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Abstract. The direct application of a neural model in Model Predictive
Control (MPC) algorithms results in a nonlinear, in general non-convex,
optimisation problem which must be solved on-line. A linear approxima-
tion of the model for the current operating point can be used for prediction
in MPC, but for significantly nonlinear processes control accuracy may be
not sufficient. MPC algorithm in which the neural model is linearised on-
line along a trajectory is discussed. The control policy is calculated from a
quadratic programming problem, nonlinear optimisation is not necessary.
Accuracy and computational burden of the algorithm are demonstrated
for a high-purity high-pressure distillation column.

1 Introduction

A unique feature of Model Predictive Control (MPC) algorithms is the fact that
a dynamic model of the process is directly used on-line to predict its behavior
over some time horizon and to optimise the future control policy [8,13]. When
compared with other control techniques, their advantages are: constraints can
be easily imposed on process inputs (manipulated variables) and outputs (con-
trolled variables), they are able to control multivariable processes very efficiently,
they can be applied for processes with difficult dynamic properties (e.g. with sig-
nificant time-delays or the inverse response). In consequence, MPC algorithms
have been successfully used for years in thousands of advanced industrial ap-
plications, e.g. in refineries, in chemical engineering, in the paper industry, in
mining and metallurgy, in food processing, in the automobile industry and even
in aerospace [12].

In the simplest case linear models are used for prediction in MPC. Because
the majority of technological processes have nonlinear properties, linear MPC
techniques may give insufficient control accuracy. Nonlinear MPC algorithms
in which nonlinear models are used have been researched over the last years
[4,10,13,14]. Different nonlinear models can be used in MPC, e.g. fuzzy
structures, polynomials, Volterra series, wavelets. Neural models are particularly
interesting, because they offer excellent approximation accuracy, as practical ex-
perience clearly indicates, they have a moderate number of parameters and their
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structure is not complicated. As a result, neural models can be efficiently used
in different nonlinear MPC algorithms [6,11,13].

When a neural model is directly used for prediction in MPC, a nonlinear, in
general non-convex, optimisation problem must be solved on-line at each sam-
pling instant. Despite significant progress in optimisation algorithms [1,2,9,15],
practical application of on-line nonlinear optimisation is always an issue. Since
the solution must be obtained in real-time, low computational complexity is very
desirable. A straightforward solution is to calculate successively on-line a linear
approximation of the neural model and use the linearised model for prediction
[6]. Unfortunately, for significantly nonlinear processes obtained control accu-
racy may be not sufficient. This paper discusses an MPC algorithm in which the
neural model is linearised on-line along a trajectory. The control policy is cal-
culated on-line from a quadratic programming problem, nonlinear optimisation
is not necessary. Control accuracy and computational burden of the described
algorithm are demonstrated for a high-purity high-pressure distillation column.

2 Model Predictive Control (MPC) Algorithms

In MPC algorithms at each consecutive sampling instant k, k = 0, 1, 2, . . ., a set
of future control increments

�u(k) = [�u(k|k) �u(k + 1|k) . . .�u(k + Nu − 1|k)]
T

(1)

is calculated, where �u(k + p|k) = u(k + p|k) − u(k + p − 1|k). It is assumed
that �u(k+p|k) = 0 for p ≥ Nu, where Nu is the control horizon. The objective
is to minimise differences between the reference trajectory yref(k + p|k) and
predicted values of the output ŷ(k + p|k) over the prediction horizon N ≥ Nu.
Constraints are usually imposed on input and output variables. Future control
increments (1) are determined from the following MPC optimisation task (hard
output constraints are used for simplicity of presentation)

min
�u(k)

{
N∑
p=1

(yref(k + p|k) − ŷ(k + p|k))2 + λ

Nu−1∑
p=0

(�u(k + p|k))2

}

subject to (2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

−�umax ≤ �u(k + p|k) ≤ �umax, p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

Only the first element of the determined sequence (1) is applied to the process,
i.e. u(k) = �u(k|k) + u(k − 1). At the next sampling instant, k + 1, the output
measurement is updated, and the whole procedure is repeated.

Let the dynamic process under consideration be described by the following
discrete-time Nonlinear Auto Regressive with eXternal input (NARX) model

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (3)
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As the model a neural network of Multi Layer Perceptron (MLP) or Radial Ra-
dial Basis Function (RBF) type [3] can be used. Consecutive output predictions
over the prediction horizon (p = 1, . . . , N) are calculated recurrently

ŷ(k + p|k) = f(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k − 1), . . . , u(k − nB + p)︸ ︷︷ ︸
Iu−Iuf (p)

,

ŷ(k − 1 + p|k), . . . , ŷ(k + 1|k)︸ ︷︷ ︸
Iyf (p)

, y(k), . . . , y(k − nA + p)︸ ︷︷ ︸
nA−Iyf (p)

) + d(k)

where Iuf(p) = max(min(p − τ + 1, Iu), 0), Iyf(p) = min(p − 1, nA) and d(k) is
an estimation of the unmeasured disturbance [13]. Since the model is nonlinear,
future predictions are nonlinear functions of the calculated control policy (1).
As a result, the MPC optimisation problem (2) is in fact a nonlinear, in gen-
eral non-convex, task which must be solved in real time on-line. Computational
complexity of such an approach may be high and the whole algorithm may be
unable to find the solution within the required time.

The general idea of reducing computational burden of nonlinear MPC is quite
intuitive: at each sampling instant a linear approximation

y(k) =

nB∑
l=1

bl(k)u(k − l) −
nA∑
l=1

al(k)y(k − l)

of the nonlinear neural model (3) is obtained on-line for the current operating
point, where

al(k) = −∂f(x(k))

∂y(k − l)
, bl(k) =

∂f(x(k))

∂u(k − l)

are coefficients of the linearised model. The linearised model is used for pre-
diction over the whole prediction horizon. Thanks to linearisation, predictions
ŷ(k+1|k), . . . , ŷ(k+N |k) are linear functions of future control increments (1), i.e.
the decision variables of the algorithm. In consequence, the MPC optimisation
problem (2) becomes a quadratic programming task. The described linearisation
method is used in the MPC algorithm with Nonlinear Prediction and Linearisa-
tion (MPC-NPL) [6,7,13]. During calculations the structure of the neural model
is exploited.

3 MPC Algorithm with Nonlinear Prediction and
Linearisation along the Trajectory (MPC-NPLT)

In the MPC-NPL algorithm linearisation is carried out for the current operating
point of the process and the same linearised model is used for prediction over
the whole prediction horizon. Intuitively, prediction accuracy of such a model
may be insufficient, in particular when the process is significantly nonlinear and
changes of the reference trajectory are fast and big. A potentially better method
is to linearise the model for an assumed future input trajectory

utraj(k) =
[
utraj(k|k) . . . utraj(k + Nu − 1|k)

]T
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of course remembering that utraj(k+p|k) = utraj(k+Nu−1|k) for p = Nu, . . . , N .
The input trajectory utraj(k) corresponds to the future output trajectory

ŷtraj(k) =
[
ŷtraj(k + 1|k) . . . ŷtraj(k + N |k)

]T
Recalling the Taylor series formula for a scalar function y(x) : R → R

y(x) = y(x̄) +
dy(x)

dx

∣∣∣∣
x=x̄

(x− x̄) + . . .

a linear approximation of the nonlinear trajectory ŷ(u(k)) : RNu → R
N where

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T

u(k) = [u(k|k) . . . u(k + Nu − 1|k)]
T

along the trajectory ŷtraj(k) is

ŷ(k) = ŷtraj(k) + H(k)(u(k) − utraj(k)) (4)

where

H(k) =
dŷ(k)

du(k)

∣∣∣∣ ŷ(k)=ŷtraj(k)

u(k)=utraj(k)

=

⎡
⎢⎢⎢⎢⎢⎣

∂ŷtraj(k + 1|k)

∂utraj(k|k)
· · · ∂ŷtraj(k + 1|k)

∂utraj(k + Nu − 1|k)
...

. . .
...

∂ŷtraj(k + N |k)

∂utraj(k|k)
· · · ∂ŷtraj(k + N |k)

∂utraj(k + Nu − 1|k)

⎤
⎥⎥⎥⎥⎥⎦

is a matrix of dimensionality N ×Nu. Thanks to using the prediction equation
(4), the optimisation problem (2) becomes the quadratic programming task

min
�u(k)

{
J(k) =

∥∥yref(k) −H(k)J�u(k) − ŷtraj(k)

−H(k)(u(k − 1) − utraj(k))
∥∥2

+ ‖�u(k)‖2Λ
}

subject to (5)

umin ≤ J�u(k) + u(k − 1) ≤ umax

−�umax ≤ �u(k) ≤ �umax

ymin ≤ H(k)J�u(k) + ŷtraj(k) + H(k)(u(k − 1) − utraj(k)) ≤ ymax

where

yref(k) =
[
yref(k + 1|k) . . . yref(k + N |k)

]T
ymin =

[
ymin . . . ymin

]T
ymax = [ymax . . . ymax]

T
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are vectors of length N ,

umin =
[
umin . . . umin

]T
umax = [umax . . . umax]

T

u(k − 1) = [u(k − 1) . . . u(k − 1)]T

�umax = [�umax . . .�umax]
T

are vectors of length Nu, Λ = diag(λ, . . . , λ), J is the all ones lower triangular
matrix of dimensionality Nu ×Nu.

Steps repeated at each sampling instant k of the MPC-NPLT algorithm are:

1. The neural model is used to find the future output trajectory ŷtraj(k) which
corresponds to the assumed input trajectory utraj(k).

2. The neural model is linearised along the trajectory ŷtraj(k): the matrix H(k)
is obtained.

3. The quadratic programming task (5) is solved to find �u(k).
4. The first element of the obtained future control policy is applied to the

process: u(k) = �u(k|k) + u(k − 1).
5. Set k := k + 1, go to step 1.

During calculation of the output trajectory ŷtraj(k) and linearisation along this
trajectory (calculation of the matrix H(k)) the structure of the neural model is
exploited.

Selection of the future input trajectory utraj(k) affects the linearisation accu-
racy and, in consequence, quality of control. A straightforward choice is to use
the control signal calculated at the previous sampling instant, i.e.

utraj(k) = [u(k − 1) . . . u(k − 1)]
T

As a result, the neural model is linearised along the free trajectory, the algorithm
is denoted by MPC-NPLTy0(k). The alternative is to use Nu − 1 elements of the
future control sequence calculated at the previous sampling instant (the quantity
u(k − 1|k − 1) is actually used for control at the sampling instant k − 1), i.e.

utraj(k) = [u(k|k−1) . . . u(k+Nu−3|k−1) u(k+Nu−2|k−1) u(k+Nu−2|k−1)]T

The algorithm is denoted by MPC-NPLTŷ(k−1). It is possible to combine MPC-
NPL and MPC-NPLT techniques (the MPC-NPL-NPLT algorithm). In the first
phase of the hybrid approach the neural model is linearised for the current
operating point, the MPC-NPL quadratic programming task is solved. In the
second phase the neural model is linearised once again along the predicted tra-
jectory which corresponds to the obtained input trajectory and the MPC-NPLT
quadratic programming task (5) is solved. Furthermore, linearisation along the
predicted trajectory can be repeated in an iterative manner [5]: nonlinear pre-
diction, linearisation and quadrating programming are repeated a few times at
each sampling instant.
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Fig. 1. High-purity ethylene-ethane distillation column control system structure

4 Simulations

The considered process is a high-purity, high-pressure (1.93 MPa) ethylene-
ethane distillation column shown in Fig. 1. The feed stream consists of ethy-
lene (approx. 80%), ethane (approx. 20%) and traces of hydrogen, methane and
propylene. The distillation product (the top product) is ethylene which can con-
tain up to 1000 ppm (parts per million) of ethane. The MPC algorithm must
be able to increase relatively fast the impurity level of the product. Reducing
the purity of the product results in decreasing energy consumption. Production
scale is very big, nominal value of the product stream flow rate is 43 ton/h.

The supervisory control loop has one manipulated variable r, which is the
reflux ratio r = R/P , where R and P are reflux and product stream flow rates,
respectively, and one controlled variable z, which is the impurity of the product.
The column has 121 trays, the feed stream is delivered to the tray number 37.
The reflux is delivered to the column by the top tray and the product is taken
from the tray number 110.

As shown in [5,7,13,14] the process is significantly nonlinear and difficult to
control. A simple linear model is inadequate, hence, the MPC algorithm which



132 M. �Lawryńczuk

uses such a model does not work properly. In contrast to the linear model,
a neural model (of the MLP structure) is very accurate as discussed in [5].
Because the linearisation method affects control accuracy, the following nonlinear
MPC algorithms based on the same neural model are compared:

a) The rudimentary MPC-NPL algorithm with on-line linearisation for the cur-
rent operating point and quadratic programming [6,7,13].

b) Two versions of the discussed MPC-NPLT algorithm (MPC-NPLTy0(k) and
MPC-NPLTŷ(k−1)) with linearisation along the trajectory and quadratic pro-
gramming.

c) The ”ideal” algorithm with Nonlinear Optimisation (MPC-NO) [6,13].

Parameters of all algorithms are the same: N = 10, Nu = 3, λ = 2, constraints
are rmin = 4.051, rmax = 4.4571. Three reference trajectories are considered: at
the sampling instant k = 1 the trajectory changes from 100 ppm to 350 ppm,
600 ppm and 850 ppm, respectively.

Fig. 2 compares the MPC-NPL algorithm with on-line linearisation for the
current operating point and the MPC-NO approach. Unfortunately, due to the
nonlinear nature of the distillation process, when the linearised model obtained
for the current operating point is used for the whole prediction horizon, its in-
accuracy is important, the algorithm gives significantly slower trajectories than
the MPC-NO approach. Slow behaviour of the MPC-NPL algorithm is disad-
vantageous in light of a very big production scale.

As shown in Fig. 3, both versions of the MPC-NPLT algorithm give much
faster trajectories than the MPC-NPL approach. The algorithm with lineari-
sation along the optimal trajectory calculated at the previous sampling instant
(MPC-NPLTŷ(k−1)) is faster than the algorithm with linearisation along the free
trajectory (MPC-NPLTy0(k)). It is not surprising, because in the first approach
for linearisation predicted behaviour of the process is taken into account whereas
in the second one the influence of the past is only considered.

Table 1 shows accuracy (in terms of Sum of Squared Errors, SSE) and com-
putational load (in terms of floating point operations, MFLOPS) of compared
nonlinear algorithms, summarised results for all three reference trajectories are
given. Computational burden of the MPC-NPLT algorithm is approximately
6.43 times smaller when compared with that of the MPC-NO approach.

Table 1. Accuracy (SSE) and computational load (MFLOPS) of compared nonlinear
MPC algorithms based on the same neural model

Algorithm Optimisation SSE MFLOPS

MPC-NPL Quadratic 5.3717 × 106 0.1545
MPC-NPLTy0(k) Quadratic 5.1085 × 106 0.3313
MPC-NPLTŷ(k−1) Quadratic 4.8599 × 106 0.3408
MPC-NO Nonlinear 4.3869 × 106 2.1299
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Fig. 2. The MPC-NPL algorithm with linearisation for the current operating point
and quadratic programming (dashed line) vs. the MPC-NO algorithm with nonlinear
optimisation (solid line)

Fig. 3. The MPC-NPLTy0(k) algorithm (dash-dotted line) and the MPC-NPLTŷ(k−1)

algorithm (dashed line) with linearisation along the trajectory and quadratic program-
ming vs. the MPC-NO algorithm with nonlinear optimisation (solid line)

5 Conclusions

For the considered distillation column the MPC-NPLT algorithm in which the
neural model is linearised on-line along a trajectory is much faster than the rudi-
mentary MPC-NPL algorithm with linearisation for the current operating point.
At each sampling instant of the MPC-NPLT algorithm only one quadratic pro-
gramming problem is solved, nonlinear optimisation is not necessary. Of course,
linearisation along the predicted trajectory and quadratic programming can be
repeated a few times at each sampling instant [5], but it increases the computa-
tional burden. Although in simulations presented in the paper the MLP neural
model is used, the described algorithm is very general, different types of models
can be used. The chosen model structure must be taken into account during cal-
culation of the output trajectory ŷtraj(k) and linearisation along this trajectory
(calculation of the matrix H(k)).
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