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Abstract. Strong convergence of general regression neural networks is
proved assuming non-stationary noise. The network is based on the or-
thogonal series-type kernel. Simulation results are discussed in details.

1 Introduction

In this paper we consider the following model

Yi = φ(Xi) + Zi, i = 1, . . . , n, (1)

where X1, . . . , Xn are independent random variables with a probability density
f(·), Zi are random variables such that

E(Zi) = 0, EZ2
i = di, i = 1, . . . , n, (2)

and φ(·) is an unknown function. We assume that function f(·) has the repre-
sentation

f(x) ∼
∞∑

j=0

ajgj(x), (3)

where

aj =

∫

A

f(x)gj(x)dx = Egj(Xi). (4)

and {gj(·)}, j = 0, 1, 2, . . . is a complete orthonormal series (see e.g. [1]) defined
on A ⊂ Rp. Then the estimator of density f(x) takes the form

f̂n(x) =

N(n)∑

j=0

âjgj(x), (5)

where N(n)
n−→ ∞ and

âj =
1

n

n∑

k=0

gj(Xk) (6)
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Let us define

R(x) = f(x)φ(x). (7)

We assume that function R(·) has the representation

R(x) ∼
∞∑

j=0

bjgj(x), (8)

where

bj =

∫

A

φ(x)f(x)gj(x)dx = E(Ykgj(Xk)) (9)

We estimate function R(·) using

R̂n(x) =

M(n)∑

j=0

b̂jgj(x), (10)

where M(n)
n−→ ∞ and

b̂j =
1

n

n∑

k=0

Ykgj(Xk). (11)

Then the estimator of the regression function is of the following form

φ̂n(x) =
R̂n(x)

f̂n(x)
=

n∑
i=1

M(n)∑
j=0

Yigj(Xi)gj(x)

n∑
i=1

N(n)∑
j=0

gj(Xi)gj(x)

(12)

This algorithm creates a so-called general regression neural network [37]. Figure 1
shows block diagram for M(n) = N(n). There are many papers in literature

Fig. 1. Regression neural network
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where nonparametic regression estimates were studied in a stationary environ-
ment e.g. [4], [5],[7], [11], [13] - [17], [23] - [25], [28] - [31] and in a non-stationary
environment e.g. [6], [18] -[22], [26], [27]. For excellent overviews on these tech-
niques the reader is referred to [8] and [9].

2 Main Result

Let us assume that
max

x
|gj| < Gj . (13)

Theorem 1. Let us denote:

si = di +

∫

A

φ2(u)f(u)du. < ∞ (14)

If the following conditions hold

∞∑

n=1

sn
n2

(

M(n)∑

j=0

G2
j)

2 < ∞, M(n)
n−→ ∞ (15)

∞∑

n=1

1

n2
(

N(n)∑

j=0

G2
j )

2 < ∞, N(n)
n−→ ∞ (16)

then
φ̂n(x)

n−→ φ(x) with probability 1, (17)

at every point x ∈ A at which series (3) and (8) converge to f(x) and R(x)
respectively.

Proof. It is sufficient to show that:

R̂n(x)− E[R̂n(x)]
n−→ 0 (18)

f̂n(x) − E[f̂n(x)]
n−→ 0, (19)

with probability one, at every point x ∈ A, at which series (3) and (8) are
convergent to f(x) and R(x) respectively. Denote

Ti =

M(i)∑

j=0

(gj(Xi)Yi − bj)gj(x) (20)

Observe that

R̂n(x)− ER̂n(x) =
1

n

n∑

i=1

Ti (21)
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Using Cauchy’s inequality:

ET 2
n ≤ (

∫

A

φ2(u)f(u)du+ dn)(

M(n)∑

j=0

G2
j )

2 (22)

Applying Kolmogorov’s strong law we obtain

lim
n→∞

1

n

n∑

i=1

(Ti − ETi) = 0 (23)

with probability one.

Similarly, for Ti =
N(n)∑
j=0

(gj(Xi)− aj)gj(x)

f̂n(x)− Ef̂n(x) =
1

n

n∑

i=1

Ti (24)

we obtain

ET 2
n ≤ (

N(n)∑

j=0

G2
j)

2 (25)

which implies that

lim
n→∞

1

n

n∑

i=1

(Ti − ETi) = 0 (26)

with probability one. This concludes the proof.

Example. Let assume that

M(n) = [c1n
qM ] N(n) = [c2n

qN ] dn = c3n
α Gj = c4j

d, (27)

where qm, qn and α are positive numbers. It is easily seen that if

4dqM + 2qM + α < 1, 4dqN + 2qN < 1 (28)

then Theorem 1 holds. It should be noted that d = − 1
12 for the Hermite sytem,

d = − 1
4 for the Laguerre system, d = 0 for the Fourier system, d = 1

2 for the
Legendre and Haar systems (see [35]).

3 Experimental Results

For computer simulations we will use synthetic data. Distribution of random
variables Xi is uniform on interval [0; 3], for i = 1, . . . , n. Consider the following
model

φ(x) = 8e−x2

, (29)
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Fig. 2. The MSE as a function of n

with Zi which are realizations of random variables N(0, di), di = iα, α > 0.
Constants c1, c2 in (27) are equal to 2 and c3 = 1 . Parameters qM and qN
are both equal to 0, 4. The Laguerre orthonormal system is chosen to perform
calculations. Number of data set is taken from the interval [500; 10000] and
parameter α is tested in the interval [ 1

10 ,
12
10 ].

Figure 2 shows how the MSE (Mean Square Error) changes with the number of
data elements n for different values of parameter α. For parameter α ∈ [0, 1; 0, 4]
we can see that, when n goes to infinity, the MSE goes to 0. For α = 0, 5 or
α = 0, 7 this trend is not maintained. Moreover, for α = 0, 7, value of the MSE
is much bigger than for lower values of parameter α. Experimental results show
that for higher values of α the MSE is growing. For α = 1, 2 and n = 104, the
MSE is equal to 19,18.

Fig. 3. Training set and obtained estimator
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In Figure 3 input data and the result of estimation for n = 104 and α = 0, 2 is
indicated. As we can see the estimator found in the appropriate manner center
of data and maintained its trend.

Figure 4 shows the course of the function given by (29) and estimators ob-
tained for n = 104, with parameters α equal to 0, 2 and 1, 2.

Fig. 4. Function φ(·) and its estimators for different values of parameter α

4 Conclusions

In this paper we studied general regression neural networks based on the or-
thogonal series-type kernel. We established the strong convergence assuming
non-stationary noise. Further research will focus on how to adopt methods based
on unsupervised and unsupervised training algorithms for neural networks [2],
[3], [12] and neurofuzzy structures [10], [32] - [34], [36], [38], [39] to handle non-
stationary noise.
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