
Speeding Up the Training of Neural Networks
with CUDA Technology

Daniel Salles Chevitarese, Dilza Szwarcman, and Marley Vellasco�

Department of Electrical Engineering, Pontifical Catholic University,
Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, Brazil

daniel@ele.puc-rio.br
http://www.puc-rio.br

Abstract. Training feed-forward neural networks can take a long time when
there is a large amount of data to be used, even when training with more ef-
ficient algorithms like Levenberg-Marquardt. Parallel architectures have been a
common solution in the area of high performance computing, since the technol-
ogy used in current processors is reaching the limits of speed. An architecture
that has been gaining popularity is the GPGPU (General-Purpose computing on
Graphics Processing Units), which has received large investments from compa-
nies such as NVIDIA that introduced CUDA (Compute Unified Device Architec-
ture) technology. This paper proposes a faster implementation of neural networks
training with Levenberg-Marquardt algorithm using CUDA. The results obtained
demonstrate that the whole training time can be almost 30 times shorter than code
using Intel Math Library (MKL). A case study for classifying electrical company
customers is presented.

Keywords: Artificial Neural Networks, Software Engineering, High Performance
Com-puting, GPGPU, CUDA.

1 Introduction

Neural networks are very useful for solving complex problems (pattern recognition,
forecasting, classification) and there are already many software libraries that support the
modeling, creation, training and testing of various types of known networks. However,
the available libraries present limitations when the problem size or complexity exceeds
certain threshold, such as the case when the database used in the early stages of training,
validation and testing contains a huge amount of information (patterns/attributes).

Besides the database size, there is also a tradeoff between the complexity of the
algorithm used for training and the number of iterations needed to reach the network’s
performance goal, which greatly affects the total training time. For example, if a neural
network is trained by an algorithm of back propagation with gradient descent, the cost
of each step is relatively small; however, many steps are required to train the network.
On the other hand, a greater order gradient algorithm requires much less iterations, but
with a much greater computational cost for each iteration [5].

There are already several studies using graphics cards to propagate input data through
feedforward neural networks, but the learning algorithm is not implemented in CUDA.

� IEEE Senior Member.

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 30–38, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.puc-rio.br

Speeding Up the Training of Neural Networks with CUDA Technology 31

For example, [2] and [7] have used neural networks for character recognition. In the
second paper, the program implemented in CUDA was almost six times faster than the
same program running on the CPU. In [1] a program for training neural networks was
implemented using the gradient descent algorithm, which was compared to Matlab and
resulted in tens of times faster.

This work proposes a faster implementation of neural networks training with Leven-
berg - Marquardt algorithm (LMA) using CUDA and compares its performance with an
implementation using Intel MKL [6], a math library which is known for its outstanding
efficiency.

The results obtained with the execution on the GPU of the training phase using LMA
were very promising. Although only part of the algorithm was processed on the graph-
ics card, again of almost 30 times faster was obtained when compared with the same
algorithm running with the help of MKL.

This paper has been organized as follows: Section 2 presents an overview of CUDA
Architecture; Section 3 describes the architecture proposed for solving the problem;
Section 4 demonstrates the experiments performed and lastly, Section 5 presents the
conclusions drawn from this work.

2 GPGPU and CUDA

While parallel solutions are becoming more common, graphics cards are becoming
powerful computers and highly parallel, mostly because of the digital entertainment
industry and its demand for high definition graphics. The reason for the huge discrep-
ancy between conventional processors and graphics processors is that a GPU (Graphics
Processing Units), unlike the CPU, uses more transistors for processing than for flow
control or cache memory [8].

The GPU architecture is better suited to problems whose data can be broken into
smaller pieces and be processed in parallel. As these pieces are processed by the same
program and at the same time, they do not require a sophisticated flow control. More-
over, as there are many arithmetic calculations to be performed, the latency of memory
access is diminished by data buffering instead of the use of great cache memories.

The NVIDIA architecture has three types of abstraction: the hierarchy of thread
groups, the shared memories and synchronization barriers. This architecture makes the
learning time relatively small and requires few extensions to programming languages.
Moreover, the abstractions provide parallelism both in data and in threads, requiring,
from the programmer, only a simple division of tasks and data [8].

Another advantage of the abstractions is that they help the developer divide the prob-
lem into smaller tasks that can be solved independently and, therefore, in parallel. This
decomposition is made so as the threads can cooperate to solve the subtasks, and, at
the same time, make scalability possible, since the threads can be scheduled to be re-
solved in any available core. A program compiled in CUDA, which is also called kernel,
may, in that case, run on a machine regardless of the number of processors, which will
be checked at runtime [8]. Thus, the programming model comprises several types of
clients, supporting cards with different number of processors (this number can vary
from ten to thousands of processors).

32 D.S. Chevitarese, D. Szwarcman, and M. Vellasco

3 The Proposed LMA in CUDA

In this work, neural network training is carried out by the Levenberg - Marquardt Al-
gorithm, which calculates the neuron’s errors in a way equivalent to conventional back
- propagation, but based on the Jacobian [4]. In order to combine a reduced number of
epochs with low time cost iteration, this study proposes a new design of a Levenberg -
Marquardt training which runs on a GPU (Graphic Processor Unit) supporting CUDA.
The new model uses the computational power of graphics cards to calculate the critical
point of the training algorithm, that is, the change in the network’s weights given in
Equation (1) [4]. Its processing time generally represents more than 70% of the total
training time if the training data set is small, and can reach almost 90% of the time for
larger sets. This is because Equation (1) includes the computation of a Jacobian ma-
trix of size (w, p), where w is the number of network weights and p is the number of
patterns. In this equation, x is the weights vector of the network and e (x) is the error
vector, while µ is a parameter that controls the balance between speed and stability.
This matrix can easily contain millions of elements even if the training data includes
just a few thousand patterns.

�x = −[
J (x)JT (x) + µI

]−1
JT (x) e (x) (1)

The use of graphics cards has been proved promising, since the number of processing
cores on a single card can be up to hundreds. In addition, the time to manage threads
in conventional languages can cost more than 10% of the total training time, while the
NVIDIA architecture can handle CUDA threads without additional cost. Another pos-
itive point of NVIDIA technology is the possibility of working with multiple graphics
cards, allowing the execution of several concurrent trainings.

Initially, this work proposed the use of the graphics card to calculate the Jacobian
square matrix (J(x)JT (x)), which is a part of Equation (1). For that matter, a function
(from NVIDIA) copies all data to the global memory. Once in global memory, a kernel
calculates it and, after that, another CUDA function transfers the result back to the
RAM of the CPU. The second model was to create a kernel that calculates the whole
equation in the GPU, so the vector with the weights variation is obtained directly from
it, as shown in Figure 1. In this figure, the black box indicates the training starting point
or a new epoch, including the patterns propagation through the neural network. The
following stages calculate the squared errors of the network, as shown in equation (2).

E (x) =

N∑

i=1

e2i (x) (2)

In order to calculate �x from the Jacobian matrix, Equation (1) has been divided in
three major steps: the calculation of (J (x)JT (x) + µI), the calculation of the inverse
resultant matrix by Gaussian Decomposition, and the multiplication of the previous
result with JT (x) e (x). To calculate the first and the third steps, this work used the
library CUBLAS from NVIDIA, which implements levels 1, 2 and 3 of the known
library BLAS (Basic Linear Algebra Subroutines) to run in GPU. The second step of
this kernel is described below:

Speeding Up the Training of Neural Networks with CUDA Technology 33

CPU – C# GPU – CUDA

CPU propagates
the patterns thru
neural network

(START EPOCH)

CPU calculates
the neural network

training error

CPU creates the
Jacobian matrix

GPU calculates Δx
from Jacobian

matrix

PCI-
E

PCI-
E

CPU applies Δx to
the neural network

CPU saves the
new weights set
(END EPOCH)

R
an

do
m

 A
cc

es
s

M
em

or
y

of
 C

P
U

G
lobal M

em
ory of G

P
U

Fig. 1. Proposed model, which performs a major portion of the code in the graphics card. In this
picture, PCI-E means PCI-Express bus.

1. Divide the matrix (J (x)JT (x)) in sub matrixes (squared) in order to have these
parts in blocks of shared memory. Using this technique, the global memory is read
and written only once per sub matrix;

2. The Gaussian Decomposition is applied on those sub matrices and the pivots are
calculated. The pivots here have the same function as on LU decomposition, for
example;

3. Using the pivots, the adjacent rows are updated. In this step it is necessary to syn-
chronize all blocks, because the pivots calculated in the first block are also used to
update the other block and generates its respective pivots;

4. At the end, all elements above the principal diagonal are equal to zero.

4 Main Results

This section presents 7 experiments where the proposed model was used to train net-
works and ensembles of neural networks. On these experiments, ensembles of neural
networks were used to classify customers of a Brazilian electricity distribution com-
pany (Light) as regular or irregular. Four types of NVIDIA graphics cards were used, as
shown in Table 1, where Gflop means how many floating-point operations, in billions,
can be performed per second, Number of SP means the number of Stream Processors
onboard, and CUDA capability means which version of the architecture is supported by
the graphics card (Min 1.1 and Max 1.3) [8]. Computer specification I is an Athlon 6000
with 1GB RAM and a GeForce 8400 GS; specification II is an Athlon 6000 with 2GB
RAM and a GeForce 8800 GT; specification III is an Athlon 6000 with 2GB RAM; and
a GeForce 260 GTX and specification IV is a Phenom II with 16GB RAM and four
Tesla c1060.

4.1 Problem Description

Light is a company with 3.79 million consumers divided in 5 regions (East, West,
Coastal, Interior, Lower Region) in 31 cities of Rio de Janeiro. The company loses

34 D.S. Chevitarese, D. Szwarcman, and M. Vellasco

Table 1. Computer configurations used in the experiments

Computer Number Memory Peak CUDA
Spec of SP size (MB) (Gflop/s) Capability

I 8 256 2, 5 1.1
II 112 512 194 1.1
III 192 896 310 1.3
IV 4x240 4x4096 4x340 1.3

more than US$400 million with annual non-technical losses [3]. In order to put pres-
sure on this kind of companies to adjust their prices through the reduction of losses,
the Regulatory Agency for Electric Energy of Brazil (ANEEL) introduced new rules
to limit the amount of non-technical losses, fraud and theft that can be charged to the
customer. In addition, ANEEL is treating the issue as a priority and intends to adopt
a policy of no tolerance [3], forcing companies to clearly specify goals for reducing
these losses.

Currently, Light uses a set of methodologies and is associated with a reporting ser-
vice to help identify low-voltage customers suspected of committing any type of fraud.
These customers are classified as suspect by these methodologies and a specialist com-
pany selects a particular set of customers to be inspected. Through this process, Light
has obtained an average of 25% successes in the verification of fraudulent customers
[3]. In this experiment, a prototype of an intelligent computer system for identifying
the fraudulent customer profile was developed, providing information to help select
customers to inspect, increasing the effectiveness of energy recovery actions. In this
experiment, we developed a prototype of an intelligent computer system for identifying
the customer profile fraudsters, providing information to help a selection of customers
to inspect, increasing the productivity of recovery actions energy.

4.2 System Architecture

The system structure is divided in three modules: (a) Preprocessing, (b) Filtering and
(c) Classification. The module (a) includes data cleaning, where duplicated or corrupted
data, missing values and outliers are removed, codification and normalization of cate-
gorical attributes and selection of those attributes. The Filtering (b) and Classification
(c) modules use Ensembles composed of five MLP neural networks and 28 input at-
tributes, one hidden layer and one neuron in the output layer. The whole process is
shown in Figure 2.

This case study was chosen to prove the efficiency of the proposed model because
of the high computational cost it demands. The Filtering module has to process all
database in order to provide a new base with less noise to be processed by the Classifi-
cation module, which can take almost 3 days (tested environment).

Speeding Up the Training of Neural Networks with CUDA Technology 35

Preprocess
DataInput data Processed

data

Committee with 5
Neural Networks

MLP FF
28 inputs

Filtered
data

Committee with 5
Neural Networks

MLP FF
28 inputs

Fig. 2. Overview of system architecture

4.3 Results

The results of this experiment refer only to the performance of the two architectures
described earlier, one where a �x calculation running on the CPU making the use
of MKL library, and another where the most expensive code is handled by the video
card. To calculate, approximately, the training time of one network, you have to get the
showing times and multiply by the number of epochs, by ±50 (adjust of µ) and by 10%
(the time to process the rest of the code). The times in the tables refer to the training
time of a ensemble and are in milliseconds.

Since commercial customers of all regions have similar profiles, only one ensemble
was created to classify all of them, independently of their region. Other customers,
such as residencial and industrial, where divided by region, with a different ensemble
for each of the five existent regions. Table 2 presents the configuration for each region
as well as for commercial customers.

Table 2. Regions properties

Region Number of Number of Number of Jacobian
customers hidden neurons epochs Size (bytes)

Commercial 53, 307 12 50 148, 406, 688
East 98, 983 14 50 321, 496, 784
West 123, 272 15 50 428, 986, 560

Coastal 52, 217 10 50 212, 143, 440
Interior 27, 353 12 50 76, 150, 752
Lower 203, 704 14 50 661, 630, 592

The results in Table 3 show the training times using the Intel MKL and the times
using the CUDA architecture. The number of neurons in hidden layer was defined by
testing many other possibilities and the number of epochs was defined as 50, but the
algorithm always get the network with the lowest validation error. This technique has
a similar effect of early stopping. In addition, the speedup is shown in the last column
meaning how many times one architecture is faster than the other. Some times could not
be measured, because the matrixes’ size was bigger than the graphic board memory.

36 D.S. Chevitarese, D. Szwarcman, and M. Vellasco

Table 3. Results

Region Configuration MKL Time CUDA Time CUDA Speedup

Commercial

I 4, 855 − −
II 3, 535 843 4.18
III 3, 535 670 5.26
IV 1, 906 213 8.95

East

I 9, 744 − −
II 7, 878 − −
III 7, 878 889 8.27
IV 4, 427 232 19.08

West

I 13, 275 − −
II 11, 372 1, 140 9.98
III 11, 372 1, 138 9.99
IV 6, 203 274 22.64

Coastal

I 3, 217 1, 922 1.67
II 2, 542 499 3.53
III 2, 542 312 5.45
IV 1, 475 202 4.91

Interior

I 3, 217 1, 922 1.67
II 1, 700 499 3.53
III 1, 762 312 5.45
IV 992 202 4.91

Lower

I 16, 200 − −
II 16, 255 − −
III 16, 255 1, 482 10.97
IV 9, 363 333 28.12

The results of training the network with the commercial customer database already
show a considerable difference between CPU and GPU, even though the base is not very
large. Configuration I could not be assessed because the graphics card has failed reading
one of the matrices. This error may be caused by the operating system that restarts
the graphics card driver after 3 seconds if GPU stays unresponsive during that time.
In Microsoft Windows, this feature is within the WDDM (Microsoft Display Driver
Model) and is known as TDR (Timeout Detection and Recovery). The same problem
occurred with East, West and Lower, but it was expected since those database are bigger
than the commercial customer base. An important point that can be noticed in the results
for East customers is the increased difference between the training time on the CPU
and on the GPU. One of the factors that can explain this result is that, by doing the
calculation for �x in the GPU, the CPU needs to transfer all matrices to global memory
on graphic card every epoch. It is also important to notice the difference between the
CPU and GPU clocks; some CPU has a frequency almost five times greater than some
GPU. In the experiments conducted in this paper, this difference reached three times.

The customer database of region West is even larger than the customer base of re-
gion East. As was expected, the difference of training times between CPU and GPU
has increased. However, the first GPU configuration could not be used due to memory
size. As indicated above, this graphic card has only 256 MB of global memory and

Speeding Up the Training of Neural Networks with CUDA Technology 37

the required memory to calculate �x is at least 450 MB. The customer base of region
Coastal presents an important result related to the speedup of the first configuration. The
training time in CPU and on the GPU are virtually tied. The causes have been described
previously, but this fact indicates that an assessment regarding the problem complexity
must be made to verify if the architecture running on a GPU is recommended.

When running the training base for customers of region Interior, even configuration
I shows a performance gain of almost 200% higher compared to the CPU. Moreover,
the cost of the graphics card used in configuration I is approximately US$ 30, while the
computer can cost more than US$ 300.

The largest customer base is the one of Lower region, with more than 200,000 cus-
tomers. On this last experiment the great difference between configurations III and IV
can be noticed, as configurations I and II could not be assessed due to memory size.
The training time of configuration IV is almost three times faster than the time of con-
figuration III, and the reason for this difference is the number of processors inside these
two GPUs, besides the number of records processed.

5 Conclusions

In this paper, a training model of neural networks based on LMA and using CUDA ar-
chitecture was presented to improve the training performance. The use of this algorithm
on graphics cards is new and presented excellent results, even with only one part of the
training process running on the GPU.

The existing studies are limited to the use of CUDA architecture on the signals propa-
gation through neural networks or training with simple gradient on MLP networks. The
model introduced by this paper can train more types of artificial neural networks and
in a more efficient way. Another important concern of this paper was the comparative
experiments performed. In these experiments, all measures of time made on the CPU
were made directly using MKL library from a program written in C language. This
library has an exceptional performance and some comparisons made with it showed
gains in the order of hundreds of times for some matrix calculations. This further en-
hances the results achieved since the proposed model was almost 30 times faster than
the sequential model using MKL.

In future works, the whole training process will be transferred to the graphics card
and the transfers of data made in each epoch will be replaced by an initial transfer added
to other smaller one at the end, including the process output that comprises only the
network weights vector. Thus, it’s possible to run real-time training, which is required
in various types of problems, for example, a system for up scaling video that needs to
train a network on each frame.

References

1. Sheetal, L., Pinky, A., Narayanan, A.: High performance pattern recognition on gpu (2008)
2. Bakhoda, A., George, L., Fung, W., Wong, H., Aamodt, T.: Analyzing cuda workloads us-

ing a detailed gpu simulator. In: IEEE International Symposium on Performance Analysis of
Systems and Software (2009)

38 D.S. Chevitarese, D. Szwarcman, and M. Vellasco

3. Muniz, C., Figueiredo, K., Vellasco, M., Chavez, G., Pacheco, M.: Irregularity detection
on low tension electric installations by neural network ensembles. In: IJCNN 2009, Rio de
Janeiro, pp. 2176–2182 (2009)

4. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the marquardt algorithm.
IEEE Transactions on Neural Networks 5(6), 989–993 (1994)

5. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice-Hall (2008)
6. Intel. Math kernel library from intel
7. Jang, H., Park, A., Jung, K.: Neural network implementation using cuda and openmp. In:

DICTA 2008: Proceedings of the 2008 Digital Image Computing: Techniques and Applica-
tions, pp. 155–161. IEEE Computer Society, Washington, DC (2008)

8. NVIDIA. CUDA Programming Guide. NVIDIA, Santa Clara, 2.3.1 edition (2009)

	Speeding Up the Training of Neural Networks with CUDA Technology
	Introduction
	GPGPU and CUDA
	The Proposed LMA in CUDA
	Main Results
	Problem Description
	System Architecture
	Results

	Conclusions
	References

