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Abstract. We show that the geodetic number of proper interval graphs
can be computed in polynomial time. This problem is NP-hard on chordal
graphs and on bipartite weakly chordal graphs. Only an upper bound on
the geodetic number of proper interval graphs has been known prior to
our result.

1 Introduction

The notion of geodetic sets was introduced by Harary et al. [11], and it has ap-
plications in game theory [3,12,17]. It is closely related to convexity and convex
hulls in graphs, which have applications in telephone switching centres, facil-
ity location, distributed computing, information retrieval, and communication
networks [9,14,16,18,19,22]. Given a graph G and a set D of vertices of G, the
geodetic closure of D, denoted by IG[D], is the set containing the vertices of
G that lie on shortest paths between pairs of vertices from D. The set D is a
geodetic set of G if IG[D] contains all vertices of G. Thus, a geodetic set of G is a
set D of vertices of G such that every vertex of G lies on some shortest path bet-
ween two vertices from D. The geodetic number of G, g(G), is the smallest size
of a geodetic set of G. Computing the geodetic number is NP-hard on chordal
graphs and on bipartite weakly chordal graphs [7]. It can be done in polynomial
time on cographs [7], split graphs [7], and ptolemaic graphs [8].

The main result of this paper is a polynomial-time algorithm for computing
the geodetic number of proper interval graphs. Our algorithm can be imple-
mented to also output a geodetic set of minimum size. The computational com-
plexity of computing the geodetic number of proper interval graphs has been
open since Dourado et al. [7] gave a tight upper bound on the geodetic number
of proper interval graphs. Interestingly, the related notion of hull number has
been known to be computable in polynomial time on proper interval graphs [6].
The hull number and the geodetic number problems are both defined through
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convexity, but they require quite different computation methods. The difference
between these two parameters can be arbitrarily large [13].

Proper interval graphs have been subject to extensive study (see, e.g., the
books [2] and [10]) since their introduction [20], and they can be recognised
in linear time. In this paper, in addition to our main result on proper interval
graphs, we also report on the following results: a polynomial-time algorithm to
compute the geodetic number of block-cactus graphs, a polynomial-time algo-
rithm to approximate the geodetic number of bipartite permutation graphs with
an additive factor 1, and a proof of NP-hardness of computing the geodetic num-
ber of cobipartite graphs. Two variants of the geodetic number of block-cactus
graphs have been studied before [23], but we are not aware of an algorithm for
the exact computation of the geodetic number of such graphs.

2 Definitions and Notation

We consider simple finite undirected graphs, that have no loops. For a graph G,
its vertex set is denoted by V (G) and its edge set is denoted by E(G). Edges of G
are denoted as uv, where u and v are vertices of G, and if uv is an edge of G then
u and v are adjacent. The neighbourhood of a vertex v of G, denoted by NG(v),
is the set of the vertices of G that are adjacent to v. For a set S of vertices of
G, G[S] denotes the subgraph of G induced by S. We write G−v to denote the
graph G[V (G) \ {v}]. A clique of G is a set of vertices of G that are pairwise
adjacent in G. A vertex ordering for G is an ordered tuple that corresponds to
a permutation of V (G). For a given vertex ordering σ, we write u ≺σ v if u
appears before v in σ. The first position in σ will be referred to as the left end
of σ, and the last position as the right end. We will use the expressions to the
left of, to the right of, leftmost and rightmost accordingly.

A sequence (y0, . . . , yr) of distinct vertices of G is called a y0, yr-path of
length r of G if yi−1yi ∈ E(G) for every 1 ≤ i ≤ r. If (y0, . . . , yr) is a y0, yr-path
of G and y0yr ∈ E(G) then (y0, . . . , yr) is a cycle of G. The cycle (y0, . . . , yr)
is chordless if the cycle edges y0y1, . . . , yr−1yr, yry0 are exactly the edges of
G[{y0, . . . , yr}]. So, a cycle is chordless if no pair of non-consecutive vertices on
the cycle is adjacent in G. For a vertex pair u, v of G, the distance between u
and v in G, denoted by dG(u, v), is the smallest integer k such that G has a
u, v-path of length k; if no such path exists then dG(u, v) = ∞. G is connected
if G has a u, v-path for every vertex pair u, v; otherwise, G is disconnected. A
connected component of G is a maximal connected induced subgraph of G.

For a vertex triple u, v, x of G, x ∈ IG[{u, v}] if and only if dG(u, v) =
dG(u, x) + dG(x, v) [7], and for D ⊆ V (G), x ∈ IG[D] if and only if there are
vertices u, v in D with x ∈ IG[{u, v}]. It directly follows that a geodetic set of
a disconnected graph is the union of geodetic sets of its connected components.
Hence, the geodetic number of a disconnected graph is the sum of the geodetic
numbers of the connected components. It therefore suffices to study geodetic sets
of connected graphs, and we will assume all input graphs to be connected in the
paper. A vertex v is called simplicial if NG(v) is a clique of G. Since a simplicial
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vertex cannot lie on a shortest path between any two other vertices, it is easy to
see that every geodetic set of G contains the simplicial vertices of G.

3 Minimum Geodetic Sets for Proper Interval Graphs

Proper interval graphs are equivalent to the intersection graphs of intervals of
the real line where the intervals are of unit length [20]. A vertex ordering σ for
a graph G is called a proper interval ordering if the following is true for every ver-
tex triple u, v, w of G: u ≺σ v ≺σ w and uw ∈ E(G) implies uv ∈ E(G) and
vw ∈ E(G). A graph is a proper interval graph if and only if it has a proper interval
ordering [15]. The properties of proper interval orderings imply that the vertices
at the left end and at the right end in a proper interval ordering are simplicial.

We construct an algorithm for computing a geodetic set of smallest size of a
proper interval graph. The algorithm is based on a dynamic-programming ap-
proach and determines the minimum size of a geodetic set of very restrictive
properties of a proper interval graph. The very restrictive properties are neces-
sary to make our approach work. The underlying idea is to show that the proper
interval graph can be partitioned into small pieces and the vertices of a geodetic
set can be determined on the small pieces and put together to form a geodetic
set of the input graph. We present the algorithm and the main correctness argu-
ments in the second part of this section. In the first part of this section, we show
the main theoretical result of the paper, namely that each proper interval graph
has a geodetic set of minimum size that satisfies the very restrictive properties
needed for the algorithm.

We fix some definitions, that will be valid throughout this section. We consider
an arbitrary but fixed connected proper interval graph G and a proper interval
ordering σ for G. Let a be the left end vertex in σ. Remember that a is a
simplicial vertex of G. For i ≥ 0, let Li =def {x ∈ V (G) : dG(a, x) = i} be the
vertices of G at distance i to a. Let h be the largest integer such that Lh �= ∅.
We call h the height of a. Observe that the height of a is the maximum distance
between a and the vertices of G. Let Λ =def 〈L0, . . . , Lh〉. We call Λ the BFS
(breadth first search) partition of G with root vertex a. The breadth first search
partition of G with root vertex a is the partition of V (G) into the levels of
a breadth first search of G starting from vertex a. Note that L0 = {a}. For
every vertex pair u, v of G and every index i with 1 ≤ i ≤ h, if u, v ∈ Li and
u ≺σ v then NG(v) ∩ Li−1 ⊆ NG(u), and each of L1, . . . , Lh is a clique of G [4].
These neighbourhood inclusion and clique properties will be central throughout
this section. For every 0 ≤ i ≤ h, let ci be the rightmost vertex from Li with
respect to σ; clearly, c0 = a, and ch is the vertex at the right end in σ. Note that
Li ⊆ NG(ci−1) for every 1 ≤ i ≤ h.

3.1 Minimum Geodetic Sets with Desirable Properties

We show that G has a geodetic set of smallest size that satisfies very restrictive
properties. Let u and v be two vertices of G, and assume that u ∈ Lp and
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Fig. 1. The figure shows a proper interval graph and its BFS partition with root
vertex a. Each level is a clique of the graph, whose edges are omitted except for one
edge. Two paths of smallest length are marked, namely an a, b-path, whose length is
4, and a u, v-path of length 3.

v ∈ Lq and p < q. Then, q − p ≤ dG(u, v) ≤ q − p + 1, since a u, v-path
of smallest length contains a vertex from each of Lp, . . . , Lq and may contain
two vertices from at most one of these partition sets. The lower bound follows
from properties of breadth first search, and the upper bound follows from the
neighbourhood inclusion and clique properties. Figure 1 depicts a proper interval
graph and gives two examples for the structure of shortest paths.

Let D be a set of vertices of G. If D is a geodetic set of G then a ∈ D, since
a is a simplicial vertex of G, and D must contain all simplicial vertices of G.
We want to show that for determining the geodetic closure of D, IG[D], it is
not necessary to consider the shortest paths between all vertex pairs from D but
only between special vertex pairs.

We begin our analysis of the structure of geodetic sets of G. Let D ⊆ V (G).
We define the range sets R0(D), . . . , Rh(D) and R(D) of D on Λ. For every
index i with 0 ≤ i < h, let

Ri(D) =def

⎧
⎨

⎩

D ∩ Lh , if i = h

(D ∩ Li) ∪
⋃

v∈Ri+1(D)(NG(v) ∩ Li) , if 0 ≤ i < h ,

and let
R(D) =def

⋃

1≤i≤h

Ri(D) .

For convenience, we write R(x) instead of R({x}) and, analogously, IG[u, v]
instead of IG[{u, v}]. As a simple consequence of the properties of Λ, we obtain
the following lemma.



Minimum Geodetic Sets of Proper Interval Graphs 283

Lemma 1. Let u, v be a vertex pair of G with u ≺σ v.

1) If u ∈ R(v) then R(u) ⊆ R(v).
2) If u �∈ R(v) and u ∈ Lp with 0 ≤ p ≤ h then Ri(v) ⊆ Ri(u) for every

0 ≤ i < p.

It follows from Lemma 1 for every vertex pair u, v ofGwith u ∈ Lp and v ∈ Lq and
u ≺σ v, that u ∈ R(v) if and only if dG(u, v) = q − p. We use this result to char-
acterise the sets IG[u, v] in the next lemma, whose proof follows from Lemma 1.

Lemma 2. Let u, v be a vertex pair of G with a ≺σ u ≺σ v.

1) If u ∈ R(v) then IG[u, v] ⊆ R(v).
2) If u �∈ R(v) then for every vertex x of G,

x ∈ IG[u, v] \R(v) if and only if u ∈ R(x) and x �∈ R(v) and u �σ x ≺σ v.

Let x be a vertex of G, and let i be the index with x ∈ Li. We say that x has a
below-neighbour if i < h and x has a neighbour in Li+1, i.e., if NG(x)∩Li+1 �= ∅.
For a set D ⊆ V (G), we denote by Υ ∗(D) the set of ordered vertex pairs (u, v)
from D that satisfy the following three conditions:

P1) v ∈ {c1, . . . , ch}
P2) there is 1 ≤ i ≤ h with a ≺σ u ≺σ ci ≺σ v
P3) u has a below-neighbour and u �∈ R(v).

Note that the second condition, P2, requires that u and v do not belong to the
same BFS partition class, since u ≺σ ci ≺σ v implies that u ∈ L0 ∪ · · · ∪ Li and
v ∈ Li+1 ∪ · · · ∪ Lh. Together with a ≺σ u, it also follows that 1 ≤ i < h.

We show that G has a geodetic set of minimum size that satisfies very re-
strictive properties. One of the main properties is that it suffices to consider
only special vertex pairs for computing the geodetic closure. These vertex pairs
mainly satisfy the three conditions P1, P2, P3. Let D ⊆ V (G) and let D be
a set of ordered vertex pairs from D. We call (D,D) a geodetic pair for G if
D ⊆ Υ ∗(D). Observe that R(D) ⊆ ⋃

u∈D IG[u, a] ⊆ IG[D ∪ {a}], and for every
(u, v) ∈ D, IG[u, v] ⊆ IG[D]. Thus, R(D)∪⋃

(u,v)∈D IG[u, v] ⊆ IG[D ∪ {a}]. The
following lemma shows that for determining a minimum geodetic set, it suffices
to consider geodetic pairs.

Lemma 3. There is a geodetic pair (F,F) for G such that F∪{a} is a minimum
geodetic set of G and V (G) ⊆ R(F ) ∪⋃

(u,v)∈F IG[u, v].

Proof. Let D ⊆ V (G) be a minimum geodetic set of G. Since a and ch are
simplicial vertices, D contains both a and ch. Let D be the set of all ordered
vertex pairs (u, v) from D with a ≺σ u ≺σ v and uv �∈ E(G) and u �∈ R(v)
and u has a below-neighbour. Using Lemma 2, it can be shown that V (G) ⊆
R(D) ∪⋃

(u,v)∈D IG[u, v].
Let E be the set of indices i with 1 ≤ i ≤ h such that Ri(D) ⊂ Li. Let i ∈ E ,

and let bi be the vertex from Li \ Ri(D) that is rightmost with respect to σ.
Since bi ∈ IG[D], there is a vertex pair (ui, vi) in D with bi ∈ IG[ui, vi]. Let
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D′ =def {(ui, vi) : i ∈ E } and J =def {j : vi ∈ Lj for some i ∈ E }. Let ψ be the
mapping: for every i ∈ E and 1 ≤ j ≤ h, if vi ∈ Lj then ψ(vi) =def cj . Let

F =def

(
D \ {vi : i ∈ E }

)
∪
{
cj : j ∈ J

}
and F =def

{
(u, ψ(v)) : (u, v) ∈ D′

}
.

Observe that |F | ≤ |D|. By carefully analysing F , we can prove that F ⊆ Υ ∗(F ),
which means that (F,F) is a geodetic pair for G, and that V (G) ⊆ R(F ) ∪
⋃

(u,v)∈F IG[u, v]. It follows that (F,F) satisfies the claim of the lemma. ��
The properties and restrictions of geodetic pairs are strong, but they are not
strong enough to satisfy our algorithmic demands. We therefore define restricted
geodetic pairs. Let (D,D) be a geodetic pair for G. A vertex x from D appears
in D if there is (u, v) ∈ D such that x ∈ {u, v}. We call (D,D) a normal geodetic
pair if the following two conditions are satisfied:

N1) for every vertex u from D that does not appear in D:
u has no below-neighbour

N2) for every u, u′, v, v′ ∈ D with (u, v) ∈ D and (u′, v′) ∈ D:
if u = u′ then v = v′, and
if u ≺σ u

′ ≺σ v ≺σ v
′ then there is 1 ≤ i < h such that u′, v ∈ Li .

If a vertex u has a below-neighbour, say v, then R(u) ⊆ R(v), as it was shown
in Lemma 1. Condition N1 implies that R(D) cannot be extended by simply
choosing a below-neighbour of a vertex inD. Condition N2 is our most important
property of normal geodetic pairs. It requires that two pairs from D must not
overlap; if they do overlap then they meet at a common BFS partition class, as
it is expressed as u′, v ∈ Li. We show that for determining a minimum geodetic
set of G, it suffices to consider only normal geodetic pairs.

Theorem 1. G has a normal geodetic pair (F,F) such that F ∪ {a} is a mini-
mum geodetic set of G and V (G) ⊆ R(F ) ∪⋃

(u,v)∈F IG[u, v].

Proof. Suppose for a contradiction that G does not have a normal geodetic pair
that satisfies the claim. Let (D,D) be a geodetic pair for G satisfying Lemma 3
such that the number of violations of conditions N1 and N2 is a small as possible.
We can assume that (D,D) satisfies condition N1 and the uniqueness part of
condition N2. Hence, there are pairs (d, c) and (d′, c′) in D with d ≺σ d

′ ≺σ c ≺σ

c′ and indices l′ and m with 1 ≤ l′ < m < h and d′ ∈ Ll′ and c ∈ Lm. Then one
of the three cases below must apply. Due to the space restrictions, we only give
the construction. The correctness of the arguments follows from a sequence of
results about properties of D.

Case 1: d ∈ Ll′

Let D′ =def (D\{(d, c)})∪{(d′, c)}. There is F ⊆ D′ so that (D,F) is a geodetic
pair for G satisfying Lemma 3 that has a smaller number of conflicting pairs and
therefore contradicts the choice of (D,D).

Case 2: d ∈ L1 ∪ · · · ∪ Ll′−1 and d �∈ R(d′)
Let F =def (D \ {(d, c)}) ∪ {(d, c′)}. Then, (D,F) is a geodetic pair for G
satisfying Lemma 3 that has a smaller number of conflicting pairs and therefore
contradicts the choice of (D,D).
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Case 3: d ∈ L1 ∪ · · · ∪ Ll′−1 and d ∈ R(d′)
Let w be the rightmost vertex of G with respect to σ satisfying: w ≺σ c and
d′ ∈ R(w). It can be shown that IG[d

′, c′] ⊆ R({w, c′}) ∪ IG[d, c] ∪ IG[w, c′]. Let
F =def (D\{d′})∪{w} and F =def (D\{(d′, c′)})∪{(w, c′)}. It is important to
observe that w �= d′, particularly since d′ has a below-neighbour. It follows that
(F,F) is a geodetic pair for G satisfying Lemma 3 that has a smaller number of
conflicting pairs and therefore contradicts the choice of (D,D). ��

3.2 Computing the Geodetic Number in Polynomial Time

We give a polynomial-time algorithm for computing the geodetic number of an
input proper interval graph. Our algorithm can be extended to also determine
a minimum geodetic set of the input graph. The algorithm is strongly based on
the results from the previous subsection, namely Theorem 1. To compute the
geodetic number of the input graph, it suffices to consider only normal geodetic
pairs. The structural properties of normal geodetic pairs, especially the impli-
cations of condition N2, admit a dynamic-programming approach. We compute
normal geodetic pairs for small induced subgraphs of the input graph and ex-
tend the small induced subgraphs and the related pairs. The challenge of the
dynamic-programming approach is to give a description of the properties of nor-
mal geodetic pairs that precisely explain how a small solution can be extended
to a larger solution, without knowing the actual solution.

The size of a geodetic pair (D,D) is |D|. The normal geodetic number of
G is the smallest size of a normal geodetic pair (D,D) that satisfies V (G) ⊆
R(D)∪⋃(u,v)∈D IG[u, v]. Theorem 1 shows that the normal geodetic number ofG
plus 1 is equal to the geodetic number of G. We present an algorithm to compute
the normal geodetic number of G, which also yields the geodetic number of G.

Descripts and realizers
Our algorithm to compute the normal geodetic number of G is based on the
idea of incrementally computing a normal geodetic pair by extending an already
covered part of V (G). Such a covered part can be described by parameters. A
descript is an extended (9 + 2)-tuple [p, q; d, e, e′; b′; b, c, c′] + [s, t] where p, q are
integers with 0 ≤ p < q ≤ h and:

– either s ∈ V (G) and t ∈ {c1, . . . , ch} or s = t = ×, and
d, e, e′ ∈ Lp ∪ {×} and b′ ∈ Lp+1 and c, c′ ∈ Lq ∪ {×} and b ∈ Lq+1 ∪ {×}

– if d �= × then e, e′ �= × and d �σ e �σ e
′, and

if s �= × then s ≺σ cp ≺σ cq �σ t, and
if s �= × and d �= × then s ≺σ d, and
if c �= × then c′ �= × and c �σ c

′, and
if b �= × then q ≤ h− 1.

We employ a special symbol×, that will have the meaning of non-existing vertex:
{×} =def {(×,×)} =def [× . . .×] =def ∅. For a vertex pair u, v of G with u ≺σ v
and i the integer with u ∈ Li, let

[u . . . v] =def {x : u �σ x �σ v} and [[u . . . v] =def {x : ai+1 �σ x �σ v}.
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We employ descripts to describe solutions for induced subgraphs of G. For 0 ≤
i ≤ h, let ai be the leftmost vertex from Li with respect to σ; clearly, a0 = a.
Let (D,D) be a geodetic pair for G. We call (D,D) a minimal geodetic pair if
the following conditions are satisfied:

M1) R(D) ∪ IG[C] ⊂ R(D) ∪ IG[D] for every C ⊂ D
M2) for every vertex u from D \ {a1, . . . , ah} that does not appear in D:

R(C) ∪ IG[D] ⊂ R(D) ∪ IG[D] where C =def (D \ {u}) ∪ {ai} and
i is the integer with u ∈ Li.

Condition M1 means that every pair in D is necessary, and condition M2 means
that every vertex fromD that does not appear inD and that is not in {a1, . . . , ah}
must cover itself.

Let (D,D) be a normal geodetic pair for G, and let (u, v) ∈ D. A (u, v)-field
of D is a pair (x, y) from D with u ≺σ x ≺σ y �σ v such that there is no
pair (x′, y′) in D with u ≺σ x′ ≺σ x ≺σ y �σ y′ �σ v. We can say that a
(u, v)-field is a maximal pair from D inside of (u, v). Let A and B be the vertices
from D that respectively do and do not appear in D. We call (D,D) a realizer
for [p, q; d, e, e′; b′; b, c, c′]+[s, t] if (D,D) is a minimal normal geodetic pair for G
with D ⊆ Lp ∪ · · · ∪Lq and B ∩Lp = ∅ and D ∪ {b} �= ∅ such that the following
conditions are satisfied, where C =def D ∪ {b} and C =def D ∪ {(s, t)}:
– d is the leftmost vertex from A ∩ Lp with respect to σ and [e . . . e′] ⊆ A
– b′ is the leftmost vertex from Rp+1(C) with respect to σ
– [c . . . c′] ∩ (R(C) ∪ IG[C]) = ∅ and [ap+1 . . . cq] ⊆ R(C) ∪ IG[C] ∪ [c . . . c′]
– if s �= × then
for every (s, t)-field (u, v) of D: [[u . . . v] ⊆ R(C) ∪ IG[D] ∪ [c . . . c′].

For the condition on d, if A ∩ Lp is empty then d = ×. Note that there are
descripts that have no realizer, for instance, if b �= × and c ∈ R(b).

The normal geodetic number of G is equal to the smallest size of a realizer for
[0, h;×,×,×; a1;×,×,×]+[×,×].We give an algorithm that computes the small-
est size of a realizer for an arbitrary descript by using already computed values for
“smaller” descripts. We define a function Γ over the set of descripts that yields
two integer values as follows: for a descript A = [p, q; d, e, e′; b′; b, c, c′]+ [s, t] for
G, Γ (A ) =def (g1, g2), where g1 is the size of a smallest realizer for A , and g2
is the size of a realizer for A containing cq and that is of smallest possible size.
If A has a realizer then g1 and g2 exist, and g1 ≤ g2 ≤ g1 + 1.

Let A = [p, q; d, e, e′; b′; b, c, c′] + [s, t] be a descript for G. The algorithm
for computing Γ (A ) = (g1, g2) is presented in Figure 2. The algorithm itself is
simple. The difficulty lies in proving the correctness of the algorithm, that g1
and g2 are indeed the optimal values for the sizes of the two desired realizers. It
needs to be shown that every realizer admits a reduction that yields a realizer
for “smaller” descripts, and realizers for “smaller” descripts can be extended to
realizers for larger descripts, and the executability of both types of operations
can be determined from only considering the descripts, in particular, without
the knowledge of the actual realizers. The following three lemmas show that
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Algorithm. SizeOfRealizer
begin

let F1 ⊆ V (G) \ {a} and F2 ⊆ V (G) \ {a, cq} be of smallest size such that
(F1, ∅) and (F2 ∪ {cq}, ∅) are realizers for A ;

for every r with p < r < q and d′, e′′, e′′′ ∈ Lr ∪ {×} and b′′ ∈ Lr+1 do
if B =def [p, r; d, e, e

′; b′; b′′, e′′, e′′′] + [s, t] and
C =def [r, q; d

′, e′′, e′′′; b′′; b, c, c′] + [s, t] are descripts then
let Γ (B) = (m,m′) and Γ (C ) = (n, n′);
let kB,C =def m+ n and k′B,C =def m+ n′

end if end for;

if s �= × then
let B =def [p, q; d, e, e

′; b′; b, c, c′] + [×,×];
let k′B =def m

′ where Γ (B) = (m,m′)
end if;

if s = × and d �= × then
for every d′, e′′, e′′′ ∈ ([d . . . cp] \ {d}) ∪ {×} do

if B =def [p, q; d
′, e′′, e′′′; b′; b, c, c′] + [d, cq ] is a descript then

let k′B =def m
′ + 1 where Γ (B) = (m,m′)

end if end for end if;

let k1 and k′1 be the smallest values of respectively kB,C and k′B,C ;
let k′2 be the smallest value of k′B;

let Γ (A ) =def (g1, g2)
where g1 =def min{|F1|, k1, k′2} and g2 =def min{|F2|+ 1, k′1, k

′
2})

end.

Fig. 2. The presented algorithm takes as input a descript A , and Γ (A ), that is com-
puted, is the pair of the sizes of a smallest realizer for A and a smallest realizer for A
that contains vertex cq

the extension of a realizer is indeed possible; the three lemmas implicitly also
define what we want to mean by “smaller” descript, namely B and C are smaller
than A .

Lemma 4 (Realizer extension 1). Let A = [p, q; d, e, e′; b′; b, c, c′]+ [s, t] and
B = [p, r; d, e, e′; b′; b′′, c′′, c′′′]+ [s, t] and C = [r, q; d′, c′′, c′′′; b′′; b, c, c′]+ [s, t] be
descripts. Let Γ (A ) = (k, k′) and Γ (B) = (m,m′) and Γ (C ) = (n, n′). Then,
k ≤ m+ n and k′ ≤ m+ n′.

Lemma 5 (Realizer extension 2). Let A = [p, q; d, e, e′; b′; b, c, c′] + [s, t]
be a descript with s �= × and d �= × and [c . . . c′] ∩ IG[s, t] = ∅. Let B =
[p, q; d, e, e′; b′; b, c, c′] + [×,×]. Let Γ (A ) = (k, k′) and Γ (B) = (m,m′). Then,
k′ ≤ m′.

Lemma 6 (Realizer extension 3). Let A = [p, q; d, e, e′; b′; b, c, c′] + [×,×]
be a descript with d �= ×. Let B = [p, q; d′, e′′, e′′′; b′; b, c, c′] + [d, cq] where
d′, e′′, e′′′ ∈ ([d . . . cp] \ {d}) ∪ {×}. Let Γ (A ) = (k, k′) and Γ (B) = (m,m′).
Then, k′ ≤ m′ + 1.
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The proofs of Lemma 4, Lemma 5 and Lemma 6 strongly rely on the properties of
realizers and the definitions of descripts. Note that the assumptions of Lemma 4
directly require p < r < q.

We show next that the converse results of the Lemmas 4, 5 and 6 are also true.
If we say that the realizer extension provides an upper bound on the optimal
sizes of realizers then we can say that the converse operation of reducing realizers
provides lower bounds on the sizes of realizers. The correctness of the following
results heavily relies on the properties of minimal normal geodetic pairs.

Lemma 7 (Realizer reduction 1). Let A = [p, q; d, e, e′; b′; b, c, c′] + [s, t] be
a descript with p ≤ q − 2, let Γ (A ) = (k, k′), and assume that k < k′. Then,
there are descripts B = [p, r; d, e, e′; b′; b′′, c′′, c′′′] + [s, t] and
C = [r, q; d′, c′′, c′′′; b′′; b, c, c′]+[s, t] such that k ≥ m+n, where Γ (B) = (m,m′)
and Γ (C ) = (n, n′).

Lemma 8 (Realizer reduction 2). Let A = [p, q; d, e, e′; b′; b, c, c′] + [s, t] be
a descript, and let Γ (A ) = (k, k′). Then, one of the three cases applies:

1) It holds that p ≤ q−2, and there are descripts B = [p, r; d, e, e′; b′; b′′, c′′, c′′′]+
[s, t] and C = [r, q; d′, c′′, c′′′; b′′; b, c, c′] + [s, t] such that k′ ≥ m+ n′, where
Γ (B) = (m,m′) and Γ (C ) = (n, n′).

2) It holds that s �= ×, and for B = [p, q; d, e, e′; b′; b, c, c′]+ [×,×] and Γ (B) =
(m,m′), it holds that k′ ≥ m′.

3) It holds that s = ×, and there are d′, e′′, e′′′ ∈ ([d . . . cp] \ {d}) ∪ {×} such
that B = [p, q; d′, e′′, e′′′; b′; b, c, c′] + [d, cq] is a descript and k′ ≥ m′ + 1,
where Γ (B) = (m,m′).

Note that the third case of Lemma 8 implicitly assumes d �= ×. We can only
remark here that d = × would directly imply that the first case must be appli-
cable.

The combination of all results established in this section leads to the main
result of our paper, given as Theorem 2 below. The algorithm defines an order
on the descripts and iteratively applies Algorithm SizeOfRealizer of Figure 2.
The running time of a single application of the algorithm and the number of
applications of the algorithm are polynomial in the number of descripts, which
is a polynomial in the number of vertices of G.

Theorem 2. There is a polynomial-time algorithm that, given a connected proper
interval graph G and a proper interval ordering σ for G, computes the normal
geodetic number of G with respect to σ.

Corollary 1. The geodetic number of proper interval graphs can be computed
in polynomial time.

The proofs of Lemmas 4, 5 and 6 are constructive and show how to obtain a
realizer for the “bigger” descript from the “smaller” descripts. These construc-
tions can be used to extend the algorithm of Theorem 2, and also Corollary 1,
to compute a minimum geodetic set of G.
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4 Concluding Remarks and Further Results

The algorithms for computing the geodetic number and a minimum geodetic
set of proper interval graphs (Theorem 2 and Corollary 1) have been our major
challenge and main results. In this section, we report shortly on results for other
graph classes. Due to limited space, we give only the main ideas behind the
results.

A graph is a cobipartite graph if it is the complement of a bipartite graph,
i.e., the vertex set of the complement admits a partition into two independent
sets. The famous NP-complete Dominating Set problem is known to be NP-
complete on connected bipartite graphs [1,5]. Using a reduction from Dominat-
ing Set on bipartite graphs to Geodetic Set on cobipartite graphs, we are
able to show the following result.

Theorem 3. Given a cobipartite graph G and an integer k, it is NP-complete
to decide whether the geodetic number of G is at most k.

A cut vertex in a graph G is a vertex whose removal disconnects G. A block of G
is a maximal connected induced subgraph of G that itself has no cut vertex. The
proof of the following theorem relies on the fact that no cut-vertex of a graph
belongs to a minimum geodetic set.

Theorem 4. Let G be a connected graph, let A be the set of cut-vertices of G,
and let B1, . . . , Bt be the blocks of G. For 1 ≤ i ≤ t, let Di be a geodetic set for
Bi of smallest possible size satisfying A∩V (Bi) ⊆ Di. Then, (D1 ∪ · · · ∪Dt) \A
is a minimum geodetic set for G.

A block-cactus graph is a graph whose blocks are either complete graphs or
chordless cycles. For complete graphs and chordless cycles, the special geodetic
set problem of Theorem 4 is efficiently solvable, which proves the following result.

Theorem 5. A minimum geodetic set for a block-cactus graph can be computed
in polynomial time.

Finally, we come to bipartite permutation graphs. Let G be a bipartite graph
with bi-partition (A,B), and let σA and σB be orderings for respectively A and
B. We say that (σA, σB) is a strong ordering for G if for every vertex quadru-
ple u, v, x, y of G with u, v ∈ A and x, y ∈ B and u ≺σA v and x ≺σB y,
uy ∈ E(G) and vx ∈ E(G) implies ux ∈ E(G) and vy ∈ E(G). G is a bipartite
permutation graph if and only if it has a strong ordering for bi-partition (A,B)
[21]. Notice the resemblance of strong orderings and proper interval orderings.
Using this similarity, the results of Section 3 can be applied to bipartite per-
mutation graphs with small modifications. The main difficulty for bipartite per-
mutation graphs is the possible lack of simplicial vertices. In proper interval
graphs, the simplicial vertices are important anchor points. In bipartite permu-
tation graphs, we lose this property. Nevertheless, the results of Section 3, when
adapted to bipartite permutation graphs, give the following result.

Theorem 6. Let G be a bipartite permutation graph. A geodetic set for G of
size at most g(G) + 1 can be computed in polynomial time.
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