Chapter 8
Weil Representation and Shimura Lifting

8.1 Weil Representation

Let V be an n-dimensional real vector space and V* be the dual space of V. Denote
by B a bilinear form on (V x V*) x (V x V*) given by B(z1, z2) = (v1, v3) = v3(vy) for
z1 = (v1,v7) and zg = (ve,v3). Let A(V') be the Lie group with underlying manifold
V x V* x T whose multiplication is given by

(2,8) (2, t) = (2 + 2/, tt'e(B(z,2')), Vz,2/ eV xV*tt eT,

where T = {z € C||z| = 1} and e(z) = ™=,
We fix a Euclidean measure dz on V' and denote by dz* the FEuclidean measure
which is dual to dz. Namely, the Fourier transformation

fr@®) — ., [ (@ )e((z,27))da”
gives an isometric mapping from L?(V*,dz*) onto L?(V,dz). We denote by U a
unitary representation of A(V') on L?(V) given by

{U(z,t) f}(x) = te((z,v")) f(x+v), VeeV,z=(v,0")eV xV*teT.

Then U is irreducible and ¢(V'), the space of rapidly decreasing functions over V, is
a dense invariant subspace of L2(V). A linear transformation of V' x V* is said to be
sympletic if it leaves the alternating form A(z1,22) = B(z1,22) — B(22, z1) invariant.
We denote by S,(V x V*) the group of symplectic linear transformations of V' x V*.
For o € Sp(V,V*) and z = (v,v*) € V x V*, we write

o) = (00 (£ ) = (alo) + 7). 000) + (0,

where a, b, c and d are linear mappings from V to V, from V to V*, from V* to V
and from V* to V* respectively. In the following we often identity o with the matrix

(i z> For o € S,(V x V*) and z € V x V*. Put

Fy(z) = exp (niB(0(2),0(2))) / exp(niB(z, 2)).
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It is easy to see that
Fy(z + ) = By (2)Fy ())e(B(o(2), o)) — B(z, ),
Fyr(2)=Fr(0(2))Fy(2). (8.1)
This shows that the group S,(V x V*) acts on A(V) as a group of automophisms via

the mapping:
w i w” = (0(2),tF,(2)), Y = (2,1) € A(V).

Set U% (w) = U(w?), then U? is an irreducible unitary representation of A(V) which
is equivalent to U. Namely, there is a unitary operator 7(c) on L?(V) which satisfies

Uw®) =r(o) *U(w)r(e), Ywe A(V). (8.2)

The operator r(¢) is unique up to a multiplication by a complex number of modulus 1.
Furthermore, the mapping o — (o) gives rise to a projective unitary representation
of Sp(VxV*)on L?(V). In other words, for each pair (0, z) € S,(V xV*)xS,(V xV*),
there is a constant ¢(c, z) which satisfies

r(oz) = c(o, 2)r(o)r(z). (8.3)

This projective unitary representation is called the Weil representation of Sp,(V x V*).
If the entry c of o is either non-singular or zero, we may normalize r(o) as follows:

|c\1/2/ Fy(v,0%) f(a(v) + ¢(v*))dv*, if ¢ is non-singular,
V*

r(o)f(v) = (8.4)
% ( a(o). (o)) ) F(a(0) ite=o0,
where o = (CCL Z), d(c(z*)) = |e|d*z* and d(a(z)) = |a|dz.

Let L be a lattice in V and L* be the dual lattice of L in V*. Let M* be a
sublattice of L* and M the dual lattice of M* in V. Denote by S,(L x M™*) the
subgroup of S,(V x V*) consisting of linear transformations which leave the lattice
L x M* invariant. For a character x of L x M* and for a 0 € S,(L x M™*), we set

XTN) = x(@TYA)E,-1(\), VAeLx M.

Then x? is also a character of L x M* and x°™ = (x?)7.
We denote also by x the character of a subgroup L x M* x T of A(V') given by

x((z,t)) =tx(z), VzeLxM".
Then there exists a (vy,vy) € V x V* satisfying

X(/\,,u,*):e((UX,,u,*)—(A,U;)), V(/\vﬂ*) €L xM".
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The map x — (vy, v;) gives an isomorphism between the character group of L x M*
and the additive group V/M x V*/L*. For a u € M/L, we denote by x(u) the
character of L x L* corresponding to (vy + p,vy) of V/L x V*/L*. Any extension of
X to a character of L x L* coincides with x(u) for a suitable u € M/L. We denote
by Ty (L x M*) the unitary representation of A(V') induced from the character x of
L x M* x T as follows: the representation space @, (L x M*) is the Hilbert space of
measurable functions 6(z) on V' x V* satistying the following conditions:

e(B(X,2))0(A+2) =x(N\)0(z), YVAeLxM* zeV xV*,
16]2 = / 10(z, 27)[2dade” < +o
V/LxV* /M
and Ty, (L x M*) is given by
T (L, M*) ((w, 1)) 0(2) = te(B(z,w))0(z + w).

It is easy to see that the space Oy, (L x L*) (Vpu € M/L) is a closed invariant
subspace of O, (L x M*) and

Oy(Lx M*) = @ Oy(L x L*).
uEM/L

Put
@X = QX(L X M*), QX(M) = @X(M)(L X L*)7 TX = TX(L X M*)

For an f € ¢(V)(where ¢(V) is the space of rapidly decreasing functions on V, for
the definition, please compare [?] ), we define

Oty ()@ ) =(VVol(V/M*) S e((U + p + vy, 2%)

leL
+ (o)) flo+ 1+ i+ vy),

where vol(V*/M*) = / dz*.
Ve IM*
It is clear that 6, (f) depends on the choice of a representative of (v +u) € V/L
in V. Here and after we choose representatives for (v, + ) (# € M/L) and fix them.
Then 6y, (f) is a smooth function in 6,,) and

O (U(9)f) = To(9)0 () (f), ¥V g € A(V),
1 (F)I12 = 17117 = / ().
174

Conversely, for a smooth function 6 € 6 the following function

x(p)>
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fo(x) = ( vol(V*/M*)) / O(x — 1 — vy, z%)e( — (n+ vy, 2"))dz"  (8.5)

belongs to ¢(V') and 6, (f) = 0. Thus 60,,,) gives a norm preserving linear map
from (V) onto the bpace of smooth functions in 6,,) which commutes with the
action of A(V). The inverse of 0,(,) is given by (8.5). These show that 6, is
extended to linear isometric map from L?(V) onto ©,(,) which gives an equlvalence
of two unitary representations (U, L*(V')) and (Ty, Oy,)) for any p € M/L. Since
(U, L*(V)) is irreducible and (T, ©y) is a direct sum of (T}, Oy(,)) (n € M/L), any
bounded linear map of L*(V) into @y is a linear combination of 0,y (u € M/L) if
it commutes with the action of A(V'). Finally, put

0(f, x(1)) = bx()()(0,0).
All the above results and their proofs can be found in André Weil, 1964.

Proposition 8.1(Generalized Poisson Summation Formula) (1) Let r(0)(0 €S, (L X
M*)) be the unitary operator in L?(V') which satisfies (8.2). There exist constants
CX(u,v) (u,v € M/L) which satisfy

0(r(o)f,x(w) = > CXw,0)0(f,x°(v), VfesV).
veEM/L

(2) Denote by CX the matriz of size [M : L] whose (u,v)-entry (u,v € M/L) is
CX(u,v). Then CX is a unitary matriz and CX, = c(o,7)CXCX" where c(o,7) is a
complex number of modulus 1 defined in (8.3).

(3) Set o = (Z Z) and assume c is non-singular and (o) is nomalized by the

formula (8.4). Then the constant CX(u,v) is given by
1
vol(V* /M™*) || 2CX (u, v) = Z 6(2(l +u'), e ta(l + u’))
lEL/c* (M*)
1

— (I et w) + 3 de™H (v")) + (1, vy)),
where u' = u+ vy and v = v+ vyo.
Proof  For the details, see T. Shintani, 1975. O

From now on, we set V = R”. Take a non-degenerate symmetric n X n matrix

Q and identify V with its dual by setting (z,y) = yTQz. We put dz = dxy - --dz,
Then the dual measure dz* is given by dz* = |det@|dz. We denote by r(-, Q) the Weil

representation of S,(V x V*) on L?(V), to emphasize its dependence on Q. Identify
the group SLy(R) with a subgroup of S,(V x V*) by settings
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o(z,y) = (ax + cy,bx + dy), Vx,yeV,o= (Ccl Z) € SLy(R).

By (8.4), we have the following expression for r(o)=r(0,Q) (o= ((z Z) €SLy(R)):

2c

|a|”/2e(ab(§’x)>f(ax), ife=0.

|C‘_n/2\/M/ €<a(x,x) —2@,y) + dly, y)>f(y)dy, if c#£0,
(r(o,Q)f)(x)= v

The group GL,(R) acts on L?(V), as a group of unitary operators if we put

(Tf)(x) = V/|detT|~1f(T" "), (8.6)
It is clear to verify that
r(o, (T QT T =T r(6,Q), Yoe&SLyR),T € GL,(R). (87

We are going to determine the constant c¢(o,7) in (8.3) for o, 7 € SLa(R).
Denote by H the complex upper half plane. For o € SLa(R), set

Vi, if ¢ >0,
(o) = ¢ itEn@/2 0 if o =,
Vil if ¢ < 0.

Take a positive definite symmetrix R such that RQ™'R = Q. For z = u+iv € H, put
Q. =u@Q +ivR.
Let P,(z) be a homogeneous polynomial of degree v which has the following expres-
sion:
1, if v=0,
Py(z) =< (r,z), (r € C",Qr = Rr), ifv=1,
Zcr(r,x)”,cr eCreC",Qr=Rr,(r,r)=0, ifv>2

(if rank(Q — R) = 1, we assume v < 1).
Lemma 8.1 Assume @ has p positive and q negative eigenvalues (p+q =mn,p > 0).
Set .
F.(x) = e(zQz(x)>Pv(x).
Then B
r(0,Q)F=(x) = e(0)P "1/ J(0,2)" " |J(0,2)| "I (0,2) 7" Fpzy ()
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for any o = (Ccl 2) € SLy(R), and where J(o,z) = cz +d.

Proof  There exists a T € GL,(R) such that TTQT = (Ip 7 ) and TTRT =
g

I,,. By (8.7), it is sufficient to show the lemma under the additional assumption that

I, _
QZ( _Iq>7 f=1n

Put o = (Z Z) If ¢ = 0, the lemma is clear. If ¢ # 0, by a direct computation, we

have

r(o,Q)F,(x) = |c|_”/2\/v —iu—id/c p\/v +iu+id/c qJ(O’, 2) " Fyy ().

Now the lemma follows from the definitions of (o) and J(o, z). This completes the
proof. O

By Lemma 8.1, we have

o) Tiord) | (8.8)
VI (0,7(i)\/J ()
For o € SL2(R), set
r0(0,Q) =¢€(0)"Pr(0,Q). (8.9)

Let G7 be the Lie group with the underlying manifold SLy(R) x 7" and the mul-
tiplication given by
(O-v t) (O'/a t/) = (Uala tt/CO(O-a OJ))'

Then the subgroup {(o, £1)|o € SL2(R)} of Gy is isomorphic to the two-fold covering
group of SLa(R). For a o = (0,t) € Gy, set ro(c,Q) = tP~Ir¢(0,Q). The following
lemma is now immediate to see.

Lemma 8.2 (1) The mapping: ¢ — ro(0,Q) gives a unitary representation of Gy
on L%(V). The space ¢(V) is a dense invariant subspace.

(2) For any f € ¢(V), the mapping & — ro(c,Q) [ is a smooth mapping from G
into ¢(R™);

It is clear that the mapping ¢ — (o, 1) gives a locally isomorphic imbedding of
SLs(R) into G7. Hence, for any element u of the universal enveloping algebra of the
Lie algebra of SLa(R), 79(u, Q) has an obvious meaning as a differential operator on
V. In particular set
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Co=710(C,Q), C=2XY +2YX + H?,

SR oY e

Then Cg commutes with r9(c, Q) for any ¢ € G;.

cosf) sin6

For 0 € R, let kg = (—sin@ cosf

) and 2 = {(k¢,€)|0 € R,e = £1}. Put

X (ko 2)) = (Vo) " em.
Then X, is a character of 2 and for any f € ¢(V') we have

ro(k, Q) f = xm(k)f, Vke€ 2. (8.11)
Lemma 8.3 Forz=u+iv € H, set

azz(ﬁ WZ“).

0 Vo
Then 52 o2 5
TO(Uza Q)CQf = 40? (ﬁ + w — Zimv%>ro(oz, Q)f
Proof Seel. Gelfand. O

Let G be the connected component of the identity element of the group O(Q) of
real linear transformations which leave the quadratic form ) invariant. Then (8.6)
gives a unitary representative of G on L?(V) which commutes with (&, Q) for any

o € G1. Take a T € GL,(R) satisfying TTQT = (%’ (} ) and set
g

7

<i<j<por p<i<j<n,
<kL<p<li<n.

Xij = T(eij — )T,
Yi = T(ew +ew)T ™1,

Then X;; and Yj; form a base of the Lie algebra of G. Put

— E 2 2 2
1<i<j<por 1<k<p<iI<n
p<i<j<n

Then Lg is the Casimir operator on G. The representation (8.6) of G maps Lg to a
second order differential operator on R™ which is also denoted by L.

Lemma 8.4 For any F € ¢(V'), we have

CQF = (LQ + n(n — 4)/4)F.
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I
Proof By (8.7), we may assume that Q = ( p 7 > In this case, a simple
—1q
computation shows that

" 9F n
= i 7Fa
;Z‘ axi + 2

r(X,Q)F = mi(z,2)F,

. p 52 n 52
QF =it (Y - 3
i=1 i=p

K +1 J
0 1 0 0 1 0
WhereX—<0 O),Y—<1 O) dH—<O _1> Thus
P02 = & ", L O%F
2
CQF__(JU’J:)<ZW_ a$2> +Z )
i=1 ? j=p+1 J =
" OF n® 0*F
DY wig+ (S —n)F ;

+(n )Zx o0x; * 4 ) + . Tity dz;0z;"

i=1 1<i<j<n

On the other hand,
o o\’ Kl 0\
02 " 9%F
=~ @) ( 2 5,2 Ox? Z;L )F T2 D Wy o Ox;0x;

=1 i 1<i<j<n
2
+(n—-1) E xz E T; 8

Therefore, Cg = Lo +n(n — 4)/4. O

Here and after, we assume @ to be a rational symmetric matrix with p (> 0)
positive and ¢ (= n — p) negative eigenvalues. Let L be a lattice of V', and L* be the
dual of L in V| i.e.,

L*={zcV|(x,y) =2TQy € Z,Vy € L}.
We always assume L C L*. Let v(L) be the volume of the fundamental parallelotop

of Lin V:
v(L) = / dz.

]Rn/L

For any f € ¢(V) and h € L*/L, put 6(f, h) Zfl—i—h
leL
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b
Proposition 8.2 Let 0 = <i ) € SLy(Z) satisfy the following condition

d
ab(z,z) = cd(y,y) =0 (mod 2), Va,y € L. (8.13)

Then we have

(1) 6(r(o,Q)f,h) = Z c(h,k)o0(f, k), Vfed(V), where

keL*/L
ch,k)y =

5h7ak€<M>, if c=0,

2
hdetQ|_1v(L)*l|c|7”/2 Z e(a(fH—r,h—H’)—ZQ(Ck,h—H“)—Fd(kJﬂ))7 e,

reL/cL

(2) Further assume that ¢ is even, cL* C L, ed # 0 and ¢(z,z) =0 (mod 2) for
any x € L*. Let {\1,--- ,\n} be a Z-base of L and set D = det((A;, \;)). Then

e (P2) maonr (%) (2) <o

ab(h,h)\ ,, [ —2c\" (D .
5h7dke( D) ){-?d( d) <d>, 1fd>07

where g =1 or i according to d =1 or 3 (mod 4) respectively.

\/i—(p—q)sgn(cd)c(h’ K)o =

Proof (1) We note that the group SLs(Z) is mapped into a subgroup of S,(L x L)
by our embedding of SLs(R) into S,(V x V*). Thus, the result in (1) is an immediate
consequence of Proposition 8.1.

(2) Let eg be the index of L in L*. Denote by C, the matrix of size ey whose
(h, k) entry is c(h, k), (h,k € L*/L). If 0,0’ and oo’ all satisfy the condition (8.13),
it follows from the second statement of Proposition 8.1 that

ngl = C(O’7 O'I)CUCU/.

Put o' = b a and w = 0 -1 . Then ¢’,w and o = ¢’w all satisfy the
—d ¢ 1 0
condition (8.13). By (8.8) we have

—q)sgn(cd
):\/i(p q)sgn( ).

clo’ w
Hence
clh, D) =V et @) Mo(L) a2

" Z Z e(—b(h+r,h+r) —2(l,h+7) +C(l’l)>e(—(l,k)).

—2d
reL/dLieL*/L
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Since ¢L* C L, the map ! — dl induces an automorphism of L*/L. Taking into
account the assumption that c(z,z) € 2Z (Vx € L*), we have

5 e<_b(h+r,h+r):;l(lvh”)*C(Z’Z))e(—(l,k))
leL*/L
b(h+rh+7)
_ (bt htr) e((l, h — dk))
() 5

On the other hand, the Poisson summation formula implies that | det(Q)|~v(L) 2eo =
1. Furthermore,

5 e(b(h+;,dh+r)>: 5 €<b(adh+72",dadh+r)>

reL/dL reL/dL

() (),

reL/dL

Thus, we have

—q)sgn(cd bh7h _ b y
e(h K)o = SpaVi )e(" < )>|d| Y e( (gd’“))
reL/dL

Now we can use the argument in the proof of Proposition 1.1 and Proposition 1.2

with a slight modification and get
2¢\"( D
e; " (sgn(c)i)” (g) (_—d>, if d <0,

_ b(r,r)
RN CON
| | reg/:dL 2d 53 ;20 B if d>0
d d b b
which completes the proof. O

Let G be the connected component of the identity of the real orthogonal group
of Q. Let I' be the subgroup of G of all elements which leave the lattice L invariant
and leave L*/L point-wise fixed. Then, as a function on G, 0(g - f,h) (Vv f € ¢(V),
g € G, g- f was defined as in equality (8.6), h € L*/L) is left '-invariant and slowly
increasing on G/I' (For the definitions of slowly increasing functions and rapidly
decreasing functions on G/I", see R. Godement). Take a rapidly decreasing function
¢ on G/I' and put

0(f, ;1) = / 6g - f.h) B(g)dg,

G/r
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where dg is a Haar measure on G. Now assume that f satisfies (8.11) and set
O(z, f, &:h) = v 0(r(02, Q)f, &5h) (8.14)

for z=u+iv € H.
If no confusion is likely, we write

O(z,h) = O(z, f, D; h).
Proposition 8.3  Assume f satisfies (8.11). Then we have

(1) If vy = (i Z) € SLy(Z) satisfies the condition (8.13), then

\/i(p—q)sgn(C)\/m—mQ(v(Z%h): Z c(h,k)yO(z, k), c#0.
keL*/L

(2) Assume that ¢ satisfies the differential equation Lo ® = AP on G. Then
0? 0? 0 0
2 .
{41} <8u2 + e 2) - 21mv<% —&—1%) }Q(ZJL)

N R

for z=u+iv € H.
Proof (1) It follows easily from (8.8) that

T(PY’ Q)T(Uw Q) = T(O"y(z) ’ Q)T(k9a Q)7

cosf) sinf

0 _ =
where e = J(v,2)/]J(v,2)| and ko = (—sin9 cosf

). Since f satisfies (8.11),

r(ke, Q)f = Vi T ]

(see (8.9)). So, by Proposition 8.2, we have

\A(P*Q)sg“(c)m_me(y(z),h): Z c(h, k), O(z, k).

keL*/L

(2) By Lemma 8.3, we have
0? 0? , o .0
{41} (8u2 + 5 2) — 21mv<8u +16v> }9(2, f, @;h)
—m<1 - Z‘) 0(z,h) + O(z,Cof, &: h).

By Lemma 8.2, Lemma 8.4 and integration by parts, we have (8.15). This completes
the proof. 0
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Example 8.1 Letn =1,Q = (2/N), L = NZ and f(z) = exp(—2nz?/N). Then we
havep =1, ¢ =0, L* = Z/2, 7(k(0)) f = (cos@ —isin )~/ f and 0(z, f,0) = O(Nz),
where 0(z, f, h) = v~ *0(r(0., Q)f, h) and 6(z) is defined as in Chapter 1. From

b

d) € I'y(4N) that

Proposition 8.3 we have for o = (Z

(V1)*# ) (cz + d)"/20(No(2)) = ¢(0,0),0(Nz),

6(070)0 _ (\ﬁ)sgn(c)j(g’ Z)(CZ + d)—1/2 (5)

Of course these formulas are the same as the transformation formula for Theta-
function in Chapter 1.

We note that ¢(h, k), in Proposition 8.2 does not depend on f. We can interpret
the Weil representation by the so-called Fock representation. We define a map

I:L*R) — H = L*(C,exp{—nzz}dz)

by the integral transformation

1(f)(z) = / ke, 2) f(2)de,
R

where f € L?(R) and

k(x,z) = exp{—mma?}e(xy/mz) exp{nz?/2}.
dS

dzs

exp(—2ma?)
vmz
in L?(R) to the polynomial z* in H up to a constant multiple. Moreover, by a direct
computation one can easily check that

I(r(k(8))f) = (cosf —isin )2 M (e)I(f),

Then I is bijective and maps the Hermite function exp(tma?)

where f € L2(R), Q = (m) and M (e'?) is the map such that M (e?)g(z) = g(e'?z) for
g(z) € H. In this way we can find a function f; s € L?(R) satisfying

r(k(0)) fr.e = (cos@ —ising)~ZsT1/2f
for a positive integer s. Namely,
fr.s(x) = Hy(2y/mma?),
where

dS
daxs

Hy(z) = (—1)° exp{a®/2}— exp{—2?/2}

is a Hermite polynomial.
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Put again m = 2/N and let L be as above. Then

0(2, f1,5,0) = 01 5(2) = v~ /? Z H(2V2Nmvz) exp{2niN zz?}

satisfies N
01,5(c(2)) = <E>j(a, z)(cz + d)°01,5(2)
according to the independence of ¢(h, k), to f. In the same way we can prove

01..(—1/4ANz) = (2N)*/?(v/=2i2)>*10,(=),

where -
0,(z) = (20)7°/2 Z exp{2miz?z} Hy (2 2mvz).
Il
. 0 —4/N)\ .
Example 8.2 Now we consider the case n =2, QQ = (—4/N 0 ), ie.,

4
(z,y) = —N(l‘lyz + w2y1)

and
L = (4NZ) & (NZ/4).
Then p =q = 1,r = ro, L* = (Z) ® (Z/16) and ANL* = L satisfies the assumption

Z) € IL(4N),

O(f,ah) are valid. If f € ¢(R?) satisfies 7(k(0))f =

of Proposition 8.2. Put L' = Z @® (NZ/4), h € L'. Then for 0 = (Z

C(hv k)o’ = 5k7ah and 9(710 (J)fv h) =
e'*? f and if we define 0, 4(z, f) by

O25(2, )= Y xi(h)0(z, f,h),

heL’/L*

A
-1
where 1 = x (*> with A\ a positive integer and y a character modulo 4N. Then

we have

02,5(0(2), f) = x1(d)(cz + d)°02,5(2, f).
0 —2m

We explain how to find f with this property. Put Q = (—Zm 0

),m>0. We

define a partial Fourier transformation F' by
F(f)(z1,22) =V 2m/ f(z1,t) exp{dmimtz, }dt,

FH(f) (w1, 22) = \/%/_OO f(z1,t) exp{—4mimtzs }dt.
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One can easily check that
r(0)f = FR(o)F~(f),
where
(B(0)f)(x) = f((z1,72)0).
And so r is a representation of SLo(R) although Weil representation is not always a
multiplicative representation. Put

f(w1,220) = (z1 + ize)® exp(—2mmn(z] + 23));
fo.s(x) = F(f')(x) = V2(Varm) > H(VAmm(z1 — x2)) exp(—2ma(2? + 23)).
Then
R(k(8) ' = 27,

and f> s has the required property. Generally, the Weil representation commutes with
the action of the orthogonal group of @ on L?(R™). In the present case, the elements
of that group are diagonal matrices in SLo(R). Put f,(@1,22) = fos(n~ a1,n32),
and m = 2/N. Put 65 s(z,n) = 02,5(2, f;,). Then
N 4
0,(2,m) =0~/ Z X1 (21) exp{ — 2niuz zo — TUTW%U2 - J\qf]ﬂﬁn_2}

z1,22€Z

/2 N
x Hy (2 N7w<93177_1 — 5277)).

Observing that fo s = F(f’) and using the Poisson summation formula, we get a
different expression for 6 ,:

02,5(2,m) =<\/%> Hl(\/ﬁ)—lisn—s—lv—s

- _ s 4
X Z X1(z1) (212 + x2) exp{—m|xlz+x2|2}.

r1,22€Z

O

Example 8.3 We denote by () the Weil representation in the vector space V;,
i=1,2,3,and by L;, L}, r((f), h; € L¥ and ¢;(h;, ki), corresponding lattices, etc.

If V3 is the orthogonal sum of V; and V5, then rég) = rél) ® 7’(()2)77“(3) =r g r(2)7
and Cg(h37]€3)g = Cl(hl, kl)ac2(h27k2)g is obvious for h3 = (hl, hg), kg = (kl, kz) If

0 0 -2
n=3Q=%| 0 1 0 |and L=4NZ& NZ& (NZ/4), then according to the
-2 0 0

preceding two examples, we have

c(h, k) g = O.an(V1)¥) (0, 2) (cz + d) /2 (5)
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23 _fa b
forfEL(R),a-(c d

Therefore, if 7(k(6))(f) = (cos — isin@)~"/2f is satisfied, then by Proposition 8.3
we have

) € I'y(4N) and h, k € L' /L with L' = Z& NZ& (NZ/4).

0u(o(2).1) = w3 )sto 21 + a0
where k = 2\ + 1, for h = (hq, ha, h3) we define, X, (h) =X;(h1) and
Ou(z,f) = > xa(h)O(z, f,h).
heL’/L

One can take here fi s(z2)f2a—s(z1,23) (s =1, 2, ---, A), or their linear combi-
nations for such f(z). In view of

(x—iy)* = ﬁ: <A> Hy—s(2)Hy(y)(—1)*,

S
s=0

f3(z) = (z1—ivg—x3)* exp{—mm(222+23+222)} is available, too. On the other hand,
the action of SLy(R) on R? is defined as follows: g € SLy(R) operates on R? through
the symmetric tensor representation, i.e., for x = (21,22, 73) € R3, gz = (2, 2%, %)

is determined by
v x2/2\ ¢ [ xy  w5/2
I\ 2y /2 a3 9= xh/2  xh )

and gives an isomorphism of SLs(R) with the orthogonal group of Q.

A
-1
Let N be a positive integer, x a character modulo 4N and y; = X<—> with a
*

positive integer A. Define a function on R? by
f(x) = (21 —izg — x3)  exp{(—2m/N) (222 + x2 + 222)}.

For k =2\ +1, 2 = u + iv € H and for the lattice L' = Z ® NZ @& (NZ/4) € Q3, we
define a theta series 6(z, g) by

0(z,9) = Y Xa(e1)o®~ (exp{2mi(u/N) (@3 — dzr23)}) f(Vog~ ),

zeLl’

where /v € R is viewed as a scalar of the vector space R?, and g € SLz(R) operates
on R? as above.

Let gf € L?(R?) be defined by (9f)(z) = f(g~'z) and take m = 2/N in f3(z).
Then it is clear that 6(z,g) = 0(z,gf3). The action of ro(k(f)) commutes with that
of g in L?(R®), gf3 has the same property as f3, and the required transformation
formula of 0(z, g) is
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We note that f3 has the property f3(k(a)z) = e f3(z), and so 0(z,gk(a)) =
e~ 2 (z, g). O

8.2 Shimura Lifting for Cusp Forms

Let G(= Z e(nz) be an element of S(4N,k+1/2,x), ¢ a square-free positive

-1 t
integer, put y; = X(T) (;) and & (w Z Ai(n)e(nw) with A;(n) defined by

the following equality

nﬁ_ojl Ay(n)e(mo) = (g‘lxm)m“s) ( > a(tm2)m5>.

m=1
Then @;(w) is called the Shimura ¢—lifting of G(z). The main theorem of G. Shimura,
1973 asserted that @; belongs to G(N;, k — 1, x?) , and in fact & € S(IN;, k — 1,
x?) for k > 5 with a certain positive integer N;. He proved this result through Weil
theorem. He also conjectured the level N, can be taken as 2N, and for k = 1, ¢(w)
is a cusp form if and only if G(z) is orthogonal to some theta series with respect to
the Petersson inner product.

In this section we shall study these problems and prove these results. Our presen-
tation is due to T. Shintani, S. Niwa, 1975, H. Kojima, 1980 and J. Sturm, 1982.

From now on, we always think of 6(z,g9) = 6(z,gf3) as the function defined in

N
Section 8.1. Now let F'(z) be in S(4N, k/2, X<?>> with k£ = 2A+1 an odd positive

integer. Since F'(z) is rapidly decreasing at each cusp of T'g(4N), while 6(z, g) is at
most slowly increasing there, so the following integral, which is the Petersson inner
product of F(2) and 0(z, g), is well-defined:

Fo)= [ R ot
Do (4N) v

where Dg(4N) is the fundamental domain of I'h(4N). We have the following

Lemma 8.5 The function F(g) has the following properties:
(1) F(g) € C™(SLa2(R)) is an eigenfunction of the Casimir operator Dy, i.e.,
DyF = A\ —1)F, where

ne (04 D=0 D6 )

(2) F (9 ( cosf Sma)) = exp{2)0i} F(g);

—sinf cosf
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@) Flog) =\ @F() for everyy = (& 1) e (50 ) meemy (12 5)

Proof  The first conclusion is a direct consequence of the Proposition 8.3. In fact,
by the proposition, we have

0? 0? 0 0 k 3
N PP R A WY o .0 k_
Dgﬁ(z,g)—[élv (82+82> 21kv(a +18>+k( 1>+4],

where D, is the Casimir operator on SL2(R). By Green’s formula we have
dud — dud
D, / /280 (A - 1) / F(2)0(z, g)o*/? ==,
v? v
Do(4N) Do(4N)

which is just (1).
Since 0(z, gk(a)) = e~ 2220(z, g), so

= [ FE#e gk

Do(4N)

/2 dudv
V2

= / F(2)e=2220(z, g)vk/? dudv

Do(4N)
= exp{2i\a}F(g),

02

which is (2).

Now we prove that 0(z,vg) = x?(d)0(z, g) for v = (Z Z) € (3 1(/)2> I'v(2N)

(1(/)2 g) from which (3) is deduced. Recalling the definition of 6(z, g):

0(z,9) = Z X1 (21)vC /4 (exp{2mi(u/N) (a2 — da123)}) f (Vg '),

xeL’

o (a b 2 0 1/2 0Y .
where ' =Z & NZ & (NZ/4). For’y-(c d>€<0 1/2>F0(2N)< 0 2 , it

is easy to verify that a,d € Z,c € NZ/2,b € 4Z. By the definition of the symmetric
tensor representation, for z = (z1,z2,73) € R3, yo = (2, 24, x%) is determined by

x1  x2/2\ T xp  ah/2
vy V= ’ / .
x2/2  x3 xh/2  ah

o) = a’xy + abxo + b3,
xh = 2caxy + (ad + be)wa + 2bdxs,

That is,

vy = x4 cdrg + d*xs3.
It is clear that both lattices L = 4NZ & NZ & (NZ/4) and L' are stable by =
and 2y = a’z; (mod 4N) for x = (z1, w2, z3) € L’ which imply that 6(z, vg) =
(x())%0(z, g) = x%(d)0(z, g) since X%(a) = x%(d). This completes the proof. O
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We define two functions ¥(w) and $(w) (w =& +in € H) by

A=)

H(w) = w( — 2;@) (2N)N(—2Nw) =2,

and

Let W be the isomorphism of S(4N7 k/2, X(f)) onto S(4N, k/2, x) defined
by
G(2) = (FI[W@AN)])(2) = F(=1/4Nz)(4N) "4 (—iz)7*/2

N
for all F(z) € S<4N7 k/2, x<*>> Then G(z) has the Fourier expansion

G(z) = Z a(n)e(nz)
n=1
at 0o. Define a sequence {A(n)}52; by the following relation

Z Ann™® =L(s—A+1,x1) Z a(n®*)n*,
n=1 n=1

A
-1
where x1 = X(T) . Then we define the Shimura lifting I, (k > 3) by

I, (G(2)) = ZA(n)e(nz) for G(z) € S(4N,k/2,x).
n=1
Now we can present the main result of this chapter as follows.
Theorem 8.1 Ifk > 3, then &(w) belongs to G(2N, k — 1, x?) and ¢(w) =
clk(G(2)) with
c= ik—lNk/42(—9k+15)/4Re((2 _ i)(k_l)/2).
Moreover, if k =5, then ®(w) belongs to S(2N, k —1, x?).

Proof By Lemma 8.5, we have

0(z,7'g) = x*(d)0(z,9)

VIZ(Z’/ 2/’>€((2) 1(/)2>F°(2N)<1(/)2 (2))

for any
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And consequently, by the definition of ¥(w) we have
¥ (v(w)) = X*(d)(cw + d)** ¥ (w)

for any v = (i Z) € I'y(2N). This implies that

P(v(w)) = x*(d)(cz + d)" ' S(w)

for any v = (Z Z) € IH(2N). Therefore, if $(w) is holomorphic on H, then we

can conclude that @(w) is an integral modular form of weight 2A = k — 1 for the
congruence subgroup I'o(2N). Now we prove that @(w) is holomorphic on H. For the
simplicity we assume k = 3 though the method is applicable in all cases. By virtue
of Lemma 8.5 and the invariance of the Casimir operator D, we have

(4G 5) - ) -o

Now &(w) has the Fourier expansion

o0

P(w) = Z am (n) exp{2nimé}

m=—0oo

at 0o. So a,;,(n) is a solution of the differential equation

d—2+zi+(—4n2m2+4nm/) am(n) =0

Therefore we get
) { by exp{—2tmn} + cpum(n), if m #0,
am(n) =
K bo—&—covfl7 if m=0.

where n
eXp{—Qﬂmn}/ n~? exp{dmmn}dn, if m >0,
um(n) = 1oo
eXp{—Qnmn}/ n~ 2 exp{dmmn}dn, if m <O0.
n

By integration by parts, we have the following asymptotic behavior of w,,(n):
[t ()] = (4m — 1) ™! exp{—2mmn}| exp{(4m — w)n} — exp{dmm — x}| (8.16)

for m > 0, and
exp{2mtm
U (1) = _exp{2mmn}

m 1
o+ ) (3.17)
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for m < 0, where
|ovm ()] < exp{2mmn}(1/87%m?|n* + 15/327°|m?|n*).
Moreover we have
n®d(w) =0(n+n""') forn—0andn— oo, (8.18)

uniformly in £, which will be proved later. Since

1 o
/0 Plo@)Pde= 3 lamm)lPr,
we get from (8.18)
lam ()| < M((n+n"")n"), (8.19)

where M is independent of m and 1. Hence by (8.16) and (8.17), we have ¢,, = 0 for
all m > 0 and b,, = 0 for all m < 0. Hence we see

P(w) = Z by, exp{ —2mmn} exp{2mimé&}

m=1

+ Z Comt—m(n) exp{—2wim&} + ap(n). (8.20)

By (8.19) we have |a,,(1/|m|)| < M(1 + m?). Hence we get b,, = O(m")(m — o00)
and ¢_,, = O(m”)(m — o0) for some v > 0. We shall prove that &(in) has the
following asymptotic behavior later:

On™*), m— +4oo forall p>0,

&(in) = 8.21
(i) {O(n“), n—0 for all p > 0. (8.21)

In particular, we see that ag(n) = 0. Hence we have

P(w)= Z by, exp{ —2mtmn} exp{2wimé}

m=1

+ Z ComU_m(n) exp{—2mim¢}. (8.22)

By virtue of (8.21), ®(in)n'~! belongs to L;(R*) for a sufficiently large I > 0. Let
£2(s) be the Mellin transformation of ®(in), i.e.,

2(s) = /Ooo @ (in)n* ' dn.

Here we note that @(in) is a function with bounded variation on all compact subsets
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%(¢(i(77 +0)) + @(i(n — 0))) for all n > 0. Hence the Mellin

inversion formula gives

of RT and &(in) =

1 l+ico
Bin) = 5 /l (s, (8.23)

On the other hand, we shall compute that

2(s) = e(2m)~*I'(s)L(s, x1) Z 2m) " I'(s) Za;n*i
n=1 n=1
where G(z Z a(n ). Consequently, we get
n=1
= Z al, exp{—2mnn}. (8.24)
n=1

Therefore, by (8.20), to prove that ¢(w) is holomorphic it is sufficient to show that
c—m = 0for all m > 1. We assume that c_,,, # 0 and c_,,, = 0 for all m < mg. Then
by (8.20) and (8.24) we have

>~ et () Hng (1) + € gty (1)) Hoy (1)

m>mo

Z n) exp{—2mnn}/Hm, (1), (8.25)

where H,,, (1) = exp{—2mmon}/4xmon?.
We note that the series on both sides of (8.25) are uniformly convergent on [1, c0).
Set t = exp{—2nn} for n > 0. The right hand side of (8.25) is equal to

logt ia — by, )",

By virtue of (8.17), we see that the left hand side of (8.25) converges to c_.,, as
n — +o0o. Hence we get

o0

. n—mo —
t—}%)r,?>o{ (logt) Z n)t } =C_mg # 0,

which is a contradiction and we proved that @(w) is holomorphic.

There still remains the investigation of the asymptotic behavior of ®(in) asn — 0
and oo, and the computation of the Mellin transformation of @(in).

We first compute the Mellin transformation of @(in) for any k& > 3. By the
definition of Mellin transformation we have
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o0

By~ dn = (DN [y
0 0

2(s) =
[ 1\A A—s 41— s—A\ ”Uk/2_ 2, O gin— Pl
= (=1)"(2N)"%4 /0 7 /DO o~ 0(z, 04in—1)F (2)d

dn
n’

dud 1/2 —-1/2
where dz = 1:21} andaw:(no €:1/2> for w = ¢ +in € H.

From the definition of 6(z, g) and the relation

(o~ iy) =Z( ) @) 0

we have a simple expression

0(2, 01y) = (2 %n) - 2/\: (2) (—1)%02,2—c(2,1)01.c(2),

e=0

where 6 \_¢, 01 are defined as in Example 8.1 and Example 8.2. Therefore by chang-
ing the order of integration whose justification can be deduced from the asymptotic
behaviors (8.21) of &(in), we get

o =awy ()¢ [ e R e T

e=0

with ¢;(s) = (—=1)*(2N)*~%45723(2,/2n/N)~*. Note that we can exchange the order
of the summation and the integration as above. In terms of the different expressions
of 8¢ given in Example 8.2, the integral in the bracket becomes an Eisenstein series

A—e+1 (s—e—1)/2
8w 1 N
[o——1(_\A—€, —Ate [ —

— 1
e I S O
(z1,22)ELXZL

Changing the variable z to —1/4Nz and using G(2) = F(—1/4Nz)(4N)~*/*(—iz)~*/?
and

01.(—1/4Nz) = (2N)*/2(v/=2i2)#*10.(2),

we get

Z() VIR I (s),

=0
where c3(s) is like ¢1(s) above and J.(s) is given by

(')
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7] — 1
Je(s) = / G(Z)Qs(z)v(s+5+2)/2n—(5—5+1)/2F(SZ+)

X Z Xl(Il)(4N1‘22—|—xl)k—€|4Nx22+xl|—s+s—le

r1,22€Z

1 _
:n—(s—€+1)/2f( et ) (s—=A+1, Xl/ /G )0 (

287

9+s+2 /2dZ

We note that 6.(2) = 0 if € is odd. The convolution appearing in J:(s) is easily

oo

computed by Fourier expansion 6.(z) = Z (20) /2 H,(2v/2mvk) exp{2nk?z} and

k=—o0

by partial integration, that is,

/ / G (2)0.(2)duv 9+6>/2‘1—“:21—6(4n)—8/2(5 —1)(s—2) - (s— g)r<s 5 6)D(s),

where D(s Z a( * with G(z Z af . Therefore we get
k=1 k=1

Jo(s) = 2272507 5F/20(s) L(s — A+ 1, x1) D(s).

Hence we have
2(s) = c(2n)~°T'(s)L(s — A+ 1,x1)D(s).

By the definition of the Shimura lifting I and the computation of the Mellin
transformation of @(in), we see that @(w) = cIx(G(z)). For k > 5, the function @(w)
belongs to S(2N, k — 1, x?) by virtue of the magnitude of the growth of A;(n).

In order to complete the proof of the theorem we only need to give the proofs for
(8.18) and (8.21). Now we first prove (8.18). It is easy to see that we only need to
show it for ¥(w) by the relation between @(w) and ¥(w). In fact, we shall prove a

more general result for any k > 3
¥ (w) =0 +n"").

Recalling the definition of 6(z, g):

29) = 3 Xilan)o® ™/ exp{2mi(u/N) (3 — dxy23)} f(v/og '),

xeL’

we get

10(2, 04w)| < VETAN " f (Vo).

rzel’
Put M =Z/4®Z/4® Z/4, then

D Wvoga)l < Y |f Vool = Y |f(Vvo @)l for v € SLa(Z).

xzeLl’ zeM zeM
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If n > ¢; > 0 and || < ¢, then there exist 0 < h;(z) € ¢(R), j =1, 2, 3 such that

‘ <(1) f{’?) f(x)’ < hi(w1)ha(z2)hs(23)

for all x = (x1, z2, x3) € R3. Thus

> vl = S |07 o) (o 4 v

xeM rzeM

(St o) (i) (S

where z; € Z/4. Therefore

S 1 (Wvoyta) = (Vo + 1)2(Vo '+ 1))

zeM

for w = E+in with |£] < ea,m > ¢1 > 0. Put U = {w = {+in]|€] < 1/2,n > 0, |w| > 1}.
Let ¢; < v/3/2,¢2 > 1/2 and choose v € SLy(Z) for w € H such that v(w) € U. Then

Yo Vv )| < Y 1f (Vo)

zel! zeM
=O0(vo ™ +1)*(Im(y(w)) + 1)
=O0((w™* 2+ 1)(n+n7")).
Thus [0(2, 040)| = OWC=R/4(v=3/2 £ 1)(n +n1)) for all w € H, 2z € H, and hence
¥ (w) = O(n+n~1) for all w € H by the definition of ¥(w).

Finally we prove (8.21). By the definition of 63 x_.(2,7n), we know that it is
majorized by n~ 1o~ e (2, ), where F.(z,7) is defined by

_ 47
z,1m) = Z |z12 + 22 EBXP{ - Nn2v|1‘12+932|2}7

x1,T2

where (0,0) # (21, 22) € Z*. Therefore, if 3 is the smallest integer > (A — €)/2, then

i )<{lvg+1e_“h/”"27 ifn<1,0>c¢>0,¢c<v3/2,
z,1m) <
== l'nz(A*EH)vﬁHe*mQh/“, ifn>1,0>c¢>0,¢c<v3/2

where [, I’ and h are positive constants depending only on ¢ and ¢. Put U = {z =
u+iv € H||u|l < 1/2,|z| = 1}, choose ; € SL2(Z) such that Dy(4N) U%

and put T(z) = v*/26; .(2)F(2), then T(v;(z)) = O(gi(v)) for z € U where the gi’s

are some rapidly decreasing functions. Put F/(z,n) = n~* T o= *¢F_(z,7), then
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t
[ @ Zcz/ Fl (=), 1)z
Do (4N) =1
t 00
ei/ v"in®g;(v) exp{—mn*hv ™ }dv
i=1 ¢
for all n > 1 with some constants ¢;, e;, v;, a. Since n**v=+ exp{—nn*hv=1} < C,

for 4 > 0 with some constant C,, and n*" a/ v"in®g;(v) exp{—mn*hv }dv <
(&

o0
Cu / vV g;(v)dv = C), with some constant C/,. Therefore
(&

/ T (s (22 ) |dz = O~ ")

Do (4N)
for any p > 0 if n > 1. In the same way, we get
/ |T(Z)§2,)\—s(za 7771)|d2 = 0(77”)
Do (4N)

for any p > 0 if n < 1. Hence we get (8.21) by the above estimations, the definition
of ¢(w) and

0(2, 01y) = (2 %n) - i (2) (—1)%02,2—c(2,1)01,c(2).

e=0
This completes the proof. O
Let G(z Z e(nz) be an element of S(4N, k/2, x), let t be a square-free
e -1 t
positive integer, put y; = X<—> (—) and &;(w ZAt ) with A;(n)
* *
defined by

,iAt(n)ns = (gm(m)mAlS) ( i a(th)ms)

m=1
Then we have
Corollary 8.1 &;(w) € G2N, k—1, x?) for all k > 3 and ®,(w) € S(2N, k — 1,
X*) if k=5

Proof  Since G(t2) Z b(n)e(nz) belongs to S <4tN k/2, x < t ) ), Theorem 8.1
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implies that 515 Z Bi(n , defined by

belongs to G(2tN, k — 1, x?) for all k > 3 and S(2tN, k — 1, x?) if K > 5. Since
b(m?) = a(tj?) or 0 according as m = tj or ¢ does not divide m, we know that

i Bi(n)yn™®=t"° i Ar(m)m™
n=1 m=1

holds and so Bi(n) = A;(n/t) or 0 according as t|n or ¢t { n. Hence we have

—_—

@(U)) = @t(tUJ)7
and so
Oy (o(w)) = (cw + d)* x*(d) @y (w)
for all o = (Z z> € I'l(2N) with T(2N) = {(i Z) € Iy(2N)|b=0 (mod t)}.

Put I'y, = {( ) ‘b € Z}. Since I'y(2N) is generated by I's, and I (2N), & (w)

belongs to G(2N, k — 1, x?) for all k > 3 and S(2N, k — 1, x?) if k > 5. This
completes the proof. O

Now we consider the Shimura lifting for cusp forms with weight 3/2. By Theorem

8.1 and Corollary 8.1 we know that, for any f(z) = Z a(n)e(nz) € S(4N, 3/2, x),
=0

t a square-free positive integer, the Shimura lifting 13 +(f) of f belongs to G(2N, 2,
x?). It is clear that the Zeta function of I3;(f) is

L(s, Is1(f)) = L(s, X(;)) f: a(tm?)m™>. (8.26)

m=1
We shall prove that I3 ;(f) is a cusp form if and only if (f, h) = 0 for all h € T, where

T is the vector space spanned by all theta series of S(4N, 3/2, x) associated with
some Dirichlet characters.

Proposition 8.4 Let v be a primitive character modulo r, put

Zw nen2z vV z e H.

Then h € S<4r2, 3/2, w(_*l>>
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Proof  This is one of the conclusions in Theorem 7.3. O

By (8.26) we get

L(S? 1371(}7’(2’ ¢))) = L<S7 d))L(S - 1a ¢)a
which shows that I5 1(h(z,)) is an Eisenstein series (not a cusp form).

Proposition 8.5 Let a be a non-negative integer, A a positive integer, ¢ a primitive
character modulo A. Define

Hy(s,2,¢) =~ °T'(s)y® Z "d(n)(mAz +n)*|mAz + n| =,

where z € H, (0,0) # (m,n) € Z?. Suppose that o > 0 or A > 1, then the series
above is absolutely convergent for Re(s) > 1+ «/2, Hy(s,z,¢) can be continued to
a holomorphic function on the whole s-plane and satisfies the following functional
equation

Hy(a+1—s,2,0) = (=1)%g(¢) A%~ *"22H, (s, —1/Az, §),

A
where g(¢) =Y _ d(k)e(k/A).

k=1

Proof We have
/OO /OO exp{—nt|uz + v|*/y}e(ur + vs)dudv
:/ . / " exp{mtl(ur + ) + 2y fybe(ur + vs)dudo
:/OO /OO exp{—nt(v? + u?y?)/y}e(u(r — xs) + vs)dudv

=) 2 [ exp{omile(ulr —as) (1)) du(ey ) 2

X / exp{ —mv?}e(vsy'/? /tY/?)dv

— Lo allr—=s)?/(ty)+s%y/t] _ y—1o—nlr—sz|*/(ty) (8.27)
Since

0 0 .
(Zar + 88>e(ur +ws) = 2mi(uz + v),

(Z(?ar + gg) exp{—n|r — s52|?/(ty)} = —2mit " (r — 52) exp{—n|r — sz|*/(ty)},
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0 0
applying « times the differential operator (z + ) on both sides of (8.27), we

or T os
get
/ / " (uz 4 0) exp{—mtluz + o /ye(ur + vs)dudo
(1) s2) exp{—alr — 522/ (1), (3.25)
Put

C(t,z,u,v) = Z((m +u)z +n+v)* exp{—nt|(m +u)z +n + v|*/y}

m,n

= Z c(m,n)e(mu + nv).

m,n

By (8.28) we get

c(—=m,—n) = /01 /01 %/((m' +u)z+n' +v)*

x exp{—mt|(m' + u)z +n' +v[*/y}e(mu + nv)dudv
= /°° /°° (uz + v)® exp{—nt|uz + v|? /y}e(mu + nv)dudv
=(:1)at:°‘_1(m —n2)* exp{—n|m — nz|*/(ty)}.
Hence

C(t, z,u,v) = (=1)%¢ 7! Z(mz +n)* exp{—n|mz + n|*/(ty) ye(mv — nu). (8.29)

m,n

Suppose that p, ¢ are integers, define

&(t,2,p,q) = > (mz +n)® exp{—mt|mz + n|*/(A%y)}
(m.n)=(p,q)( mod A)

and
n(t, z,p,q Zqﬁ &(t, 2z, kp, kq). (8.30)
Suppose that (p,q) # (0,0) (mod A) if A > 1. By (8.29) we have
¢(t,z,p, )ZAa (t,z,p/A,q/A)

YT 12 (gm — pn)/A)(mz + n)® exp{—n|mz + n|*/(ty)}

= (=)t Y el(ga —pb)/A)E(A%, 2 a,0)

(a,b) mod A
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and
A
77 s 2,P,4 Z¢ ,z,pk,qk)
k=1
A)egett Z d(k) > e(k(qa—pb)/A)E(A%, 2, a,b)
= (a,b) mod A
= (At g(e) > dlga—pb)E(A®, 2z, p,q). (8.31)
(a,b) mod A

If « > 0 or A > 1, the terms corresponding to m = n = 0 on both sides of (8.31)
disappear. Hence by (8.30) and (8.31) we have

Me™¢, ift > 1,
Mt e/t if <1,

n(t,z,p,q)| < { (8.32)

where M, M’, ¢, ¢’ are positive constants dependent only on z, p, g. We can integrate
the following integral term by term

oo A
/ n(t, z,p, Q)tsfldtzzqﬂk) Z (mz +n)*
0 k=1 (m,n)=k(p,q)( mod A)

X / exp(—mt|mz + n|?/(A%y))t5~Ldt
0

A
:A25n75ysf(s)z (k) Z (mz+n)*mz+n|"2%.
k=1 (m,n)=(p,q)( mod A)
(8.33)

The series on the right hand side of (8.33) is absolutely convergent for Re(s) > 14+a/2.

1 0o
Divide the integral of the right hand side of (8.33) into two parts: / and / . Using
0 1

(8.32), we know that these two integrals are holomorphic functions on the s-plane
which continues the series of the right hand side of (8.33) to a holomorphic function
on the s-plane. And we have

AP Hy(s,2,¢) = / n(t, 2,0, 1)t dt. (8.34)
0

Therefore for a > 0 or A > 1, H,(s, 2, ¢) can be continued to a holomorphic function
on the s-plane. Substituting s by e + 1 — s in (8.34), we get

oo

A= (a+1—s,2,0) :/ n(t, z,0,1)t*"°dt = / n(t™t, 2,0, 1)t 2dt
0

= (=A%) Y. ¢ / £(A%t, 2,a,b)t*~1dt

(a,b) mod A
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= (—A)%g(@)y’n°T(s Z d(m)(mz+n)¥|mz4n|~%

= (—1)a9(¢)A°‘+SZ°‘Ha(8, ~1/Az.9),
which completes the proof. ]

Proposition 8.6 Let w be a character modulo A, put

G(s)=TI'(s) Z "w(n)|mAz + n|7%.

m,n

Then G(s) can be continued to a holomorphic function if w is non-trivial; G(s) can
be continued to a meromorphic function with only two poles s = 0, 1 of order 1 if
A =1, and with the corresponding residues —1 and mt/y respectively; and G(s) can be
continued to a meromorphic function with only one pole 1 of order 1 if A > 1 and w

is trivial and with the corresponding residue m H(l —pH/(Ay).
plA

Proof Let B be the conductor of w and A = BC, let ¢ be the primitive character
modulo B determined by w. Then

960 Y pdlmAz + a2

d|(n,C)

)Y uld)p(d)d—>* Z o(n

d|c

—2s

—z +n (8.35)

Hence, by Proposition 8.5, G(s) can be continued to a holomorphic function if B > 1
(i.e. if w is non-trivial).
Now suppose that A = 1, put

z) = Z exp{—mntlmz +n|?/y}.

m,n

By (8.31) we get

We have, for all Re(s) > 1, that

/Ooo(n(t ) — Dt tae

/100(17(151, z) — Dt~ dt + /loo(n(t, z) — 1)t tdt
it )
1

/1 1

= - +/100(n(t,z) - 1)t5dt+/loo(n(t,z) — 1)t5 1.

s—1 s

y %) —

n *y*G(s) =

(t,2) —1)+t— 1)t*5*1dt+/ (n(t,z) — 1)t5~de
1
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The two integrals on the right hand side of the above are holomorphic, so G(s) can
be continued to a meromorphic function with only two poles s = 0, 1 of order 1 and
residues —1 and 7/y respectively.

Now suppose that B =1, A > 1. By (8.35) we get

G(s) = Z w(d)d=2T'(s) Z /|mAz/d +n|28,
d|A m,n
. A .
Substituting 77 by z and using the above result for A = 1, we know that G(s) can

be continued to a meromorphic function with pole s = 1 and the residue

> uld)dPad/(Ay) = a [J(1 = p7h)/(Ay).

d|A plA
This completes the proof. ]
Now put
T = {h(tz, )| is any odd primitive character, ¢ is any positive integer}
and T the vector space spanned by T'. Also put
Ty = {h(tz,9)|¢ is any odd character, ¢ is any positive integer}
and
Ty ={6(tz,h, N)|t,h, N € Z,t > 0, N > 0},

where

0(z,h,N) = Z me(m?z).
m=h( mod N)

Denote by ﬁ the vector space spanned by T; for i = 1, 2.
Lemma 8.6 We have T = ﬁ/ = E

Proof It is clear that T C ﬁ C E/ Let ¢ be any odd character modulo N, 7:23 the

primitive character determined by 1. Then ¢ (d) = ¢(d) for all (d, N) =1, and

S wlmyme(tm®z) = 3" 3 p(d)dm)me(tm?2)

m=1 m=1 d| (m,N)

=" uld)d(d)h(td*z,$) € T,

d|N

which shows that 7' = T;. Denote d = (h, N). We have
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O(tz,h,N)=d Z me(td*m?z)
m=hd~'( mod Nd—1)

=d¢(Nd~" )" Y > " ap(hd ™ )p(m)me(td*m*z)

m=1
= dg(Nd™1) Y i(hd " )h(td*z,v) € Ty,
P

where ¢ runs over all characters modulo N d~', ¢ is the Euler function. Therefore
T, = T, which completes the proof. L

If f(z) = Z a(n)e(nz) is a formal series, define
neQ

oo

E(f(2)) =) a(n)e(nz).

n=0
Put
F ={0(zA"1)|0(z) € T, A is any positive integer}.

Lemma 8.7 Let G(z) € F, v = (i Z) € SLy(Z) and H(z) = G(y(2))(cz +

d)=3/2. Then H(z) € F, £(G(2)) e T.

1 1 -1
Proof  Since SLy(Z) is generated by v = (O 1) and o = (? 0 ), we only

need prove that H(z) € F for 71, 2. Without loss of generality, we can assume that
G(z) =0(tA= 1z, h, N). It is easy to see

Gn())= ) eltg’/A)d(tz/A AN, g) € F.
g=h( mod N),
g mod AN
Using Lemma 7.5, we can prove that H(z) € F for 7. Now we prove £(G(z)) € T.
Assume again G(z) = 6(tz/A, h, N). Then

G = Y. me(tm®z/A).
m=h( mod N),
m?=0( mod A)

Let A =pf*-- -p;j be the standard factorization of A. Take B = p{l o -p;fj such that
fi are the smallest positive integers with property 2f; > e; for all 1 < ¢ < j. Then

G = Y. me(tm®z/A).
m=h( mod N),
m=0( mod B)
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Denote d = (B,N). If d 1 h, then £(G(z)) = 0. If d|h, put ' = h/d, N' = N/d,
t' = tB%/A and take B’ such that Bd~1B’ =1 (mod N’), then

£(G(2) = Z nBe(tn?B*z/A) = 0(t'z,'B',N') € T.
n=h’B’( mod N’)
This completes the proof. O
Theorem 8.2  Let 4|N, f(z Z e(nz) € S(N, 3/2, w). Then for any

square-free positive integer t, I ¢(f) is a cusp form if and only if f(z) is orthogonal
to the subspace S(N, 3/2, w)NT.

Proof  Let I3,(f Zb e(nz) € G(N/2, 2, w?). By Theorem 7.13, I3(f)
is a cusp form if and only 1f for all primitive character ¢ and all positive integer r,

L(s,I3+(f),%,r) is holomorphic at s = 2. Substituting N by [N,r] =l.cm. of N,r,
without loss of generality, we can assume that 7| N°°. We have

nil b(n)n~* = L(sw<§>> nil a(tn)n-

Since w is a character modulo N,

L(s, Iu(f)sthr) = > 9p(n)b(rn)n™*

Put

TLGTLZ

HME@

where ¢(—1) = (-1)",v =0, 1. Takmg a constant o > 0, for Re(s) > o, we have

/ / F(2)h(tr?z, )y* tdady = Z Z / i(n+tr2m?)y)y " dy

n=1m=1

1
—tr*m?)z)da
X/o e((n—t )z)d

=(4mtr?)~°T(s) Y(m)a(trim?)ym” =25,

NE

1

R Cle)

3
Il

Denote by g the conductor of 9. Then h(tr?z,)eG .

N
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by Theorem 7.3 and Theorem 5.16. Denote N = (4tr2g% N), define B(z,s) =

f(2)h(tr?z,4)y**1. Then for any v = (i 2) € I' = I'y(N), we have

B (2)s) = w5 ) (e + e+ P2 B(e)
Therefore
L(25 — v, T s (), 1) = (dutr?)*T(s) " / B(Z,S)L<zs—y,w¢<;>>

I\H

! dzd
X Z w¢(d)<d)(cz+d)1—u|cz+d|2u_1_23ZQy.

(2 b)erw\r

c

(8.36)
It is easy to see
_ __t __t 1—v 2v—1-2s
L(Qs I/,wzb( . )) Z w1/1(d)< yi )(cz+d) lcz + d
(¢ Ders\r
—Z wip(n ( )(mNz—i—n)l YImNz + n|? 172, (8.37)

If v = 0, by Proposition 8.5, L(s, I3 +(f), %, ) is holomorphic at s = 2. If v = 1,
by Proposition 8.6, we know that the series in (8.36) is holomorphic except the case

Sy
w=1 <*> In that case, it has a pole s = 3/2 of order 1 with residue ¢/y and ¢ # 0
[t
a constant. Hence, by (8.36), only for w = dj(?)’ L(s, I3 (f), ¥, r) has a possible

pole s = 2 of order 1 with residue ¢’ < f, h(tr?z, ¥) > and ¢’ # 0 a constant.
Now suppose that I3(f) is a cusp form. By the above argumentation we know

_ . iy
that f is orthogonal to h(tr?z, 1) if w = ¢(*> If w # z/)<*>, put W' =

E(;) Then f € S(N, 3/2, w), h(tr®z, ¥) € S(N, 3/2, w'). Therefore for any
v= (Z: Z:) € I'y(N) we have
(o () (- hltr22, By iy = I B2 D)) 1
= ([, h(t7’22’¥)>p0(ﬁ)
Since w # ', we can find a y € IH(N) such that w(d y) # w'(dy). Hence we get

{f, h(trzz,ﬂ)) = 0. But any positive integer u can be written as u = = tr? with t
square-free. So f is orthogonal to T' and hence is orthogonal to S(N, 3/2, w) N T.
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Conversely, suppose f is orthogonal to S(NN, 3/2, w)N T. Take any h(uz,v) € T.

Then h(uz, ) € S<4ug27 3/2, w(;)) where g is the conductor of 1. Denote N =

[4ug?, N]. Suppose w = w(—:) Let I'y(N) = U I'(N)~; be the decomposition of
i=1

I'o(N) into right cosets with respect to I'(N). Let

L a; bl
Vi = C; dz ’

9(2) = ZW(ai)h(uzw)l[%]

i=1

Then

belongs to S(V, 3/2, w). By Lemma 8.7 we know that g(z) € F'. Since g(z+1) = g(2),
&(g(2)) = g(z). By Lemma 8.7 we know that g(z) € T, i.e., g € S(N, 3/2, w)NT. By
hypothesis, we get

0=(f(2),9(2))
w(ai)(f(2), h(uz, ¥)[[7])

©
Il
=

I
N

@(ai)(fIlvi (=), hluz, ¥)

r(f(2), h(uz, ),

which shows that f is orthogonal to h(uz,). Hence L(s, Is+(f), %, r) is holomorphic
at s = 2 (since whose residue at s = 2 is 0 or ¢/{f, h(tr?z,1)) = 0). This shows that
I5+(f) is a cusp form.

This completes the proof. ]

.
Il

8.3 Shimura Lifting of Eisenstein Spaces

In this section we deal with Shimura lifting of Eisenstein spaces.
Let x be a Dirichlet character modulo N, and denote by L(s,x) the associated
L-series

L(s,x) = Y x(n)n"".

By,

For a positive integer k we have that L(1 — k, x) = —T’X7 where the numbers By,

are defined by
N a e k
X(a)te t Z t
= B

= b = -
Nt __ X 1.
e 1 = k!
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Fix an integer k > 2, we define rational numbers H(k,n) by

C(1— 2k), it n =0,
H(k,n) = { L—=kXxD) C”Zfﬂ(d)XD(d)dkla%l(f/d)a if (=1)*n = Df?,
0, otherwise,

where ¢ denotes the Riemann (-function, p the Moebius function, D a fundamental
discriminant, x p the quadratic character associated with Q(\/ﬁ) and the arithmetical
function o, is defined by o,(m) = Z d". H.Cohen introduced the rational numbers

d|m

H(k,n) and proved that

Hy(z) := ZH(k,n)exp{Qﬂinz} (8.38)
n=0
is a modular form of half-integral weight k+ 1/2 for I'p(4) in [C] which is now named
Cohen-Eisenstein series. For k = 1 and group I'o(4p) with p a prime, Cohen-Eisenstein
series are defined by

Hyp(z) = H(n)yexp{2minz}, (8.39)
n=0

where H(n), := H(p?n) — pH(n) with H(n)(for n > 0) the number of classes of

positive definite binary quadratic forms of discriminant —n(where forms equivalent

to a multiple of z2+12 or 22+xy+1y? are counted with multiplicity 3 or 3 respectively)
1

and with H(0) = ~13' H, , is a modular form of weight 3/2 