
Parallel Realisation of the Recurrent

Multi Layer Perceptron Learning

Jaros�law Bilski and Jacek Smol ↪ag

Department of Computer Engineering,
Czȩstochowa University of Technology,

Czȩstochowa, Poland
{Jaroslaw.Bilski,Jacek.Smolag}@kik.pcz.pl

Abstract. This paper presents the parallel architecture of the Recur-
rent Multi Layer Perceptron learning algorithm. The proposed solution
is based on the high parallel three dimensional structure to speed up
learning performance. Detailed parallel neural network structures are
explicitly shown.

1 Introduction

The RMLP network is an example of dynamical neural networks. Dynamical
neural networks have been investigated by many scientists for the last decade [4],
[5]. To train the dynamical networks the gradient method was used eg. [8]. In the
classical case the neural networks learning algorithms are implemented on serial
computer. Unfortunatelly, this method is slow because the learning algorithm
requires high computational load. Therefore, high performance dedicated parallel
structure is a suitable solution, eg. [1] - [3], [6], [7]. This paper contains a new
concept of the parallel realisation of the RMPL learning algorithm. A single
iteration of the parallel architecture requires much less computation cycles than
a serial implementation. The efficiency of this new architecture is very satisfing
and is explained in the last part of this paper. The structure of the RMPL
network is shown in Fig. 1.

The RMLP network has K neurons in the hidden layer and one neuron in the
network output. The input vector contains input signal, its N previous values
and M previous outputs. Note, the previous signals from input and output are
obtained through unit time delay z−1. Therefore, the network function is

y(2) (t + 1) = f

(
x(1) (t) , x(1) (t− 1) , . . . , x(1) (t− (N − 1)) ,
y(2) (t− 1) , . . . , y(2) (t−M)

)
(1)

In the recall phase the network is described by

s
(1)
i =

∑N+M
j=0 w

(1)
ij x

(1)
j

y
(1)
i = f

(
s
(1)
i

)
; x

(2)
i = y

(1)
i

s(2) =
∑K

i=0 w
(2)
i x

(2)
i

y(2) = f
(
s(2)

)
(2)

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 12–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Parallel Realisation of the Recurrent Multi Layer Perceptron Learning 13

Fig. 1. Structure of the RMLP network

Fig. 2. Recal phase of the RMLP network and the structures of processing elements



14 J. Bilski and J. Smol ↪ag

Parallel realisation of the recall phase algorithm uses architecture which re-
quires many simple processing elements. The parallel realisation of the RMLP
network in recal phase is depicted in Fig. 2a and its processing elements in
Fig. 2b. Four kinds of functional processing elements take put in the proposed
solution. The aim of PE (A) is to delay inputs and outputs signals, so that val-
ues of signals appear on inputs of network from previous instances. Elements of
type (B) create matrix which includes values of weights of the first layer. The
input signals are entered for rows elements parallelly, multiplied by weights and
received results are summed in columns. The activation function for each neuron
un the first layer is calculated after calculation of product w

(1)
i x(1) in element

of type (D). The outputs of neurons in the first layer are inputs the second layer
simultaneously. The product w(2)x(2) for the second layer is obtained in elements
of type (C) similarly.

The gradient method is used to train the RMLP network. For this purpose
it is nesessary to calculate derivative of the goal funcion with respect to each
weight. For weights in the second layer we obtain the following derivative

dy(2)(t)

dw
(2)
α

=

df(s(2)(t))
ds(2)(t)

[
y
(1)
α (t) +

∑K
i=0 w

(2)
i

df
(
s
(1)
i (t)

)

ds
(1)
i (t)

∑M
j=1 w

(1)
i,j+N

dy(2)(t−M−1+j)

dw
(2)
α

] (3)

Weights are updated according to the steepest descent algorithm as follows

Δw(2)
α = −η

(
y(2) (t) − d(2) (t)

) dy(2) (t)

dw
(2)
α

= −ηε(2) (t)
dy(2) (t)

dw
(2)
α

(4)

For the first layer we obtain the derivative

dy(2)(t)

dw
(1)
αβ

=

df(s(2)(t))
ds(2)(t)

∑K
i=1 w

(2)
i

df
(
s
(1)
i (t)

)

ds
(1)
i (t)

[∑M
j=1 w

(1)
i,j+N

dy(2)(t−M−1+j)

dw
(2)
αβ

+ δiαx
(1)
β (t)

] (5)

and the weights can be updated by

Δw
(1)
αβ = −η

(
y(2) (t) − d(2) (t)

) dy(2) (t)

dw
(1)
αβ

= −ηε(2) (t)
dy(2) (t)

dw
(1)
αβ

(6)

The task of suggested parallel structure will be realisation of all calculations
described by equations (3), (4) and (5), (6).

2 Parallel Realisation

In order to determine derivative in the second layer it is required to know its
previous values. Derivative values will be stored in (E) PE Fig. 3b. These ele-
ments will create matrix of the dimension M(K + 1) Fig. 3a. They will be useful



Parallel Realisation of the Recurrent Multi Layer Perceptron Learning 15

Fig. 3. Idea of learning the second layer and the processing elements

for realizing operations given by equations (5) and (6). Presented idea relies on
multiplication of respondent elements of derivative matrix dy

dwα
by corresponding

to them weights of the first layer Fig. 3a. Then, received produtcts in the entire
column are added to each other. At the same time, the result obtained is multi-

plied by w
(2)
i

dy
(1)
i

ds
(1)
i

and accumulated. In the next step, first column is moved to

the extreme right position (as a result of the rotation to the left) W (1) matrix.
After a rotation of columns the previous actions are repeated. These operations
are repeated (K + 1) times until the first column of the matrix will revert to

the original place. The value of y
(1)
α is added to accumulated value and next the

sum is multiplied by derivative dy
ds(2)

. In this way the new value of the derivative
dy

dw
(1)
α

is obtained.

The calculated value of the derivative is placed in the top row of the array,
and then is moving down. This newly calculated derivative is used in PE (G)
to update the second layer weights according to the equation (4). Suggested
solution leads to acceleration of calculations, but it is not optimal solution yet. It
results from the fact that after multiplication of both matrices, serial summation
follows. In this case multiplication and addition is realized in M(K + 1) steps.
It is easily seen that changing manner of entering of values from weights matrix
to derivatives matrix we can reduce the amount of steps required for execution
of the multiplication and addition operations to M + (K + 1). The manner of
weights entering is presented in Fig. 4. The multiplication is realised only for
elements depicted by the thick line. In the first step only last row is taken into



16 J. Bilski and J. Smol ↪ag

Fig. 4. Method of entering weights for the second layer learning

account. In the next cycles the number of rows is incremented, and the rows that
have participated in multiplication are subject to rotation. Rotation is done from
step one to the left until all rows reach the starting position. The rows are no
longer included in the multiplication. As a result, the proposed modifications
in subsequent steps, making the multiplication and summation, as described in
the first scenario. In this case we will receive the sum of the new inner product

without waiting the M steps. For the first layer the derivatives dy(t−j)
dwαβ

are placed

Fig. 5. Cuboid matrix of the derivatives dy(t−j)
dwαβ

for first layer learning

in the cuboid matrix of the processing elements, see Fig. 5. It can be splited into K
matrices (Fig. 6) which are parallely processed. For simplicity next figures show
structures only for one such matrix. The architecture of processing elements
dedicated to realization of first layer lerning is shown in Fig. 7a. In this case
weights are given step by step to the derivatives matrix, in which the total sums
are calculated according to eq. (5). Then, in the elements (F), see Fig. 3b, above
the array new values of derivatives are calculated. These values are sent back to



Parallel Realisation of the Recurrent Multi Layer Perceptron Learning 17

Fig. 6. Single matrix (2D) of the cuboid matrix (3D)

Fig. 7. Idea of learning for first layer and the processing elements

Fig. 8. The auxiliary vector

the derivatives matrix, and in this way the new value of derivatives overrides the
previous etc. The newly obtained values of derrivatives from all two dimensional
matrices are used to updating weights (6). This is done in elements of the type
(J), see Fig. 7b. The use of these elements simplifies the calculation of the vector
P see (5) and Fig. 8.



18 J. Bilski and J. Smol ↪ag

Fig. 9. Practical structure for first layer learning

Fig. 10. Method of entering weights for the first layer learning

Fig. 11. Number of times cycles in a) classical, b) parallel implementation and c)
performance factor classical/parallel



Parallel Realisation of the Recurrent Multi Layer Perceptron Learning 19

The optimal performance of the structure is obtained by the specific way
of sending weight values. The practical structure for the first layer learning is
shown in Fig. 9. Weights are sent in the following steps as indicated by the thick
line in Fig. 10 The layout of all weights is identical in Fig. 10 and Fig. 4 which
means that weights of the first layer, necessary for the calculations in the first
and second layers can by sent fully paralelly.

3 Conclusion

In this paper the parallel realisation of the RMLP neural network was proposed.
We assume that all multiplications and additions operations take the same time
unit. For simplicity of the result presentation we suppose that M=N in the input
vector of the network.

We can compare computational performance of the RMLP parallel implemen-
tation with sequential architectures up to N=M=10 for inputs and 10 neurons
(K) in the hidden layer of neural network. Computational complexity of the
RMPL learning is of order O(K4) and equals 4M2K2 + 6MK2 + 10MK +K2 +
2M + 9K + 8. In the presented parallel architecture each iteration requires only
K + M + 5 time units (see Fig. 11). Performance factor (see Fig. 11) of parallel
realisation of the RMLP algorithm achieves nearly 1900 for N=M=10 inputs and
K=10 of neurons in the hidden layer and it grows fast when those numbers grow.
We observed that the performance of the proposed solution is promising. In the
future research we plan to design parallel realisation of learning of neuro-fuzzy
structures [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19].

References

1. Bilski, J., Litwiński, S., Smol ↪ag, J.: Parallel Realisation of QR Algorithm for Neural
Networks Learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidel-
berg (2004)

2. Bilski, J., Smola̧g, J.: Parallel Realisation of the Recurrent RTRN Neural Network
Learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)

3. Bilski, J., Smola̧g, J.: Parallel Realisation of the Recurrent Elman Neural Network
Learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada,
J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 19–25. Springer, Heidelberg
(2010)

4. Kolen, J.F., Kremer, S.C.: A Field Guide to Dynamical Recurrent Neural Networks.
IEEE Press (2001)

5. Korbicz, J., Patan, K., Obuchowicz, A.: Dynamic neural networks for process mod-
elling in fault detection and isolation. Int. J. Appl. Math. Comput. Sci. 9(3), 519–
546 (1999)

6. Smola̧g, J., Bilski, J.: A systolic array for fast learning of neural networks. In: Proc.
of V Conf. Neural Networks and Soft Computing, Zakopane, pp. 754–758 (2000)

7. Smola̧g, J., Rutkowski, L., Bilski, J.: Systolic array for neural networks. In: Proc. of
IV Conf. Neural Networks and Their Applications, Zakopane, pp. 487–497 (1999)



20 J. Bilski and J. Smol ↪ag

8. Williams, R., Zipser, D.: A learning algorithm for continually running fully recur-
rent neural networks. Neural Computation, 270–280 (1989)

9. Korytkowski, M., Scherer, R., Rutkowski, L.: On Combining Backpropagation with
Boosting. In: International Joint Conference on Neural Networks, IEEE World
Congress on Computational Intelligence, Vancouver, BC, Canada, pp. 1274–1277
(2006)

10. Korytkowski, M., Rutkowski, L., Scherer, R.: From Ensemble of Fuzzy Classifiers
to Single Fuzzy Rule Base Classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272.
Springer, Heidelberg (2008)

11. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Monotonic
Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 510–517. Springer, Heidel-
berg (2004)

12. Nowicki, R.: Rough Sets in the Neuro-Fuzzy Architectures Based on Non-
monotonic Fuzzy Implications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz,
R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 518–525.
Springer, Heidelberg (2004)

13. Rutkowski, L., Cpa�lka, K.: A general approach to neuro - fuzzy systems. In: Pro-
ceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne,
December 2-5, vol. 3, pp. 1428–1431 (2001)

14. Rutkowski, L., Cpa�lka, K.: A neuro-fuzzy controller with a compromise fuzzy rea-
soning. Control and Cybernetics 31(2), 297–308 (2002)

15. Scherer, R.: Boosting Ensemble of Relational Neuro-fuzzy Systems. In: Rutkowski,
L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS
(LNAI), vol. 4029, pp. 306–313. Springer, Heidelberg (2006)

16. Scherer, R.: Neuro-fuzzy Systems with Relation Matrix. In: Rutkowski, L., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS
(LNAI), vol. 6113, pp. 210–215. Springer, Heidelberg (2010)

17. Starczewski, J., Rutkowski, L.: Neuro-Fuzzy Systems of Type 2. In: Proc. 1st Int’l
Conf. on Fuzzy Systems and Knowledge Discovery, Singapore, vol. 2, pp. 458–462
(2002)

18. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on inter-
val consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft
Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg,
New York (2003)

19. Starczewski, J.T., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Infer-
ence Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J.
(eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)


	Parallel Realisation of the Recurrent Multi Layer Perceptron Learning
	Introduction
	Parallel Realisation
	Conclusion
	References




