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Abstract. Development of advanced systems requires new methods to
improve quality and efficiency of engineering processes, and to assist man-
agement of complexmodels encompassing different engineering disciplines.
Methods such as model-driven development and domain-specific model-
ing facilitate development from this perspective but reduce interoperabil-
ity and other prospects of rationalizing processes, on the other hand. An
approach applying OWL semantics and reasoning to models is presented
with examples to support industrial control application engineering. Using
the methods, generalized classifications are inferred from instance models
and combined with generic engineering knowledge maintained in ontolo-
gies. Reasoning allows identifying assemblies and structures outside the
scope of traditional modeling to detect flaws and error-prone designs. The
results indicate that OWL semantics and reasoning can be used as a sup-
plement furthering typical development practices.

Keywords: control application engineering, software models, semantic
web, owl, rules, reasoning.

1 Introduction

Advanced control systems and applications are essential in monitoring and con-
trolling industrial processes and manufacturing operations. The increase in the
level of automation and intelligent features as well as the requirements on
performance, reliability and safety of these systems has resulted in engineer-
ing challenges. There is a demand for new methods to improve development and
engineering in order to address these requirements, and also to improve efficiency
of engineering processes and reduce the total costs of system development.

In system development, models are used to develop, document and communi-
cate engineering artefacts. For advanced systems the models easily become large
including tens of thousands of engineering objects. Especially when people from
different engineering disciplines use these models to communicate and collabo-
rate, and as input for automatic imports and transformations there is a risk for
error when potential problems and dependencies in models are not detected.

In our previous work, model-driven development (MDD) of industrial process
control applications has been studied with emphasis on development processes
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and domain-specific modeling constructs [1]. The developed engineering process
along with UML Automation Profile (UML AP) concepts enables the designer
to focus on significant engineering challenges while much of the work between
design phases is automated. Nevertheless, situations can be identified where the
development process and the modeling foundation is not sufficient in providing
the interoperability and support for further improving the engineering processes.

Interest in ontologies and related formalisms for industrial applications has
increased during the last years [2]. The use of Semantic Web technologies can
improve software engineering throughout the life-cycle by providing logic-based
formalisms and semantics to concepts [3]. Despite many benefits it is problem-
atic to shift to an entirely ontology-based modeling due to the differing nature of
the approach. The varying granularity, freedom in expressivity, and the required
complexity in modeling detailed semantics are examples of some of the imped-
iments. Semantic Web technologies can regardless of the above mentioned be
used as a supplement to MDD practices. For example, to provide added seman-
tics and interoperability during engineering phases to improve understandability,
knowledge management and reuse, automatic reasoning and classification, and
even assisting in automatic transformations. Semantic descriptions generated
from models could also be used for run-time operations [4][5].

From modeling perspective OWL does not allow syntactical enforcement of
specific restrictions as opposed to typical modeling languages. However, this
point of view can be neglected as the metamodel of the MDD approach typically
caters for those aspects. The purpose of using semantic methods is to capture
elements and features outside the scope of the metamodel. It is acknowledged
that Object Constraint Language (OCL) can be used in many cases for defining
constraints and rules to identify structures, related to the metamodel. OCL, how-
ever, is restricted to known types of the modeling language making it challenging
for maintaining more advanced knowledge of a more generic nature.

This paper presents application of semantics and reasoning on MDD models
in engineering of control applications using OWL 2 DL and SWRL. Knowledge
management and reuse of engineering information and existing know-how is also
discussed. Section 2 presents related work and background. The organization of
information in engineering ontologies is presented in section 3 and OWL rea-
soning challenges for control application models are presented in section 4. The
developed prototypes, examples and the results are discussed in section 5. Fi-
nally, section 6 contains the discussion and section 7 concludes the paper.

2 Related Work and Background

The complexity of consistency checking of UML class diagrams has been studied
by using first-order predicate logic [6]. Description Logics based reasoning has
been considered and applied to UML class diagrams to check for inconsistencies
and redundancy [7] and the authors opinion is that state-of-the-art DL-based
systems are ready to serve as a core reasoning engine in advanced case tools.
Also a framework for integrated use of UML class-based models and OWL has
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been proposed [8]. Semantics in ontologies have been used to enhance modeling
capabilities and transformations in MDD of service-based software [9].

The use of ontology-based query retrieval for reusing UML class diagram
designs during development has also been studied [10]. The results highlight
the importance of the domain ontology and the added semantics the ontologies
bring. The adoption of OMG MDA principles to ontology development have
been studied by [11] to facilitate transformations between different ontology
languages.

Ways to combine ontologies with metamodeling have been studied by [12]
and [13]. This paper enhances and deepens the discussion in [13] on the relation-
ship between ontologies and meta-modeling, and the model-driven development
paradigm by applying classification and reasoning to models in process control
application development to support engineering tasks.

3 Control Application Engineering Knowledge

Knowledge management in engineering of control applications can be organized
into three categories; domain knowledge, model instances, and use case specific
knowledge, as presented in figure 1. Domain knowledge represents information
related to the area of interest, e.g. a specific engineering discipline or a type of
systems or devices, and knowledge and practices such as modeling languages and
standards. From a modeling perspective a domain ontology (DO) provides the
central building blocks and constructs used in the application domain but with
additional semantic interoperability. The domain knowledge is of a static nature,
i.e. the ontologies do not change very often. This type of information can be
generated automatically from existing sources such as metamodels or standards,
for instance. Domain knowledge can also be mined and the extraction of domain
ontologies from engineering domain handbooks has been proposed [14].

UML AP modeling concepts [1] extend both UML and Systems Modeling
Language (SysML), and hence there are three metamodels with corresponding
domain ontologies defining the semantics and the relationships. In this case the
ontologies are taxonomies that primarily reflect relationships in the sense of
classification and generalization of concepts. In OWL a too detailed DO easily
causes unwanted inferences if all property domains and ranges are considered.

Model instance knowledge represents models under development or being
studied, i.e. model instances serialized as an individual or instance ontology
(IO). A plain representation of the individuals that relies on the corresponding
DO allows for the transformation between the modeling paradigms to remain
sufficiently simple [13]. The IO contains the individual class types, the associated
data properties, and structural ownership relations of the source instance model.

Use case specific knowledge refers to knowledge that can be described as
information used in analysis and reasoning, e.g. rules on typical design issues
and pattern-like structures, company specific conventions, and concerns where
special attention is desired. This knowledge is typically of a generic nature and
not restricted to a particular modeling or development method. In this sense,
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also mapping and alignment of different ontologies fall into this category when
information from various sources needs to be combined. The ability to combine
and reuse existing knowledge in different ontologies is also a justification for using
ontologies to support development, e.g. applying generic engineering knowledge
to the IO of a UML AP model while performing automatic structural analysis.
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Fig. 1. The knowledge in engineering scenarios can be divided into three main cate-
gories: domain knowledge, model instance knowledge, and use case specific knowledge

4 Reasoning with OWL

OWL and SWRL are based on an open world assumption (OWA) meaning that
anything that is not stated is unknown and cannot be used to deduce negation as
a failure, for instance. As OWL DL (and SWRL) is based on description logics it
supports only monotonic inference. Altering a fact based on some condition is not
possible and requires an additional layer, e.g. program code, to be implemented.
Also domain and range conditions are not constraints in the sense that they are
checked for consistency. In reasoning they are used as axioms to infer further
knowledge which can easily lead to unexpected effects e.g. in classification.

The impacts of open world semantics can be limited with techniques to close
the world or restrict different possibilities. Traditional programming languages
have often been used in combination with OWL to overcome these restrictions.
Recently there has also been a RDF/SPARQL based proposal [15] for circum-
venting some of the limitations that is also applicable to OWL.

The management of truth in the knowledge base is of importance in scenarios
where the knowledge is frequently updated, such as engineering environments.
The challenge in forward chaining is that facts can be both explicit and im-
plicit, and the same fact entailment can be based on a number of facts making
the management difficult. On the other hand, inferring all the entailments each
time can be too intensive from a performance point of view. This is worth not-
ing as OWL DL, for instance, is computationally hard and in the NExpTime
complexity class. Backward chaining is more attractive in the case of rapidly
changing knowledge bases where inference is conducted only when needed and
the additional entailments do not have to be stored and maintained.
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Typically a lot of work is required backtracking different possibilities and
reasoning is non-deterministic. Considering this, it can be argued that reasoning
easily becomes computationally challenging even for simple-appearing problems.
Although information can be stated more explicitly requiring less reasoning it is
an important issue especially when integrating other information sources.

5 Applications in Control Application Engineering

The prototypes developed implement the concepts of knowledge management
presented in section 3 with information distributed in separate OWL DL ontolo-
gies. The reasoning examples are performed mainly in Protege 4 but implemen-
tation as a Web Service in Java using OWLAPI has also been evaluated and
proved working as well. The Pellet reasoner has been used in all of the examples
both in Protege and the Java based OWLAPI implementation.

The SWRL based inferences are implemented DL Safe to retain decidability
and are embedded in the engineering knowledge ontology (EKO) and the Map-
ping ontology (MO). UML AP model transformations to instance ontologies are
performed using a refined version of the XSLT developed in [13]. Present are
also the domain ontologies for UML AP, UML, and SysML metamodels.

5.1 Examples

Figure 2 illustrates some of the inferences using the developed ontologies for a
subset of a control application model. UML AP model elements are connected
with nested AutomationFunctionPort and InterlockPort elements that are linked
using a UML Connector with ConnectorEnd sub elements identifying the Port
elements. The structure is complicated and rules can be used to infer direct
connections between model elements instead. The following MO rule considers
UML AP elements (DO concepts and IO individuals) in the antecedent part and
makes an inference of a simplified connection (EKO concepts) in the consequent.

AutomationFunctionPort(?prtA), AutomationFunctionPort(?prtB),

Connector(?cnn), ConnectorEnd(?cnnendA), ConnectorEnd(?cnnendB),

hasPart(?cnn, ?cnnendA), hasPart(?cnn, ?cnnendB),

hasLinkId(?cnnendA, ?idA), hasLinkId(?cnnendB, ?idB),

direction(?prtA, "out"^^string), id(?prtA, ?idA), id(?prtB, ?idB),

DifferentFrom (?prtA, ?prtB) -> hasPortConnectionOut(?prtA, ?prtB)

OWL allows declaring conditions for which new inferences can be made but the
use of rules allows more powerful expressing of deductive reasoning than OWL
alone. A similar example infers a tracedBy relation between Requirements and
AutomationFunctions from a TraceRelation contained in the Requirement.

AutomationFunction(?af), Requirement(?r), TraceRelation(?tr),

hasPart(?r, ?tr), modelId(?tr, ?id), sourceDomainId(?af, ?id)

-> tracedBy(?af, ?r)
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In addition to the inferred connections presented, also specific interlock con-
nections are identified as well as relations between measurements that via a con-
troller are connected to an actuator. For example the Primary and Secondary
Controller inferences are reasoned based on an OWL class expression identifying
a set point coming from another controller. The existence of cascade controllers
in the organizing control loop also classifies it as a Cascade ControlLoop. In addi-
tion there is a Complete Connected ControlLoop inference that has identified all
parts of the control loop to have the minimum amount of required connections.

If developing systems with safety requirements it could be required that all
interlocks implemented must have a separate measurement for the interlock that
is not used in the normal regulatory control of the actuator, for example. For this
an inference can be made that identifies those actuators that have an interlock
based on the same measurement that also the controller is utilizing.

<<ControlLoop>>
FIC100Loop

<<AnalogMeasurement, AI_3>>
F100

Desciption: flow measurement
SafetyRelated: false
Monitored: true
Channed ID: 
Quantity: F

Measuring aberrance min: 0.3
Measuring aberrance max: 9

EDouble Meas.Val  out AP

AP Boolean SetMode.Auto  in

String CurMode.Val  out AP

Boolean AlrmEvt.L  out AP

Boolean AlrmEvt.H  out AP

AP Integer MeasIn  in

<<Interlock, INT_2>>
M100INT

Desciption: Segment closed
SafetyRelated: false
Monitored: true

AP Boolean In1  in

AP Boolean In2  in

Boolean ForcedCloseOff  out IL

String IntMsg  out IL

<<Interlock, INT_2>>
Y102INT

Desciption: Dry pump protection via valve

SafetyRelated: false
Monitored: true

AP Boolean In1  in

Boolean ForcedCloseOff  out IL

AP Boolean In2  in

String IntMsg  out IL

Boolean ReleaseToOpenOn  out IL

Boolean ReleaseToCloseOff  out IL

Boolean ForcedOpenOn  out IL

String CurMode.Val  out AP

<<PIDAlgorithm, PIDC_2>>
FIC100

AlgorithmSpecification: null
Desciption: Flow control, PID
SafetyRelated: false
Monitored: true
Kp: 0.0
Ti: 0.0
Td: 0.0

AP EDouble Meas.Val  in

EDouble Ctrl.Val  out AP

Boolean Ctrl.On  out AP

AP EDouble SP.Val  in

AP Boolean PIDReset  in

AP Boolean Enable  in

AP Boolean SetMode.Auto

AP Boolean SetMode.Man  in

String AlrmEvt.Msg  out AP

Boolean AlrmEvt.On  out AP

APBoolean Ctrl.Off  out

<<PIDAlgorithm, PIDC_2>>
LIC200

AlgorithmSpecification: null
Desciption: B200 level control, PID
SafetyRelated: false
Monitored: true
Kp: 0.0
Ti: 0.0
Td: 0.0

AP EDouble SP.Val

AP EDouble Meas.Val  in

EDouble Ctrl.Val  out AP

<<AnalogMeasurement, AI_3>>
L100

Desciption: level measurement
SafetyRelated: false
Monitored: true
Channed ID: 
Quantity: L

Boolean AlrmEvt.L  out AP

EDouble Meas.Val  out AP

<<BinaryOutput, OOA_3>>
Y203

Monitored: true
Channed ID: 

IL Boolean ForcedCloseOff  in

Boolean IntActive  out IL

<<BinaryOutput, OOA_3>>
M100

Desciption: motor control
SafetyRelated: false
Monitored: true
Channed ID: 

Actuating range from/to min: 0
Actuating range from/to max: 100

IL Boolean ForcedCloseOff  in

AP Boolean Ctrl.Val  in

String AlrmEvt.Msg  out AP

Boolean AlrmEvt.On  out AP

String CurMode.Val  out AP

String IntMsg  out IL

Boolean IntActive  out IL

Boolean CtrlOut  out AP

Integer CtrlOutUINT  out AP

<<AnalogOutput, PA_1>>
Y102

Desciption: control valve
SafetyRelated: false
Monitored: true

Actuating range from/to min: 0
Actuating range from/to max: 100

IL Boolean ForcedCloseOff  in

AP EDouble Ctrl.Val  in

Boolean IntActive  out IL

Integer CtrlOut  out AP

String AlrmEvt.Msg  out AP

Boolean AlrmEvt.On  out AP

Measurement
Component

Controller
Component

Controller
Component

Measurement
Component

Interlock
Component

Interlock
Component

Output
Component
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Component
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Fig. 2. Example of some of the generalized classifications and inferred connections for
elements in a subset of a control application model. The red markings (lighter shade)
represent the result of mapping assertions from UML AP ontology concepts to generic
engineering concepts and the black markings further inferred facts about the model.
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5.2 Results and Experiences

Classifications and inferences enable many use cases for the method to support
engineering tasks and assist the developer by highlighting potential error-prone
designs and structures, for example. It also enables the use of automatic checking
of consistency and structures that the metamodel might not address.

Trace relations, for example, are used to relate requirements to functions in
the model as a means to improve quality. Inferring the trace is of little use if bro-
ken or missing traces cannot be identified. Inferring this, the different interlock
measurement or incompletely connected control loops, for example, is impossible
using OWL mechanisms due to the OWA. In practice one can get around this
if not developing applications that rely only on OWL. As the interesting con-
cepts or structures could be defined as complements of those identifiable with
OWL it was straightforward to make a complement using programming language
constructs as a middle layer in the Java based prototype.

Rules were used to infer direct relationships between elements to simplify
connections to the engineering knowledge. Rules were chosen because OWL does
not allow mixing of object and data properties in chains. The rule based approach
inferring simplified relationships based on linking sub elements proved to be
challenging for models containing hundreds of Ports. In comparison, deducing the
same connection assertions in the instance transformation phase, using XPath
and XSLT, the typical ontology classification time was reduced to a tenth of the
time required when the connection and interlock connection rules were included.

Using the reasoner also for the different individuals declaration of OWL was
found decreasing performance significantly with more than one thousand indi-
viduals. An alternative approach using a functional data property to differentiate
the individuals proved out more efficient.

A generic way to tackle large numbers of individuals is to perform reasoning
only on a subset of the model and iterate the complete model one package at
a time, for example. The feasibility of this, in general, depends on the source
domain model structure of how sub models are connected. For rules performance
a division of the reasoning tasks can be implemented by grouping rules to be
executed according to the needs of each task. When there are a lot of rules
involved it is, according to our experiences, usually quicker to run several smaller
and even partially redundant reasoning tasks than a large one including all of
the axioms.

Because UML AP is based on UML and SysML, and via its implementation
on the Eclipse platform also on the Ecore metamodel, it is worth considering
which of those equivalent ontologies are needed in reasoning. Unless utilization
of knowledge in UML or SysML is not required in inferences, the DOs may be
omitted from reasoning. For many purposes it is a feasible solution for UML
AP because the model semantics are present in UML AP with its own class
hierarchies, and the structures and semantics of UML and SysML are mainly
utilized for the modeling tool support. Nevertheless, classification and operating
with UML and SysML concepts is also possible for UML AP models if desired.
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5.3 Additional Requirements for Design-Time Reasoning

Off-line analysis of models, e.g. in project repositories, can be implemented with
less consideration on space and time complexity as it can be performed separately
from design. In order to implement on-line reasoning properly, e.g. for integrated
development environments (IDE), some additional issues have to be considered.

Reasoning performance is an important concern for support to be useful and
assisting in development tasks. Therefore it is not practical to do all reason-
ing tasks as on-line background processing. A plausible approach could be to
limit on-line reasoning only to a subset of selected objects and performing more
extensive analysis less frequently, e.g. when saving or changing views.

Another issue to consider is the way the model instances in the IDE are
transformed to the knowledge base. A practical transformation approach instead
of the XSLT could be to use an incremental transformation that simultaneously
maintains a semantic knowledge base of the model being developed.

6 Discussion

Interpreting models as ontologies enables various classifications and inferences to
be performed. When knowledge about instances is combined with other informa-
tion new inferences can be made to support development and give an indication
about structures that designers should pay attention to, for example.

OWL provides capabilities for describing concepts beyond typical modeling
languages. Additionally, OWL provides semantic interoperability which is an
increasingly important feature both for networked engineering environments and
the systems being designed. Using OWL, pattern-like structures can be identified
and generic platform agnostic engineering knowledge can be applied and reused
to classification and analysis of model instances.

In addition to practical issues which currently prevent adoption of pure OWL
based engineering, it is also limited by some of its inherent design patterns
originating from Description Logics. The OWA is a considerable restriction when
reasoning on application models that reflect more a closed space. To close the
assertional box an additional layer of program code or other techniques are
required that e.g. operate on the less restricted OWL FULL or RDF level.

7 Conclusion

Development of advanced systems, such as industrial control applications, re-
quires new methods to improve quality and efficiency of engineering, and to
assist in handling of complex design models. Typical modeling methods, how-
ever, often fall short in interoperability, expressing additional knowledge, and
reasoning on structures and features beyond single elements.

This paper presented application of OWL semantics and reasoning to models
when developing control applications. Using the developed method, elements in
models can be classified and generic engineering knowledge can be applied to
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detect inconsistencies and anomalies in model instances. According to our expe-
riences OWL can be used as a supplement to MDD to provide interoperability
and support in various engineering operations developing complex systems. The
presented implementation and experiments are of an off-line nature but the gen-
eral approach and some of the implementations, i.e. classifying a subset of a
model, can also be adapted to on-line reasoning in an IDE as well.
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