutions R includes subset R∗ ⊆ R of optimal solutions.
The optimization task in discrete space Σ∗ is to find any word ω∗ ∈ R∗.

It is worth noting that the assumed interpretation of the optimization problem
based on the set of indexed symbols Σ and the set of indexed word-solution R
meets most practical computing tasks, including the NP-complete problems. For
example, in the Traveling Salesman Problem Σ is the set of vertices of analyzed
graph, and R is the set of all permutations of elements over set Σ. In the case
of Discrete Knapsack Problem Σ is the collection of objects of assumed type,
while R is the set of words (representing a way of packing a backpack) of any
length with an accuracy to combinations with repetitions and constrained by
the cardinality of objects.

3 Discrete Ant System

Discrete Ant System (abbreviated as DAS) is an extension of Ant System
introduced and modified by M. Dorigo in [1,2,5] mainly for solving the Travel-
ing Salesman Problem instances [3,4]. Considered heuristics assumes a collective
work and gathering information by entities (individuals), called ants. Construc-
tion of customized solutions is based on using global knowledge of the indexed
collection of m ants {a1, a2, . . . , am}, hereinafter called the anthill. DAS algo-
rithm is an iterative method, consisting the sequential repetition of the three
main rules of evolution:

– Neighbor Choosing Rule (NCR),
– Solution Construction Rule (SCR),
– Pheromone Update Rule (PUR).
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Algorithm 1. DAS schema.
while (stop condition is false) do

for every ant ai do
construct solution with SCR (NCR inside)
update pheromone trails with PUR

The general scheme of Discrete Ant System is given in Algorithm 1.
DAS method is based on the concept of a saturation factor of pheromone trail

τ ∈ N+, which is the carrier of global knowledge of ants about a searched work
space S. The value of coefficient τ characterizes the quality of solution (measured
by values of a quality function ‖·‖) connected with symbols from the set Σ in a
specific order.

Furthermore, let τmax be the maximum value of the saturation factor of
pheromone trail and

H = {1, 2, . . . , τmax} (4)

be the set of all possible values of the saturation factor of pheromone trail. We
introduce two sets F and H of states of pheromone structures which carrying
out the process of exchanging information between ants:

– F = {F1, F2, . . . , Ff} – a finite set of all possible indexed column vectors of
size n of saturation factor level such, that Fi ∈ H

n, for 1 ≤ i ≤ f, and F [j]
is a value connected with an ant possibility of choosing an object xj while a
solution ω is constructed,

– H = {H1, H2, . . . , Hh} – a finite set of all possible indexed matrices of size
n × n of saturation factor level such, that Hi ∈ H

n×n, for 1 ≤ i ≤ h, and
H [j, k] is a value connected with an ant possibility of choosing an object xk

just after xj while a solution ω is constructed.

Now using introduced sets of pheromone structures we present the principle of
three rules of Discrete Ant System, i.e. NCR, SCR, and PUR rule. The first one,
Neighbor Choosing Rule, realize the non-deterministic selection of symbols
x ∈ Σ by a single ant in the order to construct a new solution ω. Thus

NCR : F × Σ∗ → Σ, (5)

is such, that NCR (F, ω) = xi with the probability equals to⎧⎪⎨⎪⎩
F [i]∑

{j:Δ(ωxj)=1}
F [j]

if Δ (ωxi) = 1,

0 in other case.

(6)

According to Equation 6 we may present the following claim.

Corollary 1. For any F ∈ F , ω ∈ Σ∗ and x ∈ Σ, if Δ (ωxj) = 1, then
Pr (NCR (F, ω) = x) ∈ (0, 1] else Pr (NCR (F, ω) = x) = 0.
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Neighborhood selection mechanism discussed in the NCR rule stands a basis
for the next and consequently also a non-deterministic rule, that is Solution
Construction Rule. This evolution rule is described by the probabilistic function

SCR : F ×H → R, (7)

such, that SCR (F, H) = ω, where

– xl1 is a first element of constructed solution ω with the probability equals to

Pr (NCR (F, ε) = xl1) , (8)

– repeat until a stop condition is false: let ω = xl1xl2 . . . xlr−1 be an actual
part of constructed solution, then ω ← ωxlr with probability equal to

Pr
(
NCR

(
H [lr, ·] , xl1xl2 . . . xlr−1

)
= xlr

)
. (9)

Corollary 2. For any F ∈ F , H ∈ H and ω ∈ R such, that ω = xl1xl2 . . . xlr ,
we have

Pr (SCR (F, H) = ω) = Pr (NCR (F, ε) = xl1) ·
r−1∏
i=1

Pr
(
NCR (H [lr, ·] , xl1xl2 . . . xli) = xli+1

)
, (10)

thus with respect to corollary follows that 1 Pr (SCR (F, H) = ω) ∈ (0, 1].

Corollary 2 has significant probabilistic implications. According to its content
any word-solution ω ∈ R , and thus also an optimal solution ω∗ from the set
of optimal solutions R∗ ⊆ R, may (with positive probability) be a result of
application of SCR rule in any state of pheromone structures F and H .

Presented so far NCR mechanisms, and the SAR rule are static due to the
exchange of information inside the nest, and their action depends only on the
current state of the heuristic information, stored in a vector F and matrix H .
The last PUR rule, which updates pheromone trails, is dynamic one in this
context. This refers to an earlier direction of evolution of anthill, especially to
the direction of changes on pheromone structures H and F .

PUR operator can be divided into two key steps. The firs one is sequen-
tially updating elements of the vector F while the second one refers to updating
elements of the matrix H . In both cases, the application of the pheromone up-
date mechanism requires knowledge of two solutions: ω−1, a word constructed
by an ant in iteration immediately preceding the currently analyzed, and ω, a
word constructed by an ant in the current iteration. Relation of quality function
‖·‖value for these two elements gives strictly local (short term) characteristic
for direction of evolution process.

For the purpose of this article we assume that study of these two values
dependency is sufficient. It should be noted, that in practice we consider also
global (long term) properties of evolution of ants set. This compilation of short
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and long-term properties gives a more complete picture of behavior of anthill,
and thus allows for a more accurate and more deliberate modification of the
structures within PUR rule.

Therefore pheromone update rule PUR is a deterministic function

PUR : F ×H×R2 → F ×H, (11)

which describes how the pheromone trail is changing after a new solution ω =
xl1xl2 . . . xlr is constructed. Let ω

′
= xk1xk2 . . . xkp be a previously built solution

(i.e. a solution constructed in a previous algorithm iteration step), then if ‖ω‖ ≤∥∥∥ω′
∥∥∥

F [l1] ← min (τmax, F [l1] + 1) , F [k1] ← max (1, F [k1] − 1) ,
H [li, li+1] ← min (τmax, H [li, li+1] + 1) , H [kj , kj+1] ← max (1, H [kj , kj+1] − 1) ,

else

F [l1] ← max (1, F [l1] − 1) , F [k1] ← min (τmax, F [k1] + 1) ,
H [li, li+1] ← max (1, H [li, li+1] − 1) , H [kj , kj+1] ← min (τmax, H [kj , kj+1] + 1) ,

for every 1 ≤ i < r or 1 ≤ j < p.
The considerations in this chapter will end with the proposal which describes

probabilistic of changes in pheromone structures F and H . Referring directly
to the DAS algorithm construction given earlier (see page 344) and SCR rule
properties presented in Corollary 2 we get

Corollary 3. For any pairs of pheromone structures (F, H) ∈ F × H and(
F

′
, H

′
)

∈ F × H, if pair (F, H) is reachable form pair
(
F

′
, H

′
)

with iter-
ation of DAS pheromone update schema, then the probability of transition from
structure state

(
F

′
, H

′
)

to (F, H) is positive.

4 Theoretic Model of DAS Algorithm

For the simplicity of presentation in this chapter we discuss results of a theo-
retical model of the DAS algorithm with respect to evolution of a single ant.
This is a purely technical task to extend these results for an anthill consisting
of m > 1 ants due to their sequential work in an inner iteration loop (for every
ant ai do ...).

Next state of ant s(t) in a moment t is a quadruple
〈
F(t), H(t), ω(t), ω

∗
(t)

〉
where:

– F(t) ∈ F – is a vector which determines the value of saturation level related
with an action of choosing a first object to solution ω, by an ant while
changing a state from moment t up to t + 1,

– H(t) ∈ H – is a matrix which determines the value of saturation level related
with an action of choosing every next object to solution ω, by an ant while
changing a state from moment t up to t + 1,
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– ω(t) ∈ R – is a solution which is constructed in moment t,
– ω∗

(t) ∈ R – is a best solution which was constructed up to moment t.

Directly from given in the previous section schema of DAS algorithm (see
page344) and justly introduced definition of ant state, we may give the following
conclusion.

Corollary 4. State s(t) of an individual ant in moment t+1 is determined only
by state s(t) of an individual ant in moment t.

Finally S = F × H × R2 is a set of all possible indexed states of an ant
{s1, s2, . . . , ss}, therefore

s = f · h · r2 = (τmax)n2+n · r2 (12)

This leads to the next corollary.

Corollary 5. Set S of all possible ant states is a finite state.

Using the notion of individual ant state, now let us move on to discuss how to
build an algebraic model for an evolution process of DAS heuristic. As mentioned
in the first section, results presented in this paper are based on a probabilistic
approach used in [9,13] to analyze the convergence of a simple genetic algorithm
with tools adapted form stochastic dynamic systems [8,12].

Therefore, let Û(t) ∈ [0, 1]s be a column stochastic vector of size s such,
that Û(t) [i] determines a value of probability of a chance that an ant state
in moment t is si, Then we define a column stochastic matrix T̂ ∈ [0, 1]s×s

which determines transitions between an ant states, so that T̂ [i, j] denotes the
probability of transition of ant from state sj to state si. Thus, a single iteration
of our heuristic under consideration is reduced to the implementation of the
algebraic transformation

Û(t)T̂ = Û(t+1). (13)

In general, if Û(0) is an initial distribution of probability of an ant initial state,
then

Û(t) = Û(0)T̂
t (14)

describes ant state in moment t = 1, 2, 3, . . ..
Therefore by referring to Corollaries 4 and 5 we express the evolution of

Discrete Ant Algorithm within the theory of Markov chains on the finite state
space S. Thus we meat a key found.

Corollary 6. DAS algorithm evolution for a single ant is a Markov Process.

Notice, that this result can be easily expended for m > 1 ant case (i.e. an
anthill case) with the restriction, that an anthill state sm is an element of space(F ×H ×R2

)m.
Importance of Corollary 6 can be extended with practical applications, by

indicating the procedure of the filling up the transition matrix T̂ for a particular
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instance of the optimization problem. The question therefore arises, whether for
a given five (Σ,R, Δ, ‖·‖ ,↘) we can determine the value of any element T̂ [i, j].
The answer is yes. In order to achieve this goal we just go back to previously
presented DAS algorithm schema (see page 344) as well as to the property of
evolution rules and finally the definition of ant state. Detailed information on
this subject the reader can find in [10,11].

These considerations are interesting also for the qualitative aspect. They show
that if the vector Û(0) is known and we determined a complete form of transition
matrix T̂ , then designation of the t-th power of matrix T̂ allows us to accurately
estimate a probability distribution of state vector Û(t) at time t > 1. Thus, we
are able to give well quality prediction of considered heuristic evolution process.
Using these results in the next chapter we formulate the main theorem on a
pointwise convergence property for the Discrete Ant Algorithm.

5 Pointwise Convergence of DAS Method

The pointwise convergence of DAS heuristic means an existence of exactly one
vector Û ∈ [0, 1]s such, that

∀Û(0) ∈ [0, 1]s : lim
t→∞ Û(0)T̂

t = Û , (15)

where Û [i] = 1 if and only if si is desired ant state, and Û [j �= i] = 0 for all
j = 1, 2, . . . , s. Next vector Û and the state si respectively are called a point of
convergence and a state of convergence.

Introduced definition of pointwise convergence assumes a strong criterion on
direction of evolution of a single ant. According to its wording irrespective of an
initial ant state Û(0), properly long iterating of DAS method should always lead
to the same fixed final state s, with specific forms of pheromone structures F and
H as well as words ω and ω∗. From a practical point of view, this condition is too
strong. Returning to the optimization problem definition given in section 2, all
states s ∈ S, for s =

〈
F(t), H(t), ω(t), ω

∗
(t)

〉
, where ω∗ ∈ R∗ are optimal solutions,

are indistinguishable relative to the optimization task (we are interested in finding
any optimal solution, not a group of all possible optimal solutions).

Based on the above observations all ant states s distributed in the work space
S, in which the element ω∗, i.e. best solution so far, is actually one of the optimal
solutions, we group now in a super-state s� such that

s� = {s ∈ S : s includes optimal solution ω∗} . (16)

Next
S� = (S \ s�) ∪ {s�} (17)

is a set of all possible indexed states of an ant with the super-state s�. The
reduction of the original state space S into the space S� maintains all previously
derived theoretical properties and results of probabilistic model under consid-
eration. In addition, it allows us to formulate the main result of this research
article in the form of a theorem about pointwise convergence of DAS method.
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Theorem 1. Discrete Ant System algorithm is point-wise convergent over ant
state space S� with the convergence pointed at super-state s�.

Proof can be found in [11].

6 Conclusions

Presented in the previous section result on pointwise convergence of DAS method
gives a basis for further work pointed at theoretical analysis of asymptotic prop-
erties of Discrete Ant System. Considered algorithm meets convergence property,
which other popular heuristic do not have, such as simple genetic algorithm
[9,13]. Closely to the above-mentioned theoretical work we also conducts a re-
search focused on self-adaptation mechanisms of a single ant behavior as well as
on an effective implementation of DAS scheme on a strongly concurrent com-
puting environment given by NVIDIA GPU cards.
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Abstract. This paper deals with the optimization of control of Hénon
Map, which is a discrete chaotic system. This paper introduces and com-
pares evolutionary approach representing tuning of parameters for an ex-
isting control method, as well as meta-evolutionary approach representing
synthesis of whole control law by means of Analytic Programming (AP).
These two approaches are used for the purpose of stabilization of the sta-
ble state and higher periodic orbits, which stand for oscillations between
several values of chaotic system. For experimentation, Self-Organizing Mi-
grating Algorithm (SOMA) and Differential Evolution (DE) were used.

1 Introduction

There is a growing interest about the interconnection between evolutionary tech-
niques and control of chaotic systems. The first steps were done in [1] - [3], where
the control law was based on the Pyraga’s method, which is Extended delay
feedback control (ETDAS) [4]. These papers were concerned with tuning several
parameters inside the control technique for chaotic system. Compared to this,
presented research also shows a possibility for generating the whole control law
(not only to optimize several parameters) for the purpose of stabilization of a
chaotic systems. The synthesis of control law is inspired by the Pyragas’s delayed
feedback control TDAS and ETDAS [5], [6].

Analytic programming (AP) is used in this research. AP is a superstructure
of EAs and is used for synthesis of analytic solution according to the required
behavior. Control law from the proposed system can be viewed as a symbolic
structure, which can be synthesized according to the requirements for the stabi-
lization of the chaotic system. The advantage is that it is not necessary to have
some “preliminary” control law and to estimate its parameters only. This system
will generate the whole structure of the law even with suitable parameter values.
� This work was supported by the grant NO. MSM 7088352101 of the Ministry of
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This paper is an extension and cumulation of previous work [2,7] focused
either on tuning of parameters for an existing control method [2] or synthesis of
whole control laws [7].

2 Analytic Programming

Basic principles of the AP were developed in 2001 [8]. The core of AP is based on
a special set of mathematical objects and operations. The set of mathematical
objects is a set of functions, operators and so-called terminals, which are usu-
ally constants or independent variables. This set of variables is usually mixed
together and consists of functions with different number of arguments. Because
of a variability of the content of this set, it is termed the “general functional set”
(GFS). The structure of GFS is created by subsets of functions according to the
number of their arguments.

The second part of the AP core is a sequence of mathematical operations,
which are used for the program synthesis. These operations are used to transform
an individual of a population into a suitable program. Mathematically stated, it
is a mapping from an individual domain into a program domain. This mapping
consists of two main parts. The first part is called Discrete Set Handling (DSH)
and the second one stands for security procedures, which do not allow synthe-
sizing pathological programs. The method of DSH, when used, allows handling
arbitrary objects including nonnumeric objects like linguistic terms {hot, cold,
dark. . . }, logic terms (True, False) or other user-defined functions.

3 Problem Design

3.1 Selected Chaotic System

The chosen example of chaotic system was the two dimensional Hénon map in
form (1):

xn+1 = a − x2
n + byn

yn+1 = xn
(1)

The map depends on two parameters, a and b, which for the canonical Hénon
map have values of a = 1.4 and b = 0.3. For these canonical values the Hénon
map is chaotic.

3.2 ETDAS Control Method

This work is focused on explanation of application of AP for synthesis of a
whole control law (meta-evolutionary approach) as well as tuning of parameters
for EDTAS method control laws (evolutionary approach) to stabilize desired
Unstable Periodic Orbits (UPO). In this research desired UPOs were p-1 (stable
state) and p-2 (higher periodic orbit – oscillation between two values).

Within the research concentrated on synthesis of control law, an inspiration
for preparation of sets of basic functions and operators for AP was also ETDAS
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control method in its discrete form suitable for two-dimensional Hénon Map
given in (2):

xn+1 = a − x2
n + byn + Fn,

Fn = K [(1 − R)Sn−m − xn] ,
Sn = xn + RSn−m

(2)

where: K and R are adjustable constants, F is the perturbation; S is given by a
delay equation utilizing previous states of the system and m is the period of m-
periodic orbit to be stabilized. Due to the recursive attributes of delay equation
S utilizing previous states of the system in discrete ETDAS method (2), the
data set for AP had to be expanded to cover a longer system output history
(xntoxn−9), thus to imitate inspiring control method for the successful synthesis
of control law securing the stabilization of higher periodic orbits.

3.3 Cost Functions

The used Cost functions are in general based on searching for the desired stabi-
lized periodic orbit and thereafter calculation of the difference between desired
and found actual periodic orbit on the short time interval - τs (20 iterations
– p-1 orbit and 40 iterations – p-2 orbit) from the point, where the first min.
value of difference between desired and actual system output is found. Such a
design of CF should secure the successful stabilization of either p-1 orbit (sta-
ble state) or higher periodic orbit anywise phase shifted. The CFBasic used for
meta-evolutionary approach, which is very time demanding, has the form (3).

CFBasic = pen1 +
τ2∑

t=τ1

|TSt − ASt| (3)

where: TS - target state, AS - actual state, τ1 - the first min value of difference
between TS and AS, τ2 – the end of optimization interval (τ1+ τs),

pen1= 0 if τ i - τ2 ? τs; pen1= 10*( τ i - τ2) if τ i - τ2 < τs (i.e. late stabilization).
Within the evolutionary approach, which is less time demanding, advanced

CF securing the very fast stabilization was used. It was necessary to modify the
definition of CF in order to decrease the average number of iteration required for
the successful stabilization and avoidance of any associated problem. The easiest
but the most problematic way is that the whole CF value is multiplied by the
number of iterations (NI ) of the first found minimal value of difference between
desired and actual system output (i.e. the beginning of fully stabilized UPO).
To avoid errors associated with CF returning value 0 and other problems, the
small constant (SC ) is added to CF value before penalization (multiplying by
NI ). The SC value (5) is computed with the aid of power of non-penalized basic
part of CF (4), thus it is always secured that the penalization is at similar level
as the non-penalized CF value.

ExpCF = log10

(
τ2∑

t=τ1

|TSt − ASt| + 10−15

)
(4)
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SC = 10ExpCF (5)

The CF used for evolutionary approach is given in (6):

CFAdv =
n∑
1

(
(NI · SC) + penalization1 +

τ2∑
t=τ1

|TSt − ASt|
)

, (6)

where xinitial is from the range 0.05 – 0.95 and uses step 0.1 (i.e. n = 10).
Here the number of steps for stabilization (NI ) multiplies only the small

constant (SC ). Finally, to avoid the problems with fast stabilization only for
limited range of initial conditions, the final CF value is computed as a sum
of n repeated simulations for different initial conditions. Consequently, the EA
should find the robust solutions securing the fast targeting into desired behavior
of system for almost any initial conditions.

4 Used Evolutionary Algorithms

This research used two evolutionary algorithms: Self-Organizing Migrating Al-
gorithm (SOMA) [9] and Differential Evolution (DE) [11]. SOMA is a stochastic
optimization algorithm that is modeled on the social behavior of cooperating
individuals. DE is a population-based optimization method that works on real-
number-coded individuals. Both algorithms were chosen because it has been
proven that they have the ability to converge towards the global optimum.

4.1 Self Organizing Migration Algorithm – SOMA

SOMA works with groups of individuals (population) whose behavior can be
described as a competitive – cooperative strategy. The construction of a new
population of individuals is not based on evolutionary principles (two parents
produce offspring) but on the behavior of social group, e.g. a herd of animals
looking for food. This algorithm can be classified as an algorithm of a social
environment. To the same group of algorithms, Particle Swarm Optimization
(PSO) algorithm can also be classified sometimes called swarm intelligence. In
the case of SOMA, there is no velocity vector as in PSO, only the position of
individuals in the search space is changed during one generation, referred to as
‘migration loop’. The detailed principle is described in [9]. For the source codes
in Mathematica, Matlab and C++ together with detailed description please refer
to [10].

4.2 Differential Evolution

DE is quite robust, fast, and effective, with global optimization ability. It does
not require the objective function to be differentiable, and it works well even
with noisy and time-dependent objective functions. Please refer to [11] and [12]
for the description of used DERand1Bin strategy and all other DE strategies.
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5 Simulation Results

In this work APmeta version was used. Meta means usage of one evolutionary al-
gorithm for main AP process and the second algorithm for coefficient estimation.
SOMA algorithm was used for the main AP process and DE was used in the
second evolutionary process. For the tuning of parameters for ETDAS method,
only SOMA algorithm was used. Settings of EA parameters for both approaches
were based on performed numerous experiments with chaotic systems and evo-
lutionary algorithms (see Tables 1 - 3).

The results shown in Table 4 represent the best founded solution of parameters
set up for ETDAS control method for both case studies (p-1 and p-2 orbit
stabilization) together with the cost function value comprising 10 runs of chaotic
system with initial conditions in the range 0.05 – 0.95 with step 0.1, and average
CF value per 1 run.

The simulation results in Table 5 represent the best examples of synthesized
control laws for the p-1 orbit stabilization as well as for p-2 orbit stabilization.
Description of the selected simulation results covers output from AP represent-
ing the synthesized control law with simplification after estimation of constants
by means of second algorithm DE and corresponding CF value.

Evolutionary Approach Experiment Set Up
The ranges of all estimated parameters within evolutionary approach were these:

−2 ≤ K ≤ 2, 0 ≤ Fmax ≤ 0.5and0 ≤ R ≤ 0.99

where Fmax is a limitation of feedback perturbation, securing the avoidance of
diverging of the chaotic system outside the interval {−1.0, 1.5}

Table 1. Parameter set up for SOMA algorithm used in evolutionary approach

Parameter Value

PathLength 3
Step 0.33
PRT 0.1
PopSize 25
Migrations 25
Max. CF Evaluations (CFE) 5400

Meta-Evolutionary Approach Experiment Set Up
Basic set of elementary functions for AP:
GFS2arg = +, -, /, *, ˆ
GFS0arg = datan−1 to datan, K (for p-1 orbit)
GFS0arg = datan−9 to datan, K (for p-2 orbit).
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Table 2. Parameter set up for SOMA used as the main algorithm in meta-evolutionary
approach

Parameter Value

PathLength 3
Step 0.11
PRT 0.1
PopSize 50
Migrations 4
Max. CF Evaluations (CFE) 5345

Table 3. Parameter set up for DE used as the second algorithm in meta-evolutionary
approach

Parameter Value

PopSize 40
F 0.8
CR 0.8
Generations 150
Max. CF Evaluations (CFE) 6000

5.1 Optimization with Evolutionary Approach

From Figure 1 (left) and Figure 1 (right), it follows, that ETDAS control method
with optimized parameters set up by means of SOMA algorithm is able to secure
robust, fast and precise stabilization of chaotic system on desired behavior.

Table 4. Simulation results for control of Hénon map with evolutionary approach

UPO K Fmax R CF Value CF Value per 1 run

p-1 -0.7513 0.4154 0.1280 3.86 10−14 3.86 10−15

p-2 0.4208 0.1767 0.3451 5.81 10−9 5.81 10−10

5.2 Optimization with Meta-evolutionary Approach

Simulations depicted in Figure 2 (left) lend weight to the argument, that AP
is able to synthesize a new control laws securing very quick and very precise
stabilization. Simulation results depicted in Figure 2 (right) shows the ability of
AP to synthesize a new control laws securing quick and also precise stabilization
for hardly controllable p-2 orbit.

5.3 Comparison of Both Approaches

Following Tables 6 and 7 contain brief statistical comparison of both approaches
for 50 runs.
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Fig. 1. Simulation results for the optimized ETDAS method settings: p-1 orbit (left)
and p-2 orbit (right)

Table 5. Simulation results for control of Hénon map with meta-evolutionary approach

UPO Synthesized control law CF Value

p-1 Fn = (xn − 1.46956xn−1)
(
xn−1 − xn − xn−xn−1

xn−1

)
1.3323.10−15

p-2 Fn = 0.342699xn−1 (0.7− xn−3 − xn) 3.8495.10−12

Table 6. Statistical comparison for both approaches – p-1 orbit

Evolutionary Approach Meta-evolutionary approach

Min. CF Value 3.86.10−15 1.33.10−15

Max. CF Value 4.89.10−15 4.66.10−15

Avg. CF Value 4.26.10−15 1.71.10−15

CF Value Median 4.28.10−15 1.67.10−15

Max CFE 5400 32 070 000
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Fig. 2. Simulation results for the best new synthesized control laws: p-1 orbit (left)
and p-2 orbit (right)
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Table 7. Statistical comparison for both approaches – p-2 orbit

Evolutionary Approach Meta-evolutionary approach

Min. CF Value 5.81.10−10 3.85.10−12

Max. CF Value 5.2332 1.2359
Avg. CF Value 1.8988 0.3358
CF Value Median 1.7475 0.1219
Max CFE 5400 32 070 000

6 Conclusion

This paper introduces two possible approaches for the optimization of stabiliza-
tion of Hénon Map, which was selected as an example of discrete chaotic system.
The first evolutionary approach represented tuning of parameters for an existing
control method, and the second meta-evolutionary approach represented synthe-
sis of whole control law by means of Analytic Programming (AP). The control
method used within the first approach was an inspiration for the creation of set
of rules for AP.

Obtained results show that synthesized control laws have given better results
than the original control method, which served as an inspiration. This fact rein-
force the argument that AP is able to solve this difficult problems and to produce
a new synthesized control law in a symbolic way securing desired behavior of
chaotic system. Precise and fast stabilization lends weight to the argument, that
AP is a powerful symbolic regression tool, which is able to strictly and precisely
follow the rules given by cost function and synthesize any symbolic formula, in
the case of this research, to synthesize the feedback controller for chaotic system.

Presented data and statistical comparison can be summarized as follows: Evo-
lutionary approach is easy to implement, very fast and gives satisfactory results.
But the quality of results are restricted by the limitations of the mathematical
formulas, control laws, models etc., for which the parameters are tuned by EA.
Meta-evolutionary approach brings the disadvantage of high time-costs, but it is
able to synthesize new symbolic formula, (control law in this case), which gives
even better results than the best ones obtained by evolutionary approach.

To obtain a one solution for evolutionary approach, 5400 CF evaluations were
required, whereas for meta-evolutionary approach, more than 32 millions CF
evaluations were required.
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Abstract. In this paper, we propose an intelligent system developed
for personal computer (PC) hardware configuration. The PC hardware
configuration is a hard decision problem, because nowadays in the com-
puter market we have very large number of PC hardware components.
Therefore, a choice process of personal computer having maximal effi-
ciency and minimal price is a very hard task. Proposed in this paper, the
PC hardware configuration system is based on multi-objective evolution-
ary algorithm. All detailed information about PC particular components
are stored in database. Using proposed system, personal computer can
be easily configured without any knowledge about PC hardware compo-
nents. As a test of the proposed system, in this paper we have configured
personal computers for game players and for office work.

1 Introduction

Nowadays, the problem of personal computer (PC) hardware configuration is
more and more complicated especially for users with low knowledge about PC
hardware components [4]. On the market we have very large number of different
graphics cards, processors, RAM memory cards and so on. During the personal
computer purchasing process, the main decision problems concerns the configu-
ration of particular hardware components that can assure a required efficiency
together with acceptable price. In short, we want to obtain maximal efficiency
of PC configuration and minimal price. Moreover, one PC configuration which
ideally works with office software applications, will be probably not efficient for
multimedia applications. In this paper to solve this multi-objective optimization
problem, the PC hardware configuration (PCHC) system is proposed. In pre-
sented system we use a database server to store the detailed specifications of
PC hardware components which are currently available at the computer mar-
ket. Also, the results of hardware components efficiency taken from benchmark
tests and actual price are stored in the database too. The main part of pro-
posed system is an evolutionary multi-objective optimization algorithm. This
algorithm is based on SPEA2 (Improving the Strength Pareto Evolutionary Al-
gorithm) algorithm [1, 2]. The evolutionary algorithms [5, 6] are widely used to

� This paper, I would like dedicate to my Wife Justyna and my Son Michal – October
2011.
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solve engineering problems like: digital filter design [7], neural network training
[8]. Also, in engineering the evolutionary multi-objective optimization is use-
ful and applied to solve such problems as: medium voltage network design [9],
mechatronic design [10]. However, the problem of evolutionary multi-objective
optimization of PC hardware components configuration is not explored widely
in literature. We can find the papers [4, 11, 12] where intelligent techniques are
used to PC configuration problem. However, in these papers users can not define
the PC preferences in detail. In the proposed PCHC system, each PC compo-
nent possesses weight of its importance, therefore user can easily define different
variants of PC hardware configuration. We believe that PCHC system proposed
in this paper, can be easily implemented and used in any computer store to
help workers in configuration of personal computers. Also, the proposed PCHC
system can be used by potential customers in order to help in making decision
in purchasing suitable personal computer.

2 Architecture of PC Hardware Configuration System

The proposed PCHC system is developed as a client-server system and composed
of two parts: Windows GUI application (client) with evolutionarymulti-objective
optimization algorithm and MySQL database (server) with detailed information
about particular PC hardware components. The PC hardware components can
be added, modified and deleted from the database using Windows GUI appli-
cation. Also, in this application we have possibility to define our preferences
about personal computer. We can determine which PC hardware components
are important to us. Therefore, the search of possible PC configuration (using
multi-objective evolutionary algorithm) will be based on our previously defined
PC hardware preferences.

3 General Idea of Optimization Algorithm

3.1 Representation of Individuals

In the developed PCHC system individuals represent particular hardware com-
ponents of the personal computer. The data structure of individual is shown
in Figure 1, and it is composed of 10 genes. Each gene represent one hardware

Fig. 1. Data structure for each individual in population

component of personal computer. In one gene the identification number (id)
for given hardware component is written down. The identification numbers are
taken from database where each hardware component possess unique id num-
ber. In the individual the peripheral components like: printer, scanner, casing,
keyboard and mouse were not included.
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3.2 Optimization Algorithm in Detail

The optimization algorithm is a part of developed PCHC system is based on
SPEA2 algorithm [1, 2] and is composed of ninth steps.

In the first step, the population P consisting ofM individuals (the structure of
individual is presented in Figure 1) is created randomly. Also, an empty Pareto
front P having N places for potential individuals is created.

In the second step, after initialization of population P in optimization al-
gorithm, each individual is checked whether the personal computer hardware
configuration stored in is acceptable. If configuration written down in given in-
dividual is correct then algorithm jumps to the third step. However, if personal
computer hardware configuration is not acceptable then the repair algorithm is
started. During repair process it is assumed that the motherboard is the com-
ponent of the highest priority in the personal computer. Therefore, all other
components must fit to the given motherboard. If given components are not
compatible with selected motherboard then these components are replaced by
other components taken from the database. Also in the repair algorithm, the
graphics card possesses higher priority than monitor. It means that in the case
when the monitor does not has compatible connections with graphics card, then
the monitor is replaced by other model. The repair algorithm is operating until
the individual without any hardware conflicts is created.

In the third step, all individuals in population P and in the Pareto front P
are evaluated. Each individual is evaluated using two criteria. The first is a price
(PR) of the given personal computer, and the second is an efficiency (EF) of the
configured personal computer. Of course, the price of the personal computer is
approximately the sum of the prices of all its elements. The efficiency of per-
sonal computer is calculated as the weighted mean of efficiencies of its particular
components. The efficiency value for each component is in the range [0; 100].
Both the price and the efficiency values for given personal computer hardware
component have been taken from the results of the benchmark tests which can
be found in the http://www.chip.pl web site. Due to the efficiency calculation as
a weighted mean, we can avoid the overestimate of personal computer efficiency
by such components like: monitor or network card. The equations for personal
computer price, and personal computer efficiency are as follows:

PRi =
n∑

k=1

pricek (1)

EFi =

∑n
k=1 (wk · efficiencyk)

n
(2)

where: PRi is a price of the personal computer which components are stored
at i − th individual; EFi is a weighted mean efficiency (in the range [0; 100])
for the personal computer which components are stored at i − th individual; n
is a number of personal computer components (in proposed PCHC system we
have 10 components); wk is a weight for a k − th component (wk ∈ [0; 8]; the
”0” is that efficiency of given PC hardware component which is not important
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for us and the ”8” is that efficiency of given PC hardware component which is
absolutely important for us), pricek is a price for k− th component; efficiencyk
is a efficiency for k − th component; i is a number of individual and it is in the
range [1; M +N ].

Next, a strength value S(i) is assigned for each individual in the population
P and in the Pareto front P . The strength value S(i) represents the number of
solutions dominated by solution i− th both in population P and in the Pareto
front P .

In our case, the personal computer A dominates the personal computer B, if
and only if: (PRA ≤ PRB ∧ EFA > EFB) ∨ (PRA < PRB ∧EFA ≥ EFB)

After the value of S(i) has been computed for all individuals in the population
P and in the Pareto front P , the raw fitness R(i) for each individual is computed
as follows:

R(i) =

P+P∑
j=1,j�i

S(j) (3)

where: P + P is a sum of the individuals in population P and Pareto front P ;
� represents a dominance relation (j � i - j − th individual dominates i − th
individual).

The value of R(i) is equal to 0 when solution (individual) i − th is non-
dominated. Otherwise, when i− th solution is dominated by other solutions, the
raw fitness R(i) possesses higher value.

Although the raw fitness assignment provides a sort of niching mechanism
based on the concept of Pareto dominance, it may fail when majority of individ-
uals do not dominate each other [2]. Therefore, additional density information
is incorporated to discriminate between individuals having identical raw fitness
values [2]. The density estimation techniques is based on k− th nearest neighbor
method taken from [3].

In order to compute a density D(i) for i− th individual, the distances σj
i (in

objective domain) between i− th individual and all other j− th individuals from
the population P and from Pareto front P are computed using Euclidean metric
and stored in a list L in the memory of the system.

Next, the results stored in a list L are sorted in increasing order. After sorting
process, the k− th value (k =

√
M +N) from the top of the list L is taken as a

distance value to k− th nearest neighbor for i− th individual and marked as σk
i .

Based on taken distance value σk
i , the density D(i) is computed (identical as

in paper [2]) for i− th individual as follows:

D(i) =
1

σk
i + 2

(4)

In the denominator of D(i), the number two is added to ensure that its value
is greater than zero and that D(i) < 1 [2]. Finally, when we add the value of
D(i) to the value of raw fitness R(i), we obtain final fitness value F (i) for i− th
individual, as follows:

F (i) = R(i) +D(i) (5)
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In the fourth step, all non-dominated solutions (for which F (i) < 1) from Pareto
front P and population P are copied to the new Pareto front Pnew. If after copy-
ing process, the number of individuals (solutions) in the new Pareto front Pnew

is equal to the number of individuals in the old Pareto front P then algorithm
jumps to the step sixth.

In the fifth step of the algorithm, the individuals are added or removed from
the new Pareto front Pnew. In the case, when the number of individuals in the
new Pareto front Pnew < N then the individuals from the old Pareto front P and
from population P are stored in a list H. Next, the individuals from the list H
are sorted in an increasing order of their fitness value F (i). After sorting process
first the best N − Nnew dominated individuals (where Nnew is the number of
individuals in the new Pareto front Pnew) for which fitness value F (i) ≥ 1 are
copied to the new Pareto front Pnew. In the case, when number of individuals
in the new Pareto front Pnew > N the individuals are iteratively removed from
the new Pareto front Pnew until the number of individuals in the new Pareto
front Pnew will be equal to the number of individuals in the old Pareto front
P (Nnew = N). In each iteration the i − th individual from Pnew having the
lowest distance to the other individuals from Pnew (the lowest value of σj

i ) is
removed from the new Pareto front Pnew. If in the new Pareto front Pnew exist
several individuals with the same values of the lowest σj

i then the second lowest
distance is considered and so forth. And finally, at the end of this step the new
Pareto front Pnew is assigned to the old Pareto front P .

In the sixth step of the algorithm, the termination criterium is checked. In
this paper we have assumed maximal number of generation Gmax as a stopping
criterium. If termination criterium is fulfilled then, the result of the algorithm
operation are the individuals (solutions) from the actual Pareto front P . These
solutions are returned as a final result and the algorithm operation is stopped.
Otherwise, if termination criteria is not fulfilled, the seventh step is executed.

In the seventh step, the selection of individuals to the new population is per-
formed. In proposed algorithm, we have used a tournament selection [5, 6] (with
size of tournament group equal to 2 individuals). In tournament selection, the
M tournaments are prepared. Two randomly chosen individuals from population
P are selected to each tournament. The winner of the tournament becomes the
individual having lower value of the fitness function. This winner individual is
selected to the new population.

In the eight step, the genetic operators like: crossover and mutation are
performed on individuals from population P . In the crossover operation, first
we randomly create a crossover pattern CP for each pair of crossed individu-
als. The crossover pattern CP consist of 10 numbers ”0” or ”1” taken using
pseudo-random generator (we have 10 personal computer hardware components
in PCHC system). After CP creating process, we want to have exactly five
numbers ”1”, and five numbers ”0” in randomly created crossover pattern CP .
Based on CP , the crossover operation is performed as shown in Figure 2.

Next, the mutation operator is performed. In the mutation operation, we have
assumed that only one gene can be mutated in the individual which is selected
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Fig. 2. Scheme of crossover operator implemented in proposed PCHC system

to the mutation. During mutation operation, the new hardware component is
randomly selected from the database, and then inserted in the randomly selected
place of mutated individual. The operation of mutation operator is explained in
Figure 3.

In the ninth step, the algorithm jumps to the second step.

Fig. 3. Scheme of mutation operator implemented in proposed PCHC system
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4 Descriptions of Experiments

In the experiment, we have assumed following parameters for the evolutionary
algorithm: M = 100, N = 20, Gmax = 1000, tournament group size equal
to 2, probability of mutation equal to 0.01, probability of crossover 0.4. The
specifications of PC hardware components (efficiency and price) are taken from
http://www.chip.pl.

In the first test, the PC having the highest efficiency is searched. We have
assumed, that PC should possess integrated: sound card, and network card.
Also, the most important components are processor and graphics card. Such PC
is especially required by game players. In the second test, the PC for office work
is searched. We have assumed, that PC should possess integrated: sound card,
network card, and graphics card. In this PC, the most important components are:
processor and RAM memory. Values of the weights wk for each PC component
are presented in Table 1.

In both tests, as results we have obtained 20 PC configurations. In Table 1, we
have presented only one solution (which has average price of all prices obtained
in given test) obtained for each test.

In the first test, we have obtained the PC configurations with prices in the
range between 447 USD and 4475 USD. Also, it is worth to note that 14 PC
configurations (on 20 generated) possess efficiency higher than 90 (maximal pos-
sible efficiency in PCHC system is equal to 100). The majority of obtained PCs
possess Intel processors, because these are more efficient than other processors,
but their prices are higher. In the second test, we have obtained the PCs with
prices in the range between 418 USD and 2433 USD. The majority of obtained

Table 1. Values of weights wk and PC configuration obtained using PCHC system

PC hardware Test number one Test number two
components PC for computer games PC for office work

wk Selected PC components wk Selected PC components

Processor 8 Intel Core i7-870 5 AMD Phenom II
X6 1100T Black Edition

Graphics card 8 Sapphire Radeon HD5970 1 Integrated
Toxic 4096MB GDDR5

Motherboard 4 Gigabyte GA-H55-UD3H 3 MSI 890GMX-G65

RAM memory 4 Patriot Viper II Sector 5 5 Patriot Viper II Sector 5
4GB (2x2GB) 2400MHz 4GB (2x2GB) 2400MHz

Hard Disc 4 Western Digital Veloci Raptor 3 Western Digital Veloci Raptor
WD6000HLHX 600GB WD1500HLFS 150GB

Sound card 2 Integrated 2 Integrated

Network card 2 Integrated 2 Integrated

Optical drive 1 LG GH22NS50 1 LG GH22NS70

Monitor 1 iiyama ProLite E2200WS 1 Asus VW221D

Price: 2423 USD Price: 993 USD
Efficiency: 96.93 Efficiency: 93.11
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PC configurations possess AMD processors which have acceptable prices and
efficiencies. Generally, majority of PC configurations are located in the price
range from 418 USD to 1254 USD, and are satisfactory for office work. The PC
hardware configurations, shown in Table 1 represent a good compromise between
their efficiencies and prices.

5 Conclusions

In the paper the intelligent system for PC hardware configuration has been
proposed. Using proposed PCHC system personal computers can be configured
depending on user preferences. The results of PCHC system is not a single solu-
tion, but a whole Pareto front which consists of several (in our experiments with
20 solutions) solutions. Therefore, after optimization process we can finally de-
cide which personal computer hardware configuration is the best for us (cheaper
with lower efficiency or more expensive with higher efficiency).
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Abstract. An optimal trade-off between exploration and exploitation
properties of genetic algorithm is very important in optimization pro-
cess. Due value steering of these two factors we can prevent a premature
convergence of the algorithm. Therefore, better results can be obtained
during optimization process with the use of genetic algorithm. In this
paper the type-2 fuzzy logic control of trade-off between exploration and
exploitation properties of genetic algorithm is presented. Our novel se-
lection method (with application of type-2 fuzzy logic to steering of key
parameter in this selection method) is based on previously elaborated
mix selection method. In proposed method two factors are taken into
consideration: the first is a number of generations of genetic algorithm,
and second is a population diversity. Due to these two factors, we can
control the trade-off between global and local search of solution space;
also due to the type-2 fuzzy control the proposed method is more ”im-
mune” in falling into the trap of local extremum. The results obtained
using proposed method (during optimization of test functions chosen
from literature) are compared with the results obtained using other se-
lection methods. Also, a statistically importance of obtained results is
checked using statistical t-Student test. In almost all cases, the results
obtained using proposed selection method are statistically important and
better than the results obtained using other selection techniques.

1 Introduction

In design of effective genetic optimization methods, it is important to assure
optimal relation between exploration and exploitation of a solution space. If these
two properties are controlled in suitable manner during optimization process,
then the optimization process became more effective and better solutions can
be obtained at the same time; also the problem of premature convergence is
minimized. In 1994 Back has shown that the selection process can control the
level of exploration and exploitation of solution space by varying a selection
pressure [1]. If in genetic algorithm, the selection pressure is higher then we have
larger exploitation property [2], and of course if selection pressure is lower then
we have larger exploration property [2]. Therefore, we can see that the value of

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 368–376, 2012.
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selection pressure is critical in designing a selection mechanism. The properties
of selection pressure have been widely studied in area of genetic algorithms
[3, 4] for several decades. However tuning of the selection pressure is still difficult
task, and remains an important and open problem in genetic algorithms [5, 6].
Many selection methods have been developed. Among them we can mention:
roulette selection [7], elitist selection [8], deterministic selection [9], tournament
selection [10], truncation selection [11], fan selection [12], mix selection [13]. The
main idea of the mix selection is that at the start of the algorithm operation
the whole solution space is searched globally, and together with an increase of the
number of algorithm generations the solution space is searched more and more
locally [13]. The main advantage of the mix selection is a possibility of defining
relations between global and local searches of a potential solution space [13].
However, the problem is how this relations between global and local searches
should vary during optimization process. Therefore, in this paper, we propose
an application of type-2 fuzzy logic to control the properties of the mix selection.
The novel selection method proposed in this paper is called as T2FLM (Type-2
Fuzzy Logic for Mix selection). The T2FLM method has been tested using test
functions chosen from literature. The results obtained using T2FLM selection
are compared with results obtained using other existing selection methods.

2 Type-2 Fuzzy Logic for Mix Selection - T2FLM

The T2FLM selection method is based on elaborated earlier mix selection (more
detailed information about mix selection can be found in [13]). In proposed
T2FLM method, the α (α ∈ [-1; 1]) parameter from mix selection is controlled
using type-2 fuzzy logic. Described fuzzy logic system with at least one type-2
fuzzy set is called a type-2 fuzzy logic system [14]. Type-1 fuzzy logic systems
[15] can not directly handle rule uncertainties, because they use type-1 fuzzy sets
that are certain. On the other hand, type-2 fuzzy logic systems, are very useful
in circumstances where it is difficult to exactly determine values of parameters
[16]. In our case, the population diversity for example is a parameter which is
hard to exactly determine. In literature, many different metrics for computation
of population diversity in genetic algorithms exist. It is known that type-2 fuzzy
sets [17] allow us to model and to minimize the effects of uncertainties in rule-
based fuzzy logic system. Unfortunately, type-2 fuzzy sets are more difficult
to use and understand than type-1 fuzzy sets; hence, their application is not
widespread yet [14]. As we mentioned at the start of this section, the proposed
T2FLM selection method is based on mix selection [13]. In the mix selection [13],
the values of relative fitness rfitness for particular individuals are computed as
follows:

• for the best individual (in the case when α ≥ 0)

rfitness′max = rfitnessmax + (1− rfitnessmax) · α (1)
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• for others individuals (in the case when α ≥ 0)

rfitness′ = rfitness ·
(

rfitnessmax − rfitness′max∑M
i=1 rfitnessi − rfitnessmax

+ 1

)
(2)

• for all individuals (in the case when α < 0)

rfitness′ = rfitness+

(
rfitness− 1

M

)
· α (3)

where: rfitness′max-new relative fitness of the best individual; rfitnessmax-old
relative fitness of the best individual; α-scaling factor α ∈ [−1; 1]; rfitness′-
new relative fitness of chosen individual; rfitness-old relative fitness of chosen
individual; M -number of individuals in population.

An interesting question is: how the value of α parameter should be changed in
order to assure a good trade-off between exploration and exploitation properties
of genetic algorithm. In paper [13] the linear increase of the value of α parameter
(during successive algorithm generations) has been proposed. However, this is not
a good solution, because the control of exploration and exploitation properties
is strongly dependent on the optimization problem being solved.

In this paper, we propose application of type-2 fuzzy logic to control the value
of α parameter. We assume two input linguistic variables: population diversity
(PD ∈ [0; 1]) which is represented by type-2 fuzzy sets (presented in Figure
1a), and generation percentage (GP ∈ [0; 1]) which is represented by type-1
fuzzy sets (presented in Figure 1b). In the proposed type-2 fuzzy logic system
only one output linguistic variable exists. This output variable is the α (α ∈
[-1; 1]) parameter which is represented by type-1 fuzzy sets (presented in Figure
1c). Each linguistic variable possesses five linguistic values: low (L), medium-low
(ML), medium (M), medium-high (MH) and high (H).

A relation between input linguistic variables and output linguistic variable
is determined by 25 fuzzy rules. The general idea of these rules is taken from
[18]. In short we can say, that at the initial stage of the genetic algorithm opera-
tion, the exploitation property should be reduced, and the perturbation factor to

(a) (b) (c)

Fig. 1. Graphical representation of fuzzy sets which represent: the input linguistic value
PD (a), the input linguistic value GP (b), the output linguistic value α (c)
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explore the search space should be increased as much as possible. During succes-
sive generations, exploration needs to be reduced gradually (perturbation factor
should be lower and lower), and exploitation property should be increased [18].
25 fuzzy rules Rk(k ∈ [1; 25]) are implemented in the proposed method using
following scheme Rk: (PDk, GPk, αk). This scheme for the rule Rk we can read
as: IF (PD is PDk) AND (GP is GPk) THEN α is αk

R1: (L, L, M) R2: (L, ML, M) R3: (L, M, MH)
R4: (L, MH, H) R5: (L, H, H) R6: (ML, L, M)
R7: (ML, ML, M) R8: (ML, M, M) R9: (ML, MH, MH)
R10: (ML, H, H) R11: (M, L, ML) R12: (M, ML, M)
R13: (M, M, M) R14: (M, MH, M) R15: (M, H, MH)
R16: (MH, L, L) R17: (MH, ML, ML) R18: (MH, M, M)
R19: (MH, MH, M) R20: (MH, H, M) R21: (H, L, L)
R22: (H, ML, L) R23: (H, M, ML) R24: (H, MH, M)
R25: (H, H, M)

In the type-2 fuzzy controller, we have used MIN-MAX operators, KM algorithm
[19] was used to type-reduction, and the defuzzification was performed using
center-of-gravity method [16]. The type-2 fuzzy controller was implemented as a
table controller. Therefore, the time consumption in proposed T2FLM selection
method is not much higher than in other selection methods.

3 The Metrics for GP and PD Factors in T2FLM Method

In the proposed T2FLM method the values of linguistic input variables are com-
puted as follows:

• for GP (generation percentage)

GP =
IT

Tmax
(4)

where: IT - is a current number of iteration of the algorithm, Tmax− is a maxi-
mal number of iterations of the algorithm

• for PD (population diversity)

PD = 1−
n∑

i=1

M∑
j=1

(xi,j − ci)
2 ; ci =

∑M
j=1 xi,j

M
(5)

where: xi,j is a value of i-th decision variable in the j-th individual, M is a
number of individuals in population, n is a number of variables in the function
being optimized.
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Additionally, the value of PD was normalized (in the range [0; 1]). The nor-
malization process was performed in order to obtain the full range of variability
for this linguistic value. The normalization was dynamically performed after each
iteration of the algorithm using formula:

PDnorm,i =
PDi − PDmin

PDmax − PDmin
(6)

where: PDnorm,i is a normalized value of linguistic variable PD which is applied
to the input of proposed fuzzy controller in i-th iteration of the algorithm, PDmin

is the lowest value of PD form iteration already performed, PDmax is the highest
value of PD form iteration already performed, PDi is the value of PD obtained
for i-th iteration of the algorithm.

4 Assumed Test Functions

The test functions were taken from the paper [13] (GM represents the global
minimal value, n represents number of variables in the function being optimized,
in all functions minimization problem was considered).

• De Jong function F1∑n
i=1 x

2
i ; −100 ≤ xi ≤ 100; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30

• Ackley function F2

20− 20 · exp
(
−0.2 ·

√
1
n · ∑n

i=1 x
2
i

)
+exp(1)−exp

(
1
n · ∑n

i=1 cos (2 · π · xi)
)
;

−100 ≤ xi ≤ 100; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Griewank function F3

1
4000 · ∑n

i=1 x
2
i −

∏n
i=1cos

(
xi√
i

)
+1

−600 ≤ xi ≤ 600; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Rastrigin function F4
10 · n+∑n

i=1

(
x2
i − 10 · cos (2 · π · xi)

)
−500 ≤ xi ≤ 500; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 20
• Schwefel function F5
418.9828872724339 · n−∑n

i=1

(
xi · sin

(√|xi|
))

−500 ≤ xi ≤ 500;
GM=0 in (x1, x2, ..., x30) = (420.96874636, ..., 420.96874636); n = 30
• High Conditioned Elliptic function F6∑n

i=1

(
106

) i−1
n−1 · x2

i ;−5 ≤ xi ≤ 5;
GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Non-Continuous Rastrigin function F7∑n

i=1

(
y2 − 10 · cos (2 · π · yi) + 10

)
; yi =

{
xi, when |xi| < 0.5
round (2 · xi) /2, when |xi| ≥ 0.5

−500 ≤ xi ≤ 500; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Non-Continuous Expanded Schaffer function F8
F (y1, y2) + F (y2, y3) + ...+ F (yn−1, yn) + F (yn, y1) ; F (x, y) =

= 0.5 +

(
sin2

(√
x2+y2

)
−0.5

)

(1+0.001·(x2+y2))2
yi =

{
xi, when |xi| < 0.5
round (2 · xi) /2, when |xi| ≥ 0.5
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−500 ≤ xi ≤ 500; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Rotated Expanded Schaffer function F9
F (x1, x2) + F (x2, x3) + ...+ F (xn−1, xn) + F (xn, x1) ; F (x, y) =

= 0.5 +

(
sin2

(√
x2+y2

)
−0.5

)

(1+0.001·(x2+y2))2
−500 ≤ xi ≤ 500;

GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• De Jong function F10∑n

i=1 i · x4
i ; −100 ≤ xi ≤ 100;

GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Bohachevsky function F11∑n

i=1

(
x2
i + 2 · x2

i+1 − 0.3 · cos (3 · π · xi)− 0.4 · cos (4 · π · xi+1) + 0.7
)

−15 ≤ xi ≤ 15; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Rosenbrock function F12∑n

i=1

(
100 · (x2

i − xi+1

)2
+ (xi − 1)2

)
−5 ≤ xi ≤ 5; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Scaled Rastrigin function F13

10 · n+
∑n

i=1

((
10

i−1
n−1 · xi

)2

− 10 · cos
(
2 · π · 10 i−1

n−1 · xi

))
−5 ≤ xi ≤ 5; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Skew Rastrigin function F14

10 · n+
∑n

i=1

(
y2i − 10 · cos (2 · π · yi)

)
; yi =

{
10 · xi, when xi > 0
xi, otherwise

−5 ≤ xi ≤ 5; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30
• Schaffer function F15∑n−1

i=1

(
x2
i + x2

i+1

)0.25 · [sin2
(
50 · (x2

i + x2
i+1

)0.1)
+ 1

]
−100 ≤ xi ≤ 100; GM=0 in (x1, x2, ..., x30) = (0, 0, ..., 0); n = 30

5 Description of Experiments

The experiments were performed using test functions presented in section four.
In genetic algorithm, the following parameters were assumed: individuals were
coded as real-number strings (each gene represents one variable in the function
being optimized), Tmax=1000, M=50, probability of crossover = 0.7, probability
of mutation = 1

n . The individuals in population were created randomly. Simple
one-point crossover [7] was taken as a crossover operator. The non-uniform mu-
tation [7] was taken as a mutation operator (for mutation operator the level of
inhomogeneity was equal to 2). During the operation of the genetic algorithm
only selection operator was changed. The parameter a=0.3 was taken for fan
selection (identically as in paper [12]). The size of tournament group equal to 2
was assumed for tournament selection. Truncation threshold equal to 0.5 was as-
sumed for truncation selection. In experiments, the evolutionary algorithm was
executed 25 times for each test function. In Table 1, the average values of the
test functions obtained after 25-fold repetition of genetic algorithm with different
kind of selection methods (SM) are presented.
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Table 1. Average values of the best results obtained after 25-fold repetition of evolu-
tionary algorithm for each selection method: RO-roulette, EL-elitist, FAN-fan, TOU-
tournament, DET-deterministic, TRU-truncation, MIX-mix, T2FLM-type-2 fuzzy mix

SM F1 F2 F3 F4 F5

RO 351.93±88.10 5.11±0.64 4.58±0.99 3494±825 1201.16±294.79

EL 169.69±55.30 3.69±0.25 2.47±0.37 1493±508 276.06±123.33

FAN 1.15±0.41 0.34±0.09 0.83±0.14 72.33±14.21 2.90±1.42

TOU 78.61±19.25 3.58±0.31 1.72±0.17 811.95±201.71 470.96±187.69

DET 160.63±34.52 3.85±0.32 2.46±0.35 1681±340.73 402.58±161.72

TRU 47.88±13.20 2.94±0.27 1.47±0.11 579.57±123.74 206.08±104.54

MIX 0.42±0.19 0.21±0.06 0.46±0.13 45.63±7.29 67.73±82.63

T2FLM 0.27±0.12 0.16±0.04 0.35±0.09 35.98±5.22 0.94±0.53

SM F6 F7 F8 F9 F10

RO 50715±22113 9606±2709 9.77±0.73 9.92±0.60 2093696±775961

EL 8059±3493 4056±1024 6.69±0.57 6.83±0.61 430902±168779

FAN 25.40±12.83 112.35±26.15 3.28±0.45 3.40±0.51 2.88±2.53

TOU 578.30±157.29 2612±597 7.66±0.62 7.62±0.56 30555±14153

DET 7042±2895 4710±1275 7.42±0.66 7.39±0.71 451341±163243

TRU 279.63±112.13 1493±360 6.68±0.96 6.91±0.52 11263±6426

MIX 15.23±13.40∗ 60.25±13.97 2.93±0.43 2.94±0.47∗ 0.35±0.25

T2FLM 13.30±9.84 45.72±11.20 2.62±0.59 2.65±0.65 0.14±0.21

SM F11 F12 F13 F14 F15

RO 43.74±6.58 8285±3290 136.12±20.62 117.19±15.18 64.73±7.77

EL 26.87±3.31 2588±942 93.17±14.41 91.96±14.27 51.36±4.93

FAN 1.05±0.37 130.62±27.98 7.89±2.44 4.76±1.90 22.27±2.92

TOU 19.46±2.96 593.36±207.23 67.60±9.27 51.32±9.84 47.63±5.00

DET 26.50±3.31 2412±834.02 86.27±12.48 77.89±11.20 48.74±4.07

TRU 14.04±1.98 480.87±335.83 50.98±5.34 43.43±6.53 41.92±4.22

MIX 0.34±0.10 94.62±37.88∗ 4.54±2.16 3.90±1.48 17.97±2.41

T2FLM 0.26±0.11 93.85±40.23 2.76±1.12 1.59±0.94 16.48±2.69

In order to check a statistically importance of obtained results for T2FLM
method, the t-Student statistical test (with 48 degree of freedom) was performed
for all combinations of the results obtained using T2FLM method and results ob-
tained using other selection methods. In Table 1, the symbol ”*” represents that
given result is not statistically important (with 95% degree of trust). We can see
from Table 1, that in all cases results obtained using proposed T2FLM method
are better than results obtained using other selection methods. Moreover, the
results obtained using T2FLM are in 102 cases (on 105 possible) statistically
important with 95% degree of trust.

6 Conclusions

In this paper, the new T2FLM selection method was presented. The T2FLM
method is based on mix selection [13] elaborated in 2010. In the T2FLM method
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the type-2 fuzzy sets were applied to control the values of the α parameter in
the mix selection. The computational complexity of T2FLM method is not much
higher than in other selection methods (because we have used type-2 fuzzy logic
table controller). Unfortunately the results of computation complexity can not
be presented in this paper because of space limitation. Based on the results ob-
tained using t-Student statistical test, the results obtained using T2FLMmethod
are statistically important in almost all cases. Compared to the mix selection,
the results obtained using T2FLM method are in 12 cases (on 15 possible) sta-
tistically important. We believe that proposed method can be used in practical
applications of genetic algorithms in order to increase their efficiency.
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Abstract. We consider the problem of propensity modeling in consumer finance.
These modeling problems are characterized by the two aspects: the model needs
to optimize a business objective which may be nonstandard, and the rate of oc-
curence of the event to be modeled may be very low. Traditional methods such as
logistic regression are ill-equipped to deal with nonstandard objectives and low
event rates. Methods which deal with the low event rate problem by learning on
biased samples face the problem of overlearning. We propose a parallel genetic
algorithm method that addresses these challenges. Each parallel process evolves
propensity models based on a different biased sample, while a mechanism for val-
idation and cross-pollination between the islands helps address the overlearning
issue. We demonstrate the utility of the method on a real-life dataset.

1 Introduction

A financial institution such as a retail bank that offers a portfolio of products (loans,
credit cards etc.) to its customers would typically have a database that contains the
information pertaining to the history of each customer’s relationship with the firm.
This information may include socio-demographics, account history and transactional
information (disbursements, repayments etc.) pertaining to the various products that
the customer has taken with the firm. The prime imperative of Customer Relationship
Management (CRM) is to leverage such information to identify and retain customers
who are profitable to the bank while limiting the number of unprofitable or risky cus-
tomers. Given this imperative, the bank may engage in a variety of actions from both
a marketing and a risk perspective. These actions could include identifying potential
defaulters and initiating risk management actions (such as limiting the credit offered to
such customers), identifying potentially profitable borrowers and initiating marketing
actions (such as proactively extending credit) etc.

The above actions are often predicated on the existence of predictive models that
allow the bank to gauge the propensity of the customer to exhibit a certain type of be-
haviour (default on a loan, response to a product offer), based on information available
about the customer at the time of making the prediction. These models are typically
built on the basis of historical data regarding the behaviour of customers in similar
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situations. An example of such a process in the case of response to a product offer is
illustrated in figure 1. The model for propensity of a customer to respond to a marketing
offer during a campaign is built by linking the customer inputs (labeled 1 in the figure)
to the output, namely response (labeled 2). Once this model is built, it is applied on
customer-level inputs (labeled 3) in a new campaign, and the predictions are used to
pick the customers to target in that campaign. Similar propensity models can be built to
predict other aspects of customer behaviour as well, such as default on a loan, attrition
on a credit card etc.

Fig. 1. Propensity Modeling: Example

One problem associated with propensity modeling in consumer finance is that the
event in which we are interested in may not occur often. We call the rate of occurrence
the event rate. In fairly mature consumer finance markets, it is very common to see event
rates as low as 1% or less for response to marketing offers. Often, such a problem is also
associated with an asymmetric payoff for correct identification of the two classes. For
instance, if the rare event to be modeled is that of a customer responding favourably to
a marketing offer, then the profit to be gained from the response is usually much higher
than the amount saved in marketing costs if that customer is ignored. This means that
the performance metrics relevant to such a problem are more likely to focus on the
ability to identify the rare event correctly, rather than the number of non-events that are
misclassified ([2]).

Owing to the need for easy interpretation of these propensity models and verification
of the model coefficients against business insight, they are typically constrained to have
a linear functional form. Typically, these models are built using the logistic regression
technique. This method models the logarithm of the odds of the event occurring as a
linear function of a set of covariates. That is,

Pr (y|x1 . . . xn) =
1

1 + e−(β0+β1x1+...βnxn)
(1)

where y ∈ (0, 1) is the desired output (the event to be modeled) and x1 . . . xn are the
attributes related to the customer. The logistic regression method essentially finds the
model (i.e., the set of values β0, β1 . . . βn) on the basis of a labeled sample.
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Logistic regression faces one difficulty, namely that the objective it pursues while
finding the various β values is that of maximizing the likelihood function. While this is a
well-behaved function, it does not necessarily translate directly to the business objective
of interest. For instance, if the business objective in a response modeling problem is to
find a model such that most of the potential respondents are captured within the top
10% of the scores, then it is possible that the maximum likelihood estimator does not
provide the best model for this purpose. Therefore, we consider the use of a direct
search method such as genetic algorithms to build propensity models [1].

Apropos the problem of modeling the propensity of a rare event, it has been shown
that better propensity models can be built by “biasing” the training sample in favour of
the event in question, such that it has a high proportion of event observations. The use
of biased samples for training in rare event problems is quite common in practice [5].
While this allows the learning algorithm to model the separation between events and
non-events better, it runs the risk of overlearning (or under-learning), depending on the
characteristics of the biased sample.

One option is to introduce several biased samples and develop a method that has the
capability of sharing the properties of the models developed on these biased samples,
thereby making the models more robust in terms of their performance on an (unbiased)
test sample.

In this paper, we present a parallel genetic algorithm-based method that evolves
multiple models using a plurality of biased samples. Each of these samples provides
a different perspective on the separation between events and non-events in the data.
However, in order not to overlearn from any particular sample, we also provide a mech-
anism for cross-pollination between the models built on these different samples. We ad-
dress design issues regarding the creation of biased samples, communication between
the various model populations evolving in parallel and choice of final model. We illus-
trate the effectiveness of this approach on a real-life problem from the consumer finance
industry.

The organization of this paper is as follows: Section 2 outlines the various issues
involved in designing an appropriate GA to solve the rare event problem and then de-
scribes the actual algorithm designed. Section 3 illustrates its effectiveness on a real-life
problem from the consumer finance industry. Section 4 concludes and suggests direc-
tions for further work in this area.

2 Algorithm Design

The problem of learning a rare event can be posed as follows: Find a function f that
best approximates the relationship between a set of inputs x1 . . . xn and an output y ∈
{0, 1}, wherein the proportion of 1s to 0s in the population is very small.

As discussed in the previous section, there are two challenges which we need to
address while developing a propensity model for low event rate data: optimizing objec-
tive functions that directly address the business requirements, and building models with
good generalization ability from biased samples. This section proposes a Genetic Algo-
rithm based method for propensity modeling which takes care of these requirements.

Genetic algorithms attempt to optimize a given objective, by starting with a popu-
lation of candidate solutions and evolving to a better set of solutions over a number of
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generations. The process is stopped when either a prespecified number of generations
have passed, or if no performance improvement has been observed over the last few
generations. The process can be applied to building propensity models, wherein each
model is a candidate solution that attempts to optimize some objective such as, for in-
stance, the area under the receiver operating characteristic (ROC) curve. Figure 2 gives
a diagrammatic representation of this process.

Fig. 2. Genetic algorithm for propensity modeling

In order to use genetic algorithms to model the propensity of occurrence of a rare
event, we use a biased sample to calculate the objective function (in this case, the per-
formance of the model on the biased sample). In order to account for the fact that the
biased sample may represent only a restricted view of the example space, we use mul-
tiple biased samples, and use a GA to train on each of them. This naturally raises a
number of questions, which we shall outline below.

1. How are the various biased samples created? What is the logic behind the method
of creation of these samples? This question is important because it determines the
specific perspective of the separating surface between 1s and 0s that each biased
sample gets. For instance, if the data is segmented according to some variable (or
set of variables) and biased samples are drawn from the various segments, then
the relative performance of the models on the various biased samples itself implies
a certain hypothesis on how the segmentation method affects the output. This ap-
proach might work well if there is some domain knowledge that allows us to decide
on the segmentation.

A random split, on the other hand, might work well if one does not possess
this domain knowledge. However, in this case, we might need more biased samples
in order to increase the likelihood of capturing the best aspects of the separating
surface through some biased sample or the other.
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Another aspect of this question is whether or not the various biased samples
have an overlap, either in the 1s or the 0s. Usually, due to the low event rate one
uses the same (or largely overlapping) set of 1s for all the biased samples and varies
the 0s.

2. Do the various GAs that run on the biased samples work independent of each other,
or is there any interaction among them? In other words, what is the potential benefit
of interaction between the various parallel GA processes. As mentioned earlier,
the major drawback of using biased samples is that of overlearning. In order to
avoid this drawback, one must design a mechanism whereby the progress of the
GA is periodically “validated” in terms of the models’ performance on an unbiased
sample. Since it is possible that the models that work well on an unbiased sample
may occur in any of the parallel processes, the mechanism should ideally consider
a cross-section of models across these parallel processes.

3. How do we choose a winning solution, or a set of winning solutions in the end?
The eventual objective is to perform well in a real-world situation, where the model
will have to predict the propensity of a rare event. Therefore, we need to choose the
model(s) that perform well on an unbiased sample.

One could also consider the possibility of using the predictions from multiple
models in a mixture of experts framework. The effectiveness of such an approach
depends, to some extent, on the choices made in questions 1 and 2 above. For
instance, a mixture of experts framework might work better when each expert has
a clearly defined task or perspective. This might occur when the biased samples
are taken from distinct segments in the data. Also, there exists an argument that a
greater variance among the experts is better from a prediction standpoint. In that
case, less cross-pollination among the various parallel GAs might be beneficial.

Apart from these, there are also a number of standard questions regarding the various
aspects of genetic algorithms, such as the objective function (that is, the goodness-of-fit
metric for the model being built using the GA), population size, method of selection,
cross-over and mutation, stopping criterion etc. The above aspects are addressed in the
algorithm presented in the following subsection.

2.1 Proposed Method

We now propose a new Genetic Algorithm based method which takes care of the is-
sues discussed earlier. We need to devise an algorithm which can take different biased
samples, develop models on them and interact with each other occasionally to make
sure that the information about what works well on an unbiased sample is shared well.
The proposed method is a parallel implementation of Genetic Algorithm for propensity
modeling (for a basic parallel implementation of GA, one can refer to [3]).

Building the propensity model on the biased samples remove the problem of very
low event rate for each of these samples and testing it on the validation sample takes
care of the over-learning problem. The evaluation of models is done on a fitness function
designed to address the desired business objective. We present the algorithm below:
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1. Decide on the number of islands (k). Generate biased samples for each islands and
one unbiased sample for validation in real-world conditions.

2. Decide on parameters of the genetic algorithm to be run on each island, namely:
– Cross-over and mutation type and associated probabilities
– Terminating condition and number of generations
– Population size
– Logistic regression models – optional, to initialize solutions on each island

3. Initialize a population of models on each island.
4. Use the genetic operators (selection, cross-over, mutation) to evolve to better mod-

els over m generations. Preserve a set of elite solutions based on performance on
the biased sample in this island. Each island can be executed as a parallel process.

5. Choose the best n models (based on performance on the biased sample) on each
island and send them to the inter-island tournament.

6. In the tournament, select the n models that perform best on the validation sample.
Send these n models back to each island.

7. On each island, replace the elite set for validation sample performance with the n
models received. In the first iteration of the tournament, there does not exist such
an elite set, so replace the worst n models (for that particular biased sample) in that
island with the n winners of the tournament.

8. Repeat steps 4 to 7 until the terminating condition is reached.
9. Select the best n models (based on biased sample performance) from each island

and send them to a process that picks the final model. This process may operate in
a number of ways as explained earlier.

3 Experimental Results

To illustrate the utility of the proposed algorithm, we perform some experiments on a
real life data set. To maintain confidentiality, we have used only a subset of the entire
data. The problem addressed here is propensity modeling for credit card surfing. The
phenomenon of a customer moving from one credit card to another after taking ad-
vantage of the activation benefits is called surfing. The bank has a list of its customers
and uses some definition to identify who has behaved like a surfer. There are usually
very few surfers, but identifying them is useful for the bank. The subset of the database
used in this experimentation has around 230000 customers and 7 variables. Only 385
customers (0.16%) in the dataset are classified as surfers. The variables have some de-
mographic and account related information regarding the customers. Some important
variables are age of the customer, how often the customer revolves (pays interest) and
the number of active accounts.

As discussed in the previous section, we need to form several biased samples to
develop the island level models and we need one unbiased sample to validate the models
developed on different islands. There can be several ways to extract biased samples. The
method we use is to select all the events (385 customers with y = 1) for all the islands
and randomly distribute the non-events (y = 0) to different islands. We use the entire
dataset as the validation sample for the inter-island tournament. To observe the effect
of number of islands and sharing of models across islands, we change the number of
islands from 1 to 10. The case where there is just one island is equivalent to learning
from an unbiased sample.
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3.1 GA Parameters

In this section, we discuss different GA parameters (such as selection, cross over, muta-
tion) used in the experiment. While designing a GA for a particular problem, there is no
prescribed value of these parameters which is bound to work [6]. However, in general
the structure of the problem gives us some idea of the parameter space which might be
useful to search. Since the problem is difficult because of very low event rate, it would
be useful to explore different areas in the search space.

We used a real-coded GA for this problem. We used a population size of 50 in each
island. We used three party tournament selection, Blend Crossover (BLX) and Polyno-
mial Mutation operators in this experiment. We varied cross-over probability between
0.5− 0.8 and mutation probability between 0.1− 0.3, and tried different combinations
of the two probabilities in order to consider various possibilities of the exploration-
exploitation trade-off. We used 100 generations as the stopping criteria for the algo-
rithm as we observed that the improvement was very small after 80-85 generations in
most of the cases. For a description of real-coded GA and the various genetic operators
used, see [4].

We use the following objectives as fitness functions for the GA:

Sensitivity at 10%, 30% (S10, S30). This refers to the percentage of actual surfers (re-
sponders) captured in the top 10% (or 30%) of customers ranked according to their
model scores. This is a useful measure in case the business would like to use the
model to eliminate the customers with the top 10% of scores as probable surfers.

Kolmogrov-Smirnov Statistic (KS). This is a statistic which measures the maximum
distance between two distributions. In the propensity modeling case, it represents
how well the model differentiates between a surfer and a non-surfer.

Area under the ROC curve (AUC). This is another metric to measure the inequality
of distributions. In this modeling problem, this metric represents the improvement
of performance of the metric over a random model. Both KS and AUC are good
general purpose metrics to consider when the business is interested in ranking but
does not provide a specific constraint such as performance in the top decile (S10).

3.2 Results and Analysis

In this section, we discuss the results obtained by the proposed algorithm and compare
them to those obtained by the de-facto method for propensity modeling, namely Logis-
tic Regression (LR). We first discuss the results we obtained by the proposed algorithm
(GA) and compare it to the final results obtained by LR on an unbiased validation sam-
ple. We observe that the proposed method outperforms Logistic Regression by 4− 9%
on different objective functions. Additionally, it might be instructive to see whether the
performance on the biased development samples is better as well (see columns 2− 3 of
1). This would give us some idea of whether cross-pollination (sharing the models after
few generations) has any effect on the model development process.

We observe that the proposed method also works better in developing models on
the biased sample (see columns 2 − 3 of 1). We observe that the proposed method
outperforms the Logistic Regression by 8− 22%. This demonstrates that the use of in-
formation regarding performance on the unbiased sample does not adversely affect the
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performance on the biased sample. If we compare the difference in the performance of
the models on the biased training sample and the unbiased validation sample, the differ-
ence in the GA is very low (1-2%) whereas the difference in case of Logistic Regression
is high (5-14%). This demonstrates that the information sharing due to cross-polination
helps the models on the island to learn more about the data and deliver better models.

Table 1. Comparison of Logistic Regression (LR) and our algorithm (GA) on the unbiased (vali-
dation) sample and biased (development) samples

Objective LR (unbiased) GA (unbiased) LR (biased) GA (biased)
S10 30.65% 33.28% 26.8% 32.68%
S30 59.2% 62.9% 56.1% 62.25%
KS 0.31 0.329 0.284 0.327

AUC 0.715 0.724 0.705 0.7215

Now we discuss the effect of islands and information sharing between the islands
on the final results. Table 2 represents the performance of the proposed method with
changing number of islands. We do this analysis for the first objective function (S10).
We run the proposed GA with the same cross-over, mutation and other GA parameters
with one, two, four and six islands. The results are summarized in Table 2

Table 2. Performance on S10 with respect to # of islands

# islands GA(dev) GA(full)
1 30.94% 32.20%
2 31.1% 32.20
4 31.64% 32.46%
6 32.68% 33.28%

We observe two main trends in this study. The first trend is that the overall per-
formance of the models on the full validation set increases with increasing number of
islands. The second observation is that the difference between performance of the mod-
els on the biased and unbiased samples decreases with increasing number of islands.
This demonstrates that the islands and the sharing of information between islands help
the model to improve in terms of overall performance and reliability.

The above results indicate that the proposed GA method is able to take advantage of
the various biased samples while avoiding the trap of overlearning. This points to the
effectiveness of the method in meeting the objectives laid out in the beginning of the
paper.

4 Conclusions and Future Directions

In this paper we have discussed the problem of propensity modeling in consumer fi-
nance, which is characterized by non-standard objectives and very low event rates.
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We discussed the challenges associated with these characteristics and proposed a paral-
lel version of Genetic Algorithms to address them. We demonstrated the performance of
the proposed method on a real life dataset. The proposed method develops propensity
models which optimizes different objectives which are closer to the business objec-
tives. It develops models on several biased samples independently (we refer to them as
islands) and every few generations, there is a mechanism for cross-pollination between
islands. This helps the models to learn most of the features of the data and enhance the
performance.

The work can be extended in a few directions. We have used a particular method
to generate biased samples from the dataset. Other methods, such as is suggested in
Section 2, can be used. For example, one island might develop models for a particular
class of customers (say young, single customers with low income) and others might
develop models on different class of customers. One advantage of using this type of
sampling method is that one can use the final model in the general case, whereas the best
models of a particular island might be used for customers belonging to that particular
class.

One can also explore the question of setting the right parameters for the method for
a particular class of problems: the number of islands, the sampling method, frequency
of inter-island tournaments, method for combining predictions from the best models in
various islands etc. Also, most of the GA parameters (which decide the search path) are
obtained from past experience rather than any theoretical result. However, some insights
on the effectiveness of various parameters can be gained from empirical observation.
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1 Silesian University of Technology
Department of Strength of Materials and Computational Mechanics

ul. Konarskiego 18A, 44-100 Gliwice, Poland
{miroslaw.szczepanik,arkadiusz.poteralski,jacek.ptaszny,tb}@polsl.pl

2 Cracow University of Technology
Institute of Computer Science

ul. Warszawska 24, 31-155 Cracow, Poland
tburczyn@pk.edu.pl

Abstract. The paper deals with an application of an hybrid particle
swarm optimizer (HPSO) to identification problems. The HPSO is ap-
plied to identify complex impedances of room walls and it is based on
the mechanism discovered in the nature during observations of the ani-
mals social behaviour and supplemented with some additional gradient
information. The numerical example demonstrate that the method based
on hybrid swarm optimization is an effective technique for computing in
identification problems.

Keywords: particle swarm optimizer, acoustics, identification, method
of fundamental solutions, hybrid computational optimization algorithm.

1 Introduction

Identification of parameters in physical systems using the artificial intelligence
techniques is a very active field of research. In order to improve the perfor-
mance of well known global optimization methods inspired by biology processes,
the hybrid approaches are proposed. Hybrid methods are based on coupling of
the procedures from different optimization methods to improve accuracy and
effectiveness of basis optimization methods. the combination of topological sen-
sitivity and genetic algorithms were used for identification inverse problems in
anisotropic materials [1]. The gradient-based, genetic and hybrid optimization
algorithms for material parameters identification problem was proposed in [2].
Identification of effective elastic constants of composite plates based on a hybrid
genetic algorithm was also considered in [3]. Another approach to inverse iden-
tification problems, based on hybrid techniques, was developed in [4], where the
surrogate-model accelerated random search algorithm for global optimization

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 386–394, 2012.
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was applied to inverse material identification. Immune identification of piezo-
electric material constants using BEM was shown in [5]. The immune evolution-
ary algorithm incorporating chaos optimization was proposed in [6]. In order to
improve the PSO performance some hybrid variants have been proposed. The
hybrid versions of PSO incorporate the capabilities of other optimization algo-
rithms to prevent premature stagnation or to prevent the particles from being
trapped in local minima. One can find for example applications of the hybrid
of genetic algorithm and PSO in [7,8], evolutionary programming and PSO in
[9], and PSO with differential evolution in [10]. Since its origin in1995, the PSO
algorithm has been developed to improve its performance and use in different
applications [11,12]. This paper concerns the application of the method of fun-
damental solutions (MFS) [13] coupled with a hybrid particle swarm optimizer
in identification of room acoustic properties. Dutilleux et al. [15] proposed a
method for the determination of sound absorption in rooms. They defined a
boundary inverse problem which was solved by using the (μ,λ)-ES (evolution
strategy). The proposed method consisted in minimization of a cost function
dependent on the difference between measured and computed acoustic pressure
values. The measurements were simulated by a numerical analysis. The station-
ary acoustic pressure field was computed by using the finite difference method
(FDM). The proposed method was successfully applied to the solution of low-
frequency problems (frequencies up to 240 Hz). This method can be relatively
inefficient with respect to the computation time as it requires multiple calcu-
lations of the cost function. In order to improve this approach the method of
fundamental solutions, which is a boundary collocation method, coupled with
hybrid evolutionary algorithm was used in [14]. In the present work an improved
swarm optimization algorithm and a hybrid one is applied instead of the evolu-
tionary algorithm. Numerical examples are given and good results are obtained.
In the authors opinion, no application of the HPSO for solving inverse identi-
fication problems in acoustic field modelled by using the MFS can be found in
the literature until now.

2 Hybrid Particle Swarm Optimizer

The particle swarm algorithms [16], similarly to other bio-inspired evolutionary
[17,18,19] and immune algorithms [20,5], have been developed on the basis of
the mechanisms discovered in the nature. The optimization process using PSO
is based on finding the better and better locations in the search-space (in the
natural environment that are for example hatching or feeding grounds). The
position xij of the i-th particle is changed by stochastic velocity vij , which is
dependent on the particle distance from its earlier best position and position of
the swarm leader. This approach is given by the following equations:

vij(k + 1) = wvij(k) + φ1j(k) [qij(k)− xij(k)] + φ2j(k) [q̂ij(k)− xij(k)] , (1)

xij(k + 1) = xij(k) + vij(k + 1), i = 1, 2, ...,m; j = 1, 2, ..., n, (2)
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where:
φ1j(k) = c1r1j(k); φ2j(k) = c2r2j(k),
m – number of the particles,
n – number of design variables (problem dimension),
w – inertia weight,
c1, c2 – acceleration coefficients,
r1, r2 – random numbers with uniform distribution [0,1],
hi(k) – position of the i-th particle in k-th iteration step,
vi(k) – velocity of the i-th particle in k-th iteration step,
qi(k) – the best position of the i-th particle found so far,
q̂i(k) – the best position found so far by swarm - the position of the swarm
leader,
k – iteration step.

It is very important to keep the particles diversification during the optimiza-
tion process. It guarantees good exploration of the swarm to the end of the
optimization process. From the other hand good exploitation involves ability of
finding precise value of the global minimum when the area of its neighbour-
hood is found by the swarm. To achieve the mentioned abilities two additional
velocity components are proposed and incorporated. To keep particles diversifi-
cation during the optimization process the stochastic velocity component (VS)
dependent on the maximal Vmax and minimal Vmin velocity of the particle is
applied. To obtain a good local searching the gradient velocity component (VG)
is introduced. After modification the improved PSO - VSGPSO has the velocity
expression given by the following form:

vij(k + 1) = wvij(k) + φ1j(k) [pij(k)− xij(k)] + φ2j(k) [p̂ij(k)− xij(k)]

+φ3j(k)(Vmax − Vmin) + φ4j(k)
[−bl · ∇f [xij(k)]

]
,

(3)

where: φ3j(k)(Vmax − Vmin) – the stochastic velocity component (VS),
φ4j(k)

[−bl · ∇f [xij(k)]
]
– the gradient velocity component (VG),

φ1j(k) = c1r1j(k); φ2j(k) = c2r2j(k); φ3j(k) = c3r3j(k); φ4j(k) = c4r4j(k),
c1, c2, c3, c4 - acceleration coefficients,
r1, r2, r3, r4 - random numbers with uniform distribution [0, 1],
l = 0, 1, 2, ..., L − 1 , L - number of the trial steps with the minus gradient
direction.

According to application of the gradient component the selected particles
move with the velocity dependent on the minus gradient of the fitness func-
tion. First the gradient for the particular particle is calculated. Next the trial
steps of the lengths which create the geometric progression with the first term
−a∇f [xij(k)] and the common ratio b are generated (a > 0, b < 1). The steps
are generated to obtain the directional minima. To decrease the risk to get into
the local optima, the randomness for the gradient velocity component can be
applied. Then the multiplier φ4j(k) is used instead of a. So the gradient com-
ponent has the following form: φ4j(k)

[−bl · ∇f [xij(k)]
]
. The fitness function

values are calculated for the following trial steps. The additional gradient ve-
locity is applied only for the swarm leader because of the computation costs
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connected with its application for all particles of the swarm. The movement into
the fastest decrease direction may cause the convergence to the local optima.
In order to minimize this disadvantage the stagnation parameter is introduced.
This parameter controls the frequency of gradient applications. When the swarm
finds better solution, the application of the gradient is not need. The gradient is
used if there is no fitness function improvement or if the improvement is small.
The stagnation parameter determine the iteration number without or with small
fitness improvement after which the gradient is used.

The efficiency of the proposed modified version of particle swarm optimizer
– VSGPSO can be improved by the hybridization with gradient minimization
method. Then we obtain hybrid version of the VSGPSO – HVSGPSO. VSGPSO
can be stopped after the declared number of iteration or after achievement of
the specified fitness function value (close to global optima) and then the limited-
memory Broyden-Fletcher-Goldfarb-Shanno procedure (LBFGS) [21], which is
a quasi-Newton method, can be executed. The flowchart of the particle swarm
optimizer after modifications and hybridization flowchart of HVSGPSO is pre-
sented in Fig. 1, which illustrates also the idea of the algorithm. At the beginning
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Fig. 1. HVSGPSO: a) the flowchart, b) the idea of the particle swarm algorithm
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of the algorithm the particle swarm of assumed size is created randomly - start-
ing positions and velocities of the particles are created randomly. The objective
function values are evaluated for each particle. In the next step the best po-
sitions of the particles are updated and the swarm leader is chosen. Then the
particles velocities are modified by means of the Eqn. (3) and particles positions
are modified according to the Eqn. (2). The process is iteratively repeated until
the stop condition is fulfilled. Then the gradient minimization method can be
used to reduce the optimization time.

In the HVSGPSO algorithm two stages can be distinguished and gradient cal-
culations are performed at both the stages. At the first stage, the swarm one, the
gradient velocity component improves the convergence of swarm process. This
stage can be considered as a concurrent swarm-gradient algorithm VSGPSO. At
the second stage the swarm process is terminated and the gradient optimization
algorithm is executed. At this stage a rapid convergence to the global optimum
is observed. Summarizing, in this work an efficient concurrent-sequential hybrid
swarm algorithm HVSGPSO is proposed.

3 Problem Formulation

A closed 2D cavity Ω with a boundary Γ is considered. A point source of complex
amplitude A is located within the cavity, at the point s. The complex acoustic
pressure field p(x) satisfies the non-homogenous Helmholtz equation:

∇2p (x) + κ2p (x) = −Aδ (x− s) , x, s ∈ Ω, (4)

where κ is the wave number and δ is the Dirac distribution. On the boundary
of cavity the impedance boundary condition is imposed:

p (x) = − Z

iωρ

∂p (x)

∂n (x)
, x ∈ Γ, (5)

where Z is the unknown complex impedance of room (cavity) wall, i is the
imaginary unit, ω is the angular frequency, ρ is the density of acoustic medium
and n(x) is the outward unit normal to Γ . The acoustic pressure field can be
evaluated at any point of the cavity by the application of numerical method to
the solution of Eqn. (4). The computed values pj can be compared to the ones
resulting from in situ measurements pmeas

j , and the unknown parameters can
be determined. Here, the identification task is to find the values of Z by the
minimization of the following cost function:

F =
J∑

j=1

∣∣pj − pmeas
j

∣∣2, (6)

where J is the number of sensor points. To solve the identification problem the
VSGPSO and HVSGPSO are used.
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4 The Method of Fundamental Solutions

The solution of Eq. 4 can be expressed by the sum of pressure generated by the
source s of amplitude A, and a finite series corresponding to another K sources
qk with unknown coefficients ck:

p (x) = AG (x, s) +

K∑
k=1

ckG (x, qk) , x ∈ Ω, qk /∈ Ω, (7)

where G is the fundamental solution of the Helmholtz equation for 2-D problem:

G (x, q) =
i

4
H

(1)
0 (κ |x− q|) . (8)

H
(1)
0 is the Hankel function of the 1st kind, order 0. Applying Eqn. (7) and the

boundary condition (5) to the boundary nodes xl, l = 1, 2, ..., L, one obtains the
system of equations:

K∑
k=1

⎡⎣G(
x

′
l, qk

)
+

Z

iωρ

∂G
(
x

′
l, qk

)
∂n

⎤⎦ ck = −A

⎡⎣G(
x

′
l, s

)
+

Z

iωρ

∂G
(
x

′
l, s

)
∂n

⎤⎦
(9)

which is solved for the coefficients ck. Having the values one can evaluate the
pressure field at any point of the cavity by using Eqn. (7). More details on the
MFS can be found in the literature [13]. In the considered problem the sensitivity
analysis can be easily performed by the direct differentiation of Eqn. (9) with
respect to the identified parameters.

5 Numerical Example

Complex values of impedances Z1÷Z4 of room walls were identified. The geom-
etry and other parameters of the room 2-D model are presented in Fig. 2. The
same structure was considered by Dutilleux et al. [15]. The geometric parame-
ters were: a=3.4 m and b=2.5 m. The acoustic media was air at the temperature
20oC. The analysis was performed for the frequency equal to 100 Hz. Eight
sensors were located at points of coordinates related to the wave length λ and
the room dimensions. The number of boundary points and sources was equal to
54. The sources were located at the circle of radius r = 2.5 m centered at the
geometric centre of the square (Fig. 2).

The identification problem defined in Section 3 was solved by using the VS-
GPSO and HVSGPSO described in Section 2. A single particle was defined by
its parameters gm (m = 1 ÷ 8) related to the real and imaginary parts of the
unknown impedances:

Zh = g2h−1 − ig2h, h = 1÷ 4. (10)
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Fig. 2. Scheme of the problem solved by the MFS and the HVSGPSO

Box constrains were imposed on each particle parameter as follows:

0 ≤ gm ≤ 20000 [rayl] , m = 1÷ 8. (11)

The pressure measurements were simulated by the MFS analysis with the refer-
ence impedance values given in Table 1. Also, a comparison of the results with
results obtained by other authors [15], by using (λ, μ)-ES, for the same identifi-
cation problem, are given. The evolution strategy is characterized by the parent
and offspring populations of size λ and μ respectively.

The efficiency of proposed method was investigated and compared to the ES
case by other authors. The comparison is given in Table 2. The number of cost
function calculations in the ES was calculated assuming that the number is equal
to the product of iteration number and offspring population size. In the case of
VSGPSO and HVSGPSO the swarm size was set to 30. The following param-
eters of the VSGPSO and HVSGPSO have been introduced: w=0.73, c1=1.47,

Table 1. Reference values of particle parameters and optimization results

Results Reference values (8, 56)-ES [15] VSGPSO HVSGPSO

g1 4920.00 4706 4920.68 4920.00
g2 1590.00 1591 1590.38 1590.00
g3 2390.00 2487 2390.12 2390.00
g4 3720.00 3756 3720.09 3720.00
g5 3400.00 3400 3400.19 3400.00
g6 50.00 84 50.14 50.00
g7 3500.00 3568 3499.52 3500.00
g8 2200.00 2174 2199.70 2200.00
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Table 2. Comparison of the efficiency of the algorithms

No. of (8, 56)-ES [15] VSGPSO HVSGPSO

Iterations 786 1475 98
Cost function calculations 44016 46549 3264

Gradient calculations - 646 60
LBFGS iterations - - 1157

c2=1.47, c3=0.002, c4=0.1, b=2, l=10. All the VSGPSO and HVSGPSO charac-
teristics are mean values from 5 runs of the algorithm. The gradient calculation
time was by an order of magnitude less in relation to the time of the fitness
function calculation.

6 Conclusions

The solution of the inverse problem in room acoustics by using the MFS and
the VSGPSO and HVSGPSO was presented. The MFS does not require the do-
main discretization or integration, and is convenient for the sensitivity analysis.
The additional gradient velocity component does not influence significantly the
overall identification time, as the computing time of gradient calculations is by
an order of magnitude smaller in relation to the time of the cost function cal-
culation. The application of the gradient velocity component and the gradient
method at the final stage of the identification process by the HVSGPSO causes
both the convergence and accuracy improvements. The comparison of presented
results with other ones, found in literature, shows that the HVSGPSO can be
more efficient than the ES and VSGPSO with respect to the accuracy of the
results and the identification time, as the number of the cost function calcula-
tions is smaller. It was shown that the proposed coupling of methods provide
promising results in the room impedance measurements by the solution of inverse
problem. However to confirm the practical importance of the method further in-
vestigations should be carried out, involving higher frequencies, measurement
errors and 3-D problems.
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Bogdan Trawiński and Grzegorz Matoga

Wroclaw University of Technology, Instititute of Informatics,
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Abstract. A coevolutionary algorithm called reCORE for rule extrac-
tion from databases was proposed in the paper. Knowledge is extracted
in the form of simple implication rules IF-THEN-ELSE. There are two
populations involved, one for rules and second for rule sets. Each pop-
ulation has a distinct evolution scheme. One individual from rule set
population and a number of individuals from rule population contribute
to final result. Populations are synchronized to keep the cross-references
up to date. The concept of the algorithm and the results of compara-
tive research are presented. A cross-validation is used for examination,
and the final conclusions are drawn based upon statistically analyzed
results. They state that, the effectiveness of the reCORE algorithm is
comparable to other rule classifiers, such as Ridor or JRip.

Keywords: evolutionary algorithm, coevolution, rule learning, cross-
validation.

1 Introduction

Rule extraction, from computational complexity point of view, is a NP task.
Evolutionary algorithms are well suited for NP tasks in the sense, they explore a
vast amount of possible solutions in a short time yielding suboptimal solutions.
Moreover, since no strictly optimal solution is to be found, any good solution is
valued. Detailed discussion on this topic can be found in publications [9], [3].

Many evolutionary algorithms for classification tasks have been proposed so
far. Some, such as XCS [16] and GIL [8] are known and used for more than a
decade. Genetic Algorithms, since their first introduction by J. Holland in [6],
have been studied and extended widely.

J. Holland was one of the first researchers to use evolution for rule extrac-
tion. In the work [7] he proposed an encoding scheme later to be known as the
Michigan approach. Every individual in a population represented exactly one
rule. The same encoding type was used in Supervised Learning Algorithm [15]
and GCCL [4]. Ken De Jong and Steve Smith [12] later popularized another
encoding scheme where each individual encoded a whole set of rules. Another
example of the approach is the Genetic Inductive Learning by Janikow [8]. GIL
is also interesting because of unusually high number of recombination operators:
13 (the classic approach only two: mutation and crossover).

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 395–403, 2012.
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Genetic algorithms have been studied and developed in many directions, but
the coevolution is far from being completely exploited. One noteworthy work
on the topic is [14] by Tan et al. where CORE algorithm was introduced. This
work is an attempt to expand on the CORE algorithm. And while conceptual
view of the algorithms is the same, they vary much in detail. Also, the rule set
population was modelled after the CAREX [11], [10] algorithm. reCORE builds
on both of these adding additional evolution enhancing procedures.

The main objective of this work is to present reCORE – a learning algorithm,
which extracts knowledge in an easily interpretable, explicit form, and which is
driven by a specific type of evolution: coevolution. It was implemented in Java
and adapted to WEKA [5] – an environment for knowledge acquisition. This
allowed to compare the performance of the coevolutionary algorithm with a few
competing algorithms.

2 Description of the Proposed Coevolutionary GA

reCORE is a an algorithm for knowledge acquisition based on cooperative co-
evolution. It comprises two chromosome populations involved in evolution. First
one consists of individuals representing final result: a rule set. The second pop-
ulation includes individuals representing a single rule. Each rule set individual
refers to a number of rule individuals. The two populations are tightly coupled
(fig. 1).

Each rule takes a form of:

If (Attr1 Op1 Value1) and (Attr2 Op2 Value2) and ... then class1

Each conjunction component can be omitted. Attri refers to the i-th attribute
of source data set. For instance, if source data set has following attributes
[wind, sun, rain] than Attr1 is wind, Attr2 is sun and so on. BothOpj and V aluej
depend on the type of source attribute. If it is nominal then Opj ∈ {′=′, ′ �=′}
and V aluej is an element out of attribute domain. Possible conjunction compo-
nent interpretation could be: “wind is strong“ or “sun does not shine“.

If the attribute’s domain is numerical then Opj ∈ {IN, NOT IN} and V aluej
takes a form of a closed range. In the case, possible conjunction component
interpretation could be ”temperature is between 5 and 10 degrees Celsius“ or
”temperature is lower than 0 or higher than 20 degrees Celsius“ (temp NOT IN
[0, 20]).

This rule form allows expressing the example fact:

If sun shines and temperature is between 15 and 25 degrees

Celsius then play.

The result is undefined if the premises are not met. By combining rules in an
ordered manner and by defining the default class a much more expressive form
is obtained. Example:
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r1:  IF Rain = Is THEN CLASS = DontPlay 

r2:  IF Sun = Shines THEN CLASS = Play 

r3: IF Rain = None THEN CLASS = Play r1 

r2 

r3 

Rules Population 1 

IF Rain = Is THEN CLASS = DontPlay  
ELSE IF Sun = Shines THEN CLASS = Play 
ELSE IF Rain = None  THEN CLASS = Play 
ELSE CLASS = DontPlay 

IF Sun ≠ Shines 
AND Temperature IN <15, 25> 
THEN CLASS = Play 

ELSE CLASS = DontPlay 

IF Sun = Shines THEN CLASS = Play 
ELSE IF Rain = None  THEN CLASS = Play 
ELSE CLASS = DontPlay 

 

Rule Sets 

r4 

rs1 

rs2 

rs3 

rs4 

r4:  IF Sun ≠ Shines 
AND Temperature IN <15, 25> 
THEN CLASS = Play 

rs1: 

rs2: 

rs4: 

Population 2 

Fig. 1. Cooperative evolution implemented in reCORE – a conceptual representation
and mapping

If sun shines then play.

If it does not rain then play.

Do not play.

This is the rule set, which is represented by the second population. It is inter-
preted sequentially. From the implementation point of view, all rule sets (for-
mally lists, but the term set is more commonly used) are represented as a list of
pointers to rules and the default class type.

Rule sets in reCORE are encoded using decimal, variable-length gene repre-
sentation. Rules, quite contrary, use binary, fixed-length code. To summarize,
reCORE uses a hybrid of Pittsburgh and Michigan coding approaches for first
and second population, respectively. Also, two different encoding types are used.
It is due to a synchronization procedure, which operates on the rule set popu-
lation and updates pointers after any possibly destructive operation on the rule
population.
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Let us focus now on rule population. There is only one recombination operator
in place: simple binary mutation. Each gene (bit) can be mutated (flipped) with
the probability pmut. The fitness of an individual is an accuracy measure calcu-
lated based on a binary confusion matrix obtained by focusing at only one class
at a time – the same class the rule is referring to. F-score is used a classification
measure, it is defined as:

Fscore =
1

1

precision
+

1

recall

. (1)

It is a harmonic mean of two terms, both of which are derived directly from a
confusion matrix:

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
. (3)

TP is the count of results correctly labelled as belonging to the positive class.
FP is the count of negative cases which were improperly classified as belonging
to the positive class. FN is the count of positive cases which were improperly
classified as belonging to the negative class. A comprehensive study on classifi-
cation measures can be found in [13].

While there is no direct interaction between the rules itself, a special care must
be taken to maintain population diversity. For the purpose a niching technique
in the form of fitness correction is used.

The scheme used in reCORE is named Token Competition, and was first
introduced by Cheung and Wong in [2]. It was also used in CORE by Tan et al.
[14] The rules from one generation are being selected to the other by the means of
tournament selection. Technically, it is implemented by adjusting the individual’s
fitness:

f ′ = f × TC

TT
. (4)

The term TC is a number of tokens captured by the individual, which fitness f is
being modified. TT is a total number of tokens to capture, within a given class.

The rule population resembles many other Michigan-type schemes. Its pur-
pose is to maintain a pool of the best (by the means of fitness) and the most
diverse rules possible. The rule set population is responsible for taking them and
combine in a best possible way to form a final classifier. Much care is taken in
the synchronization of the populations. This is why the crossover operator was
neglected – much of the pointers would have been invalidated otherwise. Muta-
tion does not introduce the threat. Any rule after mutation still much resembles
the rule before so no pointer adjustment is needed because of that. It is only
selection that can disrupt the best solution at the rule set level. In practice how-
ever, it is possible to update some pointers accordingly. Nothing can be done if
the rule was dropped from one generation to the other – pointer also must be
dropped. In the other case, a simple pointer update can restore the rule set to
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its primary state. And it is necessary for the evolution to function properly in
the second population.

The elitist strategy, in the rule set population, has some impact on the rule
population. In order to maintain an individual unchanged during the generation
change each rule referred must be kept safe from mutation and must be selected
in tournament.

3 Plan of Evaluation Experiment

All experiments were conducted in the Waikato Environment for Knowledge
Acquisition – WEKA. reCORE can be plugged into WEKA to see it as a classifier
plugin. This allowed for a comparison with a broad selection of easily available
competitive algorithms.

Algorithms were assessed using benchmark datasets – taken from the UCI
Machine Learning Repository [1]. Basic parameters of the datasets are provided
in 1. For the performance comparison 12 datasets are used. They cover a wide
range of possible problems encountered in real world machine learning schemes.
We opted for the most diverse set of characteristics.

Table 1. Details of data sets used for comparative study

dataset no. of class class attribute
examples distribution total numeric nominal total

diabetes 768 500/268 2 8 - 8
ecoli 336 143/77/52/35/20/5/2/2 8 7 - 7
haberman 306 225/81 2 2 1 3
hayes roth 132 51/51/30/0 4 4 - 4
iris 150 50/50/50 3 4 - 4
lymphography 148 2/81/61/4 4 2 16 18
monks1 124 62/62 2 - 5 5
monks2 169 105/64 2 - 5 5
monks3 122 62/60 2 - 5 5
tae 151 49/50/52 3 3 2 2
wine 178 59/71/48 3 13 - 13
zoo 101 41/20/5/13/4/8/10 7 - 17 17

The maximum number of generations was determined by preliminary test
runs. Maximum number of rules was set as a compromise between the size of
the search space, and the representation scheme’s ability to express the most
diverse rule possible.

The rule mutation probability was set according the guidance provided in the
GA literature. The value of where the value of approximately 1% is considered
to be the most optimal.
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Table 2. Parameter listing for each tested algorithm

Algorithm Parameters

reCORE
coevolutionary
rule extractor

elite selection size = 1, generations = 10000, max rules count = 12,
rule mutation probability = 0.02, rule population size = 200, rule set
mutation probability = 0.02, rule set population size = 200, selection
type = tournament of size 2, token competition enabled = true

DTable
decision tables

cross validation = leave one out, evaluation measure = accuracy,
search = best first search, search direction = forward, search termi-
nation = 5

DTNB
Decision Table
with Naive Bayes

cross validation = leave one out, evaluation measure = accuracy,
search = backwards with delete, use IBk = false

JRip
Repeated Incre-
mental Pruning

check error rate = true, folds = 3, min total weight = 2, optimizations
= 2, use pruning = true

PART
decision list

binary splits = false, confidence factor = 0.25, minimum instances
per rule = 2, number of folds = 3, reduced error pruning = false,
pruning = false

Ridor
RIpple-DOwn
Rule learner

number of folds = 3, majority class = false, minimum weight = 2,
shuffle = 1, whole data error = false

Population size was set to a number, which allowed most of the runs to last
no longer than few minute.

As the tournament size was chosen value 2. Value 0 effectively means a random
(blind) selection, which is not very useful. Value 1 is equivalent to a roulette-type
selection which has been proven to be inferior to tournament.

One of the most important parameter is the size of an elite selection. If the
elitist selection was not applied then the high selective pressure would destroy
most of the good solutions. A value 1 was set. It’s the value that has the least
intrusive impact on other evolutionary operations.

As a fitness function, the F-score was selected. It provides the best character-
istics needed in an evolutionary setting.

A summary or run parameters, for every algorithm in comparison, is presented
in table 2. Each of the algorithms approach classification task in many ways, e.g.
using a divide& conquer strategy, heuristics, Naive Bayes theoremor tree pruning.
All of the approaches share common classifier representation, i.e. rule list.

4 Experimental Results

Averaged results of each cross validation run are presented in table 3. In each
cell there is a F-score value. Values in parentheses indicate the ranking of an
algorithm with respect to a particular dataset. Last row contains averages over
all datasets.



reCORE – A Coevolutionary Algorithm for Rule Extraction 401

Table 3. Mean averages obtained from 5-fold cross-validation repeated 10 times. Num-
ber in parenthesis denotes the rank for a given dataset.

Dataset reCORE DTable DTNB JRip PART Ridor ZeroR

ecoli 0.786 (5) 0.748 (6) 0.806 (2) 0.797 (4) 0.822 (1) 0.799 (3) 0.254 (7)
haberman 0.693 (2) 0.657 (6) 0.665 (5) 0.700 (1) 0.674 (4) 0.677 (3) 0.623 (7)
hayes-roth 0.560 (3) 0.359 (5.5) 0.359 (5.5) 0.515 (4) 0.595 (1) 0.581 (2) 0.208 (7)
iris 0.933 (6) 0.935 (5) 0.941 (2.5) 0.937 (4) 0.941 (2.5) 0.943 (1) 0.167 (7)
lymph 0.761 (3) 0.735 (6) 0.750 (5) 0.756 (4) 0.769 (2) 0.776 (1) 0.387 (7)
monks1 0.409 (3) 0.418 (2) 0.434 (1) 0.407 (5) 0.408 (4) 0.397 (6) 0.389 (7)
monks2 0.584 (1) 0.491 (4) 0.497 (3) 0.459 (5) 0.518 (2) 0.429 (6) 0.330 (7)
monks3 0.392 (6) 0.460 (2) 0.487 (1) 0.439 (3) 0.416 (4) 0.398 (5) 0.352 (7)
diabetes 0.736 (3.5) 0.739 (2) 0.743 (1) 0.736 (3.5) 0.735 (5) 0.713 (6) 0.513 (7)
tae 0.552 (1) 0.364 (6) 0.381 (5) 0.410 (4) 0.526 (2) 0.465 (3) 0.177 (7)
wine 0.891 (5) 0.873 (6) 0.960 (1) 0.920 (3) 0.921 (2) 0.919 (4) 0.228 (7)
zoo 0.899 (4) 0.851 (5) 0.909 (3) 0.822 (6) 0.927 (1) 0.912 (2) 0.235 (7)

mean rank 3.542 4.625 2.917 3.875 2.542 3.500 7.000

Table 4. Final algorithm Friedman ranking

PART DTNB Ridor reCORE JRip DTable ZeroR Score

PART # # # # # + 1
DTNB # # # # # + 1
Ridor # # # # # + 1
reCORE # # # # # + 1
JRip # # # # # + 1
DTable # # # # # # 0
ZeroR - - - - - # 0

The averages over all sets was used to performa Friedman statistical test. Statis-
tics according to Friedman’s chi-square for 6 degrees of freedom: 33.86 (limit value:
14.45). Iman and Davenport statistics according to the F statistic at 6 and 66 de-
grees of freedom: 9.76 (threshold value: 2.24). Statistics are greater than the limit,
so the hypothesis of equal average was rejected. Thus, pairwise comparison can
take place. Results of pairwise comparison are presented in table 4.

For a given cell, an algorithm in the same row is better than the algorithm in
the same column when there is a + character. If it is worse than the - character
is used. Ties are denoted with a hash mark. In the last column a score for an
algorithm in respective row is presented. The higher the score the better the
algorithm.

As can be seen in the table 4, there is no single best solution. Most of the
algorithms perform with a similar performance, with an exception of ZeroR and
DTable.
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5 Conclusion

The aim of this study was to verify the applicability of evolutionary algorithms
to classification tasks. There are many approaches to the use of evolutionary
mechanisms for classification tasks; this work however, was focused on coevolu-
tion. reCORE’s strongest point is the ability to maintain synchronization of two
concurrently evolving populations in the face of rapid and possibly destructive
changes.

reCORE was implemented in the Knowledge Acquisition Environment –
WEKA in order to compare its performance with other rule extracting algo-
rithms. A set of the most effective parameters was determined in a preliminary
study. Once the best set was known a comparative assessment was conducted. A
classification score achieved by reCORE and 6 other rule extracting algorithms
over 12 datasets was collected. The results were subject to a statistical analysis:
Friedman rank was calculated and non-parametric post hoc procedures adequate
for multiple comparisons were conducted.

No statistically significant difference was shown between most of the algo-
rithms. Only ZeroR was proven to give substantially worse results from every
other rule extraction algorithm in WEKA and reCORE as well. It comes without
a surprise since ZeroR is a benchmarking algorithm. If any other algorithm were
giving worse results than ZeroR then most probably it would be broken.

The performance difference between algorithms is negligible. It might be be-
cause of the nature of datasets. They were chosen to be diverse in their character-
istics. If only one type of domain were to be chosen, then the results could differ
in favour of a one particular algorithm. It also might be the case that all of them
pushed the boundaries of what is possible with rule classifier representation.

reCORE is one of many possible extensions of a evolutionary algorithm. It
shows how two different species can cooperate and provide good overall solution.
The specialisation allows the use of rule representation specific operators. It
presents a framework, on top of which any representation with nested relations
may be subject to evolutionary optimisation.
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Abstract. This paper introduces a new modular algorithm MGPSO.
It merges random probing, new particle swarm optimization and local
search algorithms. The proposed algorithm was implemented according
to a new proposal of modular architecture. It allows for flexible mixing
different techniques of the optimization in a single optimization. The
architecture allows to macro–manage the search process by modifiable
set of rules. Thus, a selection of suitable tools for different phases of the
optimization depending on current requirements is possible. As a conse-
quence, the modular algorithm achieves good performance acknowledged
in performed experiments. The proposed architecture can help in appli-
cation of machine learning methods for the selection of efficient sequence
of tools during the optimization.

Keywords: Particle Swarm Optimization, Local Search, Managed
Optimization.

1 Introduction

The ”no–free lunch” metaphor is frequently cited along new proposals of opti-
mization algorithms. It describes a sort of trade–off between the global and the
local search that is differently respected by different algorithms. Therefore, these
algorithms show various performance for groups of problems defined according
to specific requirements for the search process. Beside that, the ”no–free lunch”
metaphor teaches also about another important matter. Any optimization algo-
rithm has to carefully select and evaluate new solutions from the search space.
Hence, it should avoid a para–random flurry in the solutions generation which is
possibly the most robust method in avoidance of local optima. But it also has in-
trinsically low convergence of the search process. Additionally, careless solutions
generation is particularly inefficient for highly dimensional problems because the
search space is growing geometrically to the number of dimensions. Thus, the
probing intensity should grow similarly to balance the space growth. Finally,
the solution evaluation is often the most costly process from the computational
perspective in practical applications. Therefore, the evolutionary algorithm has
to use the evaluation method advisedly.

Hence, macro–management on the level of the algorithms’ selection for special
purpose exploration of the search space and the micro–management of the search

L. Rutkowski et al. (Eds.): SIDE 2012 and EC 2012, LNCS 7269, pp. 404–412, 2012.
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process on the level of particular algorithm operations are studied together in this
paper. This paper describes a new MGPSO (Macro–manaGed PSO) algorithm
having following features:

– A modular architecture relying on tasks queue and modules realizing particu-
lar algorithms. The queue based processing allows for flexible implementation
of the breadth–first and depth–first search paradigms in the optimization.
Moreover, particular optimization modules may dynamically modify the task
queue content according to requirements.

– Modular integration of exploration methods e.g., particle swarm optimiza-
tion, local search and random probing. They are executed like plug–ins ac-
cording to rules.

– New proposals of the particle swarm optimization and the local search
algorithms.

This paper begins from a short introduction to related works. Then the MGPSO
architecture is presented. Afterward the particle swarm optimization algorithm is
described along a brief description of the proposed local search method. Finally,
some results from experiments are introduced and concluded at the end.

2 Related Works

The particle swarm optimization method is general purpose optimization method
introduced in [1]. This method uses a population of particles exchanging knowl-
edge about the search space. The particles interact by forces exchange in a similar
manner like electric charges exchange photons in the plasma. Therefore, main
components in the information exchange are force strength and direction. The
advantage of this method lies in good global convergence. It can find a region
with better fitness values than the neighborhood quite fast. Unfortunately, it also
has quite a low performance in exploring fine and strongly diversified landscapes
in the neighborhood of the global optimum. This happens partially because par-
ticles in the basic version of the algorithm converge quickly to the same location
in the search space.

Dozens of extensions have been developed to overcome the basic algorithm
limitations. They can be divided into two categories. The first studies have pro-
posed different extensions to the basic algorithm equations by introduction of the
swarm center of ”gravity” [2] springs [4], dampers [8] mechanics and many oth-
ers. These techniques prevent from the premature convergence by application of
improved equations defining particles interactions. Meanwhile, some other stud-
ies have proposed hybrids with other evolutionary optimization methods e.g.,
genetic algorithms [3], differential evolution [5], tabu search [7], harmony search
[6]. These hybrid algorithms have inherited many advantages from constituents.
Hence, they are have good performance in the local neighborhood search and
inherit good global performance from the original PSO algorithm.

The solution proposed in this paper belongs to the second group. However,
it implements modular rule–based architecture instead of melting different solu-
tions into a single algorithm. It tries to select an appropriate tool in a particular
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search context. Thus, it prefers to choose among masters in particular disciplines
instead of using a single algorithm aspirating to be the master in all disciplines
at once.

3 Algorithm Description

The MGPSO algorithm uses queue to schedule four different optimization meth-
ods. They are the random probing of the whole search space, the particle swarm
optimization (PSOMethod), the random local neighborhood search and local
search by a gradient walking (LocalSearch). The random probing (GlobalRProb)
probes wholes search space with a tries number proportional to the number of
dimensions. The local random probing (LocalRProb) is done around a selected
point within limited effective range with an intensity dependent on the number
of dimensions.

In the main loop (iterateMain), the managing algorithm fetches from the
queue a scheduled task. Then, it launches its optimization procedure iteratively
until the task implementing module decides that it has finished the processing.
Each module is programmed as a state machine that should perform at most one
solution evaluation per iteration. If the active task finishes then a following task is
fetched from the queues head and the processing continues. During the processing
the queue may become empty. Then, the initial task would be inserted again
and the processing repeats to use left iterations. The active task may modify
the queue by creating and scheduling new tasks or removing some existing ones.
Thus, the breadth–fist and the depth–first strategies are realized by inserting new
tasks to the head or tail of the queue. The scheduled tasks are interconnected by
three–like structure defining the search context (e.g., a center of the processing,
bounds, an intensity of the exploration). The structure helps children tasks in
the accessing parents data or methods.

procedure iterateMain:

P1: if not T.isActive() then

fetch T from queue // fetch task T

if T is null

queue.add(new GlobalRProb); goto P1

else

T.iterate()

The dependencies between modules that are scheduled during the search in ex-
perimental evaluation are following:

GlobalRProb -> for the best k results schedule LocalSearch

for the best result globally schedule LocalSearchSens

for the best k results schedule PSOMethod

PSOMethod -> for the best result locally schedule LocalRProb

if found for the best globally schedule LocalSearchSens

LocalRProb -> for the best result locally schedule LocalSearch

The rules scheduling tasks are fixed in the experimental example. However, dif-
ferent dynamic conditional mechanisms were studied along some other modules
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used in the processing. The LocalSearchSens method differs from LocalSearch
in the processing way. It does more aggressively the local search delivering a
more precise result for a close neighborhood. According to these example rules,
MGPSO begins from the random probing and then executes the local search for
the optimum. Thus, in case of flat and simple search spaces it finds the best
solution quickly. But, if it fails then it uses PSO to locate ”promising” regions in
fitness landscape according to the space gradients. Afterwards, the local random
probing and the following local search are executed for localized regions. During
this exploration, if a better solution was found globally by PSO method then
the more sensitive local search is dynamically scheduled to explore for better
solutions at this location. All tasks are scheduled in the breadth–first manner to
better explore the search space.

4 PSO Algorithm Pseudo–code

The implemented new particle swarm optimization algorithm uses following pro-
cedure to induce the motion of particles:

Fitness normalization:

Nfit(E) =
(

s1·(E − Ebest)
ε + Ebest

)s2

where: E ∈ [0;∞) - evaluation, Ebest - globally the best evaluation,

s1 > 0, s2 ∈ [0; 1]
Force calculation:

F (p1, p2, ρ, δ, λ) = ρ · (p1.mass + p2.mass) · δ · e−|λ|

Damping radius:

DR(p, r) = radius
s3

·
(
1− sizemax−p.vaporization

sizemax

)

where: s3 > 0

procedure iteratePSO:

// stop conditions if no improvement of threshold crossed

if (swarm.noNewSolution() and swarm.ls.noNewSolution()) or

r < s10 · rmax or swarm.noMovement() then state=finished; return

// resume local search if no recent swarm center update

if swarm.isQuiet() then swarm.ls.iterate(); return

if swarm.isDead() then swarm.reinitializeSwarm(maxsize, r); return

// calculations are done once per cycle

if p == 0 then swarm.calculateForces()

swarm.moveParticle(p++) // one evaluation per iteration

if p>swarm.maxParticles then p = 0
r = s7 · r // search radius reduction

procedure calculateForces:

inF = 0; outF = 0 // compressing and repulsive forces

for each p from swarm.Particles do

p.size-=1; p.markDeadIfVaporizedOrOutOfBounds();

for each alive p in swarm.Particles do

// force from swarm center (locally the best solution)

direction=normalizedVector(p, swarm.center)
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f = rmin/s8 // constant force to swarm center

p.force.addScalledVector(direction, f)
// process other particles

dr = DR(p, r)
for each alive q in swarm.Particles.copy() different from p

direction=normalizedVector(p, q) // begin, end

δ=euclideanDistance(p, q)

λ=Nfit(p.sum) - Nfit(q.sum)
f = F (p, q, ρ, δ, λ) // calculate force

if λ < 0 then

if δ < dr then f = −f; outF+ = f else inF+ = −f
else f = s4 · f; outF+ = f
p.force.addScalledVector(direction, f) // accumulates forces

// calibrate new ρ value to balance total swarm’s energy

p.force.scale(s9 − (1− s9) · (1− e−dimensionality))) // friction

if inF > 0 then

if outF/inF > (s4 + s5) then

ρ = ρ/s6; ρ = limit(ρ, ρmax, ρmin)
else if outF/inF < (s4 − s5) then

ρ = ρ · s6; ρ = limit(ρ, ρmax, ρmin)
lmax=max(lmax, p.force.length())

// gluing involves the mass transfer and forces integration

swarm.Particles.glueCloseParticles(rglue);

procedure moveParticle(p):

oldsum = p.sum // p.sum is to amortize rapid changes of the fitness

s=limit(vmax/lmax, vmax, vmin)

// randomly probe path around particle path direction

q=p.produceRandomNeighbourInHypercone(α, p.force, s)
evaluate(q)

p.position.move(p.force, s)
evaluate(p) // evaluate() also updates swarm center

// and globally the best solution if it was found

if q.E<p.E then p=q // replace p if q is better

// and adjust the new particle force vector

p.sum = s11 · oldsum+ (1− s11) · p.E

Constants calibration from experiments:

s1 = 10, s2 = 0.1, s3 = 10, s4 = 0.2, s5 = 0.1, s6 = 1.2, s7 = 0.9995,
s8 = 0.5, s9 = 0.99, s10 = 0.75, s11 = 0.8, α = 0.26◦, rglue = 0.0005,
ρmax = 10000, ρmin = 0.0001, rmin = 0.01, rmax = 0.5, sizemax = 80,
vmax = 0.08, vmin = 0.00125

It is easy to notice that proposed equations do not have strong analogy to the
nature. Certainly, the strict resemblance is not necessary in the abstract world
where rules of interaction are not constrained by many physical phenomena and
limitations. However, it is important to determine to what extend these rules
address requirements of the optimization. The proposed algorithm has a lot
of constants that allows for the tuning of the properties of forces interacting
between particles. But the high number of parameters is not a disadvantage if
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they do not have to be notoriously modified for each problem separately. Hence,
this configuration was unchanged for all described experiments. The algorithm
finds minimum of the goal function and it operates on the normalized 0−1 search
space. It helped to avoid some problems related to differently sized dimensions
in particles movement equations.

Fig. 1. Force’s responses for particle’s different size and difference of fitness values (for
size = 150) - positive values mean repulsion

In the proposed solution, particles interact by exchanging forces between
them. They are also pulled by the swarm center being constantly updated by
the swarm if locally better solutions were found. This PSO algorithm has a low
sensitive local search method implemented for the optimization of the center of
the swarm. In the proposed solution the particles have sizes that reduce during
the swarm life–cycle due to ”vaporization”. Their sizes have impact on repulsive
forces between particles. Additionally, the forces also depend on the mass of
particles. Two closely located particles may glue together to form a single one
what involves momentums integration. During the swarm lifetime, the particles
become more active and close together but the forces are increasing. Thus, the
growing swarm mobility must be dynamically regulated by the ρ variable. The
forces between particles are illustrated in Fig. 1.

In the course of the optimization the particle may die if it has vaporized or
it was glued to any other particle. The swarm is randomly reinitialized if only
a single particle has left or the whole swarm died. However, the reinitialization
radius is reducing during the search process. Thus, a new swarm explores the
search space more locally.

The local search algorithm finds the most slanted direction by the neighbor-
hood probing. Afterwards, it walks along this path with growing steps until
further improvement of the fitness is not possible. Then, the slope finding and
the following walking are repeated but with a smaller radius until the radius
sensitivity threshold is exceeded. Some flexibility was added to walking down
the slope because the algorithm randomly probes the neighborhood along the
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Table 1. Results from experiments

Function Algorithm
Evaluations Error

Success
rate

Max. Performed Average Std. dev. Best
(avg.)

Griewank: SPSO’11 4000 4000 4.72E-03 4.32E-03 9.93E-10 0
d=2, b=[-600;600] DEPSO 4060 7.62E-03 4.59E-03 1.16E-04 0

MGPSO 3943 3.53E-02 3.11E-02 0.00E+00 4.5
Tripod: SPSO’11 20000 8831.2 1.36E-01 3.39E-01 8.68E-06 82
d=2; b=[-100;100] DEPSO 12600 6.00E-01 6.71E-01 4.91E-06 50.5

MGPSO 1719.7 6.65E-05 2.37E-05 3.15E-06 100
Rastrigin: SPSO’11 4000 4000 2.27E-05 2.11E-04 1.96E-11 0
d=2; b=[-5.12;5.12] DEPSO 4060 8.00E-04 1.22E-03 2.87E-07 0

MGPSO 3571.1 2.14E-01 4.09E-01 0.00E+00 33.5
Neumaier: SPSO’11 80000 80000 2.60E+02 3.24E+02 2.19E+01 0
d=40; b=[-d2; d2] DEPSO 80010 3.31E+03 3.11E+03 9.30E+01 0

MGPSO 80016.5 3.59E+02 4.47E+02 2.26E+01 0
G3: SPSO’11 680000 309365.4 9.09E-07 8.89E-08 5.70E-07 100
d=10; b=[0;1] DEPSO 27875.4 8.47E-07 1.34E-07 2.56E-07 100

MGPSO 679926.9 7.42E-06 4.70E-06 9.10E-07 0.5
Schwefel: SPSO’11 120000 120000 5.06E+03 7.69E+02 2.80E+03 0
d=30; b=[-500, 500] DEPSO 120050 2.59E+03 6.85E+02 1.01E+03 0

MGPSO 120014.1 4.00E+03 3.72E+02 2.77E+03 0
Schaffer: SPSO’11 60000 5570.2 6.06E-05 2.93E-05 2.35E-07 100
d=2; b=[-100;100] DEPSO 12902.1 4.90E-04 2.00E-03 9.65E-07 95.5

MGPSO 50249.9 6.43E-03 4.58E-03 1.96E-08 34
Step: SPSO’11 5000 2198.4 0.00E+00 0.00E+00 0.00E+00 100
d=10; b=[-100; 100] DEPSO 5039.3 4.65E+00 3.62E+00 0.00E+00 2

MGPSO 2299.9 5.00E-02 2.40E-01 0.00E+00 95.5
Gear train: SPSO’11 40000 22407.4 1.13E-11 4.84E-11 8.57E-16 66.5
d=4; b=[12; 60] DEPSO 18567.1 5.40E-14 5.31E-14 4.31E-16 97

MGPSO 783.4 4.77E-14 2.85E-14 6.63E-16 100
Perm: SPSO’11 20000 13692.1 2.46E+02 3.03E+02 0.00E+00 52
d=5; b=[-d; d] DEPSO 20020 6.00E+01 1.52E+02 5.90E-05 0

MGPSO 20002.5 3.06E+01 9.48E+01 2.82E-02 0
Shifted Sphere SPSO’11 2000 2000 7.02E+00 3.39E+00 1.68E+00 0
(CEC2005 F1): DEPSO 2030 6.96E+02 2.57E+02 1.71E+02 0
d=10; b=[-100;100] MGPSO 2001.3 2.75E-03 4.64E-03 3.47E-05 0
Shifted Rosenbrock SPSO’11 200000 134384.7 4.12E+01 1.18E+02 9.91E-03 65
(CEC2005 F6): DEPSO 41925.1 3.07E-01 1.05E+00 3.90E-03 92.5
d=10; b=[-100;100] MGPSO 105007.5 1.08E-02 7.73E-03 7.43E-03 98.5
Shifted Rastrigin SPSO’11 200000 200000 5.09E+00 1.98E+00 9.95E-01 0
(CEC2005 F9): DEPSO 200060 5.34E+00 2.60E+00 9.95E-01 0
d=10; b=[-5.12; 5.12] MGPSO 200001.9 6.49E+00 2.21E+00 1.99E+00 0
Schwefel: SPSO’11 200000 10240.2 8.90E-05 9.70E-06 5.25E-05 100
(CEC2005 F2) DEPSO 20606.6 7.83E-05 1.66E-05 2.88E-05 100
d=10; b=[-100;100] MGPSO 3466.3 9.07E-05 8.09E-06 5.79E-05 100
Shifted non–rotated SPSO’11 200000 135025.6 2.16E-02 1.38E-02 5.01E-03 35.5
Griewank (CEC2005 F7): DEPSO 200060 8.09E-02 3.55E-02 1.23E-02 0
d=10; b=[-600;600] MGPSO 199063.2 5.24E-02 2.03E-02 9.98E-03 0.5
Shifted non-rotated SPSO’11 600000 386939.2 9.02E-01 7.38E-01 8.18E-05 36.5
Ackley (CEC2005 F8): DEPSO 109360.3 1.29E-01 4.09E-01 8.29E-05 90.5
d=30; b=[-32;32] MGPSO 471402.5 3.38E-01 5.76E-01 7.00E-05 70

path. As a consequence, it can update to some degree the moving direction
dynamically according to the probing result.

Iteration cost of the proposed MGPSO grows linearly to a number of used
particles.
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5 Experimental Evaluation

The conducted experiment was a comparative study of three algorithms: Stan-
dard PSO 2011 (SPSO’11 package was retrieved from [9]), DEPSO described
in [5] and proposed MGPSO. Performed tests configurations for SPSO’11 al-
gorithm were taken from SPSO’11 package. The particles populations sizes for
MGPSO and SPSO’11 were 100 and 40. The DEPSO configuration was cr = 0.9,
w = 0.729 and 70 agents. Finally, results of MGPSO processing were retrieved
for the fixed set of parameters. The optimization duration was constrained by
a maximum number of possible goal function evaluations. Obtained results are
presented as statistics calculated from 200 subsequent executions with a different
pseudo–random generator initialization.

Table 1 contains results of the optimization. In all cases it is a minimization of
goal functions. It was set a tiny error threshold above the optimal value for each
function. If the threshold was exceeded during the algorithm’s execution then
the ratio of success was increased and this execution was stopped. Hence, the
performed number of evaluations in Table 1 is the average number of evaluations
after which the error became smaller than the threshold. However, if the number
of evaluations exceeded the maximum allowed and the error threshold was not
exceeded then the algorithm could not find an acceptable solution.

6 Conclusions

Particular optimization methods used in MGPSO have alone worse efficiency
than DEPSO or SPSO’11. The experiments have shown that appropriately man-
aged algorithms for special purpose exploration of the search space may deliver
comparable results to algorithm merging different concepts into single procedure.
In contradiction to the monolithic algorithm, the proposed approach is flexible.
It allows to tune on–line the processing pipeline according to requirements of
the particular optimization problem. Moreover, the rules for modules selection
may undergo a simultaneous process of the optimization. Thus, the algorithm
may adapt the optimization process according to performance and responses
from particular modules. As a consequence, it can determine a sequence of tools
solving the particular optimization problem efficiently.
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