
Chapter 10

Integers Represented by Positive Definite

Quadratic Forms

10.1 Theta Function of a Positive Definite Quadratic Form

and Its Values at Cusp Points

In the first chapter we introduced the theta function of a positive definite quadratic
form and discussed its transformation formula under the action of the modular group.
We want now to show that the theta function is a modular form.

Let f(x1, · · · , xk) be a positive definite quadratic form with integral coefficients.
Define the matrix A of f(x1, · · · , xk) as follows:

A =
(

∂2f

∂xi∂xj

)
.

It is clear that A is a symmetric matrix with even diagonal entries. Put

θf (z) =
∑

m∈Zk

e(zmAmT/2), z ∈ H.

It is clear that θf (z) is a holomorphic function on H. Let N be the level of f(x1, · · · , xk),
i.e., the minimal positive integer N such that NA−1 is an integral matrix with even
diagonal entries. Set

χ =

⎧⎪⎪⎨⎪⎪⎩
(

2 detA

·

)
, if k is odd,(

(−1)k/2 detA

·

)
, if k is even.

Theorem 10.1 θf (z) is in G(N, k/2, χ).

Proof By the results in Chapter 1 we need only to consider the behavior of θf (z)
at the cusp points of Γ 0(N). It is clear that

lim
z→i∞

θf (z) = 1,

i.e., θf (z) is holomorphic at i∞. Let a/c be any cusp point with c > 0. Take
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ρ =
(

a b

c d

)
∈ SL2(Z), then ρ(∞) = a/c. We have that

θf (z)
(

az + b

cz + d

)
=
∑

x mod c

e(axAxT/2c)
∑

m∈Zk

e(−(m + x/c)A(m + x/c)T/2(z + d/c)),

(10.1)
where x ∈ Zk. By the proof of Proposition 1.2 we see that∑
m∈Zk

e(−(x+m)A(x+m)T/2z) = (−iz)k/2(detA)−1/2
∑

m∈Zk

e(zmA−1mT/2+x ·mT),

where x ∈ Rk. Replacing x by x/c in the above equality we get

θf

(
az + b

cz + d

)
= (−i(z + d/c))k/2(detA)−1/2

∑
m∈Zk

e(zmAmT/2)

×
∑

x mod c

e(axAxT/2c + x · mT/c + dmA−1mt/2c),

hence

lim
z→i∞

(z + d/c)−k/2θf

(
az + b

cz + d

)
= (−i)k/2(det A)−1/2

∑
x mod c

e(axAxT/2c), (10.2)

i.e., θf (z) is holomorphic at the cusp point a/c. This completes the proof.

Let f1 = f1(x1, · · · , xk) and f2 = f2(x1, · · · , xk) be two positive definite quadratic
forms with integral coefficients, A1 and A2 the corresponding matrices of f1 and f2

respectively. f1 and f2 are called equivalent if there exists an integral matrix S with
determinant ±1 such that SA1S

T = A2. f1 and f2 are called equivalent over the
real field R if there exists a real invertible matrix Sr such that SrA1S

T
r = A2. Let p

be a prime and take A1, A2 as matrices over the finite field Fp := Z/pZ. f1 and f2

are called equivalent over Fp if there exists an invertible matrix Sp on Fp such that
SpA1S

T
p = A2. f1 and f2 are called in the same genus if f1 and f2 are equivalent over

R and over Fp for any prime p. It is clear that f1 and f2 are in the same genus if
they are equivalent. It can be proved that there are only finite equivalence classes in
a genus.

Let f = f(x1, x2, · · · , xk) be a positive definite quadratic form, and f1, f2, · · · ,
fh be a full system of representations of all different classes in the genus of f . Let
n be an arbitrary non-negative integer, and r(fi, n) denote the number of integral
solutions of the equation fi(x) = n. It is difficult to find an analytical expression for
the number r(fi, n) in general cases.
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Denote by Mk(Z) the set of all k × k integral matrices. Put O(f) = #{S ∈
Mk(Z)|SAST = A}, define the theta function θ of the genus of f :

θ(gen.f, z) =
( h∑

i=1

1
O(fi)

)−1 h∑
i=1

θfi(z)
O(fi)

,

Then

θ(gen.f, z) =
∞∑

n=0

r(gen.f, n)exp{2πinz}

=
h∑

i=1

(
1

O(fi)

)−1 h∑
i=1

∞∑
n=0

r(fi, n)
O(fi)

exp{2πinz},

it follows that

r(gen.f, n) =
h∑

i=1

(
1

O(fi)

)−1 h∑
i=1

r(fi, n)
O(fi)

,

i.e., the number r(gen.f, n) is a mean of the numbers r(fi, n), (n � 0) when k � 5.

This result is called Siegel theorem C.L.Siegel, 1966, which is equivalent to the fact
that the function is an Eisenstein series of the weight k/2. A.N. Andrianov, 1980
obtained the same conclusion of Siegel theorem in the case of k = 4. Finally R.
Schulze, 1984 reduced the same result of Siegel theorem in the case of k = 3. He proved
that the function θ(gen.f, z) is an Eisenstein series of the weight 3/2 when k = 3.
Under certain conditions, if the function θ(gen.f, z) belongs to the space E(4D, 3/2, χl)
or E(8D, 3/2, χl) then it can be represented as a linear combination of the basis
functions for these spaces given in the Theorem 7.7 and Theorem 7.8 respectively.
The coefficients of the linear combination can be determined using the values of the
function θ(gen.f, z), thus an analytic expression for the number r(gen.f, n) can be
reduced in this way.

The Scholze-Pillot’s Proof for Siegel theorem will be described below.
Let f1 and f2 be in the same genus. Then the corresponding matrices of f1 and

f2 have the same determinant. If a/c is a cusp point with c > 0, then there exists an
integral matrix S such that (detS, 2c) = 1 and SA1S

T ≡ A2 (mod 2c) by the above
definitions and the Chinese remainder theorem. This shows that θf1(z) and θf2(z)
have the same value at the cusp point a/c by (10.2). Hence θf1(z) − θf2(z) is a cusp
from.

Theorem 10.2 Let p be a prime, p � N . Set

λp =

⎧⎨⎩
pk−2 + 1, if 2 � k,

pk−2 + 2pk/2−1

(
(−1)k/2 det A

p

)
+ 1, if 2|k.
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Then
θ(gen.f, z)|T(p2) = λpθ(gen.f, z),

where T(p2) is the Hecke operator on the space G(N, k/2, χ).

Proof Please see R. Schulze, 1984 and P. Ponomarev, 1981.

Theorem 10.3 The function θ(gen.f, z) is in the space E(N, k/2, χ).

Proof We assume first that k � 4 is an even. Since

G(N, k/2, χ) = E(N, k/2, χ) ⊕ S(N, k/2, χ),

there exist two functions g1(z) and g2(z) such that

θ(gen.f, z) = g1(z) + g2(z), g1(z) ∈ S(N, k/2, χ), g2(z) ∈ E(N, k/2, χ).

Let g1(z) =
∞∑

n=n0

c(n)e(nz), c(n0) �= 0. For any p � N , by Theorem 10.2, we see that

g1(z)|T(p2) = λpg1(z), and hence

λpc(n0) = c(n0p
2) + χ(p)

(
−n0

p

)
a(n0).

By Lemma 7.24 we have that c(n) = O(nk/4), so λp = O(pk/2). If k � 6, we see that
λp ∼ pk−2 (p → ∞) which contradicts λp = O(pk/2). Hence we have g1(z) = 0, which
shows the theorem. If k = 4, we can prove the theorem similarly in terms of a more
precise estimation c(n) = O(nk/4−1/5) proved by R.A. Rankin, 1939. This shows the
theorem for k � 4 even.

Now assume that k is an odd. For k � 5 we can prove the theorem by a similar
method as for the case k � 6 an even. Now let k = 3 and V := S(N, 3/2, χ)

⋂
T̃ be

as in Theorem 8.2. Denote by V ⊥ the orthogonal complement of V in S(N, 3/2, χ).
Then we have

θ(gen.f, z) = g1 + g2 + g3, g1 ∈ V, g2 ∈ V ⊥, g3 ∈ E(N, 3/2, χ).

By Theorem 10.2 we see that gi|T(p2) = (p+1)gi for any p � N and i = 1, 2, 3. But by
the definition of T̃ we know that g1 is a finite linear combination of functions h(tz; ψ)

with χ = ψ

(
−t

·

)
. Hence we have

h(tz; ψ)|T(p2) = χ(p)
(
−t

p

)
(p + 1)h(tz; ψ).

There must be a prime p such that

h(tz; ψ)|T(p2) = −(p + 1)h(tz; ψ)
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holds for all finite functions h(tz; ψ), so that g1(z)|T(p2) = −(p+1)g1, from which we
get g1 = 0 since we have also g1(z)|T(p2) = (p+1)g1. g2(z) is mapped in S(N/2, 2, id.)
under the Shimura lifting S and the image S(g2) of g2 is also an eigenfunction of T(p)
with eigenvalue p + 1. In terms of Rankin’s estimation c(n) = O(n4/5) we can show
that g2 = 0. Therefore θ(gen.f, z) ∈ E(N, 3/2, χ). This completes the proof.

Let f(x1, x2, · · · , xk) be a positive definite quadratic form with integral coeffi-
cients. Put

θf (z) =
∑

m∈Zk

e(zmAmT/2), z ∈ H,

O(f) = #{S ∈ Mk(Z)|SAST = A},

θ(gen.f, z) =
(∑

fi

1
O(fi)

)−1∑
fi

θfi(z)
O(fi)

,

where the fi run over a complete set of representatives of the equivalence classes in
the genus of f .

Suppose that N is the level of f , i.e.,

N = min{N |NA−1 is integral and the diagonal entries are even, N positive integer}.

Let now S(N) denote a complete set of representatives of equivalence classes of
cusp points for the group Γ0(N). In fact we can choose S(N) = {d/c | c|N, d ∈
(Z/(c, N/c)Z)∗ and (d, c) = 1}.

We want to compute the values of θf (z) at cusp points for Γ0(N). It is clear that

lim
z→i∞

θf (z) = 1.

Now suppose that a/c is a cusp point, where (a, c) = 1, c|N, a ∈ (Z/(c, N/c)Z)∗ .

Choose a matrix γ =
(

a b
c d

)
∈ SL2(Z), then γ(i∞) = a/c. So in terms of the

equality (10.2) we obtain

V (θf , a/c) = lim
z→i∞

(cz + d)−k/2θf

(
az + b

cz + d

)
= (−i)k/2(detA)−1/2c−k/2

∑
x mod c

e(axAxT/2c)

This shows that in order to get the values of θf (z) at cusp points we only need to
evaluate the Gauss sum ∑

x mod c

e(axAxT/2c)

where c, a are co-prime positive integers.
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Now we will calculate the Gauss sum

G(a, c) :=
∑

x mod c

e(axAxT/2c), (c, a) = 1.

Lemma 10.1 If (c, c′) = 1, then

G(a, cc′) = G(ac, c′)G(ac′, c).

Proof Let x = cy + c′z, then

G(a, cc′) =
∑

x mod cc′
e(axAxT/2cc′)

=
∑

y mod c′

∑
z mod c

e(a(cy + c′z)A(cy + c′z)T/2cc′)

=
∑

y mod c′
e(acyAyT/2c′)

∑
z mod c

e(ac′zAzT/2c)

= G(ac, c′)G(ac′, c).

This completes the proof.

By Lemma 10.1, we only need to evaluate the Gauss sum G(a, pm) where p � a a
prime and m is a positive integer.

We first assume that p is an odd prime. Then there exists an invertible matrix S

over the ring Zp of p-adic integers such that

SAST = diag{α1p
β1 , α2p

β2 , · · · , αkpβk},

where αi, detS ∈ Z∗p, 0 � β1 � β2 � · · · � βk are rational integers. Let lm =
#{βi|βi � m}.

Hence

G(a, pm) =
∑

x mod pm

e(axAxT/2pm)

=
∑

x mod pm

e

(
ax

(
k⊕

i=1

αip
βi

)
xT/2pm

)

=
∑

x=(x1,··· ,xk) mod pm

k∏
i=1

e(aαip
βix2

i /2pm)

= pmlm
∏

βi<m

⎛⎝ ∑
x mod pm

e(aα′ix
2/pm−βi)

⎞⎠ (where α′i ≡ 2−1αi mod pm−βi)

= pmlm
∏

βi<m

⎛⎝ ∑
z mod pβi

∑
y mod pm−βi

e(aα′i(y + pm−βiz)2/pm−βi)

⎞⎠
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= pmlm
∏

βi<m

⎛⎝ ∑
z mod pβi

∑
y mod pm−βi

e(aα′iy
2/pm−βi)

⎞⎠
= pmlm

∏
βi<m

pβiS(aα′i, p
m−βi)

= pmlm
∏

βi<m

pβi

(
aα′i

pm−βi

)
εpm−βi p

m−βi
2

= pmlm
∏

βi<m

(
aα′i

pm−βi

)
εpm−βi p

m+βi
2 ,

where S(α, pβ) =
∑

x mod pβ

e(αx2/pβ) is the classical Gauss sum, and εd = 1 or i

according to d ≡ 1 or 3 (mod 4) respectively.
Now consider the case p = 2. In this case, there exists an invertible matrix S over

the ring Z2 of 2-adic integers such that

SAST =
l⊕

i=1

αi2si

l1⊕
j=1

βj2tj

(
0 1
1 0

) l2⊕
s=1

γs2us

(
2 1
1 2

)
,

where αi, βj, γs ∈ Z∗2, si � 1, tj , us � 0 are rational integers.
Hence we have

G(a, 2m)=
∑

x mod 2m

e(axAxT/2k+1)

=
∑

x mod 2m

e

(
ax

( l⊕
i=1

αi2si

l1⊕
j=1

βj2tj

(
0 1
1 0

)
l2⊕

s=1

γs2us

(
2 1
1 2

))
xT/2k+1

)
,

which implies that we only need to evaluate the following kinds of Gauss sums:

G1,t(aαi, 2m) :=
∑

x mod 2m

e(aαix
2/2t),

G2,t(aβj , 2m) :=
∑

(x,y) mod 2m

e(aβjxy/2t),

G3,t(aγs, 2m) :=
∑

(x,y) mod 2m

e(aγs(x2 + xy + y2)/2t),

where t is a positive integer and t � m.

Now we compute the above Gauss sums:
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G1,t(aαi, 2m)=
∑

x mod 2m

e(aαix
2/2t)

=
∑

y mod 2t

∑
z mod 2m−t

e(aαi(y + 2tz)2/2t)

=
∑

z mod 2m−t

∑
y mod 2t

e(aαiy
2/2t) = 2k−tS(aαi, 2t)

=

⎧⎨⎩
0, if t = 1,

(1 + iaαi)2m− t
2 , if t is even,

2m− t−1
2 e

πiaαi
4 , if t > 1 and odd.

G2,t(aβj , 2m)=
∑

(x,y) mod 2m

e(aβjxy/2t) =
∑

x mod 2m

∑
y mod 2m

e(aβjxy/2t)

=
∑

x mod 2m

2m−t
∑

y mod 2t

e(aβjxy/2t) = 2m−t
∑

x mod 2m,
2t|x

2t = 22m−t,

G3,t(aγs, 2m)=
∑

(x,y) mod 2m

e(aγs(x2 + xy + y2)/2t)

=
∑

x mod 2m

∑
y mod 2m

e(aγs(x2 + xy + y2)/2t)

=
∑

x mod 2m

e(aγsx
2/2t)

∑
y mod 2m

e(aγs(xy + y2)/2t)

=
∑

x mod 2m

e(aγsx
2/2t)

∑
z mod 2m−t

∑
y mod 2t

e(aγs(x(y + 2tz) + (y + 2tz)2)/2t)

=
∑

x mod 2m

e(aγsx
2/2t)

∑
z mod 2m−t

∑
y mod 2t

e(aγs(xy + y2)/2t)

=2m−t
∑

x mod 2m

e(aγsx
2/2t)

∑
y mod 2t

e(aγs(xy + y2)/2t)

=22(m−t)
∑

x mod 2t

e(aγsx
2/2t)

∑
y mod 2t

e(aγs(xy + y2)/2t).

Now let w =
[
t + 1

2

]
, then∑

y mod 2t

e(aγs(xy + y2)/2t)

=
∑

u mod 2w

∑
v mod 2t−w

e(aγs(x(u + 2wv) + (u + 2wv)2)/2t)

=
∑

u mod 2w

e(aγs(xu + u2)/2t)
∑

v mod 2t−w

e(aγs(x + 2u)v/2t−w)
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=
∑

u mod 2w ,

2t−w |(x+2u)

2t−we(aγs(xu + u2)/2t).

Therefore, we obtain

G3,t(aγs, 2m)

= 22(m−t)
∑

x mod 2t

e(aγsx
2/2t)

∑
u mod 2w,

2t−w |(x+2u)

2t−we(aγs(xu + u2)/2t)

= 22m−t−w
∑

u mod 2w

e(aγsu
2/2t)

∑
x mod 2t,

x+2u≡0(2t−w)

e(aγs(xu + x2)/2t)

= 22m−t−w
∑

u mod 2w

e(aγsu
2/2t)

∑
y mod 2w

e(aγs((−2u + 2t−wy)u + (−2u + 2t−wy)2)/2t)

= 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w

e(−3aγsyu/2w)e(aγs22(t−w)y2/2t).

Now, if t = 2g is even, then w =
[
t + 1

2

]
= g, and t − w = g, 22(t−w)y2/2t = y2.

Therefore we get

G3,t(aγs, 2m) = 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w

e(−3aγsyu/2w)

= 22m−t−w
∑

u mod 2w,
2w|u

2we(3aγsu
2/2t)

= 22m−t.

If t = 2g+1 is odd, then w =
[
t + 1

2

]
= g+1, and t−w = g, 22(t−w)y2/2t = y2/2.

Therefore we get

G3,t(aγs, 2m)

= 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w

e(−3aγsyu/2w)e(aγsy
2/2)

= 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

(
−

∑
y mod 2w,
y is odd

e(−3aγsyu/2w)

+
∑

y mod 2w,
y is even

e(−3aγsyu/2w)
)
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= 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

(
−

∑
y mod 2w

e(−3aγsyu/2w)

+ 2
∑

y mod 2w,
y is even

e(−3aγsyu/2w)
)

= − 22m−t−w
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w

e(−3aγsyu/2w)

+ 22m−t−w+1
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w,
y is even

e(−3aγsyu/2w)

= − 22m−t−w
∑

u mod 2w,2w|u
2we(3aγsu

2/2t)

+ 22m−t−w+1
∑

u mod 2w

e(3aγsu
2/2t)

∑
y mod 2w−1

e(−3aγsyu/2w−1)

= − 22m−t + 22m−t−w+1
∑

u mod 2w

2w−1|u

2w−1e(3aγsu
2/2t)

= − 22m−t + 22m−t(1 + e(3aγs(2w−1)2/2t))

= − 22m−t + 22m−t(1 + e(3aγs/2))

= − 22m−t,

where e(3aγs/2) = −1 since 3aγs ≡ 1 (mod 2).
Therefore we have proved

G3,t(aγs, 2m) = (−1)t22m−t.

Now let lm = #{si|si � m + 1} + 2#{tj|tj � m} + 2#{us|us � m}. Finally we
have

G(a, 2m)

= 2mlm
∏

si<m+1

G1,m+1−si(aαi, 2m)
∏

tj<m

G2,m−tj (aβj , 2m)
∏

us<m

G3,m−us(aγs, 2m)

= 2mlm
∏

si<m+1

G1,m+1−si(aαi, 2m)
∏

tj<m

22m−(m−tj)
∏

us<m

(−1)m−us22m−(m−us)

= 2mlm
∏

si<m+1

G1,m+1−si(aαi, 2m)
∏

tj<m

2m+tj

∏
us<m

(−1)m−us2m+us .

So we can compute the values of θf (z) at each cusp point.
Example 10.1 Let f(x, y) = ax2 + bxy + cy2 be an integral primitive, positive def-
inite, binary quadratic form with fundamental discriminant D. We want to evaluate
θf (z) at cusp point 1/α where α|D. Since D is a fundamental discriminant, the odd
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part of D is square free. If p|D is an odd prime, then p � a or p � c since f is primitive.
Hence we have

(1) If p � a, then (
2a b

b 2c

)
∼
(

2a 0
0 (2a)−1 detA

)
over Zp.

(2) If p � c, then (
2a b

b 2c

)
∼
(

2c 0
0 (2c)−1 detA

)
over Zp.

Therefore

G(n, p) =

⎧⎪⎪⎨⎪⎪⎩
pS(an, p) =

(
an

p

)
εpp

3/2, if p � a,

pS(cn, p) =
(

cn
p

)
εpp

3/2, if p � c.

So for α = p1p2 · · · ps|D, pi odd, we have

G(1, α) =
s∏

i=1

G(α/pi, pi) =
s∏

i=1

(
δiα/pi

pi

)
εpip

3/2
i = α3/2

s∏
i=1

(
δiα/pi

pi

)
εpi ,

where δi = a or c according to pi � a or pi � c. Hence

V (θf , 1/α) = −i(detA)−1/2α−1G(1, α)

= −i
( α

detA

)1/2 s∏
i=1

(
δiα/pi

pi

)
εpi = −

( α

D

)1/2 s∏
i=1

(
δiα/pi

pi

)
εpi .

We now compute the Gauss sum for p = 2.
(3) If D = b2 − 4ac ≡ 1 (mod 4), and a ≡ c ≡ 1 (mod 2), then(

2a b

b 2c

)
∼
(

2 1
1 2

)
over Z2. Therefore

G(n, 2m) = (−1)m2m for any odd positive integer n.

(4) If D ≡ 1 (mod 4), ac ≡ 0 (mod 2), then(
2a b

b 2c

)
∼
(

0 1
1 0

)
over Z2. Therefore

G(n, 2m) = 2m, for any odd positive integer n.
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(5) If D ≡ 0 (mod 4), then 2|b. Denote b = 2b′. It is clear that 2 � a or 2 � c since
(a, b, c) = 1. We assume that 2 � a. Hence(

2a b

b 2c

)
= 2
(

a b′

b′ c

)
∼ 2
(

a 0
0 a−1 D

4

)
over Z2. Therefore we have

G(n, 2m) = G1,m(na, 2m)G1,m−t(nβ, 2m),

where t = ν2(c − a−1b
′2) = ν2(D/4), β = (c − a−1b

′2)2−t = a−1 D

22+t
, and we think

G1,m−t(nβ, 2m) = 2m

for any m � t. In particular, we know that

G(n, 2) = G(n, 2t+1) = 0.

Since D is a fundamental discriminant, t = ν2(D/4) = 0 or 1 according to D ≡ 12
or 8 (mod 16) respectively.

So for α = 2m|D, we have

V (θf , 1/2m) = −i(detA)−1/22−mG(1, 2m)

= −(D)−1/22−mG1,m(a, 2m)G1,m−t(β, 2m).

In particular
V (θf , 1/α) = 0

for any α = 2mα1|D where m = 1 or t + 1, 2 � α1. For α = 2mα1 = 2m

s∏
i=1

pi|D with

m �= 1, t + 1, we have

V (θf , 1/α) = −i(detA)−1/2α−1G(1, α)

= −(D)−1/2α−1G(2m, α1)G(α1, 2m)

= −(D)−1/2α−1α
3/2
1 G1,m(aα1, 2m)G1,m−t(α1β, 2m)

s∏
i=1

(
δiα/pi

pi

)
εpi

= −(α/D)1/22−3m/2G1,m(aα1, 2m)G1,m−t(α1β, 2m)
s∏

i=1

(
δiα/pi

pi

)
εpi .

�
Remark 10.1 If D is an odd fundamental discriminant, our result is just Lemma
IV(2.3) in B.H.Gross, D.B.Zagier 1986. If D is even, our result is just Proposition 2
in I. Kiming, 1995.
Example 10.2 Let f = f(x1, · · · , xk) be a positive definite quadratic form with
k odd. Suppose that the level of f is 4D with D square free odd integer. Let
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D = p1p2 · · · pt. Since D is square free, there exists an invertible matrix Si over Zpi

such that
SiAST

i = diag{αi,1, αi,2, · · · , αi,si , αi,si+1pi, · · · , αi,kpi}

with αi,j ∈ Z∗pi
. Hence

G(n, pi) = pk−si

i

si∏
g=1

(
nα′i,g

pi

)
εpip

1/2
i = p

k− si
2

i εsi
pi

(
nsiAi

pi

)
,

where Ai =
si∏

g=1

α′i,g and α′i,g ≡ 2−1αi,g (mod pi). Therefore for any α =

t∏
i=1

pδi

i |D, δi = 0 or 1, we can evaluate

G(1, α) =
t∏

i=1

G(α/pδi

i , pδi

i ) =
t∏

i=1

(
p

k− si
2

i εsi
pi

(
nsiAi

pi

))δi

.

Since 4D is the level of f and D square free, there exists an invertible matrix S

over Z2 such that

SAST =
l⊕

i=1

αi2ai

l1⊕
j=1

βj2tj

(
0 1
1 0

) l2⊕
s=1

γs2us

(
2 1
1 2

)
.

Since k is odd, αi appears at least one time and si = 1, tj, us � 2. Hence we have

G(n, 2) = 0,

G(n, 4) = 24a
l∏

i=1

G1,2(nαi, 4)
∏
tj<2

22+tj

∏
us<2

(−1)us22+us

= (−1)e22a+l+2b+2c+d+e
l∏

i=1

(1 + inαi),

where a = #{tj, us|tj = us = 2}, b = #{tj|tj < 2}, c = #{us|us < 2}, d =
∑
tj<2

tj ,

e =
∑
us<2

us. From the above calculation we obtain the value

V (θf , 1/α) = (−i)k/2(detA)−1/2α−k/2G(1, α)

for any α|4D. In particular we know that V (θf , 1/2β) = 0 for any β|D since G(n, 2) =
0 for any odd integer n. �
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10.2 The Minimal Integer Represented by a Positive Definite

Quadratic Form

We consider the following problem: for a given positive definite quadratic form f ,
find an upper bound on the size for the minimal positive integer represented by f .

We first consider the case that the level of f is equal to 1. Let

Ek(z) =
1
2

∑
l,m

′ 1
(lz + m)k

, k = 4, 6, 8, · · · , (10.3)

where (l, m) run over all pairs of integers except (0, 0). By Section 7.5 we know that

Ek(z) = ζ(k) +
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn, (10.4)

where
σg(n) =

∑
d|n

dg.

In view of

ζ(k) = − (2πi)kBk

2(k)!
, (10.5)

Ek(z) can be expressed by the formulae

Ek(z) = ζ(k)Gk(z), Gk(z) = 1 − 2k

Bk

∞∑
n=1

σk−1(n)qn, k = 4, 6, 8, · · · . (10.6)

In particular, we have the Bernoulli numbers:

B4 = − 1
30

, B6 =
1
42

, B8 = − 1
30

, B10 =
5
66

, B14 =
7
6
,

and hence ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G4(z) = 1 + 240
∑

σ3(n)qn,

G6(z) = 1 − 504
∑

σ5(n)qn,

G8(n) = 1 + 480
∑

σ7(n)qn,

G10(z) = 1 − 264
∑

σ9(n)qn,

G14(z) = 1 − 24
∑

σ13(n)qn

(10.7)

with integral coefficients and constant 1. By the dimension formula we see that the

dimension rh of the linear space of modular forms of weight h is equal to
[

h

12

]
+1 or[

h

12

]
according to h �≡ 2 (mod 12) or h ≡ 2 (mod 12) respectively. In particular we
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have
G2

4 = G8, G4G6 = G10, G2
4G6 = G14, GlG14−l = G14,

l = h − 12rh + 12 = 0, 4, 6, 8, 10, 14
(10.8)

and for the modular form

Δ = q

∞∏
n=1

(1 − qn)24

of weight 12,
1728Δ = G3

4 − G2
6.

Let
j(z) = G3

4/Δ(z) = q−1 + · · · (10.9)

be the absolute invariant, then

Δ2 dj

dz
=3G2

4

dG4

dz
Δ − G3

4

dΔ
dz

=
1

1728
G2

4G6

(
2G4

dG6

dz
− 3G6

dG4

dz

)
and the expression in the brackets is a modular form of weight 12 and indeed a cusp
form which can therefore differ from Δ at most by a constant factor. Comparing the
coefficients of q in the Fourier expansions, we get

dj

d log q
= −G14Δ−1. (10.10)

Let hereafter, h > 2, and hence rh > 0. The power-products Ga
4G

b
6, where the

exponents a, b run over all non-negative rational integer solutions of

4a + 6b = h

form a basis of the space G(1, h, id.) := G(h). It follows from this that, for every
function M ∈ G(h), MG−1

h−12r+12 always belongs to G(12r − 12). Since Δr−1 is a
modular form of weight 12r− 12, not vanishing anywhere in the interior of the upper
half-plane,

MG−1
h−12r+12Δ

1−r := w(f) := w, (10.11)

is an entire modular function and hence a polynomial in j with constant coefficients.
Let

Th = G12r−h+2Δ−r (10.12)

with Fourier expansion

Th = chrq
−r + · · · + ch1q

−1 + ch0 + · · · (10.13)
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and first coefficient chr = 1. Since

Δ−1 = q−1
∞∏

n=1

(1 + qn + q2n + · · · )24, (10.14)

all the Fourier coefficients of Th turn out to be rational integers.

Theorem 10.4 Let

M = a0 + a1q + a2q
2 + a3q

3 + · · · (10.15)

be the Fourier series of a modular form M of weight h. Then

ch0a0 + ch1a1 + · · · + chrar = 0.

Proof For l = 0, 1, 2, · · · , we have

jl dj

dz
=

1
l + 1

djl+1

dz
,

and hence, by (10.9), it has a Fourier series without constant term. Since the function

w defined by (10.11) is a polynomial in j, the product w
dj

dz
has also a Fourier series

without constant term. Because of (10.8) and (10.10), we have

− 1
2πi

w
dj

dz
= MG−1

h−12r+12Δ
1−rG14Δ−1 = MG12r−h+2Δ−r = MTh

from which the theorem follows on substituting the series (10.13) and (10.15) for Th

and M respectively.

Put ch0 := ch for brevity. We have the following:

Theorem 10.5 We have ch �= 0.

Proof First, consider the case h ≡ 2 (mod 4). So that h ≡ 2t (mod 12) with
t = 1, 3, 5. Then correspondingly 12r = h− 2, h + 6, h + 2, hence 12r− h + 2 = 0, 8,
4 and

G12r−h+2 = G0, G
2
4, G4.

Since by (10.7), G4 has all its Fourier coefficients positive and the same holds for Δ−r

as a consequence of (10.14). We conclude from (10.12) that all the coefficients in the
expansion (10.13) are positive. Therefore the integers ch0, ch1, · · · , chr are all positive
and in particular, ch = ch0 > 0, i.e., ch �= 0.

Let now h ≡ 0 (mod 4), so that h ≡ 4t (mod 12) with t = 0, 1, 2 whence
12r = h − 4t + 12, h − 12r + 12 = 4t and

gh−12r+12 = G4t = Gt
4.
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Furthermore we have now

Th = −G12r−h+2Δ1−rG−1
14

dj

d log q

= −G−t
4 Δ1−r dj

d log q
=

3
t − 3

Δ1−r−t/3 dj1−t/3

d log q

=
3

t − 3
d(G3−t

4 Δ−r)
d log q

+
3r + t − 3
(3 − t)r

G3−t
4

dΔ−r

d log q
;

hence ch0 is also the constant term in the Fourier expansion of the function

Vh =
3r + t − 3
(3 − t)r

G3−t
4

dΔ−r

d log q
.

Because of the assumption h > 2, we see that 3r + t − 3 > 0. The series for G3−t
4

begins with 1 and has again all its coefficients positive. Furthermore, by (10.14), the
coefficients of the negative powers q−1, · · · , q−r of q in the derivative of Δ−r with
respect to log q are all negative while the constant term is absent. Hence the constant
term in Vh is negative and ch = ch0 < 0, i.e., ch �= 0. This completes the proof.

A most important consequence of Theorem 10.4 and Theorem 10.5 is the fact that,
for every modular form M of weight h and level 1, the constant term a0 in its Fourier
expansion is determined by the r Fourier coefficients a1, · · · , ar, which comes out of
the formula

a0 = c−1
h (ch1a1 + · · · + chrar). (10.16)

If, in particular, a0 �= 0, then there must be some i (1 � i � r) such that ai �= 0. In
particular, if taking the theta function of a positive definite even unimodular quadratic
form Q in 2h variables as our M , we have that a0 = 1 �= 0, and hence conclude that
Q represents a positive integer n � rh(Please compare [?]).

We now want to extend Siegel’s results above to the case with level 2.
Let G(2, h) be the vector space of holomorphic modular forms of weight h for

Γ0(2), r = r(2, h) := dim(G(2, h)). Then by the dimension formula we see that

r(2, h) = 1 +
[
h

4

]
for any even nonnegative number h.

We introduce some analogues of the above function Th. In order to do this, we
need some more Eisenstein series.

Put

σodd
k (n) :=

∑
0<d|n

2�d

dk, σalt
k (n) :=

∑
0<d|n

(−1)ddk, σ∗N,k(n) :=
∑

0<d|n
N �(n/d)

dk.

Since r(2, 2) =
[
2
4

]
+ 1 = 1, let E∞,2 be the unique normalized modular form (in
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fact, the Eisenstein series) in G(2, 2) defined by

E∞,2(z) := 1 + 24
∞∑

n=1

σodd
1 (n)qn.

Since r(2, 4) =
[
4
4

]
+1 = 2, the vector space G(2, 4) is spanned by two Eisenstein

series E0,4(z) and E∞,4(z) with respect to the cusp points 0 and ∞ respectively. They
have Fourier expansions:

E0,4 = 1 + 16
∞∑

n=1

σalt
3 (n)qn, E∞,4 =

∞∑
n=1

σ∗2,3(n)qn.

In fact, in terms of the results in Section 7.5, we can easily see that all the functions
E∞,2(z) and E0,4(z), E∞,4(z) are in E(2, 2, id.) and E(2, 4, id.) respectively.

We also denote by j2 = j2(z) the following modular function for Γ0(2):

j2(z) := E2
∞,2E

−1
∞,4,

which is a level two analogue of j(z) for Γ0(1). Finally, we introduce analogues of the
Th:

T2,h := E∞,2E0,4E
−r
∞,4 if r = r(2, h) ≡ 0(mod 4),

T2,h := E2
∞,2E0,4E

−1−r
∞,4 if r = r(2, h) ≡ 2(mod 4).

We need the following:

Lemma 10.2 The function j2 is a modular function for Γ0(2). It is holomorphic on
H with a simple pole at infinity and defines a bijection of H/Γ0(2) onto C by passage
to the quotient.

Proof The first two conclusions are clear. Let S : z → −1/z and T : z → z + 1 be
two linear fractional transformations. Let

F = {z ∈ H | |z| > 1, |Re(z)| < 1/2}

be the fundamental domain of Γ0(1). Denote by V the closure of F
⋃

S(F )
⋃

ST (F ),
and put F2 = V

⋃
{i∞}. Then F2 is a fundamental domain for Γ0(2) which has two

Γ0(2)-inequivalent cusp points: zero and i∞. The only non-cusp in F2 fixed by a map

in Γ0(2) is γ = −1
2

+
1
2
i. The number of zeros in a fundamental domain of a non

zero function in G(2, h) is h/4. Now let fλ = E2
∞,2 − λE∞,4 for any λ ∈ C. Then

fλ ∈ G(2, 4). The sum of its zero orders in a fundamental domain is 1. If fλ has
multiple zeros in a fundamental domain, there must be exactly two of them in the
equivalence class of γ, or exactly three in the one of ρ = e2πi/3. This completes the
proof.
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Lemma 10.3 Let f be a meromorphic function on H∗. Then the following state-
ments are equivalent:

(1) f is a modular function for Γ0(2);
(2) f is a quotient of two modular forms for Γ0(2) of equal weight;
(3) f is a rational function of j2.

Proof It is clear that (3) ⇒ (2) ⇒ (1). for z ∈ H∗, denote by [z] the equivalence
class of z in H/Γ0(2). By an abuse of the notation we may take f as in (1) as a function
from H∗/Γ0(2) to Ĉ. The function j2, also regarded in this fashion, is invertible. Let
f̃ : Ĉ → Ĉ satisfy f̃ = f ◦ j−1

2 . Then f̃ is meromorphic on Ĉ, so that it is rational. If
z ∈ Ĉ, let u = j−1

2 (z) ∈ H∗/Γ0(2). Then f(u) = f(j−1
2 (z)) = f̃(z) = f̃(j2(z)). Thus

f is a rational function in j2.

Lemma 10.4 For z ∈ H, we have that

d
dz

j2(z) = −2πiE∞,2(z)E0,4(z)E−1
∞,4(z).

Proof It is clear from the definition of a modular function that the derivative of a
modular function has weight two. Therefore both sides of the equality in the lemma
are meromorphic modular forms of weight 2 for Γ0(2). The only poles of either
functions lie at infinity. On both sides, the principal parts of the Fourier expansions
at infinity consist only of the term −2πiq−1. Hence the modular form

α :=
d
dz

j2(z) + 2πiE∞,2(z)E0,4(z)E−1
∞,4(z)

is holomorphic with weight two. For a non zero modular form in G(2, h), the number
of zeros in a fundamental domain is h/4, we can easily check that the exponent of
the first nonzero Fourier coefficient in the expansion of α exceeds h/4 = 1/2. This
exponent counts the number of zeros at i∞. Hence α = 0 and the lemma holds.

We now introduce an analogue of the map w in (10.11).
For h ≡ 0 (mod 4) and f ∈ G(2, h), let

W2(f) = fE
−h/4
∞,4 .

For h ≡ 2 (mod 4) and f ∈ G(2, h), let

W2(f) = fE∞,2E
−(h+2)/4
∞,4 .

Lemma 10.5 Let h be an even positive integer. Then
(1) the restriction of W2 to G(2, h) is an isomorphism from the vector space G(2, h)

to the vector space of polynomials in j2 of degree less than r = r(2, h) or of degree
between 1 and r inclusive according to r ≡ 0 (mod 4) or h ≡ 2 (mod 4) respectively.

(2) for any f ∈ G(2, h), the constant term in the Fourier expansion at infinity of
fT2,h is zero.
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Proof (1) Suppose h ≡ 0 (mod 4) and f ∈ G(2, h), then

W2(f) = fE
−h/4
∞,4 = fE1−r

∞,4.

For d = 0, 1, 2, · · · , r − 1, the products jd
2Er−1

∞,4 belong to G(2, h). We have
W2(jd

2Er−1
∞,4) = jd

2 . Let V be the subspace of G(2, h) generated by the modular
forms jd

2Er−1
∞,4 for d = 0, 1, 2, · · · , r−1. And denote by V1 the space of polynomials in

j2 of degree at most r − 1. W2 carries V isomorphically onto V1. Hence dim(V ) = r

which implies that V = G(2, h). Now let h ≡ 2 (mod 4). Then

W2(f) = fE∞,2E
−r
∞,4.

For d = 0, 1, 2, · · · , r − 1, the products jd
2E∞,2E

r−1
∞,4 belong to G(2, h) and

W2(jd
2E∞,2E

r−1
∞,4) = jd+1

2 .

W2 carries E∞,2V isomorphically onto j2V1. Therefore dim(E∞,2V ) = r. Hence
E∞,2V = G(2, h).

(2) Suppose h ≡ 0 (mod 4). Then

W2(f)
dj2
dz

= −fE1−r
∞,42πiE∞,2E0,4E

−1
∞,4 = −2πifT2,h.

We can obtain the same result for h ≡ 2 (mod 4) by a similar computation. Thus
fT2,h is the derivative of a polynomial in j2, so it can be expressed in a neighborhood
of infinity as the derivative with respect to z of a power series in the variable q = e2πiz.
This derivative is a power series in q with vanishing constant term. This completes
the proof.

Lemma 10.6 (1)

E∞,4(z) = q
∏

0<n∈2Z

(1 − qn)8
∏

0<n∈Z\2Z

(1 − qn)−8;

(2) For a given set A and a given arithmetical function f , the number pA,f(n)
defined by the equation

∏
n∈A

(1 − xn)−f(n)/n = 1 +
∞∑

n=1

pA,f (n)xn

satisfies the recursion formula

npA,f (n) =
n∑

k=1

fA(k)pA,f (n − k),

where pA,f (0) = 1 and fA(k) =
∑

d|k,d∈A

f(d).
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Proof (1) This is equivalent to show that

E∞,4(z) = η(2z)16η(z)−8.

Denote by f(z) the right hand side of the above. The function f is holomorphic on
H because η is non-vanishing on H. We see that f has the product expansion

f(z) = q
∏

0<n∈2Z

(1 − qn)8
∏

0<n∈Z\2Z

(1 − qn)−8

from the product expansion of η. It follows that f has a simple zero at infinity. The
number of zeros in a Γ0(2) fundamental domain for a modular form in G(2, 4) is one.
But from the transformation formula of the η function we know easily that f is in
G(2, 4). This shows that f and E∞,4 are monic modular forms with the same weight,
level and divisor (both equal to 1 · i∞), hence identical.

(2) By induction.

Theorem 10.6 For any even positive integer h, the constant term in the Fourier
expansion at infinity of T2,h is non zero.

Proof Let h ≡ 0 (mod 4). Put u = 2πiz = log q. Write D for the operator
d
du

.

It is clear that D(qn) = nqn. Put m2 = j2 − 64. It is easy to see that E2
∞,2 =

E0,4 + 64E∞,4. So that m2 = E0,4E
−1
∞,4. Thus

dm2

dz
=

dj2
dz

= −2πiE∞,2E0,4E
−1
∞,4

and D(m2) = −E∞,2E0,4E
−1
∞,4. It follows that

T2,h = −E1−r
∞,4D(m2).

Therefore

E1−r
∞,4D(m2)=D(E1−r

∞,4m2) − m2D(E1−r
∞,4)

=D(E1−r
∞,4m2) − m2(1 − r)E−r

∞,4D(E∞,4)

=D(E1−r
∞,4m2) + (r − 1)m2E

−r
∞,4

(
− 1

r
E1+r
∞,4D(E−r

∞,4)
)

=D(E1−r
∞,4m2) +

1 − r

r
m2E∞,4D(E−r

∞,4)

=D(E1−r
∞,4m2) +

1 − r

r
E0,4D(E−r

∞,4).

The term D(E1−r
∞,4m2) makes no contribution to the constant term. Hence the constant

term of T2,h is equal to that of
r − 1

r
E0,4D(E−r

∞,4). We now compute the principal
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part of D(E−r
∞,4).

By Lemma 10.6, for fixed s, if we write

E−s
∞,4 = q−s

∞∑
n=0

R(n)qn,

then R(0) = 1 and

R(n) =
8s

n

n∑
a=1

σalt
1 (a)R(n − a), ∀n > 0. (10.17)

Because σalt
1 (a) alternates sign, the alternation of the sign of R(n) follows by an in-

duction from (10.16). So we can write R(n) = Un(−1)n with some Un > 0. Therefore
we have

E−r
∞,4 = U0(−1)0q−r + U1(−1)1q−r+1 + · · · + Ur−1(−1)r−1q−1 + 0 + · · · ,

hence

D(E−r
∞,4)=−rU0(−1)0q−r + (1 − r)U1(−1)1q1−r

+ · · · + (−1)Ur−1(−1)r−1q−1 + 0 + · · ·
=Vr(−1)1q−r + Vr−1(−1)2q1−r + · · · + V1(−1)rq−1 + 0 + · · · ,

where Vi = iUr−i > 0 for 1 � i � r. On the other hand, the Fourier coefficient of
qn(n � 0) in the expansion of E0,4 is Wn(−1)n for positive Wn, by the definition of
E0,4. Therefore the constant term of E0,4D(E−r

∞,4) is equal to

r∑
n=1

Vn(−1)r+1−nWn(−1)n = (−1)r+1
r∑

n=1

VnWn,

so that the constant term of T2,h is equal to

r − 1
r

(−1)r+1
r∑

n=1

VnWn �= 0

for h � 4, h ≡ 0(4) (since r > 1 in this case).
Now we assume that h ≡ 2 (mod 4). We have proved the following equality above

d
dz

m2(z) =
d
dz

j2(z) = −2πiE∞,2(z)E0,4(z)E−1
∞,4(z).

So D(m2(z)) = −E∞,2(z)E0,4(z)E−1
∞,4(z). This implies that

T2,h = E2
∞,2E0,4E

−1−r
∞,4 = −E∞,2E

−r
∞,4D(m2).
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Therefore

E∞,2E
−r
∞,4D(m2)

=D(E∞,2E
−r
∞,4m2) − E∞,2m2D(E−r

∞,4) − E−r
∞,4m2D(E∞,2)

=D(E∞,2E
−r
∞,4m2) − E∞,2m2(−r)E−r−1

∞,4 D(E∞,4) − E0,4E
−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) − E∞,2m2(−r)E−r−1

∞,4

(
1

−r − 1

)
Er+2
∞,4D(E−r−1

∞,4 )

−E0,4E
−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) −

r

r + 1
E∞,2m2E

−r−1
∞,4 Er+2

∞,4D(E−r−1
∞,4 ) − E0,4E

−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) −

r

r + 1
E0,4E∞,2D(E−r−1

∞,4 ) − E0,4E
−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) −

r

r + 1
E0,4

(
D(E∞,2E

−r−1
∞,4 ) − E−r−1

∞,4 D(E∞,2)
)

−E0,4E
−r−1
∞,4 D(E∞,2)

=D(E∞,2E
−r
∞,4m2) −

r

r + 1
E0,4D(E∞,2E

−r−1
∞,4 ) − 1

r + 1
E0,4E

−r−1
∞,4 D(E∞,2).

The term D(E∞,2E
−r
∞,4m2) makes no contribution to the constant term of T2,h because

for any formal series
∞∑

n=0

bnqn we have that D

( ∞∑
n=0

bnqn

)
=

∞∑
n=0

nbnqn which has no

constant term. Hence we only need to compute the constant terms of
r

r + 1
E0,4

D(E∞,2E
−r−1
∞,4 ) and

1
r + 1

E0,4E
−r−1
∞,4 D(E∞,2).

For any positive integer s, we write

E−s
∞,4 := q−s

∞∑
n=0

Rs(n)qn.

Then by Lemma 10.6 and by an easy induction we can prove that Rs(n) = (−1)nUs(n)
with Us(n) > 0.

But we know

E∞,2(z) := 1 + 24
∞∑

n=1

σodd
1 (n)qn.

Hence we have

E∞,2E
−r−1
∞,4 := q−r−1

∞∑
i=0

aiq
i

=

(
1 + 24

∞∑
n=1

σodd
1 (n)qn

)( ∞∑
n=0

(−1)nUr+1(n)qn

)
,
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where

ai = 24
i∑

j=0

σodd
1 (j)Ur+1(i − j)(−1)i−j , σodd

1 (0) :=
1
24

. (10.18)

Hence

D(E∞,2E
−r−1
∞,4 ) = q−r−1

∞∑
i=0

(i − r − 1)aiq
i.

Noting that the nth Fourier coefficient of

E0,4 = 1 + 16
∞∑

n=1

σalt
3 (n)qn

has the form (−1)nWn with Wn = (−1)n16σalt
3 (n) a positive integer, we see that

E0,4D(E∞,2E
−r−1
∞,4 ) :=

∞∑
n=−r−1

a′nqn

=

( ∞∑
n=0

(−1)nWnqn

)( ∞∑
i=0

(i − r − 1)aiq
i−r−1

)
.

In particular, we have

a′0 =
r∑

i=0

(i − r − 1)ai(−1)r+1−iWr+1−i. (10.19)

On the other hand, we have

E0,4E
−r−1
∞,4 :=

∞∑
i=0

biq
i−r−1 =

( ∞∑
n=0

(−1)nWnqn

)( ∞∑
n=0

(−1)nUr+1(n)qn

)
,

where

bi :=
i∑

j=0

(−1)iUr+1(i − j)Wj (10.20)

and

D(E∞,2) = 24
∞∑

n=1

nσodd
1 (n)qn

Hence

E0,4E
−r−1
∞,4 D(E∞,2) :=

∞∑
n=−r

b′nqn =

( ∞∑
i=0

biq
i−r−1

)(
24

∞∑
n=1

nσodd
1 (n)qn

)
.

In particular, we have

b′0 = 24
r∑

i=0

bi(r + 1 − i)σodd
1 (r + 1 − i) (10.21)
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From (10.17)–(10.20) we see

a′0 =
r∑

i=0

i∑
j=0

24σodd
1 (j)Ur+1(i − j)(−1)r+1−j(i − r − 1)Wr+1−i

=24
r∑

i=0

(i − r − 1)Wr+1−i

i∑
j=0

(−1)r+1−jUr+1(i − j)σodd
1 (j),

b′0 =24
r∑

i=0

i∑
j=0

Ur+1(i − j)Wj(−1)i(r + 1 − i)σodd
1 (r + 1 − i)

=24
r∑

i=0

(−1)i(r + 1 − i)σodd
1 (r + 1 − i)

i∑
j=0

Ur+1(i − j)Wj .

Therefore the constant term of T2,h is equal to

− r

r + 1
a′0 −

1
r + 1

b′0

=− 24r

r + 1

r∑
i=0

(i − r − 1)Wr+1−i

i∑
j=0

(−1)r+1−jUr+1(i − j)σodd
1 (j)

− 24
r + 1

r∑
i=0

(−1)i(r + 1 − i)σodd
1 (r + 1 − i)

i∑
j=0

Ur+1(i − j)Wj

=− 24
r + 1

⎛⎝(−1)rr

r∑
i=0

(r + 1 − i)Wr+1−i

i∑
j=0

(−1)jUr+1(i − j)σodd
1 (j)

+
r∑

i=0

(−1)i(r + 1 − i)σodd
1 (r + 1 − i)

i∑
j=0

Ur+1(i − j)Wj

⎞⎠
=− 24

r + 1

r∑
i=0

(r + 1 − i)((−1)rrWr+1−i + (−1)iσodd
1 (r + 1 − i))

×
i∑

j=0

((−1)jσodd
1 (j) + Wj).

For any nonnegative even integer n, it is clear that (−1)nσodd
1 (n)+Wn > 0 because

σodd
1 (n) > 0 and Wn > 0 for any nonnegative integer n. For any odd integer n we

have

(−1)nσodd
1 (n) + Wn =−

∑
0<d|n

2�d

d − 16
∑

0<d|n
(−1)dd3

=
∑

0<d|n
2�d

(16d3 − d) −
∑

0<d|n
2|d

(16d3) =
∑

0<d|n
2�d

(16d3 − d) > 0.
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And it is clear that rWr+1−i + (−1)r−iσodd
1 (r + 1− i) > 0 if r − i is even. If r − i

is odd, then r + 1 − i is even, so we see that

rWr+1−i + (−1)r−iσodd
1 (r + 1 − i)

=16r
∑

0<d|r+1−i

(−1)dd3 −
∑

0<d|n
2�d

d

=16r
∑

0<d|r+1−i
2|d

d3 −
∑

0<d|n
2�d

(16d3 + d) � r

t∑
i=1

16(2di)3 −
t∑

i=1

(16d3
i + di)

=
t∑

i=1

(128rd2
i − 16d2

i − 1)di > 0 for all r � 1,

where di with 1 � i � t are all distinct odd divisors of r + 1 − i.
This shows that

− r

r + 1
a′0 −

1
r + 1

b′0 =− 24
r + 1

r∑
i=0

(r + 1 − i)((−1)rrWr+1−i + (−1)iσodd
1 (r + 1 − i))

×
i∑

j=0

Ur+1(i − j)((−1)jσodd
1 (j) + Wj)

= (−1)r+1 24
r + 1

r∑
i=0

Xi

i∑
j=0

Yj ,

where
Xi := (r + 1 − i)(rWr+1−i + (−1)r−iσodd

1 (r + 1 − i)) > 0

and
Yj := Ur+1(i − j)((−1)jσodd

1 (j) + Wj) > 0,

This proves that the constant term of T2,h is

r

r + 1
a′0 +

1
r + 1

b′0 �= 0

for any positive integer r. This completes the proof.

Theorem 10.7 Suppose f ∈ G(2, h) with Fourier expansion at infinity

f(z) =
∞∑

n=0

Anqn with A0 �= 0.

If h ≡ 0 (mod 4), then there is some An �= 0 for 1 � n � r(2, h). If h ≡ 2 (mod 4),
then there is some An �= 0 for 1 � n � 1 + r(2, h).
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Proof First suppose that h ≡ 0 (mod 4). We denote the coefficient of qn in the
Fourier coefficient of any modular form g at infinity as cn(g). The meromorphic
modular form T2,h has a Fourier expansion

T2,h =
∞∑

n=−r

cn(T2,h)qn

with c−r(T2,h) = 1. By the part (2) of Lemma 10.5, we see that

0 = c0(T2,hf) =
r∑

i=0

c−i(T2,h)Ai.

By hypothesis, A0 �= 0. By Theorem 10.6, c0(T2,h) �= 0, so

A0 = −(c0(T2,h))−1
r∑

i=1

c−i(T2,h)Ai,

which implies that there exists an n with 1 � n � r such that An �= 0.
If h ≡ 2 (mod 4), then

T2,h =
∞∑

n=−r−1

cn(T2,h)qn

with c−r−1(T2,h) = 1. By the part (2) of Lemma 10.5, we see that

0 = c0(T2,hf) =
r+1∑
i=0

c−i(T2,h)Ai.

By hypothesis, A0 �= 0. By Theorem 10.6, c0(T2,h) �= 0, so that

A0 = −(c0(T2,h))−1
r+1∑
i=1

c−i(T2,h)Ai,

which implies that there exists an n with 1 � n � r + 1 such that An �= 0. This
completes the proof.

Theorem 10.8 Let Q be an even positive definite quadratic form of level two in
v variables. Then Q represents a positive integer 2n � 2 + v/4 or a positive integer
2n � 3 + v/4 according to v ≡ 0 (mod 8) or v ≡ 4 (mod 8) respectively.

Proof Suppose that Q is an even positive definite quadratic form of level two in
v variables with v ≡ 4 (mod 8). Put v = 8k + 4. Then by the well-known facts on
θ-functions we know that the function defined by

θQ(z) :=
∞∑

n=0

#Q−1(2n)qn ∈ G(2, v/2)
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is a holomorphic modular form where

#Q−1(2n) := #{(x1, x2, · · · , xv) ∈ Zv|Q(x1, x2, · · · , xv) = 2n}.

It is clear that #Q−1(0) = 1. Hence by Theorem 10.7 we know that there exists an
n0 with 1 � n0 � 1 + r(2, v/2) such that #Q−1(2n0) > 0. That means Q represents

the integer 2n0 with n0 � 1 + r(2, v/2) = 1 + r(2, 4k + 2) = 2 +
[
4k + 2

4

]
= 2 + k.

Hence Q represents the integer 2n0 � 2(2 + k) = 4 + 2k = 3 + v/4. We can prove the
case h ≡ 0 (mod 8) similarly. This completes the proof.

10.3 The Eligible Numbers of a Positive Definite Ternary

Quadratic Form

In this section we study the problem of how to find the integers represented by a
positive definite ternary quadratic form. It is a classical result that, taken together,
the forms of a genus represent all numbers not ruled out by some corresponding
congruences B.W. Jones, 1931; B.W. Jones, 1950. Following Kaplansky, we call these
the eligible numbers of the genus I. Kaplansky, 1995. But it is very difficult to
determine which of these eligible numbers can be represented by a form in the genus.
In general we have the following results:

(R1) A positive definite ternary quadratic form f represents all of sufficiently large
numbers which are represented by the spinor genus of f . (cf. W. Duke, 1990.)

(R2) Let n0 be a square-free positive integer represented primitively by the genus
of a positive definite ternary quadratic form f with discriminant d, then f primitively
represents all of sufficiently large integers n0t

2 if (t, 2d) = 1 and n0t
2 are primitively

represented by the spinor genus of f . (cf. J. Hsia, 1997.)
But there are no effective algorithm to determine all exceptions because (R1) and

(R2) are dependent on Siegel’s ineffective lower bound for the class numbers and
the Iwaniec’s estimation for the coefficients of cusp forms (cf. Remark 10.3). Even
for the simplest cases, we can not do this. For example, let f1 = x2 + y2 + 7z2,
f2 = x2 +7y2 +7z2. Then f1 and g1 = x2 +2y2 +4z2 +2yz belong to the same genus,
f2 and g2 = 2x2+4y2+7z2−2xy belong to another genus. The eligible numbers of f1

and g1 (f2 and g2 respectively)are numbers which are not the product of an odd (even
respectively) power of 7 and a number congruent to 3, 5 or 6 mod 7 (see Example

10.1 and Example 10.2). We also can not determine which of them are represented
by f1 and f2 respectively.

In I. Kaplansky, 1995 Kaplansky proved the following result and pointed out the
following tables:

Theorem The form f1 represents all eligible numbers which are multiples of 9;
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it also represents all eligible numbers congruent to 2 mod 3 which are not of the form
14t2.

List I: Up to 100, 000 there are 27 eligible numbers prime to 7 not represented
by f1: 3, 6, 19, 22, 31, 51, 55, 66, 94, 139, 142, 159, 166, 214, 235, 283, 439, 534, 559,
670, 874, 946, 1726, 2131, 2419, 3559, 4759.

List II: Up to 100, 000 there are 26 eligible numbers congruent to 1, 2 or 4 mod
7 which are not represented by f2: 2, 22, 46, 58, 85, 93, 102, 205, 298, 310, 330, 358,
466, 478, 697, 862, 949, 1222, 1402, 1513, 1957, 1978, 2962, 3502, 7165, 10558.

List III: Up to 100, 000 there are 3 eligible numbers prime to 7 not represented

by f3 = x2 + 2y2 + 7y2: 5, 20, 158.
List IV: Up to 100, 000 there are 3 eligible numbers congruent to 1, 2 or 4 mod 7

which are not represented by f4 = x2 + 7y2 + 14z2: 2, 74, 506.
It is clear that 14 · 72k ≡ 2 (mod 3) and f1 does not represent 14 · 72k for any

non-negative integer k by a simple induction. We call the numbers of 14 · 72k to be
of trivial type. Hence there are indeed eligible numbers of the form 14t2 which are
missed by f1. But as Kaplansky pointed out, List II shows, that up to 700, 000 there

are no further eligible numbers of form 14t2 that are missed by f1 and which are not
of trivial type. This motivated Kaplansky to make the following:

Conjecture f1 represents all eligible numbers congruent to 2 mod 3 which are
not of trivial type.

Kaplansky also conjectured that these four lists describe all exceptions, and so our
knowledge of the integers represented by f1 and g1 would be complete.

In this section we want to show some general results about the eligible numbers
of positive definite ternary forms by using modular forms of weight 3/2, and give

an algorithm for the number of representations of a positive integer n by a genus of
positive definite ternary quadratic forms which is of an independent interest because
it is a generalization of the classical theorem of Gauss concerning the number of rep-

resentations of a natural number as a sum of three squares. By this algorithm, we
can more precisely deal with eligible numbers and prove that the above Conjecture
holds. We will also show how to use the algorithm to compute the number of represen-

tations and eligible numbers of a positive integer n by a genus of a positive definite
ternary quadratic forms. We will study the relationships between the numbers of
representations of ternary positive definite quadratic forms and elliptic curves.

Now let α, β, γ be square-free positive odd integers with (α, β, γ) = 1, D = [α, β,

γ], and λ4m (m|D) and λm (1 �= m|D) be the unique solution of the following system
of linear equations:
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(�)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m|D

(C4m · μ(m/d)m−1) +
∑

1�=m|D
(Cm · μ(m/d)m−1

=
1
D

(
−1
d

)(
αβ/(α, β)2

(d, α, β)(d, l, γ)

)(
βγ/(β, γ)2

d, β, γ)(d, l, α)

)(
γα/(γ, α)2

(d, γ, α)(d, l, β)

)
,

∑
m|D

C4m · μ(m/d)m−1 =
1
D

−1
(D/d)

(
αβ/(α, β)2

γ(α, β)(α, β, d)−1(γ, αβd)−1

)

×
(

βγ/(β, γ)2

α(β, γ)(α, βγd)−1(β, γ, d)−1

)(
γα/(γ, α)2

β(γ, α)(β, αγd)−1(γ, α, d)−1

)
d|D,

which will be proved to have a unique solution later (cf. The proof of Theorem 10.9).
It is clear that λ4m (m|D) and λm (1 �= m|D) are only dependent on α, β, γ.

For positive integers n, D, l we define:

α(n) =

⎧⎪⎪⎨⎪⎪⎩
3 × 2−(1+ν2(n))/2, if 2 � ν2(n),
3 × 2−(1+ν2(n)/2), if 2|ν2(n), n/2ν2(n) ≡ 1(mod 4),
2−ν2(n)/2, if 2|ν2(n), n/2ν2(n) ≡ 3(mod 8),
0, if 2|ν2(n), n/2ν2(n) ≡ 7(mod 8)

and

βl,p(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 + p)p(1−νp(ln))/2, if 2 � νp(ln),

2p1−νp(ln)/2, if 2|νp(ln),
(
−ln/pνp(ln)

p

)
= −1,

0, if 2|νp(ln),
(
−ln/pνp(ln)

p

)
= 1.

and

β3(n, χD, 4D) =
∑

(ab)2|n,(ab,2D)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1.

Note that β3(n, χD, 4D) = 1 if n is square-free.
Let f be a positive definite ternary quadratic form, {f1 = f , f2, · · · , ft} a set of

representatives of equivalence class in the genus of f . Denote by ri(n) = r(fi, n) the

number of representations of n by fi. Put G(n) =
t∑

i=1

ri(n)
O(fi)

. With these notations

we get the following

Theorem 10.9 Let α, β, γ be square-free odd positive integers such that (α, β,
γ) = 1, f = αx2 +βy2 +γz2. Let A = {f1 = f , f2, · · · , ft} be a set of representatives
for the equivalence classes in the genus of f . Then for any positive integer n we have
that

G(n) = r(α, β, γ; n) · h(−ln),
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where l = αβγ/((α, β)2(α, γ)2(β, γ)2) and r(α, β, γ; n) is given by the following for-
mula:

r(α, β, γ; n)

=
32
ωln

α(ln)(1 − 2−1χ−ln(2))
(

ln

δln

) 1
2

β3(ln, χD, 4D)

(
t∑

i=1

1
0(fi)

)

×
(∑

m|D
(−1)t(m)λ4m

∏
p|D/m

(1 − χ−ln(p)p−1)p2

p2 − 1

∏
p|m

(1 − χ−ln(p)p−1)
p2 − 1

βl,p(n)

+
∑

1�=m|D
(−1)t(m)λm

∏
p|D/m

(1 − χ−ln(p)p−1)p2

p2 − 1

∏
p|m

(1 − χ−ln(p)p−1)
p2 − 1

βl,p(n)
)

.

Proof We recall the following notations introduced in Section 7.3

λ3(n, 4D)=L4D(2, id.)−1L4D(1, χ−n)β3(n, χD, 4D)

A3(2, n)=

⎧⎪⎪⎨⎪⎪⎩
4−1(1 − i)(1 − 3 · 2−(1+ν2(n))/2), if 2 � ν2(n),
4−1(1 − i)(1 − 3 · 2−(1+ν2(n)/2)), if 2|ν2(n), n/2ν2(n)≡1 (mod 4),
4−1(1 − i)(1 − 2−ν2(n)/2), if 2|ν2(n), n/2ν2(n)≡3 (mod 8),
4−1(1 − i), if 2|ν2(n), n/2ν2(n)≡7 (mod 8).

A3(p, n)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p−1 − (1 + p)p−(3+νp(n))/2, if 2 � νp(n),

p−1 − 2p−1−νp(n)/2, if 2|νp(n),
(
−n/pνp(n)

p

)
=−1,

p−1, if 2|νp(n),
(
−n/pνp(n)

p

)
=1,

LN (s, χ)=
∞∑

(n,N)=1

χ(n)n−s =
∏
p�N

(1 − χ(p)p−S)−1,

β3(n, χD, 4D)=
∑

(ab)2|n,(ab,2D)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1,

where ν2(n) is the maximal non–negative integer such pν2(n)|n.
We define functions g(χl, 4m, 4D)(z) (m|D) and g(χl, m, 4D)(z) (m �= 1, m|D),

where D is a square–free odd positive integer and l|D as follows:

g(χl, 4D, 4D)(z)=1 − 4π(1 + i)l
1
2

∞∑
n=1

λ3(ln, 4D)(A(2, ln)− 4−1(1 − i))

×
∏
p|D

(A(p, ln) − p−1)n
1
2 exp{2πinz},

g(χl, 4m, 4D)(z)=−4π(1 + i)l
1
2

∞∑
n=1

λ3(ln, 4D)(A(2, ln)− 4−1(1 − i))
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×
∏
p|m

(A(p, ln) − p−1)n
1
2 exp{2πinz}, ∀D �= m|D,

g(χl, m, 4D)(z)=2πl
1
2

∞∑
n=1

λ(ln, 4D)
∏
p|m

(A(p, ln) − p−1)n
1
2 exp{2πinz}.

By the results of Section 7.3, the set of functions

g(χl, 4m, 4D)(m|D), g(χl, m, 4D), 1 �= m|D

is a basis of E(4D, 3/2, χl), and we have

V (g(χl, 4m, 4D), 1/α) = −4−1(1 + i)μ(m/α)αm−1l
1
2 (l, α)−

1
2 ε−1

α/(l,α)

(
l/(l, α)
d/(l, α)

)
,

V (g(χl, 4m, 4D), 1/(4α)) = μ(m/α)αm−1l
1
2 (l, α)−

1
2 εl/(l,α)

(
α/(l, α)
l/(l, α)

)
,

V (g(χl, 4m, 4D), 1/(2α)) = 0,

V (g(χl, m, 4D), 1/α) = −4−1(1 + i)μ(m/α)αm−1l
1
2 (l, α)−

1
2 ε−1

α/(l,α)

(
l/(l, α)
α/(l, α)

)
,

V (g(χl, m, 4D), 1/(2α)) = 0,

V (g(χl, m, 4D), 1/(4α)) = 0,

where α is any positive divisor odd D and V (f, p) represents the value of f at the
cusp point p.

For f = αx2 + βy2 + γz2, we see that θf (z) ∈ G(4D, 3/2, χl) and θ(gen.f, z) ∈
E(4D, 3/2, χl) by the results in Section 10.1, where D = [α, β, γ] and l = αβγ/((α, β)2

· (α, γ)2(β, γ)2). Therefore there exist complex numbers c4m(m|D) and cm(m|D, m �=
1) such that

θ(gen.f, z) =
∑
m|D

c4mg(χl, 4m, 4D) +
∑

1�=m|D
cmg(χl, m, 4D).

If we can compute explicitly these complex numbers, then we can obtain the explicit

expression of G(n) :=
t∑

i=1

ri(n)
O(fi)

by comparing the Fourier coefficients of the two

sides of the above equality. In order to do this, we only need to calculate the values
of θ(gen.f, z) at cusp points.

Claim 1 Let d/c be a cusp point (c > 0, (c, d) = 1). Then

V (θ, d/c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ε−1

d

(
d

c

)
, if 4|c,

1 − i

2
εc

(
d

c

)
, if 2 � c,

0, if 2 ‖ c,



10.3 The Eligible Numbers of a Positive Definite Ternary Quadratic Form 395

where θ(z) =
∞∑

m=−∞
exp{m2z}.

Claim 2 Let d be a square-free odd positive integer, then

εd =
∏
p|d

εp

(
dp−1

p

)
.

The proofs of these two claims are just simple calculations, and hence they are omitted.
It is easy to see that for square-free positive odd D, S(4D) := {1/d, 1/2d, 1/4d |

d|D} is a representative system of all equivalent classes of cusp points of Γ0(4D).
Claim 3 Let be f = αx2 +βy2 + γz2, where α, β, γ are square–free positive odd

integers such that (α, β, γ) = 1. Then

V (θf , 1/d)=− (1 + i)dl1/2

4D(l, d)1/2
ε−1

d/(d,l)

(
−1
d

)(
l/(l, d)
d/(l, d)

)
·
(

αβ/(α, β)2

(d, α, β)(d, l, γ)

)(
βγ/(β, γ)2

(d, β, γ)(d, l, α)

)
×
(

γα/(γ, α)2

(d, γ, α)(d, l, β)

)
,

V (θf , 1/4d)=dD−1l1/2(l, d)−1/2εl/(l,d)

(
−1
D/d

)(
d/(l, d)
l/(l, d)

)
×
(

αβ/(α, β)2

γ(α, β)(α, β, d)−1(γ, αβd)−1

)
×
(

βγ/(β, γ)2

α(β, γ)(α, βγd)−1(β, γ, d)−1

)(
γα/(γ, α)2

β(γ, α)(β, αγd)−1(γ, α, d)−1

)
,

V (θf , 1/2d)=0,

where d|D.
This is a special case of our general result in Section 10.1. But now we can give a

new proof for this fact. We have that

V (θf , 1/d)= lim
z→0

(−dz)3/2θf

(
z +

1
d

)
= lim

z→0
(−dz)3/2θ(α(z + 1/d))θ(β(z + 1/d))θ(γ(z + 1/d))

= lim
z→0

(−dz)3/2θ

(
αz +

α/(α, d)
d/(α, d)

)
θ

(
βz +

β/(β, d)
α/(β, d)

)
θ

(
γz +

γ/(γ, d)
d/(γ, d)

)
=
(

(α, d)(β, d)(γ, d)
αβγ

) 1
2

V

(
θ,

α/(α, d)
d/(α, d)

)
·V
(

θ,
β/(β, d)
d/(β, d)

)
· V
(

θ,
γ/(γ, d)
d/(γ, d)

)
.

We express d as d = (d, l)× d

(d, l)
. Suppose that p is a prime factor of d. Then p|(d, l)
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if and only if only one of α, β, γ is divisible by p, p|d/(d, l) if and only if only two of
α, β, γ are divisible by p. This shows that αβγ = D2/l, (α, d)(β, d)(γ, d) = d2/(d, l).
Hence by the above claims we obtain that

V (θf , 1/d) = −4−1(1 + i)dD−1l1/2(d, l)−1/2V1,

where

V1 = εd/(α,d)εd/(β,d)εd/(γ,d)

(
α/(α, d)
d/(α, d)

)(
β/(β, d)
d/(β, d)

)(
γ/(γ, d)
d/(γ, d)

)

=
∏
p|d

ε2
p

∏
p|d/(d,l)

ε−1
p

∏
p|d/(α,d)

(
αd/p

p

)

∏
p|d/(β,d)

(
βd/p

p

) ∏
p|d/(γ,d)

(
γd/p

p

)

=
(
−1
d

)
ε−1

d/(d,l)

∏
p|d/(d,l)

(
d(p(d, l))−1

p

)

∏
p|d/(α,d)

(
αd/p

p

) ∏
p|d/(β,d)

(
βd/p

p

) ∏
p|d/(γ,d)

(
γd/p

p

)

=
(
−1
d

)
ε−1

d/(d,l)

(
α(d, l)

(d, β, γ)

)(
β(d, l)

(d, γ, α)

)
(

γ(d, l)
(d, α, β)

)(
αβ

(d, l, γ)

)(
βγ

(d, l, α)

)(
γα

(d, l, β)

)

=
(
−1
d

)
ε−1

d/(d,l)

(
l/(d, l)
d/(d, l)

)(
αβ/(α, β)2

(d, l, γ)(d, α, β)

)
(

βγ/(β, γ)2

(d, l, α)(d, β, γ)

)(
γα/(γ, α)2

(d, l, β)(d, γ, α)

)
,

which implies the expression of V (θf , 1/d).
Similarly we have that

V (θf , 1/4d)= lim
z→0

(−4dz)
3
2 θf (z + 1/4d)

= lim
z→0

(−4dz)
3
2 θ(α(z + 1/4d))θ(β(z + 1/4d))θ(γ(z + 1/4d))

=
(

(α, d)(β, d)(γ, d)
αβγ)

) 1
2

V

(
θ,

α/(α, d)
4d/(α, d)

)
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×V

(
θ,

β/(β, d)
4d/(β, d)

)
V

(
θ,

γ/(γ, d)
4d/(γ, d)

)
=dD−

1
2 l

1
2 (l, d)−

1
2 V2,

where

V2 = ε−1
α/(α,d)ε

−1
β/(β,d)ε

−1
γ/(γ,d)

(
d/(α, d)
α/(α, d)

)(
d/(β, d)
β/(β, d)

)(
d/(γ, d)
γ/(γ, d)

)
=
∏

p|D/p

ε−2
p

∏
p|l/(l,α)

εp

∏
p|α/(α,d)

(
αd/p

p

) ∏
p|β/(β,d)

(
βd/p

p

) ∏
p|γ/(γ,d)

(
γd/p

p

)

= εl/(l,d)

(
−1
D/d

) ∏
p|l/(l,d)

(
l(p(l, d))−1

p

) ∏
p|α/(α,d)

(
αd/p

p

)

×
∏

p|β/(β,d)

(
βd/p

p

) ∏
p|γ/(γ,d)

(
γd/p

p

)
,

since

l/(l, d) = α/(α, βγd) × β/(β, γαd) × γ/(γ, αβd).

Hence,

V2 = εl/(l,d)

(
−1
D/d

)(
αβ/(α, β)2

(α, β)/(α, β, d)

)(
βγ/(β, γ)2

(β, γ)/(β, γ, d)

)(
γ, α/(γ, α)2

(γ, α)/(γ, α, d)

)

×
(

αdl(d, l)−1(α, l)−2

α/(α, βγd)

)(
βdl(d, l)−1(β, l)−2

β/(β, γαd)

)(
γdl(d, l)−1(γ, l)−2

γ/(γ, αβ, d)

)

= εl/(l,d)

(
−1
D/d

)(
d/(d, l)
l/(d, l)

)(
αβ/(α, β)2

(α, β)/(α, β, d) × γ/(γ, αβd)

)

×
(

βγ/(β, γ)2

(β, γ)/(β, γ, d) × α/(α, βγd)

)(
γα/(γ, α)2

(γ, α)/(γ, α, d) × β/(β, γαd)

)
,

which implies the expressions for V (θf , 1/4d). Finally we can show that V (θf , 1/2d) =
0 by the fact that V (θ, 1/2) = 0. This completes the proof of Claim 3.

Since θf (z) and θ(gen.f, z) have the same values at each cusp point, we see that

V (θ(gen.f, z), p) = V (θf (z), p)

=
∑
m|D

C4mV (g(χl, 4m, 4D), p) +
∑

1�=m|D
CmV (g(χl, m, 4D), p)

for each cusp point p. Hence we obtain a system of equations:
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∑
m|D

C4mV (g(χl, 4m, 4D), 1/α) +
∑

1�=m|D
CmV (g(χl, m, 4D), 1/α)

=V (θf , 1/α), (α|D),∑
m|D

C4mV (g(χl, 4m, 4D), 1/(2α)) +
∑

1�=m|D
CmV (g(χl, m, 4D), 1/(2α))

=V (θf , 1/(2α)) = 0, (α|D),∑
m|D

C4mV (g(χl, 4m, 4D), 1/(4α)) +
∑

1�=m|D
CmV (g(χl, m, 4D), 1/(4α))

=V (θf , 1/(4α)), (α|D).

(10.22)

Inserting the values of the functions at cusp points into equality (10.22), we have that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m|D

(C4m · μ(m/d)m−1) +
∑

1�=m|D
(Cm · μ(m/d)m−1

=
1
D

(
−1
d

)(
αβ/(α, β)2

(d, α, β)(d, l, γ)

)(
βγ/(β, γ)2

d, β, γ)(d, l, α)

)(
γα/(γ, α)2

(d, γ, α)(d, l, β)

)
,

∑
m|D

C4m · μ(m/d)m−1 =
1
D

−1
(D/d)

(
αβ/(α, β)2

γ(α, β)(α, β, d)−1(γ, αβd)−1

)

×
(

βγ/(β, γ)2

α(β, γ)(α, βγd)−1
(β, γ, d)−1

)
×
(

γα/(γ, α)2

β(γ, α)(β, αγd)−1(γ, α, d)−1

)
, (d|D).

(10.23)

We must prove that the system (10.23) has a unique solution for C4m (m|D) and
Cm (1 �= m|D). This is equivalent to proving that the corresponding homogeneous
system has only zero as a solution. Otherwise, suppose that C4m = λ4m (m|D) and
Cm = λm (1 �= m|D) is a non-zero solution of (10.23), i.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
m|D

(λ4m · μ(m/d)m−1) +
∑

1�=m|D
(λm · μ(m/d)m−1 = 0,

∑
m|D

λ4m · μ(m/d)m−1 = 0, d|D.
(10.24)

Consider the following function:

h(z) =
∑
m|D

λ4mg(χl, 4m, 4D) +
∑

1�=m|D
λmg(χl, m, 4D),

which belongs to the space E(4D, 3/2, χl). We now compute the values of h(z) at all
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cusp points. For any d|D, we see that:

V (h(z), 1/d)=
∑
m|D

λ4mV (g(χl, 4m, 4D), 1/d) +
∑

1�=m|D
λmV (g(χl, m, 4D), 1/d)

=−4−1(1 + i)dl
1
2 (l, d)−

1
2 ε−1

d/(l,d)

×
(

l/(l, d)
d/(l, d)

)⎛⎝∑
m|D

λ4mμ(m/d)m−1 +
∑

1�=m|D
λmμ(m/d)m−1

⎞⎠
=0,

V (h(z), 1/(2d))=
∑
m|D

λ4mV (g(χl, 4m, 4D), 1/(2d))+
∑

1�=m|D
λmV (g(χl, m, 4D), 1/(2d))

=
∑
m|D

λ4m · 0 +
∑

1�=m|D
λm · 0 = 0,

V (h(z), 1/(4d))=
∑
m|D

λ4mV (g(χl, 4m, 4D), 1/(4d))+
∑

1�=m|D
λmV (g(χl, m, 4D), 1/(4d))

=dl
1
2 (l, d)−

1
2 εl/(l,d)

(
d/(l, d)
l/(l, d)

)⎛⎝∑
m|D

λ4mμ(m/d)m−1

⎞⎠ = 0.

These imply that the values of modular form h(z) are equal to zero at all cusp
points of Γ0(4D). Hence h(z) ∈ S(4D, 3/2, χl) which shows that h(z) ∈ S(4D,

3/2, χl)
⋂
E(4D, 3/2, χl) = {0}, i.e.,∑

m|D
λ4mg(χl, 4m, 4D) +

∑
1�=m|D

λmg(χl, m, 4D) = 0.

But g(χl, 4m, 4D) (m|D) and g(χl, m, 4D) (1 �= m|D) are linearly independent.
Therefore λ4m = 0 (m|D) and λm = 0 (1 �= m|D) which contradicts the assump-
tion for λ4m and λm and hence show that the system (10.23) has only zero as a
solution.

From (10.23) we can easily calculate explicitly all the Cm(1 �= m|D) and C4m(m|D),
it is clear that all these are rational numbers and only dependent on α, β, γ.

That is, we obtain explicitly rational numbers Cm and C4m such that

θ(gen.f, z) =
∑
m|D

C4mg(χl, 4m, 4D) +
∑

1�=m|D
Cmg(χl, m, 4D). (10.25)

On the other hand, let

α(n)=2(1 + i)(4−1(1 − i) − A3(2, n))

=

⎧⎪⎪⎨⎪⎪⎩
3 × 2−(1+ν2(n))/2, if 2 � ν2(n),
3 × 2−(1+ν2(n)/2), if 2|ν2(n), n/2ν2(n) ≡ 1(mod 4),
2−ν2(n)/2, if 2|ν2(n), n/2ν2(n) ≡ 3(mod 8),
0, if 2|ν2(n), n/2ν2(n) ≡ 7(mod 8)

(10.26)
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and

βl,p(n)=p2(p−1 − A3(p, ln))

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 + p)p(1−νp(ln))/2, if 2 � νp(ln),

2p1−νp(ln)/2, if 2|νp(ln),
(
−ln/pνp(ln)

p

)
= −1,

0, if 2|νp(ln),
(
−ln/pνp(ln)

p

)
= 1.

(10.27)

Let δln be the conductor of the character χ−ln and h(−ln) be the class number of the
imaginary quadratic field Q(

√
−ln). Then the class number formula shows that

h(−ln) = (2π)−1δ
1
2
lnωlnL(1, χ−ln),

where

ωln =

⎧⎨⎩
6, if δln = 3,

4, if δln = 4,

2, if otherwise.

Hence

λ3(ln, 4D)=L4D(2, id)−1L4D(1, χ−ln)β3(ln, χD, 4D)

=L(2, id)−1
∏
p|4D

(1 − p−2)−1L(1, χ−ln)

·
∏
p|4D

(1 − χ−ln(p)p−1) · β3(ln, χD, 4D)

=
6
π2

·
∏
p|4D

(1 − p−2)−1(1 − χ−ln(p)p−1)

·h(−ln) · 2π · ω−1
ln δ

− 1
2

ln β3(ln, χD, 4D)

=
12
π

∏
p|4D

(1 − χ−ln(p)p−1)p2

p2 − 1
· h(−ln)
ωln

√
δln

· β3(ln, χD, 4D).

This implies that

g(χl, 4D, 4D)=1 + (−1)t(D)32
∞∑

n=1

h(−ln)ω−1
ln α(ln)(1 − 2−1χ−ln(2))

×
∏
p|D

[
(1 − χln(p)p−1)

p2 − 1
βl,p(n)

]

·
(

ln

δln

)1/2

β3(ln, χD, 4D) exp{2πinz},

g(χl, 4m, 4D)=(−1)t(m)32
∞∑

n=1

h(−ln)ω−1
ln α(ln)(1 − 2−1χ−ln(2))
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×
∏

p|D/m

(1 − χ−ln(p)p−1)p2

p2 − 1

∏
p|m

(1 − χ−ln(p)p−1)
p2 − 1

βl,p(n)

×
(

ln

δln

) 1
2

β3(ln, χD, 4D) exp{2πinz},

g(χl, m, 4D)= (−1)t(m)32
∞∑

n=1

h(−ln)ω−1
ln (1 − 2−1χln(2))

×
∏

p|D/m

(1 − χ−ln(p)p−1)p2

p2 − 1

∏
p|m

(1 − χ−ln(p)p−1)
p2 − 1

βl,p(n)

×
(

ln

δln

) 1
2

β3(ln, χD, 4D) exp{2πinz},

(10.28)

where t(m) is the number of distinct prime factors of m. Let be ln = ds2 with d

square-free, then δln = d or 4d according to d ≡ 1 (mod 4) or d ≡ 2, 3 (mod 4) which

implies that
(

ln

δln

)1/2

=
(

ds2

d

)1/2

= s or
(

ln

δln

)1/2

=
(

ds2

4d

)1/2

=
s

2
according to

d ≡ 1 (mod 4) or d ≡ 2, 3 (mod 4). Anyway,
(

ln

δln

)1/2

is an explicitly determined

rational number. Now we compare the Fourier coefficients of the two sides of (10.24),
and use (10.27) to obtain that

G(n) = r(α, β, γ; n)h(−ln),

where r(α, β, γ; n) is defined as in 10.9. This completes the proof of the theorem.

By Theorem 10.9 we obtain the following:
An Algorithm for G(n) and eligible numbers of f :
Input: A positive definite ternary quadratic form f ;
Output: G(n) and the set E of eligible numbers of f ;
Step 1: Solve the system (�);
Step 2: Use Theorem 10.9 to compute G(n);
Step 3: Put E = {n ∈ N|r(α, β, γ; n) = 0}.
We will compute some examples with this algorithm.
It is clear that Theorem 10.9 holds indeed for any positive definite ternary quadratic

form f with level 4D (D a square-free odd positive integer). Hence by Theorem 10.9
we can always give the precise major part for the number r(f, n) of representations
for n by f . Especially if the space S(N , 3/2, χl) is the null space, we can obtain the
precise formula for r(f, n) by Theorem 10.9. For example, by the dimension formulae
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for the space of modular forms, we can find that the following spaces are all null
spaces:

S(4, 3/2, χ1), S(8, 3/2, χ1), S(8, 3/2, χ2),
S(12, 3/2, χ1), S(12, 3/2, χ3), S(16, 3/2, χ1),
S(20, 3/2, χ1), S(20, 3/2, χ5), S(24, 3/2, χ1),
S(24, 3/2, χ2), S(24, 3/2, χ3), S(24, 3/2, χ6),
S(32, 3/2, χ1), S(32, 3/2, χ2), S(64, 3/2, χ2).

Hence we can obtain the following formulae: Let be N(a, b, c; n) = r(ax2+by2+cz2, n),
δ(x) = 1 or 0 according to x is an integer or not, then

N(1, 1, 1; n) = 2πn
1
2 λ(n, 4)α(n), (Gauss formula)

N(1, 2, 2; n) = 2πn
1
2 λ(n, 4)

(
α(n) − δ

(
n − 1

4

)
− δ

(
n − 2

4

))
,

N(1, 3, 3; n) = 2πn
1
2 λ(n, 12)(1/3 − A(3, n))(2 − α(n)),

N(1, 5, 5; n) = 2πn
1
2 λ(n, 20)α(n)(A(5, n) + 1/5),

N(2, 3, 6; n) = 2πn
1
2 λ(n, 12)(1/3 + A(3, n))

(
α(n)−δ

(
n − 1

4

)
−δ

(
n − 2

4

))
, etc.

From this point of view we see that Theorem 10.9 is a generalization of the classical
result of Gauss concerning the number of representations of a natural number as a
sum of three squares.

Corollary 10.1 Let f = x2 + y2 + pz2, p an odd prime, then

G(n) :=
t∑

i=1

ri(n)
O(fi)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
ωpn(p2 − 1)

h(−pn)α(pn)(2p − βp,p(n))γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

ifp ≡ 1(mod 4),

32
ωpn(p2 − 1)

h(−pn)(2 − α(pn))βp,p(n)γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

ifp ≡ 3(mod 4),

where γp(n) = (1 − 2−1χ−pn(2))(pn/δpn)1/2
∑

(ab)2|n
(ab,2p)=1

μ(a)χ−pn(a)(ab)−1.

Proof Just as in the proof of Theorem 10.9, we have that D = l = p. So by (10.28)
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we see that E(4p, 3/2, χp) has a basis as follows:

g(χp, 4p, 4p)=1 − 32
p2 − 1

∞∑
n=1

h(−pn)ω−1
pn α(pn)βp,p(n)γp(n) exp{2πinz},

g(χp, 4, 4p)=
32p2

p2 − 1

∞∑
n=1

h(−pn)ω−1
pn α(pn)γp(n) exp{2πinz},

g(χp, p, 4p)=− 32
p2 − 1

∞∑
n=1

h(−pn)ω−1
pn βp,p(n)γp(n) exp{2πinz}.

We can easily calculate the solution of the system of equations (10.23):

⎛⎝ c4

c4p

cp

⎞⎠ =

⎛⎜⎜⎝
2
p

1
0

⎞⎟⎟⎠ or

⎛⎝ 0
1

−2

⎞⎠
according to p ≡ 1 or 3 (mod 4). Hence we see that

θ(gen.f, z) =
{

g(χp, 4p, 4p) + 2p−1g(χp, 4, 4p), if p ≡ 1(mod 4),
g(χp, 4p, 4p)− 2g(χp, p, 4p), if p ≡ 3(mod 4).

Hence we see that

G(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
ωpn(p2 − 1)

h(−pn)α(pn)(2p − βp,p(n))γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

if p ≡ 1 (mod 4)

32
ωpn(p2 − 1)

h(−pn)(2 − α(pn))βp,p(n)γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

if p ≡ 3 (mod 4)

as stated in the corollary.

Example 10.3 Let p = 7, then f = f1 = x2 +y2+7z2 and g1 = x2+2y2+4z2+2yz

belong to the same genus, O(f1) = 8, O(g1) = 4. Hence

G1(n) =
r1(n)

8
+

r′1(n)
4

=
1
4
ω−1

7n · (2 − α(7n))β7,7(n)γ7(n)h(−7n).
�

Corollary 10.2 Let f = x2 + py2 + pz2, p an odd prime, then
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G(n) :=
t∑

i=1

ri(n)
O(fi)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
32

ωn(p2 − 1)
h(−n)α(n)(2p − β1,p(n))γ′p(n)

(
t∑

i=1

1
O(fi)

)
, if p ≡ 1(mod 4),

32
ωn(p2 − 1)

h(−n)(2 − α(n))β1,p(n)γ′p(n)

(
t∑

i=1

1
O(fi)

)
, if p ≡ 3(mod 4),

where γ′p(n) = (1 − 2−1χ−n(2))(1 − χ−n(p) · p−1)(n/δn)1/2
∑

μ(a)χ−n(a)(ab)−1.

Proof Just as in the proof of Theorem 10.9, we have that D = p, l = 1. So by
(10.28) we see that E(4P, 3/2, χ1) has a basis as follows:

g(χ1, 4p, 4p)=1 − 32
p2 − 1

∞∑
n=1

h(−n)ω−1
n α(n)β1,p(n)γ′p(n) exp{nz},

g(χ1, 4, 4p)=
32p2

p2 − 1

∞∑
n=1

h(−n)ω−1
n α(n)γ′p(n) exp{nz},

g(χ1, p, 4p)=− 32
p2 − 1

∞∑
n=1

h(−n)ω−1
n β1,p(n)γ′p(n) exp{nz}.

We can also calculate the solution of the system of equations (10.23):

⎛⎝ c4

c4p

cp

⎞⎠ =

⎛⎜⎜⎝
2
p

1
0

⎞⎟⎟⎠ or

⎛⎝ 0
1

−2

⎞⎠
according to p ≡ 1 or 3 (mod 4). Hence we see that

θ(gen.f, z) =
{

g(χ1, 4p, 4p) + 2p−1g(χ1, 4, 4p), if p ≡ 1 (mod 4),

g(χ1, 4p, 4p)− 2g(χ1, p, 4p), if p ≡ 3 (mod 4).

Therefore we see that

G(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
ωn(p2 − 1)

h(−n)α(n)(2p − β1,p(n))γ′p(n) ·
(

t∑
i=1

1
O(fi)

)
,

if p ≡ 1 (mod 4),

32
ωn(p2 − 1)

h(−pn)(2 − α(n))β1,p(n)γ′p(n) ·
(

t∑
i=1

1
O(fi)

)
,

if p ≡ 3 (mod 4).

This completes the proof.
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Example 10.4 Let f = f2 = x2 +7y2+7z2, then f2 and g2 = 2x2 +4y2 +7z2−2xy

belong to the same genus, O(f2) = 8, O(g2) = 4. Hence

G2(n) :=
r2(n)

8
+

r′2(n)
4

=
1
4
ω−1

n · (2 − α(n))β1,7(n)γ′7(n)h(−n).
�

By Corollary 10.1 and Corollary 10.2, we can prove the following

Corollary 10.3 Let f(p) = x2 + y2 + pz2, p an odd prime, then
(1) if p ≡ 3 (mod 4), the eligible numbers of the genus of f(p) are numbers which

are not the product of an odd power of p and a number n satisfying
(
−n

p

)
= 1;

(2) if p ≡ 1 (mod 8), the eligible numbers of the genus of f(p) are numbers which
are not the product of an even power of 2 and a number congruent to 7 mod 8;

(3) if p ≡ 5 (mod 8), the eligible numbers of the genus of f(p) are numbers which
are not the product of an even power of 2 and a number congruent to 3 mod 8.

Corollary 10.4 Let g(p) = x2 + py2 + pz2, p an odd prime, then
(1) if p ≡ 3 (mod 4), the eligible numbers of the genus of g(p) are numbers which

are not the product of an even power of p and a number n satisfying
(
−n

p

)
= 1;

(2) if p ≡ 1 (mod 4), the eligible numbers of the genus of g(p) are numbers which

are not the numbers n satisfying
(

n

p

)
= −1 or the product of an even power of 2 and

a number congruent to 7 mod 8.

Proof By definition, a positive integer n is eligible if and only if G(n) > 0, i.e., n

is not an eligible integer if and only if G(n) = 0. If p ≡ 3 (mod 4), then

G(n) =
32
ωpn

h(−pn)(2 − α(pn))βp,p(n)γp(n) ·
(

t∑
i=1

1
O(fi)

)
,

which implies that G(n) = 0 if and only if one of the factors at the right end of the

above equality equals zero. But it is clear that
32
ωpn

h(−pn)

(
t∑

i=1

1
O(fi)

)
> 0. So we

only need to consider the other three factors. By (10.26) we see that 2 − α(pn) �
2− 3/2 = 1/2. So the only possibilities are that βp,p(n) = 0 or γp(n) = 0. By (10.27)

we know that βp,p(n) = 0 if and only if νp(n) ≡ 1 (mod 2) and
(
−n/pνp(n)

p

)
= 1.

Hence if we can prove that γp(n) �= 0, then this completes the proof of (1). In fact,
we can prove the following claim which completes the proof of (1). The proofs of (2)
and Corollary 10.4 are similar.
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Claim Let D be a square-free positive integer, then

β3(n, χD, 4D) =
∑

(ab)2|n,(ab,2D)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1 �= 0

for any positive integer n.
In fact, by definition, we see that

β3(n, χD, 4D)=
∑

(ab)2|n,(ab,2D)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1

=
∏

p�2D,p|Dn

h(p,fn)∑
t=0

p−t ·
∏

p�2DDn

⎛⎝νp(fn)∑
t=0

p−t − p−1

(
Dn

p

) νp(fn)−1∑
t=0

p−t

⎞⎠ ,

where −n = Dnf2
n such that Dn is a fundamental discriminant and fn is a positive

integer. The above equality implies that β3(n, χD, 4D) �= 0. This completes the
proofs.

Example 10.5 The eligible numbers of f1 = f(7) = x2 + y2 + 7z2 are numbers
which are not the product of an odd power of 7 and a number congruent to 3, 5 or 6

mod 7 since
(
−n

7

)
= 1 if and only if n congruent to 3, 5 or 6 mod 7. �

Example 10.6 The eligible numbers of f2 = g(7) = x2 + 7y2 + 7z2 are numbers
which are not the product of an even power of 7 and a number congruent to 3, 5 or 6

mod 7 since
(
−n

7

)
= 1 if and only if n is congruent to 3, 5 or 6 mod 7. �

Theorem 10.10 Let f be a positive definite quadratic form with matrix A. Then
there are only finitely many square-free eligible integers which are prime to 2|A| and
not represented by f .

Proof The proof of this theorem is similar to the one in W. Duke, 1990. For the
sake of completeness we include it here. In order to prove the theorem, we need some
of the results in B.W. Jones, 1950, esp. Theorem 86 in B.W. Jones, 1950 which can
be described as the following claim:

Claim: Let f be a positive definite ternary quadratic form with matrix A, d =
|A|, Ω the g.c.d. of the 2-rowed minor determinants of A and Δ = qd/Ω2 with q

prime to 2d, then for any eligible number q of the genus of f with (q, 2d) = 1 we have
that

G(A, q) = 2−t(d/Ω2)H(Δ)ρΔ

where t(w) is the number of odd prime factors of w, H(Δ) is the number of properly
primitive classes of positive binary forms ax2 +2bxy+cy2 of determinant Δ = ac−b2,
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ρΔ is a rational number equal to 1/8, 1/6, 1/4, 1/3, 1/2, 2/3, 1, 2, 4 according to the
different cases of the values of Δ, and G(A, q) is the number of essentially distinct
primitive representations of q by the genus of f . Please compare Theorem 86 in B.W.
Jones, 1950 for details.

Now let G = {f = f1, f2, · · · , ft} be a set of representatives of the genus of f .
Define

θf (z)=
∑

m∈Z3

e(zmAmT/2), z ∈ H,

O(f)=#{S ∈ M3(Z)|SAST = A},

θ(gen.f, z)=

⎛⎝∑
fi

1
O(fi)

⎞⎠−1∑
fi

θfi(z)
O(fi)

,

then we have that
θf (z) − θ(gen.f, z) ∈ S(N, 3/2, χ)

by the results in Section 10.1. Now let ri(n) be the number of representations of n

by fi, then

θf (z) − θ(gen.f, z) :=
∞∑

n=1

a(n)qn

=
∞∑

n=1

r1(n)qn −

⎛⎝∑
fi

1
O(fi)

⎞⎠−1 ∞∑
n=1

⎛⎝∑
fi

ri(n)
O(fi)

⎞⎠ qn.

Now suppose that n0 is a square-free eligible number of G which can not be represented
by f = f1, i.e., r1(n0) = 0. Then by Iwaniec’s H. Iwaniec, 1987 and Duke’s W. Duke,
1988 we have that

|a(n0)| =

⎛⎝∑
fi

1
O(fi)

⎞⎠−1⎛⎝∑
fi

ri(n)
O(fi)

⎞⎠� τ(n0)n
3
7
0 (log2n0)2.

On the other hand, let Gi(n) be the essentially distinct primitive representations of n

by fi, it is clear that 2Gi(n) � ri(n) because every positive definite ternary quadratic
form has at least two automorphs. So we see that

G(A, n)=
∑
fi

Gi(n) � 1
2

∑
fi

ri(n)

� O(G)
2

∑
fi

ri(n)
O(fi)

=

O(G)

⎛⎝∑
fi

1
O(fi)

⎞⎠
2

|a(n)|,
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where O(G) = max{O(fi)}. So by the above Claim and Siegel’s lower bounds for
the class numbers we see that

|a(n0)| � G(A, n0) � H(Δ) = H(n0d/Ω2) � n
1/2−ε
0 .

Comparing these two estimations we see that there are only finitely many square-free
eligible integers prime to 2|A| which can not be represented by f . This completes the
proof.

Remark 10.2 Notice that there are some similarities between our Theorem 10.9
and Theorem 86 in B.W. Jones, 1950, but they differ from one another in the following
aspects:

(1) In general G(n) �= G(A, n) and there is no simple equality between them. Of

course we have the inequality G(n) � G(A, n) � O(G)
2

G(n) just as we saw in the

proof of Theorem 10.10;
(2) In Jones’ Theorem 86, it is assumed that (n, N) = 1 where N is the level of

the quadratic form f . But we need not this assumption in our Theorem 10.9;
(3) Jones’ Theorem 86 can not tell us which are the eligible numbers for the genus

but our Theorem 10.9 can do this (cf. Example 10.5 and Example 10.6). Anyway
neither does our Theorem 10.9 contain Jones’ Theorem 86, nor is the converse the
case.

Since we employed Theorem 86 (i.e., our Claim) in B.W. Jones, 1950 in our
proof of Theorem 10.10, we have to limit ourselves to the case with n0 prime to 2d.
For the case with n0 not prime to 2|A|, we may employ our Theorem 10.9. For a
concrete positive definite ternary quadratic form f , we can always investigate any
square-free natural number n (prime or not prime to 2|A|) by Theorem 10.9. For
example we take the forms in Corollary 10.1 and Corollary 10.2. Suppose that p ≡ 3
(mod 4), N a square-free eligible number not represented by fp = x2 + x2 + pz2 or
fp = x2 + py2 + pz2, by (10.26), (10.26):

α(pN)=α(N) =
3
2
, 1 or 0,

βp,p(N)=p + 1 or 2,

γp(N)=
(

1 − χ−pN (2)
2

)(
pN

δpN

) 1
2

� 1
4
,

β1,p(N)=p + 1 or 2p,

γ′p(N)=
(

1 − χ−N (2)
2

)(
1 − χ−N (p)

p

)(
N

δN

) 1
2

� p − 1
4p

.

Then Corollary 10.1 and Corollary 10.2 imply that
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|a(N)|=

⎛⎝∑
fi

1
O(fi)

⎞⎠−1⎛⎝∑
fi

ri(n)
O(fi)

⎞⎠� h(−pN) � N1/2−ε,

|a(N)|=

⎛⎝∑
fi

1
O(fi)

⎞⎠−1⎛⎝∑
fi

ri(n)
O(fi)

⎞⎠� h(−N) � N1/2−ε

because of Siegel’s lower bounds for class numbers. Together with the estimations
in H. Iwaniec, 1987 and W. Duke, 1988 as above, we obtain that there exist at
most finitely many square-free eligible integers which are not represented by fp =
x2 + y2 + pz2 or fp = x2 + py2 + pz2 for p ≡ 3 (mod 4). We can similarly discuss this
phenomenon for p ≡ 1 (mod 4).
Remark 10.3 Even though there exist only finitely many square-free eligible num-
bers prime to 2|A| which can not be represented by a positive definite ternary quadratic
forms, it is not implementable to find all of these eligible numbers through compu-
tation for two reasons: Siegel’s lower bounds for class numbers are not effective;

it is impossible to obtain a contradiction through computation even if we as-
sume that the lower bounds are effective since we have to compute all of n with
n1/2 � τ(n)n3/7(log(2n))2 which requires that n is about 1075. Even if we replace
Iwaniec’s bound by a sharper bound, cf. V.A. Bykovskii, 1998, we also can not im-
plement the algorithm to find all of these exceptional eligible integers by calculation.

Theorem 10.11 Let A = {f1, f2, · · · , ft} be a set of representatives of the genus
of a positive definite ternary quadratic form of level N . Assume that there are the
following linear combinations of Theta- functions:

f̃i(z) :=
∞∑

n=1

bi(n)qn =
i+1∑
j=1

αi,jθ(fj)

with αi,1αi,i+1 �= 0 for 1 � i � t− 1, such that f̃i(z) is an eigenfunction for all Hecke
operators whose Shimura lifting is a cusp form corresponding to an elliptic curve
Ei. Then we can find an effectively determinable finite set PA = {p0, p1, · · · , ps} of
primes such that for every square-free eligible number n0 of A with (n0, N) = 1 (i.e.,
(n0, N) = 1 and n0 can be represented by one of the forms in A) and for every prime
p not in PA, we have that p2n0 can be represented by f1.

Proof We only consider the case t = 3 because the general case is similar. Let N be

the level of f1, PN the set of all distinct prime factors of N , and Fi(z) :=
∞∑

n=1

Bi(n)qn

the Shimura lifting of f̃i(z). Since f̃i(z) is an eigenfunction for all Hecke operators,
there exist complex numbers αip such that Tp2(f̃i(z)) = αipf̃i(z). But Hecke operators
commute with Shimura liftings. Therefore
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Tp(Fi(z)) = Tp(S(f̃i(z))) = S(Tp2(f̃i(z))) = S(αipf̃i(z)) = αipFi(z).

But because Fi(z) is a new form corresponding to the elliptic curve Ei, it shows that
Tp(Fi(z)) = Bi(p)Fi(z). Hence we see that αip = Bi(p) for any p /∈ PN . This implies
that

Bi(p)bi(n) = bi(p2n) + χ(p)
(
−n

p

)
bi(n) + pbi(n/p2)

for any prime p with (p, N) = 1 and any positive integer n. Especially for any
square-free positive integer n we have that

Bi(p)bi(n) = bi(p2n) + χ(p)
(
−n

p

)
bi(n).

Hence we see that

α11r1(p2n) + α12r2(p2n) = (α11r1(n) + α12r2(n))
(

B1(p) − χ(p)
(
−n

p

))
(10.29)

α21r1(p2n) + α22r2(p2n) + α23r3(p2n)

=(α21r1(n) + α22r2(n) + α23r3(n))(B2(p) − χ(p)
(
−n

p

)
, (10.30)

where ri(n) is the number of representations of n by fi. We want to prove that for
any square-free eligible number n0 of A which is prime to N and not represented by
f1, p2n0 can be represented by f1 where p /∈ PA and PA containing PN is an effectively
determinable finite set of primes. Otherwise, suppose that p /∈ PN is a prime such
that p2n0 can not be represented by f1. Let be n = n0 in (10.29) and (10.30), then

r2(p2n0) = r2(n0)
(

B1(p) − χ(p)
(
−n0

p

))
, (10.31)

α22r2(p2n0) + α23r3(p2n0) = α22r2(n0) + α23r3(n0))
(

B2(p) − χ(p)
(
−n0

p

))
,

(10.32)
since r1(n0) = r1(p2n0) = 0. By (10.31) and (10.32) it is clear that

α23r3(p2n0) :=αr2(n0) + βr3(n0)

= α22(B2(p) − B1(p))r2(n0) + α23

(
B2(p) − χ(p)

(
−n0

p

))
r3(n0).

Now let G(n) and Gi(n) be the essentially distinct primitive representations of n by

A and fi respectively. Then we have that 2Gi(n) � ri(n) and Gi(n) � ri(n)
O(fi)

. So

G(n)=
t∑

i=1

Gi(n) � 1
2

t∑
i=1

ri(n) � O(A)
2

t∑
i=1

ri(n)
O(fi)

,

G(n)=
t∑

i=1

Gi(n) �
t∑

i=1

ri(n)
O(fi)

,
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where O(A) = max{O(fi)}. From these and the Claim in the proof of Theorem 10.10
we see that

H(p2Δ)ρp2Δ

H(Δ)ρΔ
=

G(p2n0)
G(n0)

� O(A)
2

t∑
i=1

ri(p2n0)
O(fi)

t∑
i=1

ri(n0)
O(fi)

=
O(A)

2
δ2r2(p2n0) + δ3r3(p2n0)

δ2r2(n0) + δ3r3(n0)

=
O(A)

2
δ2r2(p2n0) + δ3α

−1
23 αr2(n0) + δ2α

−1
23 βr3(n0)

δ2r2(n0) + δ3r3(n0)
, (10.33)

where δi =
1

O(fi)
and Δ = n0d/Ω2 as in the proof of Theorem 10.10. Now consider

two cases:
Case (1) Suppose that r3(n0) � r2(n0), then (10.31)–(10.33) show that

1
3
(p − 1)� O(A)

2

∣∣∣∣δ2
r2(p2n0)
r2(n0)

+ δ3αα−1
23 + δ3βα−1

23

r3(n0)
r2(n0)

∣∣∣∣
δ2 + δ3

r3(n0)
r2(n0)

� O(A)
2

δ2

∣∣∣∣B1(p) − χ(p)
(
−n0

p

)∣∣∣∣+ | δ3αα−1
23 | + | δ3βα−1

23 |

δ2
.

Case (2) Suppose that r2(n0) � r3(n0), a similar computation shows that

1
3
(p − 1)� O(A)

2

∣∣∣∣δ2
r2(p2n0)
r3(n0)

+ δ3βα−1
23 + δ3αα−1

23

r2(n0)
r3(n0)

∣∣∣∣
δ3 + δ2

r2(n0)
r3(n0)

� O(A)
2

δ2

∣∣∣∣r2(p2n0)
r2(n0)

∣∣∣∣+ | δ3βα−1
23 | + | δ3αα−1

23 |

δ3

� O(A)
2

δ2

∣∣∣∣B1(p) − χ(p)
(
−n0

p

)∣∣∣∣+ | δ3αα−1
23 | + | δ3βα−1

23 |

δ3
,

where we used the facts that H(p2Δ)/H(Δ) = p −
(

Δ
p

)
and ρp2Δ/ρΔ � 1/3 (cf.

Theorem 86 in B.W. Jones, 1950). Anyway we have obtained the following inequality:

p − 1 � C1 | B1(p) | +C2 | B2(p) | +C3,
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where C1, C2, C3 are positive constants only dependent on αij and O(fi). On the
other hand we have that | Bi(p) |� 2p1/2 which implies that

p − 1 � 2(C1 + C2)
√

p + C3.

It is clear that this inequality only holds for finitely many primes. Denote it by P .
Then for any p /∈ PA = P

⋃
PN we have that p2n0 can be represented by f1 which

completes the proof.

The argumentation in the above proof implies the following

Corollary 10.5 Let A = {f, g} be a genus consisting of two equivalence classes such
that f̃(z) = αθ(f)+βθ(g) is an eigenfunction for all Hecke operators and its Shimura
lifting is a cusp form corresponding to an elliptic curve E. Then for any eligible integer
n0 which is prime to 2|A| and not represented by f and any prime p /∈ PA, p2n0 can

be represented by f where PA =
{

p prime | p|N or
1
3
(p− 1) � O(A)

2
(2
√

p + 1)
}

and

N is the level of f .

Remark 10.4 Just as pointed out in Remark 10.2, to investigate the case n not
prime to the level or to obtain more precise result about the set PA, we may employ
our Theorem 10.9. The following proof of Theorem 10.12 is an example together with
the ideas in Theorem 10.11 and Theorem 10.9.

Theorem 10.12 Let be f2 = x2 +7y2 +7z2. If n is a positive integer with
(n

7

)
= 1

(i.e., n is an eligible integer prime to 7) which can not be represented by f2, then n is
square-free.

Proof By Example 10.4 and the fact that n is an eligible integer, we know that

0 < G(n) :=
r2(n)

8
+

r′2(n)
4

=
1
4
ω−1

n (2 − α(n))β1,7(n)γ′7(n)h(−n), (10.34)

where r2(n) and r′2(n) denote the numbers of representations of n by f2 and g2 =
2x2 + 4y2 + 7z2 − 2xy respectively. We also easily know that

f̃2(z) :=
∞∑

n=1

b(n)e2πinz =
1
2

∞∑
n=1

(r2(n) − r′2(n)) exp{2πinz},

is an eigenfunction of all Hecke operators Tn2 in the space S(28, 3/2, χ1) by a direct
computation. And the Shimura lifting F2(z) = S(f̃2(z)) of f̃2(z) is a new form with
weight 2, character χ1 and level 14, i.e., F2(z) ∈ Snew(14, 3/2, χ1). So there exist
complex numbers αn such that Tn2(f̃2(z)) = αnf̃2(z). But Hecke operators commute
with the Shimura lifting. So we see that

Tn(F2(z)) = Tn(S(f̃2(z))) = S(Tn2(f̃2(z))) = S(αnf̃2(z)) = αnS(f̃2(z)) = αnF2(z)
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which implies that αn are also the eigenvalues of Tn for F2(z). But because F2(z) is
a new form with weight 2 shows that for any positive integer m with (m, 14) = 1,

αm = B(m) where F2(z) =
∞∑

n=1

B(n)e2πinz is the Fourier expansion of F2(z). These

facts show that

B(p)b(n) = αpb(n) = b(p2n) +
(
−n

p

)
b(n) + pb(n/p2) (10.35)

for any prime p with (p, 14) = 1 and any positive integer n. We obtain by
r2(n) − r′2(n)

2
instead of b(n) that

r2(p2n) − r′2(p
2n) =

(
B(p) −

(
−n

p

))
(r2(n) − r′2(n)) + p(r2(n/p2) − r′2(n/p2)).

In particular, if n is a square-free positive integer, then for any prime p with (p, 14) =
1, we see that

r2(p2n) − r′2(p
2n) =

(
B(p) −

(
−n

p

))
(r2(n) − r′2(n)). (10.36)

For a prime p such that p|14, by the definition of Hecke operators, we see that

Tp2(f̃2(z)) =
∞∑

n=1

b(p2n)e2πinz which implies that

αpb(n) = b(p2n),

i.e.
r2(p2n) − r′2(p

2n) = αp(r2(n) − r′2(n)). (10.37)

An easy calculation shows that α2 = −1 and α7 = 1. We now want to prove that
if n0 is square-free eligible number such that r2(n0) = 0 (i.e., n0 is not represented
by f2) then r2(p2n0) �= 0 (i.e., p2n0 can be represented by f2) for any prime p with
(p, 7) = 1. Otherwise, we have by (10.36), (10.37) that

r′2(p2n0)
r′2(n0)

=B(p) −
(
−n0

p

)
� B(p) + 1,

r′2(2
2n0)

r′2(n0)
=α2 = −1.

(10.38)

On the other hand, we have that by (10.34)

r′2(p
2n0)

r′2(n0)
=

G2(p2n0)
G2(n0)

=
ω−1

p2n0
(2 − α(p2n0))β1,7(p2n0)γ′7(p

2n0)h(−p2n0)

ω−1
n0 (2 − α(n0))β1,7(n0)γ′7(n0)h(−n0)

=
(2 − α(p2n0))β1,7(p2n0)γ′7(p

2n0)
(2 − α(n0))β1,7(n0)γ′7(n0)

. (10.39)
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We now suppose that p �= 7 and 2, then by the definitions of α(n), β1,7(n), γ′7(n) and
n0 a square-free integer, we easily obtain that

α(p2n0) = α(n0),

β1,7(p2n0) = β1,7(n0),

γ′7(p
2n0)= (p + 1)γ′7(n0),

α(22n0) =
1
2
α(n0),

β1,7(22n0) = β1,7(n0),

γ′7(2
2n0) =

3
1 − 2−1χ−n0(2)

γ′7(n0),

α(72n0) = α(n0),

β1,7(72n0) =
1
7
β1,7(n0),

γ′7(7
2n0) =

8
1 − χ−n0(7)7−1

γ′7(n0).

Hence we see that

r′2(p2n0)
r′2(n0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p + 1, if p �= 2, 7,

5, if p = 2, ν2(n0) = 1,

15, if p = 2, n0 ≡ 1 (mod 4),
9, if p = 2, n ≡ 3 (mod 8),
6, if p = 2, n ≡ 7 (mod 8),

8
7 − χ−n0(7)

, if p = 7.

(10.40)

For any prime p �= 2, 7, by equalities (10.38) and (10.40) we have that

B(p) � p

and

0 <
r′2(2

2n0)
r′2(n0)

= −1 < 0,

which is impossible, since n0 is an eligible integer. On the other hand, it is well
known that B(p) � 2p

1
2 by Deligne’s estimation for coefficients of modular forms.

This implies that 2p
1
2 � p for any prime p �= 2 and 7 which is impossible.

What we have proved is that if n is any square-free eligible number of the genus of
f2 which is not represented by f2, then p2n can be represented by f2 for any prime p

with p �= 7. This, of course, is equivalent to saying that if an eligible number n prime
to 7 can not be represented by f2 then n is square-free. This completes the proof.

As a conclusion of Theorem 10.12 we have that
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Theorem 10.13 The form f1 = x2 + y2 +7z2 represents all eligible numbers which
are multiples of 9; it also represents all eligible numbers congruent to 2 mod 3 except
those of the trivial type. In other words, the Kaplansky’s Conjecture holds.

Proof We first show the following fact: f1 = x2 + y2 + 7z2 does not represent 7A

if and only if f2 = x2 + 7y2 + 7z2 does not represent A.
In fact, it is obvious that if f2 represents A, i.e., there are integers a, b, c such that

a2 + 7b2 + 7c2 = A, then 7A = (7b)2 + (7c)2 + 7a2. Conversely, if 7A = x2 + y2 + 7z2,
then x2 + y2 ≡ 0 (mod 7) which implies that x ≡ 0 (mod 7) and y ≡ 0 (mod 7).
Let be x = 7x′, y = 7y′, we see that A = z2 + 7(x′)2 + 7(y′)2 which shows that f2

represents A.
By Example 10.6, we know that the eligible numbers of f2 are precisely all integers

which are not the product of an even power of 7 and a number congruent to 3, 5, 6
mod 7. Hence, to prove Theorem 10.13 we only need to show that f2 represents all
eligible numbers which are congruent to 1, 2, 4 mod 7 and of form 2t2 with t �= 1 and
7 � t. If 2|t, it is clear that f2 represents 2t2 because f2 represents 8. Hence we can
assume that t is an odd integer. This shows that Theorem 10.12 implies Theorem
10.13.

Remark 10.5 If n is not prime to 7, the result in Theorem 10.12 does not hold. For
example n = 98 = 2 · 72 can not be represented by f2. In fact, for p = 7, the above
proof is not suitable because we can not obtain a contradiction as above for p �= 7.
For if we assume that n0 is an eligible number such that r2(n0) = r2(72n0) = 0, then

the calculations above show that
8

7 − χ−n0(7)
=

r′2(7
2n0)

r′2(n0)
= α7 = 1, which possibly

holds, e.g., n0 = 2 makes it hold. In this proof we need not introduce the concept of
essentially distinct primitive representations. And for the formula giving the number
of representations for a genus of positive definite ternary quadratic forms, we also
need not assume that our discussion is limited to the integers prime to the level of the
quadratic form because we do not employ Theorem 86 in B.W. Jones, 1950. In fact,
the argumentation of the above proof can also be applied to other genera consisting
of two equivalent classes. For example, we can prove the following result:

Corollary 10.6 Let f(p) = x2 + py2 + pz2 with an odd prime p and assume that
the genus of f(p) consists of two equivalence classes which we denote by f(p) and g(p).
Denote

f̃(p)(z) :=
∞∑

n=1

b(n)e2πinz =
1
2

∞∑
n=1

(r(n) − r′(n))e2πinz ,

where r(n) and r′(n) are the numbers of representations of n by f(p) and g(p) respec-
tively. And assume that the Shimura lifting F(p)(z) = S(f̃(p)(z)) of f̃(p)(z) is a new
form of weight 2 corresponding to a modular elliptic curve, then every eligible number
prime to 2p of the genus of f(p) not represented by f(p) is square-free.
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Proof It is completely similar to the proof of Theorem 10.12.

Example 10.7 Every eligible integer prime to 34 not represented by f(17) =
x2 + 17y2 + 17z2 is square free. This is because that the genus for f(17) consists of
f(17) and g(17) = 2x2 +9y2 +17z2 +2xy and the Shimura lifting of f̃(17)(z) is the new
form corresponding to the modular elliptic curve (34A). �

Combining Theorem 10.10, Theroem 10.12, Remark 10.2 and the result of Corol-
lary 10.6 we indeed obtain:

Corollary 10.7 Let f(p) = x2 + py2 + pz2 be as in Corollary 10.6. Then there
are only finitely many eligible numbers which are prime to 2p and not represented by
the quadratic form f(p) . In particular, there are only finitely many eligible numbers
prime to 7 and 34 not represented by the forms f(7) and f(17) respectively.

We now consider the following problem: Let n be a square free positive integer,
f and g be two ternary positive definite quadratic forms in the same genus, then
when do we have that r(f, n) �= r(g, n) where r(f, n) and r(g, n) are the numbers of
representation of n by f and g respectively. For example, if f(7) = x2 + 7y2 + 7z2,
g(7) = 2x2 + 4y2 + 7z2 − 2xy, then f(7) and g(7) are in the same genus, and we want
to know when do we have that r(f(7), n) �= r(g(7), n) for a positive integer. It is clear
that we only need to consider eligible numbers n because r(f, n) = r(g, n) = 0 if n is
not eligible.

We now assume always that f and g are in the same genus and r(f, 1) �= r(g, 1).
Let

f̃(z) =:
∞∑

n=1

bne2πinz =
1
r

∞∑
n=1

(r(f, n) − r(g, n)) exp{2πinz},

where r = r(f, 1) − r(g, 1) �= 0. Then f̃(z) ∈ S(N , 3/2, χl). For example, we have
that

f̃(7)(z)=
1
2

∞∑
n=1

(r(f(7), n) − r(g(7), n)) exp{2πinz}

= q + · · · ∈ S(28, 3/2, χ1), q = exp{2πiz}.

We assume further that the Shimura lifting F (z) of f̃(z) is a new form correspond-
ing to a modular elliptic curve E/Q. For example, we see that F(7)(z) = S(f̃(7)(z))
is the new form corresponding to the modular elliptic curve (14C):

(14C) : y2 = x3 + x2 + 72x − 368.

F(11)(z) = S(f̃(11)(z)) is the new form corresponding to the modular elliptic curve
(11B) where f(11) = x2 + 11y2 + 11z2:

(11B) : y2 + y = x3 − x2 − 10x − 20.
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By the definition of f̃(z), what we want to know is that when are the coefficients of
f̃(z) not equal to zero. In order to do this we need the following result of Waldspurger:

Lemma 10.7 Assume that E/Q is a modular elliptic curve with corresponding cusp
form fE, and that

F ∈ S(N, 3/2, χt)
⋂

S0(N, χt)⊥

with

S(F ) = fE, F =
∞∑

n=1

ane2πinz,

where S0(N, ψ) is the subspace of S(N, 3/2, ψ) generated by the form F of the following
type: There is a t ∈ N and a quadratic character χ with conductor r such that F =
∞∑

m=1

χ(m)mqtm2
and N = 4r2t, ψ = χ · χt · χ−1. Assume that d and d0 are natural

square free numbers with

d ≡ d0 mod
(∏

p|N
Q∗2p

)
, and (dd0, N) = 1.

Then
LE−td

(1)
√

da2
d0

= LE−td0
(1)
√

d0a
2
d.

So especially: if
LE−td0

ad0 �= 0,

then
LE−td

(1) = 0 if and only if ad = 0,

where LED (s) is the Hasse-Weil Zeta function of the D-th twist of elliptic curves E.

Now denote the set of representatives of all inequivalent integers mod
∏
p|N

Q∗2p

which are eligible numbers for the genus of f and prime to N by DN , then DN is
finite. Let be DN =

{
d1, d2, · · · , dl

}
.

We have that for any square free eligible natural integer d such (d, N) = 1, there
exist unique di ∈ DN such that

LE−td
(1)

√
d

a2
d

=
LE−tdi

(1)
√

di

a2
di

.

Using this equality, we can deduce when the coefficients ad are different from zero.
Example 10.8 Let f = f(7), g = g(7), E = (14C), then

f̃(7)(z) =
1
2
(
θ(f(7)) − θ(g(7))

)
∈ S3/2(28, χ1)
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and
F(7)(z) = S(f̃(7)(z)) ∈ Snew

2 (14)

corresponding to the modular elliptic curve (14C). And we can calculate that

D28 ={1, 11, 15, 29} ,

LE−di
�=0, for alldi ∈ D28,

b1 =
1
2
(r(f(7), 1) − r(g(7), 1)) = 1,

b11 =
1
2
(r(f(7), 11)− r(g(7), 11)) =

1
2
(8 − 8) = 0,

b15 =
1
2
(r(f(7), 15)− r(g(7), 15)) =

1
2
(8 − 8) = 0,

b29 =
1
2
(r(f(7), 29)− r(g(7), 29)) =

1
2
(8 − 4) = 2.

These calculations and Waldspurger’s Theorem show that for square free eligible
numbers d such that (d, 14) = 1:

r(f(7), d)= r(g(7), d), if d ≡ 11, 15 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠ ,

r(f(7), d) �= r(g(7), d) if and only if LE−d
(1) �= 0 for d ≡ 1, 29 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠ .

�
Hence we have the following:

Theorem 10.14 Let be f(7) = x2 + 7y2 + 7z2, g(7) = 2x2 + 4y2 + 7z2 − 2xy, E the
corresponding modular elliptic curve of the cusp form 1

2 (θ(f(7)) − θ(g(7))) and E−d

the −d-twist of E. Then for any square free eligible numbers d such that (d, 14) = 1,
we have that

(1) r(f(7), d) = r(g(7), d), if d ≡ 11, 15 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠ ;

(2) r(f(7), d) �= r(g(7), d) if and only if LE−d
(1) �= 0 for d ≡ 1, 29 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠,

where LE−d
(s) is the Hasse-Weil L-function of the elliptic curve E−d. Especially, if

n is a square free natural number such that

n ≡ 3 (mod 8) and
(n

7

)
= 1
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or
n ≡ 7 (mod 8) and

(n

7

)
= 1,

then
r(f(7), n) = r(g(7), n).

Proof Above all proved except for the last assertion. But

n ≡ 3 (mod 8) and
(n

7

)
= 1

implies that

n ≡ 11mod
(∏

p|28
Q∗2p

)
.

And
n ≡ 7 (mod 8) and

(n

7

)
= 1

implies that

n ≡ 15mod
(∏

p|28
Q∗2p

)
,

which shows this theorem.

From this theorem, we see that for the cases of d ≡ 11, 15 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠, the

result (1) is completely pleasant. And for the cases of d ≡ 1, 29 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠, the

result (2) is not so pleasant because it is not an easy task to determine if LE−d
(1) = 0.

But we have the following:

Theorem 10.15 Let p ≡ 1 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠ be a prime not dividing 14, then

r(f(7), p) �= r(g(7), p) if p is represented by 2X2 + 7Y 2.

Proof As in J.A. Antoniadis, 1990, we denote

F0 =
(
θ(X2 + 14Y 2) − θ(2X2 + 7Y 2)

)
· θid,14 :=

∞∑
n=1

ane2πinz ∈ S3/2(56, χ1),

where

θid,14 :=
∞∑

n=−∞
q14n2

∈ M1/2(56, χ14), θ(X2 +14Y 2)− θ(2X2 +7Y 2) ∈ S1(56, χ−14).
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Then by the results in J.A. Antoniadis, 1990, we know that F0 is mapped to the cusp
form corresponding to the modular elliptic curve (14C) under Shimura lifting and

ap �= 0 if p is a prime not dividing 14 and represented by 2X2 + 7Y 2. Since p ≡ 1

mod

⎛⎝∏
p|28

Q∗2p

⎞⎠, by Waldspurger’s Theorem, we see that

LE−p(1)
√

pa2
1 = LE−1(1)a2

p.

A direct computation shows that a1 · LE−1(1) �= 0 which implies that

LE−p(1) = 0 if and only if ap = 0.

Therefore by Lemma 10.7, we have proved that

r(f(7), p) �= r(g(7), p) if and only if ap �= 0,

which completes the proof since ap �= 0 if (p, 14) = 1 and represented by 2X2 +
7Y 2.

Our method can be used for other ternary positive definite quadratic forms. For
example, we can similarly study the forms f(11), g(11). In this case, we calculate:

D44 = {1, 3, 5, 15} ,

LE−di
�= 0, for all di ∈ D44,

b1 = 1, b3 = −1m b5 = −1, b15 = 1.

Hence we conclude that

Theorem 10.16 Let be f(11) = x2 +11y2 +11z2, g(11) = 3x2 +4y2 +11z2 +2xy, E

the corresponding modular elliptic curve of the cusp form
1
2
(θ(f(11)) − θ(g(11))) and

E−d the −d-twist of E. Then for square free eligible numbers d such that (d, 22) = 1,
we have that

r(f(11), d) �= r(g(11), d) if and only if LE−d
(1) �= 0,

where LE−d
(s) is the Hasse-Weil L-function of the elliptic curve E−d. Especially, we

have that r(f(11), d) �= r(g(11), d) if d satisfies one of the following conditions:
(1) d = p is a prime not splitting in Q(

√
−11)(2)/Q(

√
−11), where Q(

√
−11)(2) is

the class field of Q(
√
−11) with conductor 2;

(2) d = p is a prime with (p, 22) = 1 such that p is represented by 3X2+2XY +4Y 2;
(3) 5 � h(−d).

Proof Since LE−di
(1)·bdi �= 0 for all di ∈ D44, we know that r(f(11), d) �= r(g(11), d)

if and only if LE−d
(1) �= 0 by Waldspurger’s Theorem. All other assertions are

immediate conclusions of Proposition 4.2 and Proposition 4.8 in J.A. Antoniadis,
1990.
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Remark 10.6 Our method in this section can be used to any other positive definite
quadratic forms satisfying our assumptions in the paragraph before Lemma 10.7. For
example, we can study similarly the forms f(17) and g(17), etc.

Finally we consider the following problem: for a given positive definite quadratic
form with integral coefficients, find an exact formula for the number of representations
of integers by this form. In general it is a difficult classical problem. Even for the
simplest cases, i.e., binary forms and ternary forms, the problem is still open. For the
general case, what we know is that the sum of the numbers of representations of an
integer by all classes in a fixed genus is in relation to the coefficients of some modular
forms in an Eisenstein subspace. But even for the sum, it is non-trivial to give an
exact formula for a form given generally. In any case, the number of representations
of an integer by one form in the genus has never been formulated if the class number
of the genus is larger than one.

We shall consider some ternary quadratic forms with class number two of their
genus, and give exact formulae for the numbers of representations of an integer by
these forms. The main idea is as follows. For a positive definite ternary form f ,
let f and g be the representatives of classes in the genus of f . On the one hand,
some linear combination of the numbers of representations of an integer by f and g

can be related to the class number of a certain quadratic field; on the other hand,
sometimes, we can find another linear combination of these numbers which is related
to the L-function of an elliptic curve. By these two linear combinations, in terms of
class number of a quadratic field and the special value of the L-function of an elliptic
curve, we can get exact formulae for the number of representations of an integer by f

and g respectively. This also shows the difficulty of the classical problem mentioned
above because of the mysterious properties of the special values of L-functions and
class numbers.

Theorem 10.17 Let f = αx2 + βy2 + γz2 be a positive definite ternary quadratic
form with level N . Suppose the genus of f consists of two classes, f and g are the
representatives of the classes. We assume further that μO(f) − νO(g) �= 0, and

μθf + νθg =
∞∑

n=1

ane2πinz ∈ S(N, 3/2, χt)
⋂

S0(N, χt)⊥

and the Shimura lifting F (z) of μθf + νθg is a new form corresponding to an elliptic
curve E/Q. Let n with (n, N) = 1 be any square-free eligible number of the genus (i.e.,

d can be represented by the genus of f) with n ≡ di mod
∏
p|N

Q∗2p and LE−ldi
(1) �= 0,

then
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r(f, n)=

O(f)adi

√
LE−ln

(1)
LE−ldi

(1)
− νO(f)O(g)r(a, b, c; n)h(−ln)

μO(f) − νO(g)
,

r(g, n)=

μO(f)O(g)r(a, b, c; n)h(−ln) − O(g)adi

√
LE−ln

(1)
LE−ldi

(1)

μO(f) − νO(g)
,

where di ∈ DN = {d1, d2, · · · , dl}, LED(s) is the Hasse-Weil Zeta function of the D-th
twist of the elliptic curve E.

Proof In Lemma 10.7, we take F (z) = μθf (z) + νθg(z) =
∞∑

n=1

ane2πinz. Then by

Theorem 10.9 we obtain the following system of equations:⎧⎪⎨⎪⎩
μr(f, n) + νr(g, n) = an,

r(f, n)
O(f)

+
r(g, n)
O(g)

= r(a, b, c; n)h(−ln).
(10.41)

For the positive integer n, there is a unique di ∈ DN with n ≡ di mod

⎛⎝∏
p|N

Q∗2p

⎞⎠.

By the above Lemma 10.7, under the assumptions of the theorem, we have that

an = adi

√
LE−ln

(1)
LE−ldi

(1)
,

solving the system (10.41) for r(f, n), r(g, n), and inserting above the expression for
an, we get the results desired, which completes the proof.

Remark 10.7 Because the set DN =
{
d1, d2, · · · , dl

}
is finite, we see that r(f, n)

and r(g, n) can be represented explicitly in terms of the classnumber h(−ln) and the
special value LE−ln

(1) of L-function of the twist of the elliptic curve E.
Example 10.9 Let be f1 = x2 + 7y2 + 7z2, g1 = 2x2 + 4y2 + 7z2 − 2xy.Then
O(f1) = 8, O(g1) = 4, and

f̃(z) =
∞∑

n=1

an exp{2πinz}

:=
1
2
θf1(z) − 1

2
θg1(z) =

1
2

∞∑
n=1

(r(f1, n) − r(g1, n)) exp{2πinz}

= q + · · · ∈ S(28, 3/2, χ1), q = exp{2πiz}

and F (z) = S(f̃(z)) is the new form corresponding to the elliptic curve (14C):

(14C) : y2 = x3 + x2 + 72x − 368.
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We can easily calculate that

D28 ={1, 11, 15, 29} ,

LE−di
�=0 for all di ∈ D28,

a1 =
1
2
(r(f, 1) − r(g, 1)) = 1,

a11 =
1
2
(r(f, 11) − r(g, 11)) =

1
2
(8 − 8) = 0,

a15 =
1
2
(r(f, 15) − r(g, 15)) =

1
2
(8 − 8) = 0,

a29 =
1
2
(r(f, 29) − r(g, 29)) =

1
2
(8 − 4) = 2.

Hence by Theorem 10.17, for any square-free eligible integer n , we have that

r(f1, n) =
4
3

√
LE−n(1)
LE−1(1)

+
8
3
r(1, 7, 7; n)h(−n), if n ≡ 1 mod

∏
p|28

Q∗2p ,

r(g1, n) =
8
3
r(1, 7, 7; n)h(−n) +

1
3

√
LE−n(1)
LE−1(1)

, if n ≡ 1 mod
∏
p|28

Q∗2p ,

r(f1, n) = r(g1, n) =
8
3
r(1, 7, 7; n)h(−n), if n ≡ 11 mod

∏
p|28

Q∗2p ,

r(f1, n) = r(g1, n) =
8
3
r(1, 7, 7; n)h(−n), if n ≡ 15 mod

∏
p|28

Q∗2p ,

r(f1, n) =
8
3

√
LE−n(1)
LE−29(1)

+
8
3
r(1, 7, 7; n)h(−n), if n ≡ 29 mod

∏
p|28

Q∗2p ,

r(g1, n) =
8
3
r(1, 7, 7; n)h(−n) +

2
3

√
LE−n(1)
LE−29(1)

, if n ≡ 29 mod
∏
p|28

Q∗2p ,

where

r(1, 7, 7; n)=
1
4
ω−1

n · (2 − α(n))β1,7(n)γ′7(n);

γ′p(n)= (1 − 2−1χ−n(2))(1 − χ−n(p) · p−1)(n/δn)
1
2

×
∑

(ab)2|n
(ab,2p)=1

μ(a)χ−n(a)(ab)−1

for any prime p; In particular we know that γ′p(n) = (1 − 2−1χ−n(2))(1 − χ−n(p) ·
p−1)(n/δn)1/2 for any square-free positive integer n.
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From these results, we can get very explicit formulae for the number of represen-
tations of the square-free positive eligible number n with (n, 28) = 1 by f and g. E.g.,

for any square-free positive integer n > 3 with n ≡ 3 mod 8 and
(n

7

)
= 1, then

n ≡ 11 mod

⎛⎝∏
p|28

Q∗2p

⎞⎠. By the definitions of α(n), β1,7(n) and γ′7(n), we have that

α(n) = 1, β1,7(n) = 14, γ′7(n) =
12
7

.

So
r(f1, n) = r(g1, n) = 8h(−n).

Of course, we can discuss also other square-free positive integers n in a similar
way. �
Example 10.10 Let be f2 = x2 + 11y2 + 11z2, g2 = 3x2 + 4y2 + 11z2 + 2xy. Then
we have that

D44 = {1, 3, 5, 15} , LE−di
�= 0, for all di ∈ D44,

a1 = 1, a3 = −1, a5 = −1, a15 = 1.

And O(f2) = 8, O(g2) = 4,

f̃(z)=
∞∑

n=1

an exp(2πinz) :=
1
2
θf2(z) − 1

2
θg2(z)

=
1
2

∞∑
n=1

(r(f2, n) − r(g2, n)) exp{2πinz}

= q + · · · ∈ S(28, 3/2, χ1), q = exp{2πiz}

and F (z) = S(f̃(z)) is the new form corresponding to the elliptic curve (11B):

(11B) : y2 + y = x3 − x2 − 10x − 20,

So by Theorem 10.17, we can get the exact formulae for the number of representations
of any square-free eligible integer n with (n, 22) = 1 by f and g in terms of h(−n)
and LE−n(1). We omit the calculations. �

Theorem 10.18 Suppose that n is an odd square-free positive integer congruent to
1 or 3 modulo 8. f3 = x2 + 2y2 + 32z2, g3 = 2x2 + 4y2 + 9z2 − 4yz. Then

r(f3, n) = c(n)h(−n) + 2

√
LEn2 (1)

ω
√

n
,

r(g3, n) = c(n)h(−n) − 2

√
LEn2 (1)

ω
√

n
,
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where c(n) = 2 or 6 according to n ≡ 1 or 3 (mod 8), ω is the real period of the elliptic
curve E : y2 = 4x3 − 4x and LEn2 (s) is the L-function of the congruent elliptic curve
defined by y2 = x3 − n2x.

Proof Let f3 = x2 + 2y2 + 32z2, g3 = 2x2 + 4y2 + 9z2 − 4yz. We want to give
the formula for the number of representations of n by f3 and g3. It is clear that
r(f3, n) = r(g3, n) = 0 for any n ≡ 5 or 7 (mod 8). So we only need to consider
positive integers congruent to 1 or 3 modulo 8. Now let f ′3 = 2x2 + y2 + 32z2,
g′3 = 2x2 + y2 + 8z2, then by Tunnell’s paper J.B. Tunnell, 1983, for any odd positive
integer n, we have

LEn2 (1)
ω
√

n
=

1
4
a(n)2,

where En2 is the congruent elliptic curve defined by y2 = x3 − n2x, ω is the real

period of the elliptic curve y2 = 4x3 − 4x and a(n) = r(f ′3, n) − 1
2
r(g′3, n). It is not

difficult to see that a(n) =
1
2
(r(f3, n) − r(g3, n)) for any odd n. So we have

LEn2 (1)
ω
√

n
=

1
4
a(n)2, (10.42)

where a(n) =
1
2
(r(f3, n) − r(g3, n)).

In order to get the formulae for the number of representations of n by f3 and g3,
we only need to find the number r(f3, n) + r(g3, n) by (10.42). But by the definitions
of r(f3, n) and r(g3, n), we see that r(f3, n) + r(g3, n) = r(x2 + 2y2 + 8z2, n). So we
only need to calculate the number r(x2 +2y2 +8z2, n). We shall prove that for n > 3
square-free,

r(x2 + 2y2 + 8z2, n) =
{

4h(−n) if n ≡ 1 (mod 8),
12h(−n) if n ≡ 3 (mod 8).

In fact, if n ≡ 1 (mod 8), then for any triple (x, y, z) ∈ Z3 such that x2+2y2+2z2 = n,
the x must be odd and y, z are both even. So we have a one-to-one correspondence:

{(x, y, z) ∈ Z3|x2 + 2y2 + 2z2 = n}↔{(x, y, z) ∈ Z3|x2 + 2y2 + 8z2 = n},
(x, y, z)↔ (x, y, z/2).

If n ≡ 3 (mod 8), then for any triple (x, y, z) ∈ Z3 such that x2 + 2y2 + 2z2 = n, the
x must be odd and there is exactly one of y, z that is odd. We let z be the even one.
Then we have a two-to-one correspondence:

{(x, y, z) ∈ Z3|x2 + 2y2 + 2z2 = n}↔{(x, y, z) ∈ Z3|x2 + 2y2 + 8z2 = n}{
(x, y, z)
(x, z, y)

↔ (x, y, z/2).
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So we have

r(x2 + 2y2 + 8z2, n) =

⎧⎪⎨⎪⎩
r(x2 + 2y2 + 2z2, n) if n ≡ 1 (mod 8),

1
2
r(x2 + 2y2 + 2z2, n) if n ≡ 3 (mod 8).

Now we can compute the number r(x2 + 2y2 + 2z2, n) in terms of our Theorem
10.9. By Theorem 10.9 it can be proved that for any positive integer n

r(x2 + 2y2 + 2z2, n)=
32h(−n)

√
n

ωn

√
δn

(
1 − 1

2
χ−n(2)

)
×
(

α(n) − δ

(
n − 1

4

)
−
(

n − 2
n

))
∑

(ab)2|n,(ab,2)=1
a,b positive integers

μ(a)
(
−n

a

)
(ab)−1,

where δ(x) = 1 or 0 according to x an integer or not.
In particular, for any square-free odd positive integer n, the sum is equal to 1, and

since the conductor δn of χ−n is equal to 4n or n according to n ≡ 1 or 3 (mod 4),
we have

r(x2 + 2y2 + 2z2, n) =

⎧⎪⎪⎨⎪⎪⎩
2, if n = 1,

8, if n = 3,

4h(−n), if n ≡ 1 (mod 8), n �= 1,

24h(−n), if n ≡ 3 (mod 8), n �= 3.

Therefore we have for any square-free odd positive integer n > 3

r(f3, n)+r(g3, n) = r(x2 +2y2 +8z2, n) =
{

4h(−n), if n ≡ 1 (mod 8),
12h(−n), if n ≡ 3 (mod 8),

(10.43)

By the above (10.40) and (10.42) we have proved the theorem.

Let N = p1p2 · · · pm with p1, p2, · · · , pm distinct odd primes, at most two of them
congruent to 3 modulo 8 and others congruent to 1 modulo 8. If there is at most one
of pi congruent to 3 modulo 8, then we define a simple graph GN = (V (GN ), E(GN ))

with vertices V (GN ) = {p1, p2, · · · , pm} and edges E(GN ) =
{

(pi, pj)
∣∣∣∣ (pj

pi

)
= −1

}
where (−) is the Legendre symbol as usual. Otherwise, without loss of generality,
we may assume p1 ≡ p2 ≡ 3 (mod8) and pi ≡ 1 (mod8) for i � 3. We define a
simple graph GN = (V (GN ), E(GN )) with vertices V (GN ) = {p1, p2, · · · , pm} and

edges E(GN ) =
{

(p1, p2)
⋃

(pi, pj)
∣∣∣∣ (pj

pi

)
= −1, {i, j} �= {1, 2}

}
. By the quadratic
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reciprocity law, the graph GN is a non-directed graph. We denote the number of
spanning trees of GN by τ(GN ) if N has at most one prime factor congruent to 3
modulo 8, otherwise τ is the number of spanning trees containing the special edge
(p1, p2)(a subgraph of a non-directed simple graph is called a spanning tree if it is a
tree and its vertices coincide with that of the original graph). Let ν2(n) be the 2-adic
additive valuation normalized by ν2(2) = 1.

Theorem 10.19 Let N = p1p2 · · · pm > 3 congruent to 1 or 3 modulo 8, with
p1, p2, · · · , pm distinct odd primes, at most two of them congruent to 3 modulo 8 and
all others congruent to 1 modulo 8. Let f3, g3 be as in Theorem 10.18. Then

(1) ν2(r(f3, N)) � m, ν2(r(g3, N)) � m;
(2) if all pi(i = 1, 2, · · · , m) are congruent to 1 modulo 8, then the equality in (1)

holds if and only if ν2(h(−N)) = m − 1;
(3) if there is only one or two pi (i = 1, 2, · · · , m) congruent to 3 modulo 8, then

the equality in (1) holds if and only if one of the following conditions is satisfied:
i) ν2(h(−N)) = m− 1 and τ(GN ) is even; ii) ν2(h(−N)) > m− 1 and τ(GN ) is odd.

Proof In order to prove the theorem, we need the following facts(for the proofs of
these facts please see C. Zhao, 1991, C. Zhao, 2001, C. Zhao, 2003):

Claim Let the notations be as in the theorem. Then

(1) ν2

(
LEN2 (1)

ω
√

N

)
� 2m if all pi (i = 1, 2, · · · , m) are congruent to 1 modulo 8;

(2) ν2

(
LEN2 (1)

ω
√

N

)
� 2m − 2 if one or two of pi(i = 1, 2, · · · , m) are congruent to

3 modulo 8 and others are congruent to 1 modulo 8. Moreover, the equality holds if
and only if τ(GN ) is odd.

We consider the 2-adic valuation of the terms on the right side of the conclusion
of Theorem 10.18. It is clear that ν2(c(N)) = 1. From the Gauss genus theory we
know that

ν2(h(−N)) � m − 1, (10.44)

where m is the number of prime factors of N . By the claim we see that ν2(
4
LEN2 (1)

ω
√

N

)
� 2m. So the first conclusion (1) of the theorem is valid.

Now suppose that N = p1p2 · · · pm with all pi ≡ 1 (mod 8). Then we have that

ν2

(
4
LEN2 (1)

ω
√

N

)
� 2m + 2.

Therefore, by Theorem 10.18, (10.43) and (10.44), we see that ν2(r(f3, N)) = ν2(r(g3,

N)) = m if and only if ν2(c(N)h(−N)) = m, which is equivalent to ν2(h(−N)) =
m − 1. This is the second assertion (2) of the theorem.
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Finally, suppose that N = p1p2 · · · pm as in (3) of the theorem. By the claim we
have

ν2

(
4
LEN2 (1)

ω
√

N

)
� 2m. (10.45)

And the equality holds if and only if τ(GN ) is odd. By (10.43), we have

ν2(c(N)h(−N)) � m (10.46)

and the equality holds if and only if ν2(h(−N)) = m − 1. Therefore by Theorem
10.18, ν2(r(f3, N)) = ν2(r(g3, N)) = m if and only if one of the inequalities in (10.45)
and (10.46) holds while the other one does not hold. This is the assertion (3) of the
theorem which completes the proof.
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