
Chapter 6

New Forms and Old Forms

6.1 New Forms with Integral Weight

Let N , k positive integers, χ a character modulo N . We know that the Hecke operators
T(n), (n, N) = 1 can be diagonalized simultaneously in the space S(N, k, χ). On the
other hand, if f is an eigenfunction of all Hecke operators T(n), then L(s, f) has an
Euler product. So we want to ask the following question: Can all Hecke operators
T(n) be diagonalized simultaneously in the space S(N, k, χ). The following example
gives a counterexample to the question:
Example 6.1 Consider the space V = S(2, 12, id.) which has dimension 2. Then

f1(z) = Δ(z) :=
64π12

27
((E4(z))3 − (E6(z))2) ∈ V,

f2(z) = Δ(2z) ∈ V.

For any odd prime p, they have the same eigenvalue for T(p). If there exists a basis
{g1, g2} of V such that g1, g2 are eigenfunctions of all Hecke operators T(p) for any
prime p, then by the properties of f1, f2, we see that (g1 − g2)|T(p) = 0 for any odd
prime p. Hence (g1 − g2)|T(n) = 0 if n has an odd divisor. That is, the n-th Fourier
coefficient c(n) of g1 − g2 is equal to 0 if n has an odd divisor. This implies that
g1 − g2 = 0 by the following Lemma 6.1. This contradicts the assertion. �

Lemma 6.1 (1) Let α =
(

a b

c d

)
∈ M2(Z) with (a, b, c, d) = 1, det(α) = n > 1,

(n, N) = 1. Assume that f ∈ Gk(Γ (N)) and f |[α]k ∈ Gk(Γ (N)), then f = 0.

(2) Let p � N be a prime and f(z) =
∞∑

n=0

c(n)e2πinz/N ∈ Gk(Γ (N)) satisfy

c(n) = 0, for all n �≡ 0 (mod p).

Then f = 0.
(3) Let p and f be as above. If

c(n) = 0, for all n ≡ 0 (mod p),

then f = 0.
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Proof Since Γ (N) is a normal subgroup of Γ (1), we may assume that α =(
1 0
0 n

)
. Put τ =

(
1 1
0 1

)
. Then f |[α]k[τN ]k = f |[α]k, i.e., f |[ατNα−1]k = f .

But ατNα−1 = n−1

(
n N

0 n

)
, so that

f

∣∣∣∣[(n N

0 n

)]
k

= f. (6.1)

Take γ ∈ Γ (1) such that γ ≡
(

1 0
1 1

)
(mod n), γ ≡ I (mod N). Then γ ∈ Γ (N).

Put

β = γ

(
n N

0 n

)
≡ N

(
0 1
0 1

)
(mod n).

Then βl ≡ N l

(
0 1
0 1

)
(mod n) and det(βl) = n2l for any positive integer l. This

implies that βl is primitive (i.e., the entries of βl are co-prime.). By (6.1), we have
f |[β]k = f and hence

f |[βl]k = f

for any positive integer l. Take a positive integer l such that nl ≡ 1 (mod N), then

βl ≡
(

n 0
0 n

)l

≡ I (mod N).

Since βl is primitive, its elementary divisors are {1, n2l}. Therefore there exist δ, ε ∈

Γ (1) such that βl = δ

(
1 0
0 n2l

)
ε = δα2lε. By the choice of l, we see that δε ≡ εδ ≡ I

(mod N), i.e., δε, εδ ∈ Γ (N), so that

f |[δ]k[α2l]k = f |[δ]k. (6.2)

Put g = f |[δ]k, then g ∈ Gk(Γ (N)). Let

g(z) =
∞∑

s=0

a(s)e2πisz/N

be the Fourier expansion of g at i∞. Then by (6.2) we see that g
(z

r

)
= rm/2g(z)

with r = n2l, so that

a(s) = 0, ∀r � s, a(sr) = rm/2a(s).

This implies that a(s) = 0 for all s � 1, so that g = 0 and f = 0. This shows (1).
By the assumption of (2), we see that f(z + N/p) = f(z), so that f ∈ Gk(Γ (N))



6.1 New Forms with Integral Weight 155

and f |[α]k = f ∈ Gk(Γ (N)) with α =
(

p N

0 p

)
. Since α is primitive, we obtain (2)

by (1).
By Lemma 5.18, we have

p1−k/2f |T(p) = f

∣∣∣∣[σp

(
p 0
0 1

)]
k

+
p−1∑
b=0

f

∣∣∣∣[( 1 bt

0 p

)]
k

,

where t|N . By the assumption of (3), we see that

p−1∑
b=0

f

∣∣∣∣[( 1 bt

0 p

)]
k

= p−k/2

p−1∑
b=0

(
z + bt

p

)

= p−k/2
∞∑

n=0,p�n

c(n)e2πinz/p

p−1∑
b=0

e2πintb/p = 0,

where we used the fact
p−1∑
b=0

e2πintb/p = 0 (since p � nt). Therefore

f

∣∣∣∣[σp

(
p 0
0 1

)]
k

= p1−k/2f |T(p) ∈ Gk(Γ (N)).

Since
(

p 0
0 1

)
is primitive, we see that f |[σ]k = 0 by (1), so that f = 0. This

completes the proof.

Let k, l be positive integers, put δl =
(

l 0
0 1

)
. It is clear that, for any function

f on H, we have
f(lz) = l−k/2(f |[δl]k)(z).

For any element γ =
(

a b
clN d

)
∈ Γ0(lN), we have

δlγδ−1
l =

(
a bl

cN d

)
∈ Γ0(N).

For any f ∈ G(N, k, χ), put g = f |[δl]k. Then

g|[γ]k = (f |[δlγδ−1
l ]k)|[δl]k = χ(d)f |[δl]k = χ(d)g,

so that we have the following:

Lemma 6.2 Let f ∈ G(N, k, χ). Then, for any positive integer l, we have

f(lz) = l−k/2(f |[δl]k)(z) ∈ G(Nl, k, χ).

Furthermore, f(lz) is a cusp form if f is a cusp form.
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Remark 6.1 We denote by V (l) the operator in Lemma 6.2 and call it translation
operator. It is clear that it is an analog of the translation operator for modular forms
with half integral weight (see Theorem 5.16). Similar to Theorem 5.19, we can prove
the following:

Lemma 6.3 Let f ∈ G(N, k, χ), l a positive integer. Then we have

(f |V (l))|T(n) = (f |T(n))|V (l), (n, l) = 1.

Let χ be a primitive character modulo m with m|N . Then S(N, k, χ) contains the
following set {

f(z), f(lz)
∣∣∣∣f(z) ∈ S(L, k, χ), m|L, L|N, l

∣∣∣∣NL
}

. (6.3)

The functions f1, f2 are in the corresponding set (6.3) of S(2, 12, id.). We shall
show that all Hecke operators can be diagonalized in the orthogonal complement of
the space spanned by (6.3) in S(N, k, χ) with respect to Petersson inner product.

Put

Δ0(N) =
{(

a b
c d

)
∈ M2(Z)

∣∣∣∣c ≡ 0 (mod N), (a, N) = 1, ad − bc > 0
}

,

Δ∗0(N) =
{(

a b
c d

)
∈ M2(Z)

∣∣∣∣c ≡ 0 (mod N), (d, N) = 1, ad − bc > 0
}

.

Lemma 6.4 Let α ∈ Δ0(N) or ∈ Δ∗0(N) respectively. Then there exist positive
integers l, m satisfying l|m, (l, N) = 1 such that

Γ0(N)αΓ0(N) = Γ0(N)
(

l 0
0 m

)
Γ0(N)

or

Γ0(N)αΓ0(N) = Γ0(N)
(

m 0
0 l

)
respectively.

Proof Let α =
(

a b

cN d

)
, a′ = (a, c). Then (a, cN) = a′. Let u, v be integers

such that (u, v) = 1, au + cNv = a′. Then
(

u v

−cN/a′ a/a′

)
∈ Γ0(N) and

(
u v

−cN/a′ a/a′

)(
a b

cN d

)
=
(

a′ b′

0 d′

)
∈ Δ0(N).

It is clear that 0 < a′ � |a|, and 0 < a′ < |a| if a � c. Put a1 = (a′, b′), then
0 < a1 � a′, and 0 < a1 < a′ if a′ � b′. It is easy to see that (a′, b′N) = a1. Let u1, v1
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be integers such that (u1, v1) = 1, a′u1 + b′Nv1 = a1, then
(

u1 −b′/a1

v1N a′/a1

)
∈ Γ0(N)

and (
a′ b′

0 d′

)(
u1 −b′/a1

v1N a′/a1

)
=
(

a1 0
c1N d1

)
∈ Δ0(N).

The above process shows that, if a � b or c, then there exist γ1, γ2 ∈ Γ0(N) such
that γ1αγ2 ∈ Δ0(N) and the upper left entry a1 of γ1αγ2 satisfies 1 � |a1| < |a|.
Repeating the above process, we may assume that α ∈ Δ0(N) satisfies a|(b, c). Then(

1 0
−cN/a 1

)
∈ Γ0(N),

(
1 −b/a

0 1

)
∈ Γ0(N) and(

1 0
−cN/a 1

)(
a b

cN d

)(
1 −b/a

0 1

)
=
(

a 0
0 d1

)
∈ Δ0(N).

Put l = (a, d1), then l = (a, d1N). Take integers a2, c2 such that (a2, c2) = 1,

a2a − c2Nd1 = l, then
(

1 −1
−d1c2N/l aa2/l

)
∈ Γ0(N),

(
a2 d1/l

c2N a/l

)
∈ Γ0(N) and(

1 −1
−d1c2N/l aa2/l

)(
a 0
0 d1

)(
a2 d1/l

c2N a/l

)
=
(

l 0
0 m

)
∈ Δ0(N).

Taking determinants, we obtain that ad1 = lm = det(α), so that m > 0, l|m since
l = (a, d1). This shows the assertion for Δ0(N). We can prove the assertion for
Δ∗0(N) similarly. This completes the proof.

Lemma 6.5 Let f ∈ G(N, k, χ). Let α =
(

a b

c d

)
∈ Δ0(N) satisfy

(1) det(α) > 1;
(2) (det(α), N) = 1;
(3) (a, b, c, d) = 1.

If f |[α−1]k ∈ G(N, k, χ), then f = 0.

Proof By (2), we see that α ∈ Δ∗0(N), by Lemma 6.4, there exist γ1, γ2 ∈ Γ0(N)

such that γ1αγ2 =
(

m 0
0 l

)
with l|m, l, m > 0. By (3), (l, m) = 1, so that l = 1.

By (1), m > 1 and(
m 0
0 1

)(
1 0
N 1

)(
m 0
0 1

)−1

=
(

1 0
N/m 1

)
�∈ Γ0(N),

hence αΓ0(N)α−1 �⊂ Γ0(N). Take γ ∈ Γ0(N) such that αγα−1 �∈ Γ0(N). Since

det(α)α−1 =
(

d −b

−c a

)
∈ Δ0(N), det(α)αγα−1 ∈ Δ0(N), by Lemma 6.4, there

exist γ3, γ4 ∈ Γ0(N) such that

det(α)γ3αγα−1γ4 =
(

u 0
0 v

)
, u|v, u, v > 0. (6.4)
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Taking the determinants, we have (det(α))2 = uv. If u = v, then αγα−1 = γ−1
3 γ−1

4 ∈
Γ0(N) which is impossible. Therefore, h = v/u > 1. Considering the action of both
sides of (6.4) on g = f |[α−1]k, we obtain that

g(z/h) = (det(α))−kvkχ(γ3)χ(γ)χ(γ4)g(z) := cg(z).

Let g(z) =
∞∑

n=0

a(n)e(nz) be the Fourier expansion of g. Then, for any positive integer

s, we have
a(n) = c−1a(n/h) = c−sa(n/hs),

so that a(n) = 0 for any n � 0 since k > 0 and |c| = hk/2 > 1. Therefore g = 0 and
hence f = 0. This completes the proof.

Theorem 6.1 Let l be a positive integer, f a function on H satisfying:
(i) f(z + 1) = f(z);
(ii) f(lz) ∈ G(N, k, χ).

Then the following two assertions hold:
(1) f(z) ∈ G(N/l, k, χ) if lmχ|N ;
(2) f(z) = 0 if lmχ � N,

where mχ is the conductor of χ. Furthermore, f(z) ∈ S(N/l, k, χ) if f(lz) ∈ S(N, k, χ).

Proof We need only to show the theorem for l a prime since we can apply induction
on the number of prime factors of l. So we assume now that l is a prime. Because of
the assumptions in the theorem, we have

G(N, k, χ) � f(lz)|T(l) = lk/2−1

(
f(lz)

∣∣∣∣[( l 0
0 1

)]
k

+
l−1∑
m=0

f(lz)
∣∣∣∣[( l m

0 l

)]
k

)

= lk−1f(l2z) +
1
l

l−1∑
m=0

f(l(z + m/l))

= lk−1f(l2z) + f(lz).

Hence f(l2z) ∈ G(N, k, χ) since f(lz) ∈ G(N, k, χ). If l � N , taking α =
(

l 0
0 1

)
in

Lemma 6.5, we see that f(l2z) = 0, so that f(z) = 0. Therefore we assume now l|N .

We consider first the case lmχ � N . For any element γ1 =
(

a b

cN d

)
∈ Γ0(N),

owing to the assumptions in the theorem, we see that

f

∣∣∣∣[( a bl

N/l d

)]
k

= f |[δlγ1δ
−1
l ] = χ(d)f. (6.5)

For any given positive integers m, n, put

γ =
(

1 m

0 1

)(
1 0

N/l 1

)(
1 n

0 1

)
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=
(

1 + mN/l m + n(1 + mN/l)
N/l 1 + nN/l

)
∈ Γ0(N/l). (6.6)

In particular, if n, m are chosen such that nN/l + 1 �≡ 0 (mod l) and

n(1 + mN/l) + m = n + (nN/l + 1)m ≡ 0 (mod l), (6.7)

then, by (6.6) and (6.7), we have(
1 + mN/l l−1(m + n(1 + mN/l))

N 1 + nN/l

)
∈ Γ0(N).

Then we obtain
f |[γ]k = χ(1 + nN/l)f

by (6.5). But δl

(
1 0
N 1

)
δ−1
l =

(
1 0

N/l 1

)
, so by assumptions (i) and (ii), we see

that

f |[γ]k = f

∣∣∣∣[( 1 m

0 1

)(
1 0

N/l 1

)(
1 n

0 1

)]
k

= f.

This shows that χ(1+nN/l) = 1 for any (1+nN/l, l) = 1 if f �= 0. This implies that
the conductor mχ of χ satisfies mχ|N/l. This contradicts lmχ � N . Hence we have
f = 0 if lmχ � N .

We now assume that lmχ|N . For any γ =
(

a b

cN/l d

)
∈ Γ0(N/l), we can find

an m satisfying l � (a + mcN/l) since (a, cN/l) = 1, then take an n such that l|(a +
mcN/l)n + b + md, so that(

1 m

0 1

)(
a b

cN/l d

)(
1 n

0 1

)
=
(

a′ b′l
c′N/l d′

)
with a′, b′, c′, d′ integers. Hence

(
a′ b′

c′N d′

)
∈ Γ0(N) and d′ ≡ d (mod N/l). Put

z = lw, g(w) = f(lw), by (i), (ii) and mχ|N/l, we have

(f |[γ]k)(z + n) =
(

f

∣∣∣∣[( a′ b′l
c′N/l d′

)]
k

)
(z)

= (c′Nz/l + d′)−kf

(
a′z + b′l

c′Nz/l + d′

)
= (c′Nw + d′)−kf

(
l(a′w + b′)
c′Nw + d′

)
=
(

g

∣∣∣∣[( a′ b′

c′N d′

)]
k

)
(w)

= χ(d′)g(w) = χ(d)f(z).

This shows that f | ∈ G(N/l, k, χ). It is clear that f(z) ∈ S(N/l, k, χ) if f(lz) ∈
S(N, k, χ). This completes the proof.
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Lemma 6.6 Let f =
∞∑

n=0

a(n)e(nz) ∈ G(N, k, χ) and L a positive integer. Put

g(z) =
∑

(n,L)=1

a(n)e(nz). Then g(z) ∈ G(M, k, χ) with M = N
∏

p|L,p|N
p
∏

q|L,q�N

q2,

where p, q are primes. Furthermore, g(z) is a cusp form if f(z) is a cusp form.

Proof We only need to show the lemma for L a prime since we can apply induction
on the number of prime factors of L. So we assume now that L is a prime. Put

N ′ =
{

N, if p|N,

pN, if p � N.

Then p|N ′. By Lemma 5.17, we have

Γ0(N ′)
(

1 0
0 p

)
Γ0(N ′) =

p−1⋃
m=0

Γ0(N ′)
(

1 m

0 p

)
. (6.8)

Since G(N, k, χ) ⊂ G(N ′, k, χ), we see that

f |T(p) ∈ G(N ′, k, χ)

holds in G(N ′, k, χ). By (6.8), we have

(f |T(p))(z) = p−1
∞∑

n=0

a(n)
p−1∑
m=0

e2πin(z+m)/p =
∞∑

n=0

a(np)e(nz).

By Lemma 6.2, we see that

(f |T(p))(pz) =
∞∑

n=0

a(np)e(npz) ∈ G(N ′p, k, χ).

Put M = N ′p, then

g(z) = f(z) − (f |T(p))(pz) ∈ G(M, k, χ).

This completes the proof.

Lemma 6.7 Let N be a positive integer, p a prime. Then

Γ0(pN)
(

1 0
0 p

)
Γ0(N)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p−1⋃
m=0

Γ0(pN)
(

1 0
0 p

)(
1 0
0 m

)
, if p|N,

Γ0(pN)
(

1 0
0 p

)
σp

p−1⋃
m=0

Γ0(pN)
(

1 0
0 p

)(
1 m

0 1

)
, if p � N,
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where σ is a matrix satisfying

σp ∈ Γ0(N), σp ≡
(

1 0
0 1

)
(mod N), σp ≡

(
0 −l

l′ 0

)
(mod p)

with l any fixed integer such that p � l and l′ an integer such that ll′ ≡ 1 (mod p).

Proof Assume first that p|N . Let γ =
(

a b

cN d

)
∈ Γ0(N). Then (a, cN) = 1

and hence p � a. Take 0 � v � p − 1 with av ≡ b (mod p). Put b1 = (b − av)/p,

d1 = d − vcN . Then γ1 =
(

a b1

cpN d1

)
∈ Γ0(pN) and

(
1 0
0 p−1

)(
a b1

cpN d1

)(
1 0
0 p

)(
1 v

0 1

)
=
(

a b

cN d

)
= γ.

This shows the first case in the lemma.

Now assume that p � N . For any γ =
(

a b

cN d

)
∈ Γ0(N), if p � a, then similar to

the first case, there exists γ1 ∈ Γ0(pN), 0 � v � p − 1 such that

γ =
(

1 0
0 p−1

)
γ1

(
1 0
0 p

)(
1 v

0 1

)
.

If p|a, since p � N , there exists a1 such that a1p ≡ 1 (mod N). Take c1 such that
c1N ≡ l′ (mod p) and (c1, a1p) = 1 (since p � c1, if necessary, take an integer t such
that pt+c1 is a prime larger than a1, then (pt+c1, a1p) = 1). Then (a1p

2, c1N
2) = 1.

Take b1, d1 ∈ Z such that d1a1p
2 − b1c1N

2 = 1, then σp =
(

a1p b1N

c1N d1p

)
satisfies

the conditions in the lemma. And

γσ−1
p =

(
a b

cN d

)(
d1p −b1N

−c1N a1p

)
=
(

a2 b2p

c2N d2

)
∈ Γ0(N)

and a2, b2, c2, d2 ∈ Z. Therefore
(

a2 b2

c2pN d2

)
∈ Γ0(pN), and

(
1 0
0 p−1

)(
a2 b2

c2pN d2

)(
1 0
0 p

)
=
(

a2 b2p

c2N d2

)
= γσ−1

p .

This shows the second case in the lemma. This completes the proof.

Lemma 6.8 Let χ be a character modulo N, l a positive integer, p � l a prime. Put
M = lN, then we have the following two commutative diagrams:
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(1)

G(pN, k, χ)
Γ0(pN)

(
1 0
0 p

)
Γ0(N)

−−−−−−−−−−−−−−−−→ G(N, k, χ)⏐⏐&Embedding

⏐⏐&Embedding

G(pM, k, χ) −−−−−−−−−−−−−−−−→
Γ0(pM)

(
1 0
0 p

)
Γ0(M)

G(M, k, χ)

(2)

G(pN, k, χ)
Γ0(pN)

(
1 0
0 p

)
Γ0(N)

−−−−−−−−−−−−−−−−→ G(N, k, χ)

[δl]k

⏐⏐& ⏐⏐&[δl]k

G(pM, k, χ) −−−−−−−−−−−−−−−−→
Γ0(pM)

(
1 0
0 p

)
Γ0(M)

G(M, k, χ).

And similar results hold for cusp forms.

Proof The diagram (1) is an immediate conclusion of Lemma 6.7. We show now
the second diagram. Let f(z) ∈ G(pN, k, χ). Put g(z) = f |[δl]k. By Lemma 6.7, we
have

g|Γ0(pM)
(

1 0
0 p

)
Γ0(M)

=
p−1∑
v=0

g

∣∣∣∣[( 1 0
0 p

)(
1 v

0 1

)]
k

+ g

∣∣∣∣[( 1 0
0 p

)
σp

]
k

(where the last term disappears if p|M).

=
p−1∑
v=0

f

∣∣∣∣[δl

(
1 0
0 p

)(
1 v

0 1

)]
k

+ f

∣∣∣∣[δl

(
1 0
0 p

)
σp

]
k

=
p−1∑
v=0

f

∣∣∣∣[( 1 0
0 p

)
δl

(
1 v

0 1

)
δ−1
l δl

]
k

+ f

∣∣∣∣[( 1 0
0 p

)
δlσpδ

−1
l δl

]
k

=
p−1∑
v=0

f

∣∣∣∣[( 1 0
0 p

)(
1 vl

0 1

)
δl

]
k

+ f

∣∣∣∣[( 1 0
0 p

)
σ̂pδl

]
k

,

where σ̂p∈Γ0(N) satisfies σ̂p ≡
(

1 0
0 1

)
(mod N), and furthermore σ̂p≡

(
0 −ml

(ml)′ 0

)
(mod p) if σp ≡

(
0 −m

m′ 0

)
(mod p). Hence, by Lemma 6.7, we see that

(f |[δl]k)|Γ0(pM)
(

1 0
0 p

)
Γ0(M) =

(
f |Γ0(pN)

(
1 0
0 p

)
Γ0(N)

)
|[δl]k.
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This completes the proof.

Lemma 6.9 Let l be a square free positive integer, f(z) =
∞∑

n=0

a(n)e(nz) ∈

G(N, k, χ) such that a(n) = 0 if (n, l) = 1. Then

f(z) =
∑
p|l

gp(pz),

where gp(z) ∈ G(Nl2, k, χ) and moreover gp(z) ∈ G(Nl, k, χ) if l|N . Furthermore, all
gp are cusp forms if f(z) is a cusp form.

Proof We assume first that l is a prime. Put g(z) = f(z/l). By Theorem 6.1, we
see that g(z) ∈ G(N/l, k, χ) or g(z) = 0 if lmχ|N or lmχ � N respectively. Anyway,
g(z) ∈ G(Nl, k, χ) and f(z) = g(lz), the lemma holds. Now assume that l is a
composite and the lemma holds for any proper factor of l. Let p be a prime factor

of l. Put l′ = l/p and h(z) =
∑
p�n

a(n)e(nz). By Lemma 6.6, we see that h(z) ∈

G(Np2, k, χ). Put f(z) − h(z) =
∞∑

n=0

b(n)e(nz). It is clear that b(n) = 0 if p � n. Set

gp(z) = f(z/p)− h(z/p), by Theorem 6.1, we have that gp(z) ∈ G(Np, k, χ) and

f(z) = gp(pz) + h(z).

Since h(z), Np2, l′ satisfy the conditions in the lemma, by induction hypothesis, we
have

h(z) =
∑
q|l′

gq(qz), gq(z) ∈ G(Nl′2, k, χ) ⊂ G(Nl2, k, χ),

with q primes. It is clear that, by Lemma 6.6 and the above proof, gp ∈ G(Nl, k, χ)
if l|N . This completes the proof.

Theorem 6.2 Let f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k, χ), l a positive integer. Assume

that a(n) = 0 if (l, n) = 1. Then
(1) f(z) = 0 if (l, N/mχ) = 1;
(2) if (l, N/mχ) �= 1, then for any prime factor p of (l, N/mχ) there exists fp(z) ∈

G(N/p, k, χ) such that
f(z) =

∑
p|(l,N/mχ)

fp(pz),

where mχ is the conductor of χ. Furthermore, all fp are cusp forms if f is a cusp
form.
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Proof Without loss of generality, we may assume that l is square free. It is clear
that, by Theorem 6.1, the theorem holds for l a prime. Now assume that l is a
composite and the theorem holds for any proper factor of l. Let p be a prime factor
of l and l′ = l/p. Set

h(z) =
∑

(n,l′) �=1

a(n)e(nz),

g(z) = f(z) − h(z) =
∑

(n,l′)=1

a(n)e(nz).
(6.9)

By Lemma 6.6, g(z) ∈ G(Nl′2, k, χ) and so h(z) ∈ G(Nl′2, k, χ). It is clear that
the Fourier coefficient a(n) of g(z) must be zero if p � n, so that gp(z + 1) = gp(z)
where gp(z) = g(z/p). If pmχ � N , then pmχ � Nl′2, and g(z) = 0 by Theorem 6.1.

Therefore f(z) = h(z) =
∑

(n,l′) �=1

a(n)e(nz). This shows that the theorem holds by

the induction hypothesis. Now assume that pmχ|N . By Theorem 6.1, we see that
gp(z) ∈ G(Nl′2/p, k, χ). Lemma 6.7 gives

Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p) = Γ0(Nl′2)

(
1 0
0 p

)
σp

p−1⋃
v=0

Γ0(Nl′2)
(

1 0
0 p

)(
1 v

0 1

)
,

where the first term disappears if p2|N , so that,(
g|Γ0(Nl′2)

(
1 0
0 p

)
Γ0(Nl′2/p)

)
(z)

= pk/2−1

p−1∑
v=0

(
g

∣∣∣∣[( 1 0
0 p

)(
1 v

0 1

)]
k

)
(z) + pk/2−1

(
g

∣∣∣∣[( 1 0
0 p

)
σp

]
k

)
(z)

= p−1

p−1∑
v=0

(
gp

∣∣∣∣[( 1 v

0 1

)]
k

)
(z) + p−1(gp|[σp]k)(z)

=
d

p
gp(z),

where d =
{

p, if p2|N,

p + 1, if p2 � N
. Therefore

g(z) = gp(pz) =
d

p

(
g

∣∣∣∣Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p)

)
(pz). (6.10)

Since

fp(z) =
d

p

(
f

∣∣∣∣Γ0(N)
(

1 0
0 p

)
Γ0(N/p)

)
(z) ∈ G(N/p, k, χ),

we have that, by Lemma 6.8,
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fp(z) =
d

p

(
f

∣∣∣∣Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p)

)
(z). (6.11)

We want to show that f(z) − fp(pz) satisfies the conditions in the theorem for l′,
and hence we can complete the proof by induction. It is clear that f(z) − fp(pz) ∈
G(N, k, χ). By (6.9)–(6.11), we see that

f(z) − fp(pz)=f(z) − fp(pz) − g(z) + gp(pz)

=h(z) − d

p

(
h

∣∣∣∣Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p)

)
(pz). (6.12)

Applying the induction hypothesis for h(z), Nl′2 and l′, we have

h(z) =
∑
q|l′

hq(qz), hq(z) ∈ G(Nl′2, k, χ) (6.13)

with q primes. By Lemma 6.8, for any prime factor q of l′, we have

h
∣∣Γ0(Nl′2)

(
1 0
0 p

)
Γ0(Nl′2/p) = h

∣∣Γ0(Nl′3q)
(

1 0
0 p

)
Γ0(Nl′3q/p) (6.14)

and this holds also if h is substituted by hq. By (6.13), (6.14) and (2) of Lemma 6.8,
we have (

h

∣∣∣∣Γ0(Nl′2)
(

1 0
0 p

)
Γ0(Nl′2/p)

)
(z)

=
(∑

q|l′
(q−k/2hq|[δq]k)

∣∣∣∣Γ0(Nl′3q)
(

1 0
0 p

)
Γ0(Nl′3q/p)

)
(z)

=
∑
q|l′

(
hq

∣∣∣∣Γ0(Nl′3)
(

1 0
0 p

)
Γ0(Nl′3/p)

)
(qz).

This implies that the Fourier coefficient b(n) of
(

h
∣∣Γ0(Nl′2)

(
1 0
0 p

)
Γ0(Nl′2/p)

)
(z)

must be zero if (n, l′) = 1, and hence, by (6.12) and (6.13), so is the Fourier coefficient
c(n) of f(z) − fp(pz). This shows that f(z) − fp(pz) satisfies the conditions in the
theorem for l′. Hence

f(z) − fp(pz) =
∑
q|l′

fq(qz), fq(z) ∈ G(N/q, k, χ),

where q runs over all prime factors of (l′, N/mχ). This completes the proof.

Definition 6.1 Denote by Sold(N, k, χ) the subspace of S(N, k, χ) generated by⋃
mχ|M|N,

M �=N

⋃
l|N/M

{f(lz)|f(z) ∈ S(M, k, χ)}.

And any modular form in Sold(N, k, χ) is called an old form.
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Definition 6.2 Denote by Snew(N, k, χ) the orthogonal complement subspace of
Sold(N, k, χ) in S(N, k, χ) with respect to the Petersson inner product. And any mod-
ular form in Snew(N, k, χ) is called a new form.

By the definitions, we have

Lemma 6.10 (1) S(N, k, χ)=Snew(N, k, χ) if χ is a primitive character modulo N ;

(2) S(M, k, χ) ⊂ Sold(N, k, χ) if mχ|M |N and M �= N ;

(3) S(N, k, χ) is generated by
⋃

mχ|M|N

⋃
l|N/M

{f(lz)|f(z) ∈ Snew(M, k, χ)}.

Lemma 6.11 Let n be a positive integer with (n, N) = 1. Then T(n) sends
Sold(N, k, χ) (and Snew(N, k, χ) resp.) into Sold(N, k, χ) (and Snew(N, k, χ) resp.).

Proof Let f(z) ∈ Sold(N, k, χ). By the definition of old forms, we have

f(z) =
∑

v

fv(lvz), fv ∈ S(Mv, k, χ), lvMv|N, Mv �= N.

Put gv(z) = fv(lvz). Since T(n) commutes with [δl]k for any (n, l) = 1, we see that

(f |T(n))(z) =
∑

v

(gv|T(n))(z) =
∑

v

(fv|T(n))(lvz).

Since fv ∈ S(Mv, k, χ), we have that fv|T(n) ∈ S(Mv, k, χ), so that f |T(n) ∈
Sold(N, k, χ). This shows that T(n) sends Sold(N, k, χ) into itself. The next lemma
will show that χ(n)T(n) is the conjugate operator of T(n) on the space S(N, k, χ)
with respect to the Petersson inner product, so that T(n) sends Snew(N, k, χ) into
itself. This completes the proof.

Lemma 6.12 Let f(z) =
∞∑

m=1

a(m)e(mz) ∈ S(N, k, χ) and f(z)|T(n) =

∞∑
m=1

b(m)e(mz) ∈ S(N, k, χ). Then

(1) b(m) =
∑

1�d|(m,n)

χ(d)dk−1a(mn/d2);

(2) the conjugate operator T(n)∗ of T(n) (with respect to the Petersson inner
product) is equal to χ(n)T(n) for any (n, N) = 1.

Proof (1) is a direct conclusion of (5.14).
(2) is a direct conclusion of Lemma 5.18 and Lemma 5.26.

By Lemma 6.11, there is a basis in Snew(N, k, χ) (and in Sold(N, k, χ) resp.) whose
elements are eigenfunctions of all Hecke operators T(n) with (n, N) = 1.
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Lemma 6.13 Let L be a positive integer, and

0 �= f(z) =
∞∑

n=0

a(n)e(nz) ∈ Snew(N, k, χ)

an eigenfunction of all Hecke operators T(n) with (n, L) = 1. Then a1 �= 0.

Proof Assume that a1 = 0. If a(n) = 0 for any (n, L) = 1, then, by Theorem 6.2,
f(z) ∈ Sold(N, k, χ) which is impossible. Hence

m = min{n|(n, L) = 1, a(n) �= 0} > 1.

Let p be a prime factor of m. Then f |T(p) = cpf with cp a constant. By Lemma
6.12, we see that cpa(m/p) = a(m) + χ(p)pk−1a(m/p2). By the definition of m, we
have a(m/p) = a(m/p2) = 0, so that a(m) = 0, which is impossible. This completes
the proof.

Theorem 6.3 Let L be a positive integer, f and g ∈ S(N, k, χ) such that f |T(n) =
λnf , g|T(n) = λng for all (n, L) = 1 with λn constants. Then f = cg for a constant
c if 0 �= f ∈ Snew(N, k, χ).

Proof Let f(z) =
∞∑

n=1

a(n)e(nz). Without loss of generality, we can assume that

a(1) = 1 by Lemma 6.13. We may assume also that N |L. Set

g(z) = g(0)(z) + g(1)(z), g(0)(z) ∈ Snew(N, k, χ), g(1)(z) ∈ Sold(N, k, χ).

By Lemma 6.11, we see that

g(0)|T(n) = λng(0), g(1)|T(n) = λng(1), (n, L) = 1.

Hence, by Lemma 6.13, b(1) �= 0 if g(0)(z) =
∞∑

n=1

b(n)e(nz) �= 0. By Lemma 6.12, we

have

f |T(n) = a(n)f, g(0)|T(n) =
b(n)
b(1)

g(0), (n, L) = 1.

This shows that a(n)b(1) = b(n) for all (n, L) = 1. Put

g(0) − b(1)f =
∞∑

n=1

c(n)e(nz),

then c(n) = 0 for all (n, L) = 1, so that g(0) − b(1)f ∈ Sold(N, k, χ) by Theorem 6.2.
This implies that g(0) − b(1)f = 0. We shall now prove that g(1) = 0. If mχ = N ,
then Sold(N, k, χ) = 0. So we may assume that mχ �= N . Suppose that g(1) �= 0, then

g(1)(z) =
∑

v

hv(lvz), hv ∈ Snew(Mv, k, χ), lvMv|N, Mv �= N. (6.15)
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Since there is a basis in Snew(Mv, k, χ) whose elements are eigenfunctions for all T(n)
((n, Mv) = 1), we may assume that hv(z) is an eigenfunction of all T(n) ((n, Mv) = 1),
so that, by Lemma 6.3, hv(lvz) is an eigenfunction of all T(n) ((n, L) = 1). Since
eigenfunctions corresponding to different eigenvalues are linearly independent, the
sum of hv(lvz) with eigenvalue different from a(n) with respect to T(n) must be zero.
Therefore every hv(z) on the right hand side of (6.15) must satisfy

hv|T(n) = a(n)hv, (n, L) = 1.

Denote by h any fixed one of these hv. Let d be the first coefficient of the Fourier
expansion of h, then d �= 0 by Lemma 6.13. Put

h(z) − df(z) =
∞∑

n=1

d(n)e(nz),

then d(n) = 0 for all (n, L) = 1, so that h(z)− df(z) ∈ Sold(N, k, χ) by Theorem 6.2.
Therefore

f(z) = −1
d

(h(z) − df(z)) +
1
d
h(z) ∈ Sold(N, k, χ),

which implies that f(z) = 0 since f(z) ∈ Snew(N, k, χ). This contradicts the hypoth-
esis f �= 0. This completes the proof.

Theorem 6.4 Let R0(N) and R∗0(N) be the Hecke algebras R(Γ0(N),Δ0(N)) and
R(Γ0(N), Δ∗0(N)) respectively. Then there is a basis in Snew(N, k, χ) whose elements
are common eigenfunctions of R0(N) and R∗0(N).

Proof By Theorem 5.5, R0(N) and R∗0(N) are commutative and T(n) ∈ R0(N)
for any (n, N) = 1. Let {f1, f2, · · · , fr} be a basis of Snew(N, k, χ) such that every
fi is a common eigenfunction of T(n) for all (n, N) = 1. Put fi|T(n) = a(n, i)fi,
(n, N) = 1 with a(n, i) a constant. For any T ∈ R0(N), since T(n) ((n, N) = 1)
commutes with T , we see that

(fi|T )|T(n) = (fi|T(n))|T = a(n, i)fi|T, (n, N) = 1.

That is, fi|T is a common eigenfunction of all T(n) with eigenvalue a(n, i). By
Theorem 6.3, we have that fi|T = cfi with a constant c. This shows that fi is a
common eigenfunction of R0(N). This shows the first part of the theorem. Since
T(n)∗ ∈ R∗0(N) ((n, N) = 1) commutes with any T ∈ R∗0(N), and T(n)∗ = χ(n)T(n),
(n, N) = 1, we see that T(n) commutes with T ∈ R∗0(N). Similar to the above
process, fi|T = c′fi with a constant c′ for any T ∈ R∗0(N), so that, fi is also a
common eigenfunction of R∗0(N). Therefore fi (1 � i � r) are common eigenfunctions
of R0(N) and R∗0(N). This completes the proof.

Definition 6.3 f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ) is called a primitive cusp form
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if it satisfies the following two conditions:
(1) f ∈ Snew(N, k, χ) and it is a common eigenfunction of R0(N);
(2) a(1) = 1.

By Theorem 6.4, a primitive cusp form is also a common eigenfunction of R∗0(N),
and there exists a basis in Snew(N, k, χ) whose elements are primitive cusp forms.

Lemma 6.14 Let f ∈ S(N, k, χ) be a common eigenfunction of all T(n) with
(n, N) = 1, and f |T(n) = a(n)f , (n, N) = 1. Then there exists a factor M of N and
a primitive cusp form g of Snew(M, k, χ) such that

g|T(n) = a(n)g, (n, N) = 1.

Furthermore, we can take M �= N if f �∈ Snew(N, k, χ).

Proof If f ∈ Snew(N, k, χ), the lemma is obvious. So assume f �∈ Snew(N, k, χ).
By the proof of Theorem 6.3, there exists N �= M |N and h ∈ Snew(M, k, χ) such that

h|T(N) = a(n)h, (n, N) = 1.

Take g = 1
dh with d the first Fourier coefficient of h. This completes the proof.

Lemma 6.15 Let f ∈ G(N, k, χ). Then

(f |T(l, m))|[W (N)]k = (f |[W (N)]k)|T(m, l)∗,

(f |T(n))|[W (N)]k = (f |[W (N)]k)|T(n)∗.

Proof It is clear that we only need to show the first equality in the lemma. It is
clear that the map: α �→ W (N)−1αW (N) is an isomorphism from Δ0(N) to Δ∗0(N),
and W (N)−1Γ0(N) W (N) = Γ0(N). For any α ∈ Δ0(N), we have

χ(W (N)−1αW (N)) = χ(α)−1.

Let Γ0(N)
(

l 0
0 m

)
Γ0(N) =

⋃
v

Γ0(N)αv be a disjoint union, then

Γ0(N)
(

m 0
0 l

)
Γ0(N) =

⋃
v

Γ0(N)(W (N)−1αvW (N)).

Hence, for any g ∈ G(N, k, χ), we have

g|[W (N)−1]kT(l, m)[W (N)]k

=(lm)k/2−1
∑

v

χ(αv)−1g|[W (N)−1αvW (N)]k

=(lm)k/2−1
∑

v

χ(W (N)−1αvW (N))−1g|[W (N)−1αvW (N)]k

=g|T(m, l)∗.

Since W (N) is an isomorphism from G(N, k, χ) to G(N, k, χ), we see that the first
equality holds in the lemma. This completes the proof.
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Theorem 6.5 (1) The map: f �→ f |[W (N)]k induces the following isomorphisms.

Snew(N, k, χ) � Snew(N, k, χ),

Sold(N, k, χ) � Sold(N, k, χ);

(2) Let

f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ)

be a primitive cusp form, then

g(z) :=
∞∑

n=1

a(n)e(nz)

is a primitive cusp form of S(N, k, χ), and f |[W (N)]k = cg with a constant c.

Proof (1) We show first that [W (N)]k sends Sold(N, k, χ) into Sold(N, k, χ). This
is equivalent to show the following assertion: let N �= M |N , mχ|M , l|N/M , and let
h ∈ S(M, k, χ) such that f(z) = h|[δl]k, then f |[W (N)]k ∈ Sold(N, k, χ). We show
now the assertion. Put l′ = N/(lM). Then δlW (N)δ−1

l′ = lW (M), so that

f |[W (N)]k = h|[δlW (N)δ−1
l′ δl′ ]k = (h|[W (M)]k)|[δl′ ]k.

Since h|[W (M)]k ∈ S(M, k, χ), f |[W (N)]k ∈ Sold(N, k, χ). Now suppose f ∈ Snew(N,

k, χ). Then, for any f1 ∈ Sold(N, k, χ), we have

〈f |[W (N)]k, f1〉 = 〈f, f1|[W (N)τ ]k = (−1)k〈f, f1|[W (N)]k〉 = 0,

since f1|[W (N)]k ∈ Sold(N, k, χ). Therefore f |[W (N)]k ∈ Snew(N, k, χ). This shows
(1).

(2) By (1), we have f |[W (N)]k ∈ Snew(N, k, χ). By Lemma 6.15, we have

(f |[W (N)]k)|T(n) = (f |T(n)∗)|[W (N)]k = a(n)f |[W (N)]k

for any positive integer n. Hence f |[W (N)]k must be a constant multiple of some
primitive cusp form g. Let b(n) be the n-th Fourier coefficient of f |[W (N)]k, then
b(n) = a(n)b(1), so that

(f |[W (N)]k)(z) = b(1)
∞∑

n=1

a(n)e(nz).

Since a(1) = 1 and the first Fourier coefficient of g is also equal to 1, we see that

g(z) =
∞∑

n=1

a(n)e(nz), f |[W (N)]k = b(1)g.

This completes the proof.
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Let f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ) be a primitive cusp form. Then

L(s, f) =
∞∑

n=1

a(n)n−s =
∏
p

(
1 − a(p)p−s + χ(p)pk−1−2s

)−1

=
∏
p�N

(
1 − a(p)p−s + χ(p)pk−1−2s

)−1∏
p|N

(
1 − a(p)p−s

)−1
.

For any p � N , by the Ramanujan-Petersson Conjecture (proved by Deligne), we have
|a(p)| � 2p(k−1)/2. We discuss now a(p) for p|N . For any p|N , set N = NpN

′
p with

p � N ′
p, and χp the character modulo Np induced from χ. Fix a prime factor q of N ,

put χ′ =
∏
p�=q

χp. Let γq, γ′q ∈ SL2(Z) satisfy

γq ≡

⎧⎪⎪⎨⎪⎪⎩
(

0 −1
1 0

)
(mod N2

q ),(
1 0
0 1

)
(mod (N/Nq)2),

γ′q ≡

⎧⎪⎪⎨⎪⎪⎩
(

1 0
0 1

)
(mod N2

q ),(
0 −1
1 0

)
(mod (N/Nq)2).

Set

ηq = γq

(
Nq 0
0 1

)
, η′q = γ′q

(
N/Nq 0

0 1

)
,

then
ηqΓ0(N)η−1

q = Γ0(N), η′qΓ0(N)η′−1
q = Γ0(N)

and for any γ ∈ Γ0(N), we have

χ(ηqγη−1
q ) = (χ′χq)(γ), χ(η′qγη′−1

q ) = (χ′χq)(γ).

Hence we have the following two isomorphisms:

S(N, k, χ)
[ηq ]k−−−−→ S(N, k, χ′χq),

S(N, k, χ)
[η′q ]k−−−−→ S(N, k, χ′χq).

And the following two diagrams are commutative:

S(N, k, χ)
χq(n)T(n)−−−−−−−→ S(N, k, χ)

[ηq ]k

⏐⏐& ⏐⏐&[ηq ]k

S(N, k, χ′χq)
T(n)−−−−−−−→ S(N, k, χ′χq)

, (n, Nq) = 1;

S(N, k, χ)
χ′q(n)T(n)
−−−−−−−→ S(N, k, χ)

[η′q ]k

⏐⏐& ⏐⏐&[η′q ]k

S(N, k, χ′χq)
T(n)−−−−−−−→ S(N, k, χ′χq)

, (n, N/Nq) = 1.
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These can be proved along similar lines as in the proof of Lemma 6.15. In particular,
we see that f |[ηq]k ∈ S(N, k, χ′χq) and f |[η′q]k ∈ S(N, k, χ′χq) are common eigen-
functions of all T(n) ((n, N) = 1) if f ∈ S(N, k, χ) is a common eigenfunction of all
T(n) ((n, N) = 1). Therefore we see that the assertion (1) of the following theorem
holds:

Theorem 6.6 (1) We have the following isomorphisms:

[ηq]k : Snew(N, k, χ) � Snew(N, k, χ′χq),

[ηq]k : Sold(N, k, χ) � Sold(N, k, χ′χq),

[η′q]k : Snew(N, k, χ) � Snew(N, k, χ′χq),

[η′q]k : Sold(N, k, χ) � Sold(N, k, χ′χq).

(2) For any f ∈ S(N, k, χ), we have

f |[η2
q ]k = χq(−1)χ′(Nq)f,

f |[η′2q ]k = χ′(−1)χq(N/Nq)f,

f |[ηqη
′
q]k = χ′(Nq)f |[W (N)]k.

(3) If f =
∞∑

n=1

a(n)e(nz) ∈ Snew(N, k, χ) is a primitive cusp form, set

f |[ηq]k = c
∞∑

n=1

b(n)e(nz), b(1) = 1, gq(z) =
∞∑

n=1

b(n)e(nz),

then gq(z) is a primitive cusp form of S(N, k, χ′χq) and

b(p) =
{

χq(p)a(p), if p �= q,

χ′(q)a(q), if p = q.

Proof (2) Put η2
q = Nqγ, then γ ∈ Γ (1) and

γ ≡

⎧⎪⎪⎨⎪⎪⎩
(
−1 0
0 −1

)
(mod Nq),(

Nq 0
0 N−1

q

)
(mod (N/Nq)).

So that, γ ∈ Γ0(N), and hence f |[η2
q ]k = χq(−1)χ′(Nq)f . Similarly set η′2q =

N

Nq
γ1,

then γ1 ∈ Γ0(N) and

γ1 ≡

⎧⎪⎪⎨⎪⎪⎩
(

N/Nq 0
0 (N/Nq)−1

)
(mod N/Nq),(

−1 0
0 −1

)
(mod Nq).
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Hence
f |[η′2q]k = χ′(−1)χq(N/Nq)f.

Set γ2 = ηqη
′
qW (N)−1, then γ2 ∈ Γ0(N) and

γ2 ≡

⎧⎪⎪⎨⎪⎪⎩
(

1 0
0 1

)
(mod Nq),(

Nq 0
0 N−1

q

)
(mod (N/Nq)).

Hence
f |[ηqη

′
q]k = χ′(Nq)f |[W (N)]k.

(3) If (n, q) = 1, then

(f |[ηq]k)|T(n) = χq(n)(f |T(n))|[ηq ]k = χq(n)a(n)f |[ηq]k. (6.16)

If (n, N/Nq) = 1, then

(f |[η′q]k)|T(n) = χ′(n)a(n)f |[η′q]k. (6.17)

Since f |[ηq]k ∈ Snew(N, k, χ′χq) by (1), f |[ηq]k is a constant multiple of a primitive
cusp form by Lemma 6.14, and by (6.16) we have

b(p) = χq(p)a(p), if p �= q.

By (2), we see that f |[ηq]k = cf |[W (N)η′q]k with c = χ′(−Nq)χq(N/Nq), so that

(f |[ηq]k)|T(n) = c((f |[W (N)]k)|[η′q ]k)|T(n).

Since f |[W (N)]k ∈ S(N, k, χ), we see that, by (6.17) and Lemma 6.15,

(f |[ηq]k)|T(n) = cχ′(q)((f |[W (N)]k)|T(n))|[η′q ]k
= cχ′(q)a(n)f |[W (N)η′q]k

= χ′(q)a(n)f |[ηq]k.

Therefore b(q) = χ′(q)a(q). This completes the proof.

Theorem 6.7 Let f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ) be a primitive cusp form, m

the conductor of χ. For any prime q|N, put N = NqN
′
q, m = mqm

′
q with q � N ′

q and
q � m′

q. Then

(1) |aq| = q(k−1)/2, if Nq = mq;

(2) a2
q = χ′(q)qk−2, if Nq = q and mq = 1;

(3) aq = 0, if q2|N and Nq �= mq.
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Proof (1) Let γq, ηq be as above, a a positive integer prime to q. Take a positive
integer b such that ab + 1 ≡ 0 (mod Nq) and a ≡ b (mod N/Nq). Let γ be a matrix
satisfying (

1 a

0 qe

)
γq = γ

(
1 b

0 qe

)
, Nq = qe,

then γ ∈ SL2(Z) and

γ ≡
(

a ∗
0 −b

)
(mod Nq), γ ≡

(
1 0
0 1

)
(mod N/Nq),

so that γ ∈ Γ0(N) and χ(γ) = χq(−b). Therefore we obtain

f

∣∣∣∣[( 1 a

0 qe

)
γq

]
k

= χq(−b)f
∣∣∣∣[( 1 b

0 qe

)]
k

.

Let a run over a reduced residue system modulo Nq, then we get

qe(k/2−1)
∑

(a,Nq)=1

(
f

∣∣∣∣[( 1 a

0 qe

)]
k

)∣∣∣∣[ηq]k

= qe(k/2−1)

( ∑
(b,Nq)=1

χq(−b)f
∣∣∣∣[( 1 b

0 qe

)]
k

)∣∣∣∣[( qe 0
0 1

)]
k

= qe(k/2−1)χq(−1)
( ∞∑

n=1

∑
(b,Nq)=1

χq(b)e2πinb/qe

)
a(n)e(nz)

= qe(k/2−1)W (χq)
∞∑

n=1

χq(−n)a(n)e(nz), (6.18)

where W (χq) is the Gauss sum of χq. Since

f |T(n) = nk/2−1
∑

ad=n,a>0,
(a,N)=1

∑
b mod d

f

∣∣∣∣[σa

(
a b

0 d

)]
k

,

we see that

qe(k/2−1)
∑

(a,Nq)=1

f

∣∣∣∣[( 1 a

0 qe

)]
k

= f |T(qe) − qk/2−1(f |T(qe−1))
∣∣∣∣[( 1 0

0 q

)]
k

= a(qe)f − qk/2−1a(qe−1)f
∣∣∣∣[( 1 0

0 q

)]
k

.

Hence we obtain

qe(k/2−1)
∑

(a,Nq)=1

(
f

∣∣∣∣[( 1 a

0 qe

)]
k

)∣∣∣∣[ηq]k

=a(qe)f |[ηq]k − χ′(q)qk/2−1a(qe−1)(f |[ηq]k

∣∣∣∣[( q 0
0 1

)]
k

, (6.19)
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where we used the facts: γ =
(

1 0
0 q

)
ηq

(
q 0
0 1

)−1

η−1
q ∈ SL2(Z) and χ(γ) = χ′(q).

Let g(z) =
∞∑

n=1

b(n)e(nz) be as in (3) of Theorem 6.6, then f |[ηq]k = cg with a

constant c. Comparing the coefficients of e(z) and e(qz) of (6.18), (6.19), we obtain

ca(qe) = qe(k/2−1)W (χq), ca(qe)b(q) − cχ′(q)qk−1a(qe−1) = 0.

Hence we have, by Theorem 6.6,

|a(q)|2 = qk−1, c = W (χq)qe(k/2−1)a(qe)−1.

(2) By Lemma 5.17 and Lemma 6.8, since Nq = q, we see that

Γ0(N)
(

1 0
0 q

)
Γ0(N/q) = Γ0(N)

(
1 0
0 q

)
Γ0(N)

⋃
Γ0(N)ηq ,

since we can take σq = γq and γ = γq

(
q 0
0 1

)
σ−1

q

(
q 0
0 1

)−1

∈ Γ0(N). Therefore

f
∣∣Γ0(N)

(
1 0
0 q

)
Γ0(N/q) = f |T(q) + qk/2−1f |[ηq]k.

If (n, N) = 1, then T(n) commutes with T(q) and [ηq]k, so that

g := f

∣∣∣∣Γ0(N)
(

1 0
0 q

)
Γ0(N/q) ∈ S(N/q, k, χ)

is a common eigenfunction of all T(n), (n, N) = 1 and the eigenvalues are the same
as the ones of f . By Theorem 6.3, g is a constant multiple of f . This implies that
g = 0 since g ∈ S(N/q, k, χ) and f is a new form. So that, we get

qk/2−1f |[ηq]k = −a(q)f,

and hence, by (2) of Theorem 6.6, we have

qk/2−1χq(−1)χ′(q)f = qk/2−1f |[η2
q ]k = −a(q)f |[ηq]k = q1−k/2a(q)2f.

That is, a(q)2 = χq(−1)χ′(q)qk−2. Since mq = 1, χq(−1) = 1, a(q)2 = χ′(q)qk−2.
(3) Similar to the proof of (2), we have

Γ0(N)
(

1 0
0 q

)
Γ0(N/q) = Γ0(N)

(
1 0
0 q

)
Γ0(N).

Hence we get, along similar arguments for the assertion (2),

f |T(q) = f

∣∣∣∣[Γ0(N)
(

1 0
0 q

)
Γ0(N/q)

]
k

= 0.

This implies that a(q) = 0, which completes the proof.
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During the proof of Theorem 6.7, we have also shown the following:

Corollary 6.1 (1) If Nq = mq, then

f |[ηq]k = a(qe)−1qe(k/2−1)W (χq)g

with g a primitive cusp form of S(N, k, χ′χq).
(2) if Nq = q, mq = 1, then

f |[ηq]k = −a(q)q1−k/2f, a(q) = χ′(q)a(q).

Theorem 6.8 Let f(z) =
∞∑

n=1

a(n)e(nz) ∈ S(N, k, χ) be a common eigenfunction

of R0(N) and R∗0(N), a(1) = 1 and g =
∞∑

n=1

b(n)e(nz) ∈ S(M, k, ω) a primitive cusp

form. Assume that there exists a positive integer L such that a(n) = b(n) for all
(n, L) = 1. Then N = M , χ = ω and f = g.

Proof Without loss of generality, we may assume that L is a common multiple of
M and N . If p � L, by Lemma 6.12, we have

pk−1χ(p) = a(p)2 − a(p2), pk−1ω(p) = b(p)2 − b(p2).

But b(p) = a(p) and a(p2) = b(p2) for any p � L, so that χ(p) = ω(p) for any p � L.
Hence we obtain

χ(n) = ω(n), if (n, L) = 1.

By the functional equation in Theorem 5.9, we see that

RN (s, f)
RM (s, g)

=
RN (k − s, f |[W (N)]k)
RM (k − s, g|[W (M)]k)

. (6.20)

Since LN (s, f) and LM (s, g) have Euler products for Re(s) > 1+k/2 respectively, we
see that for Re(s) > 1 + k/2

RN (s, f)
RM (s, g)

=
(√

N√
M

)s∏
p|L

1 − b(p)p−s + ω(p)pk−1−2s

1 − a(p)p−s + χ(p)pk−1−2s
. (6.21)

By the analytic continuation principle, we know that (6.21) holds for all s. Similarly,
by (2) of Theorem 6.5 and Lemma 6.15, we have

RN (k − s, f |[W (N)]k)
RM (k − s, g|[W (M)]k)

= c

(√
N√
M

)k−s∏
p|L

1 − b(p)ps−k + ω(p)p2s−k−1

1 − a(p)ps−k + χ(p)p2s−k−1
(6.22)
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with a constant c. Comparing (6.20)–(6.22), we obtain(
N

M

)s∏
p|L

1 − b(p)p−s + ω(p)pk−1−2s

1 − a(p)p−s + χ(p)pk−1−2s
= c

(√
N√
M

)k∏
p|L

1 − b(p)ps−k + ω(p)p2s−k−1

1 − a(p)ps−k + χ(p)p2s−k−1
.

(6.23)
Let Mp and Np be the p-parts (i.e., Mp = pνp(M) and Np = pνp(N), where νp(∗) is
the p-valuation.) of M and N respectively. By (6.23) and the uniqueness of Dirichlet
series, for p|L we have that(

Np

Mp

)s 1 − b(p)p−s + ω(p)pk−1−2s

1 − a(p)p−s + χ(p)pk−1−2s
= cp

1 − b(p)ps−k + ω(p)p2s−k−1

1 − a(p)ps−k + χ(p)p2s−k−1

with cp a constant. Set x = p−s, then

1 − a(p)p−s + χ(p)pk−1−2s = 1 − a(p)x + χ(p)pk−1x2,

1 − b(p)p−s + ω(p)pk−1−2s = 1 − b(p)x + ω(p)pk−1x2.

Denote by u, v the degrees of the above polynomials with respect to x. It is clear
that 0 � u, v � 2.

(1) If u = v = 0, we see that Mp = Np.
(2) If u = 0, v = 1, set Np/Mp = pe, then we see that

1 − b(p)x = cpx
e(1 − b(p)p−kx−1), b(p) �= 0.

Therefore |b(p)|2 = pk which contradicts Theorem 6.7, so that it is impossible that
u = 0 and v = 1.

(3) If u = 1, v = 0, similar to (2), it is easy to see that Mp = pNp.
(4) If u = 0, v = 2, set Np/Mp = pe, then

1 − b(p)x + ω(p)pk−1x2 = cpx
e(1 − b(p)p−kx−1 + ω(p)p−k−1x−2).

This implies that e = 2 and hence |ω(p)| = p which is impossible, so that it is
impossible that u = 0, v = 2.

(5) If u = 2, v = 0, similar to (4), it is easy to see that Mp = p2Np.
(6) If u = 1, v = 2, set Np/Mp = pe, then

1 − b(p)x + ω(p)pk−1x2

1 − a(p)x
= cpx

e 1 − b(p)p−kx−1 + ω(p)p−k−1x−2

1 − a(p)p−kx−1
.

This implies that e = 1, so that

(1 − b(p)x + ω(p)pk−1x2)(x − a(p)p−k)

= cp(1 − a(p)x) × (x2 − b(p)p−kx + ω(p)p−k−1). (6.24)

By comparing the coefficients on both sides of (6.24), we obtain
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|a(p)| = pk/2−1, |cp| = pk/2. (6.25)

By (6.24) and (6.25), we see that a(p)−1 = p−k+2a(p) should be a root of 1− b(p)x+
ω(p)pk−1x2 = 0, i.e.,

1 − b(p)p−k+2a(p) + ω(p)p3−ka(p)
2

= 0,

so that,
b(p) = a(p) + ω(p)pa(p) = a(p) − c(p). (6.26)

By (6.25) and (6.26), we have ∣∣1 − |b(p)|p−k/2
∣∣ < p−1,

which contradicts Theorem 6.7, and it is impossible that u = 1, v = 2.
(7) If u = 2, v = 1, similar to (6), it is easy to see that Mp = pNp.
(8) If u = v = 2, it is easy to see that Mp = Np.
Anyway, we proved that N |M and χ(n) = ω(n) if (n, M) = 1. This implies that

S(N, k, χ) ⊂ S(M, k, ω). By Theorem 6.3, we have f = g, and hence M = N in terms
of Lemma 6.14. This completes the proof.

By Lemma 6.14 and Theorem 6.8, it is easy to show the following:

Corollary 6.2 (1) Let 0 �= f(z) ∈ S(N, k, χ), and

f |T(n) = a(n)f, (n, N) = 1.

Then there exists a unique factor M of N and a unique primitive cusp form g(z) of
S(M, k, χ) such that

g|T(n) = a(n)g, (n, N) = 1.

(2) Let f(z) ∈ S(N, k, χ) be a common eigenfunction of R0(N) and R∗0(N). Then
f(z) is a constant multiple of some primitive cusp form of Snew(N, k, χ).

6.2 New Forms with Half Integral Weight

In this section we discuss the Kohnen’s theory of new forms with half integral weight.
Here and after, we always assume that N is an odd square free positive integer, χ a

quadratic character modulo N with conductor t. Put ε = χ(−1) and χ1 =
(

4ε

·

)
χ.

We define Sk+1/2(N, χ) as the space of cusp forms of weight k + 1/2 and char-

acter χ1 on Γ0(4N) which have a Fourier expansion
∞∑

n=1

a(n)e(nz) with a(n) = 0

for ε(−1)kn ≡ 2, 3 (mod 4). We write Sk+1/2(N) for Sk+1/2(N, id.) and we call this
space Kohnen’s “+” space. It is clear that Sk+1/2(N, χ) ⊂ S(4N, k + 1/2, χ1).
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Put

ξ := ξk,ε =
{(

4 1
0 4

)
, ε1/2eπi/4

}
,

Q := Qk,N,χ1 = [Δ0(4N, χ1)ξk,εΔ0(4N, χ1)],

where Δ0(M, ω) :=
{

(A, φ)|A =
(

a b
c d

)
∈ Γ0(M), φ(z) = ω(d)

( c

d

)(−4
d

)−1/2

(cz+

d)1/2

}
. We usually omit the subscripts k + 1/2, 4N, χ1 and write just ξ, Q.

Lemma 6.16 The operator Q satisfies the quadratic equation (Q − α)(Q − β) = 0

where α = (−1)[(k+1)/2]ε2
√

2 and β = −α

2
. It is Hermitian, and its α eigenspace is

just Sk+1/2(N, χ).

Proof It is easy to check that

ξ∓Δ0(4N, χ1)ξ±
⋂

Δ0(4N, χ1) = Δ0(16N, χ1).

Therefore
Δ0(4N, χ1)ξ±Δ0(4N, χ1) =

⋃
Δ0(16N, χ1)ξ±ξu (6.27)

is a disjoint union, where {ξu} is a set of representatives for Δ0(4N, χ1)/Δ0(16N, χ1).

For any v ∈ Z, put Av =
(

1 0
4Nv 1

)
. Then {A∗v|v mod 4} is a set of representatives

for Δ0(4N, χ1)/Δ0 (16N, χ1), by (6.27), we see that

f |Q =
∑

v mod 4

f |[ξA∗v],

f |Q2 =
∑

v mod 4

∑
u mod 4

f |[ξA∗vξA∗u].

Now

ξA0ξAu =
{

8
(

2 1
0 2

)
, εi1/2

}
A∗u

=
{(

1 0
0 1

)
, χ1(−2Nu + 1)

(
4Nu

−2Nu + 1

)(
−4

−2Nu + 1

)1/2}
×
(

1 + 2Nu −Nu

4Nu 1 − 2Nu

)∗{
8
(

2 1
0 2

)
, εi1/2

}
.

By the invariance of f under the operation of elements in Δ0(4N, χ1) and the fact
that ∑

u mod 4

χ1(−2Nu + 1)
(

4Nu

−2Nu + 1

)(
−4

−2Nu + 1

)−k−1/2

= 0,

we obtain that
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∑
u mod 4

f |[ξA∗0ξA∗u] = 0.

Next we observe that

ξA∗±1ξ =
{(

1 0
0 1

)
, χ1(1 ± N + N2)

(
−4

1 ± N + N2

)−1/2

eπi/4

}

×

⎛⎝ 1 ∓ N + N2

(
N ± 1

2

)2

−4N2 1 ± N + N2

⎞⎠∗ ξA∗±1,

hence∑
u mod 4

f |[ξA∗±1ξA
∗
u] = χ1(1 ± N + N2)

(
−4

1 ± N + N2

)k−1/2

ε−k−1/2e−(2k+1)πi/4f |Q.

Since

χ1(1 + N + N2)
(

−4
1 + N + N2

)k−1/2

+ χ1(1 − N + N2)
(

−4
1 − N + N2

)k−1/2

= 1 + ε(−1)ki,

we obtain∑
u mod 4

(f |[ξA∗1ξA∗u] + f |[ξA∗−1ξA
∗
u]) = (1 + ε(−1)ki)ε−k−1/2e−(2k+1)πi/4f |Q.

Finally

ξA∗2ξ =
{(

16 0
0 16

)
, 1
}(

1 + 2N
1 + N

2
8N 1 + 2N

)∗
and so ∑

u mod 4

f |[ξA∗2ξA∗u] = 4f.

Summarizing the facts above we showed that

Q2 = (1 + ε(−1)ki)ε−k−1/2e−(2k+1)πi/4Q + 4,

that is,
(Q − α)(Q − β) = 0.

The adjoint operator of Q is given by

f |Q̃ =
∑

ξ

f |[ξ],

where ξ runs through a set of representatives of the right cosets of Δ0(4N , χ1) in

Δ0(4N , χ1) ξ′Δ0(4N , χ1) with ξ′ =
{(

4 −1
0 4

)
, ε−k−1/2e−(2k+1)πi/4

}
, but
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ξ′ =

(
1 − 2N

N − 1
2

8N 1 − 2N

)∗
ξ

(
1 0

−8N 1

)∗
,

so that Q is Hermitian.

Let f =
∞∑

n=1

a(n)e(nz) be an element of S(4N, k + 1/2, χ1). Then

f |[ξ + ξ′] = ε−k−1/2e−(2k+1)πi/4f(z + 1/4) + εk+1/2e(2k+1)πi/4f(z − 1/4)

= εk
∞∑

n=1

(ε−1/2i−ke−πi/4eπin/2 + ε1/2ikeπi/4e−πin/2)a(n)e(nz)

and hence

f |[ξ + ξ′] = (−1)[(k+1)/2]ε
√

2
( ∑

ε(−1)kn≡0,1 mod 4

a(n)e(nz) −
∑

ε(−1)kn≡2,3 mod 4

a(n)e(nz)
)

.

(6.28)
This shows that f is in Sk+1/2(N, χ) if and only if f |[ξ + ξ′] =

α

2
f . Now by the

definition of the trace operator in Section 5.4, we see that, by (6.27),

f |Q = (f |[ξ])|Tr, f |Q̃ = (f |[ξ′])|Tr, (6.29)

where Tr is the trace operator from S(16N, k + 1/2, χ1) to S(4N, k + 1/2, χ1). Thus,
if f ∈ Sk+1/2(N, χ), we see that

f |Q =
1
2
f |[Q + Q̃] =

1
2
((f |[ξ])|Tr + (f |[ξ′])|Tr) =

α

4
f |Tr = αf.

Conversely, suppose that f |Q = αf . Then

(f |[ξ − α/4])|Tr = (f |[ξ′ − α/4])|Tr = 0

and so
(f |[ξ + ξ′ − α/2])|Tr = 0. (6.30)

By the definition of Tr, the equation (6.30) implies that the function f ′ := f |[ξ + ξ′−
α/2] is in the orthogonal complement of S(4N, k +1/2, χ1) in S(16N, k +1/2, χ1). In
particular, we have

〈f ′, f〉 = 0.

Since (f |[ξ + ξ′])|[ξ + ξ′] = 2f , we see that

〈f ′, f |[ξ + ξ′]〉 = 〈f ′|[ξ + ξ′], f〉 =
〈
2f − α

2
f |[ξ + ξ′], f

〉
= −α

2
〈f ′, f〉 = 0.

Together with 〈f ′, f〉 = 0, this implies that 〈f ′, f ′〉 = 0, i.e. f |[ξ+ξ′] =
α

2
f . Therefore

f is in Sk+1/2(N, χ). This completes the proof.
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For each prime divisor p of N , we defined an operator W (p) in Section 5.4 by

W (p) =
{(

p a
4N pb

)
, ε−1

p p1/4(4Nz + pb)1/2

}
,

where a, b are integers with p2b − 4Na = p. Then W (p) maps S(4N, k + 1/2, χ1) to

S

(
4N, k + 1/2, χ1

(
4p

·

))
and

(
−4
p

)−(2k+1)/4

W (p) acts as an unitary involution

on the sum of these spaces (see Section 5.4).

Lemma 6.17 W (p) maps the space Sk+1/2(N, χ) isomorphically onto the space

Sk+1/2

(
N, χ

(
·
p

))
.

Proof We must show that Sk+1/2(N, χ)|W (p) ⊂ Sk+1/2(N, χ
( ·

p

))
. In view of

Lemma 6.16 we only need to show that

(f |W (p))|Q
k,N,
(

4p
·
)
χ1

=
(
−4
p

)
(f |Qk,N,χ1)|W (p) (6.31)

holds for f ∈ S(4N, k + 1/2, χ1). It is easy to verify that for every v ∈ Z there is
some γv ∈ Γ0(4N) such that

W (p)ξk,(−4
p )εA

∗
v =

{(
1 0
0 1

)
,

(
−4
p

)}
γ∗vξk,εA

∗
uW (p),

where u is determined mod 4 by Nu ≡ −1− b(1 + Nv) + N/p (mod 4). This implies

(6.31) since f |Q =
∑

v mod 4

(f |[ξk,(−4
p )ε])|A

∗
v . This completes the proof.

Let m|N∞ and U(m) be the operator defined as in Lemma 5.38. For any prime
divisor p of N , put

w := wp,k+1/2,N := p−(2k−1)/4U(p)W (p)

and define S±p
k+1/2(N) as the subspace of Sk+1/2(N) consisting of forms whose n-th

Fourier coefficients vanish for
(

(−1)kn

p

)
= ∓1. Then we set

wp,χ := wp,k+1/2,N,χ := U(t)−1wp,k+1/2,NU(t),

S±p
k+1/2(N, χ) = S±p

k+1/2(N)|U(t),

where we used the fact that U(t) is an isomorphism from Sk+1/2(N) to Sk+1/2(N, χ)
which will be proved in (1) of the following lemma.
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Lemma 6.18 (1) The operator U(t) maps isomorphically Sk+1/2(N) onto Sk+1/2(N,

χ) where t is the conductor of χ.
(2) The operator wp,k+1/2,N,χ is a Hermitian involution on Sk+1/2(N, χ) whose

(±1)-eigen -space is S±p
k+1/2(N, χ). In particular, for any p|N , we have an orthogonal

decomposition
Sk+1/2(N, χ) = S+p

k+1/2(N, χ) ⊕ S−p
k+1/2(N, χ).

If p � t, then wp,χ coincides with the restriction of
(

t

p

)
p−(2k−1)/4U(p)W (p) to

Sk+1/2(N, χ), and S±p
k+1/2(N, χ) coincides with the subspace of Sk+1/2(N, χ) consisting

of forms whose n − th Fourier coefficients vanish for
(

(−1)ktn

p

)
= ∓1.

Proof We prove first the following assertion: suppose p � t, then p−(2k−1)/4U(p)W (p)
defines a Hermitian involution on Sk+1/2(N, χ) whose (±1)-eigenspace consists of

those functions f which have a Fourier expansion f =
∞∑

n=1

a(n)e(nz) with a(n) = 0

for
(

(−1)kn

p

)
= ∓1.

In fact, by the definition of U(p), we see that

f |U(p) = p(2k−3)/4
∑

v mod p

f

∣∣∣∣[{( 1 v

0 p

)
, p1/4

}]
and so

f |p−(2k−1)/4U(p)W (p)

= p−1/2
∑

v mod p

f

∣∣∣∣[{( p + 4Nv a + pbv

4Np p2b

)
,

(
−4
p

)−1/2

(4Nz + pb)1/2

}]
.

If 1 + 4Nv/p �≡ 0 (mod p), then 4N and 1 + 4Nv/p are co-prime, and so we can find

integers α, β such that α(−1 − 4Nv/p) − 4Nβ = 1. Thus
(

α β

4N −1 − 4Nv/p

)
∈

Γ0(4N), by f ∈ Sk+1/2(N, χ) and p � t, we see that

f

∣∣∣∣[{( p + 4Nv a + pbv

4Np p2b

)
, (4Nz + pb)1/2

}]
=
(

N/p

p

)
f

∣∣∣∣[{( p −aα

0 p

)
,

(
aα

p

)}]
.

Hence we have

f |p−(2k−1)/4U(p)W (p)=
(

N/p

p

)(
−4
p

)k+1/2

p−1/2
∑

α mod p,
(α,p)=1

f

∣∣∣∣[{( p α

0 p

)
,

(
−α

p

)}]
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+p−1/2

(
f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}])∣∣∣∣W (p), (6.32)

where v0 is an integer with 1 + 4Nv0/p ≡ 0 (mod p). Since∑
α mod p,
(α,p)=1

(
f

∣∣∣∣[{( p α

0 p

)
,

(
−α

p

)}])∣∣∣∣U(p) = 0,

we see from (6.32) that

f |(p−(2k−1)/4U(p)W (p))2

= p−(2k+1)/4f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}]∣∣∣∣W (p)
∣∣∣∣U(p)W (p)

=
1
p

∑
u mod p

(
f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}])∣∣∣∣W (p)
∣∣∣∣[{( 1 u

0 p

)
, p1/4

}]∣∣∣∣W (p).

Since p � t, it is easy to check that{(
p−2 0
0 p−2

)
, 1
}{(

1 v0

0 p

)
, p1/4

}
W (p)

{(
1 u

0 p

)
, p1/4

}
W (p) ∈ Δ0(4N, χ),

so that, we have
f |(p−(2k−1)/4U(p)W (p))2 = f.

Since the adjoint of
{(

p α

0 p

)
,

(
−α

p

)(
−4
p

)−1/2}
is
{(

p −α

0 p

)
,

(
α

p

)(
−4
p

)−1/2}
,

and the adjoint of
{(

1 v0

0 p

)
, p1/4

}
W (p) can be written as C∗

{(
1 v0

0 p

)
, p1/4

}
W (p)

with C ∈ Γ0(4N), it follows that p−(2k−1)/4U(p)W (p) is Hermitian.
Finally, by Gauss sum and (6.32), we have

f |p−(2k−1)/4U(p)W (p)=
(

N/p

p

) ∞∑
n=1

(
(−1)kn

p

)
a(n)e(nz)

+p−1/2f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}]
W (p). (6.33)

Therefore to complete the proof of our assertion we only need to show that

f |U(p) = ±
(
−4
p

)−k−1/2

p(2k−1)/4f |W (p)

is equivalent to the identity

p−1/2

(
f

∣∣∣∣[{( 1 v0

0 p

)
, p1/4

}]
W (p)

)
(z) = ±

(
N/p

p

)
(f |U(p))(pz),
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which can be derived from the following fact{(
1 v0

0 p

)
, p1/4

}
W (p)=

{(
1 0
0 1

)
,

(
−4
p

)1/2(
N/p

p

)}
C∗W (p)

{(
p 0
0 1

)
, p−1/4

}
(6.34)

with C ∈ Γ0(4N), and hence the assertion is proved. Since we have the following
commutation rule

f |U(t)W (p) =
(

t

p

)
f |W (p)U(t), p � t,

the assertions in (2) of the lemma will be clear once (1) will have been proved. By
Lemma 6.17, we have that dim(Sk+1/2(N)) = dim(Sk+1/2(N, χ)). So we only need to
show that U(t) is injective on Sk+1/2(N). But we have shown above that U(p)W (p)
is injective on Sk+1/2(N, χ) for p � t, so U(p) is injective on Sk+1/2(N, χ) for p � t, and
hence we conclude by induction that U(t) is injective on Sk+1/2(N). This completes
the proof.

We introduce now the Hecke operators on Sk+1/2(N, χ). Let

pr := prk,N,χ1
:=

1
α − β

(Qk,N,χ1 − β)

be the orthogonal projection onto Sk+1/2(N, χ). For a prime p � N , we define T(p) :=
TN,k,χ(p) as the restriction of

νpp
k−3/2

[
Δ0(4N, χ1)

{(
1 0
0 p2

)
, p1/2

}
Δ0(4N, χ1)

]
pr

to Sk+1/2(N, χ), where νp = 1 or 3/2 according to p �= 2 or p = 2. It is clear that
for an odd p, TN,k,χ(p) is the restriction of the Hecke operator TN,k,χ1(p2). We write
TN,k(p) for TN,k,id.(p).

Lemma 6.19 Let f(z) =
∞∑

n=1

a(n)e(nz) ∈ Sk+1/2(N, χ). Put f |TN,k,χ(p) =

∞∑
n=1

b(n)e(nz). Then

b(n)=

⎧⎨⎩ a(p2n)+χ(p)
(

ε(−1)kn

p

)
pk−1a(n)+a(n/p2), if ε(−1)kn≡0, 1 (mod 4),

0, if ε(−1)kn≡2, 3 (mod 4).
(6.35)

The operators T(p) generate a commutative C-algebra of Hermitian operators.

Proof Since T(p) is just the Hecke operator T(p2) for p �= 2, so (6.35) is clear for p

odd by Theorem 5.15. Let us now prove (6.35) for p = 2. We use the same notations
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as in the proof of Lemma 6.16. By the definition of U(m), we see that

U(4) = 2k−3/2

[
Δ0(4N, χ1)

{(
1 0
0 4

)
, 21/2

}
Δ0(4N, χ1)

]
.

By the definition of T(2) and (6.29), we have

f |T(2) =
1
α

((f |U(4))|[ξ]) |Tr +
1
2
f |U(4) = f1 + f2 + f3

with
f1 =

1
α

((f |U(4))|[ξ])|[A∗0 + A∗2] +
1
2
f |U(4),

f2 =
1
α

((f |U(4))|[ξ])|[A∗N ],

f3 =
1
α

((f |U(4))|[ξ])|[A∗−N3 ].

Since

A∗0 =
{(

1 0
0 1

)
, 1
}

, ξA∗2 =

(
1 + 2N

N + 1
2

8N 1 + 2N

)∗
ξ′

and f ∈ Sk+1/2(N, χ), we see that

f1 =
1
α

(f |U(4))|[ξ + ξ′] +
1
2
f |U(4).

By (6.28) and Lemma 5.38, we have

f1 =
∑

ε(−1)kn≡0,1 mod 4

a(4n)e(nz).

But we have also

f |U(4) = 2k−3/2
∑

v mod 4

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]
,

so that

f2 =
2k−3/2

α

∑
v mod 4

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]∣∣∣∣A∗N
= 2k−3/2

∑
v mod 4

f

∣∣∣∣[{( 4 + 4N2(4v + 1) 4v + 1
64N2 16

)
, ε1/2eπi/4(8N2z + 2)1/2

}]
.

For v ∈ Z we can find an integer a such that

−a(1 + N2(4v + 1)) + 2(4v + 1) ≡ 0 (mod 16),

so that
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4 + 4N2(4v + 1) 4v + 1

64N2 16

)
, ε1/2eπi/4(8N2z + 2)1/2

}

=

⎛⎝ 1 + N2(4v + 1)
2

−a(1 + N2(4v + 1)) + 2(4v + 1)
16

8N2 −aN2 + 2

⎞⎠∗

×
{(

8 a

0 8

)
, χ(2)

(
4ε

a

)(
8
a

)(
−4
a

)−1/2}
.

Moreover, if v runs through integers mod 4, a runs through a reduced residue system
mod 8. Thus

f2 = χ(2)
2k−3/2

α

∑
a mod 8,

a odd

f

∣∣∣∣[{( 8 a

0 8

)
, ε1/2eπi/4

(
4ε

a

)(
8
a

)(
−4
a

)−1/2}]
.

From this equality, it is easy to verify that

f2 = χ(2)
∞∑

n=1

(
ε(−1)kn

2

)
a(n)e(nz).

We want now to compute f3. By the proof of Lemma 6.16, we know that

f |[ξ + ξ′] =
α

2
f. (6.36)

Since {(
1 ±1
0 4

)
, 21/2

}{(
−N4 + 1 1
−4N4 4

)
, ε1/2eπi/421/2(−N4z + 1)1/2

}

=

⎛⎝∓N4 +
1 − N4

4
±1 +

(4 ± 1)(1 − N4)
16

−4N4 ∓N4 + 4

⎞⎠∗ ξ∓1,

so (6.36) implies

α

2
f =

∑
v=1,−1

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}{(
−N4 + 1 1
−4N4 4

)
, ε1/2eπi/421/2(−N4z + 1)1/2

}]
,

and hence∑
v=1,−1

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]

=
α

2
f

∣∣∣∣[{( 4 −1
4N4 −N4 + 1

)
, ε−1/2e−πi/42−1/2(4N4z − N4 + 1)1/2

}]
. (6.37)

Since a(n) = 0 for n ≡ 2 (mod 4), we have∑
v=1,−1

f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]
= 21/2−kf |U(4).
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From (6.37) we obtain

f |U(4) = 2k−3/2αf

∣∣∣∣[{( 4 −1
4N4 −N4 + 1

)
, ε−1/2e−πi/42−1/2(4N4z − N4 + 1)1/2

}]
= 2k−3/2α

(
f

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}])∣∣∣∣[A∗N3 ]
∣∣∣∣[ξ−1].

Hence

f3 =
1
α

((f |U(4))|[ξ])|[A∗−N3 ] = 2k−3/2f

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}]
=22k−1

∞∑
n=1

a(n/4)e(nz). (6.38)

Putting together all expansions for f1, f2 and f3, we get (6.35) for p = 2. It is
clear that the operators TN,k,χ(p) commute each other from (6.35). TN,k,χ(p) (p �

2N) is Hermitian since the operator
[{

Δ0(4N, χ1)
(

1 0
0 p2

)
, p1/2

}
Δ0(4N, χ1)

]
is

Hermitian for p � N . So we only need to show that T(2) is Hermitian. Let f , g be in
Sk+1/2(N, χ). Then

2
3
〈f |T(2), g〉 = 〈f |U(4)pr, g〉 = 〈f |U(4), g|pr〉

= 〈f |U(4), g〉 = 2k−3/2
∑

v mod 4

〈
f

∣∣∣∣[{( 1 v

0 4

)
, 21/2

}]
, g

〉
= 2k−3/2

∑
v mod 4

〈
f, g

∣∣∣∣[{( 4 −v

0 1

)
, 2−1/2

}]〉
= 2k+1/2

〈
f, g

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}]〉
.

Now we have
1
α

((g|U(4))|[ξ])|[A∗−N3 ]=2k−3/2g

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}]
=

1
α

((g|U(4))|[ξ−1])|[A∗N3 ], (6.39)

and the first equality is derived from (6.38), and the second can be proved similarly.
By (6.39), we see easily that

2k+1/2g

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}]
=

2
α

(g|U(4))|[ξA∗−N3 + ξ−1A∗N3 ].

Thus
2
3
〈f |T(2), g〉 =

2
α
〈f, g|U(4))|[ξA∗−N3 + ξ−1A∗N3 ]〉

=
2
α
〈f |[A∗N3ξ−1 + A∗−N3ξ], g|U(4)〉
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=
2
α
〈f |[ξ + ξ−1], g|U(4)〉

= 〈f, g|U(4)〉 =
2
3
〈f, g|T(2)〉.

This completes the proof.

For a positive divisor d of N we set Sk+1/2(d, χ) = Sk+1/2(d)|U(t). Put

Sold
k+1/2(N, χ) =

∑
N �=d|N

(
Sk+1/2(d, χ) + Sk+1/2(d, χ)|U(N2/d2)

)
,

which is called the space of old forms in Sk+1/2(N, χ). And we define the space of
new forms, denoted by Snew

k+1/2(N, χ), to be the orthogonal complement of the space
of old forms in Sk+1/2(N, χ) with respect to the Petersson inner product. We write

Snew
k+1/2(N) = Snew

k+1/2(N, id.).

Lemma 6.20 We have

Snew
k+1/2(N, χ) = Snew

k+1/2(N)|U(t).

Proof By Lemma 6.18 it suffices to show the inclusion

Snew
k+1/2(N)|U(t) ⊂ Snew

k+1/2(N, χ).

Let f ∈ Snew
k+1/2(N). We must show that

〈g|U(t), f |U(t)〉 = 0

for all old forms g in Sk+1/2(N). Let t = p1 · · · pr be the standard factorization of t.
Then we have

〈g|U(t), f |U(t)〉 = pk+1/2
r 〈g|U(t/pr), f |U(t/pr)〉,

since W (pr) is unitary and p
−(2k+1)/4
r U(pr)W (pr) is a Hermitian involution on Sk+1/2

(N)|U
(

t

pr

)
(by the proof of Lemma 6.18). By induction, we see that

〈g|U(t), f |U(t)〉 = tk+1/2〈g, f〉 = 0.

This completes the proof.

We shall carry over the basic facts about the space of new forms Snew(N , 2k)
to Snew

k+1/2(N , χ). Recall that for every prime divisor p of N the operator U(p)
preserves Snew(N, 2k) ⊂ S(N, 2k) and that U(p) = −pk−1Wp,2k,N on Snew(N, 2k),
where Wp,2k,N is the Atkin-Lehner involution on S(N, 2k) defined by

(f |Wp,2k,N )(z) = pk(4Nz + pb)−2kf

(
pz + a

4Nz + pb

)
, a, b ∈ Z, p2b − 4Na = p.

We shall now prove an analogous result for new forms of half integral weight.
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Theorem 6.9 For every prime p|N , the operators U(p2) and wp,χ := wp,k,N,χ

preserve the space of new forms. And we have U(p2) = −pk−1wp,χ on Snew
k+1/2(N, χ).

Proof We first show that wp,χ := wp,k,N,χ maps new forms to new forms. Since
wp,χ is Hermitian it is sufficient to show that wp,χ maps old forms to old forms. By
the definitions we only need to show this for χ = id. Now set wp := wp,k,N . We only
need to show that wp maps Sk+1/2(N/l) and Sk+1/2(N/l)|U(l2) to old forms for every
prime divisor l of N .

Let f ∈ Sk+1/2(N/l). If p �= l, by (2) of Lemma 6.18, f |wp is in Sk+1/2(N/l) and
so an old form. The same is true for f |U(l2)|wp = f |wp|U(l2). Thus we assume that

p = l. Let f(z) =
∞∑

n=1

a(n)e(nz). Then, by (6.34) and (6.35) in the proof of Lemma

6.18, we see that

f |wp =
(

N/p

p

) ∞∑
n=1

(
(−1)kn

p

)
a(n)e(nz)

+
(
−4
p

)−k−1/2(
N/p

p

)
p−1/2(f |W (p))

∣∣∣∣[{( p 0
0 1

)
, p−1/4

}]
.

Since f ∈ Sk+1/2(N/p), we have

f |W (p) =
(

f

∣∣∣∣ ( −1 0
4N/p −1

)∗)∣∣∣∣W (p)

= f

∣∣∣∣[{(−p −a

0 −1

)
,

(
−4
p

)−1/2

p−1/4

}]
= f

∣∣∣∣[{( p 0
0 1

)
,

(
−4
p

)−1/2

p−1/4

}]
.

Thus we obtain that

f |wp =
(

N/p

p

) ∞∑
n=1

((
(−1)kn

p

)
a(n) + pka(n/p2)

)
e(nz),

i.e.

f |wp =
(

N/p

p

)
p−k+1(−f |U(p2) + f |TN/p,k(p2)). (6.40)

This shows that f |wp is an old form. Moreover, applying wp on both sides of (6.40)
and noting w2

p = id. we see that (f |U(p2))|wp is an old form. This shows that wp

maps old forms to old forms, and so that, new forms to new forms.
Finally, we must now prove that on Snew

k+1/2(N, χ)

U(p2) = −pk−1wp,k,N,χ, p prime , p|N. (6.41)
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But Lemma 6.20 and the injectivity of U(t) on Sk+1/2(N) (see Lemma 6.18) allows

us to assume χ = id. for the proof of (6.41). Denote by Tr := TrN
N/p : S(N, k+1/2) →

S(N/p, k + 1/2) the trace operator. It is easy to verify that TrN
N/p maps Sk+1/2(N)

to Sk+1/2(N/p) by Lemma 6.16. Let f ∈ Snew
k+1/2(N). Since f is orthogonal to

Sk+1/2(N/p), it follows that f |Tr = 0. On the other hand,
(

1 0
4N/p 1

)(
1 u

0 1

)
(u mod p) together with

(
1 0
0 1

)
form a complete set of representatives for Γ0(4N)/

Γ0(4N/p). Thus we have

f |Tr = f +
∑

u mod p

f

∣∣∣∣[( 1 0
4N/p 1

)∗( 1 u

0 1

)∗ ]
.

But(
1 0

4N/p 1

)∗( 1 u

0 1

)∗
=
{(

p 0
0 p

)
,

(
−4
p

)1/2}
W (p)

{(
1 u − a

0 1

)
, p1/4

}
,

so that

f |Tr = f +
(
−4
p

)−k−1/2

p−k/2+3/4f |W (p)U(p).

Since f |Tr = 0, we obtain that

f |W (p)U(p) = −
(
−4
p

)k+1/2

p(2k−3)/4f.

By (2) of Lemma 6.18 and the fact that wp,k,N,χ preserves the space of new forms,
we see that U(p)W (p) is an isomorphism of Snew

k+1/2(N). Thus replacing f with
f |U(p)W (p) in the above equality, we see that(

−4
p

)k+1/2

f |U(p2) = f |U(p)W (p)W (p)U(p)

= −
(
−4
p

)k+1/2

p(2k−3)/4f |U(p)W (p),

i.e.
f |U(p2) = −pk−1f |wp.

This completes the proof.

Lemma 6.21 Let f =
∞∑

n=1

a(n)e(nz) ∈ S(4N, k + 1/2, χ1) satisfy that a(n) = 0 for

n ≡ 2 (mod 4). Then f is in Sk+1/2(N, χ).

Proof The hypothesis a(n) = 0 for n ≡ 2 (mod 4) is equivalent to
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f

∣∣∣∣[{( 4 1
0 4

)
, 1
}]

+ f

∣∣∣∣[{( 4 −1
0 4

)
, 1
}]

=2−k+1/2(f |U(4))
∣∣∣∣[{( 4 0

0 1

)
, 2−1/2

}]
.

Now apply the trace operator Tr := Tr16N
4N from S(16N, k + 1/2, χ1) to S(4N, k +

1/2, χ) on both sides of the above equation. Because of the identity (6.29) and the
fact that Q is Hermitian, we obtain that

ε(−1)[(k+1)/2]
√

2f |Q = 2−k+1/2

(
(f |U(4))

∣∣∣∣[{( 4 0
0 1

)
, 2−1/2

}])∣∣∣∣Tr. (6.42)

Since U(4) and
{(

4 0
0 1

)
, 2−1/2

}∣∣∣∣Tr equal 2k−3/2

[
Δ0(4N, χ1)

{(
1 0
0 4

)
, 21/2

}
Δ0(4N, χ1)

]
and

[
Δ0(4N, χ1)

{(
4 0
0 1

)
, 2−1/2

}
Δ0(4N, χ1)

]
respectively, and also

since

Δ0(4N, χ1)
{(

1 0
0 4

)
, 21/2

}
Δ0(4N, χ1)

· Δ0(4N, χ1)
{(

4 0
0 1

)
, 2−1/2

}
Δ0(4N, χ1)

= 4Δ0(4N, χ1)
{(

4 0
0 4

)
, 1
}

Δ0(4N, χ1)

+ Δ0(4N, χ1)
{(

4 1
0 4

)
, 1
}

Δ0(4N, χ1)

+ Δ0(4N, χ1)
{(

4 −1
0 4

)
, 1
}

Δ0(4N, χ1)

+ Δ0(4N, χ1)
{(

4 2
0 4

)
, 1
}

Δ0(4N, χ1),

Δ0(4N, χ1)
{(

4 2
0 4

)
, 1
}

Δ0(4N, χ1) = 0,

the right hand side of (6.42) equals

1
2

(
4f + ε(−1)[(k+1)/2]

√
2f |Q

)
,

so that
f |Q = ε(−1)[(k+1)/2]2

√
2f

and hence f is in Sk+1/2(N, χ) by Lemma 6.16. This completes the proof.

Lemma 6.22 Let p be a prime and 0 �= f =
∞∑

n=1

a(n)e(nz) ∈ G(N, k/2, ω). Assume
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that a(n) = 0 for all n with p � n. Then p|N/4, ωχp is well-defined modulo N/p and

f = g|V (p) with g ∈ G(N/p, k/2, ωχp) where χp =
(

p

∗

)
.

Proof Put

g(z) = f(z/p) =
∞∑

n=0

a(np)e(nz) = pk/4f

∣∣∣∣[{( 1 0
0 p

)
, p1/4

}]
. (6.43)

Set

N ′ =
{

N/p, if p|N/4,

N, if p � N/4.
Γ0(N ′, p) =

{(
a b

c d

)
∈ Γ0(N ′)

∣∣p|b}.

If A =
(

a b

c d

)
∈ Γ0(N ′, p), then A1 =

(
a b/p

cp d

)
∈ Γ0(N) and we see that{(

1 0
0 p

)
, p1/4

}
A∗ = {1, χp(d)}A∗1

{(
1 0
0 p

)
, p1/4

}
.

Hence
g|[A∗] = ω(d)χp(d)g. (6.44)

By (6.43) we have
g

∣∣∣∣[{( 1 1
0 1

)
, 1
}]

= g.

Since Γ0(N ′) can be generated by Γ0(N ′, p) and
(

1 1
0 1

)
, we see that (6.44) holds for

any A ∈ Γ0(N ′). We declare that ωχp must be well-defined modulo N ′. Otherwise,
there exist integers a and d such that ad ≡ 1 (mod N ′) and ωχp(a) · ωχp(d) �= 1.
Take

B =
(

a b

N ′ d

)
∈ Γ0(N ′),

we have that g = g|[B∗(B−1)∗] = ωχp(a)ωχp(d)g, which is impossible since g �= 0.
Therefore ωχp must be well-defined modulo N ′, so that p|N/4 and N ′ = N/p. It
is therefore clear that g is in G(N/p, k/2, ωχp) and f = g|V (p). This completes the
proof.

Lemma 6.23 Let m be a positive integer, and

f(z) =
∞∑

n=0

a(n)e(nz) ∈ G(N, k/2, ω).

Suppose that a(n) = 0 for any n with (n, m) = 1. Then

f =
∑

fp|V (p), fp ∈ G(N/p, k/2, ωχp),

where the prime p runs over the set of common factors of m and N/4. And ωχp is
well-defined modulo N/p. fp can be chosen as cusp forms if f is a cusp form. fp

are eigenfunctions for almost all Hecke operators T(p2) if f is an eigenfunction for
almost all Hecke operators T(p2).
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Proof We can assume that m is square-free. Let r be the number of different
prime factors of m. If r = 0, then f = 0 and the lemma holds. If r = 1, this is the
Lemma 6.22. We now prove the lemma by induction on r. Let m = p0m0. Take a
prime p and put K(p) = 1 − T(p, Np)V (p) where T(p, Np) is the Hecke operator
TNp,k,ω(p) on the space G(pN , k/2, ω). By the properties of Hecke operators, we
have

f |K(p) =
∑

(n,p)=1

a(n)e(nz) ∈ G(p2N, k/2, ω).

So
h :=

∑
(n,m0)=1

a(n)e(nz) = f
∣∣ ∏

p|m0

K(p) ∈ G(m2
0N, k/2, ω).

If h = 0, replacing m by m0, we see that the lemma holds by induction hypothesis.
Now suppose that h �= 0. If (n, m0) = 1 and a(n) �= 0, then p0|n. By Lemma 6.22,
there is gp0 ∈ G(m2

0N/p, k/2, ωχp0) such that h = gp0 |V (p0), and ωχp0 is well-defined
modulo m2

0N/p0. Hence p0|N/4 and ωχp0 is well-defined modulo N/p0. We have

f − h = f − gp0 |V (p0) =
∞∑

n=0

b(n)e(nz).

Noting that b(n) = 0 if (n, m0) = 1 and applying induction hypothesis, we have

f − gp0 |V (p0) =
∑

p

gp|V (p),

where p runs over the set of prime factors of m0, and ωχp is well-defined modulo
m2

0N/p. Therefore by Theorem 5.21, we see that

f |S(ω) − gp0 =
∑

p

(gp|S(ωχp, m
2
0N/p, p0))|V (p).

Put fp0 = f |S(ω). Then fp0 ∈ G(N/p0, k/2, ωχp0). If we write

fp0 |V (p0) =
∞∑

n=0

c(n)e(nz),

then the nth Fourier coefficient of fp0 |V (p0)−gp0 |V (p0) is not zero only for (n, m0) �=
1. So we get c(n) = a(n) for (n, m0) = 1, and hence the nth Fourier coefficient
of f − fp0 |V (p0) is zero for (n, m0) = 1. By the induction hypothesis we get the
decomposition of f as stated in the lemma. The other results can be proved also by
induction. This completes the proof.

Corollary 6.3 Let f be as in Lemma 6.23. If f is an eigenfunction of almost all
Hecke operators, then f ∈ Gold(N, k/2, ω).

Theorem 6.10 We have the following decomposition:

Sk+1/2(N, χ) =
⊕

r,d�1,rd|N
Snew

k+1/2(d, χ)|U(r2).
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Proof We now prove the decomposition for the case N = q with q an odd prime.
We can prove the general case by induction. First assume χ = 1. Suppose that
f ∈ Sk+1/2(1) and f |U(q2) ∈ Sk+1/2(1). We may assume that f is an eigenfunction
of all Hecke operators T(p) := T1,k,1(p). To prove the decomposition we must show
that f = 0. If otherwise, since f and f |U(q2) have the same eigenvalues for all T(p)
with p �= q, we conclude that f |U(q2) = cf with some constant c ∈ C (in fact, by
Theorem 6.3, a non-zero Hecke eigenform in S(1, 2k, id.) is completely determined
up to a constant factor by prescribing all up to finitely many of its eigenvalues, so is
also a non zero Hecke eigenform in Sk+1/2(1) by Theorem 9.7).

Now let λq be the eigenvalue of f with respect to T(q) and write f =
∞∑

n=1

a(n)e(nz).

Then, by the definition of T(q) and the fact that f |U(q2) = cf , we have(
λq − c −

(
(−1)kn

q

)
qk−1

)
a(n) = q2k−1a(n/q2), ∀n ∈ N. (6.45)

By Lemma 6.22 we can choose n′ such that q � n′ and a(n′) �= 0. We see then that

λq = c +
(

(−1)kn′

q

)
qk−1. (6.46)

Substituting (6.46) into (6.45) we have((
(−1)kn′

q

)
−
(

(−1)kn

q

))
a(n) = qka(n/q2), ∀n ∈ N,

so that

f |U(q2) =
(

(−1)kn′

q

)
qkf, ∀n ≡ 0 (mod q2),

i.e.,

c =
(

(−1)kn′

q

)
qk.

Thus by (6.46) we see that
|λq| = qk + qk−1,

which is impossible by Ramanujan-Petersson-Deligne’s Theorem. Thus we proved
that

Sk+1/2(1)
⋂

Sk+1/2(1)|U(q2) = {0}.

Hence by the definitions of new forms and old forms, we have

Sk+1/2(q) = Snew
k+1/2(q) ⊕

(
Sk+1/2(1) + Sk+1/2(1)|U(q2)

)
= Snew

k+1/2(q) ⊕ Sk+1/2(1) ⊕ Sk+1/2(1)|U(q2)

= Snew
k+1/2(q) ⊕ Snew

k+1/2(1) ⊕ Snew
k+1/2(1)|U(q2).
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Thus the theorem is proved for χ = 1. If χ is primitive modulo q, the theorem follows
from the following facts (see Lemma 6.18 and Lemma 6.20) :

Sk+1/2(q)|U(q) = Sk+1/2(q, χ), Snew
k+1/2(q)|U(q) = Snew

k+1/2(q, χ).

This completes the proof.

Theorem 6.11 (1) The space Snew
k+1/2(N, χ) has an orthogonal basis of common

eigenfunctions for all operators T(p) := TN,k,χ(p) (p prime, p � N) and U(p2) (p
prime, p|N), uniquely determined up to multiplication with non-zero complex num-
bers, the eigenvalues corresponding to U(p2) with p|N are ±pk−1. If f is such an
eigenfunction and λp the eigenvalue corresponding to T(p) resp. U(p2), then there
is an eigenfunction F ∈ Snew

2k (N), uniquely determined up to multiplication with a
non-zero complex number, which satisfies F |TN,2k(p) = λpF resp. F |U(p2) = λpF

for all primes p with p � N resp. p|N . Let f =
∞∑

n=1

a(n)e(nz) and F =
∞∑

n=1

A(n)e(nz),

and D a fundamental discriminant with ε(−1)kD > 0. Then we have

L(s − k + 1, χχD)
∞∑

n=1

a(|D|n2)n−s = a(|D|)
∞∑

n=1

A(n)n−s.

(2) Let the map LD,N,k,χ be defined by

∞∑
n=1

b(n)e(nz) �→
∞∑

n=1

(∑
d|n

χ(d)χD(d)dk−1b(n2|D|/d2)
)

e(nz).

Then LD,N,k,χ maps Sk+1/2(N, χ) to S(N, 2k, id.), Snew
k+1/2(N, χ) to Snew(N, 2k, id.)

and S±p
k+1/2(N, χ)

⋂
Snew

k+1/2(N, χ) to S±p(N, 2k, id.)
⋂

Snew(N, 2k, id.) with p any
prime divisor of N where S±p(N, 2k, id.) = {f ∈ S(N, 2k, id.) | f |Wp,2k,N = ±f}.
It satisfies

TN,k,χ(p)LD,N,k,χ = LD,N,k,χTN,2k,1(p), ∀p � N,

U(p2)LD,N,k,χ = LD,N,k,χU(p), ∀p|N.

There exists a linear combination of the LD,N,k,χ which maps Snew
k+1/2(N, χ) resp.

S±p
k+1/2(N, χ)

⋂
Snew

k+1/2(N, χ)

isomorphically onto Snew(N, 2k, id.) resp. S±p(N, 2k, id.)
⋂

Snew(N, 2k, id.).

Proof Since T(p) commutes with U(d2) for d|N , and since for f ∈ Sk+1/2(N) we
have

f |U(t)|T(p) = f |T(p)|U(t),
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it follows that the Hecke operator T(p) preserves the space of old forms and so pre-
serves also Snew

k+1/2(N, χ). We now have that

Tr(TN,k,χ(n), Snew
k+1/2(N, χ)) = Tr(TN,2k(n), Snew(N, 2k)) (6.47)

for all n ∈ N with (n, 2N) = 1. In fact, this follows by induction from the decompo-
sitions:

Sk+1/2(N, χ) =
⊕

r,d�1,rd|N
Snew

k+1/2(d, χ)|U(r2),

Snew(N) =
⊕

r,d�1,rd|N
Snew(d, 2k)|U(r)

and from the Theorem 9.7.
By (6.47) and the corresponding statement for Snew(N, 2k) (see Section 6.1), we

deduce that Snew
k+1/2(N, χ) has an orthogonal basis of common eigenfunctions for all

operators TN,k,χ(p) (p � 2N), uniquely determined up to multiplication with non-zero
complex numbers. Since TN,k,χ(p) (p � 2N), U(p2)(p|N) and TN,k,χ(2) commute, so
these functions are also eigenfunctions of U(p2)(p|N) and TN,k,χ(2). Furthermore, by
Theorem 6.9 and in particular the fact that wN,p,k+1/2,χ is an involution shows that

the eigenvalues with respect to U(p2)(p|N) are ±pk−1. Now let f =
∞∑

n=1

a(n)e(nz) be

an eigenfunction and assume that f |T(p) = λpf resp. f |U(p2) = λpf for p � N resp.
p|N . Then a formal computation as in Lemma 5.40 and Theorem 5.23 shows that

L(s − k + 1, χχD)
∞∑

n=1

a(|D|n2) = a(|D|)
∏
p

(
1 − λpp

−s +
(

N

p

)2

p2k−1−2s

)−1

for every fundamental discriminant D with ε(−1)kD > 0.
Let us show the assertions about the maps LD := LD,N,k,χ. Note that the Hecke

operators TN,k,χ(p) and TN,2k,id.(p) act in a natural way on the formal power series

in q = e(z). It is clear that for a formal power series f =
∑

ε(−1)kn≡0,1 mod 4

a(n)qn, we

have
f |TN,k,χ(p)|LD = f |LD|TN,2k,id.(p), ∀p � N,

f |U(p2)|LD = f |LD|U(p), ∀p|N,

by a formal computation.
The other assertions will be shown first under the assumption that D ≡ 0 (mod 4).

Write D = 4t with t square free and t ≡ 2, 3 (mod 4). For

f =
∞∑

n=1

a(n)e(nz) ∈ Sk+1/2(N, χ),

put
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f |Lt,4N,k,χ1 =
∞∑

n=1

(∑
d|n

(4εt

d

)
χ(d)dk−1a(n2|t|/d2))e(nz).

Then f |Lt,4N,k,χ1 is a cusp form of weight 2k on Γ0(2N) by the results of Chapter 8.
Since f ∈ Sk+1/2(N, χ), the nth Fourier coefficients of f |Lt,4N,k,χ1 are zero for any
odd n. Hence the function (f |Lt,4N,k,χ1)|U(2) = f |LD,N,k,χ is in S(N, 2k, id.).

If f ∈ Snew
k+1/2(N, χ) is a Hecke eigenfunction, then from Theorem 6.9 we see that

f |U(p2) = ±pk−1f, ∀ p|N.

Therefore F = f |LD is a Hecke eigenform in S(N, 2k, id.) with F |U(p) = ±pk−1F for
all p|N , and this implies that F must be in Snew(N, 2k, id.) by the results in Section
6.1.

That LD maps S±p
k+1/2(N, χ)

⋂
Snew

k+1/2(N, χ) to S±p(N, 2k, id.)
⋂

Snew(N, 2k, id.)
follows from Theorem 6.9, the identity U(p2)LD = LDU(p) and the fact that U(p) =
−pk−1Wp,N,2k on Snew(N, 2k, id.).

We shall now prove that there is a linear combination of LD with D ≡ 0 (mod 4)
which gives an isomorphism of Snew

k+1/2(N , χ) onto Snew(N , 2k, id.). Now suppose
that f ∈ Snew

k+1/2(N , χ) is a non-zero Hecke eigenfunction. We declare that there is a
fundamental discriminant D ≡ 0 (mod 4) with ε(−1)kD > 0 such that the Fourier
coefficient of f at e(|D|z) is non-zero. Otherwise, then the n-th Fourier coefficients
of g = f |U(4) are zero for all n ≡ 2 (mod 4), and so that g is in Sk+1/2(N , χ) by
Lemma 6.21. It follows that g = cf for some constant c. In fact, by Theorem 9.7 and
identity (6.47), we see that there exists an isomorphism ψ : Sk+1/2(N , χ) → S(N , 2k,
id.) which maps new forms onto new forms and ψTN,k+1/2,χ(p) = TN,2k(p)ψ for all
primes p � 2N . So f |ψ is a new form with the same eigenvalues as g|ψ for all Hecke
operators TN,2k(p) with p � 2N , and so that g|ψ ∈ Cf |ψ by the results in Section 6.1.
This shows that g = cf for some constant c. Now note that f is an eigenfunction of
TN,k,χ(2). Denote by λ2 the corresponding eigenvalue, then similar to the proof of
Theorem 6.10, we have

|λ2| = 2k + 2k−1,

which contradicts the Ramanujan-Petersson-Deligne Theorem. Thus we proved the
above claim.

Let f1, f2, · · · , fr ∈ Sk+1/2(N, χ) be an orthogonal basis of common eigenfunctions

of the operators TN,k,χ(p)(p � N) resp. U(p2)(p|N), and write fi =
∞∑

n=1

ai(n)e(nz).

For every i find a fundamental discriminant Di ≡ 0 (mod 4) with ε(−1)kDi > 0 and
ai(|Di|) �= 0. Then the polynomial

P (x1, x2, · · · , xr) =
∏

1�i�r

(ai(|D1|)x1 + · · · + ai(|Dr|)xr)
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is non-zero. Choose c1, · · · , cr ∈ C such that P (c1, · · · , cr) �= 0 and put

LN,k,χ =
∑

i

ciLDi,N,k,χ.

Then it is immediate that LN,k,χ is an isomorphism of Snew
k+1/2(N, χ) onto Snew(N, 2k,

id.). By Lemma 6.18 and the fact that S±p
k+1/2(N, χ) is the (±1)-eigenspace of the

involution wp,k+1/2,N,χ, we see that LN,k,χ maps S±p
k+1/2(N, χ)

⋂
Snew

k+1/2(N, χ) onto
S±p(N, 2k, id.)

⋂
Snew(N, 2k, id.).

Finally we must prove the assertions about LD,N,k,χ for D ≡ 1 (mod 4). It is
enough to show that LD,N,k,χ maps Snew

k+1/2(N, χ) to Snew(N, 2k, id.). In fact, for any
prime divisor l|N , it is easy to verify that

LD,N/l,k,χ = LD,N,k,χ

(
1 −
(

D

l

)
lk−1V (l)

)
,

U(t)LD,N,k,χ = LD0,N,k,id.U((D, t)2),

where V (l) is the translation operator defined by (f |V (l))(z) = f(lz) and
(

D0

∗

)
is the

primitive character induced by
(

D

∗

)
χ. It then follows inductively that Sk+1/2(N, χ)

is mapped to S(N, 2k, id.). And the same argument as in the case D ≡ 0 (mod 4)
shows that S±p

k+1/2(N, χ)
⋂

Snew
k+1/2(N, χ) is mapped to S±p(N, 2k, id.)

⋂
Snew(N,

2k, id.).
Now let F be a normalized eigenform in Snew(N, 2k, id.) with F |TN,2k(p) = λpF

resp. F |U(p) = λpF for all primes p � N resp. p|N . Then F =
∞∑

n=1

λne(nz) and λn is

determined by
∞∑

n=1

λnn−s =
∏
p

(1 − λpp
−s + χN (p)2p2k−1−2s)−1.

Write φN,k,χ for the inverse of LN,k,χ and put G = F |φN,k,χLD,N,k,χ. Then G is
a power series in q = e(z) which converges on H and satisfies G|TN,2k(p) = λpG

resp. G|U(p) = λpG for all primes p � N resp. p|N . Hence it follows that the
coefficient of G at e(nz) equals cλn with c the first Fourier coefficient of G. Thus we
have that (F |φN,k,χ)|LD,N,k,χ = cF . This shows that LD,N,k,χ maps Snew

k+1/2(N, χ) to
Snew(N, 2k, id.). This completes the proof.

Corollary 6.4 Let N1 and N2 be two square free positive integers, f1 and f2 two
new forms in Snew

k+1/2(N1, ω1) and Snew
k+1/2(N2, ω2) respectively such that f1 and f2 have

the same eigenvalues with respect to infinitely many operators T(p) for (p, N1N2) = 1.
Then N1 = N2 and f1 = cf2 with some constant c.

Proof This is a direct conclusion of Theorem 6.11 and Theorem 6.8.
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6.3 Dimension Formulae for the Spaces of New Forms

In this section we shall give some dimension formulae of the spaces of new forms.
Recall first the following result:

Theorem 6.12 Let k be any even positive integer and N a positive integer. Then
we have

d0(N, k) =
k − 1
12

Ns0(N) − 1
2
ν∞(N) + c2(k)ν2(N) + c3(N)ν3(N) + δ1,k/2,

where d0(N, k) is the dimension of the space of cusp forms with weight k on the group
Γ0(N), δx,y is zero or 1 according to x = y or x �= y respectively, and the functions
s0, ν∞, ν2, ν3, c2 and c3 are defined as follows:

s0 : the multiplicative function defined by s0(pt) = 1 +
1
p

for all t � 1;

ν∞ : the multiplicative function defined by

ν∞(pt) =
{

2p(t−1)/2, if t is odd,

pt/2 + pt/2−1, if t is even.

ν2 : the multiplicative function defined by

ν2(pt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if p = 2, t = 1,

0, if p = 2, t � 2,

2, if p ≡ 1(4), t � 1,

0, if p ≡ 3(4), t � 1

ν3 : the multiplicative function defined by

ν3(pt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if p = 3, t = 1,

0, if p = 3, t � 2,

2, if p ≡ 1(3), t � 1,

0, if p ≡ 2(3), t � 1.

c2 : the function defined by c2(k) =
1
4

+
⌊

k

4

⌋
;

c3 : the function defined by c3(k) =
1
3

+
⌊

k

3

⌋
.

Proof This is a direct conclusion of the dimension formula of the space of cusp
forms with integral weight in Section 4.1.

We now denote by dnew
0 (N, k) the dimension of the space of new forms with weight

k on the group Γ0(N).
Then we have the following
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Theorem 6.13 Let k be any even positive integer and N a positive integer. Then

dnew
0 (N, k) =

k − 1
12

Nsnew
0 (N) − 1

2
νnew
∞ (N) + c2(k)νnew

2 (N)

+ c3(k)νnew
3 (N) + δ1,k/2μ(N),

where the function c2, c3, δ1,k/2 are as in Theorem 6.12, μ is the Moebius function and
snew
0 , νnew∞ , νnew

2 , νnew
3 are defined as follows:

snew
0 : the multiplicative function defined by

snew
0 (pt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1
p
, if t = 1,

1 − 1
p
− 1

p2
, if t = 2,(

1 − 1
p

)(
1 − 1

p2

)
, if t � 3.

νnew
∞ : the multiplicative function defined by

νnew
∞ =

⎧⎪⎨⎪⎩
0, if t is odd,

p − 2, if t = 2,

pt/2−2(p − 1)2, if t � 4 even.

νnew
2 : the multiplicative function defined by

νnew
2 (pt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if p = 2, t = 1 or 2,

1, if p = 2, t = 3,

0, if p = 2, t � 4,

0, if p ≡ 1(4), t = 1 or t � 3,

−1, if p ≡ 1(4), t = 2,

−2, if p ≡ 3(4), t = 1,

1, if p ≡ 3(4), t = 2,

0, if p ≡ 3(4), t � 3.

νnew
3 : the multiplicative function defined by

νnew
3 (pt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if p = 3, t = 1 or 2,

1, if p = 3, t = 3,

0, if p = 3, t � 4,

0, if p ≡ 1(3), t = 1 or t � 3,

−1, if p ≡ 1(3), t = 2,

−2, if p ≡ 2(3), t = 1,

1, if p ≡ 2(3), t = 2,

0, if p ≡ 2(3), t � 3.
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Proof We recall first the following facts about arithmetic functions: the set of
arithmetic functions f : N → C forms a ring under the usual addition of functions
and the Dirichlet convolution as the multiplication operation:

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d) (6.48)

for any two arithmetic functions f and g. And the function δ(n) := δ1,n is the
multiplicative identity of the ring. And the set of all multiplicative functions f with
f(1) �= 0 forms a multiplicative subgroup under the Dirichlet convolution. In fact, if
f(1) �= 0, then the function g defined as follows:

g(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

f(1)
, if n = 1,

− 1
f(1)

∑
d|n,d �=n

f(n/d)g(d), if n > 1
(6.49)

is the inverse of f . By Moebius inversion formula we see that the Moebius function
μ is the inverse of the function 1(n) which takes the value 1 at all positive integers:

(μ ∗ 1)(n) =
∑
d|N

μ(d) = δ(n).

And in general we use the following Moebius inversion formula: for any two arithmetic
functions f and g, we have

f(n) =
∑
d|n

g(d), ∀ n ∈ N

if and only if
g(n) =

∑
d|n

μ(n/d)f(d), ∀ n ∈ N.

In fact, we have
f(n) =

∑
d|n

g(d) = (1 ∗ g)(n)

if and only if
g(n) = ((μ ∗ 1) ∗ g)(n)

= (μ ∗ (1 ∗ g))(n)

= (μ ∗ f)(n)

=
∑
d|n

μ(n/d)f(d).

From the results in Section 6.1 we have

S(N, k) =
⊕
l|N

⊕
m|N/l

Snew(l, k)|V (m),
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where V (m) is the translation operator defined by f |V (m) = f(mz) which is an
injection from S(l, k) to S(N, k). Therefore we have

d0(N, k) =
∑
l|N

∑
m|N/l

dnew
0 (l, k) =

∑
l|N

dnew
0 (l, k)τ(N/l), (6.50)

where τ(n) =
∑
d|n

1 is the number of positive divisors of n. In terms of Dirichlet

convolution, we see that from (6.50)

d0 = dnew
0 ∗ τ

holds for any fixed k. Let λ be the inverse of τ . Since τ = 1 ∗ 1, we see that

λ = τ−1 = (1 ∗ 1)−1 = 1−1 ∗ 1−1 = μ ∗ μ.

Hence, from (6.48), λ is the multiplicative function defined by

λ(pt) =

⎧⎪⎨⎪⎩
−2, if t = 1,

1, if t = 2,

0, if t � 3

Therefore we see that dnew
0 = d0 ∗ λ, and so that

dnew
0 (N, k) =

k − 1
12

((i0s0) ∗ λ)(N) − 1
2
(ν∞ ∗ λ)(N)

+ c2(k)(ν2 ∗ λ)(N) + c3(k)(ν3 ∗ λ)(N) + δ1,k/2(1 ∗ λ)(N)

from Theorem 6.12 and the fact that the set of arithmetic functions forms a ring
under the usual addition and the Dirichlet convolution, where i0(n) = n is the identity
function on N. But we see that 1 ∗λ = 1∗ (μ∗μ) = (1∗μ)∗μ = δ ∗μ = μ, and ν∞ ∗λ,
ν2 ∗ λ, ν3 ∗ λ are multiplicative functions which equal νnew

∞ , νnew
2 , νnew

3 respectively
by (6.48) and the definitions of νnew

∞ , νnew
2 , νnew

3 . Finally we see that

i0(pt)s0(pt) ∗ λ(pt) =
t∑

m=0

pms0(pm)λ(pt−m) = ptsnew
0 (pt),

i.e. the multiplicative function ((i0s0) ∗ λ)(N) = Nsnew
0 (N). This completes the

proof.

By Theorem 6.11, there exists a linear combination of the Shimura lifting LD,N,k,χ

which maps Snew
k+1/2(N, χ) isomorphically onto Snew(N, 2k), so that

dim(Snew
k+1/2(N, χ)) = dim (Snew(N, 2k)) .

Hence by Theorem 6.13 we have the following:
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Corollary 6.5 Let k be a positive integer, N a square free positive integer and χ a
quadratic character modulo N . Then

dnew
0 (N, k + 1/2) =

2k − 1
12

Nsnew
0 (N) − 1

2
νnew
∞ (N)

+ c2(2k)νnew
2 (N) + c3(2k)νnew

3 (N) + δ1,kμ(N),

where dnew
0 (N, k + 1/2) := dim(Snew

k+1/2(N, χ)).
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