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Abstract. We consider the problem of scheduling jobs on a single ma-
chine. Given some continuous cost function, we aim to compute a sched-
ule minimizing the weighted total cost, where the cost of each individual
job is determined by the cost function value at the job’s completion
time. This problem is closely related to scheduling a single machine with
nonuniform processing speed. We show that for piecewise linear cost
functions it is strongly NP-hard.

The main contribution of this article is a tight analysis of the approx-
imation factor of Smith’s rule under any particular convex or concave
cost function. More specifically, for these wide classes of cost functions
we reduce the task of determining a worst case problem instance to a
continuous optimization problem, which can be solved by standard alge-
braic or numerical methods. For polynomial cost functions with positive
coefficients it turns out that the tight approximation ratio can be cal-
culated as the root of a univariate polynomial. To overcome unrealistic
worst case instances, we also give tight bounds that are parameterized
by the minimum, maximum, and total processing time.

1 Introduction

We address the problem of scheduling jobs on a single machine so as to mini-
mize the weighted sum of completion costs. The input consists of a set of jobs
j = 1, . . . , n, where each job j has an individual weight wj ≥ 0 and process-
ing time pj ≥ 0, and the goal is to find a one-machine schedule minimizing∑n

j=1 wjf(Cj), where Cj denotes the completion time of job j in the schedule.
The only assumption we make about the cost function f : R → R at this point
is that it is continuous and monotone. In the classic three-field notation [6], the
problem we consider reads as 1 | | ∑wjf(Cj) . Note that the question of allowing
preemption does not play a role here, because the jobs do not have release times
and so the possibility of preemption never leads to a cheaper optimal schedule.
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An important alternative interpretation of problem 1 | | ∑wjf(Cj) is the sce-
nario of linear cost and nonuniform processor speed. Assume that the processor
speed at any time t is given by a nonnegative function g : R → R, and the
processing times (or workloads) pj of the jobs are given with respect to a unit

speed processor. The total workload processed until time t is G(t) :=
∫ t

0 g(t)dt.
Conversely, if the total workload of job j and all jobs processed before it is t′,
then the cost of j in the schedule is G−1(t′). Therefore, the problem is equivalent
to 1 | | ∑wjG

−1(Cj) . Note that G−1 is always monotone, and it is continuous
even if g is not. Moreover if g is increasing or decreasing then G−1 is convex and
concave, respectively. The case of cost function f and processor speed function g
is equivalent to problem 1 | | ∑wjf(G

−1(Cj)) .

Related Work. The problem 1 | | ∑wjf(Cj) with nonlinear cost function f has
been studied for half a century. For quadratic cost functions there is a long series
of articles on branch-and-bound schemes; see e.g., [12,9]. In a companion paper
we combine and improve the methods of these articles, and compare them in an
extensive computational study [7]. Further references can be found therein.

The problem of minimizing the total weighted flowtime on one or multiple
machines with or without preemption is a well studied problem, and efficient
approximation schemes are known for many variants [1,3]. In [2], Bansal and
Pruhs motivate the usage of monomial cost functions in the context of processor
scheduling, where jobs have nonuniform release dates. They show that even in
the case of uniform weights there is no no(1)-competitive online algorithm, and
they analyze a number of scheduling strategies using resource augmentation.

A more general problem version, where each job has its individual cost func-
tion, has recently attracted attention. Bansal and Pruhs have given a geometric
interpretation that yields a O(log lognP )-approximation in the presence of re-
lease dates and preemption. In the special case of uniform release dates, their
method achieves the constant factor of 16. That factor has recently been im-
proved to 2 + ε via a primal-dual approach by Cheung and Shmoys [4].

For 1 | | ∑wjf(Cj) with arbitrary concave f , Stiller and Wiese [11] show that
Smith’s rule (see below for a definition) guarantees an approximation factor of
(
√
3+1)/2. The result is tight in the sense that for a certain cost function f there

is a problem instance where this factor is reached by Smith’s rule. Epstein et al.
provide an approximation algorithm for the problem variant with release dates
by generalizing their results on scheduling unreliable machines [5]. Their method
generates a schedule which has approximation guarantee 4 + ε for any cost
function. Both the algorithm by Epstein et al. as well as Smith’s rule analyzed
by Stiller and Wiese yield schedules that are universal in the sense of being
generated without knowledge of the cost function.

Our Contribution. The computational complexity of problem 1 | | ∑wif(Ci)
is a long standing open question [9,11]. In Section 4 we give a first result in
that direction by showing that for piecewise linear and monotone cost functions
the problem is NP-hard in the strong sense. The instances we reduce to can be
interpreted as a processor that alternates between two different speeds. Such
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Table 1. The first table shows the tight approximation factor of Smith’s rule for
various cost functions. The factors for polynomials hold under the assumption of non-
negative coefficients. In the second table, examples of the parameterized analysis are
shown.

cost function approx. factor

square root 1.07
degree 2 polynomials 1.31
degree 3 polynomials 1.76
degree 4 polynomials 2.31
degree 5 polynomials 2.93
degree 6 polynomials 3.60

degree 10 polynomials 6.58
degree 20 polynomials 15.04

exponential ∞

cost fct. pmin pmax P approx. factor

x2 1 20 500 1.028
x2 1 20 1000 1.014
x2 1 20 5000 1.003
x2 1 100 500 1.136
x2 1 100 1000 1.071
x2 1 100 5000 1.015
x3 1 100 1000 1.149
x5 1 100 1000 1.296
x10 1 100 1000 1.630

scenarios are likely to occur in practice, e.g., when some extra computational
power becomes available at nighttime.

Our main result is a tight analysis of the approximation factor of Smith’s
rule [10] also known as WSPT (Weighted-Shortest-Processing-Time-First). This
well known strategy first computes the WSPT ratio qj := wj/pj for each job
and then sorts the jobs by descending qj , which is optimal in the linear cost
case. In Section 2, we show that for all convex and all concave cost functions
tight bounds for the approximation factor can be obtained as the solution of
a continuous optimization problem with at most two degrees of freedom. In
the case of cost functions that are polynomials with positive coefficients, it will
turn out that the approximation factor can be calculated simply by determining
the root of a univariate polynomial. An overview of approximation factors with
respect to a number of cost functions are depicted in Table 1, showing that
WSPT achieves the best known approximation factor for cost functions that
are polynomials of degree up to three. Regarding universal scheduling methods,
WSPT provides the best known approximation factor for up to degree six.

The worst case approximation factors are established by extreme instances
that consist of one large job and an infinite number of infinitesimally small jobs.
In order to analyze the performance of WSPT for realistic instances, we intro-
duce three parameters that restrict the problem instances under consideration.
These parameters are the minimum, maximum, and total job length pmin, pmax

and P , respectively. In Section 3 we show how to obtain tight bounds for the
approximation ratio of Smith’s rule under any parameter configuration. Some
examples of this analysis are given in Table 1.

2 Tight Analysis of Smith’s Rule

In this section we analyze the worst case approximation factor obtained by
Smith’s rule in the case of any convex or concave cost function. The following
simple observation will be used a number of times.
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Observation 1. Problem 1 | | ∑wjf(Cj) is invariant to weight scaling, i.e.,
if I is a problem instance and I ′ is obtained from I by multiplying all job weights
with a constant c, then the cost of any schedule for I ′ is c times the cost of the
same schedule for I.

We denote by WSPT(I) the schedule computed for instance I by Smith’s rule,
and by OPT(I) an optimal schedule for I. Slightly abusing notation, the cost of
these schedules will also be denoted by WSPT(I) and OPT(I).

Theorem 1. Let f be a convex cost function. Then the tight approximation ratio
of Smith’s rule can be calculated as

sup

{
WSPT(I)

OPT(I)

}

= max

{∫ q

0 f(t)dt+ p · f(q + p)

p · f(p) + ∫ p+q

p
f(t)dt

| p ≥ 0, q ≥ 0

}

. (1)

When f is concave, the tight ratio is

sup

{
WSPT(I)

OPT(I)

}

= max

{
p · f(p) + ∫ p+q

p f(t)dt
∫ q

0
f(t)dt+ p · f(q + p)

| p ≥ 0, q ≥ 0

}

. (2)

These equalities hold regardless of the tie breaking strategy used by Smith’s rule.

In what follows, we prove a number of lemmas which successively narrow the
space of instances we need to consider when searching for a worst case problem
instance for Smith’s rule. Determining the worst case solution in the final in-
stance space will then be shown to be equivalent to the continuous optimization
problem described in the above theorem.

Very similar to the analysis of Stiller and Wiese [11], we first show that it
is sufficient to consider instances with constant WSPT ratio, and that a most
expensive schedule is obtained by inverting the optimal job order. Thereafter,
again as Stiller and Wiese, we restrict to instances with several small jobs and
one large job. However, their proof of this property is based on a modification of
the cost function which makes it invalid for our problem setting. The remainder
of our proof follows a completely different line of argumentation.

The following observation can be shown by continuity considerations, see the
full version of this paper for a formal proof or [8] for an explanation of the general
principle behind this argumentation.

Observation 2. If the cost function f is continuous, then the approximation
factor sup{WSPT(I)/OPT(I)} is independent of the tie breaking policy em-
ployed by WSPT.

As a consequence, we can assume that WSPT always breaks ties in the worst
possible way. In terms of an adversary model, we can assume that the adversary
not only chooses the problem instance, but also the way WSPT breaks ties.

The next lemma shows that we can restrict our attention to problem instances
where Smith’s ratio is the same for all jobs. By Observation 2, we can further
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wj · f(Cj)

line job

pj = wj
Cj

time

cost

(a) A job j’s cost is represented by a rect-
angle. Line jobs are a collection of in-
finitesimally small jobs. Their total cost
is given by the area under the graph of f .
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iΔINC
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CINC
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(b) Jobs i and j in schedule INC(I) from
Lemma 3. The marked areas represent
the change in cost when merging the
jobs or when making job j a line job.

Fig. 1. Geometric interpretation of a schedule for instances with wj = pj for all jobs j

assume that WSPT schedules the jobs in the worst possible order while OPT
schedules them in the best possible order. When the cost function is convex or
concave, there is a very simple characterization of these special orders, as shown
in Lemma 2. Due to the analogy to Stiller and Wiese [11], the proofs of these
two lemmas are omitted in this extended abstract.

Lemma 1. For the worst case ratio of Smith’s rule we can assume that the
WSPT ratio qj is 1 for all jobs j. More formally,

sup
{

WSPT(I)
OPT(I)

}
= sup

{
WSPT(I)
OPT(I) | wj = pj for each job j ∈ I

}
.

Lemma 2. If the cost function f is convex, then

sup
{

WSPT(I)
OPT(I)

}
= sup

{
INC(I)
DEC(I) | wj = pj for each job j ∈ I

}

where INC(I) and DEC(I) denotes the cost of the schedule where the jobs in I are
processed in order of their increasing and decreasing processing time, respectively.

If f is concave, then sup{WSPT(I)/OPT(I)} is obtained analogously with the
reciprocal of INC(I)/DEC(I).

At this point we introduce a geometric interpretation of our scheduling problem.
In this interpretation each job j is represented by a rectangle having width wj

and height f(Cj). As we can restrict our attention to unit ratio jobs, the width
equals pj. Hence, by arranging the rectangles along the x-axis in the order in
which the corresponding jobs appear in some schedule S, each rectangle ends
at the x-axis at its completion time in S. When drawing the graph of the cost
function f into the same graphic, all upper right corners of the rectangles lie on
this graph. The total cost of S results as the area of all rectangles. Note that

the area below the graph of f , i.e.,
∫∑

wj

0 f(x)dx is a lower bound on the cost
any schedule. An example is depicted in Figure 1(a).
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We now introduce the notion of so called line jobs. A line job represents
an infinite set of infinitesimally small jobs having finite total processing time.
More formally, for some fixed p and ε > 0 consider the multiset consisting of
p/ε identical jobs, each having processing time and weight ε. Then the line job
of length p represents the job multiset obtained for ε → 0. Instead of being
represented by a rectangle, a line job corresponds to a strip of width p whose
upper boundary is given by the graph of f ; see again Figure 1(a).

In the presence of line jobs we still calculate the cost of a schedule by summing
up the area of all rectangles and stripes. The correctness of that approach follows
from the continuity of the cost function f . A difference between regular jobs and
line jobs is that line jobs can be preempted—because they actually consist of
many small jobs. However, for problem instances I that consist of both regular
jobs and line jobs, observe the schedule INC(I) first processes the line jobs and
then continues with the regular jobs. Symmetrically, DEC(I) processes the line
jobs at the very end of the schedule. So because of Lemma 2 the possibility of
preemption does not play any role in our analysis.

Throughout this section, the proofs are given for convex cost functions only,
even though everything holds for concave functions as well. However, by syntac-
tically replacing all terms marked with ∗ with their opposite, one obtains the
proof for the concave case. Examples of such opposite pairs are convex/concave,
best/worst, nonpositive/nonnegative, ≥ / ≤ or > / <.

Lemma 3. For determining the worst case ratio of Smith’s rule when the cost
function is concave or convex, we can restrict our attention to instances that
consist of one regular job and one line job. More formally,

sup

{
WSPT(I)

OPT(I)

}

= sup

{
INC(I)

DEC(I)

∣
∣
∣
∣
I consists of one regular job
and one line job

}

in the case of convex cost functions. For concave cost functions, the supremum
sup{WSPT(I)/OPT(I)} is obtained analogously with the reciprocal ratio.

Proof. Based on the knowledge we have from Lemma 2 we start with some
instance I consisting of regular jobs and show how to transform it into an in-
stance I ′ having the property stated in the lemma, such that INC(I ′)/DEC(I ′)
≥∗ INC(I)/DEC(I) in the case of convex∗ cost functions.

The transformation of I proceeds as follows: while the instance contains more
than one regular job, consider the first regular job j that is processed by schedule
INC(I). Either transform j into a line job with processing time pj , or replace j
and its successor i in INC(I) by a new job k having processing time and weight
pj + pi. We will show below that at least one of these two possibilities always
effectuates that the approximation factor does not improve. We finally obtain
a problem instance with one regular job and multiple line jobs. The line jobs
can then be merged into a single line job without changing the cost of INC and
DEC, which holds because this final operation does not change the total area of
stripes in the geometric interpretation.

Let the jobs j, i be defined as in the preceding paragraph. Let I be the instance
before the corresponding transformation step, let IL be the instance obtained
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by replacing j with a line job, and let IM be the instance obtained by merging
j and i. What we want to show is

INC(IL)
DEC(IL) ≥∗ INC(I)

DEC(I) ∨ INC(IM )
DEC(IM ) ≥∗ INC(I)

DEC(I) (3)

in the case of convex∗ cost functions. Throughout the proof we assume that the
schedules INC and DEC are fixed in the sense that INC(IM ) and DEC(IM ) is
simply obtained by inserting the merged job k at the place where the pair i, j
has been in INC(I) and DEC(I), respectively. From Lemma 2 we know that the
true INC(IM ) and DEC(IM ) will make the factor even larger. Let

ΔINC
L := INC(I)− INC(IL), ΔINC

M := INC(IM )− INC(I) ,
ΔDEC

L := DEC(I)−DEC(IL), ΔDEC
M := DEC(IM )−DEC(I) .

Note that the definitions are such that for nondecreasing cost functions all four
Δ-values will be nonnegative (although the assumption of nondecreasingness
is not necessary for the result to hold); see also Figure 1(b) for a geometric
interpretation of the Δ-values. We are going to show that

ΔINC
L

ΔDEC
L

≤∗ ΔINC
M

ΔDEC
M

. (4)

Using (4) and the fact that A ∨ B is logically equivalent to ¬A ⇒ B, one can
show (3) for convex∗ cost functions via the implication chain:

INC(IL)
DEC(IL) =

INC(I)−ΔINC
L

DEC(I)−ΔDEC
L

<∗ INC(I)
DEC(I) ⇒ ΔINC

L

ΔDEC
L

>∗ INC(I)
DEC(I) ⇒ ΔINC

M

ΔDEC
M

>∗ INC(I)
DEC(I) ,

where Equation 4 is used for the last implication, and this finally implies

INC(IM )
DEC(IM ) =

INC(I)+ΔINC
M

DEC(I)+ΔDEC
M

>∗ INC(I)
DEC(I) .

For proving Equation 4 we need explicit formulae for the four Δ-values. Let
CINC

j be the completion time of job j in INC(I), and let CDEC
j , CINC

i , CDEC
i be

defined accordingly. ΔINC
L is the difference of the contribution of regular job j to

the cost of INC(I) and the contribution of line job j to the cost of INC(IL), so

ΔINC
L = pj ·f(CINC

j )−
∫ CINC

j

CINC
j −pj

f(t)dt =

∫ pj

0

(
f(CINC

j )−f(CINC
j −pj+x)

)
dx .

ΔDEC
L calculates analogously, but with each occurrence of INC replaced by DEC.
ΔINC

M is the difference between the cost contribution of the merged job k to
INC(IM ) and the contributions of i, j to the cost of INC(I). Also, in INC(IM )
the completion time of k equals the former completion time of i in INC(I).

ΔINC
M = (pj+pi)f(C

INC
i )−pjf(C

INC
j )−pif(C

INC
i ) = pj

(
f(CINC

j +pi)−f(CINC
j )

)
.

For calculating ΔDEC
L , observe that in DEC(IM ) the merged job k completes at

time CDEC
j , so

ΔDEC
M = (pi+pj)f(C

DEC
j )−pif(C

DEC
i )−pjf(C

DEC
j ) = pi

(
f(CDEC

j )− f(CDEC
j −pi)

)
.
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We relate ΔDEC
L and ΔDEC

M as

ΔDEC
L =

∫ pj

0

(
f(CDEC

j )− f(CDEC
j − pj + x)

)
dx

≥∗ pj
2

(
f(CDEC

j )− f(CDEC
j − pj)

)
=

pjΔ
DEC
M

2pi
(5)

in the case of convex∗ cost functions. The inequality holds because if f is convex∗

then the expression in the integral is concave∗.
For obtaining a similar relation between ΔINC

L and ΔINC
M , observe that

f(CINC
j )−f(CINC

j −pj+x)

pj−x ≤∗ f(CINC
j +pi)−f(CINC

j )

pi
∀x ∈ [0, pj) (6)

if f is convex∗. As the right hand side of (6) is independent of x, it follows that

ΔINC
L

1/2·p2
j

=
∫ pj
0

(
f(CINC

j )−f(CINC
j −pj+x)

)
dx

∫ pj
0 (pj−x)dx

≤∗ f(CINC
j +pi)−f(CINC

j )

pi
=

ΔINC
M

pipj
. (7)

Equation 4 now follows directly from (5) and (7). 
�
Theorem 1 now is a direct consequence of Lemma 3. On the right hand side
of Equation 1, the parameters p and q respectively correspond to the length of
the regular job and the line job in the problem instance I. The expressions in
the numerator and denominator are exactly the cost of INC(I) and DEC(I),
respectively. The correctness of Equation 2 can be verified analogously.

In the remainder of this section we show that for an important class of cost
functions Theorem 1 can be further simplified. We have already exploited the
fact that problem 1 | | ∑wjf(Cj) is invariant to weight scaling. Similarly, we
say that f is invariant to time scaling if there is an function φ : R → R such
that when instance I ′ is obtained from I by scaling the processing times by some
factor c, then S(I ′) = φ(c)S(I) for any schedule S. Note that while invariance
to weight scaling holds regardless of the cost function, not every cost function is
invariant to time scaling, consider e.g. f : x �→ x2+x. Assuming time scalability
we can normalize the total processing time to 1, and Theorem 1 yields:

Corollary 1. Let f be a cost function that is invariant to time scaling and
convex or concave. Then the tight bound for the approximation ratio of Smith’s
rule can be determined as

sup

{
WSPT(I)

OPT(I)

}

= max

{∫ 1−p

0 f(t)dt+ p · f(1)
pf(p) +

∫ 1

p
f(t)dt

| 0 ≤ p ≤ 1

}

in the case of convex cost functions, and for concave f , sup{WSPT(I)/OPT(I)}
is obtained analogously when maximizing over the reciprocal.

For monomials f : t �→ tk Corollary 1 reduces the determination of the ap-
proximation ratio of Smith’s rule to the calculation of the root of a univariate
polynomial. Although polynomial cost functions are not invariant to time scaling
in general, an important subclass of polynomials can be analyzed as monomials.
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Theorem 2. For cost functions that are polynomials with positive coefficients
and degree k, the approximation factor of Smith’s Rule is the same as for t �→ tk.

Proof. Let f = c1f1 + . . . + cmfm be the polynomial cost function, where
f1, . . . , fm are monomials, and let f1 be the monomial with the highest degree
k. For any schedule S for problem instance I, let Si(I) denote the cost of S with
respect to cost function fi. If S

OPT = OPT(I) is an optimal schedule for I, then

WSPT(I)
OPT(I) = WSPT1(I)+...+WSPTm(I)

SOPT
1 (I)+...+SOPT

m (I)
≤

∑m
i=1 WSPTi(I)∑m
i=1 OPTi(I)

≤ max
i=1...m

WSPTi(I)
OPTi(I)

≤ a1,

where OPTi(I) is the optimal schedule for I under cost function fi and a1 is the
tight approximation ratio of Smith’s rule with respect to f1. The last inequality
is a consequence of the following lemma which we prove in the full version.

Lemma 4. Let ak be the tight approximation factor of Smith’s rule for the cost
function f : t �→ tk. Then ak is monotone in k for k ≥ 1 and limk→∞ ak = ∞.

In order to show that the above inequality is tight, fix I as a problem in-
stance where the worst case approximation factor of WSPT with respect to f1
is reached. As f1 is invariant to time scaling, the same approximation factor
is reached for each instance c · I, which is obtained from I by multiplying all
processing times by constant c. As f1 is the monomial with the largest degree,
for c → ∞ the optimal solution OPT(c · I) with respect to f converges against
the optimal solution OPT1(c · I) with respect to f1. As the summand with f1
also dominates the numerator and denominator of WSPT(c · I)/OPT(c · I), we
have limc→∞ WSPT(c · I)/OPT(c · I) = WSPT1(c · I)/OPT1(c · I) = a1. 
�

3 Parameterized Analysis

In this section we refine the analysis of Smith’s rule in order to make it more
suitable to realistic problem instances. To this end, we introduce parameters
pmin, pmax > 0, the minimum and maximum job length, and P the total length
of all jobs, assuming that pmax and P are multiples of pmin. These parameters
allow us to ban infinitesimally small and very large jobs as they appear in the
unparameterized analysis. In the case of cost functions that are invariant to time
scaling, pmin can be assumed w.l.o.g. to be 1. Throughout the analysis, the three
parameters will be assumed to be fixed.

Due to this discretization, the tie breaking policy of WSPT is becoming a rel-
evant issue. The proof of Observation 2 exploits the fact that problem instances
with ties can be approximated arbitrarily close by instances without ties, but
such continuity arguments are not possible in the presence of a pmin. In what
follows we continue to analyze the version of WSPT having the worst possible
tie breaking rule, and remark here that the approximation factors can become
smaller if better tie breaking rules are employed.

The analysis is similar to the unparameterized case above. Also here we can
show that in worst case instances all jobs have a WSPT ratio of 1, and the largest
ratio is obtained when comparing the schedules that sort the jobs in increasing
and decreasing order of the job’s weight, respectively.
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Observation 3. Lemma 1 and Lemma 2 also hold in the presence of the pa-
rameters pmin, pmax, and P , without any modification of the proofs.

Lemma 3 in the unparameterized analysis has stated that worst case instances
consist of one regular job and one line job. The refined analysis will be similar.
Instead of a regular job of length p we will have a sequence of �p/pmax� jobs each
having a length of pmax, plus one length p mod pmax job, where p is a multiple of
pmin between 0 and P . Instead of a line job we will have (P − p)/pmin jobs each
having length pmin. So given the parameters pmin, pmax, P one can determine
the tight approximation factor of Smith’s rule by finding the value of p maxi-
mizing the ratio between INC and DEC. Denote by INC(p, pmin, pmax, P ) and
DEC(p, pmin, pmax, P ) the schedule where the jobs of the instance determined
by p, pmin, pmax, P are scheduled by increasing and decreasing weight, respec-
tively. The tight approximation factor is given in the next theorem. Due to the
similarity to the analysis in Section 2, its proof is omitted here.

Theorem 3. Given the minimum, maximum and total processing times pmin,
pmax and P , the tight approximation ratio of Smith’s rule can be calculated as

sup

{
WSPT(I)

OPT(I)

}

=

{
INC(p, pmin, pmax, P )

DEC(p, pmin, pmax, P )
| p = 0, pmin, 2pmin, . . . , P

}

in the case of convex cost functions. If f is concave sup{WSPT(I)/OPT(I)}
is obtained analogously with the reciprocal of INC/DEC.

4 Hardness for Piecewise Linear Cost Functions

In this section we show that problem 1 | | ∑wjf(Cj) is strongly NP-hard in
general. The complexity is proven via reduction from strongly NP-complete 3-
Partition, and the scheduling instance reduced to has a piecewise linear mono-
tone cost function. In particular, it suffices for NP-hardness that f alternates
between two different slopes that can be chosen arbitrarily.

In 3-Partition, one needs to decide whether a given set A of 3m elements
from N

+ with B/4 < a < B/2 for all a ∈ A, where B := 1
m

∑
a∈A a, can be

partitioned into m disjoint sets A1, . . . , Am with
∑

a∈Ai
a = B for i = 1, . . . ,m.

Theorem 4. The problem 1 | | ∑wjf(Cj) is strongly NP-hard for piecewise
linear monotone cost functions f .

Proof. Given an instance of 3-Partition, an equivalent scheduling instance is
constructed as follows. For each element a� ∈ A, � = 1, . . . , 3m, we add a job j�
having processing time p� = a� and weight w� = a�. The cost function f is
defined to be piecewise linear. It alternates between two different slopes r and s
with r > s ≥ 0 that can be chosen arbitrarily. For each i ∈ N

+ the slope during
time interval [(i−1)·B, (i−1)·B+1] is r, and the slope during [(i−1)·B+1, i·B]
is s. The cost threshold is set to

α := s ·
∑

1≤k≤�≤3m

a�ak +
(r − s)Bm(m+ 1)

2
.
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The equivalence of the problems is established by showing that any schedule
where some new job begins at time (i− 1) · B for each i = 1, . . . ,m has cost α,
and any other schedule has larger cost. This will complete the proof.

As the job lengths are integers, no job ever ends inside a slope r interval.
Therefore we can as well assume that the slope is s everywhere, and at each time
(i− 1) ·B, i ∈ N

+ there is a point of discontinuity where the constant (r − s) is
added to the cost function. So f can be expressed as f(t) = s · t+ (r − s)

⌈
t
B

⌉
.

Let f = f1 + f2 with f1 : t �→ st and f2 : t �→ (r − s)�t/B�. As w� = p�, the cost
of a schedule σ w.r.t. f1 is

3m∑

�=1

wσ(�) · s
�∑

k=1

wσ(k) = s
∑

1≤k≤�≤3m

a�ak .

This expression is independent of the order in which the jobs are scheduled, and
it is equal to the first summand of α. Thus, for minimizing the cost w.r.t. f we
can ignore f1 and determine a schedule minimizing the cost w.r.t. f2.

Function f2 can be further split up into f2 = f1
2 + f2

2 + . . ., where f i
2(t) = 0

for t ≤ (i − 1)B and f i
2(t) = (r − s) for t > (i − 1)B. For i = 1, . . . ,m, let Wi

be the total weight of all jobs with completion time greater than (i − 1)B.
As the total processing time and weight of all jobs is mB, it clearly holds that
Wi ≥ (m−i+1)B and so the cost of any schedule with respect to f i

2 is (r−s)Wi ≥
(r − s)(m − i + 1)B. Furthermore, this holds with equality if and only if a new
job starts at time (i− 1)B. Therefore, the total cost w.r.t. f2 is at least

m∑

i=1

(r − s)(m− i+ 1)B =
m∑

i=1

B · i · (r − s) =
(r − s) · B ·m(m+ 1)

2
,

which is exactly the second summand of α, and this cost is only reached if a new
job starts at each time (i− 1)B for i = 1, . . . ,m. 
�

5 Conclusions

We have shown that for monotone and piecewise linear cost function f prob-
lem 1 | | ∑wjf(Cj) is strongly NP-hard, and we have given a tight analysis of
Smith’s rule that can be applied for arbitrary convex or concave cost functions.

We remark that the cost function of the instances reduced to in the hardness
proof is neither convex nor concave, so the computational complexity of the
problem for convex/concave cost functions remains open. We believe that a proof
of NP-hardness for these cases must have a fundamentally different structure
than the proof given in this work, because here the hard instances cannot consist
of only jobs with WSPT ratio 1.

For low degree polynomial cost functions WSPT achieves the best known
approximation factors. Provided that these problems do not turn out to be in P,
another natural question for future research is whether better factors can be
achieved in polynomial time in general, and by universal algorithms in particular.
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