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Abstract. In this paper we developed a new architecture of neural net-
works for generating nomograms based on series of data vectors. The
paper was inspired by the XIII Hilbert’s problem which was presented
1900 in the context of nomography, for the particular nomographic con-
struction. The problem was solved by V. Arnold (a student of Andrey
Kolomogorov) in 1957. For numeric data of unknown functional relation
we developed the incidental neural networks as nomograms generators –
the graphic calculating devices.
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1 Introduction

A nomogram is a graphical calculating device developed by Belgian engineer
Junius Massau and French mathematician Maurice d’Ocagne in 1884 [20]. The
definition of a nomogram can be stated as follows: a nomogram is a function
plotted on two-dimensionally space with n parameters, and knowing n − 1 pa-
rameters, the unknown one can be find in easy way. Generally, nomograms are
used in such applications where an approximate answer is appropriated and use-
ful; otherwise, the nomogram may be used to check the answer obtained from
an exact calculation method.

One of the best monographs devoted to nomograms was written by Polish
mathematician Edward Otto, Professor of Technical University of Warsaw, en-
titled Nomography issued by Oxford Pergamon Press in 1964 [16].

Since the 1970s developments of electronic calculators as well as computers
have eliminated out needs of using nomograms for approximated solutions of
complex functional relations. However, in spite of the main fault of nomograms,
namely limited accuracy of reading, nomograms are still in use e.g. in hydraulic
calculations, electrical engineering, in enterprises, banks and so on for estimating
considered values. No doubt, there is one extremely important merit of nomo-
grams – they give capability to represent a multidimensional space on a plane.
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The simplest nomogram is represented by a plot of a function y = f (x) drown
on a plane. In general, it is assumed that nomograms represent the functional
relation given in the analytical form ([3], [4], [6], [15], [16], [18], [20]), e.g.

F (u, v, w) = 0 (1)

In order to find a value of one variable knowing values of the rest often are used
nomograms.

There is a very interesting problem to generate nomograms when the analyt-
ical form of the functional relations (1) is unknown, and data of some relation
are available in a table, e.g.:

No. u v w
1 u1 v1 w1

2 u2 v2 w2

...
...

...
...

N un vn wn

In this paper a novel architecture of artificial neural networks is proposed.
For complex process of calculating and drawing of nomograms a new as well as
specialized architecture of neural networks was developed – the new architecture
of neural networks was named as incidental neural networks. The term of inci-
dence is known in geometry and is understood in the following way: a point is
incidental to a line if and only if the point lies on the line.

The new architecture of neural networks is constructed in the following way, a
number of feedforward single input and single output neural networks – called an
elementary neural network) are joined into one. Each elementary neural network
is associated with a single dimension of a considered problem. All the elementary
neural networks are merged via their outputs by so called Soreau equation ([4],
[15]). The Soreau equation just describes the incidence properties of elementary
neural networks outputs.

Such an incidental neural network after learning is able to generate nomo-
grams. An example was performed in order to show proper functioning of the
developed incidental neural networks.

2 Nomograms

In the seventeenth century Rene Descartes introduced the coordinate system
allowing algebraic equations to be expressed in geometric way and created ana-
lytical geometry ([2], [17]), the bridge between algebra and geometry. The next
step was the introducing a log-log plane by Leon Lalaane in 1843 [4, 6]. How-
ever nomograms developed by Maurice d’Ocagne in the 1880s became ground-
breaking in the graphical calculations, and in geometric solutions of algebraic
functions. Since that time nomograms have become commonly used as calculat-
ing devices by engineers during almost a hundred years.
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How important nomograms were it is worth to notice that David Hilbert set
out 23 problems during the world congress of mathematicians in Paris in 1900.
Hilbert’s XIII problem was presented in the context of nomography, for the
particular nomographic construction. The problem was solved by 19 year old
Vladimir Arnold (a student of Andrey Kolomogorov) in 1957.

It is necessarily to notice that Polish mathematicians were also involved in
development of the theory of nomography, e.g. Hugo Steinhaus [18, 19, 20],
Edward Otto [15, 16].

There were developed several types of nomograms e.g. [4, 6, 16], but gener-
ally we can distinguish two main categories of nomograms: the first are called
collinear nomograms and the second – the grid nomograms [6, 15, 16]. In this
work we will focus on the collinear nomograms.

2.1 Graphic Interpretation of Multiplication/Division Operation

Let us consider a simple nomogram which can realize the following relations
x3 = x1 x2 shown in Fig. 1

 

Fig. 1. Nomogram realising multiplication operation

Reading values of variables from the nomogram which consists of three axes
is obvious. Connection by a straight line of a chosen point of a functional axis
x1 with a chosen point of a functional axis x2 one obtains the solution laying on
a functional axis x3. The procedure allows finding a value of any variable under
the assumption that two other variable values are known.
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3 Collinear Nomograms

Let us consider a three dimensional Euclidean space. Necessary and sufficient
condition in order to three points A, B, C lie on one straight line is zeroing the
following matrix determinant

∣
∣
∣
∣
∣
∣

z11 z12 1
z21 z22 1
z31 z32 1

∣
∣
∣
∣
∣
∣

= 0 (2)

where: (z11, z12) – the coordinates of point A, (z21, z22) – the coordinates of point
B, (z31, z32) – the coordinates of point C.

The matrix determinant in (2) describes also the area of the triangle ABC.
This area is equal to zero for collinear points. The exemplary matrix in (2) con-
sists of nine entries, where the rows are related to the variables appearing in
the functional relation (1); and the first column corresponds to the nomographic
coordinate z1, while the second column corresponds to the nomographic coor-
dinate z2, the third column consists of 1s. Such determinants are called Soreau
ones, and equation (2) – Soreau equation, e.g. [16].

Equation (2) can be written as follows

∣
∣
∣
∣
∣
∣

z11(x1) z12(x1) 1
z21(x2) z22(x2) 1
z31(x3) z32(x3) 1

∣
∣
∣
∣
∣
∣

= 0 (3)

where:
z11(x1), z12(x1) are parametric functions with x1 as a parameter,
z21(x2), z22(x2) are parametric functions with x2 as a parameter,
z31(x3), z32(x3) are parametric functions with x3 as a parameter.

Equation (3) can be rewritten in a form describing relations between values x1,
x2 and x3:

z11(x1) [z22(x2) − z32(x3)] − z21(x2) [z12(x1) − z32(x3)]

+z31(x3) [z12(x1) − z22(x2)] = 0 (4)

For instance, for the case, depictured in Fig. 1, realizing multiplication which
has the following general form

f3(x3) = f1(x1)f2(x2) (5)

and Soreau equation has the form

∣
∣
∣
∣
∣
∣

Z11 z12(x1) 1
z21(x2) Z22 1
Z31 z32(x3) 1

∣
∣
∣
∣
∣
∣

= 0 (6)

where Z11, Z22 and Z31 are constant numbers.
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Up to now in nomographic practice it has been assumed that the functional
relation of type (1) was given in an analytic form.

However, nowadays it happens very often in practice, data are available as
series of numbers of unknown relations. In such a case following the theory of
nomograms we face a problem to construct functional relation of numeric data.
Let us assume that data are given as k series, each of N elements, and noth-
ing is assumed about reciprocal relation between data within each series. This
way a difficult problem of constructing nomograms for non-monotonic mappings
arises. In this paper this problem is solved via introducing additional dimen-
sions. Additionally k-element series of numbers can be represented by k para-
metric mappings, and these mappings can be always represented just by collinear
nomograms.

4 Incidental Neural Networks

The theory of neural networks was described in many papers and books, e.g.
[5, 11, 12, 14]. In Fig. 2 there is shown a feedforward neural network with a
single input and a single output consisting with an input and output layers,
respectively, and two hidden layers. Such a network we will call an elementary
neural network.

Artificial neural networks can be connected in many various ways. In literature
one can find some examples of systems built with simple neural networks [5, 11,
14]. In considered here problem it is required to find some relation between
elements of data series. For that it is proposed a new architecture of neural
networks which consists of some number of elementary neural network, see Fig. 2.
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Fig. 2. Elementary neural network and it symbolic representation
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It is assumed that a single elementary neural network is related or is respon-
sible to a single dimension of the considered problem. The proposed elementary
neural network consists of:

— one input neuron,
— one or two hidden layers (a number of neurons within hidden layers deter-

mines level of approximation accuracy),
— one output neuron.

Such an elementary neural network is able to model a single dimensional func-
tion, and can be used to approximate a functional axis in nomograms. From
the other point of view, each element of Soreau determinant depends on one
variable, and can be represented by one elementary neural network [9]. In such
an elementary neural network the input is just one variable while the output
constitutes a nomographic coordinate.

For instance, for the general multiplication operation (5)

f3(x3) = f1(x1)f2(x2)

the responsible incidental neural network is shown in Fig. 3. The exemplary
new architecture consists of three elementary neural networks, each marked by
two parallel thick bars, interfaced through the constraint represented by Soreau
determinant depictured by a double circle.

2x

22z  

3x  

32z  

12z  

1x

Fig. 3. The incidental neural network – a system of three elementary neural networks
interfaced through Soreau determinant

The system of elementary neural networks is interfaced under some constraints
as results of expressions of Soreau determinant.

It is worth to emphasise that applied special kind of elementary networks
connection does not fulfil Kirchhoff low.

Adjusting Soreau determinant (6) to zero it is guaranteed that values of co-
ordinates z12(x1), z22(x2) and z32(x3) are coherent to relationship (3). The cor-
responding variables values x1, x2 and x3 fulfil equation (4).
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5 Illustrative Example

The nomogram presented in Fig. 1 consists of two vertical parallel functional
axes and one horizontal. In this section we will solve the same problem as a
collinear nomogram under the assumption that the relation x3 = x1x2 is given
as several series of numbers data realising this multiplication operation.

For such a case Soreau determinant has the following form

∣
∣
∣
∣
∣
∣

0.2 z12(x1) 1
0.5 z22(x2) 1
0.8 z32(x3) 1

∣
∣
∣
∣
∣
∣

= 0 (7)

The considered problem is three dimensional therefore the incidental neural net-
works consists of three elementary neural networks interfaced by (7), such inci-
dental network (see Fig. 3) represents the collinear as well as rectilinear nomo-
gram. The collinear nomogram is built of three parallel functional axes. The first
column in (7) is related to the first nomographic coordinate z1, it means that
Z11 = 0.2, Z21 = 0.5 and Z31 = 0.8; while the second column in (7) is related
to the second nomographic coordinate z2, and is responsible of changing of each
nomographic coordinate, respectively. The values Z11, Z21 and Z31 were chosen
arbitrarily.

The equation (7) can be rewritten as follows

z12(0.5 − 0.8) + z22(0.8 − 0.2) + z32(0.2 − 0.5) = 0 (8)

Each particular elementary neural network will be taught according to the fol-
lowing schema

z12 =
−z22(0.8 − 0.2) − z32(0.2 − 0.5)

0.5 − 0.8
(9)

z22 =
−z12(0.8 − 0.2) − z32(0.2 − 0.5)

0.8 − 0.2
(10)

z32 =
−z12(0.5 − 0.8) − z22(0.8 − 0.2)

0.2 − 0.5
(11)

For this numerical example each elementary neural networks consists of one
neuron in the input layer, five neurons in the first and second hidden layers and
one neuron in the output layer. After choosing constant point along the axis z1
there is a task to find changeability of nomographic axes z12, z22 and z32.

For the learning process of the incidental neural network the backpropagation
algorithm with momentum was applied; the parameters were adjusted as follows:
the learning coefficient = 0.7, the momentum coefficient =0.3 and the number
of steps for each elementary network within each learning sequence =10000.

The algorithm of learning of incidental neural networks can be shortly de-
scribed as follows:
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Step 1

Values of numerical series data are presented to inputs of the incidental neural
network.

Step 2
The respective outputs of elementary neural networks are calculated subject to
actual weights and neurons activation functions.

Step 3

The values z12, z22, z32 are obtained from (9)–(11).

Step 4

Differences between values obtained in Step 2 and in Step 3 are considered
as learning errors in learning processes in each elementary neural network. The
elementary networks are trained sequentially one network after another; it means
the values z12, z22, z32 are used in training.

Step 5

If the assumed level of accuracy is not reached then the weights must be changed
and algorithm starts from the beginning, otherwise the algorithm is stopped.

This way, the functional axes which are parallel, they are perpendicular to nomo-
graphic axis of abscissae z1; in result the nomogram is developed. In the inciden-
tal neural network the inputs are represented by variables x1, x2 and x3, while
the outputs of the elementary networks z12(x1), z22(x2) and z32(x3) represent
location of x1, x2 and x3 on axis of ordinates z2 (the coordinates of the functional
axes).

 

Fig. 4. Collinear nomogram realising multiplication operation

Using of nomograms is very easy, in the case of the example from Fig. 4, one
needs to draw a straight line between the axes x1 and x2 – the result of the
multiplication operation is read as the intersection of this drew line and the axis
x3.
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6 Conclusions

In this paper it was shown that using collinear nomograms one can visualise and
analyse causes of changeability of functional relation in multidimensional spaces.

In order to generate nomograms for numeric data of unknown relations we
developed the new architecture of neural networks, here called the incidental
neural networks. For such neural networks we developed the training algorithm
based on the well-known backpropagation one.

Solution of many examples, also multidimensional, showed correctness of the
assumptions as well as efficiency of the computer implementation.
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3. Chen, C.-H., Härdle, W., Unwin, A. (eds.): Handbook of Data Visualization.

Springer, Heidelberg (2008)
4. Doerfler, R.: The Lost Art of Nomography (2010),

http://myreckonings.com/wordpress/wp-content/uploads/nomography.pdf
5. Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R.: Neural networks, vol. 6.

Academic Press Exit, Warsaw (2000)
6. Evesham, H.A.: The History and Development of Nomography. Docent Press

(2010)
7. Fiksak, B.: Aplication of Kohonen map for strategic analysis of enterprise. Transi-

tion to Advanced Market Institutions and Economies. IBS PAN, Warszawa (1997)
8. Fiksak, B.: Neuron model as a nomogram. In: Ho�lubiec, J. (ed.) Systems Analysis

in Finance and Management. SRI PAS, Warsaw (2010)
9. Fiksak, B.: Nomogram as a graphical calculator in four-dimensional space. In:

Ho�lubiec, J. (ed.) Systems Analysis in Finance and Management. SRI PAS, Warsaw
(2011)

10. Hankins, T.L.: Blood, Dirt, and Nomograms: A Particular History of Graphs,
vol. 90, pp. 50–80. The University of Chicago Press, Isis (1999)
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