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Preface

This volume constitutes the proceedings of the 11th International Conference
on Artificial Intelligence and Soft Computing, ICAISC 2012, held in Zakopane,
Poland, from April 29 to May 3, 2012. The conference was organized by the
Polish Neural Network Society in cooperation with the SWSPiZ Academy of
Management in �Lódź, the Department of Computer Engineering at the Czesto-
chowa University of Technology, and the IEEE Computational Intelligence Soci-
ety, Poland Chapter. The previous conferences took place in Kule (1994), Szczyrk
(1996), Kule (1997) and Zakopane (1999, 2000, 2002, 2004, 2006, 2008, 2010)
and attracted a large number of papers and internationally recognized speakers:
Lotfi A. Zadeh, Igor Aizenberg, Shun-ichi Amari, Daniel Amit, Piero P. Bonis-
sone, Jim Bezdek, Zdzislaw Bubnicki, Andrzej Cichocki, Wlodzislaw Duch, Pablo
A. Estévez, Jerzy Grzymala-Busse, Martin Hagan, Akira Hirose, Kaoru Hirota,
Janusz Kacprzyk, Jim Keller, Laszlo T. Koczy, Soo-Young Lee, Robert Marks,
Evangelia Micheli-Tzanakou, Erkki Oja, Witold Pedrycz, Jagath C. Rajapakse,
Sarunas Raudys, Enrique Ruspini, Jorg Siekman, Roman Slowinski, Igor Spiri-
donov, Ryszard Tadeusiewicz, Shiro Usui, Jun Wang, Ronald Y. Yager, Syozo
Yasui and Jacek Zurada. The aim of this conference is to build a bridge between
traditional artificial intelligence techniques and novel soft computing techniques.
It was pointed out by Lotfi A. Zadeh that “soft computing (SC) is a coalition
of methodologies which are oriented toward the conception and design of infor-
mation/intelligent systems. The principal members of the coalition are: fuzzy
logic (FL), neurocomputing (NC), evolutionary computing (EC), probabilistic
computing (PC), chaotic computing (CC), and machine learning (ML). The
constituent methodologies of SC are, for the most part, complementary and syn-
ergistic rather than competitive.”This volume presents both traditional artificial
intelligence methods and soft computing techniques. Our goal is to bring together
scientists representing both traditional artificial intelligence approach and soft
computing techniques. This volume is divided into five parts:

– Neural Networks and Their Applications
– Fuzzy Systems and Their Applications
– Pattern Classification
– Computer Vision, Image and Speech Analysis
– The 4th International Workshop on Engineering Knowledge and Semantic

Systems

The conference attracted a total of 483 submissions from 48 countries and
after the review process 212 papers were accepted for publication. ICAISC 2012
hosted the Symposium on Swarm Intelligence and Differential Evolution, the
Symposium on Evolutionary Computation and the 4th International Workshop
on Engineering Knowledge and Semantic Systems (IWEKSS 2012). A special
theme of IWEKSS 2012 was“Nature-Inspired Knowledge Management Systems.”
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Jacek Żurada (USA)

General Chairs Leszek Rutkowski (Poland)
Co-Chairs W�lodzis�law Duch (Poland)

Janusz Kacprzyk (Poland)
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László Kóczy - Hungary
Rudolf Kruse - Germany
Boris V. Kryzhanovsky - Russia
Adam Krzyzak - Canada
Juliusz Kulikowski - Poland
Roman Kulikowski - Poland
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D. Fogel
M. Fraś
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Speeding Up the Training of Neural Networks with CUDA
Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Daniel Salles Chevitarese, Dilza Szwarcman, and Marley Vellasco

On the Uniform Convergence of the Orthogonal Series-Type Kernel
Regression Neural Networks in a Time-Varying Environment . . . . . . . . . . 39

Meng Joo Er and Piotr Duda

On the Strong Convergence of the Orthogonal Series-Type Kernel
Regression Neural Networks in a Non-stationary Environment . . . . . . . . . 47

Piotr Duda, Yoichi Hayashi, and Maciej Jaworski

On the Strong Convergence of the Recursive Orthogonal Series-Type
Kernel Probabilistic Neural Networks Handling Time-Varying Noise . . . . 55

Piotr Duda and Marcin Korytkowski

Incidental Neural Networks as Nomograms Generators . . . . . . . . . . . . . . . . 63
Bogumi�l Fiksak and Maciej Krawczak

Selection of Activation Functions in the Last Hidden Layer of the
Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Krzysztof Halawa

Information Freedom and Associative Artificial Intelligence . . . . . . . . . . . . 81
Adrian Horzyk



XIV Table of Contents – Part I

On the Application of the Parzen-Type Kernel Regression Neural
Network and Order Statistics for Learning in a Non-stationary
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Maciej Jaworski, Meng Joo Er, and Lena Pietruczuk

On Learning in a Time-Varying Environment by Using a Probabilistic
Neural Network and the Recursive Least Squares Method . . . . . . . . . . . . . 99

Maciej Jaworski and Marcin Gabryel

Binary Perceptron Learning Algorithm Using Simplex-Method . . . . . . . . . 111
Vladimir Kryzhanovskiy, Irina Zhelavskaya, and Jakov Karandashev

Objects Auto-selection from Stereo-images Realised by Self-Correcting
Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

�Lukasz Laskowski

On-Line Trajectory-Based Linearisation of Neural Models for a
Computationally Efficient Predictive Control Algorithm . . . . . . . . . . . . . . . 126

Maciej �Lawryńczuk
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Real-Time Object Tracking Algorithm Employing On-Line Support
Vector Machine and Multiple Candidate Regeneration . . . . . . . . . . . . . . . . 617

Pushe Zhao, Renyuan Zhang, and Tadashi Shibata



Table of Contents – Part I XIX

Part V: The 4th International Workshop on
Engineering Knowledge and Semantic
Systems

On the Complexity of Shared Conceptualizations . . . . . . . . . . . . . . . . . . . . . 629
Gonzalo A. Aranda-Corral, Joaqúın Borrego-Dı́az, and
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Ignas Martǐsius and Robertas Damaševičius
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Abstract. In this article, an approximation of the spatiotemporal re-
sponse of a distributed parameter system (DPS) with the use of the
neural network-based principal component analysis (PCA) is consid-
ered. The presented approach is carried out using two different neural
structures: single-layer network with unsupervised, generalized Hebbian
learning (GHA-PCA) and two-layer feedforward network with supervised
learning (FF-PCA). In each case considered, the effect of the number of
units in the network projection layer on the mean square approximation
error (MSAE) and on the data compression ratio is analysed.

Keywords: principal component analysis, neural networks, distributed
parameter systems.

1 Introduction

Principal Component Analysis (PCA) is one of the main approaches to reduce
the dimensionality of data, losing the least amount of information. It can be
applied in many fields such as pattern recognition, computer vision, signal pro-
cessing, data compression, etc. The advantages of PCA result from its optimality
properties in maximization of variance as well as in minimization of mean square
error [5,7]. However, numerical calculations of the data covariance matrix and
its eigenvectors being the main feature of the PCA can achieve considerable
computational complexity, particularly at the high dimensionality of the input
data. In this case, it may be preferable to employ methods that do not require
explicit determination of the covariance matrix. Such an approach can rely e.g.
on the well-known properties of artificial neural networks. Their learning algo-
rithms directly process the input vectors, which can be delivered either off- or
on-line [2,10,15,17,19]. Therefore, when the online scheme is taken into account,
or when only a few principal components are required, the neural network-based
PCA technique tends to be the good solution [8,13,14,18].

In this paper neural networks are proposed to be used as a tool for the PCA-
based approximation of spatiotemporal responses of a distributed parameter
system (DPS). A mathematical description of this class of systems takes most

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 3–11, 2012.
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often the form of partial differential equations (PDEs), which lead to the infinite-
dimensional state space and irrational transfer function representations. There-
fore, due to the mathematical complexity, these models are often approximated
by finite-dimensional ones. Among many approximation techniques, an impor-
tant role is played by the so-called reduction methods, consisting in the replace-
ment of the high-order model of DPS by a lower-order one, mapping the most
relevant aspects of the dynamical properties of the system. A significant role is
played here by the reduction methods based on the PCA approach [6,11,12,16].
This paper proposes PCA-based DPS approximation to be carried out using two
different neural network structures: single-layer network with unsupervised, gen-
eralized Hebbian learning (GHA-PCA) and two-layer feedforward network with
supervised autoassociative learning (FF-PCA).

2 Neural Network-Based PCA Schemes

In this section, the abovementioned neural network-based PCA techniques are
introduced, with particular emphasis on their use in the approximation of the
DPS spatiotemporal response.

Assume that as a result of the measurement or numerical simulation experi-
ment, we have obtained a discrete set of values y(lm, tn), representing the spa-
tiotemporal distribution of a one-dimensional DPS process variable y ∈ IR, where
tn = n ·Δt for n = 1, 2, . . . , N and Δt = T/N is a discrete independent variable
representing time, lm = m ·Δl for m = 1, 2, . . . ,M and Δl = L/M is a discrete
independent variable representing spatial position. T ∈ IR+ and L ∈ IR+ denote
temporal and spatial observation horizons, while N ∈ IN and M ∈ IN are num-
ber of observations and number of spatial positions, respectively. After initial
processing, involving subtracting from each sample y(lm, tn) the time average
for the m-th spatial position, given by

ȳ(lm) =
1

N

N∑
n=1

y(lm, tn), (1)

the DPS response will be represented by the matrix Y = [y(lm, tn)− ȳ(lm)] ∈
IRM×N .

PCA can be seen as optimal factorization of Y into two matrices:

Ŷ = ΦKΨK (2)

where Ŷ ∈ IRM×N denotes the approximated matrix Y , ΦK ∈ IRM×K is matrix
consisting of K < M orthogonal column eigenvectors ϕ1, ϕ2, . . . , ϕK ∈ IRM of
the response covariance matrix C calculated as:

C =
1

N
Y Y T , (3)

corresponding to its K largest eigenvalues, λ1, λ2, . . . , λK . The matrix ΨK ∈
IRK×N in (2) can be determined from the following relationship [3]:

ΨK = ΦK
TY. (4)
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Optimality condition for the factorization (1) means that the Frobenius norm
‖E‖F of the approximation error matrix E = Y − Ŷ must be minimized for the
given value of the model order K.

In the following subsections two neural network-based PCA techniques are
discussed: a single-layered neural network with unsupervised Hebbian learning
and a feedforward neural network with supervised autoassociative learning.

2.1 Single-Layered Network with Supervised Training (GHA-PCA)

A single neuron acting as a principal component analyzer was first proposed
by Oja in [13]. Its extension to a network consisting of many neurons, known as
Generalized Hebbian Algorithm (GHA) or Sanger’s rule, enabling the estimation
of the subsequent principal components, was presented in the works of Oja and
Sanger [14,18]. In this case, the PCA task is performed by the use of a single-
layered neural network consisting of K linear neurons, corresponding to the
subsequent principal components.

The structure of the GHA-PCA network used for the approximation of the
spatiotemporal DPS response is presented in Fig. 1. The number of network
inputs is equal to the number of M spatial positions for which the value of the
process variable y is determined, whereas number of network outputs is equal to
the number of the K principal components.

According to the GHA, modification of the weight coefficients of the k-th
neuron is performed after each presentation of the input patterns corresponding
to the time instant tn, based on the following expression [15,18]:

wk,m(tn+1) = wk,m (tn) + ηvk(tn)

[
y(lm, tn)−

k∑
h=1

wh,m(tn)vh(tn)

]
(5)

where wk,m(tn) is the value of the weight coefficient connecting the k-th neuron

Fig. 1. Structure of the GHA-PCA neural network
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with the m-th network input, vk(tn) is the output signal of the k-th neuron, both
calculated for the time instant tn, and η is the network learning rate. Denoting
by wk(tn) vector containing all weight coefficients of the k-th neuron at the time
instant tn, i.e. vector of the following form:

wk(tj) =
[
wk,1(tn) wk,2(tn) . . . wk,M (tn)

]
, (6)

by y(tn) the input vector representing the distribution of the process variable y
for all M spatial positions at the time instant tn:

y(tn) =
[
y(l1, tn) y(l2, tn) . . . y(lM , tn)

]T
(7)

and introducing the following notation:

y′(tn) = y(tn)−
k−1∑
h=1

(wh(tn))
T
vh(tn), (8)

the relationship (5) can be written in the compact vector form:

wk(tn+1) = wk (tn) + ηvk(tn)
[
(y′(tn))

T − wk(tn)vk(tn)
]
, (9)

analogous to the Oja algorithm for a single neuron, for which self-normalization
of weight coefficients is carried out.

As mentioned in Sec. 1, one of the main applications of PCA is lossy data
compression. In the case under consideration, the compression task should be
understood as follows: a large input data set represented by the matrix Y ∈
IRM×N is replaced by the reduced data set consisting of the network weight
matrix W = [wk,m] ∈ IRK×M , the network responses matrix V = [vk(tn)] ∈
IRK×N and the vector of time averages ȳ = [ȳ(lm)] ∈ IRM . The data compression
ratio CK can be thus calculated as:

CK =
M ×N

M ×K +K ×N +M
. (10)

Approximation of the spatiotemporal response is possible due to the ”decompres-
sion”, realized as simple multiplication of WT by V and adding time-averaged
values of ȳ(lm) to the result (see (1) and (2)).

2.2 Two-Layer Feedforward Network with Supervised Training
(FF-PCA)

An alternative approach to extracting principal components from the data set is
based on a feedforward, two-layer linear neural network of the structure shown in
Fig. 2. The number of the network outputs (i.e. number of neurons in its second
layer, hereinafter referred to as a reconstruction layer) is equal to the number
of its inputs and represents the number M of spatial positions of the process
variable y. Furthermore, the number of K < M units in the first network layer,
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called the projection layer, represents the number of the principal components
to be extracted. For the structure presented here, the acronym FF-PCA (Feed-
Forward Principal Component Analysis) neural network will be used later in the
article.

The role of the network input patterns will be taken over, as in the case of
the GHA-PCA network, by the vectors representing distribution of the process
variable y at the successive time instants tn, i.e. by the subsequent columns of
the matrix Y . In the considered case of the auto-associative network learning, the
output patterns are equal to the input ones, and the learning procedure consists
in the iterative modifications of all weight coefficients in order to minimize the
network error function of the following well-known form [10,15,17,19]:

E(w) =
1

M ·N
M∑

m=1

N∑
n=1

(y(lm, tn)− ŷ(lm, tn))
2
. (11)

Denoting by W (1) ∈ IRK×M the weight matrix of the projection layer, by W (2) ∈
IRM×K the weight matrix of the reconstruction layer and by V ∈ IRK×N the
matrix of the projection layer responses to the input patterns Y , we obtain the
following relationships describing the operation of the network of Fig. 2:

V = W (1)Y (12)

and
Ŷ = W (2)V = W (2)W (1)Y. (13)

As can be easily seen, (13) is equivalent to (2) and (4), wherein W (1) corresponds
to ΦK

T and V corresponds to ΨK . In order to determine the optimal values of
the weight coefficients, a supervised learning procedure has to be applied – e.g.
gradient descent or Levenberg-Marquardt algorithm [2,15,17,19].

Fig. 2. Structure of the FF-PCA neural network
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3 Example: Spatiotemporal Response of Hyperbolic DPS

Among many different kinds of DPS, an important class is constituted by the
processes in which the phenomena of mass and energy transport take place. One
can mention here e.g. electrical transmission lines, transport pipelines or heat
exchangers [1,3,4,9]. Their mathematical description takes the general form of
the following two coupled partial differential equations of hyperbolic type:

∂y1 (l, t)

∂t
+ f1

∂y1 (l, t)

∂l
= g11y1 (l, t) + g12y2 (l, t) ,

∂y2 (l, t)

∂t
+ f2

∂y2 (l, t)

∂l
= g21y1 (l, t) + g22y2 (l, t) ,

(14)

where y1(l, t) ∈ IR and y2(l, t) ∈ IR are functions representing spatiotemporal
distribution of the process variables, defined on the set Ω×Θ, where Ω = [0, L]
is the domain of the independent spatial variable l, while Θ = [0, T ] is the
domain of the independent variable t representing time. The constant coeffi-
cients f1, f2 ∈ IR usually represent the transport or wave propagation velocities,
whereas the constants g11, g12, g21, g22 ∈ IR depend on the geometrical and phys-
ical parameters of the plant.

In order to determine the numerical solutions of (14), the method of lines has
been applied for the following values of the equation parameters, the domain of
the solution and the spatial discretization step: f1 = 1, f2 = 0.5, g11 = −0.0638,
g12 = 0.0638, g21 = −0.0359, g22 = 0.0359, L = 5, T = 50, Δl = 0.1. The
simulations were carried out assuming zero initial conditions, y1(l, 0) = 0 and
y2(l, 0) = 0, as well as two different forms of boundary conditions: the Kronecker
delta impulse and the Heaviside step function for the control variable y1(0, t).
The solutions of (14) representing spatiotemporal distribution of the controlled
variable y2(l, t) for both types of boundary conditions are shown in Fig. 3. In
the following, the results of the response approximation using aforementioned
neural PCA techniques are presented.

a) b)

Fig. 3. Impulse (a) and step (b) spatiotemporal responses y2(l, t) of the system (14)
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The results of the application of the GHA-PCA network with three neurons
(K = 3) in the approximation of the step response of Fig. 3b are presented in
Fig. 4. In Fig. 4a weight vectors of individual neurons are plotted, whereas Fig.
4b shows original step responses (solid line), obtained by the numerical solution
of (14) and the responses of the GHA-PCA approximation model (dashed line),
compared for six different spatial positions l.

Furthermore, Fig. 5 shows approximation results analogous to those presented
in Fig. 4, obtained as a result of the use of the FF-PCA method discussed in
Sec. 2.2. As can be seen, in contrast to the case of the GHA-PCA network, the
weight vectors w1, w2 and w3 of the projection layer of the FF-PCA network
are not orthogonal – their values have somewhat ”chaotic” distribution. This is
mainly due to the fact that the network learning algorithm generates random
initial values of the weight coefficients, and, moreover, it does not impose the
orthogonality condition on the weight vectors as opposed to the GHA-PCA
method.

a) b)

Fig. 4. GHA-PCA approximation results for the step response and K = 3: a) weight
vectors w1, w2 and w3, b) exact and approximate responses, y(l, t) and ŷ(l, t)

Fig. 5. FF-PCA approximation results for the step response and K = 3: a) weight
vectors w1, w2 and w3, b) exact and approximate responses, y(l, t) and ŷ(l, t)
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Table 1. Approximation results for GHA-PCA and FF-PCA neural networks (after
1000 training epochs)

impulse response step response

number of neurons K number of neurons K

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

GHA-PCA

‖E‖F 0.335 0.111 0.074 0.820 0.689 0.680

MSAE 2.18·10−5 2.38·10−6 1.07·10−6 1.33·10−4 9.23·10−5 8.98·10−5

CK 25.37 10.16 6.35 25.37 10.16 6.35

Tt 1.9 s 2.5 s 3.1 s 1.9 s 2.5 s 3.1 s

FF-PCA

‖E‖F 0.337 0.147 0.143 0.773 0.724 0.650

MSAE 2.21·10−5 4.20·10−6 4.00·10−6 1.04·10−4 1.02·10−4 8.2·10−5

CK 25.37 10.15 6.35 25.37 10.16 6.35

Tt 1.0 s 1.7 s 2.4 s 1.0 s 1.7 s 2.4 s

The approximation results obtained for both considered PCA neural networks
and for both spatiotemporal responses of Fig. 3 are summarized in Table 1.
For each of these cases, the table contains: the Frobenius norm ‖E‖F of the ap-
proximation error matrix, the mean square approximation error (11) and the data
compression coefficientCK (10). In order to enable a rough estimation of the com-
putational cost of the proposed algorithms, the training time values Tt averaged
for 10 simulations of 1000 learning epochs performed on a 2.27 GHz Intel Core i5
processor with 4 GB of RAMmemory are also included here. As can be seen from
the presented results, the increase in K reduces the value of MSAE, however, it
also decreases the value of CK as well as increases the value of Tt. Therefore, selec-
tion of the appropriate value for K should take into account the tradeoff between
an assumed (reasonably low) value for the approximation error, and a sufficiently
high value for the compression ratio as well as low computation time.

4 Summary

In this paper, neural network-based PCA techniques as applied to the approxi-
mation of the spatiotemporal responses of a distributed parameter system have
been discussed. A positive aspect of using artificial neural networks as a tool
for extracting principal components from a spatiotemporal data set is that they
do not require calculating the correlation matrix explicitly, as in the case of the
classical PCA approach. For this reason, they can be used e.g. in the on-line
data acquisition scheme, when calculation of the data correlation matrix in the
explicit form is impossible. The neural approach presented in the paper may act
as a good starting point for further research concerning, for example, approxi-
mation of nonlinear DPS using nonlinear PCA method, based on the function
approximation properties of neural networks with nonlinear, sigmoidal units.
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Abstract. This paper presents the parallel architecture of the Recur-
rent Multi Layer Perceptron learning algorithm. The proposed solution
is based on the high parallel three dimensional structure to speed up
learning performance. Detailed parallel neural network structures are
explicitly shown.

1 Introduction

The RMLP network is an example of dynamical neural networks. Dynamical
neural networks have been investigated by many scientists for the last decade [4],
[5]. To train the dynamical networks the gradient method was used eg. [8]. In the
classical case the neural networks learning algorithms are implemented on serial
computer. Unfortunatelly, this method is slow because the learning algorithm
requires high computational load. Therefore, high performance dedicated parallel
structure is a suitable solution, eg. [1] - [3], [6], [7]. This paper contains a new
concept of the parallel realisation of the RMPL learning algorithm. A single
iteration of the parallel architecture requires much less computation cycles than
a serial implementation. The efficiency of this new architecture is very satisfing
and is explained in the last part of this paper. The structure of the RMPL
network is shown in Fig. 1.

The RMLP network has K neurons in the hidden layer and one neuron in the
network output. The input vector contains input signal, its N previous values
and M previous outputs. Note, the previous signals from input and output are
obtained through unit time delay z−1. Therefore, the network function is

y(2) (t+ 1) = f

(
x(1) (t) , x(1) (t− 1) , . . . , x(1) (t− (N − 1)) ,
y(2) (t− 1) , . . . , y(2) (t−M)

)
(1)

In the recall phase the network is described by

s
(1)
i =

∑N+M
j=0 w

(1)
ij x

(1)
j

y
(1)
i = f

(
s
(1)
i

)
; x

(2)
i = y

(1)
i

s(2) =
∑K

i=0 w
(2)
i x

(2)
i

y(2) = f
(
s(2)

) (2)
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Fig. 1. Structure of the RMLP network

Fig. 2. Recal phase of the RMLP network and the structures of processing elements
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Parallel realisation of the recall phase algorithm uses architecture which re-
quires many simple processing elements. The parallel realisation of the RMLP
network in recal phase is depicted in Fig. 2a and its processing elements in
Fig. 2b. Four kinds of functional processing elements take put in the proposed
solution. The aim of PE (A) is to delay inputs and outputs signals, so that val-
ues of signals appear on inputs of network from previous instances. Elements of
type (B) create matrix which includes values of weights of the first layer. The
input signals are entered for rows elements parallelly, multiplied by weights and
received results are summed in columns. The activation function for each neuron
un the first layer is calculated after calculation of product w

(1)
i x(1) in element

of type (D). The outputs of neurons in the first layer are inputs the second layer
simultaneously. The productw(2)x(2) for the second layer is obtained in elements
of type (C) similarly.

The gradient method is used to train the RMLP network. For this purpose
it is nesessary to calculate derivative of the goal funcion with respect to each
weight. For weights in the second layer we obtain the following derivative

dy(2)(t)

dw
(2)
α

=

df(s(2)(t))
ds(2)(t)

[
y
(1)
α (t) +

∑K
i=0 w

(2)
i

df
(
s
(1)
i (t)

)

ds
(1)
i (t)

∑M
j=1 w

(1)
i,j+N

dy(2)(t−M−1+j)

dw
(2)
α

] (3)

Weights are updated according to the steepest descent algorithm as follows

Δw(2)
α = −η

(
y(2) (t)− d(2) (t)

) dy(2) (t)

dw
(2)
α

= −ηε(2) (t) dy
(2) (t)

dw
(2)
α

(4)

For the first layer we obtain the derivative

dy(2)(t)

dw
(1)
αβ

=

df(s(2)(t))
ds(2)(t)

∑K
i=1 w

(2)
i

df
(
s
(1)
i (t)

)

ds
(1)
i (t)

[∑M
j=1 w

(1)
i,j+N

dy(2)(t−M−1+j)

dw
(2)
αβ

+ δiαx
(1)
β (t)

] (5)

and the weights can be updated by

Δw
(1)
αβ = −η

(
y(2) (t)− d(2) (t)

) dy(2) (t)

dw
(1)
αβ

= −ηε(2) (t) dy
(2) (t)

dw
(1)
αβ

(6)

The task of suggested parallel structure will be realisation of all calculations
described by equations (3), (4) and (5), (6).

2 Parallel Realisation

In order to determine derivative in the second layer it is required to know its
previous values. Derivative values will be stored in (E) PE Fig. 3b. These ele-
ments will create matrix of the dimension M(K+1) Fig. 3a. They will be useful
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Fig. 3. Idea of learning the second layer and the processing elements

for realizing operations given by equations (5) and (6). Presented idea relies on
multiplication of respondent elements of derivative matrix dy

dwα
by corresponding

to them weights of the first layer Fig. 3a. Then, received produtcts in the entire
column are added to each other. At the same time, the result obtained is multi-

plied by w
(2)
i

dy
(1)
i

ds
(1)
i

and accumulated. In the next step, first column is moved to

the extreme right position (as a result of the rotation to the left) W (1) matrix.
After a rotation of columns the previous actions are repeated. These operations
are repeated (K + 1) times until the first column of the matrix will revert to

the original place. The value of y
(1)
α is added to accumulated value and next the

sum is multiplied by derivative dy
ds(2)

. In this way the new value of the derivative
dy

dw
(1)
α

is obtained.

The calculated value of the derivative is placed in the top row of the array,
and then is moving down. This newly calculated derivative is used in PE (G)
to update the second layer weights according to the equation (4). Suggested
solution leads to acceleration of calculations, but it is not optimal solution yet. It
results from the fact that after multiplication of both matrices, serial summation
follows. In this case multiplication and addition is realized in M(K + 1) steps.
It is easily seen that changing manner of entering of values from weights matrix
to derivatives matrix we can reduce the amount of steps required for execution
of the multiplication and addition operations to M + (K + 1). The manner of
weights entering is presented in Fig. 4. The multiplication is realised only for
elements depicted by the thick line. In the first step only last row is taken into
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Fig. 4. Method of entering weights for the second layer learning

account. In the next cycles the number of rows is incremented, and the rows that
have participated in multiplication are subject to rotation. Rotation is done from
step one to the left until all rows reach the starting position. The rows are no
longer included in the multiplication. As a result, the proposed modifications
in subsequent steps, making the multiplication and summation, as described in
the first scenario. In this case we will receive the sum of the new inner product

without waiting the M steps. For the first layer the derivatives dy(t−j)
dwαβ

are placed

Fig. 5. Cuboid matrix of the derivatives dy(t−j)
dwαβ

for first layer learning

in the cuboid matrix of the processing elements, see Fig. 5. It can be splited into K
matrices (Fig. 6) which are parallely processed. For simplicity next figures show
structures only for one such matrix. The architecture of processing elements
dedicated to realization of first layer lerning is shown in Fig. 7a. In this case
weights are given step by step to the derivatives matrix, in which the total sums
are calculated according to eq. (5). Then, in the elements (F), see Fig. 3b, above
the array new values of derivatives are calculated. These values are sent back to
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Fig. 6. Single matrix (2D) of the cuboid matrix (3D)

Fig. 7. Idea of learning for first layer and the processing elements

Fig. 8. The auxiliary vector

the derivatives matrix, and in this way the new value of derivatives overrides the
previous etc. The newly obtained values of derrivatives from all two dimensional
matrices are used to updating weights (6). This is done in elements of the type
(J), see Fig. 7b. The use of these elements simplifies the calculation of the vector
P see (5) and Fig. 8.
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Fig. 9. Practical structure for first layer learning

Fig. 10. Method of entering weights for the first layer learning

Fig. 11. Number of times cycles in a) classical, b) parallel implementation and c)
performance factor classical/parallel



Parallel Realisation of the Recurrent Multi Layer Perceptron Learning 19

The optimal performance of the structure is obtained by the specific way
of sending weight values. The practical structure for the first layer learning is
shown in Fig. 9. Weights are sent in the following steps as indicated by the thick
line in Fig. 10 The layout of all weights is identical in Fig. 10 and Fig. 4 which
means that weights of the first layer, necessary for the calculations in the first
and second layers can by sent fully paralelly.

3 Conclusion

In this paper the parallel realisation of the RMLP neural network was proposed.
We assume that all multiplications and additions operations take the same time
unit. For simplicity of the result presentation we suppose that M=N in the input
vector of the network.

We can compare computational performance of the RMLP parallel implemen-
tation with sequential architectures up to N=M=10 for inputs and 10 neurons
(K) in the hidden layer of neural network. Computational complexity of the
RMPL learning is of order O(K4) and equals 4M2K2+6MK2+10MK+K2+
2M +9K +8. In the presented parallel architecture each iteration requires only
K +M + 5 time units (see Fig. 11). Performance factor (see Fig. 11) of parallel
realisation of the RMLP algorithm achieves nearly 1900 for N=M=10 inputs and
K=10 of neurons in the hidden layer and it grows fast when those numbers grow.
We observed that the performance of the proposed solution is promising. In the
future research we plan to design parallel realisation of learning of neuro-fuzzy
structures [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19].
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Abstract. The investigation of solar-like oscillations for probing the
star interiors has encountered a tremendous growth in the last decade.
For ground based observations the most important difficulties in properly
identifying the true oscillation frequencies of the stars are produced by
the gaps in the observation time-series and the presence of atmospheric
plus the intrinsic stellar granulation noise, unavoidable also in the case
of space observations. In this paper an innovative neuro-wavelet method
for the reconstruction of missing data from photometric signals is pre-
sented. The prediction of missing data was done by using a composite
neuro-wavelet reconstruction system composed by two neural networks
separately trained. The combination of these two neural networks ob-
tains a ”forward and backward” reconstruction. This technique was able
to provide reconstructed data with an error greatly lower than the ab-
solute a priori measurement error. The reconstructed signal frequency
spectrum matched the expected spectrum with high accuracy.

Keywords: Kepler Mission, Recurrent Neural Networks, Wavelet The-
ory, Photometry, Missing Data.

1 Introduction

The investigation of solar-like oscillations for main sequence, sub giant and red
giant stars for probing the star interiors has encountered a tremendous growth
in the last decade. This science, known as Asteroseismology, is fairly increasing
our knowledge about stellar physics, especially after the launch of the NASA
space mission Kepler in 2009 [1]. The data acquired for the study of solar-like
oscillations are mainly of two different types, spectroscopic and photometric. Al-
though in both cases they are in the form of a temporal sequence of measurements
(time-series) and are able to probe the same physical quantities, the informa-
tion carried on is not equivalent and their usage appears to be complementary.
Ground-based observations, which usually detect oscillations by exploiting very

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 21–29, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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high-precision Doppler shift measurements of the spectroscopic lines, can probe
a wider number of modes of oscillations because of their high sensitivity to spa-
tial resolution upon the stellar disk. Nonetheless, ground-based projects are able
to follow up one target per time and heavily suffer the alternating of day and
night due to Earth’s rotation, which hence does not allow for continuous-time
observations. Furthermore, the effort and workload required for assembling the
spectrometers used to acquire the data do not allow to use such systems on
space. For ground-based observations the most important difficulties in properly
identifying the true oscillation frequencies of the stars are produced by the gaps
in the observation time-series and the presence of atmospheric plus the intrinsic
stellar granulation noise, the latter unavoidable also in the case of space obser-
vations. The gaps are caused by the alternation of day and night and casual
interruptions of data flow due to bad weather conditions; the first introduces
possible shifts of 11.57 μHz in the identified frequencies and the second spurious
frequencies. The noise can produce peaks whose amplitude is even larger than
the real stellar frequencies. All the mentioned disturbs make the identification
of stellar oscillations uncertain in several cases. In this paper the problem of
data prediction in order to reconstruct the gaps present in the observation time-
series has been addressed by using an hybrid computation methods based on
wavelet decomposition and recurrent neural networks (RNNs). Wavelet analysis
has been used in order to reduce the data redundancies and selectively remove
stellar granulation noise so obtaining a representation that can express their in-
trinsic structure, while the neural networks (NNs) are used for the exploiting the
complexity of non-linear data correlation and to perform the data prediction. In
order to minimize the error propagation, we designed a composite network, with
doubled neural paths, to obtain a ”forward and backward” reconstruction. This
composite WRNN uses as input several time steps of the signal, in the past and
in the future with respect to the gap.

2 Kepler Data as a Probe for Testing WRNN Method

New missions based on photometric acquisitions have been launched on space in
the few past years. The latest one in particular, the NASA Kepler mission, which
is presently in the middle of its running, is providing an enormous amount of an
unprecedented quality data, with a combined differential photometric precision
high to 2 ·10−6 for a 12th magnitude solar-like star for a 6.5 hour integration [2].
In fact, the photometric observations allow the great advantage of acquiring
brightness measurements on hundred of targets at the same time and, most of
all, they can be carried out directly from space, allowing scientists to weed out
the problem of the daily gap, which strongly hampers the quality of the results,
but not the problem of granulation noise. Long term acquisitions of brightness
variations on the surface of stars are able to tell us a lot about solar-like oscilla-
tions as they are directly correlated to variations in temperature of the surface
layers. By the continuous production of new data sets, many interesting studies
can be made upon the stars falling in the Kepler field o view (FOV), from early
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Fig. 1. The light flux time-series and the relative power spectrum

main sequence to red giants stars. The data used in this paper were collected
by Kepler satellite with a sampling rate of about 58.7 s, as light flux measure-
ment and corrected flux estimation with the related absolute error. The data
were relative to the star KIC 3102411 measured at short cadence in the season
Q2.2. The most common way to analyze a time-series and thus to derive the
frequencies of oscillations is to convert the data acquired on the time domain to
a set of values that range in a frequency domain (the Power Spectrum). This
is done in general by adopting a Fourier analysis on the time-series, both of
radial velocities (from Doppler shift measurements) and of radiation flux counts
(from photometric acquisitions) [3]. The result is shown in Fig. 1, where the
upper panel represents the light-curve, i.e. a time-series of radiation flux counts,
for a star observed by Kepler and the lower panel is its relative Fourier trans-
form reported in a logarithmic scale. As clearly visible, a bump of power arises
around 150 μHz, showing the typical pattern for a set of p-mode frequencies
that roughly follows a gaussian shape peaked at its maximum frequency νmax.
As one can intuitively understand, the longer is the observation run, the higher
is the frequency resolution at which the frequency peaks in the power spectrum
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can be measured. The presence of huge gaps equally spaced in the time-series,
as in the case of the daily gap, causes the arising of fictitious peaks in the power
spectrum, which are not real frequencies of oscillation and that consequently
affect the identification of the true p modes by hampering the true pattern of
the solar-like excess of power in the power spectrum.

3 The WRNN Methodology

The reconstruction of missing data from photometric time-series was done by
using a composite neuro-wavelet reconstruction technique. RNNs are able to
predict the continuation of a time series amounts to picking one of a class of
functions so as to approximate the input-output behavior in the most appropri-
ate manner. For deterministic dynamical behaviors, the observation at a current
time point can be modeled as a function of a certain number of preceding ob-
servations. In such cases, the model used should have some internal memory to
store and update context information [4],[5]. This is achieved by feeding the net-
work with a delayed version of the past observations, commonly referred to as
a delay vector or tapped delay line. These networks do not try to achieve credit
assignment back through time but instead use the previous state as a part of
the current input. Such a simple approach may be seen as a natural extension to
feedforward the networks in much the same way that ARMA models generalize
autoregressive models. A network with a rich representation of past outputs, is
a fully connected recurrent neural network, known as the Williams-Zipser net-
work (NARX networks) [6],[7],[8]. For stochastic phenomena, like the considered
ones, real time recurrent learning (RTRL) has proven to be very effective, in
fact RTRL based training of the RNN is made upon minimizing the instanta-
neous squared error at the output of the first neuron of the RNN [6],[9]. The
reconstruction system is composed by two NARX RNNs with the same topology
and number of neurons but separately trained with RTRL algorithm (Fig. 4). A
complete description of RTRL algorithm, NARX and RNNs can be found in [8].
The first one is trained to predict the signal samples one step ahead in the future,
while the second one is trained to predict the signal samples one step backward
in the past. The combination of these two neural networks obtains a ”forward
and backward” reconstruction (Fig. 4). This reconstruction technique was able
to minimize the error propagation and, also, the possibility to conduct a double
check verification of the reconstructed data. At a first time the selected neural
networks were trained to reconstruct missing data from a photometric time-serie
which was yet proven to have an high cross-correlation degree. Although different
kinds of topology and size variations were implemented, the system was not able
to provide predictions with enough accuracy. On the other hand, there was evi-
dence of misleading data sequences avoiding a correct training of the networks.
At a successive step the same procedure was adopted, but, this time, providing
as input the wavelet decompositions of the signal. A function ψ ∈ L2(R) that
exhibit the following properties:
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+∞∫
−∞

ψ(x) dx = 0. (1)

‖ψ(x)‖2 =

+∞∫
−∞

ψ(x)ψ∗(x) dx = 1. (2)

is called wavelet if it can be used to define a Hilbert basis, that is a complete
system, for the Hilbert space L2(R) of square integrable functions. The Hilbert
basis is constructed as the family of functions {ψj,k : j, k ∈ Z} by means of

dyadic translations and dilations of ψ, ψj,k(x) =
√
2j(2jx− k). For an extended

treatment one can consult [10],[11],[12]. It is known in literature that the star
granulation produces temporal variations in the light flux. These variations, at
frequencies greater than 100 μHz, produce a quasi-white signal-related noise ef-
fect. Even if it is not possible to adapt a neural network to this kind of noise,
the used wavelet decomposition permits to locate the coefficients bands related
to frequencies from about 4250 μHz to higher frequencies. Thresholding to zeros
these two related bands (Fig. 2), the resulting coefficients and residuals carries
the relevant information for the predictions. These wavelet coefficients were so
provided as input (ui(t)) to the system. Another positive effect is that these
wavelet coefficients provide a less redundant representation of the information
carried out by the signal. This effect was proven to be an advantage for a correct
and efficient training of recurrent neural networks [13],[14],[15]. As yet shown by
a previous work of the authors [16], a properly designed hybrid neuro-wavelet
recurrent network is able to execute wavelet reconstruction and prediction of
a signal. The selected neural networks are composed by two hidden layers of
16 neurons and a single output neuron. The wavelet decomposition of the time
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series is given as N × 4 input vectors with a 3-step delay and a 1-step out-
put feedback. While the forward network was trained with coefficients at time
t0 to predict output signals s(t0 + 1), the backward network was trained to
backward reconstruct the signal at a previous time (t0 − 1) in the past. For
clarity, on describing the forward neural network with a functional of the type
F [u(t)] = y(t+ 1), it follows that the backward network will be described by a
similar F̃ [u(−t)] = ỹ(−t − 1). In this manner, at the end of a correct training
of the selected neural networks, it will be possible to reconstruct missing part
of the data series using both the neural networks. The forward network will re-
construct forward in time the missing part from the beginning to his mid-point.
The backward network will reconstruct backward in time from the ending to the
same mid-point of the same gap. The resulting reconstructed signal s̃, from a
signal s with missing data in the interval [t1; t3] will be:

s̃(t) =

⎧⎪⎪⎨⎪⎪⎩
s (t) t ∈ ] −∞ , t1 [
y (t) t ∈ [ t1 , t2 [
ỹ (t) t ∈ ] t2 , t3 ]
s (t) t ∈ ] t3 , +∞ [

(3)

In the present paper the implemented WRNN is able to reconstruct a signal from
wavelet coefficients, but it is also capable to predict these wavelet coefficients,
and, then, to reconstruct the predicted signal. To obtain this behavior some rules
had to be applied during the design and implementation work. For reasons that
will be cleared ahead, all the hidden layers have a pair neuron number, and,
also, to permit in sequence the wavelet coefficient exploitation and the signal
reconstruction, a double hidden layer is required in the proposed architecture.
As for the hidden layers the neurons activation function (transfer function) have
to simulate a wavelet function. It is not possible to implement a wavelet function
itself as transfer function for a forecast oriented time predictive neural network,



An Innovative Hybrid Neuro-wavelet Method 27

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1.719

1.72

1.721

1.722

1.723

1.724

1.725

1.726

1.727

1.728
x 10

7

Time [Julian Days]

C
or

re
ct

ed
 F

lu
x 

[A
D

U
]

 

 
Original signal
Forward reconstruction
Backward reconstruction
Midpoint reconstruction

Mid Point

Backward NNETForward NNET

Fig. 4. Neural networks structures (left), Forward and Backward reconstruction (right)

this because wavelets do not verify some basic properties such as the absence of
local minima, and does not provide by itself a sufficiently graded response [17].
In the existent range of possible transfer functions only some particular classes
approximate the functional form of a wavelet. In this work the radial basis func-
tions (radbas) were chosen as transfer functions, indeed this particular kind of
functions well describes in first approximation half of a wavelet, even if these
functions do not verify the properties shown by (1) and (2). Anyway, after scal-
ing, shift and repetition of the chosen activation function, it is possible to obtain
several mother wavelet filters. Let f : [−1; 1] → R+ to be the choosen transfer
function, then

f̃(x) = f̃(x+ 2k) =

{
+ f(2x+ 1) x ∈ [− 1 , 0 ]
− f(2x− 1) x ∈ [ 0 , 1 ]

∀k ∈ Z (4)

verifies all the properties of a wavelet function. So it is possible for the selected
neural networks to simulate a wavelet by using the radbas function defined in
the [−1; 1] real domain. It is indeed possible to verify that∫ 2k+1

2h+1

f̃(x) dx = 0 ∀ h < k ∈ Z (5)

It was shown that, in order to simulate a wavelet function, the chosen transfer
functions must be symmetrically periodical to emulate a wavelet. This is the
reason for choosing a pair number of neurons in the aim to have the same number
of positive and negative layer weights in the reconstruction layer. Theoretically,
if this happens, then the neuron pairs of the second layer are emulating exactly
a reconstruction filter. Althoug this was a theoretical schema, there are strong
reasons for the weights, in this experimental setup, to have a non-zero sum,
because the neural network beyond to perform the inverse wavelet transform
must perform also the signal prediction.
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4 Results and Conclusion

We performed simulations on one month photometric survey of the star KIC
3102411 observed during the season Q2.2 from the Kepler orbital telescope with
a sampling rate of about 58.847 s and so a sampling frequency of almost 1.7·10−2

Hz. Wavelet analysis was used in order to remove the data sparsity and to thresh-
old the higher frequencies (mostly characteristic of the star granulation and in-
trinsically affected by a signal-correlated time-evolving noise). In particular the
lower two sub-bands of the decomposition were substituted with zero-vectors.
In this manner the filtered reconstructed signal was transferred to the neural
networks. To test the capabilities of the system, several gaps, ranging from 2 to
10 samples, were artificially placed at random positions in the data series. The
trained forward and backward reconstruction system was able to reconstruct the
missing data with an error greatly lower than the absolute a priori measurement
error. The reconstructed signal frequency spectrum matches the expected spec-
trum with high accuracy, as shown in Figs. 5 and 6. This paper has outlined the
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advantage of a composite hybrid neuro-wavelet system as advanced reconstruc-
tion tool for photometric time-series. This technique leads to implement a new
generation of tools based on recurrent neural networks with the future possibil-
ity of further developments such as embedded system for data reconstruction of
corrupted time-series for noise-affected survey contests.
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Abstract. Training feed-forward neural networks can take a long time when
there is a large amount of data to be used, even when training with more ef-
ficient algorithms like Levenberg-Marquardt. Parallel architectures have been a
common solution in the area of high performance computing, since the technol-
ogy used in current processors is reaching the limits of speed. An architecture
that has been gaining popularity is the GPGPU (General-Purpose computing on
Graphics Processing Units), which has received large investments from compa-
nies such as NVIDIA that introduced CUDA (Compute Unified Device Architec-
ture) technology. This paper proposes a faster implementation of neural networks
training with Levenberg-Marquardt algorithm using CUDA. The results obtained
demonstrate that the whole training time can be almost 30 times shorter than code
using Intel Math Library (MKL). A case study for classifying electrical company
customers is presented.

Keywords: Artificial Neural Networks, Software Engineering, High Performance
Com-puting, GPGPU, CUDA.

1 Introduction

Neural networks are very useful for solving complex problems (pattern recognition,
forecasting, classification) and there are already many software libraries that support the
modeling, creation, training and testing of various types of known networks. However,
the available libraries present limitations when the problem size or complexity exceeds
certain threshold, such as the case when the database used in the early stages of training,
validation and testing contains a huge amount of information (patterns/attributes).

Besides the database size, there is also a tradeoff between the complexity of the
algorithm used for training and the number of iterations needed to reach the network’s
performance goal, which greatly affects the total training time. For example, if a neural
network is trained by an algorithm of back propagation with gradient descent, the cost
of each step is relatively small; however, many steps are required to train the network.
On the other hand, a greater order gradient algorithm requires much less iterations, but
with a much greater computational cost for each iteration [5].

There are already several studies using graphics cards to propagate input data through
feedforward neural networks, but the learning algorithm is not implemented in CUDA.
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For example, [2] and [7] have used neural networks for character recognition. In the
second paper, the program implemented in CUDA was almost six times faster than the
same program running on the CPU. In [1] a program for training neural networks was
implemented using the gradient descent algorithm, which was compared to Matlab and
resulted in tens of times faster.

This work proposes a faster implementation of neural networks training with Leven-
berg - Marquardt algorithm (LMA) using CUDA and compares its performance with an
implementation using Intel MKL [6], a math library which is known for its outstanding
efficiency.

The results obtained with the execution on the GPU of the training phase using LMA
were very promising. Although only part of the algorithm was processed on the graph-
ics card, again of almost 30 times faster was obtained when compared with the same
algorithm running with the help of MKL.

This paper has been organized as follows: Section 2 presents an overview of CUDA
Architecture; Section 3 describes the architecture proposed for solving the problem;
Section 4 demonstrates the experiments performed and lastly, Section 5 presents the
conclusions drawn from this work.

2 GPGPU and CUDA

While parallel solutions are becoming more common, graphics cards are becoming
powerful computers and highly parallel, mostly because of the digital entertainment
industry and its demand for high definition graphics. The reason for the huge discrep-
ancy between conventional processors and graphics processors is that a GPU (Graphics
Processing Units), unlike the CPU, uses more transistors for processing than for flow
control or cache memory [8].

The GPU architecture is better suited to problems whose data can be broken into
smaller pieces and be processed in parallel. As these pieces are processed by the same
program and at the same time, they do not require a sophisticated flow control. More-
over, as there are many arithmetic calculations to be performed, the latency of memory
access is diminished by data buffering instead of the use of great cache memories.

The NVIDIA architecture has three types of abstraction: the hierarchy of thread
groups, the shared memories and synchronization barriers. This architecture makes the
learning time relatively small and requires few extensions to programming languages.
Moreover, the abstractions provide parallelism both in data and in threads, requiring,
from the programmer, only a simple division of tasks and data [8].

Another advantage of the abstractions is that they help the developer divide the prob-
lem into smaller tasks that can be solved independently and, therefore, in parallel. This
decomposition is made so as the threads can cooperate to solve the subtasks, and, at
the same time, make scalability possible, since the threads can be scheduled to be re-
solved in any available core. A program compiled in CUDA, which is also called kernel,
may, in that case, run on a machine regardless of the number of processors, which will
be checked at runtime [8]. Thus, the programming model comprises several types of
clients, supporting cards with different number of processors (this number can vary
from ten to thousands of processors).
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3 The Proposed LMA in CUDA

In this work, neural network training is carried out by the Levenberg - Marquardt Al-
gorithm, which calculates the neuron’s errors in a way equivalent to conventional back
- propagation, but based on the Jacobian [4]. In order to combine a reduced number of
epochs with low time cost iteration, this study proposes a new design of a Levenberg -
Marquardt training which runs on a GPU (Graphic Processor Unit) supporting CUDA.
The new model uses the computational power of graphics cards to calculate the critical
point of the training algorithm, that is, the change in the network’s weights given in
Equation (1) [4]. Its processing time generally represents more than 70% of the total
training time if the training data set is small, and can reach almost 90% of the time for
larger sets. This is because Equation (1) includes the computation of a Jacobian ma-
trix of size (w, p), where w is the number of network weights and p is the number of
patterns. In this equation, x is the weights vector of the network and e (x) is the error
vector, while μ is a parameter that controls the balance between speed and stability.
This matrix can easily contain millions of elements even if the training data includes
just a few thousand patterns.

�x = −[J (x)JT (x) + μI
]−1

JT (x) e (x) (1)

The use of graphics cards has been proved promising, since the number of processing
cores on a single card can be up to hundreds. In addition, the time to manage threads
in conventional languages can cost more than 10% of the total training time, while the
NVIDIA architecture can handle CUDA threads without additional cost. Another pos-
itive point of NVIDIA technology is the possibility of working with multiple graphics
cards, allowing the execution of several concurrent trainings.

Initially, this work proposed the use of the graphics card to calculate the Jacobian
square matrix (J(x)JT (x)), which is a part of Equation (1). For that matter, a function
(from NVIDIA) copies all data to the global memory. Once in global memory, a kernel
calculates it and, after that, another CUDA function transfers the result back to the
RAM of the CPU. The second model was to create a kernel that calculates the whole
equation in the GPU, so the vector with the weights variation is obtained directly from
it, as shown in Figure 1. In this figure, the black box indicates the training starting point
or a new epoch, including the patterns propagation through the neural network. The
following stages calculate the squared errors of the network, as shown in equation (2).

E (x) =

N∑
i=1

e2i (x) (2)

In order to calculate �x from the Jacobian matrix, Equation (1) has been divided in
three major steps: the calculation of (J (x)JT (x) + μI), the calculation of the inverse
resultant matrix by Gaussian Decomposition, and the multiplication of the previous
result with JT (x) e (x). To calculate the first and the third steps, this work used the
library CUBLAS from NVIDIA, which implements levels 1, 2 and 3 of the known
library BLAS (Basic Linear Algebra Subroutines) to run in GPU. The second step of
this kernel is described below:
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Fig. 1. Proposed model, which performs a major portion of the code in the graphics card. In this
picture, PCI-E means PCI-Express bus.

1. Divide the matrix (J (x)JT (x)) in sub matrixes (squared) in order to have these
parts in blocks of shared memory. Using this technique, the global memory is read
and written only once per sub matrix;

2. The Gaussian Decomposition is applied on those sub matrices and the pivots are
calculated. The pivots here have the same function as on LU decomposition, for
example;

3. Using the pivots, the adjacent rows are updated. In this step it is necessary to syn-
chronize all blocks, because the pivots calculated in the first block are also used to
update the other block and generates its respective pivots;

4. At the end, all elements above the principal diagonal are equal to zero.

4 Main Results

This section presents 7 experiments where the proposed model was used to train net-
works and ensembles of neural networks. On these experiments, ensembles of neural
networks were used to classify customers of a Brazilian electricity distribution com-
pany (Light) as regular or irregular. Four types of NVIDIA graphics cards were used, as
shown in Table 1, where Gflop means how many floating-point operations, in billions,
can be performed per second, Number of SP means the number of Stream Processors
onboard, and CUDA capability means which version of the architecture is supported by
the graphics card (Min 1.1 and Max 1.3) [8]. Computer specification I is an Athlon 6000
with 1GB RAM and a GeForce 8400 GS; specification II is an Athlon 6000 with 2GB
RAM and a GeForce 8800 GT; specification III is an Athlon 6000 with 2GB RAM; and
a GeForce 260 GTX and specification IV is a Phenom II with 16GB RAM and four
Tesla c1060.

4.1 Problem Description

Light is a company with 3.79 million consumers divided in 5 regions (East, West,
Coastal, Interior, Lower Region) in 31 cities of Rio de Janeiro. The company loses
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Table 1. Computer configurations used in the experiments

Computer Number Memory Peak CUDA
Spec of SP size (MB) (Gflop/s) Capability

I 8 256 2, 5 1.1
II 112 512 194 1.1
III 192 896 310 1.3
IV 4x240 4x4096 4x340 1.3

more than US$400 million with annual non-technical losses [3]. In order to put pres-
sure on this kind of companies to adjust their prices through the reduction of losses,
the Regulatory Agency for Electric Energy of Brazil (ANEEL) introduced new rules
to limit the amount of non-technical losses, fraud and theft that can be charged to the
customer. In addition, ANEEL is treating the issue as a priority and intends to adopt
a policy of no tolerance [3], forcing companies to clearly specify goals for reducing
these losses.

Currently, Light uses a set of methodologies and is associated with a reporting ser-
vice to help identify low-voltage customers suspected of committing any type of fraud.
These customers are classified as suspect by these methodologies and a specialist com-
pany selects a particular set of customers to be inspected. Through this process, Light
has obtained an average of 25% successes in the verification of fraudulent customers
[3]. In this experiment, a prototype of an intelligent computer system for identifying
the fraudulent customer profile was developed, providing information to help select
customers to inspect, increasing the effectiveness of energy recovery actions. In this
experiment, we developed a prototype of an intelligent computer system for identifying
the customer profile fraudsters, providing information to help a selection of customers
to inspect, increasing the productivity of recovery actions energy.

4.2 System Architecture

The system structure is divided in three modules: (a) Preprocessing, (b) Filtering and
(c) Classification. The module (a) includes data cleaning, where duplicated or corrupted
data, missing values and outliers are removed, codification and normalization of cate-
gorical attributes and selection of those attributes. The Filtering (b) and Classification
(c) modules use Ensembles composed of five MLP neural networks and 28 input at-
tributes, one hidden layer and one neuron in the output layer. The whole process is
shown in Figure 2.

This case study was chosen to prove the efficiency of the proposed model because
of the high computational cost it demands. The Filtering module has to process all
database in order to provide a new base with less noise to be processed by the Classifi-
cation module, which can take almost 3 days (tested environment).
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Fig. 2. Overview of system architecture

4.3 Results

The results of this experiment refer only to the performance of the two architectures
described earlier, one where a �x calculation running on the CPU making the use
of MKL library, and another where the most expensive code is handled by the video
card. To calculate, approximately, the training time of one network, you have to get the
showing times and multiply by the number of epochs, by±50 (adjust of μ) and by 10%
(the time to process the rest of the code). The times in the tables refer to the training
time of a ensemble and are in milliseconds.

Since commercial customers of all regions have similar profiles, only one ensemble
was created to classify all of them, independently of their region. Other customers,
such as residencial and industrial, where divided by region, with a different ensemble
for each of the five existent regions. Table 2 presents the configuration for each region
as well as for commercial customers.

Table 2. Regions properties

Region Number of Number of Number of Jacobian
customers hidden neurons epochs Size (bytes)

Commercial 53, 307 12 50 148, 406, 688
East 98, 983 14 50 321, 496, 784
West 123, 272 15 50 428, 986, 560

Coastal 52, 217 10 50 212, 143, 440
Interior 27, 353 12 50 76, 150, 752
Lower 203, 704 14 50 661, 630, 592

The results in Table 3 show the training times using the Intel MKL and the times
using the CUDA architecture. The number of neurons in hidden layer was defined by
testing many other possibilities and the number of epochs was defined as 50, but the
algorithm always get the network with the lowest validation error. This technique has
a similar effect of early stopping. In addition, the speedup is shown in the last column
meaning how many times one architecture is faster than the other. Some times could not
be measured, because the matrixes’ size was bigger than the graphic board memory.
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Table 3. Results

Region Configuration MKL Time CUDA Time CUDA Speedup

Commercial

I 4, 855 − −
II 3, 535 843 4.18
III 3, 535 670 5.26
IV 1, 906 213 8.95

East

I 9, 744 − −
II 7, 878 − −
III 7, 878 889 8.27
IV 4, 427 232 19.08

West

I 13, 275 − −
II 11, 372 1, 140 9.98
III 11, 372 1, 138 9.99
IV 6, 203 274 22.64

Coastal

I 3, 217 1, 922 1.67
II 2, 542 499 3.53
III 2, 542 312 5.45
IV 1, 475 202 4.91

Interior

I 3, 217 1, 922 1.67
II 1, 700 499 3.53
III 1, 762 312 5.45
IV 992 202 4.91

Lower

I 16, 200 − −
II 16, 255 − −
III 16, 255 1, 482 10.97
IV 9, 363 333 28.12

The results of training the network with the commercial customer database already
show a considerable difference between CPU and GPU, even though the base is not very
large. Configuration I could not be assessed because the graphics card has failed reading
one of the matrices. This error may be caused by the operating system that restarts
the graphics card driver after 3 seconds if GPU stays unresponsive during that time.
In Microsoft Windows, this feature is within the WDDM (Microsoft Display Driver
Model) and is known as TDR (Timeout Detection and Recovery). The same problem
occurred with East, West and Lower, but it was expected since those database are bigger
than the commercial customer base. An important point that can be noticed in the results
for East customers is the increased difference between the training time on the CPU
and on the GPU. One of the factors that can explain this result is that, by doing the
calculation for�x in the GPU, the CPU needs to transfer all matrices to global memory
on graphic card every epoch. It is also important to notice the difference between the
CPU and GPU clocks; some CPU has a frequency almost five times greater than some
GPU. In the experiments conducted in this paper, this difference reached three times.

The customer database of region West is even larger than the customer base of re-
gion East. As was expected, the difference of training times between CPU and GPU
has increased. However, the first GPU configuration could not be used due to memory
size. As indicated above, this graphic card has only 256 MB of global memory and
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the required memory to calculate �x is at least 450 MB. The customer base of region
Coastal presents an important result related to the speedup of the first configuration. The
training time in CPU and on the GPU are virtually tied. The causes have been described
previously, but this fact indicates that an assessment regarding the problem complexity
must be made to verify if the architecture running on a GPU is recommended.

When running the training base for customers of region Interior, even configuration
I shows a performance gain of almost 200% higher compared to the CPU. Moreover,
the cost of the graphics card used in configuration I is approximately US$ 30, while the
computer can cost more than US$ 300.

The largest customer base is the one of Lower region, with more than 200,000 cus-
tomers. On this last experiment the great difference between configurations III and IV
can be noticed, as configurations I and II could not be assessed due to memory size.
The training time of configuration IV is almost three times faster than the time of con-
figuration III, and the reason for this difference is the number of processors inside these
two GPUs, besides the number of records processed.

5 Conclusions

In this paper, a training model of neural networks based on LMA and using CUDA ar-
chitecture was presented to improve the training performance. The use of this algorithm
on graphics cards is new and presented excellent results, even with only one part of the
training process running on the GPU.

The existing studies are limited to the use of CUDA architecture on the signals propa-
gation through neural networks or training with simple gradient on MLP networks. The
model introduced by this paper can train more types of artificial neural networks and
in a more efficient way. Another important concern of this paper was the comparative
experiments performed. In these experiments, all measures of time made on the CPU
were made directly using MKL library from a program written in C language. This
library has an exceptional performance and some comparisons made with it showed
gains in the order of hundreds of times for some matrix calculations. This further en-
hances the results achieved since the proposed model was almost 30 times faster than
the sequential model using MKL.

In future works, the whole training process will be transferred to the graphics card
and the transfers of data made in each epoch will be replaced by an initial transfer added
to other smaller one at the end, including the process output that comprises only the
network weights vector. Thus, it’s possible to run real-time training, which is required
in various types of problems, for example, a system for up scaling video that needs to
train a network on each frame.
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Abstract. Sufficient conditions for uniform convergence of general re-
gression neural networks, based on the orthogonal series-type kernel, are
given. The convergence is guarantee even if variance of noise diverges to
infinity. Simulation results are presented.

1 Introduction

In literature various, nonparametric techniques have been proposed to solve sta-
tionary (see e.g. [3], [5], [6],[8], [10], [12] - [15], [21] - [23], [26] - [29]) and non-
stationary problem ([7], [16] -[20], [24], [25]), assuming a stationary noise. In this
paper we relax a latter assumption. Let X1, . . . , Xn be a sequence of indepen-
dent random variables with a common density function f . Consider the following
model

Yi = φ(Xi) + Zi, i = 1, . . . , n, (1)

where Zi are random variables such that

E(Zi) = 0, EZ2
i = di, i = 1, . . . , n, (2)

and φ(·) is an unknown function.

f(x) ∼
∞∑
j=0

ajgj(x), (3)

where

aj =

∫
A

f(x)gj(x)dx = Egj(Xj). (4)

The estimator of density f(·) takes the form:

f̂n(x) =

N(n)∑
j=0

âjgj(x), (5)

where N(n)
n−→∞ and
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âj =
1

n

n∑
k=0

gj(Xk) (6)

Let us define
R(x) = f(x)φ(x). (7)

We assume that function R(·) has the representation:

R(x) ∼
∞∑
j=0

bjgj(x), (8)

where

bj =

∫
A

φ(x)f(x)gj(x)dx = E(Yjgj(Xj)) (9)

We estimate function R(·) using

R̂n(x) =

M(n)∑
j=0

b̂jgj(x), (10)

where M(n)
n−→∞ and

b̂j =
1

n

n∑
k=0

Ykgj(Xk). (11)

Then the estimator of the regression function is of the following form:

φ̂n(x) =
R̂n(x)

f̂n(x)
=

n∑
i=1

M(n)∑
j=0

Yigj(Xi)gj(x)

n∑
i=1

N(n)∑
j=0

gj(Xi)gj(x)

(12)

It should be noted that procedure (12) corresponds to the Parzen-type kernel
general regression neural network introduced by Specht [35].

2 Main Result

Let us assume that
max

x
|gj| < Gj . (13)

It should be noted that d = − 1
12 for the Hermite system, d = − 1

4 for the Laguerre
system, d = 0 for the Fourier system, d = 1

2 for the Legendre and Haar systems
(see [33], [38]). Let us denote

si = di +

∫
A

φ2(u)f(u)du (14)
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Theorem 1. Let

ξ1 = sup
x∈A

|φ(x)| <∞, ξ2 = inf
x∈A

|f(x)| > 0 (15)

and

sup
x∈A

|
N(n)∑
j=0

ajgj(x) − f(x)| n−→ 0 (16)

sup
x∈A

|
M(n)∑
j=0

bjgj(x)− R(x)| n−→ 0 (17)

If the following conditions hold

1

n2
(

M(n)∑
j=0

G2
j )

2
n∑

i=1

si
n−→ 0, M(n)

n−→∞ (18)

1

n
(

N(n)∑
j=0

G2
j )

2 n−→ 0, N(n)
n−→∞ (19)

then
sup
x∈A

|φn(x) − φ(x)| n−→ 0 in probability. (20)

Proof. One can see that:

sup
x∈A

|φ(x)−φ̂n(x)| ≤ ξ1

inf
x∈A

f̂n(x)
sup
x∈A

|f̂n(x)−f(x)|+ 1

inf
x∈A

f̂n(x)
sup
x∈A

|R̂n(x)−R(x)|

(21)
So it is sufficient to show:

sup
x∈A

|R̂n(x) −R(x)| n−→ 0 (22)

sup
x∈A

|f̂n(x) − f(x)| n−→ 0 (23)

in probability.
One can see that

sup
x∈A

|R̂n(x) −R(x)| ≤ sup
x∈A

|
M(n)∑
j=0

bjgj(x)−R(x)| + sup
x∈A

|
M(n)∑
j=0

(b̂j − bj)gj(x)|(24)

Using Schwartz inequality we get

E[sup
x∈A

|
M(n)∑
j=0

(b̂j − bj)gj(x)|] ≤ 1

n

M(n)∑
j=0

G2
j(

n∑
i=1

(

∫
A

φ2(u)f(u)du+ di))
1/2. (25)
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Similarly we can show that

E[sup
x∈A

|
N(n)∑
j=0

(âj − aj)gj(x)|] ≤ 1√
n

N(n)∑
j=0

G2
j . (26)

This concludes the proof.

It should be noted that conditions for uniform convergence of series (16) and
(17) can be found in [1], [33], [38], [39].

3 Experimental Results

For computer simulations we will use synthetic data. Distribution of random
variables Xi is uniform on the interval A = [−5; 5], for i = 1, . . . , n. Let us
assume that:

M(n) = [c1n
qM ], N(n) = [c2n

qN ], dn = c3n
α, (27)

where qM , qN and α are positive number.
Consider the following model

φ(x) =
2x

x2 + 1
, (28)

with noise Zi taking values from the normal distribution N(0, di), di = iα, α > 0.
Note that in this case both inequalities (15) hold on A. The constants c1 and c2
are equal to 4. Parameters qM and qN are both equal to 0, 3. The constant c3 is
equal to 1. The Hermite orthonormal system is chosen to perform calculations.

Fig. 1. The MSE as a function of n
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Fig. 2. Training set and obtained estimator

Fig. 3. Function φ(·) and its estimators for different values of parameter α

Number of data set is taken from the interval [500; 10000] and parameter α is
tested in the interval [ 1

10 ,
12
10 ].

Figure 1 shows how the MSE (Mean Square Error) changes with number of
data elements n for different values of parameter α. For parameter α ∈ [0, 1; 0, 6]
we can see that, when n goes to infinity, the MSE goes to 0. For α = 0, 7 this
trend is not maintained. Moreover, value of the MSE is much bigger than for
lower values of parameter α. Experimental results show that for higher values of
α the MSE is growing. For α = 1, 2 and n = 105, the MSE is equal to 117,37.

In Figure 2 input data and the result of estimation for n = 104 and α = 0, 1 is
indicated. As we can see the estimator found in the appropriate manner center
of data and maintained its trend.
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Figure 3 shows the course of the function given by (28) and estimators ob-
tained for n = 104, with parameters α equal to 0, 1 and 1, 2.

4 Conclusions

In this paper we studied the general regression neural networks, based on the
orthogonal series-type kernel. We proved the uniform convergence assuming that
variance of noise diverges to infinity. Further work can be concentrated on han-
dling of time-varying noise by making use of supervised and unsupervised neural
networks learning algorithms [2], [4], [11] and various neurofuzzy structures de-
veloped in [9], [30] - [32], [34], [36] - [38].

Acknowledgments. The paper was prepared under project operated within the
Foundation for Polish Science Team Programme co-financed by the EU European
Regional Development Fund, Operational Program Innovative Economy 2007-
2013, and also supported by the National Science Center NCN.
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Series-Type Kernel Regression Neural Networks
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Abstract. Strong convergence of general regression neural networks is
proved assuming non-stationary noise. The network is based on the or-
thogonal series-type kernel. Simulation results are discussed in details.

1 Introduction

In this paper we consider the following model

Yi = φ(Xi) + Zi, i = 1, . . . , n, (1)

where X1, . . . , Xn are independent random variables with a probability density
f(·), Zi are random variables such that

E(Zi) = 0, EZ2
i = di, i = 1, . . . , n, (2)

and φ(·) is an unknown function. We assume that function f(·) has the repre-
sentation

f(x) ∼
∞∑
j=0

ajgj(x), (3)

where

aj =

∫
A

f(x)gj(x)dx = Egj(Xi). (4)

and {gj(·)}, j = 0, 1, 2, . . . is a complete orthonormal series (see e.g. [1]) defined
on A ⊂ Rp. Then the estimator of density f(x) takes the form

f̂n(x) =

N(n)∑
j=0

âjgj(x), (5)

where N(n)
n−→∞ and

âj =
1

n

n∑
k=0

gj(Xk) (6)
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Let us define

R(x) = f(x)φ(x). (7)

We assume that function R(·) has the representation

R(x) ∼
∞∑
j=0

bjgj(x), (8)

where

bj =

∫
A

φ(x)f(x)gj(x)dx = E(Ykgj(Xk)) (9)

We estimate function R(·) using

R̂n(x) =

M(n)∑
j=0

b̂jgj(x), (10)

where M(n)
n−→∞ and

b̂j =
1

n

n∑
k=0

Ykgj(Xk). (11)

Then the estimator of the regression function is of the following form

φ̂n(x) =
R̂n(x)

f̂n(x)
=

n∑
i=1

M(n)∑
j=0

Yigj(Xi)gj(x)

n∑
i=1

N(n)∑
j=0

gj(Xi)gj(x)

(12)

This algorithm creates a so-called general regression neural network [37]. Figure 1
shows block diagram for M(n) = N(n). There are many papers in literature

Fig. 1. Regression neural network
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where nonparametic regression estimates were studied in a stationary environ-
ment e.g. [4], [5],[7], [11], [13] - [17], [23] - [25], [28] - [31] and in a non-stationary
environment e.g. [6], [18] -[22], [26], [27]. For excellent overviews on these tech-
niques the reader is referred to [8] and [9].

2 Main Result

Let us assume that
max

x
|gj| < Gj . (13)

Theorem 1. Let us denote:

si = di +

∫
A

φ2(u)f(u)du. <∞ (14)

If the following conditions hold

∞∑
n=1

sn
n2

(

M(n)∑
j=0

G2
j)

2 <∞, M(n)
n−→∞ (15)

∞∑
n=1

1

n2
(

N(n)∑
j=0

G2
j )

2 <∞, N(n)
n−→∞ (16)

then
φ̂n(x)

n−→ φ(x) with probability 1, (17)

at every point x ∈ A at which series (3) and (8) converge to f(x) and R(x)
respectively.

Proof. It is sufficient to show that:

R̂n(x)− E[R̂n(x)]
n−→ 0 (18)

f̂n(x) − E[f̂n(x)]
n−→ 0, (19)

with probability one, at every point x ∈ A, at which series (3) and (8) are
convergent to f(x) and R(x) respectively. Denote

Ti =

M(i)∑
j=0

(gj(Xi)Yi − bj)gj(x) (20)

Observe that

R̂n(x)− ER̂n(x) =
1

n

n∑
i=1

Ti (21)
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Using Cauchy’s inequality:

ET 2
n ≤ (

∫
A

φ2(u)f(u)du+ dn)(

M(n)∑
j=0

G2
j )

2 (22)

Applying Kolmogorov’s strong law we obtain

lim
n→∞

1

n

n∑
i=1

(Ti − ETi) = 0 (23)

with probability one.

Similarly, for Ti =
N(n)∑
j=0

(gj(Xi)− aj)gj(x)

f̂n(x)− Ef̂n(x) =
1

n

n∑
i=1

Ti (24)

we obtain

ET 2
n ≤ (

N(n)∑
j=0

G2
j)

2 (25)

which implies that

lim
n→∞

1

n

n∑
i=1

(Ti − ETi) = 0 (26)

with probability one. This concludes the proof.

Example. Let assume that

M(n) = [c1n
qM ] N(n) = [c2n

qN ] dn = c3n
α Gj = c4j

d, (27)

where qm, qn and α are positive numbers. It is easily seen that if

4dqM + 2qM + α < 1, 4dqN + 2qN < 1 (28)

then Theorem 1 holds. It should be noted that d = − 1
12 for the Hermite sytem,

d = − 1
4 for the Laguerre system, d = 0 for the Fourier system, d = 1

2 for the
Legendre and Haar systems (see [35]).

3 Experimental Results

For computer simulations we will use synthetic data. Distribution of random
variables Xi is uniform on interval [0; 3], for i = 1, . . . , n. Consider the following
model

φ(x) = 8e−x2

, (29)



On the Strong Convergence of the Orthogonal Series-Type Kernel 51

Fig. 2. The MSE as a function of n

with Zi which are realizations of random variables N(0, di), di = iα, α > 0.
Constants c1, c2 in (27) are equal to 2 and c3 = 1 . Parameters qM and qN
are both equal to 0, 4. The Laguerre orthonormal system is chosen to perform
calculations. Number of data set is taken from the interval [500; 10000] and
parameter α is tested in the interval [ 1

10 ,
12
10 ].

Figure 2 shows how the MSE (Mean Square Error) changes with the number of
data elements n for different values of parameter α. For parameter α ∈ [0, 1; 0, 4]
we can see that, when n goes to infinity, the MSE goes to 0. For α = 0, 5 or
α = 0, 7 this trend is not maintained. Moreover, for α = 0, 7, value of the MSE
is much bigger than for lower values of parameter α. Experimental results show
that for higher values of α the MSE is growing. For α = 1, 2 and n = 104, the
MSE is equal to 19,18.

Fig. 3. Training set and obtained estimator
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In Figure 3 input data and the result of estimation for n = 104 and α = 0, 2 is
indicated. As we can see the estimator found in the appropriate manner center
of data and maintained its trend.

Figure 4 shows the course of the function given by (29) and estimators ob-
tained for n = 104, with parameters α equal to 0, 2 and 1, 2.

Fig. 4. Function φ(·) and its estimators for different values of parameter α

4 Conclusions

In this paper we studied general regression neural networks based on the or-
thogonal series-type kernel. We established the strong convergence assuming
non-stationary noise. Further research will focus on how to adopt methods based
on unsupervised and unsupervised training algorithms for neural networks [2],
[3], [12] and neurofuzzy structures [10], [32] - [34], [36], [38], [39] to handle non-
stationary noise.
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PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)



On the Strong Convergence of the Recursive

Orthogonal Series-Type Kernel Probabilistic
Neural Networks Handling Time-Varying Noise

Piotr Duda and Marcin Korytkowski

Department of Computer Engineering, Czestochowa University of Technology,
Czestochowa, Poland

{pduda,marcin.korytkowski}@kik.pcz.pl

Abstract. Sufficient conditions for strong convergence of recursive gen-
eral regression neural networks are given assuming nonstationary noise.
The orthogonal series-type kernel is applied. Simulation results show
convergence even if variance of noise diverges to infinity.

1 Introduction

Let X1, . . . , Xn be a sequence of independent random variables with a common
desity function f . Consider the following model

Yi = φ(Xi) + Zi, i = 1, . . . , n, (1)

where Zi are random variables, such that

E(Zi) = 0 E(Z2
i ) = di i = 1, . . . , n. (2)

and the input random variables (X1, . . . , Xn) have the same probability density
function f(·). To estimate function φ(·) we propose the following formula

φ̂n(x) =
R̂n(x)

f̂n(x)
, (3)

where

R̂n(x) =
1

n

n∑
i=1

M(i)∑
j=0

Yigj(Xi)gj(x), (4)

and

f̂n(x) =
1

n

n∑
i=1

N(i)∑
j=0

gj(Xi)gj(x), (5)

where {gj} is a complete orthonormal system and

N(i)
i−→∞ M(i)

i−→∞. (6)
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One can see that the estimators f̂(x) and R̂(x) can be expressed as follows:

f̂n(x) = f̂n−1(x) +
1

n
[

N(n)∑
j=0

gj(Xn)gj(x)− f̂n−1(x)], (7)

R̂n(x) = R̂n−1(x) +
1

n
[

M(n)∑
j=0

Yngj(Xn)gj(x) − R̂n−1(x)], (8)

where M(·), N(·) are the same as in (6). The above algorithm is so-called prob-
abilistic neural network [36], which diagram is depicted in Fig. 1, for M(n) =
N(n). It corresponds to nonparametic density and regression estimates

Fig. 1. Recursive probabilistic neural network

developed to solve stationary (e.g. [2], [4], [5],[7], [11], [13] - [17], [23] - [25],
[28] - [31]) and non-stationary case (e.g. [6], [18] -[22], [26], [27]). For excellent
overviews on these methods the reader is referred to [8] and [9].

2 Main Result

Let us assume that
max

x
|gj| ≤ Gj , (9)

Theorem 1. Let us denote

si = di +

∫
A

φ2(u)f(u)du <∞ (10)

If the following conditions hold

∞∑
n=1

sn
n2

(

M(n)∑
j=0

G2
j)

2 <∞, M(n)
n−→∞ (11)
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∞∑
n=1

1

n2
(

N(n)∑
j=0

G2
j )

2 <∞, N(n)
n−→∞ (12)

then
φ̂n(x)

n−→ φ(x) with probability 1, (13)

at every point x ∈ A at which

N(n)∑
j=0

ajgj(x)
n−→ f(x), (14)

M(n)∑
j=0

bjgj(x)
n−→ R(x) (15)

where

aj =

∫
A

f(x)gj(x)dx = Egj(Xi). (16)

bj =

∫
A

φ(x)f(x)gj(x)dx = E(Yigj(Xi)) (17)

Proof. The proof can be based on the arguments similar to those in [15].

3 Experimental Results

Let us assume that

M(n) = [c1n
qM ], N(n) = [c2n

qN ], dn = c3n
α, Gj = c4j

d, (18)

where qM , qN and α are positive numbers. It should be noted that d = − 1
12

for the Hermite sytem, d = − 1
4 for the Laguerre system, d = 0 for the Fourier

system, d = 1
2 for the Legendre and Haar systems (see [39]).

We consider the following regression function

φ(x) = x4 − 5x2 + 4. (19)

Distribution of random variables Xi is uniform on the interval [−π, π], for i =
1, . . . , n and Zi are realizations of random variables N(0, iα), where α > 0.
Parameters qM and qN are both equal to 0, 3. The constants c1, c2 are equal to
4 and c3 is equal to 1. The Fourier orthonormal system is chosen to perform
calculations. Number of data set is taken from the interval [500; 10000], and
parameter α is tested in the interval [ 1

10 ,
12
10 ].

Figure 2 shows how the MSE (Mean Square Error) changes with number of
data elements n for different values of parameter α. For parameter α ∈ [0, 1; 0, 2]
we can see that, when n goes to infinity, the MSE goes to 0. For α ≥ 0, 5 value
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Fig. 2. The MSE as a function of n

Fig. 3. Training set and obtained estimator

of the MSE is much bigger than for lower values of parameter α. For α = 1, 2
and n = 104, the MSE is equal to 390,66.

In Figure 3 input data and the results of estimation for n = 104 and α = 0, 1
are depicted. As we can see estimator found in the appropriate manner center
of data and maintained its trend.

Figure 3 shows the course of the function given by (19) and estimators ob-
tained for n = 104, with parameters α equal to 0, 1 and 0, 6. Figure 4 shows this
course on the interval [−1, 1].
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Fig. 4. Function φ(·) and its estimators for different values of parameter α

Fig. 5. Function φ(·) and its estimators for different values of parameter α

4 Conclusions

In this paper we studied a recursive general regression neural network, based on
the orthogonal series-type kernels. We established strong convergence assuming
nonstationary noise. There are still other interesting problems of handling time
varying noise, which include but are not limited to making use of supervised
and unsupervised neural networks learning methods [1], [3], [12] or neurofuzzy
structures developed in [10], [32] - [34], [35], [37], [38].
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Abstract. In this paper we developed a new architecture of neural net-
works for generating nomograms based on series of data vectors. The
paper was inspired by the XIII Hilbert’s problem which was presented
1900 in the context of nomography, for the particular nomographic con-
struction. The problem was solved by V. Arnold (a student of Andrey
Kolomogorov) in 1957. For numeric data of unknown functional relation
we developed the incidental neural networks as nomograms generators –
the graphic calculating devices.

Keywords: nomography, feedforward neural networks, function
approximation.

1 Introduction

A nomogram is a graphical calculating device developed by Belgian engineer
Junius Massau and French mathematician Maurice d’Ocagne in 1884 [20]. The
definition of a nomogram can be stated as follows: a nomogram is a function
plotted on two-dimensionally space with n parameters, and knowing n − 1 pa-
rameters, the unknown one can be find in easy way. Generally, nomograms are
used in such applications where an approximate answer is appropriated and use-
ful; otherwise, the nomogram may be used to check the answer obtained from
an exact calculation method.

One of the best monographs devoted to nomograms was written by Polish
mathematician Edward Otto, Professor of Technical University of Warsaw, en-
titled Nomography issued by Oxford Pergamon Press in 1964 [16].

Since the 1970s developments of electronic calculators as well as computers
have eliminated out needs of using nomograms for approximated solutions of
complex functional relations. However, in spite of the main fault of nomograms,
namely limited accuracy of reading, nomograms are still in use e.g. in hydraulic
calculations, electrical engineering, in enterprises, banks and so on for estimating
considered values. No doubt, there is one extremely important merit of nomo-
grams – they give capability to represent a multidimensional space on a plane.

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 63–71, 2012.
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The simplest nomogram is represented by a plot of a function y = f (x) drown
on a plane. In general, it is assumed that nomograms represent the functional
relation given in the analytical form ([3], [4], [6], [15], [16], [18], [20]), e.g.

F (u, v, w) = 0 (1)

In order to find a value of one variable knowing values of the rest often are used
nomograms.

There is a very interesting problem to generate nomograms when the analyt-
ical form of the functional relations (1) is unknown, and data of some relation
are available in a table, e.g.:

No. u v w
1 u1 v1 w1

2 u2 v2 w2

...
...

...
...

N un vn wn

In this paper a novel architecture of artificial neural networks is proposed.
For complex process of calculating and drawing of nomograms a new as well as
specialized architecture of neural networks was developed – the new architecture
of neural networks was named as incidental neural networks. The term of inci-
dence is known in geometry and is understood in the following way: a point is
incidental to a line if and only if the point lies on the line.

The new architecture of neural networks is constructed in the following way, a
number of feedforward single input and single output neural networks – called an
elementary neural network) are joined into one. Each elementary neural network
is associated with a single dimension of a considered problem. All the elementary
neural networks are merged via their outputs by so called Soreau equation ([4],
[15]). The Soreau equation just describes the incidence properties of elementary
neural networks outputs.

Such an incidental neural network after learning is able to generate nomo-
grams. An example was performed in order to show proper functioning of the
developed incidental neural networks.

2 Nomograms

In the seventeenth century Rene Descartes introduced the coordinate system
allowing algebraic equations to be expressed in geometric way and created ana-
lytical geometry ([2], [17]), the bridge between algebra and geometry. The next
step was the introducing a log-log plane by Leon Lalaane in 1843 [4, 6]. How-
ever nomograms developed by Maurice d’Ocagne in the 1880s became ground-
breaking in the graphical calculations, and in geometric solutions of algebraic
functions. Since that time nomograms have become commonly used as calculat-
ing devices by engineers during almost a hundred years.
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How important nomograms were it is worth to notice that David Hilbert set
out 23 problems during the world congress of mathematicians in Paris in 1900.
Hilbert’s XIII problem was presented in the context of nomography, for the
particular nomographic construction. The problem was solved by 19 year old
Vladimir Arnold (a student of Andrey Kolomogorov) in 1957.

It is necessarily to notice that Polish mathematicians were also involved in
development of the theory of nomography, e.g. Hugo Steinhaus [18, 19, 20],
Edward Otto [15, 16].

There were developed several types of nomograms e.g. [4, 6, 16], but gener-
ally we can distinguish two main categories of nomograms: the first are called
collinear nomograms and the second – the grid nomograms [6, 15, 16]. In this
work we will focus on the collinear nomograms.

2.1 Graphic Interpretation of Multiplication/Division Operation

Let us consider a simple nomogram which can realize the following relations
x3 = x1 x2 shown in Fig. 1

 

Fig. 1. Nomogram realising multiplication operation

Reading values of variables from the nomogram which consists of three axes
is obvious. Connection by a straight line of a chosen point of a functional axis
x1 with a chosen point of a functional axis x2 one obtains the solution laying on
a functional axis x3. The procedure allows finding a value of any variable under
the assumption that two other variable values are known.
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3 Collinear Nomograms

Let us consider a three dimensional Euclidean space. Necessary and sufficient
condition in order to three points A, B, C lie on one straight line is zeroing the
following matrix determinant ∣∣∣∣∣∣

z11 z12 1
z21 z22 1
z31 z32 1

∣∣∣∣∣∣ = 0 (2)

where: (z11, z12) – the coordinates of point A, (z21, z22) – the coordinates of point
B, (z31, z32) – the coordinates of point C.

The matrix determinant in (2) describes also the area of the triangle ABC.
This area is equal to zero for collinear points. The exemplary matrix in (2) con-
sists of nine entries, where the rows are related to the variables appearing in
the functional relation (1); and the first column corresponds to the nomographic
coordinate z1, while the second column corresponds to the nomographic coor-
dinate z2, the third column consists of 1s. Such determinants are called Soreau
ones, and equation (2) – Soreau equation, e.g. [16].

Equation (2) can be written as follows∣∣∣∣∣∣
z11(x1) z12(x1) 1
z21(x2) z22(x2) 1
z31(x3) z32(x3) 1

∣∣∣∣∣∣ = 0 (3)

where:
z11(x1), z12(x1) are parametric functions with x1 as a parameter,
z21(x2), z22(x2) are parametric functions with x2 as a parameter,
z31(x3), z32(x3) are parametric functions with x3 as a parameter.

Equation (3) can be rewritten in a form describing relations between values x1,
x2 and x3:

z11(x1) [z22(x2)− z32(x3)]− z21(x2) [z12(x1)− z32(x3)]

+z31(x3) [z12(x1)− z22(x2)] = 0 (4)

For instance, for the case, depictured in Fig. 1, realizing multiplication which
has the following general form

f3(x3) = f1(x1)f2(x2) (5)

and Soreau equation has the form∣∣∣∣∣∣
Z11 z12(x1) 1

z21(x2) Z22 1
Z31 z32(x3) 1

∣∣∣∣∣∣ = 0 (6)

where Z11, Z22 and Z31 are constant numbers.
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Up to now in nomographic practice it has been assumed that the functional
relation of type (1) was given in an analytic form.

However, nowadays it happens very often in practice, data are available as
series of numbers of unknown relations. In such a case following the theory of
nomograms we face a problem to construct functional relation of numeric data.
Let us assume that data are given as k series, each of N elements, and noth-
ing is assumed about reciprocal relation between data within each series. This
way a difficult problem of constructing nomograms for non-monotonic mappings
arises. In this paper this problem is solved via introducing additional dimen-
sions. Additionally k-element series of numbers can be represented by k para-
metric mappings, and these mappings can be always represented just by collinear
nomograms.

4 Incidental Neural Networks

The theory of neural networks was described in many papers and books, e.g.
[5, 11, 12, 14]. In Fig. 2 there is shown a feedforward neural network with a
single input and a single output consisting with an input and output layers,
respectively, and two hidden layers. Such a network we will call an elementary
neural network.

Artificial neural networks can be connected in many various ways. In literature
one can find some examples of systems built with simple neural networks [5, 11,
14]. In considered here problem it is required to find some relation between
elements of data series. For that it is proposed a new architecture of neural
networks which consists of some number of elementary neural network, see Fig. 2.

ix

� 

= 
� 

iy

Fig. 2. Elementary neural network and it symbolic representation
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It is assumed that a single elementary neural network is related or is respon-
sible to a single dimension of the considered problem. The proposed elementary
neural network consists of:

— one input neuron,
— one or two hidden layers (a number of neurons within hidden layers deter-

mines level of approximation accuracy),
— one output neuron.

Such an elementary neural network is able to model a single dimensional func-
tion, and can be used to approximate a functional axis in nomograms. From
the other point of view, each element of Soreau determinant depends on one
variable, and can be represented by one elementary neural network [9]. In such
an elementary neural network the input is just one variable while the output
constitutes a nomographic coordinate.

For instance, for the general multiplication operation (5)

f3(x3) = f1(x1)f2(x2)

the responsible incidental neural network is shown in Fig. 3. The exemplary
new architecture consists of three elementary neural networks, each marked by
two parallel thick bars, interfaced through the constraint represented by Soreau
determinant depictured by a double circle.

2x

22z  

3x  

32z  

12z  

1x

Fig. 3. The incidental neural network – a system of three elementary neural networks
interfaced through Soreau determinant

The system of elementary neural networks is interfaced under some constraints
as results of expressions of Soreau determinant.

It is worth to emphasise that applied special kind of elementary networks
connection does not fulfil Kirchhoff low.

Adjusting Soreau determinant (6) to zero it is guaranteed that values of co-
ordinates z12(x1), z22(x2) and z32(x3) are coherent to relationship (3). The cor-
responding variables values x1, x2 and x3 fulfil equation (4).
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5 Illustrative Example

The nomogram presented in Fig. 1 consists of two vertical parallel functional
axes and one horizontal. In this section we will solve the same problem as a
collinear nomogram under the assumption that the relation x3 = x1x2 is given
as several series of numbers data realising this multiplication operation.

For such a case Soreau determinant has the following form∣∣∣∣∣∣
0.2 z12(x1) 1
0.5 z22(x2) 1
0.8 z32(x3) 1

∣∣∣∣∣∣ = 0 (7)

The considered problem is three dimensional therefore the incidental neural net-
works consists of three elementary neural networks interfaced by (7), such inci-
dental network (see Fig. 3) represents the collinear as well as rectilinear nomo-
gram. The collinear nomogram is built of three parallel functional axes. The first
column in (7) is related to the first nomographic coordinate z1, it means that
Z11 = 0.2, Z21 = 0.5 and Z31 = 0.8; while the second column in (7) is related
to the second nomographic coordinate z2, and is responsible of changing of each
nomographic coordinate, respectively. The values Z11, Z21 and Z31 were chosen
arbitrarily.

The equation (7) can be rewritten as follows

z12(0.5− 0.8) + z22(0.8− 0.2) + z32(0.2− 0.5) = 0 (8)

Each particular elementary neural network will be taught according to the fol-
lowing schema

z12 =
−z22(0.8− 0.2)− z32(0.2− 0.5)

0.5− 0.8
(9)

z22 =
−z12(0.8− 0.2)− z32(0.2− 0.5)

0.8− 0.2
(10)

z32 =
−z12(0.5− 0.8)− z22(0.8− 0.2)

0.2− 0.5
(11)

For this numerical example each elementary neural networks consists of one
neuron in the input layer, five neurons in the first and second hidden layers and
one neuron in the output layer. After choosing constant point along the axis z1
there is a task to find changeability of nomographic axes z12, z22 and z32.

For the learning process of the incidental neural network the backpropagation
algorithm with momentum was applied; the parameters were adjusted as follows:
the learning coefficient = 0.7, the momentum coefficient =0.3 and the number
of steps for each elementary network within each learning sequence =10000.

The algorithm of learning of incidental neural networks can be shortly de-
scribed as follows:
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Step 1

Values of numerical series data are presented to inputs of the incidental neural
network.

Step 2
The respective outputs of elementary neural networks are calculated subject to
actual weights and neurons activation functions.

Step 3

The values z12, z22, z32 are obtained from (9)–(11).

Step 4

Differences between values obtained in Step 2 and in Step 3 are considered
as learning errors in learning processes in each elementary neural network. The
elementary networks are trained sequentially one network after another; it means
the values z12, z22, z32 are used in training.

Step 5

If the assumed level of accuracy is not reached then the weights must be changed
and algorithm starts from the beginning, otherwise the algorithm is stopped.

This way, the functional axes which are parallel, they are perpendicular to nomo-
graphic axis of abscissae z1; in result the nomogram is developed. In the inciden-
tal neural network the inputs are represented by variables x1, x2 and x3, while
the outputs of the elementary networks z12(x1), z22(x2) and z32(x3) represent
location of x1, x2 and x3 on axis of ordinates z2 (the coordinates of the functional
axes).

 

Fig. 4. Collinear nomogram realising multiplication operation

Using of nomograms is very easy, in the case of the example from Fig. 4, one
needs to draw a straight line between the axes x1 and x2 – the result of the
multiplication operation is read as the intersection of this drew line and the axis
x3.



Incidental Neural Networks as Nomograms Generators 71

6 Conclusions

In this paper it was shown that using collinear nomograms one can visualise and
analyse causes of changeability of functional relation in multidimensional spaces.

In order to generate nomograms for numeric data of unknown relations we
developed the new architecture of neural networks, here called the incidental
neural networks. For such neural networks we developed the training algorithm
based on the well-known backpropagation one.

Solution of many examples, also multidimensional, showed correctness of the
assumptions as well as efficiency of the computer implementation.
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Abstract. The paper presents some novel methods of the activation
function selection in the last hidden layer of a multilayer perceptron. For
this selection, the least squares method is used. The proposed ways make
it possible to decrease the cost function value. They enable achievement
of a good compromise between the network complexity and the results
being obtained. The methods do not require a start of learning of neural
networks from the very beginning. They fit very well for improvement
of the action of learnt multilayer perceptrons. They may be particularly
useful for construction of the devices under microprocessor control, that
have not a big memory nor computing power.

Keywords: neural networks, multilayer perceptron, activation functions,
least squares method.

1 Introduction

The multilayer perceptron (MLP) is one of more popular architectures of neu-
ral networks. Its significant advantage is the predisposition for processing of
multidimensional data. In [2], it was shown that MLPs are very suitable for
approximation of multidimensional functions that have a bound on the first mo-
ment of the magnitude distribution of the Fourier transform. In [2], it was shown
that, in the case of approximation of such functions with the use of MLP with
one hidden layer, the integrated squared error does not depend on the problem
dimension and is of the O(1/n) order, where n is the neuron number in the
hidden layer.

The multilayer perceptron learning produces many difficulties. For the
learning, gradient algorithms are used mainly, that may be stuck at many local
minima of a cost function. The learning process is often repeated many times,
starting at various initial values of the weights. In [8] and [1], the learning meth-
ods with the use of recurrent least squares method were shown. MPL learning
algorithms that make use of the nonlinear optimisation method and the least
squares method (LSM) were published. One of them is the staggered training
(ST) of MLP, described in [9]. In the first step, the output layer weights are
computed with use of LSM. Next, the weights in the other layers are determined
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with use of the nonlinear optimisation methods. The two steps are repeated
alternately.

Many works were published wherein perceptrons of various activation func-
tions were applied, e.g. with splines. In the microcontroller-based devices, wherein
the low computing capability is very significant, the look-up tables are used, in-
cluding the values used for fast interpolation of the sigmoidal functions [5]. In [4],
the activation functions f(x) = a(1 − exp(−bx))/(1 + exp(−bx)) were applied,
where a and b were the parameters selected with use of gradient algorithms. The
method presented in [7] may be used to improve the action of the MLP trained
earlier. This includes the exchange of all activation functions in the last hidden
layer into the weighed sums of functions of the series

f
( x
2h

)
, f
( x

2h−1

)
, . . . , f(x), . . . , f

(
2h−1x

)
, f
(
2hx

)
, (1)

where h is a positive integer and f are sigmoid functions. The method proposed in
[7] was described in Sect. 2 of this paper. In [7], the computer simulation results
were presented, a part of which was done with use of data of the well-known
UCI Benchmarks [6]. Due to application of this method for MLPs trained by the
Levenberg-Marquardt algorithm, a considerable decrease of the cost function
was achieved

E =
1

N

N∑
i=1

(ŷ(ui)− di)
2
, (2)

where ŷ(ui) is the MLP output value when the inputs are equal to the elements

of the vector ui = [u1,i, u2,i, . . . , uq,i, ]
T
, q is the number of the network inputs,

di is the desired value of the network output, related with ui, N is the number
of pairs {ui, di} in the learning set.

In [7] the method making use of the activation functions created with the
use of some elements of the series (1) only is also presented. This method is
a crummy one. In the Sect. 3 of this article, much better methods for selecting
these elements have been proposed and the results of the simulation experiments
carried out have been shown. The methods presented in the Sect. 3 make it
possible to achieve a good compromise between the number of the necessary
computations and the results being obtained. They may be particularly useful
for construction of the devices under microprocessor control, that have not, at
their disposal, a big memory nor computing power. The methods may be used
also for the network regularisation. Because of the concise notations, in the
present study, the formulae for the networks that have only one output have
been presented. The proceeding for the networks of a higher number of outputs
is analogical.
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2 Method for Improvement of the Multilayer Perceptron
Action through Application of Various Activation
Functions in the Last Hidden Layer

The method described in [7] may be applied with MLP that has, in the output
layer, the neurons with linear activation functions, flin(x) = x. In this layer,
linear activation functions are applied very often. The method shown in [7] may
be used for improvement of the action of MLP trained by an arbitrary algorithm,
e.g. by the Levenberg-Marquardt algorithm. In [7], it has been shown that, in
some cases, it makes it possible to decrease the cost function value (2) of several
orders in a very short time. Let g(x) denote the sigmoid activation function of
neurons in the last hidden layer. The method described in [7] may be presented,
in short, in the following steps:

 Step 1. Computation of the cost function value (2).

 Step 2. A change of the activation functions for all neurons in the last hidden
layer to the functions defined by the formula

fk(x) = wk,1g
( x
2h

)
+ wk,2g

( x

2h−1

)
+ . . .

+ wk,�m/2	g(x) (3)

+ . . .+ wk,m−1g
(
2h−1x

)
+ wk,mg

(
2hx

)
,

where k = 1, . . . , s denotes the number of neuron in the last hidden layer, s
is the number of neurons in this layer, wk,1, . . . , wk,m, are real numbers, the
selection way of which has been described in step 5.

 Step 3. A change of the values of all weights in the output layer to one.

 Step 4. Solving the set of normal equations

Zw = d, (4)

wherew=[w1,1, w1,2, . . . , w1,m, w2,1, w2,2, . . . , w2,m, . . . , ws,1, ws,2, . . . , ws,m, b]
T
,

d = [d1, d2, . . . , dN ]
T
,

Z =

⎡⎢⎢⎢⎣
z1(u1) z2(u1) · · · zs(u1) 1
z1(u2) z2(u2) · · · zs(u2) 1

...
...

. . .
...

...
z1(uN ) z2(uN ) · · · zs(uN ) 1

⎤⎥⎥⎥⎦ ,

zk(ui) =

[
g

(
xk(ui)

2h

)
, g

(
xk(ui)

2h−1

)
, . . . , g

(
2h−1xk(ui)

)
, g
(
2hxk(ui)

)]
,

i = 1, . . . , N, k = 1, . . . , s, xk(ui) is the weighted sum of neuron inputs for
the k-th neuron in the last hidden layer when network inputs are equal to the
elements of the vector ui, b is the bias of the neuron in the output layer.
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The values of parameters of the new activation functions, that minimise the
cost function (2) are given by the formula

w = (ZTZ)−1Zd. (5)

Due to the numerical errors, the elements of the vector w should not be cal-
culated from the equation (5), but determined by solving the normal equation
set (4), using the numerical methods [3].

In [7], it was specified that, possibly, the following step 5 may be carried out.
 Optional step 5. Remove the columns of the matrix Z, corresponding to the
least elements of the vector w and solve the modified least squares problem
(MLSP) that will be obtained after the removal of the columns. MLSP may
be solved fast by using an appropriate algorithm that make use of the QR
distribution [3]. Omit the terms of the activation function (3) with the least
elements of the vector w. If the value of the cost function decreased consid-
erably, than step 5 should be repeated; in the other case, the changes input
within the last iteration should be cancelled.

Step 5 may be summarized as follows:

– From the vector w, remove the elements much lower than the other ones.
– From the matrix Z, remove the columns related with the removed elements.
– Simplify the activation functions of the neurons in the last hidden layer,

by omitting the terms of the formula (3), that are related to the removed
elements of the vector w.

– Determine the new values of the elements of the shorted vector w by solving
MLSP achieved from appropriate numerical methods.

In the next section, the proceeding methods that are much better than the
procedure specified in step 5 are proposed.

In [7], it was shown that the execution of the steps 1-4 may significantly de-
crease the cost function value in a time much shorter than one epoch of the
Levenberg-Marquardt algorithm training. This procedure is perfectly suited to
further improve the operation of the application wherein MLP successfully works
for some time. It is not needed to begin the whole process from the very begin-
ning. The hazard of being stuck at a ”crummy” local minimum of the cost
function does not exist.

The steps 1-4 make it possible to reduce the cost function value though fur-
ther learning with the gradient-type methods does not result in a noticeable
improvement. The application of these steps brought very positive results even
for large networks that had several dozens of inputs. The described procedure
was tested, among others, on the databases of the UCI benchmarks, that had
many inputs and a high number of instances [6].

3 Activation Function Selection Methods for the Last
Hidden Layer of a Multilayer Perceptron

Omitting the term wk,�m/2	g(x) in step 5 may increase the value (2); therefore
such a procedure is not advised. In a later part of this study, the results of the
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computer simulations were presented, where, due to such proceeding, the value
(2) was significantly increased.

It is vital that, in the sum (3), the term wherein the function g(cx), where
c = 1, is not omitted since, after training the network with a gradient algorithm,
the neurons weights in the last hidden layer are matched for the neurons with
the activation functions g(cx).

In the present study, the application of one of the following methods has been
proposed:

Method 1

– From the vector w, remove all elements much lower than the other ones,
except of the elements wk,�m/2	 , where k = 1, . . . , s. Let us note that, in the
formula (3), the functions g(x) are multiplied by the elements wk,�m/2	.

– From the matrix Z, remove the columns related with the removed elements
of the vector w.

– Simplify the activation functions for the neurons in the last hidden layer,
by omitting the terms on the right hand side of the equation (3), that are
related with the removed elements of the vector w.

– Determine the new values of the shortened vector through solving MLSP
achieved, with appropriate numerical methods.

Method 2

a) Assume k = 1.
b) From between the elements wk,1, wk,2, . . . , wk,m, leave only the biggest ele-

ment and the element wk,�m/2	.
c) if k �= s , then increase k and go to step b.
d) From the matrix Z, remove the columns related with the removed elements

of the vector w.
e) Simplify the activation functions of the neurons in the last hidden layer,

through omitting the terms of (3), that are related with the removed elements
of the vector w.

f) Determine the new values of the shortened vector elements through solving
MLSP achieved, by appropriate numerical methods.

Method 3

Assume h = 2. Carry out the steps 1-4 described in the Sect. 2. Till the value
of the cost function (2) is too high, increase the value of h and repeat the steps
1-4.
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a) b)

Fig. 1. The plots of the functions a) f1(x1, x2) = x2
1 − x2

2 b) f2(x1, x2) =

sinc
(√

x2
1 − x2

2

)

3.1 Computer Simulations

The MLPs were trained to approximate the following functions:

a) f1(x1, x2) = x21 − x22,

b) f2(x1, x2) = sinc
(√

x21 − x22

)
, where sinc =

{
sin x
x for x �= 0

1 for x = 0
.

The functions have been presented in Fig. 3.1. MLPs had one hidden layer, each,
wherein there were 40 neurons with a bipolar activation function flast(x) =
2/(1 + exp(−2x)) − 1. In the output layer, there was one neuron with a lin-
ear activation function. The hidden layer’s weights and biases were initialized
according to the Nguyen-Widrow algorithm [10]. To initialize the output layer,
random values were used. The learning with the Levenberg-Marquardt algorithm
was interrupted after 200 epochs since the value of the cost function, (2), was
changing very insignificantly only. It was assumed h = 3.

In the tables 1 and 2, the mean values of the cost function, that were obtained
when applying various proceeding methods. These mean values were computed
from 10 simulation results. In the tables 1 and 2, the following denotations have
been used:

LM - The mean value (2) after completion of learning with the Levenbeg-
Maquardt algorithm. The procedure described in Sect. 2 has not been used.
ALL - The mean value (2) after completion of learning with the Levenberg-
Marquardt algorithm and application of the steps 1-4 presented in Sect. 2. No
elements were removed from the vector w.
Met2 - The mean value (2) after completion of the learning by the Levenberg-
Marquardt algorithm and application of the steps 1-4 and method 2.
LSM - The mean value (2) after completion of the learning by the Levenberg-
Marquardt algorithm and computing of the weights in the output layer, with
the use of LSM.
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LAR - The mean value (2) after completion of the learning by the Levenberg-
Marquardt algorithm and application of step 5. The 40 biggest elements of the
vector w have been left only.

Table 1. The mean values of the cost function (2) obtained for approximation of the
function f1

LM Met2 ALL LSM LAR
7.38 · 10−8 8.85 · 10−9 3.67 · 10−15 7.37 · 10−8 2.40 · 10−6

Table 2. The mean values of the cost function (2) obtained for approximation of the
function f2

LM Met2 ALL LSM LAR
1.60 · 10−6 1.36 · 10−6 8.24 · 10−8 1.60 · 10−6 7.18 · 10−4

In Tables 3 and 4, there are presented the mean network learning time with the
Levenberg-Marquardt algorithm and the step 4 execution time for the functions
f1 and f2. In these tables, the following denotations have been assumed:
tLM - learning time with the Levenberg-Marquardt algorithm,
tLSM - step 4 execution time,
tLM/tLSM = tLSM

tLM
.

Table 3. The mean computation time for the f1 function

tLM [s] tLSM [s] tLM/tLSM

35.19 0.6811 51.67

The values in the columns ALL of Tables 1 and 2 are of several orders of mag-
nitude lower than the values in the columns LM, what proves the effectiveness
of the steps 1-4. When comparing the values in the columns denoted by LM
and LAR, one with another, it is easy to find that step 5 specified in Sect. 2
should not be applied. If it is desirable that the determination of the output
values happens with the use of a low number of arithmetical operations, then
one of the methods 1,2,3 specified in this section may be applied. The methods
1 and 3 may be used for conduction of the regularisation. If the data for learning
and testing is at our disposal, then - applying the method 3 - it is possible to
increase the number of elements of the vector w till the instant that the cost
function for the test set starts to increase. Repeating the method 1 several times,
the number of elements of the vector w may be decreased till the cost function
starts to increase.
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Table 4. The mean computation time for the f2 function

tLM [s] tLSM [s] tLM/tLSM

41.92 0.4931 85.13

Among the steps 1-4, step 4 is characterised with the highest computational
complexity. The information about the number of calculations necessary to solve
the normal equation set (4) with various numerical methods is given in [3]. The
execution time for the steps 1-4 is more than 50 times less than the learning
time with the Levenberg-Marquardt algorithm. The execution time of each of
the methods 1,2 and 3 is much less than the execution time for the steps 1-4. On
the basis of the data of Tables 3 and 4, it may be easily noticed that the steps
1-4 and the methods 1-3 are executed much faster than learning MLP with the
Levenberg-Marquardt algorithm. They feature with a considerably lower com-
putational complexity than 200 epochs of the Levenberg-Marquardt algorithm.

4 Summary

The steps 1-4 of the method described in Sect. 2 make it possible to improve
significantly the approximation capability of the network in a short time. The
author does not recommend to apply step 5. If it is desirable to accelerate com-
putation of the output values, then it is better to apply the methods proposed
in Sect. 3. Due to application of method 2, simple activation functions are ob-
tained, that are the sums of maximally two terms. The methods proposed enable
to reach an adequate compromise between the number of computations and the
results being obtained. The methods 1 and 3 may be applied to carry out the
regularisation. In practical applications, often, MLPs of a very high number of
inputs and neurons (several hundred inputs) are often used. The learning of such
networks is a long term process. The steps 1-4 complete with the methods pro-
posed in Sect. 3 do not need to begin network learning from the very beginning
and may be applied to improve the operation of the networks trained by various
algorithms.

The methods presented may be implemented easily, making use of ready-for-
use libraries for solving the normal equation sets. There are many open Source
libraries licensed under free software licenses e.g. the GNU General Public Li-
cense.
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Abstract. Today, majority of collected data and information are usu-
ally passively stored in data bases and in various kinds of memory cells
and storage media that let them do nothing more than waiting for being
used by some algorithms that will read, write or modify them. Nowadays,
the majority of computational techniques do not allow pieces of informa-
tion to associate with each other automatically. This paper introduces a
novelty theory that lets information be free and active. There is allowed
that some pieces of information can automatically and autonomously as-
sociate with the other pieces of it after some introduced associative rules
characteristic also for biological information systems. As a result of this,
each new information has an automatic impact on information process-
ing in a brainlike artificial neural structure that can enable machines to
associate various pieces of information automatically and autonomously.
It can also enable machines actively perform some cognitive and thinking
processes and constitute real artificial intelligence in the future.

Keywords: associative artificial intelligence AAI, associative graph data
structure AGDS, actively associated data neural networks AADNN, asso-
ciative graph neurocomputing AGNC, autonomous association of pieces
of information, cognitive science.

1 Introduction

Contemporary computer science is a wide field of knowledge that is focused on
searching for even more efficient and optimal algorithms that let people solve
many complex problems of our civilization. Nowadays, various algorithms pro-
cess data that are usually stored in relational data bases and in various collections
like tables, lists etc. Almost all today used data structures and computer science
methodologies treat data and information like passive objects that are separated
from algorithms. Information has neither active nor autonomous influence on a
way of data processing except some concepts of the reactive programming [1].
The stored information is usually confined and trapped in such kind of passive
memories. Moreover, data base tables define only a few intentionally defined
relations between some pieces of information and data. Only sorting, search-
ing or other data mining algorithms can try to arrange many various pieces
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of information and get a new converted, transformed or extracted information.
The computer science tries to develop sophisticated algorithms that will be able
to create new algorithms that will be able to solve even more complex tasks.
Such sophisticated algorithms usually use many nested loops that usually lead
to high computational complexity and cause many numerical errors and insta-
bility. Nowadays, we have to solve the NP-hard and NP-complete tasks using
some soft-computing or approximated algorithms that usually supply some sub-
optimal solutions.

This paper focuses attention on some information associative processes that
can autonomously and automatically influence the computational process using
natural associations between data and a special active associative graph data
structure (AGDS) modeling these associations. Moreover, this paper introduces
the additional associative adaptation process that can take place between some
pieces of information in order to create new associations and rebuild or supple-
ment the information data structure that can be widespread to solve various
complex tasks. Each new piece of information has to be free to rearrange the
previously constructed associative information data structure in order to enable
it to automatically influence and change next associative processes that can au-
tonomously improve next results of associative computation. Each new piece of
information can partially change the way of data processing in the AGDS. Each
new piece of information changes the associative algorithms built in the AGDS.
The introduced associative rules let many pieces of information create some as-
sociative graph structures that are able to solve some computational tasks on
the basis of these pieces of information and limited to them and their derivatives.
This alternative way to classical computational methodology is called here an
associative artificial intelligence (AAI).

At first, there is explained how the pieces of information can be associated
in the biological brainlike way. Next, a novelty associative graph data struc-
ture (AGDS) will be described, constructed for exemplary data and shown how
the pieces of information can be associated to influence each other. Then, the
AGDS will be transformed into a novelty actively associated data neural net-
works (AADNN) that is an active neuronal graph. This graph enables us to
activate some pieces of information and compute some derived pieces of infor-
mation using associative connections. Moreover, the AADNN can develop its
graph structure to specialize in solving some computational tasks. This special
kind of graph computation is called here an associative graph neurocomputing
(AGNC). The AGNC never uses nested loops and usually decreases computa-
tional complexity because usually all necessary pieces of information are closely
associated (interconnected) to the initializing piece of information. The associa-
tions cause that any given data have not to be searched through in many various
loops like in the classical computational methodology.

Following the words of prof. Ryszard Tadeusiewicz ”it’s time to facilitate our
everyday life by thinking machines” [6].

This work has been supported and subsidized by the grant ”Modeling and
algorithms for control and decision making for discrete dynamics processes”.
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2 Autonomous Associations of Pieces of Information

There are some questions that have to be answered before we start with the
brainlike associative neural computing: How to recall some pieces of information
from biological associative systems? How some pieces of information can auto-
matically influence the other pieces of it and recall them associatively? How such
associative processes are controlled and what rules manage them? How some new
pieces of information can influence the thinking and cognition processes? What
data structures are needed to represent associated pieces of information and let
them activate each other to enable us thinking and cognition?

Brains - biological associative systems - have their own mechanisms to get
access to the pieces of information collected in the past. When we ask somebody
something we create a context for the associative processes we want to trigger in
the brain of the asked person. The asked person adds the question to his context
of thinking. Then, the whole context automatically and regardless of ones will
recalls the other associated pieces of information that widespread or partially
substitutes the previous context. The human conscious will can partially control
reactions and decide what to do next with the recalled pieces of information. He
can also ask oneself to widespread the context of the next associations after his
needs or fears [3]. The asking person also activates his associative processes. If he
gets an answer it is automatically associated with the question. The questions
are the natural way to recall the other associated pieces of information and
widespread the knowledge of associative systems. The questions let us create
some new associations and develop our intelligence.

The questions and the following answers to them are a special case of the fol-
lowing pieces of information that are automatically associated and remembered.
Also the other following pieces of information in space or in time are automat-
ically associated and remembered even if they could have no special meaning
or sense. Even completely pointless pieces of information can be associated and
remembered if only they follow in space or in time. Such kind of association is
called here an association of sequence (ASEQ) [4]. It lets us learn many neces-
sary rules of action and reactions, examine consequences, develop, specify, clarify,
deduct, learn etc. It also causes that we make mistakes and could be wrong.

The questions also recall some similar pieces of information that match these
questions. The recalled similar pieces of information activate the other pieces of
information partially creating an answer to the question. This process can be
gradual and is dependent on a difficulty of the given question. The similarities
can activate the associated answer or some pieces of information that can be
next associated in the ASEQ way with the other pieces of information and so
on. This second important associative mechanism is called here an association
of similarity (ASIM). The ASIM recalls some pieces of information if the con-
text contains some subset of the same or close data values. In this way some
equivalent, resemble, negative, inverse, included or complementary pieces of in-
formation can be automatically activated because there is a subgroup of data
values (forming these pieces of information) that is the same or similar.
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The ASIM and ASEQ can let natural or artificial associative systems re-
call some next pieces of information in various configurations and influence the
process of thinking. These two fundamental kinds of association let us also be
creative because all recalled pieces of information after the ASIM and ASEQ
can create many new contexts constructed from the recalled pieces of informa-
tion. Following the words of Albert Einstein, one of the most important ability
is the ability to construct questions and ask. The development of intelligence is
not possible without asking, associating, comparing, controlling and gathering
well-associated pieces of information that forms our knowledge and enables us
intelligent behaviours.

3 Associative Structures, Networks and Computations

The associative graph data structure AGDS is created for the associative rep-
resentation of many pieces of information. It is a special kind of a graph that
consists of nodes and edges. This structure is passive and reflects only the given
pieces of information of the data set together with the ASIM and ASEQ that
could be found in this data set. The nodes represent separated values of param-
eters, all pieces of information and some extra information about e.g. classes.
The edges interconnect all the nodes of the most closest values separately for
each parameter (ASIM), the nodes representing pieces of information that fol-
low one another in space or in time (ASEQ), the nodes representing parameter
values with the nodes representing the pieces of information (ADEF) and the
nodes representing the other information, e.g. classes, clusters etc. It is able to
map all existing ASIM and ASEQ in data set into this structure. In order to
start any associative computations all pieces of information gathered in tables
or data bases should be converted to the AGDS (fig. 1a). The AGDS rearranges
the traditional data structure connecting the most similar data values after the
known numerical or lexical orders. It also connects the pieces of information
that appear in a chronological sequence or a spatial neighborhood. The AGDS
arranges all pieces of information in such a way to be able to perform associative
graph neurocomputing (AGNC) using ASIM, ASEQ and ADEF to retrieve the
other associated pieces of information from this structure in the constant com-
putational complexity (CCC). Moreover, the same parameter values are never
duplicated but represented by the same graph nodes. In such a way the AGDS
usually aggregates many same values of various pieces of information. This ag-
gregation creates automatically many dependencies between various pieces of in-
formation. Furthermore, the closest parameter values are interconnected, so the
similar pieces of information are also automatically partially associated (ASIM)
in an appropriate degree to this similarity computing a weight (1) of this connec-
tion (fig. 1b). Finally, the pieces of information are connected after their spatial
or chronological sequence defining the ASEQ (fig. 1b).

wV N =
ParameterRange− |V alue−NeighborV alue|

ParameterRange
(1)
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In order to trigger any piece of information, the AGDS has to be converted
into the active neural network called here an actively associated data neural
network (AADNN). The AADNN consists of various kinds of neurons that rep-
resent parameter values and each piece of information from the data set. The
basic AADNN is built from the AGDS. The AGDS nodes are converted into the
AADNN neurons and the AGDS edges are converted into the AADNN connec-
tions. The similar parameter values are connected and weighted (1) to reflect
the influence on other close parameter values that are connected to this neuron.
The unordered (e.g. symbolic) parameter values are not directly connected. All
defining connections between the neurons representing the pieces of information
(SNk) and the neurons representing parameter values (V N j) could be weighted
to reflect the degree of representativeness of each parameter value (2) or the
other associations that define each piece of information. The number of all exist-
ing associations between the V N j neuron and all other connected SNk neurons
is denoted as qj . The less associations from the V N j neuron to the other SNk

neurons are there the more associatively defining (ADEF) is this connection and
the bigger weight it has. The neurons representing the pieces of information com-
pute simple weighted sum and are chronologically or spatially connected only if
they represent some known sequences or spatial arrangements. All defining con-
nections between the neurons representing classes and the neurons representing
the samples of these classes are usually not weighted. The class neurons usually
compute the maximum of the incoming excitations from all connected sample
neurons.

wSNk
j =

1

qj
∑

i∈SNk
1/qi

(2)

The AGDS construction is the most favourable if constructing together with the
AADNN on parallel and reactive [1] working neurons. Any new piece of informa-
tion activates the current AADNN and where the excitement is the strongest,
there is added this new piece of information. There is even no need to com-
pute the global maximum of all neuron excitations. There is only necessary to
define the time in which each neuron will start its parallel process of intercon-
necting with the new piece of information and its parameter values due to its
strength of the excitation by it and its type defining to which part of the new
piece of information it can connect. This process reflects the natural plasticity
processes known in biological neurons that can put out their dendrites or branch
their axonal trees. The stronger excited neuron the earlier it reacts on the new
piece of information and starts trying to interconnect with it. When the new
piece of information is already interconnected enough then it refuses and rejects
interconnecting to the other not so strongly excited neurons they ask it for con-
necting later. In this way each new piece of information is always connected to
the strongest excited neurons in the CCC and is automatically putted in the
order. The AGDS together with the AADNN can be constructed in the linear
computational complexity (LCC) after any given classical data set. If simulating
it on a nonparallel machine it takes pessimistically the square computational
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Fig. 1. (a) The conversion from the classical table data structure of trimmed Iris data
set into the AGDS and AADNN. The final AADNN is developed into the specialized
AADNN containing the extra subnetwork ASONN for classification. Each sensor is
sensitive for some given range of the parameter values. Each aggregator computes
the weighted sum of some sensors outputs. (b) The AGDS, AADNN, ASONN for the
exemplar numerical, symbolic and boolean input value parameters.



Information Freedom and Associative Artificial Intelligence 87

complexity (SCC). The neurons of the AADNN are conditionally reactive and
there are some similarities to the reactive programming [1].

The AADNN can grow up, develop and create some specialized neuronal sub-
structures (e.g. the sensors and aggregators in the ASONN in fig. 1) dedicated
to some kind of computation due to the information that can be gathered from
the existing information and the created AADNN associations. In order to start
the grown up processes, the AADNN has to be excited by some subgroup of
neurons (i.e. the context) representing the goal of the desirable specialization,
e.g. the classification to one of the defined classes. In case of classification, the
neurons representing classes are separately excited one after the other examin-
ing the reactions of the associated neurons and the following associated neurons
and so on. The excited class neuron triggers gradually the neurons representing
training samples that define this class. The excited sample neuron triggers the
value neurons that define this sample. The excited value neurons trigger other
close value neurons due to their similarity and also partially trigger the other
sample neurons that are defined by these exited value neurons. The other ex-
cited sample neurons can be a member of the same class or a member of the
other class. The stronger is the excitation of such neurons the more correlated
are these neurons with the firstly triggered sample neuron by the class neuron at
the beginning of this process. The strongest excited samples of the other classes
should be discriminated at first, so the most discriminating are the value neu-
rons that do not excite these samples of the other classes. Such value neurons
should be aggregated and they can create together the specialized sensor neurons
that will be profitable for the specialized classification subnetwork called here
an associative self-optimizing neural network (ASONN) which precise construc-
tion will be described in the other paper [5]. This short sample demonstrates
only the ability of the AADNN to develop after its intentional excitation. All
above presented computations have the CCC for each initially exited neuron or
any subgroup of neurons. Such computations based on some subgroups of in-
tentionally excited neurons in the AADNN are called here an associative graph
neurocomputing (AGNC). The AGNC does not use any loops because all nec-
essary data are directly or indirectly interconnected to the neurons that need
them. The AGNC is always local but can make neurons conditionally react on
the other excited neurons and in such a way control the excitation process inside
the whole AADNN gathering necessary information for the desired goal. In case
of the ASONN, the AGNC is gathering the information about all correlations
with the sample neurons representing the other classes and creates some new ag-
gregation neurons that reflect discriminative combinations of the value neurons.
The neighbour value neurons are transformed into the sensor neurons shown in
figure 1.

In this associative methodology, each new piece of information has an im-
pact and influence on the other pieces of information associatively stored in
the AADNN. Each new piece of information can also recall the other associated
pieces of information from the AADNN. There is also no separation between data
and algorithms because the whole AADNN and its structure store all associated
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pieces of information and the way of activation of its neurons (the substitution
for the algorithms). The more pieces of information are represented in the AGDS
or AADNN the more thrifty and efficient are the AGDS and AADNN.

Table 1. The comparisons of average classification results of 10 folds cross-validation

The basic AADNN can be triggered by any training or test sample. The ex-
citation is forwarded to the other associated neurons: at first, the other value
neurons due to their similarity (ASIM) and the sample neurons defining some
pieces of information (ADEF) and then to the class neurons defined by some
subgroups of the sample neurons (ADEF). The class neurons react on an exci-
tation and produce classification results, so even the basic AADNN can be used
as the classificator (fig. 1b) without any training. Such classificator has not the
optimized structure. Its structure can be optimized reducing some minor value
neurons or it can be developed and specialized into the e.g. ASONN subnetwork
(fig. 1) that can classify even separately from the basic part of the AADNN.
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The AADNN adapted to classification tasks has shown that AADNN classifi-
cation results are comparable to the results obtained by computationally much
more complex algorithms like SVM, RBFN, PNN, kNN shown in table 1.

4 Summary and Conclusion

In this paper the new associative graph data structure (AGDS) and the actively
associated data neural network (AADNN) have been introduced. It has been
shown that they can enable us to perform some computations on the associated
pieces of information and obtain some results far more quickly than in the tra-
ditional computing methodologies. The AADNN stores associated information
not only in connection weights but also in neurons as well as in the structure of
interconnections. Such associations can substitute many time-consuming nested
loops and algorithms used for searching, sorting and examining accordance, con-
formity, similarity and differences, recognition, classification, clusterization or
regression. The associative graph neurocomputing (AGNC) does not use loops
at all and performs computation incomparably faster using associative intercon-
nection because it keeps all necessary pieces of information close to the neurons
that need them to use. The introduced AADNN and AGNC are very similar
to the biological brainlike computing where neurons do not compute complex
mathematical equations or expressions even though the biological information
systems react very fast on various complex signals and pieces of information.

The classical as well as associative computations have their strong and weak
points but together they can improve computational abilities of the future com-
puter systems decreasing computational complexity and reducing numerical er-
rors. Cooperation always brings more benefits than competition.
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Abstract. A problem of learning in non-stationary environment is solved
by making use of order statistics in combination with the Parzen kernel-
type regression neural network. Probabilistic properties of the algorithm
are investigated and weak convergence is established. Experimental re-
sults are presented.

1 Introduction

In this paper a system described by the following equation is considered

Yi = φ(Xi) + aci + Zi, i ∈ {1, . . . , n}, (1)

where Xi ∈ A ⊂ Rp are i.i.d. input random variables with unknown probabil-
ity distribution f(x), Yi ∈ R are output random variables and ci are elements
of some known sequence, satisfying lim

i→∞
|ci| = ∞. Random variables Zi ∈ R

introduce a noise into the system and satisfy the following assumption

E[Zi] = 0, V ar(Zi) = E[Z2
i ], i ∈ {1, . . . , n}. (2)

The function φ : A→ R and the constant a are not known and can be estimated
with the use of some generalized nonlinear regression method. In the paper, the
algorithm based on order statistics and Parzen kernels is proposed.

It should be noted that such a problem, i.e. concerning nonstationary noise,
was never studied in literature before. The method applied in this paper is
based on the nonparametric estimators, which are known, in the area of soft
computing, as probabilistic neural networks [36]. For the case of stationary noise,
nonparametric regression estimates in stationary environment were considered in
[3], [4], [6], [10], [12], [14], [15]-[17], [23]-[25] and [28]-[31] whereas non-stationary
environment was studied in [7], [18]-[22], [26] and [27]. For excellent surveys on
these algorithms the reader is referred to [8] and [5].
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2 Algorithm and Main Result

To estimate the value of parameter a in model (1), the order statistics approach
can be applied. Let F (w) denote the cumulative distribution function of the
random variables φ(Xi) + Zi, i ∈ {1, . . . , n}

F (w) = P (φ(Xi) + Zi < w). (3)

Then, the sequence of cumulative distribution functions Fi(y) for random vari-
ables Yi, i ∈ {1, . . . , n} can be introduced

Fi(y) = P (Yi < y) = P (φ(Xi) + aci + Zi < y) = F (y − aci). (4)

The probability density function, corresponding to the cumulative distribution
function F (y), is further denoted by p(y).

In [13] the following method for estimating the parameter a was proposed for
model (4)

ân = Med

{
Yj − Yi
cj − ci

: i, j ∈ {1, . . . , n}, j < i

}
. (5)

The function φ(x), according to model (1), represents the relation between the
random variables pairs (Xi, Vi) given by

(Xi, Vi) = (Xi, Yi − aci), i ∈ {1, . . . , n}. (6)

Since the actual value of parameter a is not known, variables Vi have to be
estimated with the use of estimator ân

V̂i,n = Yi − ânci, i ∈ {1, . . . , n}. (7)

For the estimation of the function φ(x) one can apply the nonparametric method
based on kernel functions. Denoting R(x) = φ(x)f(x), in each x such that f(x) �=
0 the function φ(x) can be expressed by

φ(x) =
R(x)

f(x)
. (8)

For the functions R(x) and f(x) the following estimators can be proposed

R̂n(x, ân) =
1

n

n∑
i=1

V̂i,nKn(x,Xi), (9)

f̂n(x) =
1

n

n∑
i=1

n∑
i=1

K ′
n(x,Xi), (10)

where Kn : A×A→ R and K ′
n : A×A→ R are some known functions given in

the form

Kn(x, u) =
1

hpn

p∏
k=1

K

(
x− u

hn

)
, (11)
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K ′
n(x, u) =

1

h′pn

p∏
k=1

K

(
x− u

h′n

)
, (12)

Sequences hn and h′n tend to 0 as n goes to infinity. Function K : R → R is
called the Parzen kernel and has to satisfy the following conditions

sup
w∈R

|K(w)| <∞, (13)

∫
R

|K(w)|dw <∞, (14)

lim
‖w‖→∞

‖w‖p|K(w)| = 0, (15)

∫
R

K(w)dw = 1. (16)

Finally, according to expression (8), the estimator φ̂n(x, ân) of the regression
function φ(x) is simply given by

φ̂n(x, ân) =
R̂n(x, ân)

f̂n(x)
. (17)

The algorithm presented above is known as a general regression neural network
(GRNN) [37]. The scheme of the network is presented in Fig. 1.

To ensure the convergence of the above algorithm, assumptions of the follow-
ing theorem should be satisfied:

Theorem 1. If conditions (2), (13), (14), (15) and (16) are satisfied, F (y)
and p(y) are absolutely continuous functions, ci is never decreasing or never
increasing and additionally the following conditions hold∫

R

p2(y)dy <∞, (18)

lim
n→∞hn = 0, lim

n→∞
1

n2hpn
= 0, (19)

lim
n→∞h′n = 0, lim

n→∞
1

n2h′pn
= 0, (20)

then

ân
n→∞−→ a in probability (21)

and

φ̂n(x, ân)
n→∞−→ φ(x) in probability. (22)



Parzen-Type Kernel Regression Neural Network and Order Statistics 93

Fig. 1. Scheme of the general regression neural network

Proof. According to Theorem 3 in [13], the estimator ân is asymptothically nor-
mal. This is in turn a sufficient condition for convergence (21). Convergence

(22) can be proven combining (21), convergence of estimator φ̂n(x, ân) [5] and
Theorem 4.3.8 in [40].

3 Experimental Results

In the following simulations a one-dimensional case is considered (p = 1). The
input random variables are taken from the normal distributionN(0, 2) and Zi are
from the standard normal distribution N(0, 1). The following regression function
φ(x) is chosen

φ(x) = 10 arctanx+ 10. (23)

For this function, the probability density function p(y) of random variable φ(Xi)+
Zi satisfies condition (18). The sequence ci is taken in the form

ci = it, (24)

which is never decreasing. In simulations the parameter t is set to 0, 5. The actual
value of parameter a is set to 2. To estimate the regression function φ(x) the
rectangular Parzen kernel is proposed

K(w) =

{
0, 5, w ∈ [−1, 1],
0, w ∈ (−∞,−1) ∪ (1,∞).

(25)
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It can be easily checked that the above kernel satisfies all the conditions (13)-
(16). The sequences hn and h′n from functions (11) and (12) are taken in the
form

hn = Dn−H , h′n = D′n−H′
, D,D′ > 0, H,H ′ > 0. (26)

It is easily seen that, in order to satisfy conditions (19) and (20), the parameters
H and H ′ should satisfy the following inequalities

0 < H < 1, 0 < H ′ < 1. (27)

In the considered simulations it is assumed that H = H ′ and D = D′ = 1.
In Figure 2, the simulation results for estimator ân are presented.

Fig. 2. Estimator ân as a function of number of data elements n and its comparison
with the actual value of a

The value of estimator ân converges quite fast to the value a = 2. This fact
enables an acceptable estimation of random variables Vi and, in consequence, the
proper estimation of functions R(x) and φ(x). To show this, several simulations
were performed for different values of parameters H = H ′. Values of the Mean
Squared Error (MSE) of φ̂n(x, ân) for different numbers of data elements n are
presented in Fig. 3.

For H = H ′ = 0, 1 the estimator φ̂n(x, ân) converges very fast to the regres-
sion function φ(x). For the higher values ofH = H ′ the convergence is worse, but
the trend is still satisfactory. In Figure 4, estimator (17), obtained for n = 5000
data elements, is compared with the regression function (23).
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Fig. 3. Mean Squared Error of the estimator φ̂n(x, ân) as a function of number of
data elements n, for three different values of parameters H = H ′: H = H ′ = 0, 1,
H = H ′ = 0, 3 and H = H ′ = 0, 5

Fig. 4. Estimator φ̂n(x, ân), obtained for n = 5000 data elements, in comparison with
the regression function φ(x). Data points represent the random variable pairs (Xi, Vi).
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4 Final Remarks

A problem of learning in non-stationary environment was solved by making use
of order statistics in combination with the Parzen kernel-type regression neural
network. Probabilistic properties of the algorithm were investigated and weak
convergence was established. In future works some alternative methods, e.g.
supervised and unsupervised neural networks (see e.g. [1], [2] and [11]) or neuro-
fuzzy structures (see e.g. [9], [32]-[35], [38] and [39]), can be applied to handle
nonstationary noise.
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Abstract. This paper presents the recursive least squares method, com-
bined with the general regression neural networks, applied to solve the
problem of learning in time-varying environment. The general regression
neural network is based on the orthogonal-type kernel functions. The
appropriate algorithm is presented in a recursive form. Sufficient simu-
lations confirm empirically the convergence of the algorithm.

1 Introduction

The idea of probabilistic neural networks and general regression neural networks
was first proposed by Specht in [35] and [36], respectively. Such networks are
nonparametric tools, designed for estimating probability density and regression
functions. In literature, their usability in solving stationary (see e.g. [4], [5], [7],
[12]-[16], [22]-[24] and [27]-[30]) and nonstationary problems (see e.g. [8], [17]-
[21], [25] and [26]) has been widely studied. It should be emphasized that in
both cases the noise was assumed to be stationary. An excellent overwiew of the
methods mentioned above can be found in [6] and [9].

Let us consider a system, which processes p-dimensional data elements Xi ∈
A ⊂ Rp, i = 1, . . . , with some unknown function φ : A → R (E[φ(Xi)] <
∞). The probability density function of the random variables Xi, described by
f(x), is unknown as well. Let us assume that the output φ(Xi) of the system is
accompanied with a noise, consisting of two components

– deterministic part aci, where a is some unknown constant, and ci is an
element of known sequence, satisfying lim

i→∞
|ci| =∞,

– probabilistic part Zi, which is a random variable satisfying the following
condition

E[Zi] = 0, E[Z2
i ] = di <∞. (1)

Therefore, the output random variable Yi, received from the system, is given by
the equation

Yi = φ(Xi) + aci + Zi. (2)

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 99–110, 2012.
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The aim of the generalized nonlinear regression is to estimate simultaneously the
regression function φ(x) and the constant a, given n pairs of random variables
(X1, Y1), . . . , (Xn, Yn) and the sequence ci.

2 Estimation of the Parameter a

For the estimation of the parameter a, the recursive least square method [1] can
be applied

ân = ân−1 +
cn∑n
i=1 c

2
i

(Yn − ân−1cn) . (3)

This method can be further generalized into the form

â(ω)
n = â

(ω)
n−1 +

cω−1
n∑n
i=1 c

ω
i

(
Yn − â

(ω)
n−1cn

)
, (4)

where ω is a real nonnegative number.
The assumptions of the following theorem ensure the convergence of the est-

mator â
(ω)
n to the actual value of parameter a

Theorem 1. If conditions (1) holds and additionally the following conditions
are satisfied

E[φ2(Xi)] =

∫
A

φ2(x)f(x)dx <∞, (5)

lim
n→∞

(∑n
i=1 c

ω−1
i∑n

i=1 c
ω
i

)
= 0, (6)

lim
n→∞

(∑n
i=1 c

2ω−2
i si

(
∑n

i=1 c
ω
i )

2

)
= 0, (7)

where si is defined as follows

si = max{V ar[φ(Xi)], di}, (8)

then

â(ω)
n

n→∞−→ a in probability. (9)

Proof. The theorem can be proven using simple analysis of the bias and the
variance of estimator (4), which leads to the following convergence

lim
n→∞E

[
(â(ω)

n − a)2
]
= 0. (10)

Convergence (10) is the sufficient condition for convergence (9).
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3 Estimation of the Regression Function φ(x)

To find the regression function φ(x), the nonlinear regression procedures should
be applied to the pairs of random variables (Xi, Vi), where

Vi = Yi − aci. (11)

Since the actual value of the parameter a is not known, the random variables Vi
have to be estimated, using some estimator ai

V̂i(ai) = Yi − aici, i = 1, . . . , n. (12)

It is easily seen that if ai = a, then V̂i(ai) = V̂i(a) ≡ Vi. In this section, for
further considerations of the convergence of the regression function estimator, it
is assumed that ai = a, i = 1, . . . , n.

The regression function φ(x) can be expressed in the following form

φ(x) =
φ(x)f(x)

f(x)

def.
=

R(x)

f(x)
, (13)

at each point x, for which f(x) �= 0. The nominator and the denominator of the
above expression can be estimated separately. In this paper the nonparametric
estimation based on kernel functions is proposed. Given 2n kernel functions
K̃i, K̃

′
i : A × A → R, i = 1, . . . , n, the estimators R̃n(x, a) and f̃n(x) can be

expressed in the following form

R̃n(x, a) =
1

n

n∑
i=1

V̂i(a)K̃i(x,Xi), (14)

f̃n(x) =
1

n

n∑
i=1

K̃ ′
i(x,Xi), (15)

One way of constructing the kernel functions is the application of orthogonal
series. Let gj : R→ R, j = 1, . . . denote the functions of the complete orthogonal
system, satisfying the following condition

∀j∈N sup
w∈R

|gj(w)| ≤ Gj . (16)

Then the kernel functionsK,K ′, for one-dimensional case (p = 1), can be defined
as follows

K̃i(x, u) =

M(i)∑
j=0

gj(x)gj(u), K̃
′
i(x, u) =

N(i)∑
j=0

gj(x)gj(u), i = 1, . . . , n, (17)

where M(i) and N(i) are sequences satisfying lim
i→∞

M(i) = ∞ and lim
i→∞

N(i) =

∞, respectively. The convergence of estimators (14) and (15) with kernel
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functions (16) can be slightly improved by the applicaion of so-called Cesaro
means. Let us denote Sj(x, u) as the following partial sums

Sj(x, u) =

j∑
k=0

qk(x)gk(u), j = 1, . . . , n. (18)

Then, the kernel functions K,K ′ : A × A → R can be proposed as the Cesaro
means of these partial sums

Ki(x, u)=
1

M(i) + 1

M(i)∑
j=0

Sj(x, u)=

M(i)∑
j=0

(
1− j

M(i) + 1

)
gj(x)gj(u), i = 1, . . . , n,

(19)

K ′
i(x, u) =

1

N(i) + 1

N(i)∑
j=0

Sj(x, u) =

N(i)∑
j=0

(
1− j

N(i) + 1

)
gj(x)gj(u), i = 1, . . . , n

(20)
Finally, the estimator for functions R(x) and f(x) can be proposed in the fol-
lowing forms

Rn(x, a) =
1

n

n∑
i=1

V̂i(a)Ki(x,Xi) =
1

n

n∑
i=1

M(i)∑
j=0

V̂i(a)

(
1− j

M(i) + 1

)
gj(x)gj(Xi),

(21)

fn(x) =
1

n

n∑
i=1

K ′
i(x,Xi) =

1

n

n∑
i=1

N(i)∑
j=0

(
1− j

N(i) + 1

)
gj(x)gj(Xi), (22)

Then, in light of formula (13), the estimator of the regression function φ(x) is
given by

φn(x, a) =
Rn(x, a)

fn(x)
. (23)

To ensure the convergence of estimator (23), assumptions of the following theo-
rem have to be satisfied.

Theorem 2. If conditions (1) and (5) hold and additionally the following con-
ditions are satisfied

lim
n→∞N(n) = 0, lim

n→∞

⎡⎢⎣ 1

n2

n∑
i=1

⎛⎝N(i)∑
j=1

G2
j

⎞⎠2
⎤⎥⎦ = 0, (24)
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lim
n→∞M(n) = 0, lim

n→∞

⎡⎢⎣ 1

n2

n∑
i=1

⎛⎝M(i)∑
j=1

G2
j

⎞⎠2

si

⎤⎥⎦ = 0, (25)

where si is defined as in (8), then

φn(x, a)
n→∞−→ φ(x) in probability. (26)

Proof. The proof of the theorem can be found in [14].

4 Probabilistic Neural Network

In the real world applications, the value of the parameter a is not known, there-
fore the random variables Vi have to be estimated, using formula (12). In par-
ticular, the estimators ai can be the same for each variable Vi, e.g.

∀i∈{1,...,n} ai = â(ω)
n . (27)

Then, the estimator of the regression function φ(x) can be proposed as φn(x, â
(ω)
n )

(replacing a by â
(ω)
n in formulas (21) and (23)). The convergence of this estima-

tor can be proven combining Theorems 1 and 2 and Theorem 4.3.8 in [40]. The

estimator φn(x, â
(ω)
n ) is calculated in a two-step process. First, given all output

variables Yi, i = 1, . . . , n, the estimator â
(ω)
n is computed. Then, after the first

step is completed, the estimation of the regression function φ(x) can be provided.
The main disadvantage of the approach presented above is that the algorithm

cannot be performed in a recursive way. To maintain this ability, we propose
a slightly modificated form of estimator (21) (and in consequence (23)). Let us

assume that for each i = 1, . . . , n an estimator an is different end equal to â
(ω)
n .

Then, the estimator of function R(x) can be proposed as follows

R̂n(x, {â(ω)
i }n) = 1

n

n∑
i=1

V̂i(â
(ω)
i )Ki(x,Xi), (28)

where {â(ω)
i }n denotes the subset of estimators {â(ω)

1 , . . . , â
(ω)
n } and Ki is the

kernel function given by (19). Estimator (28) can be easily written in a recursive
way

R̂n(x, {â(ω)
i }n) = n− 1

n
R̂n−1(x, {â(ω)

i }n−1) +
1

n
V̂n(â

(ω)
n )Kn(x,Xn), (29)

where estimators â
(ω)
n are computed using recursive formula (4). Estimator (22)

can be expressed in a recursive way without any additional modifications

fn(x) =
n− 1

n
fn−1(x) +

1

n
K ′

n(x,Xn). (30)
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Finally, the estimator of the regression function φ(x) is, analogously to (23),
given by

φ̂n(x, {â(ω)
i }n) = R̂n(x, {â(ω)

i }n)
fn(x)

. (31)

The algorithm presented above can be considered as a general regression neural
network [36]. The appropriate scheme of this network is presented in Fig. 1.

Fig. 1. The block digram of the probabilistic neural network, adopted to performing
algorithms presented in sections 2 and 3

We do not present any theorem, which would ensure the convegence of esti-
mator (31). Instead, in the next section the convergence is tested empirically, on
a basis of several numerical simulations.
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5 Simulations

In the following simulations a system described by equation (2) is considered,
with the constant a equal to 2, 5 and the regression function φ(x) given by

φ(x) = 10
2x3 − x

cosh(2x)
. (32)

The random variables Xi are generated from the uniform probability distribu-
tion, from the interval Xi ∈ [−5, 5] , i = 1, . . . , n. The random variables Zi come
from the normal distribution N(0, di), where di is given in the form

di = iα, i = 1, . . . , n, α > 0. (33)

The elements of the sequence ci are taken in a similar form

ci = it, i = 1, . . . , n, t > 0. (34)

In the presented simulations, the parameter t is set to t = 0, 2. It is easily seen
that, in order to obey assumptions 6) and (7) of Theorem 1, the exponent α has
to satisfy the following inequality

α < 2t+ 1. (35)

In the estimators of functions R(x) and f(x), the Hermite orthogonal system is
proposed

gj(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(−x2/2)
4
√
π

j = 0,

−√2xg0(x) j = 1,

−
√

2

j
xgj−1(x)−

√
j − 1

j
gj−2(x) j > 0.

(36)

The functions gj can be bounded by (see [39])

∀j∈N sup
x∈R

|gj(x)| ≤ Gj = Cj−1/12. (37)

Assuming that the sequences M(n) and N(n) are given in the following forms

M(n) = �DnQ�, D > 0, Q > 0, N(n) = �D′nQ′�, D′ > 0, Q′ > 0, (38)

the assumptions (24) and (25) of Theorem 2 are satisfied if the parameters Q
and Q′ satisfy the following conditions

Q′ <
3

5
, Q <

3

5
(1− α) . (39)

In all of the simulations, parameters Q and Q′ are kept the same, i.e. Q = Q′.
Parameters D and D′ are set to D = D′ = 1, 5.
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Fig. 2. Convergence of the estimator â
(8)
n to the actual value of parameter a, for α = 0, 2

Fig. 3. MSE values for estimator φ̂n(x, {â(8)
i }n) in a function of number of data ele-

ments n, for three different values of parameter Q = Q′: Q = Q′ = 0, 2, Q = Q′ = 0, 3
and Q = Q′ = 0, 4 (alpha = 0, 2)
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The constant a is estimated by making use of estimator (4), with parameter
ω = 8. The results of the simulation, obtained for α = 0, 2, are shown in Fig. 2.

The estimator â
(8)
n converges to value 2, 5 quite fast. This satisfactory result

should be reflected in the quality of estimation of the regression function φ(x).
To investigate the quality of estimator (31) the Mean Squared Error (MSE)
value is calculated for each considered number of data elements n. Simulations
are performed for three different values of parameter Q = Q′. Parameter α is
set to 0, 2. Results are presented in Fig. 3.

For all considered values of Q = Q′ the estimator φ̂n(x, {â(8)i }n) seems to
converge to the regression function φ(x) as the number of data elements n in-
creases. It is easily seen that for α = 0, 2, inequalities (39) are satisfied. An
interesting question arrised how the estimator (31) behaves if inequalities (39)
are not held. To answer this question simulations for three different values of α
are performed, keeping fixed Q = Q′ = 0, 3. According to inequalities (39), for
Q = 0, 3 the parameter α should obey α < 0, 5. Obtained results are shown in
Fig. 4.

Fig. 4. MSE values for estimator φ̂n(x, {â(8)
i }n) in a function of number of data ele-

ments n, for three different values of α: α = 0, α = 0, 4 and α = 0, 6 (Q = Q′ = 0, 3)

In Figure 5 an example estimator φ̂n(x, {â(8)i }n), obtained for n = 8000,
Q = Q = 0, 3 and α = 0, 2 is presented in comparison with the regression
function (32).
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Fig. 5. Estimator φ̂n(x, {â(ω)
i }n), obtained for α = 0, 2, Q = Q′ = 0, 3 and n = 8000,

in comparison with the regression function φ(x). Points denote the random variable
pairs (Xi, Vi).

6 Conclusions and Future Work

In the paper the recursive least squares method, combined with the general re-
gression neural networks, was presented. Thess tools were applied to solve the
problem of learning in time-varying environment. The general regression neural
network were developed using the orthogonal-type kernel functions. Future work
can be focused on applying some other methods, e.g. supervised and unsuper-
vised neural networks (see e.g. [2], [3] and [11]) or neurofuzzy structures (see
e.g. [10], [31]-[34], [37] and [38]), to handle non-stationary noise. Moreover, the
recursive form of the algorithm presented in this paper allows to adopt it for
data streams.
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Abstract. A number of researchers headed by E. Gardner have proved
that a maximum achievable memory load of binary perceptron is 2. A
learning algorithm allowing reaching and even exceeding the critical load
was proposed. The algorithm was reduced to solving the linear program-
ming problem. The proposed algorithm is sequel to Krauth and Mezard
ideas. The algorithm makes it possible to construct networks storage ca-
pacity and noise stability of which are comparable to those of Krauth
and Mezard algorithm. However suggested modification of the algorithm
outperforms.

Keywords: Binary neural networks, simplex-method.

1 Introduction

We shall deal with binary perceptron with N inputs and one binary output. A
neuron here is a typical adder with sign(h) activation function and zero threshold.

Storage capacity of such perceptron taught by Hebb rule with randomly and
independently generated reference patterns reaches the value Mmax = 0.14N .
Attempts at training with a larger number of patterns (M > Mmax) results in
a complete collapse of associative memory [1]. Hebb rule also proves unequal to
its task in case if those patterns are correlated (Mmax � 0.14N). On the other
hand it was proved [2-3] that maximum storage capacity is comes up to 2N .

In order to understand why Hebb rule gives us networks with such small stor-
age capacity and high sensitivity of patterns mutual correlations, let us consider
energy surface forming in process of training.

Except that perceptron performance cannot be described by energy in contrast
to fully connected Hopfield network, the authors took the liberty of doing so.

Given M uncorrelated patterns Xm = (xm1, xm2, . . . , xmN ), where xmi = ±1
and m = 1, 2, . . . ,M , the perceptron should produce a response ym = ±1 when
noisy pattern Xm is presented. Then, according to Hebb rule, synaptic weights
(of a network) can be described by N -dimensional vector:

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 111–118, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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W =

M∑
m=1

ymXm. (1)

Storing some few patterns (M < Mmax) leads to energy surface presented in
fig.1.a. Local minima are formed at points of a space corresponding to stored
patterns. Depths and basins of attraction of these minima are the same. Spa-
tial distribution of obtained local minima is uniform due to uncorrelatedness
of patterns. Attempts to form extra minima with the same depths and basins
of attraction result in strong deformation of energy surface: the existing local
minima either shift or merge with each other. Because the correlated patterns
are more densely placed in the space, memory collapse takes place even in case
of fewer stored patterns.

Fig. 1. Stages of energy surface forming: a) memory load M < Mmax (broken curves
denote the extra minima to be added); b) M > Mmax associative memory collapse;
c) M > Mmax local minima are formed at desired points of the space although their
depths and basins of attraction are respectively smaller

From the qualitative situation presented in Fig. 1 it follows that an effort to
form local minima of the same depths without taking into account their rela-
tive positions is not reasonable. It is intriguing to have local minima of different
depths adaptively at desired points. This can be achieved by sacrificing depths
and basins of attraction of local minima corresponding to closely adjacent pat-
terns (fig. 1.b).

It was demonstrated [4] that the depth E0 and the size of basin of attraction
nm of local minimum can be described by one coefficient rm introduced in Hebb
rule (1) in this way:
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W =

M∑
m=1

rmymXm, (2)

where rm ∈ (0; 1]. Local minimum energy is estimated by the expression

Em = −rmN2,

with an accuracy to small fluctuations, and the radius of basin of attraction is
determined by this estimate:

nm =
N

2

(
1− r0

rm

√
1− r2m

)
, r0 =

√
2 lnN/N.

Hence learning task reduces to the problem of finding weight coefficients rm for
given set of pairs (Xm; ym). As it will be shown later, this task in its turn reduces
to linear programming problem.

The idea of simplex-method approach to learning of perceptron was first put
forward by Krauth and Mezard in 1987 [5]. Application of both approaches
enables to store up to 2N patterns which is equivalent of theoretical memory
capacity limit [2].

This paper is constructed in the following way. In section 2 we show how
to reduce assigned problem to linear programming problem, discussed Krauth
and Mezard algorithm and make a comparison between this and proposed one.
Experimental research of properties of suggested algorithm was conducted in
section 3. The resume of the work is presented in conclusions.

2 Simplex-Method

Let′s assume vector X obtained as a result of garbling of pattern Xm is an input
vector of the perceptron. Thereafter binary perceptron switches to the true state
providing that local field is codirectional with ym, i.e. on condition of following
inequality:

ym

N∑
j=1

wj x̃mj > 0,

where x̃mj is a noisy j-coordinate of pattern number m−Xm.
For better recognition stability parameter Δ(Δ > 0) is introduced and train-

ing of the perceptron goes on under the condition:

ym

N∑
j=1

wjxmj > Δ, (3)

for the whole of given set of pairs (Xm; ym),m = 1, . . . ,M .
Parameter Δ is responsible for depth and size of basins of attraction of local

minima being formed. The more Δ is in the process of training the more the
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probability of right recognition of noisy patterns is. Therefore with regard to
(2) it is necessary to find such weight coefficients rm wherein inequality (3) is
satisfied for all reference patterns for as large as possible value of Δ. In this case
the depth of local minima formed is maximum possible.

Let′s formulize the assigned task. It is required to find (M + 1) variables
(r1, r2, ..., rM , Δ) which appear to be a solution to the linear programming prob-
lem: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M∑
m=1

rmymyμ(Xm,Xμ)−Δ ≥ 0,

0 < rm ≤ 1, μ,m = 1,M

Δ > 0.

f(r1, r2, ..., rM , Δ) = Δ→ max

(4)

The similar idea was formulated by Krauth and Mezard [5]. They took N weight
coefficients wj and stability parameter Δ straight as unknown quantities.

As seen in fig.2, the proposed algorithm and one of Krauth and Mezard pro-
duce similar results.

Fig. 2. Probability of incorrect recognition of noisy reference patterns as a function of
number of stored patterns M. Results for Krauth and Mezard algorithm are specified by
marked curve, ones for proposed algorithm by full curve. Patterns length is N = 200,
noise level is a = 0.09.

Algorithms vary in number of unknown parameters. In the region for M < N
the proposed algorithm outperforms. This region is of a great practical interest
because in this case minima have non-zero basins of attraction. As is clear from
fig.3 proposed algorithm outworks. Running time ratio of algorithms is an inverse
function of memory load.
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Fig. 3. Ratio of Krauth and Mezard learning time t2 to proposed algorithm learning
time t1 as a function of memory load M/N . The curve has been plotted experimentally
for N = 1000.

3 Suggested Learning Rule Analysis

In this section we analyze experimentally properties of the proposed algorithm.
Lets neglect domains of attraction for a while and determine by an experi-

ment the maximum storage capacity of the perceptron being trained by simplex-
method.

The experiment is as follows. Lets try to train the network on the set of M
patterns by simplex-method. If simplex-method possesses a solution (i.e. all M
patterns are fixed points) at the next step we try to train the network on the set
of M + 1 patterns, otherwise the algorithm should be terminated and running
value of M is chosen as a solution. This procedure is repeated 100 times and the
average result is calculated.

As can be seen in the fig.4 applying such learning rule makes it possible
to reach storage capacity of 2N . Experimental results for Hebb rule are also
presented in the figure for comparison.

Next we show that stability parameter is responsible for the size of basins of
attraction of local minima being formed. For this purpose we hold fixed param-
eter Δ, i.e. we move this one out of unknown quantities of the system (4) and
introduce new cost function:

f(r1, r2, ..., rM ) =

M∑
m=1

rmym

M∑
μ=1

yμ(Xm,Xμ) (5)

This linear programming problem is solved for various parameter values Δ =
30; 70; 150, N = 200,M = 40. Fig.5 illustrates the probability of incorrect pat-
terns recognition Per as a function of amount of noise a of input data. It is
apparent from the figure that stability parameter increment leads to basins of
attraction expansion.
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Fig. 4. Storage capacity M as a function of network size N : theoretical capacity for
Hebb rule, M = 0.14N (dashed line); theoretical value of maximum possible capacity,
M = 2N (dash-dot line); experimental values of maximum storage capacity for the
proposed algorithm and for the Hebb rule (square and circle markers, respectively)

Fig. 5. Probability of incorrect recognition Per as a function of noise level a. Curves are
plotted for three values of stability parameter values Δ = 30; 70; 150, N = 200,M = 40.
Borders of basins of attraction of local minima are depicted with dashed curves and
their radii - with arrows.
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Fig. 6. Probability of incorrect recognition Per as a function of noise level a: for training
by Hebb rule (dashed curve) and by algorithm using simplex-method (full curve) for
N = 200,M = 30, Δ = 110

Application of linear programming (4) for training networks is also works very
well for M < 0.14N . As fig.6 shows, in case of small amount of noise (up to 9%)
to input patterns, the probability of incorrect patterns recognition is more than
twofold bigger in training by Hebb rule than in training by the proposed method.

4 Conclusions

In this paper the perceptron learning algorithm using simplex-method for weight
coefficients setting was proposed. The discussed algorithm is sequel to Krauth
and Mezard ideas published in 1987 [5]. The algorithms are different in the
number of parameters: M (the number of stored patterns) parameters in the
suggested approach and N (the length of pattern vectors) ones in Krauth and
Mezard algorithm. In the field of practical interest (M < N) the proposed
learning algorithm outperforms above-said one, but both methods show similar
results for noise stability and storage capacity.

It has been shown that the proposed learning rule make it possible to construct
networks with 2N storage capacity. This value is a theoretically proved upper
limit [2]. Application of this method is also well-proved for loads in the region
of M ≈ 0.14N , since networks trained with this rule appear to be more noise-
resistant, as opposed to ones trained with Hebb learning rule.

Acknowledgments. This work is supported by Russian Foundation for Basic
Research RFBR, grant 09-07-00159-a.
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Abstract. In the present thesis the author undertakes the problem of
the objects selecting on pictures. The novel conception of using depth
map as a base to objects marking was proposed here. objects separation
can be done on the base of depth (disparity), corresponding to points
that should be marked. This allows for elimination of textures, occurring
in background and also on objects. The object selection process must be
preceded by picture’s depth analysis. This can be done by the novel neu-
ral structure: Self-Correcting Neural Network. This structure is working
point-by-point with no picture’s segmentation before.

Keywords: Hopfield, self-correcting neural networks, stereovision, depth
analysis, object selection.

1 Introduction

Objects selection refers to the mechanism of extracting objects of interest while
ignoring other objects and background in a given visual scene [1]. It is a fun-
damental issue for many computer vision and image analysis techniques and it
is still a challenging task to artificial visual systems. Some further information
concerning to techniques of the object selection one can find in [2],[3]. The ma-
jority of objects selectors is based on shape recognition, while very often the
shape is not known. We deal with this situation e.g. in the photography (e.g.
blurring the background on picture with no blurring first plane person) or in
the film industry (mainly in the special effects, the background is replaced by
some computer generated scene). In mentioned situations, there is no possibility
to predict of the object’s shape (or shape’s predicting is very difficult). In this
case the objects detection with no user interference is not possible. In author’s
conception, the shape of the object needn’t to be known. The objects selecting
is carried out on the base of distance to point, have to be selected. Thanks to
this, the objects selection can be carried out in completely automatic way, with
no user interference. To this end, the information about 3rd dimension of each
point on the scene (picture) is necessary. The most appropriate way to reach this
seems to register the pictures by stereo-cameras system and find each spatial co-
ordinates by the stereo-matching process [4]. Unfortunately most of existing and

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 119–125, 2012.
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well-working algorithms is based on picture segmentation and matching of seg-
ments [5], what can caused some inaccuracy. Any minor inaccuracies can not be
accepted in the case of application in film and photography. In this instance the
extreme accuracy is required.

In the present thesis the author presents novel algorithm of the objects se-
lection. Presented here method is based on the stereo-matching process, carried
out by Self Correcting Neural Networks (SCNN). This kind of neural structure
is working with extremely high accuracy. Another advantage of this structure
is working point-by-point with no earlier picture segmentation. this gives points
matching with the accuracy not reachable for any other algorithms known from
articles. On the base of information about each spatial coordinates correspond-
ing to picture’s points, the objects can be selected in automatic way. Assuming
extremely low error, presented here method can be applied in photography and
in the film industry.

2 The Self-Correcting Neural Network

the main part of the object’s auto-selection algorithm is depth analysis algorithm
based on Self-Correcting Neural Network. Some information about depth anal-
ysis with the use of Hopfield-like neural network one can find in [6]. The SCNN
was introduced by the author in [7]. The architecture of this neural network was
depicted in fig. 1.
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Fig. 1. The architecture of dual mode neural network
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As can be seen, this kind of structure consists of two kinds of neurons: neurons
in basic layer and neurons in managementing layer. The role of these two kinds
of neurons is completely different. The additional neuron neu00 is still active
(potential equal 1) and its role is to supply external currents to neurons in ba-
sic layer. The basic layer is realized by continuous Hopfield-like neural network
[8],[9]. The proposed network consists of n× n neurons for one epipolar lines in
an image. It is easy to note that the target system will consist of n networks
working pararely - each network will realize stereo-matching problem for one
epipolar line. n is dimension of images (width = height = n). Each neuron
neuik is responsible for fitting i-point in right image to k-point in left image.
The higher the external potential of neuik, the better the fitting of points is. In
the final configuration only for corresponding points i in right image to k in left
image potential of neuik will equal 1, for the rest point external potential of neu-
rons will equal 0. It is very convenient to represent neurons an a matrix, named
Fitting Matrix (FM), where number of row represent i index, and number of
column represents k index. As can be easily concluded, one in FM means fitting
of points, values between zero and one (for continuous activation function, used
here) can be interpreted as probability of stereo-matching of points. The role
of basic layer is to minimize their energy function, defined by weight connec-
tions between neurons. Heuristic filling of weight matrix significantly accelerates
the algorithm working and makes it more efficient. From this reason the Initial
Energy Function (IEF) was introduced (will be clarified below). This layer is
working as classical continuous Hopfield-like network. After finding the mini-
mum of IEF (stable state), weights are modified depending on the verification
of the result (carried out by managementing neurons).

The managementing layer can be built with different neurons - their type
depends on problem specification. Thanks to using managementing neurons the
solution reached, obtained by basic layer, is verified. Each neuron is controlling
one of the conditions of syntactic correctness of the solution. If the condition a
given neuron is responsible for, is not met, the range of weight modification is
calculated, and interconnection weights tik,jl between neurons vik and vjl in basic
layer are modified (which means also modification of energy function) according
following equation:

Δtik,jl = −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

m ηm
∂Cm

∂Tm
wm,ikvjl

+
∑

m ηm
∂Cm

∂Tm
wm,ikvik for jl �= 00

∑
m ηm

∂Cm

∂Tm
wm,ikvjl for jl = 00

. (1)

In the equation (1) η is gradient step, Cm is restriction assigned to manage-
menting neuron Tm, wmi is weight of connection m-neuron in managementing
layer and i-neuron in basic layer. After the modification, basic layer is starting
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minimization procedure once again. This procedure is repeated until the solution
is to be perfect, in the meaning of problem expression. This means that objective
function is minimized, with keeping all conditions of syntactic correctness of
solution.

Detailed information about Self-Correcting Neural Network will be available
in [10].

3 Experimental Results

An operational procedure of the objects auto selection is carried out in two
stages:

1. depth analysis of picture’s with using of stereo-matching (carried out by
SCNN),

2. selection of the objects on the base of 3rd dimension of the points.

3.1 Stereo-matching Algorithm

As can be easy noticed, the stereo-matching process plays crucial role in the
objects selecting algorithm. The results of stereo matching process carried out
by SCNN can be seen in fig. 2.

At figure 2 in the first row stereo pictures, used for stereo matching process
was shown. The second row shows neurons activity maps for 80 scanning line
(arbitrary assumed) in iterations (number of ”n”)of basic layer of the SCNN.
The neurons activity map is helpful to the analysis of network working. It can
be interpreted as a graphical form of fitting matrix to investigated line. In next
row obtained (by basic layer of the SCNN) the depth map can be seen. The
same sequence (instead of stereo-pictures) was repeated after the modification
of connection weights in basic layer.

The analysis of first running of basic layer for simulated pictures (fig. 2), nu-
merous mistakes of fitting can be seen. The relatively high error (29.49%) was
obtain. On the basis of output depth map, managementing neurons are calcu-
lating the connection weight’s corrections and adjust it towards minimization
of Dual Function. After the modification, basic layer is activated with new in-
terconnections strengths. In this running the error amounts to 11.45%, which
is significantly less then with no connection modification. After the third run-
ning the solution obtained is much better, then in the previous running. The
relative error amounts only to 4.37%. The stereo matching seems to be unique
and disparity is continuous in areas. the sequence of disparity is also kept. The
result of stereo-matching can be accepted as a data to the objects selection
process.
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Fig. 2. The result of stereo matching process carried out by SCNN for simulated stereo-
images ”corridor”
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3.2 Objects Selection Algorithm

The procedure of objects selection on the base of points disparity (corresponding
to depth) is very simple: mark each points with disparity belonging to particular
range, determined by the user. The result of algorithm’s working was depicted
on figure 3.

a) b)

c) d) e)

Fig. 3. The result of the auto-selection process carried out on the base of points dispar-
ity; a - origin picture, b - depth map, c, d, e - objects selected (red colour) for different
depth’s range

As can be seen, the points with selected value of disparity was selected. This
process was carried out with no interference with the user.

4 Conclusion

In the present article the novel algorithm for automatic object selection was
introduced. The algorithm is based on depth analysis of each points on the
picture. To get information about 3rd dimension of points, author proposed of
using the Self Correcting Neural Network. The promising properties of considered
artificial neural network was tested on stereo images. The experimental results
indicated significant gains from using managementing neurons to interconnection
weights modification. Main advantage of using the SCNN was great accuracy of
the stereo matching process, what allows on using this information to the objects
selection. The process of the objects selection was carried out automatically,
with no user’s interference. The method, presented here seems to have great
application potential in films and photography.

References

[1] Breve, F., Zhao, L., Quiles, M., Macau, E.: Chaotic phase synchronization and
desynchronization in an oscillator network for object selection. Neural Net-
works 22, 728–737 (2009)



Objects Auto-selection from Stereo-Images Realised by SCNN 125

[2] Dunka, A., Haffegeea, A., Alexandrov, V.: Selection methods for interactive cre-
ation and management of objects in 3D immersive environments. Procedia Com-
puter Science 1, 2609–2617 (2010)

[3] Mokhtarian, F., Abbasi, S.: Robust automatic selection of optimal views in multi-
view free-form object recognition. Pattern Recognition 38, 1021–1031 (2005)

[4] Faugeras, O.: Three-dimensional computer vision. A Geometric Viewpoint. MIT
(1993)

[5] Fua, P.: A parallel stereo algorithm that produces dense depth maps and preserves
image features. Mach. Vision Appl. 6, 35–49 (1993)

[6] Laskowski, �L.: Hybrid-Maximum Neural Network for Depth Analysis from Stereo-
Image. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M.
(eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 47–55. Springer, Heidelberg
(2010)

[7] Laskowski, L.: A Novel Continuous Dual Mode Neural Network in Stereo-
Matching Process. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN
2010, Part III. LNCS, vol. 6354, pp. 294–297. Springer, Heidelberg (2010)

[8] Hopfield, J.J., Tank, D.W.: ”Neural” computation of decisions in optimization
problems. Biological Cybernetics 52, 141–152 (1985)

[9] Hopfield, J.J., Tank, D.W.: Artificial neural networks. IEEE Circuits and Devices
Magazine 8, 3–10 (1988)

[10] Laskowski, L.: A Novel Self-Correcting Neural Network in the Objects Selection
Task (publication under redaction)



On-Line Trajectory-Based Linearisation

of Neural Models for a Computationally
Efficient Predictive Control Algorithm

Maciej �Lawryńczuk
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Abstract. The direct application of a neural model in Model Predictive
Control (MPC) algorithms results in a nonlinear, in general non-convex,
optimisation problem which must be solved on-line. A linear approxima-
tion of themodel for the current operating point can be used for prediction
in MPC, but for significantly nonlinear processes control accuracy may be
not sufficient. MPC algorithm in which the neural model is linearised on-
line along a trajectory is discussed. The control policy is calculated from a
quadratic programming problem, nonlinear optimisation is not necessary.
Accuracy and computational burden of the algorithm are demonstrated
for a high-purity high-pressure distillation column.

1 Introduction

A unique feature of Model Predictive Control (MPC) algorithms is the fact that
a dynamic model of the process is directly used on-line to predict its behavior
over some time horizon and to optimise the future control policy [8,13]. When
compared with other control techniques, their advantages are: constraints can
be easily imposed on process inputs (manipulated variables) and outputs (con-
trolled variables), they are able to control multivariable processes very efficiently,
they can be applied for processes with difficult dynamic properties (e.g. with sig-
nificant time-delays or the inverse response). In consequence, MPC algorithms
have been successfully used for years in thousands of advanced industrial ap-
plications, e.g. in refineries, in chemical engineering, in the paper industry, in
mining and metallurgy, in food processing, in the automobile industry and even
in aerospace [12].

In the simplest case linear models are used for prediction in MPC. Because
the majority of technological processes have nonlinear properties, linear MPC
techniques may give insufficient control accuracy. Nonlinear MPC algorithms
in which nonlinear models are used have been researched over the last years
[4,10,13,14]. Different nonlinear models can be used in MPC, e.g. fuzzy
structures, polynomials, Volterra series, wavelets. Neural models are particularly
interesting, because they offer excellent approximation accuracy, as practical ex-
perience clearly indicates, they have a moderate number of parameters and their
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structure is not complicated. As a result, neural models can be efficiently used
in different nonlinear MPC algorithms [6,11,13].

When a neural model is directly used for prediction in MPC, a nonlinear, in
general non-convex, optimisation problem must be solved on-line at each sam-
pling instant. Despite significant progress in optimisation algorithms [1,2,9,15],
practical application of on-line nonlinear optimisation is always an issue. Since
the solution must be obtained in real-time, low computational complexity is very
desirable. A straightforward solution is to calculate successively on-line a linear
approximation of the neural model and use the linearised model for prediction
[6]. Unfortunately, for significantly nonlinear processes obtained control accu-
racy may be not sufficient. This paper discusses an MPC algorithm in which the
neural model is linearised on-line along a trajectory. The control policy is cal-
culated on-line from a quadratic programming problem, nonlinear optimisation
is not necessary. Control accuracy and computational burden of the described
algorithm are demonstrated for a high-purity high-pressure distillation column.

2 Model Predictive Control (MPC) Algorithms

In MPC algorithms at each consecutive sampling instant k, k = 0, 1, 2, . . ., a set
of future control increments

�u(k) = [�u(k|k) �u(k + 1|k) . . .�u(k +Nu − 1|k)]T (1)

is calculated, where �u(k + p|k) = u(k + p|k) − u(k + p − 1|k). It is assumed
that �u(k+p|k) = 0 for p ≥ Nu, where Nu is the control horizon. The objective
is to minimise differences between the reference trajectory yref(k + p|k) and
predicted values of the output ŷ(k + p|k) over the prediction horizon N ≥ Nu.
Constraints are usually imposed on input and output variables. Future control
increments (1) are determined from the following MPC optimisation task (hard
output constraints are used for simplicity of presentation)

min
�u(k)

{
N∑
p=1

(yref(k + p|k)− ŷ(k + p|k))2 + λ

Nu−1∑
p=0

(�u(k + p|k))2
}

subject to (2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

−�umax ≤ �u(k + p|k) ≤ �umax, p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

Only the first element of the determined sequence (1) is applied to the process,
i.e. u(k) = �u(k|k) + u(k − 1). At the next sampling instant, k + 1, the output
measurement is updated, and the whole procedure is repeated.

Let the dynamic process under consideration be described by the following
discrete-time Nonlinear Auto Regressive with eXternal input (NARX) model

y(k) = f(x(k)) = f(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (3)
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As the model a neural network of Multi Layer Perceptron (MLP) or Radial Ra-
dial Basis Function (RBF) type [3] can be used. Consecutive output predictions
over the prediction horizon (p = 1, . . . , N) are calculated recurrently

ŷ(k + p|k) = f(u(k − τ + p|k), . . . , u(k|k)︸ ︷︷ ︸
Iuf (p)

, u(k − 1), . . . , u(k − nB + p)︸ ︷︷ ︸
Iu−Iuf (p)

,

ŷ(k − 1 + p|k), . . . , ŷ(k + 1|k)︸ ︷︷ ︸
Iyf (p)

, y(k), . . . , y(k − nA + p)︸ ︷︷ ︸
nA−Iyf (p)

) + d(k)

where Iuf(p) = max(min(p − τ + 1, Iu), 0), Iyf(p) = min(p − 1, nA) and d(k) is
an estimation of the unmeasured disturbance [13]. Since the model is nonlinear,
future predictions are nonlinear functions of the calculated control policy (1).
As a result, the MPC optimisation problem (2) is in fact a nonlinear, in gen-
eral non-convex, task which must be solved in real time on-line. Computational
complexity of such an approach may be high and the whole algorithm may be
unable to find the solution within the required time.

The general idea of reducing computational burden of nonlinear MPC is quite
intuitive: at each sampling instant a linear approximation

y(k) =

nB∑
l=1

bl(k)u(k − l)−
nA∑
l=1

al(k)y(k − l)

of the nonlinear neural model (3) is obtained on-line for the current operating
point, where

al(k) = −∂f(x(k))
∂y(k − l)

, bl(k) =
∂f(x(k))

∂u(k − l)

are coefficients of the linearised model. The linearised model is used for pre-
diction over the whole prediction horizon. Thanks to linearisation, predictions
ŷ(k+1|k), . . . , ŷ(k+N |k) are linear functions of future control increments (1), i.e.
the decision variables of the algorithm. In consequence, the MPC optimisation
problem (2) becomes a quadratic programming task. The described linearisation
method is used in the MPC algorithm with Nonlinear Prediction and Linearisa-
tion (MPC-NPL) [6,7,13]. During calculations the structure of the neural model
is exploited.

3 MPC Algorithm with Nonlinear Prediction and
Linearisation along the Trajectory (MPC-NPLT)

In the MPC-NPL algorithm linearisation is carried out for the current operating
point of the process and the same linearised model is used for prediction over
the whole prediction horizon. Intuitively, prediction accuracy of such a model
may be insufficient, in particular when the process is significantly nonlinear and
changes of the reference trajectory are fast and big. A potentially better method
is to linearise the model for an assumed future input trajectory

utraj(k) =
[
utraj(k|k) . . . utraj(k +Nu − 1|k)]T
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of course remembering that utraj(k+p|k) = utraj(k+Nu−1|k) for p = Nu, . . . , N .
The input trajectory utraj(k) corresponds to the future output trajectory

ŷtraj(k) =
[
ŷtraj(k + 1|k) . . . ŷtraj(k +N |k)]T

Recalling the Taylor series formula for a scalar function y(x) : R→ R

y(x) = y(x̄) +
dy(x)

dx

∣∣∣∣
x=x̄

(x− x̄) + . . .

a linear approximation of the nonlinear trajectory ŷ(u(k)) : RNu → RN where

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k +N |k)]T

u(k) = [u(k|k) . . . u(k +Nu − 1|k)]T

along the trajectory ŷtraj(k) is

ŷ(k) = ŷtraj(k) +H(k)(u(k)− utraj(k)) (4)

where

H(k) =
dŷ(k)

du(k)

∣∣∣∣ ŷ(k)=ŷtraj(k)

u(k)=utraj(k)

=

⎡⎢⎢⎢⎢⎢⎣
∂ŷtraj(k + 1|k)
∂utraj(k|k) · · · ∂ŷtraj(k + 1|k)

∂utraj(k +Nu − 1|k)
...

. . .
...

∂ŷtraj(k +N |k)
∂utraj(k|k) · · · ∂ŷtraj(k +N |k)

∂utraj(k +Nu − 1|k)

⎤⎥⎥⎥⎥⎥⎦
is a matrix of dimensionality N ×Nu. Thanks to using the prediction equation
(4), the optimisation problem (2) becomes the quadratic programming task

min
�u(k)

{
J(k) =

∥∥yref(k)−H(k)J�u(k)− ŷtraj(k)

−H(k)(u(k − 1)− utraj(k))
∥∥2 + ‖�u(k)‖2Λ

}
subject to (5)

umin ≤ J�u(k) + u(k − 1) ≤ umax

−�umax ≤ �u(k) ≤ �umax

ymin ≤H(k)J�u(k) + ŷtraj(k) +H(k)(u(k − 1)− utraj(k)) ≤ ymax

where

yref(k) =
[
yref(k + 1|k) . . . yref(k +N |k)]T

ymin =
[
ymin . . . ymin

]T
ymax = [ymax . . . ymax]

T
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are vectors of length N ,

umin =
[
umin . . . umin

]T
umax = [umax . . . umax]

T

u(k − 1) = [u(k − 1) . . . u(k − 1)]T

�umax = [�umax . . .�umax]
T

are vectors of length Nu, Λ = diag(λ, . . . , λ), J is the all ones lower triangular
matrix of dimensionality Nu ×Nu.

Steps repeated at each sampling instant k of the MPC-NPLT algorithm are:

1. The neural model is used to find the future output trajectory ŷtraj(k) which
corresponds to the assumed input trajectory utraj(k).

2. The neural model is linearised along the trajectory ŷtraj(k): the matrixH(k)
is obtained.

3. The quadratic programming task (5) is solved to find �u(k).
4. The first element of the obtained future control policy is applied to the

process: u(k) = �u(k|k) + u(k − 1).
5. Set k := k + 1, go to step 1.

During calculation of the output trajectory ŷtraj(k) and linearisation along this
trajectory (calculation of the matrix H(k)) the structure of the neural model is
exploited.

Selection of the future input trajectory utraj(k) affects the linearisation accu-
racy and, in consequence, quality of control. A straightforward choice is to use
the control signal calculated at the previous sampling instant, i.e.

utraj(k) = [u(k − 1) . . . u(k − 1)]
T

As a result, the neural model is linearised along the free trajectory, the algorithm
is denoted by MPC-NPLTy0(k). The alternative is to use Nu− 1 elements of the
future control sequence calculated at the previous sampling instant (the quantity
u(k − 1|k − 1) is actually used for control at the sampling instant k − 1), i.e.

utraj(k) = [u(k|k−1) . . . u(k+Nu−3|k−1) u(k+Nu−2|k−1) u(k+Nu−2|k−1)]T

The algorithm is denoted by MPC-NPLTŷ(k−1). It is possible to combine MPC-
NPL and MPC-NPLT techniques (the MPC-NPL-NPLT algorithm). In the first
phase of the hybrid approach the neural model is linearised for the current
operating point, the MPC-NPL quadratic programming task is solved. In the
second phase the neural model is linearised once again along the predicted tra-
jectory which corresponds to the obtained input trajectory and the MPC-NPLT
quadratic programming task (5) is solved. Furthermore, linearisation along the
predicted trajectory can be repeated in an iterative manner [5]: nonlinear pre-
diction, linearisation and quadrating programming are repeated a few times at
each sampling instant.
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Fig. 1. High-purity ethylene-ethane distillation column control system structure

4 Simulations

The considered process is a high-purity, high-pressure (1.93 MPa) ethylene-
ethane distillation column shown in Fig. 1. The feed stream consists of ethy-
lene (approx. 80%), ethane (approx. 20%) and traces of hydrogen, methane and
propylene. The distillation product (the top product) is ethylene which can con-
tain up to 1000 ppm (parts per million) of ethane. The MPC algorithm must
be able to increase relatively fast the impurity level of the product. Reducing
the purity of the product results in decreasing energy consumption. Production
scale is very big, nominal value of the product stream flow rate is 43 ton/h.

The supervisory control loop has one manipulated variable r, which is the
reflux ratio r = R/P , where R and P are reflux and product stream flow rates,
respectively, and one controlled variable z, which is the impurity of the product.
The column has 121 trays, the feed stream is delivered to the tray number 37.
The reflux is delivered to the column by the top tray and the product is taken
from the tray number 110.

As shown in [5,7,13,14] the process is significantly nonlinear and difficult to
control. A simple linear model is inadequate, hence, the MPC algorithm which
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uses such a model does not work properly. In contrast to the linear model,
a neural model (of the MLP structure) is very accurate as discussed in [5].
Because the linearisation method affects control accuracy, the following nonlinear
MPC algorithms based on the same neural model are compared:

a) The rudimentary MPC-NPL algorithm with on-line linearisation for the cur-
rent operating point and quadratic programming [6,7,13].

b) Two versions of the discussed MPC-NPLT algorithm (MPC-NPLTy0(k) and
MPC-NPLTŷ(k−1)) with linearisation along the trajectory and quadratic pro-
gramming.

c) The ”ideal” algorithm with Nonlinear Optimisation (MPC-NO) [6,13].

Parameters of all algorithms are the same: N = 10, Nu = 3, λ = 2, constraints
are rmin = 4.051, rmax = 4.4571. Three reference trajectories are considered: at
the sampling instant k = 1 the trajectory changes from 100 ppm to 350 ppm,
600 ppm and 850 ppm, respectively.

Fig. 2 compares the MPC-NPL algorithm with on-line linearisation for the
current operating point and the MPC-NO approach. Unfortunately, due to the
nonlinear nature of the distillation process, when the linearised model obtained
for the current operating point is used for the whole prediction horizon, its in-
accuracy is important, the algorithm gives significantly slower trajectories than
the MPC-NO approach. Slow behaviour of the MPC-NPL algorithm is disad-
vantageous in light of a very big production scale.

As shown in Fig. 3, both versions of the MPC-NPLT algorithm give much
faster trajectories than the MPC-NPL approach. The algorithm with lineari-
sation along the optimal trajectory calculated at the previous sampling instant
(MPC-NPLTŷ(k−1)) is faster than the algorithm with linearisation along the free
trajectory (MPC-NPLTy0(k)). It is not surprising, because in the first approach
for linearisation predicted behaviour of the process is taken into account whereas
in the second one the influence of the past is only considered.

Table 1 shows accuracy (in terms of Sum of Squared Errors, SSE) and com-
putational load (in terms of floating point operations, MFLOPS) of compared
nonlinear algorithms, summarised results for all three reference trajectories are
given. Computational burden of the MPC-NPLT algorithm is approximately
6.43 times smaller when compared with that of the MPC-NO approach.

Table 1. Accuracy (SSE) and computational load (MFLOPS) of compared nonlinear
MPC algorithms based on the same neural model

Algorithm Optimisation SSE MFLOPS

MPC-NPL Quadratic 5.3717 × 106 0.1545
MPC-NPLTy0(k) Quadratic 5.1085 × 106 0.3313
MPC-NPLTŷ(k−1) Quadratic 4.8599 × 106 0.3408
MPC-NO Nonlinear 4.3869 × 106 2.1299
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Fig. 2. The MPC-NPL algorithm with linearisation for the current operating point
and quadratic programming (dashed line) vs. the MPC-NO algorithm with nonlinear
optimisation (solid line)

Fig. 3. The MPC-NPLTy0(k) algorithm (dash-dotted line) and the MPC-NPLTŷ(k−1)

algorithm (dashed line) with linearisation along the trajectory and quadratic program-
ming vs. the MPC-NO algorithm with nonlinear optimisation (solid line)

5 Conclusions

For the considered distillation column the MPC-NPLT algorithm in which the
neural model is linearised on-line along a trajectory is much faster than the rudi-
mentary MPC-NPL algorithm with linearisation for the current operating point.
At each sampling instant of the MPC-NPLT algorithm only one quadratic pro-
gramming problem is solved, nonlinear optimisation is not necessary. Of course,
linearisation along the predicted trajectory and quadratic programming can be
repeated a few times at each sampling instant [5], but it increases the computa-
tional burden. Although in simulations presented in the paper the MLP neural
model is used, the described algorithm is very general, different types of models
can be used. The chosen model structure must be taken into account during cal-
culation of the output trajectory ŷtraj(k) and linearisation along this trajectory
(calculation of the matrix H(k)).
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Abstract. The paper presents basic notions of web mining, radial basis
function (RBF) neural networks and ε-insensitive support vector machine
regression (ε-SVR) for the prediction of a short time series (website of the
University of Pardubice, Czech Republic). There are various short time
series according to different visitors or interest of visitors (students, em-
ployees, documents). Further, a model (including RBF neural networks
and ε-SVRs) was developed for short time series prediction. The model
includes decomposition of data to training and testing data set using the
cluster procedure. The next part of the paper describes the predictions
of the web domain visits, which depend on this model, as well as outlines
an analysis of the results.

Keywords: Web mining, RBF neural networks, ε-SVR, short time se-
ries, data set decomposition, prediction.

1 Introduction

For prediction, classification and optimization of user behavior on the web, web
mining can be used [1–4]. Analyzed data represent the results of user-web inter-
actions. The data consist of data obtained from the log files or from cookies and
IP address, which represent user behavior on the web, and data characterizing
the virtual server, with the help of which the data are obtained. As data are
acquired from a web server which represents a complex system (usually a virtual
system works with several virtual computes over multiple databases), modelling
of the mentioned system is necessary. Particular virtual system is characterized
by the parameters of its operations, which keep changing over time, therefore, it
is a dynamic system. Data show non-linear character, are heterogeneous, incon-
sistent, missing and indeterminate. Based on this, prediction of short time series
of website visits (by RBF neural networks and ε-SVRs) obtained from the log
files by web mining will enable higher quality characteristics of the web space.

The presented paper takes up time series modelling of web domain visit (web
upce.cz) with uncertainty [5, 6]. Further, it derives from modelling of short,
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intermediate and long time series of documents visits, employees and students
visits with RBF neural networks and ε-SVRs [7]. The paper presents the prob-
lem formulation with the aim of describing short time series at the web upce.cz
(students, employees, documents). Next, basic notions of RBFs [8] neural net-
works and ε-SVRs [4, 9] for time series prediction are presented. The input to
the designed model for time series prediction at web.upce.cz (web site visits),
which predicts using RBF neural networks and ε-SVRs, are short time series
(students, employees, documents). Training Otrain and testing Otest data sets
are defined by the cluster method [10]. The model is characterized (from the
view of data division into training Otrain and testing Otest set) with Root Mean
Squared Error (RMSE) of predicted visits at web upce.cz. The next part of the
paper compares and analysis the results with already designed model.

2 Problem Formulation

The data for prediction of the time series at web upce.cz over a short time period
were obtained from Google Analytics. This web mining tool, which makes use of
Java-Script code implemented in a web presentation, offers a wide spectrum
of operation characteristics (web metrics). In order to predict the visit rate
at the University of Pardubice, the Czech Republic, website (web upce.cz), we
need to monitor the indicator of the number of visits within a given short time
period. One ’visit’ here is defined as an unrepeated combination of IP address
and cookies. A sub-metrics is absolutely a unique visit defined by unrepeatable
IP address and cookies within a given time period. A clear trend is obvious
there, with Monday having the highest visit rate, which in turn decreases as
the week progresses; Saturday has the lowest visit rate; The average number of
pages visited is more than three; A visitor stays on certain page five and half a
minutes on average; The bounce rate is approximately 60%; Visitors generally
come directly to the website, which is positive; The favourite pages is the main
page, followed by the pages of the Faculty of Economics and Administration. The
general formulation of the model for prediction time series (TS) web.upce.cz Fig.
1 by time series can be stated in this manner y′ = f(x1(t), x2(t), x3(t)), where
y′ is daily web upce.cz visits in time t+ 1, y is daily web upce.cz visits in time
t, x1(t) is TSD of documents visits, x2(t) is TSE of employees visits, and x3(t)
is TSST of students visits at time t. Based on the analysis in [7] it is possible to
characterize them as short time series.

3 Basic Notions of RBF Neural Networks and ε-SVRs

The term RBF neural network [8] refers to any kind of feed-forward neural
networks that use RBF as their activation function. RBF neural networks are
based on supervised learning. The output f(x,H,w) RBF of a neural network can
be defined this way

f(x,H,w) =

q∑
i=1

wi × hi(x), (1)
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Fig. 1. Time series of web.upce.cz visits (top left), time series TSD of documents visit
(top right), time series TSE of employees visit (down left), and time series TSST of
students visit (down right)

where H = {h1(x), h2(x), . . . , hi(x), . . . , hq(x)} is a set of activation functions
RBF of neurons (of RBF functions) in the hidden layer and wi are synapse
weights. Each of the m components of vector x = (x1, x2, . . . , xk, . . . , xm) is an
input value for the q activation functions hi(x) of RBF neurons. The output
f(x,H,w) of RBF neural network represents a linear combination of outputs
from q RBF neurons and corresponding synapse weights w. The activation func-
tion hi(x) of an RBF neural network in the hidden layer belongs to a special
class of mathematical functions whose main characteristic is a monotonous ris-
ing or falling at an increasing distance from center ci of the activation function
hi(x) of an RBF. Neurons in the hidden layer can use one of several activation
functions hi(x) of an RBF neural network, for example a Gaussian activation
function (a one-dimensional activation function of RBF), a rotary Gaussian ac-
tivation function (a two-dimensional RBF activation function), multisquare and
inverse multisquare activation functions or Cauchys functions. Results may be
presented in this manner

h(x,C,R) =

q∑
i=1

exp(−‖ x− ci ‖2
ri

), (2)

where x = (x1, x2, . . . , xk, . . . , xm) represents the input vector, C = {c1, c2, . . . ,
ci, . . . , cq} are the centres of activation functions hi(x) of RBF neural network
and R = {r1, r2, . . . , ri, . . . , rq} are the radiuses of activation functions hi(x). The
neurons in the output layer represent only weighted sum of all inputs coming
from the hidden layer. The activation function of neurons in the output layer
can be linear, with the unit of the output eventually being converted by jump
instruction to binary form. The RBF neural network learning process requires a
number of centres ci of activation function hi(x) of the RBF neural networks to
be set as well as for the most suitable positions for RBF centres ci to be found.
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Other parameters are radiuses of centres ci, rate of activation functions hi(x)
of RBFs and synapse weights W (q, n). These are set up between the hidden
and output layers. The design of an appropriate number of RBF neurons in
the hidden layer is presented in [4]. Possibilities of centres recognition ci are
mentioned in [8] as a random choice. The position of the neurons is chosen
randomly from a set of training data. This approach presumes that randomly
picked centres ci will sufficiently represent data entering the RBF neural network.
This method is suitable only for small sets of input data. Use on larger sets often
results in a quick and needless increase in the number of RBF neurons in the
hidden layer, and therefore unjustified complexity of the neural network. The
second approach to locating centres ci of activation functions hi(x) of RBF
neurons can be realized by a K-means algorithm.

In nonlinear regression ε-SVR [4, 7, 9] minimizes the loss function L(d, y)
with insensitive ε [4, 7, 9]. Loss function L(d, y) = |d− y|, where d is the desired
response and y is the output estimate. The construction of the ε-SVR for ap-
proximating the desired response d can be used for the extension of loss function
L(d, y) as follows

Lε(d, y) = {|d−y|−ε for|d−y|≥ε
0 else , (3)

where ε is a parameter. Loss function Lε(d, y) is called a loss function with
insensitive ε. Let the nonlinear regression model in which the dependence of the
scalar d vector x expressed by d = f(x) + n. Additive noise n is statistically
independent on the input vector x. The function f(.) and noise statistics are
unknown. Next, let the sample training data (xi, di), i = 1, 2, ..., N, where xi
and di is the corresponding value of the output model d. The problem is to
obtain an estimate of d, depending on x. For further progress it is expected to
estimate d, called y, which is widespread in the set of nonlinear basis functions
ϕj(x), j = 0, 1, . . . ,m1 this way

y =

m1∑
j=0

wjϕj(x) = wTϕ(x), (4)

where ϕ(x) = [ϕ0(x), ϕ1x), . . . , ϕm1(x)]
T and w = [w0, w1, . . . , wm1 ]. It is as-

sumed that ϕ0(x) = 1 in order to the weight w0 represents bias b. The solution
to the problem is to minimize the empirical risk

Remp =
1

N

N∑
i=1

Lε(di, yi), (5)

under conditions of inequality ‖ w ‖2≤ c0, where c0 is a constant. The restricted
optimization problem can be rephrased using two complementary sets of non-
negative variables. Additional variables ξ and ξ′ describe loss function Lε(d, y)
with insensitivity ε. The restricted optimization problem can be written as an
equivalent to minimizing the cost function

φ(w, ξ, ξ′) = C(

N∑
i=1

(ξi + ξ′i)) +
1

2
wTw, (6)
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under the constraints of two complementary sets of non-negative variables ξ and
ξ′. The constant C is a user-specified parameter. Optimization problem [7] can
be easily solved in the dual form. The basic idea behind the formulation of the
dual-shaped structure is the Lagrangian function [9] from the objective function
and restrictions. Then, the Langrangian function can be defined with its multi-
pliers and parameters which ensure optimality of these multipliers. Optimization
of the Lagrangian function describes only the original regression problem. To for-
mulate the corresponding dual problem a convex function can be obtained (for
shorthand)

Q(αi, α
′
i) =

N∑
i=1

di(αi−α′
i)−ε

N∑
i=1

(αi+α
′
i)−

1

2

N∑
i=1

N∑
j=1

(αi−α′
i)(αj−α′

j)K(xi, xj),

(7)
where K(xi, xj) is kernel function defined in accordance with Mercer’s theo-
rem [4, 8]. Solving optimization problem is obtained by maximizing Q(α, α′)
with respect to Lagrange multipliers α and α′ and provided a new set of con-
straints, which hereby incorporated constant C contained in the function def-
inition φ(w, ξ, ξ′). Data points covered by the α �= α′ define support vectors
[4, 7, 9].

4 Modelling and Analysis of the Results

The input into the model y′ = f(x1(t), x2(t), x3(t)) for time series at web.upce.cz
are short time series of documents (x1(t)), employees (x2(t)), and students
(x3(t)). Training Otrain and testing Otest data sets are defined using [10]. Struc-
tures of RBF neural networks and ε-SVR with RBF and polynomial kernel func-
tions are designed for the time series prediction at web.upce.cz y′. The analysis
in [7] presents recommendations for optimized settings (with 10-fold cross vali-
dation) of parameters of RBF neural networks and ε-SVRs structures for short
time series.

Let there be an easy method of object set O decomposition to training Otrain

and testing Otest sets [10], O = Otrain ∪ Otest. Futher, let there be a cluster
method which would decompose object set O to disjunctive subsets (clusters)
O = O1∪O2∪. . .∪Oi∪. . .∪Op, which contain similar objects from the viewpoint
of metrics, used in the cluster method. Then, i-th cluster Oi contains ni objects

from the object set O, Oi = (o
(i)
1 , o

(i)
2 , . . . , o

(i)
ni ) ⊂ O, while assumption is given

that object o
(i)
1 ∈ Oi is such an object from i-th cluster Oi which lies the nearest

to its center. This object serves as a representative of objects in cluster Oi. The
training Otrain and testing Otest sets are defined by objects

Otrain = (o
(1)
1 , o

(2)
1 , . . . , o

(p)
1 ), Otest = ((O1−o(1)1 )∪(O2−o(2)1 )∪ . . .∪(Op−o(p)1 )).

(8)
This means that the training set Otrain is composed of all representatives of
objects while testing set Otest contains all remaining objects. The number of ob-
jects in the training set is equal to the number of clusters |Otrain| = p and
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|Otest| = |O| − p. Based on decomposition of the object set O, various ra-
tios of Otrain : Otest were generated for modelling of time series prediction
at web.upce.cz. Fig. 2 shows the dependencies of RMSE for different ratios
Otrain : Otest with optimized parameters of RBF neural network and ε-SVRs.

Fig. 2. RMSE dependencies between RBF neural network (left), ε-SVR with RBF
kernel function (center) and ε-SVR with polynomial kernel function (right)

It can be implied from Fig. 2 that the smallest RMSE is reached by struc-
ture ε-SVR with RBF kernel function, with ratio of Otrain : Otest (66:34). For
structure RBF RMSEtest does hardly change with different Otrain : Otest ra-
tion, RMSEtrain decreases with increasing ratio of Otrain : Otest. Further, in
structure ε-SVR with polynomial kernel function RMSEtrain hardly changes
with changing ratio ratio Otrain : Otest, however, RMSEtest grows slowly with
increasing Otrain.

In Table 1 are shown representative results (for optimized parametres) of the
analysis of the experiments of the RBF neural networks (with RBF activation
function) and ε-SVRs (with RBF and polynomial kernel functions) with various
ratios of Otrain : Otest of data sets and same amount of learning at m=600
cycles. Parameter q in Table 1 represents the number of neurons in the hidden

Table 1. RMSE for RBF neural network, q = 80, μ = 0.9, ν = 1 (left); RMSE for
ε-SVR with RBF kernel function, C = 10, ε = 0.1, γ = 0.4 (centre); RMSE for ε-SVR
with polynomial kernel function, C = 8, ε = 0.1, β = 1, γ = 0.2 (right)

RMSEtrain RMSEtest RMSEtrain RMSEtest RMSEtrain RMSEtest Otrain:Otest

0.668 0.850 0.746 0.879 0.701 0.753 50:50
0.604 0.863 0.644 0.674 0.702 0.764 66:34
0.574 0.848 0.647 0.690 0.706 0.796 80:20

layer. The parameter μ allows for an overrun of the local extreme in the learn-
ing process and the following progress of learning. The parameter ν represents
the selection of centers of RBFs as well as guarantees the correct allocation of
neurons in the hidden layer for the given data entering the RBF neural net-
work. The confirmation of conclusions presented in [7] is verified by the analysis
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of results (with 10-fold cross validation). The parameters C, ε are functions of
kernel functions K(x, xi) [4, 7, 9] variations. Parameter C controls the trade
off between errors of the ε-SVR of training data and margin maximization; ε
[4] selects support vectors in the ε-SVRs structures, and β represents the rate
of polynomial kernel function K(x, xi). The coefficient γ characterizes polyno-
mial and RBF kernel function. Table 2 presents a comparison of the RMSEtrain

and RMSEtest on the training and testing set to other designed and analyzed
structures. Concretely, fuzzy inference system (FIS) Takagi-Sugeno [5, 6], intu-
itionistic fuzzy inference system (IFIS) Takagi-Sugeno [5, 6], feed-forward neural
networks (FFNNs), time delay neural networks (TDNNs), RBF1 neural net-
works and ε-SVR1 with RBF and ε-SVR2 with polynomial kernel function were
used [7]. The inputs to the listed systems are defined by time series of web do-
main visits. The inputs to the modeled system with structures RBF2 neural
networks and ε-SVR3 with RBF and ε-SVR4 with polynomial kernel function
are short time series TSD, TSE and TSST . As presented in Table 2, FIS and
IFIS are suitable for the prediction of web domain visits as they show the lowest
values of RMSE [5, 6]. The model based on FIS Takagi-Sugeno and IFIS Takagi-
Sugeno allows processing uncertainty and expert knowledge. Intuitionistic fuzzy
sets can be viewed in the context as a proper tool for representing hesitancy
concerning both membership and non-membership of an element to a set. IFIS
defined works more effective than the standard FIS of Takagi-Sugeno type as it
provides stronger possibility to accommodate imprecise information and better
model imperfect fact and imprecise knowledge. FFNN and TDNN show signifi-
cantly higher RMSEtest. In the case of structures RBF1, ε-SVR1 and ε-SVR2

are visible lower RMSEtest, when the modeled time series of web domains visits
is with pre-processes mathematical-statistical methods [7], than RBF2, ε-SVR3

and ε-SVR4, when the modeled time series of domains visits uses short time
series TSD, TSE and TSST .

Table 2. Comparison of the RMSEtrain and RMSEtest on the training and testing
data to other designed and analyzed structures of fuzzy inference systems and neural
networks

FIS IFIS FFNN TDNN RBF1 ε-SVR1 ε-SVR2 RBF2 ε-SVR3 ε-SVR4

RMSEtrain 0.221 0.224 0.236 0.286 0.311 0.343 0.411 0.574 0.644 0.701
RMSEtest 0.237 0.239 0.587 0.839 0.408 0.414 0.419 0.848 0.674 0.753

5 Conclusion

The paper presents results of modelling of time series prediction at web.upce.cz
(web presentations visits) based on short time series TSD, TSE and TSST us-
ing RBF neural networks and ε-SVRs with different ratios Otrain : Otest. The
designed model includes data generation by the cluster method. The analysis
of the results shows that RMSE acquired by the RBF2 neural networks and
ε-SVR3 with RBF and ε-SVR4 with polynomial kernel function shows higher
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values as visible in Table 2. It is necessary to state that there is a significant
difference between RMSEtest and RMSEtrain for RBF2 which demonstrates
that the mentioned neural network is not suitable for prediction of short time
series. From the complex modelling of data from the log files which represent
user behavior on the web and characteristics of the virtual server, result recom-
mendations to the ways of generating data for consequent web mining and also a
set of recommendations how to increase the quality of the activity of the complex
virtual system which generates the data. Listed recommendations will represent
a methodological lead for system engineers who maintain the complex virtual
system. Based on the provided facts, the system engineers can characterize the
load on the complex virtual system and its dynamics.
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Abstract. In this work we study a simplified model of a neural activity
flow in networks, whose connectivity is based on geometrical embedding,
rather than being lattices or fully connected graphs. We present numeri-
cal results showing that as the spectrum (set of eigenvalues of adjacency
matrix) of the resulting activity-based network develops a scale-free de-
pendency. Moreover it strengthens and becomes valid for a wider segment
along with the simulation progress, which implies a highly organised
structure of the analysed graph.

Keywords: geometric neural networks, graph spectrum, scale-freeness.

1 Introduction

The spectrum of the graph is considered as an important characteristic of the
graph. A set of graph features can be easily obtained from the sole spectrum
analysis, for instance bi-partitioning, connectivity, a clustering coefficient [6] etc.
While the spectrum does not provide a unique description of the graph up to
the isomorphism [6] it is graph-invariant.
Throughout this paper, by graph spectrum we understand a set of eigenvalues

of the graph adjacency matrix A, namely set of λ ∈ C such that A · x = λ · x for
some vector x . Since A is symmetric, all eigenvalues are strictly real [6].
In this work we set out to analyse activity graphs of the geometrically em-

bedded neural networks. Clearly, one can distinguish between the structural (i.e.
underlying) and the functional or spike-flow graphs (evolved during the dynam-
ics) of the network [3]. Since the structural graph is strictly dependent on se-
lected network model, we shall focus on the latter case, namely a spontaneously
emerged subgraph. As it was presented in [10,11], the resulting graph has a sig-
nificantly different input degree distribution. Here we provide more insight into
differences between predefined and resulting networks.
The rest paper is organized as follows: we present the simplified activity flow

model and the formal definition of the spike-flow graph in Sec. 2. Then we dis-
cuss the results concerning an emergence of power-law or scale-free dependency
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(scaling as P(X = x) ∝ 1
xk , where X is measured value and k > 1 is fixed

parameter) in the spectrum of the obtained network in Sec. 3. Finally the work
is concluded and potential aims of a future work are pointed in Sec. 4.

2 Simulation Model

We adopt the simplified model of neural activity coined in [10]. We argue, that it
is valid for a modelling of activity in neurons and groups of neurons on cortical
level. The model might seem to have an abundance of degrees of freedom, but
they are mandatory, if the model is to exhibit an energy-driven self-organisation
which is a feature of complex systems such as brain, see [5].
Given a two-dimensional sphere S2 and expected density ρ � 1 of neurons

in a square unit of the surface, we pick neurons from Poisson process on the
sphere with intensity λ = |S2|ρ. Each neuron is given its Euclidean coordinates
(xv, yv, zv) ∈ R3 accordingly to the process as well as an initial activity or charge
σv, which is stored in the unit. It should be interpreted as an abstract activity
level of the neuron. In the model only non-negative integer values for charge are
allowed σv ∈ N≥0. Starting configuration can be seen in Fig. 1.
For every pair of neurons {u, v} a synaptic connection e = {u, v} is added to

the set of network’s edges E independently with probability P(e ∈ E) = g(e),
where g() is a connectivity function

g({u, v}) =
{
d(u, v)−α d(u, v) ≥ 1
1 otherwise,

(1)

where d() is euclidean distance and α is the decay exponent approximately equal
to the dimension of the embedding space (2 in our case), the formula of the
connectivity function was put forward in [7]. The synapse denotes a possibility
of direct interaction between connected units. Note, that formula (1) admits self-
loops. Since the expected density of neurons ρ is large, with huge probability we
obtain a connected network. The geometrical embedding of the network along
with formula of g() result in varying lengths of the synapses. The number of short
or local ones is much greater, than of the long ones, which provide a connection
between the distant areas of the network. On the other hand a scale-free formula
of Eq. (1) ensures, that long synapses do not vanish too fast when the radius of
the sphere increases, which would result in lattice-like structural network. Such
system seems to be more feasible to modelling of a real neural networks, than
built on all-to-all connected graphs or regular grids.
Each synapse, which was added to the graph, receives a gaussian weight wuv,

which indicates its excitatory or inhibitory nature. The weight can be read as an
averaging over a number of factors, thus a gaussian distribution seems adequate.
Positive weight indicates a tendency favour equal activity levels for connected
neurons, while inhibitory synapse results in large differences (activity in first
unit keeps the second silent).
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Given a network activity configuration σ̄ = [σ1, ..., σN ] we define an energy of
the system as follows:

E(σ̄) =
∑

(u,v)∈E
wu,v|σv − σu| (2)

The formula (2) bears similarity to the stochastic Boltzmann machine [1], al-
though has been adjusted in order to account for any nonnegative value of the
σv. Nonetheless, it still has the same interpretation of summarized interaction
cost in the network and it still can be negative.
The network undergoes its evolution according to the following dynamics:

1. iterate many times:
(a) randomly pick a pair of units u, v ∈ V , such that

– {u, v} ∈ E ,
– σu ≥ 1,

(b) try to transfer one unit of charge from u to v (i.e. σu := σu − 1; σv :=
σv + 1;),

(c) if this reduces network energy, then accept the transfer,
(d) otherwise accept it with probability

P(u→ v) = exp(−βΔE), (3)

where ΔE is an energy increase, which would be caused by the transfer,
β > 0 is an inverse temperature and is assumed to be high (β � 1),
which results in rejecting most of jumps towards higher energy states.

The transfer from u to v can be interpreted as spending some activity by u in
order to cause an excitation in v or (in the case of inhibitory synapse) inhibiting
u by increasing activity in v. Note, that this activity-conserving dynamics mimics
a criticality state of the dynamics, i.e. the total activity in the network neither
vanishes nor explodes. As Chialvo suggests, the emergence of scale-freeness is
typical for such critical systems [5].
The stop condition can be either fixed number of iterations or the moment,

when the network reaches its steady state i.e. when most of charge is stored
in small number of neurons and the dynamics freezes, such situation will be
referred as a ground state and the neurons with remaining charge as an elite.
Both starting and ending phases are presented in Fig. 1.
During the evolution the amount of activity flowing through an edge e = (u, v)

(in both ways) is recorded, we will adopt the notation de for this value. We define
a spike-flow graph G′ = (V ′, E ′) as a multi-graph, consisting of all neurons V ′ = V
and all the synapses, which are present in E and the flow through them exceeded
the threshold value E ′ = {e ∈ E : de ≥ θ}, with their multiplicities equal to the
charge flowed (M(e) = de if de ≥ θ and M(e) = 0 otherwise), see Fig. 2.
Unless stated otherwise in our simulations θ is assumed to be one. In such

case every accepted transfer adds an edge into E ′.
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charge 0-1 ( . 10 3)
1-5 ( . 10 3)

(a) Early phase of the simulation.

charge 0-1 ( . 10 3)
1-5 ( . 10 3)

5-15 ( . 10 3)
>15 ( . 10 3)

(b) Ending phase.

Fig. 1. A plot of the network of 5k = 5 · 103 neurons at early and late states of the
simulation. Left — starting, roughly uniform setup. Right — ending phase, all the
charge has stuck in the small number of elite units.

Fig. 2. A plot of resulting spike flow sub-graph obtained at the end phase of the
simulation. The resulting graph was limited to around 700 vertices out of over 12000
and was remapped onto a plane.
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3 Results

The simulations were carried on networks counting up to 35000 neurons.
Figure 3 presents obtained plot of i-th eigenvalue vs index i. The eigenvalues
of the resulting spike-flow graph were sorted decreasingly and for log-plot issues
negative ones were removed. An interesting feature is the middle part, where
locally the plot behaves like a straight line for quite a long segment.

0
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15000

20000

0 5000 10000 15000 20000 25000
i

eigi

(a) A plot of the graph spectrum. (b) A log-log plot.

Fig. 3. A plot of the spectrum of the spike-flow graph obtained throughout the dynam-
ics of around 30k neurons. The plots present the i-th eigenvalue vs i, eigenvalues are
sorted decreasingly. Middle part of the plot covers around 60% of the whole dataset.
For reference — a line segment has a slope −2 (a function x−2 in log-log plot ).

Note, that such behaviour in fully connected networks with winner-takes-all
rule dynamics was theoretically predicted in [12] and confirmed in [9]. Despite
the facts, that in our model WTA dynamics is only approximated by an inverse
temperature β and the structural network is no longer fully connected (actually
it is quite sparse), the model produces strikingly similar feature.
The plot failed to indicate clear scale-free dependence for top eigenvalues, see

[9]. Instead this dependency arises in its mid-part and covers about 60% of the
whole data. We argue, that this feature might be rooted in lack of direct synap-
tic connections between the elite neurons, so it is not always possible to transfer
large amounts of charge directly between them. Somehow reiterated from [10] is an
observable exponential truncation of this scale-free dependency, however without
rigorous analysis one cannot state whether it is due to finite simulation sample.
Additionally, there is no sign of first outlying eigenvalue, which is typical for

Erdős-Réyni random graph [2], recall that Erdős-Réyni random graph with n
vertices and p ∈ (0, 1) is generated by including every edge of the full graph in-
dependently with uniform probability p [8]. For comparison, a plot of eigenvalues
of the ER model is presented in Fig. 4.
While Fig. 3 presents a spectrum obtained once the simulation was termi-

nated, it turns out even more interesting to see it in various steps of the dynam-
ics. Fig. 5 presents a log-plot of the eigenvalues after computing 2, 10, 30, 50, 70
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and 100% of the iterations. It clearly indicates, that the spike-flow graph only
begins its self-organization process as a ER random graph. This seems quite
natural, as in the dynamics we pick a synaptic edge randomly with uniform
distribution and at start its probable that the connected neurons have not been
drained from their charge yet. Then, as the dynamics continues, a linear segment
emerges and increases in length.

i

ieig

Fig. 4. A log-log plot of the spectrum (the i-th eigenvalue vs i) of the Erdős-Réyni,
random graph model with 10k neurons and its average connectivity is the same as in
the obtained spike-flow network for the same size. Note the first outlying eigenvalue.

We have adopted following way to estimate the linear segment on the plot. A
pair of indices (i1, i2) is referred as its borders if:

– i1 < i2,
– |ā− a1| < E1,
– 1

(i2−i1)

∑i2
i=i1

(ei − a1 · i− a0)
2 < E2,

– i2 − i1 is maximal of all satisfying above points,

where y = a1x + a0 stands for a formula of line approximating the data set
{(log i1, log ei1)...(log i2, log ei2)}, the formula can be obtained using linear re-
gression for instance; ej is a j-th largest eigenvalue; thresholds E1 and E2 were
picked arbitrarily depending on the number of neurons in the simulation and
desired accuracy and the ā is an expected slope. If no such pair exists, we con-
clude that the spectrum does not have any linear segment (such situation did
not occurred, until the threshold values were ridiculously strict).
Evolution of both indices i1, i2 defined as above and length of the segment

(i2−i1) is presented in Fig. 6. Somehow unsettling, the growth depends mainly on
reducing the beginning index i1, we also observe fluctuations of the upper bound
i2. This seems be related to the vulnerability linear regression on non-uniformly
distributed data. Nevertheless, the i2−i1 clearly grows as the network undergoes
its dynamics suggesting that i-th eigenvalue of the final spike-flow graph decays
as c

i2 , even if the structural network was not fully connected.
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7016 neurons

range = [1711 .. 3192] = 1481

simulation step = 2%

(a) After 2% of the iterations.

7016 neurons

range = [1061 .. 3512] = 2451

simulation step = 10%

(b) After 10 % of the iterations.

7016 neurons

range = [601 .. 3872] = 3271

simulation step = 30%

(c) After 30 % of the iterations. (d) After 50 % of the iterations.

7016 neurons

range = [251 .. 3952] = 3701

simulation step = 70%

(e) After 70% of the iterations.

7016 neurons

range = [111 .. 3722] = 3611

simulation step = 100%

(f) After 100 % of the iterations.

Fig. 5. Log-log plots of the spectrum of the spike-flow graph obtained in various steps
of the dynamics. Dotted line denotes whole spectrum, solid line — the estimated linear
segment. Simulation was carried on about 7 · 103 neurons and 2 · 109 iterations.
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Fig. 6. Estimated length of the linear part of the spectrum throughout the simulation,
measured every 2% of the iterations

4 Conclusion and Future Work

To summarize, we have presented spectra of the spike-flow graphs of the geometri-
cal model of neural network throughout its evolution. As the network approaches
its steady state a linear dependency emerges and grows in the spectrum plot,
which suggests a (exponentially truncated) power lawdependency in graph’s eigen-
values. At the early stages the spectrum resembles those of the Erdős-Réyni ran-
dom graph and only later it evolves towards more sophisticated model.
One of interesting directions, in which this work can be extended, is applying

the same spectral analysis to medical data from fMRI scans, as it was discussed
concerning a graph degree distribution in [10] or graph diameter [11]. However,
to our knowledge, no functional networks obtained from fMRI data have been
analysed with spectral methods so far. As a second aim of ongoing research, we
point out an analysis of the network resiliency and fault tolerance [2].
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Abstract. In this paper we study probabilistic neural networks based
on the Parzen kernels. Weak convergence is established assuming time-
varying noise. Simulation results are discussed in details.

1 Introduction

Let us consider the following system

Yi = φ(Xi) + Zi, i = 1, . . . , n (1)

where X1, . . . , Xn is a sequence of independent and identically distributed vari-
ables in Rp with probability density function f , φ is an unknown function and
Z1, . . . , Zn are independent random variables with unknown distributions such
that

E[Zi] = 0, V ar[Zi] = di, for i = 1 . . . , n. (2)

It should be noted that the variance of Zi is not equal for all i. The problem is
to estimate function φ, in the case of time varying (non-stationary) noise Zi.

It should be emphasized that such problem was never solved in literature. The
method applied in this paper is based on the nonparametric estimates, named
in the area of soft computing, probabilistic neural networks [40]. Nonparametric
regression estimates in a stationary environment were studied in [4], [5], [6], [9],
[17]-[21], [27]-[29], [32]-[35], whereas non-stationary environment was considered
in [8], [22]-[26], [30] and [31], assuming stationary noise. For excellent surveys on
these methods the reader is referred to [7] and [10].

2 Algorithm

Let

φ̂n(x) =
R̂n(x)
f̂n(x)

(3)
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be the estimator of regression function φ, where f̂n is the estimator of a density
function f in the form

f̂n(x) =
1
n

n∑
i=1

K ′
n(x, Xi) (4)

and

R̂n(x) =
1
n

n∑
i=1

YiKn(x, Xi) (5)

is the estimator of function

R(x) = φ(x)f(x). (6)

To estimate the regression function φ(x) we propose to use the Parzen kernels

K ′
n(x, u) = h

′−p
n K(

x − u

h′
n

), Kn(x, u) = h−p
n K(

x − u

hn
), (7)

where K is an appropriately selected function such that

||K||∞ < ∞ (8)

and hn, h′
n are certain sequences of numbers. Now estimator (3) takes the form

φ̂n(x) =

∑n
i=1 YiK(x−Xi

hn
)∑n

i=1 K(x−Xi

h′
n

)
(9)

which is known in the literature under the name probabilistic neural network
[40]. The scheme of generalized regression neural network is presented in Fig. 1.

Fig. 1. Generalized regression neural network
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Theorem 1. If

si = sup
x
{(σ2

i + φ2(x))f(x)} < ∞, i = 1, . . . , n (10)

||x||pK(x) −→ 0, ||x|| −→ ∞, (11)
n−1h′−p

n → 0, (12)

n−2h−p
n

n∑
i=1

si → 0, (13)

h′
n → 0, hn → 0, (14)

then φn(x) n−→ φ(x) in probability for each x where φ(x) is continuous.

Proof. It is sufficient to show that

f̂n(x) −→ f(x) in probability for each x where f(x) is continuous (15)

and

R̂n(x) −→ R(x) in probability for each x where R(x) is continuous. (16)

Convergence of (15) under condition (12) was proved in [7]. Therefore it is enough
to show that (16) is true. Obviously∣∣∣R̂n(x) − R(x)

∣∣∣ ≤ ∣∣∣R̂n(x) − E
[
R̂n(x)

]∣∣∣ +
∣∣∣E [R̂n(x)

]
− R(x)

∣∣∣ . (17)

Observe that

V ar(R̂n(x)) = V ar(
1

n

n∑
i=1

YiKn(x, Xi)) =

(
1

n
h−p

n

)2 n∑
i=1

(
V ar

[
YiK

(
x − Xi

hn

)])
=(18)

≤
(

1

n
h−p

n

)2 n∑
i=1

∫
Rp

E
[
Y 2

i |Xi = u
]
f(u)K2

(
x − u

hn

)
du ≤ (19)

≤
(

1

n
h−p

n

)2 n∑
i=1

∫
Rp

(σ2
n + φ2(x))f(u)||K||∞

(
x − u

hn

)
du ≤ (20)

≤
(

1

n

)2

h−p
n

n∑
i=1

2si||K||∞. (21)

Therefore V ar(R̂n) n−→ 0 if condition (13) holds and, consequently, |R̂n(x) −
ERn(x)| n−→ 0 in probability. Since |ER̂n(x)−R(x)| n−→ 0 under condition (11)
(see [7] and [11]), then the result is established.

Example

We consider the case when dn = O(nα) for α > 0 and p = 1. We choose sequences
h′

n and hn to be in the form

h′
n = D′n−H′

, hn = Dn−H (22)

where D, D′, H and H ′ are constants. Then conditions (12)-(14) are satisfied if

0 < H ′ < 1 and 0 < H + α < 1. (23)
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3 Experimental Results

In the following simulations we estimate the function
φ(x) = 5x2 sin(x). (24)

Let us assume that input data come from the normal distribution with the mean
equal to 0 and the standard deviation equal to 4. First we select the kernel func-
tion. For the purpose of this paper we choose triangular kernel and assume that
h′

n = hn.

Fig. 2. The dependence between the value of parameter H and the value of the MSE

By examining the relationship between the value of the mean square error
and the value of the parameter H we obtained the results illustrated in Fig. 1
for D = D′ = 0.5 and α = 0.3. The experiment was performed on the set of
5000 data. As we can see with increasing value of H the error of the algorithm
decreases. For H = 0.1 the mean square error is equal to 0.1929 and for H = 0.4
the value of this error is equal to 0.0194.

In Figure 2 we show the dependence between the number of elements and the
value of the mean square error. We assume that H = H ′ = 0.4, D = D′ = 1 and
α = 0.3. Even with increasing variance of Zn, corresponding to the increasing
number of elements, the accuracy of the algorithm improves. For n = 2000 the
MSE is equal to 0.0334 and for n = 50000 it decreases to 0.00027.

In Figure 3 we show the dependence between the value of parameter α and
the MSE of the algorithm. In this case n = 5000, D = D′ = 1 and H = H ′ = 0.4.
From conditions (23) we can see, that for this value of H and H ′, value of α
should be not bigger than 0.6. For small α the error is small and for α outside
the permissible range the error increases very fast.

In Fig. 4 we can see input-output data with α = 0.3 and obtained estimator
values. In this experiment H = H ′ = 0.2, D = D′ = 1 and N = 5000.
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Fig. 3. The dependence between the number of data elements N and the value of the
MSE

Fig. 4. The dependence between the value of parameter α and the value of the MSE
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Fig. 5. The input-output data and the obtained estimator values

4 Conclusion and Future Work

In this paper we studied the probabilistic neural networks based on Parzen ker-
nels and we established the weak convergence assuming time-varying noise. In
future work it would be interesting to apply supervised and unsupervised neu-
ral networks [1], [3], [16] or neuro-fuzzy structures [13], [36]-[39], [41], [42] for
learning in time-varying environment.

Acknowledgments. This paper was prepared under project operated within
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Abstract. A recursive version of the Parzen-type general regression
neural network is studied. Strong convergence is established assuming
time-varying noise. Experimental results are discussed in details.

1 Introduction

Probabilistic neural networks developed by Specht [39] are net structures corre-
sponding to nonparametric density and regression estimates developed to solve
stationary (see e.g. [2], [8], [9], [11], [16]-[20], [26]-[28], [31]-[34], [43] and [46]) and
nonstationary problems (see e.g. [10], [21]-[25], [29] and [30]). In a letter case it
was assumed in literature that noise was stationary.

In this paper we will consider the problem of estimation of the regression
function in the following system

Yi = φ(Xi) + Zi, (1)

where X1, . . . , Xn is a sequence of some independent and equally distributed
random variables with the same probability density function f , φ is an unknown
function and Z1, . . . , Zn are an independent random variables with unknown dis-
tribution. The expected values and variances of Zn have the following property:

E[Zi] = 0, V ar[Zi] = di, for i = 1 . . . n. (2)

It should be emphasized that the variance of Zi is changing with time. The
problem is to estimate the unknown function φ.

2 General Regression Neural Network in Non-stationary
Environment

In the non-stationary environment we use the recursive version of the Parzen
kernel procedure to estimate the regression function φ(x). Let us define

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 160–168, 2012.
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Kn(x, u) = h−p
n K(

x − u

hn
), K ′

n(x, u) = h
′−p
n K(

x − u

h′
n

) (3)

where K is an appropriately selected and hn, h′
n are certain sequences of num-

bers. Let

φ̂n(x) =
R̂n(x)

f̂n(x)
(4)

be an estimate of the regression function

φ(x) =
R(x)
f(x)

(5)

where R(x) = f(x)φ(x). The estimators R̂n and f̂n are in the form

R̂n(x) =
1
n

n∑
i=1

YiKi(x, Xi) (6)

and

f̂n(x) =
1
n

n∑
i=1

K ′
i(x, Xi). (7)

In (7) fn(x) is an estimator of a density function of random variables X1, . . . , Xn.
Therefore φ̂n takes the form

φ̂n(x) =

∑n
i=1 Yih

−p
i K(x−Xi

hi
)∑n

i=1 h−p
i K(x−Xi

h′
i

)
. (8)

Note that estimates (6) and (7) can be rewritten as follows

R̂i(x) =
1
n

n∑
i=1

Yih
−p
i K

(
x − Xi

hi

)
(9)

and

f̂i(x) =
1
n

n∑
i=1

h−p
i K

(
x − Xi

hi

)
(10)

The algorithm of recursive generalized regression neural network is shown in
Fig. 1.

Theorem 1. If

si = sup
x
{(σ2

i + φ2(x))f(x)} < ∞, i = 1, . . . , n (11)

||x||pK(x) −→ 0 ||x||p < ∞, (12)
∞∑

i=1

i−2h′−d
i < ∞, (13)
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Fig. 1. Scheme of recursive generalized regression neural network

∞∑
i=1

i−2h−d
i si < ∞, (14)

h′
i → 0, hi → 0, (15)

then φn(x) n−→ φ(x) with probability one at each x where φ(x) is continuous.

Proof. It is sufficient to show that

f̂n(x) −→ f(x) with probability one at each x where f(x) is continuous
(16)

and

R̂n(x) −→ R(x) with probability one at each x where R(x) is continuous.
(17)

Convergence of (16) under condition (13) was proved in [46]. Therefore it is
enough to show that (17) it true. Obviously∣∣∣R̂n(x) − R(x)

∣∣∣ ≤ ∣∣∣R̂n(x) − E
[
R̂n(x)

]∣∣∣ +
∣∣∣E [R̂n(x)

]
− R(x)

∣∣∣ . (18)

Observe that∣∣∣R̂n(x) − E
[
R̂n(x)

]∣∣∣ =

∣∣∣∣∣ 1
n

n∑
i=1

YiKi(x, Xi) − E

[
1
n

n∑
i=1

YiKi(x, Xi)

]]
=(19)

=
1
n

n∑
i=1

[YiKi(x, Xi) − E [YiKi(x, Xi)]] (20)
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and

∞∑
i=1

1

i2
V ar

(
YiKi(x, Xi)

)
=

∞∑
i=1

1

i2
V ar

(
Yih

−p
i

K

(
x − Xi

hi

))
≤ (21)

≤
∞∑

i=1

1

i2
E

[
Y

2
i h

−2p
i

K
2
(

x − Xi

hi

)]
=

∞∑
i=1

1

i2

∫
Rp

E
[
Y

2
i |Xi = u

]
f(u)||K||∞h

−2p
i

K

(
x − Xi

hi

)
du ≤ (22)

∞∑
i=1

1

i2

∫
Rp

2(σ2
i + φ

2(x))f(u)||K||∞h
−2p
i

K

(
x − Xi

hi

)
du≤

∞∑
i=1

1

i2
2si||K||∞h

−2p
i

∫
Rp

K

(
x − Xi

hi

)
du =(23)

= 2||K||∞
∞∑

i=1

1

i2
sih

−p
i

(24)

Therefore
∑∞

i=1 i−2V ar(YiKi(x, Xi)) ≤ ∞ if condition (14) holds and, by using
the strong law of big numbers [...], |R̂n(x)−ER̂n(x)| n−→ 0 with probability one.
Since |ER̂n(x) − R(x)| n−→ 0 under condition (12) (see [2]), then the result is
established.

2.1 Example

We consider the case when dn = O(nα) for α > 0. We propose the sequences h′
n

and hn to be in the form

h′
n = D′n−H′

, hn = Dn−H . (25)

Then conditions (13)-(15) are satisfied if

H ′ < 1 and H + α < 1. (26)

3 Experimental Results

In the following simulations we will test the algorithm on data from the normal
distribution with the mean 0 and the standard deviation 4.9. The function φ is
of the form

φ(x) = (x3 + 3x2 + 16x − 2) cos(x). (27)

First we selected the kernel function. For the purpose of this article we choose
triangular kernel and h′

n = hn to be in the form (25). By examining the relation-
ship between the value of the mean square error and the value of the parameters
H = H ′ we obtained the results illustrated in Fig. 1. The experiment was ob-
tained on the set of 7000 data, α = 0.38 and D = D′ = 5.5. As we can see with
increasing value of H the mean square error (MSE) of the algorithm decreases.
For H = 0 the MSE was equal to 8988.1349 and for H = 0.5 the value of the
MSE decreased to 0.6837.

In Figure 2 we show the dependence between the number of samples and
the MSE. The value of H = H ′ was equal to 0.28, D = D′ = 5.8 and α =
0.33. Observe that even with increasing variance of Zn, for increasing number of
elements n, the accuracy of the algorithm is improved. For n = 4000 it is equal
to 58.7501 and for n = 50000 it decreases to 3.7163.
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Fig. 2. The dependence between the value of parameter H and the value of the MSE

Fig. 3. The dependence between the number of data elements n and the value of the
MSE

In Figure 3 we show the dependence between the parameter α and the MSE
of the algorithm. In this case n = 6000, D = D′ = 6 and H = H ′ = 0.29. From
the conditions (26) we can see, that for this value of H , the value of α should
be not bigger than 0.71. For small value of α the MSE is small, however for α
outside the permissible range the MSE begins to increase.

In the next experiment we examine the difference between the value of func-
tion φ(x) and the value of estimator in point x = 1. The parameters are as follows
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Fig. 4. The dependence between the value of parameter α and the value of the MSE

Fig. 5. The dependence between the number of elements and the value of the MSE for
x = 1

α = 0.36, H = H ′ = 0.28, D = D′ = 5.7 and input data are from the normal
distribution N (0, (3.6)2). In Figure (5) we can see the dependence between the
number of data elements and the value of the MSE. It shows that the MSE
decreases with the growth of the number of input data.

In Figure 4 we can see the tested data with α = 0.47 and estimator ob-
tained for these data. For this experiment H = H ′ = 0.3, D = D′ = 5.9 and
n = 8500.
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Fig. 6. The input-output data and the obtained estimator values

4 Conclusion and Future Work

In this paper we studied the recursive version of the Parzen-type general re-
gression neural network and we established the strong convergence assuming
time-varying noise. Our current research is devoted to adapting supervised and
unsupervised neural networks [5], [7], [15] and neuro-fuzzy structures [12], [35]-
[38], [41], [42] for learning in time-varying environment.
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Abstract. Self-Organising Maps (SOM) are Artificial Neural Networks
used in Pattern Recognition tasks. Their major advantage over other
architectures is human readability of a model. However, they often gain
poorer accuracy. Mostly used metric in SOM is the Euclidean distance,
which is not the best approach to some problems. In this paper, we study
an impact of the metric change on the SOM’s performance in classifica-
tion problems. In order to change the metric of the SOM we applied a
distance metric learning method, so-called ’Large Margin Nearest Neigh-
bour’. It computes the Mahalanobis matrix, which assures small distance
between nearest neighbour points from the same class and separation of
points belonging to different classes by large margin. Results are pre-
sented on several real data sets, containing for example recognition of
written digits, spoken letters or faces.

Keywords: Self-Organising Maps, Distance Metric Learning, LMNN,
Mahalanobis distance, Classification.

1 Introduction

Some real-world problems do not have an exact algorithmic solution. Currently,
there is a vast number of Artificial Intelligence(AI) methods which can be used
to solve them. One of the branches of AI are Artificial Neural Networks. They
are mathematical models inspired by biology. In 1982 T.Kohonen presented ar-
chitecture called Self-Organising Maps (SOM) [10], which provides a method of
feature mapping from multi-dimensional space to usually a two-dimensional grid
of neurons in an unspervised way. This way of data analysis was proved as an
efficient tool in many applications, both in academic and industrial solutions
[11]. For example in character recognition tasks, image recognition tasks, face
recognition [2], analysis of words[12], grouping of documents [9], visualisation
[5], and even bioinformatics (for example phylogenetic tree reconstruction [4]).

There exists a huge number of methods for improving SOM’s performance.
Some of them concentrated on finding an optimal size of a network[1], faster
learning [14] or applying different neighbourhood functions [8]. In this paper we
investigate two additional improvements. The first one [6], [2] uses Mahalanobis
metric instead of the Euclidean one. The second improvement [13] shows how to
use SOM in a supervised manner.

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 169–177, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In our approach, contrary to [6], [2], [3], instead of computing the Mahalanobis
matrix as an inverse of covariance matrix, it is learned in a way assuring the
smallest distance between points from the same class and large margin separa-
tion of points from different classes. Several algorithms exist for distance metric
learning (DML) [17], [7]. In this paper we use so-called Large Margin Near-
est Neighbour (LMNN) method [16]. It introduces the distance metric learning
problem as a convex optimization, which assures that the global minimum can
be efficiently computed. First, we shortly describe SOM model used in super-
vised manner and LMNN method. Then we show how we combine these two
approaches into our SOM+DML model. Finally we present results on real data
sets.

2 Methods

Let’s denote data set as D = {(xi,yi)}, where xi is an attribute vector of i-th
sample, and yi is a class vector, where yij = 0 for j �= classi and yij = 1 for
j = classi, where classi is class number for i-th sample.

2.1 SOM Model

In this paper, we used the SOM architecture in a supervised manner so-called
’Learning Associations by Self-Organisation’ (LASSO), first described in [13].
The main difference between this SOM architecture and the original Kohonen’s
SOM architecture [10] is that during the learning phase the LASSO method
takes into consideration class vector, additionally to attributes. Herein, we used
two-dimensional grid of neurons. Each neuron is represented by a weight vector
Wpq, consisting of a vector corresponding to attributes Apq, and to a class Cpq

(Wpq = [Apq;Cpq]), where (p, q) are indexes of the neuron in the grid. In a
learning phase all samples are shown to the network in one epoch. For each
sample we search for a neuron which is closest to the i-th sample. The distance
is computed by:

Disttrain(Di,Wpq) = (xi −Apq)
T (xi −Apq) + (yi − Cpq)

T (yi − Cpq). (1)

The neuron (p, q) with the smallest distance to i-th sample is called the Best
Matching Unit (BMU), we note its indexes as (Bi, Bj). Once the BMU is found,
the weight update step is executed. The weights of each neuron are updated with
following formulas:

Apq = Apq + η(Apq − xi), (2)

Cpq = Cpq + η(Cpq − yi), (3)

where η is a learning coefficient, consisting of a learning step size parameter μ and
a neighbourhood function τ , so η = μτ . Learning speed parameter is decreased
between consecutive epochs, so that network’s ability to remember patterns is
improved. It is described by μ = μ0exp(−tλ), where μ0 is a starting value of the
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learning speed, t is the current epoch and λ is responsible for regulating the speed
of the decrease. Neighbourhood function controls changing the weights with
respect to the distance to the BMU. It is noted as τ = exp(−αS(Bi, Bj , p, q)),
where α describes the neighbourhood function width and S(Bi, Bj , p, q) is the
distance in the grid between the neuron and the BMU, computed by the following
formula:

S(Bi, Bj, p, q) = (Bi − p)2 + (Bj − q)2. (4)

We assumed a cost function as a sum of distances between samples and corre-
sponding BMUs:

F =
∑
l

Disttrain(Dl,WBi,Bj ). (5)

We train network till the cost function stops decreasing or a selected number of
learning procedure iterations is exceed.

The exploitation phase is performed after the learning phase. New samples,
which do not take part in the training, are shown to the network in order to
designate their class. It should be noted that only the part with attributes is
presented to the network. The BMU is found by computing a distance between
an attribute input vector and an attribute part of the weights using the following
formula:

Disttest(Di,Wpq) = (xi −Apq)
T (xi −Apq). (6)

For the tested sample, the designated class corresponds to position of maximum
value in the part which code class information Cpq in BMU weights.

2.2 LMNN Method

In many cases the mostly used metric is an Euclidean one. It often gives poor
accuracy, because it takes all dimensions with equal contribution and assumes no
correlations between the dimensions. Mahalanobis distance seems a better metric
choice, because it is scale-invariant and takes into account input dimensions
correlations. It is defined by:

DistM (xi,xj) = (xi − xj)
TM(xi − xj), (7)

where M is usually an inverse of a covariance matrix. In case where M is an
identity matrix, the distance (7) is equal to the Euclidean distance.

In this paper, we learned Mahalanobis matrix using the method described in
[16]. Matrix coefficients are computed in a way assuring large margin separation
of points from different classes and a small distance between the points of the
same class. Before starting the matrix learning for each point, k nearest neigh-
bours with the same class are found. They are called target neighbours, denoted
by θij = {0, 1}, where θi,j = 1 means that xj is the target neighbour of xi, and
θi,j = 0 means otherwise. With no prior knowledge, the Euclidean distance can
be used to point the target neighbours. Target neighbours are unchanged during
the whole learning. Let’s add a variable to indicate when the two samples have
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the same class, denoted as yil = {0, 1}, where yil = 1 when i-th and l -th samples
are from the same class, zero when they are from different classes.

Finding an optimal matrixM can be expressed as a semidefinite programming
(SDP) optimization problem with the following cost function (8) and constrains
(9), (10), (11):

minimize
∑
ij

θi,jDistM (xi,xj) + c
∑
i,j,l

θi,j(1− yil)ξijl, (8)

DistM (xi,xl)−DistM (xi,xj) ≥ 1− ξijl, (9)

ξijl ≥ 0, (10)

M � 0. (11)

The first term in the minimization function penalizes a large distance between
the samples and their target neighbours. The second term penalizes a small
distance between the samples from different classes - it is expressed as slack
variables ξijl. The c parameter balances the influence between these two terms.
In this paper it is set to 0.5, which gives equal strength to each term. The
constraint given in (11) requires the M matrix to be positive semidefinite - all
its eigenvalues should be nonnegative. Semidefinite programming is a convex
optimization problem, so a global minimum can be efficiently computed. SPD
can be solved using general purpose solvers, however in our approach we
used Matalb implementation code1 described in [16], which is finely tuned to
efficiently solve this kind of problems. Here most of slack variables are not used
because samples are well separated.

2.3 SOM+DML Model

We are interested in a such linear transformation of sample attributes that will
assure that the Euclidean distance computed on the transformed attributes will
be equal to the Mahalanobis distance computed on the original attributes. Ma-
halanobis matrix M can be written as M = LTL, where L is the searched
transformation. Lets denote ui as the transformed attributes of i-th sample and
uj as the transformed attributes of j -th sample:

ui = Lxi, (12)

uj = Lxj . (13)

The distance between the transformed attributes in Euclidean distance should
be equal to Mahalanobis distance between the original attributes:

DistM (xi,xj) = DistE(ui,uj). (14)

1 Matalb impementation of LMNN algorithm available from
http://www.cse.wustl.edu/~kilian/code/code.html

http://www.cse.wustl.edu/~kilian/code/code.html
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We will now search for L. Now for matrix M we will find eigenvectors Φ and a
matrix with eigenvalues on diagonal Λ:

MΦ = ΦΛ. (15)

Matrix Λ can be expressed as:

ΦTMΦ = Λ. (16)

Since matrix M found by the LMNN algorithm is positive semidefine, diagonal
elements in matrix Λ are nonnegative. Thus, we can write:

Λ− 1
2ΛΛ− 1

2 = I. (17)

Substituting (16) into (17), we obtain:

Λ− 1
2ΦTMΦΛ− 1

2 = I. (18)

Now we can note L as:
L = Λ− 1

2ΦT . (19)

Using (19) we can write (18) as:

LMLT = I. (20)

We see that M = LTL and hence we can write:

(xi − xj)
TM(xi − xj) = (Lxi − Lxj)

T (Lxi − Lxj) (21)

From (21) we see that (14) is true. This transformation of input attributes is also
known as whitening transform. It is worth mentioning that, in a transformation
phase, only attributes x are transformed, the class part of input vector y is
unchanged. Therefore, even though the data were pre-processed using the L
transformation, we still can use the original SOM algorithm.

3 Results

Performance of the SOM+DML method was compared to the SOM model on
six real data sets. As an accuracy measure we take the percentage of incorrect
classifications. It is worth mentioning that getting the highest number of correct
classifications is not the goal of this paper. Data sets are described in Table 1.
Sets ’Wine’, ’Ionosphere’, ’Iris’, ’Isolet’, ’Digits’ are sets from the ’UCI Machine
Learing Repository’ 2, set ’Faces’ are from the ’The ORL Database of Faces’3.

Now we briefly introduce the origin of the sets. Data sets ’Wine’, ’Ionosphere’,
’Iris’ are classic benchmark sets, often used in testing newly developed classifi-
cation algorithms. ’Isolet’ data set represents a spoken letter recognition task.

2 http://archive.ics.uci.edu/ml/
3 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

http://archive.ics.uci.edu/ml/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Its samples correspond to 26 letters of the alphabet. The original number of at-
tributes (617) was projected by PCA to 100 principal components, which covers
93% of its variance. ’Digits’ data set represents a handwritten digit recognition
problem. The samples are from 10 classes obtained from 43 people. Original im-
ages were 32x32 bitmaps downsampled to 64 attributes by creators. The face
recognition task is presented by data set ’Faces’. It contains images of faces
obtained from 40 people (40 classes). For each person 10 images were taken in
different times, varying lightening, changing facial expressions and details. The
original data - 92x112 pixels images in 256 gray levels was projected by PCA to
50 leading components (83% of variance), the so-called egienfaces method[15].
Each data set, if not originally divided to train/test subsets, was randomly di-
vided by us - 70% of data to training subset and 30% to testing subset.

Table 1. Description of data sets used to test performance of the LASSO+DML
method and parameters of networks. The number of nearest neighbour in the LMNN
was set by cross validation. (∗) In ’Isolet’ and ’Faces’ data sets, the number of attributes
was reduced with PCA.

Wine Ionosphere Iris Isolet Digits Faces

Train examples 126 246 105 6238 3823 280

Test examples 52 105 45 1559 1797 120

Attributes 13 34 4 100∗ 64 50∗

Classes 3 2 3 26 10 40

Runs 100 100 100 20 20 20

Net size 4x4 6x6 6x6 20x20 20x20 20x20

k in LMNN 2 5 1 4 3 3

For each data set, we arbitrarily chose the network size (selecting optimal
network size is not in the scope of this paper). The network size for the SOM
and the SOM+DML models was equal. For all data sets, the following values of
the learning parameters were used: μ0 = 0.01, λ = 0.005, α = 0.1. For each data
set a number of k target neighbours in the LMNN algorithm was selected using
cross validation with ten times repetition. Fig.1 presents results of a selecting
the target neighbours parameter (k) for all sets. Resulting k values are shown
in Table 1. SOM weights were initialized with random numbers drawn from a
normal distribution with mean 0 and standard deviation 0.5. Several runs were
performed for each data set (see Table 1), so that local minimums were avoided.
The final result is a mean over all runs. The SOM and the SOM+DML models
were trained with identical number of iterations.

The comparison of results obtained by the SOM and the SOM+DML method
is presented in Table 2. With one exception the SOM+DML method achieves
lower error rates in both training and testing subsets. On the ’Iris’ data set the
LMNN algorithm seems to cause the overfitting effect. It is clearly visible in Fig.1
during search for the k parameter. The greatest improvement was achieved on
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Fig. 1. Searching for optimal number of target neighbours in the LMNN method for
all data set. On the x-axis there is k number of target neighbours, on the y-axis is
percent of incorrect classification. Triangles with dashed lines represent test error and
squares with solid lines illustrate a train error.

Table 2. Percent of incorrect classification on training and testing subsets for the SOM
and the SOM+DML method. Results are means over all runs.

Wine Ionosphere Iris Isolet Digits Faces
Train Test Train Test Train Test Train Test Train Test Train Test

SOM 4.66 5.31 16.26 18.10 9.14 7.78 7.90 9.20 6.89 8.84 26.84 32.75

SOM+DML 1.05 3.56 8.13 11.43 8.76 8.44 5.32 7.31 3.86 6.16 4.52 11.88

b)

a)

Fig. 2. Example of pictures from the ’Faces’ data set classified as the same person by
(a) the SOM model and by (b) the SOM+DML model

the ’Faces’ set (20.87% over the SOM model). The comparison of example face
pictures classified as belonging to the same class by the SOM method and the
SOM+DMLmethod is presented in the Fig.2. For the SOM+DMLmethod, when
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using the ’Faces’ set we observed a significant difference between the training
error and the testing error. It is a small set, therefore the metric was well matched
to the training set, giving small error. On ’Wine’ and ’Isolet’ data sets the
improvement was 1.75% and 1.89% respectively. On the ’Digits’ set there was
a 2.68% improvement on the testing subset, which corresponds to roughly 50
digits. For the ’Ionosphere’ data set the improvement was 6.67%. It is worth
mentioning that for this set the largest k value was used.

4 Conclusions

A method of improving performance of the Self-Organising Maps in classifica-
tion tasks was described. Linear transformation of data was performed before
SOM training phase. Matrix for the transformation has been obtained from
the LMNN algorithm, which computes Mahalanobis matrix while assuring large
margin separation between the points of different classes. We called our method
SOM+DML. Testing of the method was demonstrated on several data sets,
focused on recognition of: faces, handwritten digits and spoken letters. Test
results confirm that the distance metric learning method improves the perfor-
mance of the SOM network. Finding the optimal matrix for linear transformation
plays a crucial role in obtaining improved results. Matlab implementation of the
SOM+DMLmodel is available from http://home.elka.pw.edu.pl/ pplonski/

som dml .
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Abstract. In the on-line data processing it is important to detect a
novelty as soon as it appears, because it may be a consequence of gross
errors or sudden change in the analysed system. In this paper we present
a framework of novelty detection, based on the robust neural network.
To detect novel patterns we compare responses of two autoregressive
neural networks. One of them is trained with a robust learning algo-
rithm designed to remove the influence of outliers, while the other uses
simple training, based on the least squares error criterion. We present
also a simple and easy to use approach that adapts this technique to
data streams. Experiments conducted on data containing novelty and
outliers have shown promising performance of the new method, applied
to analyse temporal sequences.

1 Introduction

In a data stream, data points are observed sequentially, one by one. Novelty
and outlier detection may be considered as identification of unforeseen or ab-
normal phenomena embedded in a temporal sequence. Because such sequence
is increasing in time, the changes that might be detected may be the result of
model drift, as well as of gross errors. One of the approaches to outlier detection
is modelling data normality or, in a very few cases, abnormality. Such approach
is often known as novelty detection or novelty recognition [10]. In this paper we
present a method of novelty detection based on the neural network approach.
Our algorithm involves two types of neural networks: regular feedforward net-
work and robust neural network, trained to minimise a non-quadratic criterion
function. The second type of network is designed to remove the influence that
outliers may have on a training process. Comparing the responses of such net-
works allows us to decide whether given observation is a novelty. Such models
has to be created on-line, based on the accumulated knowledge, brought by the
analysed time series.

Applying artificial neural networks to the problem of outlier detection is not
a new approach. Feedforward neural networks were proposed as a tool to detect
outliers in [8,13], and feedforward auto-associative networks were used in [20].
There are also approaches based on Hopfield networks [6], and RBF networks
[2]. Currently, the most common type of neural networks applied in the field
of outlier or novelty detection are self organising maps (SOM) [1,21,9,15]. Our
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approach is different because it involves a feedforward neural network trained
with a method robust to outliers in a data set. This is why it may help not only
in detecting changes but also in identifying outliers in data streams.

2 Algorithm Based on the Robust Neural Network

The idea of our algorithm is, in its basis, rather simple. We propose to apply
two feedforward neural networks: one trained with a robust learning algorithm
and one with the traditional backpropagation algorithm (preferably with one of
its faster, second-order modifications such as conjugated gradients or Levenberg-
Marquardt method). In the first case we minimise a robust error measure de-
creasing the influence of outliers to the training process. The second network
builds a model based on the least squares method, and typical quadratic error
criterion. One can assume that the network outputs should differ significantly for
outlying input patterns. After a comparison is made, and the difference between
two network responses is larger than a certain threshold, we can suspect that a
given element is an outlier.

To make the network training process as fast as possible, we chose the sim-
plest of the robust learning algorithms, so-called robust LMLS (Least Mean Log
Squares) learning algorithm proposed by Liano in [12]. There are many other,
more sophisticated robust learning methods, such as based on the Hampel’s
hyperbolic tangent as a new error criterion used by Chen and Jain [3], com-
bined idea of the M-estimator with the annealing concept applying the annealing
scheme [5], an error function based on robust tau-estimates [16], or an approach
based on the MCD estimator [17].

2.1 Robust LMLS Learning Algorithm

The basic idea of this algorithm [12] is to replace the mean squared error with a
new loss function, called Least Mean Log Squares (LMLS), to introduce a robust
error measure. The LMLS function was given as:

ρ(ri) = log(1 +
1

2
ri

2), (1)

where ri is an error for the i-th training pattern. For the loss function, the
influence function is bounded and can be written as:

ψ(ri) =
ri

1 + 1
2ri

2
. (2)

The influence function describes the influence that outliers can potentially have
on the network training. One might say that the LMLS algorithm cuts off the
training patterns with largest errors, so they are not taken into account during
the training. Though, the method was originally proposed for the on-line learning
type, it can be easily generalized to the batch learning, where the weights are
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updated after presentation of all training vectors. In this case, the network error
in a certain epoch can be written as:

E(w) =

N∑
k=1

m∑
i=1

log(1 +
1

2
rki

2(w)), (3)

where rki = (yki(w) − tki) is the error of i-th output for the k-th training set
element, w is the vector of network weights and m is the number of network
outputs. The network error criterion function defined by (3) can be easily used
with one of the gradient learning algorithms. Similarly to other robust learning
methods, we can apply a simple (and slow) gradient-descent learning algorithm
or more sophisticated conjugate-gradient algorithm. A dedicated method similar
to the Levenberg-Marquardt algorithm [7] was also proposed [18].

2.2 Novelty Detection Algorithm

We propose to create a novelty detection method based on two feedforward
neural networks. Usually the feedforward networks applied to the problems of
novelty detection are autoassociative neural trained to form an implicit model of
the data. For such a network, the input variables are simultaneously the output
variables, so the network builds a compressed model of the training data. Unlike
the typical use of the autoassociative networks [8], where the data are stationary,
for a data stream, the concept generating the data drifts with the time, due to
changes in the environment [4]. This is why the simple strategy of identifying
outliers as patterns that are poorly reconstructed by the network cannot be
applied. Our approach then is to use two autoregressive networks (ANN) that
are potentially able to capture also time dependencies.

Moreover, the problem of outliers is even more complicated for the data
streams, because the new outlying observations may be the result of unwanted
noise as well as the concept drift. In the first case they should be removed from
the data, in the latter case they can inform about important changes in the sys-
tem. This is why we propose the method that allows us identify data suspected
to be novel in a data stream, without determining whether they are caused by
gross errors or not. In our method, as mentioned above, two ANNs are used.
One of them is the typical ANN trained to minimise the error given as:

E(w) =

N∑
k=1

m∑
i=1

rki
2(w). (4)

For this network, residua generated by each training pattern have proportional
influence on the model built by the network. The second one is the network
trained to minimise the LMLS-based error function, defined by (3). In this case
the impact of the largest residua on the training process is reduced or even
removed. After the ANNs were trained on a packet of data, they can be simulated
to determine if we find some observations, for which the difference between
networks outputs is above certain threshold. Such observations are signed as
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novel, in the sense that they deviate from the bulk of data used to form the
model.

Certainly, this idea must be adopted to the streaming data type. Having
limited resources, we’d like to make the method fast enough to assure on-line
responses for a data stream. Besides, we assume, that the memory is also limited,
so we cannot store all the growing data. Feedforward neural networks usually
need much time to learn but the computation of their outputs is not very time-
consuming. We’ve applied the Levenberg-Marquardt learning algorithm [7] to
train the traditional network and the LMLS-dedicated algorithm [18] to train
the network with robust LMLS criterion. These algorithms are considered to be
the most effective in their class. Their memory requirements are larger than for
the modifications of the steepest gradient algorithm but they are still limited
and affordable.

Because the data are observed one by one in a data stream, it is impossible to
use all of them as the training set. Besides, this would not address the issue of
adaptation. This is why we need to use another strategy. Adapting the network
weights after presentation of each pattern would be computationally expensive,
so it should be better to train the networks once for a given period of time cycles,
after gathering certain amount of new data. Our approach uses a time window
of predefined length, which moves not continuously but rather with a discrete
step, jumping from one position to another, to represent recently obtained data.
The network weights are then updated only based on the observations from the
time window, and they become still until we are ready to present a new window.

2.3 Algorithm Details

To define basic parameters of such approach, first of all we need to set a proper
window length. If it is too short, we cannot teach the network properly and we
do not incorporate in our model information of what is common and what might
be a novelty in the data set. From the other side, when we set the length too
large, the time for networks training may become too long. The second parameter
to be predefined is the distance between the time windows. Since they do not
have to cover all the incoming data, the new window can start a while after the
last window passed. To take into account each incoming observation, we need
to set the distance to zero. In such case every training pattern belongs to one
and only one window and the network weights are updated after we accumulate
an amount of data for a new window. This assumption was also made for our
simulations.

When the networks weights are frozen, we can simulate both networks for the
incoming patterns. If the output of the traditional ANN is significantly different
from the output of the robust network, we can suspect the pattern to be a novelty.
So, for each pattern we can calculate simple absolute difference given by:

D(xi) = |ymse(xi)− ylmls(xi)|, (5)

where ymse(xi) is the output of the traditional ANN and ylmls(xi) the output
of the robust network for the i-th training pattern. If D(xi) is above a preset
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threshold, the novelty is detected. Finding a proper threshold parameter value
seems to be rather difficult. We propose one approach, which is based on the stan-
dard deviation of differences between networks outputs. Hence, for a given time
window size, we calculate cumulative standard deviation of the differences be-
tween network responses for each pattern. Then the threshold may be
written as:

Tr = k ∗ Std(|ymse(xi)− ylmls(xi)|), (6)

where constant k may be chosen in the wide range. The ROC curve presented
in the next section may help in setting this parameter.

Then the whole algorithm may be written as follows:

1. Accumulate a training set from the data stream. The size of the set depends
on the parameter window length.

2. Train the ANNs on the gathered data and simultaneously start accumulating
a new training set .

3. For each incoming element of the data stream, calculate networks responses
and the difference between networks outputs given by (5). If the distance
is higher than a given threshold, sign the pattern as a novelty. When the
training set is fully collected, go to step 2.

3 Simulation Results

In this short article we present only exemplary results of our experiments, demon-
strating general performance of the proposed method. All the experiments were
conducted for the simple autoregressive network structure with one input, one
hidden layer of 15 neurons, and one output. The hidden neurons had sigmoid
activation function, whereas the output neuron was linear. The network had a
tap delay line of predefined length l = 2 on its input. This means that each
network output value was predicted based on the 2 past values. We’ve examined
also the algorithm behaviour for the different lengths of the delay line but the
resulting ROC curves for l = 5 and l = 10 were very similar (even better) to
that shown in the Figure 1, so the simplest solution with l = 2 was chosen.
The window length was set to 400, and k = 3 for all the simulations. To train
the networks, two learning algorithms were involved: the Levenberg-Marquardt
method for the MSE network, and the dedicated algorithm [18] for the LMLS
network.

3.1 Novelty Detection

The proposed algorithm was tested on the task of detecting novelty in a data
stream generated from the following stochastic processes, proposed in [14]:

X0(t) = sin(
40 ∗ π
N

∗ t) + ε(t) (7)

X1(t) = sin(
40 ∗ π
N

∗ t) + ε(t) + e1(t) (8)
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Fig. 1. The ROC curve generated for different thresholds Tr for the CSTR data set

X2(t) = sin(
40 ∗ π
N

∗ t) + ε(t) + e1(t) + e2(t), (9)

where t = 1 . . . 1200, ε(t) is an additive Gaussian noise N(0,0.1), e1(t) and e2(t)
are novel events simulated as:

e1(t) =

{
n1(t) t ∈ [600, 620]
0 otherwise

(10)

where n1(t) has normal distribution N(0, 0.5), and:

e2(t) =

{
0.4 ∗ sin(40πN t) t ∈ [820, 870]

0 otherwise
. (11)

Results of our experiments were presented in the figures. The upper curves are
the signals X0, X1, and X2, when the lower curves show results of novelty de-
tection. Peaks on these curves correspond with positive detections.

In the Figure 2 we may observe how the method behaves for the signal X0.
We assumed that the signal didn’t contain any novel points but for this case two
randomly generated patterns were detected as novelty. In general case, this might
be result of improper setting of the method sensitivity (in the term of threshold
Tr) but here it illustrates that the noise ε(t) may also generate outlying points.
For the signal given by (8) one may notice novelty detection peaks only in the
region of interest (Figure 3). Unfortunately, the detection is not positive for each
point in the novel region. However, in this region we have many patterns detected
as novel, so the method works properly. In the case of signal X2, containing two
novel events (Figure 4) in both regions where novelty appear, our methods finds
novelty. It is possible then to determine the beginning of the special event but it
is not so easy to guess when it ends. This is because our algorithm is designed as
an on-line method. If the method could analyse data also after some following
patterns appear, it could potentially detect also the duration time of the novel
event.
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3.2 Outlier Detection

To study the algorithm ability to detect single outliers in the data stream, we
used high value outliers artificially injected into the data with error distribution
F N(0, 10). The data was the Continuous Stirred Tank Reactor (CSTR) data
set [19].

For the outlier detection task the situation is much better than for the novelty
detection. As may be noticed in the Figure 5, almost each outlying point was
properly identified. Only one false alarm was set for the point of sudden change
in the temporal sequence, which might be actually considered as novelty.
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Fig. 5. Experimental results of outlier detection for the CSTR data set

4 Conclusion

In this paper we presented a new method of detecting novelty in data streams.
The algorithm based on comparison of responses of two neural networks acts
relatively well. As it was expected, it can detect some elements of the intervals,
in which novelty appear. Moreover, it is able to detect single outliers that might
appear in a data stream.

It can be successfully applied to the on-line data processing because it doesn’t
need information of the whole data to build a proper model. The main problem
to be solved is the issue of setting proper algorithm parameters, such as time-
window size, or a threshold of output differences. Future work should focus on
building adaptive strategies to set these parameters. However, this method may
be considered as simple, effective and easy to use approach to novelty detection.
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Abstract. A method for solving both, ordinary and partial, non-linear
differential equations (DE) by means of the feed-forward artificial neural
networks (ANN) is presented in this paper. Proposed approach consist
in training ANN in such a way, that it approximates a function being a
particular solution of DE and all its derivatives, up to the order of the
equation. This is achieved by special construction of the cost function
which contains informations about derivatives of the network. ANNs with
sigmoidal activation functions in hidden nodes, thus infinitely differen-
tiable, are considered in this paper. Illustrative examples of the solution
of a non-linear DE are also presented.

Keywords: feed-forward neural networks, derivatives, differential
equations.

1 Introduction

A significant effort in using feed-forward artificial neural networks (ANN) for
solving both, ordinary and partial, differential equations (DE) has been made
in recent years. Fundamental works in this area are those by Milligen [1] and
Lagaris [2]. The common point of these works is the idea that ANN can ap-
proximate efficiently a solution of the DE subject to the given initial/boundary
conditions (BCs), i.e. the problem of DE integration can be transformed to the
ANN weights optimization problem. However there is an essential difference in
the definition of the cost function being minimized during training in these works.
In [1] the cost function is proposed to be a weighted sum of the errors generated
by conditions describing DE and its BCs. This approach is followed in (just to
mention recent works) [3–5]. The main advantage of this method is its generality
- it is applicable in a straightforward way to almost any DE or system of DEs de-
fined on arbitrarily shaped domain, subject to arbitrary set of initial/boundary
conditions. However the BCs are never fulfilled exactly with this method (but
the error magnitude at boundaries can be controlled). On the other hand in [2]
the error function is constructed in such a way that BCs are always fulfilled
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exactly. This idea is extensively exploited in [6–8]. However the exactness of the
BCs calculation is achieved at cost of loss of generality, i.e. the final shape of
error function depends strongly on the domain dimension, boundary shape and
DE and BCs formulation.

Though both approaches are showed to produce solutions of good quality
(see introduction in [7]), the generality of the first method makes it much more
promising (according to author’s opinion). In this method, the quality of the
solution depends on the following factors:

– number of hidden neurons in the artificial neural network,
– number and distribution of ANN training samples, i.e. collocation points

representing the solution domain,
– weighting coefficients which are assigned to each component of the error

function (DE and BCs),

The number of hidden neurons and the distribution of collocation points have
to assure acceptable balance between the CPU time needed to train the model
and the approximation quality. The proper choices generally are not known á
priori. The similar problem appear however in other, say, hard computing DE
solution methods. For example in finite element method we have to choose á pri-
ori the domain discretization density and shape functions degree. Then special,
computationally intensive, techniques are used to refine meshes and/or increase
the elements degree if necessary (method known as h-p refinement). When using
ANN as the DE solver, the “refinement” is as easy as adding new neurons to the
network and/or sampling new points from the domain and adding them to the
training set. However, the proper choices for number of nodes and collocation
points can be often reliably estimated also á priori (it depends on the problem
being solved). Such assumption is present in most aforementioned papers. In
[4] a stochastic (evolutionary programming) method is proposed to specify the
number of neurons, and [5] presents a training algorithm which includes also
number of nodes determination. The third factor influencing the quality of DE
solution by ANN training are the weighting coefficients in cost function. They
are responsible for keeping the balance between the errors generated by DE
equation in the solution domain and errors in fulfilling boundary conditions.

In the following we present the formulas describing the layered neural network
and its partial derivatives up to k-th order. We constrain ourselves to the case
of three-layered neural network, but equivalent formulation is possible also for
general feed-forward architectures (though this extension is far from trivial). In
order to exploit gradient methods in neural network training the gradient of the
ANN and also its derivatives with respect to the parameters (weights and biases)
is needed. The necessary formulas are also provided. Then the general rules for
the construction of cost function to be minimized in order to solve the given DE
are showed. Finally two illustrative examples of solving second order nonlinear
equation of cantilever beam are presented.
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2 Neural Network and Its Derivatives

A special case of three-layered neural network with nonlinear activation functions
in hidden nodes, identity inputs and single identity output can be represented
by the following closed formula (following notation from [2]):

y = f(x1, . . . , xn) =

m∑
j=1

vjgj

(
n∑

i=1

wjixi + bj

)
(1)

k-th partial derivative of the function realized by the network f can be computed
also by means of the closed equation:

∂k1

∂xk1
1

∂k2

∂xk2
2

. . .
∂kn

∂xkn
n

f = Df (k) =

m∑
j=1

(
vjg

(k)
j Pj

)
(2)

where g
(k)
j is k-th derivative of gj and:

k =

n∑
i=1

ki, Pj =

n∏
l=1

wkl

jl (3)

In [9] it is shown that this kind of networks can approximate simultaneously any
continuous function f0 and its derivatives. This approximation is arbitrarily well
in the supremum norm, i.e.:∣∣∣∣∣∣ ∂

k1

∂xk1
1

∂k2

∂xk2
2

. . .
∂kn

∂xkn
n

f0 −
m∑
j=1

(
vjg

(k)
j Pj

)∣∣∣∣∣∣ < ε (4)

if only the number of hidden units m is arbitrarily large. These approximation
capabilities has been also proved for networks with two hidden layers [10] and
can be extended to the general case of the feed-forward networks with nonlinear
activation functions. The results are applicable for any finite input domain (not
only for unitary hypercube).

In order to exploit Newton methods in ANN training a gradient of the function
f and its derivatives with respect to weights and biases is needed. Let’s represent
the formula for network derivatives (2) in the following way:

h(vj , bj, wji) =
m∑
j=1

(
vjg

(k)
j Pj

)
(5)

Then, gradient of h with respect to output weights vj , biases bj and input weights
wij is given by formulas:

∂h

∂vj
= g

(k)
j Pj

∂h

∂bj
= vjg

(k+1)
j Pj

∂h

∂wji
= xivjg

(k+1)
j Pj + vjkiw

ki−1
ji g

(k)
j Qj (6)
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where:

Qj =

n∏
l=1,l =i

wkl

jl (7)

It’s easy to observe that if k = 0 then h ≡ f and the above equations represent
the usual gradient of the network output with respect to network parameters.
Thus the presented formulas can be viewed as a generalization of the standard
three layer feed-forward neural network definition.

3 Cost Function

Let’s take: x = [x1, . . . , xn] ∈ Dn as input vector of the network,w = [w1, . . . , wp]
- network parameters (weights and biases) and f(x,w) : Rn → R - function re-
alized by neural network. The quality of ANN approximation is measured by
the condition L which represents distance between f and the function being
approximated f0. This can be written as:

L = L(x, f(x,w)) = f(x,w)− f0(x) (8)

Then, the most commonly used cost function in training feed forward neural
networks is the integral of squared errors:

E =
1

2

∫
Dn

L2dx (9)

Obviously, only discreet number of realizations of f0 in domain Dn is usually
available and the integral in the above equation becomes a sum over the known
points.

For solving differential equations, a generalization of quality measurement is
needed. Firstly we assume that the condition L can include also the derivatives
of f . Secondly, a number of conditions is assumed to be satisfied simultaneously.
This can be written as the following set of conditions:

L(x, f(x,w), Df (1)(x,w), . . . , Df (k)(x,w)) = 0

B1(x, f(x,w), Df (1)(x,w), . . . , Df (k)(x,w)) = 0

. . .

Br(x, f(x,w), Df (1)(x,w), . . . , Df (k)(x,w)) = 0 (10)

where L can be viewed a partial differential equation and B can be interpreted
as the initial/boundary conditions. Then the cost function to be minimized is
written as:

E =
1

2

[
λL

∫
Dn

L2dx+

r∑
s=1

(
λs

∫
Cn

s

B2
sdx

)]
(11)

where Dn, Cn
s are domains of the DE and its BCs respectively and λL, λs are the

given coefficients. This way we defined a problem of multi-objective optimization
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for training ANN. It is to note, that determination of parameters λ is beyond
the scope of the paper. However, for the example presented below we have taken
values which are inversely proportional to the number of points representing
domains of the conditions involved in discreet version of (11). This choice seems
to be reasonable for most applications.

It should be also noted that minimization of (11) can be performed by means
of fast gradient optimization methods as we can calculate gradients of f and all
its derivatives with respect to w components from equations (6).

4 Numerical Examples

4.1 Cantilever Beam 1D

Let’s consider a cantilever beam of the length l and cross section characterized
by stiffness EJ . Beam is fixed at one end and loaded by vertical force P at the
second tip. Differential equation of such a beam, where the unknown function is
the rotation angle of the section θ, is given by:

θ′′ + α cos(θ) = 0, θ(0) = 0, θ(1)′ = 0 (12)

Function θ depends on the non-dimensional length variable ξ ∈ 〈0, 1〉, i.e. θ =

θ(ξ), and the coefficient α = Pl2

EJ . For large values of α this equation is highly
nonlinear.

In our approach, the unknown θ is represented by artificial neural network.
Let’s write then the conditions for training ANN:

L(ξ,w) = Dθ(2)(ξ,w) + α cos(θ(ξ,w)) = 0, ξ ∈ 〈0, 1〉
B1(ξ,w) = θ(ξ,w) = 0, ξ ∈ {0}
B2(ξ,w) = Dθ(1)(ξ,w) = 0, ξ ∈ {1} (13)

In order to train the network we have chosen 10 regularly distributed points in
ξ ∈ 〈0, 1〉. Condition L have to be satisfied at all points, B1 and B2 at single
points ξ = 0 and ξ = 1 respectively. Coefficients λ in (11) were chosen as λL = 0.1
and λ1 = λ2 = 1.

Network training was performed by means of the open source ffnet software
[11] with use of the truncated Newton method ([12]). Standard sigmoid activation
function was used at hidden nodes of the network. It’s worth to cite here the
training script used for the considered example:

from deffnet.desolver import DESolver

from numpy import linspace

class Cantilever(DESolver):

functions = ’F’

variables = ’x’

equations = \



192 M. Wojciechowski

"""

dFxx + 3.*cos(F) = 0 : domain

F = 0 : bcdomain1

dFx = 0 : bcdomain2

"""

domain = linspace(0, 1, 10)

bcdomain1 = [0]

bcdomain2 = [1]

cantilever = Cantilever(6)

cantilever.train(maxfun = 5000)

After running this script circa 300-500 calls of cost function (and gradient eval-
uations with respect to weights) is needed to reach the value of the error at the
level 10−6. In this example a network of architecture 1-6-1 was used. The results
generated for α = 3 are shown on Figure 1. It is to note that derivatives of this
solution can be also easily provided by the network.

0.0 0.2 0.4 0.6 0.8 1.0

ξ

0.0

0.2

0.4

0.6

0.8

1.0

θ
(ξ

)

Fig. 1. Solution of equation (12) for α = 3 obtained with ANN of the architecture
1-6-1. This result is in exact agreement with solutions found in literature (for example
[13]).

4.2 Cantilever Beam 2D

Problem (12) can be easily extended to 2D case if we assume α is the additional
variable in the differential equation. In the following we assumed α ∈ 〈0, 10〉 and
the solution domain (ξ, α) was represented by 200 regularly spaced points. The
training script used here is very similar to the previous one and has the form:

from deffnet.desolver import DESolver

from deffnet.domains import Rectangular

from numpy linspace

R = Rectangular(p1=(0, 0), p2=(1, 10), \

n1 = 10, n2 = 20)



Solving DEs by Means of Feed-Forward ANNs 193

class Cantilever(DESolver):

functions = ’F’

variables = ’xa’

equations = \

"""

dFxx + a*cos(F) = 0 : domain

F = 0 : bcdomain1

dFx = 0 : bcdomain2

"""

domain = R.body()

bcdomain1 = R.left()

bcdomain2 = R.right()

cantilever = Cantilever(20)

cantilever.train(maxfun = 5000)

Solution for this 2-dimensional problem is obtained after c.a. 5000 calls of
cost function and the final error value is of order 10−4. Neural network of the
architecture 2-20-1 was used in this example. The solution θ(ξ, α) and its first
derivative θ′ = ∂θ

∂ξ are shown on Figures 2

Fig. 2. Solution of the equation (12) for α ∈ 〈0, 10〉 obtained with neural network of the
architecture 2-20-1 (left) and its first derivative (right). Cross section of the solution
at α = 3 is shown on Figure 1.

5 Conclusions

Presented method allows to solve general ordinary and partial differential equa-
tions taking advantage of the approximation capabilities of feed-forward neural
networks. Numerical examples indicate, that it is possible to obtain solutions of
high accuracy with this approach. Dimension of the problem is handled simply
by adjusting the number of input nodes of the neural network. The training
scripts show practical flexibility of the method.
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The main advantages which motivate further development in this area are:

– no mesh over domain is needed nor even the regularly spaced collocation
points are necessary to look for the DE solution; moreover representation of
the domain can vary during ANN training - this is as easy as adding/removing
samples from training set;

– increasing the number of sampling points does not increase significantly the
complexity of the solution;

– once network is trained it constitutes a continuous, differentiable approxi-
mation of the DE solution; this means that solution values can be accessed
instantaneously at any point of the domain (in contrast to other commonly
used methods where solution is known only at finite number of points and
additional interpolation, post-processing techniques have to be used to cover
the whole domain);

– increasing the problem dimensionality is as easy as adding new input neurons
to the ANN - training procedures does not depend on the domain dimension;

– solution of the same DE problem, but with changed free parameters can be
performed just by retraining the existing network - this saves computational
time needed to find new solution;

– free parameters can be easily treated as problem variables and then the so-
lution found will be a continuous function of original variables and these
parameters - such a solution can be used in model optimization when com-
paring to real life data;

– the method can be used to assimilate the experimental, possibly noised data
generated by a system which is believed to be ruled by a differential equation
- in such a problem measured values stand for boundary conditions of DE
(see e.g. [14]);

– the method is easy to be parallelized both via domain decomposition (which
consist simply in assigning the collocation points to available processing
units) and via parallelization of ANN architecture; hardware parallel ANN
chips can also be designed.

It’s also worth to note that the given formulation of the cost function (11) can
be viewed as a generalization of the standard supervised NN learning. One can
incorporate during training knowledge about derivatives of the dependence being
trained (if known obviously). Moreover some components of (11) can serve as
specialized regularization terms in training process. “Regularity“ of the network
derivatives (see Figure 2) indicates possible effectiveness of such approach.
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Abstract. The article is dedicated to the possibilities of practical appli-
cation of artificial neural networks in designing parameters of steel vac-
uum carburization processes and preparing for cooling in high-pressure
gas. In the following sections, the nature of vacuum carburization tech-
nology, the course of research on the precipitation phenomena, the con-
struction of an artificial neural network and the algorithm of searching
process parameters have been presented.

Keywords: prediction model, neural network, vacuum carburizing.

1 Introduction

Vacuum carburization differs from conventional carburization in its high coal-
bearing potential, which gives actual opportunities of shortening the duration
and reducing costs of the entire process. However, as opposed to gas carburiza-
tion, vacuum carburization is a much more complex process, which makes treat-
ment with the use of this method more difficult to control, and hence, enforces
more intensified control over the whole technological process. For this reason,
conducting processes in the atmosphere carbon potential similar to maximum
concentration of carbon in austenite is connected with the necessity of using
tools to control the course of the process.

Effective vacuum carburization processes and obtaining repetitive carburized
layers require maintaining constant control over the process and the possibilities
of assessing output parameters of processed steel elements as early as during the
stage of carburization process designing. Therefore, the tools for designing and
simulation of thermal processing are becoming increasingly popular.

2 Current Model of Vacuum Carburizing of Steel

The effect of researches described in papers [5], [3] was a development of a
mathematical model that supports vacuum carburizing technology. A computer
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c© Springer-Verlag Berlin Heidelberg 2012
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program which based on the model allows designing carburization processes and
hardening in high-pressure gas, as well as analyzing and optimization of processes
without the necessity of conducting expensive test processes on real details. The
development of the model and its capabilities have been described in articles [8],
[9]. The algorithm of program is a combination of a mathematical and heuris-
tic model based on gradual layer building with simultaneous preventing from
the formation of carbides in the thermally improved material. An important as-
sumption of the algorithm is the condition that carbon concentration in austenite
during the process cannot exceed the value of marginal concentration.

Still, it needs to be remembered that its operation is limited by the com-
plexity level of physical and chemical relations occurring in the material during
processing. In other words, creating a mathematical model of the precipitation
phenomena takes place with carbon levels exceeding the maximum value of car-
bon solubility in austenite is a difficult issue to be executed and hence enforces
the use of far-reaching simplifications.

Applying the artificial intelligence method, in particular artificial neural net-
works, provides a real chance to by-pass this stage. The main objective of this
method is prediction, i.e. forecasting results for the data included in the prob-
lem domain, but outside the set of learning cases. Artificial neural networks
do not require any mathematical and physical equations, because during the
learning process, based on empirical cases, they formulate the relations between
phenomenon parameters independently. A correctly built network can map even
very complex functions [7] and is easy to use (in practice, it builds the necessary
model according to the examples presented) [1], [11]. Therefore, such a network
can be used wherever there are problems connected with working out mathe-
matical models, which provides an opportunity to construct models for barely
known and examined phenomena and processes [2], [4], [10], [12].

3 Neural Model for Prediction of Heat Treating of Steel

The primary objective of the research was to create a model that would support
vacuum carburization process designing. It was also important to include that
in many cases, a user has very concrete and specific expectations concerning
the carburized layer and needs parameters of the process that will result in the
creation of the desired carbon profile in the surface layer of a detail. Therefore,
creating a network which, based on the carburized layer criteria, would calculate
the time of boost and diffusion segments of the process, necessary to obtain the
expected material parameters, was another very important stage of the research.

It was assumed that a new network would be a part of the already existing
application for simulation of vacuum carburization processes. The algorithm
based on a neural network was worked out as an alternative method of process
execution. The main concept principles were as follows:

1. The network-based algorithm creates a process comprised of one boost seg-
ment and one diffusion segment (heuristic algorithm calculates a process com-
posed of many boost and diffusion segments).
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2. The method allows for the occurrence carbide-forming phenomena during
the process; however, provided that all carbides have dissolved by the time the
process ends (so far, various methods have been based on conducting the pro-
cess below the maximum solubility level of carbon in austenite, which somehow
restricts such methods).

3.1 Building a Neural Network Structure

By analyzing experimental processes of vacuum carburization, the following pa-
rameters were considered significant: process temperature [K], boost segment
time [s], diffusion segment time [s], chemical composition of the material, in
particular percentage contents of alloy elements: C, Si, Mn, Cr, Ni, Mo, Al, V
and Cu.

In order to prepare learning templates for the network, besides the said pa-
rameters, carbon boost on sample’s surface [%], carbon content at the examined
depth from sample’s surface [%], content of carbides at the examined depth from
sample’s surface [%] and distance of the examined place from sample’s surface
[μm] were additionally archived.

Based on the research on carbon and carbide decomposition in the samples’
carburized layer, 5500 templates were designed. Next, the templates were divided
at random into learning, testing and validating sets in the following proportions:
70% learning templates, 15% testing templates, 15% validating templates.

When devising the neural network, it was noticed that the network should
have extrapolating properties, i.e. it should correctly predict cases that are not
contained in the learning set. The aforementioned assumption prevailed in sup-
port of MLP (Multi Layer Perceptron) because of its capabilities in this field
(RBF type network did not cope well with data extrapolation).

Carburization process parameters and chemical composition of a thermally
improved detail were set as input signals of the network: percentage concentra-
tion of carbon in the core (C), percentage concentration of: silicon (Si), man-
ganese (Mn), chromium (Cr), nickel (Ni) and molybdenum (Mo) in the core,
carburization process temperature [K] (Temp), distance from the surface of a
spot, which is to be described by network output values, in μm (X), percentage
concentration of carbon on the surface (Cp), percentage concentration of car-
bon in point X from the surface (Cx), percentage concentration of carbides in
point X from the surface (MeC). Information describing percentage contents of
aluminum, vanadium and copper were rejected due to a narrow scope of such
data.

Output signals of the network represented segment times of the carburization
process necessary for the material to obtain the desired parameters: boost seg-
ment time in seconds (Carb) and diffusion segment time in seconds (Diff). By
creating training templates for the network, boost and diffusion segment times
were given in seconds to ensure higher algorithm precision.
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The next stage in the process of network construction was to determine the
correct number of layers and neurons in the layers, as well as to choose correct
activation functions. Based on the Kolmogorov and Cybenko theorems, it was
assumed that one hidden layer would suffice to solve the problem.

Several dozens architectures with varied number of hidden neurons (it was ar-
bitrarily assumed that there should be at least 10 and not more than 30 neurons)
and characterized by different activation functions (linear, sigmoid, tangential
and exponential functions) were tested.

Eventually, MLP type network was selected based on which provided the best
responses. The network possessed 11 input neurons and 2 output neurons, and
22 hidden neurons (the network was called MLP 11-22-2). The figure (Fig. 1)
presents a diagram of the above-presented neural networks that were examined.
The network training stage was a very important element of building the neural

Fig. 1. Diagram of artificial neural network

network. It was extremely significant for the method and precision of network
operation [6]. At the beginning of the training process, the neurons between
individual layers were connected with one another.

Network weights were initialized with random values and later taught with the
method of steepest ascent, BFGS (Broyden-Fletcher-Goldfarb-Shanno method)
and conjugate gradients to determine the best method of learning for each net-
work.

The BFGS algorithm turned out to be the best training method for the net-
work selected. Detailed training parameters are presented in the table (Tab. 1).
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Table 1. Summary of the neural network training process

Parameter MLP 11-22-2

Input layer neurons count 11
Hidden layer neurons count 22
Output layer neurons count 2

Training method BFGS
Training epochs count 850

Error function Sum squares of differences function
Activation function (hidden layer) Sigmoid function
Activation function (output layer) Linear function

4 The Algorithm of Searching Process Parameters

A diagram of process searching based on the carburized layer criteria is presented
in Fig. 2.

The first step of the algorithm is to answer a question whether a technologist
plans a subcooling stage during the entire process. If yes, it means that after
diffusion segment completion, carbon profile in the element will still be modified
(by the subcooling segment), whereas the layer criteria entered are not the values
after the diffusion segment completion, but final values obtained after the end of
the entire cycle, together with subcooling. Therefore, it is necessary to calculate
carbon profile after the diffusion segment. In order to do so, the already existing
program tool is initiated, which:

1. Sets a multi-segment process, which also includes subcooling, after which
carbon profile is compatible with the criteria set by a technologist.

2. Performs simulation of ”boost/diffusion” segments omitting the subcooling
stage and calculates carbon profile after the last segment of diffusion.

3. Based on the received profile, it measures carbon concentration on the
surface (Cp) and in distance x from the surface (Cx), and sets them as input
signals for the network.

4. The following values are given for network inputs: carburization process
temperature [K] (Temp), percentage concentration of carbon on the surface (Cp),
percentage concentration of carbon in point X (Cx), percentage concentration of
carbides in point X (MeC), distance from detail’s surface [μm] (X), percentage
concentration of carbon in steel before carburization (C), percentage concentra-
tion of silicon in steel (Si), percentage concentration of manganese in steel (Mn),
percentage concentration of chromium in steel (Cr), percentage concentration of
nickel in steel (Ni), percentage concentration of molybdenum in steel (Mo).

5. After calculations, the network provides output times of the boost segment
(marked as Carb [s]) and the diffusion segment (marked as Diff [s]).

If a technologist does not plan a subcooling stage during the process, it means
that the layer criteria set in the program are the values after the diffusion segment
completion. If such is the case, these values are given directly to network’s inputs.

The last step of the algorithm is to visually present calculation results.
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Fig. 2. The algorithm used to search vacuum carburization process parameters

5 The Analysis of Neural Networks Operation

The assessment of correct operation of neural network was based on quality and
correlation coefficients, and on network prediction graphs.

Network quality is a linear correlation coefficient between actual theoretical
values (calculated with the use of a model) and its value is presented in an
interval [0,1]. In other words, the closer the network quality is to 1, the more the
network’s answers are closer to the answers expected.

Validation quality (Tab. 2) is usually lower than learning quality, because in
this case the network answers to questions which it has not encountered be-
fore. Therefore, a greater validation mistake should not be worrying. In the
table (Tab. 3), correlation coefficients for MLP 11-22-2 networks are presented.
These coefficients are close to 1, hence we can draw a conclusion that there is
a strong connection between the output values generated by the network and the
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Table 2. Quality coefficients of neural network

Parameter MLP 11-22-2

Network quality (training) 0.940
Network quality (testing) 0.939

Network quality (validation) 0.939

Table 3. Correlation coefficients of neural network

Parameter MLP 11-22-2

Carb [s] (training) 0.904
Carb [s] (testing) 0.903

Carb [s] (validation) 0.901
Diff [s] (training) 0.980
Diff [s] (testing) 0.975

Diff [s] (validation) 0.977

actual (real) values. The network output that provides time of the carburization
segment is marked as Carb, whereas the network output that provides time of
the diffusion segment is marked as Diff.

6 Discussion and Conclusions

It needs to be underlined that the method of vacuum carburization by carbides
and their dissolving makes it possible to obtain a carburized layer structure that
is identical as in the case of the traditional method of carburization, i.e. the so-
called multi-segment method performed in the atmosphere potential below the
threshold of carbides precipitation. This conclusion is the reason and justification
for further experiments over the method of shortening the time of the process by
conducting it with potential above the margin of maximum solubility of carbon
in austenite.

As a result of the experimental processes of vacuum carburization and ma-
terial tests, the course of precipitation and dissolution of carbides in austenite
(which take place during the process of vacuum carburization) and the influence
of carburization process parameters on this phenomenon were analyzed. More-
over, an example of artificial neural network application in designing vacuum
carburization processes in a practical aspect was presented.

With the help of a neural network, we can imitate the course of the vacuum
carburization process taking into account the kinetics of forming and dissolving
carbides without knowing the analytical equations of this phenomenon. Col-
lecting a sufficient number of carbide layer measurements allows designing and
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training a one-direction MLP network capable of mapping the dynamics of car-
bide phenomena with arbitrary precision. However, it needs to be remembered
that an application based on a set of neural networks provides greater certainty
of receiving a correct result than an application based on a single neural network.

The method of vacuum carburization by carbides and their dissolving makes
it possible to obtain a carburized layer structure that is identical as in the case of
the traditional method of carburization, i.e. the so-called multi-segment method
performed in the atmosphere potential below the threshold of carbides precip-
itation. At the moment, further tests and experiments are conducted with the
aim of finding practical applications for this method.
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2010/39 financed by the Ministry of Science and Higher Education and Sciences.
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Abstract. In this paper, a new method for dealing with an unbalanced
linguistic term set is introduced. The proposed method is a modifica-
tion of the 2-tuple linguistic model, in which we use a set of extended
linguistic terms. The extended linguistic term is a pair that consists a
linguistic label and a value of correction factor which describes the term
shift relative to its position in an equidistant term set. This modification
allows us to obtain the method that is computationally less expensive
and give simpler semantics than method based on linguistic hierarchies.

1 Introduction

Modeling and solving of many real world problems may require processing of
knowledge that often cannot be characterized in an exact and precise way be-
cause the available data are imprecise in nature, for example presented in a
linguistic form. In order to process such data, we can use the computing with
words methodology which has been a topic of many research during last years.
It has its origin in Zadeh’s papers [11–13] that presents concept of a linguistic
variable.

The linguistic variable is a quadruple <L, S,Ω,M> in which L is a name of
variable, S is a countable term set, Ω is an universe of discourse and M is a
semantic rule. The semantic rule M is a function that associates each label in
set S with its meaning which can be defined as a type 1 fuzzy set [7, 11–13],
a type 2 fuzzy set[8–10], symbolic[1], 2-tuple[2–5]. The 2-tuple linguistic model
proposed by Herrera and Martinez[2, 4, 5] is very interesting, but it can be used
only when the linguistic terms are symmetrically and uniformly distributed. This
kind of model is very simple to define; however, it may not be appropriate in
some real world applications. For that reason, Herrera and Martinez extended
their method to deal with unbalanced linguistic terms[3]. This algorithm, which
is based on linguistic hierarchy [6], solves the mentioned problem but it is still a
computationally expensive method that requires additional linguistic term sets.

In this paper, we would like to propose a new method to deal with an un-
balanced linguistic term set. Our method is based on the 2-tuple model but we
assume that linguistic term is represented as a pair that contains a linguistic
label and a value of a correction factor which describes term shift relative to its
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position in an equidistant term set. The paper is organized as follows: the next
section briefly describes the 2-tuple linguistic model, section 3. depicts proposed
method for dealing with unbalanced linguistic term set, section 4. presents an
illustrative example and the last section draws final conclusions.

2 A 2-Tuple Fuzzy Linguistic Representation Model

In the paper [4], Herrera and Martinez propose a simple but powerful and ac-
curate linguistic representation model. In their model, linguistic information is
represented by a pair (s, α) where s ∈ S is a linguistic label and α ∈ [−0.5, 0.5)
is a linguistic translation.

Definition 1 ([4]). Let S = {s0, . . . , sg} be a linguistic term set and β ∈ [0, g]
a value representing the result of a symbolic aggregation, then the 2-tuple that
expresses the equivalent information to β is obtained with following function:

Δ(β) =

{
si, i =round(β)

α = β − i, α ∈ [−0.5, 0.5) (1)

where round(·) is the usual round operation, si has closest index label to ”β”,
and ”α” is the value of symbolic translation.

Proposition 1 ([4]). Let S = {s0, . . . , sg} be a linguistic term set and (si, α)
be a 2-tuple. There is always a Δ−1 function such that from a 2-tuple it returns
its equivalent numerical value β ∈ [0, g] ⊂ R:

Δ−1(si, α) = i+ α = β (2)

Herrera and Martinez also propose a basic set of operations on 2-tuples like
negation, comparison and aggregation. The great advantage of their model is that
linguistic information can be processed without loss of information. However,
this is the case only when the linguistic terms meet condition described in [5]
especially they must be symmetrically and uniformly distributed.

To deal with an unbalanced linguistic term set, they propose a method based
on linguistic hierarchies (LH)[3, 6]. Linguistic hierachies method was originally
developed to deal with multigranular linguistic term sets. In papers [2, 3], au-
thors describe how to use LH to provide semantics to the terms in unbalanced
term set. This method assigns the meaning to terms based on the meaning of
corresponding terms included in additional equidistant term sets with the same
or different granulation. The main disadvantage of the proposed method is its
complexity and a high computational cost.

3 A New Method to Deal with an Unbalanced Linguistic
Term Set

In this section we propose a new simple method for dealing with an unbal-
anced linguistic term set. We assume that every term in linguistic term set Ŝ is
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represented as a pair ŝi = {si, γi} where si is a label for ith linguistic term and γi
is a correction factor γi ∈ [−i, g] ⊂ R. The correction factor describes term shift
relative to its position in an equidistant term set with the same granularity. The
linguistic term with the correction factor will be called an extended linguistic
term. In order to preserve interpretability of the set of the extended terms every
term must meet the following condition:

(i − 1) + γi+1 < i + γi < (i+ 1) + γi+1 (3)

which means that the correction factor cannot change the order of the terms.
Graphically, the extended terms are represented in Fig. 1

S0 S1 S2 S3 S4 S5 S6

{S1,-0.5} {S2,-0.5} {S3,0} {S4,0.75} {S5,0.5} {S6,0}{S0,0}

a)

b)

1 2 4 5

Fig. 1. Graphical presentation of the correction factor: a) an equidistant term set b) an
unbalanced linguistic term set with marked shifts of terms in relation to their position
in the equidistant term set

With the term set defined as above, the 2-tuple can be obtained from a nu-
merical value by the following function:

Δ̂(β) =

{
ŝi, i = argmin

i
(|(ŝi + γi)− β|)

α = β−(i+γi)
d , α ∈ [−0.5, 0.5)

(4)

where β ∈ [0, g] is a value representing the result of a symbolic aggregation, ŝi
is an extended term, ŝi ∈ Ŝ and d is a distance between adjacent terms:

d =

{
(i + 1 + γi+1)− (i+ γi) = 1 + γi+1 − γi, when β − i ≥ 0

(i + γi)− ((i − 1) + γi−1) = 1 + γi − γi−1, when β − i < 0
(5)

The inversion function can be defined as follows:

Δ̂−1(ŝi, α) = (i+ γi) + d ∗ α (6)

It should be noticed that when we have an equidistant term set then γ = 0
for all terms and our model reduces to 2-tuple model proposed by Herrera and
Martinez. Because of the fact that all operators that operate on 2-tuples in fact
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are based on numerical values they can also be used with our model. For example,
the arithmetic mean of 2-tuples is computed by the following function:

xe = Δ̂

(
1

n

n∑
i=1

βi

)
= Δ̂

(
1

n

n∑
i=1

Δ̂−1(ŝi, αi)

)
(7)

4 An Illustrative Example

In order to illustrate the proposed method we use the same example like Herrera
et al. [3]. Suppose a teacher wants to obtain a global evaluation of his students
by taking into account the grades they received on different tests. Every test is
evaluated by the means of a scale presented on Fig. 2.

F
D C B A

Fig. 2. Grading scale used in example

Table 1 shows exemplary results obtained by two students.

Table 1. Examplary results for two students

John Smith D C B C C C

Martina Johnson A D D C B A

In order to obtain global evaluation Herrera et al. define three additional
equidistant term sets with 3, 5 and 9 terms respectively (Fig. 3(a)).

As the result of their algorithm, they obtain the following global evaluations:

xJS = (s2,−0.08) xMJ = (s2, 0.16)

The detailed description of this example and required computations is presented
in paper [3].

Now, we solve the same task with our method. First, we have to define the
set of the extended linguistic terms:

Ŝ =
{
F = {s0, 0}, D = {s1, 1}, C = {s2, 1}, B = {s3, 0.5}, A = {s4, 0}

}
Graphical representations of this set of the extended terms and the correspond-
ing equidistant term set are presented in Fig. 2(b).
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F D C B A F D C B A

F={s
0
,0} D={s

1
,1} C={s

2
,1} B={s

3
,0.5} A={s

4
,0}

s
0 s

1
s
2

s
3

s
4

F D C B A

a) b)

Fig. 3. The definition of semantic representation of terms in example a) based on
linguistic hierarchies [3] b) based on the method proposed in this paper

Next we can compute global evaluations by applying the arithmetic mean
operator (7) to data presented in Table 1, in the following manner:

xJS = Δ̂

(
1

6

(
Δ̂−1(D) + 4 · Δ̂−1(C) + Δ̂−1(B)

))
= Δ̂

(
1

6
(2 + 3 + 3.5 + 3 + 3 + 3)

)
= Δ̂(2.92)

=

{
argmini{2.92, 0.92, 0.08, 0.58, 1.08}
(2.92− 3)/1

= ({ŝ2, 1},−0.08)

= (C,−0.08)

xMJ = Δ̂

(
1

6

(
2 · Δ̂−1(A) + 2 · Δ̂−1(D) + Δ̂−1(C) + Δ̂−1(B)

))
= Δ̂

(
1

6
(4 + 2 + 2 + 3 + 3.5 + 4)

)
= Δ̂(3.08)

=

{
argmini{3.08, 1.08, 0.08, 0.42, 0.92}
(3.08− 3)/0.5

= ({ŝ2, 1}, 0.16)

= (C, 0.16)



212 �L. Bartczuk, P. Dziwiński, and J.T. Starczewski

5 Conclusion

In this paper, we propose a new method for dealing with an unbalanced linguistic
term set. In our method, we use the set of the extended linguistic terms in which
every term is a pair containing a linguistic label and a value of the correction
factor. The correction factor describes the shift of the term relative to its position
in an equidistant term set. This modification allows us to proceed operations on
unbalanced linguistic term sets in a simpler manner than in the method based
on linguistic hierarchies.
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Abstract. In the paper a new method of fuzzy clustering basing on
fuzzy features is presented. Objects are described by set of features with
intutionistic fuzzy values. Generally, the method uses the concept of mod-
ified fuzzy c-means procedure applied to intuitionistic fuzzy data which
describes the features. New distance measure between data and cluster
centers is suggested. Some examples of clustering results are presented.
The method is efficient and very fast.

Keywords: fuzzy c-means clustering, fuzzy intuitionistic data.

1 Introduction

In fuzzy clustering the limits between clusters are fuzzy and input data can be-
long to different clusters partially with different levels of membership. However,
in many practical clustering problems the input data must be treated as fuzzy
sets. Thus, in the paper, an approach to fuzzy clustering basing on intuitionistic
fuzzy features is presented. Objects are described by set of features with intu-
itionistic fuzzy values. Generally, the method uses modified c-means procedure
applied to such feature’s data.

The applications of intuitionistic fuzzy sets in clustering problems begin for
year 2004. Hung, Lee and Fuh [4], proposed the fuzzy clustering algorithm based
on intuitionistic fuzzy relations. In years 2007-2008 were published some papers
on fuzzy clustering of intuitionistic fuzzy data [5] [8] [9]. In [8] the novel vari-
ant of the FCM algorithm uses a distance metric based on a similarity mea-
sure to RGB color image clustering. In the paper [5] the clustering is based
on intuitionistic fuzzy intersection is applied to computer vision problem. The
paper [9] concerns application of intuitionistic fuzzy clustering to information
retrieval from cultural databases. In the paper [13] the clustering algorithm is
based on definition of association coefficients of intuitionistic fuzzy sets. Also
interval-valued intuitionistic fuzzy sets were considered. The intuitionistic fuzzy
hierarchical clustering algorithm was presented in [14]. In [15] Xu and Wu pro-
posed intuitionistic fuzzy C-means clustering algorithms for intuitionistic fuzzy
set and interval-valued intuitionistic fuzzy set, respectively. A novel intuitionis-
tic fuzzy c-means color clustering on human cell images is proposed by Chaira
[2]. The non-membership values are calculated from Sugeno’s type intuitionistic

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 213–220, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ii.pw.edu.pl/english/index.html


214 B.S. Butkiewicz

fuzzy complement. In [12] identical similarity measure as in [8] was used as dis-
tance measure in cluster membership matrix. In [11] the concept of the α-level
fuzzy relation was extended introducing the definition of (α, β)-level intuition-
istic fuzzy relation. Next, the idea of intuitionistic fuzzy tolerance matrix was
described and clustering algorithm based on this matrix was proposed.

In [1] the author suggested a modification of fuzzy c-means algorithm and
applied this modification to clustering of fuzzy data. The idea is developed here
for intuitionistic fuzzy data.

2 Fuzzy C-Means with Intuitionistic Fuzzy Data

Consider input data set X = (x1, ..., xN ) where any data xi is described by
a vector Fi = (fi1, ..., fiL) of fuzzy features fil. Any feature fil represents a
linguistic variable. Let any linguistic variable be real numeric values. Thus, any
feature is described by set of intuitionistic fuzzy sets with membership functions
μlk and non-membership νlk. Let denote vector of membership by μl and non-
membership by νl. In practical situations triangular or trapezoidal shapes of
membership and non-membership functions are useful. Consider now a set V =
(V1, ..., Vc) of fuzzy clusters. Let unknown centers of clusters be denoted by
v1, ..., vc. Any data xi can belong to any cluster Vj with unknown membership
uij . The goal of the robust fuzzy c-means algorithm is to find optimal number
of clusters and centers of clusters to minimize objective function J(U, V ).

μ(x)ν(x)

x

a1 a3a2 a4 a5 a6 a7a8

1

0

Fig. 1. Membership and non-membership functions for data

In the paper the following procedure, called IFCM, is proposed. Firstly, centers
of intuitionistic fuzzy sets are found. Many methods are proposed in literature to
find centers: association coefficients [13], maximum and minimum values of each
feature [12], tolerance value [10][11], Sugeno type intuitionistic fuzzy complement
[2], etc. Here some solutions were considered but very simple and reasonable
procedure is applied for finding centers xil = (a1il + a2il + a3il + a4il + a5il +
a6il + a7il + a8il)/8, where a1il..a8il denote the characteristic values of l feature
for element i.

Next, optimal positions of the centers of clusters are looking for. In FCM
procedure the objective function is equal

J(U, V ) =
N∑
i=1

c∑
j=1

umij ρ
[
d(xi, vj)/γ

]
(1)
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where d(xi, vj) is the distance measure between data xi and center vj of the
cluster Vj , γ is a scaling constant, and uij is the membership value of xi in
the cluster Vj . The function ρ(x) is introduced in order to reduce the impact of
outliers, placed very far away from the cluster centers. The procedure proposed
by Kersten [6] [7] who modified RFCM algorithm of Choi and Krishnapuram
[3] is considered here to apply. They proposed reduction of outliers using Huber
function

ρ(x) =

{
x2/2 if |x| ≤ 1
1/|x| if |x| > 1

(2)

However, in the paper the author suggests a new, not conventional, form of
function ρ(x)

ρ(x) =

{
x2/2 if |x| ≤ 1
|x| − 1/2 if |x| > 1

(3)

The definition also reduce influence of outliers, but it seems more reasonable.
The value of constant γ can be found experimentally or by calculating standard
deviation or median. The choice of γ was not very critical. Next, the distance
between center of any data and center of any cluster were calculated using defi-
nition of ρ

D(xi, vj) =

{
d2m(xi, vj)/2 if d2m(xi, vj) ≤ 1 else
dm(xi, vj)− 1/2

(4)

Thus, the value D(xi, vj) divided by constant γ is put in (1). Now, the matrix
of membership [uij ] of data xi in the cluster cj is updated in the following way

uij =
[ c∑
k=1

(D(xi, vj)

D(xi, vk)

)1/(m−1)]−1

(5)

New values of uij are normalized in all clusters to 1

u
′
ij =

uij∑c
j=1 uij

(6)

In the next step, using weighting function

w[dm(xi, vj)] =

{
1 if 1/dm(xi, vj) ≤ 1 else
1/d2m(xi, vj)

(7)

new centers of clusters are calculated as follows

vj =

∑N
i=1 u

m
ij w

[
dm(xi, vj)

]
xi∑N

i=1 u
m
ij w

[
dm(xi, vj)

] (8)

The center of cluster can be crisp or intuitionistic fuzzy. Fuzzy center is more
interesting, because it may represent fuzziness of data belonging to the cluster.
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All membership functions of the data have trapezoidal shape; therefore, new
intuitionistic center is calculated as weighted mean

a2jl =

∑N
i=1 uij a2il∑N

i=1 uij
a7jl =

∑N
i=1 uij a7il∑N

i=1 uij
(9)

The points a4jl, a5jl, where alpha-cut is equal to 1, are calculated in similar
way. As a result it obtains trapezoidal shape of membership for cluster centers.
Similar procedure is used for non-membership function

a1jl =

∑N
i=1 uij a1il∑N

i=1 uij
a8jl =

∑N
i=1 uij a0il∑N

i=1 uij
(10)

and analogically for points a3jl, a6jl. It is not necessary to execute this procedure
in every step. It will be sufficient to calculate intuitionistic centers at the end of
clustering procedure.

FCM algorithm requires declaring maximal number of clusters cmax. During
any iteration merging procedure can diminish the number of clusters if the dis-
tance between their centers is small. Several methods for merging procedure are
proposed in literature. Here, merging criterion is based on concepts of variation,
cardinality, and compactness. Variation σj of the cluster cj is defined as weighted
mean function of distance

σj =
N∑
i=1

uijD(xi, vj) (11)

Fuzzy cardinality is a measure of the cluster size and is equal

nj =

N∑
i=1

uij (12)

Compactness of the cluster is a ratio

πj =

∑N
i=1 u

m
ij D(xi, vj)∑N
i=1 u

m
ij

(13)

Separation between two clusters cj and ck can be calculated using modified
distance dm(xi, vj) between cluster centers vj and vk. Decision about merging
two clusters is taken with help of validity index. Validity index is defined in [1]
as ratio

ωjk =
D(vj , vk)√

πjπk
(14)

During every iteration the validity index is calculated for any pair of clusters
cj , ck and if ωjk < α then merging procedure is initiated. The value α = 1
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corresponds to situation when distance between clusters is equal to geometric
mean of the cluster compactness. In practice the values in the range [0.1, 0.35]
work well. The center vl of new cluster cl is located in the weighted middle

vl =
vjnj + vknk

nj + nk
(15)

Two old clusters are eliminated after merging and replaced by new cluster. Af-
ter merging, the membership values are recalculated and the IFCM procedure re-
peats. Stop criterion is based on the change of membership values uij after each
iteration. If maximal change is lower than threshold ε then procedure is stopped.

3 Simulation Experiments

In the paper input data have probabilistic nature. Every datum xi is generated
as two-dimensional vector of intuitionistic fuzzy trapezoidal sets (Fig. 1) xil =
(a1il..a8il) and yil = (b1il..b8il) on the plain (x, y) = 640×480 pixels. Probabilistic
distributions for fuzzy parameters were used: triangular and trapezoidal. As a
result we obtain a fuzzy value with two-dimensional membership function in the
form of pyramid with top cut off.

First, the values a, b were generated with uniform [0, 1] distribution. The
values ai1, bi1 with triangle density functions were generated using formula of
the type:

if number of clusters 2 ≤ c ≤ 5 then for j := 1 to c do begin
a2 := 10 + (j − 1)600/c+ (300/c)(1 + sign sqr(a));
b2 := 10 + 220(1 + sign1 sqr(b)); end.

The values sign and sign1 are equal to 1 or -1 and they were changed during gen-
eration to obtain axial symmetry of probability density. For circular distribution

Fig. 2. Example of clustering of intuitionistic data with 3 clusters
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uniform density was used for radius and angle. Other parameters of fuzzy numbers
were obtained using formula

a4 := a2+4+Random(5); a5 := a4+4+Random(5); a7 := a5+4+Random(5);
b4 := b2+3+Random(5); b5 := b4+3+Random(5); b7 := a5+3+Random(5);
a1 := a2−4−Random(5); a3 := a4−1−Random(5); a6 := a5+1+Random(5);
a8 := a7 + 1 +Random(5);
b1 := b2− 3−Random(5); b3 := b4− 1−Random(5); b6 := b5+1+Random(5);
b8 := b7 + 1 +Random(5);

Every time 2% or 5% of data was generated as outliers with uniform distribution
on the whole plain. Following values were used: number of data N=300, 500 or
1000, real number of clusters c=1, 2, 3, 4, maximal (start) value cmax=4, 5
or 6, m=1.5, γ=0.1...1000, α=0.2..0.3, ε=0.005..0.01. The size of clusters was
identical. Some examples of results are presented. In Fig. 2 the holes represent
successive centers of clusters during clustering and merging procedure. The initial
number of clusters was chosen to 6. The starting points had random repartition
on whole plane. Big circles with point in the center mark final position of cluster
centers. The algorithm works very well and fast. In Fig. 4 an example of N=1000

Fig. 3. Example of clustering of intuitionistic data with 4 clusters

data is shown. It can be seen, following circles presented in figure, representing
successive centers of clusters, that after about 11 iterations initial number of
6 clusters are diminished to 3 clusters and centers are found correctly. More
than 500 investigations were performed. The results were almost always correct
despite of random repartition of data and initial cluster centers. The choice of
parameters α and γ had some influence on the behavior of the procedure but
not critical. The value of parameter m was chosen as 1.5 and ε = 0.01. Only
for very small values of ε < 0.001 the procedure works long, but visualization of
centers in any step permits to stop procedure and to find optimal value of ε in
any conditions.
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Fig. 4. Example of clustering of intuitionistic data with 4 clusters and N=1000

4 Conclusion

In the paper is presented a modification of conventional c-means clustering al-
gorithm. New weighted distance measure is suggested. The method is applied
to fuzzy intuitionistic input data. First, the data are defuzzified in order to cal-
culate centers of data. During clustering procedure, crisp centers of the clusters
are used. It facilitates and reduces time of the calculations. When final positions
of the centers are found, the mean membership and non-membership are calcu-
lated for cluster centers. The method works well and fast. Moreover, many known
modifications and improvements of conventional FCM algorithm can be applied
to presented method. Existence of outliers does not disturb calculation and the
results, because the weighted distance is used in the procedure. In the paper
trapezoidal membership were chosen, but it can be replaced by other shapes as
bell or Gaussian functions. In such case other procedure for defuzzification must
be used. However, assumption about infinite support of membership functions
are not realistic.
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Abstract. This paper presents a new approach to comparing interval-
valued intuitionistic fuzzy values. The interval score and accuracy func-
tions are used to build the “net profit” and “risk” local criteria. These
criteria are aggregated in a generalized criterion taking into account their
weights, which depend on the risk aversion of a decision maker. As op-
posed to the known methods, a new approach makes it possible to esti-
mate the strength of relations between interval-valued intuitionistic fuzzy
values. Using some numerical examples, it is shown that the proposed
approach provides intuitively clear results.

Keywords: Interval-valued intuitionistic fuzzy value, Two-criteria
method for comparison.

1 Introduction

Intuitionistic fuzzy set proposed by Atanassov [1], abbreviated here as A− IFS
(the reasons for this are presented in [6]), is one of the possible generalizations of
Fuzzy Sets Theory and appears to be relevant and useful in some applications.
The concept of A− IFS is based on the simultaneous consideration of member-
ship μ and non-membership ν of an element of a set to the set itself [1]. By
definition 0 ≤ μ+ ν ≤ 1.

The most important applications of A−IFS are the multiple criteria decision
making (MCDM) problem [5,7] and group decision making problem [3,4] when
the values of local criteria (attributes) of alternatives and/or their weights are
intuitionistic fuzzy values (IFV s).

It seems quite natural that if local criteria used in the formulation ofMCDM
problem are IFV s, then the resulting alternative’s evaluation should be an
IFV too. Therefore, there are many methods for aggregating of local crite-
ria in A − IFS setting proposed in the literature (see, e.g., [13,16,17]) which
provide the final scores of alternatives in the form of IFV s. If the final scores of
alternatives are presented by IFV s, the problem of comparison of such values
arises. Therefore, the specific methods were developed to compare IFV s.

For this purpose, Chen and Tan [5] proposed to use the so-called score function
S(x) = μ(x)−ν(x), where x is IFV . Let a and b be IFV s. It is intuitively appeal-
ing that if S(a) > S(b) then a should be greater (better) than b, but if S(a) = S(b)

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 221–228, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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this does not always mean that a is equal to b. Therefore, Hong and Choi [7] in-
troduced the so-called accuracy function H(x) = μ(x) + ν(x) and showed that
the relation between functions S and H is similar to the relation between mean
and variance in statistics. Xu [14] used the functions S and H to construct order
relations between any pair of intuitionistic fuzzy values as follows:

If (S(a) > S(b)), then b is smaller than a;
If (S(a) = S(b)), then
(1) If ( H(a)=H(b)), then a=b;
(2) If (H(a) < H(b)) then a is smaller than b.

(1)

The method for IFV s comparison based on the functions S and H seems to be
intuitively obvious and this is its undeniable merit. On the other hand, as two
different functions S and H are needed to compare IFV s, this method generally
does not provide an appropriate technique for the estimation of an extent to
which an IFV is greater/lesser than another one, whereas such information is
usually important for a decision maker.

A more complicated problem is the comparison of interval-valued intuitionistic
fuzzy values (IV IFV s). In this case, a similar (as in (1)) line of thinking can
be adopted. For instance, Xu and Cai [15] proposed the score and the accuracy
functions for IV IFV s and applied them to compare two IV IFV s. Wang at al.
[10] showed that due to the specific characteristics of intervals, the score and
accuracy functions together sometimes cannot indicate the difference between
two IV IFV s. In this case, it is necessary to examine the difference between two
IV IFV s using two additional functions.

The common limitation of these methods is that they are based on real-
valued representations of the score, accuracy and hesitation degree functions of
IV IFV s. Obviously, such a type reduction (from intervals to real values) leads
inevitable to the loss of important information.

Therefore, in this paper, we propose a new two-criteria approach based on the
interval-valued score and accuracy functions which is free of above mentioned
limitations of known methods for IV IFV s comparison.

For these reasons the rest of paper is set out as follows. In Section 2, we
analyze the limitations of known approaches to IFV s comparison based on the
method (1) and describe our approach to comparing IFV s, which is free of these
limitations. Section 3 is devoted to the presentation of two-criteria method to
IV IFV s comparison based on the interval-valued score and accuracy functions.
Finally, the concluding section summarizes the paper.

2 Preliminaries

Let us start from analyzing the limitations of the known methods for IFV s
comparison based on the reasoning (1).

Let A = 〈μA, νA〉, B = 〈μB, νB〉 be IFV s. Then the score and accuracy
functions for A and B are calculated as follows: SA = μA − νA, HA = μA + νA,
SB = μB − νB, HB = μB + νB. A score function is usually treated as the “net
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membership”. Therefore if A is a local criterion in a decision making problem,
then SA may be treated as the “net profit” providing by A. An accuracy function
HA = μA + νA may be presented in its equivalent form HA = 1 − πA where πA
is the hesitation degree or degree of uncertainty. Hence πA may be treated as
the degree of risk associated with the “net profit” SA. Therefore the following
thinking may be justified: the smaller is HA, the greater is the hesitation πA
and, as a consequence, the smaller is A.

There are three important limitations of the method (1):

1). This method generally does not provide a technique for estimation of a degree
to which an IFV is greater/lesser than another one, whereas such information
is usually important for a decision maker.
2). The lack of continuity in comparison of IFV s by this method.

Let us consider the following critical example. For two IFV s A = 〈0.5, 0.3〉 and
B = 〈0.4, 0.2〉 we obtain SA = 0.2, SB = 0.2, HA = 0.8, HB = 0.6. Since SA=SB

and HA > HB, using (1) we get A > B. Let us introduce a bit modification of
B in this example: B′ = 〈0.4, 0.1999〉. Then we obtain SA = 0.2, SB′ = 0.2001.
Since SA < SB′ , taking into account (1) we are forced to conclude that A < B′,
although the difference SB′−SA=0.0001 which can serve as an argument in favor
of A < B′ is negligible in comparison with the differenceHA−HB′=0.2001 which
is the evidence for A > B′. Obviously, in the last case, it should be acknowledged
that A > B′ if the accuracy function is not completely negligible local criterion
for comparison of IFV s.

In our opinion, the shown problems with the method (1) are caused by the
fact that when comparing IFV s, we deal with two local criteria: the “net profit”
represented by the score function S and the “risk” criterion represented by the
accuracy function H . From this point of view, we can see that in the method
(1), the “risk” criterion is implicitly assumed to be of negligible importance,
whereas the weight of this criterion depends on the risk aversion of a decision
maker. Therefore, when comparing two alternatives represented by IFV s A with
SA = 0.2, HA = 0.6 and B with SB = 0.21, HA = 0.39, a decision maker may
prefer an alternative A though it provides a bit lesser “net profit” than B, but
with the considerably greater accuracy, i.e., with the considerably lesser “risk”.
3). In the method (1), the implicitly introduced local “net profit” and “risk” cri-
teria are not taken into account simultaneously, although in the decision making
practice, a small value of “net profit” criterion may be compensated by the small
value of “risk” criterion and so on.

Therefore, to avoid the above mentioned limitations of the known methods, we
propose to formulate the problem of IFV s comparison directly as a two-criteria
task.

In a new method, the possibilities P (A > B) and P (A < B) are calculated to
indicate what IFV is greater and to get a strength of inequality.

For two IFV s A and B we denote ΔS = SA − SB and ΔH = HA −HB and
introduce two functions μΔS(ΔS) and μΔH(ΔH) representing the local “net
profit” and “risk” criteria, respectively.
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These functions

μΔS(ΔS) =
ΔS + 2

4
, μΔH(ΔH) =

ΔH + 2

4
(2)

are defined on the intervals −2 ≤ ΔS ≤ 2 and −2 ≤ ΔH ≤ 2.
There are many approaches to the aggregation of local criteria proposed in

the literature. Since in our case we assume that a small value of local criterion
based on ΔS = SA − SB may be partially compensated by a big value of the
criterion based on ΔH = HA − HB, the weighted sum seems to be the most
suitable aggregating mode.

Then the possibilities P (A > B) and P (A < B) can be presented as aggrega-
tions of introduced local criteria:

P (A > B) = αμΔS(SA − SB) + (1− α)μΔH(HA −HB),

P (B > A) = αμΔS(SB − SA) + (1 − α)μΔH(HB −HA), (3)

where 0 ≤ α ≤ 1 is the weight which depends on the risk aversion of a decision
maker.

The functions (2) and possibilities (3) are constructed in such a way that if
P (A > B) > P (B > A) then A > B and

ST (A > B) = P (A > B)− P (B > A) (4)

is the strength of this inequality.
It is easy to prove that the proposed approach to IFV s comparison is free

of limitations of known method (1) and provides the transitive quantitative
assessments of a degree to which an IFV is greater/lesser than another one.

3 Two-Criteria Method for Comparing Interval-Valued
Intuitionistic Fuzzy Values

In real-world applications, it may not be easy to identify exact values for mem-
bership and non-membership degrees of an element to a set. In such cases, a
range of value may be a more appropriate measurement to present the vague-
ness. As such, Atanassov and Gargov [2] introduced the notion of interval-valued
intuitionistic fuzzy set (IV IFS).

Definition 1 [2]. Let X be a non-empty set of universe. Then interval-valued
intuitionistic fuzzy set Ã in X is defined by the expression

Ã =
{〈

x, [μL
Ã
, μU

Ã
], [νL

Ã
, νU

Ã
]
〉}

, where μL
Ã
, μU

Ã
and νL

Ã
, νU

Ã
are the lower and

upper bounds of interval membership and non-membership degrees, respectively,
such that
μU
Ã
+ νU

Ã
≤ 1, 0 ≤ μL

Ã
≤ μU

Ã
≤ 1, 0 ≤ νL

Ã
≤ νU

Ã
≤ 1. As it was shown in

Introduction, to compare IV IFV s, the real valued representations of the score,
accuracy and some other functions are usually used. Since such approaches are
based on the type reduction from intervals to real values, they can lead to the
loss of important information.
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Therefore, to avoid a type reduction, here we shall use directly the interval
arithmetic rules [8]. As the result, the interval-valued score and accuracy function
are obtained as follows:

[S]Ã = [μL
Ã
− νU

Ã
, μU

Ã
− νL

Ã
], [H ]Ã = [μL

Ã
+ νL

Ã
, μU

Ã
+ νU

Ã
]. (5)

As we deal with the interval-valued functions [S]Ã and [H ]Ã, the operation of
interval comparison and the distance between intervals should be defined.

3.1 Interval Comparison

There are many methods for interval comparison proposed in the literature (see
reviews in [9,11]). Generally, they provide similar results. This is not a surprising
conclusion as Wang at al. [12] noted that “most of the proposed interval com-
parison methods are totally based on the midpoints of interval numbers”.
Therefore, here we propose to use directly the operation of interval subtraction
[8] to define the operation of interval comparison. So for intervals A = [aL, aU ]
and B = [bL, bU ], the result of subtraction is the interval C=A − B=[cL, cU ];
cL = aL − bU , cU = aU − bL. It is easy to see that in the case of overlapping
intervals A and B, we always obtain a negative left bound of interval C and a
positive right bound.

Therefore, to get a measure of distance between intervals which additionally
indicates which interval is greater/lesser than another one, we propose here to
use the following value:

ΔA−B =
1

2

(
(aL − bU ) + (aU − bL)

)
. (6)

It is easy to prove that for intervals with common center, ΔA−B is always equal
to 0. Really, expression (6) may be rewritten as follows:

ΔA−B =

(
1

2
(aL + aU )− 1

2
(bU + bL)

)
. (7)

The sign of ΔA−B indicates which interval is greater/lesser and the values of
abs(ΔA−B) may be treated as the distances between intervals.

It easy to see that the result of subtraction of intervals with common centers
is an interval centered around 0. In the framework of interval analysis, such
interval is treated as the interval 0. More strictly, if a is a real value, then 0
can be defined as a− a. Similarly, if A is an interval, then interval zero may be
defined as the interval A − A=[aL − aU , aU − aL] which is centered around 0.
Therefore, the value of ΔA−B equal to 0 for A and B having a common center
may be treated as a real valued representation of interval zero.

Hence, we can say that the equality of intervals with a common center is an
inherent property of interval arithmetic.

The reason for this is that such intervals may be linguistically interpreted
as “near common center”, i.e., they are equal ones at least in linguistic sense.
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In addition, if we compare two IV IFV s Ã and B̃, then the interval score func-
tions [S]Ã, [S]B̃ and the interval accuracy functions [H ]Ã, [H ]B̃ should be com-
pared. Suppose [H ]Ã, [H ]B̃ are completely equal interval values, i.e., they have
a common center and equal width, and [S]Ã, [S]B̃ have a common center and
different widths. Therefore, we should compare only [S]Ã and [S]B̃, and as they
are “near common center”, finally their widths should be compared. Suppose
that the width of [S]Ã is greater that the width of [S]B̃. Then only what we can
say in this case, is that [S]Ã is a more uncertain representation of the common

center than [S]B̃. But we can not say that Ã > B̃ or Ã < B̃. Therefore, the

proposition Ã = B̃ seems to be justified enough in such situations.

3.2 Comparing Interval-Valued Intuitionistic Fuzzy Values

Using described above methods for interval comparison and estimation of dis-
tance between intervals, we can obtain the method for comparing IV IFV s as a
direct interval extension of the method presented in the previous section.
Then for two IV IFV s Ã and B̃ we can obtain the interval-valued “net profit”
and “risk” criteria as follows:

As the intervals [S]Ã and [H ]Ã are defined by expressions (5), we get the
interval “net profit” and “risk” criteria using the direct interval extension of
expressions (2):

μΔS ([S]Ã − [SB̃]) =
([S]Ã − [SB̃]) + 2

4
,

μΔH ([H ]Ã − [HB̃]) =
([H ]Ã − [HB̃]) + 2

4
. (8)

Then for interval possibilities [P (Ã > B̃)] and [P (B̃ > Ã)] from (3) we obtain:

[P (Ã > B̃)] = αμΔS([S]Ã − [S]B̃) + (1− α)μΔH([H ]Ã − [H ]B̃), (9)

[P (B̃ > Ã)] = αμΔS([S]B̃ − [S]Ã) + (1− α)μΔH([H ]B̃ − [H ]Ã). (10)

The functions (8) and possibilities (9) and (10) are constructed in such a way
that if [P (Ã > B̃)] > [P (B̃ > Ã)] in the interval sense, then Ã > B̃ and

[ST (Ã > B̃)] = [P (Ã > B̃)]− [P (B̃ < Ã)] (11)

is the interval-valued strength of this relation.
The real-valued strength of relation can be obtained from (6) and (11) as

follows:

STÃ−B̃ =
1

2

(
(P (Ã > B̃)L − P (B̃ > Ã)U ) + (P (Ã < B̃)U − P (B̃ < Ã)L)

)
.

(12)
Let us consider some illustrative critical examples.

Example 1. Consider Ã = 〈[0.1, 0.3], [0.2, 0.6]〉 and B̃ = 〈[0.2, 0.3], [0.2, 0.4]〉.
To obtain an approximate real-valued estimation of the result of these IV IFV s
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comparison we can use the centers of intervals. Then we obtain SA=-0.2 and
SB=-0.05. Therefore, according to (1) we have (approximately) B̃ > Ã. Us-
ing the rules of interval arithmetic, we get [S]Ã =[-0.5,0.1], [S]B̃ =[-0.2,0.1],
[H ]Ã =[0.3,0.9], [H ]B̃ =[0.4,0.7] and [ΔS] = [S]Ã − [S]B̃=[-0.6,0.3], [ΔH ] =
[H ]Ã − [H ]B̃=[-0.4,0.5]. Substituting obtained [ΔS] and [ΔH ] into (8) we have
the result:

μΔS ([S]Ã − [SB̃])=[0.35,0.575], μΔH ([H ]Ã − [HB̃ ])=[0.4,0.625] which is illus-

trated in Fig.1. Then assuming α=0.98, from (9) we obtain [P (Ã > B̃)]=[0.351,

Fig. 1. Interval values of local criteria

0.576]. Similarly, from (10) we get [P (B̃ > Ã)]=[0.424,0.649]. Comparing these
intervals using the method for interval comparison based on the differenceΔA−B,
presented in previous subsection, we obtain B̃ > Ã.

Example 2. Consider Ã = 〈[0.1, 0.3], [0.2, 0.6]〉 and B̃ = 〈[0, 0.3], [0.2, 0.5]〉. In
this example, [S]Ã = [S]B̃=[-0.5,0.1], [H ]Ã=[0.3,0.9], [H ]B̃=[0.2,0.8]. Using the
method for interval comparison described in the previous subsection, we obtain
[H ]Ã > [H ]B̃ and therefore Ã > B̃. Finally, for α=0.98 we obtain [P (Ã >

B̃)]=[0.3505,0.6015], [P (B̃ > Ã)]=[0.3495,0.6005]. Then using the method for
interval comparison based on the difference ΔA−B, we get Ã > B̃ with strength
of this relation Ã > B̃ equal to 0.002.

Summarizing, we can say that the proposed approach to IV IFV s compari-
son provides intuitively clear results (see examples 1-2) and as opposed to the
known methods, makes it possible to estimate the strength of relations between
considered IFV s and IV IFV s.

4 Conclusion

Two-criteria approach to comparing interval-valued intuitionistic fuzzy values is
developed. The first local criterion named “net profit” is based on the interval-
valued score function. The second local criterion named “risk” is based on the
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interval-valued accuracy function. These local criteria are aggregated into the
generalized one taking into account the weights of considered local criteria de-
pendent on the risk aversion of a decision maker. As opposed to the known
methods, the developed approach makes it possible to estimate the strength
of relations between compared interval-valued intuitionistic fuzzy values. Using
some illustrative examples, it is shown that the proposed approach provides
intuitively clear results.
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Abstract. This paper presents a critical analysis of conventional oper-
ations on intuitionistic fuzzy values (IFV s) and their applicability to
the solution of multiple criteria decision making (MCDM) problems
in the intuitionistic fuzzy setting. A set of operations on IFV s based
on the interpretation of intuitionistic fuzzy sets in the framework of
the Dempster-Shafer theory of evidence (DST ) is proposed and ana-
lyzed. This interpretation makes it possible to represent mathematical
operations on IFV s as operations on belief intervals. The corresponding
method for aggregation of local criteria presented by IFV s in the frame-
work of DST is proposed and analyzed. The proposed approach allows
us to solve MCDM problems without intermediate defuzzification when
not only criteria, but their weights are IFV s. The advantages of the
proposed approach are illustrated by numerical examples.

Keywords: Intuitionistic fuzzy values, Belief intervals, Operations.

1 Introduction

Intuitionistic Fuzzy Set (A-IFS) proposed by Atanassov [1], is one of the possible
generalizations of fuzzy sets theory and appears to be relevant and useful in some
applications. The concept of A-IFS is based on the simultaneous consideration
of membership μ and non-membership ν of an element of a set to the set itself
[1]. By definition 0 ≤ μ + ν ≤ 1. The most important applications of A-IFS is
the decision making problem [4].

In [7], it is shown that there exists a strong link between A-IFS and the
Dempster-Shafer Theory of evidence (DST ). This link makes it possible to use
directly the Dempster’s rule of combination to aggregate local criteria presented
by IFV s in the MCDM problem. The usefulness of the developed method was
illustrated using the known example of MCDM problem.

As the most important applications of A-IFS areMCDM problems when the
values of local criteria (attributes) of alternatives and/or their weights are IFV s,
it seems quite natural that the resulting alternative’s evaluation should be IFV
too. Therefore, appropriate operations on IFV s used for aggregation of local
criteria should be properly defined. Obviously, if the final scores of alternatives
are IFV s, then appropriate methods for their comparison are needed to select
the best alternative.

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 229–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



230 L. Dymova, P. Sevastjanov, and K. Tkacz

In [1], Atanassov defined A-IFS as follows.

Definition 1. Let X = {x1, x2, ..., xn} be a finite universal set. An intuitionistic
fuzzy set A in X is an object having the following form:
A = {< xj , μA(xj), νA(xj) > |xj ∈ X}, where the functions μA : X → [0, 1],
xj ∈ X → μA(xj) ∈ [0, 1] and νA : X → [0, 1], xj ∈ X → νA(xj) ∈ [0, 1] define
the degree of membership and degree of non-membership of the element xj ∈ X
to the set A ⊆ X , respectively, and for every xj ∈ X , 0 ≤ μA(xj) + νA(xj) ≤ 1.
Following to [1], we call πA(xj) = 1 − μA(xj) − νA(xj) the intuitionistic index
(or the hesitation degree) of the element xj in the set A. It is obvious that for
every xj ∈ X we have 0 ≤ πA(xj) ≤ 1.

In [7], this definition is reformulated in terms of DST . The origins of the
Dempster-Shafer theory go back to the work by A.P. Dempster [5,6] who devel-
oped a system of upper and lower probabilities. Following this work his student
G. Shafer proposed a more thorough explanation of belief functions [10].

Assume A is a subsets of X. A DS belief structure has associated with it
a mapping m, called basic assignment function, from subsets of X into a unit
interval, m : 2X → [0, 1] such that m(∅) = 0,

∑
A⊆X

m(A) = 1. The subsets of X

for which the mapping does not assume a zero value are called focal elements.
The null set is never a focal element. In [10], Shafer introduced a number of
measures associated with this structure. The measure of belief is a mapping
Bel : 2X → [0, 1] such that for any subset B of X

Bel(B) =
∑

∅=A⊆B

m(A). (1)

A second measure introduced by Shafer [10] is a measure of plausibility which
is a mapping Pl : 2X → [0, 1] such that for any subset B of X

Pl(B) =
∑

A∩B =∅
m(A). (2)

It is easy to see that Bel(B) ≤ Pl(B). An interval [Bel(B),Pl(B)] is called the
belief interval (BI).

It is shown in [7] that in the framework ofDST the triplet μA(x), νA(x), πA(x)
represents the basic assignment function. Really, when analyzing any situation
in context of A-IFS, we implicitly deal with the following three hypotheses:
x ∈ A, x /∈ A and the situation when both the hypotheses x ∈ A, x /∈ A can not
be rejected (the case of hesitation). In the spirit of DST , we can denote these
hypotheses as Y es (x ∈ A), No (x /∈ A) and (Y es,No) (the case of hesitation
when both the hypotheses x ∈ A and x /∈ A can not be rejected).

In this context, μA(x) may be treated as the probability or evidence of x ∈
A, i.e., as the focal element of the basic assignment function: m(Y es)=μA(x).
Similarly, we can assume that m(No)=νA(x). Since πA(x) is usually treated as
a hesitation degree, a natural assumption is m(Y es,No)=πA(x). Taking into
account that μA(x) + νA(x) + πA(x) = 1 we come to the conclusion that triplet
μA(x), νA(x), πA(x) represents a correct basic assignment function.
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According to the DST formalism we get BelA(x)=m(Y es)=μA(x) and
PlA(x)=m(Y es)+m(Y es,No)=μA(x) + πA(x)=1− νA(x).

Therefore, in [7] the following definition was introduced:

Definition 2. Let X = {x1, x2, ..., xn} be a finite universal set and xj is an
object inX presented by the functions μA(xj), νA(xj) which represent the degree
of membership and degree of non-membership of xj ∈ X to the set A ⊆ X
such that μA : X → [0, 1], xj ∈ X → μA(xj) ∈ [0, 1] and νA : X → [0, 1],
xj ∈ X → νA(xj) ∈ [0, 1] and for every xj ∈ X , 0 ≤ μA(xj) + νA(xj) ≤ 1.
An intuitionistic fuzzy set A in X is an object having the following form: A =
{< xj , BIA(xj) > |xj ∈ X}, where BIA(xj) = [BelA(xj), P lA(xj)] is the belief
interval, BelA(xj) = μA(xj) and PlA(xj) = 1−νA(xj) are the measures of belief
and plausibility that xj ∈ X belongs to the set A ⊆ X .

At first glance, the Definition 2 seems as a simple redefinition of A-IFS in
terms of Interval Valued Fuzzy Sets, but here we show that using the DST
semantics it is possible to enhance the performance of A-IFS when dealing with
the operations on IFV s and MCDM problems.

As the most important applications of A-IFS areMCDM problems when the
values of local criteria (attributes) of alternatives and/or their weights are IFV s,
it seems quite natural that the resulting alternative’s evaluation should be IFV
too. Therefore, appropriate operations on IFV s used for aggregation of local
criteria should be properly defined. Obviously, if the final scores of alternatives
are IFV s, then appropriate methods for their comparison are needed to select
the best alternative.

The rest of the paper is set out as follows. In Section 2, we provide a critical
analysis of the commonly used operations on IFV s to elicit their disadvantages.
In Section 3, we introduce a set of operations on IFV s represented in the form
of belief intervals. The corresponding method for aggregation of local criteria
presented by IFV s in the framework of DST is proposed and analyzed. The
advantages of the proposed approach are illustrated by numerical examples.
Finally, the concluding section summarizes the paper.

2 Operations on IFV s and Some of Their Limitations

The operations of addition ⊕ and multiplication ⊗ on IFV s were defined by
Atanassov [2] as follows. Let A = 〈μA, νA〉 and B = 〈μB, νB〉 be IFV s. Then

A⊕B = 〈μA + μB − μAμB, νAνB〉 , (3)

A⊗B = 〈μAμB , νA + νB − νAνB〉 . (4)

The following operations were later for all real values λ > 0:

λA =
〈
1− (1− μA)

λ, νλA
〉
, (5)

Aλ =
〈
μλ
A, 1− (1− νA)

λ
〉
. (6)
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The operations (3)-(6) have the following algebraic properties:

Theorem 1. [12]. Let A = 〈μA, νA〉 and B = 〈μB, νB〉 be IFV s. Then
A⊕B = B ⊕ A, A⊗B = B ⊗A, λ(A ⊕B) = λA⊕ λB, (A ⊗B)λ = Aλ ⊗Bλ,
λ1A⊕ λ2A = (λ1 + λ2)A, A

λ1 ⊗Aλ2 = Aλ1+λ2 , ( λ1, λ2 > 0).
The operations (3)-(6) are used to aggregate local criteria for solvingMCDM

problems in the intuitionistic fuzzy setting.
Let A1, ..., An be IFV s representing the values of local criteria and w1, ..., wn,

n∑
i=1

wi = 1, be their weights. Then Intuitionistic Weighted Arithmetic Mean

(IWAM) can be obtained using operations (3) and (5) as follows:

IWAM = w1A1 ⊕ w2A2 ⊕ ...⊕ wnAn =

〈
1−

n∏
i=1

(1− μAi)
wi ,

n∏
i=1

νwi

Ai

〉
. (7)

This aggregation operator provides IFV s, is idempotent and currently is most
popular in the solution of MCDM problems in the intuitionistic fuzzy setting.

An important problem is the comparison of IFV s. This problem arises, e.g.,
if we have to choose the best alternative when the final scores of alternatives
are presented by IFV s, e.g., by IWAM . Chen and Tan [4] proposed to use the
so-called score function (or net membership) S(x) = μ(x)− ν(x). Let a and b be
IFV s. It is intuitively appealing that if S(a) > S(b) then a should be greater
(better) than b, but if S(a) = S(b) this does not always mean that a is equal to b.
Therefore, Hong and Choi [8] in addition to the above score function introduced
the so-called accuracy function H(x) = μ(x)+ν(x) and showed that the relation
between functions S and H is similar to the relation between mean and variance
in statistics. Xu [12] used the functions S and H to construct order relations
between any pair of intuitionistic fuzzy values a and b as follows:

If (S(a) > S(b)), then b is smaller than a;
If (S(a) = S(b)), then
(1) If ( H(a)=H(b)), then a=b;
(2) If (H(a) < H(b)) then a is smaller than b.

(8)

Some limitations of conventional operations on IFV s were analyzed in [3]. Here
we contribute to this study considering additional limitations which we have
found and present persuasive critical examples.

The addition (3) is not an addition invariant operation. To show this, consider
the following example:

Example 1. Let A = 〈0.5, 0.3〉, B = 〈0.4, 0.1〉, and C = 〈0.1, 0.1〉. Since S(A) =
0.2 and S(B) = 0.3 then according (8) we have A < B. On the other hand,
A⊕C = 〈0.55, 0.03〉, B⊕C = 〈0.46, 0.01〉, S(A⊕C)=0.52, S(B⊕C)=0.45 and
from S(A⊕ C) > S(B ⊕ C) be get (A⊕ C) > (B ⊕ C).
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The undesirable property of multiplication (5) is that it is not preserved under
multiplication by a scalar: A < B does not necessarily imply λA < λB, λ > 0.
To illustrate this, consider the following example.

Example 2. Let A = 〈0.5, 0.4〉, B = 〈0.4, 0.3〉, and λ = 0.5. Then S(A) =
S(B) = 0.1, H(A) = 0.9, H(B) = 0.7 and from (8) we get A > B. Using (5)
we obtain λA = 〈0.2928, 0.632〉, λB = 〈0.225, 0.5477〉, S(λA)= -0.3396, S(λB)
=-0.3227. Since S(λA) < S(λB) we get λA < λB.

3 Operations on Belief Intervals Representing IFV s

Let X = {x1, x2, ..., xn} be a finite universal set. Assume A are subsets of X. It
is important to note that in the framework of DST a subset A may be treated
also as a question or proposition and X as a set of propositions or mutually
exclusive hypotheses or answers.

In such a context, a belief interval BI(A) = [Bel(A), P l(A)] may be treated
as an interval enclosing a true power of statement (argument, proposition, hy-
pothesis, ets) that xj ∈ X belongs to the set A ⊆ X . Obviously, the value of
such a power lies in interval [0,1].

Therefore, a belief interval BI(A) = [Bel(A), P l(A)] as a whole may be
treated as a not exact (interval valued) statement (argument, proposition, hy-
pothesis, ets) that xj ∈ X belongs to the set A ⊆ X .

Based on this reasoning, we can say that if we pronounce this statement, we
can obtain some result, e.g., as a reaction on this statement or as the answer
to the some question, and if we repeat this statement twice, the result does not
change.

Such a reasoning implies the following property of addition operator:BI(A) =
BI(A) +BI(A) + ...+BI(A). This is possible only if we define the addition ⊕
of belief intervals as follows: BI(A) ⊕ BI(A)=

[
Bel(A)+Bel(A)

2 , Pl(A)+Pl(A)
2

]
. So

the addition of belief intervals is represented by their averaging.
Therefore, if we have n different statements represented by belief intervals

BI(Ai) then their sum ⊕ can be defined as follows:

BI(A1)⊕BI(A2)⊕ ....⊕BI(An) =

[
1

n

n∑
i=1

Bel(Ai),
1

n

n∑
i=1

Pl(Ai)

]
. (9)

To obtain a complete set of operations, we propose to use the addition operator
(9), the multiplication operators

BI(A) ⊗BI(A) = [Bel(A)Bel(B), P l(A)Pl(B)] (10)

and
λBI(A) = [λBel(A), λP l(A)], (11)

where λ is a real value. This operator is defined only for λ ∈ [0, 1] as for λ > 1
this operation does not always provide a true belief interval. This restriction
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is justified enough since we define operations on belief intervals to deal with
MCDM problems, where λ usually represents the weight of local criterion, which
is lesser than 1.

The power operation is defined as follows

BI(A)λ = [Bel(A)λ, P l(A)λ] (12)

and provides true belief intervals for all λ ≥ 0.
The formalism ofDST makes it possible to define a new operationBI(A)BI(B),

which does not exist in the body of conventional A-IFS theory. This operation is
needed to define the geometric aggregation operator, when both the local criteria
and their weights are IFV s represented by belief intervals.

Using conventional interval arithmetic rule [9] we get: BI(A)BI(B) =

[min
{
Bel(A)Bel(B), P l(A)Bel(B), Bel(A)Pl(B), P l(A)Pl(B)

}
,

max
{
Bel(A)Bel(B), P l(A)Bel(B), Bel(A)Pl(B), P l(A)Pl(B)

}
].

Taking into account the properties of BIs this expression may be reduced to

BI(A)BI(B) = [Bel(A)Pl(B), P l(A)Bel(B)]. (13)

The IF representation of this expression is as follows:AB =
〈
μ1−νB
A , (1 − νA)

μB
〉
.

The defined set of operations have the good algebraic properties (the same as
in the case of conventional A-IFS, see Section 2)):

BI(A)⊕BI(B) = BI(B)⊕BI(A), BI(A)⊗BI(B) = BI(B)⊗BI(A), (BI(A)⊗
BI(B))λ = BI(A)λ ⊗ BI(B)λ, BI(A)λ1 ⊗ BI(A)λ1 = BI(A)λ1+λ2 , λBI(A) ⊕
λBI(B) = λ(BI(A) ⊕BI(B)), λ1BI(A)⊕ λ2BI(A) = (λ1 + λ2)BI(A).

Using expressions (9) and (11) we obtain the following Intuitionistic Weighted
Arithmetic Mean:

IWAMDST =

[
1

n

n∑
i=1

wiBeli,
1

n

n∑
i=1

wiPli

]
. (14)

This aggregation operator is not idempotent. Nevertheless, the small modifica-
tion of (14) (multiplying by n) provides the idempotent operator

IWAMDST =

[
n∑

i=1

wiBeli,

n∑
i=1

wiPli

]
. (15)

It is easy to see that operators (14) and (15) in practice will produce equivalent
orderings of compared alternatives.

Taking into account that “ most of the proposed methods for interval com-
parison are totally based on the midpoints of interval numbers” [11], we can con-
clude that the belief interval BI(A) is greater than BI(B) if (Bel(A) + Pl(A)) >
(Bel(B) + Pl(B)). It is easy to see that this inequality is equivalent to the in-
equality (1 + S(A)) > (1 + S(B)) which obviously may be reduced to S(A) >
S(B), where S(A) and S(B) are the score functions.
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In the case of (Bel(A) + Pl(A)) = (Bel(B) + Pl(B)), in the spirit of A-
IFS, we propose to compare additionally the values of Pl(A) − Bel(A) and
Pl(B) − Bel(B). It is easy to show that Pl(A) − Bel(A) = π(A) and Pl(B) −
Bel(B) = π(B). Therefore, finally we obtain the following rule

if (Bel(A) + Pl(A)) > (Bel(B) + Pl(B)) then BI(B) < BI(A);

if (Bel(A) + Pl(A)) = (Bel(B) + Pl(B)) then

(if (Pl(A)−Bel(A)) > (Pl(B)−Bel(B)) then BI(B) > BI(A);

if (Pl(A)−Bel(A)) = (Pl(B)−Bel(B)) then BI(B) = BI(A)). (16)

To study the properties of introduced operations on belief intervals, we shall use
the data from the Examples 1-2.

Opposite to the case of conventional A-IFS theory, the addition (9) is an
addition invariant operation:

Example 3. Let A = 〈0.5, 0.3〉, B = 〈0.4, 0.1〉 and C = 〈0.1, 0.1〉 as in Example
1 . Since BI(A) = [0.5, 0.7], BI(B) = [0.4, 0.9] and BI(C) = [0.1, 0.9], from (16)
we get BI(B) > BI(A). Then from (9) we get BI(A⊕ C) = BI(A) ⊕BI(C)=
[0.3,0.8] and BI(B⊕C) = BI(B)⊕BI(C)=[0.25,0.9]. From (16) we get BI(B⊕
C) > BI(A⊕ C).

It has been shown in Section 2 that conventional multiplication (5) is not
preserved under multiplication by a scalar, i.e., A < B does not necessarily
imply λA < λB, λ > 0.

The use of (11) with (16) is free of this undesirable property:

Example 4. Let A = 〈0.5, 0.4〉, B = 〈0.4, 0.3〉, and λ = 0.5. In the Example 2,
we have shown that A > B, but using (5) we obtain λA < λB.

In the framework of our approach, we get BI(A) = [0.5, 0.6], BI(B) =
[0.4, 0.7]. From (16) we obtain BI(A) > BI(B).

Denoting λBI(A) as BI(λA) = [Bel(λA), P l(λA)] and λBI(B) as BI(λB)
= [Bel(λB), P l(λB)], from (16) we get λBI(A) > λBI(B).

4 Conclusion

It is shown that DST may serve as a good methodological base for interpreta-
tion of A-IFS. This interpretation makes it possible to represent mathematical
operations on IFV s as operations on belief intervals. The use of the semantics
of DST makes it possible to enhance the performance of A-IFS when dealing
with the operations on IFV s and MCDM problems. The critical analysis of
conventional operations on intuitionistic fuzzy values is presented.

A set of operations on IFV s based on the interpretation of intuitionistic fuzzy
sets in the framework of the DST is proposed and analyzed. It is shown, that
operations based on belief intervals perform better than operations on IFV s
defined in the framework of conventional A-IFS.
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The corresponding method for aggregation of local criteria presented by IFV s
in the framework of DST is proposed and analyzed. Particularly, when solving
MCDM problems, the proposed approach allows us to aggregate the local cri-
teria presented by IFV s when their weights are IFV s too, without intermediate
defuzzification.
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Abstract. Linear PID algorithms commonly used in industry might
perform insufficiently when controlling nonlinear operating systems. So-
lutions such as the fuzzy PID controller can exchange the linear PID
controller because it develops a nonlinear control surface. The main ad-
vantage of the fuzzy PID controller is the ability to adjust to a controlled
plant by the rule based modification, nonlinear membership function ap-
plication and inference rule selection. However, the tuning process is
one of the most difficult steps in the fuzzy PID controller designing and
therefore discourages most practical applications.

A simplification of the fuzzy PID controller tuning process is described
in this article. The presented methodology allows fast transformation
from a classic PID algorithm into a fuzzy PID algorithm. A proposed
algorithm is tested on a programmable PLC which is a typical industrial
implementation platform. A temperature stabilization is chosen as the
controlled plant and some experimental results are then described. In
conclusion authors suggest directions for similar real time fuzzy PID
algorithm implementations.

Keywords: Rapid Prototyping, Control Systems, Fuzzy Control, PID
Algorithm, Embedded Input/Output Functions.

1 Introduction

A PID algorithm is still the main solution to control analog processes and plants
in industry. This situation will not change in the near future [8]. The PID algo-
rithm with a feedback provides relatively high resistance to the non-stationarity,
the non-linearity and the random noise. Nonetheless, practical obstacles such as
a time consuming tuning and a retuning when regimes in motion are changing
force PID controller designers to look for alternative control methods or quality
improvements in systems with PID algorithms. In last two decades fuzzy logic
based algorithms e.g. Mamdani, Takagi-Sugeno, fuzzy adaptive controllers, fuzzy
supervisory controllers, hybrid fuzzy algorithms (artificial neural networks, ge-
netic algorithms, machine learning, etc.), working on the superior control level
became increasingly popular.
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Fuzzy logic (FL) employs a control strategy of an experienced engineer de-
scribed as a mathematical formula. Expert knowledge about the controlled sys-
tem is given in a form of linguistic rules. Therefore the mathematical model
essential in classical approaches is unnecessary to control dynamic plants when
using FL. Fuzzy systems are composed of fuzzification, inference and defuzzifi-
cation modules. The fuzzy algorithm synthesis requires many experiments based
on trial by error to find an acceptable set of parameters [3], [4], [5]. The num-
ber of adjustable parameters and therefore many degrees of freedom prevent FL
from practical implementation. There is no methodology for tuning fuzzy pa-
rameters in contrast to tuning PID algorithms. A solution to those problems is
a novel approach to fuzzy PID algorithm design [4], [7] leading to a reduction in
degrees of freedom and a linkage of fuzzy and classic PID algorithm designing
methodology.

Alternative solutions to a classic PID algorithm are expected to be easily ap-
plicable, simply tunable, maintainable and of high operation quality [6]. More-
over, an industrial control application is limited by the target hardware which
is usually the programmable PLC controller.

This paper describes a fast transformation procedure from the classic PID
algorithm into the non-linear fuzzy PID algorithm. The procedure employs a
methodology from [4] modified by adding a rapid prototyping [5] step. Authors
assume that the fuzzy PID algorithm replace the classic PID algorithm if only
coherent prototyping procedure is able to build fuzzy PID algorithm based on a
working classic PID algorithm. The proposed method might lead to overcoming
the reluctance to substitute classic controllers with fuzzy ones.

The presented solution is not recommended in systems with the perfectly
working and rarely tuned classic PID algorithm. However, systems that often
tune parameters and employ expert knowledge to change them by trial and
error method might benefit from the proposed methodology. In the proposed
method expert knowledge is used but even in more convenient for the expert
way i.e. in natural language. It is unique for fuzzy systems that the rule base is
filled with expertises given in comprehensive verbal form.

2 The Fast Transformation from the PID Algorithm into
the Fuzzy PID Algorithm

To perform a fast transformation procedure the classic PID algorithm working
for a real process is required. A Matlab-Simulink algorithm is modeled based on
the PID algorithm. Additionally, the working algorithm is the source of initial
values of all adjustable parameters (Fig. 1 - step 0).

Next (Fig. 1 - step 1) a Fuzzy Logic Toolbox is applied to build a correspond-
ing linear fuzzy algorithm. In the next step (Fig. 1 - step 2) the linear model
is transformed into a nonlinear one. The non-linearity is obtained by nonlinear
membership functions employed either in fuzzification and defuzification blocks
and nonlinear inference and defuzification methods. The fuzzy algorithm is ex-
panded by embedded functions (Fig. 1 - step 3). Then an executive code that
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Fig. 1. A procedure of rapid prototyping of the fuzzy PID algorithm

includes the architecture of an industrial controller is generated (Fig. 1 - step
4). The following step (Fig. 1 - step 5) tunes the algorithm in real time. The
presented procedure provides a model in the loop simulation.

Let consider the procedure of a totally new control system synthesis. It begins
the same: by modeling the algorithm in Matlab-Simulink. However, the initial
tuning based on real data is impossible. In such case the classic PID algorithm
is prototyped (Fig. 1 - steps 1’ and 2’) and tuned using e.g. the Ziegler-Nichols
method.

The main idea in the proposed procedure is the integration of the fuzzy sys-
tem methodology with the classic PID optimization methodology. Authors claim
that this approach should simplify implementation and service process of fuzzy
algorithms in industrial practice.

Step 1 — Design of the Linear Fuzzy PID

The fuzzy PID algorithm is developed based on the working classic PID algo-
rithm. The general diagram of the fuzzy PID algorithm is shown in Fig. 2.
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Fig. 2. A general structure of the fuzzy PID algorithm
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The eP (k) corresponds to the error signal, the eI(k) is the integral error signal
and the eDk signal defines the derivative error. The integral and the derivative
errors are calculated using the simplest approximations (equation (1) and (2)):

eI(k) =
∑

e(k) · Ts, (1)

eD(k) =
e(k)− e(k − 1)

Ts
, (2)

where Ts is the sampling rate, e(k) the error calculated in each k from the
formula:

e(k) = SP (k)− PV (k). (3)

SP (k) is a reference value and PV (k) is a value of the controlled signal.
First eP (k), eI(k), eD(k) signals are scaled by GE, GIE and GDE factors

respectively. Then a fuzzification using the triangular membership function is
performed on them. The main advantage of scaling factors is fast correlation
of signal range and required signal range (Fig. 3 (a)) that is range without
membership functions saturation. Unfortunately, factor values must be chosen
experimentally likewise the determination of signal domains. This significantly
impedes the algorithm pre-tuning process in slowly changing plants.

f(e
j
(k))

e
j
(k)

-1 1

NEG OZ POS

Required range
 of signal

f(u(k))

u( k)-1 1

NEG OZ POS

-0.5 0.50

(a) (b)

Fig. 3. (a) Membership functions in the fuzzy PID algorithm, (b) a defuzzification
function in the fuzzy PID algorithm

Three linguistic values are used for every input. Therefore from combination
of all fuzzified inputs 27 inference rules Ri are generated. They are formulated
as follows:

R1: IF [eP (k) = ePNEG(k)] AND [eI(k) = eINEG(k)] AND [eD(k) = eDNEG(k)]
THEN [U(k) = U26(k)]

R14: IF [eP (k) = ePOZ(k)] AND [eI(k) = eIOZ(k)] AND [eD(k) = eDOZ(k)]
THEN [U(k) = U13(k)]

R27: IF [eP (k) = ePPOS(k)] AND [eI(k) = eIPOZ(k)] AND [eD(k) = eDPOZ(k)]
THEN [U(k) = U0(k)]
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A membership of premise of each rule Ri is computated using the AND
operator.

A COG (center of gravity) defuzzification is applied in the algorithm using a
triangular membership function (Fig. 3 (b)) and is calculated as follows:

U(k) =

∑
i f(ui(k)) · ui(k)∑

i f(ui(k))
(4)

The classic PID algorithm can be very accurately reconstructed by the designed
fuzzy PID algorithm with triangular membership functions intersecting in the 0.5
point, the linear inference and the COG defuzzification method. An incomplete
rule base not covering all possible combinations of linguistic labels is one of
the main source of nonlinearity. Some tests on the influence of the rule base
completeness are presented in the experimental results section.

The control surface of the proportional-integral fuzzy PID algorithm is pre-
sented in the Fig. 4. Diagrams shows that fuzzy PID algorithm works exactly as
classic linear PID algorithm in the assumed ranges of eP (k) and eI(k) signals.

   

Fig. 4. A control surface of the proportional-integral part of the fuzzy PID algorithm
with sections for eI(k) = 0 and eP (k) = 0

Step 2 — Making the Linear Fuzzy PID Algorithm Nonlinear

A nonlinearity in the fuzzy PID algorithm is obtained either by:

1. some rules removal from the rule base
2. nonlinear membership functions employment
3. application of nonlinear inference operators
4. using nonlinear defuzzification methods.

An application any of the modification produce the control surface that is no
longer a plane within a given range of signal variation.

Step 3 — Embeded Functions Introduction

A prototype of a fuzzy PID algorithm is developed with the use of the Fuzzy
Logic Toolbox, Simulink and B&R Automation Studio Toolbox (Fig 5).

The algorithm modeled in Simulink is connected with the Bernecker&Reiner
hardware by using B&R Automation Studio Target Library for Simulink [1].
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Fig. 5. A prototype of the fuzzy PID algorithm with embedded functions in Simulink

This library extends the standard Real TIme Workshop library and includes
additional embedded functions:

– Config (defines a mode of a code generator for the implementation platform)
– Parameter (model parameters)
– Extended Input, Extended Output, Input, Output (defines input/output

signal, type, range, initial values, scale and type conversion).

Step 4 — Executive Code for the Nonlinear Fuzzy PID Algorithm

A control algorithm is implemented in the Matlab/Simulink environment which
corresponds to the Model In The Loop procedure. Afterwards, embedded I/O
functions are included and a sampling rate is determined. At that point a specific
task class is assigned to B&R control devices. Next, the Ansi C code is automat-
ically generated. A resultant model of the algorithm is attached to a project in
Automation Studio. Such software is sent to the target implementation platform.

Step 5 — Tuning the Nonlinear Fuzzy PID Algorithm

A process of tuning the fuzzy PID algorithm is done by GE, GIE, GDE, GU
factors modification. This is comparable to tuning a classic PID algorithm. How-
ever some inequalities must be satisfied:

1 ≤ GE · A(eP (k)) ≤ 1

−1 ≤ GIE · A(eI(k)) ≤ 1

−1 ≤ GDE ·A(eD(k)) ≤ 1,

where A(∗) is the amplitude.
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Exceeding the limits results in transitioning into a state of saturation which is
a logical ON-OFF control state. In that case the fuzzy PID algorithm is ineffec-
tive. The influence of scaling factors on static and dynamic integral performance
indices is presented in section 3. Conclusions will help the designer in tuning
the fuzzy PID algorithm analogously to a classic PID algorithm. Additionally,
the rule base can be modified. However this manipulation distorts the control
surface and changes the control system response.

3 Experimental Results

The fuzzy PID algorithm presented in the paper is tested on a temperature con-
trol system (Fig. 6). The Power Panel PP45 by Bernecker&Reiner uses a X2X
network to communicate with Input/Output modules (AC/CA CM8281 mod-
ules and AT2222 temperature module). The plant is a thermal chamber with
implementing systems (a heater and a fan) and the measuring system (PT1000
probe) [2]. The voltage U3(t) representing the temperature TPV (t) is the con-
trolled signal. The voltage U1(t) corresponding to the heat stream generated by
the heater is the controlling signal. The voltage U2(t) controls the fan rotational
speed and is considered as a source of disturbance.
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Fig. 6. A temperature control system with the developed fuzzy PID algorithm

Experiments on the fuzzy PID algorithm have been conducted with similar
initial conditions (initial temperature) and resulted in step responses. A 5% tol-
erance around the reference point is established (a red line on Fig. 7). Static and
dynamic, as well as integral performance indices are used for comparative analy-
sis. Simple tuning rules for fuzzy PID algorithm are formulated as a conclusion.
All analysis are presented in the table 1.

The GE factor increased from 0.005 to 0.01 results in sufficient control im-
provement: the static and dynamic performance indices are decreased 300% and
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Fig. 7. Step response data temperature control system, where aqHeatUp - controlling
signal, aiT empPV - measured signal, TempSP - reference temperature

integral performance indices are decreased 200%. The GE factor should be tuned
opposite to the Kp factor in the classic PID algorithm. The influence of the GIE
factor (increased from 0.00004 to 0.00008) on the control performance is tested.
The effect of such increase was a deterioration in the quality control, which man-
ifested itself in the extension of regulation time by nearly 80% and overshooting
rise about 40%. The GIE factor can be used as the Ki gain in the classic PID
algorithm. In the final experiment the GE and GIE values are changed simul-
taneously, to 0.0005 and 0.00002 respectively. The step response obtained from
the study shows the reduction of performance indices and the response dynamic
deterioration resulting in control time extension.

Table 1. Performance indices in the temperature control system using a fuzzy PID
algorithm, where: TempSP — reference temperature, Mp — relative overshooting,
Mpp — absolute overshooting, eu — static offset, IAE — integral of absolute error,
ISE — integral of squared error, Tr — control time, FP — first point of the output
curve

Lp. TempSP Mp Mpp eu IAE ISE Tr FP GE GIE

1 450 65 14.4444 0 60866 5728618 435.4839 250 0.005 0.00004
2 450 19 4.2222 0 31162 2305902 109.7670 290 0.01 0.00004
3 450 102 22.6667 0 82484 6175124 729.0323 282 0.005 0.00008
4 450 7 1.5556 0 29029 2602305 102.5986 280 0.01 0.00002

One of the source of nonlinearity is an incomplete rule base. The effect of a
such modification is also tested. The Fig. 8 shows the original rule base for fuzzy
PID algorithm, modified rule base and corresponding control surfaces.

After the rule base modification the fuzzy PID algorithm became more similar
to proportional algorithm and the static offset reached value of 29.



Fuzzy PID Algorithm 245

e
P

e
I NEG OZ POS

NEG

OZ

POS

OZ

OZ

OZ

NEG NEG

NEG POS

POS POS

e
P

e
I NEG OZ POS

NEG

OZ

POS

OZ

OZ

OZ

NEG NEG

NEG OZ

OZ POS

Fig. 8. Rule base modification in fuzzy PID algorithm

0 100 200 300 400 500 600 700 800 900 1000
200

300

400

500

t [s]

ai
T

em
pP

V
, T

em
pS

P

0 100 200 300 400 500 600 700 800 900 1000
0

5000

10000

15000

t [s]

aq
H

ea
tU

p

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

t [s]

E
rr

or

0 500 1000 1500 2000 2500
200

300

400

500

t [s]

ai
T

em
pP

V
, T

em
pS

P

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2
x 10

4

t [s]

aq
H

ea
tU

p

0 500 1000 1500 2000 2500
−100

0

100

200

t [s]

E
rr

or

Fig. 9. Step response data in the temperature control system, where Error =
TempSP − aiT empPV — control error, aqHeatUp — controlling signal, aiT empPV
— measured signal, TempSP — reference temperature

Table 2. Performance indices in the temperature control system using a fuzzy PID
algorithm, where: TempSP — reference temperature, Mp — relative overshooting,
Mpp — absolute overshooting, eu — static offset, IAE — integral of absolute error,
ISE — integral of squared error, Tr — control time, FP — first point of the output
curve

Lp. TempSP Mp Mpp eu IAE ISE Tr FP GE GIE

1 450 0 0 29 1.1186e+005 1.2504e+007 423.3871 250 0.005 0.00004
2 450 4 0.8889 4 57260 3565682 106.4068 260 0.04 0.00004
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4 Conclusions

The proposed in the paper methodology for the fuzzy PID algorithm fast imple-
mentation gives a possibility to obtain a fully functional algorithm implemented
on a typical industrial platform i.e. programmable PLC controller. The resulting
control quality expressed by the performance indices confirms the usability of
the implemented algorithm. Noteworthy is the fact that the fuzzy PID algorithm
generated with Matlab/Simulink operating with 100ms cycles has 0.883% time
consumption. The main consequence of using the proposed improvement of the
classic PID algorithm is the nonlinear control surface. The nonlinearity can be
obtained by the rule base modification, the nonlinear membership functions ap-
plication and suitable inference methods application. The algorithm obtained by
such changes can be better adjusted to a controlled system. However there is one
difficulty i.e. scaling factors need to be tuned. Potential problems in tuning non-
linear fuzzy PID algorithms, provide the basis for trying to use the self-tuning
and adaptation algorithms for scaling factors.
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Abstract. Ordered fuzzy numbers (OFN) as generalization of convex
fuzzy numbers represented in parametric form and invented by the sec-
ond and the third authors and their coworker in 2002, make possible
to utilize the fuzzy arithmetic and to construct the lattice structure on
them. Fuzzy inference mechanism and implications are proposed together
with step fuzzy numbers that may be used for approximations as well as
for constructing new fuzzy sets of type two.

1 Introduction

The fuzzy sets were presented by L.A. Zadeh in 1965 to process and then to
manipulate data and information affected by unprobabilistic imprecision (un-
certainty). These were designed to mathematically represent the vagueness and
uncertainty of linguistic problems; thereby obtaining formal tools to work with
intrinsic imprecision in different type of problems. The construction can be con-
sidered as a generalization of the classic set theory.

The type-2 fuzzy sets were invented and used for modelling uncertainty and
imprecision in a better way. These type-2 fuzzy sets were fuzzy since the fuzzy
degree of membership is a type-1 fuzzy set [18]. The new concepts were intro-
duced by Mendel and Liang [11] allowing the characterization of a type-2 fuzzy
set with a superior membership function and an inferior membership function;
these two functions can be represented each one by a type-1 fuzzy set member-
ship function. The interval between these two functions represent the footprint
of uncertainty (FOU), which is used to characterize a type-2 fuzzy set.

We know that the classical fuzzy set theory and its restriction to fuzzy num-
bers, better to say - to convex fuzzy numbers of Nguyen [15] leads to several
inconvenience and drawbacks, especially when the operations on them are con-
cerned. Hence some generalization of the convex fuzzy numbers (CFN), known
in their parametric form, has been recently proposed by two of us (W.K.& P.P.)
and our coworker D. Ślȩzak [8] in the form of ordered fuzzy numbers (OFN)
and new operations defined on them. Then the original continuity of members
of functions appearing in representation of OFN has been dropped in the paper
[7]. Thanks to them step ordered fuzzy numbers could be introduced [9,17].

Classical two-valued logic copes with propositions and claims about which we
can say that are “black” or “white”, i.e. formally “true” or “false”. To capture

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 247–255, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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diversity of approaches concerning expressions like “obesity”, in literature are
considered multi-valued logics or fuzzy logics. The fuzzy logics has its functional
counterpart in the form of the fuzzy set theory. It gives effective tools to model
the satisfaction of decision made by an agent or the level of truth of a statement.
In particular, each decision objective can be described with a fuzzy membership
function where degree zero (one) expresses the minimum (maximum) satisfaction
of the objective, while all the intermediate values represent degrees of partial
satisfaction.

A fuzzy implication (FI), commonly defined as a two-place operation on the
unit interval, is an extension of the classical binary implication. It plays im-
portant roles in both mathematical and applied sides of fuzzy set theory. The
importance of fuzzy implications in applications of fuzzy logic (FL) to approxi-
mate reasoning (AR), decision support systems (DSS), fuzzy control (FC), etc.,
is hard to exaggerate. Many different fuzzy implication operators have been
proposed; most of them fit into one of the two classes: implication operations
that are based on an explicit representation of implication A =⇒ B in terms
of alternative, conjunction and negation and R-implications that are based on
an implicit representation of implication A =⇒ B as the weakest C for which
C∧B implies A. However, some fuzzy implication operations cannot be naturally
represented in this form [1].

For example, to the first class belong the Kleene–Dienes operation, called a
binary implication, which is a fuzzy counterpart of the RHS of the binary logic
tautology a =⇒ b ≡ b∨¬a. To have it one has to invent the negation operator ¬ to
the membership function μA of a fuzzy setA and to define a membership function
of ¬A as μ¬A := 1 − μA, and the alternative of two fuzzy sets C = A ∨ B, and
its membership function μC as μC := max{μA, μB}. Then the Kleene–Dienes
implication A =⇒ B will be max{1− μA, μB}. The simple generalization of the
last implication is the so-called S-implication Is(A,B) defined by the formula

Is(A,B) = S(1− μA, μB) , (1)

where S is any S-norm. This generalization is obvious in view of the fact that any
S-norm is a generalization of the sum (alternative) of two fuzzy sets. Implication
invented by �Lukasiewicz [12] which takes the form min{1, 1−μA+μB} together
with the Reichenbach and Fodor implications serve as examples of Is(A,B) im-
plication [1]. What is unpleasant with all those implications: they do not lead to
convex fuzzy numbers, they have, in general, unbounded supports.

2 Ordered Fuzzy Numbers

Proposed recently by the second author and his two coworkers: P.Prokopowicz
and D. Ślȩzak [8] an extended model of convex fuzzy numbers [15] (CFN), called
ordered fuzzy numbers (OFN), does not require any existence of membership
functions. In this model an ordered fuzzy number is a pair of continuous functions
defined on the interval [0, 1] with values in R. To see OFN as an extension of
CFN - model, take a look on a parametric representation know since 1986, [3]
of convex fuzzy numbers.
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Then four algebraic operations have been proposed between fuzzy numbers
and crisp (real) numbers, in which componentwise operations are present. In
particular if A = (fA, gA), B = (fB, gB) and C = (fC , gC) are mathematical
objects called ordered fuzzy numbers, then the sum C = A + B, product C =
A · B, division C = A ÷ B and scalar multiplication by real r ∈ R, are defined
in natural way:

r ·A = (rfA, rgA) ,

and
fC(y) = fA(y) � fB(y), gC(y) = gA(y) � gB(y) , (2)

where ”�” works for ”+”, ”·”, and ”÷”, respectively, and where A÷B is defined,
if the functions |fB| and |gB| are bigger than zero. Notice that the subtraction of
B is the same as the addition of the opposite of B, i.e. the number (−1) ·B, and
consequently B − B = 0. From this follows that any fuzzy algebraic equation
A + X = C with given A and C as OFN possesses a solution, that is OFN,
as well. Moreover, to any convex and continuous1 fuzzy number correspond two
OFNs, they differ by the orientation: one has positive, say (f, g), another (g, f)
has negative.

A relation of partial ordering in the space of all OFN, denoted by R, can be
introduced by defining the subset of ‘positive’ ordered fuzzy numbers: a number
A = (f, g) is not less than zero, and by writing

A ≥ 0 iff f ≥ 0, g ≥ 0 . (3)

In this way the set R becomes a partially ordered ring. Notice, that for each two
fuzzy numbers A = (fA, gA), B = (fB, gB) as above, we may define inf(A,B) =:
F and sup(A,B) =: G, both from R, by the relations:

F = (fF , gF ), iffF = inf{fA, fB} , gF = inf{gA, gB} . (4)

Similarly, we define G = sup(A,B).
Notice that in the definition of OFN it is not required that two continuous

functions f and g are (partial) inverses of some membership function. Moreover,
it may happen that the membership function corresponding to A does not exist;
such numbers are called improper.

In this new framework new fuzzy implications have been invented. One of the
most promising implications is that suggested by P.Prokopowicz in his Ph.D.
thesis and called implication with multiplication, in which the algebraic structure
of operations on OFN has been used. Before its formula will be given we have
to repeat after its author [16] the corresponding membership function μ̃A, which
can be defined for any improper ordered fuzzy number 2 as

μ̃A(x) = max arg{f(s) = x, g(y) = x} , (5)

1 However, the recent extension presented in [7] includes all convex fuzzy numbers.
2 If f is strictly increasing and g decreasing, and f(s) ≤ g(s), for s ∈ [0, 1], then A is
called proper and possesses the classical membership function, moreover it represents
a CFN.
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if x ∈ Range(f) ∪Range (g) and

μ̃A(x) = 1 , if x ∈ [f(1), g(1)] ∪ [g(1), f(1)] , (6)

and μ̃A(x) = 0

where one of the intervals [f(1), g(1)] or [g(1), f(1)] may be empty, depending on
the sign of f(1)− g(1), (i.e., if the sign is −1 then the second interval is empty).
Notice that μ̃ in (5) is defined by the inverse functions of f and g is the both
are strictly monotonous, particularly, if A is proper.

Then the Prokopowicz’s implication A⇒ B has value v(A⇒ B) given by

v(A⇒ B) = μ̃AB , (7)

where μ̃A is defined by (5),(6) in the case when A is improper. However, when
A is proper it possesses the classical membership function. The result of this
implication is an ordered fuzzy number and is close to the engineering implication
of Mamdani type, rather.

2.1 Defuzzification Functional

In dealing with applications of fuzzy numbers we need set of functionals that
map each fuzzy number into real, and in such a way that is consistent with
operations on reals. Those operations are called defuzzifications. To be more
strict we introduce.

Definition 1. A map φ from the space R of all OFN’s to reals is called a
defuzzification functional if it satisfies:

1. φ(c‡) = c ,
2. φ(A+ c‡) = φ(A) + c ,
3. φ(cA) = cφ(A) , for any c ∈ R and A ∈ R .

where c‡(s) = (c, c) , s ∈ [0, 1], represents crisp number (a real) c ∈ R.
¿From this follow that each defuzzification functional must be homogeneous

of order one, restrictive additive, and some how normalized.

2.2 Lattice Structure on OFN

Let us consider the set R with operations ∨ and ∧ such that for A = (fA, gA)
and B = (fB, gB),

A ∨B = (sup{fA, fB}, sup{gA, gB})

and
A ∧B = (inf{fA, fB}, inf{gA, gB}).



Implications on Ordered Fuzzy Numbers and Fuzzy Sets of Type Two 251

Observe that ∨ and ∧ are operations in RK which are idempotent, commutative
and associative. Moreover, these two operations are connected by the absorption
laws which ensure that the set R with an order ≤ defined as A ≤ B iff B =
A ∨B is a partial ordering within which meets and joins are given through the
operations ∨ and ∧. The following theorem holds:

Theorem 1. The algebra (R,∨,∧) is a lattice.

3 Step Ordered Fuzzy Numbers

To include all CFN in OFN the second author in [7] assumed functions of
bounded variation (RBV ). Then operations are defined in the similar way, the
norm, however, will change into the norm of the cartesian product of the space
of functions of bounded variations (BV). Then all convex fuzzy numbers are
contained in this new space RBV of OFN. Notice that functions from BV are
continuous except for a countable number of points.

If we fix a natural number K and split [0, 1) into K−1 subintervals [ai, ai+1),

i.e.
K−1⋃
i=1

[ai, ai+1) = [0, 1), where 0 = a1 < a2 < ... < aK = 1, and define

a step function f of resolution K by putting ui on each subinterval [ai, ai+1),
then each such function f is identified with a K-dimensional vector f ∼ u =
(u1, u2...uK) ∈ RK , the K-th value uK corresponds to s = 1, i.e. f(1) = uK .
Taking a pair of such functions we have an ordered fuzzy number from RBV .
Now we introduce.

Definition 2. By a step ordered fuzzy number A of resolution K we mean an
ordered pair (f, g) of functions such that f, g : [0, 1]→R are K-step functions.

We use RK for denotation the set of elements satisfying Def. 2. The set RK ⊂
RBV has been extensively elaborated by our students in [4] and [9]. We can
identify RK with the Cartesian product of RK×RK since each K-step function
is represented by its K values. It is obvious that each element of the space RK

may be regarded as an approximation of elements from RBV , by increasing the
number K of steps we are getting the better approximation. The norm of RK is
assumed to be the Euclidean one ofR2K , then we have a inner-product structure
for our disposal.

Due to the fact that RK is isomorphic to RK × RK we conclude, from the
Riesz theorem and the condition 1 that a general linear defuzzification func-
tional on RK has the representation H(u, v) = u · b+ v ·d , with arbitrary b , d ∈
RK , such that 1 ·b+1 ·d = 1 , where · denotes the inner (scalar) product in RK

and 1 = (1, 1, ..., 1) ∈ RK is the unit vector inRK , while the pair (1, 1) represents
a crisp one in RK . It means that such a functional is represented by the vector
(b, d) ∈ R2K . Notice that all functionals of the type φj = ej , j = 1, 2, ..., 2K,

where ej ∈ R2K has all zero component except for 1 on the j-th position, form
a basis ofRK

∗ - the space adjoint toRK , they are called fundamental functionals
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Let us take b = c and such, that all their components are equal to 1/2K, and
denote such defuzzification functional by ψK .

Now let us introduce the particular subset N of RK , with u, v ∈ N such that
each component of the vector u as well as of v has value 1 or 0. Since each element
of N is represented by a 2K-dimensional binary vector binary the cardinality of
the set N is 22K . Then if we apply the functional ψK to elements of N we may
obtain all possible fractional numbers i/2K, with i = 0, 1, ..., 2K, as the values
of defuzzification functional ψK on N . The set N and the functional ψK will
play fundamental roles in the next section.

3.1 Fuzzy Implication on RK

It is easy to observe that all subsets of N have both a join and a meet in N .
Therefore N creates a complete lattice. In such a lattice we can distinguish the
greatest element 1 represented by the vector = (1, 1, ..., 1) and the least element
0 represented by the vector (0, 0, ..., 0).

Theorem 2. The algebra (N ,∨,∧) is a complete lattice.

In a lattice in which the greatest and the least elements exist it is possible to
define compliments. The compliment of a number A will be marked with ¬A
and is defined as follows. Let A ∈ N be a step ordered fuzzy number represented
by a binary vector (a1, a2, . . . , aK). Then the compliment of A equals

A = (1− a1, 1− a2, . . . , 1− aK).

On the set N new operation equivalent to classical binary implication is intro-
duced, which provides a new method of approximate reasoning. We introduce

Definition 4. For A,B ∈ N the operation of fuzzy implication → is defined as

A→ B := ¬A ∨B.
This operation satisfies the basic property of the logical implication, i.e., it re-
turns false if and only if the first term is true, and the second term is false. In
fact, since ¬0 = 1 and ¬1 = 0 it holds that: 1 → 0 = 0 and 0 → 0 = 0 → 1 =
1→ 1 = 1.

3.2 �Lukasiewicz Implication of SOFN

Let us introduce another subset of SOFN, called M which contains as a proper
subset N . We assume, as previously, the fixed resolution K and assume now
that each element of M is 2K dimensional vector from R2K and such that each
its component is rational (or real, in general) number from [0,M ]. Then on M
we may introduce another implication. Let us introduce two other operations of
conjunction " on disjunction #. Take A,B ∈M, we define

A #B = C ,withC = (c1, c2, . . . , c2K) and ci = min{M,ai + bi} (8)

A "B = C ,withC = (c1, c2, . . . , c2K) and ci =
1

M
(ai · bi) .
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Notice that we have the following properties for any pair A,B:

A ≤ A #B andB ≤ A #B , andA "B ≤ A andA "B ≤ B . (9)

It is evident that takingM = 1 we may regard the spaceM as a simple extension
ofN , since values of each fundamental defuzzification functional lays in I = [0, 1].
Let us stay in this space, and denote it by M1 and define the negation of A as
previously by ¬A = (1−a1, 1−ac, . . . , 1−a2K). Now implementing the classical
definition of the binary negation, however with the new sup - operator #,

A→ B := ¬A #B ,

we obtain

ifC := A→ B , thenC = (c1, c2, . . . , c2K)with ci = min{1, 1− ai + bi} , (10)

which is nothing else than the �Lukasiewicz type implication. It is evident that
in the general case, i.e. in the space M we may introduce the counterpart of the
last implication.

Theorem 1. On the space M1 the implication A→ B := ¬A #B , is a gener-
alization of the �Lukasiewicz implication to step ordered fuzzy numbers.

4 New Fuzzy Sets of Type 2

In this subsection we extend the application of the ordered fuzzy numbers and
their particular subset N of SOFN to define fuzzy sets of type two.

Consider a classical (convex) fuzzy number Z ∈ CFN with its membership
function μZ . Let us recall that for Z we may define for each s ∈ (0, 1] the s-cut
(or s-section) of the number (of the membership function) Z as the classical set
Zs by

Zs = {x ∈ R : μZ(x) ≥ s} . (11)

For each convex fuzzy number Z and two numbers s1 ≤ ss the following relation
Zs2 ⊂ Zs1 between the corresponding s-sections holds.

Now let us fix the resolutionK of step functions defining the RK and take the

partition of the unit interval into K−1 subintervals
K−1⋃
i=1

[ai, ai+1)∪{aK} = [0, 1],

with 0 = a1 < a2 < ... < aK = 1.
Then we may define a mapping

valK : R× CFN→ N (12)

which for given Z and each x ∈ Zai − Zai+1 attaches an element of the set
N , a step ordered fuzzy number, in such a way that ψK(valK(x, Z)) = ai, i.e.
after defuzzifying the value of valK(x, Z) we get the value of the membership
function of Z at the lower end of the s-section to which x belongs. In this
way the one-variable function valK(·, Z) : R → N is piecewise constant: it is
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constant on each subinterval Zai −Zai+1 . It means that after defuzzification the
correspondence given by the function valK(· , Z) is in agreement with the value
of the membership function attached to x by μZ , module the assumed finite
step-wise approximation of values of the membership function.

If we use the so-called parametric representation of convex fuzzy numbers [3]
in terms of two left-continuous functions α1, α2, the both defined on the interval
[0, 1] with values in R, and denote by x1− and x1+ the points from the support
of μZ , such that μZ(x1−) = μZ(x1+) = 1, and at the point x1− the membership
function attains for the first time the value 1, and the point x1+ is the last
point with this property 3, then the condition x ∈ Zai − Zai+1 , may be written
as α1(ai) ≤ x ≤ α2(ai+1) if x ≤ x1− and α1(ai+1) ≤ x ≤ α2(ai) if x ≥ x1+ .
This is so, because the function α1 is non-decreasing and the function α2 is
non-increasing.

Notice that for a classical fuzzy rule [2]: If ’a condition is satisfied’ Then ’a
consequence follows’ , where both parts: premise and consequent are fuzzy, the
mapping valK may be applied to the both and then our new fuzzy inference
given previously.

5 Conclusion

Ordered fuzzy numbers was applied to deal with optimization problems when
data are fuzzy. In this paper a new fuzzy implication on step ordered fuzzy
numbers is introduced. It can be used for approximate reasoning. In classical
two-valued logics only two logical values are applied: 0 or 1. In fuzzy logics it
is extended to the values from the interval [0,1]. Our contribution is to enrich
these formal systems and use for logical justification step ordered fuzzy numbers.
This approach is very innovative and allows for including in logical value more
information than that something is true, true with some degree or false. In future
work we are going to show application and usefulness of this new reasoning on
diverse examples, especially for modelling uncertain beliefs of agents in multi-
agent systems.
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Abstract. In this paper we propose a new approach to combine un-
supervised and supervised vector quantization for clustering and fuzzy
classification using the framework of neural vector quantizers like self-
organizing maps or neural gas. For this purpose the original cost func-
tions are modified in such a way that both aspects, unsupervised vector
quantization and supervised classification, are incorporated. The theo-
retical justification of the convergence of the new algorithm is given by
an adequate redefinition of the underlying dissimilarity measure now in-
terpreted as a dissimilarity in the data space combined with the class
label space. This allows a gradient descent learning as known for the
original algorithms. Thus a semi-supervised learning scheme is achieved.
We apply this method for a spectra image cube of remote sensing data
for landtype classification. The obtained fuzzy class visualizations allow
a better understanding and interpretation of the spectra.

1 Introduction

Unsupervised and supervised vector quantization by neural maps is still an im-
portant issue. Neural maps are prototype based algorithms inspired by biological
neural systems. Prominent models are the self-organizing map (SOM) and the
neural gas network (NG) [7],[9]. These approaches are designed for unsuper-
vised data clustering (NG) and visualization (SOM). Supervised learning vector
quantization follows the idea of prototype based representaion of classes. Well
known such models are the family of learning vector quantizers (LVQ) based on a
heuristic adaptation scheme [7], or their cost function based counterpart named
generalized LVQ (GLVQ) [12]. These algorithms represent the classes by class
typical prototypes in contrast to support vector machines, which emphasize the
class borders to describe data classes.

There exist only a few methods to combine unsupervised and supervised learn-
ing in SOM or NG. The most intuitive one is simple post labeling after unsu-
pervised training. In the approach Learning Association by Self-Organization
(LASSO) fuzzy labels are concatenated to the data and prototype vectors by
means of unary coding [10]. These new vectors are treated as usual in SOM and
NG during learning. Resepective variants of the usual NG and SOM (in the Hes-
kes variant, [4]) are Fuzzy Labeled NG (FLNG) and the Fuzzy Labeled SOM
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(FLSOM) use modifications of the cost function incorporating the supervised
information in an additive manner [17,20]. Yet, their theoretical justifications
are tricky and partially unsatisfactory.

In this paper we propose a modification applying a new dissimilarity measure,
which merges both unsupervised and supervised data information into a quasi
metric [11]. Thereby the combination is multiplicative with an offset to prevent
trivial solutions. Thus, it turns out that the structural framework of standard
vector quantizer SOM and NG is preserved and their convergence properties are
transferred. The new approach can be seen as a kind of semi-supervised learning
in case of mixed labeled and unlabeled data. Moreover, the model can be applied
to both crisp and fuzzy labeled data.

In the following we introduce the methodology for the Heskes-SOM. Subse-
quent transfer to NG is obviously. In the experimental section we present the
results for an artificial data set and a real world classification problem in satellite
remote sensing data analysis.

2 The Fuzzy Supervised SOM Model

2.1 The SOM for Unsupervised Vector Quantization

The usual SOM model assumes data points v ∈ V ⊂ Rn with the data density
P (v). The prototypes wr are assigned to an external lattice A with r ∈ A,
whereby A is equipped with an underlying topological structure usually chosen
as a regular grid [7]. We denote the grid distance between nodes r and r′ by
dA (r, r′), and d (v,wr) denotes the differentiable dissimilarity in the data space
as above, frequently chosen to be the squared Euclidean metric. In the Heskes-
variant the mapping (winner determination) rule is given by

s (v) = argminr∈A

(∑
r′∈A

hSOM
σ (r, r′) d (v,wr′)

)
(1)

with
hSOM

σ (r, r′) = exp
(
−dA (r, r′)

2σ2

)
(2)

as neighborhood function [4]. Following this ansatz we denote

er (v) =
∑
r′∈A

hSOM
σ (r, r′) d (v,wr′ ) (3)

as local costs for neuron r given the input v such that (1) can be rewritten as

s (v) = argminr∈A (er (v)) . (4)

Then a cost function for SOM can be defined by

ESOM =
ˆ

P (v) es(v) (v) dv (5)
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which leads to the stochastic gradient learning rule

�wr = −hSOM
σ (r, s (v))

∂d (v,wr)
∂wr

. (6)

We remark that this derivation of the gradient descent learning is only valid iff
the local costs er (v) in the cost function (5) are exactly the same as those used
for the mapping in (1).

In the following we develop a new variant, which integrates the additional
class information for (semi-)supervised learning into the standard model, which
is also applicable to fuzzy classification problems and therefore denoted as Fuzzy
Supervised SOM – (FSSOM).

2.2 The FSSOM-Model

First in this section, we shortly review the LASSO approach [10] to deal with
fuzzy labeled data learning and point out its difficulties. Second, we turn to the
new FSSOM model, which overcome some of these problems.

LASSO. For LASSO [10], we suppose C data classes. Each data vector v is
accompanied by a data assignment vectors cv =

(
c1
v, . . . , cC

v

)� ∈ [0, 1]C with
vector entries taken as class probability or possibility assignments. Crisp classifi-
cation is obtained by the additional requirement of cj

v ∈ {0, 1}. Analogously, we
also equip the prototypes wr with class labels yr. In the LASSO approach new
data points are generated by concatenation of the data vectors and their class
label vectors yielding new data vectors ṽ and analogously prototypes w̃r. Then
during the learning phase, the usual SOM model is applied with the dissimilarity

DLASSO (ṽ, w̃r) = [d (v,wr) + d (cv,yr)] (7)

in the local costs er (v) from (3) replacing the squared Euclidean distance
d (v,wr) by this combined measure, where d (cv,yr) is also the squared Eu-
clidean distance. In that way both, the prototypes wr and their labels yr are
adapted using ṽand w̃r in (1) and (6). In the recall phase, however, the labels
are unknown. Therefore, the mapping rule (1) is applied using the prototypes
wr and the data point v with d (v,wr), only. The class association for that
data vector is taken as ys(v). This model was generalized by means of separated
dissimilarity measures for both, the data space and the label space

D̃ (ṽ, w̃r) = [(1 − γ) d (v,wr) + γδ (cv,yr)] (8)

with the balancing parameter γ ∈ [0, 1] determining the influence of the class in-
formation. The resulting SOM model is called Fuzzy Labeled SOM (FLSOM,[21])
and can be easily transferred to the NG [17]. Yet, the FLSOM using this addi-
tive distortion measure is reported to be unstable and sensitive to the choice of
the balancing parameter γ [20]. Moreover, for NG there are further difficulties
concerning the neighborhood cooperativeness to assure a valid convergence proof
[17]. We will see in the following that the new FSSOM and FSNG proposed here,
are less affected by such difficulties.
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The New Fuzzy Supervised SOM Model – FSSOM. For the FSSOM
model, we now consider the new multiplicative deviation measure

Dε (v,wr, γ) = Dδ
ε (cv,yr, γ) · Dd

ε (v,wr, γ) − εδεd (9)

with
Dδ

ε (cv,yr, γ) = (γ · δ (cv,yr) + εδ) (10)

and
Dd

ε (v,wr, γ) = ((1 − γ) · d (v,wr) + εd) (11)

where the parameter vector ε = (εδ, εd) determines an offset term. This off-
set is necessary for Dε to prevent unexpected behavior of the FSSOM under
certain conditions, which are discussed more detailed later. It turns out that
Dε (v,wr, γ) is a quasi metric [11], which takes into account both the usual dis-
similarity d (v,wr) between data and prototypes as well as their dissimilarity
δ (cv,yr) for the class information as before for FLSOM. Again, the parameter
γ ∈ [0, 1] determines the influence of the class information with γ = 0 yielding
the standard Heskes-SOM.

In the easiest case, both measures, d (v,wr) and δ (cv,yr), could be chosen
as the (quadratic) Euclidean distance. Yet, the mapping rule (1) of the original
SOM remains structurally unchanged in this FSSOM model, but replacing the
original distances d (v,wr) by the combination measure in the local costs (3).

Finally, the FSSOM model leads to a prototype adaptation influenced by the
class agreement δ (cv,yr):

�wr = − (1 − γ) · Dδ
ε (cv,yr, γ) · hSOM

σ (r, s (v)) · ∂d (v,wr)
∂wr

(12)

and accompanied by the label adaptation

�yr = −γ · Dd
ε (v,wr, γ) · hSOM

σ (r, s (v)) · ∂δ (cv,yr)
∂yr

(13)

such that both, prototype vectors and their class assignment vectors, are paral-
lely adjusted.

The visualization of the fuzzy class label vectors yr of the neuron r assigned
to prototype wr according to the grid structure of the neuron lattice A may
provide information of class overlaps, if the underlying substructure of usual
Heskes-SOM is at least roughly topology preserving [1,15]. From this overlap
information knowledge about class similarities may be extracted.

Obviously, the transfer to the NG algorithm is straightforward. It can be
shown that for the resulting FSNG the difficulties concerning the neighborhood
cooperativeness known from FLNG vanish [6].

2.3 Properties of the Dissimilarity Measure Dε (v, wr, γ)

The stochastic gradient descent with respect to the prototypes wr and their class
label vectors yr is carried out for a given data vector v and its class assignment
cv proportionally to the partial derivatives
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∂EFSSOM

∂wr
=

∂EFSSOM

∂Dε (v,wr, γ)
∂Dε (v,wr, γ)

∂wr
(14)

and
∂EFSSOM

∂yr
=

∂EFSSOM

∂Dε (v,wr, γ)
∂Dε (v,wr, γ)

∂yr
. (15)

Therefore, we have to investigate the partial derivatives of Dε (v,wr, γ) with
respect to wr and yr:

∂Dε (v,wr, γ)
∂wr

= (1 − γ) · Dδ
ε (cv,yr, γ) · ∂d (v,wr)

∂wr
(16)

and
∂Dε (v,wr, γ)

∂yr
= γ · Dd

ε (v,wr, γ) · ∂δ (cv,yr)
∂yr

(17)

determining the update formula (12) and (13). If the quadratic Euclidean dis-
tance is used for d (v,wr) and δ (cv,yr), we immediately find

∂d (v,wr)
∂wr

= −2 (v − wr) (18)

and
∂δ (cv,yr)

∂yr
= −2 (cv − yr) (19)

for prototype and class assignment adaptation, respectively. However, other
choices are possible [16].

It should be mentioned that Dε (v,wr, γ) is not a standard (mathematical)
metric since it violates the triangle inequality. However, Dε (v,wr, γ) fulfills the
requirements of a quasi-metric [11]. In particular, we have Dε (v,wr, γ) = 0 for
a perfect match of the prototype as well as its labels.

For learning in FSSOM we have to distinguish the following extreme cases,
which should be of special interest:

1. d (v,wr) = 0 and δ (cv,yr) �= 0, i.e. the prototype is perfectly placed but its
label is not adequate: In that case a non-vanishing term

∂Dε (v,wr, γ)
∂yr

|d(v,wr)=0 = (1 − γ) · εd · ∂δ (cv,yr)
∂yr

(20)

remains, which guarantees the label adaptation.
2. d (v,wr) �= 0 and δ (cv,yr) = 0, i.e. the prototype label perfectly matches

but the prototype itself is not optimally adjusted: In that case

∂Dε (v,wr, γ)
∂wr

|δ(cv,yr)=0 = γ · εδ · ∂d (v,wr)
∂wr

(21)

is non-vanishing such that prototype learning is still possible.
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2.4 Semi-supervised Learning – Balancing between Unsupervised
and Supervised Learning by the Parameter γ

The quasi-metric Dε (v,wr, γ) depends on the balancing parameter γ weighting
the unsupervised and supervised aspects. Experiences from earlier models (Fuzzy
Label NG – FLNG, [17]) suggest a careful control of this parameter beginning
with γ (0) = 0 and later (adiabatic) increase up to a final value γmax, which
should be chosen as γmax < 1 to avoid instabilities and should be taken into
account also for FSSOM. This can be interpreted as a remaining influence of
unsupervised learning in the supervised learning phase. Moreover, if for a data
vector v no class label is available at least standard SOM learning is applicable.
In this manner the information provided by this data vector is not lost realizing
a semi-supervised learning.

3 Experimental Results

3.1 Artificial Data Set

We start with an artificial data set of two two-dimensional isotropic separated
Gaussians in R2. We distinguish two cases: In the first case, the class labels
are in agreement with the Gaussians, whereas in the second case the classes are
again exactly separated but diametric, see Fig. 1. Both situations are perfectly
separable. However, the second case is much more complicate because prototypes
have to balance between data density and class distribution. As we can observe,
standard GLVQ classifier is able to distinguish the classes in the first case. After
switch of the labels the prototypes (triangles) shift into a new position but with
bad classification accuracy of only 52%. FSSOM places the prototypes (stars)
nearby the class borders, which leads after the switch to a better accuracy of
76%. Thereby, the balancing parameter was set to γ = 0.7.

3.2 LANDSAT TM- Colorado

The second example is a real world data set: the multi-spectral LANDSAT TM
satellite image of the Colorado area previously used in [3,18]. LANDSAT TM
satellites create pictures with pixel resolution of 30m × 30m in seven different
spectral bands in the range of 0.45μm−2.35μm and 10.4μm−12.5μm, whereby
the last (thermal) band is dropped because of lower resolution. These bands
are designed for detect and distinction of different vegetation, cultural features,
rock formations, and water. The size of the Colorado-image is 1907×1784 pixels
with ground truth labels, whereby there are 14 different types of vegetation or
geological formations [18]. The spectral vectors roughly span a two-dimensional
manifold in R

6 such that a two-dimensional 7 × 6 FSSOM-lattice can be used
to obtain a topology preserving mapping [15], i.e. N = 42. Thereby, the number
of lattice nodes is also chosen in agreement with earlier investigations using 3
prototypes per class [3]. For the training only 0.5% of the data set were used,
testing is done for the whole image cube. We compare the results with standard
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Fig. 1. Visualization artificial data set with different labeling: according to the cluster
densities (left) and diametric (right). The result of the FSSOM (�) and GLVQ (�) .

LASSO of same lattice size and GLVQ with 3 prototypes for each class. Because
the class labels are crisp, we calculate accuracy based on the maximum class
assignments ymax

s(v) = maxj=1...C

(
yj
s(v)

)
for a given data sample v for FSSOM

and LASSO. Further, we computed the fuzzyκ-index for class agreement [2]. As
it is depicted in Tab.1, GLVQ generates best results where LASSO shows the
worst result. FSSOM with optimal choice of the balancing paramter γ achieves
better accuracy and κ-values than LASSO but not as good as GLVQ. Thereby,
a wide stability range of γ delivers high accuracy performance. Further, the
fuzzy labels of FSSOM provide additional details, if the class assignments are
visualized according to the topological structure of the neuron lattice A, see
Fig.2. Using the topology preservation property of the underlying SOM, class
similarities can be easily detected, which cannot be observed from pure classifier
systems like GLVQ.

Table 1. Accuracies and κ-values for the Colorado data set for LASSO, GLVQ and
FSSOM with different balancing values γ

LASSO GLVQ FSSOM
γ = 0.1 γ = 0.2 γ = 0.45 γ = 0.7 γ = 0.9 γ = 0.95

accuracy train 74.4% 86.6% 78.5% 80.5% 83.1% 81.4% 80.5% 77.6%
test 74.3% 86.3% 78.9% 80.8% 83.4% 81.5% 80.6% 77.7%

Fuzzyκ-index train 0.611 0.848 0.590 0.661 0.719 0.710 0.687 0.700
test 0.613 0.830 0.591 0.663 0.710 0.687 0.688 0.700
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Fig. 2. False color composite of the Colorado-LANDSAT TM-image: pixels are colored
according to their class labels. top-left: original image; bottom-left: GLVQ-result (mis-
classified pixels are colored black); top-right: FSSOM-result; bottom-right: barplots of
class labels according to the FSSOM-lattice (colors correspond to those in the image).
Class similarities can easily be detected using the topology preservation property of
the underlying SOM. A color version of this figure can be obtained from the authors
on request.

4 Conclusion

We provide in this paper a new approach for semi-supervised learning self-
organizing maps. The new approach combines in a dissimilarity measure both,
the dissimilarity between data and prototypes as well as their class dissimilarity
in a multiplicative manner, the balancing of which is controlled by the balanc-
ing parameter γ. We show that the mathematical structure of the underlying
cost function is the same than for the original Heskes-variant of SOMs based on
local costs such that the respective theoretical framework also justifies the new
approach. The transfer to neural gas algorithm is straightforward.

We demonstrated the abilities and properties of the new scheme for an artifi-
cial data set as well as LANDSAT TM image data set. Here we get comparable
results but providing additional information about class similarities. Further, we
demonstrated the robustness according to the choice of γ.

Obviously, the new approach allows a broad variability of dissimilarity mea-
sures d in the data space and δ for the fuzzy labels. Surely, the Euclidean distance
is a good choice. However, interesting alternatives are under discussion for differ-
ent data types at least for the data dissimilarity measures. Prominent examples
are the scaled Euclidean metric for relevance learning [3] and their functional
counterpart [5], or the Sobolev distance [19] and other functional norms [8], if
the data are supposed to be representations of functions. Generalization of the
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scaled Euclidean metric are quadratic forms used in matrix learning [14]. Diver-
gences are proposed for spectral data as suitable data dissimilarity measures [16],
whereas the utilization of differentiable kernel also seems to be a new promising
alternative for data dissimilarity judgment [13].
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Abstract. Falls are major causes of mortality and morbidity in the el-
derly. However, prevalent methods only utilize accelerometers or both
accelerometers and gyroscopes to separate falls from activities of daily
living. This makes it not easy to distinguish real falls from fall-like ac-
tivities. The existing CCD-camera based solutions require time for in-
stallation, camera calibration and are not generally cheap. In this paper
we show how to achieve reliable fall detection. The detection is done by
a fuzzy inference system using low-cost Kinect and a device consisting
of an accelerometer and a gyroscope. The experimental results indicate
high accuracy of the detection and effectiveness of the system.

1 Introduction

In developed countries the segment of the elderly population over 65 years of age
is growing quickly. About one third of people aged over 65 years are failing once
a year at least. This rate increases to one half for the segment of people aged over
80 years. 20 up to 30% of 65+ adults who fall suffer moderate to severe injuries,
and 2% of such falls result in broken hips [4]. Approximately 30% of people older
than 60 years live alone. Considerable portion of the elderly population is also
willing to accept new technologies to increase safety and the quality of life. The
above mentioned issues stimulated a great interest in fall detection systems.

Most proposed systems to fall detection are based on a wearable device that
monitor the movements of an individual, recognize a fall and trigger an alarm.
Body attached accelerometers [2][5] and gyroscopes [8] are widely used in mon-
itoring human movement and detecting falls. Fall detection methods can be
divided into two groups of methods in relation to how kinetic data is utilized to
distinguish activities of daily living (ADLs) from falls. To the first group belong
methods that are based on a fixed threshold. In [2] a system based on magni-
tude of acceleration values has been proposed, whereas in [1] an algorithm using
measures of angular velocity obtained from gyroscopes has been presented. The
critical issue in such algorithms is to determine proper threshold. However, sev-
eral ADLs like fast sitting have similar kinematic motion patterns to those of
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real falls and in consequence the methods belonging to this group might trigger
many false alarms. In the second group of approaches are methods that combine
kinematic thresholds with posture. The method proposed in [8] assumes that a
fall always ends in a lying position. The assumption that a fall always ends in
a lying pose permits to separate out some fall-like ADLs like sitting, running
and jumps. However, such an assumption might also lead to both false positive
alarms when a person lies quickly on a bed or false negatives in case of remaining
in a sitting position after a harmless fall. According to the experimental evalu-
ation of the method its sensitivity is 91%, while specificity is 92%. In general,
the solutions mentioned above are somehow intrusive for people as they require
wearing continuously at least one device or smart sensor.

Several attempts were made to amend the limitations mentioned above. Some
of them propose the use of two or more wearable devices [10]. However, such
methods can be uncomfortable for elderly people. Moreover, body attached de-
vices might be uncomfortable when sleeping, during change of clothes, wash,
etc. Some approaches focus on ambient devices, which are installed in the places
to be monitored. Common examples of such sensors are pressure sensors on the
floor, bed exit detectors, etc. However, pressure sensitive mats have unavoidable
edges that can cause falls. In addition, the installation of such multiple sensors is
time consuming and monitoring is strictly limited to the places with the sensors.

There have also been several attempts to achieve reliable human fall detec-
tion using single CCD cameras [11], multiple cameras [3] or specialized omni-
directional ones [9]. A vision system [7], which uses a camera mounted on the
ceiling was tested on 21 volunteers who carried out simulated falls. The fall
detection ratio was 77%. There are several advantages of using video cameras,
among others the ability to detect various events. Another advantage is low in-
trusiveness. In some circumstances, the possibility of remote verification of fall
events might be very important. Internet network IP cameras, including GigE
vision cameras can be used to achieve such capability easily. However, the exist-
ing solutions require time for installation and/or camera calibration and are not
generally cheap. Moreover, in monocular camera based approaches the lack of
depth information may lead to false alarms. The shortcomings mentioned above
motivated us to develop a low-cost and reliable system to trigger a fall alarm.

Our system employs both an accelerometer and a video camera, which com-
plement each other. The system is based on expert knowledge and demonstrates
high generalization abilities. The main part of the algorithm is based on a fuzzy
inference system (FIS). We show that low-cost Kinect contribute toward reliable
fall detections. The disadvantage of Kinect is that it only can monitor restricted
areas. In such areas we utilized an accelerometer. On the other hand, in some
ADLs during which the use of this wearable sensor might not be comfortable, for
instance during changing clothes, wash, etc., the system relies on Kinect camera
only. An advantage of Kinect is that it can be put in certain places according to
the user requirements. Moreover, the system operates on depth images and thus
preserves privacy for people being monitored. In this context, it is worth noting
that Kinect uses infrared light and therefore it is able to extract depth images
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in a room that is dark to our eyes. Using both devices, our system can reliably
distinguish the falls from activities of daily living, and thus the number of false
alarms is reduced.

2 The System

Our fall detection system uses both data from Kinect and motion data from
a wearable smart device containing accelerometer and gyroscope sensors. Data
from the smart device (Sony PlayStation Move) are transmitted wirelessly via
Bluetooth to a notebook computer on which the signal processing is done,
whereas Kinect is connected via USB, see Fig. 1. The device contains one tri-
axial accelerometer and a tri-axial gyroscope consisting of a dual-axis gyroscope
and a Z-axis gyroscope. The fall alarm is triggered by a fuzzy inference engine
based on expert knowledge, which is declared explicitly by fuzzy rules and sets.
As inputs the engine takes the acceleration, the angular velocity and the distance
of the person’s gravity center to the altitude at which the Kinect is placed. The
acceleration’s vector length is calculated using data provided by the tri-axial
accelerometer, whereas the angular velocity is provided by the gyroscope.

Fig. 1. The system architecture

A tri-axial accelerometer is a sensor that returns a real valued estimate of
acceleration along x, y and z axes. Data from an accelerometer contains time
and acceleration along three axes. Figure 2 depicts the plots of acceleration
and angular velocities readings vs. time for walking and simulated falling. The
sampling rate of both sensors is equal to 60 Hz. The measured acceleration signals
were median filtered with a window length of three samples to suppress the noise
and then used to calculate the acceleration’s vector length. When people fall,
acceleration and angular velocity are rapidly changed, as demonstrated at right
plots at Fig. 2. A lot of attention to the optimal sensor placement on the body
has been done until now [5]. The attachment of the sensor to trunk or lower
back is recommended because such body parts represent the major component
of body mass and move with most activities. The depicted plots were obtained
for the device that was worn at the waist or near the pelvis region.

Kinect is a motion sensing input device for the Xbox 360 video game console.
The Kinect device has two cameras and one laser-based IR projector. The IR
camera and the IR projector form a stereo pair with a baseline of approximately
75 mm. The IR projector sends out a fixed pattern and dark speckles. The
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Fig. 2. Acceleration and angular velocity for walking and a real fall

depth is determined by triangulation against a known pattern. Then the pattern
is remembered at known depth. Given the known depth of such a plane and the
disparity, the depth for each pixel is calculated by the triangulation. In Fig. 3
color and depth images that were acquired by Kinect are depicted. The depth
image was then segmented using OpenNI library. Finally, on the basis of the
segmented objects the center of gravity of the object of interest was calculated.

Fig. 3. Color and depth images provided by Kinect

Figure 4 illustrates the architecture of the fall detection system. A fuzzy in-
ference system proposed by Takagi and Sugeno (TS) [12] is used to generate
the fall alarm. It expresses human expert knowledge and experience by using
fuzzy inference rules represented in if − then statements. In such an inference
system the linear submodels associated with TS rules are combined to describe
the global behavior of the nonlinear system.

When input data is fed into the TS type fuzzy inference system, each feature
value of the unknown input vector is fuzzified, i.e., converted to a fuzzy num-
ber, through their membership functions (MFs), see Fig. 4. The common types of
membership functions are singletons, triangles, trapezoids, Gaussians, etc. Every
kind of membership function has its advantages and disadvantages. For example,
triangular membership function is very easy to implement and it can be calcu-
lated fast. Figure 5 shows the membership functions (MFs), which were designed
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Fig. 4. The fuzzy inference system

by an expert. The acceleration is proportional to the gravitational acceleration
g, angular velocity is expressed in degrees, whereas the center of gravity is the
difference between the estimated persons gravity center to the floor level and
the Kinect altitude.

Fig. 5. Membership functions

The inference is done by the TS fuzzy system consisting of R rules of the fol-
lowing form: if x1 is A1r and . . . and xi is Air and . . . and xN is ANr then yr =
p0r+p1rx1+· · ·+pNrxN , where Air denotes the linguistic labels of the ith input
variable (i = 1, . . . , N), associated with the rth rule (r = 1, . . . , R), p0r, pir are
the parameters of the rth rule, whereas xi stands for the numerical value of the
ith input variable. The inference function is given by the following expression:

y =

∑R
r=1wryr∑R
r=1 wr

(1)

The twenty seven rules in the system produce a decision surface. The decision
surfaces of our fall detection system for the two inputs are illustrated in Fig. 6.
The filtered data from the accelerometer and the gyroscope were interpolated
and decimated as well as synchronized with the data from Kinect, i.e. the center
of gravity of the moving person. The output y that is generated with 30 Hz is
fed into the alarm trigger module, see also Fig. 4, which makes the final decision.
The alarm is triggered if a specified number of samples in a predefined period of
time is above a predefined value.
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Fig. 6. Decision surfaces of the fuzzy inference engine

3 Experimental Results

Three volunteers with age over 26 years attended in evaluation of our developed
algorithm and system. Intentional falls were performed towards carpets of various
thicknesses ranging from 2 cm to 5 cm. During the simulation of falls, it was paid
attention to falling not too heavily. The accelerometer was worn near the pelvis.
Each individual performed three types of falls, namely forward, backward and
lateral at least three times. Each individual performed also ADLs like walking,
sitting, crouching down, leaning down/picking up objects from the floor, lying
on a bed. Figure 7 depicts some example images with selected ADLs.

Fig. 7. Images with activities of daily living: walking, crouching down, lying on a bed,
leaning down/picking up objects from the floor, sitting and falling (from left to right
and from top to bottom), which were shot by Kinect

The corresponding depth images, which were extracted by Kinect, are de-
picted in Fig. 8. As we can observe, one of the disadvantages of Kinect is a blind
spot that cannot be directly observed. Kinect’s field of view is fifty-seven degrees
horizontally and forty-three degrees vertically and in consequence some areas at
the floor close to Kinect are not observable, see also the right-down image at
Fig. 8. The minimum range for the Kinect is about 0.6 m and the maximum
range is somewhere between 4-5 m.
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Fig. 8. Depth images corresponding to images from Fig. 7, extracted by Kinect

Figure 9 demonstrates some example outputs of our fall detection system,
that were generated during performing some ADLs, including a fall simulated
by a volunteer. These plots show that a single accelerometer with gyroscope and
Kinect are completely sufficient to implement a reliable fall detection system.
All intentional falls performed by three volunteers were detected correctly. In
particular, sitting down fast, which is not easily distinguishable from a typical
fall when only accelerometer or even accelerometer and gyroscope are used, was
detected reliably by our system. One activity consisting in seating on a sofa
was wrongly classified as a fall using only Kinect. The false alarm was altered
because on the depth image acquired by Kinect the legs were merged with the
sofa bottom part. In consequence, the gravity center extracted by the OpenNI
library was situated at a relatively small distance to the floor. It is worth noting
that in the near future the modern mobile devices will be equipped with some
fall detection capabilities, but in some daily activities their helpfulness can still

Fig. 9. FIS output smoothed with a moving average filter. Person fall is easily
recognizable.

be reduced. Our results demonstrate that the use of low-cost Kinect will make it
possible to construct unobtrusive and reliable fall detection systems. Moreover,
using Kinect it will be possible to recognize simultaneously some daily activities,
which is an important and challenging problem [6].
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4 Conclusions

In this paper we demonstrate how to achieve reliable fall detection. The detection
was done by fuzzy inference system using Kinect, accelerometer and gyroscope.
The results show that a single accelerometer with gyroscope and Kinect are
completely sufficient to implement a reliable fall detection system.
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Abstract. Defuzzification operators, that play the main role when deal-
ing with fuzzy controllers and fuzzy inference systems, are discussed for
convex as well for ordered fuzzy numbers. Three characteristic conditions
are formulated for them. It is shown that most of known defuzzification
functionals meet these requirements. Some approximation methods for
determining of the functionals are given and then applied.

1 Fuzzy Numbers

Convex fuzzy numbers (CFN) of [23] form a general and well developed class of
fuzzy sets defined on the real line. When operating on convex fuzzy numbers we
have the interval arithmetic for our disposal. As long as one works with fuzzy
numbers that possess continuous membership functions, the two procedures: the
extension principle of Zadeh and the α-cut and the interval arithmetic method,
give the same results (cf. [2]). Since results of multiple operations on convex
fuzzy numbers are leading to a large growth of the fuzziness, and depend on the
order of the operations due to the lack of the distributive law, new approaches
could be required as well as more general definitions. It has been done recently
by the first author and his co-workers in a number of publications [15], [16], [17]
where they have introduced and then developed main concepts of the space of
ordered fuzzy numbers (OFNs).

To be more specific, let us recall the definitions of a convex fuzzy number and
an ordered fuzzy number. A convex fuzzy number is a particular case of a fuzzy
set, for which its membership function is defined on the real line R and possesses
some properties [3], [23].

Definition 1. By a convex fuzzy number A we understand a fuzzy set defined
on the real line R with the membership function μA : R→ [0, 1] which is convex
and achieves the maximum value 1 with a convex subset, i.e. if its each α-cut
A[α], with 0 < α ≤ 1, of the membership function μA
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A[α] = {x : μA(x) ≥ α}
is closed interval.

Sometimes one adds to this an extra condition on left-continuity of the member-
ship function (cf. [2], [4]). Let us denote the space of all CFN by F .

In the approach developed for OFN the concept of membership functions has
been weakened by requiring a mere membership relation .

Definition 2. Pair (f, g) of continuous functions such that f, g : [0, 1]→R is
called an ordered fuzzy number A.

Notice that f and g need not be inverse functions of some membership function. If,
however, f is increasing and g – decreasing, both on the unit interval I = [0, 1], and
f ≤ g, then one can attach to this pair a continuous function μ and regard it as a
membership function a convex fuzzy number with an extra feature, namely the ori-
entation of the number. This attachment can be done by the formula f−1 = μ|incr
and g−1 = μ|decr. Notice that pairs (f, g) and (g, f) represent two different ordered
fuzzy numbers, unless f = g . They differ by their orientations. It is worthwhile
to point out that the class of ordered fuzzy numbers (OFNs) represents the whole
class of convex fuzzy numbers with continuous membership functions. To include
all CFN with piecewise continuous membership functions more general class of
functions f and g in Def.2 is needed. This has been already done by the first au-
thor who in [7] assumed they are functions of bounded variation. The new space
is denoted by RBV . Then operations on elements of RBV are defined in the sim-
ilar way- the norm, however, changes into the norm of the Cartesian product of
the space of functions of bounded variations (BV). Then all convex fuzzy numbers
are contained in this new spaceRBV of OFN. Notice that functions from BV are
continuous except for a countable numbers of points.

All arithmetic operations on OFN are defined on pairs of functions, e.g.
the sum of A = (fA, gA) and B = (fB, gB) is defined as C = (fC , gC) =
(fA + fB, gA + gB). Similarly we define the multiplication and division. Scalar
multiplication by real r ∈ R is defined as r ·A = (rfA, rgA) . The subtraction of
B is the same as the addition of the opposite of B, and consequently B−B = 0,
where 0 ∈ R is the crisp zero. It means that subtraction is not compatible with
the extension principle of Zadeh, if we confine OFNs to CFN. However, the ad-
dition operation is compatible, if its components have the same orientations.
Notice, however, that addition, as well as the subtraction, of two OFNs that are
represented by affine functions and possess classical membership functions, may
lead to a result which may not possess its membership functions (in general f(1)
needs not be less than g(1)). Notice that to any convex fuzzy number correspond
two OFNs, they differ by the orientation: one has positive, say (f, g) , another
(g, f) has negative. Let us denote the space of all OFN by R.

2 Defuzzification Functionals

Dealing with applications of fuzzy numbers some functionals are required to map
each fuzzy number into a real one. Those operations are called defuzzifications.
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They cannot be quite arbitrary, they should be defined in such a way that is
consistent with operations on reals. To be more strict an introduction of three
obvious conditions in our definition is brought in.

Definition 3. A map φ from the space R of all OFN’s (equivalently from F)
to reals is called a defuzzification functional if is satisfies:

1. φ(c‡) = c ,
2. φ(A+ c‡) = φ(A) + c ,
3. φ(cA) = cφ(A) , for any c ∈ R and A ∈ R .

Here by writing φ(c‡) we understand the action of the functional φ on the crisp
number c‡, which in R is represented by the pair of constant functions (c†, c†),
with c†(s) = c , s ∈ [0, 1], while in F is represented by the membership function
χ{1} equals to the characteristic function of the one-element set {1}. The condi-
tion 2. is a restricted additivity, since the second component is a crisp number.
The condition 3. requires from φ to be homogeneous of order one, while the con-
dition 1. is most obvious and consistent with the operations on reals, since R
forms a subspace in each of the spaces R and F . It requires from defuzzification
functional to be normalized.

2.1 Defuzzification of Ordered Fuzzy Numbers

In this subsection, we will consider the case of Def. 3 with φ defined on R.
First, let us take into consideration linear and continuous functionals on the
space R, which can be identified with the Cartesian product of C(0, 1) - the
space of continuous functions on [0, 1] (then R becomes a Banach space). Due
to the Riesz-Banach-Saks-Kakutami representation theorem each continuous,
linear functionals on R, say φ, has the representation by the sum of two Stieltjes
integrals with respect to two functions h1, h2 of bounded variation1

φ(f, g) =

∫ 1

0

f(s)dh1(s) +

∫ 1

0

g(s)dh2(s) . (1)

It is obvious that φ satisfies the conditions 2. and 3. of Def.3. To satisfy the

condition 1. we need the equality
∫ 1

0 dh1(s) +
∫ 1

0 dh2(s) = 1.
Notice that if for h1(s) and h2(s) we put λH(s) and (1−λ)H(s), respectively,

with 0 ≤ λ ≤ 1 and H(s) as the Heaviside function with the unit jump at s = 1,
then the defuzzification functional in (1) will lead to the classical MOM – middle
of maximum, FOM (first of maximum), LOM (last of maximum) and RCOM
(random choice of maximum), with an appropriate choice of λ. For example if
for h1(s) and h2(s) we put 1/2 H(s) then the defuzzification functional in (1)
will represent the classical MOM – middle of maximum

φ(f, g) = 1/2(f(1) + g(1)) . (2)

1 Those functions are uniquely determined [1] if they vanish at s = 0, and s = 1.
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f(s)=8s3−6s2+1

g(s)=−10s4+12s2+s+10

COG=6.84

Fig. 1. Example of an ordered fuzzy number of polynomial type and its center of gravity
defuzzification value COG

This new model gives the continuum number of defuzzification operators both
linear and nonlinear, which map ordered fuzzy numbers into reals. Nonlinear
functional can be defined, see [12,21], for example, a center of gravity defuzzification

functional (COG) calculated at OFN (f, g) is (cf. Fig. 1.)

φCOG(f, g) =

1∫
0

f(s)+g(s)
2 |f(s)− g(s)|ds

1∫
0

|f(s)− g(s)|ds
. (3)

If A = c‡ then we put φCOG(c
‡) = c . When

1∫
0

|f(s)− g(s)|ds = 0 in (3) we write

φCOG(f, f) =

1∫
0

f(s)ds/

1∫
0

ds .

It is rather easy to show [26] that φCOG possesses all properties formulated in
Def. 3. Other nonlinear functional was originally proposed by [28] in her Master
Thesis, and called a defuzzification by the geometrical mean, and defined by the
formula (cf. Fig. 2.)

φGM (f, g) =
g(1)g(0)− f(0)f(1)

g(1) + g(0)− (f(0) + f(1))
(4)

in which the denotation used are obvious. In this case we can show [26] that
φGM possesses all properties formulated in Def. 3.

2.2 Defuzification of Convex Fuzzy Numbers

In this subsection, we will consider the case of Def. 3 with φ defined on F . Then
we have, similar to the case of ordered fuzzy numbers, the list of known linear
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0

1

s

x

Fig. 2. Example of calculation of defuzzification of the geometrical mean of a trape-
zoidal ordered fuzzy number

functionals: MOM, FOM, LOM, RCOM. Their linearity gives the fulfilment of
all three conditions of Def. 3.

Let us consider the nonlinear case and the center of gravity functional defined
on a membership function μA by

ψCOG(μA) =

∫∞
−∞ x · μA(x)dx∫∞
−∞ μA(x)dx

,

and if A represents a crisp number c, i.e. its membership function μA is the
characteristic function of the one-element set {c} equals to χ{c}, where

χ{c}(x) =
{
1 for x = c
0 for x �= c ,

then we put ψCOG(μA) = c.
Now we show that ψCOG defined on F satisfies the conditions of Def.3. The

first condition is satisfied from the definition.
Let us pass to the restricted additivity in condition 2. of Def.3, and define

C = A + c‡ and use the denotation ⊕ for the operation on the membership
function, then μC = c⊕ μA. Applying the extension principle we obtain

μC(x) = μA(x)⊕ c‡ = μA(x − c).

Proposition 1. ψCOG(μA ⊕ c‡) = ψCOG(μA) + c

Proof

ψCOG(μA ⊕ c‡) =

∫∞
−∞ x · (μA ⊕ c‡)(x)dx∫∞

−∞(μA ⊕ c‡)(x)dx
=

∫∞
−∞ x · μA(x− c)dx∫∞
−∞ μA(x− c)dx

=

=

{
x− c =: y ⇒ x = y + c

}
=

∫∞
−∞(y + c) · μA(y) d(y + c)∫∞

−∞ μA(y) d(y + c)
=
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=

∫∞
−∞ y · μA(y)dy + c · ∫∞

−∞ μA(y)dy∫∞
−∞ μA(y)dy

=

=

∫∞
−∞ y · μA(y)dy∫∞
−∞ μA(y)dy

+
c · ∫∞

−∞ μA(y)dy∫∞
−∞ μA(y)dy

= ψCOG(μA) + c .

To show the third condition let us take c �= 0 and A ∈ F . According to the Zadeh
extension principle the number C = cA will have its membership function

μC(x) = c$ μA(x) := μA(
x

c
) ,

where by $ we have denoted the operation on membership function correspond-
ing to the scalar multiplication.

Proposition 2. ψCOG(c$ μA) = c · ψCOG(μA)

Proof

ψCOG(c$ μA) =

∫∞
−∞ x · c$ μA(x)dx∫∞
−∞ c$ μA(x)dx

=

∫∞
−∞ x · μA(

x
c )dx∫∞

−∞ μA(
x
c )dx

=

=

{
x

c
=: y ⇒ x = c · y

}
=

∫∞
−∞ c · y · μA(y)d(c · y)∫∞

−∞ μA(y)d(c · y)
=

= c ·
∫∞
−∞ y · μA(y) · c · dy∫∞
−∞ μA(y) · c · dy

= c · ψCOG(μA) .

In this way we show that the classical defuzzification functionals known in the
theory of CFN are homogeneous functions of order one, restrictive additive and
normalized. In her Engineering Thesis Agnieszka Rosa showed more, that dis-
cussed in [29] the so-called BADD - basic defuzzifcation distribution

ψBADD(μA;λ) =

∫∞
−∞ x · [μA(x)]

λ
dx∫∞

−∞ [μA(x)]
λ
dx

, (5)

where λ ∈ [0,∞) satisfies all 3 conditions. Moreover, she has derived its coun-
terpart for OFN in the space R.
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3 Approximation of Defuzzification Functional

An ultimate goal of fuzzy logic is to provide foundations for approximate rea-
soning. It uses imprecise propositions based on a fuzzy set theory developed by
L.Zadeh, in a way similar to the classical reasoning using precise propositions
based on the classical set theory. Defuzzification is the main operation which
appears in fuzzy controllers and fuzzy inference systems where fuzzy rules are
present. It was extensively discussed by the authors of [27]. They have classified
the most widely used defuzzification techniques into different groups, and exam-
ined the prototypes of each group with respect to the defuzzification criteria.

The problem arises when membership functions are not continuous or do
not exist at all. In our recent paper [10] we have that on particular subsets
of fuzzy sets, namely step ordered fuzzy numbers approximation formula of a
defuzzification functionals can be searched based on some number of training
data. This was a quite new problem never investigated within (step ordered)
fuzzy numbers. Let finite set of training data be given in the form of N pairs:
ordered fuzzy number and value (of action) of a defuzzification functional on it,
i.e.

TRE = {(A1, r1), (A2, r2), ..., (AN , rN )} .
For a given small ε find a continuous functionalH : RK → R which approximates
the values of the setTREwithin the error smaller than ε, i.e. max

1≤p≤N
|H(Ap)−rp| ≤

ε , where (Ap, rp) ∈ TRE . The problem mentioned may possess several solution
methods, e.g. a dedicated evolutionary algorithm [8], [11] or an artificial neural
network. Thanks to the results of [9] we could use a particular representation of the
searched defuzzification functional in which a homogeneous, of order one, function
appears.We have shown that feedforward neural network with a bipolar sigmoidal
activation function can be used to this aim. It is obvious that more investigations
must be done in this field and different computational intelligence tools can be
used there. It will be the subject of our further research.
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10. Kosiński, W., Kacprzak, M.: Fuzzy implications on lattice of ordered fuzzy num-
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282 W. Kosiński et al.
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Abstract. The ordered weighted averaging (OWA) operator uses the
weights assigned to the ordered values rather than to the specific crite-
ria. This allows one to model various aggregation preferences, preserving
simultaneously the impartiality (neutrality) with respect to the individ-
ual attributes. The determination of ordered weighted averaging (OWA)
operator weights is a crucial issue of applying the OWA operator for deci-
sion making. This paper considers determining monotonic weights of the
OWA operator by minimization the mean absolute deviation inequality
measure. This leads to a linear programming model which can also be
solved analytically.

1 Introduction

The problem of aggregating multiple numerical criteria to form overall objective
functions is of considerable importance in many disciplines. The most commonly
used aggregation is based on the weighted sum. The preference weights can be
effectively introduced with the so-called Ordered Weighted Averaging (OWA)
aggregation developed by Yager [17]. In the OWA aggregation the weights are
assigned to the ordered values (i.e. to the smallest value, the second smallest and
so on) rather than to the specific criteria. Since its introduction, the OWA aggre-
gation has been successfully applied to many fields of decision making [8,12,21].
The OWA operator allows us to model various aggregation functions from the
maximum through the arithmetic mean to the minimum. Thus, it enables mod-
eling of various preferences from the optimistic to the pessimistic one.

Several approaches has been introduced for obtaining the OWA weights with
a predefined degree of orness [2,16]. O‘Hagan [7] proposed a maximum entropy
approach, which involved a constrained nonlinear optimization problem with a
predefined degree of orness as its constraint and the entropy as the objective
function. Actually, the maximum entropy model can be transformed into a poly-
nomial equation and then solved analytically [3]. A minimum variance approach
to obtain the minimal variability OWA operator weights was also considered
[4]. The minimax disparity approach proposed by Wang and Parkan [14] was
the first method of finding OWA operator using Linear Programming (LP) This
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method determines the OWA operator weights by minimizing the maximum
difference between two adjacent weights under a given level of orness. The mini-
max disparity approach was further extended [1,13] and related to the minimum
variance approaches [6]. The maximum entropy approach was generalized for
various Minkowski metrics [19,20] and in some cases expressed with LP models
[15]. In this paper we analyze a possibility to use another LP solvable models.
In particular, we develop the LP model to determine the OWA operator weights
by minimizing the Mean Absolute Deviation (MAD) inequality measure. In ad-
dition to the LP model an analytical formula is also derived.

2 Orness and Inequality Measures

Let w = (w1, . . . , wm) be a weighting vector of dimension m such that wi ≥ 0
for i = 1, . . . ,m and

∑m
i=1 wi = 1. The corresponding OWA aggregation

of outcomes y = (y1, . . . , ym) can be mathematically formalized as follows
[17]. First, we introduce the ordering map Θ : Rm → Rm such that Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) and there exists
a permutation τ of set I such that θi(y) = yτ(i) for i = 1, . . . ,m. Further, we
apply the weighted sum aggregation to ordered achievement vectors Θ(y), i.e.
the OWA aggregation has the following form:

Aw(y) =

m∑
i=1

wiθi(y) (1)

The OWA aggregation may model various preferences from the optimistic (max)
to the pessimistic (min). Yager [17] introduced a well appealing concept of the
orness measure to characterize the OWA operators. The degree of orness asso-
ciated with the OWA operator Aw(y) is defined as

orness(w) =
m∑
i=1

m− i

m− 1
wi (2)

For the max aggregation representing the fuzzy ‘or’ operator with weights w =
(1, 0, . . . , 0) one gets orness(w) = 1 while for the min aggregation representing
the fuzzy ‘and’ operator with weights w = (0, . . . , 0, 1) one has orness(w) = 0.
For the average (arithmetic mean) one gets orness((1/m, 1/m, . . . , 1/m)) = 1/2.
Actually, one may consider a complementary measure of andness defined as
andness(w) = 1−orness(w). OWA aggregations with orness greater or equal 1/2
are considered or-like whereas the aggregations with orness smaller or equal 1/2
are treated as and-like. The former corresponds to rather optimistic preferences
while the latter represents rather pessimistic preferences.

The OWA aggregations with monotonic weights are either or-like or and-
like. Exactly, decreasing weights w1 ≥ w2 ≥ . . . ≥ wm define an or-like OWA
operator, while increasing weights w1 ≤ w2 ≤ . . . ≤ wm define an and-like OWA
operator. Actually, the orness and the andness properties of the OWA operators
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with monotonic weights are total in the sense that they remain valid for any
subaggregations defined by subsequences of their weights.

Yager [18] proposed to define the OWA weighting vectors via the regular
increasing monotone (RIM) quantifiers, which provide a dimension independent
description of the aggregation. A fuzzy subset Q of the real line is called a RIM
quantifier if Q is (weakly) increasing with Q(0) = 0 and Q(1) = 1. The OWA
weights can be defined with a RIM quantifier Q as wi = Q(i/m)−Q((i−1)/m).
and the orness measure can be extended to a RIM quantifier (according to
m→∞) as follows [18]

orness(Q) =

∫ 1

0

Q(α) dα (3)

Thus, the orness of a RIM quantifier is equal to the area under it.
Monotonic weights can be uniquely defined by their distribution. First, we

introduce the right-continuous cumulative distribution function (cdf):

Fw(d) =

m∑
i=1

1

m
δi(d) where δi(d) =

{
1 if wi ≤ d
0 otherwise

(4)

which for any real value d provides the measure of weights smaller or equal to d.
Alternatively one may use the left-continuous right tail cumulative distribution
function Fw(d) = 1− Fw(d) which for any real value d provides the measure of
weights greater or equal to d.

Next, we introduce the quantile function F
(−1)
w = inf {η : Fy(η) ≥ ξ} for

0 < ξ ≤ 1 as the left-continuous inverse of the cumulative distribution function

Fw, ie., F
(−1)
w (ξ) = inf {η : Fw(η) ≥ ξ} for 0 < ξ ≤ 1. Similarly, we intro-

duce the right tail quantile function F
(−1)

w as the right-continuous inverse of

the cumulative distribution function Fw, i.e., F
(−1)

w (ξ) = sup {η : Fw(η) ≥ ξ}
for 0 < ξ ≤ 1. Actually, F

(−1)

w (ξ) = F
(−1)
w (1 − ξ). It is the stepwise function

F
(−1)

w (ξ) = θi(w) for i−1
m < ξ ≤ i

m .
Dispersion of the weights distribution can be described with the Lorenz curves

and related inequality measures. Classical Lorenz curve used in income economics
as a cumulative population versus income curve to compare equity of income
distributions. Although, the Lorenz curve for any distribution may be viewed
[5] as a normalized integrated quantile function. In particular, for distribution
of weights w one gets

Lw(ξ) =
1

μ(w)

∫ ξ

0

F (−1)
w (α)dα = m

∫ ξ

0

F (−1)
w (α) (5)

where while dealing with normalized weights wi we have always μ(w) = 1/m.
Graphs of functions Lw(ξ) take the form of piecewise linear convex curves. They
are also nondecreasing, due to nonnegative weights wi. Any perfectly equal dis-
tribution of income has the diagonal line as the Lorenz curve (the same inde-
pendently from the income value).
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Alternatively, the upper Lorenz curve may be used which integrates the right
tail quantile function. For distribution of weights w one gets

Lw(ξ) =
1

μ(w)

∫ ξ

0

F
(−1)

w (α)dα = m

∫ ξ

0

F
(−1)

w (α) (6)

Graphs of functions Lw(ξ) take the form of piecewise linear concave curves.
They are also nondecreasing, due to nonnegative weights wi. Similar to Lw, the
vector of perfectly equal weights has the diagonal line as the upper Lorenz curve.
Actually, both the classical (lower) and the upper Lorenz curves are symmetric
with respect to the diagonal line in the sense that the differences

d̄w(ξ) = Lw(ξ)− ξ and dw(ξ) = ξ − Lw(ξ) (7)

are equal for symmetric arguments d̄w(ξ) = dw(1− ξ). Hence,

Lw(ξ) + Lw(1− ξ) = 1 for any 0 ≤ ξ ≤ 1 (8)

Note that in the case of nondecreasing OWA weights 0 ≤ w1 ≤ . . . ≤ wm ≤ 1
the corresponding Lorenz curve Lw(ξ) is (weakly) increasing with Lw(0) = 0
and Lw(1) = 1 as well as the OWA weights can be defined with L as wi =
Lw(i/m)−Lw((i−1)/m). Hence, Lw may be considered then as a RIM quantifier
generating weights w [10]. Following (3), the orness measure of RIM quantifier

is given as orness(L) =
∫ 1

0 L(α) dα, thus equal to the area under Lw. Certainly,
for any finite m the RIM orness orness(Lw) differs form the orness, but the
difference depends only on the value of m, exactly,

orness(Lw) =

m∑
i=1

m− i

m
wi +

m∑
i=1

1

2m
wi =

m− 1

m
orness(w) +

1

2m
(9)

In the case of nonincreasing OWA weights 1 ≥ w1 ≥ . . . ≥ wm ≥ 0 the cor-
responding upper Lorenz curve Lw(ξ) is (weakly) increasing with Lw(0) = 0
and Lw(1) = 1 as well as the OWA weights can be defined with L as wi =
Lw(i/m)−Lw((i− 1)/m). Hence, Lw may be considered then as a RIM quanti-
fier generating weights w. Similar to (9), the difference between the RIM orness
orness(Lw) and orness(w) depends only on the value of m.

Typical inequality measures are some deviation type dispersion characteris-
tics. They are inequality relevant which means that they are equal to 0 in the
case of perfectly equal outcomes while taking positive values for unequal ones.

The simplest inequality measures are based on the absolute measurement of
the spread of outcomes, like the (Gini’s) mean absolute difference

Γ (w) =
1

2m2

m∑
i=1

m∑
j=1

|wi − wj | (10)

In most application frameworks a better intuitive appeal may have inequality
measures related to deviations from the mean value like the Mean Absolute
Deviation (MAD) from the mean
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δ(w) =
1

m

m∑
i=1

|wi − μ(w)| (11)

In economics one usually considers relative inequality measures normalized by
the mean. Among many inequality measures perhaps the most commonly ac-
cepted by economists is the Gini index, which is the relative mean difference.

G(w) = Γ (w)/μ(w) = mΓ (w) (12)

Similar, one may consider the relative mean deviation which is known as the
Schutz index

S(w) = δ(w)/μ(w) = mδ(w) (13)

Note that due to μ(w) = 1/m, the relative inequality measures are proportional
to their absolute counterparts and any comparison of the relative measures is
equivalent to comparison of the corresponding absolute measures.

The above inequality measures are closely related to the Lorenz curve [8] and
its differences from the diagonal (equity) line (7). First of all

G(w) = 2

∫ 1

0

d̄w(α)dα = 2

∫ 1

0

dw(α)dα (14)

thus

G(w) = 2

∫ 1

0

Lw(α)dα − 1 = 1− 2

∫ 1

0

Lw(α)dα (15)

Recall that in the case of nondecreasing OWA weights 0 ≤ w1 ≤ . . . ≤ wm ≤ 1
the corresponding Lorenz curve Lw(ξ) may be considered as a RIM quantifier
generating weights w. Following (9), one gets

G(w) = 1− 2orness(Lw) =
m− 1

m
(1− 2orness(w)) (16)

enabling easy recalculation of the orness measure into the Gini index and vice
versa. Similarly, in the case of nonincreasing OWA weights 1 ≥ w1 ≥ . . . ≥ wm ≥
0, one gets

G(w) = 2orness(Lw)− 1 =
m− 1

m
(2orness(w) − 1) (17)

3 Mean Absolute Deviation Minimization

We focus on the case of monotonic weights. Following (16) and (17), the Gini
index is then uniquely defined by a given orness value. Nevertheless, one may
still select various weights by minimization the MAD measure. Although related
to the Lorenz curve it is not uniquely defined by the Gini index and the or-
ness measure. Actually, the MAD minimization approach may be viewed as the
generalized entropy maximization based on the first Minkowski metric [15].
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Let us define differences

d̄i(w) = Lw(
i

m
)− i

m
and di(w) =

i

m
− Lw(

i

m
) for i = 1, . . . ,m (18)

where due to nonnegativity of weights, for all i = 1, . . . ,m− 1

d̄i(w) ≤ 1

m
+ d̄i+1(w) and di(w) ≤ 1

m
+ di−1(w) (19)

with d0(w) = d̄0(w) = 0 and dm(w) = d̄m(w) = 0. Thus

d̄m−i(w) ≤ i

m
and di(w) ≤ i

m
for i = 1, . . . ,m− 1 (20)

The Gini index represents the area defined by d̄i(w) or di(w), respectively,

G(w) =
2

m

m−1∑
i=1

d̄i(w) =
2

m

m−1∑
i=1

di(w) (21)

while the relative MAD (Schutz index) may be represented [8] as

S(w) = mδ(w) = max
i=1,...,m−1

d̄i(w) = max
i=1,...,m−1

di(w) (22)

Assume there is given some orness value 0.5 ≤ α ≤ 1 and we are looking for
monotonic weights 1 ≥ w1 ≥ . . . ≥ wm ≥ 0 such that orness(w) = α and S(w)
is minimal. Following (17), (21) and (22) it leads us to the problem

min max
i=1,...,m−1

md̄i(w)

s.t.
2

m

m−1∑
i=1

d̄i(w) =
m− 1

m
(2α− 1)

(23)

with additional constraints (19). This allows us to form the following LP model

min md (24)

s.t. d̄i ≤ d for i = 1, . . . ,m− 1 (25)

d̄1 + . . .+ d̄m−1 = (m− 1)(α− 0.5) (26)

0 ≤ d̄i ≤ 1

m
+ d̄i+1 for i = 1, . . . ,m− 1 (27)

with variables d̄i for i = 1, . . . ,m− 1, auxiliary variable d and constant d̄m = 0.
Having solved the above LP problem, the corresponding weights can be simply
calculated according to the following formula (with d̄0 = d̄m = 0):

wi = d̄i − d̄i−1 +
1

m
for i = 1, . . . ,m (28)
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Symmetrically, having given an orness value 0 ≤ α ≤ 0.5 and looking for mono-
tonic weights 0 ≤ w1 ≤ . . . ≤ wm ≤ 1 such that orness(w) = α and S(w) is
minimal, following (16), (21) and (22), one gets the problem

min max
i=1,...,m−1

mdi(w)

s.t.
2

m

m−1∑
i=1

di(w) =
m− 1

m
(1− 2α)

(29)

with additional constraints (19). Thus leading to the LP problem

min md
s.t. di ≤ d for i = 1, . . . ,m− 1

d1 + . . .+ dm−1 = (m− 1)(0.5− α)
0 ≤ di ≤ 1

m + di−1 for i = 1, . . . ,m− 1

(30)

with variables di for i = 1, . . . ,m− 1, auxiliary variable d and constant d0 = 0.
The corresponding weights can be found according to the formula

wi = di−1 − di +
1

m
for i = 1, . . . ,m (31)

where d0 = dm = 0.

(a) (b)

Fig. 1. Lorenz curve for MAD minimization: (a) 0.5 ≤ α ≤ 0.5+1/m, (b) α > 0.5+1/m

LP models (24)–(27) and (30) allow for application standard optimization
techniques to solve them. However, their structure is so simple that the problem
of MAD minimization can also be solved analytically. We will show this in details
for the case of 0.5 ≤ orness(w) ≤ 1 and the corresponding model (24)–(27).

One may take advantage of the fact that an optimal solution to the minimax
problem min{maxi∈I yi :

∑
i∈I yi = b} are perfectly equal values yi = b/|I| for

all i ∈ I. Hence, when the required orness level is small enough (still not below
0.5), then the optimal solution is defined by

d̄1 = . . . = d̄m−1 = Δ
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whereΔ = α−0.5 is defined by the orness equation (26) while leaving inequalities
(27) inactive. Exactly, this is a case when 0.5 ≤ α ≤ 0.5 + 1/m as illustrated in
Fig. 1(a). Note that such a solution is generated by weights:

w1 =
1

m
+Δ, w2 = . . . = wm−1 =

1

m
, wm =

1

m
−Δ

When the required orness level is larger then some constraints (27) become
active thus setting some κ tail differences on their upper limits: d̄m−k = k

m for
k = 1, . . . , κ, as illustrated in Fig. 1(b). This leads us to the solution

d̄1 = . . . = d̄m−κ−1 = Δ, d̄m−k =
k

m
for k = 1, . . . , κ (32)

where, following the orness equation (26),

Δ =
m− 1

m− κ− 1
(α− 0.5)− κ(κ+ 1)

2m(m− κ− 1)
(33)

Exactly, formulas (32)-(33) are valid when

(2m− 1− κ)κ

2m(m− 1)
≤ α− 0.5 ≤ (2m− 1− (κ+ 1))(κ+ 1)

2m(m− 1)

which means that κ can be simply computed as a function of the orness level α

κ = κ(α) = %m− 1−
√
2m(m− 1)(1− α) + 0.25&

Following (32)-(33) and (28), the OWA weights are then given by the formula

w1 =
1

m
+Δ, w2 = . . . = wm−κ−1 =

1

m
, wm−κ =

κ+ 1

m
−Δ

wm−k = 0 for k = 1, . . . , κ− 1

4 Conclusion

The determination of ordered weighted averaging (OWA) operator weights is a
crucial issue of applying the OWA operator for decision making. We have con-
sidered determining monotonic weights of the OWA operator by minimization
of the mean absolute deviation inequality measure. This leads us to a linear pro-
gramming model which can also be solved analytically. The analytic approach
results in simple direct formulas. The LP models allow us to find weights by the
use of efficient LP optimization techniques and they enable easy enhancement
of the preference model with additional requirements on the weights properties.
The latter is the main advantage over the standard method of entropy maximiza-
tion. Both the standard method and the proposed one do have their analytical
solutions. However, if we try to elaborate them further by adding some auxiliary
(linear) constraints on the OWA weights, then the entropy minimization model
forms a difficult nonlinear optimization task while the MAD minimization is still
easily LP-solvable.
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Abstract. Efficient Model Predictive Control (MPC) algorithms based
on fuzzy Wiener models with advanced methods of prediction are pro-
posed in the paper. The methods of prediction use values of future control
changes which were derived by the MPC algorithm in the last iteration.
Such an approach results in excellent control performance offered by the
proposed algorithms. Moreover, they are formulated as numerically effi-
cient quadratic optimization problems. Advantages of the proposed fuzzy
MPC algorithms are demonstrated in the control systems of a nonlinear
plant.

Keywords: fuzzy systems, fuzzy control, predictive control, nonlinear
control, constrained control.

1 Introduction

MPC algorithms generate control signals using prediction of the process behav-
ior in the future. Such an approach is the source of advantages of the MPC
algorithms and very good control performance offered by them [4, 8, 17, 20].
Prediction is derived using a model of the control plant. In standard MPC al-
gorithms linear models are used. In such a case, the MPC algorithm can be
formulated as an easy to solve, quadratic optimization problem. Unfortunately,
if the control plant is nonlinear, application of such an algorithm may bring
unsatisfactory results.

If a nonlinear process model is used directly in the MPC algorithm, it leads
to its formulation as a nonlinear, nonquadratic, in general nonconvex optimiza-
tion problem which must be solved in each iteration of the algorithm. The ob-
tained problem is however difficult to solve and computationally demanding.
Time needed to find the solution is hard to predict, numerical problems may oc-
cur and there is also a problem of local minima. MPC algorithms which are based
on linear approximations of the nonlinear models obtained in each iteration of
the algorithm do not have these drawbacks; see e.g. [10–13, 15, 20].

Wiener models have an interesting structure. In these models a linear dynamic
part precedes a nonlinear static part [7]. Many processes can be successfully

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 292–300, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Efficient MPC Algorithms Based on Fuzzy Wiener Models 293

modeled using the Wiener models (see e.g. [2, 9]) and thanks to the structure of
these models, controllers can be designed relatively easy. The proposed methods
of prediction are based on fuzzy Wiener models in which the fuzzy Takagi–
Sugeno (TS) model is used as the static part of the Wiener model. The methods
are better than the one proposed in [12] because they use values of the future
control changes, derived by the MPC algorithm in the previous iteration, to
improve the prediction. At the same time, they remain relatively simple not
affecting control performance in a negative way.

In the next section the standard MPC algorithms are reminded. In Sect. 3 the
MPC algorithms based on fuzzy Wiener models and the advanced methods of
prediction are proposed. Results obtained in the control system of a nonlinear
plant, illustrating efficacy of the proposed fuzzy MPC algorithms are presented
in Sect. 4. The paper is summarized in the last section.

2 Model Predictive Control Algorithms

In the Model Predictive Control (MPC) algorithms future behavior of the control
plant many sampling instants ahead is predicted using a process model. The
control signal is derived in such a way that the prediction fulfills assumed criteria.
Usually, the following optimization problem is solved at each iteration of the
algorithm [4, 8, 17, 20]:

argmin
Δu

{
JMPC =

p∑
i=1

(
yk − yk+i|k

)2
+

s−1∑
i=0

λ
(
Δuk+i|k

)2}
(1)

subject to:

Δumin ≤ Δu ≤ Δumax , (2)

umin ≤ u ≤ umax , (3)

ymin ≤ y ≤ ymax , (4)

where yk is a set–point value, yk+i|k is a value of the output for the (k + i)th

sampling instant, predicted at the kth sampling instant, Δuk+i|k are future
changes of the control signal, λ ≥ 0 is a tuning parameter, p and s denote
prediction and control horizons, respectively; Δu =

[
Δuk+1|k, . . . , Δuk+s−1|k

]
,

u =
[
uk+1|k, . . . , uk+s−1|k

]
, y =

[
yk+1|k, . . . , yk+p|k

]
; Δumin, Δumax, umin,

umax, ymin, ymax are vectors of lower and upper limits of changes and val-
ues of the control signal and of the values of the output signal, respectively. The
solution of the optimization problem (1–4) is the optimal vector of changes of
the control signal. From this vector, the first element is applied to the control
plant and then the optimization problem is solved again in the next iteration of
the MPC algorithm.
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The predicted output variables yk+i|k are calculated using a dynamic model
of the control plant. If the model used for prediction is nonlinear then the opti-
mization problem (1–4) is nonlinear, nonquadratic and, in general, nonconvex.
Algorithms of this kind will be referred to as NMPC. Examples of such algo-
rithms based on fuzzy models can be found e.g. in [3, 5] and those utilizing
Wiener models – e.g. in [2, 9]. Unfortunately, the optimization problem in the
NMPC algorithm is hard to solve and the control signal must be calculated at
each iteration of the algorithm.

If the model used in the MPC algorithm is linear then the superposition
principle can be applied and the vector of predicted output values y is given by
the following formula:

y = ỹ +A ·Δu , (5)

where ỹ =
[
ỹk+1|k, . . . , ỹk+p|k

]
is a free response (it contains future values of the

output signal calculated assuming that the control signal does not change in the
prediction horizon); A ·Δu is the forced response which depends only on future
changes of the control signal (decision variables);

A =

⎡⎢⎢⎢⎣
a1 0 . . . 0 0
a2 a1 . . . 0 0
...

...
. . .

...
...

ap ap−1 . . . ap−s+2 ap−s+1

⎤⎥⎥⎥⎦ (6)

is the dynamic matrix composed of coefficients of the control plant step response
[4, 8, 17, 20].

Thus, if a linear process model is used then the optimization problem (1–4)
becomes a standard quadratic programming problem. Let us introduce the vector
y = [yk, . . . , yk] of length p. The performance function from (1), after utilization
of the prediction (5), can be rewritten in the matrix–vector form as:

JLMPC = (y − ỹ −A ·Δu)T · (y − ỹ −A ·Δu) +ΔuT ·Λ ·Δu , (7)

where Λ = λ · I is the s × s matrix. The performance function (7) depends
quadratically on future control increments (decision variables) Δu.

Note that if the constraints need not be taken into consideration, the vector
minimizing the performance function (7) is given by the following formula:

Δu =
(
AT ·A+Λ

)−1

·AT · (y − ỹ) . (8)

As the quadratic optimization problems can be easily solved using well known,
numerically robust methods, MPC algorithms based on linear approximations of
the nonlinear process models obtained at each iteration were designed [15, 20].
The algorithms of this type based on fuzzy process models one can find e.g. in
[10–13].

3 MPC Algorithms Based on Fuzzy Wiener Models

It is assumed that the static part of the Wiener process model is a fuzzy Takagi–
Sugeno model which consists of the following rules:
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Rule j: if vk is Mj , then

yjk = gj · vk + hj, (9)

where gj , hj are coefficients of the model, Mj are fuzzy sets, j = 1, . . . , l,
l is the number of fuzzy rules (local models). The output of the static part of
the model is thus described by the following formula:

ŷk =

l∑
j=1

wj(vk) · yjk = g̃k · vk + h̃k , (10)

where vk is the input to the static block and the output of the dynamic block,
wj(vk) are weights obtained using fuzzy reasoning (see e.g. [16, 19]),

g̃k =
∑l

j=1 wj(vk) · gj , h̃k =
∑l

j=1 wj(vk) · hj .
It is assumed that the dynamic part of the model is a difference equation:

vk = b1 · vk−1 + . . .+ bn · vk−n + c1 · uk−1 + . . .+ cm · uk−m , (11)

where bj, cj are parameters of the model. Thus, the output of the Wiener model
is given by the following formula:

ŷk = g̃k ·
⎛⎝ n∑

j=1

bj · vk−j +

m∑
j=1

cj · uk−j

⎞⎠+ h̃k , (12)

In the algorithms proposed in [12] the fuzzy (nonlinear) Wiener model (12) is
used to obtain the free response of the plant, assuming that the control signal
is constant on the whole prediction horizon. In the approach proposed in the
current paper future control increments derived by the MPC algorithm in the
last sampling instant are used during calculation of the free response. It is thus
assumed that future control values can be decomposed as follows:

uk+i|k = ǔk+i|k + uk+i|k−1 , (13)

where ǔk+i|k can be interpreted as the correction of the control signal uk+i|k−1

which was obtained in the last (k − 1)st iteration of the MPC algorithm.
The output of the linear part of the model in the (k + i)th sampling instant

is described by the following formula:

v̂k+i =
i∑

j=1

cj · uk−j+i|k +
m∑

j=i+1

cj · uk−j+i +
n∑

j=1

bj · v̂k−j+i , (14)

where v̂k+i are values of the internal signal of the fuzzy Wiener model, calculated
recursively. After using (13), one can rewrite (14) as:

v̂k+i =
i∑

j=1

cj · ǔk−j+i|k +
i∑

j=1

cj · uk−j+i|k−1 +
m∑

j=i+1

cj · uk−j+i +
n∑

j=1

bj · v̂k−j+i .

(15)
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In (15) only the first component is unknown whereas the second one is known
and can be included in the free response of the control plant. Therefore, the free
response is given by the following formula:

ỹk+i|k = g̃k·
⎛⎝ i∑

j=1

cj · uk−j+i|k−1 +
m∑

j=i+1

cj · uk−j+i +
n∑

j=1

bj · v̂k−j+i

⎞⎠+h̃k+dk ,

(16)
where dk = yk − ŷk is the DMC–type disturbance model (assumed the same on
the whole prediction horizon). Note that thanks to the structure of the utilized
fuzzy Wiener model the analytical equations describing the free response were
obtained.

The dynamic matrix, needed to predict the influence of the corrections of the
control signal can be obtained in two ways. The first one is the same as described
in [12], i.e. the step response coefficients of the dynamic part of the Wiener model
an (n = 1, . . . , pd) are obtained and the following linear approximation of the
fuzzy Wiener model (12) is used at each iteration of the algorithm:

ŷk = dy ·
(

pd−1∑
n=1

an ·Δuk−n + apd
· uk−pd

)
. (17)

where pd is the dynamics horizon equal to the number of sampling instants after
which the step response can be assumed as settled, dy is the slope of the static
characteristic near the current value vk which can be approximated by:

dy =

((∑l
j=1 wj(vk) · (gj · vk + hj)

)
−
(∑l

j=1 wj(vk−) · (gj · (vk−) + hj)
))

dv
,

(18)
where vk− = vk − dv, dv is a small number. The dynamic matrix is therefore
described by:

Ak = dy ·A . (19)

The second, more advanced method uses the trajectory of future values of the
input to the static part of the Wiener model (15). The dynamic matrix is con-
structed in such a way that changes of the v̂k+i values are taken into consider-
ation. It can be done by calculating the slope of the static characteristic dyk+i

near each of the values v̂k+i. Then, the dynamic matrix is described by the
following formula:

Ak =

⎡⎢⎢⎢⎣
ak+1
1 0 . . . 0 0

ak+2
2 ak+2

1 . . . 0 0
...

...
. . .

...
...

ak+p
p ak+p

p−1 . . . a
k+p
p−s+2 a

k+p
p−s+1

⎤⎥⎥⎥⎦ , (20)

where ak+i
n = an · dyk+i.
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The free response (16) and the dynamic matrix (19) or (20) are then used to
obtain the prediction:

y = ỹ +Ak ·Δǔ . (21)

where Δǔ =
[
Δǔk+1|k, . . . , Δǔk+s−1|k

]T
is the vector of the correction of the

control signal trajectory. After application of prediction (21) to the performance
function from (1), one obtains:

JFMPC = (y− ỹ−Ak ·Δǔ)T ·(y− ỹ−Ak ·Δǔ)+(Δǔ+Δup)T ·Λ ·(Δǔ+Δup) .
(22)

where Δup =
[
Δuk|k−1, . . . , Δuk+s−2|k−1, 0

]T
. Thus, as in the case of the MPC

algorithm based on a linear model, a quadratic optimization problem is obtained.

Remark. Versions of the proposed algorithms guaranteeing stability of the con-
trol system can be relatively easily obtained by adapting the dual–mode ap-
proach proposed for fuzzy predictive controllers in [13]. In short, the approach
is based on the idea described in [14] and developed in [18], and consists in ap-
plication of two controllers. The first one, a constrained MPC controller, should
bring the trajectory of the control system into a (convex) target set W , which
contains the equilibrium point in its interior and is inside the admissible set.
The second, stabilizing, unconstrained feedback controller is used if the state of
the process is inside the set W . It is designed in such a way that the control
system with the stabilizing controller is asymptotically stable in the set W , and
any trajectory of the control system which starts in the set W remains there.
More details about the dual–mode approach for predictive algorithms based on
fuzzy models one can find in [13].

4 Testing of the Proposed Approach

The control plant under consideration is a valve for control of fluid flow, often
used in tests of the control algorithms (see e.g. [1, 6]). It is described by the
following Wiener model:

vk = 1.4138 · vk−1 − 0.6065 · vk−2 + 0.1044 · uk−1 + 0.0883 · uk−2 , (23)

yk =
0.3163 · vk√

0.1 + 0.9 · (vk)2
, (24)

where uk is the pneumatic control signal applied to the stem, vk is the stem
position (it is the output signal of the linear dynamic block and the input signal
of the nonlinear static block), yk is flow through the valve (it is the output of
the plant). The static part of the model was approximated using the following
fuzzy model which consists of two rules [12]:
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Rule 1: if vk is M1, then

y1k+1 = 0.3289 , (25)

Rule 2: if vk is M2, then

y2k+1 = −0.3289 . (26)

The assumed membership functions are given by:

μM1(vk) =
1

1 + e−5·vk , μM2(vk) = 1− μM1(vk) . (27)

The operation of the proposed fuzzy MPC (FMPC) algorithms was compared
with other approaches; four MPC algorithms were designed (prediction horizon
p = 30, control horizon s = 15 and weighting coefficient λ = 5 were assumed):

1. LMPC – with a linear model,
2. NMPC – with nonlinear optimization,
3. FMPC1 – with the advanced prediction based on fuzzy Wiener model and

the first version of the dynamic matrix,
4. FMPC2 – with the advanced prediction based on fuzzy Wiener model and

the second, advanced version of the dynamic matrix.

The responses obtained after changes of the set–point value are shown in Fig. 1.
The slowest among the tested algorithms is LMPC algorithm. It generated the
worst responses (much slower than other algorithms). In the case of set–point
change from 0 to 0.3, the FMPC1 and FMPC2 algorithms are faster than the
NMPC one. Both fuzzy algorithms give very similar responses. The situation
is different in the case of the set–point change from 0.3 to 0. Though all three
algorithms based on nonlinear models give similar responses, FMPC1 is slightly
slower than NMPC. The fastest is the FMPC2 algorithm.

Fig. 1. Responses of the control systems to the changes of the set–point value to
y1 = 0.3 and y2 = 0; FMPC1 (dashed lines), FMPC2 (solid lines), NMPC (dotted
lines), LMPC (dash–dotted lines); grey line – set–point signal; left – output signal,
right – control signal
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5 Summary

The fuzzy MPC algorithms utilizing the advanced methods of prediction based
on fuzzy Wiener models are proposed in the paper. In the advanced methods of
prediction the values of the future changes of the control signal, calculated in
the last iteration of the FMPC algorithm, are used to derive the free response
of the control plant. In the proposed two algorithms the dynamic matrix is con-
structed in two different ways. In the first one, elements of the dynamic matrix
are calculated using a single linearization of the process model in each itera-
tion of the algorithm. In the second algorithm, elements of the dynamic matrix
are calculated using a few linear models obtained after linearization performed
alongside the free response trajectory. The proposed FMPC algorithms gener-
ate much better responses than the LMPC algorithm and also better than the
NMPC algorithm. The best among the algorithms tested in the example con-
trol system is the FMPC2 algorithm with the advanced method of the dynamic
matrix construction.
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Abstract. Low physical activity (PA), and often concomitant over-
weight in the developmental age are well documented risk factors for
cardiovascular diseases (CVD) and many other chronic civilization dis-
eases. Regular monitoring of health related physical fitness (H-RF) is
an important part of early prevention and school health education. An
assessment of components of H-RF is complex and controversial. In the
assessment of H-RF components, systems of fuzzy inference based on
simple linguistic variables can be used. The paper presents a system in-
tended to support the evaluation of the H-RF components based on the
EUROFIT battery tests and the anthropometric measurements. A basis
of the system is the EUROFIT calculator which converts absolute results
of individual trials to standarized values and the fuzzy inference system
for four H-RF components (Morphological, Cardiorespiratory, Muscu-
loskeletal and Motor Fitness). The system is implemented in MS Visual
Studio in C# and has a friendly graphical interface for archiving test
results. An application of fuzzy inference elements in the evaluation of
the H-RF components is a new approach that can be used in monitoring
and rational planning of PA dosing in prophylaxis and therapy.

Keywords: Health Related Fitness, children and youth, EUROFIT,
Fuzzy inference.

1 Introduction

A reduced overall physical activity (PA) and an excessive body weight are well
known risk factors for cardiovascular diseases (CVD) and many other civiliza-
tion diseases [1]. Epidemiological data indicate that negative trends are observed
both in adults as well as in the pediatric population [2]. Low PA has been of-
ten associated with osteoporosis, spinal pain, impaired carbohydrate and lipid
metabolism, diabetes, asthma and other health problems [3]. Regular PA is re-
quired for proper development of the child and should be an essential element
in early prevention of civilization diseases [4].

Physical fitness (PF) usually means the ability to perform various forms of
movement, associated with a particular level of development of motor character-
istics, and morphological, physiological as well as mental functions. PF depends

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 301–309, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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on many overlapping factors of both genetic and environmental origin. PF tests
are divided into laboratory tests and simple field tests. They involve an execu-
tion of complex motor actions or sets of activities (battery of tests). The most
popular fitness tests are the International Physical Fitness Test and EUROFIT
test. Health-Related Fitness (H-RF) is a relatively new concept of the PF.

1.1 Health-Related Fitness – The Basic Concepts

In the recently promoted concept of H-RF, the results of individual fitness tests
should primarily support changes in health-related behavior patterns, create
a healthy lifestyle and not solely concentrate on their numerical figures. The
physiological and medical components of H-RF and the system energy efficiency
are both of great importance.

According to Bouchard and Shephard [5], the essential components of H-RF
are as follows: a) Morphological Component (Body Mass Index, body compo-
sition, subcutaneous fat distribution, abdominal visceral fat, bone density), b)
Musculoskeletal Component (power, strength, endurance, flexibility), c) Motor
Component (agility, balance, coordination, speed of movement), d) Cardiorespi-
ratory Component (submaximal exercise capacity, maxima aerobic power, heart
functions, lung functions, blood pressure), e), Metabolic Component (glucose
tolerance, insulin sensitivity, lipid and lipoprotein metabolism, oxidation of sub-
strates).

Skinner and Oja emphasize that the H-RF includes those components that
have a positive impact on health, and those that can be improved by regular PA
[6]. Sharkey, in turn, specifically highlights the importance of energy efficiency
(aerobic and anaerobic capacity - energetic fitness). In practice, the H-RF com-
ponents are evaluated using various tests which sometimes hinder comparative
analysis. For example, cardiorespiratory fitness (CRF) is usually assessed on the
basis of: 20 m endurance shuttle run test (ESR) [7], the maximal treadmill test
[8], submaximal cycle ergometer test [9], and others.

CRF is considered to be the most important component of the H-RF. Submax-
imal exercise capacity and endurance are referred to as tolerance to prolonged
exercise with relatively low power. A person with low submaximal exercise ca-
pacity quickly gets tired and may have a problem while making normal daily
activities. Results of the test depend on the efficiency of the systems responsible
for providing oxygen efficiency, thermoregulatory processes and other physio-
logical and metabolic factors. It is emphasized that the efforts of aerobic and
cardiorespiratory fitness have a positive impact on the cardiovascular system.

Currently, there are many tests based on the concept of H-RF. The more
popular tests include: the YMCA test developed by Franks and tests and tools
developed at the Cooper Institute [10].

2 The H-RF System Based on the EUROFIT Tests

PF tests have a long history and are constantly improved. They constitute the
basis for an assessment of exercise capacity and health status. In 1964, the



Evaluation of Health-Related Fitness 303

International Committee for Standardization of Physical Fitness Test was es-
tablished in Tokyo, which has since developed a battery of 8 tests known as the
”International Physical Fitness Test” [11].

2.1 Characteristics of the EUROFIT Battery of Tests

Unification work carried out in Europe by the European Committee for Sport
led to the development of a uniform methodology for estimating motor efficiency
in the form of ” EUROFIT Test” (European Test of Physical Fitness) [12]. The
EUROFIT is a battery of nine PF tests:

- 20 m endurance shuttle run test (ESR) as a measure of cardio-respiratory
fitness (CRF),

- hand grip test (HGR) and standing broad jump (SBJ) as a static and ex-
plosive strength measure respectively,

- bent arm hang (BAH) and sit-ups (SUP) as a muscle fitness measure,
- 10x5 m shuttle run (SHR) and plate tapping ( PLT) as a measure of speed,
- sit and test reach (SAR) as a measure of flexibility,
- flamingo balance (FLB) as a measure of total body balance.

The standardized test battery has been recommended by the Council of Europe
for school age children and has been used in many European schools since 1988.
The series of tests are designed in such a way that they can be performed within
35 to 40 minutes, using very simple equipment. In several countries, the results
of EUROFIT tests in the form of representative reference systems have been
designed.

2.2 The Percentile Distributions of the PF for Polish Children

PF references for Polish school age children and youth (7-19), according to EU-
ROFIT test battery, were developed in 2003 at the University of Physical Edu-
cation in Warsaw [20].

Percentile charts of reference of nine EUROFIT tests for Polish children and
youth are presented in a graphic form (for 3rd, 10th, 25th, 50th, 75th, 90th
and 97th percentiles) with regard to sex, calendar age (7-20 years) and the so
called height age. Nawarycz et al. developed an electronic version of the reference
system in the form of a calculator, which greatly facilitates the individual PF
assessment [14]. An example of the percentile distributions (for 25th, 50th and
75th percentiles) for the ESR and SHR tests is shown in Fig.1.

2.3 H-RF System Based on EUROFIT Test Battery and Elements
of Fuzzy Inference

The evaluated system is based on the results of 9 EUROFIT tests, and 3 an-
thropometric measurements (Fig.1). According to the H-RF concept, all the
input data are grouped into four blocks - components of fitness: Morphological
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Fig. 1. Smoothed percentile curves of some EUROFIT features for Polish girls and
boys. ESR - 20 m Endurance Shuttle Run; SHR - 10 x 5 meter Shuttle Run.

(MorphF: BMI, Ht and WC), Cardiorespiratory (CRF: ESR), Musculoskeletal
(MuskF: BAH, HGR, SBJ, SUP, SAR) and Motor Fitness (MoF: SUR, PLT,
FLB). The basis of the developed system is the Eurofit calculator that converts
the absolute values of all H-RF components into the standardized features (e.g.
marked as zESR, zBAH, etc.) or percentile values. The system also uses a sim-
ple fuzzy inference module (Fig. 2) that enables the classification of both the
indi-vidual tests, the H-RF components and the overall physical fitness (GPF)
using linguistic variables: Very Low (VL), Low (L), Median (M), High (H), Very
High. (VL, L, M, H, VH).

Fig. 2. The H-RF system based on EUROFIT test battery (description in the text)

2.4 The EUROFIT Calculator

The EUROFIT calculator converts the absolute values of the individual mea-
surements into standardized values (z-scores) based on the appropriate reference
system. The percentile distributions of the anthropometric parameters for the
children from the city of Lodz for the morphological component and the results
of the EUROFIT tests, for Polish youth with our own modification were used
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Table 1. An example of the LMS parameters of the ESR test distribution for Polish
boys and girls [22]

Age Boys Girls

L M S L M S

7 0,350 21,0 0,539 0,316 17,0 0,540

8 0,475 26,0 0,519 0,309 20,0 0,535

9 0,531 31,0 0,482 0,415 24,0 0,513

10 0,642 36,0 0,464 0,491 27,5 0,492

11 0,716 41,0 0,434 0,494 30,0 0,483

12 0,791 46,0 0,410 0,511 32,0 0,466

13 0,828 52,0 0,388 0,467 33,0 0,457

14 0,820 57,0 0,363 0,512 34,0 0,443

as reference data (knowledge base) [14, 15] (Fig. 2). The calculations of stan-
dardized values of all analyzed tests in conjunction with morphological fitness
component were made by the LMS method using a Box-Cox transformation [16]:

zX =
(X/M)L − 1

L ∗ S for L �= 0 (1)

zX = ln
(X/M)

S
for L = 0 (2)

where:

- X, zX - the absolute and standardized value respectively of the analyzed
features ,

- L - exponent for Box-Cox transform, M - median, S - variance index.

The part of knowledge base in the form of the characteristic L, M, S parameters
for ESR test is presented in Table 1.

Example: A 14-year-old boys obtained result of n=73 in ESR test.
Using the formulas (1) and (2) and appropriate parameters of the LMS (Table
1), zESR was calculated on the basis of absolute value of the test results, ie ESR
= 73:

ESR =
(73/57)0,82 − 1

0, 82 ∗ 0, 363 = 0, 7565 (3)

Value of zESR = 0.7565 corresponds to the normal distribution probability of
77.5% indicating an adequate percentile position. The EUROFIT calculator cal-
culates the standardized values (zX) for all nine tests (zESR, zBAH, zHGR,
zSBJ, zSUP, zSAR, zSUR, zPLT, zFBL) and 4 anthropometric features (zHt,
zBM, zBMI and zWC) (Fig. 2).
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2.5 H-RF Fuzzy Classifier

The elements of fuzzy clustering were used to assess the individual H-RF com-
ponents. An equal form of the membership function (MF) for all the analyzed
features, based on the classification used in auxology, was assumed (Fig. 3).

Fig. 3. Forms of the MF adopted in the evaluation of the test results. A) linguistic
variables determining the results of individual tests (VL: very low, L: low, M: medium,
H: high, VH: very high), B-D) linguistic variables determining the results of individual
tests according to the concept of H-RF (H-F Z : Healthy-Fitness Zone)

Based on the data obtained from the measurements, the degrees of different
rules were established. The inference block pooled these values, allowing the
inclusion of all premises regardless of the degree of their fulfillment.

The fuzzy classifier evaluates the performance of individual components using
fuzzy evaluation of range: very low (VL), low (L), normal (NOR), high (H)
and very high (VH). Furthermore, the degree of efficiency is presented in the
calculator by using color.

Red color indicates a definitely negative result of the efficiency of health,
orange - unfavorable performance, green - a positive result of the health efficiency.
The method of gravity center is used in the defuzzyfication block. As a result of
defuzzyfication, shaped value of the performance assessment is obtained. This
assessment may take values from 0 to 100 and increase with increasing efficiency.

2.6 Implementation of the System

The computer system (EUROFITCalculator)was implemented inMSVisual Stu-
dio in C#. It is designed to work on systems with the Windows 9x/2000/XP fam-
ily. The program requires a working installed .NET Framework runtime environ-
ment. The classifier is equipped with an easy to use graphical interface for entering
data obtained during the tests, and displays the results of the calculation.

Input data

The following input data should be introduced to the system:

- Personal data: name, first name, personal identification number PESEL, sex
and date of birth
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- Basic anthropometric data (Ht, BM, and WC)
- Results of 9 EUROFIT tests grouped into components in accordance with
the H-RF idea (Fig 4)

Output data

The system enables the presentation of test results in the different forms (Fig. 4):
a) graphically - color lines (red color - health definitely unfavorable; orange - the
result is health unfavorable, green - the result is health-positive) b) numerical
as a standardized form (z -score) and percentile values.

With regard to the assessment of individual components of the H-RF (Mor-
phF, CRF, MuskF and MoF) as well as the overall efficiency (GPF), fuzzy
clustering components were used (Fig.4). An important practical convenience
of the presented system is its ability to evaluate the results of individual tests in
terms of the age of development (biological age) on the basis of an analysis of
the child’s body height in relation to the reference group [14].

Fig. 4. A view of the main window of the calculator

3 Discussion and Final Report

Proper PF profile is considered one of the most important factors of healthy
lifestyle. Effective programs to fight the obesity epidemic and decreasing PA
among adults, children and adolescents constitute an important task and a real
challenge for a wide range of public health institutions. This is a reason why
evaluation of an individual level of physical fitness raised an increasing interest
in recent years.

According to the new education reform introduced in Poland, the physical
education has a leading role in health education of young people [17]. The pur-
pose of H-RF testing is to better understand the student’s own health needs in
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relation to individual components of their physical fitness and to keep them at
the ”healthy level” [10].

The presented system, in the form of the extended calculator, is a tool in-
tended to sup-port the assessment of PF of children and adolescents based on
the EUROFIT test battery. It may be useful for physical education teachers,
pediatricians, health educators and medical school personnel. The system allows
one to assess the results of Eurofit tests in relation to the national reference
systems as well as enables their linguistic classification based on the concept
of H-RF. Optimum selection of personalized exercise using fuzzy logic is being
increasingly used in the rehabilitation of certain metabolic diseases such as dia-
betes in children [18], metabolic syndrome [19] and cardiac problems [20]. The
presented tool is based on the EUROFIT test results, but it can be easily re-
designed for a different structure of the H-RF components based on the latest
research on human motor efficiency and auxology. The system may be helpful
in shaping the H-RF components for children and adolescents (especially for
children) at risk of developing obesity.
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Abstract. This paper presents the fuzzy regression approach to the au-
tomotive industry optimization problem. The flywheel assembly process
is subject to investigation, as its parameters require optimization. The
paper contains: problem definition, presentation of the measured data
and the final analysis with two alternative approaches: the fuzzy regres-
sion and the classical regression. The benefits of the fuzzy regression
approach are shown in the case of small size samples.
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1 Introduction

Currently used methods for the design of experiments (DOE) [1] are based on
probabilistic uncertainties and simple additive, usually polynomial, models. This
means that uncertainties are bound with hidden random mechanisms of observed
phenomena. Such an approach necessitates the implementation of experiment
replications, what imposes carrying out measurement of the output with the
same settings of input (controlled) variables. This increases both the direct and
indirect costs of the research, because the need for a randomization is often
associated with retooling costs of experimental units (exchange of hardware,
cooling or heating devices, material replacement etc.). However, there are cases
where this approach cannot be implemented because of:

– limited resources (a limited budget, a completion date, availability of an
equipment) preventing the implementation of a repetition,

– a small batch or an unique production preventing appropriate measures of
a probabilistic uncertainty,

– imprecise or linguistically defined measurement input variables preventing
proper use of methods proposed by the classical theory of the experiment.

In view of these limitations, it is desirable to implement alternative methods
of the analysis designed just for such cases. In considering these options for
the various stages of DOE, one can take into account the different methods
appropriate for the weak artificial intelligence, which seem to be very promising.
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The fundamental issue remains the question of the implementation of uncertainty
measures being alternative to the classic probabilistic measure [2]. The fuzzy
real algebra [3] appears to have the greatest usefulness for this purpose. It has
a complete formalism that allows to describe the uncertainty of non-random
mechanisms. It also allows to perform rather complex calculations using a fuzzy
measure and to create forecasting models.

2 Investigated Object

The investigated object was a flywheel, whose elements were tightened during
assembly with the eight screws driven to the cast iron body.

The tightening was carried out with a multiple-spindle machine. Firstly, four
screws were tightened. Next, the head was rotated by 45 degrees and next four
screws were tightened. The couple of four screws were tightened in four steps. In
the beginning step screws were tightened with a rotation velocity of 60 rpm until
a torque of 7 Nm was reached. In the second step, screws were tightened with
a rotation velocity of 150 rpm until a torque of 8 Nm was reached. In the third
step, screws were tightened with a rotation velocity of 60 rpm until a torque of
15 Nm was reached, then the process was suspended for 2 seconds. In the fourth
step, screws were tightened with a limited rotation of 35 degrees and the final
torque was automatically measured for each screw. The allowable torque range
was defined for the assembly process from 35 Nm to 60 Nm.

Originally, the flywheel was mounted using screws with washers. A drastic
form of an economic adjustment, induced by the economic crisis has arrived in the
form of extreme cutbacks of costs imposed by the design department. The cost
reduction was manifested - among others - in the removal of steel screw washers.
This led to an instability of the process of tightening the steel screws into cast
iron body. The measured torque values were very often located far beyond the
allowable range and the production process was blocked due to the necessity of
a manual correction. At the current average daily production of 2000 gasoline
and diesel engines, it caused a big loss. The direct observation has revealed a
significant notch in the screw head in the cast iron body and this phenomenon
is the physical cause of instability. Restoring the use of screw washers proved
economically impossible. Factory managers decided to implement a recovery
program including, among others, a number of DOE-based improvements. Basing
on Ishikawa’s method, the brainstorming was conducted among managers of
production involved in the manufacturing process, resulting in determination of
the research object and its factors. The following set of input variables and their
ranges was established:

– a torque during the step 2 - T2 with a variability range 8÷ 12 Nm,
– a rotation velocity during the step 2 - R2 with a variability range 150 ÷

290 rpm,
– a rotation velocity during the step 3 - R3 with a variability range 30÷60 Nm.
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The final torque of the cinematically controlled rotation (35 degrees in the fourth
step of assembly) was automatically measured by the equipment of the multiple-
spindle machine and assumed to be raw output data. For the purpose of DOE
analysis, a new output variable Tout was defined as a deviation of the average of
the final tightening torque from the center of the allowable range, i.e. the value
of 47.5 Nm.

The two-level full factorial design for three factors i.e. 23 was selected as
the most appropriate experimental design. The fundamental utilitarian aim of
the investigation was to optimize manufacturing process parameters. The sci-
entific aim was to compare the obtained results with two different approaches
used to the same data of the small amount sample. The first analysis approach
was provided according to the classic DOE methods i.e. the probability ap-
proach. The second approach was provided according to the fuzzy description of
uncertainty.

3 Measurements

The measurements were carried out according to the selected design of experi-
ment for two replicates and an appropriate randomization. Finally, the total of
16 measurements were obtained for 8 different cases (Table 1). The torque values
were measured automatically by the equipment of the multiple-spindle machine
and then transformed into deviation Tout.

Measurements have shown that the removal of screw washers had caused a
shift of the torque value above the center of the permissible range. Originally
it was feared that exceeding the permissible scope may appear, both as under-
valuation and overvaluation. During the study, it was found that the obtained
values were only too high and therefore the output variable could be directly
defined as the deviation Tout from the center value of the permissible range and
it was not necessary to involve square deviation. Therefore the goal was set to
minimize this deviation.

Table 1. Obtained measurements

Input variables Replication of Tout

Case T2 R2 R3 1 2
(Nm) (rpm) (rpm) (Nm) (Nm)

1 8 150 60 7.87 6.55
2 8 290 60 10.87 8.97
3 8 150 30 7.22 7.52
4 8 290 30 12.35 12.50
5 12 150 60 8.39 8.38
6 12 290 60 11.64 10.18
7 12 150 30 7.12 7.79
8 12 290 30 6.86 6.17
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4 Fuzzy Regression Model

On the basis of fuzzy sets, Dubois [3] introduced the concept of fuzzy numbers: a
specially-defined fuzzy sets in the space of real numbers. The original definition
proposed by Dubois, in which the kernel with a membership equal to 1 is a
point, proved to be too narrowly defined for most practical applications. The
concept of fuzzy numbers has been expanded and now the following models of
fuzzy numbers are applied: the fuzzy numbers of S-type proposed by Zadeh [4],
the fuzzy number of type LR proposed by Dubois and Prade [5], the trapezoidal
fuzzy numbers [6], triangular fuzzy numbers, rectangular fuzzy numbers (the
same as the so-called interval numbers), even verbal fuzzy numbers [7].

The result provided by the fuzzy regression model is a fuzzy number. Fuzzy
numbers are modeled in different ways: from accurate descriptions (although, in
relation to fuzzy numbers, it sounds like an oxymoron), through the LR descrip-
tion to the most simplified triangular description. The selected type of fuzzy
numbers determines, which variant of the regression model will be most conve-
nient:

– regression model with fuzzy parameters and crisp independent variables,
– spread model with three coupled polynomials [8], where the left and the right

spread models are linearly dependent on the kernel model,
– the most general model with fuzzy independent variables and fuzzy param-

eters.

The spread model [8] was selected for further works (eqs.1):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z =

nb∑
k=1

bk · fk(x1, . . . , xi),

p = d+ c · z,
q = h+ g · z.

(1)

This model appears to be the most useful in the case of triangular fuzzy number
approach. Its identification is provided according to the slightly modified least
squares criterion:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L =

u∑
k=1

[
w1 · (zk − ẑk)

2 + w2 · (pk − p̂k)
2 + w3 · (qk − q̂k)

2
]
,

p̂k ≥ 0 k = 1, . . . , u,

q̂k ≥ 0 k = 1, . . . , u.

(2)

Efficient determination of the fuzzy model parameters is difficult due to the dif-
ference between classical arithmetic and fuzzy numbers arithmetic. Some guid-
ance on this issue is provided by theoretical works focused on the constructive
solving of fuzzy equations [9]. Minimization of the criterion with the additional
conditions is possible by using a generalized form of the Lagrange multipliers
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known as the Kuhn-Tucker conditions [10]. The smallest obtained value of L cri-
terion is known as the fuzzy least squares distance. The solution may be found
exclusively by iterative numerical procedure because of non-linearity appearing
in the optimization problem.

There appeared a problem of conversion of two crisp measurements into a
fuzzy measure. A symmetrical triangular pattern forming a fuzzy number has
been chosen. Two measured repetitions were used to convert the measurements
to form a symmetrical triangular fuzzy numbers (eq.3). The following conversion
scheme was used:

(
zi/1, zi/2

)→ (
min(zi/1, zi/2),

zi/1 + zi/2

2
,max(zi/1, zi/2)

)
, (3)

where: zi/1 – the first repetition of measurement, zi/2 – the second repetition of
measurement. In this way, the table containing the measurement values of two
replicates (Table 1) was converted to a form containing the values in the form
of triangular fuzzy numbers (Table 2).

Table 2. Fuzzy measurements for the study of the flywheel tightening

Case Triangular fuzzy value

Left Central Right

1 6.55 7.21 7.87
2 8.97 9.92 10.87
3 7.22 7.37 7.52
4 12.35 12.43 12.50
5 8.38 8.385 8.39
6 10.18 10.91 11.64
7 7.12 7.46 7.79
8 6.17 6.52 6.86

The selected model, proposed in 2002 by D’Urso and Gastaldi [8], consists
of three coupled polynomials. The main polynomial describes the center of the
fuzzy response. The other two polynomials, coupled with the main one, describe
the left and the right spread. This model has been modified by introducing, as
the central polynomial, the model of main effects with two-way interactions and
a three-way interaction. The form of the central polynomial (eq.1) is the same
as in the case of classical DOE model i.e.:

Tcentral = b0 + b1T2 + b2R2 + b3R3 + b12T2R2+
b13T2R3 + b23R2R3 + b123T2R2R3.

(4)

The two spreads p (5) and q (6) are described by polynomials coupled with the
central polynomial (4):

p(T2, R2, R3) = d+ c · Tcentral(T2, R2, R3), (5)
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q(T2, R2, R3) = h+ g · Tcentral(T2, R2, R3). (6)

The coupled polynomials are nonlinear functions of parameters. It was the reason
to use Levenberg-Marquardt method to minimize the weighted least-squares
criterion (eq.2). In the case of uncoded values of input variables, the obtained
parameters of coupled polynomials are given in table 5. It should be strongly
emphasized that polynomials (eqs.4-6) may be used for forecasting output values
only and they should not be utilized - for example - to evaluate symmetry of the
model. Identified parameters are presented in Table 3. The resulting forecasts
Tout (Table 4) are triangular fuzzy numbers of the form:

Tout = (Tcentral − p, Tcentral, Tcentral + q) (7)

Table 3. Parameters of coupled polynomials

Polynomial Coefficient Value
Central b0 -23.569

b1 2.89282
b2 0.21847
b3 0.41012
b12 −2.07623 · 10−2

b13 −4.16359 · 10−2

b23 −3.22478 · 10−3

b123 3.35686 · 10−4

Left spread d 0.2617
c 1.64943 · 10−2

Right spread h 0.2617
g 1.64943 · 10−2

Table 4. Fuzzy forecasting Tout for the study of the flywheel tightening

Case Fuzzy forecast of Tout

Left Central Right

1 6.82 7.20 7.58
2 9.57 10.00 10.43
3 6.93 7.31 7.70
4 11.92 12.38 12.85
5 8.00 8.40 8.80
6 10.42 10.86 11.30
7 7.09 7.47 7.86
8 6.19 6.55 6.92

Finally, the smallest value of deviation is predicted for the following values of
input variables: T2 = 12 Nm, R2 = 290 rpm, R3 = 30 rpm (case no 8, Table 4).
The symmetric triangular fuzzy value Tout = (6.19, 6.55, 6.92) Nm is value of
the forecast.
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5 Classical DOE Regression

The structure of the selected complete factorial experimental design and infor-
mational needs related to the investigation process determined the form of the
regression model [1]:

Tout = b0 + b1T2 + b2R2 + b3R3 + b12T2R2+
b13T2R3 + b23R2R3 + b123T2R2R3.

(8)

where: b0 – interception (average output); b1, b2, b3 – parameters of main effects;
b12, b23, b13 – parameters of two-way interactions; b123 – parameter of three-way
interaction.

The parameter values were obtained for coded input variables and were deter-
mined using the least squares criterion: b0 = −23.685; b1 = 2.9108; b2 = 0.2215;
b3 = 0.4208; b12 = −2.1080 · 10−2; b23 = −4.2792 · 10−2; b13 = −3.3250 · 10−2;
b123 = 3.4583 ·10−4. The calculations has been provided in Minitab environment
[11]. Detailed calculations are not cited because of lack of space. Analysis of
variance has shown that one of main effects (R3) and one of two-way interac-
tions (R2 vs R3) are not statistically significant for the coded model at a typical
level of 5%. However, they were left in the model to ensure compatibility with
the subsequent fuzzy analysis. It seems that the adopted model can be consid-
ered correct: the distribution of model residuals was not negated by the test
of normality (Shapiro Wilk SW-W = 0.98; p = 0.96). With these results, the
calculations have been performed, which allowed to forecast Tout, i.e. the torque
tightening the screws in the flywheel (Table 5).

Table 5. DOE forecasting Tout for the study of the flywheel tightening

Case DOE-based forecast of Tout

−95% Mean +95%
1 5,15 7,21 9,27
2 7,86 9,92 11,98
3 5,31 7,37 9,43
4 10,36 12,43 14,49
5 6,32 8,37 10,45
6 8,85 10,91 12,97
7 5,39 7,46 9,52
8 4,45 6,52 8,58

Finally, the smallest value of Tout is predicted for the following values of
input variables: T2 = 12 Nm, R2 = 290 rpm, R3 = 30 rpm (case no 8, Tab.5)
and forecasted value is Tout = 6.52 Nm. For this case 95% confidence interval of
predicted Tout is determined by the scope from 4.45 Nm to 8.58 Nm.
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6 Conclusions

The results obtained from the DOE procedures identified as the best set of values:
T2 = 12 Nm, R2 = 290 rpm, R3 = 30 rpm and they are related to forecasted
output Tout = 6.52 Nm. The 95% confidence interval of forecasted single observed
output is from 4.45 Nm to 8,58 Nm. The real observations were 6.86 Nm and
6.17 Nm. Due to the low amount of sample the classically calculated confidence
interval for a single observation based on raw data is extremely large. The same
set of input values: T2 = 12 Nm, R2 = 290 rpm, R3 = 30 rpm are identified
as the best set by the fuzzy regression. The central value of forecasted output
Tout = 6.55 Nm is slightly different in comparison to probability forecasted
mean. The support of forecasted output is from 6.19 Nm to 6.92 Nm which is
narrower range than calculated from probabilistic approach but the systematic
approach to compare the fuzzy and DOE-based calculations remains an open
question. Some hope may be associated with the results of J. Buckley [2]. The
classical DOE approach to the problem of industry forecasting is appropriate for
large samples. If the size of available samples is small or even unique, then the
traditional probabilistic approach results in extremely large confidence interval
or it is inapplicable. In the case of small samples or unique measurements, the
choice remains between extremely large confidence intervals, or an arbitrary
assignment of uncertainties on the basis of fuzzy sets. The results presented in
this article show that this approach is effective and consistent with the results
obtained by the traditional DOE approach.
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Abstract. Along with technological developments we observe an in-
creasing amount of stored and processed data. It is not possible to store
all incoming data and analyze it on the fly. Therefore many researchers
are working on new algorithms for data stream mining. New algorithm
should be fast and should use a small amount of memory. We will con-
sider the problem of data stream classification. To increase the accuracy
we propose to use an ensemble of classifiers based on a modified FID3
algorithm. The experimental results show that this algorithm is fast and
accurate. Therefore it is adequate tool for data stream classification.

Keywords: classification, ensemble algorithm, FID3, data stream, de-
cision tree, fuzzy logic.

1 Introduction

In the rapidly developing world the amount of processed and stored data is
growing very fast. This is the reason of creation of a new field called data stream
mining. Nowadays many researchers are interested in developing more efficient
methods of data stream classification [1], [2], [8]-[10], [20], [21], [26]-[29]. The
problem is to create fast and accurate algorithm with limited memory and CPU
resources.

In literature there are many algorithms for data classification. The most
known method is classification using Hoeffdings decision tree [6] and its modi-
fication in algorithms like VFDT [6]. However the mathematical foundations of
this algorithm were incorrect and they have been revised in [20]. Well known
algorithms based on the modification of k-nearest neighbor algorithm are AN-
NCAD [11] and LWClass algorithm [7]. The example of algorithm applying the
fuzzy logic is FlexDT [8]. However, all these algorithms in the basic form are not
suitable for classification of stream data.

In this paper we will introduce new algorithm for data stream classification.
It is based on FID3 algorithm [28] however it works on chunks of data instead of
all stored data. To reduce the time and memory consumption a new parameter δ
is introduced, and to improve the accuracy of the algorithm we propose to build
an ensemble algorithm. If the accuracy of single classifier is better than random
choice then ensemble of those classifiers improves the accuracy. This property
was used by many researchers [2]-[5], [13], [21].
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This paper is organized as follows. In section 2 the ensemble modified FID3
algorithm is described and in section 3 the experimental results are presented.

2 FID3 Algorithm

Let us consider the case where for every path of a tree there exists a membership
function. Therefore the outcome of a tree for each data element is a vector of
values of membership function for every class. Let q be the number of classes.
Then the outcome of a tree is vector (c1, c2, . . . , cq). Let S be the fuzzy set of
all elements. To calculate the membership value there must be defined m fuzzy
subsets Fv for all attributes aj, j ∈ 1, . . . , p. Then the best attribute for split is
chosen according to the value of Information Gain G(aj , S) which is defined as
follows

G(aj , S) = I(S) − E(aj , S), (1)

where

I(S) = −
q∑

k=1

|Sck |
|S| log2

|Sck |
|S| , (2)

E(aj , S) =
m∑

v=1

|SjFv |∑m
v=1 |SjFv |

I(SjFv ), (3)

Sck is the fuzzy subset in S whose class is ck, |S| denotes the sum of the mem-
bership degrees and SjFv is fuzzy subset corresponding to the fuzzy set Fv for
the j-th attribute. The split does not occur if one of three conditions is satisfied:

1. there are no attributes left to split,
2. the proportion of instances of one class is greater than or equal to predefined

threshold τ1,
3. or the number of instances is less than predefined threshold τ2.

The membership degree βkl of an element for class k in leaf l is defined as

βkl =

∑n
i=1

∏
j∈pathl

μjl(xi)μkl(yi)∑n
i=1

∏
j∈pathl

μjl(xi)
, (4)

where μjl(xi) is the membership degree of element xi for attribute j at leaf l. It
is obvious that μkl(yi) equals one when class of xi is k and zero otherwise. Let
splitting attribute be an attribute for which we make a split. Then in formula
4 pathl denotes the vector of all splitting attributes on the path from root to
leaf l.

We classify an element x according to the class (k = 1, . . . , q) for which the
value of dk is the biggest. We calculate the value of dk from the formula

dk =
η∑

l=1

μpathl
(x) · βkl, (5)

where η is the number of leafs.
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3 Ensemble Modified FID3 Algorithm

The modification of FID3 algorithm is the parameter δ which limits the depth
of the tree. Therefore split is not made if the path from the root to the node is
longer than value of δ and this node become a leaf.

The algorithm works as follows. First user has to specify values of parameters
τ1, τ2, δ, size of ensemble and the size of data chunks. Then it takes the first data
chunk and builds on it a new temporary classifier based on the modified FID3.
This classifier is then added to the ensemble. The algorithm continues to build
new temporary trees on next data chunks and adds them to the ensemble until
it reaches the defined size. Then, after creating new temporary tree, it measures
the accuracy of all trees in ensemble and the last temporary tree based on new
data chunk. If the accuracy of the last temporary tree is better than the weakest
tree in the ensemble, it will replace the weakest tree. Every element without a
class is classified according to the number of votes that trees in ensemble gives
for each class. For this element is assigned a class with the most votes.

Algorithm 1. Ensemble modified FID3

01. while it is not the end of data stream do
02. take new data chunk of a fix size
03. make new temporary tree
04. if ensemble is not full do
05. add temporary tree to the ensemble
06. end if
07. else
08. calculate the accuracy of all trees in ensemble and the last
09. temporary tree on the current data chunk
10. if the accuracy of the last temporary classifier is higher than the
11. accuracy of the weakest tree of ensemble do
12. replace the weakest classifier with the last temporary tree
13. end if
14. end else
15. end while

4 Experimental Results

In the following simulation we used synthetic data of size 300000. Each data
is described by values of 20 attributes and one of 15 classes. Fuzzy subsets are
defined as follows

F 1(x) =

⎧⎨⎩
1 if x ≤ MEAN − SD
MEAN+SD−x

2·SD if MEAN − SD < x ≤ MEAN + SD
0 if x > MEAN + SD



A New Fuzzy Classifier for Data Streams 321

F 2(x) =

⎧⎨⎩
0 if x ≤ MEAN − SD
1 − MEAN+SD−x

2·SD if MEAN − SD < x ≤ MEAN + SD
1 if x > MEAN + SD

where SD and MEAN denotes the standard deviation and the mean of data
from data chunk, respectively.

In the first experiment we compare the accuracy of the algorithm with the
value of parameter δ. As we can see in Fig. 1 the accuracy improves with in-
creasing value of δ. However with delta greater than 10 the accuracy does not
improve as fast as for smaller values. Therefore the size of a tree can be set to
value less than 20 to save time and memory.

In the second experiment we examined the influence of the size of ensemble on
the accuracy and running time of the algorithm. As we can see in Fig. 2 a) the
accuracy improves fast with growing size of the ensemble. However, the running
time of the algorithm is growing with increasing value of ensemble (see Fig. 2
b)). Therefore the size of ensemble should be set wisely taking into account the
speed of incoming data.

In the third experiment we compare the running time and accuracy of the
algorithm with the size of data chunks. For this data the accuracy increases very
fast with growing size of data chunk from 50 to 1500 (see Fig. 3 a)). For bigger
size of data chunk the accuracy does not increase as fast. In Figure 3 b) we can
see how the increasing size of data chunk extends the running time. For data
chunk size 3000 the running time was about 429 minutes with the accuracy 91%
and for data chunk size 200 the running time decreased to 278 minutes with a
decrease in accuracy of 2, 3%.

Fig. 1. The dependence between the value of parameter δ and the accuracy of the
algorithm
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Fig. 2. a) The dependence between the size of the ensemble and the accuracy of the
algorithm b) The dependence between the size of ensemble and the running time of
the algorithm

Fig. 3. a) The dependence between the size of data chunk and the accuracy of the
algorithm b) The dependence between the size of data chunk and the running time

5 Conclusions

In this paper we presented a new ensemble algorithm based on modified FID3
algorithm for data classification. As shown in the experimental results, with
properly set parameters, the running time is low with high accuracy of the
algorithm. The original FID3 algorithm was not able to analyze such a big set of
data because of the memory restriction. Therefore we show that this algorithm is
good tool to solve the problem of data stream classification. In future research we
will make an effort to adapt various fuzzy and neuro-fuzzy structures [12], [18],
[19], [22]-[25] for data stream mining, and to adapt ideas presented in [14]-[17]
to deal with concept drift.
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Abstract. Metaset is a new concept of set with partial membership re-
lation. It is designed to represent and process vague, imprecise data –
similarly to fuzzy sets. Metasets are based on the classical set theory
primitive notions. At the same time they are directed towards efficient
computer implementations and applications. The degrees of membership
for metasets are expressed as finite binary sequences, they form a Boolean
algebra and they may be evaluated as real numbers too. Besides partial
membership, equality and their negations, metasets allow for express-
ing a hesitancy degree of membership – similarly to intuitionistic fuzzy
sets. The algebraic operations for metasets satisfy axioms of Boolean
algebra.
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1 Introduction

The paper gives a short overview of metaset theory – a new concept of set with
fractional members. Contrary to classical sets and similarly to fuzzy sets [14]
or rough sets [6], metasets are sets where an element may be a member of an-
other to a variety of degrees, besides the full membership or non-membership.
The mentioned above, traditional approaches to partial membership find broad
applications nowadays in science and above all in industry. Unfortunately, they
are not well suited for computer implementations. They also have other draw-
backs, like the growth of fuzziness by multiple algebraic operations on fuzzy
sets. Therefore, we tried to develop another idea of set with fractional members,
which would be closer to classical Zermelo-Fraenkel Set Theory (ZFC) [5] and
which would allow for efficient computer implementations. Another significant
goal was to enable natural and straightforward modeling of vague terms as they
are perceived and interpreted by a human. Thus, metasets are targeted at simi-
lar scope of applications as other traditional approaches. The theory of metasets
is under development, however the results obtained so far indicate success. We
point out the most significant of them.
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2 Metasets

Informally, a metaset is a classical set whose elements are labeled with nodes of
the binary tree. The nodes determine the membership degrees of elements in the
metaset.

This point of view makes a metaset something similar to a fuzzy set, where
the membership function assigns membership degrees to elements of its domain.
The most noticeable difference at this point is that elements of a metaset are
other metasets, like in the classical set theory, where elements of sets are other
sets.
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Fig. 1. Initial levels of the binary tree � and the ordering of nodes. Arrows point at
the larger element.

The binary tree used in the definition of the metaset and throughout the paper
is the full and infinite one and it is denoted with the symbol �. Its elements
are finite binary sequences denoted using square brackets, the root is the empty
sequence denoted by � (see Fig. 1). They are ordered by reverse inclusion, so
the root � is the largest element in �. The nodes [0] and [1], which are direct
descendants of the root form the first level of the tree, and so on.

Definition 1. A set which is either the empty set ∅ or which has the form:

τ = { 〈σ, p〉 : σ is a metaset, p ∈ � }

is called metaset. The 〈·, ·〉 denotes an ordered pair.

The definition of metaset is recursive, however, the Axiom of Foundation (Reg-
ularity) in ZFC guarantees that there are no infinite branches in the recursion
tree – it is founded by the empty set, which is a metaset too.1

From the point of view of classical set theory a metaset is a relation, i.e., a set
of ordered pairs. The first element of each pair is another metaset – a member,
also called a potential element, and the second element is a node of the binary
tree. A metaset σ which is a potential element of the metaset τ may be paired
with several different nodes simultaneously, e.g. τ = { 〈∅, p〉 , 〈∅, q〉 }, for p �= q
(cf. the example 1). Thus, a metaset is usually not a function.

1 Formally, this is a definition by induction on the well founded membership relation
∈, see [5, Ch. VII, �2] for a justification of such type of definitions.
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Since a metaset is a relation, we may adopt some terms and notation con-
nected to relations. For the given metaset τ , the set of its potential elements:
dom(τ) = {σ : 〈σ, p〉 ∈ τ } is called the domain of the metaset τ and the set
ran(τ) = { p : 〈σ, p〉 ∈ τ } is called the range of the metaset τ . For arbitrary
metasets τ and σ the set τ [σ] = { p ∈ � : 〈σ, p〉 ∈ τ } is called the image of the
metaset τ at the metaset σ. The image τ [σ] is the empty set ∅, whenever σ is
not a potential element of τ .

Example 1. The simplest metaset is the empty set ∅. It may be a potential
element of other metasets:

τ = { 〈∅, p〉 } , τ [∅] = { p } , dom(τ) = { ∅ } , ran(τ) = { p } ,
σ = { 〈∅, p〉 , 〈∅, q〉 } , σ[∅] = { p, q } , dom(σ) = { ∅ } , ran(σ) = { p, q } .
η = { 〈τ, p〉 , 〈σ, q〉 } , η[∅] = ∅ , dom(η) = { τ, σ } , ran(η) = { p, q } .
Clearly, η[τ ] = p, η[σ] = q and since ∅ �∈ dom(η), then η[∅] = ∅.
A classical, crisp set is called hereditarily finite when it is a finite set and all its
members are hereditarily finite sets.

Definition 2. A metaset τ is called a hereditarily finite metaset, if its domain
and range are finite sets, and each potential element is also a hereditarily finite
metaset.

Hereditarily finite metasets are particularly important in computer applications,
where representable entities are naturally finite. They also have some interesting
properties indicated in section 5.

3 Interpretations

An interpretation of a metaset is a crisp set. It represents one of several possible
crisp views on the metaset. An interpretation is determined by a branch in the
tree �. A branch in � is a maximal (with respect to inclusion) set of pairwise
comparable nodes. Note, that p is comparable to q only, if there exists a branch
containing p and q simultaneously. Similarly, p is incomparable to q whenever
no branch contains both p and q.

Definition 3. Let τ be a metaset and let C ⊂ � be a branch. The set

τC = { σC : 〈σ, p〉 ∈ τ ∧ p ∈ C }
is called the interpretation of the metaset τ given by the branch C.
Any interpretation of the empty metaset is the empty set, independently of the
branch: ∅C = ∅, for each C ⊂ �. The process of producing the interpretation of a
metaset consists in two stages. In the first stage we remove all the ordered pairs
whose second elements are nodes which do not belong to the branch C. The
second stage replaces the remaining pairs – whose second elements lie on the
branch C – with interpretations of their first elements, which are other metasets.
This two-stage process is repeated recursively on all the levels of the membership
hierarchy. As the result we obtain a crisp set.
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Example 2. Let p ∈ �, and let τ = { 〈∅, p〉 }. If C is a branch, then

p ∈ C → τC = { ∅C } = { ∅ } ,
p �∈ C → τC = ∅ .

Depending on the branch the metaset τ acquires different interpretations.

Each branch in the binary tree determines an interpretation of a metaset, so
there may be infinitely many of them in general. Hereditarily finite metasets al-
ways have a finite number of different interpretations. There are metasets whose
interpretations are all equal, even when they are not hereditarily finite.

When a metaset represents some vague, imprecise term, then its interpreta-
tions represent definite, precise approaches to the term. For instance, if we rep-
resent the term “warm temperature” as metaset, then its interpretations might
be particular ranges of temperatures. Taken together they form the compound
concept of “warm temperature”.

The technique of interpretation introduces another point of view on metasets.
A metaset may be perceived as a “fuzzy” family of crisp sets which are interpreta-
tions of the metaset. Here, the word “fuzzy” means that some of the members of
the family – i.e., some interpretations of the metaset – occur more frequently than
others. Those which appear frequently are better crisp approaches to metaset.

Properties of crisp sets which are interpretations of the given metaset de-
termine its properties. Basic set-theoretic relations for metasets are defined by
referring to the relations among interpretations of the metaset. When thinking
about a metaset one has to bear in mind its interpretations.

4 Relations for Metasets

The membership relation for metasets is defined by referring to interpretations.
In fact, we define an infinite number of relations, each specifying membership
satisfied to another degree. The infinite number of relations allows for expressing
a variety of different degrees to which membership may hold using classical two-
valued logic.

Definition 4. Let μ, τ be arbitrary metasets. We say that μ belongs to τ under
the condition p ∈ �, whenever for each branch C ⊂ � containing p holds μC ∈ τC.
We use the notation μ εp τ .

Thus, for each p ∈ � we define a separate relation εp. The root � specifies the
highest possible membership degree. Since two metasets may be simultaneously
in multiple membership relations specified by different nodes, then the overall
membership degree is determined by a set of nodes of �.

The conditional membership reflects the idea that a metaset μ belongs to
a metaset τ whenever some conditions are fulfilled. Conditions correspond to
nodes of the binary tree. In applications, they designate various circumstances
affecting the degrees to which relations hold. For instance, consider the sentence:
John is happy when it is hot and when it is very cold. In other words: John is a
member of the metaset of happy people under the conditions hot and very cold.
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Example 3. Let σ = ∅ and τ = { 〈σ,�〉 , 〈σ, [0]〉 }. If C is any branch in �, then
σC = ∅ and τC = {σC } = { ∅ }, so σC ∈ τC . Therefore, σ ε� τ . Note, that the
ordered pair 〈σ, [0]〉 is redundant in τ ; it does not supply any additional mem-
bership information above the pair 〈σ,�〉.
Besides the membership we define separate set of non-membership relations.

Definition 5. We say that the metaset μ does not belong to the metaset τ under
the condition p ∈ �, whenever for each branch C ⊂ � containing p holds μC �∈ τC.
We use the notation μ ε/p τ .

The reason for introducing independent non-membership relation follows from
the fact that negation of conditional membership is not equivalent to conditional
non-membership: ¬ μ εp τ is not equivalent to μ ε/p τ . Indeed, the former – by
the definition – means that not for each branch C containing p holds μC ∈ τC .
However, such branches may exist, so we cannot conclude that μC �∈ τC for each
C ' p, i.e., μ ε/p τ . Because of this ¬ μ εp τ cannot be denoted with μ ε/p τ , as
it is in the classical case. Moreover, even though ¬ μ εp τ holds, there still may
exist q ≤ p such, that for each branch C′ ' q holds μC′ ∈ τC′ , so μ εq τ .

Example 4. Let τ = { 〈∅, [0]〉 }. We check that ∅ ε[0] τ ∧ ∅ ε/[1] τ . Indeed, if C0 is

a branch containing [0], then ∅C0 = ∅ ∈ { ∅ } = τC0 . Similarly, if C1 is a branch
containing [1], then ∅C1 = ∅ �∈ ∅ = τC1 . Also, ¬ ∅ ε� τ ∧ ¬ ∅ ε/� τ , since it is not
true, that for each branch C containing � holds ∅C ∈ τC or ∅C �∈ τC .
When σ ε� τ (or σ ε/

�
τ), then for any branch C holds μC ∈ τC (or μC �∈ τC). Since

the membership here is independent of the branch and it holds always, then it
naturally reflects the crisp, unconditional membership (or non-membership).

The two sets of conditional relations: membership and non-membership taken
together realize fully the idea of “partial” membership; they enable formalization
of simultaneous being a member and being not a member. Informally speaking,
if some part of μ is outside of τ then – at the same time – another part of μ
may be inside of τ . Formally we would write in such case μ εp τ ∧ μ ε/q τ , where
p and q are some nodes. The above example shows that ∅ ε[0] τ ∧ ∅ ε/[1] τ . Note,
that μ ε/p τ ∧ μ εp τ is false for any p.

The following two lemmas establish the relationships between different condi-
tional membership (and non-membership) relations. They also enable evaluation
of membership and non-membership degrees as real numbers. We must introduce
some technical terms before.

A set A ⊂ � is called antichain in �, if it consists of mutually incomparable
elements: ∀p, q ∈ A (p �= q → ¬ (p ≤ q) ∧ ¬ (p ≥ q)). On the Fig. 1, the elements
{ [00], [01], [10] } form a sample antichain. A maximal antichain is an antichain
which cannot be extended by adding new elements – it is a maximal element
with respect to inclusion of antichains. Examples of maximal antichains on the
Fig. 1 are { [0], [1] } or { [00], [01], [1] } or even {� }. Let R ⊂ � and p ∈ �. If
R is an antichain A such that ∀q∈A (q ≤ p), then we say, that R is an antichain
below p.
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Lemma 1. Let σ, τ be arbitrary metasets and let p, q ∈ �. If p ≤ q and σ εq τ
(σ ε/q τ), then σ εp τ (σ ε/p τ).

Lemma 2. Let σ, τ be arbitrary metasets and let p, q ∈ �. If R ⊂ � is a finite
maximal antichain below p such, that for each q ∈ R holds σ εq τ (σ ε/q τ), then
also σ εp τ (σ ε/p τ).

The lemmas follow directly from the definition of interpretation and membership.
For the detailed proofs the reader is referred to [13].

We now show how to evaluate membership and non-membership degrees as
numbers from the unit interval. Let σ, τ be metasets. The sets

M(σ, τ) = max { p ∈ � : σ εp τ } , (1)

N(σ, τ) = max
{
p ∈ � : σ ε/p τ

}
. (2)

are called membership and non-membership set, respectively. One may easily see
that both M and N are antichains. By the above lemmas, the whole membership
(non-membership) information for any two metasets is contained in these sets.
Therefore, we may use them to evaluate relations numerically as follows:

m(σ, τ) =
∑

p∈M(σ,τ)

1

2|p|
, (3)

n(σ, τ) =
∑

p∈N(σ,τ)

1

2|p|
, (4)

where |p| denotes the length of the binary sequence p. The value m(σ, τ) (n(σ, τ))
is called the membership (non-membership) value for σ in τ . Clearly, the values
fit into the unit interval.

Strangely enough, there exist metasets σ, τ such, that m(σ, τ) + n(σ, τ) < 1.
The remaining difference 1−m(σ, τ) − n(σ, τ) is interpreted as hesitancy degree
of membership for metasets (cf. Th. 2). Such behavior resembles intuitionistic
fuzzy sets, where besides membership and non-membership degrees we also have
a hesitancy degree [1]. Also, this property allows for representing intuitionistic
fuzzy sets as metasets [10].

Although a metaset is not a function, it determines a function which assigns
membership degrees to elements of its domain, similarly to fuzzy sets. The range
of this membership function is the Boolean algebra of closed-open sets in Cantor
space 2ω. Indeed, each node p ∈ � determines a set of branches containing it,
which is a closed-open set in this Cantor space. For the given metasets τ and
σ ∈ dom(τ) the value of this membership function is the clopen set in 2ω which
is the union of the sets determined by elements of τ [σ] or – equivalently – by
elements of the membership set M(σ, τ). This function makes metasets similar
to L-fuzzy sets whose membership functions are valued in lattices [3].

Analogously to membership and non-membership we define sets of conditional
equality, unequality (i.e., negation of equality) and subset relations. They are
consistent with partial membership and have similar properties to their classical
counterparts (e.g., extensionality). They are investigated in [8].
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5 Metasets and Computers

The concept of metaset is directed towards computer implementations and ap-
plications. The definitions of set-theoretic relations for computer representable
metasets may be reformulated so that they are easily and efficiently imple-
mentable in computer languages. We now give an example of reformulation of
the membership relation.

A metaset σ is called a canonical metaset if ran(σ) = {� } and its domain
includes canonical metasets only. In other words, its range and the ranges of its
members on all the levels of membership hierarchy contain at most the root �.
Such metasets correspond to crisp sets, since the membership relation is two-
valued for them. Metasets, whose domains are comprised of canonical metasets
only, but their ranges are arbitrary are called first order metasets. They corre-
spond to fuzzy sets, where the structure of elements is irrelevant and only the
membership of elements matters. Canonical metasets are members of first order
metasets, to various degrees.

Theorem 1. Let σ be a hereditarily finite canonical metaset and let τ be a
hereditarily finite first order metaset. For any p ∈ �, the following are equivalent:

a) σ belongs to τ under the condition p (σ εp τ),
b) τ [σ] contains a finite maximal antichain below p, or it contains a node q ≥ p.

Applying the above theorem we do not have to investigate all possible inter-
pretations to verify the membership. The number of such interpretations may
be infinite, what makes the process inapplicable for machines. The theorem del-
egates the membership problem to relationships between finite subsets of �.
Similarly, we may reformulate other relations. For the details, as well as the
proof of the theorem, the reader is referred to [13].

It turns out, that metasets representable in machines have many additional
interesting properties [12]. One of the most significant says that the membership
degree complements the non-membership degree. In terms of real values it may
be expressed as follows.

Theorem 2. If σ and τ are hereditarily finite metasets, then

m(σ, τ) + n(σ, τ) = 1 .

This means, that for such metasets the hesitancy degree disappears. In general,
it is possible to construct metasets σ, τ such, that for all p ∈ � neither σ εp τ
nor σ ε/q τ holds. In such case m(σ, τ) + n(σ, τ) = 0 and the hesitancy degree
is equal to 1. Similarly, one may construct σ, τ such, that m(σ, τ) + n(σ, τ) is
equal to some arbitrary given value from the unit interval [10].

For the class of hereditarily finite first order metasets – the ones which are
represented in computers and are sufficient for most applications – it is possi-
ble to define algebraic operations. The definitions rely on relationships between
various subsets of � and they do not involve interpretations, like in Theorem 1.
Therefore, they are easy to implement. Algebraic operations for the first order
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metasets satisfy axioms of Boolean algebra [13]. Contrary to algebraic operations
for fuzzy sets, repeatedly applied operations do not increase fuzziness and their
ordering does not matter.

The experimental implementation of relations and algebraic operations for
metasets was carried out in Java programming language. It was then used in an
application for character recognition which is available on-line as Java applet [7].
The mechanism used to match character samples against a defined character
pattern is entirely based on metasets. It utilizes the concept of interpretation for
representing several character samples as a single entity – a metaset. Membership
relation is interpreted as similarity of characters. The application seems to reflect
the human perception of similar characters. This construction may be further
developed to recognition of arbitrary data with graphical representation [11], [9].

6 Summary

The paper presents the current state of development of the metaset theory.
Metasets enable expressing satisfaction of basic set-theoretic relations to a vari-
ety of degrees which form a Boolean algebra. Even though the theory of metasets
may seem a purely abstract mathematical construction resembling its basis – the
Zermelo-Fraenkel Set Theory – it is aimed at practical applications and partic-
ularly at computer implementations. It is a tool for modeling imprecise real life
phenomena which are hardly representable using classical, crisp techniques. One
of its advantages in this respect is the non-linear ordering of membership and
equality degrees which facilitates better, more accurate representation of mod-
eled reality and which is closer to human perception and evaluation of most
vague terms.

It is worth stressing that besides the results mentioned here the notions of
cardinality and equinumerosity for metasets are defined in the form allowing for
straightforward algorithmization and they will be published soon. Future works
on metasets focus on fast computer implementation of metasets relations and
operations using the CUDA technology [4]. Another goal is defining a many-
valued logic [2] for metasets based on the technique of metaset forcing [8,12]. It
would allow for expressing partial membership using the language similar to the
classical set theory using single relational symbol for membership.
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Abstract. This paper is a continuation of our previous works on correlation co-
efficients of Atanassov’s intuitionistic fuzzy sets (A-IFSs). The Pearson’s coeffi-
cient we discuss here yields the strength of relationship between the A-IFSs and
also indicates the direction of correlation (positive or negative). The proposed cor-
relation coefficient takes into account all three terms describing an A-IFS (mem-
bership values, non-membership values, and the hesitation margins).

1 Introduction

The correlation coefficient r proposed by Karl Pearson in 1895 (the so called Pearson’s
coefficient – the most often applied indices in statistics [15]), indicates how well two
variables move together in an linear fashion (reflects their linear relationship). Some
extensions to the case of fuzzy data have been proposed by, e.g., Chiang and Lin [7],
Hong and Hwang [10], Liu and Kao [13].

Relationships between A-IFSs representing, e.g., preferences, attributes, are of a vi-
tal importance in theory and practice, and hence there are many papers discussing the
correlation of A-IFSs: Bustince and Burillo [4], Gersternkorn and Mańko [8], Hong and
Hwang [9], Hung [11], Hung and Wu [12], Zeng and Li [40]. In some of those papers
only the strength of relationship is evaluated (cf. Gersternkorn and Mańko [8], Hong
and Hwang [9], Zeng and Li [40]). In other papers (cf. Hung [11], Hung and Wu [12]),
a positive and negative type of a relationship is reflected but the third term describing
an A-IFS, which is important from the point of view of all similarity, distance or en-
tropy measures (cf. Szmidt and Kacprzyk, e.g., [18], [20], [27], [22], [29]), [30]) is not
accounted for.

In this paper we continue our previous works (Szmidt and Kacprzyk [35]) and dis-
cuss the concept of correlation for data represented as the A-IFSs adopting concepts
from statistics. We calculate the correlation between the A-IFSs by showing both a pos-
itive and negative relationship between them, and emphasize the relevance of all three
terms describing A-IFSs count.

We illustrate our considerations on the examples (e.g. benchmark data from [14]).

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 334–341, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 A Brief Introduction to A-IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh [39]) given by

A
′
= {< x, μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an A-IFS

(Atanassov [1], [2], [3]) A is given by

A = {< x, μA(x), νA(x) > |x ∈ X} (2)

where: μA : X → [0, 1] and νA : X → [0, 1] such that

0<μA(x) + νA(x)<1 (3)

and μA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively. (An approach to the assigning memberships and
non-memberships for A-IFSs from data is proposed by Szmidt and Baldwin [16]).

Obviously, each fuzzy set may be represented by the following A-IFS:

A = {< x, μA′ (x), 1 − μA′ (x) > |x ∈ X}.

An additional concept for each A-IFS in X , that is not only an obvious result of (2) and
(3) but which is also relevant for applications, we will call (Atanasov [3])

πA(x) = 1− μA(x) − νA(x) (4)

a hesitation margin of x ∈ Awhich expresses a lack of knowledge of whether x belongs
to A or not (cf. Atanassov [3]). It is obvious that 0<πA(x)<1, for each x ∈ X .

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [18], [20], [27], entropy (Szmidt and Kacprzyk [22], [29]), sim-
ilarity (Szmidt and Kacprzyk [30]) for the A-IFSs, etc. i.e., the measures that play a
crucial role in virtually all information processing tasks.

Hesitation margins turn out to be relevant for applications - in image processing (cf.
Bustince et al. [6], [5]) and classification of imbalanced and overlapping classes (cf.
Szmidt and Kukier [36], [37], [38]), group decision making, negotiations, voting and
other situations (cf. Szmidt and Kacprzyk [17], [23], [24], [25], [26], [28], [31], [32],
[33]).

2.1 Correlation between the A-IFSs

In our previous papers we have proposed a correlation coefficient for two A-IFSs,A and
B, so that we could express not only a relative strength but also a positive or negative
relationship between A and B. We take into account all three terms describing an A-
IFSs (membership, non-membership values and the hesitation margins) as each of them
influences the results.

Suppose that we have a random sample x1, x2, . . . , xn ∈ X with a sequence of
paired data [(μA(x1), νA(x1), πA(x1)), (μB(x1), νB(x1), πB(x1))], [(μA(x2), νA(x2),
πA(x2)), (μB(x2), νB(x2), πB(x2))], . . . , [(μA(xn), νA(xn), πA(xn)), (μB(xn),
νB(xn), πB(xn))] which correspond to the membership values, non-memberships val-
ues and hesitation margins of A-IFSs A and B defined on X , then the correlation coef-
ficient rA−IFS(A,B) is given by Definition 1.
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Definition 1. The correlation coefficient rA−IFS(A,B) between two A-IFSs, A and
B in X , is:

rA−IFS(A,B) =
1

3
(r1(A,B) + r2(A,B) + r3(A,B)) (5)

where

r1(A,B) =

n∑
i=1

(μA(xi)− μA)(μB(xi)− μB)

(
n∑

i=1

(μA(xi)− μA)2)0.5(
n∑

i=1

(μB(xi)− μB)2)0.5
(6)

r2(A,B) =

n∑
i=1

(νA(xi)− νA)(νB(xi)− νB)

(
n∑

i=1

(νA(xi)− νA)2)0.5(
n∑

i=1

(νB(xi)− νB)2)0.5
(7)

r3(A,B) =

n∑
i=1

(πA(xi)− πA)(πB(xi)− πB)

(
n∑

i=1

(πA(xi)− πA)2)0.5(
n∑

i=1

(πB(xi)− πB)2)0.5
(8)

where: μA = 1
n

n∑
i=1

μA(xi), μB = 1
n

n∑
i=1

μB(xi), νA = 1
n

n∑
i=1

νA(xi),

νB = 1
n

n∑
i=1

νB(xi), πA = 1
n

n∑
i=1

πA(xi), πB = 1
n

n∑
i=1

πB(xi),

The proposed correlation coefficient (5) depends on the amount of information ex-
pressed by the membership and non-membership degrees (6)–(7), and the reliability
of information expressed by the hesitation margins (8).

Remark: rA−IFS(A,B) makes sense, analogously as for the crisp and fuzzy data, for
A-IFS variables whose values vary. If, for instance, the temperature is constant and the
amount of ice cream sold is the same, then it is impossible to conclude about their
relationship due to 0 in the denominator.

The correlation coefficient rA−IFS(A,B) (5) fulfills the following properties:

1. rA−IFS(A,B) = rA−IFS(B,A)

2. If A = B then rA−IFS(A,B) = 1

3. |rA−IFS(A,B)| =≤ 1

The above properties are fulfilled both by the correlation coefficient rA−IFS(A,B) (5)
and by its every component (6)–(8).

Remark: rA−IFS(A,B) = 1 occurs not only for A = B but also in the cases of a
perfect linear correlation of the data (the same concerns each component (6)–(8)).

We will show now an illustrative example. The size of the data set is too small to be
meant as a significant sample but serve the purpose of illustrativeness.
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Fig. 1. Visualization of the data from Example 1: it is easy to notice that there is no perfect linear
relationship among elements from A and B

Example 1. Let A and B be A-IFSs in X = {x1, x2, x3}:

A = {(x1, 0.1, 0.2, 0.7), (x2, 0.2, 0.09, 0.71), (x3, 0.3, 0.01, 0.69)}
B = {(x1, 0.3, 0, 0.7), (x2, 0.2, 0.2, 0.6), (x3, 0.1, 0.6, 0.3)}

It is easy to notice that:

– the membership values of the elements in A (i.e.: 0.1, 0.2, 0.3) increase whereas the
membership values of the elements in B (i.e.: 0.3, 0.2, 0.1) decrease. In the result (6)
we have r1(A,B) = −1.
– the non-membership values of the elements inA (i.e.: 0.2, 0.09, 0.01) decrease whereas
the non-membership values of the elements in B (i.e.: 0.0, 0.2, 0.6) increase. In the re-
sult (7) we have r2(A,B) = −0.96.
– the hesitation margins of the elements in A (i.e.: (0.7, 0.71, 0.69) and the hesitation
margins of the elements in B (i.e.: 0.7, 0.6, 0.2) give in the result (8) r3(A,B) = 0.73.
Therefore, finally, from (5) we obtain rA−IFS(A,B) = 1

3 (−1−0.96+0.73) = −0.41.

If we exclude from considerations the hesitation margins, and take into account two
components (6) and (7) only, we obtain rA−IFS(A,B) = 1

2 (−1 − 0.96) = −0.98
which means that there is a substantial negative linear relationship between A and B
(which is difficult to agree).

In Figure 1 there is a geometrical interpretation of the data from Example 1.
From the point of view of practical problems, the third component (8) of the cor-

relation coefficient (5), related to the lack of knowledge represented by the variables
considered, may be important. For example, if the data represent reactions of patients
to a new medicine, it seems necessary to carefully examine just the part (8) of the corre-
lation coefficient (5) as it may occur that a new medicine/treatment increases unforeseen
reactions. In such situations it may be important not only to examine all the components
of (5) separately but even to give them different weights in (5).

We will verify if all the three parts of (5) count for a well known benchmark - “Satur-
day Morning” [14]. The data set is small and hence illustrative. Next, we know which
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Table 1. The “Saturday Morning” data [14] in terms of A-IFSs

No. Attributes Class
Outlook Temperature Humidity Windy

1 (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) (0.2, 0, 0.8) N
2 (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) N
3 (1, 0, 0) (0, 0.33, 0.67) (0, 0.33, 0.67) (0.2, 0, 0.8) P
4 (0.2, 0.11, 0.69) (0, 0, 1) (0, 0.33, 0.67) (0.2, 0, 0.8) P
5 (0.2, 0.11, 0.69) (0.4, 0.11, 0.49) (0.6, 0, 0.4) (0.2, 0, 0.8) P
6 (0.2, 0.11, 0.69) (0.4, 0.11, 0.49) (0.6, 0, 0.4) (0, 0.33, 0.67) N
7 (1, 0, 0) (0.4, 0.11, 0.49) (0.6, 0, 0.4) (0, 0.33, 0.67) P
8 (0, 0.33, 0.67) (0, 0, 1) (0, 0.33, 0.67) (0.2, 0, 0.8) N
9 (0, 0.33, 0.67) (0.4, 0.11, 0.49) (0.6, 0, 0.4) (0.2, 0, 0.8) P
10 (0.2, 0.11, 0.69) (0, 0, 1) (0.6, 0, 0.4) (0.2, 0, 0.8) P
11 (0, 0.33, 0.67) (0, 0, 1) (0.6, 0, 0.4) (0, 0.33, 0.67) P
12 (1, 0, 0) (0, 0, 1) (0, 0.33, 0.67) (0, 0.33, 0.67) P
13 (1, 0, 0) (0, 0.33, 0.67) (0.6, 0, 0.4) (0.2, 0, 0.8) P
14 (0.2, 0.11, 0.69) (0, 0, 1) (0, 0.33, 0.67) (0, 0.33, 0.67) N

Table 2. Values of the correlation component (6) between each pair of the attributes for the
“Saturday Morning” data from [14]

Attr Outlook Temperature Humidity Windy
Outlook 1 0.01 0.03 -0.01

Temperature 0.01 1 0.63 -0.1
Humidity 0.03 0.63 1 0

Windy -0.01 - 0.1 0 1

relationships to expect – three attributes are not strongly related (as each is important
from the point of view of classification), the fourth one is not very important from the
point of view of classification (more correlated with the others).

The data set consists of 14 examples, 4 nominal attributes, and the target attribute
with two classes. The nominal attributes are: outlook, with values {sunny, overcast,
rain}, temperature, with values {cold, mild, hot}, humidity, with values {high, nor-
mal}, and windy, with values {true, false}.

Following the idea presented in Szmidt and Kacprzyk [34], and by Szmidt and Bald-
win [16], we have obtained a description of “Saturday Morning” data [14] in terms of
A-IFSs (Table 1), i.e., have expressed each attribute in terms of the membership val-
ues, non-membership values, and hesitation margin values. Next, we have calculated
the three components of (5) for each pair of the attributes. The results are in Tables 2–4.

It is easy to notice that the correlation components (6) resulting from the correlation
stemming from the membership values of attributes is significant only in one case (just
as we have expected) – between Humidity and Temperature. The second component
of (5), i.e., (7) practically in all cases produces the values which are not significant in
terms of correlation. Next, the third component of (5), i.e., (8) confirms the conclusions
we have drawn from (6). In other words, the values of the correlation expressed in terms
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Table 3. Values of the correlation component (7) between each pair of the attributes for the
“Saturday Morning” data from [14]

Attr 0utlook Temperature Humidity Windy
Outlook 1 0.01 0.12 -0.07

Temperature 0.01 1 0.12 -0.22
Humidity 0.12 0.12 1 0

Windy -0.07 -0.22 0 1

Table 4. Values of the correlation component (8) between each pair of the attributes for the
“Saturday Morning” from [14]

Attr Outlook Temperature Humidity Windy
Outlook 1 0.15 -0.005 0.09

Temperature 0.15 1 0.45 -0.1
Humidity -0.005 0.45 1 0

Windy 0.09 -0.1 0 1

Table 5. Values of the correlation (5) between each pair of the attributes for the “Saturday Morn-
ing” data from [14]

Attr Outlook Temperature Humidity Windy
Outlook 1 0.06 0.05 0.003

Temperature 0.06 1 0.4 -0.14
Humidity 0.05 0.4 1 0

Windy 0.003 -0.14 0 1

of lack of knowledge (8) count, and should not be excluded from considerations when
examining the correlation between the attributes. We have obtained similar results for
Pima Indians Diabetes Database [41].

3 Conclusion

A new concept of the Spearman correlation coefficient for the A-IFSs is discussed and
illustrated, extending our previous work [35]. It is a generalization of the Spearman cor-
relation coefficient for the crisp sets. The coefficient takes into account all three terms
describing an A-IFS (the membership values, non-membership values and hesitation
margins) as each term plays an important role in data analysis and decision making,
so that each of them should be reflected while assessing the relationship between the
A-IFSs.

Acknowledgment. Partially supported by the Ministry of Science and Higher Educa-
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Abstract. In many applications, spatial data is often prone to uncer-
tainty and imprecision. To model this, fuzzy regions have been developed.
Our initial model was a fuzzy set over a two dimensional domain, allow-
ing for fuzzy regions and fuzzy points to be modelled. The model had
some limitations: all points where treated independently, and it was not
possible to group points together. Furthermore, the model depended on
meta-information to specify the interpretation. The model was extended
to a level-2 fuzzy region to overcome these limitations; here the calcula-
tion and interpretation of the surface area will be considered.

1 Introduction

When working with geographic data, one often has to deal with large amounts
of data, and this data usually contains some form of uncertainty or imprecision.
This can have a number of causes; the uncertainty or imprecision can be in-
herent to the data (so it is an intrinsic part of the features that are modelled),
it can be introduced due to limitations in measurements (the features that are
modelled are not uncertain or imprecise, but we cannot assess them exactly) or
it can result from combining data from different sources (the sources can con-
tradict or be incompatible). In this work, we consider an entity based approach
for modelling data and features: real-world objects and features are represented
using basic elements (in the crisp sense these are points, lines and polygons).
To represent geographic entities containing uncertainty or imprecision, several
approaches have been developed; these usually involve modelling a number of
candidate boundaries ([1], [2]); such models mainly served for conceptual pur-
poses and were only developed to a limited extent, lacking many operators.

In our concept of fuzzy regions, a region was considered to be a set of points
and a fuzzy region essentially fuzzy set over a two dimensional domain ([3]).
It was introduced to overcome the limitations of spatial information systems in
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modelling uncertain or imprecise spatial features. The traditional feature based
models define features (real world objects or entities) by means of polygons;
this representation does not allow for elements of the region to only have a
partial membership or for the region to have undetermined boundaries. The
fuzzy region model allows for the representation of fuzzy regions (i.e. regions
with partial membership), or fuzzy points (i.e. points at an imprecise or uncertain
location). From the theoretical model, a number of implementable models have
been derived (e.g. [3]) and they have been applied in both querying spatial data
as well as image segmentation.

To overcome some shortcomings of this model, an extension has been devel-
oped and presented in [4]; it defines a level-2 fuzzy region as a level-2 fuzzy region,
thus allowing for both interpretations. This extension yields some changes to op-
erations; in this contribution we consider calculating the surface area of level-2
fuzzy regions. After introducing and defining the fuzzy regions and the first ex-
tension in section 2, the level-2 fuzzy regions will be defined in 2.2. Section 3
concerns the surface area of level-2 fuzzy region. A conclusion summarizes the
findings.

2 Preliminaries

2.1 Fuzzy Regions

The concept of the original fuzzy regions is simple, but requires a different view
of regions. Traditionally, a region is defined by means of its outline (commonly
represented by a polygon). A region can however also be seen as a set of points
belonging together and delimited by the outline; from this point of view, it is a
small step to augment the definition to a fuzzy set ([5]) of points. In [3], a fuzzy
region is defined over R2 , thus with each element (point) a membership grade
was associated.

Definitions. A fuzzy region essentially is a fuzzy set defined over a two di-
mensional domain; the concept is illustrated on figure 1. The definition is given
below:

R̃ = {(p, μR̃(p))|p ∈ R2} (1)

With the membership function is defined as:

μR̃ : R2 (→ [0, 1]

p→ μR̃(p)

A fuzzy set can have three different interpretations ([6]): veristic, possibilistic
and as degrees of truth. In the fuzzy region model, only the first two have been
considered so far. A veristic interpretation means that the membership grades
express a degree of beloning to, thus indicating a partial membership. In the
fuzzy region model, this means that all points belong to the set to some specific
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Fig. 1. The concept of a fuzzy region Ã; a fuzzy set over a two dimensional domain.
All points belong to some extent to the region; indicated by means of the membership
grade. The lower half of the figure shows a cross section. The shades of grey relate to
the membership grades: darker shades match higher membership grades (the region
has a dark outline to indicate its maximal outline).

extent. As such, this interpretation is used to represent fuzzy regions where some
points are considered to belong to a lesser extent to the region. A possibilistic
interpretation on the other hand means that the membership grades express the
possibility of each element of the domain. Applied in the fuzzy region model,
this implies that the fuzzy region is a representation for a single point whose
location is not precisely known; all the points of the fuzzy region now are possible
candidates for this one specific point. In this interpretation, the region can be
seen as a representation of a fuzzy location. While the representation is exactly
the same, the difference in interpretation also impacts the operations.

The above definition was extended to allow for grouping of points with the
same membership grade ([7]). For this purpose, the domain was altered from
R2 to ℘(R2); the powerset of R2. The powerset ℘ of a set A is defined as the
set of all possible subsets of that set, including the empty set and the set itself.
An example is given below. Using this concept, the fuzzy region can be defined
with ℘(R2) as the domain. This makes the basic elements of the fuzzy region
subregions ([7]).

R̃ = {(P, μR̃(P ))|P ∈ ℘(R2) ∧ ∀P1, P2 ∈ R̃ : P1 ∩ P2 = ∅} (2)

With the membership function is defined as:

μR̃ : ℘(R2) (→ [0, 1]

P → μR̃(P )

Note that in this definition the intersection between any two elements should
be empty: it is required that no two elements of the fuzzy region share points.
A point can only be considered to belong to the region once, even if it is to
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a membership grade less than 1. The reason for imposing this restriction is
that intersecting subregions would yield unexpected behaviour in the different
operations; the basic elements in the original regions are single points and also
don’t intersect.

2.2 Level-2 Fuzzy Regions

Concept. The level-2 fuzzy region is an extension to the traditional fuzzy re-
gions. It if a further refinement of the extension defined above. In the previous
extension, a fuzzy regions was defined as a fuzzy set of non-overlapping crisp
regions ([7]). While it solved some initial issues, it had limitations among which
the fact that there still was the need for additional metadata to carry the in-
terpretation. In order to overcome this, a level-2 fuzzy region will be model a
number of possible candidate regions, which are fuzzy regions themselves. To
achieve this, the concept of the fuzzy powerset is used. The fuzzy powerset, de-
noted ℘̃, of a set A is defined as the set containing all possible fuzzy subsets of
A. Using the fuzzy powerset, it is possible to define a fuzzy region similarly as
has been done with the powerset in [7]. An example of a level-2 fuzzy region is
shown on figure 2.

Fig. 2. The concept of a fuzzy region defined over the fuzzy powerset of the two dimen-
sional domain. The region R̃ represents three possible candidates: the regions R̃′

1, R̃
′
2

and R̃′
3). These are fuzzy regions that are given a membership grade with a possibilistic

interpretation; they are candidates or possibilities.

Definition
R̃ = {(R̃′, μR̃(R̃

′))|R̃′ ∈ ℘̃(R2)} (3)

with the membership function is defined as:

μR̃ : ℘̃(R2) (→ [0, 1]

R̃′ → μR̃(R̃
′)

The elements of the fuzzy region are fuzzy regions as in the original definition.
An important difference with the previous definition is that it is now possible
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that different possible regions share elements: regions are no longer considered
as subregions, but rather as candidate regions.

This new definition is what is referred to as a level-2 fuzzy set: a fuzzy set
defined over a fuzzy domain ([8], [9]). Most commonly, the interpretation at the
second level is possibilistic. It is used to express the possibility of a number
of fuzzy candidate elements. This concept is not to be confused with a type-2
fuzzy set ([10]), which is a fuzzy set defined over a crisp domain but with fuzzy
membership grades. In type-2 fuzzy sets, uncertainty concerning the membership
grades is expressed. While it is possible to use type-2 fuzzy sets to combine both
interpretations for fuzzy regions, the level-2 permits us to consider fuzzy regions
as candidates (and thus have spatial operations at this lower level). The use of
type-2 fuzzy sets would only allow to express different possibilities for different
degrees of membership for each point of the universe; it would not allow us to
consider regions at a lower level. In [4], it is shown that any statements regarding
individual points of the level-2 fuzzy region will result in a type-2 fuzzy set. The
model now allows for a region to be represented by a number of fuzzy regions,
each with a possibility degree.

3 Surface Area of a Level-2 Fuzzy Region

In this contribution, the surface area of a level-2 fuzzy region will be considered.
This has been defined in the past for normal fuzzy regions and fuzzy regions
defined using the powerset ([7]). For the surface area of a fuzzy region, two
interpretations were considered. The first is an extension of fuzzy cardinality,
yielding a crisp number; the second results in a fuzzy number in which possible
surface areas are contained. Both interpretations will also be considered for level-
2 fuzzy regions.

3.1 Concept

The concept of the surface area of a traditional fuzzy region will be extend to the
level-2 fuzzy regions by applying the original definition on the different elements
of the level-2 fuzzy region. The surface area for each element (so for each possible
region) will be determined and all these areas are then combined to yield a single
result. This is illustrated on 3. The approach for the different definitions of the
surface area is the same: they will be combined in a fuzzy set; for the above
example this will yield as follows:

S̃(R̃) = {(S̃(R̃′
1), μR̃(R̃

′
1)), (S̃(R̃

′
2), μR̃(R̃

′
2)), (S̃(R̃

′
3), μR̃(R̃

′
3))}

In the subsequent sections, the detailed formulas for the surface area calculations
are considered.

3.2 Extension of Fuzzy Cardinality

Before we look at the level-2 fuzzy regions, let us first consider the surface area
of a fuzzy region. In this interpretation of the surface area, that every element
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Fig. 3. The surface area of a level-2 fuzzy region. Each candidate region yields a possible
surface area.

of the region contributes its membership grade; just like it is the case with fuzzy
cardinality. The benefit of this approach is that it allows a single crisp number
to give a measurement for the region, while still containing some aspects of the
fuzziness.

For a single region candidate region defined using definition 1, the surface
area is defined as:

S̃c(R̃) =

∫
p(x,y)∈U

μÃ(p(x, y))d(x, y) (4)

This has been modified to the extended definition of fuzzy regions (definition 2),
in which basic elements themselves can have a surface area:

S̃c(R̃) =

∫
X∈℘(U)

μÃ(X)

∫
p(x,y)∈X

d(x, y)dX (5)

While the number gives an indication of the area of the region, the distribution
of the fuzziness is lost; this is illustrated on figure 4. A crisp region R̃1 that
covers an area with size x2, will have the same surface area as a fuzzy region
R̃2 that covers an area of x/2 with membership grade 1 and an area of x with
membership grade 0.5. Both will result in a surface area of x2.

Fig. 4. Two fuzzy regions that yield the same surface area defined as cardinality

To define the surface area for a level-2 fuzzy region, we consider the concept
of the level-2 fuzzy region: a fuzzy set containing possible fuzzy regions. This is
illustrated on Figure 3, where the surface area for a number of candidate regions
is displayed.
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As such, it makes sense that the surface area will be represented by a fuzzy
set containing possible surface areas. We can use the above definition for the
surface area each of the candidate regions; these numbers can then be combined
in a fuzzy set to yield the possible fuzzy numbers matching the possible regions.
This results in the definition:

S̃c(R̃) =
⋃

R̃′∈R̃

{(S̃c(R̃′), μR̃(R̃
′))} (6)

The result is a fuzzy set of possible surface areas; the possibility of each surface
area matches the possibility of the related candidate fuzzy region. Note that
while the fuzzy set representing the possible surface areas is a fuzzy set of the real
numeric domain and has a possibilistic interpretation, it is not necessarily a fuzzy
number (according to the definition in [9]): not every alpha cut is guaranteed to
yield a closed interval.

The compatibility with previous model is obvious from the definition: the
previous model for fuzzy regions can be represented using only one level of
uncertainty and the compatibility of the surface area for fuzzy regions in defined
using definition 2 was already proven in [7].

3.3 Fuzzy Result

In this concept, the surface area of a fuzzy region will be represented by a fuzzy
set that reflects the fuzziness of the region. It results in a fuzzy set that contains
the surface areas of all alpha-levels. The set is not a fuzzy number, as it carries a
veristic interpretation. For a single candidate region defined by definition 1 this
was defined in [11], yielding:

S̃f (Ã) = {(x, μS̃f (Ã)(x)), x ∈ U} (7)

This was extended in [7] to accommodate definition 2:

S̃f (R̃) =
∑̃

X|μR̃(X)>0

(∫
p(x,y)∈X

d(x, y), μR̃(X)

)
(8)

Similarly to how the surface area was extended to suit the level-2 fuzzy region
in the previous section, the fuzzy surface areas as fuzzy results for each possible
region can again be combined here.

S̃f(R̃) =
⋃

R̃′∈R̃

{(S̃f (R̃′), μR̃(R̃
′))} (9)

Unlike in definition 6 in the previous section, the result now is a level-2 fuzzy
set. From its definition, it complies with the previous definition for the fuzzy
surface area.
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4 Conclusion

In this contribution, the concept of level-2 fuzzy sets was considered; this con-
cept was first defined in [4]. It provides for a unified representation of fuzzy
regions, combining both a veristic and a possibilistic interpretation. The model
was developed to properly represent regions for which there is knowledge on how
the boundaries can change and to allow for more elegant unified definitions. The
calculation of the surface area of level-2 fuzzy regions results in two definitions,
one considering a surface area as a measure for cardinality; the other maintain-
ing the fuzziness. The definitions for the surface area are still compatible with
the original models and with crisp models.
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Abstract. In this paper we propose the combination of fuzzy c-means
for clustering with neighborhood cooperativeness from the neural gas vec-
tor quantizer. The new approach avoids the sensitivity of fuzzy c-means
with respect to initialization as it is known from neural gas compared
to crisp c-means. Thereby, the neural gas paradigm of neighborhood of-
fers a greater flexibility than those of the self-organizing map, which was
combined with fuzzy c-means before. However, a careful reformulation
of neighborhood has to be done to keep the validity of the convergence
proof of this previous approach. We demonstrate the properties for an
artificial as well as for real world data.

1 Introduction

The fuzzy c-means algorithm is one of the most prominent fuzzy clustering al-
gorithms [3,9]. It is a generalization of the classic crisp c-means but inherit-
ing the sensitivity according to initialization. For crisp c-means this problem
was overcome by incorporation of neighborhood cooperativeness as known from
cortical maps in brains. The most famous model for this paradigm is the self-
organizing map (SOM) introduced by T. Kohonen [17], assuming an external
grid structure between the prototypes, usually a regular hypercubical structure
A. However, other lattice structures are possible with a respective grid distance
measures. For example, general graphs would require the distance taken as
shortest paths [28].

Generally, neighborhood cooperativeness improves vector quantization per-
formance and convergence speed as well as stability of the vector quantization
solution. This SOM concept was also adopted for FCM yielding fuzzy SOM
(FSOM,[6,5,7,23,24,27]). A similar algorithm for fuzzy clustering combined with
topographic learning based on SOMs was also suggested for the soft-topographic
vector quantization based on statistical physics (STVQ,[12]).

Otherwise, for crisp vector quantization, the neural gas algorithm (NG) using
a dynamic prototype based neighborhood generally shows better performance
than SOM [20]. This is mainly dedicated to the flexible neighborhood relations
between the prototypes. Therefore, we propose in this paper the combination
of FCM with neighborhood cooperativeness adopted from NG. The resulting
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fuzzy neural gas (FNG) shows stable behavior and good performance as we
demonstrate for artificial and real world data.

The paper is organized as follows: First we briefly review FCM and NG to
clarify notations and give some details about the underlying theory. Thereafter,
we present the new FNG and give suggestions for extensions and variants. The
experimental section shows exemplary applications to emphasize the advantages
of the new algorithm.

2 Fuzzy c-Means and Neural Gas

In this section we briefly introduce the two basic vector quantizers needed for
definition of FNG. The first is the classic fuzzy c-means (FCM) as the fuzzy vec-
tor quantization scheme based on an alternating optimization scheme. The other
one is the neural gas algorithm as generalization of c-means, which incorporates
neighborhood cooperativeness for robust vector quantization.

In the following we assume a data set V = {vi}N
i=1 ⊆ Rn and a set W =

{wk}C
k=1 ⊂ Rn of prototypes. Further, we suppose an inner product norm di,k =

d (vi,wk) between data and prototypes, frequently the Euclidean distance.

2.1 The Fuzzy c-Means Algorithm

For the FCM many variants are proposed such as for relational data [4] or median
clustering [10] or using several kinds of dissimilarities like divergences [16,30] or
kernels [15]. The original FCM model determines for each data point vi ∈ V
and prototype wk ∈ W an assignment ui,k ∈ [0, 1], which is interpreted as the
possibility that this data vector is associated with this particular prototype. In
FCM the assignments are restricted according to∑

k

ui,k = 1 (1)

Thus, FCM is probabilistic and the crisp c-means model is obtained for the
additional conditions ui,k ∈ {0, 1} [8,19]. The FCM minimizes the cost function

EFCM (U, V, W ) =
C∑

k=1

N∑
i=1

(ui,k)m (di,k)2 (2)

where m > 1 is the fuzziness parameter usually chosen as m = 2 [3,9]. The
iterated optimization scheme consists of the alternating optimization of the pro-
totypes

wk =
∑N

i=1 (ui,k)m vi∑N
i=1 (ui,k)m

(3)

accompanied by the optimization of the fuzzy assignments

ui,k =
1∑C

l=1

(
di,k

di,l

) 2
m−1

(4)
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derived as the solution of the Lagrange-minimization problem

J (U, V, W, λ) = EFCM (U, V, W ) −
N∑

i=1

(
λi

(
C∑

k=1

ui,k − 1

))
(5)

with Lagrange multipliers λ = (λ1, . . . , λN ). Here in (3) the assumption of the
Euclidean distance for di,k was made. Variants relax the condition (1) or/and
avoid the collapsing of the algorithm for vanishing distances di,k in (4) [18,22].

2.2 The Neural Gas Vector Quantizer

An alternative to the external grid enforced neighborhood cooperativeness bet-
ween prototypes used in SOMs is provided for the neural gas (NG) vector quan-
tizer [20]. This approach uses a dynamic neighborhood between the prototypes
determined in the data space V . This flexible neighborhood leads to the fact that
NG usually outperforms SOM in crisp vector quantization. In NG the neighbor-
hood between prototypes for a given data vector vi ∈ V is based on the winning
rank of each prototype wk

rkk (vi, W ) =
N∑

l=1

Θ (d (vi,wk) − d (vi,wl)) (6)

where

Θ (x) =

{
0 if x ≤ 0
1 else

(7)

is the Heaviside function [20]. The NG neighborhood function includes the ranks
according to

ĥNG
σ (k|vi) = cNG

σ · exp

(
− (rkk (vi, W ))2

2σ2

)
(8)

with neighborhood range σ with an arbitrary constant cNG
σ > 0. Then, NG

minimizes the cost function

ENG =
1

2K (σ)

C∑
j=1

ˆ
P (v) ĥNG

σ (j|v) (d (v,wj))
2
dv (9)

with the winner-take-all mapping rule

s (vi) = argminj (d (vi,wj)) (10)

determining the best matching prototype ws. The constant K (σ) depends on
the choice of cNG

σ and could be combined. However, we explicitly need cNG
σ later

to be defined appropriately in FNG.
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3 The Fuzzy Neural Gas

We now integrate the NG into FCM. Thereby, the aim is to use the theory of
FSOM provided in [6,5,7,23,24,27]. For this purpose, we have to verify a fixed
graph structure between the prototypes while incorporating the neighborhood
cooperativeness. Originally, there is no neighborhood between the prototypes
in NG but this information is implicitly given by the winner ranks rkk (vi, W )
defined in (6). We now redefine the neighborhood function of NG and introduce
a gradual neighborhood relation between prototypes wk and wl by

hNG
σ (k|wl) = cNG

σ · exp

(
− (rkk (wl, W ))2

2σ2

)
(11)

for a given neighborhood range σ with the normalization constant cNG
σ such that∑

l h
NG
σ (k|wl) = 1. It can be shown that this redefinition leads to a NG variant

structurally equivalent to the original NG [29]. Moreover, in the convergence
phase in the vicinity of the equilibrium the respective neighborhood structure
becomes stable due to the stability of optimal packing by Rn-balls with respect to
small distortions. Thus, we can interpret the resulting structure as an (irregular)
external grid A equipped with the graph distance of shortest paths.

Under these assumptions we define the local cost

lcNG
σ (i, k) =

C∑
l=1

hNG
σ (k|wl) · (di,l)

2
, (12)

which can be immediately plugged into FCM instead of the quadratic dissimi-
larities (di,k)2. In this way we obtain a FCM variant with neighborhood coop-
erativeness denoted as Fuzzy Neural Gas (FNG). The cost function of FNG is

EFNG (U, V, W, σ) =
C∑

k=1

N∑
i=1

(ui,k)m
lcNG

σ (i, k) (13)

and the prototype adaptation is obtained by the Lagrange formalism as proposed
for the FSOM:

wk =
∑N

i=1

∑C
l=1 (ui,k)m · hNG

σ (k, l) · vi∑N
i=1

∑C
l=1 (ui,k)m · hNG

σ (k, l)
(14)

if the Euclidean distance is used for di,k (or equivalently for inner product based
metrics). Analogously, the adaptation of the fuzzy assignments (ui,l)

m in the
FNG are as before defined for FCM in (4) but replacing there the dissimilarity
measure (di,k)2 by the local costs lcNG

σ (i, k) as in FSOM

ui,k =
1∑C

l=1

(
lcNG

σ (i,k)
lcNG

σ (i,l)

) 1
m−1

. (15)

As usual, the neighborhood range σ should be decreased adiabatically in an
outer loop for optimum performance. However, it has to be mentioned here that
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this adiabatic decreasing of the neighborhood range σ is not equivalent to an
annealing approach based on a free energy depending on this parameter σ [31].

Finally, it should be noticed at this point that the FNG is not restricted to
the Euclidean distance for the inner product norms di,k. More general dissimi-
larity measures are obviously applicable like, for example, the scaled Euclidean
distance [14] or generalizations thereof, (kernelized) divergences [30] or other gen-
eralized dissimilarity measures [25]. Further, the transfer to the other variants
like probabilistic approaches [18,22] or entropy based fuzzy c-means [21,33,11] is
obviously straightforward.

4 Experiments

For the verification of the FNG we have chosen two examples: The first one is a
multimodal two-dimensional artificial data set, also known as checkerboard, with
4 × 4 Gausssian squares each consisting of 50 data points (see Fig.1). This ex-
periment shows the ability of FNG to handle multimodal data sets. Accordingly,
we run the FNG with 16 prototypes. The positions of the learned prototypes are
shown in Fig.1 together with prototype distributiones obtained from standard
NG and standard FCM. The FNG as well as standard NG provide a good distri-
bution of the prototypes, one prototype per cluster. The FCM highly depends on
the initialization of the prototypes due to the missing neighborhood and, hence,
frequently fails the optimal solution.

The second data set, a real world example, consists of hyperspectral vectors of
different coffee type samples. Hyperspectral processing along with an appropriate
analysis of the acquired high-dimensional spectra has proven to be a suitable and
very powerful method to quantitatively assess the biochemical composition of a
wide range of biological samples [13,26,2]. By utilizing a hyperspectral camera
(HySpex SWIR-320m-e, Norsk Elektro Optikk A/S) we obtained a rather ex-
tensive data base of spectra of the different coffee samples (green beans, roasted
beans, ground powder). The acquired spectra are in the short-wave infrared
range between 970 nm and 2, 500 nm at 6 nm resolution yielding 256 bands per
spectrum. Proper image calibration was done by using a standard reflection pad
(polytetrafluoroethylene, PTFE) [1]. After appropriate image segmentation the
obtained spectra were normalized according to the l2-norm.

The database used in this experiment contains spectra of overall 5 roasted,
ground powder, untreated coffee types. In particular, these coffee samples are
verified to be not treated chemically before roasting. They all were roasted in
the same small exclusive roasting facility using a more or less similar process-
ing scheme. The overall number of spectra is 5000, whereby each coffee type is
represented by 1000 samples. Representitives are depicted in Fig.2. We applied
FNG and again, for comparison, NG and FCM with C = 5 prototypes.

The agreement of the different cluster solutions is judged by two cluster validity
measures, to reflect different aspects of cluster quality. We used the XB-index [32].
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Fig. 1. Checkerboard data set of the size 4× 4 with the learned prototypes of NG (+),
FCM (�) and FNG (♦)

XB(W, V,U) =
∑C

k=1

∑N
i=1 (ui,k)m · (d(vi,wk))2

1
C

∑C
i=1 minj∈C,j �=i (d(wi,wj))

2

as the ratio between compactness and seperation. Here the compactness in
counter is measured as the weighted mean of the distances with assignments
as weighting factors. A small XB value means high separation and good com-
pactness. The SVF-index [34] is defined as

SV F (W, V,U) =
∑C

i=1 minj∈C,j �=i (d(wi,wj))
2∑C

k=1 maxvj∈V um
j,k · (d(vj ,wk))2

whereby the compactnes in the denominator is estimated as the maximum of all
weighted distance. Hence, a high SV F -value means here a good cluster solution.

For the crisp results of NG we simply set:

ui,k =

{
1 if s (vi) = k

0 otherwise

using the mapping rule (10).
The results for the different algorithms and validity measures are depicted

in Table 1 obtained from 10 runs of each. Obviously, the FNG provides good
cluster results for the artificial and the real world data set. For the multimodal
checkerboard problem FNG clearly outperforms both, NG and FCM. The vari-
ance of the FCM is comparatively high indicating high sensitivity with respect
to the initialization of the prototypes. Yet, in case of the real world coffee data
set the judgements of the XB and SV F disagree with respect to FNG and FCM
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Fig. 2. Spectra of untreated coffee sorts with the learned prototypes of FNG (dashed)

but both are better than crisp NG. This disagreement maybe dedicated to the
diffferent aspects emphasized by the respective measures.

Table 1. Clustering results for the checkerboard data set and the coffeee data set

Checkerboard NG FCM FNG
SVF (10−2) 5.40 7.31 7.53

variance (10−7) 0.004 1.392 0.865

XB 0.234 0.264 0.183
variance 8.49 · 10−6 0.022 0.013

Coffee NG FCM FNG
SVF (10−3) 2.15 3.26 3.11

variance (10−8) 0.21 2.3 3.3

XB 0.565 0.522 0.467
variance (10−3) 0.15 3.4 5.1

5 Conclusion

We proposed in this contribution a new variant of FCM using the concept of
neighborhood cooperativeness. This paradigm is well-suited in robust neural
maps for crisp vector quantization. Here, the dynamic neighborhood scheme of
NG is used instead of a neighborhood defined by an external grid as known
from SOMs and already earlier transferred to FCM. The resulting FNG shows
good performance compared to standard FCM and crisp NG. Further, due to the
neighborhood cooperativeness, a robust stability with respect to initialization of
the prototypes is achieved while keeping the high quality. It is straightforward,
to apply this scheme to other fuzzy variants of c-means (PCM, FPCM,...) as
well as utilization of other distance measures [30].
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Abstract. The new epoch-incremental reinforcement learning
algorithm with fuzzy approximation of action-value function is devel-
oped. This algorithm is practically tested in the control of the mobile
robot which realizes goal seeking behavior. The obtained results are
compared with results of fuzzy version of reinforcement learning algo-
rithms, such as Q(0)-learning, Q(λ)-learning, Dyna-learning and priori-
tized sweeping. The adaptation of the fuzzy approximator to the model
based reinforcement learning algorithms is also proposed.

Keywords: reinforcement learning, fuzzy approximation, epoch-
incremental algorithm.

1 Introduction

Reinforcement learning addresses the problem of the agent that must learn to
perform a task through trial and error interaction with an unknown environment
[11]. There has been a lot of algorithms proposed that successfully implemented
the above idea. The fundamental reinforcement algorithms, e.g. Q-learning [13],
AHC [2], or Sarsa [9] are characterized by a high simplicity which leads to low
computational complexity. However, their efficiency measured by the number of
trials necessary to achieve stable optimal strategy is low. The significant im-
provement in reinforcement learning algorithms’ performance is obtained by the
use of the eligibility traces. The next stage within development of the algorithms
resulting in the achievement of stable strategy after smaller number of trials is
the implementation of environment model. Two algorithms are worth paying at-
tention here, i.e. Dyna-learning [10] and prioritized sweeping [7], [8]. The main
idea behind these algorithms is the computation, in each iteration, an additional
number of assumed number of action-value function actualizations not on the
basis of interactions with a real environment, but its model.

The first reinforcement learning algorithms were implemented in the environ-
ment of continuous state variables [2]. They used table representation of action-
value function which was not adequate for continuous state variables. A better
solution would be to apply a continuous function approximator. A lot of atten-
tion has been paid to fuzzy approximator [3], in particular Takagi-Sugeno system
[4], [5], [15]. The Takagi-Sugeno system adaptation was applied to model based

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 359–366, 2012.
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reinforcement learning algorithm i.e. prioritized sweeping [1], but this solution
is not widely used. In this work the new adaptation of fuzzy approximation to
model based reinforcement learning system will be proposed.

The another approach which allows to decrease the number of trials neces-
sary to determine stable strategy consists in the use of the environment model in
epoch mode, i.e. after completion of single trial [14]. In [14] the epoch–incremental
algorithm with table representation of action-value function was described. In
this work the adaptation of action-value function fuzzy approximator to the al-
gorithm in [14] will be provided. The proposed algorithm is applied to the control
of Khepera mobile robot [6].

2 Fuzzy Epoch-Incremental Reinforcement Learning
Algorithm

The main idea behind the model based algorithms is to use the environment
model in the incremental mode, which leads to significant increase of single iter-
ation time. In case of the stationary environment it is possible to regard the use
of the environment model in epoch mode. It makes single iteration time similar
to the time of fundamental reinforcement learning algorithms. The modification
of the action-value function on basis of the distance of the past active states
from the terminal state should impose the optimal strategy.

The epoch-incremental reinforcement learning algorithm is performed in two
stages. The first, incremental stage, is realized until the terminal stage is achieved.
Then the epoch stage begins, whose task is to modify the agent strategy by using
the distances between all visited stages and the terminal one [14]. The following
section presents the adaptation of action-value function fuzzy approximator to
this algorithm. Such an epoch-incremental reinforcement learning algorithm is
denoted from now on as EIFQ(0)-learning.

2.1 Incremental Part

In the incremental part of the method the fuzzy Q(0)-learning algorithm (in
short: FQ(0)-learning) is performed and the environment model is created.

FQ(0)-Learning. The goal of a fuzzy approximator is to transform N -
dimensional state space s to a real-valued action function ai and its corre-
sponding action-value function qi. Each n-th (n = 1, .., N) input state domain
is covered by fuzzy sets denoted by Ani, where i = 1, .., I is the rule index.
Each fuzzy set is characterised by the membership function μAni . In order to
fuzzy-approximate the action-value function Q (s, a), the Takagi-Sugeno fuzzy
inference system is used with if ... then ... rule base. For the system with N
input states the rule base consisted of I rules can be written as follows:

Ri: If s1 is A1i and ... sN is ANi then a is ai with qi,
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where a is the output of the fuzzy system and qi is the discrete action-value
associated to the action value ai. Thus, the action-value prediction is an output
of the Takagi-Sugeno inference system and it is given by [4]:

Q (s, a) =
I∑

i=1

[
β̄i (s) · qi (s, a)

]
, (1)

where
β̄i (s) =

βi (s)∑I
i=1 βi (s)

(2)

is the normalized activation of the i-th premise (or simple fuzzy rule) where:

βi (s) = μA1i (s1) · μA2i (s2) · ... · μANi (sN) . (3)

The update of qi function for all active states is computed as:

qi (s, a) ← qi (s, a) + αβ̄i (s)ΔQ (s, a) , (4)

where
ΔQ (s, a) = r + γ max

a′
Q (s′, a′) − Q (s, a) . (5)

is the temporal differences error [11]. In (5) γ ∈ [0, 1] is a discount rate constant,
and β ∈ (0, 1] is the learning rate. The maximization operator refers to the
action value a′ which may be performed in next state s′. The next stage of
the incremental part is the construction of the environment model, which is
presented below.

Environment Model for Fuzzy Aproximation of Action-Value Function.
The EIFQ(0)-learning algorithm, Dyna-learning and prioritized sweeping use the
model of the environment. In the case of a discreet environment this model is a
probability of execution of an action a in state s and a transition to s′ what usually
is formalized by the equation p (s, a, s′) = N (s, a, s′) /N (s, a) where N (s, a) de-
notes the number of times in which action a is executed in state s, and N (s, a, s′)
is the number of times resulting in transition to state s′ [7].

In case of the fuzzy approximation a state is represented by means of de-
gree of activation vector of all fuzzy rules β (s) = [β1(s), .., βi(s), .., βI(s)]. The
algorithms which use the environment model require unambiguous numerical
representation of each state in order to perform sorting of the visited states
or to assess their distances from terminal stat. If the shapes of fuzzy sets are
assumed in the way that their supports are not identical with a domain of a
state variable, then not all the elements of β vector are greater than zero. For
example, the triangular or trapezoidal fuzzy sets, in contrast to the Gaussian
ones, fulfill this requirement. On the basis of this observation the new numerical
representation of fuzzy state is proposed:

s̃ = β (s) · cT , (6)
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where c =
[
c1, .., ci, .., cI

]
is a vector of powers of some small real number. Then

the probability that, after the execution of the action a in state s̃, the system
transits to state s̃′ can be defined as:

p (s̃, a, s̃′) =
N (s̃, a, s̃′)
N (s̃, a)

. (7)

The numbers N (s̃, a, s̃′) and N (s̃, a) are actualized in each iteration according
to the rules: N (s̃, a, s̃′) ← N (s̃, a, s̃′) + 1 and N (s̃, a) ← N (s̃, a) + 1.

2.2 Epoch Part

The epoch part of the algorithm begins after the terminal stage of the agent is
achieved s̃′ = TERMINAL. Thereafter, starting form the terminal stage for
p (s̃, a, TERMINAL) > 0, one computes these actions a, which provide the
transition from the state s̃ to the next, TERMINAL state, and then only for
(s̃, a) pairs one assigns the distance from the terminal state. This procedure
repeats for the states preceding the states computed previously until for each
visited state, the action a and the distance d are assigned. In this way for all
visited states s the suboptimal strategy is calculated [14]. Next, the actualization
of these elements of fuzzy approximation of action-value function is performed
for which the distance d is assigned according to formula:

q (s, a) ← q (s, a) + α · β (s) ·
(
r · (γλ)d + γ max

a′
Q′ (a′) − Q (a)

)
, (8)

where r is the reinforcement signal received after the terminal state, and λ ∈
(0, 1] is - by analogy with TD(λ) algorithm - the recency factor. The inspira-
tion of the multiplication of the reinforcement signal by γλ coefficient was the
observation of the TD(λ) algorithm performance, in which the eligibility trace
of state-action pairs was decreased by this factor in each iteration. It is worth
noticing that in TD(λ) method, all the elements of the action-value function were
actualized in the degree which depends on the distance from the actual state. In
case of epoch-incremental algorithm, the actualizations are performed only for
these elements of action-value function Q which are responsible for suboptimal
strategy determined on the basis of the shorted distance to the absorbing state.

3 Empirical Results

In this work the comparison experiments were carried out on Khepera III mobile
robot (Fig. 1). Khepera III is the cylindrical mobile robot equipped with two
driving wheels mounted 2R = 88mm from each other. In Fig. 2 the sizes of
the robot in the start position are doubled. The goal of the tested algorithms
was to navigate the robot from the starting point with (0, 0) coordinates to
eight points placed in the environment of the robot. The coordinates of the goal
points are the following: (7R, 7R), (−7R,−7R), (−7R, 0), (−7R, 7R), (0,−7R),
(7R,−7R), (0, 7R), (7R, 0). The goal points are marked in Fig. 2 by means of
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the circles (of radius R) with the numbers inside which denoted the order of
robot arrival. It was assumed that the goal point was reached by the robot when
the distance from the robot to this point was less than R. The robot was moved
to the staring point after each of the goal points was visited. The goal seeking
task, illustrated in Fig. 2, amounts to turning the robot into the goal point
(minimization of the turning angle ψ) and then moving forward (minimization
of the robot-goal point distance z). The state variables z and ψ were covered
by two and three triangle fuzzy sets, respectively [12]. In all the algorithms the
value of the actualization coefficient of the fuzzy approximator α was set to
0.1, discount rate γ to 0.995 and in FQ(λ)-learning algorithm the recency factor
λ = 0.1. Additionally, in fuzzy Dyna-learning and fuzzy prioritized sweeping,
the number of actualizations performed by using the environment model took
the value of 6. In order to choose the action the ε-greedy strategy was applied
in which ε = 0.1. The reinforcement signal was defined as follows:

r =
{
− |ψ|

π − z
10R , for z > R

0, for z � R.
(9)

The reinforcement signal decreased its value along with both the increase of the
distance and the turning away from the goal point. Because of the similar shape
of the trajectory of the robot movement for all tested algorithms, in Fig. 3 the
trajectories only for EIFQ(λ)-learning algorithm are presented. As shown, all
eight goal points are reached. In case of the remaining algorithms the goal was
also realized, but the robot trajectories were longer.

Fig. 1. Khepera III mobile robot

As the measure of the efficiency of the reinforcement learning algorithms, the
number of iterations necessary to visit all eight points was assumed (second col-
umn in Table 1). One can observe that FQ(0)-learning algorithm needs the great-
est number of the iterations. FQ(λ)-learning performance is slightly better (5%
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Fig. 2. Two wheel Khepera III mobile robot in the environment of eight goal points
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Table 1. Comparison of the efficiency of the reinforcement learning algorithms

Algorithm Iterations tinc [ms] tepoch [ms] ttotal [ms]

FQ(0)-learning 21697 0.21 - 4556.37
FQ(λ)-learning 20578 0.24 - 4938.72
fuzzy Dyna-learning 17756 0.39 - 6924.84
fuzzy prioritized sweeping 19031 0.38 - 7231.78
EIFQ(0)-learning 14314 0.27 8.63 3933.82

less iterations). The use of the environment model in fuzzy Dyna-learning and
fuzzy prioritized sweeping allowed for relatively small decrease of the number of
iterations required to achieve the absorbing states (18% and 12%, respectively).
The best result was obtained when applying the epoch-incremental algorithm
(EIFQ(0)-learning) since the reduction of the number of iterations equalled 34%
in relation to FQ(0)-learning algorithm. The third column in Table 1 presents
run-time of the incremental part of the algorithms (denoted as tinc). Fuzzy Dyna-
learning and fuzzy prioritized sweeping are also worth paying attention because
their run-time is by a margin of 0.1ms longer than the one measured in case of
remaining algorithms. It is influenced by the necessity of computation of some
number of actualizations of action-value function represented by fuzzy approxi-
mator on the basis of environment model. The fourth column of Table 1 contains
the epoch time of the EIFQ(0)-learning algorithm. It is almost 32 times longer
than the incremental time. One needs to note that epoch mode was performed
only eight times (after each of eight goal points was reached). The last column of
Table 1 presents the total time measure (ttotal) which was calculated according
to formula:

ttotal = Iterations · tinc + 8 · tepoch, (10)

where 8 numeral is a consequence of the number of goal points. For epoch-
incremental algorithm this time is the shortest.

4 Conclusions

In this contribution the new epoch-incremental reinforcement learning algorithm
was proposed. It was applied to Khepera mobile robot control. The reinforce-
ment fuzzy Q(0)-learning algorithm was performed in the incremental mode and
the environment model was created. In the epoch mode, on the basis of the envi-
ronment model, the distances of the fuzzy states representations from absorbing
state were determined. This distances were used to compute the actualizations
of fuzzy approximator of action-value function. The efficiency of proposed al-
gorithm and fuzzy versions of reinforcement learning algorithms: Q(0)-learning,
Q(λ)-learning, Dyna-learning and prioritized sweeping was analyzed. This was
performed by comparing of the number of the iterations and the total run-time
of the algorithms. The adaptation of fuzzy approximator of action-value function
to Dyna-learning and prioritized sweeping algorithms was proposed. The results
confirmed validity of assumed solution.
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Abstract. In this paper a new family of kernel functions for SVM classifiers,
based on a statistically–induced measure of distance between observations in
the pattern space, is proposed and experimentally evaluated in the context of
binary classification problems. The application of the proposed approach im-
proves the accuracy of results compared to the case of training without postulated
enhancements.

Numerical results outperform those of the SVM with Gaussian and Laplace
kernels.

1 Introduction

The problem of defining an appropriate distance function to be used for measuring
distance between observations, or calculating observations proximity, is frequently en-
countered in numerous application fields, and – in particular – is an important compo-
nent of many classification algorithms.

The usual approach to the problem of defining a distance function is based on a
construction performed in the space observed in experiment, usually modeled by Rn,
either directly, or with the use of space transformation, effectively not preserving the
structure of a probability space of the modeled phenomena. In order to address this
issue the idea of statistically–induced distance measures, built using p–values of the
arguments equality hypothesis, has been proposed in [1,2] and experimentally evaluated
in the context of k–NN classifier.

In this paper a generalization of the concept and its application to the field of Support
Vector Machines classifiers is presented.

The statistically–induced distance measures are expressed as the fuzzy equivalence
relations (Sect. 2.3). Since fuzzy equivalences, that can be practically used in the con-
text of distance classification, are typically the kernel functions (please refer to [3,4] for
a detailed discussion on this issue), the introduced equivalences are checked for kernel
properties. Because of a relative complexity of the functions, which makes a theoretical
proof of a semi-positive definition a complicated task, and due to the compactness of
kernel domain the verification procedure is performed in a numerical way.
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The kernels, introduced individually in each data dimension (Sect. 3.4), are com-
bined using the linking functions (Sect. 3.5). The results of the combination are proven
to be the kernels (Sect. 3.5).

The reminder of the paper is organized as follows: Section 2 provides some necessary
definitions and describes the idea of observations’ proximity measurement expressed as
the fuzzy equivalence relation and its relation to kernel functions.

Section 3 describes how this framework is used to build the probability–based equiv-
alences and kernels. The benchmark data sets and results of numerical evaluation of
proposed kernels are presented in sections 4 and 5, respectively. Conclusions and direc-
tions for future research are placed in the last section.

This piece of work is a direct continuation and generalization of authors’ previous
works [1,2] introducing probability–related distance measures and works [2,5] related
to properties of metrical structure of pattern space.

2 Fuzzy Equivalence and Kernel Functions

2.1 Triangular Norm

A triangular norm (t–norm) ([6]) is a function T : [0, 1]2 → [0, 1] fulfilling:

– ∀x,y∈[0,1]T (x, y) = T (y, x),
– ∀x,y,z,v∈[0,1]x ≤ z ∧ y ≤ v ⇒ T (x, y) ≤ T (z, v),
– ∀x,y,z∈[0,1]T (T (x, y), z) = T (x, T (y, z)),
– ∀x∈[0,1]T (x, 1) = x.

A t–norm particularly noteworthy from the perspective of a relationship between fuzzy
equivalences and kernels ([4]) is

Tcos(x, y) = max(xy −
√
1− x2

√
1− y2, 0).

2.2 Kernel

A kernel is a real-valued function K : X2 → R that is symmetric and positive semi-
defined.

2.3 Fuzzy Equivalence

A T–fuzzy equivalence ([6]) is a function E fulfilling following conditions:

1. E : X2 → [0, 1],
2. ∀x,y∈XE(x, y) = E(y, x),
3. ∀x∈XE(x, x) = 1,
4. ∀x,y,z∈XT (E(x, z), E(z, y)) ≤ E(x, y).

2.4 Relation between Kernel Functions and Fuzzy Equivalences

The result provided in [4] stating that every kernel function K : X2 → [0, 1] fulfilling
∀x∈XK(x, x) = 1 is a Tcos–equivalence, leads to the following procedure:
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Function E, fulfilling conditions (1) – (3) of the fuzzy equivalence definition
(Sect. 2.3), is a kernel and a fuzzy equivallence if:

1. E is Tcos–equivalence,
2. E is positive semi-defined function.

3 Probability–Based Kernels and Equivalences in the Training
Patterns Space

3.1 Introduction

The space of observations has a naturally defined structure of metrical space given by its
immersion into Rn with natural (Euclidean) distance function. In the context of kernel
functions this approach to distance measurement has been addressed by RBF kernels,
e.g. Gaussian:

K(x, y) = exp(−σ||x− y||2),
or Laplace:

K(x, y) = exp(−σ||x − y||).
Despite the fact, that RBF kernels are fuzzy equivalences, this approach does not pre-
serve a structure of probability space, in particular an information about the distribution
of the data, which otherwise could have been used to improve accuracy of classifiers, is
lost.

Improved immersion can be obtained with the use of Cumulative Density Functions
(CDF) by transformation of pattern space, as described in [1,2], which preserves the
information of marginal distributions.

Let (CDF)i denote CDF of i-th dimension of observation space, xi – a value of i-th
dimension of the pattern, and CDFi – a marginal CDF of i-th dimension. Transforma-
tion of pattern is then defined as follows:

(CDF(x))i := CDFi(xi)

Application of CDF transformation to the pattern space creates standardized space (de-
noted CDF–Space). Projection of training patterns into CDF–Space results in uniform
distribution of patterns in each dimension (marginal distributions are U [0, 1]).

Estimation of CDF (denoted as ECDF) can be obtained either by parametric esti-
mation (fitting parameters of arbitrarily chosen family of distributions) or by the use of
simple non-parametric estimator defined as:

ECDFSimple
i (x) =

|{zi ∈ TrSet : zi ≤ xi}|
|TrSet| ,

where TrSet denotes the training set.
As the ECDFSimple function does not preserve the order of elements between the

approximation knots (the function is constant between knots) , for the sake of practical
applications – when training set size is limited – it is worth considering the continuous
version of the function obtained with the use of linear interpolation between knots.
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Fig. 1. Probabilistic distance from fixed point x to observation v

3.2 Model of Equivalence

The structure of discussed proximity measure can be decomposed into two components:

– univariate proximity measure
(discussed in Sect 3.4) providing a fuzzy equivalence in a given dimension and

– linking function
(discussed in Sect 3.5) which combines multiple univariate equivalences providing
a univariate equivalence.

3.3 Probabilistic Distance between a Fixed Point and an Observation

The uniformity of marginal distributions in the CDF–Space provides the possibility of
defining a distance between the fixed point in observation space and an observation.

Let v be an observed realization of a random variable V ∼ U [0, 1] (V is uniformly
distributed over the interval [0, 1]) and x be a fixed point, v, x ∈ [0, 1].

The p–value of the hypothesis x = v vs. x �= v under the assumption of the model
introduced in [1] can be expressed as:

pEq(x; v) = 1− d(x; v),

where
d(x; v) = min(1, x+ |x− v|)−max(0, x− |x− v|).

The function d(x; v) can be regarded as the probabilistic distance between the fixed
point x and an observation v [1].

The contour plot of function d(x; v) is presented in Fig 1. It can be shown that ran-
dom variable d(X ;V ), where U, V ∼ U [0, 1], is uniformly distributed: d(X ;V ) ∼
U [0, 1].

Although function pEq is asymmetrical, it resembles a fuzzy equivalence.

3.4 Univariate Equivalences in CDF–Space

A distance measure on the CDF–Space is required to be symmetrical and to operate on
observations rather than fixed values. This goal can be achieved by a combination of
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pEq(x; v) values that creates symmetrical function E(u, v) by elimination of the fixed
point x.

The following symmetrizations were proposed in [1]:

EAvg(u, v) =
pEq(u; v) + pEq(v;u)

2
,

EInd(u, v) = pEq(u; v)pEq(v;u),

EMin(u, v) = max
x∈[0,1]

(pEq(x;u) + pEq(x; v)) = max (pEq(u; v), pEq(v;u)),

expressed as respective distance measures.
It is easy to observe that all introduced symmetrizations fulfill the necessary condi-

tions of the verification procedure presented in Sect. 2.4, rasing a question whether they
are kernels and fuzzy equivallences. However, due to the complexity of the functions,
the verification steps were performed numerically:

1. Tcos–equivalence of each symmetrization has been checked by evaluation of the
expression

sgn(T (E(x, z), E(z, y))− E(x, y))

over a grid of uniformly distributed knots (1 000 in each dimension) covering the
expression domain [0, 1]3,

2. positive semi-definition of each symmetrization has been checked using
Monte–Carlo procedure verifying a sign of a determinant of a Gram matrix, con-
structed using uniformly distributed (U [0, 1], i.i.d.) random vectors of length vary-
ing from 2 to 100 (for each vector length the procedure has been repeated 1 000
times).

During numerical verification none of the postulated symmetrizations provided a
counter–example for properties being verified, giving a hope that each symmetrization
is a fuzzy equivalence and a kernel.

3.5 Linking Function

In order to provide a unified equivalence in case of multidimensional CDF–space, the
equivalences calculated independently in each dimension have to be combined. The
proposed types of combinations are constructed with an assumption of data dimensions
independency, made also in classical RBF kernels, as well as Naive Bayes classifier.

Equivalence Linking. A natural way of providing the combination of equivalences is
the use of the triangular norm. Due to properties of t–norms such a combination is a
Tcos–equivalence. In order to conclude that resulting function is a kernel it is necessary,
however, to assure its semi-positive definition.

An example of such linking is the product t–norm TP defined as

LProd(x, y) = TP (x, y) = xy.

Since TP is a one dimensional dot product it is semi-positively defined.
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Kernel Linking. A combination of the kernel equivalences that is semi-positively de-
fined can also be obtained – due to the closeness property of kernels [4] – using a linking
function defined as a Taylor series with nonnegative coefficients. Resulting function can
easily be verified for fuzzy equivalence properties using conditions listed in section 2.4.
The application of described technique leads to the following linking functions:

– average linking

LAvg(E1, . . . , En) =
1

n

n∑
i=1

Ei,

– exponential average linking

LExpAvg(E1, . . . , En) = exp(
1

n

n∑
i=1

Ei − 1).

The exponential average linking is expected to outperform the product linking for high
dimensionality data, due to bad asymptotical properties of LProd as the number of di-
mensions grows.

4 Data Sets

In order to provide experimental support for presented method’s validity and generate
results that can be compared to other sources, the data sets available in UCI Machine
Learning Repository [7] were used. Benchmark sets were selected according to the
following criteria and reasons:

– they represent binary classification problems,
– the number of observations is lower than 1 000 (due to the relatively high compu-

tational cost of creating a kernel matrix and SVM optimization procedure),
– they represent integer, real or binary categorical type of attributes.

A brief characteristics of selected data sets is presented in Table 1.
The data sets used in the following experiments were obtained by using the trans-

formation described in Sect. 3.1 with the use of a continuous version of nonparametric
estimation of ECDF which resulted in normalization of data and uniformity of marginal
distributions. In order to provide the possibility to assess the significance of experimen-
tal results concerning postulated kernels, the linear standardization

xi (→ xi −minj(xj)

maxj(xj)−minj(xj)

was applied to the data sets used in case of SVMs with Gaussian and Laplace kernels.
Standardization is necessary for the comparison with postulated kernels since they are
defined on CDF–space, standardized by definition.
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Table 1. A brief characteristics of selected data sets

data set name number of instances number of attributes
default classifier

misclassification rate

BUPA Liver Disorders 345 7 42.03%

Pima Indians Diabetes 768 9 34.90%

Wisconsin Diagnostics 569 31 37.26%
Breast Cancer
Sonar 208 61 46.63%

Ionosphere 351 34 35.90%

Wine 178 13 60.11%

5 Results

All data sets were evaluated with the use of an SVM classifier for each combination
of the univariate equivalence and the linking function defined in sections 3.4 and 3.5,
respectively. Results of misclassification rate estimation (in per cent) were obtained for
each value of ν parameter using 10–fold crossvalidation repeated 10 times. The sample
of ν values was randomly generated over the interval [0.005, 0.9] and contained 300
elements.

Numerical results of the evaluation of the proposed kernels are presented in Table 2.
Presented results are misclassification rates of 10–fold CV estimators for the best ν
found in each case.

Table 2. SVM misclassification rate comparison for different equivalence kernels. The best re-
sults obtained for each data set are marked in bold.

kernel BUPA Pima WDBC Sonar Ionosphere Wine

LExpAvg(EAvg) 23.94 22.53 2.19 9.62 6.01 1.12
LAvg(EAvg) 24.72 22.84 2.00 11.06 6.03 1.12

Gaussian RBF 26.64 22.89 1.93 11.02 64.10 0.70

LExpAvg(EMin) 25.59 23.29 2.34 13.61 6.21 1.12
LAvg(EMin) 24.84 22.89 2.23 12.79 6.46 1.12

LExpAvg(EInd) 24.63 23.39 2.65 12.93 6.15 1.29
LAvg(EInd) 25.65 23.49 2.44 14.28 6.81 1.29

Laplace RBF 27.59 23.08 2.17 11.06 64.10 0.77

LProd(EAvg) 24.58 25.09 37.25 44.64 34.76 25.84

The results presented in the table confirm the efficacy of the proposed approach to
the problem of kernel construction: the models of proposed structure and components
are comparable or better than standard RBF kernels, concerning a misclassification rate
estimation. An importance of proper component selection is proven by an example of
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TProd linking function. An advantage over classical RBF kernels is more distinctive in
the case of the problems, in which the nature of events expresses certain amount of
uncertainty, thus requiring more complex separation boundaries (diabetes, liver disor-
ders).

In the case of EInd and EAvg equivalences the use of LExpAvg linking leads to signifi-
cantly better results than those of LAvg. An opposite effect observed in the case of EMin

suggests different properties of this equivalence, and can be explained by significantly
different distribution of equivalence values over its domain (which could be observed
in Fig. ??).

Despite the noticeable difference between LExpAvg(EAvg) and Gaussian kernel con-
cerning the density of value set, both kernels produce comparable results. This inter-
esting fact suggests, that combination of both types of kernels can lead to the results
superior to each kernel. An exploration of this possibility is a part of our future plans.

Very promising results of LExpAvg linking function suggest the direction of future
work should be in specialization of symmetrizations E and their linking with use of
exponential kernel.

The results were obtained with use of LIBSVM library v. 2.90 ([8]) and R framework
v. 2.12 ([9]).

6 Conclusions

In this paper a new class of kernels and equivalences defined using observations in the
pattern space is proposed and experimentally evaluated with the use of SVM classifier
in the context of binary classification problems. The main idea of the proposed kernels is
the use of statistically–induced distance measures that extend the distance measurement
with some statistical aspects of a given space.

It is shown that postulated models are significantly different from classical RBF ker-
nels and capable of producing better results than training without their use. The re-
sults obtained during numerical experiments suggest interesting directions of further
research. Other possible applications of presented kernels as well as combination of
different types of equivalences selected individually for each dimension are also con-
sidered as future research plans.

Acknowledgement. This work was supported by the research grant from the Warsaw
University of Technology.
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Abstract. We consider a problem of selection of parameters in a classi-
fier based on the average of kernel density estimators where each estima-
tor corresponds to a different data “resolution”. The selection is based
on adjusting parameters of the estimators to minimize a substitute of the
misclassification ratio. We experimentally compare the misclassification
ratio and parameters selected for benchmark data sets by the introduced
algorithm with these values of the algorithm’s baseline version. In order
to place the classification results in a wider context, we compare them
with results of other popular classifiers.

Keywords: kernel density estimation, classification based on density
estimation, average of density estimators.

1 Introduction

The construction of the classifier examined in this paper is based on the idea
of “multiple-resolution” or “multiscale” approach to data analysis. In this ap-
proach, we utilize information about the data when looked at with various
precisions or “resolutions”. In practice, we use the Bayes classifier where the
density of each class is estimated by an average of Kernel Density Estimators
(KDEs). Each KDE corresponds to a different “resolution”, their parameters
called “bandwidths” are adjusted on the training set to minimize the overall
classification error. However, we do not directly minimize the misclassification
ratio, which has a disadvantage of being a non-continuous function, but its sub-
stitute, the Mean Squared Error (MSE) estimated with a 10-fold cross-validation
method on the training set. The minimization is done by a quasi-Newton con-
strained optimization algorithm called L-BFGS-B. A more detailed description
of the presented method can be found in [8, Sect. 2].

The algorithms from the literature that seem to be the most similar to the
one presented can be gathered in two groups. In the first one, there are methods
which use a combination of density estimators to optimize the quality of density
estimation ([3,15,13]), in the other one – methods where a combination of density
estimation-based classifiers is used to optimize the classification quality ([5,4]).
Our algorithm is situated between these two groups since it uses a combination

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 378–386, 2012.
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of density estimators but it optimizes classification quality instead of density
estimation. To our knowledge, the only other algorithm that is also situated
between these two groups is the one introduced in [6]. Our approach, however,
is different and simpler. The most fundamental difference is that we do not
operate on pairs of bandwidths where each bandwidth corresponds to a single
KDE assigned to one of the classes (as it is in the case of the algorithm from [6]);
instead, for each class we use a couple of KDEs with their outputs averaged.

The results presented in this paper are a continuation of our previous works
[9,8,10], and a direct extension of the results presented in [7]. The latter con-
tains theoretical considerations and tests of the algorithm on artificial as well
as benchmark data sets. In this paper we delve into the following additional
issues. We analyze the number of KDEs selected by the algorithm for each of
the artificial problems examined in [7] (Sect. 2). We also consider distribution of
bandwidth values found for selected benchmark data sets, and present a visual-
ization of a simplified error function optimized by the algorithm which gives an
insight into obtained results (Sect. 3.1). Next, we provide more detailed results
and analyses of direct experimental comparison of the introduced algorithm with
other popular machine learning classifiers (Sect. 3.2), among them the Linear
Discriminant Analysis which was not examined in [7].

2 Number of KDEs Selected for Artificial Data

In [7], the introduced algorithm was tested on various (but related) artificial
classification problems and two sets of tests were executed. Here we consider
and examine in more detail one of these sets consisting of “real-life” experi-
ments, where a practical training algorithm is used to select the parameters.
This version of the algorithm selects automatically the number of KDEs for
the problem using “distance distribution-based” method (see [7, Sect. 3.1] for a
detailed description).

All artificial classification problems considered in this paper have a property
of “multiple-resolution” i.e. they consist of clusters of different densities. Such a
property is in favor of producing low misclassification rate by our algorithm. The
first of the considered classification problems, denoted as W ((0, 0), 100, (105, 0),
1), defines large and small Gaussian Mixture Model clusters separated by a long
distance in the feature space. For this problem, we produce training data sets
with different number of samples. The second problem, denoted as W ((0, 0), σ1,
(105, 0), 1), is a modification of the previous one with the training data sets
generated for different ratio of clusters’ densities defined by a scale parameter
σ1: the larger the parameter’s value, the larger the difference. The last problem,
denoted as W ((0, 0), σ1, (0, 0), 1), is a modification of the previous one, where
the clusters are not separated, but have their centers situated at the same point.
It is worth noting that in all of these problems there are generally two clusters
of different densities defined, though in some cases the difference between the
densities is small or vanishes completely (as in the case of data sets generated
from W ((0, 0), σ1, (10

5, 0), 1) problem with σ1 = 1).
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The main conclusion drawn from the experiments on the above data sets is
that the introduced algorithm yields better classification results than the baseline
version, but in order to obtain good results, the difference in densities of clusters
has to be large enough. However, it would be informative to know how the
method that automatically selects the number of KDEs works for these problems.
Is it always selecting two KDEs to match the two clusters of different densities
in the data?

We conducted appropriate experiments for each artificial problem to find out
(see Fig. 1). The simplest problem W ((0, 0), 100, (105, 0), 1) is easily dealt with
by the algorithm – the number of KDEs is almost always two. In case of sepa-
rated clusters (i.e. W ((0, 0), σ1, (10

5, 0), 1) problem), we can see that for small
difference between scales of the clusters (σ1 < 7) the method is not able to rec-
ognize that there are two clusters in the data, but for larger values it correctly
selects two KDEs per class. This might seem unsettling, but there is a similar
situation even in the case when there are two KDEs with their bandwidths se-
lected optimally (see [7, Sect. 4.2.2]) – the difference between the baseline version
and the examined version is quite small for small σ1 and is becoming larger for
larger σ1 values. Thus, by using the practical implementation of the algorithm in
this case, we are not loosing much of the model’s optimal discriminative power.
The situation is more complicated for the W ((0, 0), σ1, (0, 0), 1) problem where
the clusters are not separated. Here, the vicinity of points from different clusters
makes selecting the right number of KDEs more difficult and the method is not
working that well. Nevertheless, even if more KDEs are selected than necessary,
the introduced algorithm is still able to significantly reduce the classification
error when compared with the baseline N = 1 versions of the algorithm in case
of larger differences between densities of clusters (see [7, Sect. 4.2.3]).

We can conclude the analysis of these experiments by saying that the desired
outcome of selecting exactly two KDEs depends mainly on the structure of the
classification problem. The more separated the clusters of different densities, and
the larger the difference between the densities, the easier it is for the “distance
distribution-based” method to select the right number of KDEs. Certainly, in
the real-life situations the clusters would rarely be separated, but even in such
cases, when the method selects more KDEs than necessary, the algorithm is still
able to produce a good classification result.

3 Experiments on Benchmark Data Sets

The algorithm was tested not only on artificial classification problems charac-
terized by certain properties, but also on benchmark data sets which were not
selected specifically to be in favor of the algorithm. The motivation was to test
the efficacy of the method on data sets reflecting the real-life problems.

The algorithm was tested on data sets used for comparison of various classifiers
in [11] and [6]. Some other data sets from the UCI Machine Learning Repository
(UCIMLR) (see [1]) were also used. In all, 19 data sets were used in the experi-
ments, among them: blood transfusion (Blood Transfusion Service Center data,
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Fig. 1. Average number of KDEs per class selected by the algorithm in “real-
life” experiments. The parameter of the experiments examined: 1) the training set
size for the W ((0, 0), 100, (105, 0), 1) problem, 2) the scale parameter σ1 for the
W ((0, 0), σ1, (10

5, 0), 1) problem, 3) the scale parameter σ1 for theW ((0, 0), σ1, (0, 0), 1)
problem.

introduced in [17]), breast cancer (Wisconsin breast cancer data set, collected at
the University of Wisconsin by W.H. Wolberg [12]), glass (forensic glass data),
heart (SPECTF Heart Data Set), image segmentation (Statlog Image Segmen-
tation), Indian diabetes (PIMA Indian diabetes), liver disorders (BUPA liver
disorders), satellite image (StatLog satellite image), vehicle silhouette (StatLog
vehicle silhouette), vowel Deterding (Vowel Recognition – Deterding Data), and
waveform (waveform database generator – version 1). All data sets except Rip-
ley’s synthetic were downloaded from the UCIMLR. The Ripley’s synthetic data
set was obtained from [14]. The data sets were preprocessed the same way as in
the original papers. If the data set was originally divided into the training set
and the test set, we merged these two and executed cross-validation experiments
on the merged version.

3.1 Comparison with Baseline Version

Two versions of the algorithm were tested and compared: the baseline with one
KDE per class (denoted as N = 1) and one with two KDEs per class (denoted
as N = 2). A version of the algorithm with fixed number of KDEs per class was
used, because in preliminary experiments we observed that it yielded slightly
better results than the version with automatic selection of number of KDEs
(this is probably due to noise and complex structure of benchmark data sets).
Samples in each class were standardized. A 10-fold cross-validation repeated 10
times was used to obtain the average results.
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Taking into consideration the performance on all benchmark data sets, it turns
out that the classification error of the introduced N = 2 version of the algorithm
is statistically significantly better that the one of the N = 1 version (Wilcoxson
signed-ranks test, p ≈ .02, confidence interval: [.0007, .0067]). However, the dif-
ference is not large and on some data sets the N = 2 version yields results that
are very similar to or even worse than the results of the N = 1 version. This
needs some investigation.

First, maybe the significant difference is just a fluke, and the N = 2 version
is in practice simply reduced by the training algorithm in the process of opti-
mization to the N = 1 version by selecting the same bandwidth values for both
KDEs in each class? To answer this question, an analysis of bandwidth values
found by each version for each data set averaged over all classes and over all
repeats of the test on a single data set was carried out. As a result, we observed
that the average values obtained by the N = 2 version are significantly different,
what suggests that this is not the case. But to be sure, we also need a deeper
look at the raw data to check if these results are not distorted by averaging.
It turns out that generally these values indeed differ significantly, but there are
some data sets (like ionosphere) where the difference is not as large (see Fig. 2
for some examples).
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Fig. 2. Distribution of bandwidths for selected data sets in all experiments. The circle
corresponds to the bandwidth of the basic N = 1 version of the algorithm (with
coordinates of (h, h)), the cross corresponds to the bandwidths of the N = 2 version
(with coordinates (h1, h2), where h1 is the smaller bandwidth and h2 is the larger one).
The plot for ionoshpere data set shows an example of data where the bandwidth values
of the N = 2 version are located near the values of the N = 1 version.

One of the reasons of small difference between misclassification ratios of the
versions of the algorithm is probably lack of an appropriate “multi-resolution”
structure of some data sets – the clusters of different density might not be
present in the data or the difference in density might not be large enough for the
N = 2 version to show its superiority over the baseline version. This results in a
structure of the error function where minima found by the algorithm using two
bandwidths are not much smaller then minima found when using one bandwidth.
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This can be illustrated with a simpler version of the algorithm, namely one
where bandwidth value is the same for each class (and not different as in the algo-
rithm considered so far). The error function for such version is two-dimensional;
thus, can be easily visualized. Note that the baseline algorithm (N = 1) can
only achieve values of the error function at points belonging to the half-line
(h, h), h ∈ [0,∞). This half-line might or might not include the global minimum
of the N = 2 version, thus using more than one KDE might or might not improve
the results. This situation may be seen in Fig. 3 where for the liver disorders
data set the global minima are located far from the half-line; on the other hand,
for the yeast data set, a minima of similar values are located on the half-line as
well as far from it.

Fig. 3. Mean classification error on testing set for selected benchmark data sets for
a version of the algorithm with the same bandwidth value for each class. The axes
correspond to bandwidth values of each KDE. The darker the color of a point, the
smaller the function value. The global minima of the function are marked with triangles,
the minimum for points belonging to the diagonal is marked with a circle. The difference
between minimal value of the function for points belonging to the diagonal and the
global minimum is denoted as Δ.

3.2 Comparison with Popular Classifiers

The algorithmwith twoKDEs per class was also directly comparedwith a few pop-
ular classifiers: Naive Bayes, Nearest Neighbor (NN), Linear Discriminant Anal-
ysis (LDA), Support Vector Machine (SVM). All of these algorithms were tested
using the same methodology as in Sect. 3.1. As before, to obtain more precise re-
sults, the same splits into the training and testing sets were used for all algorithms.
The implementation of the algorithms used in the tests came from the R statistical
environment (packages: class, e1071, MASS); the default parameter values were
used. In case of Naive Bayes, the Gaussian distribution (given the target class) of
continuous attributes is assumed; in case of SVM, a “radial” kernel is used; in case
of NN two version are examined: with k = 1 and k = 5.
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The method described in [2, Sect. 3.2.2] was used to compare the overall
performance of the algorithms on all datasets (see Table 1). The Iman & Dav-
enport test shows that there are statistically significant differences between the
algorithms (p ≈ 1.42 · 10−6). Next, the Holm test was used to compare the
introduced algorithm with other classifiers. The algorithm’s overall classifica-
tion performance turned out to be statistically significantly better than those
of Naive Bayes and 1-NN, while the results of SVM, LDA, and 5-NN were not
statistically significantly different.

Table 1. Misclassification ratio of popular algorithms on benchmark data sets. The
first column contains names of different data sets; the rest of the columns contain
results of various classifiers. The columns with headers N=2 and NB contain results
of the introduced method and the Naive Bayes algorithm respectively. The last row
presents an average rank of each algorithm. The ranks are calculated in the following
way: for a given data set, the best algorithm obtains rank 1, the second one obtains
rank 2, etc. The average rank is computed over all data sets. One can see that the SVM
algorithm has the best average rank, while the Naive Bayes has the worst average rank.
Standard deviation value for all 100 results from a single 10 times repeated 10-fold
cross-validation experiment is placed in parentheses.

data set SVM N=2 LDA 5-NN 1-NN NB

blood
transfusion

.2229 (.03) .2202 (.03) .2295 (.02) .2301 (.04) .2974 (.04) .2479 (.03)

Boston housing .2203 (.05) .2323 (.06) .2542 (.05) .2575 (.05) .2384 (.05) .3134 (.06)

breast cancer .0313 (.02) .0315 (.02) .0396 (.02) .0308 (.02) .0464 (.03) .0378 (.02)

ecoli .1289 (.05) .1324 (.06) .1275 (.05) .1436 (.06) .1902 (.06) .2084 (.06)

glass .3212 (.09) .2906 (.09) .4133 (.09) .2807 (.08) .2497 (.10) .5046 (.09)

heart .2059 (.02) .2094 (.02) .2427 (.06) .2653 (.07) .2811 (.09) .3185 (.09)

image
segmentation

.0579 (.01) .0357 (.01) .0840 (.02) .0569 (.01) .0352 (.01) .2032 (.02)

Indian diabetes .2423 (.05) .2433 (.04) .2277 (.04) .2604 (.05) .2966 (.05) .2440 (.04)

ionosphere .0573 (.04) .0500 (.04) .1361 (.05) .1522 (.05) .1332 (.04) .0989 (.05)

iris .0353 (.04) .0473 (.05) .0200 (.03) .0527 (.05) .0553 (.06) .0473 (.05)

liver disorders .3074 (.06) .3684 (.07) .3170 (.07) .3939 (.06) .3751 (.08) .4470 (.08)

Ripley’s
synthetic

.0942 (.02) .1001 (.03) .1218 (.03) .0975 (.03) .1086 (.03) .1152 (.03)

satellite image .1008 (.01) .0876 (.01) .1606 (.01) .0929 (.01) .0934 (.01) .2039 (.01)

sonar .1574 (.08) .1386 (.07) .2243 (.11) .1499 (.08) .1595 (.08) .3109 (.11)

vehicle
silhouette

.2291 (.03) .2906 (.04) .2178 (.04) .2807 (.04) .2996 (.04) .5411 (.05)

vowel Deterding .0519 (.02) .0146 (.01) .3959 (.05) .0648 (.03) .0108 (.01) .3319 (.05)

waveform .1378 (.02) .1586 (.02) .1434 (.02) .1914 (.02) .2342 (.02) .1896 (.02)

wine .0185 (.03) .0252 (.04) .0113 (.02) .0358 (.04) .0451 (.05) .0290 (.04)

yeast .3996 (.04) .3963 (.04) .4142 (.04) .4362 (.04) .4688 (.04) .8149 (.04)

average rank 2.16 2.34 3.37 3.74 4.26 5.13
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Let us examine more closely the difference in results between the introduced
algorithm N = 2 and the most successful and at the same time the most sophis-
ticated of the algorithms tested, namely SVM. In the previous test we checked
that when taking into consideration all of the algorithms and all of the data
sets, these two are not significantly different, nevertheless we can test if there
are any specific data sets for which one or the other is significantly superior. We
used the corrected resampled t-test to compare results on each data set (see [16,
Sect. 5.5]). Each obtained p-value was then multiplied by the number of the tests
executed (there were 19 of them) in accordance to the conservative Bonferroni
adjustment to account for multiple comparisons. The N = 2 algorithm yielded
statistically significantly better results on image segmentation (p ≈ 5 · 10−4),
satellite image (p ≈ 1 ·10−3), and vowel Deterding (p ≈ 1 ·10−3) data sets, while
the SVM yielded statistically better results on vehicle silhouette (p ≈ 6 · 10−5)
and waveform (p ≈ 1 · 10−3) data sets.

These experiments show that the introduced algorithm fares quite well when
compared with other popular methods. On some data sets it even obtains better
results than the sophisticated SVM algorithm.

4 Conclusions and Future Work

We examined different aspects of bandwidth selection in the introduced algo-
rithm. We observed that the less discernible the difference in densities of clusters
in data sets, the harder it is to automatically select an appropriate number of
KDEs. We also checked that on benchmark data sets the multiple-KDEs algo-
rithm is not simply reduced by the training process to a baseline single-KDE
algorithm. We argued as well about the inappropriate form of the error function
as the cause of the small difference in results between the baseline and the in-
troduced N = 2 version of the algorithm on some benchmark data sets. Finally,
we experimentally compared the introduced algorithm with some other popular
ones – the algorithm seems to be competitive; on some data sets it even yields
better results than the popular and advanced SVM.

More work is needed to find a way of identifying the “multiple-resolution”
property and other potential properties that are in favor of our algorithm in
real data sets. With such method it would be easier to decide whether using the
multiple-KDEs algorithm for a given data set would yield better classification
result than using the baseline version or other popular classifier.
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Abstract. In the paper the ensemble of dipolar trees for analysis of
competing risks is proposed. The tool is build on the base of the learn-
ing sets, which contain the data from clinical studies following patients
response for a given treatment. In case of competing risks many types
of response are investigated. The proposed method is able to cope with
incomplete (censored) observations and as a result, for a given set of co-
variates and a type of event, returns the aggregated cumulative incidence
function.

1 Introduction

Survival analysis, in its basic form, aims at prediction the time of failure occur-
rence. The failure, in medical domain, usually means death or disease relapse.
Analyzing the survival data we are often interested not only in estimation of the
exact time point when the failure would occur for a given patient, but we also
want to observe the failure probability during a given period of time. It may
be done by estimation of a distribution function (e.g. survival function, hazard
function or cumulative incidence function).

In the presence of competing risks we are not only focused on prediction of
one type of event. In such kind of data there are many types of event, which
may be investigated. For one patient we register only the time of the first failure
occurred. If the patient has not experienced any type of event we register only
the follow-up time. This kind of observation is called censored one. Censored
data contain incomplete information about the time of failure occurrence of any
type of event. For such kind data we only know that the failure time is greater
or equal to given follow-up time.

Since the survival data is to a large extent censored, the crucial point of meth-
ods for failure time prognosis, is using the information from censored cases. The
use of ensemble of simple tree structure predictors is very common, recently.
Hothorn et al. [4] proposes boosting survival trees to create aggregated survival
function. Krȩtowska [7] developed the approach by using the dipolar regres-
sion trees instead of the structure proposed in [4]. The technique proposed by
Ridgeway [11] allows minimizing the partial likelihood function (boosting Cox’s
proportional hazard model). The Hothorn et al. [5] developed two approaches
for censored data: random forest and gradient boosting. Breiman [2] provided
the software that allows induction of random forest for censored data.

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 387–393, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In case of competing risk the authors develop the tools on the base of single
survival tree. Similar approaches are described in [3] and [6], where induction
of the proposed between-node tree is based on the difference between cumula-
tive incidence function. Presented in [3] a within-node tree uses event-specific
martingale residuals.

The results received from the single tree are instable. It means that each
tree inducted for the same data produces different outcomes. The application
of ensemble based methods stabilizes the results. In the paper, the survival tree
ensemble proposed in [8] is modified for competing risks data. The modifications
are mainly connected with the way the dipoles are formed during a single survival
tree induction and the way the results are presented. The idea of aggregated
cumulative incidence function is introduced as a result of survival tree ensemble.
The results are presented on the base of follicular type lymphoma data, which
contain 541 observations.

The paper is organized as follows. Section 2 describes the survival data with
competing risks and introduces the idea of cumulative incidence function as well
as the Kaplan-Meier survival function. In Section 4 induction of single dipo-
lar survival tree and ensemble of survival tree are presented. The algorithm of
calculation of aggregated cumulative incidence function is described. Experi-
mental results are presented in Section 4. They were carried out on the base of
real dataset describing the patients with follicular type lymphoma [9]. Section 5
summarizes the results.

2 Survival Data with Competing Risks

In case of survival data with competing risks, the patient is at risk of p (p >
1) different types of failure. Assuming that the time of occurrence of the ith
failure is Ti, we are interested only in the failure with the shortest time T =
min(T1, T2, . . . , Tn). The learning sample L for competing risk data is defined
as L = (xi, ti, δi), i = 1, 2, . . . , n, where xi is N -dimensional covariates vector,
ti is time to the first event observed and δi = {0, 1, . . . , p} indicates the case of
failure. δi equals to 0 represents censored observation, which means that for a
given patient has not occurred any failure. Variable ti represents the follow-up
time.

The distribution of the random variable T (time), for an event of type i
(i = 1, 2, . . . , p) may be represented by several functions. One of the most popular
is cumulative incidence function (CIF) defined as the probability that an event
of type i occurs at or before time t [10]:

Fi(t) = P (T ≤ t, δ = i) (1)

or survival function:
Si(t) = P (T > t, δ = i) (2)

The estimator of the CIF function is calculated as

F̂i(t) =
∑

j|tj≤t

dij
nj

Ŝ(tj−1) (3)
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where t(1) < t(2) < . . . < t(D) are distinct, ordered uncensored time points from
the learning sample L, dij is the number of events of type i at time t(j), nj is
the number of patients at risk at t(j) (i.e., the number of patients who are alive

at t(j) or experience the event of interest at t(j)) and Ŝ(t) is the Kaplan-Meier
estimator of the probability of being free of any event by time t. It is calculated
as:

Ŝ(t) =
∏

j|t(j)≤t

(
nj − dj

nj

)
(4)

where dj is the number of events at time t(j).
The ”patients specific” cumulative incidence function for the event of type i

is given by Fi(t|x) = P (T ≤ t, δ = i|X = (x)). The conditional CIF for the new
patient with covariate vector xnew is denoted by F̂i(t|xnew).

3 Survival Tree Ensemble

Individual survival tree being a part of the complex predictor [7] is a kind of
binary regression tree. Each internal node contains a split, which tests the value
of an expression of the covariates. In the proposed approach the split is equivalent
to the hyper-plane H(w, θ) = {(w,x) :< w,x >= θ}.

Establishing the structure of the tree (the number of internal nodes) and the
values of hyper-planes parameters (w, θ) are based on the concept of dipoles [1].
The dipole is a pair of different covariate vectors (xi,xj) from the learning set.
Mixed and pure dipoles are distinguished. Assuming that the analysis aims at
dividing the feature space into such areas, which would include the patients with
the same case of failure and similar survival times, pure dipoles are created be-
tween pairs of feature vectors with the same failure type, for which the difference
of failure times is small, mixed dipoles - between pairs with distant failure times.
Taking into account censored cases the following rules of dipole construction can
be formulated:

1. a pair of feature vectors (xi,xj) forms the pure dipole, if
- δi �= 0 and δi = δj = z and |ti − tj | < ηz, z = 1, 2, . . . , p.

2. a pair of feature vectors (xi,xj) forms the mixed dipole, if
- δi �= 0 and δi = δj = z and |ti − tj | > ζz, z = 1, 2, . . . , p
- (δi = 0, δj = z and ti − tj > ζz) or (δi = z, δj = 0 and tj − ti > ζz),
z = 1, 2, . . . , p

Parameters ηz and ζz are equal to quartiles of absolute values of differences
between uncensored survival times for zth type of failure, z = 1, 2, . . . , p. Basing
on the earlier experiments, the parameter ηz is fixed as 0.3 quantile and ζz - 0.6.

The increasing number of censored cases may decrease the number of pure
dipoles as well as the mixed ones.

The hyper-planes H(w, θ) in the internal nodes of a tree are calculated by
minimization of dipolar criterion function (detailed description may be fond in
[7]). This is equivalent with division of possibly high number of mixed dipoles
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and possibly low number of pure ones constructed for a given dataset. The tree
induction algorithm starts from the root, so in the root node, the dipolar criterion
function is calculated on the base of dipoles created for the whole learning set.
The dipolar criterion function for consecutive nodes of a tree are designed on the
base on those feature vectors that reached the node. The induction of survival
tree is stopped if one of the following conditions is fulfilled: 1) all the mixed
dipoles are divided; 2) the set that reaches the node consists of less than 5
uncensored cases.

The survival tree ensemble algorithm leading to receive the aggregated cumu-
lative incidence function F̂i(t|xn) is as follows:

1. Draw k bootstrap samples (L1, L2, . . . , Lk) of size n with replacement from
L

2. Induction of dipolar survival tree T (Li) based on each bootstrap sample Li

3. For each tree T (Li), distinguish the set of observations Li(xn) which belongs
to the same terminal node as xn

4. Build aggregated sample LA(xn) = [L1(xn), L2(xn), . . . , Lk(xn)]
5. Compute the Kaplan-Meier aggregated survival function for a new observa-

tion xn as ŜA(t|xn).
6. Compute the aggregated CIF functions for the ith type of failure for a new

observation xn as F̂A
i (t|xn).

The predicted value of exact time of ith type of failure for observation xn may
be calculated as the median value of F̂A

i (t|xn).

4 Experimental Results

The experiments were done on the base of lymphoma patient data, which was
created at Princess Margaret Hospital, Toronto [9]. In the experiments we use the
subset of 541 patients having follicular type lymphoma, registered for treatment
at the hospital between 1967 and 1996, with early stage disease (I or II) and
treated with radiation alone or with radiation and chemotherapy. Each patient
is described by four covariates, having the following characteristics:

age [years]: Q1 = 47, Me = 58, Q3 = 67
haemoglobin [g/l]: Q1 = 130, Me = 140, Q3 = 150
clinical stage : equal to 1 (66.9% observations) or 2
chemotherapy : 0-no (78.2% observations), 1-yes

where Q1 is the lower quartile, Me - median, Q3 - upper quartile.
The goal of this study was to report long-term outcome in this group of

patient. The event of interest is failure from the disease: no response to treatment
or relapse. Competing risk type of event is death without failure. There are 272
event of interest and 76 observations with death without relapse.

All the experiments were performed using the ensemble of 100 survival trees.
In figure 1 we can observe the cumulative incidence functions which were cal-

culated for the patient described by the covariates equal to their median values:
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Fig. 1. CIF functions for disease failure (C=1), for competing risk (C=2) and without
distinguishing two types of failure (C=1 or 2) (age=58, hgb=140, clinstg=1 and ch=0)

Fig. 2. CIF functions for disease failure (C=1) and for competing risk (C=2) for two
values of clinical stage (S=1 and S=2) (age=58, hgb=140, ch=0)

age=58, hgb=140, clinstg=1 and ch=0. Three CIF functions are presented in
figure 1: CIF function for disease failure (C=1), for competing risk (C=2) and
the third one calculated for two types of failure (C=1 or 2). We can observe
here that for each time point the probability of competing risk (death without
failure) is lower than the probability of failure. The median value calculated for
the event of interest is equal to 13.61, the median value for competing risk do
not exist (F̂2(t) is always less than 0.5).

Figure 2 presents the CIF functions for two values of clinical stage, other
covariates were fixed to theirs median values. The functions calculated for com-
peting risk do not differ significantly for two types of clinical stage. The difference
is visible while comparing the functions calculated for disease failure. The pre-
diction is worse for patient with clinical stage II (median value equal to 2.92
[years]), for stage I median value is 13.61 [years].
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Fig. 3. CIF functions for disease failure (C=1) and for competing risk (C=2) for two
values of age (hgb=140, clinstg=1, ch=0)

In figure 3 we can observe the CIF functions for two patients with two values
of age: 47 and 68, other covariates were fixed to their median values. Analyzing
the shape of CIF functions obtained for disease failure as well as for competing
risk we can see the influence of age. The prediction for older people is worse for
both types of event. The median value for disease failure is equal to 15.96 for age
equals to 47 and 7.41 for older people (age = 68). Similar results are obtained by
Pintilie [9], where the differences between CIF functions received for two groups
of people (age <= 65 and age > 65) were statistically significant.

5 Conclusions

In the paper the ensemble of dipolar trees for analysis of competing risks is
proposed. The method is an extension of the approach proposed in [8], where
only one type of event was analyzed. In the described algorithm the information
about the type of event is used during dipoles formation. Dipoles may be created
only between these covariate vectors which represent the same type of event.
The method produces aggregated cumulative incidence function (CIF) for a new
patient described by x. The unknown time of occurrence of a given event type
may be estimated by median value of the received function.

The results are conducted on the base of the set of patients with follicular type
lymphoma, where two types of event were investigated: failure from the disease
and death without failure. The influence of clinical stage and age were analyzed.
The graphical representation of received CIF functions shows worse prediction
of the first type of event for patients with clinical stage II. Age influences the
CIF function for both types of event.
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Abstract. An open source framework for general gesture recognition is
presented and tested with isolated signs of sign language. Other than
common systems for sign language recognition, this framework makes
use of Kinect, a depth camera which makes real-time 3D-reconstruction
easily applicable. Recognition is done using hidden Markov models with a
continuous observation density. The framework also offers an easy way of
initializing and training new gestures or signs by performing them several
times in front of the camera. First results with a recognition rate of 97%
show that depth cameras are well-suited for sign language recognition.

1 Motivation and Introduction

Using gestures as a natural communication interface between human beings and
machines becomes more and more important. This involves controlling comput-
ers, as well as processing and translating sign language.

When Microsoft released Kinect in November 2010, it was mainly targeted
at owners of a Microsoft Xbox 360 console, being advertised as a controller-free
gaming experience. The device itself features an RGB camera, a depth sensor and
a multiarray microphone, and is capable of tracking users’ body movement [9,10].
The interest in the device has been high among developers, and thus, shortly
after its release an unofficial open source driver was introduced, followed by many
Kinect-based projects and technical demos. Even though Microsoft stated that
“Kinect that is shipping [2010’s] holiday will not support sign language”, several
demos show how it technically is capable of recognizing signs [11,12,13].

In sign languages, manual features are generally used along with facial expres-
sions and different body postures to express words and grammatical features.
The manual components can be split into four parameters: handshape, palm
orientation, location, and movement. There are similar signs that differ in one
of these components only, and thus without considering context, signs can only
be recognized precisely when all of these components are known. Nevertheless,
a great number of signs can be distinguished by only considering hand location
and movement [6].

After the related work part in section 2, we present Dragonfly, an open source
C++ framework for general gesture recognition that can be used to recognize signs
of sign language, utilizing the two above-mentioned manual components. This is
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achieved by using hidden Markov models that allow training and recognition of
isolated signs. In section 4, the framework is tested in several experiments, and an
evaluation shows how well it performs when using optimal parameters. A conclu-
sion in section 5 summarizes the achievements of this work and what future work
may follow in order to improve it for better sign language recognition.

2 Related Work

This section summarizes the basics of hidden Markov models as well as their
application on sign language recognition. Alternate methods of feature extraction
are also presented.

2.1 Hidden Markov Models

Hidden Markov models (HMMs) are a type of stochastic model related to finite
state machines. An HMM features a number N of states S1, S2, · · · , SN , being
in exactly one of theses states at any time t = 1, 2, 3, · · · , where the state at time
t is referred to as qt.

The initial probability distribution π describes the probability of starting
in a specific state. Every state Si features a probability of transitioning to a
state Sj , stored in the transition probability matrix AN×N . A set of output
probability distributions B = {bj(k)} describes the probability of observing the
kth out of M observation symbols in state j. Observation sequences are denoted
as O = O1O2 . . .OT , where T is the number of observations in the sequence and
each Ot represents one such observation.

If M is infinite (e. g. when observations are real numbers), the HMM features
a continuous observation density. Each state then includes a mean vector μ and
a covariance matrix Σ for use with a logarithmically concave function, e. g. a
D-dimensional multivariate Gaussian distribution N ,

N (Ot; μ, Σ) =
1

(2π)
D
2 |Σ| 12

· exp
(
−1

2
(Ot − μ)TΣ−1(Ot − μ)

)
.

Given the triple λ = (A, B, π) as a compact notation for HMMs, the three basic
problems that come along can be summarized as follows [7,8,3]:

1. Given an observation sequence O, determine the probability of O being gen-
erated by λ, i. e. efficiently calculate P (O|λ). This is done using a scaled
version of the forward-backward procedure.

2. Determine the state sequence Q = q1q2 . . . qT that is most likely to be tra-
versed, given an observation sequence O and a model λ. The scaled Viterbi
algorithm takes care of this calculation.

3. Determine how to adjust the parameters of λ in order to maximize P (O|λ).
This is achieved by the Baum-Welch algorithm, modified to accept multiple
observation sequences at once.

A method of initializating HMMs is proposed by Kelly et al. [1], where the initial
parameters are calculated automatically with an optimal number of states.
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2.2 Recognizing Sign Language

Recognizing sign language involves two major processes, namely extracting fea-
tures and interpreting them. While the former is usually done using a 2D camera
[2,5] and detecting the positions of hands and head, Vogler and Metaxas [4] use
a set of three orthogonally placed 2D cameras to extract 3D data of the signers
body parts. The results show that this method is more accurate than using 2D
data.

In order to conveniently recognize signs and to handle the statistical variations
when performing them, both intra- and interpersonal, HMMs are introduced and
each sign is represented by a separate HMM. An observation sequence can be
seen as a performance of one such sign, and each single observation represents
a vector of body part information, e. g. a hand’s position, movement speed, and
the distance between both hands.

When a sign is performed, the probability of that performance given each
HMM is calculated. The HMM with the highest probability is most likely to
have produced that sign. This information is essential for actually building a
sign language recognition framework.

3 Dragonfly Framework

The framework presented in this work is called Dragonfly (Draw gestures on the
fly) and is capable of learning and recognizing gestures and signs. It is written
in C++ and makes use of the free cross-platform Kinect driver OpenNI released
by PrimeSense, including NITE skeletal tracking which automatically extracts
users’ body parts such as their hands and elbows.

The main classes to be included in other software are called DepthCamera
and Dragonfly. The former acts as an interface to OpenNI and can easily be
replaced to use a different Kinect driver with skeletal tracking. The latter is the
actual interface to the framework which processes the skeleton data for gesture
recognition.

Dragonfly features an own implementation of continuous density HMMs,
offering automatic initialization, Baum-Welch re-estimation with multiple ob-
servation sequences, and serialization, among others. For vector and matrix cal-
culations, the Vision Numerics Libraries are used. Boost provides several other
helpful features such as an implementation of the observer pattern.

3.1 Gesture Recognition

Observations are recorded for every user separately, and consist of an
N -dimensional feature vector. This can be data such as velocity or absolute
position of each hand, or distance between hands.

By default, observations are recorded when the dominant (e. g. right) hand
moves above a given threshold, such as the torso’s y-position. Each of these
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observations is saved in a matrix which represents the entire observation se-
quence. Several of these matrices are stored in a list that can be seen as a set of
observation sequences.

Observation recording can be turned on and off for each user separately. Every
time the user’s hand moves below the threshold, the probability of the newly
recorded sequence given each existing HMM is calculated, and results are com-
pared. This is done in order to determine the model that best matches the
sequence.

To make use of this information, a system for callback functions has been
implemented. Since HMMs must have distinct names, these can be uniquely
associated with a signal using a hashmap. A signal can be linked to and unlinked
from an HMM by calling appropriate methods in Dragonfly.

3.2 Learning New Gestures

Creating new gestures and training them is done successively in one method, by
providing a maximum number of states, a set of observation sequences – used
for initialization and re-estimating – and a set of negative test sequences that do
not contain the actual gesture to be trained. An example of one out of several
similar training sequences is shown in figure 1.

Fig. 1. Example training sequence of the sign PAKET (German for packet)

Cross validation splits observation sequences into sequences actually used for
training (two third), and positive test sequences the model should recognize
correctly without having them used for training (one third). Additionally, a set
of existing HMMs that represent different gestures can be provided.

The algorithm then initializes and trains several HMMs using the training
sequences, and determines the optimal HMM given the rest of the data, according
to an optimality criterion that must be defined as well.
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In detail, the algorithm works as follows:

1. Split provided observation sequences into training and positive test sequences.
Two third are used for training and one third for positive testing.

2. Initialize with N = 1 states. Set the best HMM to NULL and the best value
for each optimality criterion to the worst possible value.

3. Create Q = 5 HMMs, each with N states, from the given set of training
sequences using automatic initialization, which works as follows:
– Create a point cloud with every single observation of every sequence as

a point.
– Perform k-means clustering on the point cloud, initial prototypes are

chosen randomly among its points. Empty clusters are avoided by deter-
mining a new prototype from the biggest cluster.

– Sort the resulting clusters and assign each of them to a separate state.
– Calculate the transition probability distribution A using data from all

observation sequences, where

aij =
#transitions from Si to Sj

#transitions from Si
, 0 � i, j < N.

– Compute the initial probability distribution π, where

πi =
#observation sequences starting in Si

#observation sequences
, 0 � i < N.

– Set each state’s μ to the mean vector of the corresponding cluster.
– Determine Σ for each state by calculating the covariance matrix for each

corresponding cluster.
Due to the randomness in k-means clustering, results may vary. Hence, sev-
eral HMMs are created using the same algorithm.

4. Re-estimate these HMMs by the Baum-Welch algorithm, using the same
training sequences as input.

5. Set q = 1.
6. Among the Q created HMMs, choose the one at position q.
7. If at least half of the observation sequences could not be processed due to

underflow, discard this HMM and go to step 10.
8. Determine the values for all optimality criteria given the newly created model

and all provided data, such as positive and negative test sequences, and
HMMs of other gestures.

9. Update the best value for each optimality criterion. If this HMM is better
than the stored best HMM according to the chosen criterion, define it as the
new best HMM.

10. Increment q. If q � Q, go to step 6.
11. Increment N . If N � S (where S is the maximum number of states), go to

step 3.
12. If any of the three split combinations is left, split observation sequences

accordingly and go to step 2.
13. Return the best HMM (which is NULL in case the procedure failed to create

any HMM at all).
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This procedure guarantees to deliver a re-estimated HMM that best matches the
given data for the chosen criterion, depending on how well k-means clustering
performs. Possible optimality criteria are σr (recognition rate), σv (variance),
and σnp (lowest negative above worst positive rate).

The first criterion σr uses positive test sequences only and tests them with the
newly created HMM and all other HMMs. Negative test sequences are neglected.
Each positive test sequence is tested with all HMMs and the number of correct
results is saved and then summed up. A test result is correct when the sequence
given the new HMM has a higher probability than the sequence given any other
HMM. The summed number is divided by the total number of tests, and the
resulting recognition rate is to be maximized.

The second criterion σv calculates the average logarithmic probability of all
negative test sequences given the new model, and subtracts it from the average
logarithmic probability of all positive test sequences given that model. Gestures
of the new model can be distinguished from other gesture more clearly the higher
this value is.

Determining σnp is done by saving the lowest probability of any positive test
sequence given the new model – i. e. saving the worst positive test sequence.
Then, probabilities of all negative test sequences are calculated for the model.
The number of negative test sequences with a probability higher than that of
the worst positive test sequence, is divided by the total number of negative test
sequences. The lower this value gets, the better the success rate of the new
HMM is.

For equal values of the third criterion, the second criterion is used to determine
which HMM is better. HMMs can be saved to and loaded from a file at any time
during recognition.

4 Experiments and Results

First experiments were made with a vocabulary of 25 signs of German Sign
Language that were trained with the help of fluent speakers. Best results could be
achieved with a nine-dimensional feature vector, composed of (RHx, RHx, RHz,
LHx, LHy, LHz, RHv, LHv, REx), where RH and LH correspond to the right and
left hand relative to the neck, respectively, v means velocity, and RE corresponds
to the right elbow.

Every sign was tested 40 to 60 times, results show an overall recognition rate
of 97, 0%. Detailed results are shown in figure 2, where the recognition rate of
each sign is shown next to a boxplot.

Each boxplot shows the distance between the actually performed sign and
the best recognized sign that is unequal. This illustrates for positive values how
well the recognized sign could be distinguished from others, and for negative
values how much other signs were preferred. Since the logarithmic probabilities
are negative, values have been normalized by a �→ −700

a (higher values are bet-
ter). The sign NEUKOELLN (a district in Berlin), for example, features a high
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Fig. 2. Test results of the first experiment, the signs trained are ANFANG (begin-
ning), ARBEITEN (to work), BABY, BERLIN, DANKE (thank you), ELEFANT
(elephant), ENTSCHULDIGUNG (sorry), GIPS (gypsum), GIRAFFE, HAI (shark),
HASE (rabbit), HINTERGRUND (background), KOCHEN (to boil), KREUZBERG
(a district in Berlin), MANN (man), MITTE (a district in Berlin), NAECHSTE (next),
NEUKOELLN (a district in Berlin), PAKET (packet), PAUSE, SCHNEIDEN (to cut),
VATER (father), VERSTEHEN (to understand), WURST (sausage), and ZURUECK
(back)
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recognition rate and can usually be distinguished well from other signs, however
one performance was not recognized correctly and is far off the sign that was
recognized instead.

Signs that mainly contain movement towards the camera, such as DANKE
(German for “thank you”), have a significantly worse recognition rate with a
feature vector that does not contain the hands’ z-positions. The right elbow’s
x-position (if the user is right-handed) helps distinguish other signs where the
hand is near the face and the arm is either held away from or close to the body.

Since the depth of each body part is known, the recognition rate does not
change when standing closer to the camera or further away from it, as long a
minimum distance is kept in order for skeletal tracking to work. Especially the
use of z-values shows an advantage of depth cameras over ordinary RGB cameras,
where extracting depth information is generally harder and less reliable.

On a 2 GHz dual-core machine with 4 GB memory, the probabilities of a
sequence given all 25 signs were calculated in less than 300 milliseconds.

5 Conclusion and Future Work

Kinect and other depth cameras offer 3D data without a complicated camera
setup and efficiently extract the users’ body parts, allowing for easier recognition
of not just hands and head, but also other parts such as elbows that can further
help distinguish similar signs. Another advantage is the independency of lighting
conditions due to the use of infrared light, however thus, the cameras are limited
to in-door use.

The presented framework offers recognition and learning of isolated signs, using
NITE skeletal tracking and an own HMM implementation. This implementation
includes a new way of initialization and several optimality criteria for HMM com-
parison. First experiments were made with a vocabulary of 25 signs of German
Sign Language, and show a high recognition rate of 97, 0% when using depth-
camera-specific features. Future experiments will show how well the presented
methods perform when using a larger vocabulary of more than 100 signs.

Accurately recognizing sign language, however, not only involves tracking
hands. There are signs that only differ in mouthshape or handshape and are
similar otherwise. Facial expression, body posture and head movement are often
used to express grammatical features.

When detection of these essential components is supported by the backend,
Dragonfly can be extended to support continuous sign language recognition.
This also involves detecting a sign’s start and end position, as well as movement
epenthesis as described by Kelly et al. [1] in order to distinguish hand movement
within a sign from movement between two signs.

In conclusion, this work shows that depth cameras are well-suited for sign
language recognition. The approach is worth further consideration and features
its own advantages, while leaving room for improvement of both the underlying
technology as well as the framework itself.

The source code of Dragonfly is available under the terms of the GNU Lesser
General Public License, version 3, at https://bitbucket.org/Slang/dragonfly/.
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Abstract. A few years ago a new classifier ensemble method, called ro-
tation forest, was devised. The technique applies Principal Component
Analysis to rotate the original feature axes in order to obtain different
training sets for learning base classifiers. In the paper we report the re-
sults of the investigation aimed to compare the predictive performance
of rotation forest with random forest models, bagging ensembles and
single models using two popular algorithms M5 tree and multilayer per-
ceptron. All tests were carried out in the WEKA data mining system
within the framework of 10-fold cross-validation and repeated holdout
splits. A real-world dataset of sales/purchase transactions derived from
a cadastral system served as basis for benchmarking the methods.

Keywords: rotation forest, random forest, bagging, property valuation.

1 Introduction

For some years we have been studying various machine learning techniques to
create data driven models for property valuation. We have been investigating
methods capable of solving regression problems. Our studies are spread in many
directions including evolutionary fuzzy systems, neural networks, decision trees
and statistical algorithms using MATLAB, KEEL, RapidMiner and WEKA data
mining system [8], [13], [17]. Our long term goal is to build an automated sys-
tem to aid in real estate appraisal devoted to information centres maintaining
cadastral systems in Poland. A good performance revealed evolving fuzzy models
applied to cadastral data [19], [20]. Last several studies we devoted to investi-
gate ensemble models created applying various weak learners, resampling and
subsampling techniques [11], [14], [18]. Ensemble learning is now an active area
of our research. Many studies have proven that it is worth its attention.

Two of most popular and effective approaches in ensemble models are bag-
ging and random forests. Bagging stands for bootstrap aggregating. It was first
presented by Breiman [1] in 1995. Even though it is a very intuitive and straight-
forward algorithm it provides a very good performance. The idea standing behind
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this method is based on bootstrap selection. Each individual learner is supplied
with training data drawn with replacements from original dataset. A given learn-
ing instance can occur several times in a for one component model and does not
have to be taken into account when building other models. This way diversity
is obtained. Finally, individual learners are combined through an algebraic ex-
pression, such as minimum, maximum, sum, mean, product, median, etc. [21].
Theoretical analyses and experimental results proved benefits of bagging, espe-
cially in terms of stability improvement and variance reduction of learners for
both classification and regression problems [4], [5], [6].

Another approach to ensemble learning is called the random subspace method
(RS), also known as attribute bagging [3]. It was first presented by Ho in 1995
[9]. This approach seeks learners diversity in feature space subsampling. All
component models are built with the same training data, but each takes into
account a randomly chosen subset of features bringing diversity to ensemble.
For the most part, feature count is fixed at the same level for all committee
components. Ho showed that RS can outperform bagging or in some cases even
boosting [10]. While other methods are affected by the curse of dimensionality,
RS can actually benefits out of it.

Both bagging and RS were devised to increase classifier or regressor accuracy,
but each of them treats the problem from different point of view. Bagging provides
diversity by operating on training set instances, whereas RS tries to find diversity
in feature space subsampling. Breiman [2], developed a method called Random
Forest (RF) which merges these two approaches. RF uses bootstrap selection for
supplying individual learner with training data and limits feature space by random
selection. Some recent studies have been focused on hybrid approaches combining
random forests with other learning algorithms [7], [12], [22].

In this paper we focused on rotation forest (RTF). It is a relatively new ap-
proach, in ensembles methods, proposed by Rodŕıguez et al. in 2006 [22]. This
method is based on Principal Component Analysis. Diversity is brought to en-
semble by applying PCA to feature extraction. Using UCI repository benchmark
classification datasets Rodriguez showed that RTF can outperform several pop-
ular ensemble methods [22]. It was also shown that for regression problems RTF
performs at least equivalently to bagging [24], [15].

The main goal of the study presented in this paper was to compare empirically
rotation forest models with bagging, random forest and single models (SM) in
respect of its predictive accuracy. The algorithms were applied to real-world
regression problem of predicting the prices of residential premises, based on
historical data of sales/purchase transactions obtained from a cadastral system.
The models were built using two weak learners including M5P pruned model
tree and multilayer perceptron neural network implemented in WEKA.

2 Rotation Forest Algorithm

The main idea standing behind rotation forest is to use PCA to rotate the original
feature axes in order to obtain different training sets for learning base classifiers
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or regressors. In general RTF learning process is similar to classical ensemble
learning. Whole committee consists of component models. In regression problems
ensemble output is given as a result of some arithmetical function (the most
frequently it is an average). Each constituent is trained with the whole training
dataset — it provides good accuracy. The difference is that for each component
model RTF constructs a rotation matrix, which is then used to transform both
training and test datasets. If we consider n dimensional learning problem, in
traditional ensemble approach we supply our Ci regressor with Li = [Xn Y ],
where Xn is an n-feature training dataset and Xn ∈ R, Y are output labels
and Y ∈ R. RTF creates the rotation matrix Ri for each component model Ci,
therefore in training phase each regressor Ci is supplied with Li = [XnRi Y ].
The rotation matrix is also used in predicting phase. For a data point x regressor
Ci output is computed as Ci(xRi). Figure 1 presents a pseudo code for creating
the rotation matrix.

Given:

– Ci — ith regressor
– F — input feature space
– K — number of subsets of features
– P — percentage of instances to remove from training dataset

Create rotation matrix Ri for regressor Ci:

1. Randomly split F into K subsets Fi,j (j = 1, . . . ,K)
2. For (j = 1, . . . , K)

(a) Compose a new matrix Xi,j by selecting columns from X that correspond to
attributes in Fi,j

(b) Remove P randomly chosen instances from Xi,j

(c) Apply PCA on Xi,j creating a matrix Di,j

3. Arrange matrices Di,j into a block diagonal matrix Ri

4. Rearrange the rows of Ri to match the order of the attributes in F

Fig. 1. Creating rotation matrix pseudo code

3 Methods Used and Experimental Setup

The main goal of our investigation was to compare the rotation forest (RTF)
method with bagging ensemble (BE) and single (SM) models in respect of their
predictive accuracy, using cadastral data on sales/purchase transaction of resi-
dential premises. All experiments were performed using WEKA (Waikato En-
vironment for Knowledge Analysis) data mining framework. WEKA is an open
source system [23] developed at University of Waikato which contains tools for
data pre-processing, classification, regression, clustering, visualization and many
more. For our purpose as base learners we chose two followingWEKA algorithms,
very often used for building and exploring ensemble methods:
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M5P — Pruned Model Tree. Implements routines for generating M5 model
trees. The algorithm is based on decision trees, however, instead of having values
at tree’s nodes, it contains a multivariate linear regression model at each node.
The input space is divided into cells using training data and their outcomes,
then a regression model is built in each cell as a leaf of the tree.

MLP — Multi Layer Perceptron. One of the most popular neural networks. It
uses backpropagation for training. In our experiment we used one hidden layer
containing three neurons. In output layer there was only one neuron presenting
a prediction result.

The real-world dataset used in experiments was drawn from an unrefined
dataset containing above 50,000 records referring to residential premises trans-
actions accomplished in one Polish big city with the population of 640,000 within
eleven years from 1998 to 2008. The problem is that most of these transactions
do not reflect the real market value of premises. Due to that fact the dataset was
cleansed by the experts. The final dataset counted 5213 records comprising nine
following features pointed out by the experts as the main drivers of premises
prices: usable area of premises, age of a building, number of rooms in a flat, floor
on which a flat is located, number of storeys in a building, geodetic coordinates
Xc and Yc of a building, distance from the city centre and distance from the
nearest shopping center. As target values total prices of premises were used, but
not the prices per square meter, because the latter convey less information.

Due to the fact that the prices of premises change substantially in the course
of time, the whole 11-year dataset cannot be used to create data-driven models,
therefore it was split into 20 half-year subsets. Then, the prices of premises
were updated according to the trends of the value changes over time. Starting
from the second half-year of 1998 the prices were updated for the last day of
consecutive half-years. The trends were modelled by polynomials of degree three.
The sizes of half-year data subsets are given in Table 1. All data we used in
experiments were normalized using the min-max approach. The next step in our
study was to define algorithm validation schemata. We employed two commonly
used approaches: 10-fold cross-validation (10cv) and holdout split in proportion
70% training set, 30% testing set, repeated ten times (H70). The ensembles
consisted of 50 models each with averages as an aggregation function. The root
mean square error (RMSE) was utilized as a performance function. For verifying
the statistical significance of differences among all modeling methods, we applied
the non-parametric Friedman and Wilcoxon tests using Statistica package.

Table 1. Number of instances in half-year datasets

1998-2 1999-1 1999-2 2000-1 2000-2 2001-1 2001-2 2002-1 2002-2 2003-1
202 213 264 162 167 228 235 267 263 267

2003-2 2004-1 2004-2 2005-1 2005-2 2006-1 2006-2 2007-1 2007-2 2008-1
386 278 268 244 336 300 377 289 286 181
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4 Results of Experiments

Pursuing our goal we divided experiments into two series. The first preliminary
series aimed to determine the best rotation forest configuration for both algo-
rithms: MLP and M5P, within 10cv and H70 validation schemata. As a result
of these tests we were able to select the number of subsets K and percentage
of removed instances P for which RTF gave the best accuracy in corresponding
experimental setup. The overall observation acknowledged what was pointed out
by RTF authors. There is no general rule for fine tuning the algorithm. For each
of experiment setup separate tuning was needed. The Friedman tests, performed
for each combination of base algorithms and validation feamework and paramter
P separately, showed that there are significant differences between models with
different number of subsets. Average rank positions of tested models determined
during Friedman test for different number of subsets are presented in Table 2.

Next, Wilcoxcon tests were conducted. Both tests together revealed that for
M5P in 10cv for all values of P schema we got best accuracy for 5 subsets, but
there was no significant difference among 4, 5 and 6 subsets. In H70 validation
schema the best accuracy was gained mostly for 3 subsets, but again there was no
significant difference among 2, 3, 4, 5, 6 and 7 subsets. As for MLP algorithms,
in both 10cv and H70, two subsets outperformed other configurations and the
difference was for the most cases statistically important. The results were not
clearly decisive. However, taking into account the rank positions, for further tests
we selected models which performed best in their groups. They were marked with
bold font in Table 2.

The next step in tuning RTF was to find the best percentage of removed
instances P for each algorithm within two validating schemata. Again, Friedman
and Wilcoxon tests were made. Average rank positions of tested models are
presented in Table 3. According to Friedman test the best results for M5P within
10cv were obtained for P = 50 and for MLP within both schemata for P = 100.
M5P within H70 P = 30 was the best, however Wilcoxon tests revealed that
differences were not significant statistically.

Due to lack of statistical differences for further testes models with the lowest
average rank were selected (marked with bold font in Table 3. The second part
of our study was intended to compare RTF performance with bagging, random
forest and a single model. In our previous study the best results were obtained
for bagging with a 100% bag size and random forest with seven features [16].
Results can not be averaged among all datasets, therefore as an examples table
4 presents root mean square error obtained by RTF ensembles and the models
taken from the previous study for 2005-1 dataset. Table 5 presents average rank
positions of mantioned modeles determined by Friedman test. B100 — stands
for Bagging with bag size of 100%, RF — Random Forest with bag size of
100%, limited to 7 features. Both ensembles also consisted of 50 component
models.
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Table 2. Average rank positions of tested models determined during Friedman test for
different feature subsets

Alg Res P 1 2 3 4 5 6 7 8 9

M5P

10cv

100 8.80 4.55 4.80 3.45 3.20 3.90 4.65 5.30 6.35
90 8.40 4.70 4.50 3.85 3.25 3.40 4.85 5.60 6.45
80 8.40 4.95 4.55 3.55 3.20 3.60 4.70 5.45 6.60
70 8.70 4.60 4.75 3.35 3.30 3.80 4.70 5.40 6.40
60 8.65 4.80 4.75 3.40 3.15 4.00 4.45 5.40 6.40
50 8.55 5.00 4.55 3.60 2.90 3.75 4.70 5.55 6.40

H70

100 6.80 4.90 3.90 3.90 5.40 4.35 5.60 4.10 6.05
90 6.55 4.45 4.10 4.55 4.50 4.55 4.95 5.35 6.00
80 6.70 4.85 5.40 3.70 5.40 3.95 4.55 5.10 5.35
70 6.55 4.25 4.05 5.25 4.25 5.30 5.20 4.35 5.80
60 6.05 4.55 3.35 5.25 4.20 4.70 5.20 5.40 6.30
50 6.80 5.45 4.35 4.80 4.35 5.00 3.45 4.85 5.95

MLP

10cv

100 4.60 2.60 3.95 4.25 4.30 4.50 5.95 7.05 7.80
90 4.60 2.75 4.10 4.20 4.45 4.70 6.10 6.50 7.60
80 4.45 2.70 3.85 4.10 4.50 4.95 6.00 6.75 7.70
70 4.40 2.50 4.80 3.80 4.45 4.40 6.35 6.90 7.40
60 4.80 2.85 4.20 4.00 3.90 5.00 5.85 6.85 7.55
50 4.50 2.55 4.05 4.05 4.55 4.70 5.85 7.25 7.50

H70

100 5.40 2.65 3.85 5.65 5.45 5.45 5.30 5.10 6.15
90 5.00 3.35 3.85 4.70 5.35 5.25 5.50 5.50 6.50
80 4.75 4.30 4.70 5.00 4.55 4.95 4.60 5.40 6.75
70 4.60 3.35 5.00 4.95 5.10 4.50 4.55 6.65 6.30
60 4.65 3.60 5.25 4.80 5.90 3.90 5.70 5.15 6.05
50 5.25 4.85 4.80 4.00 3.70 4.45 5.20 6.30 6.45

Table 3. Average rank positions of tested models determined during Friedman test for
different percentage of instances removed from training dataset

Alg Res 1st 2nd 3rd 4th 5th 6th

M5P
10cv 50-5 (2.60) 70-5 (3.45) 100-5 (3.50) 80-5 (3.60) 60-5 (3.65) 90-5 (4.20)
H70 80-4 (3.35) 60-3 (3.40) 70-3 (3.50) 50-7 (3.50) 90-3 (3.55) 100-3 (3.70)

MLP
10cv 100-2 (3.05) 80-2 (3.35) 50-2 (3.35) 70-2 (3.55) 60-2 (3.70) 90-2 (4.00)
H70 100-2 (3.30) 60-2 (3.45) 50-5 (3.50) 80-2 (3.55) 90-2 (3.60) 70-2 (3.60)

Table 4. RMSE of compared models obtained for 2005-1 dataset

Alg Res RTF-50-5 RF-7 B100 SM

M5P
10cv 0.0890 0.0893 0,0902 0,0872
H70 0.0841 0.9553 0.1089 0.1241

MLP
10cv 0.0975 0.0942 0.0972 0.1108
H70 0.0968 0.1120 0.1101 0.1273
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Table 5. Average rank positions of compared models determined by Friedman test

Alg Res 1st 2nd 3rd 4th

M5P
10cv RTF-50-5 (2.00) RF-7 (2.20) B100 (2.35) SM (3.45)
H70 RTF-80-4 (2.00) RF-7 (2.20) B100 (2.60) SM (3.20)

MLP
10cv RF-7 (1.20) B100 (2.05) RTF-100-2 (2.75) SM (4.00)
H70 RF-7 (1.65) B100 (2.15) RTF-100-2 (2.20) SM (4.00)

According to Friedman test RTF for M5P outperformed other models. How-
ever Wilcoxon test showed that it was equivalent to RF. For MLP within 10cv
RTF performed worse than bagging and random forest. Although for MLP within
H70 RTF got higher average rank position, but the differences were not statisti-
cally significant.

5 Conclusions and Future Work

The main goal of our study was to compare empirically the performance of
rotation forest with bagging ensembles and single models in respect of their
predictive accuracy. The experiments were conducted using WEKA implemen-
tation of M5 tree and multilayer perceptron algorithms. All tests were carried out
within 10-fold cross validation and holdout split in a proportion of 70% training
instances and 30% testing instances repeated ten times. A comprehensive real-
world dataset including over 5200 samples and recorded during the time span of
11 years served as basis for benchmarking the methods.

Tuning of rotation forest parameters was necessary. Value of parameter K for
which rotation forest obtained the best results depended on particular algorithm
and testing framework. Tuning percentage of removed instances did not influence
the overall results. The overall results of our investigation were as follows. For
M5P rotation forest turned to be superior to other tested methods. However, it
was not the case for MLP where random forest revealed the best performance
for 10cv, and for H70 all ensemble methods were equivalent. Single models, in
turn, provided worse prediction accuracy than any other ensemble technique for
both learning algorithms.

It is planned to explore rotation forest methods with such weak learners as
genetic fuzzy systems and genetic neural networks. Moreover, the techniques of
determining the optimal sizes of multi-model solutions which lead to achieve
both low prediction error and an appropriate balance between accuracy and
complexity will be studied.
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of Fuzzy Models for Premises Valuation. In: Nguyen, N.T., Le, M.T., Świ ↪atek, J.
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16. Lasota, T., �Luczak, T., Trawiński, B.: Investigation of Random Subspace and Ran-
dom Forest Methods Applied to Property Valuation Data. In: J ↪edrzejowicz, P.,
Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS (LNAI), vol. 6922, pp.
142–151. Springer, Heidelberg (2011)
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Abstract. Support Vector Machines (SVM’s) with various kernels have become
very successful in pattern classification and regression. However, single kernels
do not lead to optimal data models. Replacing the input space by a kernel-based
feature space in which the linear discrimination problem with margin maximiza-
tion is solved is a general method that allows for mixing various kernels and
adding new types of features. We show here how to generate locally optimized
kernels that facilitate multi-resolution and can handle complex data distributions
using simpler models than the standard data formulation may provide.

1 Introduction

For more than a decade now kernel Support Vector Machines (SVM’s) have become
extremely successful approaches to pattern classification and regression problems. Ex-
cellent results have been reported in applying SVM’s in multiple domains thanks to the
ingenious use of various kernels, providing an equivalent of specific similarity measures
in the kernel space [1]. However, the type of solution offered by a given data model ob-
tained by SVM with a specific kernel may not be the most appropriate for particular
data. Each data model defines a hypotheses space, that is a set of functions that this
model may easily learn. Linear methods work best when decision borders are flat, but
they are obviously not suitable for spherical distributions of data. For some problems
(for example, high-dimensional parity and similar functions), neither linear nor radial
decision borders are sufficient [2].

Kernel methods implicitly provide new, useful features zi(x) = k(x, xi) constructed
around support vectors xi, a subset of input vectors relevant to the training objective.
Prediction is supported by new features, most often distance functions from selected
training vectors, weighted by a Gaussian function, making the decision borders flat in
the kernel space. Multiple kernels may be used to construct new features, as shown in
our Support Feature Machine algorithm [3]. In the second section standard approach
to the SVM is described and linked to evaluation of similarity to support vectors in
the space enhanced by zi(x) = k(x, xi) kernel features. Linear models defined in the
enhanced space are equivalent to kernel-based SVMs. In particular, one can use linear
SVM to find discriminant in the enhanced space, preserving the wide margins. For
special problems other linear discriminant techniques may be more appropriate [4].

Although most research in the SVM community has focused on the underlying learn-
ing algorithms the study of kernels has also gained importance recently. Standard ker-
nels such as linear, Gaussian, or polynomial do not take full advantage of the nuances of
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specific data sets. This has motivated plenty of research into the use of alternative ker-
nels. Various kernels may be used to create enhanced feature space. Here an approach
that combines Gaussian kernels with selection of pure clusters, adopted from our Al-
most Random Projection Machines [5] algorithm, is investigated. In section 4 Locally
Optimized Kernels are tested in a number of benchmark calculations. Brief discussion
of further research directions concludes this paper.

2 Kernels and Support Vector Machines

2.1 Standard SVM Formulation

Since the seminal paper of Boser, Guyon and Vapnik in 1992 [6] Support Vector Ma-
chines quickly became the most popular method of classification and regression, find-
ing numerous other applications [7,8,9]. In case of binary classification problems SVM
algorithm minimizes average errors (or risk) over the set of data pairs 〈xi, yi〉. Depend-
ing on the choice of kernels and optimization of their parameters SVM can produce
flexible nonlinear data models that, thanks to the optimization of classification margin,
offer good generalization. This means that the minimum distance between the training
vectors xi and the hyperplane w should be maximized:

max
w,b

min ‖x − xi‖ : w · x + b = 0, i = 1, . . . , m (1)

The w and b can be rescaled in such a way that the point closest to the hyperplane
w ·x+b = 0, lies on one of the parallel hyperplanes defining the margin w ·x+b = ±1.
This leads to the requirement that

∀xi yi[w · xi + b] ≥ 1 (2)

The width of the margin is equal to 2/‖w‖. Therefore maximization of margins is equiv-
alent to minimization:

min
w,b

τ(w) =
1
2
‖w‖2 (3)

with constraints that guarantee correct classification:

yi[w · xi + b] ≥ 1 i = 1, . . . , m (4)

Constraint optimization problems are solved by defining the Lagrangian:

L(w, b, α) =
1
2
‖w‖2 −

m∑
i=1

αi(yi[xi · w + b] − 1) (5)

where αi > 0 are Lagrange multipliers. Its minimization over b and w leads to two
conditions:

m∑
i=1

αiyi = 0, w =
m∑

i=1

αiyixi (6)
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The vector w that defines the hyperplane is expressed as a combination of the training
vectors, each component w[j] is a combination of j feature values for all vectors xi[j].
According to the Karush-Kuhn-Thucker conditions:

αi(yi[xi · w + b] − 1) = 0, i = 1, . . . , m (7)

For αi �= 0 vectors must lie on one of the margin hyperplanes yi[xi · w + b] = 1;
these vectors “support” the hyperplane w that defines the solution of the optimization
problem. Although the minimization may be performed in the primal form [10] the
quadratic optimization problem is frequently redefined in a bit simpler dual form:

max
α

w(α) =
m∑

i=1

αi − 1
2

m∑
i,j=1

αiαjyiyjxixj (8)

with constraints:

αi ≥ 0 i = 1, . . . , m

m∑
i=1

αiyi = 0 (9)

The discriminant function takes the form:

g(x) = sgn

(
m∑

i=1

αiyix · xi + b

)
(10)

Now it is easy to replace dot product x ·xi by a kernel function k(x, x′) = φ(x) ·φ(x′)
where φ(x) represents an implicit transformation of the original vectors to a new kernel
space. For any φ(x) vector the part orthogonal to the space spanned by φ(xi) does not
contribute to the φ(x)·φ(x′) products, therefore it is sufficient to express φ(x) and w as
a combination of φ(xi) vectors. The dimensionality d of the input vectors is frequently
lower than the number of training patterns d < m, and then φ(x) represents mapping
into higher m-dimensional space. According to the Cover theorem [11] probability of
linear separation of data points grows with the dimensional of the space in which data
is embedded. However, in case of microarray data and some other problems the reverse
situation is true: dimensionality is much higher than the number of patterns for training.
Still weighted distances used as features for linear discrimination may be quite useful,
providing some improvement in comparison to the nearest neighbor methods.

The discriminant function in the φ() space is:

g(x) = sgn

(
m∑

i=1

αiyik(x, xi) + b

)
(11)

If the kernel function is linear the φ() space is simply the original space and the contri-
butions to the discriminant function are based on the cosine distances to the reference
vectors xi from the yi class. Thus the original features x[j], j = 1..d are replaced
by new features zi(x) = k(x, xi) that evaluate how close (or how similar) the vector
is from the training vectors. Incorporating signs in the coefficient vector Ai = αiyi

discriminant functions is:

g(x) = sgn

(
m∑

i=1

αiyizi(x)) + b

)
= sgn (A · z(x)) + b) (12)
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With the proper choice of non-zero α coefficients this function provides a distance
measure from the decision border, combining distances from the support vectors placed
at the margins. In non-separable case instead of using cosine distance measures it is
better to use localized similarity measures, for example by scaling the distance with
Gaussian functions. This leads to one of the most useful kernels:

kG(x, x′) = exp(−β‖x − x′‖2) (13)

Such kernels help to smooth decision borders because in the discriminant kernels an-
chored at the support vectors of one class are combined overcoming the influence of
low-density data points from the opposite classes. Kernel-based methods use similarity
in a special way in combination with linear discrimination, but similarity estimations
may also be used in many other ways in pattern recognition problems [12,1].

2.2 Kernel Features Spaces

For each vector x we have m kernel features zi(x) = k(x, xi) defined for each training
vector. For example taking the Gaussian kernel kG(x, x′) and fixing the value of dis-
criminant g(x) =constant is equivalent to taking a weighted sum of gaussians centered
at some support vectors that are near the border; for large dispersions all vectors may
contribute, but a single one will have weak influence on the decision border. Because
contours of discriminant function in the kernel space are approximately constant when
x moves along the non-linear decision border in the input space, they lie on the hyper-
plane in the kernel space. Therefore in the space of kernel features linear discriminant
methods may be applied directly, without the SVM machinery. This was demonstrated
in computational experiments by comparing the results of SVM with Gaussian kernel
solved by quadratic programming with direct linear solutions in the kernel-based fea-
ture space[3].

3 Locally Optimized Kernels

The Locally Optimized Kernels (LOK) approach presented in this paper is based on
generation of new features using restricted gaussian kernels followed by the Winner
Takes All (WTA) comparison of output activities (where a simple sum of the nodes as-
signed to class C is used to estimate the winning class), or by the linear discrimination.
One may use many other machine learning algorithms in this new feature space [12,1],
but here we have space to compare only the basic version of this approach with standard
SVM approaches (see Algorithm 1).

To create LOK feature space for every training vector a candidate kernel feature is
used: gi(x) = exp(−||xi − x||2/2σ2). For every such feature gi analyze p(gi|C) dis-
tributions to find relatively pure clusters in some Iiab = [gia, gib] interval (here we
have used only pure clusters, although in some problems it may be necessary to include
some. This creates binary candidate features Biab(x). Good candidate feature should
cover some minimum number η of training vectors. The optimal number may depend
on the type of data, the domain expert may consider even a single vector to be a signifi-
cant exception worth retaining. Below the η parameter has been optimized using results
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of crossvalidation. This condition avoids creation of overspecific features. In the imple-
mentation tested here LOK uses winner-takes-all mechanism or linear discrimination to
find solutions in the new feature space.

The LOK algorithm is sketched below:

Algorithm 1 Locally Optimized Kernels
Require: Fix the values of internal parameters: η for minimum covering and σ for dispersion.

1: Standardize the dataset, m vectors, d features.
2: Create candidate kernel features gi(x) = exp(−||xi − x||2/2σ2).
3: Sort gi(x) values in descending order, with associated class labels.
4: Analyze p(gi|C) distribution to find all intervals with pure clusters defining binary features

Biab(x; C).
5: if the number of vectors covered by the feature Biab(x; C) > η then
6: accept this binary feature creating class-labeled hidden network node.
7: end if
8: Classify test data mapped into the enhanced space:
9: Sum the activity of hidden node subsets for each class to calculate network outputs (WTA).

10: Build linear model on the enhanced feature space (LDA).

In this version of LOK algorithm there are only two parameters to set: η determines
the minimal size of a cluster (number of vectors per cluster), and σ controls dispersion
of localized gaussian features. Clean clusters are found either in the local neighborhood
of the support vector in the interval [0, b], or if the support vector is surrounded by
vectors from another class they may be quite far, with large values of both a < b. Thus
even outliers may provide useful support features. Clean clusters and binary features
may be quite useful to identify regions with vectors that may be correctly classified
with high confidence. For very large datasets these vectors may be removed, leaving
only areas close to the decision borders. In essence this solves the separable problem at
a cost of high rejection rate. To deal with the remaining vectors one should introduce
features based on clusters that are not pure.

For every candidate support vector point b = gi for which p(gi|C) = p(gi|¬C)
is found and σi = b/2 is taken as dispersion, creating a new Gaussian kernel feature
gi(x; b) = exp(−||xi − x||2/b). A slightly smaller value of b could make the new
feature more pure, but this would introduce at least one additional parameter, therefore
we have not considered this possibility. With sufficient number of support features small
impurities for small gi(x) feature values do not matter. In some cases more support
features may be generated using large σi and analyzing p(gi|C) distribution for values
larger than b, using intervals Iiab = [gia, gib], a > 0 where one of the classes dominates.
These new features are obtained as differences of two gaussian functions gi(x; b) −
gi(x; a). Other types of functions could be used here to model the slopes of probability
density distributions, for example differences of two sigmoidal functions [13]. In the
comparison of results presented in Table 2 LOKLDA and LOKWTA are used with such
additional features, if they were found useful improving the training results.

To find solution in the new feature space LOKLDA uses linear discrimination with
margin maximization (optimal margin is selected using crossvalidation in a standard
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G(X)

B(Gi;C)

Fig. 1. Network structure of the LOK algorithm

way, as it is done also for SVM calculations). Features discovered by the LOK algorithm
may be implemented as network nodes that represent kernel transformations. Additional
layers of the network are then used to analyze the data in the feature space created in
this way (see Fig. 1). LOK algorithm with Gaussian features may be called properly
LOGK, as other functions may be used as kernels.

4 Illustrative Examples

In order to evaluate the effect of optimized kernels on SVM results 4 methods have
been compared: standard SVM with linear kernel (SVML) and with Gaussian kernel

Table 1. Summary of datasets

Dataset #Vectors #Features #Classes Dataset #Vectors #Features #Classes
arrhythmia 63 279 11 autos 159 25 6

balance-scale 625 4 3 breast-cancer 277 9 2
breast-w 683 9 2 car 1728 6 4

cmc 1473 9 3 credit-a 653 15 2
credit-g 1000 20 2 cylinder-bands 277 39 2

dermatology 358 34 6 diabetes 768 8 2
ecoli 336 7 8 glass 214 9 6

haberman 306 3 2 heart-c 296 13 2
heart-statlog 270 13 2 hepatitis 80 19 2
ionosphere 351 34 2 iris 150 4 3

kr-vs-kp 3196 36 2 liver-disorders 345 6 2
lymph 148 18 4 sonar 208 60 2
vote 232 16 2 vowel 990 13 11

zoo 101 17 7
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Table 2. 10x10CV results

Dataset SVML SVMG LOKWTA LOKLDA
arrhythmia 50.92±17.31 43.36±21.47 42.00±24.19 39.10±12.98

autos 54.48±13.75 74.29±12.58 58.69±11.03 74.36±10.40
balance-scale 84.47±3.17 89.83±2.09 90.71±2.38 96.46±2.62
breast-cancer 73.27±6.10 75.67±5.35 76.58±6.37 75.09±1.99

breast-w 96.60±2.07 96.77±1.84 96.93±1.62 97.21±2.13
car 67.99±2.61 98.90±0.90 84.72±3.44 93.57±1.81
cmc 19.14±2.14 34.09±3.67 48.54±2.52 51.06±4.30

credit-a 86.36±2.86 86.21±2.90 82.67±4.01 84.70±4.91
credit-g 73.95±4.69 74.72±4.03 73.10±2.38 72.70±3.86

cylinder-bands 74.58±5.23 76.89±7.57 74.32±6.41 80.11±7.53
dermatology 94.01±3.54 94.49±3.88 87.97±5.64 94.71±3.02

diabetes 76.88±4.94 76.41±4.22 74.88±3.88 76.95±4.47
ecoli 78.48±5.90 84.17±5.82 82.47±3.66 85.66±5.40
glass 42.61±10.05 62.43±8.70 64.96±7.72 71.08±8.13

haberman 72.54±1.96 72.91±5.93 76.46±4.34 73.53±0.72
heart-c 82.62±6.36 80.67±7.96 81.07±7.56 81.04±5.17

heart-statlog 83.48±7.17 83.40±6.56 81.48±8.73 83.33±7.46
hepatitis 83.25±11.54 84.87±11.98 89.88±10.14 84.05±4.40

ionosphere 87.72±4.63 94.61±3.68 85.18±6.28 95.16±2.72
iris 72.20±7.59 94.86±5.75 94.67±6.89 93.33±5.46

kr-vs-kp 96.03±0.86 99.35±0.42 83.73±2.58 98.25±0.45
liver-disorders 68.46±7.36 70.30±7.90 57.40±5.72 69.72±6.57

lymph 81.26±9.79 83.61±9.82 76.96±13.07 80.52±7.91
sonar 73.71±9.62 86.42±7.65 86.57±7.01 86.52±8.39
vote 96.12±3.85 96.89±3.11 92.57±7.52 93.95±4.18

vowel 23.73±3.13 98.05±1.90 92.49±3.37 97.58±1.52
zoo 91.61±6.67 93.27±7.53 88.47±5.35 94.07±6.97

(SVMG), LOK with the Winner Takes All (WTA) estimation (LOKWTA) and LOK
with linear discrimination (LOKLDA), equivalent to the linear SVM in the extended
space. These 4 approaches have been applied to the 27 standard benchmark datasets,
summarized in Table 1, downloaded from the UCI Machine Learning Repository [14].
Vectors with missing feature values (if any) have been removed. Each calculation has
been performed using the 10-fold stratified crossvalidation, and repeated 10 times to
obtain reliable estimates of accuracies and standard deviations. The SVM parameters C
(best value from the [2−5 . . . 25] range) and σ (best value from the [2−10 . . . 23] range)
have been fully optimized for each dataset in an automatic way, using crossvalidation
estimations on the training partition to be sure that no information about the test data
has been used at any stage. Results for each dataset are collected in Table 2, with the
best results marked in bold.

Results using Locally Optimized Kernels are in all cases not significantly worse than
SVM, and in most cases better. As should be expected LOKWTA achieved best results
only in a few (exactly 4) cases, in case of cmc data outperforming SVM by a large
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margin. SVML also achieved best results in 4 cases, in case of arrhythmia (only 63
vectors with 11 classes and 279 features) strongly outperforming other methods, but in
this case variance is quite big and the difference is not statistically significant.

For 11 datasets LOKLDA outperformed all other methods, while SVMG was the best
for 8 datasets, and only in the case of car data the difference becomes significant. These
results show that in most cases local optimization of kernels leads to an improvement
over the single kernel SVM algorithms, and may achieve the best results comparing
to all state-of-the-art classifiers (Maszczyk, PhD thesis, in prep.). The computational
complexity of the LOKLDA approach is dominated by solution of linear discrimination
problem and thus is comparable to the original linear SVM. For d-dimensional problems
and m vectors estimation of optimal kernel size requires O(dm log m) operations. This
is the computational complexity of the LOKWTA approach that in many cases has not
been significantly worse than SVM, while the method may be used with very large
datasets, where solving linear discrimination becomes costly.

5 Conclusions

Locally Optimized Kernels (LOK) algorithm introduced in this paper is focused on
generation of new useful kernel features. It is not restricted to gaussian kernels, and
may be treated as one variant of our general Support Feature Machine approach [3] for
generation of features that extract more information from the data than may be derived
using simple kernels. The purpose of this paper is to show that the LOK approach
despite its simplicity generates enhanced feature space that improves construction of
the original SVM kernel space. While a lot of effort has been devoted to improvements
of the SVM learning algorithm much less attention has been paid to methods that extract
information from data, making the linear discrimination simpler and more accurate. In
the case of gaussian kernel features there is no reason why the same dispersion should
be used for all support vectors. Those support vectors that are far from decision border
on the correct side should have large dispersions, and vectors closer to decision borders
should have smaller dispersions. Support vectors on the wrong side should provide
kernel features that exclude local neighborhood. LOK algorithm creates such locally
optimized gaussian kernels. It may also be easily combined with many methods of
feature selection for additional improvement.

A fruitful question is: what is the limit of accuracy for a given dataset that can be
achieved in a given feature space? Progress in the recent years in classification and ap-
proximation methods shows that for simple data results are probably close to this limit.
However, there is still an ample room for improvement in generation of enhanced fea-
tures spaces that contain more information. Of course not only kernel-based features are
useful. Several ways of creating new features have recently been introduced [15,3,16],
overcoming the limitation of algorithms that work in original features spaces, where
discrimination or similarity-based methods operate. The final goal is to create meta-
learning approaches [17] that construct in automatical way optimal, and in most cases
the simplest, models of data.
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Abstract. We present a practical application of Hierarchical Classifier
with overlapping clusters to the problem of finding the minimal synchro-
nizing word length of a given finite automaton. We compare our approach
with a single neural network model. Using a certain representation of
automaton as the classifier’s input we improve HC efficiency and we are
able to analyze the relation between particular automata features and
minimal synchronizing lengths.

1 Introduction

Synchronizing sequences play an important role in the model-based testing of
reactive systems [1], part orienters [8], finding one’s location on a map/graph [6],
resetting biocomputers [20], networking (determining a leader in a network [6]),
and recently – in communication protocols [16,5,22]. Synchronizing words allow
us to bring the machine into one state, no matter which state it is in. This helps
much in designing effective test cases, e.g. for sequential circuits. In [15] authors
show a class of faults for which a synchronizing sequence for the faulty circuit
can be easily determined from the synchronizing word of the fault free circuit.
They also consider circuits that have a reset mechanism and show how reset can
ensure that no single fault would cause the circuit to become unsynchronizable.

The central problem in the approach based on the synchronizing words is
to find the shortest one (called the minimal synchronizing word, MSW) for a
given automaton. As the problem is DP-complete [9], the polynomial algorithms
cannot be optimal, that is they cannot find the shortest possible synchronizing
sequences (unless P = NP , which is strongly believed to be false).

In recent years some efforts were made in the field of algorithmic approach for
finding possibly short synchronizing sequences [3]. Pixley et al. [10] presented an
efficient method based upon the universal alignment theorem and binary decision
diagrams to compute a synchronization sequence. There are also Natarajan [8]
and Eppstein [4] algorithms. The problem of synchronizing finite state automata
has a long history. While its statement is simple (find a word that sends all states
to one state), there are some important questions still to be answered. One of the
most intriguing issues is the so-called Černý Conjecture [2], which states that for
any n-state synchronizing automaton there exists a synchronizing word of length
at most (n − 1)2. Should the conjecture be true, this would be a strict upper
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bound, as there exist automata that reach this value. The Černý Conjecture has
profound theoretical significance (remaining one of the last “basic“ unanswered
questions in the field of finite state automata, especially after the Road Coloring
Conjecture has been proved by Trahtman [18]).

The problem of finding MSW length for a given automaton A can be re-stated
as a classification problem, where the output class for A is labeled by this length.
In this work we use the concept of Hierarchical Classifier (in short: HC) [11]
to solve this problem. The crucial idea is to represent the input automaton
not directly (by its transition function), but as a vector of some real-valued
parameters that describe different automaton features. This approach allows
us to obtain two results: first, the application of HC to solve the problem of
finding MSW lengths. The second result shows the correlation between particular
automata features and the MSW length. This result allows theoretical computer
scientists, who work on the Černý conjecture, to focus on features that give the
best results.

If we have the estimation of the MSW length (not the word itself), we may
take advantage on this fact in several algorithms which find possibly short syn-
chronizing words. For example, this is the case of the genetic algorithm [17],
where we have to know in advance the estimate chromosome length. The other
application is in numerical experiments, where, for example, we search for some
extremal automata (the ones with long synchronizing words; such automata are
very rare and have very interesting properties, see [21]). Exponential algorithm
– which returns the real MSW – has a long execution time, so we may first check
quickly the estimated length of the MSW and if it is below some predefined
threshold, we may assume that this automaton is not an extremal one and that
we do not have to run the exponential algorithm. This will help to save our time.

HC is a machine learning algorithm designed to cope with problems with a
very large number of output classes. In every step of it’s training process, the
problem is divided into several sub-problems. Each is composed of groups of
classes (clusters in HC’s nomenclature) which are found to be similar at that
step. Let K be the number of classes of the original problem, classes which are
recognized in HC’s root. In the next level the maximum number of classes in
each sub-problem is K/2 (this ratio can be set as a parameter).

If we encode the synchronizing problem of predicting the MSW length, where
each word length represents a class, then HC is perfectly fit for this problem.
Because HC can divide the output space effectively, and the number of possible
classes (all lengths from 0 to (n− 1)2) is high, the application of HC is natural.

Additionally, each individual classifier in the HC tree is designed to be weak,
i.e. with accuracy only a small value higher than a random classifier (the minimal
accuracy for a K-class classifier is given with α(K) [12]). Because of that, it is
not necessary to train each node to be almost perfect, and the whole tree can
be constructed in a manageable time. Also, the actual HC’s architecture for a
given problem is being designed during training, it is not predefined.
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2 Preliminaries

An automaton is a triple A = (Q,A, δ), where Q is a nonempty, finite set of
states, A is a finite alphabet and δ : Q × A → Q is a transition function called
also the automaton action. By A∗ we denote a free monoid over A consisting of
all finite words over A. By ε we denote the empty word of length 0. We define
A+ = A∗ \ {ε} and An = {w ∈ A∗ : |w| = n}. For the sake of simplicity, we will
write p.a = q instead of δ(p, a) = q. It is convenient to extend δ to the subsets
of Q in the usual way: for P ⊂ Q we define P.ε = P , P.a =

⋃
p∈P {p.a} and

P.aω = (P.a).ω for all ω ∈ A+. We say that W ∈ A∗ synchronizes A = (Q,A, δ)
if |Q.W | = 1. If such a word exists, A is called a synchronizing automaton.
Sometimes we will be interested in the ”local” synchronization only: if P ⊂ Q,
then we say that W ∈ A∗ is P -synchronizing (or that W synchronizes P ) if
|P.W | = 1. By q.a−1 we understand the set {p : p.a = q}. We extend this notion
to the subsets: for P ⊂ Q we define P.a−1 =

⋃
p∈P p.a−1.

The decision problem of finding the MSW for a given automaton has been
recently shown to be DP-complete [9]. It is well-known that the length of MSW
for an n-state synchronizing automaton is at most (n3 − n)/6 [7]. The Černý
conjecture states that this length can be bounded by (n− 1)2. Černý showed [2]
that for each n ≥ 1 there exists an automaton with SSW of length (n − 1)2, so
the conjectured bound is tight. These automata are called the Černý automata.
An n-state Černy automaton will be denoted by Cn. Černy automaton is defined
over the two-element alphabet A = {a, b} and its transition function is as follows
(states are denoted by 1, 2, ..., n):

δ(q, x) =

⎧⎨⎩
(q mod n) + 1 if x = a
q if x = b ∧ q �= n
1 if x = b ∧ q = n

(1)

Černý automata are very important, as automata with |MSW | = (n − 1)2 are
very rare. Only eight such automata are known that are not isomorphic with the
Černy automata [19].

Now we will introduce the important notion of the pair automaton. This
construction is used in greedy synchronizing algorithms and, as it will be shown
later, some property of this construction is highly correlated with the length of
MSW. Let A = (Q,A, δ) be a synchronizing automaton. A pair automaton for
A is the automaton A2 = (Q′, A, δ′), where:

Q′ =
⋃

p,q∈Q∧p=q

{{p, q}} ∪ {0}, δ′ : Q′ ×A→ Q′,

δ′({p, q}, l) =
{{δ(p, l), δ(q, l)} if δ(p, l) �= δ(q, l)
0 otherwise,

δ′(0, l) = 0 ∀l ∈ A.

Pair automaton shows how the pairs of states behave when words are applied to
the original automaton. If p, q ∈ S ⊆ Q and w is a path leading from {p, q} to 0,
it means that |δ(S,w)| < |S|, where p, q ∈ S. In such a situation we say that pair
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{p, q} of states is synchronized by w. By h({p, q}) we will denote the shortest
path from {p, q} ∈ Q′ to ”sink state”0. The next proposition is a straightforward,
but very important fact, also utilized in all heuristic algorithms.

Proposition 1. A word w ∈ A∗ synchronizes A2 iff w synchronizes A. �

This is a very important fact, as checking if pair-automaton is synchronizing is
very easy because of the existence of 0 ”sink state” (A2 is synchronizing if for
each state q there is a path from q to 0). Proposition 1 implies the following
necessary and sufficient condition for A to be synchronized:

Proposition 2. A is synchronizing iff each pair of its states is synchronizing. �

2.1 The Hierarchical Classifier

HC is a type of boosting machine learning algorithm [14]. Suppose we have a K-
class classification problem. Denote by C = {C1, . . . , CK} the set of all classes.
HC is a triple (V, V 0, par), where V = {V i = (Cli, F i)}i∈I is a set of nodes
which form a tree structure. V 0 ∈ V is a root of this tree and par : V (→ V ∪{∅}
returns a parent classifier for a given node. We put par(V 0) = ∅. Each V i is
composed of a classifier Cli : X (→ Ci, Ci ⊆ C and a clustering matrix F i.

F i =

{∅ if V i is a leaf node
Ki × Li matrix otherwise,

where Li is the number of child nodes of V i. It is a binary matrix which describes
which of V i’s children node recognizes which classes in a way that f i

kl = 1 ⇔
l-th child of V i recognizes class Ck. If Cli has no children, we put F i = ∅. Each
classifier Cli in the HC structure is able to solve some subproblem Ci of the
original problem C. If V i is a child of V j , then Ci � Cj . An example HC is shown
in Fig.1.

In each training step the classifier in the current node V i is trained and then
the problem is divided into several sub-problems, each described with a subset
of classes Cj � Ci, j = 1, . . . , Li. This generation of smaller (in the sense of
the number of recognized classes) sub-problems is done basing on how well the
parent classifier Cli recognized individual classes. If some two classes Ck and
Cm are frequently mistaken by Cli, then both are put in the same sub-problem.
In that case, even if some example x ∈ Ck is mistakenly classified as being from
Cm, then the classification can be corrected one level down the HC tree. As
the sub-problems are smaller, so are the errors of the corresponding classifiers.
Clusters may overlap, i.e. some class may belong to more than one cluster. This
improves the whole classification process.

For each non-leaf node V i and for a given input attribute vector x a weight
function wi(x) is defined, wi(x) = [wi

1(x), . . . , w
i
Li(x)]. Weights wi

j(x) describe

the belief of Cli that an attribute vector x belongs to a sub-cluster Qi
j � Ci of

V i node. Clusters Qi
j are defined by F i: j-th column of F i is the characteristic

vector of Qi
j .
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Fig. 1. An example HC. Original problem of 10 classes is first divided into 3 sub-
problems, which are then divided into smaller ones. The × symbol denotes that class
2 is not included in that cluster.

Weights are used to compute the final classification in the evaluation process.
Let Cl0 recognize K classes. For an attribute vector x the vector Cl0(x) is

computed, together with weights w0
l =

∑K
k=1 f

0
klCl0k(x)/

∑L
′

l′=1

∑K
k=1 f

0
klCl0k(x)

for l = 1, . . . , L0. The final classification is found as a weighted sum HCk(x) =∑L
l=1 w

0
l (x)Cllk(x), where Cllk(x) are the activations of child classifiers for class

Ck. If Cll is not a leaf node classifier but a sub-HC, a recursive procedure is used.
The rule described above (named all-subtrees) uses classifications of all child
nodes in a HC tree which may be both computationally expensive and also error
prone – a node which does not recognize the true class of x would also generate
some answers, i.e. noise. There are also some other rules, like: single-path
(follow only one path from root to final leaf), restricted (follow only paths
to these sub-classifiers that at least one class Ck has activation higher than the
class prior, i.e. Clik(x) > P (Ck)), α-restricted (follow only paths where at
least one class has activation higher than a pre-defined weakness value), see [14]
for details.

The main problem in successful HC training is the way to obtain the correct
clustering matrix F i. The basic algorithm analyzes the misclassifications of Cli.
It is based on the Bayes rule: it starts with K (equal to the number of Cli

recognized classes) single element clusters adding successfully classes which are
frequently mistaken with other classes that are already in a cluster. The clusters
are then glued together if one includes the other. The process is stopped when
either some threshold on the minimal number of clusters is reached or some
fitness function is maximized [14]. Other clustering algorithms include those
based on SAHN, GNG machine learning, or on genetic [13].

3 Problem

The problem is to predict the MSW length for a given automaton treating it as
a classification problem. Each class represents an MSW length. Since the class
labels form a quotient scale, it is possible to compute the classifiers error as the
difference between the labels of the true and predicted class. The very important
thing is the way automata are presented to HC. They are not represented directly
by their transition functions, but as vectors of so-called features.
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q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

Feature vector:

(2, 3, 1, 0.6, 2, 1.3︸ ︷︷ ︸
(F1)−(F6)for a

, 1, 4, 1, 0.8, 2, 1.2︸ ︷︷ ︸
(F1)−(F6)for b

, 3.77︸︷︷︸
(F7)

)

Cycles for a:

C1 = (q1, q2, q1), C2 = (q4, q5, q8, q7).

Paths labeled with a going to cycles:

P1 = ((q3, q2)), P2 = ((q6, q9), (q9, q8)), P3 = ((q10, q8)).

a

a a a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

Fig. 2. Example automaton with Q = {q1, . . . , q10}. Edges labeled by a are bolded. Fea-
ture values for letter a: (F1) =gcd(|C1|, |C2|) =gcd(2, 4) = 2; (F2) = (|C1|+|C2|)/2 = 3;
(F3) = max{|P1|, |P2|, |P3|} = 2; (F4) = (|C1|+ |C2|)/|Q| = 0.6; (F5) = |{q2, q8}| = 2,
because |q2.a−1| = |{1, 3}| = 2, |q8.a−1| = |{5, 9, 10}| = 3 and |qi.a−1| = 1 for
i �∈ {2, 8}; (F6) = (8 · 1 + 1 · 2 + 1 · 3) /10 = 1.3; (F7) ≈ 3.77. To compute (F7) for
each pair of states we compute the length of the shortest word that synchronize this
pair. For example, there are words of length 1 for pairs {1, 3}, {1, 4}, {5, 9}, {5, 10},
{9, 10} and {2, 3}. For 6 pairs there are words of length 2, for 6 pairs – of length 3, for
9 – of length 4, for 11 – of length 5, for 6 – of length 6 and for 1 ({7, 8}) – of length 7,
so (F7) = 1

45
(6 + 12 + 18 + 36 + 55 + 36 + 7) ≈ 3.77.

We introduce the following automata features: (F1) g.c.d. of all cycles for a
given letter a ∈ A; (F2) mean length of cycle for a given a ∈ A; (F3) maximal
length of path going to some cycle (for a given a ∈ A); (F4) ratio of states lying
on a cycle to all states (for a given a ∈ A); (F5) size of “synchronizable“ part of
automaton, that is |{q ∈ Q : |q.a−1| > 1}|; (F6) mean ”synchronizability level”
for a given a ∈ A, that is (1/|Q|) ·∑q∈Q |q.a−1|; (F7) mean “height“ of states
(except 0 state) in pair automaton, that is (1/(|Q′|−1))

∑
{p,q}∈Q′\{0} h({p, q}).

The example automaton with all of its feature values is given in Fig. 2.

4 Experiments and Results

Experiments were performed for automata with |Q| = 4, 5, 6, 8 states and |A| =
2, 3, 4 letters. For each |Q| and |A| we generated a 1000-element set of random
automata. The set was split into train and test sets. The HC results were then
compared with a single neural network model. Table 1 shows the results of this
experiment. Column �01 shows classification error (ratio of examples for which
predicted class was different than the true one); column ”diff err” gives the most
important error: the mean difference between the true and predicted length of
MSW; column MSE gives the standard mean squared error. Errors are given
for test sets. Each experiment was executed in 100 runs for different number
of hidden neurons (3, 5, 8). We give the mean error value together with its
standard deviation, computed from 100 runs of each experiment. Also, for each
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experiment we give the errors for the best found HC and the best single neural
network. Column hid gives the number of hidden neurons used in HC classifiers
that gave the best results in terms of “diff err“. In experiments with single neural
networks the best networks had 3 hidden neurons, except |Q| = 4, |A| = 2, where
the best network had 5 hidden neurons.

Table 1. Results for HC prediction of the minimal synchronizing word lengths com-
pared to a single neural network model. Each error is a mean error computed from 100
experiment runs. �01 is the ratio of examples incorrectly classified; ”diff err” is the ab-
solute difference between MSW and predicted length; MSE is a standard mean square
error. For each experiment the errors for the best run are also shown. Hid is the number
of neurons in HC nodes that gave the best results for each experiment.

Hierarchical Classifier Neural Network
|Q| |A| hid �01 diff err MSE �01 diff err MSE

4 2 8 0.31 ± 0.03 0.42 ± 0.04 0.77 ± 0.14 0.71 ± 0.10 1.62 ± 0.60 5.19 ± 2.80
0.25 0.32 0.50 0.37 0.43 0.57

4 3 3 0.43 ± 0.06 0.60 ± 0.13 1.07 ± 0.40 0.66 ± 0.14 1.20 ± 0.38 2.82 ± 1.24
0.34 0.44 0.71 0.43 0.59 0.97

4 4 8 0.47 ± 0.04 0.61 ± 0.08 0.97 ± 0.22 0.71 ± 0.09 1.22 ± 0.27 2.4 ± 0.80
0.40 0.47 0.62 0.60 0.77 1.17

5 2 8 0.55 ± 0.03 0.89 ± 0.07 1.86 ± 0.25 0.82 ± 0.11 2.57 ± 0.90 11.4 ± 6.53
0.50 0.73 1.37 0.51 0.70 1.24

5 3 5 0.49 ± 0.05 0.71 ± 0.29 1.37 ± 1.63 0.70 ± 0.18 1.48 ± 0.72 4.27 ± 2.92
0.44 0.58 0.94 0.47 0.64 1.05

5 4 8 0.44 ± 0.02 0.60 ± 0.05 1.14 ± 0.16 0.74 ± 0.17 1.86 ± 0.72 6.84 ± 3.21
0.40 0.52 0.94 0.40 0.53 0.94

6 2 3 0.63 ± 0.05 1.11 ± 0.21 2.75 ± 1.00 0.85 ± 0.12 3.24 ± 1.31 18.8 ± 12.0
0.58 0.93 1.97 0.59 0.88 1.67

6 3 8 0.64 ± 0.01 1.11 ± 0.06 2.75 ± 0.35 0.82 ± 0.13 2.93 ± 1.54 17.2 ± 12.9
0.61 1.01 2.36 0.64 0.97 1.98

6 4 8 0.55 ± 0.05 0.80 ± 0.48 1.83 ± 4.26 0.82 ± 0.11 2.61 ± 1.06 13.6 ± 7.88
0.51 0.67 1.07 0.51 0.69 1.23

8 2 5 0.76 ± 0.02 1.90 ± 0.15 7.04 ± 1.08 0.86 ± 0.10 4.25 ± 2.66 38.2 ± 36.3
0.73 1.70 5.67 0.71 1.61 5.09

8 3 8 0.70 ± 0.02 1.44 ± 0.13 4.67 ± 0.91 0.88 ± 0.08 4.00 ± 1.58 29.7 ± 16.8
0.67 1.31 3.79 0.70 1.28 3.60

8 4 5 0.77 ± 0.01 2.20 ± 0.21 10.29 ± 2.05 0.91 ± 0.05 5.00 ± 1.72 42.4 ± 27.1
0.74 1.75 6.41 0.77 1.71 5.52

Table 2. Correlations between feature values and MSW lengths

|Q| |A| F1 F2 F3 F4 F5 F6 F7 |Q| |A| F1 F2 F3 F4 F5 F6 F7

4 2 .23 .33 -.07 .28 -.15 -.27 .93 6 2 .19 .35 -.26 .50 -.28 -.34 .93

4 3 .24 .29 -.10 .30 -.22 -.33 .90 6 3 .10 .16 -.32 .50 -.36 -.40 .94

4 4 .18 .26 -.20 .38 -.26 -.37 .90 6 4 .12 .20 -.42 .56 -.48 -.48 .95

5 2 .27 .35 -.15 .38 -.21 -.33 .90 8 2 .10 .31 -.40 .63 -.30 -.32 .94

5 3 .18 .34 -.27 .50 -.32 -.41 .92 8 3 .04 .11 -.32 .50 -.30 -.38 .92

5 4 .10 .19 -.27 .44 -.31 -.39 .93 8 4 -.07 -.03 -.35 .48 -.36 -.40 .90

Table 2 shows the Pearson’s correlations between feature values and MSW
lengths. Fig. 3 (right part) shows the histogram of differences between true and
predicted length of MSW for experiment |Q| = 8, |A| = 2. Notice that HC usually
returns the true value or value that is very close to the true one. Left part of
Fig. 3 shows the x-y plot of true MSW length vs. the value of F7 feature for the
same experiment.

HC architecture is designed to handle many classes. Assuming the Černý
conjecture is true, for class of n-state automata we have (n−1)2+1 classes, so it
is quadratic in state set size. Standard deviation for all HC errors in Table 1 are
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Fig. 3. Correlation between MSW length and F7 feature value for experiment |Q| = 8,
|A| = 2

usually small, which means that HC prediction is stable, contrary to the single
NN model, which has much bigger both mean error values and their standard
deviations. HC, in terms of “diff“ error, works very well – it finds almost exact
values of the MSW lengths. These above facts allow us to claim that HC is a
very good tool to predict MSW length.

Correlations between MSW length and values of some features F3 and F4
grow with the number of states. These features should be the good predictors
of MSW lengths for automata with larger number of states. Feature F7 (mean
height of a node in the pair automaton tree) is strongly correlated with MSW
length. The relation between pair automaton structure and the input automaton
should be the subject of future theoretical research. This may lead to some new
results on the upper bound of the MSW length.

The future work in this area should concentrate on the proper choice of pre-
dictive automata features. Well chosen set of features cannot only decrease clas-
sification error, but also may allow us to understand deeply what are the main
factors that make MSW lengths so long in some automata. Such result can be
then utilized in new, effective algorithms for finding possibly short synchronizing
words.
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2. Černý, J., Pirická, A., Rosenauerová, B.: On directable automata. Kyber-
netika 7(4), 289–298 (1971)

3. Deshmukh, R.G., Hawat, G.N.: An algorithm to determine shortest length distin-
guishing, homing, and synchronizing sequences for sequential machines. In: Proc.
Southcon 1994 Conference, pp. 496–501 (1994)

4. Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on Com-
puting 19(3), 500–510 (1990)



Application of Hierarchical Classifier to MSW Problem 429

5. Fukada, A., Nakata, A., Kitamichi, J., Higashino, T., Cavalli, A.: A conformance
testing method for communication protocols modeled as concurrent DFSMs. Treat-
ment of non-observable non-determinism. In: Proc. IEEE 15th Int. Conf. on Infor-
mation Networking, pp. 155–162 (2001)

6. Kari, J.: Synchronizing and Stability of Finite Automata. Journal of Universal
Computer Science 8, 270–277 (2002)

7. Klyachko, A.A., Rystsov, I., Spivak, M.A.: An extremal combinatorial problem
associated with the bound on the length of a synchronizing word in an automaton.
Kybernetika 2, 16–20 (1987)

8. Natarajan, B.K.: An Algorithmic Approach to the Automated Design of Part Ori-
enters. In: Proc. IEEE Symp. Foundations of Computer Science (FOCS 1986), pp.
132–142 (1986)

9. Olschewski, J., Ummels, M.: The Complexity of Finding Reset Words in Fi-
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Abstract. Our aim is to propose a new look at the dimensionality re-
duction in pattern recognition problems by extracting part of variables
that are further called external context variables. We show how to incor-
porate them into the Bayes classification scheme with loss functions that
depend on class labels that are ordered. Then, the general form of the
optimal context sensitive classifier is derived and the learning method
that is based on kernel approximation is proposed.

1 Introduction

Our aim in this paper is to propose a new approach that incorporates external
context variables, as introduced in [11], into the Bayesian model with loss func-
tion that takes into account label ordering (see [8] and the bibliography cited
therein). By external context we mean variables that influence our classification
process but they are not features of an object to be recognized. For example,
let us suppose that our classifier equipped with a watch-dog camera has to dis-
tinguish whether a vehicle 500 meters in front of it is a car, a van or a truck.
Weather conditions, such as rain, snow or a direct sunlight may essentially in-
fluence our decision, but are not features of a vehicle to be recognized. Clearly,
the weather conditions can be artificially incorporated into a feature vector for
vehicle recognition, but – as we shall see later – it is not advisable. The same
example explains why it is reasonable to order labels of a car (label 1), a van
(label 2) and a truck (label 3). We intuitively feel that misclassifying a small car
as a truck should yield higher loss than when it is misclassified as a van.

One can consider the proposed approach as information fusion, coming from
features of an object to be recognized and the context in which this object was
observed as well as incorporating additional knowledge on relative importance
of recognition errors when class labels are far away from our decisions.

A deeper insight into the role of context variables reveals that they lead to
the dimensionality reduction unlike the traditional approach that incorporates
them directly into the vector of features. This statement is illustrated in Fig. 1
and Fig. 2. The former illustrates the traditional approach, i.e., we have two
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features X and Y and additional variable Z that can assume two levels Z1 and
Z2, say. We have two classes, the first one (marked by the oblique lines) can
be separated by a plane from the second one (marked by the crossed lines). In
the left panel of Fig. 1 one can notice that the recognition task is much more
difficult when we ignore information provided by Z variable that is considered
here as a context variable. In the middle and in the right panel of this figure we
illustrate how easy is the recognition task when the context variable is taken into
account. Note that this time we have to select two two-dimensional separating
surfaces instead of one in three dimensional space as it was in the case when Z
was treated in the same way as features X and Y . The dimensionality reducing
effect attained by introducing context is even more apparent when Z assumes
more than two levels and the dimensionality of the features space is larger. On
the other hand, the proposed approach can be considered as a fusion of classifiers
such that each of them is designed to operate in a different external context.

Fig. 1. Example of three dimensional pattern recognition problem when context vari-
able Z is considered in the same way as original features

It should be mentioned that internal context has been known in the pattern
recognition theory for a long time, at least from 60’s. By internal context we mean
the one that appears as the result of previous decisions or outputs or in multistage
decision processes (see [4], [15]), [10], [9], [19]), [5]). Another way of using internal
context can be found in image processing tasks in which it is provided by pixels
from a neighborhood providing contextual information (see, e.g.,[2]).

2 Augmentation of the Bayesian Scheme

Let X ∈ RdX denote dX -dimensional vector of features of a pattern to be rec-

ognized that was drawn at random from one of L ≥ 2 classes, where L def
=

{1, 2, . . . , L} denotes the set of labels.
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Fig. 2. The same pattern recognition task as in Fig. 1 when context variable Z is
ignored (left panel) and when it is properly taken into account (the middle and the
right panel) leading to two two-dimensional and easier problems

Incorporating Context. We also observe Z ∈ Z def
= {κ1, κ2, . . . , κJ}, which

is interpreted as a discrete level of an external context. Z is also a random a
random variable that is independent of X . Z helps us in a proper classification of
X , but it does not describe an object to be recognized, but rather circumstances
of our decision problem such as weather conditions, level of air pollution etc.

Denote by Π
def
= {π1, π2, . . . , πJ} the probabilities of observing κj ’s.

Thus, the triple (X, Z, i) describes pattern X from i-th class, which appeared
in context Z. Denote by fi(x; κj) a density of patterns from i-th class, which
depends on context κj . A priori class probabilities, denoted as qi, i = 1, 2, . . . , L,
may also depend on external context Z, i.e., qi(κj) ≥ 0, i = 1, 2, . . . , L, i =

1, 2, . . . , J , which are such that the following condition holds:
∑L

i=1 qi(κj) = 1
for all κj ∈ Z. The scheme of observing patterns is as follows:

1) An observed context Z0 ∈ Z is drawn at random, according to Π .
2) A priori class probabilities qi(Z0) are established and the class label, i(0), say,
is drawn according to them.
3) The vector of features X0, say, is drawn at random, according to the proba-
bility density (p.d.f.) fi(0)(x; Z0).

It is clear that the above scheme reduces the classical pattern recognition problem
when only one level of the context is assumed.

For a while, we shall assume that fi’s and qi’s are known. Later, we shall
discuss the learning problem.

Corollary 1. Denote by P (i|x, z) the a posteriori probability that pattern x,
observed in context z ∈ Z is a member of i-th class. Then,

P (i|x, z) = qi(z) fi(x; z)/f(x; z), i = 1, 2, . . . , L. (1)

where

f(x; z)
def
=

L∑
i=1

qi(z) fi(x; z). (2)

Taking into account that Z is finite, we can interpret P (i|x, z) as a family,
indexed by z ∈ Z, of a posteriori probabilities that x is from i-th class.
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Loss Function with Ordered Labels. We attach loss S(i, k) ≥ 0, if a pattern
from i-th class is classified to k-th class, k, i ∈ L. We consider a special class
of loss functions of the form: S(i, k) = (i − k)2 that reflects the fact that class
labels are ordered in the sense that our loss is higher when X is erroneously
classified to class (k+1) and smaller, if it is (also erroneously) classified to class
k, while a proper class label is i < k. Clearly, one can formalize this idea in other
ways, e.g., as S(i, k) = |i − k|, but the quadratic loss is more manageable and
leads to simpler classifiers. One can also consider weights attached to (i− k)2 or
other generalizations, but here we stay within a simpler scheme.

Optimal, Context Sensitive Classifier for Classes with Ordered Labels.
Denote by Ψ : RdX ×Z → L a classifier, which is a measurable function Ψ(X,Z)
of X for each Z ∈ Z. The overall risk of classifier Ψ is defined as

R(Ψ) = EX,Z

[
L∑

i=1

(i− Ψ(X,Z))2 P (i|X,Z)

]
(3)

or

R(Ψ) =

J∑
j=1

πj

∫
RdX

[
L∑

i=1

(i− Ψ(x, z))2 P (i|x, z)
]
f(x;κj) dx. (4)

Corollary 2. Classifier Ψ∗ that minimizes R(Ψ) in the class of all measurable
functions Ψ(x, z) of x for each z ∈ Z is of the form:

Ψ∗(x, z) = ROUND

[
L∑

i=1

i P (i|x, z)
]
, (5)

where ROUND[a] denotes the nearest integer for a.

Indeed, the conditional risk r(j, x, z), given x and z, can be expressed as

r(j, x, z) =
L∑

i=1

(i − j)2 P (i|x, z). (6)

Then, the overall risk can be rewritten as

R(Ψ) =
J∑

j=1

∫
RdX

r(j, x, z)πj f(x;κj) dx (7)

and it is clear that it suffices to minimize r(j, x, z), due to the fact that πj f(x; z)’s
are nonnegative. Formal differentiation of (6) w.r.t. j yields (5), while strict con-
vexity of the quadratic function allows to convince oneself that the ROUND[.]
operation provides the minimizer of r(j, x, z).

Let us note that Ψ∗ does not depend on Π , i.e., on the distribution of context
variables. This is in sharp contrast with the influence of X variables (features),
indicating that the role of the context in our model is different than those of
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features. Clearly, the overall risk depends on Π (see (7)). In order to justify the
fact that Ψ∗ does not depend on Π it suffices to analyze (1).

All the above finite case formulas approach smoothly the case when the num-
ber of classes is countable, but infinite, i.e. L = ∞, provided that all the corre-
sponding sums are convergent.

Optimal Classifier for the Exponential Family. In our example it will be
more convenient to label classes from ”0” (instead of ”1”) and to admit L =∞.
Consider the following class densities, dependent on context z ∈ Z:

fi(x; z) =
λi(x; z) exp(−λ(x; z))

αi(z) i!
, i = 0, 1, 2, . . . (8)

where λ(x; z) is a positive function that depends on pattern x and context
z ∈ Z, while αi(z) are normalizing factors, which are selected in such a way
that

∫
fi(x; z) dx = 1 for each i = 0, 1, 2, . . . and z ∈ Z. In our example

we select λ(x; z) as a linear function of features, i.e., λ(x; z) = cT (z)x with
dX dimensional column vector of nonnegative coefficients c(z) that depends on
z ∈ Z. As the feature space we take the positive ortant, i.e., all elements of x
are nonnegative. In this case (note that we write d instead of dX for brevity)

αi(z) =
(i+ d− 1)!

(d− 1)! i!
∏d

l=1 cl(z)
(9)

Suppose the a priori distribution has the form:

qi(z) = (1− γ(z)) γ(z)i, i = 0, 1, 2, . . . , (10)

where 0 < γ(z) < 1 may depend on context variables. Later, we shall write γ
instead of γ(z) for brevity. Under these assumptions we obtain from (2):

f(x; z) = −cT (z)x (γ − 1) γ

[
d∏

l=1

cl(z)

]
ec

T (z)x (γ−1) (cT (z)x γ)−d × (11)

× (Γ (d)− (d− 1)Γ (d− 1, cT (z)x γ)
)

Similarly, defining N (x; z) as
∑∞

i=0 i qi(z) fi(x; z), we obtain

N (x; z) = cT (z)x e−cT (z)x (γ − 1) γ

[
d∏

l=1

cl(z)

]
Γ (d)(cT (z)x γ)−d × (12)

(
ec

T (z) xγ(−cT (z)x γ + d− 1) (Γ (d+ 1)− dΓ (d, cT (z)x γ))− d (cT (z)x γ)d
)
/d!,

where Γ (a, b) is the incomplete gamma function.
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Fig. 3. Example of the decision rule (15) in two different contexts (see the text)

Noticing that
∑∞

i=0 i P (i|x, z) = N (x; z)/f(x; z), we obtain:

Corollary 3. For class densities (8) with λ(x; z) = cT (z)x and a priori prob-
abilities (10) we obtain the following decision rule:

Ψ∗(x; z, c(z)) = ROUND[ψ∗(x; z, c(z))], (13)

where ψ∗(x; z, c(z)) is defined as follows:

e−cT (z) xγ Γ (d)
(
d (cT (z)x γ)d + ec

T (z) x γ(cT (z)x γ − d+ 1)Ω(d)
)

d!Ω(d − 1)
(14)

where Ω(d)
def
= (Γ (d + 1) − dΓ (d, cT (z)x γ)) (note that the rest of variables in

the definition of Ω is omitted for brevity).
For dX = d = 2 (14) simplifies to

ψ∗(x; z) = cT (z)x γ

(
1

ecT (z)x γ − 1
+ 1

)
− 1, (15)

while for dX = d = 1 we obtain: ψ∗(x; z) = c(z)x γ.

If c(z) and γ are known (or estimated), then (14) can be calculated (almost)
exactly, because the incomplete gamma function can be evaluated to arbitrary
numerical precision.

Fig. 3 illustrates how Ψ∗ may looks like for dX = d = 2 in two different
contexts, z1 = 1 (left panel) and z2 = 2 (right panel). In the both cases γ = 0.5
was used and for z1 = 1 vector cT (z1) = (0.8, 0.6), while for z2 = 2 vector
cT (z2) = (0.36, 0.86).

3 Learning Context Sensitive Classifiers with Ordered
Labels

In the previous section it was assumed that we know class densities fi(x; z)’s
and priors qi(z)’s for each context variables. These assumptions were necessary in
order to develop the theory. In practice, however, we do not have such knowledge,
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but then we need a learning sequence for approximating an optimal classifier.
Corollary 2 shows how the optimal classifier looks like. Thus, it is expedient to
use this knowledge and to apply the well known plug-in approach for building
an empirical classifier.

When context variable is discrete, as in the case considered here, the learning
process is relatively easy, because it can be done for each context in Z separately.
More challenging task is stated at the end of the paper.

Let (xn(z), in(z)), n = 1, 2, . . . , N(z) denote the learning sequence observed
in context z ∈ Z, where N(z) is the length of this sequence, xn(z) is n-th vector
of features, while in(z) is a true label attached to xn(z) in context z. Note that
we need Card(Z) learning sequences of the form described above and having
such sequences, the estimation of a priori distributions in each context is easy.

Parametric Case. By the parametric case of learning we mean the following
task: build an empirical decision rule when underlying distributions are known
to within a vector of unknown parameters and we have a learning sequence for
their estimation. We sketch the idea of a learning algorithm in the parametric
case using Corollary 3 as a vehicle for presenting it.

Let us note that when context variable z ∈ Z is fixed, then the decision rule
(13) and ψ∗(x; z, c(z)) depend on a fixed vector c = c(z) of unknown parameters.
Thus, it suffices to minimize the following empirical loss function:

Q̂z(c) =

N(z)∑
n=1

[in(z)−ROUND[ψ∗(xn(z), z, c)]]
2

(16)

with respect to c ∈ RdX , taking into account, as constraints of the optimization
problem, that all elements of c should be nonnegative. An unpleasant feature of
Q̂z(c) as the goal function is the presence of the ROUND[.] operation, which

– may lead to non-unique solutions,
– precludes the possibility of using fast optimization solvers such as the Leven-

berg-Marquardt algorithm.

For these reasons, we propose to minimize

Q̃z(c) =

N(z)∑
n=1

[in(z)− ψ∗(xn(z), z, c)]
2

(17)

with respect to c ∈ RdX . Note that for dX = 1 this task has the well known
closed form solution.

Now, it remains to repeat the minimization of Q̃z(c) for each context z ∈ Z
and to plug-in the resulting c̃(z) into (13).

Nonparametric Case. By the nonparametric case of learning we mean that
class densities in each context fi(x; z) are completely unknown. In fact, it is even
not necessary to postulate their existence, because the result presented below
holds for every distribution of X variables.
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Let K(t) ≥ 0 be a kernel, for which the following conditions hold:∫
K(t) dt = 1,

∫
tK(t) dt = 0,

∫
t2 K(t) dt <∞, (18)

αH(||x||) ≤ K(x) ≤ βH(||x||), x ∈ RdX (19)

for some 0 < α < β < ∞ and nonincreasing H : R+ → R+ with H(+0) > 0,
||.|| is a norm in RdX .

Following general ideas from [6], [3] of constructing an empirical nonpara-
metric classification rules and [7] when the least squared loss is involved and
interpreting Ψ∗ in Corollary 2 as the conditional expectation, we suggest the
following estimator of the classification rule for fixed context z ∈ Z:

Ψ̂N(z)(x; z) = ROUND

[
UN(z)(x; z)

VN(z)(x; z)

]
, (20)

where

UN(z)(x; z) =

N(z)∑
n=1

in(z)K

( ||x−Xn(z)||
h(n)

)
, (21)

VN(z)(x; z) =

N(z)∑
n=1

K

( ||x−Xn(z)||
h(n)

)
, (22)

where Xn(z) are independent, identically distributed random vectors drawn ac-
cording to fi(x; z). When (20) is used we insert observations xn(z) instead of
Xn(z) in (21) and (22). Let us note that (21) and (22) can be written in the
recursive form. Let us note that (20) can be interpreted as a bank of classifiers,
indexed by z ∈ Z. A proper classifier is activated by the context variable.

Theorem 31. Let kernel K satisfy conditions (18) and (19) and assume that

h(n)→ 0 and
n∑

k=1

hdX (k)→∞ as n→∞. (23)

Then the rule (20) is universally consistent for each context z ∈ Z separately:

R(Ψ̂N(z)|Z = z)−R(Ψ∗|Z = z)→ 0 as N(z)→∞ (24)

for all distributions of X variables in every context. In (24) the risk is conditioned
on the context variable, i.e.,

R(Ψ |Z = κj) =

∫
RdX

[
L∑

i=1

(i− Ψ(x, z))2 P (i|x, z)
]
f(x;κj) dx, j = 1, 2, . . . , J.

The proof of this results is an extension of the proof for the context free case
that can be found in [8].

The real challenge is the case when z is not discrete but takes values from
an interval or a hypercube Z. In this case one can cover Z by sets with centers
κj ∈ Z and repeat al the above considerations. However, the proof of consistency
is much more difficult, because the covering sets should have decreasing size as
the length of the learning sequence increases.
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Abstract. The SVM algorithm is one of the most frequently used meth-
ods for the classification process. For many domains, where the
classification problems have many features as well as numerous instances,
classification is a difficult and time-consuming task. For this reason, the
following paper presents the CSR-GPU-SVMalgorithm which accelerates
SVM training for large and sparse problems with the use of the CUDA
technology. Implementation is based on the SMO (SequentialMinimal Op-
timization) algorithm and utilizes the CSR(Compressed Sparse Row)
sparse matrix format. The proposed solution allows us to perform efficient
classification of big datasets, for example rcv1 and newsgroup20, for which
classification with dense representation is not possible. The performed ex-
periments have proven the accelerations in the order of 6 - 35 training
times compared to original LibSVM implementation.

Keywords: SVM, GPGPU, CUDA, Classification, Sparse Matrix.

1 Introduction

Many of the problems associated with dynamically developing fields of computer
science such as Music Retrieval, Information Retrieval or Content Base Image
Retrieval have a representation with a great number of attributes as well as
instances. As a result, the calculation of an effective model for Machine Learn-
ing tasks (for example: classification) becomes difficult and time-consuming [12].
This creates a need for methods and algorithms for forming a model within a
reasonable time, which deal well with multidimensional data. It is worth men-
tioning that the ”multidimensionality” is often accompanied by the ”sparsity”
of data.

Recent studies show that the SVM algorithm copes well with the multidimen-
sional classification problems [10],[7]. The essence of teaching the SVM involves
solving a quadratic optimization task, where in order to assess the similarity
of objects, the kernel function is used. To obtain the model, computation of
m2 kernel executions (scalar products) is required in the worst case, where m
is the number of objects. Therefore, this operation can be considered the most
time-consuming part of the SVM training process and creating a model for a
collection that contains a huge number of instances becomes impossible within
a reasonable time.

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 439–447, 2012.
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This introduces the necessity for methods which will accelerate the compu-
tation of kernel function. One of the possible solution is the utilization of the
NVidia CUDA (Compute Unified Device Architecture) technology, which allows
us to perform part of calculations simultaneously on the graphics processing unit
(GPU). Recently, this technology arouses the interest of many researchers, who
try to implement existing algorithms on CUDA. In many cases, it accelerates
computing processes by 10 to 100 times.

The algorithm presented in this paper also exploits CUDA. In particular, the
computations of SVM kernel function are transferred to the GPU, which allows
us to fully leverage the potential of the GPU and obtain the result in a reasonable
time. Moreover, the described algorithm takes advantage of data sparsity, which
allows for a possibility to perform the SVM method for big datasets.

The paper is organized as follows. In the next section we review the existing
SVM implementations on the CPU and the GPU. The main contribution of this
paper, the CSR-GPU-SVM algorithm, is introduced in Section 3. Next, Section
4 evaluates the proposed approach based on experimental results. We conclude
and point future directions in Section 5.

2 Support Vector Machines

The SVM algorithm described in [2],[5] is a binary classifier which divides the
training set into two classes using the optimal hyperplane. It can be done by solv-
ing the quadratic optimization task. Given a set of instance-label pairs (xi, yi);
i = 1, . . . , l; xi ∈ Rn; yi ∈ {−1,+1}, SVM solves the following dual problem (1)
derived from the primal problem described in [5]:

min
α

1

2
αTQα− eTα, (1)

subject to

yTα = 0; 0 ≤ αi ≤ C; i = 1, . . . , l; (2)

having C > 0 as a penalty parameter that sets the tradeoff between the margin
size and the amount of error in training. α is a vector of Lagrange multipliers
introduced during conversion from primal to dual problem, e is the unit vector,
Q is an l by l positive semidefinite matrix such that Qij = yiyjK(xi, xj) and
K(xi, xj) = φ(xi)

Tφ(xj) is the kernel function, which maps training vectors into
a higher dimensional space via function φ.

Frequently, the problems can not be solved by means of a linear separation.
In such cases, the ”Kernel Trick” is applied, where a linear kernel is replaced by
a non-linear one. The most frequently used non-linear kernels of SVM are RBF
and polynomial from which we examine the RBF kernel (3).

K(xi, xj) = exp(−γ‖xi − xj‖2), (3)

having xi, xj as observations and γ > 0.
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The label F (x) of the feature vector x is calculated by the following equation:

F (xnew) = sign

(
l∑

i=1

yiαiK(xi, xnew) + b

)
. (4)

2.1 SVM Solvers on CPU

Currently, LibSVM [5] and SVMLight [10] are the most commonly used SVM
implementations. They are based on decomposition methods of the quadratic
optimization problem, which only use the selected variables in each step of the
algorithm. The main difference between mentioned solutions lies in the type of
decomposition. LibSVM applies SMO-type decomposition [15],[11] with second
order information [8] to choose appropriate working set when SVMLight uses
the decomposition idea of Osuna [14].

For accelerating calculation of the kernel function both methods apply caching
of recently obtained scalar products as well as shrinking. However, SVMlight and
LibSVM use only computational power of CPU.

Our implementation utilizes SMO-type decomposition with second order in-
formation similar to LibSVM, where all evaluations of kernel function are trans-
fered to the GPU, which allows distributed and parallel batch computations.

2.2 SVM Implementation on CUDA with Dense Format

Many SVM methods require processing of N scalar products, which is equivalent
to multiplying the matrix by the chosen vector in a given iteration step. The
main task of SVM implementation on the GPU is the calculation of the scalar
products mentioned above in a parallel manner. It will significantly accelerate
the whole process.

Recent solutions such as GPU-SVM [4], CuSVM [3] or MultiSVM [9] apply
dense matrix format during Kernel Matrix evaluation which considerably limits
the usage of these methods for big datasets. Memory size of modern graphics
cards varies from 1GB (GeForce GTX 460) to 6GB (TESLA C2070) which is
not sufficient for processing such well-known datasets as rcv1 or newsgroup20.

2.3 SVM Implementation on CUDA with Sparse Format

The data processed in a machine learning domain is often characterized by the
sparse format as well as a great amount of instances and features. Storage of
such datasets in naive dense format would involve memory in the range from
tens to hundreds GB. In particular, dataset newsgroup20 occupies 99.46 GB,
having 19 996 instances and 1335191 features of each element. Due to such
large memory involvement, it is not possible to process such datasets in RAM
of modern computers as well as using the GPU. One of the methods employed
to overcome this restriction is the application of the sparse matrix format.

Choosing the appropriate format depends on the occurrence regularity of
nonzero elements, among which we can distinguish Diagonal (DIA), ELLPACK
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(ELL), Compressed Sparse Row (CSR) or Coordinate Format (COO). The choice
of sparse data representation for SVM should cover all possible nonzero distri-
butions, so that the chosen format should be sufficiently universal. Among the
above mentioned, the most suitable for use in our case are ELLPACK, COO and
CSR. The ELLPACK format is best suited for processing on the GPU because
of its regularity, but it requires much more memory than others for a dataset of
a highly diverse number of nonzero elements in each row.

For example, the modification of the ELLPACK format is applied in [13], in
which the authors reached the acceleration of approximately 130x in relation to
LibSVM. However, research was only focused on the fact of calculation accelera-
tion without taking into account the problem of memory usage. This makes the
algorithm not applicable for big irregular datasets.

To overcome the size limit of dataset, we use the CSR format, which in ad-
dition to its versatility also ensures maximum utilization of available memory.
Moreover, the CSR vector implementation is proposed in [1], which effectively
deals with CSR matrix multiplication on the GPU.

3 CSR-GPU-SVM Algorithm

Code profiling results for standard implementation of SVM presented in [3], [9],
[10] proves that kernel evaluation is the most time-consuming part of the whole
algorithm and takes up to 80% of overall time. It is obvious that the acceleration
of these operations will speed up SVM training process. The CSR-GPU-SVM
algorithm focuses on the acceleration of generating Kernel Matrix columns for
extremely sparse big collections, which is achieved by transferring all kernel
computations to the GPU.

3.1 Algorithm Architecture

The algorithm presented in this paper is largely based on the skeleton of LibSVM
method, since this method turned out to be very effective [8], when dealing with
classification. Similar to LibSVM, we utilize SMO, and as it was mentioned
in previous section, we store the dataset in the CSR format. The part of the
algorithm including the working set selection, updating gradients and checking
optimality condition is processed on the CPU in the same manner as in LibSVM,
while the whole kernel invocation is transferred to the GPU.

The main task of kernel evaluation in the SVM training process is reduced
to matrix-vector multiplication. First, the i-th vector xi named ’main vector’,
where i is index found during working set selection step, is transformed to the
dense format from CSR and moved to the GPU in each iteration. Then, the
matrix in the CSR format is multiplied by the main vector with the use of the
CUDA technology. Next, for the j−th vector the same computation is performed.
The results of these multiplications are copied back to the CPU for next step of
iteration.
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3.2 Kernel Evaluation on CUDA

The algorithm presented in this paper applies the CUDA technology for kernel
evaluation. The most difficult part in CUDA programming is to write the device
function in such a way that it will fully utilize the computational power of the
GPU. In particular, all treads in warp (group of 32 CUDA threads) should
process the same instruction, which will improve the instruction throughput,
and as a result any flow control should be avoided. Moreover, all access to global
memory should be coalesced, which means that treads in warp read data from
the continuous global memory block.

In this paper CUDA functions for computing ’SVM kernels’ are based on CSR
Vector [1] method, which uses 32-thread warp for multiplying one sparse matrix
row by a dense vector. Listing below presents the main part of CUDA RBF
implementation.

for(int k = warp_id; k < num_rows; k+= num_warps){

const int row_start = vecPointers[k];;

const int row_end = vecPointers[k+1];

float sum = 0;

for(int j = row_start+thread_lane; j<row_end; j+= WARP_SIZE)

sum += vals[j] * tex1Dfetch(mainVectorTexRef,idx[j]);

volatile float* smem = sdata;

smem[threadIdx.x] = sum; __syncthreads();

smem[threadIdx.x] = sum = sum + smem[threadIdx.x + 16];

smem[threadIdx.x] = sum = sum + smem[threadIdx.x + 8];

smem[threadIdx.x] = sum = sum + smem[threadIdx.x + 4];

smem[threadIdx.x] = sum = sum + smem[threadIdx.x + 2];

smem[threadIdx.x] = sum = sum + smem[threadIdx.x + 1];

if (thread_lane == 0)

results[k]=labels[k]*labels[mainVecIndex]*

expf(-Gamma*(selfDot[k]+mainSelfDot-2*smem[threadIdx.x]));

}

Each thread from a particular warp accumulates in the local variable sum results
for xkj , xk(j+WARP SIZE), · · · , xk(j+n∗WARP SIZE) where k is the matrix row
index, j ∈ {1 · · ·32} is thread id in this warp and n is the lowest number such
as n ∗WARP SIZE is greater or equal to nonzero values in k − th row. These
partial results are stored in shared memory smem, from which a warp-wide
parallel reduction is performed in order to obtain final dot product written to
results array. This improves memory pattern access for CSR format matrix and
decreases thread divergence in warp.

Besides simultaneous calculations, the acceleration is achieved by storing part
of data in cache memory. In particular, each SVM kernel matrix column evalu-
ation has a different ’main vector’ which has to be transformed to dense format
and copied to device memory. All threads can access this memory simultane-
ously, thus to speed up this process the ’main vector’ is kept in the graphic card
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Table 1. Datasets used in experiments

Data set name #instances (train/test) #features

Web (w8a) 49749 / 14951 300

Adult (a9a) 32561 / 16281 123

20 Newsgroup (newsgroup20.binary) 19996/ 19996 1335191

Real vs. Simulated (real-sim) 72309/ 72309 20958

RCV1 (rcv1.binary) 20242 / 677399 47236

RCV1 (rcv1.binary reverse) 677399 / 20242 47236

Mnist (even vs odd) 60000 / 10000 784

texture cachemainVectorTexRef. Moreover, the results array must be transferred
back to host many times during the algorithm process. The allocation of this
array as page-locked memory in CSR-GRU-SVM algorithm increases memory
bandwidth.

Apart from the training phase described above the CSR-GPU-SVM algorithm
performs a testing phase on CUDA. Obtaining the instance label is provided by
the dot product between support vectors and this instance (4), which is equal to
sparse matrix - matrix multiplication. CSR-GPU-SVM prediction was organized
as k sparse matrix dense vector multiplications, where k is the number of objects
to classify. This operation is performed using CSR Vector CUDA kernel. Each
multiplication requires copying the vector into the GPUmemory to obtain higher
memory bandwidth kernel computation and next vector memory transfers are
performed asynchronously with the use of CUDA stream API.

For implementation details please download open source KMLib library [16]
and browse KMLib.GPU project.

4 Experimental Results

The goal of the experimental session was to test the acceleration of SVM with the
use of the CSR-GPU-SVM method compared to LibSVM library and multiSVM.
For this purpose, the GPU code was tested on two Nvidia cards: GeForce 240 (96
cores) and GeForce GTX 460 (336 cores) both with 1GB device memory. The
stopping criterion in SVM formulation was set to 0.001, I/O time was excluded
and as a kernel RBF (C = 4, γ = 0.5) was chosen.

All tested files were downloaded from LibSVM web page [6] which contains
most of popular binary classification datasets, specially preprocessed for SVM.
Tests were run on the datasets presented in Table 1.

The RCV1 dataset was examined twice. For training and testing we first used
rcv1 train and rcv1 test files, while for the second run the files were reversed.
Mnist dataset was preprocessed in order to adjust it to the binary classifier. In
particular, all even labels were changed to ’-1’, and odd labels were changed to
’+1’ .
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Table 2. SVM training times (in seconds) with RBF kernel, parameters C=4,
gamma=0.5 for CSR-GPU-SVM and LibSvm algorithms

Data set name LibSVM CSR-GPU-SVM
GeForce 240

CSR-GPU-SVM
GeForce 460

Speedup

Web(w8a) 586.2 108.1 85.7 6.8x

Adult(a9a) 353.1 89.3 71.3 5.5x

20 Newsgroup

(newsgroup20.binary) 3456 576.3 325.5 10.6x

Real vs. Simulated(real-sim) 3422.2 230.2 160 21.3x

RCV1(rcv1.binary) 353.4 48.9 27.5 12.8x

RCV1(rcv1.binary reverse) 114421.6 21032.7 10470.9 10.9x

Mnist (even vs odd) 24141.3 888.1 681.1 35.4x

Table 2 presents training times of the CSR-GPU-SVM algorithm in com-
parison with LibSVM. The accuracies in all cases were the same (with 0.001
precision).

The obtained acceleration ratio varies from 5 to 35 times over standard Lib-
SVM for GeForce 460 graphic card implementation. It is worth mentioning that
the training times on GeForce 240 do not deviate significantly in comparison
with GeForce 460, which suggests that the computation can be limited by mem-
ory bandwidth. As concerning the level of acceleration, the biggest speed up was
achieved for Mnist collection, where average number of nonzero elements is high,
equal to 149. On the other hand, the lowest acceleration was obtained for A9A
dataset, which contains only 13.8 nonzero values per row and 123 features. This
shows that CSR-GPU-SVM is most suitable for big sparse collections, where
the average number of nonzero elements per row is greater than 32 (warp size).
The next important achievement that should be noted is the possibility of clas-
sifying such collections as newsgroup20 or rcv1, which can not be performed by
standard GPU classifiers.

The testing part of SVM proceeded in the same manner as training and the
detailed results are shown in Table 3.

Subsequent experiments which were carried out involved comparing train-
ing times of the CSR-GPU-SVM and multiSVM algorithms [9]. The results are
obtained for the following datasets: Adult, Web and Mnist. The RBF kernel pa-
rameters were taken from multiSVM paper [9] in order to make the comparison
of the results possible. This comparison, presented in Table 4, shows that for the
sets with a small number of features (Adult, Web) our implementation achieves
worse results, but for the Mnist dataset we managed to get comparable results
with significantly reduced memory consumption.
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Table 3. SVM classification times (in seconds) with RBF kernel, parameters C=4,
gamma=0.5for CSR-GPU-SVM and LibSvm algorithms

Data set name LibSVM CSR-GPU-SVM
GeForce 240

CSR-GPU-SVM
GeForce 460

Speedup

Web (w8a) 53 16.3 12.3 4.2x

Adult (a9a) 39 14.1 10.1 3.8x

20 Newsgroup

(newsgroup20.binary) 575 1254 64.4 9.2x

Real vs. Simulated (real-sim) 399 35.5 34 11.6x

RCV1 (rcv1.binary) 2961 254 161.2 18.3x

RCV1 (rcv1.binary reverse) 90 99.2 66.6 1.3

Mnist (even vs odd) 609 108 150.8 4x

Table 4. SVM training time comparison, multiSVM versus CSR-GPU-SVM, results
taken from multiSVM paper

multiSVM paper this work

LibSVM multiSVM Speedup LibSVM CSR-GPU-SVM Speedup

Adult 341.5 32.6 10.4x 412.2 75.9 5.4x

Web 2350 156.9 14.9x 1777.4 202.3 8.7x

Mnist 13963.4 425.9 32.7x 14307.8 391 36.5x

5 Conclusion and Future Work

This work presents GPU accelerated SVM kernel computation for an SMO type
algorithm, which utilizes a CSR sparse matrix format for classifying big sparse
problems emerging in a machine learning task. Compared to LibSVM, the accel-
eration of training times is satisfactory. In relation to multiSVM, the CSR-GPU-
SVM algorithm works better for datasets such as Mnist. Moreover, the use of
the CSR sparse matrix format allowed us to minimize the memory usage, which
made it possible to classify big sparse collections.

The CSR-GPU-SVM implementation is a part of the free, open source KMLib
library [16].

In the future we plan to improve the algorithm by shifting the search of
working set on the GPU, which can significantly reduce the time of SVM training.
In addition, we are going to perform more experiments with the use of different
SVM kernels.
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Abstract. Nonnegative Matrix Factorization (NMF) is an emerging un-
supervised learning technique that has already found many applications
in machine learning and multivariate nonnegative data processing. NMF
problems are usually solved with an alternating minimization of a given
cost function, which leads to non-convex optimization. For this approach,
an initialization for the factors to be estimated plays an essential role,
not only for a fast convergence rate but also for selection of the desired
local minima. If the observations are modeled by the exact factorization
model (consistent data), NMF can be easily obtained by finding vertices
of the convex polytope determined by the observed data projected on the
probability simplex. For an inconsistent case, this model can be relaxed
by approximating mean localizations of the vertices. In this paper, we
discuss these issues and propose the initialization algorithm based on the
analysis of a geometrical structure of the observed data. This approach
is demonstrated to be robust, even for moderately noisy data.

1 Introduction

Since an alternating minimization procedure in NMF is non-convex, an initial-
ization for the factors to be estimated plays a predominate role. There are several
strategies for initializing the factors in the standard NMF model [1]. A typical
approach assumes both factors are initialized with uniformly distributed random
numbers [1, 2]. However, this strategy involves many iterations to convergence,
especially as the estimated factors are very sparse.

To avoid convergence to unfavorable local minima, the multi-start random
initialization [3] can be applied. In this technique, the estimated factors are ini-
tialized several times with random initializers, and the initializer that ensures
the steepest descent in the objective function after a fixed number of alternat-
ing steps is selected. This strategy combined with the multilayer technique [4]
significantly improves the performance if the observed data is sparse and weakly
redundant.

Another approach involves the centroid decomposition or spherical k-means
[5,6]. Unfortunately, this is computationally expensive preprocessing that is also
non-convex, and may not guarantee the right initializer.
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Langville et al. proposed in [2] four strategies for initialization of NMF. One
of them assumes the SVD-centroid initialization, that is, the centroid decom-
position that is applied to the right singular vectors of the observation matrix.
This way is computationally attractive since the space of right singular vec-
tors is considerably smaller than the observation space. Nevertheless, it involves
computations of the SVD of a large matrix of observations. Another approach
assumes averaging of randomly selected data columns. However, this strategy
usually gives only slightly better performance than the random initialization.
An improved version assumes random selection of the data columns that have
the longest length, which usually means the selection of the densest columns.
The last approach involves construction of the co-occurrence matrix, which is
computationally very expensive.

The SVD-based initialization has been also considered by Boutsidis and Gal-
lopoulos in [7]. This strategy initializes both factors in NMF by certain positive
parts of rank-1 matrices obtained by the leading left and right singular vectors
of the observation matrix.

To better model sparse part-based image representations from NMF, Kim
and Choi [8] discussed the initialization based on the hierarchical clustering of
the observed data with a similarity measure reflecting ”closeness to rank-one”.
Unfortunately, when an observation matrix is large, a computational complexity
of this approach is quite large due to its iterative cluster merging character.

The clustering-based initialization has been also proposed in [9]. This is an
iterative strategy that is based on the k-means clustering, however, a similarity
measure between samples and their centroids is determined by the generalized
Kullback-Leibler (KL) divergence. Geometrically, this approach is equivalent to
finding centroid vectors that are collinear with extreme rays of the convex cone
spanned by the observation vectors [10]. For noise-free case, the extreme rays may
determine vertices of the convex polytope created from data points. Similarly as
for the centroid decomposition, a computational complexity of this approach is
rather high.

Our approach is somehow related to the latter but instead of using compu-
tationally expensive k-means clustering, we attempt to find the vertices of the
convex polytope by searching the observation vectors that maximize its volume.
For a noise-free case, this approach ensures an exact model of NMF. For an
inconsistent case, the locations of the vertices are approximated by averaging a
few observation vectors in their neighborhood.

The paper is organized as follows: Section 2 discusses a geometrical aspect of
NMF. The initialization algorithm is presented in Section 3. The experiments
are described in Section 4. Finally, the conclusions are drawn in Section 5.

2 Geometrical Interpretation

The aim of NMF is to find such lower-rank nonnegative matrices A = [aij ] ∈
RI×J

+ and X = [xjt] ∈ RJ×T
+ that Y = [yit] ∼= AX ∈ RI×T

+ , given the data
matrix Y , the lower rank J , and possibly some prior knowledge on the matrices
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A or X. The orthant of nonnegative real numbers is denoted by R+. Typically
we have high redundancy, i.e. J << IT

I+T but in our considerations we assume
J ≤ min{I, T } and T >> I.

The exact nonnegative factorization Y = AX means that each column vec-
tor in Y is a convex combination of the column vectors in A. The vectors
{aa, . . . ,aJ} form the simplicial cone [10] in RI that lies inside the nonnegative
orthant RI

+.

Definition 1. The (I − 1)-dimensional probability simplex SI = {y = [yi] ∈
RI

+ : yi ≥ 0,1T
I y = 1} contains all the points of RI

+ located onto the hyperplane
Π : ||y||1 = 1. Its vertices are determined by the versors (unit vectors) of the
Cartesian coordinate system.

Definition 2. The matrix X = [x1, . . . ,xT ] ∈ RJ×T
+ is sufficiently sparse if

there exists a square diagonal full-rank submatrix X̃ ∈ RJ×J
+ created from a

subset of its column vectors.

The projection of the nonzero columns in Y onto SI can be expressed as

PSI (Y ) = Ȳ =

{
y1

||y1||1
, . . . ,

yT

||yT ||1

}
. (1)

The projected columns onto SI form the convex polytope C(Y ) [11]. If the ma-
trix X is sufficiently sparse (see Def. 2), the vertices of C(Y ) correspond to the
column vectors of A projected onto SI . Any column vector ȳt whose the corre-
sponding vector xt contains at most 2 positive entries lies on the boundary of
the convex polytope C(Y ).

Example 1. Assuming I = J = 3 and T = 1000, we generated A ∈ R3×3
+

from an uniform distribution (cond(A) ∼= 5.2) and X ∈ R3×1000 from a nor-
mal distribution N (0, 1), replacing the negative entries with a zero-value. Thus
sparsity(X) ∼= 50%. The column vectors of Y = AX plotted in RI are shown in
Fig. 1(a) as the blue points. The red squares indicate directions of the column
vectors in A. Note that all the blue points are contained inside the simplicial
cone determined by the column vectors of A.

Fig. 1(b) shows the observation points (blue points) projected onto the 2D
probability simplex (the equilateral triangle marked with the black lines). The
red squares denotes the projected columns of A. Note that all the observation
points are contained inside the convex polytope (triangle) C(Y ).

Figs. 1(c) and (d) refer to the noisy cases when the observation data is
corrupted with a zero-mean Gaussian noise with the variance adopted to (c)
SNR = 30 dB and (d) SNR = 20 dB. Note that even for a very weak noise
(SNR = 30 dB), the smallest convex polytope (the smallest triangle) that con-
tains all the observation points is considerably different than marked by the
red squares. For a moderate noisy case (SNR = 20 dB), the locations of the
columns of A can be estimated with a statistical approach, e.g. by searching
the highest density of observation points (provided that the observed data is
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very sparse). The negative entries of noisy observations where replaced with
a zero-value, hence many entries of Ȳ lie on the boundary of the probability
simplex SI .
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Fig. 1. Geometric visualization of column vectors (blue points) of Y and the columns
vectors of A (red squares) for I = J = 3, T = 1000: (a) noise-free observation points in
R

3, (b) noise-free observation points projected onto the (I−1)-dimensional probability
simplex, (c) noisy observation points with SNR = 30dB projected onto the (I −
1)-dimensional probability simplex, (d) noisy observation points with SNR = 20dB
projected onto the (I − 1)-dimensional probability simplex.

Remark 1. From Example 1 we may conclude that if the underlying matrix X
is sufficiently sparse and the factorization model Y = AX is exact, the columns
of the matrix A can be readily estimated by finding the vertices of the con-
vex polytope C(Y ), that is, the columns in Ȳ that correspond to the vertices.
For moderately noisy data, exact locations of the columns in A cannot be found
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but they can be roughly estimated considering the mean locations for cluster
centroid points of observations. These estimations may also serve as the initial
vectors of A.

3 Initialization Algorithm

Corollary 1. Given the exact factorization model Y = AX with X sufficiently
sparse, the vertices of the convex polytope C(Y ) are determined by these column

vectors of Ȳ which span a polytope of the maximal volume [12]. Let Ȳ
(J)

=

[ȳ
(J)
1 , . . . ,y

(J)
J ] ∈ RI×J

+ be a submatrix created from the columns of Ȳ , then

[a1, . . . ,aJ ] = arg max
¯Y

(J)
V (Ȳ

(J)
) = arg max

¯Y
(J)

det
{
(Ȳ

(J)
)T (Ȳ

(J)
)
}
, (2)

where V (Ȳ
(J)

) is the volume of the polytope spanned by the vectors in Ȳ
(J)

.

Following Remark 1 and Corollary 1, the vectors {a1, . . . ,aJ} from (2) can be
used to initialize the matrix A for NMF.

The problem (2) for the exact factorization model (noise-free data) can be
solved with the recursive algorithm. In the first step, we attempt to find such the
vector ȳt from Ȳ that is located in the furthest distance from any random vector
z ∼ U [0, 1] ∈ RI

+. Such a vector determines one of the vertices to be estimated.
In the next step, another vector ȳs from Ȳ is searched that maximizes the area
of the parallelogram formed by the vectors ȳt and ȳs. In each recursive step, the
new vector from Ȳ is added to the basis of the previously found vertex vectors.

For noisy-data, we attempt to find p vectors from Ȳ that have the highest
impact on the solution to (2) in each recursive step. Then these vectors form an
averaged vector that is a rough estimator of the desired vertex.

The final form of the proposed recursive algorithm is given by Algorithm 1.The
function [c(sort),K] = sort(c, p, descend) sorts the entries in c in descending
order, c(sort) contains the largest p entries, and K is a set of their indices.

4 Experiments

The experiments are carried out for some Blind Source Separation (BSS) prob-
lem, using the benchmark of 7 synthetic sparse nonnegative signals (the file
AC-7 2noi.mat) taken from the Matlab toolbox NMFLAB for Signal Process-
ing1 [13]. Thus X ∈ R7×1000

+ , and this is a sufficiently sparse matrix according to

Definition 2. The entries of the mixing matrix A ∈ R21×7
+ were generated from

a normal distribution N (0, 1), with cond(A) ∼= 4.3, where the negative entries
are replaced with a zero-value.

To estimate the matrices A and X from Y , we use the standard Lee-Seung
algorithm [1] (denoted here by the MUE acronym) for minimizing the Euclidean
distance, using 500 iterations.

1 http://www.bsp.brain.riken.jp
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Algorithm 1. SimplexMax

Input : Y ∈ R
I×T
+ , J - number of lateral components, p - number of nearest

neighbors
Output: A ∈ R

I×J
+ - estimated initial basis matrix

Initialize: A = 0, Replace negative entries (if any) in Y with zero-value,1

and remove zero-value columns in Y ;2

Ȳ =
{

y1
||y1||1

, . . . ,
yT

||yT ||1

}
; // Projection onto the probability simplex3

z ∼ U [0, 1] ∈ R
I
+;4

rt = ||ȳt − z||2;5 [
r(sort),K(0)

p

]
= sort(r, p, descend), where r = [rt] ∈ R

T ;6

a1 =
1

p

∑
k∈K(0)

p

ȳk ;

7

for j = 1, 2, . . . , J − 1 do8

d = [dt] = 0;9

for t = 1, 2, . . . , T do10

D = [a1, . . . ,aj , ȳt] ∈ R
I×(j+1)
+ ;11

dt = det(DTD);12 [
d(sort),Kp

]
= sort(d, p, descend), where d = [dt] ∈ R

T ;13

aj+1 = 1
p

∑
k∈Kp

ȳk;14

To test the efficiency of the discussed initialization methods, 100 Monte Carlo
(MC) runs of NMF were performed, each time the initial matrixA was estimated
with the tested initialization method but X is randomly generated from an
uniform distribution.

We tested the following initialization methods: random, multilayer with mul-
tistart [3] (3 layers and 30 restarts), ALS-based initialization [3], SVD-based
initialization [7], and the proposed SimplexMax.

The efficiency of the initializers was evaluated with the Signal-to-Interference
Ratio (SIR) [3] between the true matrix A and estimated one. Fig. 2 shows the
SIR statistics for estimating the mixing matrix A using the MUE algorithm
initialized with various initialization methods.

We analyzed 3 cases: noise-free, weakly noisy data with SNR = 30 dB, and
moderately noisy data with SNR = 20 dB. The SIR statistics plotted in Fig. 2
concerns only the noisy cases. We set p = 1 and p = 3 for SNR = 30 dB and
SNR = 20 dB, respectively. For the noise-free data, the SimplexMax method
estimates the columns in the matrix A with SIR > 200 dB for p = 1, and hence,
no further alternating steps of NMF is needed (see Table 1).



454 R. Zdunek

Random Multilayer ALS SVD SimplexMax
10

12

14

16

18

20

22

24

26

28

S
I
R

[
d
B

]

Random Multilayer ALS SVD SimplexMax

5

10

15

20

25

30

35

S
I
R

[
d

B
]

(a) (b)

Fig. 2. SIR statistics for estimating the mixing matrix A from noisy observations, using
theMUE algorithm with various initialization methods (random, multilayer, ALS, SVD,
and Simplex Volume Maximization): (a) SNR = 20 dB, (b) SNR = 30 dB. For noise-free
data, the Simplex Max method estimates the matrix A with SIR > 200 dB.

Table 1. Mean-SIR values [dB] and standard deviations (in parenthesis) averaged over
100 MC runs of the the SimplexMax method (without the MUE algorithm)

Data p = 1 p = 3 p = 5 p = 10

noise-free 276 (1.43) 151.8 (2.62) 63.23 (10.42) 10.93 (3.05)

SNR = 30 dB 21.23 (0.81) 17.91 (1.83) 15.13 (2.82) 9.91 (2.17)

SNR = 20 dB 7.27 (1.36) 10.18 (2.06) 8.69 (1.85) 8.37 (1.67)

5 Conclusions

Fig. 2 demonstrates that for the observations with SNR ≥ 20 dB the proposed
SimplexMax method provides the best initializer for A among the tested meth-
ods. For noise-free data that satisfies the sufficiency sparsity condition (Def-
inition 2), the SimplexMax method gives the exact estimator. However, such
data is difficult to obtain in practice, hence the SimplexMax should be nearly
always combined with some alternating optimization algorithm for NMF. The
performance of Algorithm 1 for p = 1 considerably depends on the SNR of ob-
servations. We noticed that for SNR ∼= 30 dB and p = 1, the mean-SIR of the
estimated initial matrix A with the SimplexMax is about 21 dB (Table 1) but
after using the MUE algorithm, the SIR grows up to about 33 dB. When the
observed data is stronger corrupted with noise, the SimplexMax needs adapta-
tion of the parameter p. A further study is needed to determine the relation of
p with a level of noise.

Summing up, the proposed SimplexMax method seems to be efficient for ini-
tialization of the basis vectors in NMF when the observations are sufficiently
sparse and corrupted with moderate noise. For a noise-free case, the proposed
method gives exact estimators.



Initialization of NMF with Vertices of Convex Polytope 455

Acknowledgment. This work was supported by the habilitation grant N N515
603139 (2010-2012) from the Ministry of Science and Higher Education, Poland.

References

[1] Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix
factorization. Nature 401, 788–791 (1999)

[2] Langville, A.N., Meyer, C.D., Albright, R.: Initializations for the nonnegative ma-
trix factorization. In: Proc. of the Twelfth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Philadelphia, USA (2006)

[3] Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley and Sons (2009)

[4] Cichocki, A., Zdunek, R.: Multilayer nonnegative matrix factorization. Electronics
Letters 42(16), 947–948 (2006)

[5] Wild, S.: Seeding non-negative matrix factorization with the spherical k-means
clustering. M.Sc. Thesis, University of Colorado (2000)

[6] Wild, S., Curry, J., Dougherty, A.: Improving non-negative matrix factorizations
through structured initialization. Pattern Recognition 37(11), 2217–2232 (2004)

[7] Boutsidis, C., Gallopoulos, E.: SVD based initialization: A head start for nonneg-
ative matrix factorization. Pattern Recognition 41, 1350–1362 (2008)

[8] Kim, Y.D., Choi, S.: A method of initialization for nonnegative matrix factoriza-
tion. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2007), Honolulu, Hawaii, USA, vol. II, pp. 537–540 (2007)

[9] Xue, Y., Tong, C.S., Chen, Y., Chen, W.S.: Clustering-based initialization for
non-negative matrix factorization. Applied Mathematics and Computation 205(2),
525–536 (2008); Special Issue on Advanced Intelligent Computing Theory and
Methodology in Applied Mathematics and Computation

[10] Donoho, D., Stodden, V.: When does non-negative matrix factorization give a
correct decomposition into parts? In: Thrun, S., Saul, L., Schölkopf, B. (eds.)
Advances in Neural Information Processing Systems (NIPS), vol. 16. MIT Press,
Cambridge (2004)

[11] Chu, M.T., Lin, M.M.: Low dimensional polytype approximation and its appli-
cations to nonnegative matrix factorization. SIAM Journal of Scientific Comput-
ing 30, 1131–1151 (2008)

[12] Wang, F.Y., Chi, C.Y., Chan, T.H., Wang, Y.: Nonnegative least-correlated com-
ponent analysis for separation of dependent sources by volume maximization.
IEEE Transactions Pattern Analysis and Machine Intelligence 32(5), 875–888
(2010)

[13] Cichocki, A., Zdunek, R.: NMFLAB for Signal and Image Processing. Technical
report, Laboratory for Advanced Brain Signal Processing, BSI, RIKEN, Saitama,
Japan (2006)



Part IV

Computer Vision, Image
and Speech Analysis



Comparison of Corner Detectors

for Revolving Objects Matching Task

Grzegorz Bagrowski and Marcin Luckner

Warsaw University of Technology, Faculty of Mathematics and Information Science,
pl. Politechniki 1, 00-661 Warsaw, Poland
{gbagrowski,mluckner}@mini.pw.edu.pl

http://www.mini.pw.edu.pl/~lucknerm/en/

Abstract. The paper contains test of corner detectors applied in finding
characteristic points on 3D revolving objects. Five different algorithm are
presented starting from historical Moravec detector and ending at newest
ones, such as SUSAN and Trajkovic.

Since the algorithms are compared from the perspective of use for
3D modeling, the count of detected points and their localization is com-
pared. The modeling process uses a series of photos and requires finding
a projection of 3D point to two or three subsequent photos. The quality
of algorithms is discussed on the base of the ability to detect modeled
objects’ corners and immunity to noise. The last researched aspect is the
computation cost.

The presented tests show that the best results are given by Shi–Tomasi
operator. The detector does find false corners on noisy images, thus SU-
SAN operator may be used instead.

Keywords: Computer vision, Corner detectors, 3D modeling.

1 Introduction

The paper presents the analysis of corner detectors, designed for plain images,
in a 3D revolving objects matching task. The aim of the analysis was to select
corner detectors, which would be used in 3D modeling task [10].

In this task a series of revolved object’s photos is created. Such series consist
of 24–36 images, which present different views of an object that is placed on a
revolving pedestal. For a 3D modeling it is necessary to detect 7 points present
on each pair of adjacent photos in a series or 6 points present on each of the
tree adjacent photos. In the first case the fundamental matrix is used in the
modeling, while the in the second a trifocal tensor is created [3].

A problem of matching points between images of revolving objects is much
more complex than an equivalent in a satellite photogrammetry, where modeled
objects can be discussed as a plain. Projections of 3D points have various rep-
resentations on different photos and some of them can be ignored by a detector.

For given reasons corner detectors should be analyzed from a number of per-
spectives. First, a the count of corners detected on each objects should be suf-
ficient to create a model. Second, the same point has to be detected on two

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 459–467, 2012.
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or three subsequent photos. Next, the quality of the result will be discussed,
detected points should represent corners of an object. The last aspect is a com-
putation time, which cannot be ignored in application for multi–image series.

The rest of article briefly presents discussed corner detectors (Section 2) and
tests performed (Section 3). Finally, the conclusions are presented (Section 4).

2 Corner Detectors

Each of the described corner detection algorithms follows a similar outline. The
first step is to calculate a detector–dependent cornerness measure of a pixel.
Next, corners with a response below certain threshold are removed. Finally, local
maxima are extracted from remaining points using the non-maximal suppression.

The first step is detector–specific and thus has a decisive impact on the result
of the algorithm, as well as its running time. Subsequent steps are common to
all algorithms, however some detectors apply certain steps multiple times.

Additionally, each algorithm uses a concept of a window (also referred to as
a kernel) which, placed over the pixel in question, defines the background pixels
used for evaluation of point’s cornerness measure.

2.1 Corner Detection Algorithms

One of the earliest algorithms for the class of problems is Moravec corner detector
[5]. The corner response of a pixel is evaluated as the minimum of the sum of
square differences between pixels included in a window placed over given pixel
and its shifts in all of the 8 principle directions.

Harris [2] developed the idea further by expanding the analytic expression of
Moravec operator and directly using the derivatives of the image by the x and
y coordinates. Since square mask does not cover the same area when rotated,
the image is additionally filtered by convolving with a Gaussian window. Thus
less value is attributed to the points further from the center imitates the use of
a more resistant to rotation, round mask.

An improved version of the idea of Haris’ corner detector took the form of
the Shi–Tomasi–Kanade operator [6], [8] in which the detector uses a modified
statistic for distinguishing between feature classes (corner, line, flat area).

Different approach was used in the SUSAN (Smallest Univariate Segment
Assimilating Nucleus) detector [7]. This detector places a circular mask (called
USAN) over the point in question and evaluates the similarity of it’s intensity to
that of surrounding pixels. Further steps can be employed to reject false corners,
namely: verifying the center of gravity and contiguity of USAN.

Trajkovic [9] corner detector was built based on the strategy utilized by SU-
SAN detector. As per the idea of SUSAN, a circular mask is used, but the
amount of straight lines having the same intensity and passing through the mid-
dle is considered instead and it is measured taking into account only the points
on the circle and the center point. This significantly reduces the number of pixels
compared.
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2.2 Algorithm Parameters

As mentioned earlier in this section, algorithms share two steps that extract the
final results from the cornerness map created by the first step.

Threshold filter must be calibrated carefully to remove false responses, but
retain valid corners. Too high threshold value would remove groups of local
minima containing corners that have lower response value, this applies especially
to methods assigning the response based on pixel intensities. On the other hand,
a sufficient compromise must be found to remove enough false responses. Each
detector was manually assigned two values of threshold: high and low, to compare
the actual impact of threshold on finding of desired features. Higher value would
elliminate more corners and thus requires less restriction from other parameters,
contrary to lower thresholds, for which the number of corners found must be
reduced using other methods.

After thresholding, the corner map contains a number of groups of pixels, from
which the actual corners are extracted using the the non-maximal suppression.
The only parameter here is the radius (which defines the size of 2n+1× 2n+1
box used), which has to be small enough not to remove correct corners and high
enough to produce sparse enough map of corners. It is convenient to use this
filter to remove even an amount of correctly recognized corners in order to limit
the number of results both speeding up computation and preparing a simpler
problem for the matching algorithm.

Algorithms share one more parameter, the radius of window used. In case of
Moravec, Harris and Shi–Tomasi it is a 3 by 3 square, as increasing the size
did not bring significant improvement, while increasing the computation time.
SUSAN algorithm approximates the circular mask by a square bit mask, in our
case the 7 by 7 version was used. Trajkovic algorithm does not compare a mask
per se and the algorithm uses notation of 4 or 8 neighbor variants, of which the
8 neighbor version produces far better results.

Additionally to the above–mentioned parameters, there is a number of detector-
specific values. Harris algorithm requires specifying of k constant parameter
which influences the decision boundaries use for point classification, values 0.13
was chosen empirically. Please not that although the Shi–Tomasi corner detec-
tor follows Harris detector it does not require this constant, because of different
corner statistic being used.

Another parameter used by both Harris and Shi–Tomasi algorithms is the
standard deviation of the Gaussian filter. Value 1 is used typically, as increased
blurring would influence corner localization. SUSAN algorithm rejects a number
of false matches by checking the distance of each points’ centroid and its center
of gravity [7]. The value used was set to 1.4, removing a great amount of edge
points. Trajkovic algorithm requires scaling the image to a smaller size and
performing simplified corner detection on the produced image. Therefore, the
algorithm is supplied with a scale parameter being a power of 2. In our case, 1

4
proved to be sufficient. Additionally, two thresholds must be specified for this
algorithm: for the scaled and for the input image.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Test images series used

3 Tests

There exist a number of well known benchmark images for corner detection
algorithms, unfortunately, none of them contains two or more images.

Corner matching problem is usually considered for 2 images and there are no
widely used benchmark image sets - authors usually provide their own test sets.

Moreover, this article is focused on researching the problem for 3D model
acquisition, more specifically - from a revolving 3D object. Thus sets of 3 images
depicting the same object, but from different angles are required. Such data sets
for real objects are unique among popular benchmarks, which are focused on
images taken in the same plane [4].

Data sets could be generated from objects commonly used in computer graph-
ics, for example the so called ’Stanford Bunny’[1] and so forth. On the other hand,
artificially generated images contain unnatural smooth background that could
significantly bias the result. Therefore we propose three benchmark sets, display-
ing three solids varying in texture and structure. Additionally, the lighting does
vary among the photographs in 1(a)–1(c) (direct sunlight) and 1(d)–1(f)image
series.
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(a) lower thresholds (b) higher thresholds

Fig. 2. Influence of non-maximal suppression for number of detected points

Grayscale versions of the images were used for the tests. A common practice
to improve the results of the detection process is to reduce the size of the images,
thus, the size of the images used are 539× 404 for two first series and 539× 359
for the last one. All three photo series are presented in Figure 1.

3.1 Parameters Selection

The problem of parameters optimization is very complex task. Both character-
istic detector parameters and parameters of general detection procedure have
to be found. An influence of different parameters is presented in Figure 2. For
an increased radius of non-maximal suppression a percentage of point from an
initial image, which are not eliminated is presented. The results are given both
for lower 2(a) and higher 2(b) values of individual detector parameters.

An ideal parameter set allows recognition of 6 points, which are present on
all three images or 7–8 for images pairs. However, this task is not trivial even
for a small number of parameters.

For that reason all parameters of detectors are fixed on typical values, sug-
gested by authors or obtained experimentally as described in Section 2.2. Next
a non–maximal suppression radius is decreased by 5 starting from 50. Given the
size of images, radius of 50 is enough to eliminate all but a few points, while re-
laxing this parameter would increase the detected points set. When the numbers
of points with a projection on all three images reaches 6 algorithm stops.

3.2 Corners Detection and Matching

For each image series detectors were run with fixed parameters calculated as
above–mentioned. For each photo set the number of detected points was counted
as well as the number of matches between photo pairs and triples.

Corresponding points on each two adjacent images were found using a moified
version of area-based matching. First, for each point, only candidates having co-
ordinates in a certain radius were considered. Next, for each potential match, the
distance was calculated as the correlation between points’ backgrounds of n× n
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Fig. 3. Matching procedure. For projections of 3D point on the first photo equivalent
points are localized on the next two photos. The points, which are on all photos are
connected with black lines. The rest of matched points is connected with gray lines.

pixels. Pairs having correlation below 80% were rejected at this step. The match-
ing was performed in both directions, eliminating non-bijective pairs of corners.
Finally a 3-dimensional projection was estimated by RANSAC algorithm based
on the remaining matches. Hence the random nature of RANSAC algorithm, a
number of trials was performed, choosing the best result. All pairs fitting to the
estimated models were considered correct matches.

Table 1. Statistics for detected points. For each series results for 5 detectors are pre-
sented. The number of detected points and the number of pairs are given. A percentage
of points, which are double or triple projection of 3D point is in last columns.

Model Detector Points Pairs Double projections [%] Triple projections [%]

Stone Harris 361 46 22.99 7.48
1(a)–1(c) Moravec 63 16 38.31 28.57

Shi-Thomasi 43 21 83.72 41.86
SUSAN 48 18 62.50 37.50
Trajkovic 74 21 48.65 24.32

Head Harris 52 18 57.69 34.62
1(d)–1(f) Moravec 39 17 71.79 46.15

Shi-Thomasi 57 21 63.16 31.58
SUSAN 77 26 59.74 23.38
Trajkovic 498 49 18.07 4.82

Solid Harris 192 28 26.04 9.38
1(g)–1(i) Moravec 368 39 18.75 7.34

Shi-Thomasi 38 14 55.26 55.26
SUSAN 57 22 66.67 31.58
Trajkovic 223 24 18.83 8.07

First, corners corresponding to 3D points were detected on each photo. Then,
matching was found between adjacent images, producing left (between image
1 and 2) and right (between images 2 and 3) match sets. Finally, pairs were
combined into triples using by matching points on the middle image, common to
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Fig. 4. Detected pairs and triples among points

both matchings. Matches not included in a triple were counted as a pairs. The
matching procedure is presented in Figure 3.

Statistics for all detectors and series are presented in Table 1. The best al-
gorithm should assure both high percent of detected pairs and triples. Average
values of these two parameters are compared, as it is shown in Figure 4.

This diagram gives a well ordered hierarchy of detectors and it is clear that the
best results are obtained by Shi–Thomasi detector. Moreover, it can be said that
the estimated number of detected triplets should be in ratio 3

5 to the number of
detected pairs for all discussed detectors.

3.3 Detection of Correct Corners

In 3D modeling a correct detection of objects’ corners is essential for a quality
of the model. In theory all discussed operators detect corners. In practice a lot
of detected points lie on edges or on a surface of the modeled object. A detector
that detects correct corners of the object is preferred. However, a detector that
is prone to noise detection can detect a high number of correct corners as well
as other points. For that reason a good detector should maximize a localization
of correct corners in respect to minimalization of different points detection.

In many cases it is hard to define correct corners of an analyzed object. For
example objects presented in 1(a)– 1(f) do not have well defined corners. On the
other hand, the object from 1(g)– 1(i) is a well defined solid.

This object was selected for the test of correct corners detection. As a measure
a correct corners detection quality the number of detected corners of the solid
among all detected points is used. As it was said, a detector, which is prone to
noise can have a relatively high correct corners detection level. For that reason
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Fig. 5. The percent of matched correct corners (corners of the solid) against the percent
of matched points detected on a background

Fig. 6. Comparison of computation time for two images

a susceptibility to noise will be also estimated as a percent of points detected
outside of the solid among all detected points.

In the modeling process only points included in doubles or triplets are used
and only such points were taken into consideration in the quality of correct
corners detection and noise estimation. The results for all compared algorithms
are presented in the Figure 5.

The highest number of correct corners was detected by Shi–Thomasi operator.
However, this detector is also prone to noise detection. The reason lies in a low
level of the rejection threshold.

A reasonable quality level with a much better noise immunity was presented
by Moravec and SUSAN detectors. The results show that Harris operator did
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not detect any correct corners. Despite of that, a detected points may be char-
acteristic points, which are useful in the matching process, but the quality of
created 3D model will be probably lower.

3.4 Time Consumption

The comparison of algorithm running times is presented in Figure 6. The com-
putation time was compared for images of different size. In all cases the slowest
algorithm was Moravec. The SUSAN algorithm also was relatively slow. Both
Shi-Thomasi and Harris have similar results, which is not surprising because of
their nearly identical construction. The fastest algorithm is Trajkovic.

4 Conclusions

When the number of detected pairs and triples is compared as in Figure 4, then
Shi–Thomasi operator seems to be the best choice. This operator has also a good
quality of correct corner detection (detection of points, which are projections of
a modeling object corners), but with sensitivity to noise on a significant level
(Figure 5). For that reason, if the noise cannot be reduced with other methods
a good solution may be using the SUSAN detector instead. In such case, a the
computational cost will grow significantly (Figure 6).
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Abstract. In this paper, we propose a hierarchical action recognition
system applying Fisher discrimination dictionary learning via sparse rep-
resentation classifier. Feature vectors used to represent certain actions are
first generated by employing local features extracted from motion field
maps. Sparse representation classification (SRC) are then employed on
those feature vectors, in which a structured dictionary for classification is
learned applying Fisher discrimination dictionary learning (FDDL). We
tested our algorithms on Weizmann human database and KTH human
database, and compared the recognition rates with other modeling meth-
ods such as k-nearest neighbor. Results showed that the action recogni-
tion system applying FDDL can achieve better performance despite that
the learning stage for the Fisher discrimination dictionary can converge
within only several iterations.

Keywords: Action Recognition, Motion Field, Sparse Representation
Classification, Spatio-temporal Patches.

1 Introduction

Action recognition is receiving growing attentions due to its applications in smart
surveillance[9], sign language interpretation[22], advanced user interface[21,13]
and intelligent robotics. Compared with the object recognition from static im-
ages, action recognition usually takes videos as inputs. In addition, if actions are
subjected to cluttered background in videos, recognition rates from current algo-
rithms may decline to lower levels, unless some additional methods are adopted,
e.g. imposing tracking windows or estimating background by other information.

Designing the systems for action recognition usually involves two issues, i.e.
how to represent actions in given videos and how to label unknown actions.
To solve the first issue, algorithms usually fall into two categories, depending
on whether global features or local features are employed. In the first category
[18,7], human bodies as a whole are modeled and actions are represented by the
trajectories of body parts. In the other category such as [10,4,14], local features
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(called patches or bag-of-words) are often utilized to represent actions because
they can preserve details rather than absolute positions.

In order to address another issue, several groups applied algorithms from
machine learning, and their efforts can be classified as either generative ap-
proaches [6] or discriminative approaches [20], depending on how they model
the actions in videos [16]. Recently a novel model called sparse representation
classification(SRC) has been widely studied in face recognition, due to its suc-
cess in image restoration [12] and image compression [3]. There are generally
two steps [23] involved in the SRC, namely, building dictionaries from training
data and classifying unlabeled data by solving coding coefficients. While most
of SRC methods directly use training data as dictionaries, latest researches in
[24] proposed a more efficient algorithm for dictionary learning, in which Fisher
discrimination criterion was applied. Although SRC and its variations are widely
used in face recognition, there are few researches in action recognition utilizing
the methods, mainly because most of current models cannot be easily combined
with the SRC.

In this paper, we try to solve the two issues by introducing a hierarchical
action recognition system, which is an extension to our previous works [1] on
gesture perception. In our system, motion field maps capturing lower features
such as speed and directions are estimated at first, followed by feature vector
calculations from matchings between query videos and template patches which
can be thought of as visual words for actions. Once feature vectors are com-
puted, classification based on Fisher discrimination dictionary learning(FDDL)
is carried out and unknown actions are labeled by solving coding coefficients
from fisher discrimination dictionary. Compared with our previous works in [1]
which addressed the problem of how to efficiently generate feature vectors for
gestures, this paper focuses on comprehensive solutions for action recognition
problems, and for the first time incorporates state-of-the-art models from face
recognition to the action recognition system. We tested our system on popular
action database, and promising results were reported.

2 Hierarchical System via Spatio-temporal Patches

The proposed architecture employs a hierarchical structure similar to the one
described in [1]. At the lower level, global features such as speed and directions
are extracted. While at the higher level, invariance to positions is achieved by
applying matchings between template patches and query videos.

2.1 Lower Level Processing

The lower level processing includes calculating motion field maps and blurring
them by max operations[1]. In this stage, vertical and horizontal edge flags in
Directional Edge Displacement(DED) maps are projected onto x-axis or y-axis
in local windows and histograms are generated for consecutive DED maps, sep-
arately. Shift-and-matching between two histograms in the consecutive frames
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is carried out so that the important information such as directions and speed is
estimated. Once motion field maps are calculated, the invariance of the system
is increased by blurring motion fields in a w × w window at each frame, using
either max filters or average filters. In reality we follow the previous method[1]
by sampling maximum values from w×w windows and the window is shifted by
a step of w/2, thus resulting in a (w/2)2 factor reduction in scale for each frame.
Blurred motion field maps at both directions are further half-wave rectified into
four non-negative channels like [5].

2.2 Higher Level Processing

The system at higher levels provides functionalities that are similar to those of
visual cortex [17], and local features are detected while absolute positions of fea-
tures become irrelevant. There are two different processes existing at the higher
level: template learning and feature vector calculation. Both processes involve so
called spatio-temporal patches [1] which can be seen as a small portion of videos.

Template Learning. Once motion field maps are available, a number of spatio-
temporal patches are extracted randomly in space and time from learning
samples and served as template patches. Along with the extraction, a simple de-
tecting algorithm is adopted, that is, patches only containing enough non-zero
values are kept. Because most of the noises are eliminated at the lower stage
and only essential motions from video sequences are preserved, our selection of
patches based on this algorithm is well-tuned to the strong motions.

Once numbers of patches are extracted randomly from different action cate-
gories, they are converted to descriptor representations [1]. The K-means is then
applied to those descriptors so that the number of patches extracted from the
learning stage is reduced.

Feature Vector Calculation. As described in [2], when video sequences to
be recognized enter the system, features at the lower layers are first calculated
by motion field estimation and further blurred by taking maximum values from
local windows, which are identical to the steps used in template learning stage.
During feature vector generation, spatio-temporal patches with the same size of
the template patches are extracted from the input video sequences. The differ-
ences compared with the learning stage are that the extraction is carried out
in sequential order rather than random selection. Similar threshold algorithm is
adopted, which selects patches that contain enough non-zero values. Since then
only small numbers of meaningful patches are calculated, computation can be
reduced significantly.

3 Fisher Discrimination Dictionary Learning (FDDL) via
Sparse Feature Classification(SRC)

Sparse representation classification (SRC) is first proposed by [23] for face recog-
nition. The underlying principles are simple and elegant, which based on the
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observation that the query sample can be represented by a linear combination
of training samples. Though related researches shows that the SRC may lead to
minimal reconstruction error for recognition tasks with even significant occlu-
sions, it may be not effective to represent the query samples directly by training
samples, due to the uncertainty in the training samples. In order to improve the
classification accuracy for sparse representation classification, Fisher discrimina-
tion dictionary learning (FDDL) is proposed by [24] for face recognition and the
dictionary used for sparse classifier is learned by optimizing a FDDL function.

3.1 Sparse Representation Classification(SRC)

Suppose we have c classes of samples, and let A = [A1, A2, ..., Ac] be the set
of original training samples, where Ak represents the subset of training set k.
Assume that f is the feature vector for query sample, the class for the given
query sample is found by,

identity(f ) = argmin
i
{‖f −Aiâi‖2} (1)

where âi is the subset for sparse codes â = [â1; â2; ...; âc], which is calculated by
solving the following l1-norm minimization problem:

â = argmin
a
{‖f −Aâ‖22 + γ‖â−mi‖1} (2)

in which γ is a scalar constant.

3.2 FDDL Models

Instead of using raw training samples for classification, a structured dictionary
D = [D1, D2, ..., Dc] has been learned [24], where Dk is the sub-dictionary for
the class k. With this dictionary, we can classify a given query sample using
reconstruction errors defined by Equation.1.

Firstly, in order to learn the structure dictionary, an FDDL model is con-
structed in the following way,

J(D,X) = arg min
(D,X)

{r(A,D,X) + λ1‖X‖1 + λ2g(x)} (3)

where r(A,D,X) is called discriminative fidelity term, ‖X‖1 is called sparsity
constraint, and g(x) is the discrimination constraint imposed on the coefficient
matrix X [24]. In order to train the FDDL model, a special strategy has been
adopted in which dictionary and coefficient matrix are updated alternatively. It
also shows that FDDL can converge efficiently within limited number of itera-
tions(see Figure.1).
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Fig. 1. Values of object function for each iteration(Weizmann database). It shows that
after several iteration, the objective function can actually converge very well.

(a) Weizmann human database(including nine actions in all)

(b) KTH human database(including six actions with variations)

Fig. 2. Database used in the experiment

3.3 SRC Based on FDDL Model

Once the dictionary is available, we can apply the similar idea from SRC for
classification,

identity(f ) = argmin
i
{‖f −Diâi‖2 + w ˙‖â−mi‖22} (4)

where Di is the sub-dictionary for class i, âi the sparse codes learned in the sim-
ilar way from Equation.1 except using dictionary D instead of training samples
A. mi is the mean vector of the class i and w is a preset weight to balance the
two terms.

4 Experiment Results

We have tested the algorithm on both Weizmann database and KTH human
database. In addition, we compare our algorithm with the one applying k-Nearest
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Table 1. Experiment results for Weizmann human database

Approaches Recognition Rate Testing Methods

1-NN 91.53% Split

1-NN 93.02% Leave-one-out(LOO)

FDDL 100.00% Split

Neighbor(1-NN) classifier. In order to test the robustness of the system, we
divided the samples so that 50% of the them are served as training samples and
the rests are served as testing samples.

4.1 Weizmann Database

The Weizmann human action database (see Figure.2a ) [8] contains 81 low res-
olution video sequences(180 × 144 pixels) with nine subjects. It contains nine
actions, including bending, jumping at the same places, jumping from one side
to the other side, galloping-sideways, waving two hands, waving one hands, run-
ning, walking and jumping-jack. For the simplicity, we adjusted the size of each
frame to 256 × 256 for our system. The database also contains an extra video
sequences for background, which can be used for foreground emergence [8]. In
our experiment, nevertheless, we did not utilize this extra information.

The results showed that the algorithm that applied FDDL models generally
performed better than 1-NN as well as other similar algorithms, and we also listed
the results of leave-one-out test for comparison. Moreover, Figures.1 shows that
the learning for dictionary D can be done within 15 iterations without losing
much accuracy, which can be used to further reduce the computational cost of
the model.

4.2 KTH Human Database

The KTH human action database (see Figure.2b) [19] contains 25x6x4=600 video
files for each combination of 25 subjects, 6 actions and 4 scenarios. For the
simplicity, we adjusted the size of each frame to 256 × 256 for our system. We
have generated k = 2400 prototypes from only one learning sample under 1st
scenarios (d1) which contains six actions.

The experiment results show FDDL outperform 1-NN significantly, and the
confusion matrix shows that the mismatch usually happened between actions
that are similar to each other. In addition, we also compared our recognition
rates with latest researches, though some of them used additional background
estimation methods as pre-processing steps [10]. Despite the recognition results
in the table, the performance can be further improved, since during the experi-
ment we used only one sample (about 1% of total videos) to learn the template
patches.
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Fig. 3. Confusion Matrix for the KTH human database

Table 2. Experiment results for KTH human database

Approaches Recognition Rate Testing Methods

Liu&Shah [11] 94.16% LOO

Jhuang et al.[10] 91.70% Split

Ours (FDDL) 87.15% Split

Nowozin et al.[15] 87.04% Split

Niebles et al.[14] 81.50% LOO

Dollar et al.[4] 81.17% LOO

Ours (1NN) 75.00% LOO

5 Conclusion

In this paper, we proposed a hierarchical system for action recognition. Inspired
by the latest researches in face recognition, we extended the FDDL models to
video recognition and experiment results showed that the sparse representation
based on FDDL may be a promising model for action recognition. As the future
researches, we would like to explore more about the sparse representation and
incorporate the SRC into the template learning, given that the two processes
are quite similar to each other in the way they process.
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Abstract. Human-Computer Interaction (HCI) is one of the most rapidly de-
veloping fields of computer applications. One of approaches to HCI is based on
gestures which are in many cases more natural and effective than conventional in-
puts. In the paper the problem of gesture recognition is investigated. The gestures
are gathered from the dedicated motion capture system, and further evaluated by
3 different preprocessing procedures and 4 different classifier. Our results suggest
that most of the combinations produce adequate recognition rate, with appropri-
ate signal normalization being the key element.

Keywords: Human-Computer Interaction, gesture recognition, signal process-
ing, machine learning.

1 Introduction

Human-Computer Interaction (HCI) using gestures is for many tasks more natural and
effective than conventional input. In most cases, the key to an effective application
of gesture HCI system is the performance of gesture recognition, which, in turn, de-
pends on the characteristics of data source. A common approach, combining low cost
with being non-intrusive, is to use video cameras. Unfortunately, this source of data
is sensitive to acquisition conditions, and requires complex preprocessing algorithms
(as seen for example on a large set of competitions organized by the Pascal-Network
[1]). To facilitate the recognition, special acquisition systems have been designed, from
special painted gloves (e.g. [15]), through devices targeted for games (e.g. Nintendo
Wii RemoteTM and Microsoft KinectTM), to dedicated motion capture systems (e.g.
CybergloveTMor DGTech DG5VHandTM).

We can view gesture recording with motion capture devices as corresponding to si-
multaneous recording and preprocessing / information extraction from cameras. That
is, our data contains information relating to movement characteristics (e.g. time change
of finger bend, hand orientation) extracted from that of registration process (e.g. posi-
tion configuration, lighting). This data is often complete enough to allow visualization
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of a gesture and human recognition. Given enough examples of natural gestures (those
that have a widespread use in human communication) we could attempt to analyze the
space of gestures1 and answer the questions: what is the expected complexity of the
task of gesture classification? Are additional preprocessing steps (of the captured data)
required to achieve high recognition rate?

Our work presents an approach to analyze this need of preprocessing and complexity
by a series of experiments with natural gestures data. We used a database of d = 22
natural gestures captured with motion capture gloves [6]. We have prepared an exper-
imental testbed of 3 preprocessing methods and 4 classifiers to evaluate the effect of
different preprocessing and class modelling. Our results suggest that most of the combi-
nations produce adequate recognition rate, with appropriate signal normalization being
the key element.

1.1 Related Work

The idea of glove-based human gesture recognition is still under the development. There
has be proposed many sophisticated methods to deal with universal time series (UTM)
[17]. Some of the ideas are based on dynamic time wrapping (DTW)[5] which allows
to measure the similarity between two signals of different length. Other approaches are
based on singular value decomposition of the signals what was proposed in [9], and
further extended in [11] by the use of more robust Segmented Singular Value Decom-
position, which focused on local properties of the signals. Chuanjun Li et al. proposed
a similarity measure based on SVD decomposition, where one of the applications was
hand gesture recognition [10]. Another system for gesture recognition and multivariate
time series processing was proposed in the dissertation of M. Kadous [8] where author
described a novel system called TClass. In the literature many other methods can be
found, however, we have noticed that most of these methods are computationally very
expensive, and there is a lack of a comparison to the simple standard approaches used
in signal processing. In the following section (2) we describe the gestures dataset and
present our solution; in section 3 three different preprocessing and feature extraction
algorithms are described. Section 4 discuss algorithms used for classification, with an
empirical comparison. The last section concludes the paper with discussion and direc-
tions of further research.

2 Our Approach

The gesture recognition process can be divided into two subsystems as presented on
fig.(1). The first stage is responsible for recognition if the recoded signals belong to any
of the known set of gestures denoted as class c = [c1, c2, . . . , cd], so it can be seen as a
kind of filter, filtering only known gestures and rejecting the unknown ones. This can be
realized as a novelty detection system where any novel gestures will be automatically
rejected (e.g. by the One Class SVM [14] or a Hidden Markov Model) or, as it is usually
done in image processing, by generating negative samples (here negative gestures) and

1 As opposed to space of gesture images, when the data analyzed would be camera based.
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establishing two class classification problem. In the second stage, launched only for
known gestures, the system will make the final recognition and assign appropriate class
label. In presented paper only this second stage will be discussed.

Fig. 1. Gesture processing scheme

The main problem of the second stage is to design a system which consists of two
building blocks fig.(2):

– Feature Extraction - this first building block should prepare data for the final
classification problem, with the goal to represent recorded signals of a gesture as a
vector in some n dimensional feature space

– Discrimination - this processing step is responsible for final decision by assigning
appropriate class label ci form the set of gestures c.

In this paper we would like to address the problem of selecting appropriate feature ex-
traction and discrimination methods by comparing several simple and intuitive methods
with low computational complexity. In our experiments we have compared:

– Resampling of the signals
– Classification based on Fast Fourier Transformation coefficients
– Classification based on coefficients extracted form polynomial approximation of

that signal.

Also three different classifiers were used to classify the signals which are: decision trees
(with a random forest of decision trees), support vector machine (SVM) and nearest
neighbor classifier.

2.1 Natural Gesture Database

For the experiments a subset of ’IITiS Gesture Database’ (see [6] for details) was used.
This database contains d = 22 natural hand gesture classes (e.g. „A-OK”, „thumbs
up”, „come here”). In the experiments only the subset of this database recorded with
DGTech DG5VHandTM2 motion capture glove was used. The glove was equipped with
a = 10 sensors: 5 finger bend sensors (resistance type) and three-axis accelerometer
producing three acceleration and two orientation readings. The sampling frequency was
approximately 33 Hz.

Each recording was performed with participant sitting at the table with motion cap-
ture glove on his right hand, with the hand in fixed initial position. At the command

2 http://www.dg-tech.it/vhand
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given by the operator sitting in front of the participant, the participant performed the
gestures. Each gesture was performed six times at natural pace, two times at a rapid pace
and two times at a slow pace. The operator decided the start and stop of the recording.

In the experiments the data for 5 participants, m = 1100 samples (from the 4195
total recordings) were used.

3 Data Preprocessing Techniques

The duration of the signals representing individual gestures may vary, and even the
length of the singles from certain gesture class may depend on the speed related to the
gesture execution. This requires normalization of the signals or transformation into a
time independent domain. In our experiments all signals were normalized to a fixed
length interval such that each signal starts at t0 = 0 and ends in tN = 1.

In the next step all the signals for each gesture were also normalized to obtain a com-
parable signals amplitude. However in opposite to the time normalization, the maximum
and the minimum value was set based on the analysis of all the signals recorded from a
single glove sensor and stored in the databased. The simple normalization of each signal
independent is inappropriate introducing noise to the system by maximizing the fluc-
tuation for sensors which recorded constant value like for example for „hello” gesture
where fingers are not bending. Assuming the notation where sj,i

k denotes i-th value of
k-th signal, of j-th recorded gestures, and denoting m as the total number of recorded
gestures, and Nj as the number of values of the signal of j-th recorded gestures, the
normalization process can be written as:

∀
k∈[1,a]

smin
k = min

j∈[1,m];i∈[0,Nj]

(
sj,i

k

)
∀

k∈[1,a]
smax

k = max
j∈[1,m];i∈[0,Nj]

(
sj,i

k

)
(1)

∀
k∈[1,a];j∈[1,m];i∈[0,Nj]

sj,i
k =

sj,i
k − smin

k

smax
k − smin

k

where smin
k and smax

k represents the maximum and minimum value for all recorded
signals of k’th sensor, and Nj is the length or the last index of gesture j.

In the next step three different preprocessing methods were used to create a feature
set:

Simple Resampling - in this approach all of the signals were first resampled to the
fixed number of samples r. The resampling process allows for fixing the time interval
between samples in all signals. This further allows for concatenation, such that the
single instance x represented in the input space of the classifier was defined as x =
[sj

1 ⊕ sj
2 ⊕ sj

a], where ⊕ denotes the concatenation operator. Finally the feature set
consists of n = (a · r) attributes, and each instance was annotated with an appropriate
class label.
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Fast Fourier Transformation - This approach includes all the previous steps, also the
resampling process however with higher number of samples, typically r = 55 followed
by the fast Fourier transform (FFT) [12].

gk =
N−1∑
t=0

xte
−i2πk t

N (2)

Where gk is a complex number describing the parameters of k’th harmonic frequency,
xt is an t’th sample of some signal sj , and N - is a total number of samples in that
signal.

According to the properties of the FFT transform, bypassing the resampling process
may lead to inconsistent feature space, because the values of estimated harmonic fre-
quences depends on the number of samples of the processed signal. In this scenario the
feature space is obtained by concatenation of the module of the most relevant p har-
monic frequences, so the final dataset consists of m samples and n = (a · p) features.

Polynomial Signal Approximation - In this method the input space of the classifier
is created by concatenation of the coefficients of the polynomials of order l used for
approximation of singles describing single gesture, so n = (l + 1 · a). This method
also requires additional preprocessing. However in opposite to two previous methods
the resampling process is not required and only the time and signal normalization steps
were used. In the formula below zl denotes the polynomial parameters stored as a values
of the attribute set.

yk = z0x
0 + z1x

1 + z2x2 + . . . + zlx
l (3)

4 Numerical Experiments

4.1 Discrimination Methods

In our experiments we have compared several well known classification algorithms.
The selected ones were the Support Vector Machines (SVM) with Gaussian kernel (G-
SVM) which is well known as the most universal shape of a kernel function [7], also
the RandomForests (RF) [3] which is also known as powerful classifier, and proved it in
the feature selection challenge organized in 2003 by Isabel Guyon [14, 15] during the
NIPS conference. Because this algorithm is based on a set of trees a classic single tree
was also used for the comparison - C4.5 [13]. The last algorithm used in all experiments
is the nearest neighbor classifier (kNN).

4.2 Testing Procedure Definition

In all experiments the performance of the classifier was estimated using 10 fold cross
validation. However the preprocessing steps were done separately before the cross val-
idation. This shouldn’t affect the overall performance and estimated accuracy because
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Fig. 2. Data processing steps during gesture recognition process

the preprocessing steps didn’t take into account class labels. The processing procedure
is presented on figure fig (2).

In the beginning all the classification algorithms were applied to the resampled
dataset with r = 55. This value is the highest reasonable value of that parameter,
because the minimum number of samples is equal to 55. In this scenario all the pa-
rameters were optimized to maximize the accuracy. For the G-SVM the model was
optimized checking all combinations of C = [0.0001 · 100,...7] (the trade-off between
training error and margin) and γ = [0.1 + 2 · (0.1 · [0, . . . , 9])] (the spread of the Gaus-
sian kernel). In all calculations LibSVM [4] implementation was used. Then for RF
and C4.5 the Weka [16] implementation was used with the default set of parameters
for C4.5 and similarly for the RF except that 100 trees were build without any feature
preselection. All of the experiments were performed using RapidMiner software [2],
except the preprocessing techniques, which were implemented in Matlab.

4.3 Classifiers Comparison

Obtained best results for each classifier, and the hyperparameters are presented in the
table tab.(1).

Table 1. Empirical comparison of different classifiers of resampled dataset

dataset G-SVM kNN RF C4.5
Accuracy [%] 96.37±1.28 94.75±1.38 96.03±1.93 77.95±2.79
Parameters C = 1000, γ = 1.9 k = 1 TN = 100, FN = inf Default weka values

Where:
TN - number of trees,
FN - number of features

Very interesting results were obtained for G-SVM. The set of optimal parameters C
and γ suggest that the decision border is very jagged so the SVM behaves like an kNN
classifier. On the other hand results obtained by a single decision tree and a random
forest algorithm differ a lot. This shows that the support of other tree in the forest is
crucial for the decision making.
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4.4 Comparison of Preprocessing Methods

For the process of preprocessing methods comparison only single classifier was se-
lected. As a reference algorithm for the validation of preprocessing methods the kNN
classifier was selected with k = 1. This model was selected because of several rea-
sons. Its performance is sensitive to the normalization process by the distance evalua-
tion, and thus may be more sensitive on the properties of the preprocessing parameters.
Also its performance was comparable to the other methods, however evaluation was
much faster, both in training and testing. Based on that classifier we have first evalu-
ated the quality based on the number of resampled instances. The results are presented
on fig.(3.a). As it can be seen as the number of resampled values reach around r = 15
samples per signal the accuracy starts fluctuating around acc = 94% without any signif-
icant improvement. Then the influence of the number of harmonic frequences selected
on the error rate of the classification process was estimated. As the number of harmonic
the range between [1 . . . 30] was tested. The results are presented on figure fig.(3.b).
For this preprocessing technique the maximum accuracy is reached for p = 5 and then
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Fig. 3. Influence of the preprocessing parameter on the error rate of the classifier
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remain almost constant without any statistically significant difference. The best accu-
racy obtained by the 1NN classifier is acc = 96.64 ± 1.46 As the SVM obtained the
best results for the preprocessing based on resampled data, we have also tried to op-
timize it for the FFT preprocessing but for fixed number of harmonic. Because as we
have already mentioned the accuracy of the 1NN model remains constant for p > 5 we
have optimized the SVM classifier for p = 10. The value of p was selected based on the
principle to move away from the border values, close to minimum error presented on
fig.3.b. Obtained maximum accuracy acc = 97.38 ± 1.21 was reached for γ = 6 and
C = 1000. It is worth to note that the accuracy differs form that obtained for resampling
based preprocessing just in 1% in both cases for SVM and kNN classifiers, while the
computational complexity of FFT is much higher.

Finally the preprocessing based on polynomial approximation was tested with the
order of the polynomial varying in range l = [0, . . . , 10]. Obtained results are presented
on figure fig.(3.c). Surprisingly in this method increasing the order of the polynomial
decreases the accuracy, and the best results are obtained for order l = 0. This sug-
gests that simple averaging of the signals (after initial amplitude normalization) may
be enough to classify signals with the accuracy of acc = 92%, and should be treated
as a base-rate for any other preprocessing methods. In our opinion so poor results were
achieved because the estimated polynomial coefficients are not stabile for small signal
changes, and may differ a lot. Thus, this leads to inaccurate classification results.

5 Conclusions

In presented paper the topic of gesture classification was discussed. First the whole
process of gesture processing was presented, focussing on the signal preprocessing for
known gestures and followed by classification task. In presented experiments we have
compared different basic preprocessing methods to get a reference for more advanced
methods, and different classification algorithms.

From that comparison the SVM classifier appears to be the best method, followed by
the random forests and the nearest neighbor algorithm. Analysis of results obtained for
the SVM pointed out that it behaves similar to the nearest neighbor classifier. Moreover
trying to optimize k value of kNN the best matching solution appeared for k = 1
what also proved that the decision border is rather jagged. So for the preprocessing
comparison only the 1NN classifier was used, as the most effective algorithm.

In that second stage of the experiment three basic preprocessing methods were com-
pared. From that comparison the FFT transformation leads to the best results. It is also
important to notice that the simple resampling leads to just 1% difference in accuracy
with much lower computational complexity. The last of tested methods - polynomial
approximation turned out to be completely useless, but allows as to define a base-rate
for the comparison to other methods.

Our experiments show that the simplest preprocessing methods may lead to very
high accuracy in gesture recognition, the only restriction is appropriate signal normal-
ization. In the future work we also plane to investigate the sensor specific preprocessing
methods. Currently signals recorded from all the sensors are process in identical way,
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however it may be important to adjust preprocessing methods for individual sensors.
We also plan to compare these simple methods with more advanced ones, to analyze
the real gains and losses of all these methods.

Acknowledgment. The work was sponsored by the Polish Ministry of Science and
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Abstract. The active appearance model (AAM) has proven to be a powerful tool
for modeling deformable visual objects. AAMs are nonlinear parametric models
in terms of the relation between the pixel intensities and the parameters of the
model. In this paper, we propose a fitting procedure for a 3D AAM based on ker-
nel methods for regression. The use of kernel functions provides a powerful way
of detecting nonlinear relations using linear algorithms in an appropriate feature
space. For analysis, we have chosen the relevance vector machines (RVM) and
the kernel ridge method. The statistics computed on data generated with our 3D
AAM implementation show that the kernel methods give better results compared
to the linear regression models. Although they are less computational efficient,
due to their higher accuracy the kernel methods have the advantage of reducing
the searching space for the 3D AAM fitting algorithm.

Keywords: 3D-Active Appearance Models, nonlinear optimization, kernel
methods.

1 Introduction

First proposed by Cootes et al. [3], the active appearance model (AAM) has attracted
much interest in the computer vision community for modeling deformable visual ob-
jects. Using principal component analysis (PCA), the method allows a linear represen-
tation of both shape and texture.

In a typical application, the first step is to fit the AAM to an input image, i.e. model
parameters are found to minimize the difference between the model instance and the
input image. The model parameters may be used then in different applications, such as
classification to yield a face recognition algorithm.

Despite its simplicity, the linear update model has been shown not to capture accu-
rately the relationship between the AAM’s texture residual and the optimal parameter
updates. Fitting an AAM to an image is a non-linear optimization problem [13,14].

In this work, a fitting procedure based on kernel regression methods for a 3D imple-
mentation of AAM is proposed. Fitting an AAM to an image consists of minimizing
the error between the input image and the closest model instance; i.e. solving a non-
linear optimization problem. In such a context, the RVM has proven to be an attractive
technique because of the advantages it provides. The RVMs are based on a Bayesian
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formulation of a linear model with the outputs being formulated as posterior probabil-
ities in a sparse representation [1,18]. As a consequence, they can generalize well and
provide inferences at low computational cost [1]. The advantages of a 3D implementa-
tion over a 2D AAM would be a more efficient detection for faces that are rotated in the
3D space and a more accurate modeling of faces for emotion recognition [5].

2 Related Work

In several papers, the detection of faces in images has been approached by deformable
models which represent the variations in either shape or texture of the face object. The
active shape models - ASM [4] and active appearance models - AAM [9] are two de-
formable models that have been extensively researched and used with good results in
the literature. Point distribution models - PDMs relate to a class of methods used to rep-
resent flexible objects through sets of feature points that indicate deformable shapes. 3D
face models have been proposed as an alternative to 2D face analysis for better handling
the face pose and face gestures. Edwards et al. [9] introduced the AAM as a method to
analyze faces using both shape and grey-level appearances. The spatial relationships
are determined using principal components analysis - PCA that build statistical mod-
els of shape variation. In a similar way, statistical models of grey-level appearance are
derived by applying PCA on shape-free samples obtained by wrapping the face images
using triangulation. The models of shape appearance and grey-level appearance are fi-
nally combined using PCA, to derive appearance vectors that control both grey-level
and shape data. Dornaika and Ahlberg [7] propose two appearance-based methods that
use locally exhaustive and directed search for both simultaneous and decoupled com-
putation of 3D head pose and facial expressions. Marcel et al. [11] use ASMs and local
binary patterns - LBPs to localize the faces within image samples. Tong et al. [19] pro-
pose a two-level hierarchical face shape model to simultaneously characterize the global
shape of a human face and the local structural details of each facial component. The
shape variations of facial components are handled using multi-state local shape models.
Datcu and Rothkrantz [6] proposed a bimodal semantic data fusion model that deter-
mines the most probable emotion. The approach uses 2D active appearance models and
support vector machine classifiers. Lefvre and Odobez [10] present an approach that
makes use of view-based templates learned online and an extension of a deformable
3D face model to collect appearance information from head sides and from the face.
The method has a high robustness in tracking natural and fake facial actions as well as
specific head movements.

3 Kernel Methods for Regression

3.1 Linear and Ridge Regression

Given a training set S = {(x1,y1), ...,(xl ,yl)} of points xi ∈ X ⊆ℜn with corresponding
label yi ∈ Y ⊆ ℜ, we consider the problem of finding a linear function g(x) = 〈w,x〉 =
w′x that best interpolates S [16]. The problem is reduced to determining the vector w
that minimizes the loss function defined as:

L(w,S) = (y−Xw)′(y−Xw) (1)
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where X is the matrix whose rows are x1
′, ...,xl

′ and y = (y1, ...,yl)
′. If the inverse of

X ′X exists, the solution is
w =

(
X ′X

)−1
X ′y. (2)

If X ′X is singular, we can solve this linear problem using ridge regression that corre-
sponds to the optimization problem

min
w

Lλ(w,S) = min
w

(
λ‖w‖2 +

l

∑
i=1

(yi− g(xi))
2

)
, (3)

where λ is the trade-off between norm and loss and controls the degree of regularization.
The dual solution is

g(x) = 〈w,x〉= y′(G+λIl)
−1κ, (4)

where κi = 〈xi,x〉 and Gi j =
〈
xi,x j

〉
.

3.2 Kernel Ridge Regression

If we consider the function Φ that transforms the initial data into a feature space F
where the nonlinear pattern become linear

Φ : x ∈ℜn →Φ(x) ∈ F ⊆ℜn (5)

then the kernel is defined as a function κ that satisfies

κ(x,z) = 〈Φ(x),Φ(z)〉 for all x,z ∈ X . (6)

The solution for the kernel ridge regression is

g(x) =
l

∑
j=1

α∗jκ(x j,x), (7)

where α∗ = (K +λIl)
−1y, λ > 0 and K = (κ(xi,x j)

l
i, j=1 .

3.3 Relevance Vector Machine

The relevance vector machine (RVM) is a Bayesian sparse kernel technique for re-
gression that shares many of the characteristics of the support vector machines (SVM)
[1,18]. By a sparse solution we understand the fact that the outputs corresponding to
new inputs depend only on the kernel function evaluated at a subset of the training data
points. The smaller the subset is, the sparser the model we get. The RVM has two main
advantages over the SVM. First, it leads to much sparser models while maintaining
comparable generalization error and second, the hyperparameters governing complex-
ity and noise variance are found automatically, whereas in the support vector machines
the parameters C and ε are determined using cross-validation.

The non-linear relation between x and y can be expressed as

y(x) =
l

∑
i=1

wiκ(x,xi)+ b, (8)
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where b is a bias parameter and κ is a kernel function. In contrast to the SVM, there is
no restriction to positive definite kernels.

We assume that each target ti is representative of the true model yi, but with the
addition of noise εi:

ti = yi + εi, (9)

where εi are assumed to be independent samples from a Gaussian noise process with
zero mean and variance σ2, i.e. εi ∼ N(0;σ2) . This means that the RVM model can be
defined as a conditional distribution for a real valued target variable t, given an input
vector x

p(t|x,w,β) = N(t|y(x),β−1), (10)

where N(x|µ,σ2) is the Gaussian distribution of mean µ and variance σ2. Here β = σ−2

is the noise precision.
The relevance vector machine is a specific instance of this model, whose parameters

are determined using the maximum likelihood method.

4 The 3D Face Model

The 3D active appearance model was generated by combining a model of shape varia-
tion with a model of the appearance variations [3,8]. The 3D shapes were aligned in a
256× 256 pixel frame such that the positions of the center of the eyes is the same for
each of the faces we took from the Bosphorus database [15]. We used a training set of
102 3D labeled faces, each annotated with 111 landmark points. We apply a principal
component analysis or PCA for the shapes, so any example can be approximated using

x = x̄+Psbs, (11)

where x̄ is the mean shape, Ps is a set of orthogonal modes of variation and bs is a set of
shape parameters. For the statistical model of the appearance, first we warp each face so
that its landmark points match those of the mean shape and second, we normalize the
textures to minimize the effect of global lighting variations using the recursive method
described in [8]. By applying PCA to the warped normalized textures, we obtain the
linear model:

g = ḡ+Pgbg, (12)

where ḡ is the mean normalized gray-level texture vector, shape, Pg is a set of orthogonal
modes of variation and bg is a set of shape parameters. Since there may be correlations
between the shape and the texture, we apply a third PCA on the combined shape and
texture vectors and thus we obtained a 68 element vector to represent a face in our 3D
AAM.

5 Generating Data for the Regression Model

Each artificial face generated by the AAM is characterized by 2 vectors: a 6 element
pose vector that gives the position and the orientation of the face in the 3D space and a
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68 element vector from which we can reconstruct the shape and the gray-level normal-
ized texture of the face. To be able to model a real face with an artificial one, we used
a kernel regression model to learn these parameters based on error vectors computed as
differences between a real image and one synthesized by the AAM. The components of
the pose vector are: (tx, ty,scos(θx)−1,ssin(θx),θy,θz) where tx and ty represent trans-
lations on the axes Ox, respectively Oy, s is the scale parameter and θx,θy and θz are
the rotation angles around the three principle axes (Oz,Ox,Oy). The combination of the
two parameters s and θx is useful in retaining linearity for the similarity transforma-
tions (translations, scaling and rotations) denoted by T , i.e. Tδt1(Tδt2(x))≈ T(δt1+δt2)(x)
for small changes δt1 and δt2 [3].

For the pose experiments, we generated new faces with the 3D AAM, and for each
face we applied a similarity transformation (one at a time). For example, in Figure 1 we
translated a face with 10 pixels to the left. The difference between the mean face and
the translated face is associated with the update value δtx = 10 for the tx parameter. We
used 10 different faces for each value of a parameter.

Fig. 1. (a) The mean face; (b) A new generated face, translated with 10 pixels to the left

For the appearance experiments we used all of the 102 faces that we took from the
Bosphorus database. We tried to model the relation between the values for updating
each of the 68 parameters and the error obtained as a difference between the mean face
and a face from the database (see Figure 2).

Fig. 2. (a) The mean face; (b) A face from the database, reconstructed with the 3D AAM;(c) The
image cut from (b) with the shape from (a)

6 Results

6.1 Simulations

To test the kernel regression models for the 3D AAM, we generated 240 pose and 102
appearance experiments and used the cross-validation method in comparing the results.
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For each regression model, we considered randomly 66% of data for training and the
rest of 33% for testing, and we repeated the simulation for one hundred times. Each
time we compute the mean square error (MSE) for each regression model and based
on these values we obtained the statistics displayed in Table 1 and Table 2. Each row
in the tables refers to a single parameter (appearance or pose). We made a comparison
between the kernel methods and the linear regression models. As kernel methods, we
considered the kernel ridge regression and the RVM and for linear methods, we took
the simple linear regression and the ridge regression.

For the kernel ridge regression and the RVM, we considered the Gaussian kernels for
two reasons: they proved to work good for a many variety of applications and second,
their properties have been extensively studied in neighboring fields [16]. The Gaussian
kernels are defined as:

κ(x,z) = exp

(
−‖x− z‖2

2σ2

)
. (13)

The parameter σ controls the capacity of learning and generalization for the models that
use the Gaussian kernels. Small values of σ allow a good learning, but risk overfitting.
On the other hand, large values of σ gradually reduce the kernel to a constant function.
Usually, a good choice for σ depends on the magnitude of data and it is found using a
cross validation method.

As a comparison basis between the four regression methods presented above, we
used the mean square error (MSE) defined for the data set S = {(x1,y1), ...,(xl ,yl)} as

MSE =
1
l

l

∑
i=1

(yi− ŷi)
2 , (14)

where ŷi is the output value of a regression model associated with the input xi.
We can see from Tables 1 and 2 that the kernel methods give better results compared

to the linear techniques. But the higher accuracy has the price of requiring a higher time
complexity than the linear regression. Although, this disadvantage is compensated with
a reduced searching space for the fitting algorithm.

The large values of MSE in Table 1 for the linear regression case are due to the near
singularity of the matrix X ′X and from the loss of precision that occurs when the inverse
matrix is computed. From the same table we can see that this problem is solved by a
proper choice of the trade-off parameter λ that controls the degree of regularization in
the linear ridge regression.

6.2 Testing the 3D Model on Real Faces

We implemented the 3D Active Appearance Model in C++/Matlab using the openGL
and openCV libraries [2,17]. In the fitting module, we first apply the Viola-Jones algo-
rithm to detect the face we want to model [20] and thus to reduce the searching space.
For the initialization phase, we considered the idea suggested by the pseudo grand tour
method in exploratory data analysis [12]. From this, we retain only the part with the
projection of the data to a plane that is rotated through all possible angles, obtaining
thus a continuous space-filling path through the manifold of planes. Through different
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Table 1. Statistics for the MSE values for the first 6 appearance parameters

RVM kernel ridge regression
min mean max

app1 0.0315 0.0566 0.1081
app2 0.0250 0.0436 0.0813
app3 0.0103 0.0231 0.0419
app4 0.0061 0.0160 0.0356
app5 0.0073 0.0181 0.0319
app6 0.0078 0.0138 0.0244

min mean max
0.0240 0.0459 0.0864
0.0173 0.0329 0.0659
0.0063 0.0164 0.0337
0.0042 0.0121 0.0286
0.0054 0.0138 0.0250
0.0047 0.0108 0.0207

ridge regression linear regression
min mean max

app1 0.1375 0.8373 3.1133
app2 0.1386 0.5217 1.7150
app3 0.0544 0.2256 1.1084
app4 0.0345 0.1629 0.6975
app5 0.0281 0.1713 0.7464
app6 0.0243 0.1342 0.7212

min mean max
0.5952 162.0633 5961
0.2685 212.5090 1526.5
0.1734 140.0996 6942
0.0762 35.9547 1594
0.0638 71.5733 4313
0.0987 97.8225 3995

simulations, we reached the conclusion that in our problem 8 initialization points are
enough to achieve reasonable results. We initialize the searching algorithm by position-
ing the mean shape in each one of these 8 points situated on a circle centered in the
center of the frame returned by Viola-Jones algorithm. As for the regression method,
we used the RVM because of its sparsity advantage over the kernel ridge regression. In
Figure 3 we show the results obtained by running the fitting procedure for 4 faces taken
from the training sample. In Figure 4 the results for fitting 4 new faces, also taken from
the same database, are displayed. The white rectangles in both figures represent the
searching space for the fitting algorithm and are obtained, as we already mentioned, by
Viola-Jones face detection algorithm. From the tests we made with many other different
faces we noticed that, in the cases of bad fitting, the problem is usually in the region
around the mouth. A possible explanation could be the number of annotated faces (102
faces) we used for training our model, that don’t cover a wide range of positions and
shapes of lips.

Fig. 3. A good fitting results for faces used in our 3D AAM training
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Fig. 4. Fitting results for new faces

Table 2. Statistics for the MSE values for the pose parameters

RVM kernel ridge regression
min mean max

pose1 0.0326 0.1072 0.2255
pose2 0.0336 0.2440 0.7031
pose3 0.0593 0.1359 0.4126
pose4 0.0319 0.0965 0.2192
pose5 0.0749 0.1169 0.1846
pose6 0.1725 0.3464 0.6822

min mean max
0.0296 0.0685 0.1454
0.0270 0.1130 0.3854
0.0593 0.0939 0.2244
0.0246 0.0632 0.1472
0.0609 0.1004 0.1617
0.1570 0.2622 0.4994

ridge regression linear regression
min mean max

pose1 0.1052 0.3581 2.0127
pose2 0.0674 0.2496 1.1061
pose3 0.1519 0.6314 2.4635
pose4 0.0652 0.1718 0.5874
pose5 0.2044 0.7473 11.3829
pose6 0.4437 1.4512 9.0153

min mean max
0.1050 0.3561 2.0215
0.0687 0.2564 1.2093
0.1680 0.6993 3.0627
0.0658 0.1716 0.6014
0.2306 0.8623 13.7641
0.4436 1.4167 9.0053

7 Conclusion

In this paper we proposed the kernel regression methods for solving the non-linear op-
timization problem of minimizing the error between the input image and the closest 3D
AAM instance. As we could see from the tests we made, this approach brings a sub-
stantial improvement in comparison with the linear solutions. Despite its computational
complexity, the advantage of providing a sparse non-linear solution makes the RVM an
attractive alternative for implementing a fitting 3D AAM algorithm. To build and train
the 3D AAM, we used 102 faces taken from the Bosphorus database. To improve the
generalization for new faces, we intend to annotate more faces from the database in our
future work.
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An Analytical Approach to the Image Reconstruction
Problem Using EM Algorithm
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Abstract. In this paper an analytical iterative approach to the problem of
image reconstruction from parallel projections is presented. The reconstruction
process is performed using Expectation Minimization algorithm. Experimental
results show that the appropriately designed reconstruction procedure is able to
reconstruct an image with better quality than obtained using the traditional con-
volution/ back-projection algorithm.

1 Introduction

The image reconstruction from projections problem remains the primary concern for
scientists in area of computed tomography. The images in computed tomography are
obtained by applying a method of projections acquisition and an appropriate image re-
construction algorithm. There are several well-known reconstruction methods to solve
this problem. The most popular reconstruction algorithms are these using filtred back-
projection methodology (FBP) and the algebraic reconstruction technique (ART) [1].
Beside those methods, there exist iterative reconstruction techniques which can be ex-
ploited to reduce influence of the measurement noise on quality of the reconstructed
image [2]. Recently, statistical reconstruction methods, such as the maximum a poste-
riori probability (MAP) algebraic approach, are dynamically developed (see e.g. [3]).
It seems to be more feasible to implement reconstruction algoritms based on algebraic
methodology of image processing, such as was presented in the following papers [4],
[5], [6], [7]. Thanks to its analytical origins, the reconstruction method formulated in
this way avoids most of the difficulties connected with the use of ART methodology.
Although it is necessary to establish certain coefficients in analytical approach, this can
be performed much more easily than in ART methods. Additionally, this concept can
be extended in easy way on spiral cone-beam geometry of scanner. In our paper, we
show a new approach to this concept, where the Expected Maximization (EM) algo-
rithm instead of the gradient methods is used. We show that the analytical approach
to the image reconstruction from projections problem with implemented EM algorithm
can give some benefits. In particular, it is a convergence acceleration of the iterative
algorithm, and quality improving of reconstructed image (in this case in absence of
measurement noise).

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 495–500, 2012.
© Springer-Verlag Berlin Heidelberg 2012



496 P. Dobosz

2 Image Reconstruction Algorithm

Described in this paper a reconstruction algorithm for scanner with parallel x-ray beams
is based on designed earlier reconstruction method presented in papers [4], [5], [6], [7].
The scheme of the proposed reconstruction method using the Expected Maximization
algorithm is shown in Fig.1, where the parallel-beam geometry of collected projections
is taken into consideration.

Fig. 1. A image reconstruction algorithm with parallel-beam geometry of the scanner

2.1 The Back-Projection Operation

Suppose that function μ(x, y) discribes a distribution of the attenuation coefficient of
x-rays in an investigated cross-section. The first step in the proceeding sequence is the
standart back-projection operation (see e.g. in [7]). It is highly probable that for any
given projection no ray passes through a certain point (x, y) of the image. To estab-
lish a projection value for a ray passing through this point we can apply interpolation
expressed by the following relation

ṗ (ṡ,α) =

+∞∫
−∞

p (s,α) · Int (ṡ− s)ds, (1)
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where Int (Δs) is an interpolation function. After the back-projection operation we ob-
tain a blurred image μ̃

(
x, y
)

which can be expressed by the following expression

μ̃
(
x, y
)
=

π∫

0

ṗ (s,α)dα. (2)

Taking into account relations (1) and (2) it is possible to define the obtained, after back-
projection operation, image in the following way

μ̃
(
x, y
)
=

+∞∫
−∞

+∞∫
−∞

μ
(
ẍ, ÿ
)
⎛⎜⎜⎜⎜⎜⎜⎜⎝
π∫

0

I
(
ẍcosα+ ÿsinα− xcosα− ysinα

)
dα

⎞⎟⎟⎟⎟⎟⎟⎟⎠dẍdÿ. (3)

In further considerations we will take into account the discrete form of images μ
(
x, y
)

and μ̃
(
x, y
)
. In this case, we present approximation of the relation (3) as follows

ˆ̃μ
(
i, j
)
�

∑
k

∑
l

μ̂ (l,k) ·h (i− k, j− l
)
, (4)

where

h
(
Δi,Δ j

)
= Δα (Δs)2 ·

Ψ−1∑
ψ=0

I
(
iΔs cosψΔα+ jΔs sinψΔα

)
, (5)

and i,k = 0,1, . . . , I; j, l = 0,1, . . . , J; I and J are numbers of pixels in horizontal and
vertical directions, respectively.

As one can see from equation (4), the image obtained after back-projection operation
is equal to the amalgamation of this image and the geometrical distortion element given
by (5).

The number of coefficients hΔi,Δ j is equal to I· J and owing to expression (5) values
of these coefficients can be easily calculated in numerical way.

2.2 The Reconstruction Process Using EM-Type Algorithm

According to the considerations of Snyder et al. [8], the deconvolution problem (de-
blurring problem) can be presented in the following scheme

∫

x∈X

h
(
y|x)c (x)dx = a

(
y
)
, (6)

where a
(
y
)
; y ∈ Y is an observed function, h

(
y|x) is a blurring kernel, c (x) is a function

which has to be reconstructed.
An iterative reconstruction algorithm was proposed in [8] which minimizes mono-

tonically Csiszár I-divergence (it is worth to note that this divergence is a general-
ization of the Kullback-Leibler divergence). That divergence is observed between a
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reconstructed function c (x) and a based on measurement function a
(
y
)
. The original

iterative deblurring algorithm was written in the following way

ct+1 (x) = ct (x)
1

H (x)
·
∫

y∈Y

h
(
y|x)∫

x∈X
h
(
y|x)ct (x)

a
(
y
)
dy, (7)

where

H (x) =
∫

y∈Y

h
(
y|x)dy, (8)

and ct+1 (x); ct (x) are current and updated versions of the functions c (x), respectively.
Taking into account the form of the invariant system (4) and basing on the scheme

(8), we can formulate an iterative EM-type reconstruction algorithm as follows

μ̂t+1
(
i, j
)
= μ̂t
(
i, j
) ˆ̃μ

(
i, j
)

∑
k
∑

l μ̂t (l,k) ·h (i− k, j− l
) . (9)

Above iterative expression is fundamental for our new concept of image reconstruction
procesure.

3 Experimental Results

A mathematical model of the projected object, a so-called phantom, is used to obtain
projections during simulations. The most common matematical phantom of head was
proposed by Kak (see eg. [9]). In our experiment the size of the image was fixed at
I× J = 128× 128 pixels.

The discret approximation of the interpolation operation expressed by equation (5)
takes the form

ˆ̇p
(
s,ψ
)
=

L/2−1∑
l=−L/2

p̂
(
l,ψ
) · I (s− lΔψ

)
. (10)

The interpolation function Int (Δs) can be defined for example as linear interpolation
function

IntL(Δs) =

⎧⎪⎪⎨⎪⎪⎩
1
Δs

(
1− |Δs|

Δs

)
i f |Δs| ≥ Δs

0, i f |Δs| > Δs
, (11)

where Δs = (icosψΔα+ jsinψΔα).
The obtained after back-projection operation image was next subject to a process of

reconstruction using iterative reconstruction process described by (9).
The differences between reconstructed images obtained using: the standart

convolution/back-projection method using Shep-Logan kernel, the gradient descent al-
gorithm described in in papers [4], [5], [6], [7], and presented originally in this paper
algorithm are depicted in Fig. 3. For comparison, the original image in Fig. 2 is shown.
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Fig. 2. Original image: the Shepp-Logan mathematical model of the head

The quality of the reconstructed image has been evaluated in this case by error mea-
sure defined as follows

MSE =
1

I · J
I∑

i=1

J∑
j=1

[
μ(i, j)− μ̂(i, j)

]2 , (12)

where discrete functionμ(i, j) describes an original image of reconstructed cross-section.
These images are obtained using window described in [10]. In this case we used the

following parameters of the window C = 1.02, W = 0.2.

a b c

Image
MSE 1.177e-06 1.00e-06 0.820e-06

Fig. 3. View of the reconstructed image using: standard reconstruction method
(convoluation/back-projection with rebinning method) (a); reconstruction algorithm with
gradient descent optimization (b); EM-type reconstruction algorithm described in this paper (c)

4 Conclusions

The carried out computer simulations demonstrated a stability of the image reconstruc-
tion process using EM-type methodology. Presented in this paper algorithm
converges to the solution much faster than reconstruction using the gradient descent
optimization strategy. The reconstructed image obtained after 2000 iterations, shown
in Fig.2, has achieved better level of quality in comparison to the result of the standard
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convolution/back-projection method. Our iterative reconstruction algorithm can be in
the easy way reformulated to the form of neural network structure, what allows to par-
allize the performed calculations.
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Abstract. The aim of this paper is to present a new method of two-
dimensional shape recognition. The method is based on dependence vec-
tors which are fractal features extracted from the partitioned iterated
function system. The dependence vectors show the dependency between
range blocks used in the fractal compression. The effectiveness of our
method is shown on four test databases. The first database was cre-
ated by the authors and the other ones are: MPEG7 CE-Shape-1PartB,
Kimia-99, Kimia-216. Obtained results have shown that the proposed
method is better than the other fractal recognition methods of two-
dimensional shapes.

1 Introduction

Nowadays recognition of objects is very important task. Because of that the
research on methods of recognition is very intensive and most diverse area of
machine vision. Often object is represented by its shape so good shape descrip-
tors and matching measures are the central issue in the research. The shape
descriptors can be divided into two groups: based on the silhouette and based
on the contour of the object. In both of the groups there are many known meth-
ods [1].

From the beginning fractals gain much attention. First in the computer graph-
ics, because the images of fractals were perceived as very interesting and beauti-
ful. Later fractals found applications in other areas of our life, e.g. in economics,
medicine, image compression [2]. With the help of fractals we were able to repre-
sent real world objects much better than with the help of the classical Euclidean
geometry, so this was the motivation to use fractal as a shape descriptor for the
recognition. The methods based on fractal description of the shape found ap-
plications in: face recognition [3], character recognition [9], general recognition
method [10], etc.

In the paper we present a new method which is based on fractal features. The
features are called dependence vectors and are extracted from the partitioned
iterated function system, which is obtained from the fractal compression of the
image containing the object.

In Section 2 we briefly introduce the definition of a fractal and the fractal
compression scheme, which will be later used in our method. Next, in Section 3
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we present the notion of dependence vectors and a method of recognizing two-
dimensional shapes. Later, in Section 4 we give the description of conducted
experiments and used test bases. Finally, in Section 5 we give some conclusions.

2 Fractals and Fractal Image Compression

In this section we will present the fractal image compression scheme used later
in the proposed recognition method. But first we need to introduce the notion
of a fractal, because there are several non-equivalent definitions. The definition
we use in this work is fractal as attractor [2].

First we must define the notion of an iterated function system (IFS) [2].

Definition 1. Let (X, d) be a metric space. We say that a set of mappings W =
{w1, . . . , wN}, where wn : X → X is a contraction mapping for i = 1, . . . , N is
an iterated function system.

Any IFS W = {w1, . . . , wN} determines the so-called Hutchinson operator which
is contrative mapping on the space (H(X), h), where H(X) is the space of non-
empty, compact subsets ofX and h is the Haussdorf distance [2]. The Hutchinson
operator is given by following formula:

∀A∈H(X) W (A) =

N⋃
n=1

wn(A) =

N⋃
n=1

{wn(a) : a ∈ A}. (1)

Definition 2. We say that the limit limn→∞ W k(A), where A ∈ H(X) is called
an attractor of the IFS W = {w1, . . . , wN}.
The fractals poses the property of self-similarity, i.e. any part of the fractal is
similar to the whole fractal. The real world objects do not have this property.
Instead they have partial self-similarity, i.e. smaller parts of object are similar
to bigger parts of the object [7]. The fractal image compression is based on the
partial self-similarity and the notion of a partitioned iterated function system
(PIFS).

Definition 3. We say that a set P = {(F1, A1), . . . , (FN , AN )} is a partitioned
iterated function system, where Fn is a contraction mapping and An is an area
of the image which is transformed with the help of Fn for n = 1, . . . , N .

In practice as the mappings from the Definition 3 we use affine mappings of the
space IR3 of the following form:

F (

⎡⎣xy
z

⎤⎦) =
⎡⎣a1 a2 0
a3 a4 0
0 0 a7

⎤⎦⎡⎣xy
z

⎤⎦+

⎡⎣a5a6
a8

⎤⎦ , (2)

where coefficients a1, . . . , a6 ∈ IR describe a geometric transformation, coeffi-
cients a7, a8 ∈ IR are responsible for the contrast and brightness and x, y are the
co-ordinates in image, z is pixel intensity.



Recognition of Two-Dimensional Shapes 503

In the coding scheme given later we have two types of blocks: range and
domain. The set of range blocks consists of non-overlapping blocks of the same
size that cover the image. The number of range blocks is fixed before we start the
coding. The set of domain blocks consists of overlapping blocks bigger than the
range blocks (usually two times bigger) and transformed using four mappings:
identity, rotation through 180◦, two symmetries of a rectangle.

The fractal coding scheme is following:

1. Create a set of range blocks R and domain blocks D.
2. For each range block R ∈ R find domain block D ∈ D such that

D = arg min
D′∈D

ρ(R,F (D′)), (3)

where ρ is a metric (usually Euclidean), F is a mapping of the form (2)
determined by the position of R and D′, the size of the blocks in relation
to itself, one of the four mappings used to transform D′ and the coefficients
a7, a8 are calculated by following formulas:

a7 =
k
∑k

i=1 gihi −
∑k

i=1 gi
∑k

i=1 hi

k
∑k

i=1 g
2
i − (

∑k
i=1 gi)

2
, (4)

a8 =
1

k

[
k∑

i=1

hi − a7

k∑
i=1

gi

]
, (5)

where k is the number of pixels in the range block, g1, . . . , gk are the pixel
intensities of the transformed and resized domain block, h1, . . . , hk are the

pixel intensities of the range block. If k
∑k

i=1 g
2
i −

(∑k
i=1 gi

)2
= 0, then

a7 = 0 and a8 = 1
k

∑k
i=1 hi.

3. Remember the coefficients of F and block D.

The search process in step 2 is the most time-consuming step of the coding
algorithm [7].

This algorithm is very simple and therefore used only in fractal image recog-
nition. Moreover, in recognition of two-dimensional shapes in binary images the
coefficients a7 and a8 are omitted. In practice, when we compress an image
we use adaptive methods of partitioning such as quad-tree, HV partition and
others [7].

3 Dependence Vectors Method

In our previous works [4] [5] [6] we have shown some weaknesses of the fractal
recognition methods and how to improve them. In [5] [6] we proposed division
of the image into sub-images and compression of each sub-image independently.
Better improvement was obtained in [4] using the pseudofractal approach in
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which we use fixed image as the source for domain blocks in the fractal compres-
sion algorithm. The pseudofractal approach will be used in the proposed method
which we call dependence vectors method (DVM).

Before we give the dependence vectors method we need to introduce the def-
inition of the dependence vectors.

Definition 4. Let W be the PIFS with a set o range blocks R. For each R ∈ R
we define dependence vectors of R as a set of vectors between the range block
R and the range blocks that overlap the domain block corresponding to R. Set
V = {V 1, . . . , V N}, where V i are dependence vectors of Ri for i = 1, . . . , |R| is
called set of dependence vectors.

Figure 1 presents one range blocks, corresponding domain block (bold line),
range blocks that overlap the domain block (dashed grey line) and the depen-
dence vectors.

Fig. 1. Range block and its dependence vectors

The DVM method is following:

1. extract object from the image,
2. find a set o correct orientations Γ ,
3. choose a correct orientation γ ∈ Γ and rotate the object through γ,
4. resize the image to 128× 128 pixels,
5. find normalized PIFS W using the pseudofractal approach,
6. determine the set of dependence vectors VW of W ,
7. in the base B find a set of dependence vectors V such that

V = arg min
VB∈B

N∑
i=1

h(V i
B , V

i
W ), (6)

where N is the number of range blocks, h is the Haussdorf distance based
on the Euclidean distance,

8. choose an image from the base which corresponds to V .
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Some of the points in the method need further explanations. First one is the
notion of correct orientation. A correct orientation is an angle by which we need
to rotate an object so that it fulfils following conditions: area of the bounding
box is the smallest, height of the bounding box is smaller than the width and
the left half of the object has at least as many pixels as the right. The correct
orientation is needed because we want the method to be rotation invariant.

Resizing the image to 128× 128 pixels is used to speed up the fractal coding
process and the normalization is needed to make the method translation and
scale invariant.

4 Experiments

To show effectiveness of the proposed method we compare it with other exist-
ing fractal methods. These methods are: Neil-Curtis method (NC) [10], Multiple
Mapping Vector Accumulator (MMVA) [9], method which uses the PIFS co-
efficients (CM) [3], Mapping Vectors Similarity Method (MVSM) [5], Fractal
Dependence Graph Method (FDGM) [6]. All the methods will be tested in the
original form. Moreover all the methods, except the Neil-Curtis method, will
be tested using the pseudofractal approach presented by the authors in [4] and
in this case the abbreviations of the methods will begin with the letter P, e.g.
PMMVA for the pseudofractal MMVA.

In the test we used division into 16× 16 range blocks, so PIFS consists of 256
transformations. As the source for domain blocks in the pseudofractal approach
we used one image showed in Fig. 2.

The description of the databases used in the tests and the obtained results
are shown in the next subsections.

Fig. 2. Source for the domain blocks used in the tests

4.1 Authors Base

Our base consists of three datasets. In each of the datasets we have 5 classes of
objects, 20 images per class. In the first dataset we have base objects changed
by elementary transformations, i.e. rotation, scaling, translation. In the second
dataset we have objects changed by elementary transformations and we add
small changes to the shape locally, e.g. shapes are cut and/or they have some-
thing added. Finally, in the third set, similar to the other two sets, the objects
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were modified by elementary transformations and we add to the shape large
changes locally. The large changes are made in such a way that the shape is still
recognizable.

In the tests on our three datasets to estimate the error rate we used leave-
one-out method. The results of the tests are shown in Tables 1(a)-1(c). From
the Table 1(a) we see that the lowest values of error (2%) obtained almost all
methods so we can say that they are robust to elementary transformations. For
the base with locally small changes (Table 1(b)) we see that the best result
(2%) was obtained by the PPMVA method. The proposed method with other
two methods (PMVSM, PFDGM) obtained error rate equal to 3%. Finally, from
the Table 1(c) we see that the proposed method with the PFDGM method
obtained the best result (3%). Two other methods: PMMVA and PCM obtained
error rate equal to 4% and the rest of the methods obtained error rate greater
than 10%.

Table 1. Results of the test for the authors base

(a) elementary

Method Error [%]

DVM 2.0
NC 2.0
MMVA 10.0
PMMVA 2.0
CM 4.0
PCM 2.0
MVSM 3.0
PMVSM 2.0
FDGM 2.0
PFDGM 2.0

(b) locally small

Method Error [%]

DVM 3.0
NC 4.0
MMVA 18.0
PMMVA 2.0
CM 11.0
PCM 4.0
MVSM 6.0
PMVSM 3.0
FDGM 6.0
PFDGM 3.0

(c) locally large

Method Error [%]

DVM 3.0
NC 11.0
MMVA 32.0
PMMVA 4.0
CM 37.0
PCM 4.0
MVSM 14.0
PMVSM 10.0
FDGM 14.0
PFDGM 3.0

4.2 MPEG7 CE-Shape-1 Part B Database

The MPEG7 CE-Shape-1 Part B database [8] consists of 1400 silhouette images
from 70 classes. Each class has 20 different shapes.

For the estimation of the error rate we used the stratified 10-fold cross vali-
dation. The obtained results are shown in Table 2. From the results we see that
the proposed method obtained the lowest value of the error (13.15%). Moreover
we see that the pseudofractal versions of the methods have values of the error
very close to the error of the DVM method.

4.3 Kimia Databases

The Kimia-99 database [11] consists of object images from 9 different classes. In
each class we have 11 shapes. The last database used in the test is Kimia-216
[11]. The base consist of 216 images selected from the MPEG7 CE-Shape-1 Part
B. The images are divided into 18 classes, 12 images per class.
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Table 2. Results of the test for the MPEG7 CE-Shape-1 Part B base

Method Error [%]

DVM 13.15
NC 29.45
MMVA 49.03
PMMVA 19.22
CM 52.74
PCM 18.15
MVSM 30.45
PMVSM 17.58
FDGM 35.88
PFDGM 14.72

Like in the case of authors base for the Kimia databases we used the leave-
one-out method for the estimation of the error rate. The obtained results for
the Kimia-99 are shown in Table 3(a) and for Kimia-216 in Table 3(b). From
the obtained results we clearly see that the DVM method obtained the best
results (12.12% for the Kimia-99, 13.42% for the Kimia-216). Similarly like for
the MPEG7 base only the pseudofractal versions of the methods obtained results
close to the best result.

Table 3. Results of the test for the Kimia bases

(a) Kimia-99

Method Error [%]

DVM 12.12
NC 15.15
MMVA 45.45
PMMVA 17.17
CM 43.43
PCM 14.14
MVSM 32.32
PMVSM 22.22
FDGM 29.29
PFDGM 13.13

(b) Kimia-216

Method Error [%]

DVM 13.42
NC 14.81
MMVA 33.79
PMMVA 14.81
CM 31.48
PCM 14.81
MVSM 27.31
PMVSM 17.12
FDGM 26.38
PFDGM 14.35

5 Conclusions

In the paper we have presented a new method of two-dimensional shape recog-
nition, which we called Dependence Vectors Method. In the method as the fea-
tures we used dependence vectors and also we used the psuedofractal approach
proposed by the authors in [4]. The experiments have shown that the proposed
method obtained smaller error rates comparing to the other known fractal recog-
nition methods.

In our further work we will concentrate on improving the effectiveness of
our method with the help of using different types of classifiers, other similarity
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measures. Moreover we will conduct further research to check if the pseudofractal
approach depends on the image chosen for the creation of the domain set. All
the tested methods used descriptors from the whole shape, so we will try to find
contour descriptor which is based on fractal description.
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Abstract. Recently, the field of CBIR has attracted a lot of attention
in the literature. In this paper, the problem of visually similar image
retrieval has been investigated. For this task we use the methods derived
from the Bag of Visual Words approach, such as Scale Invariant Fea-
ture Transform (SIFT) for identifying image keypoints and K-means to
build a visual dictionary. To create a ranking of similar images, a novel
Ranking by K-means Voting algorithm is proposed. The experimental
section shows that our method works well for similar image retrieval.
It turned out that our results are more accurate in comparison with a
classical similarity measure based on the Euclidean metric in the order
of 6% - 15%.

Keywords: Image ranking, CBIR, SIFT, K-means.

1 Introduction

The amount of information available on the Internet is increasing at a tremen-
dous rate in recent times. This necessitates the need to develop methods and
algorithms to effectively search in large data collections [14]. The first systems
which dealt with this problem have focused on textual information retrieval.
The development of image processing and computer vision methods allowed us
to search for information encoded in images, giving birth to Content Based Image
Retrieval (CBIR).

CBIR systems allow users to query for relevant images either using words
describing the content of the image, or using an example image provided by
the user. This paper studies the latter approach. In particular, we focus on
the problem of retrieving images which contain similar object within a specific
category. This issue is of major importance and is examined in many scientific
fields. For instance, eCommerce offers the possibility to search for a similar
products (like bags, shoes, watches, etc.), which greatly facilitates finding the
right product [17]. Medicine is another area that should be mentioned, where
CBIR is widely used and is of great importance [1]. In radiology, CBIR techniques
assist radiologists in the assessment of medical images and accurate diagnosing
by allowing to search for similar images.
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Existing CBIR methods are widely based on the well-known descriptors, de-
scribed in Section 2. These descriptors encode the image features concerning
color, texture, shapes and the length of edges, which are then subsequently em-
ployed to measure the similarity between images. Recent scientific reports [4]
introduced the dictionary methods (Bag of Words), previously applied success-
fully in Information Retrieval, in the field of image analysis. Bag of Visual Words
technique (BoVW) introduces the image representation as a vector containing
frequency of similar image patches.

In order to obtain such representation, one should perform the detection of
image keypoints. The most frequently used keypoint detectors are Speeded Up
Robust Features (SURF) [3] and Scale-Invariant Feature Transform (SIFT) [18].
After the image representation is obtained, it is possible to create the ranking
of similar images on the basis of a similarity measure, such as the Euclidean
distance.

This paper takes advantage of Bag of Visual Words and SIFT detector to
obtain image representations, while for similarity ranking we introduce a novel
method, called Ranking by K-means Voting algorithm, where the clustering is
repeated multiple times to get the images ranked by similarity.

The paper is organized as follows. In the next section we review the existing
image feature extraction algorithms as well as various image representations.
Section 3 describes the chosen methods and the main contribution of this work:
Ranking by K-means Voting algorithm. Next, section 4 evaluates the proposed
approach based on experimental results. We conclude the article and discuss
future directions in section 5.

2 State of the Art

In every CBIR system, two main components can be identified. The first one,
called feature extractor, is intended to quantitatively express the information en-
coded in the basic elements of the image, such as color and texture, edges, shapes
or spatial layout of objects. The second one, called ranking component, uses the
previously extracted features to calculate the similarity between the query im-
age and all other images in the dataset. It can be accomplished using the simple
similarity measure, or more complex approach such as machine-learned ranking
[11]. In this paper we propose the ranking component based on unsupervised
clustering.

Regarding the feature extraction process, we can distinguish methods which
capture the global characteristics of an image (global feature extraction) as
well as those which indicate locally relevant areas, known as keypoints. Global
feature-based algorithms strive to imitate the human way of perception, that is to
discern an object in the picture as a whole. The most popular methods are based
on color histograms. In particular, in [6] the classic color histogram is proposed,
authors of [8] introduce Fuzzy Color Histogram, while in [10] Color Correlogram
method is used. Another way of dealing with global feature extraction is re-
lated to the study of information encoded in the image texture. Examples of the
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algorithms that follow this approach are Steerable Pyramid [21], Gabor Wavelet
Transform [9], Contourlet Transform [5] or Complex Directional Filter Bank [23].

Global features algorithms are generally considered to be simple and fast,
which often results in the lack of invariance to change of perspective or illumina-
tion. To overcome these problems local features methods were introduced [16].
For instance, Schmid and Mohr [20] utilize Harris corner detector to identify
interest points which is insensitive to change of image orientation.

Lowe [18] introduced Scale Invariant Feature Transform (SIFT), which proved
to be robust against variations in rotation, scale and light intensity. The im-
provement of the SIFT method can be found in Ke & Sukthankar paper [12].
The authors apply Principal Components Analysis (PCA) for relevant keypoints
selection, which results in an increased resistance against image deformations.
Finally, Bay et al. proposed Speeded Up Robust Feature (SURF) detector [3],
which is several times faster then SIFT while retaining similar stability extracted
keypoints.

On the basis of the extracted features the image representation can be formed,
which is used for the purpose of determining the similarity between any given
images. In case of Bag of Visual Words technique [4] image representation con-
sists of histogram of local image features. Such representation does not encode
any spatial relationships. In contrast, representations based on graph theory can
be applied [1] if interrelation of features is essential eg. their relative spatial
distribution. The choice of image representation has a significant impact on the
manner in which the similarity is calculated. In case of feature vectors, it is com-
mon to use distance functions, i.e. Euclidean or cosine distance. On the other
hand, when an image is represented by a graph, the similarity is defined as graph
matching [13] or by the effort required to transform one graph into another [2].

Many of the techniques described abovewere implemented in the existing CBIR
systems, from which the following are worth mentioning: ALIPR alipr.com

automatic photo tagging and visual image search, BRISC a pulmonary nodule im-
age retrieval framework [15], Tineye tineye.com commercial online visual search
or like.com system for visual shopping.

3 Methodology

This section presents the details of our CBIR method. The feature extraction
phase involves creation of the visual words dictionary for which SIFT [18] and
k-means algorithms are applied. Then, for the given query image, the ranking
of similar images is formed using the Ranking by K-means Voting algorithm
detailed in section 3.3. Finally, the accuracy of the proposed method is assessed
in the experimental session.

3.1 Dictionary of Visual Words

It has been confirmed by numerous research projects [19], [22] that SIFT is one
of the most effective and robust keypoint detectors. Therefore, we follow this

alipr.com
tineye.com
like.com
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approach in our work. Keypoint detection by SIFT proceeds as follows: initially,
the potential interest points are localized by means of difference-of-Gaussians.
Then, unstable keypoints are rejected. In the next phase, for each keypoint,
the additional information concerning its relative orientation, scale and location
is added. Finally, on the basis of the histograms of local gradients, keypoint
descriptors are computed and have the form of numerical vectors. The number
of keypoints extracted from an image depends largely on the complexity of the
image elements and may oscillate between a hundred and several thousand.

The goal of the next phase is to group the keypoints into k ”visual words”. This
is achieved using k-means clustering, where each cluster contains the keypoints
with the smallest distance to the center of a centroid. As a result, a k-visual size
dictionary is formed. This allows to unify the number of features for each image
and leads to simpler image representation. An important task is the appropriate
selection of parameter k, which significantly affects the quality of results as
well as the speed of calculation. If the number of clusters is too small, strongly
differing key points can be represented by the same visual word and conversely,
if the clusters are too many, similar descriptors can be described by different
visual words. This may result in a reduced precision of the obtained results. The
experiments with different values of the k parameter in Section 4 are presented.

3.2 Image Representation

Given the image keypoints and the visual dictionary, it is possible to assign
visual word to each keypoint. From this point, the image can be represented as
a histogram of its visual words. In Information Retrieval, such representation
is referred to as term frequency (TF). Taking into account only TF histograms
can lead to unsatisfactory results, as TF does not include information about
its importance among all images. Thus, for the representation of image we also
consider TFIDF (TF - term frequency, IDF - inverse document frequency) from
the field of Information Retrieval. The idea of TFIDF is to weight each word
according to number of its occurrences among entire dataset of images. Visual
word which occurs in few images is more informative that the one appearing in
many images. Therefore, the weight value for a particular word is calculated by
the following formula:

(tf-idf)i,j =
ni,j∑
k nk,j

× log
|D|

|{d : ti ∈ d}| , (1)

where ni,j is the number of occurrences of i− th visual word at j− th image, the
denominator of the former fraction is equal to the number of all visual words at
j − th image, |D| is number of images and |{d : ti ∈ d}| is a number of images
containing i− th visual word.

Moreover, our previous studies [7] proved that normalizing histograms signif-
icantly improves classification based on Bag of Visual Words method. Therefore,
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we apply the Euclidean norm (2), so that each histogram can be interpreted as
a unit-length vector.

‖x‖2 :=
( n∑

i=1

|xi|2
)1/2

. (2)

3.3 Ranking by K-Means Voting Algorithm

The next step of proposed methodology is the creation of a similarity ranking
for the query image on the basis of the image representations. For this task a
novel Ranking by K-means Voting procedure is proposed. A series of k-means
clustering is executed to divide all images in the dataset (including the query
image) into varying number of groups. After each clustering, the pictures from
the same centroid receive a vote which is accumulated in the similarity matrix
SM . In particular, for each images pair (s, t) in the same cluster, the value of
similarity matrix at position (s, t) is incremented. The general outline of the
proposed method is presented in Algorithm 1.

Algorithm 1. Ranking by K-means Voting Algorithm

Require: N > 0 {number of images}, M > 0 {number of iterations}
1: var SM[N,N] {similarity matrix of size NxN}
2: for i = 1 → M do
3: for k = 2, 3, . . . , �lg2 N do
4: Do k-means clustering procedure
5: for all s, t ∈ 1..N in the same cluster do
6: SM[s,t] = SM[s,t] + 1
7: end for
8: end for
9: end for

After the execution of algorithm the similarity matrix SM is obtained, which
holds the similarity value between any two given images. This similarity is ex-
pressed by the number of votes that particular pair of images has received. Hav-
ing the similarity matrix SM , the ranking for image s can be easily obtained
by sorting s − th row of SM in descending order. It should be noted that the
clustering is repeated Mx %lg2 N& times to minimize the effect of stucking in
local minimum solutions.

4 Experimental Results

The goal of the experimental session was to test the effectiveness of our CBIR
approach. The dataset, which can be downloaded from wmii.uwm.edu.pl/~kmmi

consisted of 166 shoe images from four distinctive shoe categories containing
59, 20, 29, and 58 images in each collection (figure 2 presents the exemplary

wmii.uwm.edu.pl/~kmmi
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Fig. 1. Precision/Recall graph for
Ranking by K-means Voting Algo-
rithm, k=2000 and TF+normalization
representation

Fig. 2. Representative images from
each category

images from each category). Such structure of the dataset allowed us to preserve
the straightforward notion of relevant and irrelevant images for the purpose of
retrieval evaluation. In particular, all images from the same category as the
query image were considered to be relevant, while images from other category
were considered to be irrelevant.

Given the dataset, the visual dictionary was constructed as follows. Initially,
SIFT keypoints we extracted from all of the images. Successively, keypoints
were clustered into k visual words, using the k-means algorithm, as described
in section 3.1. In order to determine the most suitable number of words for the
dataset, the image retrieval evaluation was repeated for the following values of k:
50, 100, 250, 500, 1000, 1500, 2000. In addition to different vocabulary sizes, we
tested the following term weighting schemes: TF, TF’ (normalized TF), TFIDF
and TFIDF’ (normalized TFIDF), as described in section 3.2. The proposed
Ranking by K-means Voting algorithm was compared with the ranking based on
the Euclidean distance between the histograms of the query image and all other
images in the dataset.

To quantitatively express the quality of the results, we employed standard
measures for evaluating retrieval results in unranked datasets, such as precision
and recall. Each image in the dataset was used as a query, and its precision and
recall values were calculated. This allowed us to obtain the average precision for
each query, and the mean average precision (MAP) for each category. Finally,
the overall precision among all categories was calculated as the mean of the mean
average precisions (MMAP).

The MMAP results obtained for Ranking by K-means Voting are presented
in Table 1. In the similar way, the MMAP results for the ranking based on
the Euclidean distance are shown in Table 2. It can be noted, that the best
results were obtained for theRanking by K-means Voting with the dictionary
containing 2000 words and the TF’ image representation. In such case MMAP
reached over 91 percent. Additionally, it can be observed that Ranking by K-
means Voting generally performs better that the ranking based on the Euclidean
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distance, regardless of the number of words and the weighting scheme used. In
particular, when taking into account k values greater than 500, the results were
significantly better and the increase of MMAP value oscillated between 6 and
15 percent. Moreover, we examined the effect of the weighting forms applied to
visual vocabulary. Considering the TF and TFIDF representations, it can be
concluded that the application of the former or the latter slightly affects the
results. Figure 1 presents precision/recall graphs for all image categories, that
were obtained for Ranking by K-means Voting, k = 2000 and TF’ weighting.

Table 1. Mean of the mean average precisions (MMAP) for Ranking by K-means
Voting Algorithm

Number of Visual Words

50 100 250 500 1000 1500 2000

TF 84.13 83.23 83.18 78.77 67.24 67.72 66.46

TF’ 76.37 84.4 87.49 87.52 88.02 88.17 91.85

TFIDF 72.21 74.73 69.63 80.17 75.32 74.27 77.57

TFIDF’ 75.01 74.45 81.54 82.85 89.55 90.96 91.38

Table 2. Mean of the mean average precisions (MMAP) for Euclidean distance as
similarity measure

Number of Visual Words

50 100 250 500 1000 1500 2000

TF 81,69 80.19 75.8 70.78 64.5 61.98 61.16

TF’ 70.34 72.48 74.98 76.03 74.22 74.19 76.01

TFIDF 75.87 77.49 76.69 70.36 64.09 61.89 60.61

TFIDF’ 65.66 69.48 74.92 74.89 74.24 74.76 77.27

5 Conclusion and Future Work

The main contribution of this work is the Ranking byK-means Voting algorithm,
whose purpose is to create a ranking of similar images. The results obtained in
the experimental session show the advantage of the method proposed in this
paper over the standard similarity measures, in our case over the Euclidean
distance. In particular, we obtained accuracy better by from 6 to 15 percent.
In addition, it should be noted that the normalization of image representation
has a great impact on the result quality. In most cases, the application of the
Euclidean normalization caused a significant increase in accuracy. Finally, studies
on the optimal number of ”visual words” were undertaken. The results of the
experiments show that with the Euclidean normalization the best quality is
obtained for k = 2000. On the basis of the encouraging results, we plan to
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test our algorithm on commonly available datasets and compare it with other
ranking methods. Other future goals include the verification of the algorithm
performance and improving its accuracy.
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Abstract. A method of Hurwitz-Radon Matrices (MHR) is proposed to
be used in parametrization and interpolation of contours in the plane. Suit-
able parametrization leads to curvature calculations. Points with
local maximum curvature are treated as feature points in object recogni-
tion and image analysis. The matrices are skew-symmetric and
possess columns composed of orthogonal vectors. The operator of Hurwitz-
Radon (OHR), built from these matrices, is described. It is shown how
to create the orthogonal OHR and how to use it in a process of contour
parametrization and curvature calculation.

1 Introduction

A significant problem in computer vision [1] and object recognition [2] is that of
suitable contour parametrization and calculations for points with local maximum
curvature [3]. The explicit form of the function y = h(x) or implicit represen-
tation of the curve f(x, y) = 0 are not always good enough for image analysis.
Parametrization of the contour [4] is a better way to compute feature points
of the object. This paper is dealing with the novel Hurwitz-Radon Matrices
method (MHR) of contour interpolation and parametrization by using a family
of Hurwitz-Radon matrices. Contour is parameterized for each pair of successive
interpolation nodes. Contour points (x(α), y(α)) are computed for α ∈ [0; 1] be-
tween nodes (xi, yi) = (x(1), y(1)) and (xi+1, yi+1) = (x(0), y(0)). Appropriate
parametrization leads to possibility of curvature calculation C(α):

C(α) =
|x′(α)y′′(α) − x′′(α)y′(α)|√

[(x′(α))2 + (y′(α))2]3
(1)

Points with local maximum curvature are fixed with condition C′(α) = 0 and
checking the monotonicity of C(α). The proposed method is used in object con-
tour parametrization and then calculations for local maximum curvature are
described. So suitable contour parametrization and precise reconstruction of the
curve [5] is a key factor in many applications [6] of manufacturing [7], image
analysis, object recognition and computer vision [8].

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 518–526, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Shape Parameterization 519

Fig. 1. Four nodes and the contour (MS EXCEL graph)

2 Contour Interpolation

In the proposed method a contour is described by the set of nodes (xi, yi) ∈ R2

as follows:

1. nodes (interpolation points) are settled at key points: local extremum (max-
imum or minimum) of one of coordinates and at least one point between two
successive local extremum;
2. one contour is represented by at least four nodes;
3. nodes are indexed in accordance with course of the contour.

Conditions 1 and 3 are done for the most appropriate description of the contour.
In condition 2 first node is the last, so proposed method uses in calculations
minimum five nodes. The following question is important in mathematics and
computer sciences: is it possible to find an interpolation method for a curve
[9] and a parametrization without building interpolation polynomials or Bézier
curves, NURBS [10] neither spline functions [11]? Our paper aims at giving the
positive answer to this question. The contour or function in MHR method is
parameterized for value α ∈ [0; 1] in the range of two successive interpolation
nodes.

2.1 The Operator of Hurwitz-Radon

Adolf Hurwitz (1859-1919) and Johann Radon (1887-1956) published the papers
about a specific class of matrices in 1923, working on the problem of quadratic
forms. Matrices Ai, i = 1, 2, ...m satisfying

AjAk +AkAj = 0 ,A2
k = −I , j �= k, (2)

for j, k = 1, 2, ...,m, where I is the unit matrix, are called a family of Hurwitz-
Radon matrices(HR).

The family has significant features [12]:

1.HR matrices are skew-symmetric, i.e. AT
i = −Ai,

2. inverse matrices are easy to find, i.e. A−1
i = −Ai, and

3.only for dimensions N = 2, 4 or 8 the family of HR matrices consists of N − 1
matrices;
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4. for N = 2 there is one matrix only, of the form[
0 −1
−1 0

]
. (3)

For N = 4 there are three HR matrices with integer entries, they are

A1 =

⎡⎢⎢⎣
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎦ ,A2

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎤⎥⎥⎦ ,A3 =

⎡⎢⎢⎣
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎤⎥⎥⎦ . (4)

For N = 8 we have seven HR matrices with elements 0, 1. So far HR matrices are
applied in electronics [13]: in Space-Time Block Coding (STBC) and orthogonal
design [14], also in signal processing [15] and Hamiltonian Neural Nets [16]. HR
matrices, together with the identity matrix IN , are used to build the orthogonal
and discrete Hurwitz - Radon Operator (OHR). For nodes (x1, y1), (x2, y2) the
matrix M of dimension N = 2 is constructed:

M =
1

x2
1 + x2

2

[
x1y1 + x2y2 x2y1 − x1y2
x1y2 − x2y1 x1y1 + x2y2

]
(5)

For nodes (x1, y1), (x2, y2), (x3, y3) and (x4, y4) the discrete OHR of dimension
N = 4 is constructed:

M =
1

x2
1 + x2

2 + x2
3 + x2

4

⎡⎢⎢⎣
u0 u1 u2 u3

−u1 u0 −u3 u2

−u2 u3 u0 −u1

−u3 −u2 u1 u0

⎤⎥⎥⎦ , (6)

where

u0 = x1y1 + x2y2 + x3y3 + x4y4 , u1 = −x1y2 + x2y1 + x3y4 − x4y3 ,

u2 = −x1y3 − x2y4 + x3y1 + x4y2 , u3 = −x1y4 + x2y3 − x3y2 + x4y1 .

For nodes (x1, y1), (x2, y2), ..., (x8, y8) the discrete OHR of dimension N = 8 is
built [17] similarly as (5) or (6):

M =
1

8∑
i=1

x2
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0 u1 u2 u3 u4 u5 u6 u7

−u1 u0 u3 −u2 u5 −u4 −u7 u6

−u2 −u3 u0 u1 u6 u7 −u4 −u5

−u3 u2 −u1 u0 u7 −u6 u5 −u4

−u4 −u5 −u6 −u7 u0 u1 u2 u3

−u5 u4 −u7 u6 −u1 u0 −u3 u2

−u6 u7 u4 −u5 −u2 u3 u0 −u1

−u7 −u6 u5 u4 −u3 −u2 u1 u0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where the components u0, u1, ..., u7 formed as the vector u are calculated in the
similar way to those of 4 dimensional vector appearing (5) but now in terms of
the coordinates of the above 8 nodes,
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u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 y2 y3 y4 y5 y6 y7 y8
−y2 y1 −y4 y3 −y6 y5 y8 −y7
−y3 y4 y1 −y2 −y7 −y8 y5 y6
−y4 −y3 y2 y1 −y8 y7 −y6 y5
−y5 y6 y7 y8 y1 −y2 −y3 −y4
−y6 −y5 y8 −y7 y2 y1 y4 −y3
−y7 −y8 −y5 y6 y3 −y4 y1 y2
−y8 y7 −y6 −y5 y4 y3 −y2 y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

Note that the all OHR operators M appearing in (5)-(7) satisfy the condition
of interpolations

Mx = y (9)

for x = (x1, x2, ..., xN )T ∈ RN ,x �= 0 ,y = (y1, y2, ..., yN )T ∈ RN , withN = 2, 4
or N = 8. If for each matrix M appearing so far we use the general denotation

M = {
N∑
i=1

x2
i }−1 (u0IN +D) (10)

with the matrixD possessing 0 on the main diagonal and elements u1, u2, ..., uN−1

on the remaining positions, then the reverse discrete operator OHR, denoted by
M−1, will have the form

M−1 = {
N∑
i=1

y2i }−1 (u0IN −D) . (11)

The reverse OHR operator in (11) satisfies, of course, the interpolation condition

M−1y = x (12)

for x = (x1, x2, ..., xN )T ∈ RN ,y = (y1, y2, ..., yN )T ∈ RN ,y �= 0 with N = 2, 4
or N = 8.

2.2 MHR Method and Contour Parametrization

Key questions look as follows: how can we compute coordinates of points settled
between the interpolation nodes [18] and how the object contour is parameter-
ized? The answers are connected with the novel MHR method [19]. On a segment
of a line every number ”c” situated between ”a” and ”b” is described by a linear
(convex) combination c = αa+ (1− α)b for

α =
b− c

b− a
∈ [0, 1] . (13)

New average OHR operator M 2 of dimension N = 2, 4 or N = 8 is constructed

M 2 = αM 0 + (1− α)M 1 (14)
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with two operators: M0 constructed according to the previous methods (5)-
(7), however with new nodes (x1 = a, y1), (x3, y3), .., (x2N−1, y2N−1), and M 1

constructed according to the same methods, however, with new nodes (x2 =
b, y2), (x4, y4), ..., (x2N , y2N ). Having the operator M2 it is possible to recon-
struct the second coordinate (i.e. y) of each point (x, y) in terms of the vector
C = (c1, c2, ..., cN )T defined by

ci = αx2i−1 + (1− α)x2i ,with i = 1, 2, ..., N . (15)

The required formula for those coordinates is similar to (9)

Y (C) = M 2C (16)

if we use components of the vector Y (C) for the second coordinate of each point
(x, y), corresponding to the first coordinate.

On the other hand, having the operator M−1
2 it is possible to reconstruct the

first coordinate of each point (x, y) as follows

M−1
2 = αM−1

0 + (1− α)M−1
1 ,with , ci = αy2i−1 + (1− α)y2i ,

X(C) = M−1
2 C (17)

with the obvious meaning of the symbols used.
Calculation of unknown coordinates for curve points using (13)-(17) is called

here the method of Hurwitz - Radon Matrices (MHR) [20]. Here some applications
of MHR method for functions h(x) = 1/x (nodes with yi = 0.2, 0.6, 1, 1.4, 1.8 )
and f(x) = 1/(1 + 25x2) with nodes of xi = −1,−0.5, 0, 0.5, 1 are presented.

Using MHR parametrization and (13)-(16) for N = 2 and β = 1− α give

M0 =
1

x2
1 + x2

3

[
x1y1 + x3y3 x3y1 − x1y3
x1y3 − x3y1 x1y1 + x3y3

]
,

M1 =
1

x2
2 + x2

4

[
x2y2 + x4y4 x4y2 − x2y4
x2y4 − x4y2 x2y2 + x4y4

]
,[

Y (c1)
Y (c2)

]
= (αM 0 + βM 1)

[
αx1 + βx2

αx3 + βx4

]
,

where, for example, in the explicit form Y (c1) is given by

Y (c1) = α2y1 + β2y2 +
αβ

x2
1 + x2

3

(x1x2y1 + x2x3y3 + x3x4y1 − x1x4y3)+

+
αβ

x2
2 + x2

4

(x1x2y2 + x1x4y4 + x3x4y2 − x2x3y4) .

Parametrization of contour points (x(α), y(α)) situated between nodes (x1, y1)
and (x2, y2), calculated with OHR operators of dimension N = 2, is:

x(α) = αx1 + (1 − α)x2 , α ∈ [0; 1] (18)

y(α) = α2y1 + (1− α)2y2 + α(1 − α)r ,
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Fig. 2. Twenty six interpolation points of the functions: h(x) = 1/x, on the left, and
f(x) = 1/(1 + 25x2), on the right, using the MHR method with 5 nodes

Fig. 3. Thirty six interpolation points calculated by MHR method with 4 nodes

where r = 1
x2
1+x2

3
(x1x2y1+x2x3y3+x3x4y1−x1x4y3)+

1
x2
2+x2

4
(x1x2y2+x1x4y4+

x3x4y2−x2x3y4) . Parametrization of contour points situated between each pair
of successive nodes (xi, yi) and (xi+1, yi+1) looks similarly to (18). For the con-
tour presented in Fig.1 our MHR method with nodes at corners (2;2), (3;1), (4;2)
and (3;3) gives the result on Fig. 3.

3 Curvature

The formula for curvature (1) consists of elements given by the parametrization
(18), and hence are solutions of the system of equations

x′(α) = x1 − x2 , x′′(α) = 0 , (19)

y′(α) = 2αy1 − 2(1− α)y2 + (1− 2α)r ,

y′′(α) = 2y1 + 2y2 − 2r .
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Fig. 4. A curve with 4 nodes (MS EXCEL graph)

Then the curvature C(α) looks as follows:

C(α) =
2(x2 − x1)|y1 + y2 − r|

[(x2 − x1)2 + (2αy1 + 2αy2 − 2αr + r)2]
3
2

. (20)

Hence the condition for the local maximum of the curvature C′(α) = 0 is fulfilled
when

α =
y2 − 0.5r

y1 + y2 − r
. (21)

Now let us consider three examples.

– Linear (affine) function: y1 + y2 − r = 0, and then C(α) = 0.
– A curve with interpolation nodes:

(0.5; 2), (3; 0.333), (6.5; 0.154), (20; 0.05) ,

then the local maximum of the curvature is at α0 = 0.709 (cf. (21)) and is
equal to C(α0) = 1.278 (cf.(20)), and appears at the curve point (1.229; 2.339)
situated between the first and the second node.

– For the function presented in Fig. 4 with interpolation nodes

(1.2; 2.074), (4.9; 576.48), (15; 50630), (17.2; 87520)

the local maximum of the curvature is C(α1) = 401.296 with α1 = 0.605 and
at the curve point with coordinate x = 2.663 situated between the first and
the second node (Fig.5).
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Fig. 5. Ten points of the curve from Fig.4, calculated by MHR method; between the
first and the second node we have the local minimum of the curvature for x = 2.663

4 Conclusions

The method of Hurwitz-RadonMatrices leads to object contour interpolation and
parametrization in the range of two successive nodes, depending on the number
and location of nodes [21]. The only condition is to have a set of contour points
according to assumptions of MHRmethod. Main features of MHRmethod are ac-
curacy of data reconstruction depending on number of nodes. Interpolation of the
contour consisting of L points leads the computational cost of rank O(L). MHR
method deals with local operators: average OHR operators are built by successive
4, 8 or 16 curve points, what is connected with smaller computational costs then
using all nodes. Moreover, MHR method is not an affine interpolation [22]. Future
works are related to: parametrization and curvature reconstruction using 8 or 16
nodes, possibility to apply MHR method to three-dimensional curves (3D data),
object recognition [23], data extrapolation and decision making [24].
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tion. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 2.
AISC, vol. 84, pp. 39–50. Springer, Heidelberg (2010)
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Abstract. In this paper, a new, glove-free method for recognition of fin-
gerspelled acronyms using hierarchical temporal memory has been pro-
posed. The task is challenging because many signs look similar from the
camera viewpoint. Moreover handshapes are distorted strongly as a result
of coarticulation and motion blur, especially in the fluent fingerspelling.
In the described work, the problem has been tackled by applying the
new, bio-inspired recognition engine, based on structural and functional
properties of mammalian neocortex, robust to local changes shape de-
scriptors, and a training scheme allowing for capture possible handshape
deformations in a manner that is lexicon independent.

Keywords: gesture recognition, hierarchical temporal memory, image
processing and recognition, human-computer interaction.

1 Introduction

Fingerspelling consists on spelling words using hand gestures that correspond to
the letters in the alphabet. It is used by hard-of-hearing when no sign exists for
a desired word, for spelling proper nouns, technical terms, acronyms, loan signs,
words from foreign languages, or to clarify a sign unfamiliar to the interlocutor.

In many sign languages, unlike word-level signs, fingerspelling gestures use
a single hand and are mostly static. The meaning is conveyed by the hand
shape, therefore the discrimination between letters should be based on hand
and finger configurations, rather than on global hand and arm motions. The
hand configurations are complex and contains finger occlusions. Some signs are
ambiguous from the observer’s viewpoint (Fig. 1).

For this reason the majority of proposed methods rely on active sensors, such
as data-gloves or magnetic trackers, which provide information about finger con-
figurations, e.g. [1,2]. These devices are both expensive and intrusive therefore
the passive sensing with vision-based approaches is preferable. Many researchers
have proposed different vision-based methods to recognize finger alphabets. In
[3] the algorithm that recognize fingerspelling images using neural networks
with pattern recognition model has been proposed. The 46 hand postures from
Japanese kana fingerspelling, performed by 5 persons, have been recognized with

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 527–534, 2012.
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(a) A - P (b) D - Z (c) F - T (d) O - S

Fig. 1. Selected pairs of similar letters in Polish finger alphabet

accuracy up to 85.2%. Good recognition rates, up to 99%, have been reported by
Altun et all. [4]. They have developed a handshape alignment method and tested
it with different classifiers, trying to recognize 29 static letters of Turkish finger
alphabet, performed by 3 signers. In [5] the authors have used an appearance-
based model with a sort of pre-processing operations. They have achieved the
recognition rate up to 86.7% for 24 letters performed by 20 users. Liwicki et al.
[6] have demonstrated that using the modified histogram of oriented gradients as
the appearance descriptor with a simple hidden Markov models can give highly
accurate fingerspelling recognition on a large vocabulary. They have recognized
100 words performed by a single novice signer with the accuracy up to 84.1%.

Recognition is more difficult when the letters are shown in a sequence, what
is the case investigated in this paper. The majority of existing systems tries
to tackle this problem by an initial time segmentation. The various techniques
have been used to identify frames with a slow motion. In [3] the recognition
worked only when the same spelling was observed for more than 0.8 seconds. In
[4] authors select for recognition frames whose distance to its successor, given by
the sum of the city block distances between corresponding pixels, is minimum.
However, at conversational speed, proficient signers are able to produce 40-45
words per minute and they do not pause at each letter. Moreover, in the fluent,
high-speed fingerspelling, individual letters are not formed exactly, but combined
with neighboring letters. This phenomenon is called coarticulation. Even if a
signer pass through the exact hand configuration corresponding to the given
letter, the aliasing resulting from a low frame rate can cause this sign to be
missed (Fig. 2). Recognition of distorted handshapes is particularly difficult.

(a) (b)

Fig. 2. Exact performance of the letter R (a), and the frames captured between letters
F and O in the acronym PFRON (b)

An interesting approachhas been proposed in [7], where the transitions between
letters are recognized instead of isolated signs. The drawback of this solution is the
increase in the number of recognized classes which also means the need for more
training data. In [7] authors have also suggested a division of the hand into smaller
parts (a palm and fingers), distinguished using morphological operations.
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Indeed fingerspelled words can be treated as entities having a hierarchical
structure in space and time. The spatial hierarchy manifests itself by building
handshapes from smaller pieces, whereas the temporal one, by concatenation of
subsequent letters into a given word. Taking this observation into account, an
idea to use hierarchical temporal memory (HTM), a new computing paradigm
replicating the structural and functional properties of mammalian neocortex [8],
has been proposed in this paper. The method relies on building a hierarchical
model of an observed part of world. In this model various appearances of the
same object manifest themselves by different configurations of pieces from lower
levels within hierarchy. However these configurations, called coincidences, can
be grouped together, because they occur closely in time.

There is a chance that highly deformed handshapes will be still recognized
as the same class provided the similar distortions will be shown sequentially
during the training phase. This has been achieved by a special training scheme,
proposed in this paper.

HTM is able to learn the new deformation of the object, using the small
number of examples [9,10]. This is because fragments remembered in lower levels
within hierarchy constitute building blocks, which are repeatedly used by other
objects. HTM deals well with ambiguities thanks to belief propagation technique,
multiple feedback and feed-forward connections within hierarchy and interaction
of the bottom-up input signals with the top-down predicted expectations.

The remaining part of this article is organized as follows. The section 2 con-
tains a brief overview of HTM. In the section 3 details concerning the proposed
approach are given. Obtained results are presented in the section 4. Section 5
concludes the paper.

2 Hierarchical Temporal Memory

Recently the Hierarchical Temporal Memory (HTM), the new computing para-
digm, has been developed [8]. HTM is based on neuroanatomical research of
mammalian neocortex and observations how living creatures solve the vision
problem. We can pretty well recognize objects even from a single static snapshot
but to learn we use a sequence of views showing objects in motion. As children,
when we are confronted with a new and confusing object, we pick it up and
move it about in front of our eyes. As the object moves, patterns on our retina
are changing, and our cortical system is able to build an invariant model. This
model is not stored in our brain in one place. It is hierarchically spread through-
out nodes of the neocortex. Fine, instantaneous and concrete details are stored
in lower nodes, whereas larger, temporarily stable and abstract structures are
represented higher within hierarchy. Models created in our brain are composed
from reusable units. This leads to good scalability and helps to solve ambigu-
ities. As the information propagates up the hierarchy, it becomes more stable
and unambiguous.
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Hierarchical temporal memory is a technology that replicates the structural
and algorithmic properties of the neocortex. HTM receives spatio-temporal pat-
terns coming from the senses. Through a learning process, HTM discovers and
memorizes the causes of these patterns. Then, taking into account the new sen-
sory stimuli, HTM can infer which of the known causes occurred at that time.

HTM is organized as a tree-shaped hierarchy of nodes which may work in the
learning or inference mode. In the learning mode, the basic operation of each
node is divided into two steps. The first step is to assign the input pattern to
one of the so-called quantization points (spatial clustering). Then, each node
forms common groups of quantization points using their temporal proximity
(time clustering). Two points belong to the same group if they follow each other
frequently in the training set. Stored groups represent causes discovered by HTM.
They contain all observed variations in the appearance of objects. In the inference
mode, the belief distribution over all known causes is determined. This is done
by searching for the occurrence of the input pattern in one of the memorized
groups. The output of the node is distribution of beliefs across all the learned
causes, whereas its input is the concatenation of outputs of all connected nodes
from the previous level. The variation of belief propagation technique used in
hierarchy assures that the system very quickly resolves possible ambiguities. The
detailed description can be found in [8].

3 Proposed Solution

The proposed method does not require any special gloves. At the beginning, skin
areas are determined in each frame based on skin chrominance model built in the
normalized RGB space (Fig. 3). Only areas larger than a predefined threshold
are taken into account. They correspond to the face and hands of a signer under
the assumption that there are no other skin-colored objects in the background
(Fig. 3b). Unlike word-level gestures, letters of Polish finger alphabet should be

(a) (b) (c) (d)

Fig. 3. Image processing: (a) input color image (shown here in gray levels), (b) skin-
colored regions, (c) hand’s binary mask, (d) extracted luminance window with the
centered hand and the grid of receptive fields of HTM’s sensors

performed at a distance of 20 cm from the face on the right side of the head
therefore the region lying closest to the left edge of the image corresponds to
the dominant hand of a signer. This binary object is used as a mask roughly
indicating the position of the hand in the image.
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Even under controlled laboratory conditions, a binary object obtained in this
way, may not correspond exactly to the actual shape of the hand. Therefore,
to make sure that most of the hand edges will be covered by the mask, the
morphological dilation is applied to the binary object and holes in its interior are
filled (Fig. 3c). Based on the mask position, the rectangular window of size 320 x
240, containing the dominant hand, is extracted from the luminance component
of the input image and selected for further processing.

This window is divided into 16 x 16 = 256 rectangular patches, each measur-
ing 20 x 15 pixels (Fig. 3d) and constituting the receptive fields of HTM sensors.
Then for each patch, a histogram of quantized orientation is calculated. Cur-
rently only four different orientations are distinguished: horizontal, vertical and
two slanting. Only orientations calculated at points covered by the binary mask
are accumulated, with each orientation weighted by the corresponding gradient
magnitude. For empty patches a vector filled with zeros is returned.

Each histogram constitutes the output of the HTM’s sensor, put over the
corresponding fragment of the image, and describes the local appearance of the
hand. It has been selected as a result of experiments with recordings registered
in different conditions and it was quite resistant to changes in illumination.
The whole handshape is described as a joint histogram over quantized gradient
orientation and position. Gradient based descriptors are biologically justified
because neurons in primary visual cortex respond to a gradient at a particular
orientation and spatial frequency.

After many experiments with the various network structures and parameters
the following two-layer HTM has been proposed (Fig. 4). Sensor layer consists of

Fig. 4. The HTM topology

16 x 16 elements placed over the corresponding parts of the image. The category
sensor is connected only in the learning phase and provides the information
about the label of the currently processed gesture. The hierarchy is mapped
by putting two layers containing 16x16 and 8x8 nodes respectively. Each of the
nodes located in these two layers make the spatial and temporal clustering [8].
Above these layers the classifier and the effector nodes are put. The effector node
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writes the results to the file. The hierarchy manifests itself in linking the nodes
between the particular layers.

To achieve the invariance from the hand position, the nodes in the first layer
share their internal states. In other words, each node is aware of what parts of
the hand can appear anywhere in the image. The second layer of the network
perceives the given shape as the particular coincidence of lower-level features
(local descriptors), memorized in the nodes of the first layer. These features are
invariant to local deformations only within some range. However, due to the fac-
tors mentioned in the introduction, hand deformations can be so large that the
second layer will see a completely different coincidence of lower level features.
During the learning stage, HTM is able to group together completely differ-
ent configurations, provided they occur closely in time. Therefore, the following
learning scheme was proposed.

It was assumed that there is no additional class for transitions between letters.
Deformed shapes, which appear between accurate performances were classified
as preceding or following letter. To create the training set, the video sequences
containing all possible pairs of letters have been recorded. For each pair, the
separate HTM has been trained using accurate performances of two letters, seg-
mented by hand from the training sequence. Then, the HTM has been switched
into the inference mode and used to separate the sequence into two parts, cor-
responding to the first and second letter of the processed pair. Obtained in this
way, appearances of distorted letters have been added to the global training set.
After processing all recorded pairs, the new HTM has been trained on exact
and deformed realizations of all letters and used to recognize the fingerspelled
acronyms. The idea was to capture the natural deformations when letters are per-
formed in a sequence. Using all possible letter pairs instead of specific acronyms
assures that coarticulation shown in the training phase, is not specific to the
lexicon selected for recognition.

4 Experimental Results

The following acronyms, denoting Polish institutions, political parties and inter-
national organizations have been considered: MPK, NATO, PFRON, PIS, PKO,
PKP, PKS, PO, PSL, PZG, PZU, RP, and SLD. The data set consisted of 30
frame-per-second video of each acronym performed 6 times by two persons, de-
noted further A and B. Additionally, for the training purposes, each letter pair
has been performed once by person A and B. The signers have been asked to
wear long-sleeved clothes. The color of clothing and objects in the background
was different from the skin color. Each frame was originally 640 x 480 pixels,
with the hand occupying a region no larger than 320 x 240 pixels. The person
A is the professional sign language interpreter. She has performed the gestures
accurately with the average speed about 45 acronyms per minute. Person B
is hard-of-hearing and sign language is his primary means of communication.
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His gestures have been performed more spontaneously and a bit carelessly with
the average speed about 50 acronyms per minute.

HTM returns the label of the recognized class for each image in a sequence.
Therefore a simple post-processing has been applied. Identical labels, occurring
immediately after each other, have been merged into larger segments. Then,
fragments shorter than the predefined threshold have been glued to the previous
or next segment (to the shorter one).

The table 1 reports results in terms of acronyms recognition. Recognition
was considered correct, if labels of the consecutive segments matched letters
occurring in a given acronym.

The experiments have shown that the proposed method does not depend
heavily on the feature extraction task. Errors in determining the mask, which
occur due to fast fingerspelling (person B) do not degrade overall performance
significantly.

Solution seems to be user dependent. However, the transition between the
letters in each pair has been shown by a given person only once. When the list
of acronyms is fixed a priori, one may consider enriching the training set by
adding transitions characteristic for the considered vocabulary. It has been done
for the person A by moving one utterance of each acronym from the testing to
training set. The obtained recognition rate was 94.9%.

Table 1. Acronyms recognition accuracy

training testing recognition rate [%]
(pairs of letters) (acronyms)

person A person A 92.3
person B person B 88.5
person A person B 82.1
person B person A 87.2

person A, B person A 92.3
person A, B person B 87.2

5 Conclusions and Future Work

A new method for recognition of fingerspelled acronyms using hierarchical
temporal memory has been proposed. The method is glove free. It uses a new, bio-
inspired computing paradigm, replicating the structural and functional proper-
ties of mammalian neocortex. Applied training scheme assures that the captured
coarticulation is not specific to lexicons selected for recognition. The normal
speed and careless gesturing are possible. The errors in the feature extraction,
inevitable in the fluent fingerspelling, do not degrade the overall performance.

However, there are some issues requiring further research. The imaging condi-
tions were only moderately challenging. Further works will involve investigation
of the image processing methods robust enough to deal with arbitrary condi-
tions. Selecting the proper parameters controlling the HTM training process is a
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bit troublesome. For the highest levels in the hierarchy, it relies on user intuition
and experience. Elaborating systematic training procedures which can be run
automatically is a great challenge. The long term goal of research is to develop a
method allowing continuous sign language recognition. This will require, among
other things, elaborating a method to distinguish between conscious gestures
and involuntary hand movements. An integration of the acronyms recognition
procedure with the word-level recognizer will be also needed.
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Higher Education under grant N N516 369736.
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Abstract. This paper proposes a method of tracking the lips in the
system of audio-visual speech recognition. Presented methods consists
of a face detector, face tracker, lip detector, lip tracker, and word clas-
sifier. In speech recognition systems, the audio signal is exposed to a
large amount of acoustic noise, therefor scientists are looking for ways to
reduce audio interference on recognition results. Visual speech is one of
the sources that is not perturbed by the acoustic environment and noise.
To analyze the video speech one has to develop a method of lip tracking.
This work presents a method for automatic detection of the outer edges
of the lips, which was used to identify individual words in audio-visual
speech recognition. Additionally the paper also shows how to use video
speech to divide the audio signal into phonemes.

Keywords: lip reading, visual speech, audio visual speech recognition.

1 Introduction

Automatic speech recognition (ASR) is widely used as an effective interface in
many devices: personal computers, robots, mobile phones and car navigation.
For ASR systems, in low noise-level environments, the word correct rate (WCR)
for audio channel only is over 95%. However in noisy environments, the WCR is
significantly reduced [1]. To overcome this problem, we consider a lip reading
method. Automatic recognition of audio-visual speech provokes a new and chal-
lenging tasks of comparison and competition with automatic recognition of the
audio speech. It’s well known that the visual modality contains some complemen-
tary information to the audio modality. The use of visual features in audio-visual
speech recognition (AVSR) is motivated by the bimodal nature of the speech for-
mation and the ability of humans to better distinguish spoken sounds when both
audio and video are available [2,3,4]. Audio-visual speech recognition examines
two separate streams of information, in comparison to only audio speech. The
combination of these streams should provide better performance in contrast with
modern approaches that utilise each source separately. The issue of video char-
acteristics extraction and fusion of audio and video characteristics are difficult
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problems, that generate a lot of research in the scientific community. Since E.
Petajan demonstrated in his work [5] that audio-visual systems are more ef-
fective than either speech or vision systems alone, many researchers started to
investigate audio-visual recognition systems [6].

The paper presents a method for automatic detection of the outer edges of the
lips. In addition, it shows how to improve the distinguish ability of video sounds,
by analyzing the position of tongue and how to use video speech to divide the
audio signal into phonemes. Because it is difficult to evaluate the effectiveness of
lip-tracking, as the tracking accuracy may be verified only by observation. There-
fore performance tests where based on isolated words recognition of audio-visual
Polish speech. Moreover this work focuses on hidden Markov models (HMM)
and presents a method of automatic lip tracking.

2 Face, Eye and Area of the Lip Detection

The first step in the process of creating a video observation vectors of speech,
is the location of the user’s face in a video. Because the system was designed
to operate with only one user at any given time, it is assumed that the frame
contains only a single face of one individual. The process of face localization
involves the reduction of entire frame to the area containing only the face. This
work uses haar-like features [7,8] as the detection method to locate the face
area.

After determining the coordinates of vertices rectangular mask, a new video
sequence of statements containing the limited area of the image to the user’s
face is creates from the original sequence of frames. For a lip-reading system, it
is essential to track the lip region of the speaker. This can be achieved by track-
ing the lip-corners. It is difficult to locate or track lip-corners alone. In order to
find the lip-corners within a face, it is possible to search other facial features
using certain constraints and heuristics. Some facial features are easier to locate
than lip-corners. For example, within a face, the pupils are two dark regions that
satisfy certain geometric constraints, such as: position inside the face, symme-
try according to the facial symmetric axis and minimum and maximum width
between each other.

When designating mouth image area it is well known that individual frames
contains the entire face of the user. Therefore eye coordinates can be used to
determine the exact position of the mouth. For this reason Gradient Method and
Integral Projection (GMIP) [9] is applied to find horizontal and vertical lines
of eyes.

3 Lip Edge Detection and Video Encoding Speech

During natural speech, lips move vertically, the lip corners are in place or, alter-
natively, move horizontally, and the distance between the inner and outer edge
of the lower and upper lip remains unchanged. Therefore, the system uses only
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the corners and outer edges of the lips as the main features in the process of lip
tracking [10].

An important element of the extraction characteristics of the lips is to locate
the lip corners. The exact position of the mouth corners is crucial, so that later
on the basis of their location the outer edges of the mouth could be detection,
as well as the landmark distribution. This paper proposes a method based on
the specifics of lips color and shape. In this method, the localization process of
lip corners is realized on a color image. Lips have a very distinct color and by
properly manipulating the various components of the RGB color space, isolated
borders between the lips and the rest of the face might be obtained by thresh-
olding. Operations performed on the RGB channels could be described by the
following relationship:

lipregion =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B
G − 1 < T 1

and
R
G − B

G < T 2
and

R
G − 1 < T 3

(1)

where: T1, T2 and T3 are empirically chosen thresholding values.
In this way, the values of the pixels corresponding to the specific color of the

lips are set. Knowing the structure shape of lips, corners of the mouth may be
designated as the extreme levels of specific color of mouth pixels. Searching for
the pixels has to be done within a limited area of the mouth, near the horizontal
axis of the lips.

Correct determination of the lip corners is so important that a round grid is
built on its basis to determine the points on the outer edges of the lips. Based
on the corners of the mouth the center of the circle can be determined at half
of the distance between the corners of the lips. When moving around the circle
the radius is determined as the angle α. Starting from one of designated corner
we can differentiate between 2π/α of rays. Then, moving along each of the rays
toward the center of the circle we can designated a characteristic point of the
outer edge of the lips, as the first encountered mouth pixel. The offset of rays is
chosen accordingly to the accuracy with which the outer edges of the lips should
be reproduce. The study assumed that each of the rays is at about 22.5 degree,
which gives 16 points, including two characteristic corners of the mouth.

The system is based on HMM. For the HMM model, the input signal has to
be introduced as a vector of observations, so for each frame based on the coordi-
nates of characteristic points a symbol could be assigned that best describes the
characteristics of that frame. The proposed method for encoding frames incor-
porates a simplified method that uses the location of each of the characteristic
points of the straight line defined by the corners of the mouth. For each frame,
we calculate the sum of relative distances m from all points of a straight line,
defined by the corners of the mouth. We adopted 16 characteristic points, so
each of the calculated relationships could be divided by 16. The sum of obtained
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value, when multiplied by 100 is in the range from 11 to 60, obviously if properly
located in characteristic points on the outer edges of the lips:

y =

∑N
i=1

mi

d

N
· 100 (2)

where: N - is the number of points, m and d - see Fig. 1.
Fig. 1 shows scheme of assumed location of corners of mouth, definition of

external edges of mouth and video speech encoding method.

Fig. 1. Scheme of assumed location of corners of mouth, definition of external edges of
mouth and video speech encoding method

It was assumed that the resulting symbols should be in the range from 1 to
50, so the minimum value of the code for each user must be specified accordingly
and on this basis the code values need to be reduced to the objective range.

4 The Method of Supporting the Division of Phonemes

The division of the speech signal into phonemes is very important for systems
that perform continuous speech recognition. The most often used method cur-
rently uses constant-time segmentation. This methods benefit from simplicity of
implementation and the ease of comparing blocks of the same length. Clearly,
however, the boundaries of speech elements such as phonemes do not lie on fixed
position boundaries; phonemes naturally vary in length both because of their
structure and due to speaker variations. Constant segmentation therefore risks
losing information about the phonemes. Different sounds may be merged into
single blocks and individual phonemes lost completely.

Spectral analysis of the speech signal is the most appropriate method for
extracting information from speech signals. The analysis of the power in different
frequency bands offers potential for distinguishing the start and end of phonemes.
Many phonemes exhibit rapid changes in particular sub bands which can be used
to detect their start and endpoints. However, for many boundaries, there is no
discernible drop in overall power, and at some frequencies, the power is broadly
constant over the lifetime of the phoneme.

We propose a method that combines analysis of the frequency signal, and an
analysis of the key changes from the video frames of speech. In our approach, we
analyze the significant changes in the video frames and synchronize those changes
with an acoustic signal. The idea of the described method is shown in Fig. 2
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Fig. 2. The method of divide the audio signal into phonemes with use video frame

5 System of Audio Visual Speech Recognition

The accuracy of automatic lip tracking method was tested in audio-visual speech
recognition system, that incorporates the hidden Markov models as a probabilis-
tic data classifier. Audio-visual speech recognition is based on the extraction of
recording features of audio and features of video. In such system video and audio
channels are analyzed separately, then a proper fusion of designated features is
made.

The input to HMM has to be presented in the form of vectors of observation.
Such an observation vectors can be obtained by making a vector quantization.
In audio speech analysis Mel Frequency Cepstral Coefficients (MFCC) were used
for the extraction of audio features. To create a codebook Lloyd algorithm was
used. In speech recognition systems based on HMM, each frame represented by
a vector of observation is coded as a symbol of observation. In our system, all
the individual words can be encoded using 37 code symbols, corresponding to
the number of phonemes of the Polish language.

The result of audio signal analysis is the extraction of required characteristics
of the signal, whereas the result of video analysis being the process of encoding
each frame containing the shape of the lips with the use of appropriate symbol
observation.

Vectors of observations of audio and video signals have a similar length. The
audio signal is sampled at a frequency of 8000 samples per second. After the
encoding process one second of audio contains about 50 symbols. Consequently
the video signal is sampled at a frequency of 50 frames per second, to synchronize
audio and video streams.

In the method of fusion, the audio and visual observation sequences are in-
tegrated using a coupled hidden Markov model (CHMM) [11,12]. The feature
fusion system using a multi-stream HMM assumes that the audio and video
sequences are state synchronous, but allows the audio and video components
to have different contributions to the overall observation likelihood. The au-
dio visual product HMM can be seen as an extension of the multi-stream HMM
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that allows for audio-visual state asynchrony. The CHMM can model the audio-
visual state asynchrony and preserve at the same time the natural audio visual
dependencies over time. In addition, with the coupled HMM, the audio and video
observation likelihoods are computed independently, significantly reducing the
parameter space and complexity of the model compared to the models that
require the concatenation of the audio and visual observations [12].

6 Experimental Results

To perform research, we applied a set of seventy-command, recorded for 40 differ-
ent users. In order to show the correctness of functioning method of automatic
tracking of the lips, and the level of error recognition system of audio-video
speech, experiments were performed for different levels of audio noise (at SNR
of 20, 15, 10, 5, and 0 dB).

Many scientists in the world deal with the analysis of audio-visual speech. In
their studies, they examine the various factors of processing audio-visual speech.
Therefore, to compare the obtained results with those of other researchers, we
chose only those leading the work that analyzed in a similar way audio-visual
recognition of speech. In order to compare the developed method with the
popular methods of audio-visual recognition of speech, developed by leading
researchers in this field, we adopted similar conditions for noisy audio signal.
Effectiveness compared with those of [2,13,14,15,16], in which the authors have
adopted similar solutions by encoding both signals, and using CHMM for learn-
ing and testing. Assumptions may differ in terms of quantity of the analyzed
words, different amounts of CHMM states and various means of fusion of audio
and video signals. But the sense of studies was similar, so it was concluded that
the comparison will be reliable. The results of comparing the level of recognition
errors of audio-visual speech was showed in Tab. 1.

Table 1. The results of comparing the level of recognition errors of audio-visual speech
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7 Conclusion and Future Work

Conducted tests indicate that the method of automatic lip tracking is working
properly and performs well in real life. Test results show that the accuracy of
speech recognition is largely affected by the fact of whether the environment is
disturbed or not.

In comparison of recognition accuracy our method obtains similar or better
results to other existing audio-visual speech recognition methods, published in
scientific literature. Fig. 3. shows results of comparing the level of recognition
errors of audio-visual speech for different methods.

Fig. 3. Results of comparing the level of recognition errors of audio-visual speech for
different methods

The results show also that this method should be developed. There are plans
to expand the method of automatic detection of the position of the tongue, for
each of the spoken video phonemes. In future work we plan to build a system
for Polish speech recognition, based on analysis of individual phonemes. Such an
approach would allow for continuous speech recognition. The method of audio-
visual recognition of Polish speech was used in the system to control the camera
movement using voice commands. To increase the efficiency of the method to
make the system work properly in real time, can be used to support at the
hardware level.

An advantage of the proposed method is the satisfactory effectiveness cre-
ated by the lip-tracking procedures, and the simplicity and functionality by the
proposed methods, which fuse together the audio and visual signals. A deci-
sively lower level of mistakes was obtained in audio-visual speech recognition,
and speaker identification, in comparison to only audio speech, particularly in
facilities, where the audio signal is strongly disrupted.
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Abstract. A common task in the field of document digitization for in-
formation retrieval is separating text and non-text elements. In this paper
an innovative approach of recognizing patterns is presented. Statistical
and structural features in arbitrary number are combined into a rating
tree, which is an adapted decision tree. Such a tree is trained for char-
acter patterns to distinguish text elements from non-text elements. First
experiments in a binarization application have shown promising results in
significant reduction of false-positives without producing false-negatives.

1 Introduction

Application of pattern recognition methods often takes place after many stages
of image preprocessing. Especially at the binarization step, when foreground
objects are separated from the background, a lot of information reduction is
done (a common survey to binarization methods is [14]).

Another method of binarization is the local contrast segmentation (LCS),
which uses continuous edge intensities to identify connected components, that
have a high probability of being text elements due to their local properties [2].
Figure 1 shows the results of the LCS algorithm on a shadowed document. The
algorithm yields no false-negatives but some false-positives due to its defensive
operation. For subsequent processing steps, such as the document layout deter-
mination, the number of false-positives must be reduced without introducing
false-negatives.

We present a novel classifier, which interprets objects as the characteristic
sum of their properties. The paper is organized as follows: Section 2 reviews
some related work from the state of current research. Section 3 explains the
new classifier in detail with the training and recognition stages. In section 4,
we evaluate our classifier with a practical binarization application, where false-
positives from a preceding character classifier are reduced significantly, without
increasing the number of false-negatives. Finally, section 5 concludes the paper
with a prospect to aspects of future work.
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Fig. 1. left: grey-scale document image with a lot of shadows; right: the binarized result
image of the LCS algorithm

2 Related Work

There are statistical and structural approaches for pattern recognition systems
[18]. The main difference is the necessity of having domain knowledge for the
structural approaches. The proposed system uses generalized structural fea-
ture extraction without relying on domain knowledge spezialized for time-series.
Behnke et al. present an off-line graph based method for handwritten digits [19].
They vectorize the pixel image for structural analysis and generate a structural
graph. This method uses only one very specialized feature for classification - the
structural graph. Al-Taani et al. propose an approach for handwritten arabic
digits. They calculate a slope change chain using the drawn pixels, which is used
to identify and extract primitives. Each digit is a unique sequence of primitives.
A finite transition network is used to find a matching grammar for the primi-
tives sequence in the classification step [11,6]. Elgammal et al. use a graph- and
primitives-based approach. Structural features are extracted and represented in
a line adjacency graph. This graph is used to map the structural features in
topological relation to the baseline and segment the characters into primitives.
Regular grammars, which describe the composition of primitives for the specific
characters, are used for pattern recognition [17].

A standard technique for unsupervised learning is agglomerative clustering
and is used in many applications like data mining and other [7]. During the
training stage of our rating tree, we use agglomerative clustering to determine
the childnodes.
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Algorithms for object recognition, like k-NN [10,3,21,20], k-means [9,12] and
others [4], use pattern matching techniques that rely on the difference between
positive and negative samples, in fact they depend on it. The several approaches
use either features of one particular type in any count [15,13,9] or single features
of various types [1,8], but not both at the same time.

We present a completely new approach to the field of pattern recognition
problems. We think an object is the sum of its properties and thus we propose a
method to combine any type of feature, statistical as well as structural features.
Our approach is not restricted to one specialized feature or type of features. We
define an extendable set of different features and train a special decision tree.
The feature set is highly application specific and therefore it is necessary to have
domain knowledge. The decision tree can be interpreted as a grammar verifier
at the classification stage. Each symbol has one or more paths, depending on its
variation presented during the training phase.

3 Summed Features Classifier

A special classifier for object recognition combines features of different types
with varying count and thus constitutes a summed features classifier (SFC).

The classifier is trained during an offline phase. Therfor sets of different fea-
tures are extracted from each training object and then combined to a specialized
decision tree. The tree stores the individual composition of the features for each
object. There is no need of negative samples for the training of the classifier.

At the online stage the classifier is used to determine the class label for an
unknown connected component. It can be used for binary classification as well,
if no distinction between the objects is needed or all objects are unlabeled and
have to be distinguished from clutter only.

For the application of character recognition we identified many patterns in
latin letters and arabic digits, for which we built fast and simple feature ex-
tractors. For example, we used a modified RANSAC [23,24] algorithm to find
straight lines and line segments as well as circles and semicircles in a connected
component. The set of found line segments is searched for triangle and rectangle
structures, as they are contained in characters. This is done by application of
the following criteria: one phantom line segment or at least one horizontally or
vertically oriented line segment is included in a subset. There are many more
statistical and structural features like closed surfaces, junctions and their degree
or line ends on the character skeleton, holes with horizontal or vertical direction
in the character topology, the best axis of symmetry and the associated degree
of symmetry, the ratio between foreground and whole image area or the centroid
of the character.

The used feature set is customized for latin letters and arabic digits. With an
application specific feature set, our classifier can also be used for another class
of problems. Visualizations of some features can be seen in figure 2.
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Fig. 2. selection of some used features for SFC: (a) straight lines; (b) triangle; (c)
circle; (d) closed surface; (e) 2 northern openings and 1 southern opening; (f) junction
points and edges between them on the character skeleton; (g) axis of symmetry with
perfect degree of symmetry and (h) centroid point

3.1 Train Classifier

The tree is built by a recursive algorithm: Sets T and V contain all training and
validation samples at the beginning. At each recursion step a certain feature
type mi ∈ M is manually chosen, for which the features were extracted from T
and V . All feature vectors of type mi of T are clustered with an unsupervised
cluster analysis algorithm (i.e. agglomerative cluster analysis) to r clusters Cd

with d = 0 . . . r − 1. The current node gets r + 1 child nodes, one for each found
cluster and one for the rest of the feature space. This special child node represents
non-classified objects. Connected components with a path to such a leaf in the
tree will be rejected. Figure 3 shows the clusters (as Gaussian distributions)
found in the 1-dimensional feature space of vertical straight lines (x coordinate).

Fig. 3. left: multivariate normal distribution as specification for 1-dimensional clusters
found in the feature space of vertical lines; right: generic creation scheme of a node N
during the recursive training algorithm, with chosen feature type mi, children N0...r−1

for determined clusters and child node NW for the remaining feature space, as well as
annotated edges
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A cluster is represented as a Gaussian distribution by its mean vector μ(Cd)
and covariance matrix Σ(Cd). Additionally all labels of training samples, that
have at least one feature vector, which is inside Cd (three standard deviations),
are in the set of labels stored at the child node edge d:

e(N, Nd) = [{l1, l2, . . .} , μ (Cd) , Σ (Cd)]

Next the training error is computed with the validation samples and stored as a
probability distribution function p(N, Nd) for each child node. Assuming there
is validation sample v of class A from which two feature vectors f i

1 and f i
2 of

type mi are extracted as shown in figure 4. Each feature vector belongs to one
cluster and adjusts the probability function respectively to its own class label
and the class labels stored at the edge. For example feature vector f i

1 falls into
cluster C1 at node N1, that means the path to node N1 in distribution function
p(N, N1) must be incremented. This has to be done for every validation sample
and is normalized afterwards.

Fig. 4. example for computation of distribution functions: validation image v with label
A has 2 feature vectors of type mi, f i

1 falls into cluster C1 and f i
2 neither in cluster C1

nor C2; that is p(N, N1) and p(N, NW ) have to be adjusted

Before continuing with child node Nd, the sets of training and validation
samples have to be reduced by all samples, which have no feature vector in the
appropriate cluster Cd. The set M is reduced by mi only if none of the samples
in the reduced sets T ′ and V ′ has an unused feature vector of type mi on the
path from the root down to the node Nd.

3.2 Object Recognition

Recognition of unknown objects is done by a random Monte Carlo [22,5,16]
depth-first search traversal with respect to the distribution functions stored at
each edge on the path down to a leaf. While going down the tree, the specific fea-
ture type mi is extracted of the unknown object at each node. One of the vectors
and its appropriate edge are chosen randomly (if more than one is available).
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Depending on the probability distribution function for this edge the next node
is determined randomly, as shown in figure 5. At the end all probability values
on the chosen path down to the leaf are normalized using the path length. This
is done for a given number of n iterations. The path with the highest value is
the best fit for the unknown object and the returned class.

Fig. 5. example for class examination with a Summed Features Classifier: one feature
is selected at each node to determine an appropriate cluster, the next node is chosen
randomly with respect to the distribution function (right side) of that particular cluster

4 Experiments and Results

We test our approach on an Intel Core2Duo based computer with 2.0GHz/4GB
RAM and a set of 2209 connected components, that result on an application of
LCS. LCS yields a number of connected components it identifies as characters.
Not all of them are truly characters. Each connected component is classified by a
human afterwards. This means we have a number of objects which are positives
and false-positives. The aim is to discard as many as possible of false-positive
objects without rejecting real characters.

We train a summed features classifier for the ten arabic digits. Figure 6(a)
shows the distribution of our used object set before application of SFC. The set
of 259 positive samples contains every connected component which was classified
as an arabic digit and the set of 1950 false-positives all other. We apply the SFC
as a binary classifier to this set of objects. Figure 6(b) shows the results after
application of the SFC, where are 59 false-positives only, 1891 negatives and no
false-negative. The time to traverse the rating tree for one object is less than
10ms.
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With SFC we are able to decrease dramatically the false-positives and discard
them as non-characters. Furthermore no digits are rejected (false-negatives).
It is possible to increase the rejection rate of false-positives by adjusting the
probability distribution functions to be less tolerant towards errors. But this
results also in discarding positives.
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Fig. 6. distribution of connected components (a) after LCS with many background
objects and (b) after SFC, where most false-positives and no positives are rejected

5 Conclusion and Future Work

We presented the classifier SFC, which interprets objects as the characteristic
sum of their properties. In the first experiment we could significantly reduce the
set of false-positives by more than 96% without producing false-negatives. With
that the results of LCS binarization can be improved considerably.

However, the algorithm is currently not suitable for applications, that need to
compute the binarization in realtime. Therefore we are working on a more per-
formant solution. Additionally, the configuration of the feature selection during
the training phase will be adjusted automatically in future.
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Abstract. This paper describes a novel image retrieval method for par-
asite detection based on the analysis of digital images captured by the
camera from a microscope. In our approach we use several image pro-
cessing methods to find known parasite shapes. At first, we use an edge
detection method with edge representation by vectors. The next step con-
sists in clustering edges fragments by their normal vectors and positions.
Then grouped edges fragments are used to perform elliptical or circular
shapes fitting as they resemble most parasite forms. This approach is
invariant from rotation of parasites eggs or the analyzed sample. It is
also invariant to scale of digital images and it is robust to overlapping
shapes of parasites eggs thanks to the ability to reconstructing elliptical
or other symmetric shapes that represent the eggs of parasites. With this
solution we can also reconstruct incomplete shape of parasite egg which
can be visible only in some part of the retrieved image.

Keywords: edge detection, shape recognition, objects detection, image
processing.

1 Introduction

Content-Based Image Retrieval (CBIR) is a branch of science based on advanced
mathematical and computer science methods for analyzing digital images. In
truth, the process of computer image analysis is still far from the way in which
images are analyzed by the human brain. Nevertheless, existing methods and
algorithms allow the use of CBIR-related technologies in many areas of daily life
or work. One of the areas in which CBIR gains the immense popularity is analysis
of medical imaging (e.g. computed tomography, USG or RTG). The current
literature studies do not show, however, real-world solutions in the field of image
analysis in parasitological domain. Parasitology is the study of parasites and
parasitism, which deals with morphology, anatomy and development of parasites.
One of the primary examinations used in parasitology is taking samples and
test them under a microscope to identify a parasite on the basis of its physical
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characteristics. Each parasite has individual characteristics, which identify its
species. The examination itself is time consuming, even for an experienced doctor
or lab technician; there are also frequent errors in determining parasite species,
resulting in inadequate treatment that can lead to rapid health deterioration
and even death of patient.

For many years content-based image retrieval systems (CBIR)[6] have been
used in many different areas, such as medicine, biometrics or automotive. Major
research areas combining image processing and medical analysis are computed
tomography, magnetic resonance and ultrasound scan [8][1][7][2]. Currently, these
systems support the work of medical doctors in many different fields of medicine.
However, there is no specific application dedicated to parasitology, i.e. to de-
tect and identify parasites in raw laboratory samples. Certain works focused
on building knowledge bases, which contained images of selected parasites [10]
and were used primarily for academic purposes. In most samples there exists
different pollution that can obscure parasites. In many samples there are also
structures that can resemble parasites. There are many algorithms for processing
images [11][14][4] used in medicine, which specialize in finding specific objects
(e.g. bacteria, tumors, fractures, different unwanted changes). An example may
be algorithms, which allow searching for strains of malaria in blood [12], or spe-
cific algorithms analyzing organs in tomography [13]. General methods used in
image processing are not suitable for search of parasites. They can only locate
the object (provided that the sample was previously cleaned), but are not able
to identify the parasite species. In the case where the sample is contaminated
with other structures (such as hair or grass), these structures will be also treated
as important objects.

The proposed method can detect edges of objects, which could be parasites,
and can supplement the missing parts of the detected edges. In samples obtained
directly from the parasite tests there can exist many different objects such as air
bubbles, blood, grass, fur, and other non-parasitic objects. Objects can overlap,
which may hinder their detection by existing algorithms. A helpful feature here
is the shape of the parasite eggs as they are characterized by elliptical construc-
tion and have distinctive shell. These features can be a starting point to detect
the edges of the object. Often in the samples only a part of the essential object
is visible and the next important stage of this method is to develop an algorithm
that will be able to predict (reconstruct) the missing elements of the parasites.
This is possible because the eggs of parasites are characterized by symmetrical
oval shapes, and have similar size [9]. Methods that were presented in the liter-
ature are very general and do not provide a solution to this problem. The next
problem will be converting the detected edges of objects and their classification.

The remainder of this paper is organized as follows. Section 2 describes the
problem of the edge extraction in digital images and the current CBIR meth-
ods used in parasitology. Section 3 describes the proposed method of the edge
recognition. Section 4 reports the experimental results on a set of real images.
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2 Problem Description and Existing Methods

Problems with computer-aided parasites detection start at the edge detection
step. Most edges of parasite eggs are blurred. Edges blur is mainly caused by
focus loss of the microscope and reflections of the backlight. The second problem
is transparent egg bodies, because some pollution are visible in the background.
The standard Canny edge algorithm cannot detect blurred edges; this problem
can be resolved by using various size of edge detection masks.

After edge detection, we have to deal with a problem with vague egg edges
and edges noise from objects texture and pollution. Noise edges from textures
and small pollution can be eliminated by curvature test. Vague or invisible edges
are caused by close extensive pollutions and other parasite eggs. The extensive
pollution can be e.g. crystals, air bubbles or undigested debris. Problems with
these pollutions are hard to solve because they exist in different sizes and shapes.
Moreover, some of their shapes are similar to parasite eggs. Second problem oc-
curring with the lack of pronounced edges is that edges are sometimes connected
with other nearly located objects what increases problem for recognition of ob-
jects. To overcome this problem we present a method that transforms edges
pixels to vectors to speed up filtering and grouping process.

In the last step of parasites egg detection the main problem is the comparison
of their shape to ellipse. The problem outcomes from the fact that the shapes of
parasite eggs are not accurately symmetrical. Symmetries and ellipses matched
to the shape can be determined only approximately.

There are many algorithms for processing images [11] [14] [4] used in medicine,
which specialize in finding specific objects (bacteria, tumors, fractures, different
unwanted changes). These specific as well as general methods used in image
processing are not suitable for search of parasites. They can only locate objects
(provided that the sample was previously cleaned), but are not able to identify
the parasite species. In the case when the sample is contaminated with other
structures (e.g. hair, grass, crystals, air bubbles), existing algorithms will also
classify them as important objects.

The literature shows that previous work focused on building knowledge bases
containing images of selected parasites (see e.g. [10]), which are used primarily
for academic purposes. None of the previous work was dedicated to an attempt
to detect and identify parasites in raw laboratory samples. In most samples
there exist various pollutions and in result parasites can be obscured. In many
samples there are also structures that can resemble parasites. Existing databases
[9] [5] mainly contain parasites isolated from the samples. Moreover they are
prepared on various hardware, in different scales and using various methods.
These databases are not suitable to for the development of CBIR algorithms for
parasite identification.
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3 Novel Method for Parasite Egg Detection

Proposed method is designed to detect and to enhance edges of parasite eggs
or cyst and finally to estimate the best fit ellipse to their shape. The proposed
method detects parasites in following steps.

3.1 Multi-scale Edge Detection

The presented solution is based on the Canny edge detection algorithm [3]. First,
the median filter is used to remove noise and small reflections (backlight from
microscope), that appear on the test material. The proposed method uses the
Sobel filter mask in X and Y axis direction. Frequent blurring on the edge of the
examined objects caused by inaccurate focus calibration of microscope forced
detection of edges at several scales (Fig. 1). We used 8x8 (Fig. 1b) and larger,
16x16 mask sizes (Fig. 1c). Such action also allowed skipping the part of small
impurities and isolating the edges of larger objects from each other. The last

Fig. 1. Multi scale edge detection. (a) Input image. (b) Sobel filter with mask size 8x8
pixels. (c) Sobel filter with mask size 16x16 pixels.

step of the process of edge detection in the presented solution is to search for
local extremes among the determined edges. In the result we obtain enhanced
edges and steeper gradients of edges. The outcome of this stage is an array of
local gradient maximum values in the X and Y direction for each pixel.

3.2 Vector-Based Edge Representation

To speed up the method and to allow for additional filtration of image, edges are
converted to a vector form as presented in Fig 2. With this action the amount
of data to be analyzed is dramatically reduced. Each part of the edge has infor-
mation about its location and position of his arms. For this purpose, the image
with detected edges is analyzed by means of a grid at a minimum of 10 pixels in
x and y axes. This solution speeds up the search for egg edges and ignores the
edges of small, unimportant parts of the background. The edges of larger objects
will be sliced by the grid at multiple points to provide an outline of the object.
For each detected by the grid of edge pixel neighboring pixels are examined.
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Fig. 2. Edge vector based representation. p - position of edges. a1, a2 - vectors of edge
arm

The algorithm follows the edge of the pixel tracking in two opposite directions
relative to the axis in which the component value of the gradient was the highest.
After the passing of the distance in pixels equal to the number of pixels between
grid lines are designated as vectors for the edges of each arm from the starting
point. An example of vector representation of image edges is shown in Fig 3a.

3.3 Edge Filtration

Filtering of the detected edges is possible thanks to the determined arm vectors
from the previous stage. At the beginning we remove the edges where the angle

Fig. 3. Vector-based edge representation with filtering and grouping. (a) Input image.
(b) Image of vector-based representation of detected edges . (c) Edges filtered by angle
between arm vectors. (d) Edge filtered by relation between neighbor edges.

between their arms is less than 140 ◦. For that purpose, we determine cosine of
the angle (dot product) between their normal vectors

A = −→an· −→bn (1)

where −→an, −→bn are normal vectors of edge arms. In this way, we remove part of the
detected edges which represent object texture or small pollution (see Fig. 3b).
The second step of filtering is removing isolated edges, i.e. without near placed
edges of the same direction, forming continuous line (Fig. 3c). The degree of
linkage between the lines is determined by the following formula

B = |−→n · −−→abn1|· |−→n · −−→abn2| (2)
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where: −→n specifies the normal vector between positions of the edge fragments,
and

−−→
abn1 normal vector between the positions of the first edge arms and

−−→
abn2

normal vector between the positions of second edge arms. Edges of the value of
the coefficient B above values of 0.7 are treated as related edges. All the edges
that are not related with at least one edge are removed from the list of edges.

3.4 Edge Grouping and Ellipse Approximation

In this step of the proposed method we group related edges in similar way to
filtering by the coefficient B from Section 3.3. However, one edge can be joined
only with two related edges, one per arm. Additionally, the method rejects groups
composed of less than three edges. Now, only a few groups of edges remain from
the entire image. At the final step, the algorithm finds ellipses which are best fit
to edges groups by last square estimation.

4 Experiments

In the experiments we use images directly from the clinical parasitological labo-
ratory at a resolution of 720x576 pixels. Images were captured directly from the
camera which is built into the microscope. Presented method was implemented
in C# language. The first step of analysis was to use median filter with mask

Fig. 4. Experimental results for parasite edge detection on 5 real images. First column,
original images; second column, Canny edge detection with Sobel 8x8 filter; third col-
umn, created vectors from edges pixels; fourth column, the rejection of sharp edges;
fifth column, rejection of the edges that do not form a continuity with the neighbor;
sixth column, edge grouping by the proposed method.
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of 4x4 pixels to denoise image. The next stage is the process of edge detection
which uses Canny edge algorithm with Sobel mask of size 4x4 and 8x8 pix-
els. Figure 3 shows the step-by-step algorithm. The next step was to replace the
detected edges by vector based representation - this operation is described in de-
tail in section 3.2. The resulting vectors are filtered and grouped by their normal
vectors (Section 3.3). The last step in the proposed solution is the detection of
ellipses based on the created groups of the edges, using the least squares method
(chapter 3.4). Fig. 4 shows 5 real images taken in different focus which were used
during the experiments. As shown in the presented experimental examples the
goal of the method is to find the edges of parasites and to remove all edges that
belong to the impurities.

5 Conclusions

Existing algorithms used in image analysis of are not suitable for the analy-
sis of images from parasitological examinations in a way that would enable the
detection and identification of the parasite. After consultation with the parasito-
logical clinical laboratory and preliminary research, it can be assumed that the
creation of new algorithms targeted for parasitological examination will enable
more profound research of such images. The result of the algorithms should be to
locate and identify parasites. Characteristics that allow for proper classification
of objects similar to parasite eggs and cysts are elliptical shapes with smooth
edges.
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Abstract. The following paper describes a novel lipreading procedure
based on dynamic programming. We proposed a new method of outer
lip contour extraction and representation. Lip shapes, corresponding to
selected group of visems, are firstly extracted using dynamic program-
ming and then approximated by B-splines. Coordinates of B-spline con-
trol points form final feature vector used for visem recognition task. The
discontinuity of lip gradient image is addressed by dynamic program-
ming technique. This has the advantage of global minimum detection
and consequently optimal lip contour extraction. Experiments for Polish
language utterances show that seven classes of visems can be recognized
with 75% accuracy.

Keywords: lip contour extraction, dynamic programming, lipreading.

1 Introduction

Using visual information for automatic speech recognition (ASR) has been an
active research area for over two decades. It is mainly used for improving recog-
nition performance in audio speech recognition systems [1,2,3]. Lipreading con-
tains information that is not always present in the acoustic signal and mimics
human visual perception of speech recognition [4] that lets to better determine
the phonetic content of the message.

Various sets of visual features for automatic speech-reading have been
proposed by researchers so far. They can be categorized into three groups [5]:
high-level features (lip contour based), low-level features (pixel based) and com-
binations of the aforementioned approaches. In the first group inner or outer lip
contour is extracted and parameters of parametric or statistical model are used
as visual features [6,7,8]. For example in [9,10] active shape models (ASM) are
used, whereas in [11] snakes are exploited for contour extraction. In the second
approach the entire mouth region is considered as region of interest and appro-
priate image transformations are applied [12,13]. For example in [14] discrete
cosine transform (DCT) coefficients of gray-scale lip images have been adopted
for visem representation and in [15] principal component analysis has been per-
formed on raw lip intensity images. Researches show that combination of both
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techniques lets to build efficient solution to deal with drawbacks of individual
techniques. High-level, lip-contour based approaches suffer from high computa-
tional effort whereas low-level features, although more computationally efficient,
are very sensitive on varying illumination. For example, this problem is investi-
gated in [16], where snakes are used to extract geometric features and KLT is
applied to extract principal components in the color eigenspace, which provide
auxiliary basis for classification.

In this paper a novel lipreading procedure is proposed. A set of seven visems
of Polish language, characterized by the highest discriminative properties, was
selected and a new approach for lip feature extraction was presented. Visems are
modeled by coordinates of control points of B-splines that approximate outer lip
contours. These contours, in turn, are extracted using dynamic programming
technique. Since dynamic programming is capable of handling the problem of
discontinuity of image gradients, extraction of optimal lip contours can be guar-
anteed. Experiments show good performance of the proposed solution for visem
recognition purposes.

2 Proposed Solution

The proposed lipreading procedure consists of three processing stages as pre-
sented in Fig. 1. Firstly, the initial preprocessing is performed in order to roughly
estimate lip area in video frames subject to further analysis (I). In the next step
the exact lips contour is extracted using dynamic programming technique and
initial feature vector is built (II). In order to reduce descriptor dimensionality, in
the final step, supervised principal components analysis (S-PCA) is performed
and appropriate final feature vector is found (III).

Fig. 1. The proposed lipreading procedure components
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2.1 Initial Preprocessing

In order to roughly estimate lip region and to find lip key points the initial
preprocessing is done as presented in Fig. 2. Firstly, the Haar classifier [17] is
applied to determine face position in the image. Lip area is estimated on the basis
of typical human face proportions as a region between 30-70% of face width and
60-90% of face height (a). The identified mouth region is a subject to further
analysis.

Lip key points (left and right lip corners and uppermost and lowermost points
of lips) are searched for in a modified LAB color space. Contrast enhancement
between lip and skin colors is achieved by subtracting the channel ’A’ from the
channel ’B’ (b) as proposed in [18]. Then, the resultant image is thresholded using
Otsu method [19] (c). Because different skin artifacts such as hyperpigmentation
or spots can cause errors, blob detection is applied and the biggest region is left
as belonging to mouth (d). Finally, the resultant binary image is scanned for
terminal lip points (e).

Fig. 2. The initial preprocessing stages

2.2 Lip Contour Extraction

Lip contour extraction procedure is presented in Fig. 3. Firstly, the outer lip
contour is extracted using dynamic programming (I). Dynamic programming
enables to solve complex optimization problems by breaking them down into
smaller subproblems and searching for optimal subsolutions. Because, lip contour
extraction can be viewed as a search for an optimal path (in the sense of a cost)
between two vertices in a 2D graph, dynamic programming approach can be
applied to this task. This requires defining a cost function, transition rules (b)
and the corresponding 2D graph.

The cost function to be minimized through dynamic programming is defined
as:

coptk = minw(k−1)

{
coptk−1 + d [(ik−1, jk−1)→ (ik, jk)]

}
. (1)

where: coptk - is the optimal cost of reaching a node k, coptk−1 - the optimal cost
of reaching a node k − 1, d [(ik−1, jk−1)→ (ik, jk)] - is a cost of transition from
node k − 1 to node k.
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The transition cost consists of two components - a cost associated with branches
of 2D graph structure and a cost of visiting a node. In the proposed solution the
first component is not considered. Hence, the total cost of transition reduces to
a node-visiting cost, which is defined as a value of a pixel of a modified gradient
map (a). This map is created by inverting gradients and by masking-out strong
teeth-contours.

Although, the outer lip contour, extracted separately for every quarter of
lips using dynamic programming, is optimal in the sense of Bellman theory
[20], it is not smooth. Therefore the final lip contour is obtained by B-spline
approximation [21] of the dynamic programming results. Upper and lower lip
contours are approximated separately. Experiments have shown that the best
results can be achieved by modeling upper lip contour with 7 control points and
the lower one with 4 control points. The 3rd order B-splines were used.

Fig. 3. Lip contour extraction stages

2.3 Building Feature Descriptor

Coordinates of B-spline control points that model lip shape represent initial fea-
ture descriptor. In the proposed procedure it consist of 22 elements. To remove
information redundancy and to reduce descriptor dimensionality, the Supervised
Principle Component Analysis (S-PCA) is performed [22]. Contrary to the stan-
dard Principle Component Analysis (PCA) it lets to eliminate impact of within
class scatter by involving a-priori knowledge on class affinity.

A matrix containing initial feature vectors for N observation is an input for
S-PCA procedure. Firstly, standard PCA analysis is done for all samples. As
a result eigenvectors E = [e0, e1, ..., eN−1] and corresponding eigenvalues L =
[l0, l1, ..., lN−1] are calculated. Next, the standard PCA analysis is repeated for
all considered visems separately. Contrary to the first step, where directions of
the largest scatter for all visems are found, this step lets to identify directions of
the highest within-class variability. Denoting Ek =

[
ek0 , e

k
1 , ..., e

k
N−1

]
and Lk =[

lk0 , l
k
1 , ..., l

k
N−1

]
as eigenvectors and eigenvalues for a class k, correction weight

of within-class scatter can be calculated as follows:
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wi =

N∑
j=1

K∑
k=1

∣∣∣lkj (ei)T ekj

∣∣∣ . (2)

where: K - number of all classes, N - number of eigenvectors, lkj - i-th eigenvalue

for class k, ekj - i-th eigenvector for class k.
These coefficients represent cumulative within-class variation in a direction of

principal components found for all samples. By modifying original eigenvalues L
according to:

l
′
i =

li
wi

. (3)

the new feature space, built from directions featuring the highest between-class
scatter only, is found, where: l

′
i - i-th corrected eigenvalue, li - i-th eigenvalue

calculated for all observations, wi - i-th correction coefficient.
The presented procedure lets to reduce the feature vector to 9-10 elements

(depends on a speaker) while preserving 90% of information associated with
input data.

3 Experimental Evaluation

For experimental purposes an audio-visual database was recorded. Resolution of
images was 960x720. Speakers were prompted to repeat 100 randomly generated
sequences of syllables (10 syllables per sentence). Each syllable contains at least
one out of seven visems selected as a basis for verification (these were: ’A’, ’M’,
’U’, ’O’, ’W’, ’S’, ’SZ’). All recordings were manually labeled.

To validate the proposed approach the prepared database was used for identi-
fying visems in single images. For classification purposes Ada Boost method [23]
was used (training set contains ca. 600 samples, test sets contain ca. 200 samples
for every visem). Results for four sample speakers are presented in Table 1 and
in Fig. 4. Average classification rate for all speakers was 75%.

In general, the best recognition rates were achieved for the vowel ’U’ (89.8%)
and the consonant ’W’ (77.3%), the worse for phonemes ’O’ and ’S’ (ca. 60.0%).
Recognition accuracy strongly depends on speaker and for example for the
speaker A visem ’A’ is recognized correctly only in 36.4% cases whereas for other
speakers, in about 82.3% of all cases. Similarly for the speaker C recognition of
the consonant ’W’ is only 38.3% that is much lower than for the others. This is
caused by the learnt uttering style, which do not use significant participation of
mouth movements in speech production.

Achieved results (75% for 7 classes) seem to be comparable with the ones
that can be found in literature (as presented in Table 2). Unfortunately strict
comparison is not possible because of using different databases (not available
publicly). Additionally, most of lipreading publications focus on isolated word
(mainly digits) recognition task, making isolated visem recognition results diffi-
cult for objective comparison.
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Table 1. Isolated visem recognition results for four speakers

Speaker A Speaker B Speaker C Speaker D
Visem Efficiency Efficiency Efficiency Efficiency

[%] [%] [%] [%]

A 36.4 74.0 79.5 93.3
M 88.1 83.0 85.5 42.8
O 38.2 77.6 64.8 59.0
S 64.8 67.1 48.9 64.2
U 98.7 82.4 92.7 85.4
W 68.6 82.5 38.3 74.6
SZ 74.0 92.4 61.5 68.5

Avg. 72.9% 80.8% 74.1% 72.7%

Fig. 4. Results for outer lip contour extraction for recognized visems (from first row:
O’,’W’,’A’,’SZ’,’S’,’M’,’U’)
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Table 2. Comparison of different lipreading approaches 1st column - dynamic pro-
gramming with BSplines approximation - the proposed approach; 2nd column - dis-
criminative deformable models; 3rd - sieve decomposition)

DP + DDM SD
BSplines [18] [24]

Recognition task Isolated Isolated Isolated
visems phones letters

No. of classes 7 8 26
Average effectiveness 76% 83% 50%

4 Conclusion

A novel approach of outer lip contour extraction, based on dynamic program-
ming, was presented and evaluated. Experiments performed for the prepared
database confirm reliability of the presented approach for visem recognition.

The main directions of further research will include efforts to improve robust-
ness of image preprocessing stage (as poor illumination or skin artifacts can cause
erroneous lip key point detection and, consequently, erroneous visem classifica-
tion). Simultaneously, attempts will be taken to evaluate proposed lipreading
procedure for liveness verification in visual authentication systems. Decision, if
biometric data presented to a system is captured from a physically present per-
son and as a result access to the system can be granted, can be based on the
following procedure: a system prompts random sequences of predefined syllables
to be uttered by the user. For each syllable, it is checked if in a set of frames
corresponding to this syllable, some expected visem was identified. If some min-
imum correct visem identification rate in syllable sequence is achieved, liveness
verification test is successfully passed.
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6. Hennecke, M.E., Stork, D.G., Prasad, K.V.: Visionary speech: Looking ahead to
practical speechreading systems. In: Speechreading by Humans and Machines, pp.
331–349 (1996)

7. Adjoudani, A. Benoit, C.: On the integration of auditory and visual,parameters in
an HMM-based ASR. In: Speechreading by Humans and Machines, pp. 461–471
(1996)

8. Rogozan, A., Deltglise, P., Alissali, M.: Adaptive determination of audio and visual
weights for automatic speech recognition. In: Proc. Europ. Tut. Res. Work. Audio-
Visual Speech Process, pp. 61–64 (1997)

9. Wang, S.L., Lau, W.H., Leung, S.H., Yan, H.: A real-time automatic lipreading
system. In: Proc. 2004 Int. Symp. Circuits and Systems, vol. 2, pp. 101–104 (2004)

10. Perez, J.F.G., Frangi, A.F., Solano, E.L., Lukas, K.: Lip reading for robust speech
recognition on embedded devices. In: Proc. Int. Conf. Acoustics, Speech and Signal
Processing, vol. I, pp. 473–476 (2005)

11. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Internal-
tional Journal of Computer Vision, 321–331 (1987)

12. Matthews, I., Potamianos, G., Neti, C., Luettin, J.: A comparison of model and
transform-based visual features for audio-visual LVCSR. In: Proc. Int. Conf. Mul-
timedia Expo. (2001)

13. Duchnowski, P., Hunke, M., Biisching, D., Meier, U., Waibel, A.: Toward
movement-invariant automatic lip-reading and speech recognition. In: Proc. Int.
Conf. Acoust. Speech Signal Process., vol. 1, pp. 109–112 (1995)

14. Potamianos, G., Neti, C., Gravier, G., Garg, A., Senior, A.W.: Recent advances
in the automatic recognition of audio-visual speech. Proc. IEEE 91(9), 1306–1326
(2003)

15. Bregler, C., Konig, Y.: Eigenlips for robust speech recognition. In: Proc. IEEE
Conf. Acoustics, Speech and Signal Processing, pp. 669–672 (1994)

16. Chiou, G.I., Hwang, J.-N.: Lipreading from color video. Trans. Image Processing 6,
1192–1195 (1997)

17. Viola, P., Jones, M.J.: Robust Real-Time Face Detection. Information Journal of
Computer Vision 57(2), 137–154 (2004)

18. Nowak, H.: Lip-reading with discriminative deformable models. Machine Graphic
and Vision International Journal 15, 567–575 (2006)

19. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Sys., Man., Cyber. 9(1), 62–66 (1979)

20. Bellman, R.E., Dreyfus, S.E.: Applied dynamic programming. Princeton University
Press (1971)

21. Lee, E.T.Y.: Comments on some B-spline algorithms. Computing 36(3), 229–238
22. Slot, K.: Biometric Recognition, pp. 101–103. WKL Press, Warszawa (2010)
23. Schapire, R.E.: The boosting approach to machine learning: An overview: Nonlinear

Estimation and Classification. Springer, Heidelberg (2003)
24. Matthews, I., Bangham, J.A., Cox, S.: Audio-visual speech recognition using mul-

tiscale nonlinear image decomposition. In: Proc. Znt. Gonf. Speech Lang. Process.,
Philadelphia, pp. 38–41 (1996)



Meshes vs. Depth Maps

in Face Recognition Systems

Sebastian Pabiasz and Janusz T. Starczewski

Department of Computer Engineering,
Czestochowa University of Technology, Czestochowa, Poland
{sebastian.pabiasz,janusz.starczewski}@kik.pcz.pl

Abstract. The goal of this paper is to present data structures in 3D face
recognition systems emphasizing the role of meshes and depth maps. 3D
face recognition systems are still in development since they use different
data structures. There is no standarized form of 3D face data. Dedicated
hardware (3D scanners) usually provide depth maps of objects, which is
not sufficiently flexible data sturcture. Meshes are huge structures and
operating on them is difficult and requieres a lot of resources. In this
paper, we present advantages and disadvantages of both types of data
structures in 3d face recognition systems.

Keywords: biometric, 3D face, mesh, depth map.

1 Introduction

Over the past 20 years many different face recognition techniques were proposed.
Originally they were based on flat images. Turk and Pentland [1] used eigenfaces
for face detection and identification. Zhao et al. [2] presented the use of the LDA
algorithm in face recognition. A classification method using the SVM technique
was presented by Heisele et al.[3]; they developed a whole set of tools for pro-
cessing and comparing facial photographs. However, these solutions do not work
well in applications where reliability is a priority. The solution may be systems
based on 3D data. In 2D facial biometrics research, the material is provided by
a photography, which is a basic data structure. In 3D facial biometrics, we have
few data structures, such as normals maps, depth maps, meshes and correspond-
ing to them photographs. Such a number of different types of data makes the
system difficult to operates on them. Already, there exist a number of public
methods for 3D reconstruction (e.g. [4], [5], [6]). Depending on the method we
have a limited number of data structures. A typical 3D scanner gives us a depth
map so thus we can generate a mesh based on it. Other methods, that use a flat
as a data source give us differential data structures.

2 Data in 3D Biometric

In 3D face biometrics, we distinguish multiple types of data. The kind of them
depends on the method of acquisition. Typical dedicated hardware, like 3D
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scanner, give us depth map of surface, which is our basic structure that we
can generate a mesh based on it. An alternative method is to use photometry
stereo to reconstruct a face from flat images. In this case, our basic structure is
a map of normals, from which we can generate a depth map and then a mesh.

2.1 From Normals to Depth Map

Methods based on bidirectional transmittance distribution function (BRTF, e.g.
[7], [8]), as a first result, give a map of normals of an object. To build a depth
map, we apply the least-squares technique. We use the fact that if the normal is
perpendicular to the surface, then it will be perpendicular to any vector on it.
We can construct vectors on the surface using neighbor pixels, more precisely,
we employ a pixel from the right and below. The normal at a surface must be
orthogonal to the vector Vec1, i.e.,

V ec1 = (x+ 1, y, Zx+1,y − (x, y, Zx,y))
V ec1 = (1, 0, zx+1,y − Zx,y)
Normal.V ec1 = 0
(Nx, Ny, Nz).(1, 0, Zx+1,y − Zx,y) = 0

Nx +Nz(Zx+1,y − Zx,y) = 0

and to the vector Vec2 leads to

V ec2 = (x, y + 1, Zx,y+1 − (x, y, Zx,y))
V ec2 = (0, 1, Zx,y+1 − Zx,y)
Normal.V ec2 = 0
(Nx, Ny, Nz).(0, 1, Zx,y+1 − Zx,y) = 0

Ny +Nz(Zx,y+1 − Zx,y) = 0

If the pixel does not belong to an object, we describe this as

−Nx +Nz(Zx−1,y − Zx,y) = 0 (1)

−Ny +Nz(Zx,y−1 − Zx,y) = 0 (2)

For each pixel of an object, we construct two entries so our main matrix will
be of the form M(2∗number of pixels, number of pixels). We can express our
matrix equation as MZ = V ec, but the least squares method solves the equation
MTMZ = MTV ec, so thus the main matrix MTM will be extremely big.

2.2 Depth Map

A depth map is a matrix, which elements represent the height of a particular
pixel. Fig.1 presents an objects which depth map is in Table 1. In this case,
resolution is 8x8. 3D scanners usually deliver data in the form of a depth map,
additionally they can deliver information which pixel is valid (belongs to the
object).
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Fig. 1. Exaple of a 3D picture

Table 1. Depth map of figure from Fig.1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 3 3 3 3 0 0

0 0 3 4 4 3 0 0

0 0 3 4 4 3 0 0

0 0 3 3 3 3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2.3 Meshes

Meshes are more complex data structures than depth maps. The mesh is usually
a collection of vertices, edges and faces. The face usually consist of triangles or
quadrilaterals.

Table 2. Coordinates of verticles from Fig.1

Number x y z Number x y z

1 1 -1 1 9 0.5 -0.5 3

2 1 1 1 10 0.5 0.5 3

3 3 1 1 11 2.5 -0.5 3

4 3 -1 1 12 2.5 0.5 3

5 1 -1 3 13 0.5 -0.5 4

6 1 1 3 14 0.5 0.5 4

7 3 1 3 15 2.5 -0.5 4

8 3 -1 3 16 2.5 0.5 4
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Table 3. Table of faces from Fig.1

Number v1 v2 v3 v4 Number v1 v2 v3 v4

1 1 2 3 4 7 9 10 11 12

2 1 2 6 7 8 9 10 14 13

3 2 3 7 6 9 10 11 15 14

4 3 4 8 7 10 11 12 15 16

5 4 1 5 8 11 12 9 13 16

6 5 6 7 8 12 13 14 15 16

Table 2 and 3 present basic mesh structures for the object from Fig. 1. In this
case, squares were used as the basic faces shape.

2.4 Building a Mesh from a Depth Map

The depth map is the main data source for building the mesh. First step in
this process is to select such points that are basic to build faces. We also have
to make a decision about a shape of the faces (usually triangles are used). Use
all points from a depth map, the resultant mesh can be extremely big and can
require large resources and time. To reduce the number of the basic points, we
can apply a simply algorithm (Alg. 1).

Algorithm 1. Depth map reduction algorithm

for x = 1 → MAXX do
for y = 1 → MAXY do

if i = factor then
reduced[x, y] ⇐ source[x, y]
i ⇐ 0

else
i ⇐ i+ 1

end if
end for

end for

The results of Algorithm 1 are presented in Fig. 2. As we can observe, this
solution reduce the mesh uniformly. Some important points may be lost. A sig-
nificant improvement of quality can be obtained by key selection points and
reduction. Key points can be obtained by filtration. Mesh construction is, in
this case, difficult because a depth map is not uniformly reduced. Algorithm
2 presents our solution to build mesh from a uniform depth map, and Fig. 3
presents results of reduction with factor 20 and key point selection.
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Fig. 2. Reduction factor (1-6)

Algorithm 2. Building mesh from uniforlmy depth map

for x = 1 → MAXX do
for y = 1 → MAXY do

findSection {2 points y1 and y2}
findPoints(x− 1)
findPoints(x+ 1) {In lines x-1 and x+1 from y1 to y2}
for point = 1tofoundedPoints do

buildT riangle(y1, y2, point)
end for

end for
end for

3 Comparison

Comparison is the most important process in verification and identification of
faces. In the past years, many solutions have been proposed (e.g. [9], [10], [11]).
They operate on different principles and are effective to varying degrees.

3.1 Depth Map vs. Depth Map

The comparison of two depth maps directly is difficult because values in one cell
on the first depth maps must correspond exactly to the same cell on the second
depth map. The process of acquisition must be very accurate, what is often
feasible. The second solution is to calibrate depth maps based on landmarks.
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Fig. 3. Reduction with the key points selection

Fig. 4. Mesh based on landmarks

It is much more better solution; however, we must take into attention errors of
acquisition apparatus. Summarizing, obtaining two identical maps of the same
object is very difficult and laborious.
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3.2 Mesh vs. Mesh

A medium-sized facial mesh consists of about 50000 points. The comparison of
two meshes in this form is very resource-intensive and time consuming. As in the
case of depth maps, calibration is required; however, to perform the comparison
is much easier since we compare two faces which need not coincide perfectly.
Fig. 3 presents a mesh build on landmarks, which results in that the number of
points is always constant.

4 Final Remarks

Depth maps and meshes are inextricably connected data structures, they com-
plement each other. In 3D biometric systems, we can use intelligently reduced
meshes, which are more flexible and they are not restrictive as depth maps in
comparison. In this area, is still much work to do.
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Abstract. This paper presents a system for facial expression recognition which is
designed to detect spontaneous emotions. The goal was to detect human aggres-
sion. Using a face detection algorithm, a representation of the human face was
created. Then, the face texture was encoded with Gabor filter and Local Binary
Pattern (LBP) operator. These techniques were used to find the feature set in emo-
tion recognition. As a classifier, a Support Vector Machine (SVM) was applied.
The system constructed was tested with spontaneous emotions for aggression de-
tection. The numerical results indicate that the presented classifier achieved an
85% correctness recognition coefficient.

Keywords: facial expression recognition, aggression detection, classification.

1 Introduction

Computational spontaneous facial expression recognition is a challenging research
topic in computer vision. It is required by many application such as human-computer
interaction and computer graphic animation. Automatic recognition of facial expres-
sions did not really start until 1990s. To classify expressions in still images, many
techniques have been developed such as those based on neural networks and Gabor
wavelets [1]. Recently, more attention has been given to capture the temporal pattern
in the sequence of feature vectors related to each frame such as the Hidden Markov
Models based methods [3]. However, the methods presented in these surveys did not
address the aggression detection nor the facial expression recognition.

Facial Expression Recognition and Analysis (FERA), in particular the Facial Action
Coding System (FACS) recognition and discrete emotion detection, have been an a po-
pular topic in computer science for some time now, and many promising methods have
been published [6]. The first survey of the field was reported in 1992 [7] and has been
continued by several others [4,11]. However, none of these methods can track the facial
actions and recognize the expressions over time in a monocular video sequence.

The main purpose of the paper is to analyze spontaneous facial expressions, paying
special attention to the detection of aggression. Using the method introduced here, face
representation was defined by means of the set of points, which are tracked in the video
sequence. Thanks to using the special filter and the developed coding of a texture, an
extraction of face features was made. Then, the use of the SVM classifier allowed us to
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Fig. 1. Facial expressions corresponding to human aggression

detect aggression features in the examined face. Conducted numerical tests confirmed
correctness of the approach in detecting aggression.

In chapter 2, the adopted concept of face representation and tracking their selected
points is presented. Chapter 3 is devoted to the extraction of features to the trajectory
of particular points and changes in the texture which correspond to aggression facial
changes and the Support Vector Machine (SVM) classifier. Chapter 4 presents results
of the numerical research. In chapter 5, final conclusions are presented.

2 Representation of Face and Tracking Its Selected Points

In this section we investigate the representation of face and tracking its selected points.
We recall that in the FACS method facial expressions are described by means of

units, the so called Action Units (AUs). The AU unit constitutes the observable and
indivisible facial movement, caused by a tone or relaxation of a muscle or a group
of muscles. The authors of the FACS method have distinguished 46 independent AUs
units. However, over 7000 combinations were isolated, where these units can occur. In
addition, the FACS system also determines intensity of a particular facial expression in
a scale from A to E, where A means the trace intensity, and E is the maximum intensity.

According to the FACS, aggression is described by 4 AU units (see Fig. 1), namely:

1) AU4 lowering eyebrows,
2) AU5 lifting upper eyelids,
3) AU7 tightening of eyelids,
4) AU23 tightening of mouth.

Systems of the facial expression analysis generally consist of 4 parts: face detection,
face representation, feature extraction and classification. The proposed solution also
retains the 4-phase scheme used.

For the sake of representation of the face the anthropometric method, mentioned
in the paper [8], which consists in the determination of 18 points (Fig. 2a) and the
relating regions (Fig. 2b). Selected points describe individual elements of a face, such
as eyes, forehead, chin, and mouth. Additionally, together with these points the areas of
a face are isolated, which will still be analyzed, according to the changes in the texture.
For the object tracking in the video sequence (25 frames per second), an estimation of
dynamics of the objects in time should be made, which will allow for the reproducing
the trajectory of such object. In the proposed solution, a particle filter [2] was used, also
called the sequential Monte Carlo method.
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a) b)

Fig. 2. Facial points (a) and the relating regions (b)

The operation of a particle filter consists in the estimation of a non-linear dynamic
system, in which the measuring error does not have the Gaussian character. Filtering
by means of this filter consists in the determination of the density function of marginal
distribution p(xt | y1:t), or the distribution calculated a posteriori on the basis of the
observation history from moment 1 up to t.

The recursive Bayes filter is used as particle filter, in which the evaluation of the
probability p(xt | y1:t) distribution is carried out within a set of the weighted samples:

s = {(sn, πn) | n = 1, . . . , N} (1)

Each sample represents a hypothesis of the object state in time, together with the corre-
sponding discrete π probability, where

∑N
n=1 π

n = 1. In each step (frame) N samples
are taken at random with the probability

πn = p(yt | Xt = snt ) (2)

The averag state of the object is given according to the formula:

E[S] =

N∑
n=1

πnsn (3)

In order to locate the objects in each frame of the video sequence, it is necessary to
define the representation of the object by means of some characteristic features. Here it
was assumed that colour is such a characteristic feature.

Using colour in the partial filter requires that each xi pixel belonging to the object is
assigned to the appropriate range in the histogram by means of h(xi) function. Then,
colour variable of the object being tracked is analyzed.

Due to high sensitivity of the color variable distribution to the changes in illumina-
tion, the Hue Saturation Value (HSV) model was used here, in which it was assumed,
that histogram consists of 8×8×4 ranges, assigning the smaller stress to the component
V . In addition, it was assumed that higher weights were assigned to the colours from
the area of the central object, while colours of pixels in marginal areas were conside-
red less significant. This helped to avoid false readings connected with the probability
of the object’s contours. The weights are assigned according to the distance from the
center of the ellipse circumscribing the object, namely:

k(r) =

{
1− r2, r < 1
0, r ≥ 1

(4)
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Then, distribution {pnj }u=1,...,m of the {pnj }u=1,...,m colour variable for pixels be-
longing to the object is calculated according to the formula:

puj = f

I∑
i=1

k

(‖ f − xi ‖
a

)
δ(h(xi)− u) (5)

where m is a number of ranges in the histogram, I is a number of pixels in the object,
δ is the Kronecker delta. Parameter a is responsible for adaptation of the size of the
ellipse circumscribing the object and is defined as follows:

a =
√
H2

x +H2
y (6)

In addition, in order to fulfill the condition
∑m

u=1 p
u
j = 1, a normalizing parameter f

equal to 1/
∑I

i=1 k(
‖j−xi‖

a ) was applied.
In the object tracking problem, the object’s state is evaluated for each frame of the se-

quence on the basis of new observations. This is why the so called measure of similarity
between the objects with the given representation must necessarily be defined. Here, the
Bhattacharyya coefficient ρ was applied in order to compare two discrete distributions
{puj }u=1,...,m and {quj }u=1,...,m, in the following way:

ρ[p, q] =

∫ √
puqu (7)

Each sample (particle) is defined by vector s = {x, y, ẋ, ẏ, Hx, Hy, ȧ}, where (x, y)
are the position of the ellipse describing the object, (ẋ, ẏ) describes the movement,
(Hx, Hy) are the lengths of the big and small semi-axes, while ȧ is the parameter of
change of the object’s size over time.

The algorithm for tracking the object in the form of the distribution of the colour
variable q for a given set of samples s has the form:

1) Sampling of N samples from the set St−1 with the probability πn
t−1.

2) Propagation of each sample through snt = Asnt−1 +wn
t−1, where A is the matrix of

transition which defines the deterministic model of the dynamics, wt−1 is a multi-
dimensional random variable G of the distributions,

3) Observation of the colour variables: (a) calculation of colour distribution pns for
each sample from the set St, (b) calculation of the Bhattacharya coefficient (dis-
tance) between object model q and hypothesis pns , (c) assigning weights to each
sample with the changing values of the Bhattacharya coefficient, which means that
the most significant are the samples with the highest similarity to the model of the
object q,

4) Assessment of the averaging state of the set St, namely E(St) =
∑N

n=1 π
n
t s

n
t .

3 Extraction of Features and SVM Classifier

In the two-dimensional area the Gabor filter is defined as the Gaussian function modu-
lated by the sine and cosine waves:

ΨG(x, y; f0G, θG) =
f2
0G

π · γG · ηG · eA · eB (8)
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where A = −( f2
0G

γ2
G
·x′2+ f2

0G

γ2
G
· y′2), B = 2πj · f0G ·x′, x′ = x · cos θG+ y · sin θG,

y′ = −x · sin θG + y · cos θG.
Parameters of the Gabor filter are the sharpness along the longer axis of γG and

shorter axis of ηG, the filter central, the frequency of filter f0G and the angle of rotation
θG of the main filter axis. In order to analyze the texture, the convolution of the input
image is conducted with the Gabor filter kit. From the representation obtained this way,
a histogram is calculated which is the vector of features.

An LBP operator [5] with R radius and a number of pixels P can code the image
by means of 2P different values (codes). The image after processing into the LBP
representation lbp(x, y) is analyzed by means of a histogram, which can be defined as
follows:

Hi =

I∑
x,y

(lbp(x, y) = i), i = 0, . . . , n− 1 (9)

where n is a number of possible values of LBP codes. Function I(.) returns 1, when
expression (.) is true, otherwise it returns 0. The obtained histogram describes statistical
distribution of individual standards.

Support Vector Machine (SVM) [9] is a popular technique for classification. SVM
performs an implicit mapping of data into a higher dimensional feature space, where
linear algebra and geometry can be used to separate data that is only separable with
nonlinear rules in the input space.

Given a training set of labeled examples {(xi, yi), i = 1, . . . , l} where xi ∈ Rn and
yi ∈ {1,−1}, the new test data x is classified by the following function:

f(x) = sgn(

l∑
i=1

αiyiK(xi, x) + b) (10)

where αi are Lagrange multipliers of a dual optimization problem, K(xi, x) is a ker-
nel function. Given a nonlinear mapping Φ that embeds input data into feature space,
kernels have the form of K(xi, xj) = 〈Φ(xi · Φ(xj)〉. SVM finds a linear separating
hyperplane with the maximal margin to separate the training data in feature space. b is
the parameter of the optimal hyperplane.

4 The Experimental Results

In our analysis, we have used data contained in the FEED [10] base. This base was
prepared in the framework of the FG-NET project at the University of Munich.

The base consists of video sequences acquired during the recording of 18 persons
of whom were 9 women and 9 men. The data are stored in the form of MPGE4 files
with a frame-rate equal to 25 frames/second, dimensions 320× 240 and 8-bit depth of
colour. For each person, 3 samples were gathered, where the first two make the teaching
set, while the third serves for testing. The presented emotions have been labelled in
accordance with the theory of six universal emotions. The base also contains sequences
in which persons keep neutral face, i.e., they do not express emotions.
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(a) (b)

Fig. 3. Face described as a set of 18 points (a) and the relating regions (b)

The proposed method was implemented in the environment of MATLAB using the
Image Processing and Bioinformatics Toolboxes. The obtained algorithm consists of
the following stages:

1) matching of the model in the first model frame,
2) tracking the model points in each frame,
3) definition of the feature vector, extraction of texture and analysis of the point move-

ment trajectory,
4) classification, or detection of aggression.

The face was described using a set of 18 points (Fig. 3a). The location of the face model
in the sequence is determined manually in the first frame of the sequence. Coordinates
of points are stored in the file. Next, the areas defined defined around the face model
(Fig. 3b) are tracked by means of the particle filtering algorithm described in section
2. Points of the model have been circumscribed by an ellipse, the area of which is then

(a) (b)

Fig. 4. Change of location of mouth corners (a) and measured position of the eyes, forehead, chin
and mouth regions (b)
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Fig. 5. Face regions after the Gabor method filtering. From left side are face regions of chin,
forehead, right eye, left eye, mouth.

represented by the histogram of the colour variable. In case of the eyebrows movement
such a point is the inner corner of the eye, on the left and the right side, respectively.
On the other hand, change of location of mouth corners is measured with reference to
the tip of the nose (Fig. 4a). In order to maintain constant value of the features vector,
the video sequences have been normalized according to the number of frames. As a
result of this, the algorithm operates on the sequences consisting of 100 frames. On the
basis of the face model location in particular frames we have assessed position of the
eyes, forehead, chin and mouth regions (Fig. 4b), which are then analysed according
to the changes in the texture. Particular regions have been subjected to the process of
normalization, the effect of which is that the areas the areas of the eyes have been
rescaled to the size of 40 x 35, forehead - 30× 30, mouth - 60× 25 and chin - 40× 20.

In the proposed approach, the texture was analyzed by means of two methods: Gabor
filter and LBP operator. Firstly, the areas were transformed into the appropriate repre-
sentation, and then they were described in the form of a histogram. The histograms for
each area were connected into one vector of features.

Filtering by means of the Gabor method meant that filter banks with 8 orientations
and 9 rates were used (Fig. 5). As a result of this method, the vector of features obtained
consists of 432000 elements. In case of the LBP operator, the basic operation (3 x 3)
version was used. Number of the histogram ranges was 256, and the size of each vector
of features was 1280. As the input set, various combinations of the vector of features
were fed:

– geometrical features in time,
– a histogram of texture obtained by means of the Gabor filters,
– a histogram of texture obtained by means of the LBP operator,
– a concatenation of geometrical features and histograms of the texture (for both

methods).

The system was tested by means of 10 video sequences, demonstrating aggression and
10 sequences expressing other emotions. The set of texts contained 4 examples, 2 posi-
tive cases (aggression) and 2 negative cases (no aggression).

Effectiveness in detecting the expression was measured by the correctness recogni-
tion coefficient of the received results, namely

R =
number of correctly recognized examples

number of all examples in the test
× 100% (11)
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The presented results are in conformity with the tested configurations of the vector of
features. For the analysis of the face points movements trajectory a vector was defined
with dimensions of 1000 features, containing the information concerning the change in
the face geometry in the determined time slice (frames). The correctness recognition
coefficient obtained here is equal to 78%.

Texture of the face was acquired from the most representative frame of the sequence,
where the presented emotion is in the phase of culmination. When coding the texture
with the Gabor filters the system achieved the correctness recognition coefficient of
81%, while when using the LBP method - 72%. Combining the two categories, or the
methods describing both the geometry, and the face texture, the tested examples were
classified with a correctness recognition coefficient of 82.5%. The overall results of the
classification in different configurations of the vector of features presented in Table 1.

Table 1. The overall results of the classification in different configurations of features

Vector of features in time Number of features R

Geometrical features 1000 78%
Coding the texture with Gabor filter 432 000 81%
Coding the texture with LBP method 1280 72%
Geometrical features in time plus 433 000 80%
Gabor filter
Geometrical features in time plus 2 280 85%
LBP method

5 Conclusions

The conducted experiment demonstrated that a detection of aggression in people, from
a given video sequence containing spontaneous facial reactions, was possible. The best
results for the analysis of a human face texture have been obtained by means of the
Gabor filter. Results of the classification for the texture analysis prove that a relatively
large amount of information is coded in the face’s texture, and in particular in the ana-
lyzed regions of the eyes, forehead, mouth and chin. It is for this reason that the texture
of the face was combined during the experiment with the dynamics and geometry. For
this way of adopting configuration the system analyzing the vector of features, built of
the dynamic features and histograms of the texture obtained by the LBP operator, has
the highest accuracy reaching 85%, which can also correctly classify new objects.
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P. Marechal Eduardo Gomes, 50 Sao Jose dos Campos, SP, Brazil

{rcezar,pell}@ita.br
http://www.ita.br

2 INOVISAO, Universidade Católica Dom Bosco
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Abstract. A new set of attributes combining color and SURF-based
histograms coupled with a SVM classifier to enhance visual based au-
tonomous aerial navigation is proposed. These new features are used for
region classification with aerial images in order to speed up the UAV
(Unmanned Aerial Vehicles) localization performed by image matching
using only reference images according to the region classification. Ex-
perimental results comparing the proposal with color or SURF only at-
tributes are presented. In the experiments the UAV localization task can
be performed four times faster using the proposed approach, however
the performance gain can be still bigger for large datasets of reference
images.

Keywords: unmaned aerial vehicles, vision based navigation, feature
extraction, SURF.

1 Introduction

During the last two decades the interest in UAVs had an exponential growth.
They became an essential weapon in military fields especially after 2001 with
the successful record of North American model MQ-1 Predator in missions in
Pakistan, Uzbekistan and Afghanistan [1]. With the development of small and
mature applicable technologies such as digital cameras and GPS (Global Posi-
tioning System) UAVs have also emerged as solution for many civil applications
such surveillance, firefighting, remote sensing, etc [2].

Currently there is a large variety of UAV models with different sizes, shapes
and characteristics, such diversity boosted the development of UAV flight hard-
ware [2]. But what remains as a challenge is the study on how to provide au-
tonomy to UAV’s and what degree of autonomy can be reached. In this sense,
image-based robots navigation has been a subject investigated by many research
groups and some works have exploited the supervised approaches to perform un-
manned aerial vehicle (UAV) autonomous navigation [3,4,5,6].
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One important computer vision supervised approach for robots navigation is
the image registration, a supervised method which register target images in a
database and match them with current images during navigation. For each match
performed, the robot can use georeferences associated to images in database
(knowledge base) and then estimate robot position. In [6] Conte uses the image
registration approach to update the accumulated error of a visual odometer. So
whenever a match is reliable it restores absolute UAV position and the filter
is updated. The result of this work shows that this technique can reproduce a
similar path to the GPS navigation system. But the image matching used is
based on border filters that may be not so effective for some variances in scales,
perspective or other changes in the environment.

Today there are many available databases of georeferenced aerial images, also
called waypoint images or simply waypoints, which could be used to aid in
UAV’s autonomous navigation. The problem is how to match current images
with database considering image variances in scale, rotation, perspective illumi-
nation and so on. The work [7] presents an evaluation of a supervised method
based on image registration approach using robust scale-invariant algorithms like
SIFT and SURF for waypoint recognition. The results demonstrate that these
algorithms are able to accurately match the images, however this approach could
be unfeasible to real time aircrafts navigation due to high processing time re-
quired for image matching using large databases.

In this context this work proposes a coarse geografical region classification step
using color and SURF based descriptors. In this way, the search for waypoints
using image match will be bounded to the images in the dataset that are related
only to one region previously found and not to the entire waypoints dataset. The
next section presents the proposed approach and is followed by the experiments
section which reports the evaluation of three different classifiers and three sets
of image descriptors. Conclusions and future works are presented in the last
section.

2 Background

The scale-invariant SURF algorithm is used to detect interest points, named here
keypoints, and describe local features of the images. This algorithm was chosen
due to its performance and accuracy in detecting and matching keypoints in
images. SURF is based on SIFT algorithm, a robust method proposed by Lowe
in 1999 [8] to find keypoints and describe local features invariant to image
scaling and rotation, and partially invariant to change in illumination and 3D
camera viewpoint.

Roughly speaking, SURF detects keypoints by using scale-space as an image
pyramid, where the image is iteratively convolved with Gaussian kernel and
repeatedly sub-sampled at different scales [9].

Those pyramid layers are subtracted in order to get the DoG (Difference of
Gaussians) images where edges and blobs can be found [10]. Keypoints are local
maxima/minima in a 3x3x3 neighborhood in the image over scales.
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One dominant orientation is assigned to each interest point found in the image
by calculating the sum of all responses from a sliding orientation window Haar
filter [10]. Thus a 64 dimension vector of wavelet (Haar) responses relative to
dominant orientation is extracted.

Finally, each image is composed of n keypoints and each keypoint contains lo-
cal descriptor represented by a 64 dimension features vector extracted by SURF.
More details can be found in [10].

3 Proposed Approach

This work proposes a feature vector containing orientation gradients information
combined with color histograms to identify visual patterns of interest regions in
aerial images. Such information will be available for regions classification, which
allows test images to be matched only with waypoints inside the chosen region.
Therefore the aim of this approach is to use regions classification as a filter which
reduces the number of comparisons during image matching phase and then speed
up the UAV location during navigation.

Given a set of images of an environment, colors may be an important feature
to describe a regions. Considering regions are a limited area with some objects
inside, the colors distribution of images from the same region tends to be similar.
In this sense the Hue histogram from HSV (Hue, Saturation and Value) color
model is proposed to compose the region descriptor. Hue could be described as
the color value by itself, it is invariant and independent from other channels in
HSV model, for more details see [11].

The Hue value is measured in degrees and it goes from 0 to 180. The histogram
is composed by 30 bins, in sets of 6 degrees intervals, reducing the number of
attributes in the feature vector to speed up classification time and making the
histograms less variant to noise.

Many works have used color histograms to describe images [12,13], but when
color distribution in different regions are too similar the classifier could not
distinguish them, since traditional histogram does not take into account spatial
information.

Having this problem in mind this approach proposes in addition to the hue
histogram an orientation gradient histogram, called here SURF histogram, it
will compose the region descriptor in order to represent structural features of
images.

SURF algorithm has successfully been used to describe local features, however
the goal of region descriptor in this work is to represent a global context of the
image (scene) instead of a single pixel region. In this sense a single vector of
orientation features is constructed in order to represent the whole content of a
scene.

The first step for constructing SURF histogram is to use SURF to find key-
points and describe local features; each keypoint has a 64 features vector of Haar
wavelet responses (gradients orientation). Then the next step is to calculate the
mean average of each vector value using all keypoints in the image. It will re-
sult in a single vector of 64 features per image. Since keypoints are supposed to
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describe common and singular objects in the images, if images are representing
the same region, the average of keypoints descriptors should be similar.

Combining color and orientation features the final vector for describing re-
gions has 94 attributes, 30 from color histogram and 64 from SURF histogram.
Supervised learning algorithms can be trained with these features extracted from
samples of interest regions and finally used for region classification.

4 Experimental Evaluation

Having in mind the goal of evaluating region classification step and comparing
the results obtained by the selected classifiers, this section describes the details
of this experiment including an analysis of results.

4.1 Training Dataset

In order to create the training dataset for experimentation, 161 aerial images
were selected from the SURF recognized waypoints set in the experiment pre-
sented in [7]. In this previous work, a set of test and sample images where
matched using SURF algorithm in the conventional approach where every test
image is compared to all samples in the dataset. Now the goal is to validate if the
images are classified in the proper region which the waypoint belongs and also
estimate the improvements of time processing using this additional classification
step.

In the sequence, a set of 94 attributes for each sample were extracted using
SURF histogram and the Hue histogram.

For each of the 161 region examples, a feature vector was calculated and
stored into the dataset. The training examples were manually labeled with one
of the following classes: Region 1, Region 2, Region 3, Region 4 and Region 5, see
Figure 1. The distribution of classes is: 21 images in Region 1, 31 in Region 2, 40
in Region 3, 23 in Region 4 and 47 in Region 5. The number of samples for each
class was extracted from the available images of each region in the environment,
see examples of sample images in Figure 2.

4.2 Experimental Settings

The experiments were conducted using OpenCV 1.1 for dataset building and the
latest developer version of Weka software1 [14] for classifiers evaluation.

The supervised algorithm Support Vector Machines (SVM) was tested in con-
junction with the well known algorithms Multi Layer Perceptron (MLP) and
K-nearest neighbors (KNN). All classifiers implementations were performed us-
ing Weka default configuration. SVM uses a polynomial function, complexity
parameter separation C=1.0 and ε = 1.0E-12.

1 Weka is open source software which has a collection of machine learning algorithms
for data mining tasks, more details in http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 1. Visual representation of the five regions covering all waypoints in the
environment

Fig. 2. Samples: Top images contain samples of Region 3 and Bottom images samples
of Region 2

SVM classifier was chosen due to its generalization capability and fast clas-
sification time [15]. The experiments uses Sequential Minimal Optimization
(SMO), a implementation SVM developed by John C. Platt [16], who claims
that SMO is a simple and fast technique to solve the SVMs quadratic problem.

The MLP was chosen because of its ability of Neural Networks to implicitly
detect complex nonlinear relationships between attributes of training data, this
classifier uses backpropagationmethod and parameters hidden Layers = (number
of attributes + number of classes), learning Rate=0.3, momentum =0.2 and
trainingTime = 500, more details of these parameters can be obtained in [17].

KNN classifier was selected as a weak classifier to be compared with SVM
and MLP and then evaluate the complexity of the classification problem, it uses
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a linear search applying Eucledian distance and parameter K=1, more details
of parameters can be found in [18].

For each of the algorithms 5-fold cross validation was performed over the
dataset in order to certify a more reliable estimation of the generalization error
[19]. A paired-samples t-test was also conducted to compare the set of features
combining color and orientation histograms.

4.3 Results and Analysis

The experiments were exploratory and conducted with the intention of evalu-
ating the specificity (Precision), sensitivity (Recall) and efficiency (processing
time x accuracy) of algorithms for region classification problem using Color and
SURF based histograms. The Table 1 shows the CPU training time, CPU clas-
sification time and overall accuracy of the three classifiers. Each classifier was
trained and tested with three different combinations of features vector using
color and orientation histograms.

Table 1. Results of SVM, MLP and KNN classifiers for region classification prob-
lem using aerial images. The mark X means the feature in the column was used for
classification.

Color Hist. Ori. Hist Train. time Classif. Time Accuracy

SVM X - 0.1158 ms 0.0006 ms 92.5956%

SVM - X 0.1186 ms 0.0008 ms 92.9044 %

SVM X X 0.1535 ms 0.0012 ms 96.2733 %

MLP X - 12.9218 ms 0.0016 ms 92.6336%

MLP - X 11.6400 ms 0.0016 ms 91.6544 %

MLP X X 34.6597 ms 0.0106 ms 96.8944 %

KNN X - 0.0002 ms 0.0051 ms 91.4130 %

KNN - X 0.0000 ms 0.0039 ms 89.7794 %

KNN X X 0.0000 ms 0.0218 ms 92.5466 %

In the conventional approach of image matching presented in [7], all test
images are matched with all sample images in the dataset. Then the global
processing time Gt is given by:

Gt = T im×Mt× Sim (1)

where T im is the number of test images, Mt is the average time of image match-
ing process and Sim the number of sample images in the database.

Considering the region classification step proposed in this work, test images
would be matched only with the samples images of the region it was classified,
therefore the new global time NGt would be reduced to:

NGt = (

n∑
i=1

Ri×Mt) + T im× Ct (2)
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Where Ri is the number of images in the region i, n is the number of regions
and Ct is the classification time for one instance.

Considering Mt = 0.163 ms (according on experiments in [7]), Si=8 and T i
= 161 (number of test images in this work) the Gt = 209.944 ms. Based on
the distribution of the regions and the classification time presented in Table 1,
the Table 2 presents, for each classifier, the new global time NGt and the timing
performance gain.

Table 2. Timing performance gain using regions classification before matching step

NGt (ms) Perf. Gain (× faster)

SVM 52.353 4.01

MLP 53.866 3.89

KNN 55.669 3.77

The Table 3 shows the standard deviations of results for percentage correct
classifications. Results marked with • are significantly different at confidence
p <0.05, based on a pared t-test.

Table 3. Standard deviation results based on pared t-test. SVM and KNN classifiers
are compared to MLP in the first column. The symbols ◦, • mean that the results have
statistically significant improvement or degradation with confidence p <0.05.

Dataset MLP SVM KNN

Color H. ± 4.95 ± 4.59 ± 4.32
Orient. H. ± 2.56 ± 3.70 ± 4.52

Color+Orient. ± 2.65 ± 2.71 ± 3.88 •

Although MLP has performed the best classification (Table 1), its possible to
see in Table 3 that the results achieved by MLP are not statistically significant
better than SVM classifier. Nevertheless, the efficiency of the algorithms during
the testing phase is of interest as well. Note that the processing time of testing
phase of SVM is by far the best in terms of efficiency. It is justified by the fact
that the time for evaluating test cases is proportional only to the final number of
support vectors. Nevertheless KNN presents the best time during training and
the SVM with the second best time.

The classification results using the combination of color plus orientation his-
tograms obtained the best accuracy, from the set of 161 instances, SVM classified
only 6 instances incorrectly, MLP 5 and KNN 12. SVM algorithm has the best
overall performance and the low numbers of instances incorrect classified only
shows that all selected classifiers are very suitable for the region classification
problem using aerial images.

The results confirm that the set features can discriminate the regions very
accurately. Note that SURF-based histogram features could discriminate the
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region classes very precisely. The final features vector also including the color
histogram increased significantly the classification rate that reached more than
96% of accuracy.

In the Table 4 is possible to observe the behavior of the classifiers using color
and orientation histograms with respect to precision, recall, and the F-measure.

Table 4. True Positives, False Positives, Precision, Recall, F-Measure and ROC curve
averages for SVM, MLP and KNN algorithms

TP Rate FP Rate Precision Recall F-Measure ROC curve

SVM 0.963 0.01 0.964 0.963 0.963 0.986

MLP 0.969 0.008 0.97 0.969 0.969 0.997

KNN 0.925 0.017 0.932 0.925 0.926 0.958

5 Conclusions

The image descriptor presented in this work was able to represent global context
in the set of aerial images experimented and provided excellent results with
more than 95 % of accuracy. With that, waypoints can be grouped by regions
reducing the processing time of recognition step during navigation. The results
of experiments in this work showed a gain of performance that speeds up the
global processing up to 4 times faster. But note that some of regions evaluated
here had only one or two waypoints. Therefore, this approach can be still better
if considering large environments with dense grids of mapped waypoints.

In order to better evaluate the model, a natural step is the application of
similar solutions at different environments and larger datasets in both urban and
rural areas. It is also of interest to perform experiments using satellite images,
such the ones obtained from Google Earth, for matching with UAV images.

A future research direction is the exploitation of presented image descriptors
to the improvement of classification and also reduction of the number of param-
eters using feature selection algorithms in order to decrease processing time and
then to satisfy real industry needs.
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Abstract. In the world of computer imaging, we still do not have a
good and fast enough method for image searching. This is because sci-
ence is still not able to imitate fully functions of the human brain. When
humans think about images, they do not think about mathematical for-
mulas, matrices, histograms etc. Those mathematical and algorithmic
methods are very good for e.g. computer face detection or number plate
recognition, but we cannot directly use them for analyzing a whole im-
age and for searching in a set of thousands or even millions of images.
On the other hand, computers are able to scan millions of documents,
searching for some phrase or even a single word. Fast text search is fully
supported by a majority of significant database systems such as Oracle,
PostgreSQL or MS SQL Server. The paper presents fast text search en-
gine from another point of view, that is, its application in content based
image retrieval.

Keywords: semantic image analysis, fast text search, CBIR.

1 Introduction

In the existing state of the art there are various ways to process images and to
perform object recognition. Generally, there are two main approaches to object
recognition and several stand-alone algorithms which are used as components in
various, more complex CBIR methods. The first approach is object recognition
by appearance which uses algorithms of edge detection such as Canny edge de-
tector [1], Sobel [10] or Harris corner detection [6]. The second approach is object
recognition based on features where object finding methods are often based on
geometry or tree algorithms [7]. In feature-based methods, the most frequently
used feature detection algorithms are SURF[2][15] , SIFT [15] and their mod-
ification such as GLOH [11], PCA-SIFT [16] and others. We can also try to
utilize some soft computing techniques in image recognition [5][8][9][12][14]. All
of these methods work in certain cases and constraints. They are associated with
the precise shapes of objects whose mappings are visible in the image or consist-
ing in homographic [3][4] mapping of key-points allowing some changes in scale
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and view point. The experiments performed by the authors have shown that
these methods are not resistant to view point change or scale changes when the
changes of scale or view position are too large for the test pattern. These factors
are, among others, reasons staying behind the idea proposed in this article.

The solution presented in the paper is a combination of two streams of data
transformation methods: heuristic and mathematical analysis of the structure of
dependencies. Image transformation methods will be used in the preprocessing
and data preparation phase. These two steps will prepare data for next steps,
which will convert digital image data into finite text strings and store them in
the database.

In this paper we wish to introduce results of test experiments on text data
stored in data base with German selected as dictionary language. On this data
set we were make a set of variously complicated queries for custom strings which
are not in the German dictionary but they are the encoded segments of the dig-
ital image. Additionally, we aim to improve the way how the lexically encoded
images could be retrieved by SQL queries and full text search algorithms. Now
we present more advanced concepts of the proposed solution. Firstly, the idea
presented in the paper is a part of a large, complicated system for content based
image retrieval. The system will be applied to compare digital images and search-
ing for them in a data base using methods that rely on text search algorithms
rather than the direct geometric analysis or key points analysis. In first step of
our image analysis approach we cut image into segments which will represent
single objects extracted from the image like cars, trees or any other thing or
person which could be depicted by digital imaging. Then, extracted segments of
the image are translated to the lexical form using novel algorithms and language.
Each segment of the image could be treated like single word which can be stored
to data base or it can be grouped with other single words to create a sentence of
translated image segments. Presented concept would help to increase the speed
of searching data for images translated into the text and it could reduce the time
of image content analysis comparing to the solutions presented in the literature.

In the paper we mainly focus on the last stage of the whole, above mentioned,
solution, i.e. the text search engine and its application to search custom ”words”
(text chunks) that are beyond the dictionary of selected language (German in
our experiments). We examined if the Fast Text Search algorithms can be used to
find strings that have no substantive meaning by using them to search for hashed
word. We performed the tests that correspond to searching words derived from
the encoded image segments using SQL queries with various degree of complexity.
Queries and test results are presented in the Section 4. We used data collected by
the system created for the purpose of research which we have called ”Mosquito
Explorer”. The system is described in the next section. Proposed idea proved to
be accurate and it was more efficient than the standard implementation of Fast
Text Search Algorithms in most tests.
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2 Fast Text Search Engine Properties

There are many relational database systems, but only three of them were chosen
for further consideration i.e. Oracle, PostrgeSQL and MS SQL Server. Each
of them is a professional database systems, which have been used in countless
applications and systems. Oracle and MS SQL Server are commercial systems
and PostgreSQL is an open source project. During tests and research we have
decided to use PostgreSQL database system. It offers professional full text search
engine, which can be used with success in the experiments. What is also the great
advantage of that choice is that the PostgreDB can be easily extended with any
extensions and solutions, for example, in our case with parsers or converters.
PostgreSQL offers also special types of data and indexes designed for full text
search.

We can single out following database structures usually used in the fast text
search: special data types, indexes, converting and ranking functions, dictionary,
parsers. In the next subsections we will describe each type of these objects.

2.1 Special Data Types

- Tsvector is a specific PostgreSQL data type, created for full text search. This
is a sorted list, containing distinct lexemes with a position in document. Lexeme
is a normalized word.
Example: . . . ’version’:60 ’view’:208 ’vorbeleg’:5,14 ’warum’:176 . . .
- Tsquery is another specific PostgreSQL data type, which stores lexemes, which
are to be searched for. Applying our search phrase, we have to make a conversion
from text to the tsquery.

2.2 Indexes

- GIST (Generalized Search Tree) index, this is the first type of indexes in
PostgreSQL Database system for full text search. This type of index can produce
false results, because of its design. Thus, searching using this type of index is
slower, because of other necessary checks, which have to eliminate false matches.
But it has also a big advantage, it is fast for updating. Thus, it is better to
use this type of index in dynamic systems, where the performance of update
statement is very important.
- GIN (Generalized Inverted Index) this type of index is not lossy as the GIST
index, but an index of this type needs three times more disk space, needs three
times more time to build and needs ten times more time to be updated but it is
three times faster for lookups then the GIST index.

2.3 Converting and Ranking Functions

- To tsvector, when we want to fill a column of type tsvector, we have to use
this converting function, it can be done for example as a trigger function. This
function parses a document and produces a list of lexemes together with their
positions in the document at the input.
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- To tsquery converts a value in parameter into tsquery, given value must be in
special format, row of single tokens separated by Boolean operators. For simple
conversion from text to tsquery was designed a function called plainto tsquery.
- Ts rank is ranking values in tsvectors by the frequency of matching lexemes.
- Ts rank cd creates cover density ranking.

2.4 Dictionaries

In a nutshell, a dictionary is used to eliminate the information which is not valu-
able for searching. Thus, an indexing system removes stop words and converts
words into lexemes (normalization) with a help of the dictionary.

2.5 Parsers

Parser has to split a document into tokens and identify a type of each of them.
Default implementation of the parser is usually optimal for a majority of possible
usages, but in specific applications it has to be refactored.

3 Design of the Test Application

We have developed software for indexing Internet resources, which offers fast
text search ability in the most convenient and easy way. To achieve that goal we
had to create an multi module application. Only several parts of this software
are presented in the paper. Separated modules of Mosquito Explorer are shown
in the Figure 1. For the purpose of this paper we use only the database structure,
data and the Search Module of the Mosquito Explorer. The Search Service is

Fig. 1. Mosquito Explorer – diagram of components
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only one part of the whole system, but this is needed for the purpose of presented
experiments. Mosquito Explorer Release data:

- System Version: Beta 1
- Release Date: 19-12-2011
- Web Client Compatibility: Firefox 8.0, Internet Explorer 8.0, Opera 11.60
- Authors: Janusz Rygal.

To develop the test software we used the following technologies: Core mod-
ules (java 1.6, postgreSQL 9.0), Presentation Layer, Web Client (php, extjs 3.0,
javascript, xhtml, css). We also the following libraries: POI Library ver. 3.7,
Xmlbeans ver. 2.5.0, Dom4j ver. 1.6.1, Jericho-html ver. 3.2.

As already mentioned, for our experiment only the Search Service is relevant,
and it will be tested in the context of semantic image analysis. In a nutshell, we
want to check the behavior of the search engine, working with various types of
words and sentences.

Table schema of Mosquito Explorer ver. Beta 1 contains 17 tables (see Figure
2) and dozens of other database objects. Only the table A ITEM (Figure 3.)

Fig. 2. Mosquito Explorer – database schema Fig. 3. Mosquito Ex-
plorer – AItem table
properties

is relevant for our tests. All columns, which names begin with ’TSV %’ were
defined as tsvector. On the column TSV ITEM TEXT a GIN index was created.

4 Experimental Data, Strategy and Results

Strategy of tests was designed as two dimensional set of the combination of a type
of query and a search phrase. This approach ensures satisfying test covering level.
Moreover it tests the system in two different directions;first one is a structure of
test data and the second one are different types of queries.
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4.1 Test Data Properties (Table A ITEM)

Testing data contains various types of textual information; all of them are docu-
mentation of some project. Majority of those documents were written in German.
Language information is very important for our application, because we must
know, which dictionary should be used. Text persisted in the table A ITEM, was
extracted from diverse types of files for example: web pages (html), doc, xls, ppt
or common txt files. A resource of our experimental data is:

- Size in disk : 4.6 GB
- Number of rows: 78855
- Average length of text : 10264.81 characters.

4.2 Test Strategy

The most important part of test is a test strategy. The strategy was designed as
a matrix of query types and search phrases. We used the following query types:

1. Simple query SELECT ”ID” FROM ”explorer”.”A ITEM”, to tsquery
(’pg catalog.german’, ’phrase’) query
WHERE ”TSV ITEM TEXT” @@ query;

2. Limited simple querySELECT”ID”FROM”explorer”.”A ITEM”, to tsquery
(’pg catalog.german’, ’phrase’) query
WHERE ”TSV ITEM TEXT” @@ query LIMIT 10;

3. Ranked query SELECT ”ID”, ts rank(”TSV ITEM TEXT”, query ) as
”RANK” FROM ”explorer”.”A ITEM”, to tsquery(’pg catalog.german’,
’phrase’) query
WHERE ”TSV ITEM TEXT” @@ query ORDER BY ”RANK” DESC

4. Limited ranked query SELECT ”ID”, ts rank(”TSV ITEM TEXT”, query )
as ”RANK” FROM ”explorer”.”A ITEM”, to tsquery(’pg catalog.german’,
’phrase’) query
WHERE”TSV ITEM TEXT”@@queryORDERBY”RANK”DESCLIMIT
10 ;

And we searched for the following phrases: ”Fehler”, ”xyz”, ”123”, ”test ticket”,
”Der Fehler wurde behoben.” Test results are presented in Table 1, every cell
contains the result of a single test, i.e. the following information: execution time
of first query [ms], average execution time of next 10 executions [ms], the number
of items which were found [u].
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Table 1. Test results. Every cell contains the result of single test, i.e. the following
information: execution time of first query [ms], average execution time of next 10
executions [ms], the number of items which were found [u].

SearchPhrase
/Query

“Fehler” “xyz” “123” “test ticket” “Der Fehler wurde
behoben.”

Simple query 562[ms]
469.8[ms]
54374[u]

25 [ms]
16.6 [ms]
62 [u]

71[ms]
13.5[ms]
236[u]

179[ms]
121.5[ms]
11157[u]

231[ms]
87.1[ms]
5801[u]

Limited sim-
ple query

11 [ms]
13.9 [ms]
10[u]

1362 [ms]
4343.2[ms]
10[u]

1352[ms]
2371.4[ms]
10[u]

12[ms]
14.2[ms]
10[u]

22[ms]
17.3[ms]
10[u]

Ranked query 10123[ms]
2762.4[ms]
54374[u]

43 [ms]
18.4 [ms]
62[u]

322[ms]
45.4[ms]
236[u]

2984[ms]
751.5[ms]
11157[u]

2285[ms]
463[ms]
5801[u]

Limited
ranked query

1914 [ms]
1894.5[ms]
10[u]

12 [ms]
17.3 [ms]
10 [u]

52[ms]
43.8[ms]
10[u]

555[ms]
551[ms]
10[u]

392[ms]
394.2[ms]
10[u]

5 Conclusions

In results of tests we can see the satisfactory behavior of the database engine.
In the search results of phrases which theoretically are not from the database
dictionary (German) such as ”xyz” and ”123”, query execution time is smaller
than other phrases which are included in dictionary. It follows that this method
could be used to lexical image search with new special language not specified
in standards. In addition phrases from the outside of the dictionary could be
correctly ranked in queries, similarly to phrases from the dictionary. In image
retrieval it is very important because some parts of the image could be searched
individually or in combination with others, so mapping it into the text there
could be searched one phrase or its combination with others phrases. Depending
on occurrences of a phrase or several (optional) phrases and their density in the
text, an image containing the most searched phrases will be chosen most likely.

Acknowledgements. The project was funded by the National Center for Sci-
ence under decision number DEC-2011/01/D/ST6/06957.
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Abstract. The estimation of full body pose in monocular images is a
very difficult problem. In 3D-model based motion tracking the challenges
arise as at least one-third of degrees of freedom of the human pose that
needs to be recovered is nearly unobservable in any given monocular
image. In this paper, we deal with high dimensionality of the search
space through estimating the pose in a hierarchical manner using Particle
Swarm Optimization. Our method fits the projected body parts of an
articulated model to detected body parts at color images with support
of edge distance transform. The algorithm was evaluated quantitatively
through the use of the motion capture data as ground truth.

1 Introduction

At present human behavior understanding is becoming one of the most active
and extensive research topics of artificial intelligence and cognitive sciences. The
strong interest is driven by broad spectrum of applications in several areas such
as visual surveillance, human-machine-interaction and augmented reality. Track-
ing of human behavior inherently involves localization of body parts and estima-
tion of the body pose [11]. Pose estimation can be approached with different ways
depending on the image sensor configuration and the scenarios. The approaches
can be categorized as either model-based and model-free ones [9]. In [13], an
example-based approach for view-invariant estimation of 3D pose of upper body
using single image has been proposed. In model-based approach, which uses a
priori model of the subject to guide the pose estimation, the markerless motion
tracking is typically more robust and accurate. In such an approach, the pose
estimation is usually formulated as an optimization problem aiming at seeking
the pose parameters, which minimize the errors between the projected 3D body
segments and the image observations. One of the major difficulties in recovering
human pose from 2D images is the high number of degrees-of-freedom (DOF)
in the body’s movement that has to be estimated. Generally, a human body
consists of no less than 10 large body parts, equating to more than 20 DOF that
are needed for describing realistic human movements.

Reconstructing 3D human poses from monocular images is considerably more
difficult than 3D pose estimate from multiple views. The challenges to be ad-
dressed in single camera-based pose estimation are depth and observation ambi-
guities, self-occlusions, and last but not least the matching imperfect and very
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flexible model to cluttered images. Observation ambiguities take place since any
image observation can be mapped to several 3D human poses. Besides the dif-
ficulties mentioned above, for any realistic human model at least one-third of
DOFs are almost unobservable in any given monocular image. In consequence,
without depth information it is challenging to reconstruct skeleton in 3D. A suc-
cessful approach to recovering 3D human body pose from monocular images is
presented in [1], which consists in the use of direct nonlinear regression of join an-
gles against histogram-of-shape-context silhouette shape descriptors. The most
successful algorithm to date is based on propagating a mixture of Gaussians,
which approximate the probability density functions representing the probable
3D poses [14]. The key contribution is efficient and exhaustive searching of the
cost surface relating the candidate body configurations to image features. How-
ever, it is unclear if without explicit mechanism for re-initialization the propa-
gation of multimodal distribution over longer period of time remains reliable.

The typical framework to human pose estimation is to fit the geometrical
models to the image features by the use a deterministic or stochastic strategy.
In 3D model based estimation of the human pose in monocular image sequences
the particle filters are widely used. Particle filters [3] are recursive Bayesian filters
that are based on Monte Carlo simulations. They approximate a posterior distri-
bution for the configuration of a human body given a series of observations. The
high dimensionality of articulated body motion requires huge number of particles
to represent well the posterior probability of the states. In such spaces, sample
impoverishment may prevent particle filters from maintaining multimodal dis-
tribution for long periods of time. Therefore, many efforts have been spent in
developing methods for confining the search space to promising regions with true
body pose. In [12], Schmidt et al. proposed a kernel particle filter to effectively
explore the probability distributions and achieved reliable real-time tracking of
the upper-body in monocular image sequences. Another possibility to constrain
the configuration space is to use hierarchical search. In such an approach, a
part of the articulated model is localized independently in advance, and then its
location is used to constrain the search for the remaining limbs. In [4], an ap-
proach called search space decomposition is proposed, where on the basis of color
cues the torso is localized first and then it is used to confine the search for the
limbs. Recently, Particle Swarm Optimization (PSO) algorithm was proposed to
achieve full body motion tracking using single [8] and multiple cameras [15][5].
PSO is a population based stochastic optimization technique [6], which shares
many similarities with evolutionary computation techniques. It has been shown
to perform well on many nonlinear and multimodal optimization problems.

In this paper, we present an approach for 3D model based reconstructing the
3-dimensional motions of human figure in monocularly-viewed image sequences.
Full body pose estimation is performed in a hierarchical manner using PSO.
At the beginning of each frame we determine the pose of the torso and afterwards
the pose of the remaining limbs. To obtain reliable motion tracking we segment of
the person’s silhouette into torso and limbs. In order to obtain better orientation
of the torso we take into account the direction of person’s walking.
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2 PSO for Dynamic Optimization

PSO maintains a swarm of particles, where each one represents a candidate solu-
tion. Every particle determines its own position, moves with its own velocity in
the multidimensional search space and determines its fitness using an objective
function f(x). At the beginning each individual is initialized with a random po-
sition and velocity. During searching for the best fitness each particle is attracted
towards the position that is affected by the best position pi found so far by itself
and the global best position g found by the whole swarm. The i-th particle’s
velocity and position are updated according to the following two equations:

vk+1
i = ωvki + c1r1(pi − xk

i ) + c2r2(g − xk
i ) (1)

xk+1
i = xk

i + vk+1
i (2)

where the constants c1 and c2 are used to balance the influence of the individual’s
knowledge and that of the group, respectively, r1 and r2 are uniformly distributed
random numbers, xi is position of the i-th particle, pi is the local best position
of particle i, whereas g stands for the global best position, and ω is an inertia
constant. The swarm stops the updating when a termination criterion is met.
Because the pose tracking is a dynamic optimization problem, in order to cover
possible pose changes the particles are propagated according to weak transition
model when a new image becomes available.

3 3D Body Model and Cost Function

3.1 Human Body Model

The articulated human body model is represented as a kinematic tree consisting
of 11 segments. It is made of truncated cones that model the pelvis, torso/head,
upper and lower arm and legs. Its 3D pose is defined by 26 DOF and it is
determined by position and orientation of the pelvis in the global coordinate
system and the relative angles between the connected limbs. The perspective
projection is used in mapping the model onto 2D image plane. In this way we
attain the image of the 3D model in a given configuration, which can then be
matched to the person extracted through image analysis. The aim of the tracking
is to estimate the pose of the pelvis and the joint angles and this is achieved by
maximizing the fitting cost.

3.2 Body Part Detection

Our approach to full body motion tracking in monocular images is motivated
by findings from other previous work, which stresses the importance of good 2D
features to achieve reliable human pose estimation, cf. [10]. However, detection
of body parts, such as torso and the limbs in color images is difficult due to
variations caused by varying shape, appearance, clothing, etc.
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In first stage of our algorithm the background subtraction is performed us-
ing algorithm [2]. The binary foreground image is then employed in determining
the silhouette-overlap degree. The silhouette features extracted via background
subtraction are complemented by image edges, which contribute towards more
precise aligning the body parts. At this stage a cost of fitting the projected model
edges to the image edges is determined. The most common approach to edge de-
tection is based on image gradient, which shares many properties with optical
flow. In particular, the gradient features are independent from background sub-
traction. Gradient angle is invariant to global changes of image intensities. In
contrast to optical flow, gradients features are discriminative for both moving
and non-moving body parts. In our approach, the gradient magnitude is masked
by the closed image of the foreground. In this fashion we obtain edges belonging
only to the person undergoing tracking. They are then employed to generate the
edge distance map, see also Fig. 1. The distance map assigns each pixel a value
that is the distance between that pixel and the nearest nonzero edge pixel. In
our implementation we employ chessboard distance and limit the number of it-
erations on the chain propagation to three. A color histogram in HSI color space,
quantized into 8×8×8 bins was used to approximate the distribution of the skin
color. The skin color areas were detected via histogram backprojection and then
refined using a skin-locus [7]. Owing to skin-locus it is possible to successfully
delineate the skin areas even in front of wooden planking, see also images in first
row at Fig. 1. The torso has been detected using histogram-based model of color
distribution in HSI color space. The remaining part of the foreground blob was
segmented as legs.

#20 40 60 80 100 120 140 160 180 200 220 240

Fig. 1. Input images (upper row), segmented body parts (middle row), edge distance
map (bottom row)
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3.3 Hierarchical Optimization and Objective Function

In hierarchical fitting the pose of the body parts, which are the most predictable
should be estimated first. Therefore, at the beginning of each time step we es-
timate the position of the torso. The location is determined with regard to the
torso area delineated in the image. During determining the orientation of the
torso we take into account the direction of motion of the walking person. With
the help of camera calibration we determine the contact point with the floor
for both legs or single leg. Given such contact point(s), we determine the pose
of the legs. Finally, using the segmented forearms and/or arms we estimate the
pose of both hands. In hierarchical PSO we used the following fitness function:
f(x) = oz(x)

α1 × ez(x)
1−α1 | z ∈ {torso,legs,skin}, where oz denotes the sil-

houette overlap term, whereas ez stands for the edge distance-based fitness. In
ordinary PSO we utilized the following fitness function: f(x) = o(x)α1×e(x)1−α1 ,
where o(x) = αT (x)+βL(x)+ γS(x), where α+β+ γ = 1 and T (x), L(x), S(x)
stand for silhouette overlap term for torso, legs and skin, respectively.

4 Experimental Results

The PSO-based algorithms for full body motion tracking were compared by
analyses carried out both through qualitative visual evaluations as well as quan-
titatively through the use of the motion capture data as ground truth. A GigE
vision camera was used to acquire the color images of size 1920 × 1080 at 25
fps. Human motion tracking was performed on the cropped images with spatial
resolution 740× 800 pixels, see Fig. 2. An average silhouette height was approx-
imately 300 pixels and varied from 250 pixels to 425 pixels. The swarm was
initialized around the default initial pose, see the most left image at Fig. 1.

Fig. 2. Scene view with overlaid person, shot in frames #64, 128, 160,192 and 240

At Fig. 3 are shown some tracking results that were obtained by ordinary and
hierarchical PSO. The overlap of the projected 3D model on the subject under-
going tracking is shown to illustrate the quality of tracking. In the experiments
presented below we focused on analyses of motion of walking people with bared
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and freely swinging arms. The analysis of the human way of walking, termed gait
analysis, has attracted considerable attention in recent years and can be utilized
in several applications ranging from medical applications to surveillance.

#20 40 60 80 100 120 140 160 180 200 220 240

Fig. 3. Full body motion tracking in monocular images

We evaluated the accuracy of the PSO-based algorithm for motion tracking on
a number of image sequences of a walking person taken from a fixed viewpoint.
In Table 1 are depicted some quantitative results, which are averages over ten
runs of the motion tracker with unlike initializations. The results were obtained
on image sequence consisting of 240 frames, see Fig. 3, in 40 iterations using
PSO consisting of 512 particles, and a configuration for hierarchical PSO with
40 iterations, 102 particles for torso, 205 for legs, and 205 particles for hands.

Table 1. Average errors for M = 39 markers

full body torso left hand right hand left ankle right ankle

PSO
avg. err [mm] 222.3 112.6 258.5 660.8 225.8 227.1

std. dev. [mm] 83.9 40.1 122.8 150.7 95.4 153.0

HPSO
avg. err [mm] 167.8 110.1 242.4 223.8 228.8 239.4

std. dev. [mm] 66.7 22.9 128.1 123.0 86.5 105.8

The results for the full body, see also first column in Table 1, were obtained for
M = 39 markers. From the above set of markers, 4 markers were placed on the
head, 7 markers on each arm, 12 on the legs, 5 on the torso and 4 markers were
attached to the pelvis. Given such a placement of the markers on the human body
and the estimated human pose, which has been calculated by our algorithm, the
corresponding positions of virtual markers were determined and then utilized in
calculating the average Euclidean distance between corresponding markers. The
average Euclidean distance di for each marker i was calculated using real world
locations mi ∈ R3 on the basis of the following equation:

di =
1

T

T∑
t=1

||mi(x̂t)−mi(xt)|| (3)

wheremi(x̂) stands for marker’s position that was calculated using the estimated
pose,mi(x) denotes the position, which has been determined using ground-truth,
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whereas T stands for the number of frames. The errors reported in columns 2-6
of Table 1 indicate the distance errors for single markers on the considered limbs.
For each marker i the standard deviation σi was calculated as follows:

σi =

√√√√ 1

T − 1

T∑
t=1

(||mi(x̂t)−mi(xt)|| − di
)2

(4)

The standard deviation σ shown in Table 1 is the average over all markers. The
errors were obtained in scenarios with walking person, see Fig. 3. As we can
observe, the hierarchical PSO algorithm outperforms the PSO based tracker.
The results shown in Table 1 demonstrate that in our scenario with walking
person that was shot by a monocular HD camera, the Particle Swarm Opti-
mization algorithm is capable of estimating the full body motion with promising
accuracy. The 3D reconstruction of human motion in monocular walking se-
quences is reliable in almost the whole sequence. The errors of the left hand
are slightly larger for the reason that it has undergone complete occlusion in
considerable number of frames. The mean distance error for Lee walk sequence
recorded at 30 fps and 20 fps, that was obtained in [5] is equal to 283.6± 113.0
and 299.0±121.9, respectively. The error obtained by our method on our walking
sequence is far smaller owing to person segmentation into individual body parts
as well as taking into account the direction of walking and the points of floor
contact. Since the full body pose is estimated hierarchically, a large distance
error of the torso can lead to considerable distance error of the whole body.
A demo illustrating full body pose tracking using single monocular camera is
available at: http://prz.edu.pl/~bkwolek/res/icaisc12/sv_hmt.avi .

The complete human motion capture system was written in C/C++. The
system runs on Windows in both 32 bit and 64 bit modes. The entire track-
ing process takes approximately 7 sec. per frame on a PC with dual CPU Intel
Xeon X5690 3.46 GHz using a configuration with 512 particles and 40 iterations
for PSO and a configuration for hierarchical PSO with 40 iterations, 102 par-
ticles for torso, 205 for legs, 205 for hands. The image processing and analysis
takes about 0.45 sec. Although the customization of the model can be completed
automatically, the model is adjusted manually for each person to be tracked.

5 Conclusions

In this paper, we have shown that a successful full body motion tracking in
monocular image sequences can be achieved using Particle Swarm Optimization
and reliable segmentation of person into body parts. To show the advantages
of the hierarchical PSO algorithm, we have conducted several experiments on
sequences with a walking individual. The ordinary and hierarchical PSO algo-
rithms were compared by analyses carried out both through qualitative visual
evaluations as well as quantitatively through the use of the motion capture data
as ground truth.

http://prz.edu.pl/~bkwolek/res/icaisc12/sv_hmt.avi
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Abstract. This paper presents the design and application of novel de-
vice for real time traffic sign detection and recognition on a hardware
platform powered by Intel R© AtomTM processor. Image frames from stan-
dard and relatively cheap web cameras are processed using OpenCV li-
brary [7][2]. An innovative method is proposed for traffic sign detection
phase. Two color models are used for image segmentation and detection
of traffic sign. Many well-known and described tactics have been tested
and rated. Implemented in OpenCV Library functions for pattern recog-
nition method are also used in main algorithm. Experimental results of
traffic sign detection and recognition are described. The prototype was
implemented as part of the Master Thesis at Cracow University of Tech-
nology [1].

Keywords: computer vision, traffic sign detection and recognition,
OpenCV library, color model, pattern recognition, fuzzy logic.

1 Introduction and Motivation

The problem of traffic sign recognition is quite popular in the field of computer
vision technology, but it is very often processed with previously collected data.
In many cases these data are represented by several short videos recorded in
similar weather conditions. Nowadays, this type of approach is useless because
system is adapted to the specific type of circumstances and it will be ineffective
for new data.

There were many attempts to solve this problem undertaken by teams of sci-
entists and corporations dealing with modern technologies, as well as car com-
panies. On the other hand, commercial proposals are not documented in terms
of their construction and actual quality of the recognition effectiveness. What’s
more, they are inaccessible to regular user because of their price and intellectual
property protection.

Due to the miniaturization of high speed computing systems and the system-
atic decrease in their prices, it is possible to build mobile device that would tackle

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 608–616, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the problem in real time on the vehicle’s board. Designed prototype meets this
requirement. For proper operate performance it requires only a standard 12V
power supply available in each vehicle. The device is relatively inexpensive, as
well as fully mobile. It can also be regularly updated without affecting software
installed in on-board computer.

Fig. 1. Different templates of traffic signs in some countries

Individual templates of traffic signs depend on the country where they are
approved. It was additional motivation to build a device adapted to Polish con-
ditions. In each country traffic signs differ not only in shape and color but also
the pictograms placed on them are different. The found solutions are designed
in U.S.A. and Japan, so probably they would not be effective in Poland. As may
be seen in figure 1 traffic signs differ in shape and color.

Related Works. At present - the end of 2011, in addition to the above men-
tioned Ford Focus, traffic signs recognition systems are available in several car
models, which are among the most expensive. Such improvements can be found
among others in the Audi A8, Saab 9-5 and the productions of the Mercedes-
Benz S Class. However, these are high-end vehicles, also equipped with other
intelligent systems, and traffic sign recognition module is only one of many sub-
systems. None of these solutions has officially available documentation clearly
defining their structure and effectiveness.

Siemens’s project was implemented in 2008. Its primary purpose was to reduce
the number of breaking the speed limits on highways, therefore it was limited
to the recognition of speed limit signs. It is integrated with on-board computer
and in some car models, it can automatically influence the speed of the vehicle
[3]. Wider approach to the problem has been suggested at the IEEE Computer
Society International Conference on Computer Vision and Pattern Recognition
by Michael Shneier. His project included a methodology that allows to recognize
the signs of all subgroups [4]. The prototype version of the camera device that
downloads images from the road environment was placed on the roof of the car.
The quality of detection and recognition was determined on the basis of several
pre-prepared videos and amounted to about 88% and 78%. Also an interesting
solution for the circular traffic signs recognition has been proposed by a team
of researchers from Nagaoka University of Technology in Japan and the Institut
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Teknologi Nasional Malang in Indonesia [5]. At the beginning, fragments from
the collected samples were isolated. To isolate them, researchers used the geo-
metric fragmentation, which is similar in its assumptions to Genetic Algorithms.

2 System Design

The components of the system can be divided into two main groups. The first
is the hardware part, which brings all the components together. All of them can
perform required operations in a relatively simple way for implementation. The
second group combines the application modules, and running processes which
performs various tasks. Graphical application interface was developed in an en-
vironment with Qt signals and slots mechanism[6]. Additionally, to notify driver
about passing traffic sign, voice messages are played and information is pre-
sented on the monitor. Instead of using embedded operating system, Ubuntu
Server edition is used.

2.1 Hardware

During the selection of hardware platform many solutions including the AVR
and ARM microprocessors have been tested but their performance is low for
this type of system. Finally, the platform with built in Intel Atom Processor has
been chosen. Atom series processors are a relatively new solution proposed by
Intel Corporation to build small, energy-efficient computing system fully com-
patible with 32 and 64 bit architecture. Small size motherboard, low power con-
sumption of the entire set (50W) and low emission of heat in conjunction with
the performance of the standard unit makes this solution ideal for this project
implementation.

Asus motherboard AT3GC-I has been chosen as a stable foundation for the
Intel Atom CPU and 2GB DDR2 800Mhz RAM. Instead of the standard 2.5” or
3.5” hard drive, system uses a Ultra CompactFlash card with a capacity of 8GB
and write speed of 30MB/s. All components have been installed in a compact
computer case in MiniITX format and powered with a universal power supply
used in portable computers.

2.2 Main Algorithm

The central element of the system and the entire device is the algorithm responsi-
ble for traffic signs identification. Each video frame taken from camera mounted
in the vehicle is subjected to preliminary processing in order to prepare it for the
next steps of the main algorithm. The effect called ’digital image noise’ causes
the appearance of erroneous final results. To overcome it, a series of transforma-
tions has been applied to the image. Also an appropriate sequence of actions and
transformations has been developed in order to increase the effectiveness of the
algorithm. Image smoothing was performed and the technique of image pyramids
has been used. Source image has been converted to HSV color space, and each
channel of RGB and HSV models has been isolated into separate arrays.
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Fig. 2. System workflow diagram

Detection Phase. Following the initial stage of processing and standardization
of the camera image is a phase of traffic signs detection. It involves the segmen-
tation of a single image to isolate smaller areas, which may contain essential
objects. The rejection of as many fragments of the original image as it is possi-
ble significantly affects the efficiency of subsequent steps. It directly involves a
number of calculations that must be made in the recognition phase.

The main idea used at this stage of processing is to identify parts of the
image, which have specific characteristics - for example, hue and saturation in
the HSV model. So-called ’color maps’ are created and used in logical sentences as
arguments. They determine the logical group of pixels of given properties. With
the characteristic structure of the HSV color space it is possible to determine
the approximate location of three existing traffic sign colors - yellow, red and
blue in this color space. Hue frequency distributions for each group of signs were
determined by additional program, which was designed for this task. This was
done by analyzing the components of hue (H) and saturation (S) of the HSV
model in individual pixels located on the prepared samples of signs. 200 samples
were prepared for warning signs, 100 for regulatory and 100 for prohibition signs.
Distributions were then normalized to the interval < 0; 1 >.

In the standard approach to the problem, detected areas are compared with
the distribution of the averaged just by using the membership function. Subjects
of fuzzy logic, such as fuzzy set are used here. Then the probability when a given
area may be an interesting object is determined.
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This approach is often used and generally gives satisfactory results. The
schema using the HSV model is characterized by the extracting image segments
closest to the previously set color. This algorithm focuses on the most narrow
region of interest through the systematic rejection of all fragments, which do
not meet the assumptions and keeping those that comply with them. However,
under studied conditions, it turned out to be unreliable.

In order to solve the problem an innovative method has been developed. It
combines the approaches from the RGB and HSV models. In addition, it aggre-
gates both models. The aim is to make the best detection of traffic signs reject
as many unwanted regions of the image as it is possible. Proposal for innova-
tion of the developed method can also be supported by Karla Brkic’s studies
from University of Zagreb, who compared 11 papers describing the approach to
the problem of recognizing traffic signs. Each of them was connected with one
of the color space model. There is no solution which uses simultaneously two
models [9].

Fig. 3. Improving the extraction process by using the proposed method

Intervals containing acceptable hue and saturation values for each color have
been extended to prevent rejection of too many important areas. The new values
are presented in table 1. What’s more, the analysis of each pixel is derived by its
properties in two color space models - RGB and HSV. In most cases it is much
easier to discover dependencies involving image segmentation based on two or
more models. For each pixel hue and saturation value from HSV model and red,
green and blue value from RGB model are checked simultaneously. Only if all
of these assumptions are satisfied the pixel is considered to be significant and it
is placed in the set of pixels of a given color e.g. for yellow pixel the following
conditions must be met in HSV color space model:

Hval ∈ (10; 85) ∧ Sval ∈ (45; 255); . (1)

and RGB color space model:

Rval ∈ (125; 220)∧ Gval ∈ (90; 145) ∧ Bval ∈ (0; 45) . (2)

Green and red pixels are classified in the same way but with different ranges.
It has been observed that for blue pixels this procedure is not necessary and
standard approach also gives satisfactory results.
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In the project it has also been proposed to use CMYK for the extraction of
the regions with white and black color. The CMYK color space model is rather
used in polygraphy - not in issues related to the computer vision, but preliminary
tests showed that using this model could be beneficial in this case. It should be
noted that this model has also a separate channel ’Y’ for yellow color, as it is
important in the case of Polish traffic signs.

Table 1. The modified components of hue and saturation for the four colors

COMPONENT RED YELLOW BLUE GREEN

(H) Hue (0; 35) (10; 85) (90; 155) (10; 110)

(S) Saturation (50; 255) (45; 255) (40; 205) (0; 180)

Expanding ranges of hue and saturation parameters showed in table 1 imply
a further innovation in this approach. The color already extracted are used for
the following extraction of the areas in specified color. In addition, exploration
field is not drastically but gradually narrowed in each step. For example, in order
to detect the warning signs, first determined regions are colored yellow, orange
and red. Then, extraction of yellow color is carried out, which is easier when
the search area was initially narrowed. This is done with adaptive thresholding,
which in this case highlights its advantages over standard thresholding. The
described approach can be traced in the figure 4.

Fig. 4. Gradual extraction of yellow areas

Extraction of colors that do not appear on traffic signs brings positive results.
An example would be a green color which is not seen on the relevant traffic signs
and its extraction helps to indicate the yellow colored areas by the application of
a logical difference operator. Green mask is subtracted from the mask containing
yellow color. This makes sense due to the fact that these two colors are near each
other in both color space models - RGB and HSV.

Recognition Phase. At the moment the device has a lower efficiency in this
phase as compared to competitive solutions. More sophisticated methods like
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neural networks or SVM have not been applied yet. Features defining tests have
been carried out so that they would be sent to SVM, but none of them has given
satisfactory results. All areas that have been classified at the previous stage, as
segments, which may include a traffic sign are sent to the recognition phase.
They are initially grouped according to the dominant color - yellow warning
signs, red - prohibition signs and blue - mandatory and information signs.

On most road signs there are pictograms that define their meaning. To pre-
vent a situation where the sign’s template would be incomplete, new method
has been developed called ’Expanding the Region of Interest Method’. Area sent
from the detection phase is enlarged for so long that within it there are impor-
tant pixels described by a given color mask. Note, that there have been many
transformations with image segment which is processed, including blurring and
smoothing, so it is suggested to do the kind of one step back. Portion of the
image is taken from the untransformed sample source for analysis. This is ad-
vantageous because the operations useful at detection stage are not necessarily
useful at the moment of recognition.

Pattern Matching Method has been used to recognize the traffic signs. To
maximize the chance of correct identification of all not rejected segments, all
areas are scaled to the same size 100x100 pixels. The next step involves using the
cvMatchTemplate function, which is available in OpenCV library. It returns the
maximum and minimum fit of the pattern to the part of the image. These values
are normalized to the range < −1; 1 >. The decision to recognize a traffic sign is
based on the best fit value. In algorithm the correlation coefficient method has
been used, where correlation coefficient is between -1.0 and 1.0. Extreme values
represent the worst and the best fit. Value 0.0 represents no correlation. This
method matches a template T relative to its mean against the image I relative
to its mean and the result R is given by the following formula[2]:

Rccoeff(x, y) =
∑
x′,y′

[T ′(x′, y′) ∗ I ′(x+ x′, y + y′)]2 . (3)

where:

T ′(x′, y′) = T (x′, y′)− 1

(w ∗ h) ∑
x′′,y′′

T (x′′, y′′)
. (4)

I ′(x + x′, y + y′) = I(x + x′, y + y′)− 1

(w ∗ h) ∑
x′′,y′′

I(x+ x′′, y + y′′)
. (5)

To save resources, pattern matching is done in stages. For each color group
of signs, first attempt to identify the characteristic signs is taken. In case of
prohibition signs, STOP sign is recognized at the beginning. If the established
conditions are met, the search is terminated at this stage. Otherwise, an attempt
is made to recognize B-35 or B-36 sign. Finally, all other prohibition signs are
searched.
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Table 2. DriastSystem and other solutions comparison

SYSTEM (1) (2) [%] (3) [%] (4) [%] (5)

Siemens VDO n/a n/a n/a n/a YES

Road Sign Det. and Rec. 92 88.0 78.0 6.5 - 58.0 NO

Intell. Machine Vision n/a n/a 95.5 n/a NO

Driast System 714 88.2 (94.8) 71.2 (91.0) 22.1 (4.2) YES

(1) - Number of signs on samples, (2) - Detection quality, (3) - Recognition quality

(4) - Percent of faulty recognitions, (5) - Real time tests

3 Experiments

Tests for each traffic sign appearing in a set of recognized signs has been carried
out using collected samples. In each case 20 representative images with a sign,
and 80 random samples with other sign or only background have been selected.
Most important signs, indicating the priority on the road were also separated.
In this case the number of test samples has increased twice. This group included
D-1, D-2, A-7 and B-20 signs. In case of these signs tests have been made in real
time during regular travel by car. Due to the very limited time, official tests for
other signs were limited to samples in the form of images. Comparison of the
average efficiency of the prototype built with the described solutions is presented
in the table 2.

During tests there were also numerous false indications, number of which
should be reduced. The applied patterns are fragments of the original signs
templates. Using averaged image pattern, modeled on the slices of test samples,
better results could be obtained. But this would require some time to prepare
templates. It is noteworthy that beside the simplicity of the pattern preparation
process, this method has already given satisfactory results at this stage and could
be further developed or supported by other mechanisms. Currently, mechanisms
enabling recognition of more than 30 traffic signs of various types have been
implemented in the main algorithm.

4 Summary

So far, a solid foundation for the development of our device has been built.
Already at this stage fairly good results has been achieved, especially for the
detection phase. However, they require further improvements for the recognition
phase. Developed tool clearly shows the capabilities of vision systems, and digital
image processing algorithms. A few dependencies that can be used in a similar
type projects have been noticed.

The greatest innovation which is characterized by the algorithm is a com-
pletely different approach to the given problem than the one which have already
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been described by the developers of such tools. Simultaneous use of two color
space models has given much better results than relying on only one of them.
Another advantage was achieved by the introduction of methods for expanding
the region of interest and by dividing almost all steps into smaller threads. The
progressive narrowing of the problem field is a more effective approach than
trying to achieve high results at the very beginning.

While working at main algorithm several methods for this purpose have been
tested e.g. Cyganek’s method of essential points[8]. However, they have not given
satisfactory results for recognition in real time.

Development Possibilities. Like any prototype device it requires a further
contribution of the work. It could be improved and developed at the hardware
and software level. To make it more attractive to potential users, it should be
miniaturized. A software layer also requires permanent improvements in perfor-
mance and quality.

Using the experience gained so far in the field of computer vision and structure
of OpenCV library, it would be possible to introduce additional functionality,
such as the detection of horizontal signs and traffic lights. Set of recognized signs
also should be expanded, but it involves additional tests and re-execution phase
of data collection.
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Abstract. A real-time object tracking algorithm is presented based on
the on-line support vector machine (SVM) scheme. A new training frame-
work is proposed, which enables us to select reliable training samples
from the image sequence for tracking. Multiple candidate regeneration,
a statistical method, is employed to decrease the computational cost,
and a directional-edge-based feature representation algorithm is used to
represent images robustly as well as compactly. The structure of the algo-
rithm is designed especially for real-time performance, which can extend
the advantages of SVM to most of the general tracking applications. The
algorithm has been evaluated on challenging video sequences and showed
robust tracking ability with accurate tracking results. The hardware im-
plementation is also discussed, while verification has been done to prove
the real-time ability of this algorithm.

Keywords: object tracking, real-time, on-line learning SVM, multiple
candidate regeneration.

1 Introduction

Object tracking is a critical and well-studied problem with many practical ap-
plications. A number of algorithms have been developed based on various mech-
anisms. One promising direction is to consider the object tracking as a binary
classification problem, and employ discriminative methods in the tracking frame-
work. Support vector machine (SVM), as a powerful classification scheme, has
been used in many tracking algorithms, benefiting the algorithms with accu-
rate localization and flexible modeling of the target [1,2,3]. The SVM works as
an appearance model of the target in these algorithms. One feature of SVM is
that the decision boundary is represented as a linear combination of support
vectors, and the number of support vectors is usually small compared with the
entire training dataset. Since the hardware resources always have limitation, this
feature is very important when considering the implementation of the tracking
algorithm on hardware.
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Despite the good performance of the existing algorithms, they suffer from sev-
eral practical problems. The work in [1] builds a superior SVM classifier and gives
good results in tracking vehicles. However, the off-line training mechanism em-
ployed in the work requires a large number of training samples selected manually
and does not support updating the training samples. In [2], all samples learned
from each frame of an image sequence are stored for training the SVM. This
causes a large memory cost if it is used in a long-duration task. In [3], a simple
strategy is employed to determine new training samples, which may cause “drift
problem” as described in [4]. Moreover, these algorithms do not consider their
real-time performances, which is in fact of great importance in object tracking
applications. This is mainly because of the complex computation of SVM. Espe-
cially for the on-line learning SVMs, frequently repeated training and predictions
make this problem even worse. Therefore, in order to extend the power of SVM
in most of the general tracking applications, it is necessary to develop a proper
tracking framework and a VLSI-hardware-implementation-friendly structure for
the SVM-based algorithm.

The tracking framework includes how to update training samples and how to
select test samples and make prediction of the target location. In this work, a new
improved tracking framework is proposed. Different from other algorithms, this
framework gives a rule guiding the selection of target training samples. When
the target changes its appearance significantly, the system may fail to localize
the target because the classifier misclassifies the target image to the background
image category. In order to solve this problem, background samples are utilized
to predict the location of the target image. Unlike the moving target image, most
of the background sample images are stable. As a result, high-accuracy tracking
has been established. In addition, regarding the selection of target samples for
on-line training of SVM, a new selection rule has been introduced.

As mentioned, the on-line SVM learning requires repeated training and pre-
dicting. The predicting process always contains computation of thousands of test
samples in conventional algorithms, preventing these algorithms from working
in real-time. In this process, not only the SVM, but also the feature extrac-
tion of each sample will cost lots of time. Based on a SVM chip developed in
[10], the most complex part in this algorithm can be computed efficiently. At
the same time, multiple candidate regeneration [8] is employed to reduce the
computational cost without sacrificing the tracking accuracy. In addition, the
directional-edge-feature vector representation [11], whose VLSI implementation
has been proposed in [12], is employed to represent the sample images. By using
this hardware-friendly structure, real-time tracking ability can be achieved.

In this paper, a real-time object tracking algorithm employing on-line learn-
ing SVM is proposed. Tracking framework with new specific training strategy
is designed, while simple hardware implementation is considered as an essen-
tial goal. The tracking performance is evaluated by several challenging publicly
available video clips, and the core function is verified on hardware to prove its
hardware-friendly structure.



Real-Time Object Tracking Employing On-Line SVM 619

2 Object Tracking Algorithm

2.1 On-Line Learning SVM

The basic mechanism of on-line learning SVM is to train the SVM classifier
repeatedly with new training samples. How to update the training samples affects
the training result greatly. In [5] a training strategy is proposed, in which in each
iteration of training the support vector machine is trained by a new data set and
the support vectors determined by the previous learning iteration. The reasoning
behind this is that the resulting decision function of an SVM depends only on
its support vectors so that training an SVM on the support vectors alone results
in the same decision function as training on the whole data set. This strategy
is suitable to implement on hardware because of its simplicity. The following
researches claimed that this strategy only give a proximate learning result [6,7],
and proposed accurate approaches dealing with huge amount of data. Although
the computational complexity has been decreased in these strategies, massive
memory is necessary to store all the data. In this work, we took advantage of
the strategy in [5] and designed an on-line learning strategy for object tracking,
which is explained in the following section.

2.2 Training Framework

Fig. 1 shows the basic configuration of the on-line learning SVM in tracking
algorithms. In this work, sample images are represented by directional feature
vector proposed in [11]. At the beginning, the SVM is trained by labeled samples
from previous iteration or the initialization stage. Then, in the present image,
test samples extracted from a certain region (shown as square in Fig.1(b)) are
classified by the trained SVM into two classes: the target and the background.
Then a confidence map is generated (shown on the top left corner of the image)
using the locations of the test samples and their decision function values. The
target location is predicted based on the confidence map. After this step, new
samples for training in the next frame are selected and the next iteration starts.

The following parts focus on how to select reliable training samples in each
iteration. The training samples which are not support vectors are discarded in
the strategy in [5] to remove redundant training samples. In this work, the same
rule is applied only to the background training samples. The target training
samples are all stored and never discarded, because the target samples are more
important than the background samples in the tracking application, and the
quantity of the target samples does not explode as the background samples do
in complex situations.

Besides the support vectors retained as mentioned above, new training sam-
ples from each frame of image are also added to the background training samples.
Suppose that the algorithm has finished predicting the target location in the
present frame. Then, several image patches around the predicted target location
are stored as new background samples, as shown in Fig. 2. This is based on the
assumption that in the next frame, the background images at these locations
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(a) (b)

Fig. 1. Basic mechanism of the online learning SVM-based tracking algorithm: (a)
Training samples and the confidence map and (b) Basic process of the algorithm

Fig. 2. Selection of the background training samples

tend to be critical distracters. Together with the background support vectors,
the newly generated samples are stored as new background training samples for
the next frame.

For the target samples, we developed an approach to select reliable new train-
ing samples. Different from the conventional algorithms, the image patch at the
predicted target location in each frame is not added as new training sample. Since
the prediction of the target location always has small location error, adding the
image patches brings inaccurate training samples into the SVM. The error may
accumulate after a long time of tracking, and cause the tracker drift away from
the real target. In this work, whether to add a new target training sample is de-
termined by the decision function values of the test samples, as shown in Fig. 3.
If there are candidates with large function values in target class, it indicates the
knowledge in the SVM is sufficient at present and no new target sample is added.
However, when the target changes its appearance, it may happen that the deci-
sion function values of the samples in the target class become very small, or even
there is no test samples falling in the target class. In this situation, it is difficult
to predict the target location in the present frame, which also means new target
sample should be learnt. From the confidence map in Fig. 3, it can be observed
that although the target images are not found (no samples are classified into the
target class), most of the background images are classified with large confidence
values (shown in brighter color). Among the background samples, some samples
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Fig. 3. Selection of the target training samples

own small confidence values (shown in darker color) because a certain region of
the background is occluded by the target. Based on this assumption, the center
of gravity of the background samples with small confidence values is calculated,
and the image at this location is stored as a new target training sample.

In summary, the training samples are composed of the initial target sam-
ple, the target samples generated by background analysis, background support
vectors and new back ground samples generated in the present frame.

2.3 Multiple Candidate Regeneration

The multiple candidate regeneration (MCR) is first proposed in [8] as a solution
of real-time object tracking. It is a statistical approach which is similar with the
particle filter, but simplified for hardware implementation. It has shown good
performance in solving the object tracking problem. This work employs the MCR
to determine the test samples in order to reduce the computational cost in the
predicting process.

The candidates in the MCR are used to represent the test samples. The can-
didates are all distributed around the previous target location. In the present
frame of image, feature vectors are generated from the candidate images cen-
tered at these candidate locations and sent to SVM as test samples. The function
values returned by the SVM are used to calculate weight values for the candi-
dates. The candidate with larger decision function value is assigned a weight
with larger absolute value. The positive weight and negative weight stand for
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the target candidate and the background candidate, respectively. Then, new
candidates are generated based on the criteria as follows: in each iteration, can-
didates with large weight value have more new candidates in their vicinity and
the total number of the candidates is constant. The target location in present
frame is predicted based on the distribution of the new candidate locations.
In this work, by using this approach with 256 candidates the quantity of test
samples becomes much smaller compared with the conventional algorithms that
generate test sample at every pixel location in the image. Detailed description
of this approach can be found in [8].

3 Experiments and Verification

In this section experimental results are shown, including the simulation results,
evaluations on accuracy and number of support vectors. The video sequences
and the evaluation method are proposed in [9]. The proposed algorithm showed
robust tracking ability with accurate tracking results in the experiments. Fig.
4(b) and (f) compare this work with the algorithm proposed in [9] on two video
sequences. Under the threshold of 20, this algorithm achieved 0.90 and 0.95 accu-
racy in Sylvester and David video sequence, respectively. The number of support
vectors stayed under a small value as expected, and the total number of target
samples is 68 and 82, respectively. Some examples of the target samples are also
shown. More experimental results on publicly available videos are shown in Ta-
ble 1. The algorithm shows a high-accuracy tracking ability in the experiments.
Since this algorithm does not include a specific solution to heavy occlusion be-
tween objects, it shows less accurate results in the last two face occlusion videos,
in which the target (human face) is partially or almost fully occluded by other
object.

Table 1. Evaluation of tracking accuracy at a fixed threshold of 20

Sylvester David Indoor Cola Can Occluded Face Occluded Face 2

MILTrack [9] 0.90 0.52 0.55 0.43 0.60

This work 0.90 0.95 0.93 0.27 0.44

In order to give a hardware-friendly solution to the object tracking task, we
considered the implementation of each part of the algorithm. For the training
of SVM, a dedicated VLSI chip proposed in [10] can be employed. It is a fully-
parallel self-training SVM system with high training speed. Based on this chip,
computational time caused by SVM computation can be decreased dramatically.
A functional verification of this algorithm on the chip is shown in Fig. 5. Vec-
tors were extracted from the image in advance and sent to the chip in real-time.
After 100ns of training process (not shown), the chip received and gave out the
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(a)

(b) (c) (d)

(e)

(f) (g) (h)

Fig. 4. Evaluation of this algorithm with Sylvester and David video sequences: (a)(e)
tracking result; (b)(f) precision evaluation; (c)(g) number of support vectors and (d)(h)
examples of target training samples



624 P. Zhao, R. Zhang, and T. Shibata

Fig. 5. Verification of the training and predicting process on SVM chip

classification result for each vector every 1μs, in which the 4th and 6th candidate
images were classified into the target class. In addition, we also employed a
directional-edge-based representation algorithm [11] to represent sample images,
for which a dedicated VLSI chip has been proposed in [12].

4 Conclusion

In this work, we proposed a real-time object tracking algorithm based on the
on-line learning support vector machine with hardware-friendly structure and
a newly proposed training framework. The tracking framework give a solution
to the problem of updating reliable training samples in object tracking. The
hardware structure employs several real-time algorithms which have been im-
plemented into VLSI chips. Software simulation results were evaluated, which
showed robust and accurate tracking ability. Hardware verification was car-
ried out on a VLSI SVM chip, which proved the real-time performance of this
algorithm.
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Abstract. In the Social Web, folksonomies and other similar knowl-
edge organization techniques may suffer limitations due to both different
users’ tagging behaviours and semantic heterogeneity. In order to esti-
mate how a social tagging network organizes its resources, focusing on
sharing (implicit) conceptual schemes, we apply an agent-based reconcil-
iation knowledge system based on Formal Concept Analysis. This article
describes various experiments that focus on conceptual structures of the
reconciliation process as applied to Delicious bookmarking service. Re-
sults will show the prevalence of sharing tagged resources in order to be
used by other users as recommendations.

1 Introduction

The availability of powerful technologies for sharing information among users
(social network members) empowers the organization of social resources. Among
them, collaborative tagging represents a very useful process for users that aim
to add metadata to documents, objects or, even, urls.

As with other social behaviours, tagging shows advantages but also deficien-
cies, e.g. semantic heterogeneity. Projects like Faviki (http://www.faviki.com)
or CommonTag (http://commontag.org) attempt to resolve these deficiencies.
Within the network, and also based on user preferences, different tagging be-
haviours exist that actually obstruct automated interoperability. Although solu-
tions exist that assist the user’s folksonomy (tag clouds, tools based on related
tag ideas, collective intelligence methods, data mining, etc.), personal organi-
zation of information leads to implicit logical conditions that often differ from
the global interpretation of these conditions. Tagging provides a manner of weak
organization for information that, although useful, is mediated by the individual
user’s behaviour. In order to make the concept of semantic heterogeneity explicit,

� Supported by TIN2009-09492 project of Spanish Ministry of Science and Innovation
and Excellence project TIC-6064 of Junta de Andalućıa cofinanced with FEDER
founds.
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we use Formal Concept Analysis (FCA) [5]. FCA is a mathematical theory that,
applied to tagging systems, results in explicit sets of concepts that users manage
by tagging, thereby organizing information into structured relationships.

As is argued in [6], tagging is essentially about sensemaking, a process where
information is categorized, labeled and, most importantly, through which mean-
ing emerges [8]. Even in a personal tagging structure, concept boundaries and
categories are vague, so some items can be doubtfully labeled. Finally, users also
use tagging task for their own benefit, but nevertheless they contribute usefully
to the public good [6]. Therefore, it seems interesting to apply concept mining
technologies to facilitate semantic interoperability. Since the users’ tagging re-
flects their own set of concepts about documents, tag-driven navigation among
different resources could be insufficient due to semantic heterogeneity. Thus, to
ensure an efficient use of another user’s tag sets, some thought must be given
to tags in order to achieve some consensus (also using FCA based tools), which
allows us to navigate between different conceptual structures. In this scenario, it
could be very important to attempt to delegate these tasks to intelligent agents.
In [2], an agent-based knowledge conciliation method is presented.

The aim of this paper is to showhow aMultiagent System (MAS) can be applied
to shape the complexity of users’ conceptual structures into a social bookmarking
service, by comparing the resource sharing relationship among users against the
tagging sharing relationship between users. The first relationship comprises a com-
plex network where semantic similarities could be weak, while one expects that
the second allows us some understanding about semantic interoperability based
on tags and achieved by conciliation. The paper aims to show the prevalence of
semantic similarity (knowledge conciliation) in tagging sharing relation.

The following paper is organized as follows. Section 2 is devoted to the intro-
duction of FCA. Section 3 reviews original agent-based reconciliation, which is
applied in this paper. Section 4 describes the relational structure of tagging in
Delicious. Sect. 5 provides a specific implementation of knowledge reconciliation.
Section 6 presents the experiments and some results. Finally, Sect. 7 discusses
some conclusions.

2 Formal Concept Analisys

Convergence between Mobile Web 2.0 and Semantic Web will depend on the
specific management of ontologies. Ontologies and tags/folksonomies must be
reconciled in these kinds of projects. A useful bridge between these two kinds
of knowledge representation could be Formal Concept Analysis [5]. According
to Wille, FCA mathematizes the philosophical understanding of a concept as a
unit of thought, composed by the extent and the intent. The extent covers all
objects belonging to the concept, while the intent comprises all of the common
attributes valid for all the objects under consideration. FCA also allows us to
compute concept hierarchies from data tables.

The process of transforming data into structured information by means of
FCA starts from an entity called Formal Context. This formal context is a tupla
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Fig. 1. Formal context and associated concept lattice and Stem Basis

M = (O,A, I) composed of two sets, O (objects) and A (attributes), and a
relation I ⊆ O × A. Given X ⊆ O and Y ⊆ A, a derivative operator can be
defined such as

X ′ := {a ∈ A | oIa for all o ∈ X}, Y ′ := {o ∈ O | oIa for all a ∈ Y }
From this, a definition of (formal) concept can be obtained as a pair (X,Y ) which
holds X ′ = Y and Y ′ = X . If we define the subconcept relation, C1 ⊆ C2 if
O1 ⊆ O2, a hierarchy among concepts can be obtained and represented as a lattice.

Finally, logical expressions in FCA are implications between attributes, a pair
of sets of attributes, written as Y1 → Y2. This expression holds in M if for all
o ∈ O, its derivative set, {o}′, models Y1 → Y2, and it is said that Y1 → Y2 is
an implication of M . A set L of implications is a (implication) basis, for M , if
L is complete and non-redundant. Also, FCA defines a method to calculate an
implication basis [5], which is called Stem Basis. It is important to note that the
Stem Basis is only a particular case of implication basis, any other implication
basis could be used as well. SB will be used as set of rules in production systems
for reasoning (as in [2]). This rules (implication) support can be defined as the
number of objects that contain all attributes Y1 and hold the implication. Based
on this property, a variant of implicational basis is defined, called Stem Kernel
basis (SKB), the SB’s subset where support of each rule is greater than zero.

To illustrate these three entities -formal context, concept lattice, and Stem
Basis- an example based on a living being is depicted in fig. 1, left, center, and
right, respectively.

2.1 Tagging, Contexts and Concepts

There are several limitations to collaborative tagging in sites such as Delicious.
The first is that a tag can be used to refer to different concepts, i.e. there is
a context dependent feature of the tag associated with the user. This depen-
dence -called ”Context Dependent Knowledge Heterogeneity” (CDKH)- limits
both the effectiveness and adequacy of collaborative tagging. The second is the
Classical Ambiguity (CA) of terms, inherited from natural language and/or the
consideration of different ”basic levels” among users [6]. CA would not be critical
when users work with urls (content of url induces, in fact, a disambiguation of
terms because of its specific topic). In this case, the contextualization of tags
in a graph structure (by means of clustering analysis) distinguishes the differ-
ent terms associated with the same tag [4]. However, CDKH is associated with
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concept structures that users do not represent in the system, but that FCA can
extract. Thus, navigation among concept structures of different users faced with
CDKH. So, the use of tagged resources for automatic recommendation is not
advisable without some kind of semantic analysis. More interesting is the idea
of deciphering the knowledge that is hidden in user tagging to understand their
tagging behaviour and its implied meaning. In sites such as Delicious, CDKH is
the main problem, because tags perform several functions as bookmarks [6].

3 Agent-Based Reconciliation

Users’s Knowledge Conciliation aims to exploit an important benefit of the Web
2.0, namely information and knowledge sharing. A potential threat is that se-
mantic techniques are adapted to each user. Over time, the user’s knowledge
can vary a great deal, and this difference could create knowledge incompatibility
issues. In order to navigate through the set of tags and documents from different
users, SinNet1 has delegated this process to agents in order to make these dif-
ferent conceptualizations compatible. A agent-based conciliation algorithm was
presented in [2]. It is based on the idea that conceptual structure associated with
tags gives more information about the user’s tagging. The algorithm runs in six
steps:

1. Agent Creation: It starts creating two Jade2 agents, passing through agent
names and SinNet data as parameters.

2. Each Agent Then Builds Its Own Formal Contexts and Stem Basis

3. Initializing Dialogue Step: The agent executes tasks related to commu-
nications: It sends its own language (attribute set) to the other agent, and also
prepares itself to receive the same kind of messages from the other agent.

4. Restrictions of Formal Contexts: After this brief communication, each
agent creates a new (reduced) set of common attributes, and with them a new
context to which are added all of the objects from the original context, along
with the values and attributes of the common language.

5. Extraction of the Production System. (Stem Basis) for the new contexts.

6. Knowledge Negotiation between Agents: Agents establish a conversa-
tion based on objects, accepting them (or not) according to their tag set and
their own Stem Kernel Basis: if the object matches the rules, it is accepted, if not
the production system is applied, considering the object’s tags as facts, getting
the answer (new facts which should be added in order to be accepted as a valid
object) that is added to the object and re-sent to the other agent to be accepted.

1 http://www.semanticville.org/sinnet/
2 http://jade.tilab.com

http://www.semanticville.org/sinnet/
http://jade.tilab.com
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Once this process is completed, the agents will achieve a common context.
So, they can extract new concepts and suggestions from a common context, and
therefore, a shared conceptualization.

4 Delicious Bookmarking Service

Wehave chosen the bookmarking serviceDelicious (http://www.delicious.com/)
due to its large volume of data. In Delicious, objects are web links (urls), and at-
tributes are tags. Users save their personal web links tagged with their personal
tags. But several users may share common objects (with different attributes for
each one), or common attributes (tagged in different links). The structure and
dynamics of tagging with Delicious have been extensively analyzed [6]. Because
of limited computing capacity, certain reduction operations must be performed
in order to ensure the normal functioning of the solution presented in this paper.
Therefore, a subset of public Delicious data has been extracted, in which all the
links are tagged with the tag haskell, and saved in a private database (DB) used
to drive experiments.

The process of obtaining this data is achieved through a query by tag (haskell),
and the extraction of the associated results content: link, user, and others tags,
which have been saved in the DB. Thereafter, we optimize this data. For example,
one of the optimization operations achieved consisted of simplifying equal and
equivalent links that have different registers in DB. Our DB is composed of 4259
users, 3028 links, 2427 tags, and 45079 tuples of {user, link, tag}. Data extraction
was performed on March 1st, 2011. This data set has a volume large enough to
expect significant results. However, this set of data does not encompass all the
links related to the haskell tag, instead only the first query results.

4.1 The Relational Structure of Tags

In order to estimate the complexity of the relationships among tags of data
source, a graph was generated, in which nodes appear as tags, which were in-
terconnected by weighted edges, whose weight represents the amount of links
commonly shared according to a Delicious user. To understand the structure
of the graph and the number of relevant tags, some simplifications have to be
made.

Fig. 2 shows data resulting from semantic communities computing (using the
method [3]), which is a simplified graph. This graph shows 5 different commu-
nities, demonstrating that tags of a same community are very interconnected,
unlike tags of different communities, which display little connectivity. In the
graph, each node is characterized by its color (determining the community it
belongs to), its size (scaled according to its degree), and by the width of its
edges (scaled according to the weight of the edge). Finally, only the most rel-
evant nodes (27) and edges (138) are shown - accordingly measured by their
importance in terms of degree and weight, respectively.

http://www.delicious.com/
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Fig. 2. Analysis of tag communities induced by haskell tag in Delicious (simplified)

5 Multiagent System

Our aim is to find a good strategy in order to apply the reconciliation algorithm
presented above in Delicious. This algorithm allows us to calculate the recon-
ciled knowledge. However, this algorithm requires high computational resources.
Hence, choosing the right pairs of users to execute the algorithm, among the
whole community, remains a problematic issue. In order to execute a solution
that calculates reconciled knowledge for the whole tagging system, a negotia-
tion based on MAS is proposed, in which agents represent tagging system users.
They interact with each other to generate new common knowledge using the
above mentioned algorithm. In the following section, the results we obtained are
presented for different parameters used in the negotiation process. The MAS
has also been implemented in Jade, where the implementation of the previous
algorithm can be easily integrated. The execution of MAS can be described as
the following steps:

1. Initialization: In this step, as many user agents as needed are created. Only
users sharing a minimum number of tags (threshold) participate in the MAS. Ex-
ecution starts by creating an agent, called control, which passes this threshold as a
parameter. This agent searches the DB for all pairs of users satisfying the thresh-
old condition, and creates them within the MAS. Therefore, the presented agents
in the system are known by the control agent. The control agent may be useful to
manage the MAS when integrated in more complex systems. Every Useri must
know its personal information (username, links and tags), and initialize itself by
creating its own request queue. This queue contains references of all users hav-
ing an equal or greater number of common attributes. It is sorted by the common
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attributes number, in descending order. Additional methods are equally needed to
verify that a pair of users is only referenced in one of their request queues. Further
experiments use the number of common objects of a pair of users as the threshold
in order to compare results from both executions.

2. Negotiation: User agents must execute a dual behaviour in order to per-
form the negotiation process: sending and receiving requests. This negotiation
establishes a very simple method to decide when a pair of users starts the recon-
ciliation process. Each user is only allowed to perform one reconciliation process
at a time. Furthermore, received requests have priority over the sent ones. Two
possible states for each user are defined: free, if it is not performing any reconcil-
iation at the moment, and otherwise, busy. As such, only free users may send or
receive requests. On one hand, every user sends proposals to the user having the
highest priority in its request queue. If it receives a response, the reconciliation
process with the addressee starts. Should this not be the case, it reiterates with
the user having the next highest priority. On the other hand, every free user
accepts any incoming proposals, even if it has already sent another proposal,
which will be cancelled by timeout. The following conditions ensure that all of
the conciliations will be processed: their number is finite, and there is always
free users ready to accept new conciliations, reducing the number of unsolved
processes. When starting a reconciliation, user’s state switches from free to busy.

3. Reconciliation: The algorithm presented in section 3 is used to calculate
the common knowledge between two users. The steps 1 and 2 (user’s concept
lattice and SB) are executed only once, when the user runs it for the first time.
The rest of the steps (3-6), are executed each time the user runs the algorithm.
The obtained common knowledge, a formal context with objects and common
attributes, is stored in the DB. Both users switch from busy to a free state.

4. Finalization: When a user’s request queue becomes empty, its behaviour is
limited to receiving incoming proposals. However, if all the users’ request queues
are empty, no proposal is received by any of them. Therefore, this situation
requires that the execution stops. The control agent is used to manage it. It is
informed by every user when its request queue becomes empty. When all the
users have completed this action, the control agent stops the MAS execution.

6 Experiments

Different experiments have been conducted with data described in section 4 using
several criteria. The first criterion is setting a threshold of common attributes
(tags) between users. The second criterion is setting a different threshold of
common objects (urls). In both cases, the threshold is a necessary condition of a
minimum number of attributes or objects that two users must have in common
in order to execute the reconciliation algorithm. For each executed reconciliation
process, a common knowledge is obtained. This knowledge is a formal context
where the attributes are common to both users, and objects belong either to one
of them, or both. In this way, the global result is a set of reconciled contexts.
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Fig. 3. Contexts generated by number of common attributes or objects

The results obtained for both experiments using numerical and graphic repre-
sentations are presented bellow. In order to do so, the results have been measured
with five parameters for a fixed value of the threshold. They are the number of
contexts obtained (there are as many contexts as number of executed recon-
ciliation processes), and the average values of objects, attributes, concepts and
implications per context. Finally, both experiments are compared.

Reconciliation from Common Attributes: In this experiment, the thresh-
old value is set to 18. It implicates that two users having a language3 size greater
or equal to 18, reconcile their knowledge. It is assumed that users having a
number of common attributes less than 18 do not share a relevant amount of
information. In fig. 3 (left), the graphics are plotted in logarithmic scale.

A total of 908 contexts were obtained, with an average value of 44.18 objects,
18 attributes, 6.91 concepts, and 17.20 implications per context. As the threshold
value increases, the number of generated contexts decreases exponentially. How-
ever, the four average values tend to increase. Although the number of contexts
is smaller, they are semantically better, since the two users generating these
contexts share more information. In this DB, the maximum number of common
attributes is 64. Such a threshold value results in one matching context. It is
concluded that one pair of users share a minimum of 64 common attributes. In
this context, 138 objects, 38 concepts, and 114 implications are obtained.

Reconciliation from Common Objects: In the second experiment, the
threshold value is set to 3. The implication is that two users having a set of
common objects with size greater or equal than 3 reconcile their knowledge. As
previously mentioned, it is assumed that sharing less than 3 objects is not rele-
vant for the purpose of this study. In fig. 3 (right), the results are represented.
This case shows a total of 663 contexts, with an average value of 33.55 objects,
9.41 attributes, 6.09 concepts, and 79.75 implications per context. As the thresh-
old value increases, the number of obtained contexts also decreases, but in this
case, more than exponentially. The maximum number of common objects is 11,
which is very small: We obtain 98 objects, 37 attributes, 29 concepts, and 56
implications.

3 The language between two users is the set of common tags that both of them use,
independent of wether or not these tags have been used in different urls or not.
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6.1 Results

The results draw the conclusion that common attributes criterion is better than
common objects criterion. On one hand, the decrease in generated contexts is
higher when using common objects rather than common attributes. In the first
case, this decrease is higher than exponential (more curved than an exponential
line). On the contrary, the second case shows a exponential progression. On the
other hand, the semantic validity of the generated contexts, measured along with
their average values, is higher using attributes rather than objects. In the first
case, average values increase linearly. It is then thought that the higher number
of common attributes, the more reconciled context. Unlike the first case, the
second shows a constant function from a certain value of the number of common
objects. It seems that the validity of the generated contexts does not depend on
the number of common objects.

In conclusion, previous results lead us to think that the common attributes
criterion separates more effectively the sample of generated contexts. Indeed,
despite the fact that it returns a smaller amount of contexts, increasing the
threshold value leads to results semantically better. Therefore, it is a good mea-
surement of the semantic similarity of two users.

7 Conclusions and Future Work

The experiments described in this paper show the prevalence of semantic tech-
niques (tags) in resource sharing when users aim to exploit knowledge organi-
zation from other users in Delicious as a recommendation source. Although this
result seems evident, Web 2.0 shows several examples where url sharing by social
networks represent a powerful method for information diffusion (e.g. Twitter).

Therefore, we have empirical evidence that semantic similarity between users
is better supported by using the method of reconciling the knowledge among
users that have a large set of common attributes, rather than any other method.
One of our lines of research is the intensive application of definability meth-
ods based on completion [1] in order to enrich the bookmarking system and to
facilitate the reconciliation.
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Abstract. This works contains a proposition for a modern Web service
description, where functionality of Web service operations is defined with
a set of federated Local Controlled Vocabularies (LCV). The LCVs serve
as a referral platform for functionality definition with a phrase schema.
This schema allows for describing every Web service operation in terms
of main action associated with some object extended with an arbitrary
number of supplements and marked with desired non functional prop-
erties. The proposed description argues for federated LCV instead of
centralised fully fledged ontology based effort due to the cost, scalability
and performance issues simultaneously maintaining the high level of ex-
pressivity unreachable for standard Information Retrieval systems used
in Web service retrieval. This work concludes in presentation of mecha-
nism that allows for query matching on envisioned structure along with
experiment results and discussion on possible enhancements.

Keywords: federated local controlled vocabularies, Web service
description, functionality description, knowledge engineering, knowledge
representation, Information Retrieval.

1 Introduction

The model and mechanism presented here are a result of the ongoing research
on a modern functionality description for Web services. It was inspired by close
analysis of available solutions that propose a retrieval scenario for Web service
repositories. The importance of such repository is enormous especially in case of
Service Oriented Architecture ([12]) and electronic markets ([3]) of Web services,
as a repository is a key tool to find an entity that satisfies some particular needs.

Available solutions for Web service retrieval range from those using fully
fledged ontologies to augmented repositories indexing Web services as regular
text documents. A good review of available in [9]. There is trend of preparing
a solution that introduces a balance between the two extreme cases by incorpo-
ration of various additional features and relaxation of some requirements as in
[8], [7] and [5]. This work follows the mentioned trend with additional focus on
following aspects of the following qualities:

– effectiveness - ability to supply results meeting requirements, encoded in user
queries in time comparable with modern search engines,

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 639–646, 2012.
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– cost - an effort that shall be spent for a proper description, time spent
on learning necessary description techniques and a prognosis on a timewise
performance of analyzed solution,

– scalability - how soon and to what degree a performance shall drop along
with an increase in a number of handled Web services,

– scope - any important additions to a baseline of Web service description
by WSDL documents in terms of an identification of vital, not previously
addressed areas of a importance to user,

– purpose statement - stating the purpose of a Web service along with its
operations.

The structure of work is now given. First, a model overview is presented along
with discussion on its various aspects available to interested parties. Following
that a functional Web service description is introduced with details on its struc-
ture and capabilities. The introduced model is further investigated as a base
for mechanism of query matching which is detailed in subsequent section with
experiment description and discussion on its results. Summary section concludes
this work.

2 Model Overview

The most important quality that any model shall take into account is its effec-
tiveness as is perceived by users. This can be summarised as a high precision of
results from issued queries.

Semantic languages allow for that, yet they incur a considerable additional
cost to achieve this high precision. This cost is a combination of time invested into
a training and a description of every Web service. Many a time, this description
is yet another addition to already long list of product documentation.

Therefore, one could think of a perfect situation, where Web services ex-
pressed as WSDL documents were annotated at the same time they are being
documented. What is more, a further optimization shall directly force anyone
documenting and annotating WSDL documents include a number of words from
a controlled vocabulary. This vocabulary might be either a thesaurus or semantic
net. As inferring is out of the scope of this work, both of mentioned structures
offer a good combination of efficiency (in terms of speed) and transparency for
the end user. Annotation shall be performed so that each atomic element of a
Web service must be annotated with words from the Local Controlled Vocabu-
lary. It is important to make an assumption that, an atomic element should be
an Web service operation.

It is easy to notice that a sum of all words use to describe each operation of
a Web service might not yield a coherent picture of its functionality. Alas, this
is a very common situation in Web services gathered from the open Internet.

As organizations might be of an arbitrary size, a one centrally managed vocab-
ulary might be counterproductive due to a number of various obstacles, therefore
a federated structure of vocabularies is postulated. This postulate introduces
some caveats as there is a risk of repetition of some words. To overcome this
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problem a well known solution of namespaces is to be used. Every controlled
vocabulary must be described in terms of a unit or a group that is responsible
for it. While searching for an operation by a set of words, results will be grouped
by their namespaces. This is an interesting feature, as after retrieval a user can
quickly inspect results and notice whether a hit is stored in a namespace that
posses some interest for him. Therefore, from now on one shall refer to Local
Controlled Vocabulary.

To increase expressiveness of controlled vocabularies a simple language that
allows for writing queries similar to natural language is envisioned. This language
emphasizes simplicity and restricts queries to a set of formalized phrases.

The obvious advantages of this scheme over formal descriptions (implemented
with one of the semantic description languages) is its straightforwardness for a
user. There is no learning curve that descends deeper than absorption of vocab-
ulary that is used on daily basis in user’s closest environment. When a user is
to break boundaries of his everyday interests he is aided with a list of names-
paces mapping other organization units on software artifacts. This is important,
as when one is to step beyond known procedures one is more likely to consult
search service in order to answer a question of whether similar service exists in
a organisation. One may think of this as a utility that helps to avoid suboptimal
decisions by providing necessary data.

The cost side of the envisioned solution, at this point, is covered by intra
organizational agreement on documenting Web services in a specific manner
and honouring organizational policies. More, a controlled vocabulary must be
assembled to make it work. Cost of this operation shall be manageable as even
when started as an organization-wide effort the actual expenditure is at a unit
level. One is to assume that the unit size is limited.

Additional effort shall be recuperated when additional elements of systems
are requested and when new team members are taking over maintenance tasks
of some specific project. As previously highlighted all investment in extra de-
scription shall enable quicker and more confident decisions when a request for
new functionality arrives.

Local Controlled Vocabularies shall be most effective if and only if, orga-
nization implementing them agrees to give a complete control over an atomic
namespace to a single management. Preferably a single person shall wield the
control over vocabulary as there is no risk of decision conflicts. The management
role is of utmost importance because it has the ability to define the structure of
queries and decide what verb noun pairs are acceptable in a given namespace.
This allows for further features such as clustering of Web services based on their
functionality described with the controlled vocabulary. This resembles semantic
networks as structures for representing a language. Instead of describing entities
in terms of subtypes and instances, one is interested in relations such as more
general, more specific or vogue equivalent.

Additional measure, that shall help user experience is ranking functionality.
This ranking functionality centres on a number of requests of given Web service,
level of match of users query and number of times when other users chose a Web
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service in question and user’s affiliation in terms of organizational structure.
This is another method of simplifying access to potentially valuable data with
minimum effort on specifying additional criteria.

Link between the demand stream (projects, organizational units, business
goals) and Web services has to be underlined as it must be a first class citizen.
Many a time this channel of information is neglected and it should not be. In-
formation on inclusion of specific tools enables a business user to navigate in
terms that he understands. This might be viewed as a bridge between technol-
ogy centric Information Technology personnel and task oriented business users.
Traditionally, this resources are people and their skills and necessary additional
tangible and intangible assets. This model postulates that a mandatory exten-
sion is explicit markup of Web services used for any project. This is a benefit for
all parties involved as a business user does not have to identify technical details.
He only needs to point which project or projects he is interested in (in terms of
similarity or further maintenance) and all involved Web services are presented
to development team. This short circuit the overall process of gathering infor-
mation resources necessary for any given project to launch. An overview is given
in figure 1.

Fig. 1. Local controlled vocabulary for modern Web service description along with the
phrase queries described in detail in this work and free queries which were omitted
from the discussion
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3 Functional Web Service Description

As balance between flexibility and precision is to be achieved, some prerequisites
for description must be met. First of all, any operation serves some purpose, thus
it is being expressed by a verb term that denotes this action. Later a context
for this action is given. By a context, one is to understand a set of targets
and additional clarifications. General pattern of description must be based on
the form: do something - to what/whom - in what manner. Every Web service
operation can be accompanied by a non-empty vector storing the non functional
parameters and its values for operation in question.

Web service: 〈(α, β, γ),nfp〉

– α – action

– β – object

– γ – action-object supplement

– nfp – vector of NFP and its values.

As the first two parts are fairly obvious stating the target and the action, the
third clause is the most interesting one as it can vary a lot across different
domains. To differentiate the third claus from the first two one is to make an
assertion that both action and its target must be single terms. When one is to
describe them in compound fashion, this terms must be separated with under-
scores. On the other hand, third clause can contain a number of terms from
the semantic network in given organisation. Each term is automatically branded
with information on what project/namespace it originates. For Web services that
span across different systems and substructure groups it might contain terms an-
notated with foreign projects/namespaces.

When one is to examine already existing Web services that are invocable
on the open Internet he is quick to observe that the underlying pattern pro-
posed earlier is readily available to some degree. This was an exact source of
inspiration, a description method that does not completely break the efforts of
earlier efforts but tries to organize them with the criteria that are agreed upon
in some organization. Providing a common structure of every description allows
for semi-automated relation building between various suborganization units and
their namespaces.

When one is dealing with an organisation which software products are de-
signed by software architects one can expect a layered or otherwise structured
model that apart from clarity in terms of structure introduces order into naming
scheme of the software in question. Such order is a great cornerstone for descrip-
tion. One has to remember that not all functionality is eligible for being made
available as Web service operation. The eligibility depends upon the effects of
its invocation to its user or system itself. This is to be depicted in a variety of
reporting, checking, transforming and combining functionality given by Web ser-
vices. Lower level functionality is seldom available and by many it can seem that
such exposure is simply unnecessary or dangerous from system security point of
view.
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Thanks to introduction of a structure into a description of Web services,
queries on available operations can be performed in a manner allowing for pre-
sentation of viable transitions between actions, objects and their complementary
phrases.

4 Query Matching

The search for Web service operations is made fast in comparison with fully
fledged ontology description thanks to a solution acting as an automaton which
allows for rapid narrowing of the set of the feasible Web services. It has 4 ways of
narrowing the search space, as there are three key phrases that can be of interest
to a user and a forth one which is devoted to non functional parameters.

The simplest manner in which one can narrow the search space is with starting
with the non functional parameter vector. The operation of narrowing is just
a simple filter on available Web service operations that can be augmented to
the search of Web services where every operation has some desired trait and
a value of this frame matches the filtering query. This is especially important
when a high level overview has to be delivered so that decisions can be made
which are in scope of key business objectives - boosting delivery of some type of
services, revoking this type of services, changing scope and terms of agreements
concerning quality and warranties. To developers this information can be of small
importance, yet for the business users and executives this is a real benefit as its
direct mapping of business concepts to Web service operations.

Addressing the three key phrases of Web service operation description (α, β
and γ) is achieved thanks to inputting one or many possibly desired terms into
the automaton. As all the possible terms are handled by the envisioned system
for some given namespace, and additional terms from other namespace are also
reachable, query operates on the cache in form of hashes that contain terms as
keys and Web service operations as values. A situation traditionally viewed as
a key collision is perfectly acceptable one, as a list of Web service operations is
a valid value and algorithm can continue so that a query yields at some time
a possible solution. The results yielded by this stage are to be stored in a data
structure with traits of a set. With this assumption, a set arithmetic operations
shall lead directly to production of outputs satisfying requirements in a efficient
manner.

Stage results are to be combined by an aggregation procedure which reduces
outputs from the previously obtained phase in order to single out Web service
operations satisfying all of the requirements obtained from the user defined query.
If assumption on a set of traits of the outputs holds, this part is satisfied with
an operation of a set intersection, therefore efficiently computed even for large
data sets (with the same assumptions as presented in [2]).

5 Experiment

Table 1 presents the results of the experiment. The obtained complexity is
quadratic due to the fact that Web service descriptions had to be generated
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Fig. 2. Query resolution - operation flow is to be viewed from top to bottom

randomly, therefore a distribution of terms varied greatly in comparison to one
that is coherent with Zipf’s law what was discussed in greater detailed in [2].
The worst case scenario is that the intersection of two sets shall have complex-
ity of O(n ∗m) and the best case scenario with a specially crafted intersection
algorithm can yield complexity of O(n ∗ logm) where m and n are the sizes of
sets to be intersected. The experiment was performed on the corpus of randomly
generated Web service descriptions. It was repeated ten times and the number
of Web service descriptions was changed from 100 to 1000000. Every Web ser-
vice description was prepared according to previously discussed model. α and β
phrases were to contain a single term, γ phase and nfp vector could contain a
number of terms from the controlled vocabulary (ranging from 1 to 8). Overall
length of the query was modelled to be rather short due to the nature of Web
queries (please refer to [4] and [1]).

Table 1. Result of experiment on query matching times with modern Web service
description. Time is expressed in seconds.

Number of descriptions: 100 1000 10000 100000 10000000
Best time on 10 runs: 0.0001 0.0006 0.0064 0.0644 1.0950
Worst time on 10 runs: 0.0023 0.0008 0.0068 0.0821 1.3167
Averaged time on 10 runs: 0.0003 0.0007 0.0065 0.0736 1.2000

6 Summary

The model presented here along with query matching mechanism is an example
of a solution that breaks with traditional bipolar schema of Web service retrieval.
It values greatly a number of aspects often omitted in those solutions.
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Presented results demonstrate feasibility of the mechanism implementing func-
tionality in the model. Furthermore, the actual results can be even better due
to a number of optimizations both at the level of code and general use strategy.

There are additional mechanisms that shall make the solution implementing
the model even more robust such as the free query feature which is supported by
Local Context Anchoring and is a bridge between various namespaces existing
in a organization. Due to the space restrictions it was not described in greater
detail.
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Abstract. Development of advanced systems requires new methods to
improve quality and efficiency of engineering processes, and to assist man-
agement of complexmodels encompassing different engineering disciplines.
Methods such as model-driven development and domain-specific model-
ing facilitate development from this perspective but reduce interoperabil-
ity and other prospects of rationalizing processes, on the other hand. An
approach applying OWL semantics and reasoning to models is presented
with examples to support industrial control application engineering. Using
the methods, generalized classifications are inferred from instance models
and combined with generic engineering knowledge maintained in ontolo-
gies. Reasoning allows identifying assemblies and structures outside the
scope of traditional modeling to detect flaws and error-prone designs. The
results indicate that OWL semantics and reasoning can be used as a sup-
plement furthering typical development practices.

Keywords: control application engineering, software models, semantic
web, owl, rules, reasoning.

1 Introduction

Advanced control systems and applications are essential in monitoring and con-
trolling industrial processes and manufacturing operations. The increase in the
level of automation and intelligent features as well as the requirements on
performance, reliability and safety of these systems has resulted in engineer-
ing challenges. There is a demand for new methods to improve development and
engineering in order to address these requirements, and also to improve efficiency
of engineering processes and reduce the total costs of system development.

In system development, models are used to develop, document and communi-
cate engineering artefacts. For advanced systems the models easily become large
including tens of thousands of engineering objects. Especially when people from
different engineering disciplines use these models to communicate and collabo-
rate, and as input for automatic imports and transformations there is a risk for
error when potential problems and dependencies in models are not detected.

In our previous work, model-driven development (MDD) of industrial process
control applications has been studied with emphasis on development processes
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and domain-specific modeling constructs [1]. The developed engineering process
along with UML Automation Profile (UML AP) concepts enables the designer
to focus on significant engineering challenges while much of the work between
design phases is automated. Nevertheless, situations can be identified where the
development process and the modeling foundation is not sufficient in providing
the interoperability and support for further improving the engineering processes.

Interest in ontologies and related formalisms for industrial applications has
increased during the last years [2]. The use of Semantic Web technologies can
improve software engineering throughout the life-cycle by providing logic-based
formalisms and semantics to concepts [3]. Despite many benefits it is problem-
atic to shift to an entirely ontology-based modeling due to the differing nature of
the approach. The varying granularity, freedom in expressivity, and the required
complexity in modeling detailed semantics are examples of some of the imped-
iments. Semantic Web technologies can regardless of the above mentioned be
used as a supplement to MDD practices. For example, to provide added seman-
tics and interoperability during engineering phases to improve understandability,
knowledge management and reuse, automatic reasoning and classification, and
even assisting in automatic transformations. Semantic descriptions generated
from models could also be used for run-time operations [4][5].

From modeling perspective OWL does not allow syntactical enforcement of
specific restrictions as opposed to typical modeling languages. However, this
point of view can be neglected as the metamodel of the MDD approach typically
caters for those aspects. The purpose of using semantic methods is to capture
elements and features outside the scope of the metamodel. It is acknowledged
that Object Constraint Language (OCL) can be used in many cases for defining
constraints and rules to identify structures, related to the metamodel. OCL, how-
ever, is restricted to known types of the modeling language making it challenging
for maintaining more advanced knowledge of a more generic nature.

This paper presents application of semantics and reasoning on MDD models
in engineering of control applications using OWL 2 DL and SWRL. Knowledge
management and reuse of engineering information and existing know-how is also
discussed. Section 2 presents related work and background. The organization of
information in engineering ontologies is presented in section 3 and OWL rea-
soning challenges for control application models are presented in section 4. The
developed prototypes, examples and the results are discussed in section 5. Fi-
nally, section 6 contains the discussion and section 7 concludes the paper.

2 Related Work and Background

The complexity of consistency checking of UML class diagrams has been studied
by using first-order predicate logic [6]. Description Logics based reasoning has
been considered and applied to UML class diagrams to check for inconsistencies
and redundancy [7] and the authors opinion is that state-of-the-art DL-based
systems are ready to serve as a core reasoning engine in advanced case tools.
Also a framework for integrated use of UML class-based models and OWL has
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been proposed [8]. Semantics in ontologies have been used to enhance modeling
capabilities and transformations in MDD of service-based software [9].

The use of ontology-based query retrieval for reusing UML class diagram
designs during development has also been studied [10]. The results highlight
the importance of the domain ontology and the added semantics the ontologies
bring. The adoption of OMG MDA principles to ontology development have
been studied by [11] to facilitate transformations between different ontology
languages.

Ways to combine ontologies with metamodeling have been studied by [12]
and [13]. This paper enhances and deepens the discussion in [13] on the relation-
ship between ontologies and meta-modeling, and the model-driven development
paradigm by applying classification and reasoning to models in process control
application development to support engineering tasks.

3 Control Application Engineering Knowledge

Knowledge management in engineering of control applications can be organized
into three categories; domain knowledge, model instances, and use case specific
knowledge, as presented in figure 1. Domain knowledge represents information
related to the area of interest, e.g. a specific engineering discipline or a type of
systems or devices, and knowledge and practices such as modeling languages and
standards. From a modeling perspective a domain ontology (DO) provides the
central building blocks and constructs used in the application domain but with
additional semantic interoperability. The domain knowledge is of a static nature,
i.e. the ontologies do not change very often. This type of information can be
generated automatically from existing sources such as metamodels or standards,
for instance. Domain knowledge can also be mined and the extraction of domain
ontologies from engineering domain handbooks has been proposed [14].

UML AP modeling concepts [1] extend both UML and Systems Modeling
Language (SysML), and hence there are three metamodels with corresponding
domain ontologies defining the semantics and the relationships. In this case the
ontologies are taxonomies that primarily reflect relationships in the sense of
classification and generalization of concepts. In OWL a too detailed DO easily
causes unwanted inferences if all property domains and ranges are considered.

Model instance knowledge represents models under development or being
studied, i.e. model instances serialized as an individual or instance ontology
(IO). A plain representation of the individuals that relies on the corresponding
DO allows for the transformation between the modeling paradigms to remain
sufficiently simple [13]. The IO contains the individual class types, the associated
data properties, and structural ownership relations of the source instance model.

Use case specific knowledge refers to knowledge that can be described as
information used in analysis and reasoning, e.g. rules on typical design issues
and pattern-like structures, company specific conventions, and concerns where
special attention is desired. This knowledge is typically of a generic nature and
not restricted to a particular modeling or development method. In this sense,
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also mapping and alignment of different ontologies fall into this category when
information from various sources needs to be combined. The ability to combine
and reuse existing knowledge in different ontologies is also a justification for using
ontologies to support development, e.g. applying generic engineering knowledge
to the IO of a UML AP model while performing automatic structural analysis.

Knowledge base

Domain 
knowledge

corresponds 
to adheres to

Model 
instance 

knowledge

maps

applied to

applied to

Use case 
specifc 

knowledge

based on

• Design data
• Models
• Design artefacts and 

other interim output ...

•Project specifc 
practices and 
conventions

•Tacit knowledge 
captured as rules

•Mappings of 
equivalent and 
comparable 
concepts 

•Concerns of 
interest ...

• Standards
• Agreed domain 

practices
• Modeling languages 

and notations 
(metamodels )

• Standard 
components and 
existing constructs

• File formats...

based on ,
maps

Fig. 1. The knowledge in engineering scenarios can be divided into three main cate-
gories: domain knowledge, model instance knowledge, and use case specific knowledge

4 Reasoning with OWL

OWL and SWRL are based on an open world assumption (OWA) meaning that
anything that is not stated is unknown and cannot be used to deduce negation as
a failure, for instance. As OWL DL (and SWRL) is based on description logics it
supports only monotonic inference. Altering a fact based on some condition is not
possible and requires an additional layer, e.g. program code, to be implemented.
Also domain and range conditions are not constraints in the sense that they are
checked for consistency. In reasoning they are used as axioms to infer further
knowledge which can easily lead to unexpected effects e.g. in classification.

The impacts of open world semantics can be limited with techniques to close
the world or restrict different possibilities. Traditional programming languages
have often been used in combination with OWL to overcome these restrictions.
Recently there has also been a RDF/SPARQL based proposal [15] for circum-
venting some of the limitations that is also applicable to OWL.

The management of truth in the knowledge base is of importance in scenarios
where the knowledge is frequently updated, such as engineering environments.
The challenge in forward chaining is that facts can be both explicit and im-
plicit, and the same fact entailment can be based on a number of facts making
the management difficult. On the other hand, inferring all the entailments each
time can be too intensive from a performance point of view. This is worth not-
ing as OWL DL, for instance, is computationally hard and in the NExpTime
complexity class. Backward chaining is more attractive in the case of rapidly
changing knowledge bases where inference is conducted only when needed and
the additional entailments do not have to be stored and maintained.
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Typically a lot of work is required backtracking different possibilities and
reasoning is non-deterministic. Considering this, it can be argued that reasoning
easily becomes computationally challenging even for simple-appearing problems.
Although information can be stated more explicitly requiring less reasoning it is
an important issue especially when integrating other information sources.

5 Applications in Control Application Engineering

The prototypes developed implement the concepts of knowledge management
presented in section 3 with information distributed in separate OWL DL ontolo-
gies. The reasoning examples are performed mainly in Protege 4 but implemen-
tation as a Web Service in Java using OWLAPI has also been evaluated and
proved working as well. The Pellet reasoner has been used in all of the examples
both in Protege and the Java based OWLAPI implementation.

The SWRL based inferences are implemented DL Safe to retain decidability
and are embedded in the engineering knowledge ontology (EKO) and the Map-
ping ontology (MO). UML AP model transformations to instance ontologies are
performed using a refined version of the XSLT developed in [13]. Present are
also the domain ontologies for UML AP, UML, and SysML metamodels.

5.1 Examples

Figure 2 illustrates some of the inferences using the developed ontologies for a
subset of a control application model. UML AP model elements are connected
with nested AutomationFunctionPort and InterlockPort elements that are linked
using a UML Connector with ConnectorEnd sub elements identifying the Port
elements. The structure is complicated and rules can be used to infer direct
connections between model elements instead. The following MO rule considers
UML AP elements (DO concepts and IO individuals) in the antecedent part and
makes an inference of a simplified connection (EKO concepts) in the consequent.

AutomationFunctionPort(?prtA), AutomationFunctionPort(?prtB),

Connector(?cnn), ConnectorEnd(?cnnendA), ConnectorEnd(?cnnendB),

hasPart(?cnn, ?cnnendA), hasPart(?cnn, ?cnnendB),

hasLinkId(?cnnendA, ?idA), hasLinkId(?cnnendB, ?idB),

direction(?prtA, "out"^^string), id(?prtA, ?idA), id(?prtB, ?idB),

DifferentFrom (?prtA, ?prtB) -> hasPortConnectionOut(?prtA, ?prtB)

OWL allows declaring conditions for which new inferences can be made but the
use of rules allows more powerful expressing of deductive reasoning than OWL
alone. A similar example infers a tracedBy relation between Requirements and
AutomationFunctions from a TraceRelation contained in the Requirement.

AutomationFunction(?af), Requirement(?r), TraceRelation(?tr),

hasPart(?r, ?tr), modelId(?tr, ?id), sourceDomainId(?af, ?id)

-> tracedBy(?af, ?r)
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In addition to the inferred connections presented, also specific interlock con-
nections are identified as well as relations between measurements that via a con-
troller are connected to an actuator. For example the Primary and Secondary
Controller inferences are reasoned based on an OWL class expression identifying
a set point coming from another controller. The existence of cascade controllers
in the organizing control loop also classifies it as a Cascade ControlLoop. In addi-
tion there is a Complete Connected ControlLoop inference that has identified all
parts of the control loop to have the minimum amount of required connections.

If developing systems with safety requirements it could be required that all
interlocks implemented must have a separate measurement for the interlock that
is not used in the normal regulatory control of the actuator, for example. For this
an inference can be made that identifies those actuators that have an interlock
based on the same measurement that also the controller is utilizing.

<<ControlLoop>>
FIC100Loop

<<AnalogMeasurement, AI_3>>
F100

Desciption: flow measurement
SafetyRelated: false
Monitored: true
Channed ID: 
Quantity: F

Measuring aberrance min: 0.3
Measuring aberrance max: 9

EDouble Meas.Val  out AP

AP Boolean SetMode.Auto  in

String CurMode.Val  out AP

Boolean AlrmEvt.L  out AP

Boolean AlrmEvt.H  out AP

AP Integer MeasIn  in

<<Interlock, INT_2>>
M100INT

Desciption: Segment closed
SafetyRelated: false
Monitored: true

AP Boolean In1  in

AP Boolean In2  in

Boolean ForcedCloseOff  out IL

String IntMsg  out IL

<<Interlock, INT_2>>
Y102INT

Desciption: Dry pump protection via valve

SafetyRelated: false
Monitored: true

AP Boolean In1  in

Boolean ForcedCloseOff  out IL

AP Boolean In2  in

String IntMsg  out IL

Boolean ReleaseToOpenOn  out IL

Boolean ReleaseToCloseOff  out IL

Boolean ForcedOpenOn  out IL

String CurMode.Val  out AP

<<PIDAlgorithm, PIDC_2>>
FIC100

AlgorithmSpecification: null
Desciption: Flow control, PID
SafetyRelated: false
Monitored: true
Kp: 0.0
Ti: 0.0
Td: 0.0

AP EDouble Meas.Val  in

EDouble Ctrl.Val  out AP

Boolean Ctrl.On  out AP

AP EDouble SP.Val  in

AP Boolean PIDReset  in

AP Boolean Enable  in

AP Boolean SetMode.Auto

AP Boolean SetMode.Man  in

String AlrmEvt.Msg  out AP

Boolean AlrmEvt.On  out AP

APBoolean Ctrl.Off  out

<<PIDAlgorithm, PIDC_2>>
LIC200

AlgorithmSpecification: null
Desciption: B200 level control, PID
SafetyRelated: false
Monitored: true
Kp: 0.0
Ti: 0.0
Td: 0.0

AP EDouble SP.Val

AP EDouble Meas.Val  in

EDouble Ctrl.Val  out AP

<<AnalogMeasurement, AI_3>>
L100

Desciption: level measurement
SafetyRelated: false
Monitored: true
Channed ID: 
Quantity: L

Boolean AlrmEvt.L  out AP

EDouble Meas.Val  out AP

<<BinaryOutput, OOA_3>>
Y203

Monitored: true
Channed ID: 

IL Boolean ForcedCloseOff  in

Boolean IntActive  out IL

<<BinaryOutput, OOA_3>>
M100

Desciption: motor control
SafetyRelated: false
Monitored: true
Channed ID: 

Actuating range from/to min: 0
Actuating range from/to max: 100

IL Boolean ForcedCloseOff  in

AP Boolean Ctrl.Val  in

String AlrmEvt.Msg  out AP

Boolean AlrmEvt.On  out AP

String CurMode.Val  out AP

String IntMsg  out IL

Boolean IntActive  out IL

Boolean CtrlOut  out AP

Integer CtrlOutUINT  out AP

<<AnalogOutput, PA_1>>
Y102

Desciption: control valve
SafetyRelated: false
Monitored: true

Actuating range from/to min: 0
Actuating range from/to max: 100

IL Boolean ForcedCloseOff  in

AP EDouble Ctrl.Val  in

Boolean IntActive  out IL

Integer CtrlOut  out AP

String AlrmEvt.Msg  out AP

Boolean AlrmEvt.On  out AP

Measurement
Component

Controller
Component

Controller
Component

Measurement
Component

Interlock
Component

Interlock
Component

Output
Component

Actuator
Component

Actuator
Component

Secondary
Controller

Primary
Controller

Cascade ControlLoop

Complete Connected ControlLoop

hasInterlockConnectionIn

hasConnectionOut

hasConnectionIn

tracedBy
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Ports
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Connector
    Ends

 UML AP 
Automation Functions

Fig. 2. Example of some of the generalized classifications and inferred connections for
elements in a subset of a control application model. The red markings (lighter shade)
represent the result of mapping assertions from UML AP ontology concepts to generic
engineering concepts and the black markings further inferred facts about the model.
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5.2 Results and Experiences

Classifications and inferences enable many use cases for the method to support
engineering tasks and assist the developer by highlighting potential error-prone
designs and structures, for example. It also enables the use of automatic checking
of consistency and structures that the metamodel might not address.

Trace relations, for example, are used to relate requirements to functions in
the model as a means to improve quality. Inferring the trace is of little use if bro-
ken or missing traces cannot be identified. Inferring this, the different interlock
measurement or incompletely connected control loops, for example, is impossible
using OWL mechanisms due to the OWA. In practice one can get around this
if not developing applications that rely only on OWL. As the interesting con-
cepts or structures could be defined as complements of those identifiable with
OWL it was straightforward to make a complement using programming language
constructs as a middle layer in the Java based prototype.

Rules were used to infer direct relationships between elements to simplify
connections to the engineering knowledge. Rules were chosen because OWL does
not allow mixing of object and data properties in chains. The rule based approach
inferring simplified relationships based on linking sub elements proved to be
challenging for models containing hundreds of Ports. In comparison, deducing the
same connection assertions in the instance transformation phase, using XPath
and XSLT, the typical ontology classification time was reduced to a tenth of the
time required when the connection and interlock connection rules were included.

Using the reasoner also for the different individuals declaration of OWL was
found decreasing performance significantly with more than one thousand indi-
viduals. An alternative approach using a functional data property to differentiate
the individuals proved out more efficient.

A generic way to tackle large numbers of individuals is to perform reasoning
only on a subset of the model and iterate the complete model one package at
a time, for example. The feasibility of this, in general, depends on the source
domain model structure of how sub models are connected. For rules performance
a division of the reasoning tasks can be implemented by grouping rules to be
executed according to the needs of each task. When there are a lot of rules
involved it is, according to our experiences, usually quicker to run several smaller
and even partially redundant reasoning tasks than a large one including all of
the axioms.

Because UML AP is based on UML and SysML, and via its implementation
on the Eclipse platform also on the Ecore metamodel, it is worth considering
which of those equivalent ontologies are needed in reasoning. Unless utilization
of knowledge in UML or SysML is not required in inferences, the DOs may be
omitted from reasoning. For many purposes it is a feasible solution for UML
AP because the model semantics are present in UML AP with its own class
hierarchies, and the structures and semantics of UML and SysML are mainly
utilized for the modeling tool support. Nevertheless, classification and operating
with UML and SysML concepts is also possible for UML AP models if desired.



654 D. Hästbacka and S. Kuikka

5.3 Additional Requirements for Design-Time Reasoning

Off-line analysis of models, e.g. in project repositories, can be implemented with
less consideration on space and time complexity as it can be performed separately
from design. In order to implement on-line reasoning properly, e.g. for integrated
development environments (IDE), some additional issues have to be considered.

Reasoning performance is an important concern for support to be useful and
assisting in development tasks. Therefore it is not practical to do all reason-
ing tasks as on-line background processing. A plausible approach could be to
limit on-line reasoning only to a subset of selected objects and performing more
extensive analysis less frequently, e.g. when saving or changing views.

Another issue to consider is the way the model instances in the IDE are
transformed to the knowledge base. A practical transformation approach instead
of the XSLT could be to use an incremental transformation that simultaneously
maintains a semantic knowledge base of the model being developed.

6 Discussion

Interpreting models as ontologies enables various classifications and inferences to
be performed. When knowledge about instances is combined with other informa-
tion new inferences can be made to support development and give an indication
about structures that designers should pay attention to, for example.

OWL provides capabilities for describing concepts beyond typical modeling
languages. Additionally, OWL provides semantic interoperability which is an
increasingly important feature both for networked engineering environments and
the systems being designed. Using OWL, pattern-like structures can be identified
and generic platform agnostic engineering knowledge can be applied and reused
to classification and analysis of model instances.

In addition to practical issues which currently prevent adoption of pure OWL
based engineering, it is also limited by some of its inherent design patterns
originating from Description Logics. The OWA is a considerable restriction when
reasoning on application models that reflect more a closed space. To close the
assertional box an additional layer of program code or other techniques are
required that e.g. operate on the less restricted OWL FULL or RDF level.

7 Conclusion

Development of advanced systems, such as industrial control applications, re-
quires new methods to improve quality and efficiency of engineering, and to
assist in handling of complex design models. Typical modeling methods, how-
ever, often fall short in interoperability, expressing additional knowledge, and
reasoning on structures and features beyond single elements.

This paper presented application of OWL semantics and reasoning to models
when developing control applications. Using the developed method, elements in
models can be classified and generic engineering knowledge can be applied to



Semantics and Reasoning for Control Application Engineering Models 655

detect inconsistencies and anomalies in model instances. According to our expe-
riences OWL can be used as a supplement to MDD to provide interoperability
and support in various engineering operations developing complex systems. The
presented implementation and experiments are of an off-line nature but the gen-
eral approach and some of the implementations, i.e. classifying a subset of a
model, can also be adapted to on-line reasoning in an IDE as well.
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Abstract. The collective classification problem for big data sets using
MapReduce programming model was considered in the paper. We intro-
duced a proposal for implementation of label propagation algorithm in
the network. The method was examined on real dataset in telecommuni-
cation domain. The results indicated that it can be used to classify nodes
in order to propose new offerings or tariffs to customers.

Keywords: MapReduce, collective classification, classification in net-
works, label propagation.

1 Introduction

Relations between objects in many various systems are commonly modelled by
networks. For instance, those are hyperlinks connecting web pages, papers ci-
tations, conversations via email or social interaction in social portals. Network
models are further a base for different types of processing and analyses. One of
them is node classification (labelling of the nodes in the network). Node clas-
sification has a deep theoretical background, however, due to new phenomenon
appearing in artificial environments like social networks on the Internet, the
problem of node classification is being recently re-invented and re-implemented.

Nodes may be classified in networks either by inference based on known pro-
files of these nodes (regular concept of classification) or based on relational in-
formation derived from the network. This second approach utilizes information
about connections between nodes (structure of the network) and can be very
useful in assigning labels to the nodes being classified. For example, it is very
likely that a given web page x is related to sport (label sport), if x is linked by
many other web pages about sport.

Hence, a form of collective classification should be provided, with simulta-
neous decision making on every node’s label rather than classifying each node
separately. Such approach allows taking into account correlations between con-
nected nodes, which deliver usually undervalued knowledge.

Moreover, arising trend of data explosion in transactional systems requires
more sophisticated methods in order to analyse enormous amount of data. There
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is a huge need to process big data in parallel, especially in complex analysis like
collective classification.

MapReduce approach to collective classification which is able to perform pro-
cessing on huge data is proposed and examined in the paper. Section 2 covers
related work while in Section 3 appears a proposal of MapReduce approach to
label propagation in the network. Section 4, contain description of the experi-
mental setup and obtained results. The paper is concluded in Section 5.

2 Related Work

2.1 Collective Classification

Collective classification problems, may be solved using two main approaches:
within-network and across-network inference. Within-network classification, for
which training entities are connected directly to entities, whose labels are to be
classified, stays in contrast to across-network classification, where models learnt
from one network are applied to another similar network [8]. Overall, the net-
worked data have several unique characteristics that simultaneously complicate
and provide leverage to learning and classification.

Among others, statistical relational learning (SRL) techniques were intro-
duced, including probabilistic relational models, relational Markov networks,
and probabilistic entity-relationship models [9,10]. Two distinct types of classifi-
cation in networks may be distinguished: based on collection of local conditional
classifiers and based on the classification stated as one global objective function.
The most known implementations of the first approach are iterative classification
(ICA) and Gibbs sampling algorithm (GS), whereas example of the latter are
loopy belief propagation (LBP) and mean-field relaxation labeling (MF) [11].

2.2 MapReduce Programming Model

MapReduce is a programming model for data processing derived from functional
language[3]. MapReduce breaks the processing into two consecutive phases: the
map and the reduce phase. Usually, big data processing requires parallel execu-
tion and MapReduce provides and manages such functions. It starts with data
splitting into separate chunks. Each data chunk must meet the requirement of
< key, value > format, according to input file configuration. Then each data
chunk is processed by a Map function. Map, takes an input pair and results
with a set of < key, value > pairs. All values associated with the same key
are grouped together and propagated to Reduce phase. The Reduce function,
accepts a key and a set of values for that key. The function performs some pro-
cessing of entered values and returns a new pair < key, value > to be saved as an
output of processing. Usually reducers results in one < key, value > pair. Both,
Map and Reduce phases need to be specified and implemented by user[1,2]. The
aforementioned process is presented in figure 2.2.

The MapReduce is able to process very large datasets thanks to initial split
of data into small chunks. The most common open-source implementation of
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Fig. 1. The MapReduce programming model

MapReduce model is Apache Hadoop library[4]. Apache Hadoop is a framework
that allows distributed processing of large data sets. It can be done across clus-
ters of computers and offers local computation and storage. The architectural
properties of Hadoop deliver high-availability not due to hardware but applica-
tion layer failures handling. The single MapReduce phase in Hadoop is named
Job. The Job consist of map method, reduce method, data inputFiles and con-
figuration.

3 Collective Classification by Means of Label Propagation
Using MapReduce

The most common way to utilize the information of labelled and unlabelled
data is to construct a graph from data and perform a Markov random walk on
it. The idea of Markov random walk has been used multiple times [5,6,7] and
involves defining a probability distribution over the labels for each node in the
graph. In case of labelled nodes the distribution reflects the true labels. The aim
then is to recover this distribution for the unlabelled nodes. Using such a Label
Propagation approach allows performing classification based on relational data.

Let G(V,E,W ) denote a graph with vertices V , edges E and an n × n edge
weight matrix W . According to [6] in a weighted graph G(V,E,W) with n = |V |
vertices, label propagation may be solved by linear equations 1 and 2.

∀i, j ∈ V
∑

(i,j)∈E

wijFi =
∑

(i,j)∈E

wijFj (1)

∀i ∈ V
∑

c∈classes(i)

Fi = 1 (2)

where Fi denotes the probability density of classes for node i. Let assume the
set of nodes V is partitioned into labelled VL and unlabelled VU vertices, V =
VL ∪ VU . Let Fu denote the probability distribution over the labels associated
with vertex u ∈ V . For each node v ∈ VL, for which Fv is known, a dummy node
v′ is inserted such that wvv′ = 1 and Fv′ = Fv. This operation is equivalent to
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’clamping’ discussed in [6]. Let VD be the set of dummy nodes. Then solution
of equations 1 and 2 can be performed according to Iterative Label Propagation
algorithm 3.

Algorithm 1. The pseudo code of Iterative Label Propagation algorithm
1: repeat
2: for all v ∈ (V ∪ VD) do

3: Fv =
∑

(u,v)∈E wuvFu∑
(u,v)wuv

4: end for
5: until convergence

As it can be observed, at each iteration of Iterative Label Propagation cer-
tain operations on each of nodes are performed. These operations are calculated
basing on local information only, namely node’s neighbourhoods. This fact can
be utilized in parallel version of algorithm, see algorithm 2.

Algorithm 2. The pseudo code of MapReduce approach to Iterative Label
Propagation algorithm

1: map < node; adjacencyList >
2: for all n ∈ adjacencyList do
3: propagate< n;node.label, n.weight >
4: end for

1: reduce < n, list(node.label, weight) >

2: propagate< n,
∑

node.label·weigth∑
weight

>

MapReduce version of Iterative Label Propagation algorithm consist of two
phase. The Map phase gets all labelled and dummy nodes and propagate their
labels to all nodes in adjacency list taking into account edge weights between
nodes. The Reduce phase calculates new label for each node with at least one
labelled neighbour. Reducers calculates new label for nodes based on a list of
labelled neighbours and relation strength between nodes (weight). The final re-
sult, namely – a new label for a particular node, is computed as weighted sum
of labels’ probabilities from neighbourhood.

4 Experiments and Results

For the purpose of experimental setup the telecommunication network was built
over 3 months history of phone calls from leading European telecommunication
company. The original dataset consisted of about 500 000 000 phone calls and
more than 16 million unique users.
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All communication facts (phone calls) were performed using one of 38 tariffs,
of 4 types each. In order to limit the amount of data and simplify the task
to meet hardware environment limitations only two types of phone calls were
extracted and utilized in experiments.

Users were labelled with class conditional probability of tariffs, namely sum of
outcoming phone calls durations in particular tariff was divided by summarized
duration of all outcoming calls. Eventually, final dataset consisted of 38585 users.

Afterwards, the users’ network was calculated, where connection strength be-
tween particular users was calculated according to equation 3.

eij =
2 · dij
di + dj

(3)

where dij denotes summarized duration of calls between user i and j, di - sum-
marized duration of ith outcoming calls and dj - summarized duration of jth
incoming calls. Obtained network was composed of 55297 weighted edges be-
tween aforementioned users.

The goal of the experiment was to predict class conditional probability of
tariff for unlabelled users.

Initial amount of labelled nodes (training set) for collective prediction was
established to 37% randomly chosen users, according to uniform distribution.
The rest of nodes should potentially belong to test set, however due to the
property of examined algorithm some of nodes were unable to be reached and
this same to have a label assigned. This mean that some of nodes did not posses
incoming edges and the algorithm was not able to propagate the probability of
labels to them. Eventually, the final test set was composed of only 2% of users
distributed over the whole network. Nevertheless, the rest of nodes were utilized
to keep the structure of network and propagation of labels, please see figure 4.

The collective classification algorithm was implemented in MapReduce pro-
gramming model. It consists of six Jobs, each accomplishing map-reduce phases.
Detailed description of Jobs is presented in table 1. The convergence criterion in
the algorithm has been controlled by ε change of conditional probability for each
node. The algorithm was iterating until the this change was greater than ε. The
experiment was organised in order to examine the computational time devoted
for each of map-reduce steps as well as the number of iterations of the algorithm.
The time was measured for three distinct values of ε = {0.01, 0.001, 0.0001}.

The final assessment of implemented algorithm was measured using mean
square error between predicted label probability and known (true) label proba-
bility. The Mean Square Error (MSE) equals 0.1522 for all three ε values. There-
fore we did not observe significant changes in the performance of algorithm while
examining different values of convergence criterion ε.

However, as presented in table 2 and figure 3 the value of convergence criterion
ε has an impact on number of executions of implemented jobs. The less restrictive
it is, the less executions of jobs to be performed.

The results obtained during experiments (MSE, execution time) indicate
that proposed MapReduce approach for implementation of Iterative Label



MapReduce Approach to Collective Classification for Networks 661

Fig. 2. Types of nodes that have been utilized in the experiments: labelled and unla-
belled, training and testing ones, used only for label propagation and omitted

Fig. 3. Execution time in [s] of map-reduce jobs for distinct convergence criterion ε
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Table 1. MapReduce jobs implemented in the algorithm

Job name Job description

adjacencyList the job takes edge list as an input and returns an adjacency
list for all nodes

dummyAdjListAndLabels the job creates a list of dummy nodes with labels according
to algorithm [9] and updates an adjacency list by newly
created edges from dummy nodes

mergeAdjListAndLabel the job merges a list of nodes labels with adjacency list
resulting in collective classification input

collectiveClassification the job processes collective classification data according to
algorithm and results in new label list

singleLabelsComparison the job results with absolute difference of class conditional
probability of labels from actual iteration and previous
iteration

allLabelComparison the job returns maximal difference of input list (absolute
difference of class conditional probability)

Table 2. Execution time in [s] and number of executions of map-reduce jobs for distinct
convergence criterion ε

Job name ε = 0.01 ε = 0.001 ε = 0.0001
No. exec. Time No. exec. Time No. exec. Time

adjacencyList 19 1 19 1 19 1
dummyAdjListAndLabels 17 1 17 1 17 1
mergeAdjListAndLabel 134 7 192 10 245 13
collectiveClassification 117 7 164 10 216 13
singleLabelsComparison 101 6 152 9 223 12
allLabelComparison 96 6 145 9 210 12

Propagation algorithm correctly performs parallel computation and results with
satisfactory prediction results. Moreover it is able to accomplish prediction on big
dataset, impossible to achieve in single thread version of algorithm in reasonable
time.

5 Conclusions

The problem collective classification using MapReduce programming model was
considered in the paper. We introduced a proposal for implementation of Itera-
tive Label Propagation algorithm in the network. Thanks to that, the method
can perform complicated calculation using big data sets.

The proposed method was examined on real dataset in telecommunication
domain. The results indicated that it can be used to classify nodes in order to
propose new offerings or tariffs to customers.
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Further experimentation will consider a comparison of the presented method
with other approaches. Moreover, further studies with much bigger data will be
conducted.
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Abstract. In this paper, we propose a novel KMS by using semantic wiki frame-
work based on a centralized Global Wiki Ontology (GWO). The main aim of
this system is i) to collect as many organizational resources as possible, and ii)
to maintain semantic consistency of the system. During enriching the KMS in a
particular domain, not only linguistic resources but also conceptual structures can
be efficiently captured from multiple users, and more importantly, the resources
can be automatically integrated with the GWO of the KMS in the real time. Once
users add new organization resources, the proposed KMS can formalize and con-
textualize them into a set of triplets by referring to a predefined pattern-triplet
mapping table and the GWO. Especially, since the ontology matcher is inter-
leaved, the KMS can determine whether the new resources are semantically con-
flicted with the GWO.

Keywords: Knowledge management system, Semantic wiki, Ontology match-
ing, Semantic annotation, Collaborative editing, Semantic consistency.

1 Introduction

Wiki systems have been regarded as the most successful application for realizing col-
lective intelligence. Users in these wiki systems are able to collaboratively publish re-
sources (e.g., information and knowledge) through web pages as well as to take various
activities (e.g., discussion and correction) [1,2]. However, since the amount of resources
in the wiki has been extremely increasing, it is difficult to support efficient collabora-
tions among the wiki users. The wiki users can not recognize the whole structure inside
the wiki, as well as the latest information published by the other users. It means that the
information published by different users tends to be inconsistent and semantically het-
erogeneous. Even though consensus (e.g., reconciliation) among wiki users may deal
with such inconsistencies, it takes a long time to foster a number of interactions among
the wiki users for building the consensus.

To solve the problem more efficiently, many semantic wiki platforms have been pro-
posed as an extension of general wiki systems by using semantic technologies [3]. The
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main feature of the semantic wiki systems is to support useful annotation facilities for
attaching semantic metadata to the resources that the users want to insert into the wiki.
Essentially, a centralized ontology1 has been employed to the wiki system for allowing
users from various organizations (e.g., universities and companies) to efficiently work
together on knowledge-enhanced tasks [4].

While conventional hyperlinks on the web are indicating physical links between web
pages or resources, the relationships between the resources on semantic wikis are de-
scribed by a specific vocabulary. This process is referred to as semantic annotation for
describing the resources of the wiki. For example, in Fig. 1, given two wiki pages of a
city Seoul and a country Korea, a wiki user can define a semantic relationship isCap-
italOf between them.

Global Wiki 
Ontology

Wiki 
Page

Wiki 
Page

Wiki 
Page Wiki 

Page

Wiki 
Page Wiki 

Page

Semantic wiki

Seoul

Korea

isCapitalOf

Paris

France

Fig. 1. An ontology-based semantic annotation of wiki resources

So far, most of the current semantic wiki systems have directly asked users to explic-
itly assert the definitions of the wiki resources as well as the relationships between them
by referring to the semantics derived from the centralized GWO. This “manual” pro-
cess requires much effort of the wiki users in minimizing the inconsistency problems,
even though the precision of the manual process might be high. It means that another
wiki user needs to find out whether any matched semantics exist for defining two wiki
resources. For instance, when the user is trying to add Paris and France, he has to learn
that there already exists the same semantics (i.e., isCapitalOf) in the GWO.

Of course, more seriously, as wiki resources are inserted, updated, and removed by
the users, the GWO can dynamically change over time.

The aim of this work is to support wiki users by interleaving ontology mapping tools.
While the user is inserting the resources, the proposed semantic wiki system can i) be
aware of his/her contexts, ii) match the context with the GWO, and iii) recommend the

1 In this paper, we call this ontology as a Global Wiki Ontology (GWO).
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matched semantics to the user. Through these processes, the wiki resources from the
users are semi-automatically annotated, and consequently, knowledge of the semantic
wiki is effectively managed with increasing semantic enrichments.

While most of the existing studies have focused on annotating the collected resources
by converting them to machine-readable resources (i.e., two steps of authoring and an-
notation), the proposed semantic wiki in this paper wants to emphasize that wiki re-
sources (semantic wiki pages) can be annotated during an authoring process (i.e., one
step of annotation-based authoring). Thus, the users do not need to consider how to con-
duct semantic annotation, except for describing the wiki resources in natural language
sentences.

Thereby, in this work, semantic annotation based on GWO can be viewed as identi-
fying semantics expressed in each principal terms and then creating instances populated
from a given ontology. During authoring the wiki pages, the system can automatically
extract a set of semantic elements (which are called triplets) by discovering principal
terms. Once triplets are extracted from the principal terms using a natural language pro-
cessing technique, the second part of the task can be achieved using an ontology map-
ping schema [5]. Due to the lack of information for the task, sometimes, users would
be asked dynamically to give more information so that the system can infer appropriate
relations and suggest it to user. In the interactive fashion, language resources can be
annotated online, producing annotated resources.

The paper is organized as follows. In Sect 3, we describe the proposed approach to
online semantic annotation. Especially, the ontology mapping method will be shown to
find out the semantic correspondences between language resources and global wiki on-
tologies. Sect. 4 gives a simple example for better understandability, and Sect. 5 shows
an experimental result for justifying the proposed wiki platform. Finally, in Sect. 6, we
will draw a conclusion and address our plans in the future.

2 System Architecture of Semantic Wiki

The proposed semantic wiki system is based on a centralized ontology (called GWO)
which can be referred by all of the wiki users. The system is composed of three main
components, which are user interface, a database, and a core module for semantic an-
notation.

As the first component, user interface module is to interact with multiple wiki users.
Through this user interface, the users can generate new wiki pages and update them.
Also, the users can find the semantic annotations provided from the system, during
editing the wiki pages. Second main component is a database. Basically, the goal of
this database is to record all activities taken by wiki users within the wiki system. Such
activities include any access histories (e.g., login time).

The third component for semantic annotation is the most important one in this sys-
tem. As previously described, this component can find out how the user inputs are se-
mantically related with the GWO, and also how to enrich the GWO.

Definition 1 (Global wiki ontology [13]). A global wiki ontology O is represented as

O := (C,R, ER, IC) (1)
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where C and R are a set of classes (or concepts), a set of relations (e.g., equivalence,
subsumption, disjunction, etc), respectively. ER ⊆ C×C is a set of relationships between
classes, represented as a set of triples {〈ci, r, cj〉|ci, cj ∈ C, r ∈ R}, and IC is a power
set of instance sets of a class ci ∈ C.

While user edit a wiki page, triplet extractor should be interleaving in real time. Tech-
nically, this triplet extractor is based on AJAX method which can refer to the triplet
pattern repository (TPR). A set of triplets matched with the TRP can be compared with
GWO by the ontology mapper (OM). Finally, the mapping results, which are regarded
as the semantic annotation in this work, are sent to the user interface module and shown
to the wiki users. The extracted triplet is semantically matched to the GWO.

3 Online Semantic Annotation

In this work, online semantic annotation is regarded as a semi-automatic process that
takes as input a stream of words entered by a user and simultaneously generates an-
notated resources in which each words are described using vocabulary from given on-
tology. In opposition, offline semantic annotation takes as input a document that had
already been written and then annotates it. It should be noted that output of both ap-
proaches are much the same, e.g. annotated resources. The difference is in that while the
former approach parses incomplete sentences entered in real-time, the later approach
parses relatively well-formed sentences in already existing documents. Moreover, the
online semantic annotation has some advantages in that it can obtain necessary infor-
mation in real-time by asking the writer to provide more information. For example, the
meaning of a multi-sense word can be clarified by asking the writer to specify domain
to which it belongs. Thereby, we divide the problem into two phases;

1. The first phase is to extract triplets from a stream of words which a user is entering.
2. The second phase is to automatically map the resulting triplets into a global wiki

ontology (GWO) for annotating the resources.

On its way of processing, in the case that input words are unidentifiable, it suggests
alternative words to allow to select another one that is identifiable for itself. More im-
portantly, ontology mapping module is interleaved with extracting triples. It means once
we have extracted any triple, the ontology mapping module has to find out the best map-
ping to the given global wiki ontologies.

3.1 Online Triplets Extraction from a Word Stream

In this section, we present how to extract triplets from a stream of words user enters. By
the stream of words, we indicate a sequence of words. If it is the point at which the user
does not finish to write a sentence, the word stream at that moment would be the first
part of the sentence. Because the system takes as input words at each time user enters,
it has an opportunity to bother users to stop and enter the next word in an way in which
its annotation task proceeds as desired.

Suppose, for example, that the word stream, “The capital city of”, is the current
snapshot. By referring to a global wiki ontology or language resources, it can be inferred
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that the next word must be of a country name, such as “Korea”. If users entered the
word “Seoul” instead of “Korea”, the system lets users know that a typographical error
or semantic mismatch occurs, since “Seoul” is not a name of country. In this fashion,
it is ensured that in a systemic way every words user entered are correctly analyzed
and converted into meaningful triplets, although the user is not allowed to enter whose
semantics is not recognized using language resources it bases. Fortunately, WordNet
already indexes a number of terms with its synset terms, which might be effectively
used for word sense disambiguation.

While regular expressions are not enough to parse complex natural language sen-
tences, it could effectively be used in parsing very simple word streams acquired from
the interactive approach mentioned above. A hand-made pattern-triplet mapping table,
which is used for mapping a string pattern into a triplet, is shown in Table 1. It is com-
posed of 2-tuples that consist of a regular expression-like pattern and corresponding
triplet.

Table 1. An example of pattern-triplet mapping table. * indicate a blank node whose value is
assigned later when sufficient information is found in the next input by user.

Pattern Triplet

The capital of ARG1 <ARG1> <hasCaptialCity> <*>
ARG1 is ARG2 <ARG1> <isA> <ARG2>
ARG1 express ARG2 <ARG1> <definedAs> <ARG2>
ARG1 aim at ARG2 <ARG1> <motivationOf> <ARG2>

Given a word stream, before extracting triplets from it, it is firstly figured out which
patterns are matched to it. To find out its corresponding pattern, all of patterns are indi-
vidually taken and tested by using a classical string matching technique. For instance,
“The capital” as the first term in the word stream has no corresponding pattern. Note
that the first pattern, “the capital of ARG1” was rejected, since it was not matched as a
whole. Once an appropriate pattern is found, a triplet is automatically extracted whose
argument slots are replaced with some principal terms. For the word stream, “The capi-
tal of ARG1” resulting triplet would be “<Korea><hasCaptial><*>”. The character
“*” is marked to indicate a blank node, since principal words that can be assigned in that
place has not been entered yet. Using a heuristic, the slot is filled by observing the next
a few words, “[T1] is Seoul”, where T1 corresponds to the already-extracted triplet.
The second pattern, “ARG1 is ARG2”, would be selected whose first argument, ARG1,
comes with the triplet, “<Korea> <hasCapital> <*>”. Combining two triplets, we
are able to obtain linked triplets, “<Korea> <hasCapital> <R1>”, “<R1> <isA>
<Seoul>”.

3.2 Mapping to Global Wiki Ontology

In this section, we describe how the resulting triplets be mapped into the global wiki
ontology. The main purpose of this task is to assign semantics to the resulting triplets
so that a complete form of annotated resources referring to the global wiki ontology is
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produced. The main idea of this mapping process is based on finding out the optimized
alignment state which is maximizing the summation of similarities between all pairs of
ontologies elements [14,15].

By allowing different users to edit the same page, collaborative editing involves some
risk, e.g., inconsistent semantic wiki pages. In other words, relationships among sen-
tences are hard to be captured if these were annotated using heterogeneous ontologies.
In most cases, however, readers expect to see a semantic wiki page based on the same
context. Most of applications that utilize such a machine-readable document often as-
sume that single domain-specific knowledge is sufficient to analyze one document.

Furthermore, we can take into account multiple ontologies. In this case, an ontology
alignment task [16] can also help to integrate sentences which were annotated using
different ontologies. Thus, one of drawbacks of collaborative editing on semantic wikis
can be resolved by using this ontology mapping method.

4 Example

Wiki platform has been regarded as an important media to support online communica-
tions between multiple users. This work has extended the generic wiki platform to be
aware of semantic relationships between the resources in the wiki.

Now, we want to present a simple example. Suppose that a user is entering the sen-
tence “The capital of Korea is Seoul”. In a specific moment, the word stream could be
“The capital of”. If he enters the word, “Seoul”, then the system will tell him that the
word is wrong, since it is not a country name. After realizing his fault, he can correct
it to “Korea”, which is an appropriate word. Based on the pattern list in Table 1, the
triplet labeled with T1 is extracted, as shown in Table 2. Continuing this procedure, two
triplets are extracted.

Table 2. As user enters words, corresponding triplets are extracted simultaneously

Word stream Triplets

The capital of apple None
The capital of Korea T1 : <Korea> <hasCapital> <*>
T1 is T1 : <Korea> <hasCapital> <*>
T1 is Seoul T1 : <Korea> <hasCapital> <R1>

T2 : <R1> <isA> <Seoul>

Once patterns have been found, we need not taken into account whether the sentence
is grammatically correct or not. Given a global wiki ontology, we are able to create a
semantically annotated document as desired. Information about the author and original
sentence, which is a wiki-specific one, is also added to it.

We now review the approach described in this paper. In order to successfully ex-
tract triplets from sentences which a user is entering, Due to the limitation of NLP
processes, so far we have been assuming that users enter very simple sentences with
no complex dependency among words, . It is because we use a pattern-based approach
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which can hardly be robust against complex sentences if not sufficient patterns is avail-
able. If we are allowed to assume that the purpose of authoring semantic wiki pages is
to produce a machine-readable document in a collaborative way, such limitation is rea-
sonably acceptable. It is very difficult to create machine-readable documents from the
scratch, because even state-of-art technology such as OWL (Web Ontology Language)
offers very complex for human. So, we argue that it might be an efficient approach to
allow human to author a document in a controlled language, and then converts it into
a machine-readable format. In addition, by mapping to a global wiki ontology, seman-
tic wiki pages which were created based on it can share its semantics, making them
consistent according to the ontology.

5 Experimental Results and Discussion

In order to evaluate the proposed semantic wiki system, we have implemented the basic
platform, and employed it to build an efficient KMS for e-learning in the purpose of
training college students. As a use case, 40 faculty members in Inha university, Korea
were invited to use the proposed semantic wiki platform for developing the curriculum
in three departments. The users are divided into two groups which are denoted by GA

and GB , respectively. While the users in GA could use only simple online communica-
tions (e.g., email and bulletin board), users in GB can use only the proposed semantic
wiki platform for communication. They had to describe what each course is about, and
assert the relationships between courses.

We have compared two different situations with the same users. Both situations are
indicating two different semesters, i.e., i) Fall 2009 and ii) Spring 2010. We have mea-
sured the number of terms added by multiple users every two hours, and the time to
determine the final decision in each case (i.e., how long it took to reach the final con-
sensus).

We found out that most of users in both groups have added new terms for wiki pages
over time. Particularly, in the final stage, the total numbers of wiki terms by both groups
were almost same. It means that once enrichment of ontology has been done, the size
of ontologies seems quite identical.

However, the most important finding in this experimentation is the convergence rate,
which means how quickly and efficiently the ontologies have been enriched. In case of
GA, the converging rate has been monotonically increasing. On contrast, the converging
rate of GB has been dramatically increasing, until it has reached to a certain moment.
Based on these patterns, we can understand that semantic wiki-based annotation helps
the users (i.e., GB) to collaborate with each other.

6 Conclusion and Future Work

We proposed the design of an semantic wiki authoring system that automatically an-
notate terms user enters online by referring to a global wiki ontology. We argue that
more informative data can be obtained in the case of online annotation, by asking users
to give more information. By using that information, the system suggests appropriate
words user needs to enter, thereby reducing a change that rubbish triplets are extracted.
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By utilizing an ontology aligner, semantic-inconsistency that might be occurred when
collaborative editing is allowed can be gone way.

We plan to implement the system and experiment on it to evaluate whether it oper-
ates according to expectation. At the same time, more functionalities are expected to
be available on the system as follows. Being equipped with more sophisticated natural
language techniques, user is allowed to enter more complex natural language sentence
in convenience. Multilingual language resource can be produced if the ontology aligner
is capable of mapping resulting triplets into another ontology written in another lan-
guage. Finally, semantic crawler [17] will be employed to find relevant semantics from
external sources
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Abstract. Modeling users’ information interests and needs is one of
the most important tasks in the area of personalization in information
retrieval domain. In this paper the statistical model of information re-
trieval system is considered. A method for tuning the user profile based
on analysis of user preferences dynamics is experimentally evaluated to
check whether with growing history of user activity the created user pro-
file can come closer to his preferences. As statistical analysis of series of
simulations have shown, proposed method of user profile actualization is
effective in the sense of distance between user preferences and his profile.

Keywords: user profile tuning method, user behaviour simulation.

1 Introduction

User modeling is a very popular problem in information retrieval domain. The
main objective of user personalization in information retrieval systems is to rec-
ommend to the user the documents that are useful for him and relevant to his
information needs.

In our previous papers [4], [5] and [6] the model of user behaviour in informa-
tion retrieval system was proposed. On one hand we had a user preferences as
the user interests and on the other – user profile generated by the system based
on observations of user activities in the system and dynamics of his preferences.
In the middle we had a system with a database of documents to retrieve. User
asked queries to the system and judged the obtained documents if they were
relevant to his needs and queries. Based on this information, the system tried to
guess the user preferences and built a user profile. The most important issue of
this idea was a method of user profile tuning when his preferences were changing
with time. Researches performed in above mentioned papers have shown that the
user profile updated with proposed method is getting closer to user preferences
with subsequent steps of profile adaptation series.

In this paper we extend the works [4] and [6], where the method of user
profile updating was explored. In those previous works we have used existing
documents’ set in the Library of Wroclaw University of Technology. This paper
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is based on randomly generated set of documents. We were checking the effec-
tiveness of proposed method for building and updating user profile understood
as the distance between user preferences and user profile. The aim of updating
procedure is building the user profile as close to user preferences as possible.
In this paper we check if the distance between user preferences and user profile
built and updated with proposed methods is decreasing in the statistical sense.

The rest of the paper is organized as follows. In the Section 2 we present
the overview of approaches to modeling information retrieval systems. Section 3
describes the details of user modeling. In the Section 4 the experimental evalu-
ations are presented and obtained results are discussed. In the last Section 5 we
gather the main conclusions and future works.

2 Related Works

The most popular model of information retrieval system was designed and de-
scribed by Rijsbergen [11]: suppose there is a store of documents and a person
(user of the store) formulates a question (request or query) to which the answer
is a set of documents satisfying the information need expressed by his question.
He can obtain the set by reading all the documents in the store, retaining the
relevant documents and discarding all the others. In a sense, this constitutes
„perfect” retrieval. In this model, the basic operation is considered as the com-
parison of a document with a query. Nie [9] has developed Rijsbergen’s approach
using modal logics which can be applied to define all existing models. According
to this model, the more knowledge the system has acquired, the more inference
capabilities it has, the more precise answer it will be able to give.

In many information retrieval system the effectiveness is understood in terms
of precision and recall [3]. Unfortunately, these two popular measures are useless
when there is no information about relevance of documents and they seem to
ignore the user preferences. Even if two users have a common interest, a doc-
ument relevant to the first user can be irrelevant to the second user. Ren and
Racewell [10] noted that current information retrieval systems are designed to
achieve high recall and precision, which is of course desired, but ignores user
satisfaction. They claim that future systems must make user satisfaction one of
their top priorities. Similar notes can be found in works of Wang and Forgionne
[12]. They also affirm that popular effective measure of information retrieval
process like precision and recall evaluates only the IR outcome, and ignores the
IR process. The second major limitation is that the user dimension is absent
from the evaluation. As a result, information needs and relevance are set by the
system rather than the user.

Hider [2] pointed out that „search goals” are defined as goals that the user
has in mind when he enters a query into an IR system, representing a particu-
lar information need. He hoped that this goal will be satisfied by one or more
documents retrieved, either directly or indirectly, as a result of the query.

A desirable model of user in information retrieval system should represent user
interests and preferences. In literature one can find a lot of different approaches
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to user modeling. The most popular of them assumes some parameters that
describe the user. Mostafa et al. [7] proposed a model of information retrieval
where documents are represented in vector space model and classified into some
clusters. A user is represented as a profile with appropriate relevance values for
the various classes because conducting many experiments with actual users is
expensive and, in terms of time requirements, can be impractical.

3 Model of Information Retrieval System

In this paper we present the model of the user in information retrieval system
and a personalization method based on user activities in this system. In Fig. 1
we present a schema of interactions between the user and the personalization
system. At the beginning the user sends a query to the browser. The system
searches the documents’ set and chooses all documents that have any of the
terms obtained from the user query. The list of results is ranked by the system
and presented to the user.

System observes user activities connected with the results rating, e.g. user can
select the document (open, print, in library system – order the book). In this
way the system obtains the information about the relevancy of the presented
documents (relevant/irrelevant) the user has used – user chooses the most im-
portant documents for him and ranks them according to his preferences. In the
next step, system can compare lists of results: presented at the beginning and
given by the user. Based on those information, the user profile is built (the first
user profile) or updated (when the user profile already exists) using proposed
tuning method. User profile should contain the terms that the user has used in
his queries (if he asks about a specific term, he is probably interested in this
terms) and for each term a value of its weight is calculated.

To check if this method is effective, we calculate the distance between user
preferences and user profile. The desirable trend is decreasing values of distances
calculated in subsequent series of user activity.

In this section we present a way of modeling all components of proposed
system. We would like to simulate library and the user behaviour instead of
using a real library system or a real user. The aim of the simulation is to show
that user profile built and updated using the proposed method is getting closer
to user preferences with the subsequent steps of user activities in the system.

3.1 Document Description

In the simulation a set of documents is generated. In other works [1], [8] the
authors proposed the ontological structure of terms set containing information
about the relationships between terms that can be used to describe the docu-
ments in libraries or documents’ bases.

In real library systems each document has its index terms (keywords) given
by the author or obtained by indexing procedure. We assume that every docu-
ment is described by a set of weighted terms. In real systems weights can be
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Fig. 1. Model of interactions between the user and the system

e.g. calculated as a frequency of keywords occurring. The library consists of the
documents set: D = {(ti, wi) : ti ∈ T ∧ wi ∈ [0.5, 1), i = 1, 2, . . . , nd} where ti
is index term, wi is appropriate weight and nd is a number of index terms that
describe the document. Each document can have from 2 to 5 index terms with
a weight in the [0.5, 1) interval. Terms are randomly selected from the set T of
index terms and weights are generated with fixed distribution.

Searching process can be described as follows. When the user enters his query,
the system finds every document that is described by at least one of query terms
(logical alternative). In the next step, obtained documents are rated by the sys-
tem - an extended cosine measures: between document description (keywords)
and user query and between document description and the user profile are calcu-
lated. The system presents to the user a ranked list of documents that distance
function calculated as a convex combination of these two values for them are
greater than assumed threshold.
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3.2 User Preferences

In many document retrieval systems the effectiveness of proposed method is
checked experimentally by inviting many users (volunteers) to interact with the
system and to judge if the effects are correct or not. In our approach we do not
involve any real user. We have proposed a method of simulating user behaviour
in an information retrieval system. We assume that user is described by a set
of weighted terms TU , where TU ∩ T �= ∅. Weight can be interpreted as a level
of user interests in particular term: TU = {(tj , vj) : tj ∈ T ∧ vj ∈ [0.5, 1), j =
1, 2, . . . , nu} where tj is index term, vj is appropriate weight of user interests
in particular term and nu is a number of user preferences at the moment. The
most important aspects of user behaviour is the generation of queries and modi-
fication of user preferences over time. User query contains a few terms randomly
selected from his preferences. The second problem connected with modeling user
behaviour is dynamic of user preferences. In real life, users’ preferences are chang-
ing with time, so we also assume that in the subsequent series of user activity
in the system, some of user preferences should be replaced by a new one or the
level of user interests in each term can be changed to a small extend.

In a real system the user sends the query to the browser and selects the
documents relevant to him from the obtained results. In our simulation there
is a need to judge the list of results based on user preferences as the real user
would do. The assumption in this place is that every document from the list is
compared with user query and his preferences using extended cosine measure
and the convex combination of these two numbers is calculated. Based on the
obtained values the ranking of documents is generated for the documents with
the value greater than assumed threshold thu.

3.3 User Profile

When user is interacting with the system, history of his activities is saved in the
system. User asks queries and marks appropriate documents as relevant. Based
on this information, the system creates a user profile. The aim of building a user
profile is to gather information about the users’ interests. Such knowledge can
be used in the future to recommend better documents to the user.

User profile should become more similar to the user preferences when the
system has more information about user activities. The system knows neither
the terms nor the weights in the user preferences. Only information about the
user can be obtained from his activity. In other words, the system treats the user
as a black box, where an input is a set of terms (user query) and in the output
there are a few documents that are relevant to this query and user preferences.

In our previous works [4], [5] and [6] we have proposed a method of building
and updating the user profile. The main idea of it is here in short presented.
User activities with the system are divided into sessions. A session is set of user
activities from login to logout of the system. In every session user submits a
few queries (here we assume 5 queries) and to each query he obtains a list of
documents: D(s) = {(q(s)

i , d
(s)
ij

) : ij = 1, 2, . . . , iJ}, where s is session’s number,
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i is query’s number and iJ is a number of documents relevant to query q
(s)
i . Every

document has its description in the form of weighted terms so the system can
calculate the mean value of weights connected with appropriate terms coming
from the set D(s) of relevant documents in every session s. The objective of
the system is to guess user preferences based on his activities, so the system
calculate the relative change of user interest in particular term between two
sessions. Calculated relative change of user interests is a basis to build and
update the user profile. The user profile consists of terms that have appeared in
user queries and appropriate weights calculated with the following formula 1:

wtl
(s + 1) = α · wtl

(s) + (1 − α) · A

1 + exp(−B · Δwtl
(s) + C)

(1)

where wtl
(s + 1) is weight of term tl in user profile in session s +1; A, B, C and

α are parameters that should be attuned in experimental evaluation.

4 Experimental Evaluation

For the purposes of our research we have implemented a prototype information
retrieval system to test our approach. The simulations were performed using
Java Standard Edition Environment.

In the experiments the following parameters were assumed: size of library
D = 10000; size of terms’ set T = 100. Each document is described by 2 to 5
index terms with weights generated from [0.5; 1) interval. User preferences are
gathered in a set of 6 to 10 terms randomly selected from the set T with weights
also generated from [0.5; 1) interval. User query contains 2 to 4 terms from his
preferences. Every session has 5 queries and every 30 sessions forms a block of
sessions. In accordance to real life a session can be treated as a day – in this
context statistical user asks 5 question a day on average; after 7 sessions (a week)
the weights of up to 2 preferences may change by at most 20%.

The second user activity that needs to be modeled is user relevance in ac-
cordance to obtained documents. As described in Section 3.2, a cosine measure
is calculated between the document and user preferences and between the doc-
ument and user query. Next, the convex combination of these two values is
calculated and based on the obtained values, the ranking of documents is gen-
erated. Only a part of thu = 30% documents from the final list is treated as
relevant for the user. User profile is built based on data from a month of user
interaction with the system. After each next block of sessions, user profile is
updated according to the method described in Section 3.3. The goal of experi-
ments was to show that user profile built and updated using proposed methods
is getting closer to user preferences in subsequent series. The obtained results
were gathered in Fig. 2. The first figure presents the distance between user pref-
erences and user profile in 100 timestamps. The trend of the obtained distances
is decreasing with subsequent blocks of sessions which means that user profile
becomes closer to user preferences. In this sense proposed method of user profile
updating is effective. The value of distance in particular timestamps may grow
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Fig. 2. Euclidean distance between user profile and user preferences

up in comparison to previous timestamp because user preferences are changing
randomly and the effect of those changes is registered by the user profile in a
few timestamps. The obtained results show that for assumed parameters, the 6
to 8 updates are sufficient for the system to identify the user preferences. Fur-
ther fluctuations in value of distance are connected only with the fact that user
preferences are modified with time.

The second diagram in Fig. 2 presents the differences between the profile built
at the beginning of user interaction with the system and the profile updated
based on current user activities. It shows that adaptation method is needed to
keep user profile up-to-date. The system can work properly (rates the documents
similarly as the user) only based on the current information of user interests.

A great part of simulations were connected with tuning the parameters of pro-
posed model. One of the considered aspects of our investigation was the way of
generating a set of documents. Descriptions of documents (index terms) were gen-
erated with uniform distribution (each term from a set of terms T can appear with
the same probability) and with exponential distribution where a part of terms oc-
curred very frequently (about 50%), some of them less frequent and a few terms
(10%) can not appear at all. In Fig. 3 these two approaches are presented. In the
both cases, the trends are decreasing, what is desirable but we can note that the
amplitude of distance values is greater in the approaches with exponential dis-
tribution. The reason for this situation is that user can have some interests that
can not be found in documents descriptions and as the result the weights of these

Fig. 3. Euclidean distance between user profile and user preferences
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terms are 0 while the appropriate weights in user preferences are nonzero. An ap-
proach with exponential distribution is justified in real life because there are many
specialized libraries connected with one or a few domain. Users’ preferences can
be connected with many domains which are not all in one library.

4.1 Statistical Verification

The proposed algorithm of tuning user profile generates a list of weighted terms.
The main objective of the statistical tests is to show that the distances between
weights of terms coming from user preferences and obtained in result of user
profile tuning are getting smaller in the statistical meaning. Formally we have
defined a random variable as the distance between two weights of the same terms
in user preferences and in user profile: X = wpref (ti)−wprof (ti). The statistically
tested feature is the null hypothesis H0 : m = m0 and the alternative hypothesis
H1 : m < m0, where m is the mean value of distances obtained from empirical
data and m0 is assumed mean value of weights distances. It is not possible to
show that the limit of weights distances in infinite number of series equals zero
because the user preferences are changing. In the performed tests we have tried
to find the minimal mean value m0 that the null hypothesis can be rejected.

We have calculated and analyzed the null hypothesis after every block of ses-
sions. An exemplary calculations for m0 = 0, 11 and data about weights after
exemplary block of sessions are presented below. There are no information con-
sidering standard deviation and the tested sample is small, that is why for test-
ing the null hypothesis the Student’s t-distribution is assumed: t = X−m0

σ

√
p − 1

with p − 1 degrees of freedom, where p is sample size, m0 – assumed average
value, σ – standard deviation. The significance level of 0.05 is assumed.

t =
−0, 032− 0, 11

0, 234
√

16 − 1 = −2, 344; tcr = t(0,05;15) = 2, 131

The following inequality |t| > tcr = t(0,05;15) is satisfied, that is why the null
hypothesis is rejected and alternate hypothesis is assumed.

Conclusion: The average distance between weights in user preferences and user
profile is smaller than assumed m0 = 0, 11 with the certainty level of 95%, which
means that almost all weights of terms in user profile are closer than 0, 11 to
weights of appropriate terms in user preferences.

A series of statistical tests were performed to check the minimal value of
m0 that the obtained result of t can satisfy the inequality |t| > tcr for the
subsequent blocks. We have calculated that after the 4th block the null hypothesis
H0 : m = m0 = 0, 14 is rejected, which means that beginning from the 5th block,
the distances between weights in user preferences and user profile are smaller
than 0, 14 and for the assumption m0 = 0, 11, the H0 is rejected after 5th block.

Conclusion: The average distances between weights in user preferences and
user profile are smaller than 0, 11 after 5th update procedure, which means that
the method for user profile tuning requires about 6 series (updates) to tune the
weights for terms in user profile.
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5 Summary and Future Works

In this paper we have presented a way of modeling user behaviour in informa-
tion retrieval system. A lot of intuitive assumptions were made about the user
activities in such system. A method of user profile building was experimentally
evaluated to check whether with growing history of user activity the built user
profile can come closer to his preferences. Statistical verification have shown that
only about 6 series of updates is sufficient condition to tune the user profile.
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Abstract. The importance of research on knowledge management is
growing due to recent issues with big data. The most fundamental steps
in knowledge management are the extraction and construction of termi-
nologies. Terms are often expressed in various forms and the term varia-
tions play a negative role, becoming an obstacle which causes knowledge
systems to extract unnecessary knowledge. To solve the problem, we
propose a method of term normalization which finds a normalized form
(original and standard form defined in dictionaries) of variant terms. The
method employs a couple of characteristics of terms: one is appearance
similarity, which measures how similar terms are, and the other is context
similarity which measures how many clue words they share. Through ex-
periment, we show its positive influence of both similarities in the term
normalization.

Keywords: Term Normalization, Terminology, Appearance Similarity.

1 Introduction

Text resources are increasing explosively, due the large amount of data. Meth-
ods for efficient text resource management are of great importance and an area
of recent concentration. The management begins with terminology construction,
and term extraction is the most fundamental work in the construction. However,
terms can be expressed in various forms in documents and this is big obstacle
to quality terminology. Technical terms especially, which consist of two words at
least, have more variations than general words. In the case of general words, the
forms are differently expressed according to singular/plural types (ex. ‘word’
and ‘words’) and sometimes mistyping; the case of technical terms has addi-
tional expressions such as semantic replacement (ex. ‘head mounted display’
and ‘helmet mounted display’) and re-arrangement (ex. ‘visna maedi virus’
and ‘maedi visna virus’) of component word(s). These expressions cause a large
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quantity of unnecessary information, resulting in data sparseness of knowledge
extraction [5], feature selection for machine learning [7], and knowledge integra-
tion/merging [8, 9], and so on. Even though such term variations need to be
solved, research on normalization has been dealt with in only a few works [1, 2].

In order to cover the issue, we suggest a normalization method. First, we pre-
pare a set of technical terms which are extracted from a huge corpus and divide
the set into a normalized term set (NTS) and a variant term set (VTS). The
method finds the variant terms original forms from NTS. We utilize Wikipedia1

to collect the NTS and employ a couple of similarities, such as appearance sim-
ilarity and context similarity. Through experimental evaluation, it is confirmed
that both of the similarities can be positive factors for term normalization.

This paper is organized as follows: Section 2 describes our term normalization
method. In Section 3, we evaluate the method through experiment. Finally, we
summarize our research in the Fourth Section.

Fig. 1. System architecture for term normalization

2 Term Normalization Method

To construct terminology, many efforts are needed to extract and filter out terms.
This current work is that kind of effort, and mainly consists of three parts for the
term normalization as shown in Fig. 1. The first constructs a normalized term
set (NTS) and a variant term set (VTS). The second step is to collect context

1 Wikipedia, The Free Encyclopedia: http://en.wikipedia.org/wiki/Main_Page

http://en.wikipedia.org/wiki/Main_Page
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information based on co-occurrence nouns of NT and VT. The last is to measure
similarities by using the appearance feature and context information together.
In this section, each step is described in detail with examples.

2.1 Construction of NTS and VTS

Terms can be expressed in various forms and a part of them is already generalized
to the public and defined in dictionaries. The remaining part is considered to be
variants or new words (in the research, the new word is not dealt with). The de-
fined terms may be used more frequently than the other terms, but the undefined
terms become an obstacle resulting in low performance in the works related to ter-
minology. In order to resolve the obstacle, we divide terms into two groups: NTS,
which is defined in a dictionary, and VTS, which is not defined. Through process-
ing a huge paper abstract set of NDSL2, 89,231 basic terms, which consist of only
multi-words, have been prepared in advance (term extraction is out of range of
the research so it is omitted). In addition, a label page of Wikipedia provided by
DBPedia version 3.63 is employed for NTS. Through the step, 10,684 terms are
collected into NTS. Table 1 shows a part of NTS and VTS.

Table 1. The examples of NTS and VTS

TermsinNTS(withfrequencies) TermsinV TS(withfrequencies)

head mounted display (64), long term disability (19),
chediak higashi syndrome (308), ch&#233;diak higashi syndrome (80),
long term depression (2168), low temperature plasma (26),
long term potentiation (8417),... madine darby canine kidney (29),...

The elements of NTS can be a correct candidate of variant terms of VTS.
From the following section, detail of the processes are described.

2.2 Construction of Context Information

In the previous step, NTS and VTS were prepared. To find the original form
of VT, the work uses appearance similarity and context similarity together. For
context similarity, co-occurrence nouns (clue words) are gathered as the context.
After this step, each term of the NT and the VT has its co-occurrence nouns
with their frequencies. In extracting nouns, the Stanford POStagger4 is applied
to tag part-of-speech to each word [4] and the Porter stemmer5 is used for noun

2 NDSL (National Discovery for Science Leaders): http://www.ndsl.kr/index.do
3 DBPedia: http://dbpedia.org/About
4 The Stanford Natural Language Processing Group:
http://nlp.stanford.edu/software/tagger.shtml

5 Porter Stemmer (The Porter Stemming Algorithm):
http://tartarus.org/martin/PorterStemmer/

http://www.ndsl.kr/index.do
http://dbpedia.org/About
http://nlp.stanford.edu/software/tagger.shtml
http://tartarus.org/martin/PorterStemmer/
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normalization [3]6. Table 2 shows clue words and their frequencies as a part of
terms in Table 1.

Table 2. The example of context information

Set Terms ClueWords(ContextInformation)withFrequencies

NTS chediak higashi active (30), blood (12), cell (103), patient (45),
syndrome (308) rel (3), heterozyg (2), control (16), individu (2),

enzym (7), protein (16), membran (19), gene (20), ...

VTS ch&#233;diak capac (8), neutrophil (18), monocyt (8), electron (5),
higashi syndrome (80) microscopi (4), phagocytosi (2), leucocyt (1),

aureu (1), vitro (1), abnorm (6), chemotaxi (2), ...

The context information of each term is utilized for context similarity between
NTs and VTs.

2.3 Selecting Correct Candidates of VT

If the system tries to measure the similarity between all elements of NTS and
VTS in order to find a NT as original forms of VTs, it wastes time and cost and
causes low precision as well. Therefore the research selects correct candidates
for all VTs. The terms the research deals with consist of multi-words, so if they
share one word at least between a VT and a NT, the NT is added to the correct
candidate set for the VT. Here, propositions, conjunctions and stop-words such
as ‘of,’ ‘for,’ ‘by,’ ‘an,’ ‘the,’ ‘and,’ and ‘or’ are not involved in the selection
process. Table 3 shows examples of candidate terms selected for VTs.

Table 3. Examples of lists of candidate terms

V ariantterms Listsofcandidateterms

vaso occlusive hepatic veno occlusive disease, vaso occlusive crisis,
crises veno occlusive disease, aorto iliac occlusive disease,

vaso vagal syncope, veno occlusive

voltage operated voltage gated, l type calcium channels, voltage controlled
ca2+ channels filter, voltage sensitive calcium channel, plasma membrane

ca2+ atpase, voltage gated ca2+ channel, store operated
calcium channel, voltage dependent anion channels, ...

In order to find the correct NT (normalized term or original form), the work
measures similarities between VT and each element of its candidate list. The
next section explains the similarities.

6 Term normalization and word normalization are different in a point of authors view.
The motivation of both normalizations is to find original form but term normalization
is more complex than that of the word. Please refer to the introduction of the paper
for details.
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2.4 Similarities for Term Normalization

The VTS may have two types of terms such as VTs and new words. For finding
VTs which have a high possibility of variation we have two basic clues like the
following.

- Decisive Clue 1. Similar appearance: The variations of multi-word terms
could happen due to semantic replacement, re-arrangement, word inflection, and
mistyping. If one term is originated from a NT, their term appearances are
strongly similar.

- Decisive Clue 2. Similar context information: Even though two terms are
similar on appearances, one is not always originated from the other, such as
the case between ‘vitamin c’ and ‘vitamin d’. Therefore the context similarity is
additionally utilized.

Appearance Similarity. Terms contain a few words and each word consists of
letter(s). The term variations occur due to additions, substitutions and removals
of letter(s) or word(s) and thus a measure which inspects those specific changes is
needed. The appearance similarity can grasp the changes and it measures bigram
based word similarity. For the explanation, a set of words consisting of terms
and a set of bigrams of each word are expressed by (1) and (2) respectively.

termt = {wi, 1 ≤ i ≤ n} (1)

bigramw = {bj, 1 ≤ j ≤ |w| − 1} (2)

where, termt is a term, wi is i-th word of termt, n and b mean count of words
and bigram of each word (wi) individually. The count of bigrams of a word is
different with word length by 1. For example, ‘vaso occlusive crises’ in Table 3
is expressed as: termvasoocclusivecrises = {vaso, occlusive, crises}, bigramvaso =
{va, as, so}, bigramocclusive = {oc, cc, cl, lu, us, si, iv, ve}, bigramcrises = {cr,
ri, is, se, es}.

To measure bigram based word similarity, Dice’s coefficient is used and (3)
shows the equation.

s (wk, wl) =
2× P (bigramwk

⋂
bigramwl

)

|wk|+ |wl| − 2
, wk ∈ V T,wl ∈ NT (3)

To inspect word re-arrangement, the order of words can be ignored in (3). Its
reason is indicated with Table 4 later. The results by (3) are used for appearance
similarity of (4).

s (termV T , termNT ) =
2×Σarg max (s (wk, wl))

|termV T |+ |termNT | (4)

Where termV T and termNT are a variant term and candidate term respectively.
Tables 4 and 5 show the examples of the appearance similarities, and bold typed
result means the maximum.

Table 4 is an example of the word re-arrangement, and Table 5 is about
the substitution or the mistyping. For the word re-arrangement case, we should
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Table 4. An appearance similarity of re-arrangement case

terms {visna, maedi, virus} {maedi, visna, virus}
Bigram bigramvisna = {vi,is,sn,na} bigrammaedi = {ma,ae,ed,di}

bigrammaedi = {ma,ae,ed,di} bigramvisna = {vi,is,sn,na}
bigramvirus = {vi,ir,ru,us} bigramvirus = {vi,ir,ru,us}

s(wk, wl) s(wvisna,wmaedi)=0, s(wvisna, wvisna)=1 {vi,is,sn,na},
s(wvisna,wvirus)=0.25 {vi}, s(wmaedi, wmaedi) = 1 {ma,ae,ed,di},
s(wmaedi,wvisna)=0, s(wmaedi, wvirus) = 0, s(wvirus,wmaedi)=0,
s(wvirus,wvisna)=0.25 {vi}, s(wvirus, wvirus) = 1 {vi,ir,ru,us}.

s(termp, termq) (2*(1+1+1))/(3+3) = 1.

Table 5. An appearance similarity of mistyping or substitution case

terms {chediak, higashi, syndrome} {ch&#233;diak, higashi, syndrome}
Bigram bigramchediak = {ch,he,...,ak} bigramch&#233;diak = {ch,h&,...,ak}

bigramhigashi = {hi,ig,...,hi} bigramhigashi = {hi,ig,...,hi}
bigramsyndrome = {sy,yn,...,me} bigramsyndrome = {sy,yn,...,me}

s(wk, wl) s(wchediak,wch&#233;diak)=0.471 {ch,di,ia,ak},
s(whigashi,whigashi)=1 {hi,ig,ga,as,sh,hi},
s(wsyndrome,wsyndrome)=1 {sy,yn,nd,dr,ro,om,me}.

s(termp, termq) (2*(0.471+1+1))/(3+3) = 0.824.

follow that the word order is not important. The appearance similarity is utilized
as one factor for the normalization.

Context Similarity. As described previously, the appearance similarity is not
sufficient to find an original form. As a supplement, the context similarity is
additionally considered. From the section 2.2, the context information of each
term has been collected. This section measures context similarity between NT
and VT. For the similarity, clue (co-occurrence noun) weights of NT are calcu-
lated by TF-IDF (Term Frequency-Inverse Document Frequency). Table 6 is an
example (chediak higashi syndrome) of NT.

The weights about all clues of every NT are applied to context similarity
which measures how many clues they share.

Context Similarity (termV T , termNT ) = Σweight (matched clue) (5)

where matched clue is a clue which appears with termV T and termNT together.
Table 7 shows an example of context similarity measure of a VT and each element
of its candidate set.

3 Experimental Evaluation

For evaluation of the normalization method, we chose 171 variant terms (vt)
randomly and selected their normalized terms (nt) which have the term similarity
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Table 6. An example of target term

Term(Occ.) Clues Occ. TF IDF TF − IDF

Chediak higashi syndrome (308) mk 9 0.029 2.478 0.072
cell 103 0.334 0.686 0.229
enzym 7 0.023 1.151 0.026
protein 16 0.052 0.836 0.043
studi 29 0.094 0.439 0.041
blood 12 0.039 0.981 0.038
clone 4 0.013 1.469 0.019
phosphatas 4 0.013 1.722 0.022
fetus 3 0.010 2.023 0.020
cytotox 5 0.016 1.741 0.028
... ... ... ... ...

Table 7. An example of target term

V ariantterm Candidateterms Contextsimilarity

Ch&#233;diak Chediak higashi syndrome 5.5815
higashi syndrome hermansky pudlak syndrome 3.2683

wiskott aldrich syndrome 2.4093
naevoid basal cell carcinoma syndrome 2.9550
... ...

(ts), by multiplying appearance similarity (as) and context similarity (cs). In
other words, we have prepared 171 pairs (p) which are expressed to p(vt, nt,
as, cs, ts). By manual evaluation, the result shows that 40 pairs (about 23.4%)
are correctly normalized. As described in Section 2.1 for construction of NTS
and VTS, all elements in VTS are not kinds of variant. In order to check the
effectiveness of the as and the cs, we assign threshold values to each similarity
from 0.1 to 0.9 and evaluate each result, totalling 81 results.

In the research, we deal with term normalization and it should be performed
carefully like knowledge enrichment [6] because the result influences its appli-
cation area. In other words, these kinds of research guarantee that the resulted
data should be pure. Therefore, precision is the most important factor among
evaluation methods. We evaluate our method and Table 8 shows the result in
detail from this point of view.

In the table, c p means count of pairs which remain after applying TV AS.
Table 8 summarizes the cases on 0.5 and 0.7 of TV AS which attain the best
performances on F1 and precision. In the case of F1, it could reach 76.7(%) when
0.5 and 0.1 are given to TV AS and TV CS respectively. However, the research
was not designed to have a wrong result, but pursues perfect precision with
the maximum count of right pairs (vt, nt). Accordingly we could find the result
having 19 correct pairs with 100(%) at TV AS 0.7 and TV CS 0.2. Through
the evaluation, we could confirm that the method proposed in the paper has
positive normalization. In future, by concentrating on terminology construction
when processing large amounts of data, it could help extract a high quality of
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Table 8. Performance evaluations on precision, recall, and F1 rates (TV AS: threshold
value of appearance similarity, TV CS: threshold value of context similarity)

TV AS=0.5 TV AS=0.7
TV CS c p O X Pr.(%) Re.(%) F1(%) c p O X Pr.(%) Re.(%) F1(%)

0.0 63 39 24 61.9 100 76.5 34 29 5 85.2 100 92.1
0.1 47 33 14 70.2 84.6 76.7 27 24 3 88.9 61.5 72.7
0.2 34 27 7 79.4 69.2 74.0 19 19 0 100 48.7 65.5
0.3 24 19 5 79.2 48.7 60.3 12 12 0 100 30.8 47.1
0.4 20 17 3 85.0 43.6 57.6 10 10 0 100 25.6 40.8
0.5 18 17 1 94.4 43.6 59.6 10 10 0 100 25.6 40.8
0.6 13 13 0 100 33.3 50.0 7 7 0 100 17.9 30.4
0.7 13 13 0 100 33.3 50.0 7 7 0 100 17.9 30.4
0.8 12 12 0 100 30.8 47.1 6 6 0 100 15.4 26.7
0.9 11 11 0 100 28.2 44.0 6 6 0 100 15.4 26.7

knowledge, because the normalization helps to prevent unnecessary information
extraction. However the research depends on the term appearance, rather than
the context information or its semantics. We will prepare another method for
better performance.

4 Conclusion

This paper proposed a normalization method of term variations which is nec-
essary in constructing knowledge from large amounts of data. To do this, we
divided technical terms into a normalized term set (NTS) and a variant term set
(VTS) through Wikipedia concept matching, constituted context information
for each term, prepared candidate terms for original forms, and finally found
normalized terms based on the appearance similarity (as) and the context simi-
larity (cs). In the experimental evaluation, we could have the maximum count of
correct pairs of vt and nt under the condition of 0.7 and 0.2 of threshold values
for as and cs respectively.

In automatic knowledge construction, term normalization is a significant re-
quirement, to avoid generating unnecessary information. To this end, this re-
search is expected to contribute to diverse fields of knowledge mining. However
it still has a limitation, which is that it cannot find ‘Vitamin C’ as an origi-
nal form from ‘L ascorbate’ or ‘L ascorbic acid’ because the work depends with
more weight on the as. We will continue study for the solution which is based
on semantics.

References

1. Dowdal, J., Rinaldi, F., Ibekwe-SanJuan, F., SanJuan, E.: Complex Structuring of
Term Variants for Question Answering. In: Proc. of the ACM Workshop on Mul-
tiword Expressions: Analysis, Acquisition and Treatment, vol. 18, pp. 1–8 (2003)



690 M. Hwang et al.

2. Ibekwe-Sanjuan, F.: Terminological Variation, a Means of Identifying Research
Topics from Texts. In: Proc. of Intl. Conf. on Computational Linguistics, vol. 1,
pp. 564–570 (1998)

3. Porter, M.F.: An algorithm for suffix stripping. J. of Program 14(3), 130–137 (1980)
4. Toutanova, K., Manning, C.: Enriching the Knowledge Sources Used in a Maximum

Entropy Part-of-Speech Tagger. In: Proc. Joint SIGDAT Conf. Empirical Methods
in Natural Language Processing and Very Large Corpora, pp. 63–70 (2000)

5. Hwang, M., Kim, P.: A New Similarity Measure for Automatic Construction of
the Unknown Word Lexical Dictionary. Intl. J. on Semantic Web and Information
Systems (IJSWIS) 5(1), 48–64 (2009)

6. Hwang, M., Choi, C., Kim, P.: Automatic Enrichment of Semantic Relation Net-
works and its Application to Word Sense Disambiguation. IEEE Transactions on
Knowledge and Data Engineering 23(6), 845–858 (2011)

7. Brank, J., Mladenic, D., Grobelnik, M., Milic-Frayling, N.: Feature Selection for
the Classification of Large Document Collections. Journal of Universal Computer
Science 14(10), 1562–1596 (2008)

8. Duong, T.H., Jo, G., Jung, J.J., Nguyen, N.T.: Complexity Analysis of Ontology
Integration Methodologies: A Comparative Study. Journal of Universal Computer
Science 15(4), 877–897 (2009)

9. Jung, J.J.: Semantic business process integration based on ontology alignment.
Expert Systems with Applications 36(8), 11013–11020 (2009)

10. Hwang, M., Choi, D., Choi, J., Kim, H., Kim, P.: Similarity Measure for Semantic
Document Interconnections. Information-An International Interdisciplinary Jour-
nal 13(2), 253–267 (2010)

11. Hwang, M., Choi, D., Kim, P.: A Method for Knowledge Base Enrichment using
Wikipedia Document Information. Information-An International Interdisciplinary
Journal 13(5), 1599–1612 (2010)

12. Bawakid, A., Oussalah, M.: Using features extracted from Wikipedia for the task of
Word Sense Disambiguation. In: Proc. of IEEE Intl. Conf. on Cybernetic Intelligent
Systems, pp. 1–6 (2010)

13. Fogarolli, A.: Word Sense Disambiguation Based on Wikipedia Link Structure. In:
Proceedings of IEEE Intl. Conf. on Semantic Computing, pp. 77–82 (2009)



Stabilisation and Steering of Quadrocopters

Using Fuzzy Logic Regulators

Boguslaw Szlachetko1 and Michal Lower2

1 Wroclaw University of Technology,
Institute of Telecommunication, Teleinformatics and Acoustics,

ul Janiszewskiego 7/9, 50-372 Wroclaw, Poland
Boguslaw.Szlachetko@pwr.wroc.pl
2 Wroclaw University of Technology,

Institute of Computer Engineering, Control and Robotics,
ul Janiszewskiego 11/17, 50-372 Wroclaw, Poland

Michal.Lower@pwr.wroc.pl

Abstract. The cascaded fuzzy controller system for quadrocopter was
developed on the basis of computer simulations. The mathematical model
of quadrocopter and its cascaded fuzzy controller were simulated using
Matlab Simulink software. The proposed controller was tested in most
frequent flight circumstances: in hover, in rectilinear flight with constant
speed, in climbing and in rotation. In all these situations the proposed
controller was able to provide foreseeable behavior of the quadrocopter.

1 Introduction

Several quadrocopters have been constructed recently. Most of them utilize the
classical control theory, so they are controlled by proportional integral derivative
(PID) feedback controller [1,2,5,4,8]. The other very promising method is based
on the foundation of fuzzy logic [3,10,11]. The main advantage of fuzzy logic,
in compare to classical method, is the ability to develop controller using simple
transformation of rules expressed in natural language. The good example of this
methodology was demonstrated in our prior publications [6,7,9].

2 Quadrocopter Model and Flight Control

Quadrocopter, called in some publications “quadrotor“ [2,5], is a flying object
with four fixed-pitch propellers in cross configuration. Driving the two pairs of
propellers in the opposite directions removes the need for a tail rotor. Usually
all engines and propellers are identical, so the quadrocopter is a fully symmetri-
cal flying object. It is possible to use different configuration of rotors e.g. when
the variable pitch propellers are used or different size of propellers are config-
ured but the complication of the model dramatically rises, so the most frequent
configuration uses the same engines and propellers.

The main effects, acting on a quadrocopter, witch have to be taken into ac-
count are:

L. Rutkowski et al. (Eds.): ICAISC 2012, Part I, LNCS 7267, pp. 691–698, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The coordinate system of quadrocopter

– gravity effect caused by quadrocopter mass,
– aerodynamic effects of each of the propellers caused by rotating propellers,
– inertial torques of each of the propellers,
– gyroscopic effects of each of the propellers,
– joint aerodynamic effects in all three axes, causing linear movement,
– joint inertial torque causing pitch, roll and yaw angles changes.

All four torques caused by rotors add one to another and a join torque about
mass center of quadrocopter is arising.

Tz = d(X2
1 +X2

2 − Y 2
1 − Y 2

2 ) (1)

where d is a so called drag coefficient and X1, X2, Y1, Y2 are rotation speeds
of propellers according to the Fig.2. Usually two opposite rotors have clockwise
rotation and two others have counterclockwise rotation. If no rotation of quadro-
copter is required we have to compensate left and right torques to each other
according to the formula (1).

Change in the joint torque mentioned in formula (1) lets quadrocopter move
around OZ axis and as consequence the angle called yaw Ψ is appearing.

Uz = b(X2
1 +X2

2 + Y 2
1 + Y 2

2 ) (2)

where b is so called thrust coefficient.
The move around OY is caused by converse changing the propeller speed

of the X pair of rotors. As the consequence the angle Θ called pitch can be
observed.

Ux = b(X2
1 −X2

2 ) (3)

The move around OX is caused by conversely changing the propeller speed of
the Y pair of rotors. As the consequence the angle Φ called roll can be observed.

Uy = b(Y 2
1 − Y 2

2 ) (4)

Mathematical model of quadrocopter is complicated, especially if all physical
effects have to be modeled. Nevertheless previous researches [2,5,8] in this field
let us infer the following system of equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = (cosΨ sinΘ cosΦ+ sinΨ sinΦ)Uz/m

ÿ = (sinΨ sinΘ cosΦ− cosΨ sinΦ)Uz/m

z̈ = (cosΘ cosΦUz/m)− g

Φ̈ =
[
Θ̇Ψ̇(Iy − Iz) + lUy

]
/Ix

Θ̈ =
[
Φ̇Ψ̇(Iz − Ix) + lUx

]
/Iy

Ψ̈ =
[
Φ̇Θ̇(Ix − Iy) + Tz

]
/Iz

(5)

where m is the mass of quadrocopter, g is the gravity acceleration, l is the
distance between the rotor and center of quadrocopter, Ix, Iy, Iz are the inertia
moment along proper axes, Φ,Θ, Ψ are roll, pitch and yaw angles, respectively.
Presented model ignores aerodynamic drags and gyroscopic effects but it is good
enough to model quadrocopter’s behavior in hover and low speed circumstances.

3 Quadrocopter Controller

Generally quadrocopter is the object equipped with microprocessor, four pro-
pellers, four engines joined with ECS (Electronics Speed Control) circuits and
bunch of sensors like: accelerometer, gyroscopes etc.

Fig. 2. The block diagram of proposed system

In Fig.3 the system block diagram has been presented. In diagram, solid line
means the connection realized in microprocessor, usually by the message pass-
ing mechanism or shared buffer in memory. Doted line represents the “phys-
ical” connection. It means that executive blocks control the rotation speed
of propellers which affects the sensors (particularly accelerometer and gyro-
scopes). Thus doted line represents the physical feedback to the quadrocopter
system and executive output values [X1, X2, Y1, Y2] control rotation speeds of
propellers and sensors measure the linear accelerations and angle speeds MV =
[ẍ, ÿ, z̈, Φ̇, Θ̇, Ψ̇ ]T . Because quasi integral relation between linear speeds U, V,W
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Fig. 3. The block diagram of fuzzy controller

and measured accelerations ẍ, ÿ, z̈ and between the attitude angle velocities
P,Q,R and measured values Φ̇, Θ̇, Ψ̇ exists, for simplicity, the integral substi-
tution is inferred. Therefore, in the integrator block the process values vector
PV = [U, V,W, P,Q,R]T is calculated.

The SP represents vector of desired values of speeds and yaw angle in quadro-
copter coordinate system as follows:

SP = [USP , VSP ,WSP , RSP ]
T (6)

Consequently, the vector

E = SP − PV = [UE , VE ,WE ,−P,−Q,RE]
T (7)

drives the fuzzy control block (see Fig.3). The values at output of control block
CV = [Sx, Sy, Sz, Sr] are used by fuzzy executives block which tries to imitate
the movement rules defined in equations (1),(2),(3) and (4).

4 Fuzzy Rules

Fuzzy rules can be divided into two groups: fuzzy control rules and fuzzy ex-
ecutives rules, similarly to block diagram presented in Fig.3. The five linguistic
values are used at the input of fuzzy control blocks. Let:

– {.}++ - means large positive value,
– {.}+ - means moderate positive value,
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– {.}0 - means neutral(zero) value,
– {.}− - means moderate negative value,
– {.}−− - means large negative value.

The triangle membership functions are used in all cases except the end of the
value’s range where the trapezoid functions are used. The input and output val-
ues of the executive blocks are slightly different. Between the blocks (control and
executive) the linguistic values Sx, Sy, Sz, Sr are defuzzified to obtain numerical
values. Then the executive blocks use only two linguistic values: positive {.}+
and negative {.}− (see Table 2).

The Table 1 contains rules for control blocks divided into four situations:

– if the error E is large or moderate and increases in time then the compen-
sation has to be large,

– if the error E is large or moderate but decreases in time then the compen-
sation has to be moderate or should stay without the compensation,

– if the error E is moderate and slowly decreases then the compensation has
to be moderate,

– if the error E is moderate and quickly decreases then the compensation has
to be moderate, too.

The Table 2 contains rules implemented in fuzzy executives blocks. As can be
seen, these blocks try to mimic the general rules of quadrocopter movement
mentioned at the beginning of the paper. From the functional point of view
executives blocks can be seen as a kind of mixer, which mixes different control
values of propeller angular speeds delivered to ECS.

5 Simulations Result

Simulation of the system presented in Fig.3 was provided. Some results are pre-
sented below. In each particular group the most representative results are chosen
to be shown. First the hover state was simulated and results of simulation are
presented in Fig.5. At the beginning the disturbance causing plunge in OZ axis
was simulated. The reaction to this disturbance can only be observed on the rate
of climb W whereas the longitudinal and lateral speeds U, V remain at 0[m/s],
so the position of quadrocopter in OX and OY axes has not been changed.
The right figure shows the angular speeds. Pitch and roll do not change but
yaw reaches the constant speed about 0.002[rpm] which means the quadrocopter
rotates around 0Z axis very slowly.

In the Fig.5 the simulations results have been shown. The left diagram presents
behavior of quadrocopter at the start of the longitudinal movement. The speed
U approaches desired speed 0.8[m/s] after two seconds and then it is oscillating
around this speed. At the beginning of the movement the declining oscillations of
the speed W (along 0Z axis) can be observed. In the right diagram the quadro-
copter’s behavior is shown at the beginning of the climb. The longitudinal and
lateral speed do not change while the rate of climb achieves desired value 0.8[m/s]
after half a second and then stabilizes at this constant rate.
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Table 1. Rules of fuzzy control blocks

Con FIS1 Con FIS2

WE ∩ ẆE UE ∩Q

E is large and increases:

(W++
E ∪W+

E ) ∩ (Ẇ++
E ∪ Ẇ+

E ) ⇒ S−−
z (U++

E ∪ U+
E ) ∩ (Q++ ∪Q+) ⇒ S−−

x

(W−−
E ∪W−

E ) ∩ (Ẇ−−
E ∪ Ẇ−

E ) ⇒ S++
z (U−−

E ∪ U−
E ) ∩ (Q−− ∪Q−) ⇒ S++

x

E is large but decreases:

(W++
E ∩ Ẇ−−

E ) ⇒ S0
z (U++

E ∩Q−−) ⇒ S0
x

(W++
E ∩ Ẇ−

E ) ⇒ S−
z (U++

E ∩Q−) ⇒ S−
x

(W−−
E ∩ Ẇ++

E ) ⇒ S0
z (U−−

E ∩Q++) ⇒ S0
x

(W−−
E ∩ Ẇ+

E ) ⇒ S+
z (U−−

E ∩Q+) ⇒ S+
x

E is small and slowly decreases:

(W+
E ∩ Ẇ−

E ) ⇒ S+
z (U+

E ∩Q−) ⇒ S+
x

(W−
E ∩ Ẇ+

E ) ⇒ S−
z (U−

E ∩Q+) ⇒ S−
x

E is small and quickly decreases:

(W+
E ∩ Ẇ−−

E ) ⇒ S+
z (U+

E ∩Q−−) ⇒ S+
x

(W−
E ∩ Ẇ++

E ) ⇒ S−
z (U−

E ∩Q++) ⇒ S−
x

Con FIS3 Con FIS4

VE ∩ P RE ∩ ṘE

E is large and increases:

(V ++
E ∪ V +

E ) ∩ (P++ ∪ P+) ⇒ S−−
y (R++

E ∪R+
E) ∩ (Ṙ++

E ∪ Ṙ+
E) ⇒ S−−

r

(V −−
E ∪ V −

E ) ∩ (P−− ∪ P−) ⇒ S++
y (R−−

E ∪R−
E) ∩ (Ṙ−−

E ∪ Ṙ−
E) ⇒ S++

r

E is large but decreases:

(V ++
E ∩ P−−) ⇒ S0

y (R++
E ∩ Ṙ−−

E ) ⇒ S0
r

(V ++
E ∩ P−) ⇒ S−

y (R++
E ∩ Ṙ−

E) ⇒ S−
r

(V −−
E ∩ P++) ⇒ S0

y (R−−
E ∩ Ṙ++

E ) ⇒ S0
r

(V −−
E ∩ P+) ⇒ S+

y (R−−
E ∩ Ṙ+

E) ⇒ S+
r

E is small and slowly decreases:

(V +
E ∩ P−) ⇒ S+

y (R+
E ∩ Ṙ−

E) ⇒ S+
r

(V −
E ∩ P+) ⇒ S−

y (R−
E ∩ Ṙ+

E) ⇒ S−
r

E is small and quickly decreases:

(V +
E ∩ P−−) ⇒ S+

y (R+
E ∩ Ṙ−−

E ) ⇒ S+
r

(V −
E ∩ P++) ⇒ S−

y (R−
E ∩ Ṙ++

E ) ⇒ S−
r

Table 2. Rules of fuzzy executive blocks

Exe FIS5 Exe FIS6

S−
z ⇒ Y +

1 ∩ Y +
2 ∩X+

1 ∩X+
2 S−

x ⇒ X+
1 ∩X−

2

S+
z ⇒ Y −

1 ∩ Y −
2 ∩X−

1 ∩X−
2 S+

x ⇒ X−
1 ∩X+

2

Exe FIS7 Exe FIS8

S−
y ⇒ Y +

1 ∩ Y −
2 S−

r ⇒ Y −
1 ∩ Y −

2 ∩X+
1 ∩X+

2

S+
y ⇒ Y −

1 ∩ Y +
2 S+

r ⇒ Y +
1 ∩ Y +

2 ∩X−
1 ∩X−

2
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Fig. 4. Simulations results in hover state

Fig. 5. Simulations results in horizontal movement (left) and during climbing (right)

Fig. 6. UVW in rotation

The last presented results relate to simulations of rotation behavior of quadro-
copter. The rotation speed R around OZ axis achieves desired speed 0.8[rad/s]
(it is near the 8[rpm]) after half a second and then stabilizes. The only problem
observed is the small declined oscillations of the speed W which means that
during start of the rotation the oscillations of the altitude are appeared.

6 Conclusion

The proposed cascade fuzzy controller is well suited for controlling the hover and
the flight of the quadrocopter. The control strategy was simulated for hovering,
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rotating and non-aggressive horizontal and vertical flight at constant speed. The
results of the simulations are not worse then results achieved by conventional
techniques (based on PID controllers [4,8]) or fuzzy logic ones.

The proposed cascaded controller lets us divide the problem into two parts.
The first one - the control block - infers the general rules of movement based on
the set-point vector of values (linear and angular speeds). The second one - the
executive block - infers the proper values of rotation speed of propellers. This
idea is based on description of quadrocopter behaviors in natural language. The
simulations are promising and the further work has to be done. The cascaded
fuzzy flight controller will be implemented in a quadrocopter test-bed specifically
designed and built.
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