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Abstract. This paper presents the recursive least squares method, com-
bined with the general regression neural networks, applied to solve the
problem of learning in time-varying environment. The general regression
neural network is based on the orthogonal-type kernel functions. The
appropriate algorithm is presented in a recursive form. Sufficient simu-
lations confirm empirically the convergence of the algorithm.

1 Introduction

The idea of probabilistic neural networks and general regression neural networks
was first proposed by Specht in [35] and [36], respectively. Such networks are
nonparametric tools, designed for estimating probability density and regression
functions. In literature, their usability in solving stationary (see e.g. [4], [5], [7],
[12]-[16], [22]-[24] and [27]-[30]) and nonstationary problems (see e.g. [8], [17]-
[21], [25] and [26]) has been widely studied. It should be emphasized that in
both cases the noise was assumed to be stationary. An excellent overwiew of the
methods mentioned above can be found in [6] and [9].

Let us consider a system, which processes p-dimensional data elements Xi ∈
A ⊂ R

p, i = 1, . . . , with some unknown function φ : A → R (E[φ(Xi)] <
∞). The probability density function of the random variables Xi, described by
f(x), is unknown as well. Let us assume that the output φ(Xi) of the system is
accompanied with a noise, consisting of two components

– deterministic part aci, where a is some unknown constant, and ci is an
element of known sequence, satisfying lim

i→∞
|ci| = ∞,

– probabilistic part Zi, which is a random variable satisfying the following
condition

E[Zi] = 0, E[Z2
i ] = di < ∞. (1)

Therefore, the output random variable Yi, received from the system, is given by
the equation

Yi = φ(Xi) + aci + Zi. (2)
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The aim of the generalized nonlinear regression is to estimate simultaneously the
regression function φ(x) and the constant a, given n pairs of random variables
(X1, Y1), . . . , (Xn, Yn) and the sequence ci.

2 Estimation of the Parameter a

For the estimation of the parameter a, the recursive least square method [1] can
be applied

ân = ân−1 +
cn∑n
i=1 c

2
i

(Yn − ân−1cn) . (3)

This method can be further generalized into the form

â(ω)
n = â

(ω)
n−1 +

cω−1
n∑n
i=1 c

ω
i

(
Yn − â

(ω)
n−1cn

)
, (4)

where ω is a real nonnegative number.
The assumptions of the following theorem ensure the convergence of the est-

mator â
(ω)
n to the actual value of parameter a

Theorem 1. If conditions (1) holds and additionally the following conditions
are satisfied

E[φ2(Xi)] =

∫

A

φ2(x)f(x)dx < ∞, (5)

lim
n→∞

(∑n
i=1 c

ω−1
i∑n

i=1 c
ω
i

)

= 0, (6)

lim
n→∞

(∑n
i=1 c

2ω−2
i si

(
∑n

i=1 c
ω
i )

2

)

= 0, (7)

where si is defined as follows

si = max{V ar[φ(Xi)], di}, (8)

then

â(ω)
n

n→∞−→ a in probability. (9)

Proof. The theorem can be proven using simple analysis of the bias and the
variance of estimator (4), which leads to the following convergence

lim
n→∞E

[
(â(ω)

n − a)2
]
= 0. (10)

Convergence (10) is the sufficient condition for convergence (9).
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3 Estimation of the Regression Function φ(x)

To find the regression function φ(x), the nonlinear regression procedures should
be applied to the pairs of random variables (Xi, Vi), where

Vi = Yi − aci. (11)

Since the actual value of the parameter a is not known, the random variables Vi

have to be estimated, using some estimator ai

V̂i(ai) = Yi − aici, i = 1, . . . , n. (12)

It is easily seen that if ai = a, then V̂i(ai) = V̂i(a) ≡ Vi. In this section, for
further considerations of the convergence of the regression function estimator, it
is assumed that ai = a, i = 1, . . . , n.

The regression function φ(x) can be expressed in the following form

φ(x) =
φ(x)f(x)

f(x)

def.
=

R(x)

f(x)
, (13)

at each point x, for which f(x) �= 0. The nominator and the denominator of the
above expression can be estimated separately. In this paper the nonparametric
estimation based on kernel functions is proposed. Given 2n kernel functions
K̃i, K̃

′
i : A × A → R, i = 1, . . . , n, the estimators R̃n(x, a) and f̃n(x) can be

expressed in the following form

R̃n(x, a) =
1

n

n∑

i=1

V̂i(a)K̃i(x,Xi), (14)

f̃n(x) =
1

n

n∑

i=1

K̃ ′
i(x,Xi), (15)

One way of constructing the kernel functions is the application of orthogonal
series. Let gj : R → R, j = 1, . . . denote the functions of the complete orthogonal
system, satisfying the following condition

∀j∈N sup
w∈R

|gj(w)| ≤ Gj . (16)

Then the kernel functionsK,K ′, for one-dimensional case (p = 1), can be defined
as follows

K̃i(x, u) =

M(i)∑

j=0

gj(x)gj(u), K̃
′
i(x, u) =

N(i)∑

j=0

gj(x)gj(u), i = 1, . . . , n, (17)

where M(i) and N(i) are sequences satisfying lim
i→∞

M(i) = ∞ and lim
i→∞

N(i) =

∞, respectively. The convergence of estimators (14) and (15) with kernel
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functions (16) can be slightly improved by the applicaion of so-called Cesaro
means. Let us denote Sj(x, u) as the following partial sums

Sj(x, u) =

j∑

k=0

qk(x)gk(u), j = 1, . . . , n. (18)

Then, the kernel functions K,K ′ : A × A → R can be proposed as the Cesaro
means of these partial sums

Ki(x, u)=
1

M(i) + 1

M(i)∑

j=0

Sj(x, u)=

M(i)∑

j=0

(

1− j

M(i) + 1

)

gj(x)gj(u), i = 1, . . . , n,

(19)

K ′
i(x, u) =

1

N(i) + 1

N(i)∑

j=0

Sj(x, u) =

N(i)∑

j=0

(

1− j

N(i) + 1

)

gj(x)gj(u), i = 1, . . . , n

(20)
Finally, the estimator for functions R(x) and f(x) can be proposed in the fol-
lowing forms

Rn(x, a) =
1

n

n∑

i=1

V̂i(a)Ki(x,Xi) =
1

n

n∑

i=1

M(i)∑

j=0

V̂i(a)

(

1− j

M(i) + 1

)

gj(x)gj(Xi),

(21)

fn(x) =
1

n

n∑

i=1

K ′
i(x,Xi) =

1

n

n∑

i=1

N(i)∑

j=0

(

1− j

N(i) + 1

)

gj(x)gj(Xi), (22)

Then, in light of formula (13), the estimator of the regression function φ(x) is
given by

φn(x, a) =
Rn(x, a)

fn(x)
. (23)

To ensure the convergence of estimator (23), assumptions of the following theo-
rem have to be satisfied.

Theorem 2. If conditions (1) and (5) hold and additionally the following con-
ditions are satisfied

lim
n→∞N(n) = 0, lim

n→∞

⎡

⎢
⎣

1

n2

n∑

i=1

⎛

⎝
N(i)∑

j=1

G2
j

⎞

⎠

2
⎤

⎥
⎦ = 0, (24)
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lim
n→∞M(n) = 0, lim

n→∞

⎡

⎢
⎣

1

n2

n∑

i=1

⎛

⎝
M(i)∑

j=1

G2
j

⎞

⎠

2

si

⎤

⎥
⎦ = 0, (25)

where si is defined as in (8), then

φn(x, a)
n→∞−→ φ(x) in probability. (26)

Proof. The proof of the theorem can be found in [14].

4 Probabilistic Neural Network

In the real world applications, the value of the parameter a is not known, there-
fore the random variables Vi have to be estimated, using formula (12). In par-
ticular, the estimators ai can be the same for each variable Vi, e.g.

∀i∈{1,...,n} ai = â(ω)
n . (27)

Then, the estimator of the regression function φ(x) can be proposed as φn(x, â
(ω)
n )

(replacing a by â
(ω)
n in formulas (21) and (23)). The convergence of this estima-

tor can be proven combining Theorems 1 and 2 and Theorem 4.3.8 in [40]. The

estimator φn(x, â
(ω)
n ) is calculated in a two-step process. First, given all output

variables Yi, i = 1, . . . , n, the estimator â
(ω)
n is computed. Then, after the first

step is completed, the estimation of the regression function φ(x) can be provided.
The main disadvantage of the approach presented above is that the algorithm

cannot be performed in a recursive way. To maintain this ability, we propose
a slightly modificated form of estimator (21) (and in consequence (23)). Let us

assume that for each i = 1, . . . , n an estimator an is different end equal to â
(ω)
n .

Then, the estimator of function R(x) can be proposed as follows

R̂n(x, {â(ω)
i }n) = 1

n

n∑

i=1

V̂i(â
(ω)
i )Ki(x,Xi), (28)

where {â(ω)
i }n denotes the subset of estimators {â(ω)

1 , . . . , â
(ω)
n } and Ki is the

kernel function given by (19). Estimator (28) can be easily written in a recursive
way

R̂n(x, {â(ω)
i }n) = n− 1

n
R̂n−1(x, {â(ω)

i }n−1) +
1

n
V̂n(â

(ω)
n )Kn(x,Xn), (29)

where estimators â
(ω)
n are computed using recursive formula (4). Estimator (22)

can be expressed in a recursive way without any additional modifications

fn(x) =
n− 1

n
fn−1(x) +

1

n
K ′

n(x,Xn). (30)
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Finally, the estimator of the regression function φ(x) is, analogously to (23),
given by

φ̂n(x, {â(ω)
i }n) = R̂n(x, {â(ω)

i }n)
fn(x)

. (31)

The algorithm presented above can be considered as a general regression neural
network [36]. The appropriate scheme of this network is presented in Fig. 1.

Fig. 1. The block digram of the probabilistic neural network, adopted to performing
algorithms presented in sections 2 and 3

We do not present any theorem, which would ensure the convegence of esti-
mator (31). Instead, in the next section the convergence is tested empirically, on
a basis of several numerical simulations.
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5 Simulations

In the following simulations a system described by equation (2) is considered,
with the constant a equal to 2, 5 and the regression function φ(x) given by

φ(x) = 10
2x3 − x

cosh(2x)
. (32)

The random variables Xi are generated from the uniform probability distribu-
tion, from the interval Xi ∈ [−5, 5] , i = 1, . . . , n. The random variables Zi come
from the normal distribution N(0, di), where di is given in the form

di = iα, i = 1, . . . , n, α > 0. (33)

The elements of the sequence ci are taken in a similar form

ci = it, i = 1, . . . , n, t > 0. (34)

In the presented simulations, the parameter t is set to t = 0, 2. It is easily seen
that, in order to obey assumptions 6) and (7) of Theorem 1, the exponent α has
to satisfy the following inequality

α < 2t+ 1. (35)

In the estimators of functions R(x) and f(x), the Hermite orthogonal system is
proposed

gj(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp
(−x2/2

)

4
√
π

j = 0,

−√
2xg0(x) j = 1,

−
√

2

j
xgj−1(x)−

√
j − 1

j
gj−2(x) j > 0.

(36)

The functions gj can be bounded by (see [39])

∀j∈N sup
x∈R

|gj(x)| ≤ Gj = Cj−1/12. (37)

Assuming that the sequences M(n) and N(n) are given in the following forms

M(n) = �DnQ�, D > 0, Q > 0, N(n) = �D′nQ′�, D′ > 0, Q′ > 0, (38)

the assumptions (24) and (25) of Theorem 2 are satisfied if the parameters Q
and Q′ satisfy the following conditions

Q′ <
3

5
, Q <

3

5
(1− α) . (39)

In all of the simulations, parameters Q and Q′ are kept the same, i.e. Q = Q′.
Parameters D and D′ are set to D = D′ = 1, 5.
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Fig. 2. Convergence of the estimator â
(8)
n to the actual value of parameter a, for α = 0, 2

Fig. 3. MSE values for estimator φ̂n(x, {â(8)
i }n) in a function of number of data ele-

ments n, for three different values of parameter Q = Q′: Q = Q′ = 0, 2, Q = Q′ = 0, 3
and Q = Q′ = 0, 4 (alpha = 0, 2)
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The constant a is estimated by making use of estimator (4), with parameter
ω = 8. The results of the simulation, obtained for α = 0, 2, are shown in Fig. 2.

The estimator â
(8)
n converges to value 2, 5 quite fast. This satisfactory result

should be reflected in the quality of estimation of the regression function φ(x).
To investigate the quality of estimator (31) the Mean Squared Error (MSE)
value is calculated for each considered number of data elements n. Simulations
are performed for three different values of parameter Q = Q′. Parameter α is
set to 0, 2. Results are presented in Fig. 3.

For all considered values of Q = Q′ the estimator φ̂n(x, {â(8)i }n) seems to
converge to the regression function φ(x) as the number of data elements n in-
creases. It is easily seen that for α = 0, 2, inequalities (39) are satisfied. An
interesting question arrised how the estimator (31) behaves if inequalities (39)
are not held. To answer this question simulations for three different values of α
are performed, keeping fixed Q = Q′ = 0, 3. According to inequalities (39), for
Q = 0, 3 the parameter α should obey α < 0, 5. Obtained results are shown in
Fig. 4.

Fig. 4. MSE values for estimator φ̂n(x, {â(8)
i }n) in a function of number of data ele-

ments n, for three different values of α: α = 0, α = 0, 4 and α = 0, 6 (Q = Q′ = 0, 3)

In Figure 5 an example estimator φ̂n(x, {â(8)i }n), obtained for n = 8000,
Q = Q = 0, 3 and α = 0, 2 is presented in comparison with the regression
function (32).



108 M. Jaworski and M. Gabryel

Fig. 5. Estimator φ̂n(x, {â(ω)
i }n), obtained for α = 0, 2, Q = Q′ = 0, 3 and n = 8000,

in comparison with the regression function φ(x). Points denote the random variable
pairs (Xi, Vi).

6 Conclusions and Future Work

In the paper the recursive least squares method, combined with the general re-
gression neural networks, was presented. Thess tools were applied to solve the
problem of learning in time-varying environment. The general regression neural
network were developed using the orthogonal-type kernel functions. Future work
can be focused on applying some other methods, e.g. supervised and unsuper-
vised neural networks (see e.g. [2], [3] and [11]) or neurofuzzy structures (see
e.g. [10], [31]-[34], [37] and [38]), to handle non-stationary noise. Moreover, the
recursive form of the algorithm presented in this paper allows to adopt it for
data streams.
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