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Abstract—In this study, we proposed and evaluated the use 
of the empirical mode decomposition (EMD) technique to 
extract feature information of the event-related (de) synchro-
nization (ERD/ERS) phenomenon during complex motor im-
agination of combined body and limb action. The EEG data 
were separated into intrinsic mode functions (IMFs) using the 
EMD method and determined the characteristic IMFs by 
power spectral density (PSD) analysis. Thereafter, the analytic 
signals of the characteristic IMFs can be obtained by the Hil-
bert transformation, then extracting the ERD/ERS feature of 
each single-trial. To verify the effectiveness of this method, ten 
subjects were tested for distinguishing three kinds of complex 
motor imagery. The classification performance suggests that 
the proposed EMD based approach is effective for ERD/ERS 
feature extraction and is worth for the further application in a 
brain-computer interface. 
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I. INTRODUCTION  

Since the important work of Jasper and Penfield [1], lots 
of research has been conducted to investigate the relation-
ship between motor imagery and brain oscillations. Howev-
er, most efforts converged to investigate the EEG patterns 
induced by single-motor imaginary tasks involving a re-
stricted number of muscles. Recently, cognitive brain re-
searchers began to investigate the complex motor imagery 
patterns induced by complex motor imagination of com-
bined body and limb action [2, 3]. Research on complex 
motor imagery patterns had been regarded as a must for the 
successful application of brain-computer interfaces (BCIs) 
dedicated to controlling human locomotion. 

A motor imagery based brain–computer interface (BCI) 
translates the subject’s motor intention into a control signal. 
The frequency components that give effective discrimina-
tion between different types of motor imagery are subject-
specific and variable over time [4, 5]. So ERD/ERS feature 
extraction methods based on traditional time-frequency 
analysis such as short-time Fourier transform and wavelet 
transform have its limitation inevitably. Because of the 
complexity of complex motor imagery, novel techniques for 

time-frequency analysis are required to better capture the 
ERD/ERS feature. 

In this study, we introduce a novel technique called em-
pirical mode decomposition (EMD) [7] for ERD/ERS fea-
ture extraction from complex motor imagery of combined 
body and limb action. The EMD method is proposed for 
nonlinear and non-stationary signal analysis, and it can 
decompose the acquired signal into a collection of intrinsic 
mode functions (IMFs). EMD has been identified as a self-
adaptive signal processing method that can be applied to the 
nonlinear and non-stationary process perfectly [6]. In this 
work, we applied the EMD technique to better capture the 
ERD/ERS feature from the complex motor imagery of com-
bined body and limb action (imaginary stand-up, or imagi-
nary left/right-foot movement combined with homolateral 
hand movement). To verify the effectiveness of this method, 
ten subjects were tested for distinguishing these three kinds 
of complex motor imagery. 

II. METHOD 

A. Experimental Paradigm 

The participants were instructed to perform the indicated 
motor imagery task without overt motor output. Each trial 
began with a blank screen for 2 seconds, the subject was in 
the ‘relax’ state. At the 2nd second, a fixation cross ap-
peared at the center of the monitor, and the subject was 
asked to gradually focus attention to the visual cue. And at 
the 4th second, an arrow pointing upward, left or right indi-
cated the imagination of stand-up, left- or right- foot move-
ment combined with homolateral hand movement (Fig.1). 
At the end of imagination, a blank screen was presented for 
2 seconds before next trail. The experiments were divided 
into 3 runs, consisting of 30 trials each. There were breaks 
of 3 to 5 minutes between the runs. 

 

 

Fig.1 The time sequence of one trial epoch of the experiment 
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B. Empirical mode decomposition 

Empirical mode decomposition (EMD), introduced by N. 
E. Huang et al. [7] in 1998, is a method for nonlinear and 
non-stationary time series analysis. This method developed 
from the assumption that any signal consists of different 
simple intrinsic modes of oscillation. In this way, each sig-
nal could be decomposed into a number of intrinsic mode 
functions (IMFs), each IMF must satisfy the following defi-
nitions. 

1. In the whole dataset, the number of zero-crossing sand 
the number of extrema must either be equal or differ at 
most by one. 

2. At any point, the mean value of the envelope defined by 
local maxima and the envelope defined by the local 
minima is zero. 

An IMF represents a simple oscillatory mode as a coun-
ter part to the simple harmonic function, but it is much more 
general: instead of constant amplitude and frequency in a 
simple harmonic component, an IMF can have variable 
amplitude and frequency along the time axis. With this 
definition, any time series )(tx  can be decomposed as fol-

lows: 

1. Identify all the local maxima, and then get the upper 
envelope by interpolating between maxima. 

2. Identify all the local minima, similarly get the lower 
envelope. 

3. The mean of the upper and lower envelope values is 

designated as 1m  and the difference between the signal 

)(tx  and 1m  is the first component 1h  i.e. 

11)( hmtx . If 1h  satisfies all the requirements of 

IMF, then 1h  is the first IMF component of )(tx . 

4. I f  1h  is not an IMF, treat 1h  as the original signal and 

repeat steps 1-3 until 1h  is an IMF. Then, it is designat-

ed as 11 hc  the first IMF component from the original 

data. 
5. After getting the first component, remove the first com-

ponent from the original signaland obtain the residue 1r  
as follows: 

             11)( rctx                           (1) 

6. Treat 1r  as the original signal and repeat the above pro-

cesses. The second IMF component 2c  of )(tx  will be 

obtained. 
7. Repeat the process as described above n times. Then, all 

the IMFs of the signal )(tx  can be obtained, which are 

given by 
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The decomposition process can be stopped when nr  be-

comes a monotonic function or a constant from which no 
more IMF components can be extracted. Summing up both 
sides of equations (2) accordingly, we obtain 
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Thus, one can achieve a decomposition of the signal into 

n-empirical modes and a residue )(trn , which is the mean 

trend of )(tx .  

The complex motor imagery involves several cortical 
sensorimotor areas, its mode is more complex. Therefore, 
we use wavelet package transformation to decompose the 
complex motor imagination potential to obtain the sub-
bands covering the alpha-rhythm and beta-rhythm, then 

reconstructing the alpha-rhythm component x  and beta-

rhythm component x
 
of the signal by inverse wavelet 

package transformation, avoiding the model mixture phe-
nomenon induced by direct application of the EMD. 

Thereafter, All IMFs of x  and x  can be obtained by 

the EMD, and they admit a well-behaved Hilbert transfor-
mation. Thus, the analytic signal of each IMF can be obtained 
as 
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Here, )(tB  is the envelope of the instantaneous ampli-

tude and  is the instantaneous phase. 
After obtaining the n-IMFs, we can detect the character-

istic IMFs c
 
and c

 
representing alpha-rhythm oscilla-

tions and beta-rhythm oscillations respectively using the 
distribution of power spectral density (PSD). 

The analytic signal of each characteristic IMF can be ob-
tained by the Hilbert transformation. )(tB  and )(tB  repre-

sent the Hilbert envelope of the characteristic IMF c
 
and 
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respectively. Therefore, referring to the quantitative 

principles for ERD/ERS patterns presented by Pfurtscheller, 
the ERD/ERS coefficient under the characteristic oscillatory 
mode can be given by 
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III. RESULTS AND DISCUSSION 

 Firstly we can obtain the alpha-rhythm component by 
wavelet package transformation and inverse wavelet pack-
age transformation from the EEG data of a single trial at 
electrode C4 while the participant performed mental task of 
combined left-foot movement with homolateral hand 
movement. Thereafter, all IMFs of alpha-rhythm component 
at electrode C4 can be obtained by applying EMD method. 
Thereafter, in order to find out the characteristic IMF of 
alpha rhythm, power spectrum analysis was carried out on 
these IMFs. Fig.2 shows the PSD distributions of the first 
four IMFs. It can be seen that the characteristic IMF of 
alpha rhythm at electrode C4 is located at the second one 
(imf2). According to the same processes presented above, 
we can obtain the characteristic IMF of alpha-rhythm com-
ponent at electrodes C3. Similarly, we can also obtain the 
characteristic IMFs of beta-rhythm component. 

 After obtaining the characteristic IMFs of alpha-rhythm 
and beta-rhythm at electrode C3and C4 during each kind of 
complex motor imagery, the analytic signal of each charac-
teristic IMF can be obtained by the Hilbert transformation. 
Thereafter, the Hilbert envelope under alpha and beta 
rhythm of every single trial can be obtained respectively. It 
can be seen from Fig.3 (a) that the existence of ERD feature 
at both C3and C4 channel under alpha-rhythm during the 
motor imagery of the left-foot movement combined with 
homolateral hand movement. But the ERD feature at C4 is 
more obvious, it shows the contralateral dominance. Fig.3 
(b) shows the beta-rhythm ERD feature and there is no 
obvious difference between C3 and C4. Fig.4 (a) shows the 
alpha-rhythm ERD feature of C3 and C4 channel during the 
motor imagery of the right-foot movement combined with 
homolateral hand movement. It can be seen that the ERD 
feature at C3 is stronger, and it shows the contralateral dom-
inance. Fig.4 (b) shows the beta-rhythm ERD feature, and it 
also shows the contralateral dominance. Fig.5 (a) shows the 
alpha-rhythm ERD feature of C3 and C4 channel during the 
motor imagery of standing up. There is no remarkable dif-
ference between C3 and C4. Fig.5 (b) shows the ERD fea-
ture of C3 and C4 channel under beta-rhythm. It can be seen 
the ERD feature at C4 is relatively weak, and the ERD fea-
ture at C3 is stronger. 

 After getting the energy change feature, the ERD/ERS 
coefficient of each characteristic oscillatory mode under 
three kinds of complex motor imagery can be obtained 
according the equation (7). In our research, the ERD/ERS 
coefficient corresponding to typical time intervals of each 
trial (from 4.0 s to 8.0 s) were adopted as the input data of 
the classifier. In order to assess the ability of the EMD-
based technique for ERD/ERS feature extraction, the tradi-
tional method based on band pass filter was introduced for 
comparison. Table 1 presents the classification results of ten 
subjects. It can be seen that the average accuracy is 73.71% 
while adopting the traditional method to extract ERD/ERS 
feature. It is relatively lower with respect to the recognition 
result while adopting the EMD based method, and the aver-
age accuracy is 79.09%. Obviously, EMD-based technique 
has better classification results than traditional band pass 
based approach.  

 

 Fig.2 The PSD distribution of the first four IMFs 

 

Fig.3 Hilbert envelope at C3 and C4 during the motor imagery of the left-
foot movement combined with homolateral hand movement. (a) alpha 
rhythm (b) beta rhythm 
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Fig.4 Hilbert envelope at C3 and C4 during the motor imagery of the right-
foot movement combined with homolateral hand movement. (a) alpha 
rhythm (b) beta rhythm 

 
Fig.5 Hilbert envelope at C3 and C4 during the motor imagery of stand-up. 
(a) alpha rhythm (b) beta rhythm 

Table 1 Classification accuracies of three complex mental tasks  

Subjects band pass EMD Improved 

LXH 83.63 87.69 4.06 

ZPF 71.06 73.24 2.18 
GCW 61.09 65.72 4.63 
WK 75.23 81.20 5.97 
JJN 79.58 84.77 5.19 

LWZ 71.36 78.64 7.28 
ZYH 76.59 81.33 4.74 
XQJ 78.91 84.40 5.49 
LYW 61.09 69.39 8.3 
ZK 78.56 84.56 6 

Mean 73.71 79.09 5.38 

IV. CONCLUSIONS  

In this study, EMD based approach was applied to extract 
ERD/ERS feature as the input for classification during the 
complex motor imagery of combined with body and limb 
action. The result demonstrates that this method is an effec-
tive technique for ERD/ERS feature extraction. From the 
classification result, this EMD based method performs bet-
ter than the traditional band pass filter based approach. In 
conclusion, the EMD method can be a valuable method for 
differentiating complex motor imaginary states of combined 
body and limb action. Its powerful predominance for non-
linear and non-stationary data analysis makes it worth for 
further application in feature extraction for BCI. 

ACKNOWLEDGMENT 

This research was supported by National Natural Science 
Foundation of China (No. 90920015, 61172008, 81171423, 
30970875) and Program for New Century Excellent Talents 
in University. 

REFERENCES  

1. Jasper H H, Penfield W. (1949) Electrocorticograms in man: effect of 
the voluntary movement upon the electrical activity of the precen-
tralgyrus. Arch Psychiat Z Neurol 183: 163–174 

2. Omar F N, Kim D N and Michael V. (2005) Influence of directional 
orientations during gait initiation and stepping on movement-related 
cortical potentials Behav. Brain Res 161: 141–154. 

3. Kim D N, Alvaro F C, Omar F N. (2006) EEG based BCI-towards a 
better control. IEEE Trans Neural System Rehabil Eng 14: 202–204. 

4. Guger C, Ramoser H, Pfurtscheller G. (2000) Real time EEG analysis 
with subject specific spatial patterns for abrain–computer interface. 
IEEE Trans Rehabil Eng 8: 447–456. 

5. Kavitha P T, Cuntai G, Chiew T L et al. (2011) Adaptive tracking of 
discriminative frequency components in electroencephalograms for a 
robust brain-computer interface. J Neural Eng 8: 1-15. 

6. Yeh C L, Chang H C, Wu C H et al. (2010) Extraction of single-trial 
cortical beta oscillatory activities in EEG signals using empirical 
mode decomposition. BioMedical Engineering OnLine. pp 9-25. 

7. Huang N E, Shen Z, Long S R. (1999) A new view of nonlinear water 
waves: the Hilbert spectrum Annu. Rev. Fluid Mech. 31 417–457 

8. Pfurtscheller G, Brunner C, Schlogl A et al. (2006) Mu rhythm 
(de)synchronization and EEG single-trial classification of different 
motor imagery tasks. NeuroImage 31: 153–159. 

 
 
 
 

 

1544 W. Yi et al.

  
IFMBE Proceedings Vol. 39 

 


	EMD-based Feature Extraction from Motor Imaginary EEG of Complex Movements
	INTRODUCTION
	METHOD
	RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES




