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Abstract. In this article, an approximation of the spatiotemporal re-
sponse of a distributed parameter system (DPS) with the use of the
neural network-based principal component analysis (PCA) is consid-
ered. The presented approach is carried out using two different neural
structures: single-layer network with unsupervised, generalized Hebbian
learning (GHA-PCA) and two-layer feedforward network with supervised
learning (FF-PCA). In each case considered, the effect of the number of
units in the network projection layer on the mean square approximation
error (MSAE) and on the data compression ratio is analysed.

Keywords: principal component analysis, neural networks, distributed
parameter systems.

1 Introduction

Principal Component Analysis (PCA) is one of the main approaches to reduce
the dimensionality of data, losing the least amount of information. It can be
applied in many fields such as pattern recognition, computer vision, signal pro-
cessing, data compression, etc. The advantages of PCA result from its optimality
properties in maximization of variance as well as in minimization of mean square
error [5,7]. However, numerical calculations of the data covariance matrix and
its eigenvectors being the main feature of the PCA can achieve considerable
computational complexity, particularly at the high dimensionality of the input
data. In this case, it may be preferable to employ methods that do not require
explicit determination of the covariance matrix. Such an approach can rely e.g.
on the well-known properties of artificial neural networks. Their learning algo-
rithms directly process the input vectors, which can be delivered either off- or
on-line [2,10,15,17,19]. Therefore, when the online scheme is taken into account,
or when only a few principal components are required, the neural network-based
PCA technique tends to be the good solution [8,13,14,18].

In this paper neural networks are proposed to be used as a tool for the PCA-
based approximation of spatiotemporal responses of a distributed parameter
system (DPS). A mathematical description of this class of systems takes most
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often the form of partial differential equations (PDEs), which lead to the infinite-
dimensional state space and irrational transfer function representations. There-
fore, due to the mathematical complexity, these models are often approximated
by finite-dimensional ones. Among many approximation techniques, an impor-
tant role is played by the so-called reduction methods, consisting in the replace-
ment of the high-order model of DPS by a lower-order one, mapping the most
relevant aspects of the dynamical properties of the system. A significant role is
played here by the reduction methods based on the PCA approach [6,11,12,16].
This paper proposes PCA-based DPS approximation to be carried out using two
different neural network structures: single-layer network with unsupervised, gen-
eralized Hebbian learning (GHA-PCA) and two-layer feedforward network with
supervised autoassociative learning (FF-PCA).

2 Neural Network-Based PCA Schemes

In this section, the abovementioned neural network-based PCA techniques are
introduced, with particular emphasis on their use in the approximation of the
DPS spatiotemporal response.

Assume that as a result of the measurement or numerical simulation experi-
ment, we have obtained a discrete set of values y(lm, tn), representing the spa-
tiotemporal distribution of a one-dimensional DPS process variable y ∈ IR, where
tn = n ·Δt for n = 1, 2, . . . , N and Δt = T/N is a discrete independent variable
representing time, lm = m ·Δl for m = 1, 2, . . . ,M and Δl = L/M is a discrete
independent variable representing spatial position. T ∈ IR+ and L ∈ IR+ denote
temporal and spatial observation horizons, while N ∈ IN and M ∈ IN are num-
ber of observations and number of spatial positions, respectively. After initial
processing, involving subtracting from each sample y(lm, tn) the time average
for the m-th spatial position, given by

ȳ(lm) =
1

N

N∑

n=1

y(lm, tn), (1)

the DPS response will be represented by the matrix Y = [y(lm, tn)− ȳ(lm)] ∈
IRM×N .

PCA can be seen as optimal factorization of Y into two matrices:

Ŷ = ΦKΨK (2)

where Ŷ ∈ IRM×N denotes the approximated matrix Y , ΦK ∈ IRM×K is matrix
consisting of K < M orthogonal column eigenvectors ϕ1, ϕ2, . . . , ϕK ∈ IRM of
the response covariance matrix C calculated as:

C =
1

N
Y Y T , (3)

corresponding to its K largest eigenvalues, λ1, λ2, . . . , λK . The matrix ΨK ∈
IRK×N in (2) can be determined from the following relationship [3]:

ΨK = ΦK
TY. (4)
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Optimality condition for the factorization (1) means that the Frobenius norm
‖E‖F of the approximation error matrix E = Y − Ŷ must be minimized for the
given value of the model order K.

In the following subsections two neural network-based PCA techniques are
discussed: a single-layered neural network with unsupervised Hebbian learning
and a feedforward neural network with supervised autoassociative learning.

2.1 Single-Layered Network with Supervised Training (GHA-PCA)

A single neuron acting as a principal component analyzer was first proposed
by Oja in [13]. Its extension to a network consisting of many neurons, known as
Generalized Hebbian Algorithm (GHA) or Sanger’s rule, enabling the estimation
of the subsequent principal components, was presented in the works of Oja and
Sanger [14,18]. In this case, the PCA task is performed by the use of a single-
layered neural network consisting of K linear neurons, corresponding to the
subsequent principal components.

The structure of the GHA-PCA network used for the approximation of the
spatiotemporal DPS response is presented in Fig. 1. The number of network
inputs is equal to the number of M spatial positions for which the value of the
process variable y is determined, whereas number of network outputs is equal to
the number of the K principal components.

According to the GHA, modification of the weight coefficients of the k-th
neuron is performed after each presentation of the input patterns corresponding
to the time instant tn, based on the following expression [15,18]:

wk,m(tn+1) = wk,m (tn) + ηvk(tn)

[
y(lm, tn)−

k∑

h=1

wh,m(tn)vh(tn)

]
(5)

where wk,m(tn) is the value of the weight coefficient connecting the k-th neuron

Fig. 1. Structure of the GHA-PCA neural network
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with the m-th network input, vk(tn) is the output signal of the k-th neuron, both
calculated for the time instant tn, and η is the network learning rate. Denoting
by wk(tn) vector containing all weight coefficients of the k-th neuron at the time
instant tn, i.e. vector of the following form:

wk(tj) =
[
wk,1(tn) wk,2(tn) . . . wk,M (tn)

]
, (6)

by y(tn) the input vector representing the distribution of the process variable y
for all M spatial positions at the time instant tn:

y(tn) =
[
y(l1, tn) y(l2, tn) . . . y(lM , tn)

]T
(7)

and introducing the following notation:

y′(tn) = y(tn)−
k−1∑

h=1

(wh(tn))
T
vh(tn), (8)

the relationship (5) can be written in the compact vector form:

wk(tn+1) = wk (tn) + ηvk(tn)
[
(y′(tn))

T − wk(tn)vk(tn)
]
, (9)

analogous to the Oja algorithm for a single neuron, for which self-normalization
of weight coefficients is carried out.

As mentioned in Sec. 1, one of the main applications of PCA is lossy data
compression. In the case under consideration, the compression task should be
understood as follows: a large input data set represented by the matrix Y ∈
IRM×N is replaced by the reduced data set consisting of the network weight
matrix W = [wk,m] ∈ IRK×M , the network responses matrix V = [vk(tn)] ∈
IRK×N and the vector of time averages ȳ = [ȳ(lm)] ∈ IRM . The data compression
ratio CK can be thus calculated as:

CK =
M ×N

M ×K +K ×N +M
. (10)

Approximation of the spatiotemporal response is possible due to the ”decompres-
sion”, realized as simple multiplication of WT by V and adding time-averaged
values of ȳ(lm) to the result (see (1) and (2)).

2.2 Two-Layer Feedforward Network with Supervised Training
(FF-PCA)

An alternative approach to extracting principal components from the data set is
based on a feedforward, two-layer linear neural network of the structure shown in
Fig. 2. The number of the network outputs (i.e. number of neurons in its second
layer, hereinafter referred to as a reconstruction layer) is equal to the number
of its inputs and represents the number M of spatial positions of the process
variable y. Furthermore, the number of K < M units in the first network layer,
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called the projection layer, represents the number of the principal components
to be extracted. For the structure presented here, the acronym FF-PCA (Feed-
Forward Principal Component Analysis) neural network will be used later in the
article.

The role of the network input patterns will be taken over, as in the case of
the GHA-PCA network, by the vectors representing distribution of the process
variable y at the successive time instants tn, i.e. by the subsequent columns of
the matrix Y . In the considered case of the auto-associative network learning, the
output patterns are equal to the input ones, and the learning procedure consists
in the iterative modifications of all weight coefficients in order to minimize the
network error function of the following well-known form [10,15,17,19]:

E(w) =
1

M ·N
M∑

m=1

N∑

n=1

(y(lm, tn)− ŷ(lm, tn))
2
. (11)

Denoting by W (1) ∈ IRK×M the weight matrix of the projection layer, by W (2) ∈
IRM×K the weight matrix of the reconstruction layer and by V ∈ IRK×N the
matrix of the projection layer responses to the input patterns Y , we obtain the
following relationships describing the operation of the network of Fig. 2:

V = W (1)Y (12)

and
Ŷ = W (2)V = W (2)W (1)Y. (13)

As can be easily seen, (13) is equivalent to (2) and (4), wherein W (1) corresponds
to ΦK

T and V corresponds to ΨK . In order to determine the optimal values of
the weight coefficients, a supervised learning procedure has to be applied – e.g.
gradient descent or Levenberg-Marquardt algorithm [2,15,17,19].

Fig. 2. Structure of the FF-PCA neural network
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3 Example: Spatiotemporal Response of Hyperbolic DPS

Among many different kinds of DPS, an important class is constituted by the
processes in which the phenomena of mass and energy transport take place. One
can mention here e.g. electrical transmission lines, transport pipelines or heat
exchangers [1,3,4,9]. Their mathematical description takes the general form of
the following two coupled partial differential equations of hyperbolic type:

∂y1 (l, t)

∂t
+ f1

∂y1 (l, t)

∂l
= g11y1 (l, t) + g12y2 (l, t) ,

∂y2 (l, t)

∂t
+ f2

∂y2 (l, t)

∂l
= g21y1 (l, t) + g22y2 (l, t) ,

(14)

where y1(l, t) ∈ IR and y2(l, t) ∈ IR are functions representing spatiotemporal
distribution of the process variables, defined on the set Ω×Θ, where Ω = [0, L]
is the domain of the independent spatial variable l, while Θ = [0, T ] is the
domain of the independent variable t representing time. The constant coeffi-
cients f1, f2 ∈ IR usually represent the transport or wave propagation velocities,
whereas the constants g11, g12, g21, g22 ∈ IR depend on the geometrical and phys-
ical parameters of the plant.

In order to determine the numerical solutions of (14), the method of lines has
been applied for the following values of the equation parameters, the domain of
the solution and the spatial discretization step: f1 = 1, f2 = 0.5, g11 = −0.0638,
g12 = 0.0638, g21 = −0.0359, g22 = 0.0359, L = 5, T = 50, Δl = 0.1. The
simulations were carried out assuming zero initial conditions, y1(l, 0) = 0 and
y2(l, 0) = 0, as well as two different forms of boundary conditions: the Kronecker
delta impulse and the Heaviside step function for the control variable y1(0, t).
The solutions of (14) representing spatiotemporal distribution of the controlled
variable y2(l, t) for both types of boundary conditions are shown in Fig. 3. In
the following, the results of the response approximation using aforementioned
neural PCA techniques are presented.

a) b)

Fig. 3. Impulse (a) and step (b) spatiotemporal responses y2(l, t) of the system (14)
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The results of the application of the GHA-PCA network with three neurons
(K = 3) in the approximation of the step response of Fig. 3b are presented in
Fig. 4. In Fig. 4a weight vectors of individual neurons are plotted, whereas Fig.
4b shows original step responses (solid line), obtained by the numerical solution
of (14) and the responses of the GHA-PCA approximation model (dashed line),
compared for six different spatial positions l.

Furthermore, Fig. 5 shows approximation results analogous to those presented
in Fig. 4, obtained as a result of the use of the FF-PCA method discussed in
Sec. 2.2. As can be seen, in contrast to the case of the GHA-PCA network, the
weight vectors w1, w2 and w3 of the projection layer of the FF-PCA network
are not orthogonal – their values have somewhat ”chaotic” distribution. This is
mainly due to the fact that the network learning algorithm generates random
initial values of the weight coefficients, and, moreover, it does not impose the
orthogonality condition on the weight vectors as opposed to the GHA-PCA
method.

a) b)

Fig. 4. GHA-PCA approximation results for the step response and K = 3: a) weight
vectors w1, w2 and w3, b) exact and approximate responses, y(l, t) and ŷ(l, t)

Fig. 5. FF-PCA approximation results for the step response and K = 3: a) weight
vectors w1, w2 and w3, b) exact and approximate responses, y(l, t) and ŷ(l, t)
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Table 1. Approximation results for GHA-PCA and FF-PCA neural networks (after
1000 training epochs)

impulse response step response

number of neurons K number of neurons K

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

GHA-PCA

‖E‖F 0.335 0.111 0.074 0.820 0.689 0.680

MSAE 2.18·10−5 2.38·10−6 1.07·10−6 1.33·10−4 9.23·10−5 8.98·10−5

CK 25.37 10.16 6.35 25.37 10.16 6.35

Tt 1.9 s 2.5 s 3.1 s 1.9 s 2.5 s 3.1 s

FF-PCA

‖E‖F 0.337 0.147 0.143 0.773 0.724 0.650

MSAE 2.21·10−5 4.20·10−6 4.00·10−6 1.04·10−4 1.02·10−4 8.2·10−5

CK 25.37 10.15 6.35 25.37 10.16 6.35

Tt 1.0 s 1.7 s 2.4 s 1.0 s 1.7 s 2.4 s

The approximation results obtained for both considered PCA neural networks
and for both spatiotemporal responses of Fig. 3 are summarized in Table 1.
For each of these cases, the table contains: the Frobenius norm ‖E‖F of the ap-
proximation error matrix, the mean square approximation error (11) and the data
compression coefficientCK (10). In order to enable a rough estimation of the com-
putational cost of the proposed algorithms, the training time values Tt averaged
for 10 simulations of 1000 learning epochs performed on a 2.27 GHz Intel Core i5
processor with 4 GB of RAMmemory are also included here. As can be seen from
the presented results, the increase in K reduces the value of MSAE, however, it
also decreases the value of CK as well as increases the value of Tt. Therefore, selec-
tion of the appropriate value for K should take into account the tradeoff between
an assumed (reasonably low) value for the approximation error, and a sufficiently
high value for the compression ratio as well as low computation time.

4 Summary

In this paper, neural network-based PCA techniques as applied to the approxi-
mation of the spatiotemporal responses of a distributed parameter system have
been discussed. A positive aspect of using artificial neural networks as a tool
for extracting principal components from a spatiotemporal data set is that they
do not require calculating the correlation matrix explicitly, as in the case of the
classical PCA approach. For this reason, they can be used e.g. in the on-line
data acquisition scheme, when calculation of the data correlation matrix in the
explicit form is impossible. The neural approach presented in the paper may act
as a good starting point for further research concerning, for example, approxi-
mation of nonlinear DPS using nonlinear PCA method, based on the function
approximation properties of neural networks with nonlinear, sigmoidal units.
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