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Abstract. The 2-Disjoint Connected Subgraphs problem, given a
graph along with two disjoint sets of terminals Z1, Z2, asks whether it
is possible to find disjoint sets A1, A2, such that Z1 ⊆ A1, Z2 ⊆ A2 and
A1, A2 induce connected subgraphs. While the naive algorithm runs in
O(2nnO(1)) time, solutions with complexity of form O((2−ε)n) have been
found only for special graph classes [15,19]. In this paper we present an
O(1.933n) algorithm for 2-Disjoint Connected Subgraphs in general
case, thus breaking the 2n barrier. As a counterpoise of this result we
show that if we parameterize the problem by the number of non-terminal
vertices, it is hard both to speed up the brute-force approach and to find
a polynomial kernel.

1 Introduction

It is commonly believed that no NP-complete problem is solvable in polynomial
time. However, while all NP-complete problems are equivalent with respect to
polynomial time reductions, they appear to be very different with respect to the
best exponential time exact solutions. In particular, a number of NP-complete
problems can be solved much faster than the obvious algorithm that enumer-
ates all possible solutions; examples are Independent Set [13], Dominating

Set [13,21], Chromatic Number [3] and Bandwidth [8]. The race for the
fastest exact algorithm inspired several very interesting tools and techniques
such as Fast Subset Convolution [2] and Measure&Conquer [13] (for an overview
of the field we refer the reader to a recent book by Fomin and Kratsch [11]).
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For several problems, including TSP, Chromatic Number, Permanent,
Set Cover, #Hamiltonian Cycles and SAT, the currently best known time
complexity is of the form O(2nnO(1)), which is a result of applying dynamic pro-
gramming over subsets, the inclusion-exclusion principle or a brute force search.
The question remains, however, which of those problems are inherently so hard
that it is not possible to break the 2n barrier and which are just waiting for new
tools and techniques still to be discovered. In particular, the hardness of the k-
SAT problem is the starting point for the Strong Exponential Time Hypothesis
of Impagliazzo and Paturi [16,5], which is used as an argument that other prob-
lems are hard [7,17,18,6]. Recently, on the positive side, O(cn) time algorithms
for a constant c < 2 have been developed for Sched [9], Maximum Induced

Planar Subgraph [12] and (a major breakthrough in the field) for the undi-
rected version of the Hamiltonian Cycle problem [1]. In most cases breaking
the 2n-barrier gives an O(cn)-time algorithm with c significantly smaller than 2.

In this paper we study the 2-Disjoint Connected Subgraphs problem:

2-Disjoint Connected Subgraphs

Input: An undirected graph G = (V,E) together with two disjoint subsets
of vertices Z1, Z2 ⊆ V .
Task: Is it possible to find two disjoint subsets A1 and A2 of V , such that
Z1 ⊆ A1, Z2 ⊆ A2 and G[A1], G[A2] are connected?

We call vertices from Z1 ∪ Z2 terminals and all other vertices non-terminals.
A general version of this problem (that is when we consider arbitrary num-
ber of sets) was used as one of tools in the celebrated result of Robertson and
Seymour [20], that the Minor Containment problem can be solved in polyno-
mial time for every fixed pattern graph H. In literature, the solution (A1, A2) is
sometimes required to be a partition of V . Note that this does not simplify the
problem: in our setting, if G is connected, the superflous vertices can always be
attached to one of the sets A1 or A2, while otherwise the instance is trivial.

Previous work. Gray et al. [14] show that the 2-Disjoint Connected Sub-

graphs problem is NP-complete even for the class of planar graphs. The mo-
tivation for this variant comes from an application in computational geometry,
namely finding a realization of an imprecise terrain that minimizes the total
number of local minima and local maxima. Furthermore, van’t Hof et al. [15]
proved that the problem remains NP-complete even if |Z1| = 2.

From the exact exponential time algorithms perspective the authors in [15]
show that one can solve 2-Disjoint Connected Subgraphs in O((2− ε(�))n)
time for any n-vertex P�-free graph. This line of research was continued by
Paulusma and van Rooij [19], where the authors present an algorithm with
O(1.2051n) running time complexity for P6-free graphs and split graphs.

Our results. In [19] Paulusma and van Rooij ask whether it is possible to solve the
2-Disjoint Connected Subgraphs problem in general graphs in faster than
O(2nnO(1)) running time. In this paper we answer this question affirmatively
and present an O(1.933n) time and polynomial space algorithm. Our approach
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is based on the branch and reduce technique and a combinatorial study of the
case when the number of terminal vertices is small.

Theorem 1. One can solve the 2-Disjoint Connected Subgraphs problem
in O(1.933n) running time and polynomial space.

To break the 2n barrier we heavily use the fact that in the instance size n we
count not only non-terminals but also terminal vertices. Observe that the naive
brute-force algorithm, which for every partition of V \ (Z1 ∪Z2) checks whether
A1\Z1, A2\Z2 can be found within its sides, runs in O(2knO(1)) time, where k is
the number of non-terminals. Therefore, natural question arises: is it possible to
obtain also an O((2−ε)knO(1)) algorithm? Using a recent hardness result (under
the Strong Exponential Time Hypothesis; see Section 2 for an exact statement)
of Cygan et al. [6] for the Set Splitting problem, we show that this is not the
case: breaking the 2k barrier is hard.

Theorem 2. There does not exist an epsilon ε > 0 and an algorithm running in
O((2 − ε)k|V |O(1)) time for the 2-Disjoint Connected Subgraphs problem
unless the Strong Exponential Time Hypothesis is false.

We should note that the Strong Exponential Time Hypothesis is a very strong
assumption, and not widely believed, as it is the case of its weaker cousin, the
Exponential Time Hypothesis (which is still much stronger than the statement
P �= NP ). However, as noted in [17], SETH-based lower bounds still make sense:
one should probably wait with trying to break a SETH-hard barrier until a faster
SAT algorithm is discovered.

Since the naive O(2knO(1)) time algorithm for 2-Disjoint Connected Sub-

graphs shows that the problem is fixed-parameter tractable, a usual next step
is to investigate the kernelization possibilities for the problem (see Section 2 for
respective definitions). Using the kernelization hardness result of Dom et al. [10]
for the Colour Hitting Set problem parameterized by the size of the uni-
verse we show that 2-Disjoint Connected Subgraphs parameterized by the
number of non-terminal vertices is unlikely to admit a polynomial kernel.

Theorem 3. The 2-Disjoint Connected Subgraphs problem parameterized
by the number of non-terminals does not admit a polynomial kernel unless NP ⊆
coNP/poly.

As a byproduct we prove kernelization hardness result for Set Splitting pa-
rameterized by the size of the universe, which is of independent interest.

Set Splitting

Input: A set system (F , U), where F ⊆ 2U .
Task: Does there exists a subset X ⊆ U such that each set in F contains
both an element from X and from U \X?

Theorem 4. The Set Splitting problem parameterized by the universe size
does not admit a polynomial kernel unless NP ⊆ coNP/poly.
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Organization of the paper. In Section 2 we provide the reader with the necessary
definitions. Section 3 is devoted to the details of the O(1.933n) algorithm for 2-

Disjoint Connected Subgraphs, while in Section 4 we present the negative
results for the parameterization by the number of non-terminals. Concluding
remarks are gathered in Section 5.

2 Preliminaries

Notation. For an undirected graph G = (V,E) and a subset of vertices X ⊆ V
by G[X ] we denote the subgraph induced by X . An articulation point in G is a
vertex, whose removal increases the number of connected components of G.

For a universe U and two subsets X,Y ⊆ U we say that X splits Y if Y ∩X �= ∅
and Y ∩ (U \X) �= ∅.

Parameterized complexity. In the parameterized complexity setting, an instance
comes with an integer parameter k — formally, a parameterized problem Q is a
subset of Σ∗ × N for some finite alphabet Σ. We say that the problem is fixed
parameter tractable (FPT) if there exists an algorithm solving any instance (x, k)
in time f(k)poly(|x|) for some (usually exponential) computable function f . It
is known that a problem is FPT iff it is kernelizable: a kernelization algorithm
for a problem Q takes an instance (x, k) and in time polynomial in |x| + k
produces an equivalent instance (x′, k′) (i.e., (x, k) ∈ Q iff (x′, k′) ∈ Q) such
that |x′| + k′ ≤ g(k) for some computable function g. The function g is the size
of the kernel, and if it is polynomial, we say that Q admits a polynomial kernel.

The hardness of kernelization can be obtained in a reduction-like manner by
polynomial-time transformations from problems known to be hard to kernelize.

Definition 5 ([4]). Let P and Q be parameterized problems. We say that P is
polynomial parameter reducible to Q, written P ≤p Q, if there exists a polynomial
time computable function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that
for all (x, k) ∈ Σ∗ × N the following holds: (x, k) ∈ P iff (x′, k′) = f(x, k) ∈ Q
and k′ ≤ p(k). The function f is called a polynomial parameter transformation.

Theorem 6 ([4]). Let P and Q be parameterized problems and P̃ and Q̃ be the
unparameterized versions of P and Q respectively. Suppose that P̃ is NP-hard
and Q̃ is in NP. Assume there is a polynomial parameter transformation from
P to Q. Then if Q admits a polynomial kernel, so does P .

Exponential Time Hypothesis. [16,5] Let ck be the infimum of a set of reals c for
which there exists an algorithm solving the k-CNF-SAT problem in time O(cn),
where n is the number of variables in the input formula. The Exponential Time
Hypothesis (ETH) asserts that c3 > 1, whereas the Strong Exponential Time
Hypothesis (SETH) asserts that limk→∞ ck = 2. In particular, SETH implies
that satisfiability of an arbitrary boolean formula cannot be checked significantly
faster than by trying all possible assignments.
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3 Algorithm

In this section we provide an algorithm solving the 2-Disjoint Connected

Subgraphs problem in O(1.933n) time, where n is the total number of vertices
in the input graph. Recall that in the 2-Disjoint Connected Subgraphs

problem the vertices were divided into three groups — A1 , A2 and V \(A1∪A2).
The algorithm will be simpler to present if we merge A2 with V \ (A1∪A2). This
means that we drop the condition that A2 is connected, requiring instead that
all vertices from Z2 are in the same connected component of G[A2]. Formally,
we consider the following problem:

Modified 2-Disjoint Connected Subgraphs

Input: An undirected graph G = (V,E) together with two disjoint subsets
of vertices Z1, Z2 ⊆ V .
Task: Is it possible to partition V into sets A1, A2, with Z1⊆A1 and Z2⊆A2,
such that G[A1] is connected and all the vertices of Z2 lie in the same
connected component of G[A2]?

First notice that if we fix A1, then checking the correctness of a partition is a
polynomial-time operation.

Let ε = 0.0493. If |Z1| + |Z2| ≥ ε|V |, we can simply iterate over all pos-
sible choices of A1 \ Z1 — this is a subset of V \ (Z1 ∪ Z2), so we have an
O(2|V |−|Z1|−|Z2|nO(1)) ⊆ O(2(1−ε)nnO(1)) ⊆ O(1.933n) algorithm solving the
problem. From now on we assume |Z1|+ |Z2| < εn. Additionally we assume that
|Z1| ≤ |Z2|, which means |Z1| < εn/2.

We will be looking for a set A1 which is minimal with respect to inclusion.
Let us fix one such set. Let G′ = G[A1]. Notice that any vertex r ∈ A1 \ Z1 has
to be an articulation point in G′, otherwise we could move it from A1 to A2 and
still have a valid solution. We will prove the following lemma:

Lemma 7. Let G′ be any graph with at least 2 vertices. Let k be the number
of vertices of G′ that are not articulation points, and let l be the number of
articulation points of degree at least three. Then 3k − 6 ≥ l.

The proof has been postponed to Section 3.2.
Let us call all the vertices of Z1 and those vertices of A1 with degree larger

than 2 in G′ jointly branching points. As |Z1| ≤ εn/2, we have at most 2εn− 6
branching points in G′.

Notice that we can assume that no vertex in A1 \ Z1 is of degree 0 or 1 in
G[A1] (because, again, we could remove it to achieve a smaller solution) — thus
all the vertices that are not branching points have to be of degree two in G[A1].

We now pursue a branch and reduce algorithm. The state of our algorithm
is an instance (G = (V,E), Z1, Z2) of the Modified 2-Disjoint Connected

Subgraphs problem, plus a set A2 ⊇ Z2 of vertices that we have already chosen
to be in A2 . The running time of our algorithm depends on two numbers:

– N = |V \A2| — the number of vertices of the graph not yet chosen to A2;
– K — the upper limit on the number of branching points in the graph.
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Formally, we describe a procedure solve(G,Z1, Z2, A2,K) that either:

1. reports a valid solution (A1
′, A2

′) to the Modified 2-Disjoint Connected

Subgraphs problem, such that A2 ⊆ A2
′, or

2. reports NO, correctly claiming that the Modified 2-Disjoint Connected

Subgraphs instance (G,Z1, Z2) has no solution (A1
′, A2

′), such that A2 ⊆
A2

′ and A1
′ has at most K branching points.

Note that the outcomes above are not exclusive: if the input Modified 2-

Disjoint Connected Subgraphs instance has a solution, but only with more
than K branching points, the algorithm can report any of the answers.

Let δ = (|Z1|+|Z2|)/|V |, recall we assume δ ≤ ε. The starting value of N is no
larger than (1 − δ/2)|V |. Lemma 7 ensures us that solve(G,Z1, Z2, Z2, 2δ|V | −
6) reports a solution if and only if the Modified 2-Disjoint Connected

Subgraphs instance (G,Z1, Z2) is a YES-instance.
Let T (N,K) be the worst-case cost of executing our algorithm for given values

of N and K. We need to prove that T ((1 − δ/2)n, 2δn − 6) ≤ 1.933n for any
0 ≤ δ ≤ ε.

We will also describe a similar procedure solve∗(G,Z1, Z2, A2,K,w), where
in addition to the input graph as in the original problem, we have a single vertex
w, adjacent to some t ∈ Z1, and we already decided that w ∈ A1 (we did not
decide whether w is a branching point or not). Let T ∗(N,K) denote the worst-
case complexity of executing our algorithm for given values of N and K in this
case. We will simultaneously prove the following two inequalities:

T (N,K) ≤ 1.5901N8.109K ,

T ∗(N,K) ≤ 0.3711 · 1.5901N8.109K.

It is easy to check this suffices to prove Theorem 1. As all the inequalities pre-
sented further are not tight within very small constants, the obtained bound
on the running time is in fact slightly better; therefore, we can suppress all the
polynomial factors using this error.

3.1 Reduction Rules

We provide a set of reduction rules. The algorithm at each point finds the lowest-
number reduction rule applicable and applies it. Finding and applying a single
reduction rule will trivially be a polynomial-time operation.

During the algorithm we will assign vertices both to A1 and A2. A feature of
our algorithm is that a vertex v can be assigned to A1 only if there is some w ∈ Z1

adjacent to it. When we assign v to A1, we will represent this by contracting
the edge vw. Note that the resultant instance is fully equivalent to the original
— if (A1, A2) is a valid solution in the reduced graph, then (A1 ∪ {v}, A2) is a
valid solution in the original graph, and conversely if (A1, A2) is a valid solution
in the original graph, and v ∈ A1, then (A1 \ v,A2) is a valid solution in the
reduced graph.

If we find a solution in any of the branches, we return it as the witness of the
positive answer for the problem. If we find no solution, we return NO.
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Reduction rules for solve(G,Z1, Z2, A2,K)

Reduction rule 1. If there are two vertices from Z1 in different components
of G[V \A2], return NO from this branch.

Reduction rule 2. If |Z1| = 1, we check whether all the vertices of Z2 lie in the
same connected component of G[V \Z1]. If yes, we report a solution (Z1, V \Z1).
If no, we return NO from this branch.

Reduction rule 3. If K < |Z1|, we return NO from this branch.

Reduction rule 4. If there are two adjacent vertices t, t′ ∈ Z1, contract the
edge tt′ and reduce K by one.

Reduction rule 5. If there is a vertex w adjacent to some t ∈ Z1 (necessarily
w �∈ Z1), we branch. We will either put it in A2 in the solution, or choose it to
be a part of A1 and proceed to the second variant of the problem.

To check the complexity assumptions in this case, we verify that the running time
after applying the reduction rule is at most the claimed bound on T (N,K):

T (N − 1,K) + T ∗(N,K) ≤ 1.5901N−18.109K + 0.3711 · 1.5901N8.109K

≤ 1.5901N8.109K .

The correctness of all the above rules is trivial.

Reduction Rules for solve∗(G,Z1, Z2, A2, K,w). Recall that now we have
a vertex w which we already know to be in A1, and which is adjacent to some
t ∈ Z1.

Reduction rule 6. If w is adjacent to some vertex t′ ∈ Z1 other than t, we
contract the edges tw and t′w, and decrease K by one.

Notice that as we contracted two vertices from Z1 into a single vertex in this
case, we have at least one branching point less in the reduced graph than in the
original. To check the complexity assumptions in this case, we verify that the
running time after applying the reduction rule is at most the claimed bound on
T ∗(N,K):

T (N − 2,K − 1) ≤ 1.5901N−28.109K−1 ≤ 0.3711 · 1.5901N8.109K.

Reduction rule 7. If w has no neighbours outside Z1 ∪ A2, return NO from
this branch.

This can be justified as follows: for any solution A1 containing w, the set A1 \w
is also a valid solution, and we are looking only for inclusion-minimal sets A1.

Reduction rule 8. If w has only a single neighbour w′ outside Z1∪A2, contract
the edge tw and proceed treating w′ as the new w.
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The justification of this is that again, if w′ were not to be a part of the solution,
we could also remove w from the solution.

Reduction rule 9. If w has more than one neighbour outside Z1 ∪ A2, we
branch. We either decide w is a branching point (in which case we contract
tw, reduce the limit on the number of branching points by one, and return to
the original problem), or that it is not. In the latter case, exactly one of the
neighbours of w is in the solution — thus we branch on which one is it, contract
the edge tw, put the remaining neighbours of w in A2 and proceed treating the
selected neighbour as the new w.

To check the complexity assumptions we verify that for any d ≥ 3 the running
time after applying the reduction rule is at most the claimed bound on T ∗(N,K):

T (N − 1,K − 1) + (d− 1)T ∗(N − (d− 1),K)

≤ 1.5901N−18.109K−1 + (d− 1)0.3711 · 1.5901N−(d−1)8.109K

≤ 0.3711 · 1.5901N8.109K.

As d/(d− 1) ≤ 1.5 < 1.5901 for d ≥ 3, the above inequality may be verified only
for d = 3.

3.2 Proof of Lemma 7

Lemma 8 (Lemma 7, restated). Let G′ be any graph with at least 2 vertices.
Let k be the number of vertices of G′ that are not articulation points, and let l
be the number of articulation points of degree at least three. Then 3k − 6 ≥ l.

Proof. Let us denote m = 3k − l, our goal is to prove that for any graph G we
have m ≥ 6. Let us assume the contrary: there exist graphs for which m < 6.
Let G0 be the one with minimum number of vertices, a minimal counterexample.
We now examine the structure of G0 in order to find a contradiction.

We first claim that G0 is connected. If G0 is edgeless, k ≥ 2, l = 0 and
3k − l ≥ 6. If G0 contains an isolated vertex v, G0 has at least three vertices,
and by deleting v we obtain a smaller counterexample, as we decrease k and keep
the value of l. Otherwise, we note that m is additive with respect to connected
components, so in case of disconnectedness one of its components would be a
smaller counterexample with at least two vertices.

Observe that G0 cannot have an articulation point of degree 2. In such a situ-
ation we could contract one of the incident edges; this operation does not change
neither k nor l, so m stays the same and we obtain a smaller counterexample.

Now assume that G0 contains an articulation point v, such that we can par-
tition the connected components of G0[V \ {v}] into two parts with vertex sets
V1, V2, for which |V1|, |V2| > 1. Note that G0[V1 ∪{v}] and G0[V2 ∪{v}] are con-
nected. As the degree of v is at least 3, let us assume without losing generality
that the degree of v in G0[V1 ∪ {v}] is at least 2. Consider two graphs:

– G1, being G0[V1 ∪ {v}] with a pendant (a degree-1 vertex) attached to v;
– G2 := G0[V2 ∪ {v}].
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Both G1 and G2 have less vertices than G0, so if for i = 1, 2 we denote by ki, li
the numbers of non-articulation points and articulation points of degree at least
3 in Gi respectively, then mi := 3ki − li ≥ 6.

Observe that k ≥ k1 + k2 − 2, as every vertex from V \ {v} that was a non-
articulation point in a corresponding Gi is also a non-articulation point in G0,
while v is an articulation point in G1. Moreover, l ≤ l1 + l2, as every articulation
point of degree at least 3 in G0 is also an articulation point of degree at least 3
in either G1 or G2. Hence,

m = 3k − l ≥ 3(k1 + k2 − 2) − (l1 + l2) = m1 + m2 − 6 ≥ 6,

a contradiction with G0 being a counterexample.
Take any articulation point v in G0. As the partition described above is not

possible, removing v from the graph results in G0 being split into exactly two
connected components: one of size |V (G)|− 2 and one of size 1. Therefore, every
articulation point in G0 has a neighbour of degree 1, which obviously is not an
articulation point. Hence, l ≤ k and, consequently, 6 > 3k− l ≥ 2k, which leads
to l ≤ k ≤ 2. Now observe that

– if l = 0, then k ≥ 2 as G0 has at least two vertices, so m ≥ 6, a contradiction;
– if l = 1, then the only articulation point must have at least three neighbours,

so k ≥ 3, a contradiction;
– otherwise l = 2 and the graph is isomorphic to P4, a contradiction as well.

In each case we obtained a contradiction, which finishes the proof. �

Remark 9. One might wonder whether the constants obtained in the proof are
optimal, and whether we could strengthen the bound to achieve a better com-
plexity of the algorithm. In fact, this is not the case: there exists an infinite
family of graphs with unbounded k, l, for which the inequality from Lemma 7
is tight. An example of such a graph is one constructed from a set of disjoint
triangles by connecting them in a tree-like manner by bridges, and by adding
a degree-1 neighbours to some of the vertices of the triangles, such that each
vertex of the triangles has degree exactly three.

4 2-Disjoint Connected Subgraphs Parameterized by
the Number of Non-terminals

In this section we consider the 2-Disjoint Connected Subgraphs problem
parameterized by the number of non-terminals and prove Theorems 2 and 3.

First we prove that the Set Splitting problem parameterized by the size of
the universe does not admit a polynomial kernel unless NP ⊆ coNP/poly(that
is, prove Theorem 4), which we later use for the kernelization hardness of 2-

Disjoint Connected Subgraphs. As the starting point we use the following
result of Dom et al. [10].
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Colour Hitting Set

Input: A set system (F , U), where F ⊆ 2U , an integer k ≤ |U | and a colour
function c : U → {0, . . . , k − 1}.
Task: Does there exists a subset X ⊆ U , which contains at most one element
of each of the k colours, such that each set in F contains an element from
X?

Theorem 10 ([10]). The Colour Hitting Set problem parameterized by the
size of the universe does not have a polynomial kernel unless NP ⊆ coNP/poly.

Lemma 11. There exists a polynomial time algorithm which given an instance
I = (F , U) of Colour Hitting Set creates an instance I ′ = (F ′, U ′) of Set
Splitting, where |U ′| = |U | + 2, such that I is a YES-instance iff I ′ is a
YES-instance.

Proof. Let I = (F , U, k, c) be an instance of Colour Hitting Set. We create
the following instance I ′ = (F ′, U ′) of Set Splitting. As the universe U ′ we
take U ′ = U ∪ {uin, uout}. As the family F ′ we set F ′ = {{uout} ∪ S : S ∈
F} ∪ {{uin, uout}} ∪ {{uin, u1, u2} : u1, u2 ∈ U ∧ u1 �= u2 ∧ c(u1) = c(u2)}.
We want to prove that I is a YES-instance of Colour Hitting Set iff I ′ is a
YES-instance of Set Splitting.

First assume that I is a YES-instance of Colour Hitting Set and let X ⊆ U
be any solution. We claim that X ′ = X ∪ {uin} is a solution to Set Splitting.
Obviously we split the set {uin, uout}. Since each set in F contains an element
of X and uout �∈ X ′ we infer that each set of {{uout} ∪ S : S ∈ F} is split
by X ′. Finally, X contains at most one element of each colour, therefore each
set {uin, u1, u2} is split, because uin ∈ X ′ and at least one element of {u1, u2}
belongs to U ′ \X ′.

Now let us assume that I ′ is a YES-instance and let X ′ ⊆ U ′ be any so-
lution. Since by symmetry U ′ \ X ′ is also a solution for I ′, and there exists
a set {uin, uout} in I ′, w.l.o.g. we assume that uin ∈ X ′ and uout �∈ X ′. Let
X = X ′ \ {uin} ⊆ U . We prove that X is a solution for the instance I. Since
each set in {{uout} ∪ S : S ∈ F} is split by X ′ and uout �∈ X ′ we infer that X
contains at least one vertex from each set in F . Moreover, since each set of the
form {uin, u1, u2} is split and uin ∈ X ′, we know that X contains at most one
element of each colour and, consequently, I is a YES-instance. �

By Theorems 10, 6 and the above lemma Theorem 4 follows. Now we show a
reduction from Set Splitting to 2-Disjoint Connected Subgraphs.

Lemma 12. There exists a polynomial time algorithm which given an instance
(F , U) of Set Splitting creates an instance (G = (V,E), Z1, Z2) of 2-Disjoint

Connected Subgraphs, where |V | − |Z1| − |Z2| = |U |, such that (F , U) is a
YES-instance iff (G,Z1, Z2) is a YES-instance.

Proof. Let (F , U) be an instance of the Set Splitting problem. We construct
the following graph G = (V,E), where V = {z1, z2}∪U ∪{vS1 , vS2 : S ∈ F}, that
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is as the vertex set we take two special vertices z1,z2, one vertex for each element
of the universe U and two vertices for each set of the family F . We define the set
of edges of the graph G as E = {z1u, z2u : u ∈ U}∪{vS1 u, vS2 u : S ∈ F∧u ∈ S}.
Finally we define Z1 = {z1} ∪ {vS1 : S ∈ F} and Z2 = {z2} ∪ {vS2 : S ∈ F},
hence the only non-terminal vertices in G are vertices of U .

Now we prove that (F , U) is a YES-instance of Set Splitting iff (G =
(V,E), Z1, Z2) is a YES-instance of 2-Disjoint Connected Subgraphs. First
assume that X ⊆ U is a solution for (F , U). We set A1 = Z1 ∪ X and A2 =
Z2 ∪ (U \ X). Since each set in S ∈ F contains both an element of X and of
U \X , all the vertices from A1 are connected to z1 and all the vertices from A2

are connected to z2. Therefore, the subgraphs G[A1] and G[A2] are connected
and, consequently, (G,Z1, Z2) is a YES-instance.

In the other direction assume that (G = (V,E), Z1, Z2) is a YES-instance and
let (A1, A2) be a solution. We claim that X = A1 ∩ U is a solution to (F , U).
Indeed, since both G[A1] and G[A2] are connected, we infer that each set S ∈ F
contains both an element of X and of U \X ; otherwise either vertices z1, v

S
1 or

z2, v
S
2 would be disconnected in G[A1] and G[A2] respectively. �


To prove Theorem 2 we pipeline Lemma 12 with the following recent result:

Theorem 13 ([6]). There does not exist an epsilon ε > 0 and an algorithm
running in (2− ε)|U|(|U |+ |F|)O(1) time for the Set Splitting problem unless
the Strong Exponential Time Hypothesis is false.

Remark 14. The proof of Theorem 13 in [6] reduces a κ-CNF-SAT instance (for
any κ) to a Set Splitting instance with a number of sets linear in the number
of clauses in the input. If we pipeline this reduction with Lemma 12, we obtain an
instance with much more terminals than non-terminals: k non-terminals yields
roughly kκ terminals. Therefore there is much space for improvement between
the instances produced by this reduction and the ones where our O(1.933n)-time
algorithm does not fall back to the brute-force solution.

5 Conclusions

In this paper we studied the general case of 2-Disjoint Connected Sub-

graphs problem and showed an algorithm achieving running time O(1.933n),
thus breaking the 2n barrier. For the natural parameterization by the number of
non-terminals we have shown a matching lower bound for the naive O(2knO(1))
upper bound. Moreover, the existence of a polynomial kernel is unlikely.

The obvious question is whether we can develop a significantly faster algorithm
than O(1.933n). It is possible that a deeper combinatorial study and enhance-
ment of our branching rules can lead to such a result.
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