
Sign Language Recognition Using Kinect

Simon Lang, Marco Block, and Raúl Rojas

Freie Universität Berlin
Institut für Informatik und Mathematik

Takustr. 9, 14195 Berlin, Germany
{slang,block,rojas}@inf.fu-berlin.de

Abstract. An open source framework for general gesture recognition is
presented and tested with isolated signs of sign language. Other than
common systems for sign language recognition, this framework makes
use of Kinect, a depth camera which makes real-time 3D-reconstruction
easily applicable. Recognition is done using hidden Markov models with a
continuous observation density. The framework also offers an easy way of
initializing and training new gestures or signs by performing them several
times in front of the camera. First results with a recognition rate of 97%
show that depth cameras are well-suited for sign language recognition.

1 Motivation and Introduction

Using gestures as a natural communication interface between human beings and
machines becomes more and more important. This involves controlling comput-
ers, as well as processing and translating sign language.

When Microsoft released Kinect in November 2010, it was mainly targeted
at owners of a Microsoft Xbox 360 console, being advertised as a controller-free
gaming experience. The device itself features an RGB camera, a depth sensor and
a multiarray microphone, and is capable of tracking users’ body movement [9,10].
The interest in the device has been high among developers, and thus, shortly
after its release an unofficial open source driver was introduced, followed by many
Kinect-based projects and technical demos. Even though Microsoft stated that
“Kinect that is shipping [2010’s] holiday will not support sign language”, several
demos show how it technically is capable of recognizing signs [11,12,13].

In sign languages, manual features are generally used along with facial expres-
sions and different body postures to express words and grammatical features.
The manual components can be split into four parameters: handshape, palm
orientation, location, and movement. There are similar signs that differ in one
of these components only, and thus without considering context, signs can only
be recognized precisely when all of these components are known. Nevertheless,
a great number of signs can be distinguished by only considering hand location
and movement [6].

After the related work part in section 2, we present Dragonfly, an open source
C++ framework for general gesture recognition that can be used to recognize signs
of sign language, utilizing the two above-mentioned manual components. This is

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 394–402, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sign Language Recognition Using Kinect 395

achieved by using hidden Markov models that allow training and recognition of
isolated signs. In section 4, the framework is tested in several experiments, and an
evaluation shows how well it performs when using optimal parameters. A conclu-
sion in section 5 summarizes the achievements of this work and what future work
may follow in order to improve it for better sign language recognition.

2 Related Work

This section summarizes the basics of hidden Markov models as well as their
application on sign language recognition. Alternate methods of feature extraction
are also presented.

2.1 Hidden Markov Models

Hidden Markov models (HMMs) are a type of stochastic model related to finite
state machines. An HMM features a number N of states S1, S2, · · · , SN , being
in exactly one of theses states at any time t = 1, 2, 3, · · · , where the state at time
t is referred to as qt.

The initial probability distribution π describes the probability of starting
in a specific state. Every state Si features a probability of transitioning to a
state Sj , stored in the transition probability matrix AN×N . A set of output
probability distributions B = {bj(k)} describes the probability of observing the
kth out of M observation symbols in state j. Observation sequences are denoted
as O = O1O2 . . .OT , where T is the number of observations in the sequence and
each Ot represents one such observation.

If M is infinite (e. g. when observations are real numbers), the HMM features
a continuous observation density. Each state then includes a mean vector μ and
a covariance matrix Σ for use with a logarithmically concave function, e. g. a
D-dimensional multivariate Gaussian distribution N ,

N (Ot; μ, Σ) =
1

(2π)
D
2 |Σ| 12

· exp
(
−1

2
(Ot − μ)TΣ−1(Ot − μ)

)
.

Given the triple λ = (A, B, π) as a compact notation for HMMs, the three basic
problems that come along can be summarized as follows [7,8,3]:

1. Given an observation sequence O, determine the probability of O being gen-
erated by λ, i. e. efficiently calculate P (O|λ). This is done using a scaled
version of the forward-backward procedure.

2. Determine the state sequence Q = q1q2 . . . qT that is most likely to be tra-
versed, given an observation sequence O and a model λ. The scaled Viterbi
algorithm takes care of this calculation.

3. Determine how to adjust the parameters of λ in order to maximize P (O|λ).
This is achieved by the Baum-Welch algorithm, modified to accept multiple
observation sequences at once.

A method of initializating HMMs is proposed by Kelly et al. [1], where the initial
parameters are calculated automatically with an optimal number of states.

396 S. Lang, M. Block, and R. Rojas

2.2 Recognizing Sign Language

Recognizing sign language involves two major processes, namely extracting fea-
tures and interpreting them. While the former is usually done using a 2D camera
[2,5] and detecting the positions of hands and head, Vogler and Metaxas [4] use
a set of three orthogonally placed 2D cameras to extract 3D data of the signers
body parts. The results show that this method is more accurate than using 2D
data.

In order to conveniently recognize signs and to handle the statistical variations
when performing them, both intra- and interpersonal, HMMs are introduced and
each sign is represented by a separate HMM. An observation sequence can be
seen as a performance of one such sign, and each single observation represents
a vector of body part information, e. g. a hand’s position, movement speed, and
the distance between both hands.

When a sign is performed, the probability of that performance given each
HMM is calculated. The HMM with the highest probability is most likely to
have produced that sign. This information is essential for actually building a
sign language recognition framework.

3 Dragonfly Framework

The framework presented in this work is called Dragonfly (Draw gestures on the
fly) and is capable of learning and recognizing gestures and signs. It is written
in C++ and makes use of the free cross-platform Kinect driver OpenNI released
by PrimeSense, including NITE skeletal tracking which automatically extracts
users’ body parts such as their hands and elbows.

The main classes to be included in other software are called DepthCamera
and Dragonfly. The former acts as an interface to OpenNI and can easily be
replaced to use a different Kinect driver with skeletal tracking. The latter is the
actual interface to the framework which processes the skeleton data for gesture
recognition.

Dragonfly features an own implementation of continuous density HMMs,
offering automatic initialization, Baum-Welch re-estimation with multiple ob-
servation sequences, and serialization, among others. For vector and matrix cal-
culations, the Vision Numerics Libraries are used. Boost provides several other
helpful features such as an implementation of the observer pattern.

3.1 Gesture Recognition

Observations are recorded for every user separately, and consist of an
N -dimensional feature vector. This can be data such as velocity or absolute
position of each hand, or distance between hands.

By default, observations are recorded when the dominant (e. g. right) hand
moves above a given threshold, such as the torso’s y-position. Each of these

Sign Language Recognition Using Kinect 397

observations is saved in a matrix which represents the entire observation se-
quence. Several of these matrices are stored in a list that can be seen as a set of
observation sequences.

Observation recording can be turned on and off for each user separately. Every
time the user’s hand moves below the threshold, the probability of the newly
recorded sequence given each existing HMM is calculated, and results are com-
pared. This is done in order to determine the model that best matches the
sequence.

To make use of this information, a system for callback functions has been
implemented. Since HMMs must have distinct names, these can be uniquely
associated with a signal using a hashmap. A signal can be linked to and unlinked
from an HMM by calling appropriate methods in Dragonfly.

3.2 Learning New Gestures

Creating new gestures and training them is done successively in one method, by
providing a maximum number of states, a set of observation sequences – used
for initialization and re-estimating – and a set of negative test sequences that do
not contain the actual gesture to be trained. An example of one out of several
similar training sequences is shown in figure 1.

Fig. 1. Example training sequence of the sign PAKET (German for packet)

Cross validation splits observation sequences into sequences actually used for
training (two third), and positive test sequences the model should recognize
correctly without having them used for training (one third). Additionally, a set
of existing HMMs that represent different gestures can be provided.

The algorithm then initializes and trains several HMMs using the training
sequences, and determines the optimal HMM given the rest of the data, according
to an optimality criterion that must be defined as well.

398 S. Lang, M. Block, and R. Rojas

In detail, the algorithm works as follows:

1. Split provided observation sequences into training and positive test sequences.
Two third are used for training and one third for positive testing.

2. Initialize with N = 1 states. Set the best HMM to NULL and the best value
for each optimality criterion to the worst possible value.

3. Create Q = 5 HMMs, each with N states, from the given set of training
sequences using automatic initialization, which works as follows:
– Create a point cloud with every single observation of every sequence as

a point.
– Perform k-means clustering on the point cloud, initial prototypes are

chosen randomly among its points. Empty clusters are avoided by deter-
mining a new prototype from the biggest cluster.

– Sort the resulting clusters and assign each of them to a separate state.
– Calculate the transition probability distribution A using data from all

observation sequences, where

aij =
#transitions from Si to Sj

#transitions from Si
, 0 � i, j < N.

– Compute the initial probability distribution π, where

πi =
#observation sequences starting in Si

#observation sequences
, 0 � i < N.

– Set each state’s μ to the mean vector of the corresponding cluster.
– Determine Σ for each state by calculating the covariance matrix for each

corresponding cluster.
Due to the randomness in k-means clustering, results may vary. Hence, sev-
eral HMMs are created using the same algorithm.

4. Re-estimate these HMMs by the Baum-Welch algorithm, using the same
training sequences as input.

5. Set q = 1.
6. Among the Q created HMMs, choose the one at position q.
7. If at least half of the observation sequences could not be processed due to

underflow, discard this HMM and go to step 10.
8. Determine the values for all optimality criteria given the newly created model

and all provided data, such as positive and negative test sequences, and
HMMs of other gestures.

9. Update the best value for each optimality criterion. If this HMM is better
than the stored best HMM according to the chosen criterion, define it as the
new best HMM.

10. Increment q. If q � Q, go to step 6.
11. Increment N . If N � S (where S is the maximum number of states), go to

step 3.
12. If any of the three split combinations is left, split observation sequences

accordingly and go to step 2.
13. Return the best HMM (which is NULL in case the procedure failed to create

any HMM at all).

Sign Language Recognition Using Kinect 399

This procedure guarantees to deliver a re-estimated HMM that best matches the
given data for the chosen criterion, depending on how well k-means clustering
performs. Possible optimality criteria are σr (recognition rate), σv (variance),
and σnp (lowest negative above worst positive rate).

The first criterion σr uses positive test sequences only and tests them with the
newly created HMM and all other HMMs. Negative test sequences are neglected.
Each positive test sequence is tested with all HMMs and the number of correct
results is saved and then summed up. A test result is correct when the sequence
given the new HMM has a higher probability than the sequence given any other
HMM. The summed number is divided by the total number of tests, and the
resulting recognition rate is to be maximized.

The second criterion σv calculates the average logarithmic probability of all
negative test sequences given the new model, and subtracts it from the average
logarithmic probability of all positive test sequences given that model. Gestures
of the new model can be distinguished from other gesture more clearly the higher
this value is.

Determining σnp is done by saving the lowest probability of any positive test
sequence given the new model – i. e. saving the worst positive test sequence.
Then, probabilities of all negative test sequences are calculated for the model.
The number of negative test sequences with a probability higher than that of
the worst positive test sequence, is divided by the total number of negative test
sequences. The lower this value gets, the better the success rate of the new
HMM is.

For equal values of the third criterion, the second criterion is used to determine
which HMM is better. HMMs can be saved to and loaded from a file at any time
during recognition.

4 Experiments and Results

First experiments were made with a vocabulary of 25 signs of German Sign
Language that were trained with the help of fluent speakers. Best results could be
achieved with a nine-dimensional feature vector, composed of (RHx, RHx, RHz,
LHx, LHy, LHz, RHv, LHv, REx), where RH and LH correspond to the right and
left hand relative to the neck, respectively, v means velocity, and RE corresponds
to the right elbow.

Every sign was tested 40 to 60 times, results show an overall recognition rate
of 97, 0%. Detailed results are shown in figure 2, where the recognition rate of
each sign is shown next to a boxplot.

Each boxplot shows the distance between the actually performed sign and
the best recognized sign that is unequal. This illustrates for positive values how
well the recognized sign could be distinguished from others, and for negative
values how much other signs were preferred. Since the logarithmic probabilities
are negative, values have been normalized by a �→ −700

a (higher values are bet-
ter). The sign NEUKOELLN (a district in Berlin), for example, features a high

400 S. Lang, M. Block, and R. Rojas

Fig. 2. Test results of the first experiment, the signs trained are ANFANG (begin-
ning), ARBEITEN (to work), BABY, BERLIN, DANKE (thank you), ELEFANT
(elephant), ENTSCHULDIGUNG (sorry), GIPS (gypsum), GIRAFFE, HAI (shark),
HASE (rabbit), HINTERGRUND (background), KOCHEN (to boil), KREUZBERG
(a district in Berlin), MANN (man), MITTE (a district in Berlin), NAECHSTE (next),
NEUKOELLN (a district in Berlin), PAKET (packet), PAUSE, SCHNEIDEN (to cut),
VATER (father), VERSTEHEN (to understand), WURST (sausage), and ZURUECK
(back)

Sign Language Recognition Using Kinect 401

recognition rate and can usually be distinguished well from other signs, however
one performance was not recognized correctly and is far off the sign that was
recognized instead.

Signs that mainly contain movement towards the camera, such as DANKE
(German for “thank you”), have a significantly worse recognition rate with a
feature vector that does not contain the hands’ z-positions. The right elbow’s
x-position (if the user is right-handed) helps distinguish other signs where the
hand is near the face and the arm is either held away from or close to the body.

Since the depth of each body part is known, the recognition rate does not
change when standing closer to the camera or further away from it, as long a
minimum distance is kept in order for skeletal tracking to work. Especially the
use of z-values shows an advantage of depth cameras over ordinary RGB cameras,
where extracting depth information is generally harder and less reliable.

On a 2 GHz dual-core machine with 4 GB memory, the probabilities of a
sequence given all 25 signs were calculated in less than 300 milliseconds.

5 Conclusion and Future Work

Kinect and other depth cameras offer 3D data without a complicated camera
setup and efficiently extract the users’ body parts, allowing for easier recognition
of not just hands and head, but also other parts such as elbows that can further
help distinguish similar signs. Another advantage is the independency of lighting
conditions due to the use of infrared light, however thus, the cameras are limited
to in-door use.

The presented framework offers recognition and learning of isolated signs, using
NITE skeletal tracking and an own HMM implementation. This implementation
includes a new way of initialization and several optimality criteria for HMM com-
parison. First experiments were made with a vocabulary of 25 signs of German
Sign Language, and show a high recognition rate of 97, 0% when using depth-
camera-specific features. Future experiments will show how well the presented
methods perform when using a larger vocabulary of more than 100 signs.

Accurately recognizing sign language, however, not only involves tracking
hands. There are signs that only differ in mouthshape or handshape and are
similar otherwise. Facial expression, body posture and head movement are often
used to express grammatical features.

When detection of these essential components is supported by the backend,
Dragonfly can be extended to support continuous sign language recognition.
This also involves detecting a sign’s start and end position, as well as movement
epenthesis as described by Kelly et al. [1] in order to distinguish hand movement
within a sign from movement between two signs.

In conclusion, this work shows that depth cameras are well-suited for sign
language recognition. The approach is worth further consideration and features
its own advantages, while leaving room for improvement of both the underlying
technology as well as the framework itself.

The source code of Dragonfly is available under the terms of the GNU Lesser
General Public License, version 3, at https://bitbucket.org/Slang/dragonfly/.

402 S. Lang, M. Block, and R. Rojas

References

1. Kelly, D., McDonald, J., Markham, C.: Recognizing Spatiotemporal Gestures and
Movement Epenthesis in Sign Language. In: 13th International Machine Vision and
Image Processing Conference (IMVIP 2009). IEEE Computer Society, Washington,
DC (2009)

2. Dreuw, P., Rybach, D., Deselaers, T., Zahedi, M., Ney, H.: Speech Recognition
Techniques for a Sign Language Recognition System. In: INTERSPEECH 2007,
8th Annual Conference of the International Speech Communication Association
(ISCA 2007), pp. 2513–2516 (2007)

3. Li, X., Parizeau, M., Plamondon, R.: Training Hidden Markov Models with Multi-
ple Observations – A combinatorial Method. IEEE Transactions on PAMI PAMI-
22(4), 371–377 (2000)

4. Vogler, C., Metaxas, D.: ASL Recognition Based on a Coupling Between HMMs
and 3D Motion Analysis. In: Proceedings of the Sixth International Conference
on Computer Vision, pp. 363–369. Narosa Publishing House (1998) ISBN: 978-8-
17319-221-0

5. Starner, T., Pentland, A.: Real-Time American Sign Language Recognition from
Video Using Hidden Markov Models. In: Proceedings of the International Sympo-
sium on Computer Vision, ISCV 1995, pp. 265–270. IEEE Publications, U.S (1995)
ISBN: 978-0-81867-190-6

6. Boyes Braem, P.: Einführung in die Gebärdensprache und ihre Erforschung. In:
Internationale Arbeiten zur Gebärdensprache und Kommunikation Gehörloser, 1st
edn., vol. 11. SIGNUM-Verlag (1990) ISBN: 978-3-92773-110-3

7. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

8. Rahimi, A.: An Erratum for “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition”, website of Ali Rahimi at MIT Media Labo-
ratory, http://xenia.media.mit.edu/ rahimi/rabiner/rabiner-errata/
rabiner-errata.html

9. Official Microsoft Xbox website, introduction of Kinect,
http://www.xbox.com/en-US/kinect

10. Countdown to Kinect: 17 Controller-Free Games Launch in November, Microsoft
News Center, https://www.microsoft.com/presspass/press/2010/oct10/
10-18mskinectuspr.mspx

11. Kinect Downgraded To Save Money, Can’t Read Sign Language, News at Kotaku,
http://kotaku.com/5609840/kinect-dumbed-down-to-save-money-cant-
read-sign-language

12. CopyCat and Kinect, overview of the CopyCat Kinect demo on the website of the
Center for Accessible Technology in Sign (CATS),
http://cats.gatech.edu/content/copycat-and-kinect

13. Integrating Speech and Hearing Challenge Individuals, YouTube channel of Dr.
Natheer Khasawneh,
http://www.youtube.com/user/knatheer#p/a/u/1/vVL398dUU5Q

http://xenia.media.mit.edu/~rahimi/rabiner/rabiner-errata/rabiner-errata.html
http://xenia.media.mit.edu/~rahimi/rabiner/rabiner-errata/rabiner-errata.html
http://www.xbox.com/en-US/kinect
https://www.microsoft.com/presspass/press/2010/oct10/10-18mskinectuspr.mspx
https://www.microsoft.com/presspass/press/2010/oct10/10-18mskinectuspr.mspx
http://kotaku.com/5609840/kinect-dumbed-down-to-save-money-cant-read-sign-language
http://kotaku.com/5609840/kinect-dumbed-down-to-save-money-cant-read-sign-language
http://cats.gatech.edu/content/copycat-and-kinect
http://www.youtube.com/user/knatheer#p/a/u/1/vVL398dUU5Q

	Sign Language Recognition Using Kinect
	Motivation and Introduction
	Related Work
	Hidden Markov Models
	Recognizing Sign Language

	Dragonfly Framework
	Gesture Recognition
	Learning New Gestures

	Experiments and Results
	Conclusion and Future Work
	References

